content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import os def fetch_preset(output_filename=None, nproc=8, add_structure=True): """ Fetches preset list of docs determined via trial and error, An initial query via the frontend on 06/28/2019 showed 12870, and subsequent sampling of ids from 8000-25000 yielded all 12820. Successful query ids were stored in indices.json, up which this function should be able extract all of the relevant data. Args: output_filename (str): output filename for all collected docs nproc (int): number of processes to use Returns: (List): list of isotherm documents """ # Load indices from json doc iso_ids = loadfn(os.path.join(MOF_TDA_PATH, "ingest", "indices.json")) # Fetch all docs from ids isotherms = fetch_many_docs(iso_ids, nproc=nproc) # Dump to json if output specified if output_filename is not None: dumpfn(isotherms, output_filename) return isotherms
ca2073d5f12f2c09f0aea5596c7d9919277a17ce
16,800
import sys def parse_args(): """Function to read CCB-ID command line arguments Args: None - reads from sys.argv Returns: an argparse object """ # create the argument parser parser = args.create_parser(description='Apply a CCB-ID species classification model to csv or image data.') # set up the arguments for dealing with file i/o args.input(parser) args.mask(parser) args.output(parser) args.ecodse(parser) args.models(parser, help='path to the ccbid model to apply', default=None, required=True) # arguments to turn on certian flags or set specific parameters args.remove_outliers(parser) args.aggregate(parser) args.labels(parser) args.cpus(parser) # maybe add function to model object to update the n_cpus in each model args.verbose(parser) # parse the inputs from sys.argv return parser.parse_args(sys.argv[1:])
a2a7ff8a7f1fa4cd757bbd0cc0bd6a33a84e1032
16,801
import typing def compute_accuracy(data): """Return [wpm, accuracy].""" prompted_text = data["promptedText"][0] typed_text = data.get("typedText", [""])[0] start_time = float(data["startTime"][0]) end_time = float(data["endTime"][0]) return [typing.wpm(typed_text, end_time - start_time), typing.accuracy(typed_text, prompted_text)]
c10b5d681392c71967b86f12d33be3edc1361446
16,802
from typing import IO def write_file(filename: str, content: str, mode: str = "w") -> IO: """Save content to a file, overwriting it by default.""" with open(filename, mode) as file: file.write(content) return file
5d6b7ac1f9097d00ae2b67e3d34f1135c4e90946
16,803
def get_minimum_integer_attribute_value(node, attribute_name): """ Returns the minimum value that a specific integer attribute has set :param node: str :param attribute_name: str :return: float """ return maya.cmds.attributeQuery(attribute_name, min=True, node=node)[0]
ce36c252478e9cb5d5e5ade3e2d70716d206748a
16,804
import numpy as np import yt import string def get_star_locs(plotfile): """Given a plotfile, return the location of the primary and the secondary.""" ds = yt.load(plotfile) # Get a numpy array corresponding to the density. problo = ds.domain_left_edge.v probhi = ds.domain_right_edge.v dim = ds.domain_dimensions dx = (probhi - problo) / dim dens = (ds.covering_grid(level=0, left_edge=[0.0, 0.0, 0.0], dims=ds.domain_dimensions)['density']).v # Calculate the orbital parameters M_solar = 1.99e33 Gconst = 6.67e-8 M_P = 0.90 M_S = 0.60 M_P = M_P * M_solar M_S = M_S * M_solar # Get a numpy array corresponding to the density. a = (Gconst * (M_P + M_S) * rot_period**2 / (4.0 * np.pi**2))**(1.0/3.0) a_2 = a / (1 + M_S / M_P) a_1 = (M_S / M_P) * a_2 # Guess the locations of the stars based on perfect circular rotation f = open(plotfile + '/job_info', 'r') for line in f: if string.find(line, "rotational_period") > 0: rot_period = float(string.split(line, "= ")[1]) break f.close() t = (ds.current_time).v center = (probhi + problo) / 2.0 loc_P = [-a_1 * np.cos(2 * np.pi * t / rot_period) + center[0], -a_1 * np.sin(2 * np.pi * t / rot_period) + center[1], 0.0 + center[2]] loc_S = [ a_2 * np.cos(2 * np.pi * t / rot_period) + center[0], a_2 * np.sin(2 * np.pi * t / rot_period) + center[1], 0.0 + center[2]] loc_P = np.array(loc_P) loc_S = np.array(loc_S) # Create an array of the zone positions x = problo[0] + dx[0] * (np.arange(dim[0]) + 0.5e0) y = problo[1] + dx[1] * (np.arange(dim[1]) + 0.5e0) z = problo[2] + dx[2] * (np.arange(dim[2]) + 0.5e0) xx, yy, zz = np.meshgrid(x, y, z, indexing="ij") rr = (xx**2 + yy**2 + zz**2)**0.5 # Now what we'll do is to split up the grid into two parts. # zones that are closer to the primary's expected location and # zones that are closer to the secondary's expected location. rr_P = ( (xx - loc_P[0])**2 + (yy - loc_P[1])**2 + (zz - loc_P[2])**2 )**0.5 rr_S = ( (xx - loc_S[0])**2 + (yy - loc_S[1])**2 + (zz - loc_S[2])**2 )**0.5 P_idx = np.where( rr_P < rr_S ) S_idx = np.where( rr_S < rr_P ) # Now, do a center of mass sum on each star. xx_P_com = np.sum( dens[P_idx] * xx[P_idx] ) / np.sum(dens[P_idx]) yy_P_com = np.sum( dens[P_idx] * yy[P_idx] ) / np.sum(dens[P_idx]) zz_P_com = np.sum( dens[P_idx] * zz[P_idx] ) / np.sum(dens[P_idx]) xx_S_com = np.sum( dens[S_idx] * xx[S_idx] ) / np.sum(dens[S_idx]) yy_S_com = np.sum( dens[S_idx] * yy[S_idx] ) / np.sum(dens[S_idx]) zz_S_com = np.sum( dens[S_idx] * zz[S_idx] ) / np.sum(dens[S_idx]) return [xx_P_com, yy_P_com, zz_P_com, xx_S_com, yy_S_com, zz_S_com]
429758abd92d4eff7a1948278bbe8c348ba83862
16,805
def get_list(_list, persistent_attributes): """ Check if the user supplied a list and if its a custom list, also check for for any saved lists :param _list: User supplied list :param persistent_attributes: The persistent attribs from the app :return: The list name , If list is custom or not """ if _list is not None and (_list.lower() != 'watchlist' and _list.lower() != 'watch list'): return _list, True else: # if default isnt set use watchlist if "list" in persistent_attributes: if persistent_attributes["list"] != 'watchlist' and persistent_attributes["list"] != 'watch list': _list = persistent_attributes["list"] _usecustomlist = True else: _list = 'watchlist' _usecustomlist = False else: _list = 'watchlist' _usecustomlist = False return _list, _usecustomlist
497fa8427660bafa3cc3023abf0132973693dc6e
16,806
import socket import re def inode_for_pid_sock(pid, addr, port): """ Given a pid that is inside a network namespace, and the address/port of a LISTEN socket, find the inode of the socket regardless of which pid in the ns it's attached to. """ expected_laddr = '%02X%02X%02X%02X:%04X' % (addr[3], addr[2], addr[1], addr[0], socket.htons(port)) for line in open('/proc/{}/net/tcp'.format(pid), 'r').readlines(): parts = re.split(r'\s+', line.strip()) local_addr = parts[1] remote_addr = parts[2] if remote_addr != '00000000:0000': continue # not a listen socket if local_addr == expected_laddr: return int(parts[9])
4d47d9de118caa87854b96bf759a75520b8409cb
16,807
from typing import List from typing import Tuple import logging def get_edges_from_route_matrix(route_matrix: Matrix) -> List[Tuple]: """Returns a list of the edges used in a route according to the route matrix :param route_matrix: A matrix indicating which edges contain the optimal route :type route_matrix: Matrix :return: The row and column for the edge in the matrix :rtype: Tuple :yield: List of tuples for each edge connecting two nodes :rtype: List[Tuple] """ def get_first_row(route_matrix): for row in range(len(route_matrix)): nodes_in_row = sum(route_matrix[row]) if nodes_in_row == 1: return row elif nodes_in_row == 0: continue else: raise ValueError(f'Invalid number of nodes in row: {nodes_in_row}') def get_next_node_from_row(i, route_matrix): for j in range(len(route_matrix)): if route_matrix[i][j] == 1: return (i, j) raise ValueError(f"Node {i} is not connected to another node.") edges = [] route_length = np.sum(route_matrix) row = get_first_row(route_matrix) while len(edges) < route_length: try: to_node = get_next_node_from_row(row, route_matrix) row = to_node[1] edges.append(to_node) except ValueError: logging.info('End of open route found.') # transpose the matrix route_matrix = [[route_matrix[j][i] for j in range(len(route_matrix))] for i in range(len(route_matrix))] # reverse the edges edges = [(edges[-1][1], edges[-1][0])] row = edges[0][1] return edges
32e84bc782cdf3939affa881f0c2cf23ff81eeee
16,808
def nicer(string): """ >>> nicer("qjhvhtzxzqqjkmpb") True >>> nicer("xxyxx") True >>> nicer("uurcxstgmygtbstg") False >>> nicer("ieodomkazucvgmuy") False """ pair = False for i in range(0, len(string) - 3): for j in range(i + 2, len(string) - 1): if string[i:i + 2] == string[j:j + 2]: pair = True break if not pair: return False for i in range(0, len(string) - 2): if string[i] == string[i + 2]: return True return False
7c543bbd39730046b1ab3892727cca3a9e027662
16,809
from typing import Union def multiple_choice(value: Union[list, str]): """ Handle a single string or list of strings """ if isinstance(value, list): # account for this odd [None] value for empty multi-select fields if value == [None]: return None # we use string formatting to handle the possibility that the list contains ints return ", ".join([f"{val}" for val in value]) return value
aae54f84bc1ccc29ad9ad7ae205e130f66601131
16,810
