content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import TextIO from typing import Set def observe_birds(observations_file: TextIO) -> Set[str]: """Return a set of the bird species listed in observations_file, which has one bird species per line. >>> file = StringIO("bird 1\\nbird 2\\nbird 1\\n") >>> birds = observe_birds(file) >>> 'bird 1' in birds True >>> 'bird 2' in birds True >>> len(birds) == 2 True """ birds_observed=set() for line in observations_file: bird = line.strip() birds_observed.add(bird) return birds_observed
e3ea90e8da4488121ec1ae75c4aa116646db08f5
18,200
def convert_sheet(sheet, result_dict, is_enum_mode=False): """ 转换单个sheet的数据 Args: sheet: openpyxl.worksheet.worksheet.Worksheet result_dict: [dict]结果都存在这里, key为data_name,value为sheet_result is_enum_mode: [bool]是否为enum导表模式 Returns: bool, 是否成功 """ if is_enum_mode: data_name = convert.excel_handler.get_enum_class_name(sheet) else: data_name = convert.excel_handler.get_data_name(sheet) sheet_name = convert.excel_handler.get_sheet_name(sheet) if not data_name: ec_converter.logger.info('sheet \'%s\' 的data名字为空或不符合命名规则,不导表', sheet_name) return True if data_name in result_dict: ec_converter.logger.error('data名字 \'%s\' 重复, sheet name = \'%s\'', data_name, sheet_name) return False name_schema_dict = {} col_schema_dict = {} if not _get_sheet_schema_meta_info(sheet, name_schema_dict, col_schema_dict): ec_converter.logger.error('sheet \'%s\' 获取字段信息失败', sheet_name) return False sheet_result = result_dict.setdefault(data_name, convert.sheet_result.SheetResult(data_name)) sheet_result.name_schema_dict = name_schema_dict sheet_result.col_schema_dict = col_schema_dict for row_data in convert.excel_handler.get_row_generator(sheet, settings.ROW_OFFSET): if not _convert_row(row_data, sheet_name, sheet_result): return False return True
284f470844b6722941d0e4725e4c23b1473b08df
18,201
from __main__ import __file__ as main_script_path import os def _nsimage_from_file(filename, dimensions=None, template=None): """Take a path to an image file and return an NSImage object.""" try: _log('attempting to open image at {0}'.format(filename)) with open(filename): pass except IOError: # literal file path didn't work -- try to locate image based on main script path try: main_script_path = os.path.dirname(main_script_path) filename = os.path.join(main_script_path, filename) except ImportError: pass _log('attempting (again) to open image at {0}'.format(filename)) with open(filename): # file doesn't exist pass # otherwise silently errors in NSImage which isn't helpful for debugging image = NSImage.alloc().initByReferencingFile_(filename) image.setScalesWhenResized_(True) image.setSize_((20, 20) if dimensions is None else dimensions) if not template is None: image.setTemplate_(template) return image
079556d6959c6344feb8fa25db3467d4468124d0
18,202
def bytes_to_int(b: bytes, order: str = 'big') -> int: """Convert bytes 'b' to an int.""" return int.from_bytes(b, order)
c959683787e03cc956b5abffc814f98cf4722397
18,203
def fit_model(params,param_names,lam_gal,galaxy,noise,gal_temp, feii_tab,feii_options, temp_list,temp_fft,npad,line_profile,fwhm_gal,velscale,npix,vsyst,run_dir, fit_type,output_model): """ Constructs galaxy model by convolving templates with a LOSVD given by a specified set of velocity parameters. Parameters: pars: parameters of Markov-chain lam_gal: wavelength vector used for continuum model temp_fft: the Fourier-transformed templates npad: velscale: the velocity scale in km/s/pixel npix: number of output pixels; must be same as galaxy vsyst: dv; the systematic velocity fr """ # Construct dictionary of parameter names and their respective parameter values # param_names = [param_dict[key]['name'] for key in param_dict ] # params = [param_dict[key]['init'] for key in param_dict ] keys = param_names values = params p = dict(zip(keys, values)) c = 299792.458 # speed of light host_model = np.copy(galaxy) comp_dict = {} # Perform linear interpolation on the fwhm_gal array as a function of wavelength # We will use this to determine the fwhm resolution as a fucntion of wavelenth for each # emission line so we can correct for the resolution at every iteration. fwhm_gal_ftn = interp1d(lam_gal,fwhm_gal,kind='linear',bounds_error=False,fill_value=(0,0)) # Re-directed line_profile function def line_model(line_profile,*args): """ This function maps the user-chosen line profile to the correct line_model """ if (line_profile=='Gaussian'): line = gaussian(*args) return line elif (line_profile=='Lorentzian'): line = lorentzian(*args) return line ############################# Power-law Component ###################################################### # if all(comp in param_names for comp in ['power_amp','power_slope','power_break'])==True: if all(comp in param_names for comp in ['power_amp','power_slope'])==True: # Create a template model for the power-law continuum # power = simple_power_law(lam_gal,p['power_amp'],p['power_slope'],p['power_break']) # power = simple_power_law(lam_gal,p['power_amp'],p['power_slope']) # host_model = (host_model) - (power) # Subtract off continuum from galaxy, since we only want template weights to be fit comp_dict['power'] = {'comp':power,'pcolor':'xkcd:orange red','linewidth':1.0} ######################################################################################################## ############################# Fe II Component ########################################################## if (feii_tab is not None): if (feii_options['template']['type']=='VC04'): # Unpack feii_tab na_feii_tab = (feii_tab[0],feii_tab[1]) br_feii_tab = (feii_tab[2],feii_tab[3]) # Parse FeII options if (feii_options['amp_const']['bool']==False): # if amp not constant na_feii_amp = p['na_feii_amp'] br_feii_amp = p['br_feii_amp'] elif (feii_options['amp_const']['bool']==True): # if amp constant na_feii_amp = feii_options['amp_const']['na_feii_val'] br_feii_amp = feii_options['amp_const']['br_feii_val'] if (feii_options['fwhm_const']['bool']==False): # if amp not constant na_feii_fwhm = p['na_feii_fwhm'] br_feii_fwhm = p['br_feii_fwhm'] elif (feii_options['fwhm_const']['bool']==True): # if amp constant na_feii_fwhm = feii_options['fwhm_const']['na_feii_val'] br_feii_fwhm = feii_options['fwhm_const']['br_feii_val'] if (feii_options['voff_const']['bool']==False): # if amp not constant na_feii_voff = p['na_feii_voff'] br_feii_voff = p['br_feii_voff'] elif (feii_options['voff_const']['bool']==True): # if amp constant na_feii_voff = feii_options['voff_const']['na_feii_val'] br_feii_voff = feii_options['voff_const']['br_feii_val'] na_feii_template = VC04_feii_template(lam_gal,fwhm_gal,na_feii_tab,na_feii_amp,na_feii_fwhm,na_feii_voff,velscale,run_dir) br_feii_template = VC04_feii_template(lam_gal,fwhm_gal,br_feii_tab,br_feii_amp,br_feii_fwhm,br_feii_voff,velscale,run_dir) host_model = (host_model) - (na_feii_template) - (br_feii_template) comp_dict['na_feii_template'] = {'comp':na_feii_template,'pcolor':'xkcd:yellow','linewidth':1.0} comp_dict['br_feii_template'] = {'comp':br_feii_template,'pcolor':'xkcd:orange','linewidth':1.0} elif (feii_options['template']['type']=='K10'): # Unpack tables for each template f_trans_tab = (feii_tab[0],feii_tab[1],feii_tab[2]) s_trans_tab = (feii_tab[3],feii_tab[4],feii_tab[5]) g_trans_tab = (feii_tab[6],feii_tab[7],feii_tab[8]) z_trans_tab = (feii_tab[9],feii_tab[10]) # Parse FeII options if (feii_options['amp_const']['bool']==False): # if amp not constant f_feii_amp = p['feii_f_amp'] s_feii_amp = p['feii_s_amp'] g_feii_amp = p['feii_g_amp'] z_feii_amp = p['feii_z_amp'] elif (feii_options['amp_const']['bool']==True): # if amp constant f_feii_amp = feii_options['amp_const']['f_feii_val'] s_feii_amp = feii_options['amp_const']['s_feii_val'] g_feii_amp = feii_options['amp_const']['g_feii_val'] z_feii_amp = feii_options['amp_const']['z_feii_val'] # if (feii_options['fwhm_const']['bool']==False): # if fwhm not constant feii_fwhm = p['feii_fwhm'] elif (feii_options['fwhm_const']['bool']==True): # if fwhm constant feii_fwhm = feii_options['fwhm_const']['val'] # if (feii_options['voff_const']['bool']==False): # if voff not constant feii_voff = p['feii_voff'] elif (feii_options['voff_const']['bool']==True): # if voff constant feii_voff = feii_options['voff_const']['val'] # if (feii_options['temp_const']['bool']==False): # if temp not constant feii_temp = p['feii_temp'] elif (feii_options['temp_const']['bool']==True): # if temp constant feii_temp = feii_options['temp_const']['val'] f_trans_feii_template = K10_feii_template(lam_gal,'F',fwhm_gal,f_trans_tab,f_feii_amp,feii_temp,feii_fwhm,feii_voff,velscale,run_dir) s_trans_feii_template = K10_feii_template(lam_gal,'S',fwhm_gal,s_trans_tab,s_feii_amp,feii_temp,feii_fwhm,feii_voff,velscale,run_dir) g_trans_feii_template = K10_feii_template(lam_gal,'G',fwhm_gal,g_trans_tab,g_feii_amp,feii_temp,feii_fwhm,feii_voff,velscale,run_dir) z_trans_feii_template = K10_feii_template(lam_gal,'IZw1',fwhm_gal,z_trans_tab,z_feii_amp,feii_temp,feii_fwhm,feii_voff,velscale,run_dir) host_model = (host_model) - (f_trans_feii_template) - (s_trans_feii_template) - (g_trans_feii_template) - (z_trans_feii_template) comp_dict['F_feii_template'] = {'comp':f_trans_feii_template,'pcolor':'xkcd:rust orange','linewidth':1.0} comp_dict['S_feii_template'] = {'comp':s_trans_feii_template,'pcolor':'xkcd:rust orange','linewidth':1.0} comp_dict['G_feii_template'] = {'comp':g_trans_feii_template,'pcolor':'xkcd:rust orange','linewidth':1.0} comp_dict['Z_feii_template'] = {'comp':z_trans_feii_template,'pcolor':'xkcd:rust orange','linewidth':1.0} ######################################################################################################## ############################# Emission Line Components ################################################# # Narrow lines #### [OII]3727,3729 ################################################################################# if all(comp in param_names for comp in ['na_oii3727_core_amp','na_oii3727_core_fwhm','na_oii3727_core_voff','na_oii3729_core_amp'])==True: # Narrow [OII]3727 na_oii3727_core_center = 3727.092 # Angstroms na_oii3727_core_amp = p['na_oii3727_core_amp'] # flux units na_oii3727_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3727_core_center,p['na_oii3727_core_voff']) na_oii3727_core_fwhm = np.sqrt(p['na_oii3727_core_fwhm']**2+(na_oii3727_core_fwhm_res)**2) # km/s na_oii3727_core_voff = p['na_oii3727_core_voff'] # km/s na_oii3727_core = gaussian(lam_gal,na_oii3727_core_center,na_oii3727_core_amp,na_oii3727_core_fwhm,na_oii3727_core_voff,velscale) host_model = host_model - na_oii3727_core comp_dict['na_oii3727_core'] = {'comp':na_oii3727_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OII]3729 na_oii3729_core_center = 3729.875 # Angstroms na_oii3729_core_amp = p['na_oii3729_core_amp'] # flux units na_oii3729_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3729_core_center,na_oii3727_core_voff) na_oii3729_core_fwhm = np.sqrt(p['na_oii3727_core_fwhm']**2+(na_oii3729_core_fwhm_res)**2) # km/s # km/s na_oii3729_core_voff = na_oii3727_core_voff # km/s na_oii3729_core = gaussian(lam_gal,na_oii3729_core_center,na_oii3729_core_amp,na_oii3729_core_fwhm,na_oii3729_core_voff,velscale) host_model = host_model - na_oii3729_core comp_dict['na_oii3729_core'] = {'comp':na_oii3729_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, and includes [OIII]5007 elif (all(comp in param_names for comp in ['na_oii3727_core_amp','na_oii3727_core_voff','na_oii3729_core_amp','na_oiii5007_core_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_neiii_core_fwhm','na_Hg_fwhm','oiii4363_core_fwhm'])==True): # Narrow [OII]3727 na_oii3727_core_center = 3727.092 # Angstroms na_oii3727_core_amp = p['na_oii3727_core_amp'] # flux units na_oii3727_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3727_core_center,p['na_oii3727_core_voff']) na_oii3727_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_oii3727_core_fwhm_res)**2) # km/s na_oii3727_core_voff = p['na_oii3727_core_voff'] # km/s na_oii3727_core = gaussian(lam_gal,na_oii3727_core_center,na_oii3727_core_amp,na_oii3727_core_fwhm,na_oii3727_core_voff,velscale) host_model = host_model - na_oii3727_core comp_dict['na_oii3727_core'] = {'comp':na_oii3727_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OII]3729 na_oii3729_core_center = 3729.875 # Angstroms na_oii3729_core_amp = p['na_oii3729_core_amp'] # flux units na_oii3729_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3729_core_center,na_oii3727_core_voff) na_oii3729_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_oii3729_core_fwhm_res)**2) # km/s na_oii3729_core_voff = na_oii3727_core_voff # km/s na_oii3729_core = gaussian(lam_gal,na_oii3729_core_center,na_oii3729_core_amp,na_oii3729_core_fwhm,na_oii3729_core_voff,velscale) host_model = host_model - na_oii3729_core comp_dict['na_oii3729_core'] = {'comp':na_oii3729_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, but doesn't include [OIII]5007 elif (all(comp in param_names for comp in ['na_oii3727_core_amp','na_oii3727_core_voff','na_oii3729_core_amp','na_Hg_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_neiii_core_fwhm','oiii4363_core_fwhm','na_oiii5007_core_fwhm'])==True): # Narrow [OII]3727 na_oii3727_core_center = 3727.092 # Angstroms na_oii3727_core_amp = p['na_oii3727_core_amp'] # flux units na_oii3727_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3727_core_center,p['na_oii3727_core_voff']) na_oii3727_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_oii3727_core_fwhm_res)**2) # km/s na_oii3727_core_voff = p['na_oii3727_core_voff'] # km/s na_oii3727_core = gaussian(lam_gal,na_oii3727_core_center,na_oii3727_core_amp,na_oii3727_core_fwhm,na_oii3727_core_voff,velscale) host_model = host_model - na_oii3727_core comp_dict['na_oii3727_core'] = {'comp':na_oii3727_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OII]3729 na_oii3729_core_center = 3729.875 # Angstroms na_oii3729_core_amp = p['na_oii3729_core_amp'] # flux units na_oii3729_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oii3729_core_center,na_oii3727_core_voff) na_oii3729_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_oii3729_core_fwhm_res)**2) # km/s na_oii3729_core_voff = na_oii3727_core_voff # km/s na_oii3729_core = gaussian(lam_gal,na_oii3729_core_center,na_oii3729_core_amp,na_oii3729_core_fwhm,na_oii3729_core_voff,velscale) host_model = host_model - na_oii3729_core comp_dict['na_oii3729_core'] = {'comp':na_oii3729_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} #### [NeIII]3870 ################################################################################# if all(comp in param_names for comp in ['na_neiii_core_amp','na_neiii_core_fwhm','na_neiii_core_voff'])==True: # Narrow H-gamma na_neiii_core_center = 3869.810 # Angstroms na_neiii_core_amp = p['na_neiii_core_amp'] # flux units na_neiii_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_neiii_core_center,p['na_neiii_core_voff']) na_neiii_core_fwhm = np.sqrt(p['na_neiii_core_fwhm']**2+(na_neiii_core_fwhm_res)**2) # km/s na_neiii_core_voff = p['na_neiii_core_voff'] # km/s na_neiii_core = gaussian(lam_gal,na_neiii_core_center,na_neiii_core_amp,na_neiii_core_fwhm,na_neiii_core_voff,velscale) host_model = host_model - na_neiii_core comp_dict['na_neiii_core'] = {'comp':na_neiii_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, and includes [OIII]5007 elif (all(comp in param_names for comp in ['na_neiii_core_amp','na_neiii_core_voff','na_oiii5007_core_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_neiii_core_fwhm','na_Hg_fwhm','oiii4363_core_fwhm'])==True): # Narrow H-gamma na_neiii_core_center = 3869.810 # Angstroms na_neiii_core_amp = p['na_neiii_core_amp'] # flux units na_neiii_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_neiii_core_center,p['na_neiii_core_voff']) na_neiii_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_neiii_core_fwhm_res)**2) # km/s na_neiii_core_voff = p['na_neiii_core_voff'] # km/s na_neiii_core = gaussian(lam_gal,na_neiii_core_center,na_neiii_core_amp,na_neiii_core_fwhm,na_neiii_core_voff,velscale) host_model = host_model - na_neiii_core comp_dict['na_neiii_core'] = {'comp':na_neiii_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, but doesn't include [OIII]5007 elif (all(comp in param_names for comp in ['na_neiii_core_amp','na_neiii_core_voff','na_Hg_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_neiii_core_fwhm','oiii4363_core_fwhm','na_oiii5007_core_fwhm'])==True): # Narrow H-gamma na_neiii_core_center = 3869.810 # Angstroms na_neiii_core_amp = p['na_neiii_core_amp'] # flux units na_neiii_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_neiii_core_center,p['na_neiii_core_voff']) na_neiii_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_neiii_core_fwhm_res)**2) # km/s na_neiii_core_voff = p['na_neiii_core_voff'] # km/s na_neiii_core = gaussian(lam_gal,na_neiii_core_center,na_neiii_core_amp,na_neiii_core_fwhm,na_neiii_core_voff,velscale) host_model = host_model - na_neiii_core comp_dict['na_neiii_core'] = {'comp':na_neiii_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} #### H-delta ##################################################################################### if all(comp in param_names for comp in ['na_Hd_amp','na_Hd_fwhm','na_Hd_voff'])==True: # Narrow H-gamma na_hd_core_center = 4102.890 # Angstroms na_hd_core_amp = p['na_Hd_amp'] # flux units na_hd_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hd_core_center,p['na_Hd_voff']) na_hd_core_fwhm = np.sqrt(p['na_Hd_fwhm']**2+(na_hd_core_fwhm_res)**2) # km/s na_hd_core_voff = p['na_Hd_voff'] # km/s na_Hd_core = gaussian(lam_gal,na_hd_core_center,na_hd_core_amp,na_hd_core_fwhm,na_hd_core_voff,velscale) host_model = host_model - na_Hd_core comp_dict['na_Hd_core'] = {'comp':na_Hd_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, and includes [OIII]5007 elif (all(comp in param_names for comp in ['na_Hd_amp','na_Hd_voff','na_oiii5007_core_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_Hd_fwhm','na_Hg_fwhm','oiii4363_core_fwhm'])==True): # Narrow H-gamma na_hd_core_center = 