def Jnu_vD82(wav): """Estimate of ISRF at optical wavelengths by van Dishoeck & Black (1982) see Fig 1 in Heays et al. (2017) Parameters ---------- wav : array of float wavelength in angstrom Returns ------- Jnu : array of float Mean intensity Jnu in cgs units """ if wav is not None and not isinstance(wav, au.quantity.Quantity): wav = (wav*au.angstrom).to(au.angstrom) else: wav = wav.to(au.angstrom) w = wav.value return 2.44e-16*w**2.7/au.cm**2/au.s/au.Hz
287dbf88d7a5ba58ca8792cd78ff61393df3aae2
16,811
def _coexp_ufunc(m0, exp0, m1, exp1): """ Returns a co-exp couple of couples """ # Implementation for real if (m0 in numba_float_types) and (m1 in numba_float_types): def impl(m0, exp0, m1, exp1): co_m0, co_m1 = m0, m1 d_exp = exp0 - exp1 if m0 == 0.: exp = exp1 elif m1 == 0.: exp = exp0 elif (exp1 > exp0): co_m0 = _exp2_shift(co_m0, d_exp) exp = exp1 elif (exp0 > exp1): co_m1 = _exp2_shift(co_m1, -d_exp) exp = exp0 else: # exp0 == exp1 exp = exp0 return (co_m0, co_m1, exp) # Implementation for complex elif (m0 in numba_complex_types) or (m1 in numba_complex_types): def impl(m0, exp0, m1, exp1): co_m0, co_m1 = m0, m1 d_exp = exp0 - exp1 if m0 == 0.: exp = exp1 elif m1 == 0.: exp = exp0 elif (exp1 > exp0): co_m0 = (_exp2_shift(co_m0.real, d_exp) + 1j * _exp2_shift(co_m0.imag, d_exp)) exp = exp1 elif (exp0 > exp1): co_m1 = (_exp2_shift(co_m1.real, -d_exp) + 1j * _exp2_shift(co_m1.imag, -d_exp)) exp = exp0 else: # exp0 == exp1 exp = exp0 return (co_m0, co_m1, exp) else: raise TypingError("datatype not accepted {}{}".format(m0, m1)) return impl
11df0f4c06edb758945b7a86940edd4975c47c85
16,812
def get_lorem(length=None, **kwargs): """ Get a text (based on lorem ipsum. :return str: :: print get_lorem() # -> atque rerum et aut reiciendis... """ lorem = ' '.join(g.get_choices(LOREM_CHOICES)) if length: lorem = lorem[:length] return lorem
a3ece5c011d69e0a532bcb4b91fa6583dd028c1d
16,813
import warnings def try_get_graphql_scalar_type(property_name, property_type_id): """Return the matching GraphQLScalarType for the property type id or None if none exists.""" maybe_graphql_type = ORIENTDB_TO_GRAPHQL_SCALARS.get(property_type_id, None) if not maybe_graphql_type: warnings.warn( 'Ignoring property "{}" with unsupported property type: ' "{}".format(property_name, PROPERTY_TYPE_ID_TO_NAME[property_type_id]) ) return maybe_graphql_type
70c4406b9cd08b3de6e48a473e62869470f579b1
16,814
import requests def get(path): """Get GCE metadata value.""" attribute_url = ( 'http://{}/computeMetadata/v1/'.format(_METADATA_SERVER) + path) headers = {'Metadata-Flavor': 'Google'} operations_timeout = environment.get_value('URL_BLOCKING_OPERATIONS_TIMEOUT') response = requests.get( attribute_url, headers=headers, timeout=operations_timeout) response.raise_for_status() return response.text
044db931369de13e6c16db9007fe4bad28a940a8
16,815
def greedy_helper(hyper_list, node_dict, fib_heap, total_weight, weight=None): """ Greedy peeling algorithm. Peel nodes iteratively based on their current degree. Parameters ---------- G: undirected, graph (networkx) node_dict: dict, node id as key, tuple (neighbor list, heap node) as value. Here heap node is a pointer to the corresponding node in fibheap. fibheap: FibonacciHeap, support fast extraction of min degree node and value change. total_weight: edge weight sum. weight: str that specify the edge attribute name of edge weight; None if the graph is unweighted. Returns ---------- H: list, subset of nodes corresponding to densest subgraph. max_avg: float, density of H induced subgraph. new_loads: dict, new loads for nodes, only used for the flowless algorithm when T>1. """ n = len(node_dict.keys()) avg_degree = total_weight / n H = list(node_dict.keys()) max_avg = avg_degree new_loads = dict() for i in range(n - 1): # find min node from graph (remove from heap) to_remove = fib_heap.extract_min() node_to_remove = to_remove.value degree_to_remove = to_remove.key new_loads[node_to_remove] = degree_to_remove for e_index in node_dict[node_to_remove][0]: e = hyper_list[e_index] for neighbor in e: if neighbor != node_to_remove: fib_heap.decrease_key(node_dict[neighbor][1], node_dict[neighbor][1].key - 1) node_dict[neighbor][0].remove(e_index) total_weight -= 1 del node_dict[node_to_remove] avg_degree = total_weight / (n - i - 1) if max_avg < avg_degree: max_avg = avg_degree H = list(node_dict.keys()) return H, max_avg, new_loads
b2c0f3e91e6c9a80a8396dc104abc804af8875e5
16,816
def CleanFloat(number, locale = 'en'): """\ Return number without decimal points if .0, otherwise with .x) """ try: if number % 1 == 0: return str(int(number)) else: return str(float(number)) except: return number
03ccc3bfe407becf047515b618621058acff37e7
16,817
def ssd_bboxes_encode(boxes): """ Labels anchors with ground truth inputs. Args: boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls]. Returns: gt_loc: location ground truth with shape [num_anchors, 4]. gt_label: class ground truth with shape [num_anchors, 1]. num_matched_boxes: number of positives in an image. """ def jaccard_with_anchors(bbox): """Compute jaccard score a box and the anchors.""" # Intersection bbox and volume. ymin = np.maximum(y1, bbox[0]) xmin = np.maximum(x1, bbox[1]) ymax = np.minimum(y2, bbox[2]) xmax = np.minimum(x2, bbox[3]) w = np.maximum(xmax - xmin, 0.) h = np.maximum(ymax - ymin, 0.) # Volumes. inter_vol = h * w union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol jaccard = inter_vol / union_vol return np.squeeze(jaccard) pre_scores = np.zeros((config.num_ssd_boxes), dtype=np.float32) t_boxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32) t_label = np.zeros((config.num_ssd_boxes), dtype=np.int64) for bbox in boxes: label = int(bbox[4]) scores = jaccard_with_anchors(bbox) idx = np.argmax(scores) scores[idx] = 2.0 mask = (scores > matching_threshold) mask = mask & (scores > pre_scores) pre_scores = np.maximum(pre_scores, scores * mask) t_label = mask * label + (1 - mask) * t_label for i in range(4): t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i] index = np.nonzero(t_label) # Transform to tlbr. bboxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32) bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2 bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]] # Encode features. bboxes_t = bboxes[index] default_boxes_t = default_boxes[index] bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.prior_scaling[0]) tmp = np.maximum(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4], 0.000001) bboxes_t[:, 2:4] = np.log(tmp) / config.prior_scaling[1] bboxes[index] = bboxes_t num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32) return bboxes, t_label.astype(np.int32), num_match
1e0a07c1305fe2b1ba99f535609d2d52d72befa8
16,818
def _get_partial_prediction(input_data: dt.BatchedTrainTocopoData, target_data_token_ids: dt.NDArrayIntBO, target_data_is_target_copy: dt.NDArrayBoolBOV, target_data_is_target_pointer: dt.NDArrayBoolBOV ) -> dt.BatchedTrainTocopoData: """Create BatchedTrainTocopoData that contains the latest predictions. This function creates BatchedTrainTocopoData for the autoregressive prediction. The returned batched_partial_prediction contains the prediction made so far by the autoregressive prediction, notebly BatchedTrainTocopoTargetData.token_ids, BatchedTrainTocopoTargetData.is_target_copy and BatchedTrainTocopoTargetData.is_target_pointer. batched_partial_prediction should be used by the autoregressive prediction to generate the next prediction. Args: input_data: The input data that we generate the autoregressive prediction. We used it copy the BatchedTrainGraphNodeData and BatchedTrainGraphEdgeData. But BatchedTrainTocopoTargetData should not be copied from the input data since it contains the ground truth. target_data_token_ids: Token ids that the autoregressive prediction predicted so far. target_data_is_target_copy: is_target_copy matrix that the autoregressive prediction predicted so far. target_data_is_target_pointer: is_target_pointer that the autoregressive prediction predicted so far. Returns: A instance of BatchedTrainTocopoData, where the BatchedTrainGraphNodeData and BatchedTrainGraphEdgeData is the same as input_data. But BatchedTrainTocopoTargetData holds the prediction made so far. """ # BatchedTrainTocopoTargetData contains the latest prediction. # We must not copy from input_data, but rather use the target_data_token_ids, # target_data_is_target_copy and target_data_is_target_pointer that are # predicted by the autoregressive prediction. batched_partial_prediction_tocopo_target_data = ( dt.BatchedTrainTocopoTargetData( token_ids=target_data_token_ids, is_target_copy=target_data_is_target_copy, is_target_pointer=target_data_is_target_pointer)) # BatchedTrainGraphNodeData and BatchedTrainGraphEdgeData is the same as the # input_data. batched_partial_prediction_graph_node_data = dt.BatchedTrainGraphNodeData( token_ids=input_data.node_data.token_ids, type_ids=input_data.node_data.type_ids, token_positions=input_data.node_data.token_positions, pointer_candidates=input_data.node_data.pointer_candidates ) batched_partial_prediction_graph_edge_data = dt.BatchedTrainGraphEdgeData( edges=input_data.edge_data.edges, time_edges=input_data.edge_data.time_edges) batched_partial_prediction = dt.BatchedTrainTocopoData( node_data=batched_partial_prediction_graph_node_data, edge_data=batched_partial_prediction_graph_edge_data, target_data=batched_partial_prediction_tocopo_target_data ) return batched_partial_prediction
1a0fdc53e4e49bf3d0c0824eca6ba381d7a72f1f
16,819
from tqdm import tqdm_notebook as tqdm from tqdm import tqdm from tqdm import tqdm as tqdm def get_energy_spectrum_old(udata, x0=0, x1=None, y0=0, y1=None, z0=0, z1=None, dx=None, dy=None, dz=None, nkout=None, window=None, correct_signal_loss=True, remove_undersampled_region=True, cc=1.75, notebook=True): """ DEPRECATED: TM cleaned up the code, and improved the literacy and transparency of the algorithm- TM (Sep 2020) Returns 1D energy spectrum from velocity field data ... The algorithm implemented in this function is VERY QUICK because it does not use the two-point autorcorrelation tensor. ... Instead, it converts u(kx, ky, kz)u*(kx, ky, kz) into u(kr)u*(kr). (here * dentoes the complex conjugate) ... CAUTION: Must provide udata with aspect ratio ~ 1 ...... The conversion process induces unnecessary error IF the dimension of u(kx, ky, kz) is skewed. ...... i.e. Make udata.shape like (800, 800), (1024, 1024), (512, 512) for accurate results. ... KNOWN ISSUES: ...... This function returns a bad result for udata with shape like (800, 800, 2) Parameters ---------- udata: nd array epsilon: nd array or float, default: None dissipation rate used for scaling energy spectrum If not given, it uses the values estimated using the rate-of-strain tensor nu: flaot, viscosity x0: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. x1: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. y0: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. y1: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. t0: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. t1: int index to specify a portion of data in which autocorrelation funciton is computed. Use data u[y0:y1, x0:x1, t0:t1]. dx: float spacing in x dy: float spacing in y dz: float spacing in z nkout: int, default: None number of bins to compute energy/dissipation spectrum notebook: bool, default: True Use tqdm.tqdm_notebook if True. Use tqdm.tqdm otherwise window: str Windowing reduces undesirable effects due to the discreteness of the data. A wideband window such as 'flattop' is recommended for turbulent energy spectra. For the type of applying window function, choose from below: boxcar, triang, blackman, hamming, hann, bartlett, flattop, parzen, bohman, blackmanharris, nuttall, barthann, kaiser (needs beta), gaussian (needs standard deviation), general_gaussian (needs power, width), slepian (needs width), chebwin (needs attenuation), exponential (needs decay scale), tukey (needs taper fraction) correct_signal_loss: bool, default: True If True, it would compensate for the loss of the signals due to windowing. Always recommended to obtain accurate spectral densities. remove_undersampled_region: bool, default: True If True, it will not sample the region with less statistics. cc: float, default: 1.75 A numerical factor to compensate for the signal loss due to approximations. ... cc=1.75 was obtained from the JHTD data. Returns ------- e_k: numpy array Energy spectrum with shape (number of data points, duration) e_k_err: numpy array Energy spectrum error with shape (number of data points, duration) kk: numpy array Wavenumber with shape (number of data points, duration) """ print('get_energy_spectrum_old(): is DEPRECATED since 09/01/20') print('... Still works perfectly. Yet, TM highly recommends to use the updated function: get_energy_spectrum()') if notebook: print('Using tqdm_notebook. If this is a mistake, set notebook=False') else: def delete_masked_elements(data, mask): """ Deletes elements of data using mask, and returns a 1d array Parameters ---------- data: N-d array mask: N-d array, bool Returns ------- compressed_data """ data_masked = ma.array(data, mask=mask) compressed_data = data_masked.compressed() '...Reduced data using a given mask' return compressed_data def convert_nd_spec_to_1d(e_ks, ks, nkout=None, cc=1.75): """ Convert the results of get_energy_spectrum_nd() into a 1D spectrum ... This is actually a tricky problem. Importantly, this will output the SPECTRAL DENSITY not power which is integrated spectral density (i.e.- spectral density * delta_kx * delta_ky * delta_ky.) ... Ask Takumi for derivation. The derivation goes like this. ...... 1. Start with the Parseval's theorem. ...... 2. Write the discretized equation about the TKE: Average TKE = sum deltak * E(k) ...... 3. Using 1, write down the avg TKE ...... 4. Equate 2 and 3. You get e_k1d * jacobian / (n_samples * deltak) ...... IF deltak = deltakr where deltakr = np.sqrt(deltakx**2 + deltaky**2) for 2D ...... where e_k1d is just a histogram value obtained from the DFT result (i.e. POWER- spectral density integrated over a px) ...... 5. Finally, convert this into the SPECTRAL DENSITY. This is two-fold. ...... 5.1. ...... e_k1d * jacobian / (n_samples * deltak) is not necessarily the correct density ...... if deltak is not equal to deltakr. ...... This is because e_k1d comes from the histogram of the input velocity field. ...... One can show that the correction is just (deltak / deltakr) ** dim ...... 5.2 ...... After 5.1, this is finally the integrated power between k and k + deltak ...... Now divide this by deltak to get the spectral density. Parameters ---------- e_ks ks nkout d: int/float, DIMENSION OF THE FLOW (NOT DIMENSION OF AVAILABLE VELOCITY FIELD) ... For 3D turbulence, d = 3 ... d is equal to 3 even if udata is an 2D field embedded in an actual 3D field, ... For 2D turbulence, d = 2 Returns ------- """ dim = ks.shape[0] duration = e_ks.shape[-1] if dim == 2: deltakx, deltaky = ks[0, 0, 1] - ks[0, 0, 0], \ ks[1, 1, 0] - ks[1, 0, 0] e_ks *= deltakx * deltaky # use the raw DFT outputs (power=integrated density over a px) deltakr = np.sqrt(deltakx ** 2 + deltaky ** 2) # radial k spacing of the velocity field dx, dy = 2.*np.pi / ks[0, 0, 0] * -0.5, 2.*np.pi / ks[1, 0, 0] * -0.5 if dim == 3: deltakx, deltaky, deltakz = ks[0, 0, 1, 0] - ks[0, 0, 0, 0], \ ks[1, 1, 0, 0] - ks[1, 0, 0, 0], \ ks[2, 0, 0, 1] - ks[2, 0, 0, 0] e_ks *= deltakx * deltaky * deltakz # use the raw DFT outputs (power=integrated density over a px) deltakr = np.sqrt(deltakx ** 2 + deltaky ** 2 + deltakz ** 2) # radial k spacing of the velocity field dx, dy, dz = 2.*np.pi / ks[0, 0, 0] * -0.5, 2.*np.pi / ks[1, 0, 0] * -0.5, 2.*np.pi / ks[2, 0, 0] * -0.5 kk = np.zeros((ks.shape[1:])) for i in range(dim): kk += ks[i, ...] ** 2 kk = np.sqrt(kk) # radial k if nkout is None: nkout = int(np.max(ks.shape[1:]) * 0.8) shape = (nkout, duration) e_k1ds = np.empty(shape) e_k1d_errs = np.empty(shape) k1ds = np.empty(shape) if remove_undersampled_region: kx_max, ky_max = np.nanmax(ks[0, ...]), np.nanmax(ks[1, ...]) k_max = np.nanmin([kx_max, ky_max]) if dim == 3: kz_max = np.nanmax(ks[2, ...]) k_max = np.nanmin([k_max, kz_max]) for t in range(duration): # flatten arrays to feed to binned_statistic\ kk_flatten, e_knd_flatten = kk.flatten(), e_ks[..., t].flatten() if remove_undersampled_region: mask = np.abs(kk_flatten) > k_max kk_flatten = delete_masked_elements(kk_flatten, mask) e_knd_flatten = delete_masked_elements(e_knd_flatten, mask) # get a histogram k_means, k_edges, binnumber = binned_statistic(kk_flatten, kk_flatten, statistic='mean', bins=nkout) k_binwidth = (k_edges[1] - k_edges[0]) k1d = k_edges[1:] - k_binwidth / 2 e_k1d, _, _ = binned_statistic(kk_flatten, e_knd_flatten, statistic='mean', bins=nkout) e_k1d_err, _, _ = binned_statistic(kk_flatten, e_knd_flatten, statistic='std', bins=nkout) # # WEIGHTED AVERAGE # ke_k1d, _, _ = binned_statistic(kk_flatten, kk_flatten * e_knd_flatten, statistic='mean', bins=nkout) # e_k1d = ke_k1d / k1d # ke_k1d_err, _, _ = binned_statistic(kk_flatten, kk_flatten * e_knd_flatten, statistic='std', bins=nkout) # e_k1d_err = ke_k1d_err / k1d # One must fix the power by some numerical factor due to the DFT and the definition of E(k) n_samples = len(kk_flatten) deltak = k1d[1] - k1d[0] if dim == 2: jacobian = 2 * np.pi * k1d elif dim == 3: jacobian = 4 * np.pi * k1d ** 2 # Insert to a big array # ... A quick derivation of this math is given in the docstring. k1ds[..., t] = k1d # OLD stuff # e_k1ds[..., t] = e_k1d * jacobian / (n_samples * deltak) # e_k1d_errs[..., t] = e_k1d_err * jacobian / (n_samples * deltak) # print deltak # Old stuff 2: scaling that works? # e_k1ds[..., t] = e_k1d * jacobian / (n_samples * deltak) * (deltak / deltakr) ** dim / deltak # e_k1d_errs[..., t] = e_k1d_err * jacobian / (n_samples * deltak) * (deltak / deltakr) ** dim / deltak # print(dx, dy, deltakr, deltakx * dx * ks.shape[2]) print(deltakr, deltak) # 2019-2020 August # e_k1ds[..., t] = e_k1d * jacobian / (n_samples * deltakr ** 2) * cc # e_k1d_errs[..., t] = e_k1d_err * jacobian / (n_samples * deltakr ** 2) * cc # # Update in Aug, 2020- TM e_k1ds[..., t] = e_k1d * jacobian / (n_samples * deltakr ** 2) * cc e_k1d_errs[..., t] = e_k1d_err * jacobian / (n_samples * deltakr ** 2) * cc return e_k1ds, e_k1d_errs, k1ds dim, duration = len(udata), udata.shape[-1] e_ks, ks = get_energy_spectrum_nd_old(udata, x0=x0, x1=x1, y0=y0, y1=y1, z0=z0, z1=z1, dx=dx, dy=dy, dz=dz, window=window, correct_signal_loss=correct_signal_loss) e_k, e_k_err, kk = convert_nd_spec_to_1d(e_ks, ks, nkout=nkout, cc=cc) # #### NORMALIZATION IS NO LONGER NEEDED #### - Takumi, Apr 2019 # # normalization # energy_avg, energy_avg_err = get_spatial_avg_energy(udata, x0=x0, x1=x1, y0=y0, y1=y1, z0=z0, z1=z1) # # for t in range(duration): # I = np.trapz(e_k[0:, t], kk[0:, t]) # print I # N = I / energy_avg[t] # normalizing factor # e_k[:, t] /= N # e_k_err[:, t] /= N if notebook: return e_k, e_k_err, kk