4102.890 # Angstroms na_hd_core_amp = p['na_Hd_amp'] # flux units na_hd_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hd_core_center,p['na_Hd_voff']) na_hd_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_hd_core_fwhm_res)**2) # km/s na_hd_core_voff = p['na_Hd_voff'] # km/s na_Hd_core = gaussian(lam_gal,na_hd_core_center,na_hd_core_amp,na_hd_core_fwhm,na_hd_core_voff,velscale) host_model = host_model - na_Hd_core comp_dict['na_Hd_core'] = {'comp':na_Hd_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, but doesn't include [OIII]5007 elif (all(comp in param_names for comp in ['na_Hd_amp','na_Hd_voff','na_Hg_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_Hg_fwhm','oiii4363_core_fwhm','na_oiii5007_core_fwhm'])==True): # Narrow H-gamma na_hd_core_center = 4102.890 # Angstroms na_hd_core_amp = p['na_Hd_amp'] # flux units na_hd_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hd_core_center,p['na_Hd_voff']) na_hd_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_hd_core_fwhm_res)**2) # km/s na_hd_core_voff = p['na_Hd_voff'] # km/s na_Hd_core = gaussian(lam_gal,na_hd_core_center,na_hd_core_amp,na_hd_core_fwhm,na_hd_core_voff,velscale) host_model = host_model - na_Hd_core comp_dict['na_Hd_core'] = {'comp':na_Hd_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} #### H-gamma/[OIII]4363 ########################################################################## if all(comp in param_names for comp in ['na_Hg_amp','na_Hg_fwhm','na_Hg_voff','na_oiii4363_core_amp','na_oiii4363_core_fwhm','na_oiii4363_core_voff'])==True: # Narrow H-gamma na_hg_core_center = 4341.680 # Angstroms na_hg_core_amp = p['na_Hg_amp'] # flux units na_hg_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hg_core_center,p['na_Hg_voff']) na_hg_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_hg_core_fwhm_res)**2) # km/s na_hg_core_voff = p['na_Hg_voff'] # km/s na_Hg_core = gaussian(lam_gal,na_hg_core_center,na_hg_core_amp,na_hg_core_fwhm,na_hg_core_voff,velscale) host_model = host_model - na_Hg_core comp_dict['na_Hg_core'] = {'comp':na_Hg_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OIII]4363 core na_oiii4363_core_center = 4364.436 # Angstroms na_oiii4363_core_amp = p['na_oiii4363_core_amp'] # flux units na_oiii4363_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii4363_core_center,p['na_oiii4363_core_voff']) na_oiii4363_core_fwhm = np.sqrt(p['na_oiii4363_core_fwhm']**2+(na_oiii4363_core_fwhm_res)**2) # km/s na_oiii4363_core_voff = p['na_oiii4363_core_voff'] # km/s na_oiii4363_core = gaussian(lam_gal,na_oiii4363_core_center,na_oiii4363_core_amp,na_oiii4363_core_fwhm,na_oiii4363_core_voff,velscale) host_model = host_model - na_oiii4363_core comp_dict['na_oiii4363_core'] = {'comp':na_oiii4363_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, and includes [OIII]5007 elif (all(comp in param_names for comp in ['na_Hg_amp','na_Hg_voff','na_oiii4363_core_amp','na_oiii4363_core_voff','na_oiii5007_core_fwhm'])==True) & \ (all(comp not in param_names for comp in ['na_Hg_fwhm','oiii4363_core_fwhm'])==True): # Narrow H-gamma na_hg_core_center = 4341.680 # Angstroms na_hg_core_amp = p['na_Hg_amp'] # flux units na_hg_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hg_core_center,p['na_Hg_voff']) na_hg_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_hg_core_fwhm_res)**2) # km/s na_hg_core_voff = p['na_Hg_voff'] # km/s na_Hg_core = gaussian(lam_gal,na_hg_core_center,na_hg_core_amp,na_hg_core_fwhm,na_hg_core_voff,velscale) host_model = host_model - na_Hg_core comp_dict['na_Hg_core'] = {'comp':na_Hg_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OIII]4363 core na_oiii4363_core_center = 4364.436 # Angstroms na_oiii4363_core_amp = p['na_oiii4363_core_amp'] # flux units na_oiii4363_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii4363_core_center,p['na_oiii4363_core_voff']) na_oiii4363_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_oiii4363_core_fwhm_res)**2) # km/s na_oiii4363_core_voff = p['na_oiii4363_core_voff'] # km/s na_oiii4363_core = gaussian(lam_gal,na_oiii4363_core_center,na_oiii4363_core_amp,na_oiii4363_core_fwhm,na_oiii4363_core_voff,velscale) host_model = host_model - na_oiii4363_core comp_dict['na_oiii4363_core'] = {'comp':na_oiii4363_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # If tie_narrow=True, but doesn't include [OIII]5007 elif (all(comp in param_names for comp in ['na_Hg_amp','na_Hg_fwhm','na_Hg_voff','na_oiii4363_core_amp','na_oiii4363_core_voff'])==True) & \ (all(comp not in param_names for comp in ['oiii4363_core_fwhm','na_oiii5007_core_fwhm'])==True): # Narrow H-gamma na_hg_core_center = 4341.680 # Angstroms na_hg_core_amp = p['na_Hg_amp'] # flux units na_hg_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hg_core_center,p['na_Hg_voff']) na_hg_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_hg_core_fwhm_res)**2) # km/s na_hg_core_voff = p['na_Hg_voff'] # km/s na_Hg_core = gaussian(lam_gal,na_hg_core_center,na_hg_core_amp,na_hg_core_fwhm,na_hg_core_voff,velscale) host_model = host_model - na_Hg_core comp_dict['na_Hg_core'] = {'comp':na_Hg_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OIII]4363 core na_oiii4363_core_center = 4364.436 # Angstroms na_oiii4363_core_amp = p['na_oiii4363_core_amp'] # flux units na_oiii4363_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii4363_core_center,p['na_oiii4363_core_voff']) na_oiii4363_core_fwhm = np.sqrt(p['na_Hg_fwhm']**2+(na_oiii4363_core_fwhm_res)**2) # km/s na_oiii4363_core_voff = p['na_oiii4363_core_voff'] # km/s na_oiii4363_core = gaussian(lam_gal,na_oiii4363_core_center,na_oiii4363_core_amp,na_oiii4363_core_fwhm,na_oiii4363_core_voff,velscale) host_model = host_model - na_oiii4363_core comp_dict['na_oiii4363_core'] = {'comp':na_oiii4363_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} #### H-beta/[OIII] ######################################################################################### if all(comp in param_names for comp in ['na_oiii5007_core_amp','na_oiii5007_core_fwhm','na_oiii5007_core_voff'])==True: # Narrow [OIII]5007 Core na_oiii5007_core_center = 5008.240 # Angstroms na_oiii5007_core_amp = p['na_oiii5007_core_amp'] # flux units na_oiii5007_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii5007_core_center,p['na_oiii5007_core_voff']) na_oiii5007_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_oiii5007_core_fwhm_res)**2) # km/s na_oiii5007_core_voff = p['na_oiii5007_core_voff'] # km/s na_oiii5007_core = gaussian(lam_gal,na_oiii5007_core_center,na_oiii5007_core_amp,na_oiii5007_core_fwhm,na_oiii5007_core_voff,velscale) # na_oiii5007_core = line_model(line_profile,lam_gal,na_oiii5007_core_center,na_oiii5007_core_amp,na_oiii5007_core_fwhm,na_oiii5007_core_voff,velscale) host_model = host_model - na_oiii5007_core comp_dict['na_oiii5007_core'] = {'comp':na_oiii5007_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [OIII]4959 Core na_oiii4959_core_center = 4960.295 # Angstroms na_oiii4959_core_amp = (1.0/3.0)*na_oiii5007_core_amp # flux units na_oiii4959_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii4959_core_center,na_oiii5007_core_voff) na_oiii4959_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_oiii4959_fwhm_res)**2) # km/s na_oiii4959_core_voff = na_oiii5007_core_voff # km/s na_oiii4959_core = gaussian(lam_gal,na_oiii4959_core_center,na_oiii4959_core_amp,na_oiii4959_core_fwhm,na_oiii4959_core_voff,velscale) # na_oiii4959_core = line_model(line_profile,lam_gal,na_oiii4959_core_center,na_oiii4959_core_amp,na_oiii4959_core_fwhm,na_oiii4959_core_voff,velscale) host_model = host_model - na_oiii4959_core comp_dict['na_oiii4959_core'] = {'comp':na_oiii4959_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} if all(comp in param_names for comp in ['na_Hb_core_amp','na_Hb_core_voff'])==True: # Narrow H-beta na_hb_core_center = 4862.680 # Angstroms na_hb_core_amp = p['na_Hb_core_amp'] # flux units na_hb_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hb_core_center,p['na_Hb_core_voff']) na_hb_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_hb_core_fwhm_res)**2) # km/s na_hb_core_voff = p['na_Hb_core_voff'] # km/s na_Hb_core = gaussian(lam_gal,na_hb_core_center,na_hb_core_amp,na_hb_core_fwhm,na_hb_core_voff,velscale) # na_Hb_core = line_model(line_profile,lam_gal,na_hb_core_center,na_hb_core_amp,na_hb_core_fwhm,na_hb_core_voff,velscale) host_model = host_model - na_Hb_core comp_dict['na_Hb_core'] = {'comp':na_Hb_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} #### H-alpha/[NII]/[SII] #################################################################################### if all(comp in param_names for comp in ['na_Ha_core_amp','na_Ha_core_fwhm','na_Ha_core_voff', 'na_nii6585_core_amp', 'na_sii6732_core_amp','na_sii6718_core_amp'])==True: # Narrow H-alpha na_ha_core_center = 6564.610 # Angstroms na_ha_core_amp = p['na_Ha_core_amp'] # flux units na_ha_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_ha_core_center,p['na_Ha_core_voff']) na_ha_core_fwhm = np.sqrt(p['na_Ha_core_fwhm']**2+(na_ha_core_fwhm_res)**2) # km/s na_ha_core_voff = p['na_Ha_core_voff'] # km/s na_Ha_core = gaussian(lam_gal,na_ha_core_center,na_ha_core_amp,na_ha_core_fwhm,na_ha_core_voff,velscale) host_model = host_model - na_Ha_core comp_dict['na_Ha_core'] = {'comp':na_Ha_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [NII]6585 Core na_nii6585_core_center = 6585.270 # Angstroms na_nii6585_core_amp = p['na_nii6585_core_amp'] # flux units na_nii6585_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6585_core_center,na_ha_core_voff) na_nii6585_core_fwhm = np.sqrt(p['na_Ha_core_fwhm']**2+(na_nii6585_core_fwhm_res)**2) # km/s na_nii6585_core_voff = na_ha_core_voff na_nii6585_core = gaussian(lam_gal,na_nii6585_core_center,na_nii6585_core_amp,na_nii6585_core_fwhm,na_nii6585_core_voff,velscale) host_model = host_model - na_nii6585_core comp_dict['na_nii6585_core'] = {'comp':na_nii6585_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [NII]6549 Core na_nii6549_core_center = 6549.860 # Angstroms na_nii6549_core_amp = (1.0/2.93)*na_nii6585_core_amp # flux units na_nii6549_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6549_core_center,na_ha_core_voff) na_nii6549_core_fwhm = np.sqrt(p['na_Ha_core_fwhm']**2+(na_nii6549_core_fwhm_res)**2) # km/s # km/s na_nii6549_core_voff = na_ha_core_voff na_nii6549_core = gaussian(lam_gal,na_nii6549_core_center,na_nii6549_core_amp,na_nii6549_core_fwhm,na_nii6549_core_voff,velscale) host_model = host_model - na_nii6549_core comp_dict['na_nii6549_core'] = {'comp':na_nii6549_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [SII]6718 na_sii6718_core_center = 6718.290 # Angstroms na_sii6718_core_amp = p['na_sii6718_core_amp'] # flux units na_sii6718_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6718_core_center,na_ha_core_voff) na_sii6718_core_fwhm = np.sqrt(p['na_Ha_core_fwhm']**2+(na_sii6718_core_fwhm_res)**2) # km/s #na_sii6732_fwhm # km/s na_sii6718_core_voff = na_ha_core_voff na_sii6718_core = gaussian(lam_gal,na_sii6718_core_center,na_sii6718_core_amp,na_sii6718_core_fwhm,na_sii6718_core_voff,velscale) host_model = host_model - na_sii6718_core comp_dict['na_sii6718_core'] = {'comp':na_sii6718_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [SII]6732 na_sii6732_core_center = 6732.670 # Angstroms na_sii6732_core_amp = p['na_sii6732_core_amp'] # flux units na_sii6732_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6732_core_center,na_ha_core_voff) na_sii6732_core_fwhm = np.sqrt(p['na_Ha_core_fwhm']**2+(na_sii6732_core_fwhm_res)**2) # km/s na_sii6732_core_voff = na_ha_core_voff na_sii6732_core = gaussian(lam_gal,na_sii6732_core_center,na_sii6732_core_amp,na_sii6732_core_fwhm,na_sii6732_core_voff,velscale) host_model = host_model - na_sii6732_core comp_dict['na_sii6732_core'] = {'comp':na_sii6732_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} elif (all(comp in param_names for comp in ['na_Ha_core_amp','na_Ha_core_voff', 'na_nii6585_core_amp', 'na_sii6732_core_amp','na_sii6718_core_amp', 'na_oiii5007_core_fwhm'])==True) & ('na_Ha_core_fwhm' not in param_names): # If all narrow line widths are tied to [OIII]5007 FWHM... # Narrow H-alpha na_ha_core_center = 6564.610 # Angstroms na_ha_core_amp = p['na_Ha_core_amp'] # flux units na_ha_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_ha_core_center,p['na_Ha_core_voff']) na_ha_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_ha_core_fwhm_res)**2) # km/s na_ha_core_voff = p['na_Ha_core_voff'] # km/s na_Ha_core = gaussian(lam_gal,na_ha_core_center,na_ha_core_amp,na_ha_core_fwhm,na_ha_core_voff,velscale) host_model = host_model - na_Ha_core comp_dict['na_Ha_core'] = {'comp':na_Ha_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [NII]6585 Core na_nii6585_core_center = 6585.270 # Angstroms na_nii6585_core_amp = p['na_nii6585_core_amp'] # flux units na_nii6585_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6585_core_center,na_ha_core_voff) na_nii6585_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_nii6585_core_fwhm_res)**2) # km/s na_nii6585_core_voff = na_ha_core_voff na_nii6585_core = gaussian(lam_gal,na_nii6585_core_center,na_nii6585_core_amp,na_nii6585_core_fwhm,na_nii6585_core_voff,velscale) host_model = host_model - na_nii6585_core comp_dict['na_nii6585_core'] = {'comp':na_nii6585_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [NII]6549 Core na_nii6549_core_center = 6549.860 # Angstroms na_nii6549_core_amp = (1.0/2.93)*na_nii6585_core_amp # flux units na_nii6549_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6549_core_center,na_ha_core_voff) na_nii6549_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_nii6549_core_fwhm_res)**2) # km/s na_nii6549_core_voff = na_ha_core_voff na_nii6549_core = gaussian(lam_gal,na_nii6549_core_center,na_nii6549_core_amp,na_nii6549_core_fwhm,na_nii6549_core_voff,velscale) host_model = host_model - na_nii6549_core comp_dict['na_nii6549_core'] = {'comp':na_nii6549_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [SII]6732 na_sii6732_core_center = 6732.670 # Angstroms na_sii6732_core_amp = p['na_sii6732_core_amp'] # flux units na_sii6732_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6732_core_center,na_ha_core_voff) na_sii6732_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_sii6732_core_fwhm_res)**2) # km/s na_sii6732_core_voff = na_ha_core_voff na_sii6732_core = gaussian(lam_gal,na_sii6732_core_center,na_sii6732_core_amp,na_sii6732_core_fwhm,na_sii6732_core_voff,velscale) host_model = host_model - na_sii6732_core comp_dict['na_sii6732_core'] = {'comp':na_sii6732_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} # Narrow [SII]6718 na_sii6718_core_center = 6718.290 # Angstroms na_sii6718_core_amp = p['na_sii6718_core_amp'] # flux units na_sii6718_core_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6718_core_center,na_ha_core_voff) na_sii6718_core_fwhm = np.sqrt(p['na_oiii5007_core_fwhm']**2+(na_sii6718_core_fwhm_res)**2) # km/s na_sii6718_core_voff = na_ha_core_voff na_sii6718_core = gaussian(lam_gal,na_sii6718_core_center,na_sii6718_core_amp,na_sii6718_core_fwhm,na_sii6718_core_voff,velscale) host_model = host_model - na_sii6718_core comp_dict['na_sii6718_core'] = {'comp':na_sii6718_core,'pcolor':'xkcd:dodger blue','linewidth':1.0} ######################################################################################################## # Outflow Components #### Hb/[OIII] outflows ################################################################################ if (all(comp in param_names for comp in ['na_oiii5007_outflow_amp','na_oiii5007_outflow_fwhm','na_oiii5007_outflow_voff'])==True): # Broad [OIII]5007 Outflow; na_oiii5007_outflow_center = 5008.240 # Angstroms na_oiii5007_outflow_amp = p['na_oiii5007_outflow_amp'] # flux units na_oiii5007_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii5007_outflow_center,p['na_oiii5007_outflow_voff']) na_oiii5007_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_oiii5007_outflow_fwhm_res)**2) # km/s na_oiii5007_outflow_voff = p['na_oiii5007_outflow_voff'] # km/s na_oiii5007_outflow = gaussian(lam_gal,na_oiii5007_outflow_center,na_oiii5007_outflow_amp,na_oiii5007_outflow_fwhm,na_oiii5007_outflow_voff,velscale) host_model = host_model - na_oiii5007_outflow comp_dict['na_oiii5007_outflow'] = {'comp':na_oiii5007_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # Broad [OIII]4959 Outflow; na_oiii4959_outflow_center = 4960.295 # Angstroms na_oiii4959_outflow_amp = na_oiii4959_core_amp*na_oiii5007_outflow_amp/na_oiii5007_core_amp # flux units na_oiii4959_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_oiii4959_outflow_center,na_oiii5007_outflow_voff) na_oiii4959_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_oiii4959_outflow_fwhm_res)**2) # km/s na_oiii4959_outflow_voff = na_oiii5007_outflow_voff # km/s if (na_oiii4959_outflow_amp!=na_oiii4959_outflow_amp/1.0) or (na_oiii4959_outflow_amp==np.inf): na_oiii4959_outflow_amp=0.0 na_oiii4959_outflow = gaussian(lam_gal,na_oiii4959_outflow_center,na_oiii4959_outflow_amp,na_oiii4959_outflow_fwhm,na_oiii4959_outflow_voff,velscale) host_model = host_model - na_oiii4959_outflow comp_dict['na_oiii4959_outflow'] = {'comp':na_oiii4959_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} if (all(comp in param_names for comp in ['na_oiii5007_outflow_amp','na_oiii5007_outflow_fwhm','na_oiii5007_outflow_voff','na_Hb_core_amp','na_Hb_core_voff'])==True): # Broad H-beta Outflow; only a model, no free parameters, tied to [OIII]5007 na_hb_core_center = 4862.680 # Angstroms na_hb_outflow_amp = na_hb_core_amp*na_oiii5007_outflow_amp/na_oiii5007_core_amp na_hb_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_hb_core_center,na_hb_core_voff+na_oiii5007_outflow_voff) na_hb_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_hb_outflow_fwhm_res)**2) # km/s na_hb_outflow_voff = na_hb_core_voff+na_oiii5007_outflow_voff # km/s if (na_hb_outflow_amp!