aa29358215897f3bcb630d2c62b679d2b6ebef88
16,820
def createDefaultClasses(datasetTXT): """ :param datasetTXT: dict with text from txt files indexed by filename :return: Dict with key:filename, value:list of lists with classes per sentence in the document """ classesDict = {} for fileName in datasetTXT: classesDict[fileName] = [] sentences = nltkSentenceSplit(datasetTXT[fileName], verbose=False) for sentence in sentences: sentence = nltkTokenize(sentence) classesDict[fileName].append([int(0) for _ in sentence]) return classesDict
8bec5768710a929c21f75fa70865e25f340409f6
16,821
def getGlobals(): """ :return: (dict) """ return globals()
0fa230d341ba5435b33c9e6a9d9f793f99a74238
16,822
from typing import Iterable from typing import List def split_text_to_words(words: Iterable[str]) -> List[Word]: """Transform split text into list of Word.""" return [Word(word, len(word)) for word in words]
6317e794a5397da44be96216308573ae9d5a788f
16,823
import khorosjx def init_module_operation(): """This function imports the primary modules for the package and returns ``True`` when successful.""" khorosjx.init_module('admin', 'content', 'groups', 'spaces', 'users') return True
d6cbc3b94d4b4005d301d9b597bb7086e211bfa2
16,824
def connect_to_rds(aws, region): """ Return boto connection to the RDS in the specified environment's region. """ set_progress('Connecting to AWS RDS in region {0}.'.format(region)) wrapper = aws.get_api_wrapper() client = wrapper.get_boto3_client( 'rds', aws.serviceaccount, aws.servicepasswd, region ) return client
cdfaa984c6795c7e03f0d8b3e3620f6de757fcbb
16,825
def export_graphviz(DecisionTreeClassificationModel, featureNames=None, categoryNames=None, classNames=None, filled=True, roundedCorners=True, roundLeaves=True): """ Generates a DOT string out of a Spark's fitted DecisionTreeClassificationModel, which can be drawn with any library capable of handling the DOT format. If you want to plot in a single step, please use the function plot_tree(). Arguments: DecisionTreeClassificationModel -- a pyspark.ml.classification.DecisionTreeClassificationModel instance featureNames -- a list with the feature names. This is probably the same list you usually pass to your VectorAssembler constructor categoryNames -- a dictionary with the featureNames that are categorical as the keys, and the different categories as the values. This is probably the featureNames as key, StringIndexerModel.labels attribute as value for each categorical feature classNames -- a list with the class names for your target column. This is probably the StringIndexerModel.labels for your target column filled -- boolean which indicates whether to fill nodes with colour or not. Color gamma will be the prediction class for each node, and color intensity the impurity at such node roundedCorners -- boolean which indicates whether to round rectangle corners for the nodes roundLeaves -- boolean which indicates whether to represent leaf nodes as ellipses rather than rectangles Returns: a DOT string ready to be processed by any DOT handling library """ tree_dict = loads(generate_tree_json(DecisionTreeClassificationModel, withNodeIDs=False)) num_classes = get_num_classes(tree_dict) color_brew = generate_color_brew(num_classes) node_list = [] tree_dict_with_id = add_node_ids(tree_dict) graph = relations_to_str(tree_dict_with_id, featureNames=featureNames, categoryNames=categoryNames, classNames=classNames, numClasses=num_classes, nodeList=node_list, filled=filled, roundLeaves=roundLeaves, color_brew=color_brew) node_properties = "\n".join(node_list) filled_and_rounded = [] if filled: filled_and_rounded.append("filled") if roundedCorners: filled_and_rounded.append("rounded") dot_string = """digraph Tree { node [shape=box style="%s"] subgraph body { %s %s} }""" % (",".join(filled_and_rounded), "".join(graph), node_properties) return dot_string
eb4484136fbbe92537a3f030375f6ac80081befd
16,826
def _get_next_sequence_values(session, base_mapper, num_values): """Fetches the next `num_values` ids from the `id` sequence on the `base_mapper` table. For example, if the next id in the `model_id_seq` sequence is 12, then `_get_next_sequence_values(session, Model.__mapper__, 5)` will return [12, 13, 14, 15, 16]. """ assert _has_normal_id_primary_key( base_mapper ), "_get_next_sequence_values assumes that the sequence produces integer values" id_seq_name = _get_id_sequence_name(base_mapper) # Table.schema is the canonical place to get the name of the schema. # See https://docs.sqlalchemy.org/en/13/core/metadata.html#sqlalchemy.schema.Table.params.schema schema = base_mapper.entity.__table__.schema sequence = sqlalchemy.Sequence(id_seq_name, schema=schema) # Select the next num_values from `sequence` raw_ids = tuples_to_scalar_list( session.connection().execute( sqlalchemy.select([sequence.next_value()]).select_from( sqlalchemy.text("generate_series(1, :num_values)") ), {"num_values": num_values}, ) ) assert len(raw_ids) == num_values, u"Expected to get {} new ids, instead got {}".format( num_values, len(raw_ids) ) # session.execute returns `long`s since Postgres sequences use `bigint` by default. # However, we need ints since the column type for our primary key is `integer`. return [int(id_) for id_ in raw_ids]
63ad9e5e55228dd873ee2c5d9080d223c89e1bc6
16,827
def overview(request): """ Dashboard: Process overview page. """ responses_dict = get_data_for_user(request.user) responses_dict_by_step = get_step_responses(responses_dict) # Add step status dictionary step_status = get_step_completeness(responses_dict_by_step) responses_dict_by_step['step_status'] = step_status responses_dict_by_step['active_page'] = 'overview' responses_dict_by_step['derived'] = get_derived_data(responses_dict) # Dashnav needs filing option to determine which steps to show for question in responses_dict_by_step['signing_filing']: responses_dict_by_step[question['question_id']] = question['value'] response = render(request, 'overview.html', context=responses_dict_by_step) # set this session variable after the page is already rendered request.session['viewed_dashboard_during_session'] = True return response
4ac165cf5b4bf7de6f060d6649935f25fcf5a0a9
16,828
def _guess_os(): """Try to guess the current OS""" try: abi_name = ida_typeinf.get_abi_name() except: abi_name = ida_nalt.get_abi_name() if "OSX" == abi_name: return "macos" inf = ida_idaapi.get_inf_structure() file_type = inf.filetype if file_type in (ida_ida.f_ELF, ida_ida.f_AOUT, ida_ida.f_COFF): return "linux" elif file_type == ida_ida.f_MACHO: return "macos" elif file_type in ( ida_ida.f_PE, ida_ida.f_EXE, ida_ida.f_EXE_old, ida_ida.f_COM, ida_ida.f_COM_old, ): return "windows" else: # Default return "linux" #raise UnhandledOSException("Unrecognized OS type")
bb2cb2f0c294f2554ec419ee1bdea665abaf6957
16,829
def create_conf(name, address, *services): """Create an Apple TV configuration.""" atv = conf.AppleTV(name, address) for service in services: atv.add_service(service) return atv
0326a4c21b39ef12fe916f3a3fbee34af52c12a2
16,830
def log_transform(x): """ Log transformation from total precipitation in mm/day""" tp_max = 23.40308390557766 y = np.log(x*(np.e-1)/tp_max + 1) return y
61783d103db36ed668e494f557550caef611b84a
16,831
from datetime import datetime import requests import json def get_flight(arguments): """ connects to skypicker servive and get most optimal flight base on search criteria :param arguments: inputs arguments from parse_arg :return dict: flight """ api_url = 'https://api.skypicker.com/flights?v=3&' adults = '1' # convert time format 2018-04-13 -> 13/04/2018 date = datetime.datetime.strptime(arguments.date, "%Y-%m-%d").strftime("%d/%m/%Y") fly_from = arguments.origin fly_to = arguments.to sort = arguments.sort if arguments.days_in_destination == 'oneway': # constructing search query for ONEWAY flight type_flight = 'oneway' query_string = '&flyFrom=' + fly_from + \ '&to=' + fly_to + \ '&dateFrom=' + date + \ '&dateTo=' + date + \ '&typeFlight=' + type_flight + \ '&adults=' + adults + \ '&sort=' + sort + \ '&asc=1' else: # constructing search query for RETURN flight days_in_destination = arguments.days_in_destination type_flight = 'round' query_string = 'daysInDestinationFrom=' + days_in_destination + \ '&daysInDestinationTo=' + days_in_destination + \ '&flyFrom=' + fly_from + \ '&to=' + fly_to + \ '&dateFrom=' + date + \ '&dateTo=' + date + \ '&typeFlight=' + type_flight + \ '&adults=' + adults + \ '&sort=' + sort + \ '&asc=1' if arguments.verbose: print(query_string) get_data = requests.get(api_url + query_string) json_data = json.loads(get_data.content) flights = json_data['data'] # return first flight in the sorted list if arguments.verbose: print(flights[0]) return flights[0]
690b7bd170b8b83f4b83f5c0ce98da919134107c
16,832
def use_ip_alt(request): """ Fixture that gives back 2 instances of UseIpAddrWrapper 1) use ip4, dont use ip6 2) dont use ip4, use ip6 """ use_ipv4, use_ipv6 = request.param return UseIPAddrWrapper(use_ipv4, use_ipv6)
c33d74b6888124413d1430e4873140475db4748e
16,833
import torch def radius_gaussian(sq_r, sig, eps=1e-9): """Compute a radius gaussian (gaussian of distance) Args: sq_r: input radiuses [dn, ..., d1, d0] sig: extents of gaussians [d1, d0] or [d0] or float Returns: gaussian of sq_r [dn, ..., d1, d0] """ return torch.exp(-sq_r / (2 * sig**2 + eps))
cd5bb2bb85641b1200ce67cb7eb52bc1705cd0a1
16,834
from typing import List from typing import Dict from typing import Any def index_papers_to_geodata(papers: List[Paper]) -> Dict[str, Any]: """ :param papers: list of Paper :return: object """ geodata = {} for paper in papers: for file in paper.all_files(): for location in file.locations.all(): if location.id not in geodata: geodata[location.id] = { "id": location.id, "name": location.description, "coordinates": location.geometry, "papers": {}, } if paper.id not in geodata[location.id]["papers"]: if paper.paper_type: paper_type = paper.paper_type.paper_type else: paper_type = _("Paper") geodata[location.id]["papers"][paper.id] = { "id": paper.id, "name": paper.name, "type": paper_type, "url": reverse("paper", args=[paper.id]), "files": [], } geodata[location.id]["papers"][paper.id]["files"].append( { "id": file.id, "name": file.name, "url": reverse("file", args=[file.id]), } ) return geodata
f892d84e3dc8f239885b5c4110c931b088922bcc
16,835
def _get_all_prefixed_mtds( prefix: str, groups: t.Tuple[str, ...], update_groups_by: t.Optional[t.Union[t.FrozenSet[str], t.Set[str]]] = None, prefix_removal: bool = False, custom_class_: t.Any = None, ) -> t.Dict[str, t.Tuple]: """Get all methods prefixed with ``prefix`` in predefined feature ``groups``. The predefined metafeature groups are inside ``VALID_GROUPS`` attribute. Args: prefix (:obj:`str`): gather methods prefixed with this value. groups (:obj:`Tuple` of :obj:`str`): a tuple of feature group names. It can assume value :obj:`NoneType`, which is interpreted as ``no filter`` (i.e. all features of all groups will be returned). return_groups (:obj:`bool`, optional): if True, then the returned value will be a :obj:`dict` (instead of a :obj:`tuple`) which maps each group (as keys) with its correspondent values (as :obj:`tuple`s). update_groups_by (:obj:`set` of :obj:`str`, optional): values to filter ``groups``. This function also returns a new version of ``groups`` with all its elements that do not contribute with any new method for the final output. It other words, it is removed any group which do not contribute to the output of this function. This is particu- larly useful for precomputations, as it helps avoiding unecessary precomputation methods from feature groups not related with user selected features. prefix_removal (:obj:`bool`, optional): if True, then the returned method names will not have the ``prefix``. custom_class_ (Class, optional): used for inner testing purposes. If not None, the given class will be used as reference to extract the prefixed methods. Returns: If ``filter_groups_by`` argument is :obj:`NoneType` or empty: tuple: with all filtered methods by ``group``. Else: tuple(tuple, tuple): the first field is the output described above, the second field is a new version of ``groups``, with all ele- ments that do not contribute with any element listed in the set ``update_groups_by`` removed. """ groups = tuple(set(VALID_GROUPS).intersection(groups)) if not groups and custom_class_ is None: return {"methods": tuple(), "groups": tuple()} if custom_class_ is None: verify_groups = tuple(VALID_GROUPS) verify_classes = tuple(VALID_MFECLASSES) else: verify_groups = ("test_methods", ) verify_classes = (custom_class_, ) methods_by_group = { ft_type_id: get_prefixed_mtds_from_class( class_obj=mfe_class, prefix=prefix, prefix_removal=prefix_removal) for ft_type_id, mfe_class in zip(verify_groups, verify_classes) if ft_type_id in groups or custom_class_ is not None } gathered_methods = [] # type: t.List[t.Union[str, TypeMtdTuple]] new_groups = [] # type: t.List[str] for group_name in methods_by_group: group_mtds = methods_by_group[group_name] gathered_methods += group_mtds if update_groups_by: group_mtds_names = { remove_prefix(mtd_pack[0], prefix=MTF_PREFIX) if not prefix_removal else mtd_pack[0] for mtd_pack in group_mtds } if not update_groups_by.isdisjoint(group_mtds_names): new_groups.append(group_name) ret_val = { "methods": tuple(gathered_methods), } # type: t.Dict[str, t.Tuple] if update_groups_by: ret_val["groups"] = tuple(new_groups) return ret_val
2387fb3f2aa0416ad9837f6c1b4c27488d406fea
16,836
import hashlib def _extract_values_from_certificate(cert): """ Gets Serial Number, DN and Public Key Hashes. Currently SHA1 is used to generate hashes for DN and Public Key. """ logger = getLogger(__name__) # cert and serial number data = { u'cert': cert, u'issuer': cert.get_issuer().der(), u'serial_number': cert.get_serial_number(), u'algorithm': rfc2437.id_sha1, u'algorithm_parameter': univ.Any(hexValue='0500') # magic number } # DN Hash data[u'name'] = cert.get_subject() cert_der = data[u'name'].der() sha1_hash = hashlib.sha1() sha1_hash.update(cert_der) data[u'name_hash'] = sha1_hash.hexdigest() # public key Hash data['key_hash'] = _get_pubickey_sha1_hash(cert).hexdigest() # CRL and OCSP data['crl'] = None ocsp_uris0 = [] for idx in range(cert.get_extension_count()): e = cert.get_extension(idx) if e.get_short_name() == b'authorityInfoAccess': for line in str(e).split(u"\n"): m = OCSP_RE.match(line) if m: logger.debug(u'OCSP URL: %s', m.group(1)) ocsp_uris0.append(m.group(1)) elif e.get_short_name() == b'crlDistributionPoints': for line in str(e).split(u"\n"): m = CRL_RE.match(line) if m: logger.debug(u"CRL: %s", m.group(1)) data['crl'] = m.group(1) if len(ocsp_uris0) == 1: data['ocsp_uri'] = ocsp_uris0[0] elif len(ocsp_uris0) == 0: data['ocsp_uri'] = u'' else: raise OperationalError( msg=u'More than one OCSP URI entries are specified in ' u'the certificate', errno=ER_FAILED_TO_GET_OCSP_URI, ) data[u'is_root_ca'] = cert.get_subject() == cert.get_issuer() return data
caa22f85fa26a3f386b33c52fff6562c8e9714ea
16,837
from functools import reduce def cartesian_product(arrays): """Create a cartesian product array from a list of arrays. It is used to create x-y coordinates array from x and y arrays. Stolen from stackoverflow http://stackoverflow.com/a/11146645 """ broadcastable = np.ix_(*arrays) broadcasted = np.broadcast_arrays(*broadcastable) rows, cols = reduce(np.multiply, broadcasted[0].shape), len(broadcasted) out = np.empty(rows * cols, dtype=broadcasted[0].dtype) start, end = 0, rows for a in broadcasted: out[start:end] = a.reshape(-1) start, end = end, end + rows return out.reshape(cols, rows).T
552b898a9187df637cc5f10b49e6a1fe004af95c
16,838
def advanced_split(string, *symbols, contain=False, linked='right'): """ Split a string by symbols If contain is True, the result will contain symbols The choice of linked decides symbols link to which adjacent part of the result """ if not isinstance(string, str): raise Exception('String must be str!') for each in symbols: if not isinstance(each, str): raise Exception('Symbol must be str!') linked = linked.lower() if linked not in ['left', 'right']: raise Exception('Linked must be left or right!') if not len(symbols): return [string] result = [] symbols_len = tuple([len(each) for each in symbols]) if contain: tail = '' while 1: index = len(string) num = -1 for _num, each in enumerate(symbols): _index = string.find(each) if _index < index and _index + 1: index = _index num = _num if num == -1: temp = tail + string if contain and linked == 'right' and tail else string if temp: result.append(temp) break temp = string[:index] if contain and linked == 'left': tail = symbols[num] if contain: if tail: if linked == 'left': temp = temp + tail if linked == 'right': temp = tail + temp if contain and linked == 'right': tail = symbols[num] string = string[index+symbols_len[num]:] if temp: result.append(temp) return result
3e46fcc0c3fa6ab99b9d4d45cf950d9ad3f03ac1
16,839
def _get_resource_info( resource_type="pod", labels={}, json_path=".items[0].metadata.name", errors_to_ignore=("array index out of bounds: index 0",), verbose=False, ): """Runs 'kubectl get <resource_type>' command to retrieve info about this resource. Args: resource_type (string): "pod", "service", etc. labels (dict): (eg. {'name': 'phenotips'}) json_path (string): a json path query string (eg. ".items[0].metadata.name") errors_to_ignore (list): verbose (bool): Returns: (string) resource value (eg. "postgres-410765475-1vtkn") """ l_arg = "" if labels: l_arg = "-l" + ",".join(["%s=%s" % (key, value) for key, value in labels.items()]) output = run( "kubectl get %(resource_type)s %(l_arg)s -o jsonpath={%(json_path)s}" % locals(), errors_to_ignore=errors_to_ignore, print_command=False, verbose=verbose, ) return output.strip('\n') if output is not None else None
b9a98fe469eb7aa5fcfb606db0948cb53410ddec
16,840