=na_hb_outflow_amp/1.0) or (na_hb_outflow_amp==np.inf): na_hb_outflow_amp=0.0 na_Hb_outflow = gaussian(lam_gal,na_hb_core_center,na_hb_outflow_amp,na_hb_outflow_fwhm,na_hb_outflow_voff,velscale) host_model = host_model - na_Hb_outflow comp_dict['na_Hb_outflow'] = {'comp':na_Hb_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} #### Ha/[NII]/[SII] outflows ########################################################################### # Outflows in H-alpha/[NII] are poorly constrained due to the presence of a broad line and/or blending of narrow lines # First, we check if the fit includes Hb/[OIII] outflows, if it does, we use the outflow in [OIII] to constrain the outflows # in the Ha/[NII]/[SII] region. If the fi does NOT include Hb/[OIII] outflows (*not recommended*), we then allow the outflows # in the Ha/[NII]/[SII] region to be fit as free parameters. if (all(comp in param_names for comp in ['na_Ha_core_amp','na_Ha_core_voff','na_nii6585_core_amp','na_sii6732_core_amp','na_sii6718_core_amp', 'na_oiii5007_outflow_amp','na_oiii5007_outflow_fwhm','na_oiii5007_outflow_voff'])==True) and \ (all(comp not in param_names for comp in ['na_Ha_outflow_amp','na_Ha_outflow_fwhm','na_Ha_outflow_voff'])==True): # H-alpha Outflow; na_ha_outflow_center = 6564.610 # Angstroms na_ha_outflow_amp = p['na_Ha_core_amp']*p['na_oiii5007_outflow_amp']/p['na_oiii5007_core_amp'] # flux units na_ha_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_ha_outflow_center,p['na_oiii5007_outflow_voff']) na_ha_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_ha_outflow_fwhm_res)**2) # km/s na_ha_outflow_voff = p['na_oiii5007_outflow_voff'] # km/s # km/s if (na_ha_outflow_amp!=na_ha_outflow_amp/1.0) or (na_ha_outflow_amp==np.inf): na_ha_outflow_amp=0.0 na_Ha_outflow = gaussian(lam_gal,na_ha_outflow_center,na_ha_outflow_amp,na_ha_outflow_fwhm,na_ha_outflow_voff,velscale) host_model = host_model - na_Ha_outflow comp_dict['na_Ha_outflow'] = {'comp':na_Ha_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [NII]6585 Outflow; na_nii6585_outflow_center = 6585.270 # Angstroms na_nii6585_outflow_amp = na_nii6585_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_nii6585_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6585_outflow_center,na_ha_outflow_voff) na_nii6585_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_nii6585_outflow_fwhm_res)**2) na_nii6585_outflow_voff = na_ha_outflow_voff if (na_nii6585_outflow_amp!=na_nii6585_outflow_amp/1.0) or (na_nii6585_outflow_amp==np.inf): na_nii6585_outflow_amp=0.0 na_nii6585_outflow = gaussian(lam_gal,na_nii6585_outflow_center,na_nii6585_outflow_amp,na_nii6585_outflow_fwhm,na_nii6585_outflow_voff,velscale) host_model = host_model - na_nii6585_outflow comp_dict['na_nii6585_outflow'] = {'comp':na_nii6585_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [NII]6549 Outflow; na_nii6549_outflow_center = 6549.860 # Angstroms na_nii6549_outflow_amp = na_nii6549_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_nii6549_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6549_outflow_center,na_ha_outflow_voff) na_nii6549_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_nii6549_outflow_fwhm_res)**2) # km/s na_nii6549_outflow_voff = na_ha_outflow_voff # km/s if (na_nii6549_outflow_amp!=na_nii6549_outflow_amp/1.0) or (na_nii6549_outflow_amp==np.inf): na_nii6549_outflow_amp=0.0 na_nii6549_outflow = gaussian(lam_gal,na_nii6549_outflow_center,na_nii6549_outflow_amp,na_nii6549_outflow_fwhm,na_nii6549_outflow_voff,velscale) host_model = host_model - na_nii6549_outflow comp_dict['na_nii6549_outflow'] = {'comp':na_nii6549_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # Broad [SII]6718 Outflow; na_sii6718_outflow_center = 6718.290 # Angstroms na_sii6718_outflow_amp = na_sii6718_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_sii6718_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6718_outflow_center,na_ha_outflow_voff) na_sii6718_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_sii6718_outflow_fwhm_res)**2) # km/s na_sii6718_outflow_voff = na_ha_outflow_voff # km/s if (na_sii6718_outflow_amp!=na_sii6718_outflow_amp/1.0) or (na_sii6718_outflow_amp==np.inf): na_sii6718_outflow_amp=0.0 na_sii6718_outflow = gaussian(lam_gal,na_sii6718_outflow_center,na_sii6718_outflow_amp,na_sii6718_outflow_fwhm,na_sii6718_outflow_voff,velscale) host_model = host_model - na_sii6718_outflow comp_dict['na_sii6718_outflow'] = {'comp':na_sii6718_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [SII]6732 Outflow; na_sii6732_outflow_center = 6732.670 # Angstroms na_sii6732_outflow_amp = na_sii6732_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_sii6732_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6732_outflow_center,na_ha_outflow_voff) na_sii6732_outflow_fwhm = np.sqrt(p['na_oiii5007_outflow_fwhm']**2+(na_sii6732_outflow_fwhm_res)**2) # km/s na_sii6732_outflow_voff = na_ha_outflow_voff # km/s if (na_sii6732_outflow_amp!=na_sii6732_outflow_amp/1.0) or (na_sii6732_outflow_amp==np.inf): na_sii6732_outflow_amp=0.0 na_sii6732_outflow = gaussian(lam_gal,na_sii6732_outflow_center,na_sii6732_outflow_amp,na_sii6732_outflow_fwhm,na_sii6732_outflow_voff,velscale) host_model = host_model - na_sii6732_outflow comp_dict['na_sii6732_outflow'] = {'comp':na_sii6732_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} elif (all(comp in param_names for comp in ['na_Ha_outflow_amp','na_Ha_outflow_fwhm','na_Ha_outflow_voff'])==True) and \ (all(comp not in param_names for comp in ['na_oiii5007_outflow_amp','na_oiii5007_outflow_fwhm','na_oiii5007_outflow_voff'])==True): # H-alpha Outflow; na_ha_outflow_center = 6564.610 # Angstroms na_ha_outflow_amp = p['na_Ha_outflow_amp'] # flux units na_ha_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_ha_outflow_center,p['na_Ha_outflow_voff']) na_ha_outflow_fwhm = np.sqrt(p['na_Ha_outflow_fwhm']**2+(na_ha_outflow_fwhm_res)**2) # km/s na_ha_outflow_voff = p['na_Ha_outflow_voff'] # km/s # km/s if (na_ha_outflow_amp!=na_ha_outflow_amp/1.0) or (na_ha_outflow_amp==np.inf): na_ha_outflow_amp=0.0 na_Ha_outflow = gaussian(lam_gal,na_ha_outflow_center,na_ha_outflow_amp,na_ha_outflow_fwhm,na_ha_outflow_voff,velscale) host_model = host_model - na_Ha_outflow comp_dict['na_Ha_outflow'] = {'comp':na_Ha_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [NII]6585 Outflow; na_nii6585_outflow_center = 6585.270 # Angstroms na_nii6585_outflow_amp = na_nii6585_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_nii6585_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6585_outflow_center,na_ha_outflow_voff) na_nii6585_outflow_fwhm = np.sqrt(p['na_Ha_outflow_fwhm']**2+(na_nii6585_outflow_fwhm_res)**2) na_nii6585_outflow_voff = na_ha_outflow_voff if (na_nii6585_outflow_amp!=na_nii6585_outflow_amp/1.0) or (na_nii6585_outflow_amp==np.inf): na_nii6585_outflow_amp=0.0 na_nii6585_outflow = gaussian(lam_gal,na_nii6585_outflow_center,na_nii6585_outflow_amp,na_nii6585_outflow_fwhm,na_nii6585_outflow_voff,velscale) host_model = host_model - na_nii6585_outflow comp_dict['na_nii6585_outflow'] = {'comp':na_nii6585_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [NII]6549 Outflow; na_nii6549_outflow_center = 6549.860 # Angstroms na_nii6549_outflow_amp = na_nii6549_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_nii6549_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_nii6549_outflow_center,na_ha_outflow_voff) na_nii6549_outflow_fwhm = np.sqrt(p['na_Ha_outflow_fwhm']**2+(na_nii6549_outflow_fwhm_res)**2) # km/s na_nii6549_outflow_voff = na_ha_outflow_voff # km/s if (na_nii6549_outflow_amp!=na_nii6549_outflow_amp/1.0) or (na_nii6549_outflow_amp==np.inf): na_nii6549_outflow_amp=0.0 na_nii6549_outflow = gaussian(lam_gal,na_nii6549_outflow_center,na_nii6549_outflow_amp,na_nii6549_outflow_fwhm,na_nii6549_outflow_voff,velscale) host_model = host_model - na_nii6549_outflow comp_dict['na_nii6549_outflow'] = {'comp':na_nii6549_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # Broad [SII]6718 Outflow; na_sii6718_outflow_center = 6718.290 # Angstroms na_sii6718_outflow_amp = na_sii6718_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_sii6718_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6718_outflow_center,na_ha_outflow_voff) na_sii6718_outflow_fwhm = np.sqrt(p['na_Ha_outflow_fwhm']**2+(na_sii6718_outflow_fwhm_res)**2) # km/s na_sii6718_outflow_voff = na_ha_outflow_voff # km/s if (na_sii6718_outflow_amp!=na_sii6718_outflow_amp/1.0) or (na_sii6718_outflow_amp==np.inf): na_sii6718_outflow_amp=0.0 na_sii6718_outflow = gaussian(lam_gal,na_sii6718_outflow_center,na_sii6718_outflow_amp,na_sii6718_outflow_fwhm,na_sii6718_outflow_voff,velscale) host_model = host_model - na_sii6718_outflow comp_dict['na_sii6718_outflow'] = {'comp':na_sii6718_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} # [SII]6732 Outflow; na_sii6732_outflow_center = 6732.670 # Angstroms na_sii6732_outflow_amp = na_sii6732_core_amp*na_ha_outflow_amp/na_ha_core_amp # flux units na_sii6732_outflow_fwhm_res = get_fwhm_res(fwhm_gal_ftn,na_sii6732_outflow_center,na_ha_outflow_voff) na_sii6732_outflow_fwhm = np.sqrt(p['na_Ha_outflow_fwhm']**2+(na_sii6732_outflow_fwhm_res)**2) # km/s na_sii6732_outflow_voff = na_ha_outflow_voff # km/s if (na_sii6732_outflow_amp!=na_sii6732_outflow_amp/1.0) or (na_sii6732_outflow_amp==np.inf): na_sii6732_outflow_amp=0.0 na_sii6732_outflow = gaussian(lam_gal,na_sii6732_outflow_center,na_sii6732_outflow_amp,na_sii6732_outflow_fwhm,na_sii6732_outflow_voff,velscale) host_model = host_model - na_sii6732_outflow comp_dict['na_sii6732_outflow'] = {'comp':na_sii6732_outflow,'pcolor':'xkcd:magenta','linewidth':1.0} ######################################################################################################## # Broad Lines #### Br. H-gamma ####################################################################################### if all(comp in param_names for comp in ['br_Hg_amp','br_Hg_fwhm','br_Hg_voff'])==True: br_hg_center = 4341.680 # Angstroms br_hg_amp = p['br_Hg_amp'] # flux units br_hg_fwhm_res = get_fwhm_res(fwhm_gal_ftn,br_hg_center,p['br_Hg_voff']) br_hg_fwhm = np.sqrt(p['br_Hg_fwhm']**2+(br_hg_fwhm_res)**2) # km/s br_hg_voff = p['br_Hg_voff'] # km/s # br_Hg = gaussian(lam_gal,br_hg_center,br_hg_amp,br_hg_fwhm,br_hg_voff,velscale) br_Hg = line_model(line_profile,lam_gal,br_hg_center,br_hg_amp,br_hg_fwhm,br_hg_voff,velscale) host_model = host_model - br_Hg comp_dict['br_Hg'] = {'comp':br_Hg,'pcolor':'xkcd:turquoise','linewidth':1.0} #### Br. H-beta ######################################################################################## if all(comp in param_names for comp in ['br_Hb_amp','br_Hb_fwhm','br_Hb_voff'])==True: br_hb_center = 4862.68 # Angstroms br_hb_amp = p['br_Hb_amp'] # flux units br_hb_fwhm_res = get_fwhm_res(fwhm_gal_ftn,br_hb_center,p['br_Hb_voff']) br_hb_fwhm = np.sqrt(p['br_Hb_fwhm']**2+(br_hb_fwhm_res)**2) # km/s br_hb_voff = p['br_Hb_voff'] # km/s # br_Hb = gaussian(lam_gal,br_hb_center,br_hb_amp,br_hb_fwhm,br_hb_voff,velscale) br_Hb = line_model(line_profile,lam_gal,br_hb_center,br_hb_amp,br_hb_fwhm,br_hb_voff,velscale) host_model = host_model - br_Hb comp_dict['br_Hb'] = {'comp':br_Hb,'pcolor':'xkcd:turquoise','linewidth':1.0} #### Br. H-alpha ####################################################################################### if all(comp in param_names for comp in ['br_Ha_amp','br_Ha_fwhm','br_Ha_voff'])==True: br_ha_center = 6564.610 # Angstroms br_ha_amp = p['br_Ha_amp'] # flux units br_ha_fwhm_res = get_fwhm_res(fwhm_gal_ftn,br_ha_center,p['br_Ha_voff']) br_ha_fwhm = np.sqrt(p['br_Ha_fwhm']**2+(br_ha_fwhm_res)**2) # km/s br_ha_voff = p['br_Ha_voff'] # km/s # br_Ha = gaussian(lam_gal,br_ha_center,br_ha_amp,br_ha_fwhm,br_ha_voff,velscale) br_Ha = line_model(line_profile,lam_gal,br_ha_center,br_ha_amp,br_ha_fwhm,br_ha_voff,velscale) host_model = host_model - br_Ha comp_dict['br_Ha'] = {'comp':br_Ha,'pcolor':'xkcd:turquoise','linewidth':1.0} ######################################################################################################## ######################################################################################################## ############################# Host-galaxy Component ###################################################### if all(comp in param_names for comp in ['gal_temp_amp'])==True: gal_temp = p['gal_temp_amp']*(gal_temp) host_model = (host_model) - (gal_temp) # Subtract off continuum from galaxy, since we only want template weights to be fit comp_dict['host_galaxy'] = {'comp':gal_temp,'pcolor':'xkcd:lime green','linewidth':1.0} ######################################################################################################## ############################# LOSVD Component #################################################### if all(comp in param_names for comp in ['stel_vel','stel_disp'])==True: # Convolve the templates with a LOSVD losvd_params = [p['stel_vel'],p['stel_disp']] # ind 0 = velocity*, ind 1 = sigma* conv_temp = convolve_gauss_hermite(temp_fft,npad,float(velscale),\ losvd_params,npix,velscale_ratio=1,sigma_diff=0,vsyst=vsyst) # Fitted weights of all templates using Non-negative Least Squares (NNLS) host_model[host_model/host_model!=1] = 0 weights = nnls(conv_temp,host_model) # scipy.optimize Non-negative Least Squares host_galaxy = (np.sum(weights*conv_temp,axis=1)) comp_dict['host_galaxy'] = {'comp':host_galaxy,'pcolor':'xkcd:lime green','linewidth':1.0} ######################################################################################################## # The final model gmodel = np.sum((d['comp'] for d in comp_dict.values() if d),axis=0) ########################## Measure Emission Line Fluxes ################################################# # Fluxes of components are stored in a dictionary and returned to emcee as metadata blob. # This is a vast improvement over the previous method, which was storing fluxes in an # output file at each iteration, which is computationally expensive for opening, writing to, and closing # a file nwalkers x niter times. if (fit_type=='final') and (output_model==False): fluxes = {} for key in comp_dict: # compute the integrated flux flux = simps(comp_dict[key]['comp'],lam_gal) # add key/value pair to dictionary fluxes[key+'_flux'] = flux ################################################################################## # Add last components to comp_dict for plotting purposes # Add galaxy, sigma, model, and residuals to comp_dict comp_dict['data'] = {'comp':galaxy ,'pcolor':'xkcd:white', 'linewidth':0.5} comp_dict['wave'] = {'comp':lam_gal ,'pcolor':'xkcd:black', 'linewidth':0.5} comp_dict['noise'] = {'comp':noise ,'pcolor':'xkcd:cyan' , 'linewidth':0.5} comp_dict['model'] = {'comp':gmodel ,'pcolor':'xkcd:red' , 'linewidth':1.0} comp_dict['resid'] = {'comp':galaxy-gmodel ,'pcolor':'xkcd:white', 'linewidth':0.5} ################################################################################## ################################################################################## if (fit_type=='init') and (output_model==False): # For max. likelihood fitting return gmodel if (fit_type=='init') and (output_model==True): # For max. likelihood fitting return comp_dict elif (fit_type=='outflow_test'): return comp_dict elif (fit_type=='final') and (output_model==False): # For emcee return gmodel, fluxes elif (fit_type=='final') and (output_model==True): # output all models for best-fit model return comp_dict
44cd0bc61a4472c6a5c3c7b190ee5be96f4bdb1a
18,204
import random def generate_numbers(): """ Function to generate 3 random digits to be guessed. Generate 3 random in a list in order to be compare to the user's digits. Return: str_digits (Array): List with 3 random digits converted to String """ # List comprehension to generate numbers from 0 to 9 and cast it as String str_digits = [str(num) for num in range(10)] # Shuffle randomly the list random.shuffle(str_digits) return str_digits[:3]
8efd0f579a3a0b3dc5021cd762f9ad2f5774f6be
18,205
def get_media(): """Retrieves metadata for all of this server's uploaded media. Can use the following query parameters: * max: The maximum number of records to return * page: The page of records """ error_on_unauthorized() media = Upload.query.order_by(Upload.id) total_num = media.count() if total_num == 0: return jsonify(total=0, uploads=[]) try: count = int(request.args.get('max', total_num)) page = int(request.args.get('page', 1)) if count <= 0 or page <= 0: raise APIError(422, "Query parameters out of range") begin = (page - 1) * count end = min(begin + count, total_num) return jsonify(total=total_num, uploads=[upload_to_dict(u) for u in media.all()[begin:end]]), 200 except ValueError: raise APIError(422, "Invalid query parameter")
754417b47f5b9c28427b04ace88bf9ca5c9a5a47
18,206
def summate2(phasevec): """Calculate values b'(j^vec) for combining 2 phase vectors. Parameter: phasevec: tuple of two phasevectors Example: On input (([b_1(0),b_1(1),...,b_1(L-1)], L), ([b_2(0),b_2(1),...,b_2(L'-1)], L')) give output [b_1(0)+b_2(0), b_1(0)+b_2(1),..., b_1(1)+b_2(0),...,b_1(L-1)+b_2(L'-1)] """ b = [] # array for values of summed phasevector for i in range(phasevec[0][1]): for j in range(phasevec[1][1]): b.append(phasevec[0][0][i] + phasevec[1][0][j]) return b
5150c2ee29a31438bf16104eaadeb85a01f54502
18,207
def get_children(): """ Return IDs of LIST which currently is zero-based index Modelled after treeview for future alphabetic IDs TODO: Should probably return list of all DICT? """ iid_list = [] #read() #print('location.get_children() LIST count:',len(LIST)) for i, ndx in enumerate(LIST): iid = ndx_to_iid(i) iid_list.append(iid) # treeview uses string for indices # print('location.get_children:',i,ndx) return iid_list
14e855df5c2b218c68e900709fd548d3431c4a8b
18,208
def makeTracker( path, args = (), kwargs = {} ): """retrieve an instantiated tracker and its associated code. returns a tuple (code, tracker). """ obj, module, pathname, cls = makeObject( path, args, kwargs ) code = getCode( cls, pathname ) return code, obj
bc23e21bb53357bcf74e6194656cfbea4b24c218
18,209