def rotate_line_about_point(line, point, degrees): """ added 161205 This takes a line and rotates it about a point a certain number of degrees. For use with clustering veins. :param line: tuple contain two pairs of x,y values :param point: tuple of x, y :param degrees: number of degrees to rotate by :return: line (now rotated) """ # point will serve as axis axis = point # unpack line p0, p1 = line # and get the line's degrees and length line_deg = line_to_angle(line) d = (abs(p0[0] - p1[0]), abs(p0[1] - p1[1])) line_length = sqrt(d[0] ^ 2 + d[1] ^ 2) # calculate radius between points and axis d = (abs(p0[0] - axis[0]), abs(p0[1] - axis[1])) r0 = sqrt(d[0] ^ 2 + d[1] ^ 2) # r1 = float((p1[0] - axis[0]) ^ 2 + (p1[1] - axis[1]) ^ 2) ^ 0.5 # find degrees that first line is above x-axis p0_deg = line_to_angle((axis, p0)) # now rotate line one to be level to degrees p0_cos = cos(degrees * (pi / 180.0)) p0_sin = sin(degrees * (pi / 180.0)) p0_n = (r0 * p0_cos, r0 * p0_sin) # and move p1 to be in respect to p0 new_deg = line_deg - p0_deg # normalize degrees while new_deg > 360: new_deg -= 360 while new_deg < 0: new_deg += 360 # get second point of line now since all variables are known p1_cos = cos(new_deg * (pi / 180.0)) p1_sin = sin(new_deg * (pi / 180.0)) # get new p1 p1_n = (p1_cos * line_length + p0_n[0], p1_sin * line_length + p0_n[1]) # return new line return p0_n, p1_n
c5954604d6f7852e66fe7b19f53193271582619d
16,841
def arith_relop(a, t, b): """ arith_relop(a, t, b) This is (arguably) a hack. Represents each function as an integer 0..5. """ return [(t == 0).implies(a < b), (t == 1).implies(a <= b), (t == 2).implies(a == b), (t == 3).implies(a >= b), (t == 4).implies(a > b), (t == 5).implies(a != b) ]
8b06d545e8d651803683b36facafb647f38fb2ff
16,842
import logging def initialise_framework(options): """This function initializes the entire framework :param options: Additional arguments for the component initializer :type options: `dict` :return: True if all commands do not fail :rtype: `bool` """ logging.info("Loading framework please wait..") # No processing required, just list available modules. if options["list_plugins"]: show_plugin_list(db, options["list_plugins"]) finish() target_urls = load_targets(session=db, options=options) load_works(session=db, target_urls=target_urls, options=options) start_proxy() start_transaction_logger() return True
e62b34189e330fdaea7ec6c81084616bd015a587
16,843
def get_registration_form() -> ConvertedDocument: """ Вернуть параметры формы для регистрации :return: Данные формы профиля + Логин и пароль """ form = [ gen_field_row('Логин', 'login', 'text', validate_rule='string'), gen_field_row('Пароль', 'password', 'password'), gen_field_row('Токен', 'token', 'text', validate_rule='token') ] + convert_mongo_model(Profile) return form
76bcab98d840523e94234c456cb1ccbd2b1f9129
16,844
def get_docker_stats(dut): """ Get docker ps :param dut: :return: """ command = 'docker stats -a --no-stream' output = st.show(dut, command) return output
cd994701c622ce9ea1f6f123f24b9913aa02698d
16,845
import argparse import os def parse_commandline_arguments(): """Parses command line arguments and adjusts internal data structures.""" # Define script command line arguments parser = argparse.ArgumentParser(description='Run object detection inference on input image.') parser.add_argument('-w', '--workspace_dir', help='sample workspace directory') parser.add_argument('-d', '--data', help="Specify the data directory where it is saved in. $TRT_DATA_DIR will be overwritten by this argument.") args, _ = parser.parse_known_args() data_dir = os.environ.get('TRT_DATA_DIR', None) if args.data is None else args.data if data_dir is None: raise ValueError("Data directory must be specified by either `-d $DATA` or environment variable $TRT_DATA_DIR.") PATHS.set_data_dir_path(data_dir) # Set workspace dir path if passed by user if args.workspace_dir: PATHS.set_workspace_dir_path(args.workspace_dir) try: os.makedirs(PATHS.get_workspace_dir_path()) except: pass # Verify Paths after adjustments. This also exits script if verification fails PATHS.verify_all_paths() return args
fdefe92824917b18b5aff89c13362ed5dbca0be5
16,846
import os def fetch_latency(d: str, csim: bool = False): """Fetch the simulated latency, measured in cycles.""" tb_sim_report_dir = os.path.join( d, "tb" if not csim else "tb.csim", "solution1", "sim", "report" ) if not os.path.isdir(tb_sim_report_dir): return None tb_sim_report = get_single_file_with_ext(tb_sim_report_dir, "rpt") if not tb_sim_report: return None tb_sim_report = os.path.join(tb_sim_report_dir, tb_sim_report) if not os.path.isfile(tb_sim_report): return None latency = None with open(tb_sim_report, "r") as f: for line in reversed(f.readlines()): if latency: break comps = [x.strip() for x in line.strip().split("|")] # there are 9 columns, +2 before & after | # the 2nd column should give PASS. if len(comps) == 11 and comps[2].upper() == "PASS": latency = comps[-2] # from the last column. # The report is malformed. if not latency: return None try: # Will raise error if latency is not an integer. return int(latency) except: return None
881078f338f5dee611725ab8a06331f09e1ca45c
16,847
def enthalpyvap(temp=None,pres=None,dvap=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dvap0=None,chkbnd=False, mathargs=None): """Calculate ice-vapour vapour enthalpy. Calculate the specific enthalpy of water vapour for ice and water vapour in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dvap0: Initial guess for the water vapour density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dvap0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpyvap(temp=270.) 2495132.21977 >>> enthalpyvap(pres=100.) 2463525.19629 """ temp, pres, dvap = eq_tp(temp=temp,pres=pres,dvap=dvap,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dvap0=dvap0,chkbnd=chkbnd, mathargs=mathargs) hv = flu2.enthalpy(temp,dvap) return hv
dadc59bf28272de3a298b89cb13901825fd58c95
16,848
async def get_eng_hw(module: tuple[str, ...], task: str) -> Message: """ Стандартный запрос для английского """ return await _get_eng_content('zadanie-{}-m-{}-z'.format(*module), task)
15e5425173c643074dde08c6753ffcd333414565
16,849
def _choose_split_axis(v: Variable) -> Axis: """ For too-large texture `v`, choose one axis which is the best one to reduce texture size by splitting `v` in that axis. Args: v: Variable, whose size is too large (= this variable has :code:`SplitTarget` attribute) Returns: axis """ ops = list(v.input_to) if v.output_from is not None: ops += [v.output_from] splittable_axes = list(v.order.axes) for op in ops: _op_splittable_axes = _listup_splittable_axis(v, op) + [attr.axis for attr in op.get_attribute(Tensorwise)] for a in list(splittable_axes): if a not in _op_splittable_axes: splittable_axes.remove(a) if len(splittable_axes) == 0: raise ValueError("No axis is splittable") # Calculate the size of a side of texture which will be changed when each axis is split # # ex) OrderNC, N=512, C=2048, texture(width=2048, height=512) # => If axis `N` is split, then height will be changed => N: 512 (=height) # If axis `C` is split, then width will be changed => C: 2048 (=width) # # ex) OrderNCHW, N=1, C=512, H=13, W=13, texture(width=2048, height=43) # => TexW == W*H*(partial of C) texture width consists of axis W, H and C. # TexH == (partial of C)*N texture height consists of axis C and N. # => N cannot be split => N: -1 # C is related both width and height. In this case, use large one. => C: 2048 # H is included in width => H: 2048 # W is also included in width => W: 2048 axis_corresponding_texture_size = AxisKeyDict() element_per_pixel = ChannelMode.elements_per_pixel(v) tex_h, tex_w = TextureShape.get(v) tex_w = (tex_w + element_per_pixel - 1) // element_per_pixel for a in v.order.axes: if v.shape_dict[a] == 1: # This axis cannot be split axis_corresponding_texture_size[a] = -1 elif v.stride_dict[a] >= tex_w * element_per_pixel: axis_corresponding_texture_size[a] = tex_h elif v.stride_dict[a] * v.shape_dict[a] >= tex_w * element_per_pixel: axis_corresponding_texture_size[a] = max(tex_h, tex_w) else: axis_corresponding_texture_size[a] = tex_w splittable_axes.sort(key=lambda a: axis_corresponding_texture_size[a], reverse=True) target_axis = splittable_axes[0] console.debug(f"===========================================================================") console.debug(f"{v}") console.debug(f" original order: {v.order}") console.debug(f" original shape: {v.shape}") console.debug(f" texture shape: {TextureShape.get(v)}") console.debug(f"") console.debug(f" splittable axis: {splittable_axes}") console.debug(f" split axis: {target_axis}") console.debug(f"") console.debug(f" related operators:") for related_op in ops: console.debug(f"---------------------------------------------------------------------------") traverse.dump_op(related_op) console.debug(f"") if axis_corresponding_texture_size[target_axis] <= 0: raise NotImplementedError(f"Variable is too large to handle in WebGL backend: {v}") return target_axis
b48acb753dc357464103e963a2c1d5470051cf11
16,850
import json def get_image_blobs(pb): """ Get an image from the sensor connected to the MicroPython board, find blobs and return the image, a list of blobs, and the time it took to find the blobs (in [ms]) """ raw = json.loads(run_on_board(pb, script_get_image, no_print=True)) img = np.flip(np.transpose(np.reshape(raw, (8, 8)))) time_str = run_on_board(pb, script_get_blob_list, no_print=True) t_ms = float(time_str.split("= ")[1].split("m")[0]) blobs_str = run_on_board(pb, script_print_blob_list, no_print=True) blobs_str = blobs_str.replace("nan", "0") blobs = json.loads(blobs_str.replace('(', '[').replace(')', ']')) return img, blobs, t_ms
5d563aeb490c5c1d509e442a3f7210bcfd9d6779
16,851
def classification_report(y_true, y_pred, digits=2, suffix=False): """Build a text report showing the main classification metrics. Args: y_true : 2d array. Ground truth (correct) target values. y_pred : 2d array. Estimated targets as returned by a classifier. digits : int. Number of digits for formatting output floating point values. Returns: report : string. Text summary of the precision, recall, F1 score for each class. Examples: >>> from seqeval.metrics import classification_report >>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']] >>> print(classification_report(y_true, y_pred)) precision recall f1-score support <BLANKLINE> MISC 0.00 0.00 0.00 1 PER 1.00 1.00 1.00 1 <BLANKLINE> avg / total 0.50 0.50 0.50 2 <BLANKLINE> """ true_entities = set(get_entities(y_true, suffix)) pred_entities = set(get_entities(y_pred, suffix)) name_width = 0 d1 = defaultdict(set) d2 = defaultdict(set) for e in true_entities: d1[e[0]].add((e[1], e[2])) name_width = max(name_width, len(e[0])) for e in pred_entities: d2[e[0]].add((e[1], e[2])) last_line_heading = 'avg / total' width = max(name_width, len(last_line_heading), digits) headers = ["precision", "recall", "f1-score", "support"] head_fmt = u'{:>{width}s} ' + u' {:>9}' * len(headers) report = head_fmt.format(u'', *headers, width=width) report += u'\n\n' row_fmt = u'{:>{width}s} ' + u' {:>9.{digits}f}' * 3 + u' {:>9}\n' ps, rs, f1s, s = [], [], [], [] for type_name, true_entities in d1.items(): pred_entities = d2[type_name] nb_correct = len(true_entities & pred_entities) nb_pred = len(pred_entities) nb_true = len(true_entities) p = 100 * nb_correct / nb_pred if nb_pred > 0 else 0 r = 100 * nb_correct / nb_true if nb_true > 0 else 0 f1 = 2 * p * r / (p + r) if p + r > 0 else 0 report += row_fmt.format(*[type_name, p, r, f1, nb_true], width=width, digits=digits) ps.append(p) rs.append(r) f1s.append(f1) s.append(nb_true) report += u'\n' # compute averages report += row_fmt.format(last_line_heading, np.average(ps, weights=s), np.average(rs, weights=s), np.average(f1s, weights=s), np.sum(s), width=width, digits=digits) return report
6158c82879b2894c96479bb96f986e348ef02b00
16,852
def tidy_conifer(ddf: DataFrame) -> DataFrame: """Tidy up the raw conifer output.""" result = ddf.drop(columns=["marker", "identifier", "read_lengths", "kraken"]) result[["name", "taxonomy_id"]] = result["taxa"].str.extract( r"^(?P<name>[\w ]+) \(taxid (?P<taxonomy_id>\d+)\)$", expand=True ) return result.drop(columns=["taxa"]).categorize( columns=["name", "taxonomy_id"], index=False )
88e55855d5f9ca8859a0e058a593aadd44774387
16,853
import os def load(name=None): """ Loads or initialises a convolutional neural network. """ if name is not None: path = os.path.join(AmfConfig.get_appdir(), 'trained_networks', name) else: path = AmfConfig.get('model') if path is not None and os.path.isfile(path): print(f'* Trained model: {path}') model = keras.models.load_model(path) if model.name == CNN1_NAME: AmfConfig.set('level', 1) print('* Classes: colonised (M+), non-colonised (M−), background (Other).') else: # elif model.name == CNN2_NAME AmfConfig.set('level', 2) print('* Classes: arbuscules (A), vesicles (V), ' 'hyphopodia (H), intraradical hyphae (IH).') return model else: if AmfConfig.get('run_mode') == 'train': print('* Initializes a new network.') if AmfConfig.get('level') == 1: return create_cnn1() else: return create_cnn2() else: # missing pre-trained model in prediction mode. AmfLog.error('A pre-trained model is required in prediction mode', exit_code=AmfLog.ERR_NO_PRETRAINED_MODEL)
cdd052a8a41fcb662ebd26aee51cdc05439be419
16,854
import collections def get_duplicates(lst): """Return a list of the duplicate items in the input list.""" return [item for item, count in collections.Counter(lst).items() if count > 1]
8f10226c904f95efbee447b4da5dc5764b18f6d2
16,855
def relu(x, alpha=0): """ Rectified Linear Unit. If alpha is between 0 and 1, the function performs leaky relu. alpha values are commonly between 0.1 and 0.3 for leaky relu. Parameters ---------- x : numpy array Values to be activated. alpha : float, optional The scale factor for the linear unit. Typical values are between 0.1 and 0.3. The default is 0.1. Returns ------- z : numpy array The activated values. """ z = x.copy() z[x < 0] = z[x < 0]*alpha return z
f18b331ef66d14a29e1ad5f14b610af583ea7b3a
16,856
def build_unique_dict(controls): """Build the disambiguated list of controls Separated out to a different function so that we can get the control identifiers for printing. """ name_control_map = UniqueDict() # collect all the possible names for all controls # and build a list of them for ctrl in controls: ctrl_names = get_control_names(ctrl, controls) # for each of the names for name in ctrl_names: name_control_map[name] = ctrl return name_control_map
931b90a34e151550c399b314d368a54e3c816796
16,857
def serialize_thrift_object(thrift_obj, proto_factory=Consts.PROTO_FACTORY): """Serialize thrift data to binary blob :param thrift_obj: the thrift object :param proto_factory: protocol factory, set default as Compact Protocol :return: string the serialized thrift payload """ return Serializer.serialize(proto_factory(), thrift_obj)
f6845b7539da82dc0555e11b0013db034d297e70
16,858
from typing import Optional def signal( fn: Optional[WorkflowSignalFunc] = None, *, name: Optional[str] = None, dynamic: Optional[bool] = False, ): """Decorator for a workflow signal method. This is set on any async or non-async method that you wish to be called upon receiving a signal. If a function overrides one with this decorator, it too must be decorated. Signal methods can only have positional parameters. Best practice for non-dynamic signal methods is to only take a single object/dataclass argument that can accept more fields later if needed. Return values from signal methods are ignored. Args: fn: The function to decorate. name: Signal name. Defaults to method ``__name__``. Cannot be present when ``dynamic`` is present. dynamic: If true, this handles all signals not otherwise handled. The parameters of the method must be self, a string name, and a ``*args`` positional varargs. Cannot be present when ``name`` is present. """ def with_name(name: Optional[str], fn: WorkflowSignalFunc) -> WorkflowSignalFunc: if not name: _assert_dynamic_signature(fn) # TODO(cretz): Validate type attributes? setattr(fn, "__temporal_signal_definition", _SignalDefinition(name=name, fn=fn)) return fn if name is not None or dynamic: if name is not None and dynamic: raise RuntimeError("Cannot provide name and dynamic boolean") return partial(with_name, name) if fn is None: raise RuntimeError("Cannot create signal without function or name or dynamic") return with_name(fn.__name__, fn)
8e6f3581590a7a429b4e5e838241328deb817e96
16,859
from matplotlib.colors import LinearSegmentedColormap def cmap_RdBu(values, vmin = None, vmax = None): """Generates a blue/red colorscale with white value centered around the value 0 Parameters ---------- values : PandasSeries, numpy array, list or tuple List of values to be used for creating the color map vmin : type Minimum value in the color map, if None then the min(values) is used vmax : type Maximum value in the color map, if None then the max(values) is used Returns ------- type Description of returned object. """ if vmin != None: scoremin = vmin else: scoremin = min(values) if vmax != None: scoremax = vmax else: scoremax = max(values) cmap2 = LinearSegmentedColormap.from_list('mycmap', [(0, 'blue'), (-scoremin/(scoremax-scoremin), 'white'), (1, 'red')]) return(cmap2)
b6bb207a8a1cccf13b87212125f74287b2a3cc9a
16,860
def _add_noise(audio, snr): """ Add complex gaussian noise to signal with given SNR. :param audio(np.array): :param snr(float): sound-noise-ratio :return: audio with added noise """ audio_mean = np.mean(audio**2) audio_mean_db = 10 * np.log10(audio_mean) noise_mean_db = snr - audio_mean_db noise_mean = 10 ** (noise_mean_db/10) return audio + np.random.normal(0, np.sqrt(noise_mean), len(audio))
4f77e7a2893dc0bdcaf5e170c5e17371127b80d5
16,861
from tvm.relay.testing import mlp def mlp_net(): """The MLP test from Relay. """ return mlp.get_net(1)
4e48dfb04bab1434bd581b7fc6cd5e2257c88022
16,862
def build_ind_val_dsets(dimensions, is_spectral=True, verbose=False, base_name=None): """ Creates VirtualDatasets for the position or spectroscopic indices and values of the data. Remember that the contents of the dataset can be changed if need be after the creation of the datasets. For example if one of the spectroscopic dimensions (e.g. - Bias) was sinusoidal and not linear, The specific dimension in the Spectroscopic_Values dataset can be manually overwritten. Parameters ---------- dimensions : Dimension or array-like of Dimension objects Sequence of Dimension objects that provides all necessary instructions for constructing the indices and values datasets is_spectral : bool, optional. default = True Spectroscopic (True) or Position (False) verbose : Boolean, optional Whether or not to print statements for debugging purposes base_name : str / unicode, optional Prefix for the datasets. Default: 'Position_' when is_spectral is False, 'Spectroscopic_' otherwise Returns ------- ds_inds : VirtualDataset Reduced Spectroscopic indices dataset ds_vals : VirtualDataset Reduces Spectroscopic values dataset Notes ----- `steps`, `initial_values`, `labels`, and 'units' must be the same length as `dimensions` when they are specified. Dimensions should be in the order from fastest varying to slowest. """ warn('build_ind_val_dsets is available only for legacy purposes and will be REMOVED in a future release.\n' 'Please consider using write_ind_val_dsets in hdf_utils instead', DeprecationWarning) if isinstance(dimensions, Dimension): dimensions = [dimensions] if not isinstance(dimensions, (list, np.ndarray, tuple)): raise TypeError('dimensions should be array-like ') if not np.all([isinstance(x, Dimension) for x in dimensions]): raise TypeError('dimensions should be a sequence of Dimension objects') if base_name is not None: if not isinstance(base_name, (str, unicode)): raise TypeError('base_name should be a string') if not base_name.endswith('_'): base_name += '_' else: base_name = 'Position_' if is_spectral: base_name = 'Spectroscopic_' unit_values = [x.values for x in dimensions] indices, values = build_ind_val_matrices(unit_values, is_spectral=is_spectral) if verbose: print('Indices:') print(indices) print('Values:') print(values) # Create the slices that will define the labels region_slices = get_aux_dset_slicing([x.name for x in dimensions], is_spectroscopic=is_spectral) # Create the VirtualDataset for both Indices and Values ds_indices = VirtualDataset(base_name + 'Indices', indices, dtype=INDICES_DTYPE) ds_values = VirtualDataset(base_name + 'Values', VALUES_DTYPE(values), dtype=VALUES_DTYPE) for dset in [ds_indices, ds_values]: dset.attrs['labels'] = region_slices dset.attrs['units'] = [x.units for x in dimensions] return ds_indices, ds_values