from typing import Tuple def get_anchor_generator(anchor_size: Tuple[tuple] = None, aspect_ratios: Tuple[tuple] = None): """Returns the anchor generator.""" if anchor_size is None: anchor_size = ((16,), (32,), (64,), (128,)) if aspect_ratios is None: aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_size) anchor_generator = AnchorGenerator(sizes=anchor_size, aspect_ratios=aspect_ratios) return anchor_generator
e9eef959c009062d5866558d00674c1afa033260
18,210
import torch def tensor_to_longs(tensor: torch.Tensor) -> list: """converts an array of numerical values to a tensor of longs""" assert tensor.dtype == torch.long return tensor.detach().cpu().numpy()
ba1788be8e353936cfc3d604d940b78a96990fd4
18,211
def test_fixed(SNRs): """ Fixed (infinite T1) qubit. """ fidelities = [] numShots = 10000 dt = 1e-3 for SNR in SNRs: fakeData = create_fake_data(SNR, dt, 1, numShots, T1=1e9) signal = dt*np.sum(fakeData, axis=1) fidelities.append(fidelity_est(signal)) return fidelities
70ca68f475beed73a47722c719811544ae1bfccb
18,212
def setup(app): """ Add the ``fica`` directive to the Sphinx app. """ app.add_directive("fica", FicaDirective) return { "version": __version__, "parallel_read_safe": True, "parallel_write_safe": True, }
996e568ab58634e64a845b34bf38082658b58889
18,213
from typing import Tuple import torch def get_binary_statistics( outputs: Tensor, targets: Tensor, label: int = 1, ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: """ Computes the number of true negative, false positive, false negative, true negative and support for a binary classification problem for a given label. Args: outputs: estimated targets as predicted by a model with shape [bs; ..., 1] targets: ground truth (correct) target values with shape [bs; ..., 1] label: integer, that specifies label of interest for statistics compute Returns: Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]: stats Example: >>> y_pred = torch.tensor([[0, 0, 1, 1, 0, 1, 0, 1]]) >>> y_true = torch.tensor([[0, 1, 0, 1, 0, 0, 1, 1]]) >>> tn, fp, fn, tp, support = get_binary_statistics(y_pred, y_true) tensor(2) tensor(2) tensor(2) tensor(2) tensor(4) """ tn = ((outputs != label) * (targets != label)).to(torch.long).sum() fp = ((outputs == label) * (targets != label)).to(torch.long).sum() fn = ((outputs != label) * (targets == label)).to(torch.long).sum() tp = ((outputs == label) * (targets == label)).to(torch.long).sum() support = (targets == label).to(torch.long).sum() return tn, fp, fn, tp, support
e0c81b404f6da77f40c1e4f3810d699fdef1e6a4
18,214
def threshold_and_mask(min_normed_weight, W, Mc, coords): # =np.arange(Wc.shape[0])*stride + start): """Normalize the weights W, threshold to min_normed_weight and remove diagonal, reduce DX and DY to the columns and rows still containing weights. Returns ------- coords : array_like the indices of these columns in terms of original image indices W_n_m : array_like the thresholded weights D_X_m : array_like The reduced DX D_Y_m : array_like The reduced DY row_mask : array_like The indices of these columns in terms of calculated arrays. """ #coords = np.arange(Wc.shape[0])*stride + start wcdiag = np.atleast_2d(np.diag(W)) W_n = W / np.sqrt(wcdiag.T*wcdiag) mask = W_n - np.diag(np.diag(W_n)) > min_normed_weight row_mask = np.any(mask, axis=0) W_n = np.where(mask, W_n, 0) DX, DY = Mc[0], Mc[1] W_n_m = W_n[:, row_mask][row_mask, :] coords = coords[row_mask] #mask_red = mask[row_mask, :][:, row_mask] DX_m, DY_m = DX[row_mask, :][:, row_mask], DY[row_mask, :][:, row_mask] return coords, W_n_m, DX_m, DY_m, row_mask
78d361cf2125cd0d3ac1a3985933e39b09538b18
18,215
import csv def readCGcsv(filename, levels): """ Read a .csv file of a callgraph into a dictionary keyed by callgraph level. """ cgdict = {} with open(filename, "r") as cgcsv: cgreader = csv.DictReader(cgcsv) for row in cgreader: lvl = int(row['Level']) if (lvl < levels) or (levels <= 0): cost = row[r'Samp%'] fname = row[r'Calltree/PE=HIDE'] node = CGNode(fname, cost) if lvl not in cgdict.keys(): cgdict[lvl] = [] cgdict[lvl].append(node) if lvl > 0: cgdict[lvl - 1][-1].addCallee(node) return cgdict
ec5dbc3d064a0cf784bfd764b996eb36677642a9
18,216
def use_colors(tones, i=None): """ Use specific color tones for plotting. If i is specified, this function returns a specific color from the corresponding color cycle For custom color palettes generation check: http://colorbrewer2.org/#type=sequential&scheme=YlGnBu&n=8 Args: tones : 'hot' or 'cold' for hot and cold colors Returns: color i of the color cycle """ hot = ['#fed976', '#feb24c', '#fd8d3c', '#fc4e2a', '#e31a1c', '#b10026'] cold = ['#a6bddb', '#67a9cf', '#3690c0', '#02818a', '#016c59', '#014636'] # cold = ['#44AE7E', '#388A8D', '#397187', '#3E568E', '#463883', '#461167'] if i is None: if tones is 'hot': colors = hot elif tones is 'cold': colors = cold else: colors = tones plt.rc('axes', prop_cycle=(cycler('color', colors))) return colors else: if tones is 'hot': colors = hot elif tones is 'cold': colors = cold else: colors = tones return colors[i % len(colors)]
e36cce208c89178af8199662edb336c2455bdc37
18,217
def fill_form(forms, form): """Fills a given form given a set or known forms. :param forms: A set of known forms. :param form: The form to fill. :return: A mapping from form element IDs to suggested values for the form. """ forms = list(forms) new_form = {} def rec_fill_form(form, labels): if not labels: return new_form unfilled_labels = [] neighbor = get_neighbor(forms, labels) if not neighbor: LOGGER.info('No neighbors found', labels) for label in labels: new_form[form['form'][label]['id']] = None return new_form LOGGER.info('Neighbor', neighbor) for label in labels: if label in neighbor['form']: new_form[form['form'][label]['id']] = neighbor['form'][label]['value'] else: unfilled_labels.append(label) # LOGGER.info('unfilled', unfilled_labels) if len(labels) == len(unfilled_labels): for label in unfilled_labels: new_form[form['form'][label]['id']] = None return new_form return rec_fill_form(form, unfilled_labels) return rec_fill_form(form, list(form['features']))
3e6c1f623facb67602fa5e057080a08d0de9926d
18,218
def read_sky_model_from_csv(path: str) -> SkyModel: """ Read a CSV file in to create a SkyModel. The CSV should have the following columns - right ascension (deg) - declination (deg) - stokes I Flux (Jy) - stokes Q Flux (Jy): if no information available, set to 0 - stokes U Flux (Jy): if no information available, set to 0 - stokes V Flux (Jy): if no information available, set to 0 - reference_frequency (Hz): if no information available, set to 0 - spectral index (N/A): if no information available, set to 0 - rotation measure (rad / m^2): if no information available, set to 0 - major axis FWHM (arcsec): if no information available, set to 0 - minor axis FWHM (arcsec): if no information available, set to 0 - position angle (deg): if no information available, set to 0 - source id (object): if no information available, set to None :param path: file to read in :return: SkyModel """ # TODO: add validation of csv dataframe = pd.read_csv(path) sources = dataframe.to_numpy() sky = SkyModel(sources) return sky
b649bd1cfd218a924c573bf90b26fa18f62c3cb4
18,219
def integer_to_vector(x, options_per_element, n_elements, index_to_element): """Return a vector representing an action/state from a given integer. Args: x (int): the integer to convert. n_options_per_element(int): number of options for each element in the vector. n_elements (int): the number of elements in the vector to return. index_to_element(int=>any): function which converts an integer represents a single option in one of the vector elements and return anything that vector contains. For example, a function which returns 'UP' for 0, 1 for 'RIGHT',etc. Or a function which returns (2,2) given 10 for a 4x4 grid ((2,2) is the 10-th cell of that grid). """ return integer_to_vector_multiple_numbers(x, options_per_element, n_elements, index_to_element)
2649359d6a62b047f70bfe72f8403e8343a231ab
18,220
def samples_for_each_class(dataset_labels, task): """ Numbers of samples for each class in the task Args: dataset_labels Labels to count samples from task Labels with in a task Returns """ num_samples = np.zeros([len(task)], dtype=np.float32) i = 0 for label in task: global_class_indices = np.column_stack(np.nonzero(dataset_labels)) class_indices = np.squeeze(global_class_indices[global_class_indices[:,1] == label][:,np.array([True, False])]) class_indices = np.sort(class_indices, axis=None) num_samples[i] = len(class_indices) i += 1 return num_samples
96bc2c794fd955110864f59ddb96c5df1c33b8ed
18,221
def requiredOneInGroup(col_name, group, dm, df, *args): """ If col_name is present in df, the group validation is satisfied. If not, it still may be satisfied, but not by THIS col_name. If col_name is missing, return col_name, else return None. Later, we will validate to see if there is at least one None (non-missing) value for this group. """ if col_name in df.columns: # if the column name is present, return nothing return None else: # if the column name is missing, return column name return col_name
de46a4ef2f3e45381644db41d617d8c4c0845877
18,222
def persist(session, obj, return_id=True): """ Use the session to store obj in database, then remove obj from session, so that on a subsequent load from the database we get a clean instance. """ session.add(obj) session.flush() obj_id = obj.id if return_id else None # save this before obj is expunged session.expunge(obj) return obj_id
a308931f418616417d10d3115b0f370352778533
18,223
from unittest.mock import patch def test_bittrex_query_asset_movement_int_transaction_id(bittrex): """Test that if an integer is returned for bittrex transaction id we handle it properly Bittrex deposit withdrawals SHOULD NOT return an integer for transaction id according to their docs https://bittrex.github.io/api/v3#definition-Order but as we saw in practise they sometimes can. Regression test for https://github.com/rotki/rotki/issues/2175 """ problematic_deposit = """ [ { "id": 1, "status": "COMPLETED", "quantity": 2.12345678, "currencySymbol": "RISE", "confirmations": 2, "completedAt": "2014-02-13T07:38:53.883Z", "txId": 9875231951530679373, "cryptoAddress": "15VyEAT4uf7ycrNWZVb1eGMzrs21BH95Va", "source": "foo" } ] """ def mock_get_deposit_withdrawal( url, method, json, **kwargs, ): # pylint: disable=unused-argument if 'deposit' in url: response_str = problematic_deposit else: response_str = '[]' return MockResponse(200, response_str) with patch.object(bittrex.session, 'request', side_effect=mock_get_deposit_withdrawal): movements = bittrex.query_deposits_withdrawals( start_ts=0, end_ts=TEST_END_TS, only_cache=False, ) errors = bittrex.msg_aggregator.consume_errors() warnings = bittrex.msg_aggregator.consume_warnings() assert len(errors) == 0 assert len(warnings) == 0 assert len(movements) == 1 assert movements[0].location == Location.BITTREX assert movements[0].category == AssetMovementCategory.DEPOSIT assert movements[0].timestamp == 1392277134 assert isinstance(movements[0].asset, Asset) assert movements[0].asset == Asset('RISE') assert movements[0].amount == FVal('2.12345678') assert movements[0].fee == ZERO assert movements[0].transaction_id == '9875231951530679373' # also make sure they are written in the db db_movements = bittrex.db.get_asset_movements( filter_query=AssetMovementsFilterQuery.make(), has_premium=True, ) assert len(db_movements) == 1 assert db_movements[0] == movements[0]
83e3ce3d8f82b159191c6b9068b54321d06bfa9a
18,224
from typing import Sequence import logging def _fixed_point( searcher: 'AbstractSearcher', parsed: parsed_file.ParsedFile, initial_substitutions: Sequence[substitution.Substitution], start: int, end: int, max_iterations: int, ): """Repeatedly apply searcher until there are no more changes.""" if max_iterations <= 1: return initial_substitutions # TODO(b/116068515): sort the substitutions here and below. new_substitutions = [ s.relative_to_span(start, end) for s in initial_substitutions ] if None in new_substitutions: logging.error('Out of bounds substitution after filtering: %s', initial_substitutions[new_substitutions.index(None)]) return initial_substitutions # give up text = parsed.text[start:end] logging.debug( 'Applying _fixed_point with initial subs=%r on on parsed.text[%d:%d]: %r', new_substitutions, start, end, text) all_substitutions = [] # max_iterations + 1 to get the extra iteration before the break, # and then - 1 to account for the fact that we already did an iteration. for i in range(max_iterations): rewritten = formatting.apply_substitutions(text, new_substitutions) try: parsed = _matcher.parse_ast(rewritten, parsed.path) except _matcher.ParseError as e: logging.error( 'Could not parse rewritten substitution in %s: %s\n' 'Tried to rewrite text[%s:%s] == %r\n' 'Rewrite was: %r\n' 'Substitutions: %r', parsed.path, e, start, end, text, rewritten, new_substitutions) break # These substitutions parsed and were valid, add them to the list: all_substitutions.extend(new_substitutions) # Set up the variables for the next rewrite attempt logging.debug('_fixed_point Iteration %d: rewrote %r -> %r', i, text, rewritten) text = rewritten if i == max_iterations: # no point bothering to get the next substitution break new_substitutions = list(searcher.find_iter_parsed(parsed)) if not new_substitutions: break if not all_substitutions: # even the first rewrite failed to parse return [] elif len(all_substitutions) == len(initial_substitutions): # We didn't discover any new substitutions. return initial_substitutions else: return [_compile_substitutions(all_substitutions, start, end, text)]
676102d43f965750d497dbbbbc3e87264de7a6d2
18,225
from operator import sub def masker(mask, val): """Enforce the defined bits in the <mask> on <val>.""" ones = sub(r"[^1]", "0", mask) val |= int(ones,2) zeros = sub(r"[^0]", "1", mask) val &= int(zeros,2) return val
68b3edd542b295ca7aade0eb9829e310e4c0ed2d
18,226
def ct_lt_u32(val_a, val_b): """ Returns 1 if val_a < val_b, 0 otherwise. Constant time. :type val_a: int :type val_b: int :param val_a: an unsigned integer representable as a 32 bit value :param val_b: an unsigned integer representable as a 32 bit value :rtype: int """ val_a &= 0xffffffff val_b &= 0xffffffff return (val_a^((val_a^val_b)|(((val_a-val_b)&0xffffffff)^val_b)))>>31
6816fd1e9633c0c3035d68ac657f3cb917f24527
18,227
import typing async def is_banned(ctx: Context, user: typing.Union[discord.Member, discord.User]) -> bool: """Returns true if user is in guild's ban list.""" bans = await ctx.guild.bans() for entry in bans: if entry.user.id == user.id: return True return False
2807e2d9a296afb360efe9abf9618e0ebe19e796
18,228
from typing import List def _create_transformation_vectors_for_pixel_offsets( detector_group: h5py.Group, wrapper: nx.NexusWrapper ) -> List[QVector3D]: """ Construct a transformation (as a QVector3D) for each pixel offset """ x_offsets = wrapper.get_field_value(detector_group, "x_pixel_offset") y_offsets = wrapper.get_field_value(detector_group, "y_pixel_offset") z_offsets = wrapper.get_field_value(detector_group, "z_pixel_offset") if x_offsets is None or y_offsets is None: raise Exception( "In pixel_shape_component expected to find x_pixel_offset and y_pixel_offset datasets" ) if z_offsets is None: z_offsets = np.zeros_like(x_offsets) # offsets datasets can be 2D to match dimensionality of detector, so flatten to 1D return [ QVector3D(x, y, z) for x, y, z in zip( x_offsets.flatten(), y_offsets.flatten(), z_offsets.flatten() ) ]
1504193d1a7731740a607f77c94a810561142c57
18,229
import random def buildIterator(spec_name, param_spec, global_state, random_selection=False): """ :param param_spec: argument specification :param random_selection: produce a continuous stream of random selections :return: a iterator function to construct an iterator over possible values """ if param_spec['type'] == 'list': if not random_selection: return ListPermuteGroupElement(spec_name, param_spec['values']) else: return PermuteGroupElement(spec_name,randomGeneratorFactory(lambda: random.choice(param_spec['values']))) elif 'int' in param_spec['type'] : v = param_spec['type'] vals = [int(x) for x in v[v.rfind('[') + 1:-1].split(':')] beg = vals[0] if len (vals) > 0 else 0 end = vals[1] if len(vals) > 1 else beg+1 if not random_selection: increment = 1 if len(vals) > 2: increment = vals[2] return IteratorPermuteGroupElement(spec_name,lambda : xrange(beg, end+1,increment).__iter__()) else: return PermuteGroupElement(spec_name,randomGeneratorFactory(lambda: random.randint(beg, end))) elif 'float' in param_spec['type'] : v = param_spec['type'] vals = [float(x) for x in v[v.rfind('[') + 1:-1].split(':')] beg = vals[0] if len(vals) > 0 else 0 end = vals[1] if len(vals) > 1 else beg+1.0 if not random_selection: increment = 1 if len(vals) > 2: increment = vals[2] return IteratorPermuteGroupElement(spec_name,lambda: np.arange(beg, end,increment).__iter__()) else: return PermuteGroupElement(spec_name,randomGeneratorFactory(lambda: beg+ random.random()* (end-beg))) elif param_spec['type'] == 'yesno': if not random_selection: return ListPermuteGroupElement(spec_name,['yes','no']) else: return PermuteGroupElement(spec_name,randomGeneratorFactory(lambda: random.choice(['yes', 'no']))) elif param_spec['type'].startswith('donor'): mydata = local() local_state = mydata.current_local_state choices = [node for node in local_state.getGraph().nodes() \ if len(local_state.getGraph().predecessors(node)) == 0] if not random_selection: # do not think we can save this state since it is tied to the local project return PermuteGroupElement(spec_name,choices.__iter__) else: return PermuteGroupElement(spec_name, randomGeneratorFactory(lambda: random.choice(choices))) return PermuteGroupElement(spec_name,randomGeneratorFactory(lambda: None))
d86d2af9499117614a11796c17eeccba16149092
18,230
import logging def logged(obj): """Add a logger member to a decorated class or function. :arg obj: the class or function object being decorated, or an optional :class:`logging.Logger` object to be used as the parent logger (instead of the default module-named logger) :return: *obj* if *obj* is a class or function; otherwise, if *obj* is a logger, return a lambda decorator that will in turn set the logger attribute and return *obj* If *obj* is a :obj:`class`, then ``obj.__log`` will have the logger name "<module-name>.<class-name>": >>> import sys >>> logging.basicConfig( ... level=logging.DEBUG, stream=sys.stdout, ... format="%(levelname)s:%(name)s:%(funcName)s:%(message)s") >>> @logged ... class Sample: ... ... def test(self): ... self.__log.debug("This is a test.") ... >>> Sample().test() DEBUG:autologging.Sample:test:This is a test. .. note:: Autologging will prefer to use the class's ``__qualname__`` when it is available (Python 3.3+). Otherwise, the class's ``__name__`` is used. For example:: class Outer: @logged class Nested: pass Under Python 3.3+, ``Nested.__log`` will have the name "autologging.Outer.Nested", while under Python 2.7 or 3.2, the logger name will be "autologging.Nested". .. versionchanged:: 0.4.0 Functions decorated with ``@logged`` use a *single* underscore in the logger variable name (e.g. ``my_function._log``) rather than a double underscore. If *obj* is a function, then ``obj._log`` will have the logger name "<module-name>": >>> import sys >>> logging.basicConfig( ... level=logging.DEBUG, stream=sys.stdout, ... format="%(levelname)s:%(name)s:%(funcName)s:%(message)s") >>> @logged ... def test(): ... test._log.debug("This is a test.") ... >>> test() DEBUG:autologging:test:This is a test. .. note:: Within a logged function, the ``_log`` attribute must be qualified by the function name. If *obj* is a :class:`logging.Logger` object, then that logger is used as the parent logger (instead of the default module-named logger): >>> import sys >>> logging.basicConfig( ... level=logging.DEBUG, stream=sys.stdout, ... format="%(levelname)s:%(name)s:%(funcName)s:%(message)s") >>> @logged(logging.getLogger("test.parent")) ... class Sample: ... def test(self): ... self.__log.debug("This is a test.") ... >>> Sample().test() DEBUG:test.parent.Sample:test:This is a test. Again, functions are similar: >>> import sys >>> logging.basicConfig( ... level=logging.DEBUG, stream=sys.stdout, ... format="%(levelname)s:%(name)s:%(funcName)s:%(message)s") >>> @logged(logging.getLogger("test.parent")) ... def test(): ... test._log.debug("This is a test.") ... >>> test() DEBUG:test.parent:test:This is a test. .. note:: For classes, the logger member is made "private" (i.e. ``__log`` with double underscore) to ensure that log messages that include the *%(name)s* format placeholder are written with the correct name. Consider a subclass of a ``@logged``-decorated parent class. If the subclass were **not** decorated with ``@logged`` and could access the parent's logger member directly to make logging calls, those log messages would display the name of the parent class, not the subclass. Therefore, subclasses of a ``@logged``-decorated parent class that wish to use a provided ``self.__log`` object must themselves be decorated with ``@logged``. .. warning:: Although the ``@logged`` and ``@traced`` decorators will "do the right thing" regardless of the order in which they are applied to the same function, it is recommended that ``@logged`` always be used as the innermost decorator:: @traced @logged def my_function(): my_function._log.info("message") This is because ``@logged`` simply sets the ``_log`` attribute and then returns the original function, making it "safe" to use in combination with any other decorator. .. note:: Both `Jython <http://www.jython.org/>`_ and `IronPython <http://ironpython.net/>`_ report an "internal" class name using its mangled form, which will be reflected in the default logger name. For example, in the sample code below, both Jython and IronPython will use the default logger name "autologging._Outer__Nested" (whereas CPython/PyPy/Stackless would use "autologging.__Nested" under Python 2 or "autologging.Outer.__Nested" under Python 3.3+) :: class Outer: @logged class __Nested: pass .. warning:: `IronPython <http://ironpython.net/>`_ does not fully support frames (even with the -X:FullFrames option), so you are likely to see things like misreported line numbers and "<unknown file>" in log records emitted when running under IronPython. """ if isinstance(obj, logging.Logger): # `@logged(logger)' return lambda class_or_fn: _add_logger_to( class_or_fn, logger_name=_generate_logger_name( class_or_fn, parent_name=obj.name)) else: # `@logged' return _add_logger_to(obj)
5a7d53257ed7d68c53daf90dcf2d48943a430a4e
18,231
def outlier_removal_mean(dataframe, colname, low_cut, high_cut): """Replace outliers with the mean on dataframe[colname]""" col = dataframe[colname] col_numerics = col.loc[ col.apply( lambda x: isinstance(x, (int, float)) and (x >= low_cut and x <= high_cut) ) ] dataframe.loc[ col.apply( lambda x: isinstance(x, (int, float)) and (x < low_cut or x > high_cut) ), colname, ] = col_numerics.mean() return dataframe
03d40bb8098d4313e468d5b4a929756354a7732c
18,232
def non_repeating(value, counts, q): """Finds the first non-repeating string in a stream. Args: value (str): Latest string received in the string counts (dict): Dictionary of strings containing the counts to determine if string is repeated q (Queue): Container for all strings in stream that have yet determined as being repeated Return: str: First non-repeating string. None if all strings are repeated. """ q.put(value) if value in counts: counts[value] += 1 else: counts[value] = 1 while not q.empty(): if counts[q.queue[0]] > 1: q.get() else: return q.queue[0] if q.empty(): return None
fc5ec025cffa0d7230d814d3677ae640cd652349
18,233
def auth_optional(request): """ view method for path '/sso/auth_optional' Return 200 reponse: authenticated and authorized 204 response: not authenticated 403 reponse: authenticated,but not authorized """ res = _auth(request) if res: #authenticated, but can be authorized or not authorized return res else: #not authenticated return AUTH_NOT_REQUIRED_RESPONSE
06416fdce6a652ca0cdc169c48219e685c13cdad
18,234
def is_pip_main_available(): """Return if the main pip function is available. Call get_pip_main before calling this function.""" return PIP_MAIN_FUNC is not None
3d4243bb4336fbc9eb9e93b2a1cf9ec4cc129c03
18,235
import torch def energy_target(flattened_bbox_targets, pos_bbox_targets, pos_indices, r, max_energy): """Calculate energy targets based on deep watershed paper. Args: flattened_bbox_targets (torch.Tensor): The flattened bbox targets. pos_bbox_targets (torch.Tensor): Bounding box lrtb values only for positions within the bounding box. We use this as an argument to prevent recalculating it since it is used for other things as well. pos_indices (torch.Tensor): The indices of values in flattened_bbox_targets which are within a bounding box max_energy (int): Max energy level possible. Notes: The energy targets are calculated as: E_max \cdot argmax_{c \in C}[1 - \sqrt{((l-r)/2)^2 + ((t-b) / 2)^2} / r] - r is a hyperparameter we would like to minimize. - (l-r)/2 is the horizontal distance to the center and will be assigned the variable name "horizontal" - (t-b)/2 is the vertical distance to the center and will be assigned the variable name "vertical" - E_max is self.max_energy - We don't need the argmax in this code implementation since we already select the bounding boxes and their respective pixels in a previous step. Returns: tuple: A 2 tuple with values ("pos_energies_targets", "energies_targets"). Both are flattened but pos_energies_targets only contains values within bounding boxes. """ horizontal = pos_bbox_targets[:, 0] - pos_bbox_targets[:, 2] vertical = pos_bbox_targets[:, 1] - pos_bbox_targets[:, 3] # print("Horizontals: {}".format(horizontal)) # print("Verticals: {}".format(vertical)) horizontal = torch.div(horizontal, 2) vertical = torch.div(vertical, 2) c2 = (horizontal * horizontal) + (vertical * vertical) # print("c2: \n{}".format(c2)) # We use x * x instead of x.pow(2) since it's faster by about 30% square_root = torch.sqrt(c2) # print("Sqrt: \n{}".format(square_root)) type_dict = {'dtype': square_root.dtype, 'device': square_root.device} pos_energies = (torch.tensor([1], **type_dict) - torch.div(square_root, r)) pos_energies *= max_energy pos_energies = torch.max(pos_energies, torch.tensor([0], **type_dict)) pos_energies = pos_energies.floor() energies_targets = torch.zeros(flattened_bbox_targets.shape[0], **type_dict) energies_targets[pos_indices] = pos_energies # torch.set_printoptions(profile='full') # print("Energy targets: \n {}".format(pos_energies)) # torch.set_printoptions(profile='default') # input() return pos_energies, energies_targets
84bed4cc1a8bf11be778b7e79524707a49482b39
18,236
def dashtable(df): """ Convert df to appropriate format for dash datatable PARAMETERS ---------- df: pd.DataFrame, OUTPUT ---------- dash_cols: list containg columns for dashtable df: dataframe for dashtable drop_dict: dict containg dropdown list for dashtable """ dash_cols = [] # create dashtable column names for x in df.columns : temp_dict = {'name':x,'id':x} if x in dropdown_cols: temp_dict.update({'presentation': 'dropdown'}) # append to list dash_cols.append(temp_dict) # get dropdown contents for each column drop_dict = {} for i in range(len(dropdown_cols)): # loop through dropdown columns drop_list = [] for x in drop_options[i]: # loop through column elements drop_list.append({'label': x, 'value': x}) drop_dict.update({dropdown_cols[i]:{'options': drop_list, 'clearable':False}}) # append to dict return dash_cols, df, drop_dict
39897244f81a5c6ac0595aac7cb219f59d6c5739
18,237
def other_identifiers_to_metax(identifiers_list): """Convert other identifiers to comply with Metax schema. Arguments: identifiers_list (list): List of other identifiers from frontend. Returns: list: List of other identifiers that comply to Metax schema. """ other_identifiers = [] for identifier in identifiers_list: id_dict = {} id_dict["notation"] = identifier other_identifiers.append(id_dict) return other_identifiers
986c98d5a557fb4fb75ed940d3f39a9a0ec93527
18,238
def enforce_excel_cell_string_limit(long_string, limit): """ Trims a long string. This function aims to address a limitation of CSV files, where very long strings which exceed the char cell limit of Excel cause weird artifacts to happen when saving to CSV. """ trimmed_string = '' if limit <= 3: limit = 4 if len(long_string) > limit: trimmed_string = (long_string[:(limit-3)] + '...') return trimmed_string else: return long_string
9b8bcf4590dc73425c304c8d778ae51d3e3f0bf3
18,239
def gaussian_blur(image: np.ndarray, sigma_min: float, sigma_max: float) -> np.ndarray: """ Blurs an image using a Gaussian filter. Args: image: Input image array. sigma_min: Lower bound of Gaussian kernel standard deviation range. sigma_max: Upper bound of Gaussian kernel standard deviation range. Returns: Blurred image array. """ sigma_value = np.random.uniform(sigma_min, sigma_max) return cv2.GaussianBlur(image, (0, 0), sigma_value)
2fd31d016e4961c6980770e8dd113ae7ad45a6ed
18,240
def get_number_of_pcs_in_pool(pool): """ Retrun number of pcs in a pool """ pc_count = Computer.objects.filter(pool=pool).count() return pc_count
812de24ad2cbc738a10258f8252ca531ef72e904
18,241
import tqdm import math def save_images(scene_list, video_manager, num_images=3, frame_margin=1, image_extension='jpg', encoder_param=95, image_name_template='$VIDEO_NAME-Scene-$SCENE_NUMBER-$IMAGE_NUMBER', output_dir=None, downscale_factor=1, show_progress=False, scale=None, height=None, width=None): # type: (List[Tuple[FrameTimecode, FrameTimecode]], VideoManager, # Optional[int], Optional[int], Optional[str], Optional[int], # Optional[str], Optional[str], Optional[int], Optional[bool], # Optional[float], Optional[int], Optional[int]) # -> Dict[List[str]] """ Saves a set number of images from each scene, given a list of scenes and the associated video/frame source. Arguments: scene_list: A list of scenes (pairs of FrameTimecode objects) returned from calling a SceneManager's detect_scenes() method. video_manager: A VideoManager object corresponding to the scene list. Note that the video will be closed/re-opened and seeked through. num_images: Number of images to generate for each scene. Minimum is 1. frame_margin: Number of frames to pad each scene around the beginning and end (e.g. moves the first/last image into the scene by N frames). Can set to 0, but will result in some video files failing to extract the very last frame. image_extension: Type of image to save (must be one of 'jpg', 'png', or 'webp'). encoder_param: Quality/compression efficiency, based on type of image: 'jpg' / 'webp': Quality 0-100, higher is better quality. 100 is lossless for webp. 'png': Compression from 1-9, where 9 achieves best filesize but is slower to encode. image_name_template: Template to use when creating the images on disk. Can use the macros $VIDEO_NAME, $SCENE_NUMBER, and $IMAGE_NUMBER. The image extension is applied automatically as per the argument image_extension. output_dir: Directory to output the images into. If not set, the output is created in the working directory. downscale_factor: Integer factor to downscale images by. No filtering is currently done, only downsampling (thus requiring an integer). show_progress: If True, shows a progress bar if tqdm is installed. scale: Optional factor by which to rescale saved images.A scaling factor of 1 would not result in rescaling. A value <1 results in a smaller saved image, while a value >1 results in an image larger than the original. This value is ignored if either the height or width values are specified. height: Optional value for the height of the saved images. Specifying both the height and width will resize images to an exact size, regardless of aspect ratio. Specifying only height will rescale the image to that number of pixels in height while preserving the aspect ratio. width: Optional value for the width of the saved images. Specifying both the width and height will resize images to an exact size, regardless of aspect ratio. Specifying only width will rescale the image to that number of pixels wide while preserving the aspect ratio. Returns: Dict[List[str]]: Dictionary of the format { scene_num : [image_paths] }, where scene_num is the number of the scene in scene_list (starting from 1), and image_paths is a list of the paths to the newly saved/created images. Raises: ValueError: Raised if any arguments are invalid or out of range (e.g. if num_images is negative). """ if not scene_list: return {} if num_images <= 0 or frame_margin < 0: raise ValueError() # TODO: Validate that encoder_param is within the proper range. # Should be between 0 and 100 (inclusive) for jpg/webp, and 1-9 for png. imwrite_param = [get_cv2_imwrite_params()[image_extension], encoder_param] if encoder_param is not None else [] video_name = video_manager.get_video_name() # Reset video manager and downscale factor. video_manager.release() video_manager.reset() video_manager.set_downscale_factor(downscale_factor) video_manager.start() # Setup flags and init progress bar if available. completed = True logger.info('Generating output images (%d per scene)...', num_images) progress_bar = None if show_progress and tqdm: progress_bar = tqdm( total=len(scene_list) * num_images, unit='images', dynamic_ncols=True) filename_template = Template(image_name_template) scene_num_format = '%0' scene_num_format += str(max(3, math.floor(math.log(len(scene_list), 10)) + 1)) + 'd' image_num_format = '%0' image_num_format += str(math.floor(math.log(num_images, 10)) + 2) + 'd' framerate = scene_list[0][0].framerate timecode_list = [ [ FrameTimecode(int(f), fps=framerate) for f in [ # middle frames a[len(a)//2] if (0 < j < num_images-1) or num_images == 1 # first frame else min(a[0] + frame_margin, a[-1]) if j == 0 # last frame else max(a[-1] - frame_margin, a[0]) # for each evenly-split array of frames in the scene list for j, a in enumerate(np.array_split(r, num_images)) ] ] for i, r in enumerate([ # pad ranges to number of images r if 1+r[-1]-r[0] >= num_images else list(r) + [r[-1]] * (num_images - len(r)) # create range of frames in scene for r in ( range(start.get_frames(), end.get_frames()) # for each scene in scene list for start, end in scene_list ) ]) ] image_filenames = {i: [] for i in range(len(timecode_list))} aspect_ratio = get_aspect_ratio(video_manager) if abs(aspect_ratio - 1.0) < 0.01: aspect_ratio = None for i, scene_timecodes in enumerate(timecode_list): for j, image_timecode in enumerate(scene_timecodes): video_manager.seek(image_timecode) ret_val, frame_im = video_manager.read() if ret_val: file_path = '%s.%s' % ( filename_template.safe_substitute( VIDEO_NAME=video_name, SCENE_NUMBER=scene_num_format % (i + 1), IMAGE_NUMBER=image_num_format % (j + 1), FRAME_NUMBER=image_timecode.get_frames()), image_extension) image_filenames[i].append(file_path) if aspect_ratio is not None: frame_im = cv2.resize( frame_im, (0, 0), fx=aspect_ratio, fy=1.0, interpolation=cv2.INTER_CUBIC) # Get frame dimensions prior to resizing or scaling frame_height = frame_im.shape[0] frame_width = frame_im.shape[1] # Figure out what kind of resizing needs to be done if height and width: frame_im = cv2.resize( frame_im, (width, height), interpolation=cv2.INTER_CUBIC) elif height and not width: factor = height / float(frame_height) width = int(factor * frame_width) frame_im = cv2.resize( frame_im, (width, height), interpolation=cv2.INTER_CUBIC) elif width and not height: factor = width / float(frame_width) height = int(factor * frame_height) frame_im = cv2.resize( frame_im, (width, height), interpolation=cv2.INTER_CUBIC) elif scale: frame_im = cv2.resize( frame_im, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) cv2.imwrite( get_and_create_path(file_path, output_dir), frame_im, imwrite_param) else: completed = False break if progress_bar: progress_bar.update(1) if not completed: logger.error('Could not generate all output images.') return image_filenames
37088294395539acd3b88543d1bdd4d05ef82ce5
18,242
from typing import List def get_used_http_ports() -> List[int]: """Returns list of ports, used by http servers in existing configs.""" return [rc.http_port for rc in get_run_configs().values()]
12982ff4d5b2327c06fef1cf874b871e2eee08c1
18,243
import io def get_img_from_fig(fig, dpi=180, color_cvt_flag=cv2.COLOR_BGR2RGB) -> np.ndarray: """Make numpy array from mpl fig Parameters ---------- fig : plt.Figure Matplotlib figure, usually the result of plt.imshow() dpi : int, optional Dots per inches of the image to save. Note, that default matplotlib figsize is given in inches. Example: px, py = w * dpi, h * dpi pixels 6.4 inches * 100 dpi = 640 pixels, by default 180 color_cvt_flag : int, optional OpenCV cvtColor flag. to get grayscale image, use `cv2.COLOR_BGR2GRAY`, by default `cv2.COLOR_BGR2RGB`. Returns ------- np.ndarray[np.uint8] Image array """ with io.BytesIO() as buffer: fig.savefig(buffer, format="png", dpi=dpi) buffer.seek(0) img_arr = np.frombuffer(buffer.getvalue(), dtype=np.uint8) return cv2.cvtColor(cv2.imdecode(img_arr, 1), color_cvt_flag)
dde9f35b78df436b30d4f9452b9964c93f924252
18,244
def split_data_by_target(data, target, num_data_per_target): """ Args: data: np.array [num_data, *data_dims] target: np.array [num_data, num_targets] target[i] is a one hot num_data_per_target: int Returns: result_data: np.array [num_data_per_target * num_targets, *data_dims] result_target: np.array [num_data_per_target * num_targets, num_targets] """ num_unique_targets = len(np.unique(target, axis=0)) target_numeric = np.dot(target, np.arange(num_unique_targets)) result_data = [] result_target = [] for target_id in range(num_unique_targets): result_data.append(data[target_numeric == target_id][:num_data_per_target]) result_target.append(target[target_numeric == target_id][:num_data_per_target]) return np.concatenate(result_data), np.concatenate(result_target)
d4425753b4d9892d2c593ec8e58e75bae0005c3d
18,245
def top_mutations(mutated_scores, initial_score, top_results=10): """Generate list of n mutations that improve localization probability Takes in the pd.DataFrame of predictions for mutated sequences and the probability of the initial sequence. After substracting the initial value from the values of the mutations, it generates a list of the mutations that increase the probability that the protein is localized at the target localization. The number of mutations returned is determined with the top_results variable, which defaults to 10. Note that if there are not so many beneficial mutations as indicated in top_results, the returned list is shorter to avoid returning mutations that would decrease the probability of being localized at the target localization. This means that if all mutations are detrimental, the function returns an empty pd.DataFrame. The returned mutations are sorted from larger increase to smaller increase and include information about the amino acid position, the original residue at that position, the mutation, the improvement with respect to initial_score and the final probability of the sequence with that mutation. Args: mutated_scores: a pd.DataFrame with the probability predicted by the model for each mutation (rows) at each position (columns). initial_score: a float representing the probability predicted by the model for the initial sequence. top_results: an integer indicating the number of mutations to return. Returns: top_res: a pd.DataFrame with the mutations that improve the probability that a protein is localized at the target localization, showing position, mutation and improvement with respect to the original score. """ # check if top_results is an integer if type(top_results) != int: raise TypeError("top results should be an integer") else: pass # get the increase or decrease in probability of mutations compared to the # initial_score of the original sequence prob_change = mutated_scores - initial_score # prepare data frame for results top_res = pd.DataFrame( columns=["Position", "Mutation", "Prob_increase", "Target_probability"] ) i = 0 # initialize at max value so that it enters the loop pred_increase = 1 # get best mutations until reaching top_results or mutations that do # not improve the probability while i < top_results and pred_increase > 0: # get column with maximum value position_mut = prob_change.max().idxmax() # get row with maximum value mutation = prob_change.idxmax()[position_mut] # get increase and localization probability of the sequence with the # mutation of interest pred_increase = prob_change.loc[mutation, position_mut] prob_value = mutated_scores.loc[mutation, position_mut] # change it for nan so that we can look for next worse mutation at the # next iteration prob_change.loc[mutation, position_mut] = np.nan # append to results mut_series = pd.Series( { "Position": position_mut, "Mutation": mutation, "Prob_increase": pred_increase, "Target_probability": prob_value, } ) top_res = top_res.append(mut_series, ignore_index=True) i += 1 return top_res
f574bf7f7569e3024a42866873c5bb589ff02095
18,246
def npmat4_to_pdmat4(npmat4): """ # updated from cvtMat4 convert numpy.2darray to LMatrix4 defined in Panda3d :param npmat3: a 3x3 numpy ndarray :param npvec3: a 1x3 numpy ndarray :return: a LMatrix3f object, see panda3d author: weiwei date: 20170322 """ return Mat4(npmat4[0, 0], npmat4[1, 0], npmat4[2, 0], 0, \ npmat4[0, 1], npmat4[1, 1], npmat4[2, 1], 0, \ npmat4[0, 2], npmat4[1, 2], npmat4[2, 2], 0, \ npmat4[0, 3], npmat4[1, 3], npmat4[2, 3], 1)
7b58014d5d354aefac84786212b6ca190a983e48
18,247
import requests def is_at_NWRC(url): """ Checks that were on the NWRC network """ try: r = requests.get(url) code = r.status_code except Exception as e: code = 404 return code==200
b909a9087940eb70b569ea6c686ff394e84a6ed9
18,248
import torch def lmo(x,radius): """Returns v with norm(v, self.p) <= r minimizing v*x""" shape = x.shape if len(shape) == 4: v = torch.zeros_like(x) for first_dim in range(shape[0]): for second_dim in range(shape[1]): inner_x = x[first_dim][second_dim] rows, cols = x[first_dim][second_dim].shape v[first_dim][second_dim] = torch.zeros_like(inner_x) maxIdx = torch.argmax(torch.abs(inner_x),0) for col in range(cols): v[first_dim][second_dim][maxIdx[col],col] = -radius*torch.sign(inner_x[maxIdx[col],col]) elif len(shape) == 3: v = torch.zeros_like(x) for first_dim in range(shape[0]): inner_x = x[first_dim] rows, cols = x[first_dim].shape v[first_dim] = torch.zeros_like(inner_x) maxIdx = torch.argmax(torch.abs(inner_x),0) for col in range(cols): v[first_dim][maxIdx[col],col] = -radius*torch.sign(inner_x[maxIdx[col],col]) elif len(shape)==2: rows, cols = x.shape v = torch.zeros_like(x) maxIdx = torch.argmax(torch.abs(x),0) for col in range(cols): v[maxIdx[col],col] = -radius*torch.sign(x[maxIdx[col],col]) else : v = torch.zeros_like(x) maxIdx = torch.argmax(torch.abs(x)) v.view(-1)[maxIdx] = -radius * torch.sign(x.view(-1)[maxIdx]) return v
24bda333cdd64df9a0b4fa603211036bbdad7200
18,249
def _transform_index(index, func): """ Apply function to all values found in index. This includes transforming multiindex entries separately. """ if isinstance(index, MultiIndex): items = [tuple(func(y) for y in x) for x in index] return MultiIndex.from_tuples(items, names=index.names) else: items = [func(x) for x in index] return Index(items, name=index.name)
c642dd9330032ed784224b7ede6ee299b6d3ed67
18,250
def extractQualiTeaTranslations(item): """ # 'QualiTeaTranslations' """ vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol or frag) or 'preview' in item['title'].lower(): return None if 'Harry Potter and the Rise of the Ordinary Person' in item['tags']: return None if 'Romance of Dragons and Snakes' in item['tags']: return buildReleaseMessageWithType(item, 'Romance of Dragons and Snakes', vol, chp, frag=frag, postfix=postfix) return False
446b7f7598e118222c033bbfce074fa02340fd8e
18,251
def feature_norm_ldc(df): """ Process the features to obtain the standard metrics in LDC mode. """ df['HNAP'] = df['HNAC']/df['ICC_abs']*100 df['TCC'] = (df['ICC_abs']+df['DCC_abs'])/df['VOL'] df['ICC'] = df['ICC_abs']/df['VOL'] df['DCC'] = df['DCC_abs']/df['VOL'] return df
60e3ef31c0be07179854de3191c2c75f4ec2cb4d
18,252
def dice_jaccard(y_true, y_pred, y_scores, shape, smooth=1, thr=None): """ Computes Dice and Jaccard coefficients. Args: y_true (ndarray): (N,4)-shaped array of groundtruth bounding boxes coordinates in xyxy format y_pred (ndarray): (N,4)-shaped array of predicted bounding boxes coordinates in xyxy format y_scores (ndarray): (N,)-shaped array of prediction scores shape (tuple): shape of the map, i.e. (h, w) smooth (int, optional): Smoothing factor to avoid ZeroDivisionError. Defaults to 1. thr (float, optional): Threshold to binarize predictions; if None, the soft version of the coefficients are computed. Defaults to None. Returns: tuple: The Dice and Jaccard coefficients. """ m_true = np.zeros(shape, dtype=np.float32) for x0, y0, x1, y1 in y_true.astype(int): m_true[y0:y1 + 1, x0: x1 + 1] = 1. if thr is not None: keep = y_scores >= thr y_pred = y_pred[keep] y_scores = y_scores[keep] m_pred = np.zeros_like(m_true) for (x0, y0, x1, y1), score in zip(y_pred.astype(int), y_scores): m_pred[y0:y1 + 1, x0: x1 + 1] = np.maximum(m_pred[y0:y1 + 1, x0: x1 + 1], score) intersection = np.sum(m_true * m_pred) sum_ = np.sum(m_true) + np.sum(m_pred) union = sum_ - intersection jaccard = (intersection + smooth) / (union + smooth) dice = 2. * (intersection + smooth) / (sum_ + smooth) return dice.mean(), jaccard.mean()
ed3a043b53d843e05ff3e32954eb9dbc2939b6ca
18,253
def forward_pass(output_node, sorted_nodes): """ Performs a forward pass through a list of sorted nodes. Arguments: `output_node`: A node in the graph, should be the output node (have no outgoing edges). `sorted_nodes`: A topologically sorted list of nodes. Returns the output Node's value """ for n in sorted_nodes: n.forward() return output_node.value
a91c5b7ebef98815a47b26d58a680b36098969d5
18,254
def qr_decomposition(q, r, iter, n): """ Return Q and R matrices for iter number of iterations. """ v = column_convertor(r[iter:, iter]) Hbar = hh_reflection(v) H = np.identity(n) H[iter:, iter:] = Hbar r = np.matmul(H, r) q = np.matmul(q, H) return q, r
94aa433e31e93dc36f67f579cb03f67930cfabc4
18,255
def main(args=None): """Main entry point for `donatello`'s command-line interface. Args: args (List[str]): Custom arguments if you wish to override sys.argv. Returns: int: The exit code of the program. """ try: init_colorama() opts = get_parsed_args(args) if opts.bad_chars is not None: bad_chars = _parse_bytes(opts.bad_chars, check_dups=True) else: bad_chars = b'' bad_chars_as_ints = tuple(int(bc) for bc in bad_chars) if opts.max_factors is not None: max_factors = _parse_max_factors(opts.max_factors) else: max_factors = 2 if opts.ops is not None: ops = _parse_ops(opts.ops) else: ops = IMPLEMENTED_OPS if opts.command not in ('factor', 'encode',): raise DonatelloConfigurationError( 'must specify either `factor` or `encode`; `' + opts.command + '` is invalid') if opts.target == '-': # TODO: https://docs.python.org/3/library/fileinput.html pass else: target = opts.target if opts.command == 'factor': value = _parse_target_hex(target) print_i('Attempting to factor target value ', format_dword(value)) for num_factors in range(2, max_factors+1): factors = factor_by_byte( value, bad_chars_as_ints, usable_ops=ops, num_factors=num_factors) if factors is not None: print_i('Found factorization!') res = [' 0x00000000'] for f in factors: res.append('{0: <3}'.format(f.operator) + ' ' + format_dword(f.operand)) print('\n'.join(res)) break else: print_e('Unable to find any factors') elif opts.command == 'encode': payload = _parse_bytes(target) print_i('Attempting to encode payload...') asm = encode_x86_32(payload, bad_chars, max_factors=max_factors) print_i('Successfully encoded payload!') print(asm) return 0 except (DonatelloCannotEncodeError, DonatelloNoPossibleNopsError) as e: print_e('Failed to factor/encode the specified target: ', e) return 1 except DonatelloConfigurationError as e: print_e('Configuration error: ', e) return 1 except DonatelloNoPresentBadCharactersError: print_e('No bad characters present in the specified payload; ', 'use the -f/--force flag to bypass this check') return 1 except DonatelloError as e: print_e('This should not be reached! See below for error.') print_e(e) return 1 except Exception as e: print_e('Received unexpected exception; re-raising it.') raise e
1977a2bf8e537664a4eab2fb05d6300998a59977
18,256
import logging import torch import operator def build_detection_train_loader(cfg, mapper=None): """ A data loader is created by the following steps: 1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts. 2. Coordinate a random shuffle order shared among all processes (all GPUs) 3. Each process spawn another few workers to process the dicts. Each worker will: * Map each metadata dict into another format to be consumed by the model. * Batch them by simply putting dicts into a list. The batched ``list[mapped_dict]`` is what this dataloader will yield. Args: cfg (CfgNode): the config mapper (callable): a callable which takes a sample (dict) from dataset and returns the format to be consumed by the model. By default it will be `DatasetMapper(cfg, True)`. Returns: an infinite iterator of training data """ num_workers = get_world_size() images_per_batch = cfg.SOLVER.IMS_PER_BATCH assert ( images_per_batch % num_workers == 0 ), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format( images_per_batch, num_workers ) assert ( images_per_batch >= num_workers ), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format( images_per_batch, num_workers ) images_per_worker = images_per_batch // num_workers dataset_dicts = get_detection_dataset_dicts( cfg.DATASETS.TRAIN, filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE if cfg.MODEL.KEYPOINT_ON else 0, proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, ) dataset = DatasetFromList(dataset_dicts, copy=False) if mapper is None: mapper = PlusDatasetMapper(cfg, dataset, True) dataset = MapDataset(dataset, mapper) sampler_name = cfg.DATALOADER.SAMPLER_TRAIN logger = logging.getLogger(__name__) logger.info("Using training sampler {}".format(sampler_name)) if sampler_name == "TrainingSampler": sampler = samplers.TrainingSampler(len(dataset)) elif sampler_name == "RepeatFactorTrainingSampler": sampler = samplers.RepeatFactorTrainingSampler( dataset_dicts, cfg.DATALOADER.REPEAT_THRESHOLD ) else: raise ValueError("Unknown training sampler: {}".format(sampler_name)) if cfg.DATALOADER.ASPECT_RATIO_GROUPING: data_loader = torch.utils.data.DataLoader( dataset, sampler=sampler, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=None, collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements worker_init_fn=worker_init_reset_seed, ) # yield individual mapped dict data_loader = AspectRatioGroupedDataset(data_loader, images_per_worker) else: batch_sampler = torch.utils.data.sampler.BatchSampler( sampler, images_per_worker, drop_last=True ) # drop_last so the batch always have the same size data_loader = torch.utils.data.DataLoader( dataset, num_workers=cfg.DATALOADER.NUM_WORKERS, batch_sampler=batch_sampler, collate_fn=trivial_batch_collator, worker_init_fn=worker_init_reset_seed, ) return data_loader
007b09ce00814264b3264798d4a0afd05c23d6eb
18,257
def discRect(radius,w,l,pos,gap,layerRect,layerCircle,layer): """ This function creates a disc that is recessed inside of a rectangle. The amount that the disc is recessed is determined by a gap that surrounds the perimeter of the disc. This much hangs out past the rectangle to couple to a bus waveguide.Calls subCircle(...) in order to accomplish the subtraction This function returns the disc and the surrounding rectangle radius: radius of circle w: width of rectangle (vertical) l: length of rectangle (horizontal) pos: tuple giving a relative offset of the circle. The offset is determined by the gap specified, but it can also be added to this other offset. The default is no additional recession into the rectangle and just a shift along the length of the rectangle. gap: the gap surrounding the disc layerRect: the layer on which the rectangle is written layerCircle: the layer on which the disc subtracted from the rectangle is written. This layer is temporarily used for the boolean operation since ultimately the disc is returned on the same layer on which the rectangle is drawn. """ newRad=radius+gap # the circle is offset by the gap width away from the rect posx,posy=pos pos=(posx,w/2-radius+posy+gap) print('pos: '+str(pos)) sub=subCircle(newRad,w,l,pos,layerRect,layerCircle,layer) # add the disc disc=gdspy.Round(pos,radius,number_of_points=199,**layerRect) return sub,disc
1cb5f505fb868f31771fe6e48faa6399d8b051ad
18,258
def sub_factory(): """Subscript text: <pre>H[sub]2[/sub]O</pre><br /> Example:<br /> H[sub]2[/sub]O """ return make_simple_formatter("sub", "<sub>%(value)s</sub>"), {}
4f721d0713c1a2be496a45c1bf7abe8766572135
18,259
from typing import Tuple def train_test_split( structures: list, targets: list, train_frac: float = 0.8 ) -> Tuple[Tuple[list, list], Tuple[list, list]]: """Split structures and targets into training and testing subsets.""" num_train = floor(len(structures) * train_frac) return ( (structures[:num_train], targets[:num_train]), (structures[num_train:], targets[num_train:]), )
279fbe353bf07aa9b9654f4be4c21cf248f2c8bb
18,260
def reset_password(token): """ Handles the reset password process. """ if not current_user.is_anonymous(): return redirect(url_for("forum.index")) form = ResetPasswordForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() expired, invalid, data = user.verify_reset_token(form.token.data) if invalid: flash(("Your password token is invalid."), "danger") return redirect(url_for("auth.forgot_password")) if expired: flash(("Your password is expired."), "danger") return redirect(url_for("auth.forgot_password")) if user and data: user.password = form.password.data user.save() flash(("Your password has been updated."), "success") return redirect(url_for("auth.login")) form.token.data = token return render_template("auth/reset_password.html", form=form)
c34d090b09a236eecfe101d66ec0daaf3c08eb87
18,261
def delete(vol_path): """ Delete a kv store object for this volume identified by vol_path. Return true if successful, false otherwise """ return kvESX.delete(vol_path)
5d120b6a509119587df5f2dc9f1436115b01a257
18,262
import uuid def get_tablespace_data(tablespace_path, db_owner): """This function returns the tablespace data""" data = { "name": "test_%s" % str(uuid.uuid4())[1:8], "seclabels": [], "spcacl": [ { "grantee": db_owner, "grantor": db_owner, "privileges": [ { "privilege_type": "C", "privilege": True, "with_grant": False } ] } ], "spclocation": tablespace_path, "spcoptions": [], "spcuser": db_owner } return data
3272e9b941d6bfb426ed754eed7f956c4c0933f4
18,263
def join_chunks(chunks): """empty all chunks out of their sub-lists to be split apart again by split_chunks(). this is because chunks now looks like this [[t,t,t],[t,t],[f,f,f,][t]]""" return [item for sublist in chunks for item in sublist]
a5daf41ba3fa6e7dafc4f05b29cc5aeaa397d5a5
18,264
def urls_equal(url1, url2): """ Compare two URLObjects, without regard to the order of their query strings. """ return ( url1.without_query() == url2.without_query() and url1.query_dict == url2.query_dict )
f2cbcf111cd5d02fa053fbd373d24b2dab047dfc
18,265
def bytes_to_ints(bs): """ Convert a list of bytes to a list of integers. >>> bytes_to_ints([1, 0, 2, 1]) [256, 513] >>> bytes_to_ints([1, 0, 1]) Traceback (most recent call last): ... ValueError: Odd number of bytes. >>> bytes_to_ints([]) [] """ if len(bs) % 2 != 0: raise ValueError("Odd number of bytes.") pairs = zip(bs[::2], bs[1::2]) return [(a << 8) + b for a, b in pairs]
e8ac9ec973ff58973703e3e109da5b45d3f9d802
18,266
import logging import click import yaml def create_default_yaml(config_file): """This function creates and saves the default configuration file.""" config_file_path = config_file imgdb_config_dir = Config.IMGDB_CONFIG_HOME if not imgdb_config_dir.is_dir(): try: imgdb_config_dir.mkdir(parents=True, exist_ok=True) except Exception as e: logging.critical( "Something went wrong while trying to create" " the configuration directory!" ) logging.debug("Error: %s" % e) click.echo( Tcolors.FAIL + "Something went wrong while trying to create" " the configuration directory!" + Tcolors.ENDC ) return 0 try: with open(config_file_path, "w", encoding="utf-8") as config: yaml.safe_dump( Config.DEFAULT_CONFIG, config, encoding="utf-8", allow_unicode=True, default_flow_style=False, ) click.echo( Tcolors.OK_GREEN + "➜ The configuration file: %s \nhas been created successfully!" % config_file_path + Tcolors.ENDC ) except Exception as e: logging.critical( "Something went wrong while trying to save" " the program's configuration file!" ) logging.debug("Error: %s" % e) click.echo( Tcolors.FAIL + "Something went wrong while trying to save" " the program's configuration file!" + Tcolors.ENDC ) return 0 return parse_config_yaml(Config.DEFAULT_CONFIG, first_run=True)
786b3488b4400a66f44900811171df396b3ab3a9
18,267
import site def canRun(page): """ Returns True if the given check page is still set to "Run"; otherwise, returns false. Accepts one required argument, "page." """ print("Checking checkpage.") page = site.Pages[page] text = page.text() if text == "Run": print("We're good!") return True return False
3cb1276d82ffeadb1a730bb2eb1c1f3427905e94
18,268
import os def parse_configs_for_multis(conf_list): """ parse list of condor config files searching for multi line configurations Args: conf_list: string, output of condor_config_val -config Returns: multi: dictionary. keys are first line of multi line config values are the rest of the multi line config keeping original formatting example: this paragraph in a condor_configuration : JOB_ROUTER_CREATE_IDTOKEN_atlas @=end sub = "Atlasfetime = 900" lifetime = 900 scope = "ADVERTISE_STARTD, ADVERTISE_MASTER, READ" dir = "$(LOCAL_DIR)/jrtokens" filename = "ce_atlas.idtoken" owner = "atlas" @end would generate a multi entry like this: multi["JOB_ROUTER_CREATE_IDTOKEN_atlas"] = '@=end\n sub = "Atlas"\n lifetime = 900\n ..... @end\n' these entries will be rendered into the frontend.condor_config with proper spacing and line returns unlike how they would be rendered by condor_config_val --dump KNOWN PROBLEM: if condor config has two multi-line configs with same name and different lines generated config file may be incorrect. The condor config is probably incorrect as well :) """ multi = {} for conf in conf_list: conf = conf.strip() if os.path.exists(conf): with open(conf) as fd: text = fd.readlines() pdict = find_multilines(text) multi.update(pdict) return multi
faf9ea4a5ce40c31797a4d570f79826902bc05da
18,269
def _bgp_predict_wrapper(model, *args, **kwargs): """ Just to ensure that the outgoing shapes are right (i.e. 2D). """ mean, cov = model.predict_y(*args, **kwargs) if len(mean.shape) == 1: mean = mean[:, None] if len(cov.shape) == 1: cov = cov[:, None] return mean, cov
23bb62927e767057df94ef8b95b57874fc078d7f
18,270
import copy import json def create_waninterface(config_waninterface, waninterfaces_n2id, site_id): """ Create a WAN Interface :param config_waninterface: WAN Interface config dict :param waninterfaces_n2id: WAN Interface Name to ID dict :param site_id: Site ID to use :return: New WAN Interface ID """ # make a copy of waninterface to modify waninterface_template = copy.deepcopy(config_waninterface) # perform name -> ID lookups name_lookup_in_template(waninterface_template, 'network_id', wannetworks_n2id) name_lookup_in_template(waninterface_template, 'label_id', waninterfacelabels_n2id) local_debug("WANINTERFACE TEMPLATE: " + str(json.dumps(waninterface_template, indent=4))) # create waninterface waninterface_resp = sdk.post.waninterfaces(site_id, waninterface_template) if not waninterface_resp.cgx_status: throw_error("Waninterface creation failed: ", waninterface_resp) waninterface_name = waninterface_resp.cgx_content.get('name') waninterface_id = waninterface_resp.cgx_content.get('id') if not waninterface_name or not waninterface_id: throw_error("Unable to determine waninterface attributes (Name: {0}, ID {1})..".format(waninterface_name, waninterface_id)) output_message(" Created waninterface {0}.".format(waninterface_name)) # update caches waninterfaces_n2id[waninterface_name] = waninterface_id return waninterface_id
f4de347a1e8120e1da8c38d16ed0054e13f13ae5
18,271
import numpy def max_pool(images, imgshp, maxpoolshp): """ Implements a max pooling layer Takes as input a 2D tensor of shape batch_size x img_size and performs max pooling. Max pooling downsamples by taking the max value in a given area, here defined by maxpoolshp. Outputs a 2D tensor of shape batch_size x output_size. Parameters ---------- images : 2D tensor Tensorcontaining images on which to apply convolution. Assumed to be \ of shape `batch_size x img_size` imgshp : tuple Tuple containing image dimensions maxpoolshp : tuple Tuple containing shape of area to max pool over Returns ------- out1 : WRITEME Symbolic result (2D tensor) out2 : WRITEME Logical shape of the output """ N = numpy poolsize = N.int64(N.prod(maxpoolshp)) # imgshp contains either 2 entries (height,width) or 3 (nfeatures,h,w) # in the first case, default nfeatures to 1 if N.size(imgshp)==2: imgshp = (1,)+imgshp # construct indices and index pointers for sparse matrix, which, when multiplied # with input images will generate a stack of image patches indices, indptr, spmat_shape, sptype, outshp = \ convolution_indices.conv_eval(imgshp, maxpoolshp, maxpoolshp, mode='valid') logger.info('XXXXXXXXXXXXXXXX MAX POOLING LAYER XXXXXXXXXXXXXXXXXXXX') logger.info('imgshp = {0}'.format(imgshp)) logger.info('maxpoolshp = {0}'.format(maxpoolshp)) logger.info('outshp = {0}'.format(outshp)) # build sparse matrix, then generate stack of image patches csc = theano.sparse.CSM(sptype)(N.ones(indices.size), indices, indptr, spmat_shape) patches = sparse.structured_dot(csc, images.T).T pshape = tensor.stack(images.shape[0]*\ tensor.as_tensor(N.prod(outshp)), tensor.as_tensor(imgshp[0]), tensor.as_tensor(poolsize)) patch_stack = tensor.reshape(patches, pshape, ndim=3); out1 = tensor.max(patch_stack, axis=2) pshape = tensor.stack(images.shape[0], tensor.as_tensor(N.prod(outshp)), tensor.as_tensor(imgshp[0])) out2 = tensor.reshape(out1, pshape, ndim=3); out3 = tensor.DimShuffle((False,)*3, (0,2,1))(out2) return tensor.flatten(out3,2), outshp
acbbfb686f77dc6e05f385b2addc8f49e7f344d3
18,272
def rmean(A): """ Removes time-mean of llc_4320 3d fields; axis=2 is time""" ix,jx,kx = A.shape Am = np.repeat(A.mean(axis=2),kx) Am = Am.reshape(ix,jx,kx) return A-Am
39edcdca0cc4d411c579991086bf555d65686020
18,273
def default_pruning_settings(): """ :return: the default pruning settings for optimizing a model """ mask_type = "unstructured" # TODO: update based on quantization sparsity = 0.85 # TODO: dynamically choose sparsity level balance_perf_loss = 1.0 filter_min_sparsity = 0.4 filter_min_perf_gain = 0.75 filter_min_recovery = -1.0 return PruningSettings( mask_type, sparsity, balance_perf_loss, filter_min_sparsity, filter_min_perf_gain, filter_min_recovery, )
a81f153872a20eaaa5e654957ddf7b4a79ff42a9
18,274
def build_request_url(base_url, sub_url, query_type, api_key, value): """ Function that creates the url and parameters :param base_url: The base URL from the app.config :param sub_url: The sub URL from the app.config file. If not defined it will be: "v1/pay-as-you-go/" :param query_type: The query type of the request :param apikey: The api key from the app.config :param value: The artifact value :return: Tuple. A string of the URL and a dict of the params :rtype: tuple """ # Setup the mapping dict for APIVoid API call types and the url and params for the requests call. url_map = { "IP Reputation": { "url": "iprep", "params": { "ip": value } }, "Domain Reputation": { "url": "domainbl", "params": { "host": value } }, "DNS Lookup": { "url": "dnslookup", "params": { "action": "dns-a", "host": value } }, "Email Verify": { "url": "emailverify", "params": { "email": value } }, "ThreatLog": { "url": "threatlog", "params": { "host": value } }, "SSL Info": { "url": "sslinfo", "params": { "host": value } }, "URL Reputation": { "url": "urlrep", "params": { "url": url_encode(value.encode('utf8')) if isinstance(value, str) else value } }, "selftest": { "url": "sitetrust", "params": { "stats": value } }, } try: request_type = url_map.get(query_type) request_url = request_type.get("url") request_params = request_type.get("params") except KeyError: raise ValueError("%s is an Invalid IP Void request type or it's not supported", query_type) # Join the base url, the request type and the sub url the_url = "/".join((base_url, request_url, sub_url)) # Append the api key the_url = u"{0}?key={1}".format(the_url, api_key) # Append the params for (k, v) in request_params.items(): the_url = u"{0}&{1}={2}".format(the_url, k, v) LOG.info("Using URL: %s", the_url) return the_url
ecf3ef0a3d7d5591b1f6aa9787f4f2984688f9f2
18,275
import re def snake_to_camel(action_str): """ for all actions and all objects unsnake case and camel case. re-add numbers """ if action_str == "toggle object on": return "ToggleObjectOn" elif action_str == "toggle object off": return "ToggleObjectOff" def camel(match): return match.group(1)[0].upper() + match.group(1)[1:] + match.group(2).upper() action_str = re.sub(r'(.*?) ([a-zA-Z])', camel, action_str) if action_str.startswith("Look"): # LookDown_15, LookUp_15 action_str += "_15" if action_str.startswith("Rotate"): # RotateRight_90, RotateLeft_90 action_str += "_90" if action_str.startswith("Move"): # MoveAhead_25 action_str += "_25" return action_str[0].upper() + action_str[1:]
c71745c02fc712e2b463e7bcb022bfca41c2efd4
18,276
from datetime import datetime def todayDate() -> datetime.date: """ :return: ex: datetime.date(2020, 6, 28) """ return datetime.date.today()
dc9dae8bbeaabf5c8d7d9e3509d1e331e2c609ff
18,277
def lookup_facade(name, version): """ Given a facade name and version, attempt to pull that facade out of the correct client<version>.py file. """ for _version in range(int(version), 0, -1): try: facade = getattr(CLIENTS[str(_version)], name) return facade except (KeyError, AttributeError): continue else: raise ImportError("No supported version for facade: " "{}".format(name))
eb76df1f7f3a9991c3e283643a52784c9d65f4f1
18,278
import time def create_service(netUrl, gwUrl, attributes, token): """ Create NFN Service in MOP Environment. :param netUrl: REST Url endpoint for network :param gwUrl: REST Url endpoint for gateway :param serviceAttributes: service paramaters, e.g. service type or name, etc :param token: seesion token for NF Console :return serviceId, serviceUrl: created service details """ url = netUrl+'/services' gwId = gwUrl.split('/')[8] if attributes['type'] == 'host': # checking if service name is provided if attributes['name']: serviceName = attributes['name'] else: serviceName = attributes['gateway']+'--'+str(attributes['ip'])+'--'+str(attributes['port']) data = { "serviceClass": "CS", "name": serviceName, "serviceInterceptType": "IP", "serviceType": "ALL", "endpointId": gwId, "pbrType": "WAN", "dataInterleaving": "NO", "transparency": "NO", "networkIp": attributes['ip'], "networkFirstPort": attributes['port'], "networkLastPort": attributes['port'], "interceptIp": attributes['ip'], "interceptFirstPort": attributes['port'], "interceptLastPort": attributes['port'] } if attributes['type'] == 'network': # checking if service name is provided if attributes['name']: serviceName = attributes['name'] else: serviceName = attributes['gateway']+'--'+str(attributes['netIp'])+'--'+str(attributes['netCidr']) data = { "serviceClass": "GW", "name": serviceName, "serviceInterceptType": "IP", "serviceType": "ALL", "endpointId": gwId, "lowLatency": "NO", "dataInterleaving": "NO", "transparency": "NO", "multicast": "OFF", "dnsOptions": "NONE", "icmpTunnel": "YES", "cryptoLevel": "STRONG", "permanentConnection": "YES", "collectionLocation": "BOTH", "pbrType": "WAN", "rateSmoothing": "NO", "gatewayClusterId": None, "interceptIp": attributes['netIp'], "gatewayIp": attributes['netIp'], "gatewayCidrBlock": attributes['netCidr'], "localNetworkGateway": "YES" } returnData = nfreq((url, data), "post", token) serviceUrl = returnData['_links']['self']['href'] time.sleep(1) return serviceUrl, serviceName
848f8375273ec4583a6c5d361c8a319ff43ba2a8
18,279
def _drawBlandAltman(mean, diff, md, sd, percentage, limitOfAgreement, confidenceIntervals, detrend, title, ax, figureSize, dpi, savePath, figureFormat, meanColour, loaColour, pointColour): """ Sub function to draw the plot. """ if ax is None: fig, ax = plt.subplots(1,1, figsize=figureSize, dpi=dpi) plt.rcParams.update({'font.size': 15,'xtick.labelsize':15, 'ytick.labelsize':15}) ax.tick_params(axis='x', labelsize=15) ax.tick_params(axis='y', labelsize=15) # ax.rcParams.update({'font.size': 15}) # ax=ax[0,0] draw = True else: draw = False ## # Plot CIs if calculated ## if 'mean' in confidenceIntervals.keys(): ax.axhspan(confidenceIntervals['mean'][0], confidenceIntervals['mean'][1], facecolor='lightblue', alpha=0.2) if 'upperLoA' in confidenceIntervals.keys(): ax.axhspan(confidenceIntervals['upperLoA'][0], confidenceIntervals['upperLoA'][1], facecolor='wheat', alpha=0.2) if 'lowerLoA' in confidenceIntervals.keys(): ax.axhspan(confidenceIntervals['lowerLoA'][0], confidenceIntervals['lowerLoA'][1], facecolor='wheat', alpha=0.2) ## # Plot the mean diff and LoA ## ax.axhline(md, color=meanColour, linestyle='--') ax.axhline(md + limitOfAgreement*sd, color=loaColour, linestyle='--') ax.axhline(md - limitOfAgreement*sd, color=loaColour, linestyle='--') ## # Plot the data points ## # ax.scatter(mean[0:22], diff[0:22], alpha=0.8, c='orange', marker='.', s=100, label='India Male') # ax.scatter(mean[22:44], diff[22:44], alpha=0.8, c='blue', marker='.', s=100, label='India Female') # ax.scatter(mean[44:66], diff[44:66], alpha=0.8, c='red', marker='.', s=100, label='Sierra Leone Male') # ax.scatter(mean[66:88], diff[66:88], alpha=0.8, c='purple', marker='.', s=100, label='Sierra Leone Female') ax.scatter(mean[0:20], diff[0:20], alpha=0.8, c='orange', marker='.', s=100, label='India Male') ax.scatter(mean[20:39], diff[20:39], alpha=0.8, c='blue', marker='.', s=100, label='India Female') ax.scatter(mean[39:59], diff[39:59], alpha=0.8, c='red', marker='.', s=100, label='Sierra Leone Male') ax.scatter(mean[59:77], diff[59:77], alpha=0.8, c='purple', marker='.', s=100, label='Sierra Leone Female') ax.set_ylim(-50, 70) ax.legend(loc='upper right', fontsize=12) trans = transforms.blended_transform_factory( ax.transAxes, ax.transData) limitOfAgreementRange = (md + (limitOfAgreement * sd)) - (md - limitOfAgreement*sd) offset = (limitOfAgreementRange / 100.0) * 1.5 ax.text(0.98, md + offset, 'Mean', ha="right", va="bottom", transform=trans) ax.text(0.98, md - offset, f'{md:.2f}', ha="right", va="top", transform=trans) ax.text(0.98, md + (limitOfAgreement * sd) + offset, f'+{limitOfAgreement:.2f} SD', ha="right", va="bottom", transform=trans) ax.text(0.98, md + (limitOfAgreement * sd) - offset, f'{md + limitOfAgreement*sd:.2f}', ha="right", va="top", transform=trans) ax.text(0.98, md - (limitOfAgreement * sd) - offset, f'-{limitOfAgreement:.2f} SD', ha="right", va="top", transform=trans) ax.text(0.98, md - (limitOfAgreement * sd) + offset, f'{md - limitOfAgreement*sd:.2f}', ha="right", va="bottom", transform=trans) # Only draw spine between extent of the data # ax.spines['left'].set_bounds(min(diff), max(diff)) # ax.spines['bottom'].set_bounds(min(mean), max(mean)) # Hide the right and top spines # ax.spines['right'].set_visible(False) # ax.spines['top'].set_visible(False) if percentage: ax.set_ylabel('Percentage difference between methods', fontsize=20) else: ax.set_ylabel('Difference between methods', fontsize=20) ax.set_xlabel('Mean of methods', fontsize=20) # tickLocs = ax.xaxis.get_ticklocs() # cadenceX = tickLocs[2] - tickLocs[1] # tickLocs = rangeFrameLocator(tickLocs, (min(mean), max(mean))) # ax.xaxis.set_major_locator(ticker.FixedLocator(tickLocs)) # tickLocs = ax.yaxis.get_ticklocs() # cadenceY = tickLocs[2] - tickLocs[1] # tickLocs = rangeFrameLocator(tickLocs, (min(diff), max(diff))) # ax.yaxis.set_major_locator(ticker.FixedLocator(tickLocs)) # plt.draw() # Force drawing to populate tick labels # labels = rangeFrameLabler(ax.xaxis.get_ticklocs(), [item.get_text() for item in ax.get_xticklabels()], cadenceX) # ax.set_xticklabels(labels) # labels = rangeFrameLabler(ax.yaxis.get_ticklocs(), [item.get_text() for item in ax.get_yticklabels()], cadenceY) # ax.set_yticklabels(labels) # ax.patch.set_alpha(0) if detrend[0] is None: pass else: plt.text(1, -0.1, f'{detrend[0]} slope correction factor: {detrend[1]:.2f} ± {detrend[2]:.2f}', ha='right', transform=ax.transAxes) if title: ax.set_title(title) ## # Save or draw ## plt.tight_layout() if (savePath is not None) & draw: fig.savefig(savePath, format=figureFormat, dpi=dpi) plt.close() elif draw: plt.show() else: return ax
43bf53cd4594c1ed58860a6127f40f6345bea6ba
18,280
def rename_columns(df): """This function renames certain columns of the DataFrame :param df: DataFrame :type df: pandas DataFrame :return: DataFrame :rtype: pandas DataFrame """ renamed_cols = {"Man1": "Manufacturer (PE)", "Pro1": "Model (PE)", "Man2": "Manufacturer (BAT)", "Pro2": "Model (BAT)", "Top": "Type [-coupled]", 'P_PV2AC_in': 'P_PV2AC_in [W]', 'P_PV2AC_out': 'P_PV2AC_out [W]', 'U_PV_min': 'U_PV_min [V]', 'U_PV_nom': 'U_PV_nom [V]', 'U_PV_max': 'U_PV_max [V]', 'U_MPP_min': 'U_MPP_min [V]', 'U_MPP_max': 'U_MPP_max [V]', 'P_AC2BAT_in': 'P_AC2BAT_in [W]', 'P_BAT2AC_out': 'P_BAT2AC_out [W]', 'P_PV2BAT_in': 'P_PV2BAT_in [W]', 'P_BAT2PV_out': 'P_BAT2PV_out [W]', 'P_PV2BAT_out': 'P_PV2BAT_out [W]', 'P_BAT2AC_in': 'P_BAT2AC_in [W]', 'U_BAT_min': 'U_BAT_min [V]', 'U_BAT_nom': 'U_BAT_nom [V]', 'U_BAT_max': 'U_BAT_max [V]', 'E_BAT_100': 'E_BAT_100 [kWh]', 'E_BAT_50': 'E_BAT_50 [kWh]', 'E_BAT_25': 'E_BAT_25 [kWh]', 'E_BAT_usable': 'E_BAT_usable [kWh]', 'eta_BAT_100': 'eta_BAT_100', 'eta_BAT_50': 'eta_BAT_50', 'eta_BAT_25': 'eta_BAT_25', 'eta_BAT': 'eta_BAT', 'P_SYS_SOC1_AC': 'P_SYS_SOC1_AC [W]', 'P_SYS_SOC1_DC': 'P_SYS_SOC1_DC [W]', 'P_SYS_SOC0_AC': 'P_SYS_SOC0_AC [W]', 'P_SYS_SOC0_DC': 'P_SYS_SOC0_DC [W]', 'P_PVINV_AC': 'P_PVINV_AC [W]', 'P_PERI_AC': 'P_PERI_AC [W]', 'P_PV2BAT_DEV_IMPORT': 'P_PV2BAT_DEV_IMPORT [W]', 'P_PV2BAT_DEV_EXPORT': 'P_PV2BAT_DEV_EXPORT [W]', 'P_BAT2AC_DEV_IMPORT': 'P_BAT2AC_DEV_IMPORT [W]', 'P_BAT2AC_DEV_EXPORT': 'P_BAT2AC_DEV_EXPORT [W]', 't_DEAD': 't_DEAD [s]', 't_SETTLING': 't_SETTLING [s]' } return df.rename(columns=renamed_cols)
9c22747d7c6da20cab1593388db5575a38aa313f
18,281
import requests import json def get_github_emoji(): # pragma: no cover """Get Github's usable emoji.""" try: resp = requests.get( 'https://api.github.com/emojis', timeout=30 ) except Exception: return None return json.loads(resp.text)
533a56e2e59b039cbc45ab5acb7ab4e8487e4ad9
18,282
def transport_stable(p, q, C, lambda1, lambda2, epsilon, scaling_iter, g): """ Compute the optimal transport with stabilized numerics. Args: p: uniform distribution on input cells q: uniform distribution on output cells C: cost matrix to transport cell i to cell j lambda1: regularization parameter for marginal constraint for p. lambda2: regularization parameter for marginal constraint for q. epsilon: entropy parameter scaling_iter: number of scaling iterations g: growth value for input cells """ u = np.zeros(len(p)) v = np.zeros(len(q)) b = np.ones(len(q)) p = p * g q = q * np.average(g) K0 = np.exp(-C / epsilon) K = np.copy(K0) alpha1 = lambda1 / (lambda1 + epsilon) alpha2 = lambda2 / (lambda2 + epsilon) for i in range(scaling_iter): # scaling iteration a = (p / (K.dot(b))) ** alpha1 * np.exp(-u / (lambda1 + epsilon)) b = (q / (K.T.dot(a))) ** alpha2 * np.exp(-v / (lambda2 + epsilon)) # stabilization if (max(max(abs(a)), max(abs(b))) > 1e100): u = u + epsilon * np.log(a) v = v + epsilon * np.log(b) # absorb K = (K0.T * np.exp(u / epsilon)).T * np.exp(v / epsilon) a = np.ones(len(p)) b = np.ones(len(q)) return (K.T * a).T * b
584607e57b4d216633ef0a03c2cb06726b0f423f
18,283
def add(A: Coord, B: Coord, s: float = 1.0, t: float = 1.0) -> Coord: """Return the point sA + tB.""" return (s * A[0] + t * B[0], s * A[1] + t * B[1])
53c2f750199d785140154881fdc0ace31b9e2472
18,284
def from_binary(bin_data: str, delimiter: str = " ") -> bytes: """Converts binary string into bytes object""" if delimiter == "": data = [bin_data[i:i+8] for i in range(0, len(bin_data), 8)] else: data = bin_data.split(delimiter) data = [int(byte, 2) for byte in data] return bytes(data)
f16706da2d5b9ae5984a35a13ebd02ae94581153
18,285
def send_raw(task, raw_bytes): """Send raw bytes to the BMC. Bytes should be a string of bytes. :param task: a TaskManager instance. :param raw_bytes: a string of raw bytes to send, e.g. '0x00 0x01' :returns: a tuple with stdout and stderr. :raises: IPMIFailure on an error from ipmitool. :raises: MissingParameterValue if a required parameter is missing. :raises: InvalidParameterValue when an invalid value is specified. """ node_uuid = task.node.uuid LOG.debug('Sending node %(node)s raw bytes %(bytes)s', {'bytes': raw_bytes, 'node': node_uuid}) driver_info = _parse_driver_info(task.node) cmd = 'raw %s' % raw_bytes try: out, err = _exec_ipmitool(driver_info, cmd) LOG.debug('send raw bytes returned stdout: %(stdout)s, stderr:' ' %(stderr)s', {'stdout': out, 'stderr': err}) except (exception.PasswordFileFailedToCreate, processutils.ProcessExecutionError) as e: LOG.exception('IPMI "raw bytes" failed for node %(node_id)s ' 'with error: %(error)s.', {'node_id': node_uuid, 'error': e}) raise exception.IPMIFailure(cmd=cmd) return out, err
1f903f1942c5d1b673c9019f9023b1ddf7d2c07a
18,286
def one_on_f_weight(f, normalize=True): """ Literally 1/f weight. Useful for fitting linspace data in logspace. Parameters ---------- f: array Frequency normalize: boolean, optional Normalized the weight to [0, 1]. Defaults to True. Returns ------- weight: array The 1/f weight. """ weight = 1/f if normalize: weight /= max(weight) return(weight)
54301aa7480e6f3520cbfcccfa463a2a02d34b9c
18,287
def PCSPRE1M2SOC(p0, meas_pcs, meas_pre, x_pcs ,y_pcs, z_pcs, \ x_pre ,y_pre, z_pre, wt_pcs=1.0, wt_pre=1.0, \ tol_pcs=None, tol_pre=None): """ Optimize two X-tensors and two PRE centres to two common sites @param p0: List containing initial guesses for (17 unknowns): metal site 1 <x,y,z> , Xaxial and Xrhomic at site 1, Euler angles <A,B,G> at site 1 AND metal site 2 <x,y,z> , Xaxial and Xrhomic at site 2, Euler angles <A,B,G> at site 2 and the PRE constant c @param meas_pcs: The numpy array of measused PCS @param meas_pre: The numpy array of measured PRE @param x: The numpy array of x coordinates of associated exp vals @param y: The numpy array of y coordinates of associated exp vals @param z: The numpy array of z coordinates of associated exp vals @param wt_pcs: [OPTIONAL] The weight of the PCS terms in optimization @param wt_pre: [OPTIONAL] The weight of the PRE terms in optimization """ xm1,ym1,zm1, ax1,rh1, a1,b1,g1,xm2,ym2,zm2, ax2,rh2, a2,b2,g2, c = p0 r_v1 = sqrt((x_pre-xm1)**2 +(y_pre-ym1)**2 + (z_pre-zm1)**2) r_v2 = sqrt((x_pre-xm2)**2 +(y_pre-ym2)**2 + (z_pre-zm2)**2) zyz_rot1 = ZYZRot(a1, b1, g1) zyz_rot2 = ZYZRot(a2, b2, g2) X1, X2 = (x_pcs - xm1), (x_pcs - xm2) Y1, Y2 = (y_pcs - ym1), (y_pcs - ym2) Z1, Z2 = (z_pcs - zm1), (z_pcs - zm2) x_t1 = zyz_rot1[0][0]*X1 + zyz_rot1[0][1]*Y1 + zyz_rot1[0][2]*Z1 y_t1 = zyz_rot1[1][0]*X1 + zyz_rot1[1][1]*Y1 + zyz_rot1[1][2]*Z1 z_t1 = zyz_rot1[2][0]*X1 + zyz_rot1[2][1]*Y1 + zyz_rot1[2][2]*Z1 x_t2 = zyz_rot2[0][0]*X2 + zyz_rot2[0][1]*Y2 + zyz_rot2[0][2]*Z2 y_t2 = zyz_rot2[1][0]*X2 + zyz_rot2[1][1]*Y2 + zyz_rot2[1][2]*Z2 z_t2 = zyz_rot2[2][0]*X2 + zyz_rot2[2][1]*Y2 + zyz_rot2[2][2]*Z2 r2_1 = (x_t1*x_t1)+(y_t1*y_t1)+(z_t1*z_t1) r2_2 = (x_t2*x_t2)+(y_t2*y_t2)+(z_t2*z_t2) r5_1 = (r2_1*r2_1) * sqrt(r2_1) r5_2 = (r2_2*r2_2) * sqrt(r2_2) tmp_1 = 1.0/r5_1 tmp_2 = 1.0/r5_2 PCS_1 = (tmp_1*(ax1*(3.0*z_t1*z_t1-r2_1)+rh1*1.5*(x_t1*x_t1-y_t1*y_t1))) PCS_2 = (tmp_2*(ax2*(3.0*z_t2*z_t2-r2_2)+rh2*1.5*(x_t2*x_t2-y_t2*y_t2))) err_pcs = meas_pcs - (PCS_1 + PCS_2) err_pre = meas_pre - (c/r_v1**6 + c/r_v2**6) if tol_pcs != None and tol_pre != None: for pcs_item in range(0, len(err_pcs)): if abs(err_pcs[pcs_item]) - tol_pcs[pcs_item] <= 0.0: err_pcs[pcs_item] = 0.0 for pre_item in range(0, len(err_pre)): if abs(err_pre[pre_item]) - tol_pre[pre_item] <= 0.0: err_pre[pre_item] = 0.0 #TODO: Check if this should be squared (below) err_pcs = err_pcs*wt_pcs err_pre = err_pre*wt_pre err = append(err_pcs, err_pre) return err
ec0f266ed1a8b1a45504c13057486bd26e3cc4a5
18,288
def load_randomdata(dataset_str, iter): """Load data.""" names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range-min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range-min(test_idx_range), :] = ty ty = ty_extended NL = 2312 NC = 120 elif dataset_str == 'cora': NL = 1708 NC = 140 else: NL = 18717 NC = 60 features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] #fixed 500 for validation read from file, choose random 140 from the others for train ''' idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y)+500) ''' idx_val=[int(item) for item in open("source/"+dataset_str+"/val_idx"+str(iter)+".txt").readlines()] idx_test = test_idx_range.tolist() idx_train = random.sample(list(set(range(0,NL))-set(idx_val)),NC); train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
476a54078680bb711a77fc9e3900192a1ef3b811
18,289
def plot(figsize=None, formats=None, limit=100, titlelen=10, **kwargs): """Display an image [in a Jupyter Notebook] from a Quilt fragment path. Intended for use with `%matplotlib inline`. Convenience method that loops over supblots that call `plt.imshow(image.imread(FRAG_PATH))`. Keyword arguments * figsize=None # None means auto, else provide (HEIGHT_INCHES, WIDTH_INCHES) * formats=None # List of extensions as strings ['jpg', 'png', ...] * limit=100 # maximum number of images to display * titlelen=10 # max number of characters in subplot title * **kwargs - all remaining kwargs are passed to plt.subplots; see https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html """ # pylint: disable=protected-access def _plot(node, paths): lower_formats = set((x.lower() for x in formats)) if formats is not None else None def node_filter(frag, meta): filepath = meta.get('_system', {}).get('filepath', None) # don't try to read DataFrames as images if isinstance(frag, string_types) and filepath: _, ext = splitext_no_dot(filepath) if lower_formats is None or ext.lower() in lower_formats: return True return False # assume DataNode has one path; doesn't work with multi-fragment images display = [('', paths[0], node._meta)] # for GroupNodes, display all DataNode children if isinstance(node, GroupNode): datanodes = [(x, y) for (x, y) in node._items() if isinstance(y, DataNode)] display = [(x, y._data(), y._meta) for (x, y) in datanodes] # sort by name so iteration is reproducible (and unit tests pass) display = sorted(display, key=lambda rec: rec[0]) display = [x for x in display if node_filter(x[1], x[2])] if len(display) > limit: print('Displaying {} of {} images{}'.format(limit, len(display), ELLIPSIS)) display = display[:limit] # display can be empty e.g. if no DataNode children if not display: print('No images to display.') return # cast to int to avoid downstream complaints of # 'float' object cannot be interpreted as an index floatlen = float(len(display)) # prevent integer division in 2.7 cols = min(int(floor(sqrt(floatlen))), 8) rows = int(ceil(floatlen/cols)) plt.tight_layout() plt.subplots( rows, cols, figsize=(cols*2, rows*2) if not figsize else figsize, **kwargs) for i in range(rows*cols): axes = plt.subplot(rows, cols, i + 1) # subplots start at 1, not 0 axes.axis('off') if i < len(display): (name, frag, meta) = display[i] plt.title(name[:titlelen] + ELLIPSIS if len(name) > titlelen else name) filepath = meta.get('_system', {}).get('filepath', None) _, ext = splitext_no_dot(filepath) try: bits = mpimg.imread(frag, format=ext) plt.imshow(bits) # Mac throws OSError, Linux IOError if file not recognizable except (IOError, OSError) as err: print('{}: {}'.format(name, str(err))) continue return _plot
f1b72c952d1c517ba4f09e03af8463a73d2c8759
18,290
def tresize(tombfile, keyfile, passphrase, newsize): """ Resize a tomb. Keyfile, passphrase and new size are needed. """ cmd = ['tomb', 'resize', tombfile, '-k', keyfile, '--unsafe', '--tomb-pwd', sanitize_passphrase(passphrase), '-s', str(newsize), '--no-color'] return execute(cmd)
334a722b79aec80bc4a95c67a0b155653e29eb10
18,291
def auto_z_levels(fid, x, y, variable, t_idx, n_cont, n_dec): """ list(float) = auto_z_levels(fid, variable, t_idx, n_cont, n_dec) ... # contour lines ... # post . """ fig, ax = plt.subplots() z_levs = np.ndarray(0) for i in t_idx: data = fid.variables[variable][i] cp = ax.contour(x, y, data, n_cont) z_levs = np.concatenate((z_levs, cp.levels), axis=0) z_levs = np.sort(np.unique(np.around(z_levs, n_dec))) plt.close(fig) return z_levs
f80020c01a661412fb79d23f6081bdb94a471102
18,292
def canonicalize(curie: str): """Return the best CURIE.""" # TODO maybe normalize the curie first? norm_prefix, norm_identifier = normalize_curie(curie) if norm_prefix is None or norm_identifier is None: return jsonify( query=curie, normalizable=False, ) norm_curie = f'{norm_prefix}:{norm_identifier}' rv = dict(query=curie) if norm_curie != curie: rv['norm_curie'] = norm_curie if norm_curie not in canonicalizer.graph: rv['found'] = False else: result_curie = canonicalizer.canonicalize(norm_curie) rv.update( found=True, result=result_curie, mappings=url_for( f'.{all_mappings.__name__}', source_curie=norm_curie, target_curie=result_curie, ), ) return jsonify(rv)
510b2d10170c674cc24090bf2bcd900912678acf
18,293
def _DefaultValueConstructorForField(field): """Returns a function which returns a default value for a field. Args: field: FieldDescriptor object for this field. The returned function has one argument: message: Message instance containing this field, or a weakref proxy of same. That function in turn returns a default value for this field. The default value may refer back to |message| via a weak reference. """ if _IsMapField(field): return _GetInitializeDefaultForMap(field) if field.label == _FieldDescriptor.LABEL_REPEATED: if field.has_default_value and field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeRepeatedMessageDefault(message): return containers.RepeatedCompositeFieldContainer( message._listener_for_children, field.message_type) return MakeRepeatedMessageDefault else: type_checker = type_checkers.GetTypeChecker(field) def MakeRepeatedScalarDefault(message): return containers.RepeatedScalarFieldContainer( message._listener_for_children, type_checker) return MakeRepeatedScalarDefault if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeSubMessageDefault(message): assert getattr(message_type, '_concrete_class', None), ( 'Uninitialized concrete class found for field %r (message type %r)' % (field.full_name, message_type.full_name)) result = message_type._concrete_class() result._SetListener( _OneofListener(message, field) if field.containing_oneof is not None else message._listener_for_children) return result return MakeSubMessageDefault def MakeScalarDefault(message): return field.default_value return MakeScalarDefault
3a468e2850aaf9707ee1229eeb009ef5c013f1b6
18,294
def clean_text(dirty_text): """ Given a string, this function tokenizes the words of that string. :param dirty_text: string :return: list input = "American artist accomplishments american" output = ['accomplishments', 'american', 'artist'] """ lower_dirty_text = dirty_text.lower() regex_pattern = r"[\w']+" tokenizer = RegexpTokenizer(regex_pattern) tokens = tokenizer.tokenize(lower_dirty_text) unique_tokens = list(set(tokens)) return unique_tokens
1df63ea0c9be5a518d2fd1f931772080962f878f
18,295
def GetCurrentUserController(AuthJSONController): """ Return the CurrentUserController in the proper scope """ class CurrentUserController(AuthJSONController): """ Controller to return the currently signed in user """ def __init__(self, toJson): """ Initialize with the Json Converter """ self.toJson = toJson AuthJSONController.__init__(self) def performWithJSON(self, json=None, user=None): """ Convert the existing Word Lists to JSON """ if user: return {'user':self.toJson(user)} return Errors.NO_USER.toJSON() return CurrentUserController
ee710cd4d65982cf01d17fba130b7bb83dffd617
18,296
import numpy def fft_in_range(audiomatrix, startindex, endindex, channel): """ Do an FFT in the specified range of indices The audiomatrix should have the first index as its time domain and second index as the channel number. The startindex and endinex select the time range to use, and the channel parameter selects which channel to do the FFT on. Returns a vector of data in the frequency domain """ n = endindex - startindex indat = audiomatrix[startindex:endindex, channel] outdat = (numpy.fft.fft(indat)[range(n//2)])/n return outdat
30ce104795d0809f054439ba32f47d33528ecbff
18,297
def drop_arrays_by_name(gt_names, used_classes): """Drop irrelevant ground truths by name. Args: gt_names (list[str]): Names of ground truths. used_classes (list[str]): Classes of interest. Returns: np.ndarray: Indices of ground truths that will be dropped. """ inds = [i for i, x in enumerate(gt_names) if x not in used_classes] inds = np.array(inds, dtype=np.int64) return inds
67d711ae61f3c833fa9e8b33d4bf4bf6d99a34ad
18,298
def get_data_table_metas(data_table_name, data_table_namespace): """ Gets metas from meta table associated with table named `data_table_name` and namespaced `data_table_namespace`. Parameters --------- data_table_name : string table name of this data table data_table_namespace : string table name of this data table Returns ------- dict metas Examples -------- >>> from common.python import session >>> session.get_data_table_metas("meta", "readme") # {'model_id': 'a_id', 'used_framework': 'fate'} """ return RuntimeInstance.SESSION.get_data_table_metas(data_table_name=data_table_name, data_table_namespace=data_table_namespace)
8b4ee249112d399c429a33fed82d9cb01404d441
18,299