8876a9e61fd51a1e517adc7fb210172dc28e1b1e
16,863
def groupByX(grp_fn, messages): """ Returns a dictionary keyed by the requested group. """ m_grp = {} for msg in getIterable(messages): # Ignore messages that we don't have all the timing for. if msg.isComplete() or not ignore_incomplete: m_type = grp_fn(msg) if m_type in m_grp: m_grp[m_type].append(msg) else: m_grp[m_type] = [msg] return m_grp
9ebf63cfe81e8c8b6f19d90c725415cafdbcd636
16,864
import math def regular_poly_circ_rad_to_side_length(n_sides, rad): """Find side length that gives regular polygon with `n_sides` sides an equivalent area to a circle with radius `rad`.""" p_n = math.pi / n_sides return 2 * rad * math.sqrt(p_n * math.tan(p_n))
939ff5de399d7f0a31750aa03562791ee83ee744
16,865
def dbl_colour(days): """ Return a colour corresponding to the number of days to double :param days: int :return: str """ if days >= 28: return "orange" elif 0 < days < 28: return "red" elif days < -28: return "green" else: return "yellow"
46af7d57487f17b937ad5b7332879878cbf84220
16,866
def create_model(data_format): """Model to recognize digits in the MNIST data set. Network structure is equivalent to: https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py and https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py But uses the tf.keras API. Args: data_format: Either 'channels_first' or 'channels_last'. 'channels_first' is typically faster on GPUs while 'channels_last' is typically faster on CPUs. See https://www.tensorflow.org/performance/performance_guide#data_formats Returns: A tf.keras.Model. """ # pylint: disable=no-member if data_format == 'channels_first': input_shape = [1, 28, 28] else: assert data_format == 'channels_last' input_shape = [28, 28, 1] return Sequential( [ Reshape(target_shape=input_shape, input_shape=(28 * 28,)), Conv2D(32, 5, padding='same', data_format=data_format, activation=tf.nn.relu, kernel_initializer='random_uniform'), MaxPool2D((2, 2), (2, 2), padding='same', data_format=data_format), Conv2D(64, 5, padding='same', data_format=data_format, activation=tf.nn.relu, kernel_initializer='random_uniform'), MaxPool2D((2, 2), (2, 2), padding='same', data_format=data_format), Flatten(), Dense(1024, activation=tf.nn.relu, kernel_initializer='random_uniform'), Dropout(0.4), Dense(10, kernel_initializer='random_uniform') ])
d6fe45e5cfef5246a220600b67e24cddceeebd3a
16,867
def run_noncentered_hmc(model_config, num_samples=2000, burnin=1000, num_leapfrog_steps=4, num_adaptation_steps=500, num_optimization_steps=2000): """Given a (centred) model, this function transforms it to a fully non-centred one, and runs HMC on the reparametrised model. """ tf.reset_default_graph() return run_parametrised_hmc( model_config=model_config, interceptor=ed_transforms.ncp, num_samples=num_samples, burnin=burnin, num_leapfrog_steps=num_leapfrog_steps, num_adaptation_steps=num_adaptation_steps, num_optimization_steps=num_optimization_steps)
95065fb8c8ee778f0d300b46f285f8f3bb026aed
16,868
import collections def get_project_apps(in_app_list): """ Application definitions for app name. Args: in_app_list: (list) - names of applications Returns: tuple (list, dictionary) - list of dictionaries with apps definitions dictionary of warnings """ apps = [] warnings = collections.defaultdict(list) if not in_app_list: return apps, warnings missing_app_msg = "Missing definition of application" application_manager = ApplicationManager() for app_name in in_app_list: if application_manager.applications.get(app_name): apps.append({"name": app_name}) else: warnings[missing_app_msg].append(app_name) return apps, warnings
4e9be8ffddf44aba740414a8ee020376eda3a761
16,869
def read(G): """ Wrap a NetworkX graph class by an ILPGraph class The wrapper class is used store the graph and the related variables of an optimisation problem in a single entity. :param G: a `NetworkX graph <https://networkx.org/documentation/stable/reference/introduction.html#graphs>`__ :return: an :py:class:`~graphilp.imports.ilpgraph.ILPGraph` """ result = ILPGraph() result.set_nx_graph(G) return result
cb5db29d210d944047dbdf806ecfaaa274d517e8
16,870
def slog_det(obs, **kwargs): """Computes the determinant of a matrix of Obs via np.linalg.slogdet.""" def _mat(x): dim = int(np.sqrt(len(x))) if np.sqrt(len(x)) != dim: raise Exception('Input has to have dim**2 entries') mat = [] for i in range(dim): row = [] for j in range(dim): row.append(x[j + dim * i]) mat.append(row) (sign, logdet) = anp.linalg.slogdet(np.array(mat)) return sign * anp.exp(logdet) if isinstance(obs, np.ndarray): return derived_observable(_mat, (1 * (obs.ravel())).tolist(), **kwargs) elif isinstance(obs, list): return derived_observable(_mat, obs, **kwargs) else: raise TypeError('Unproper type of input.')
20b4016653d83303ac671a5d2641d4c344393b0a
16,871
def make_optimiser_form(optimiser): """Make a child form for the optimisation settings. :param optimiser: the Optimiser instance :returns: a subclass of FlaskForm; NB not an instance! """ # This sets up the initial form with the optimiser's parameters OptimiserForm = make_component_form(optimiser) # Now add options for specifying objectives OptimiserForm.obj_min_A = BooleanField('Minimise A', default=True) OptimiserForm.obj_min_sigma_varA = BooleanField('Minimise variance in A') OptimiserForm.obj_min_B = BooleanField('Minimise B') OptimiserForm.obj_max_C = BooleanField('Maximise C') # Options saying which variables to optimise OptimiserForm.var_bool_param = BooleanField( 'Optimise the choice of a binary option', default=True) OptimiserForm.var_int_param = BooleanField('Optimise the range of an integer', default=True) return OptimiserForm
745c4a9c4268d31687215f4acec709a5eacfcbf0
16,872
def prepare_for_evaluate(test_images, test_label): """ It will preprocess and return the images and labels for tesing. :param original images for testing :param original labels for testing :return preprocessed images :return preprocessed labels """ test_d = np.stack([preprocessing_for_testing(test_images[i]) for i in range(10000)], axis=0) test_new_image, test_new_label = test_d, test_label # Shuffle for 20 times for time in range(20): test_new_image, test_new_label = shuffle(test_d, test_label, random_state=randint(0, test_images.shape[0])) return test_new_image, test_new_label
abe60fc558c6cc2c951a4efee758d2746608d8d1
16,873
def ab_group_to_dict(group): """Convert ABGroup to Python dict. Return None if group is empty.""" d = {'name': '', 'emails': [], 'is_group': True, 'is_company': False} d['name'] = group.valueForProperty_(AB.kABGroupNameProperty) for person in group.members(): identifier = group.distributionIdentifierForProperty_person_( AB.kABEmailProperty, person) if identifier: emails = person.valueForProperty_(AB.kABEmailProperty) email = emails.valueAtIndex_( emails.indexForIdentifier_(identifier)) # log.debug('{} is in group {}'.format(email, d['name'])) d['emails'].append(email) if not len(d['emails']): return None return d
49f86b7ee4c4b4ce7f9f8c3db1811439e5fa5926
16,874
async def async_setup(hass, config): """Set up the PEVC modbus component.""" hass.data[DOMAIN] = {} return True
cde898e2904f8e9cfcf60d260ee2476326877dd9
16,875
from typing import Any def deserialize_value(val: str) -> Any: """Deserialize a json encoded string in to its original value""" return _unpack_value( seven.json.loads(check.str_param(val, "val")), whitelist_map=_WHITELIST_MAP, descent_path="", )
d01ce83488ea743aae298b15d1fe5f4faac6adbc
16,876
import binascii import os def gen_signature(priv_path, pub_path, sign_path, passphrase=None): """ creates a signature for the given public-key with the given private key and writes it to sign_path """ with salt.utils.files.fopen(pub_path) as fp_: mpub_64 = fp_.read() mpub_sig = sign_message(priv_path, mpub_64, passphrase) mpub_sig_64 = binascii.b2a_base64(mpub_sig) if os.path.isfile(sign_path): return False log.trace( "Calculating signature for %s with %s", os.path.basename(pub_path), os.path.basename(priv_path), ) if os.path.isfile(sign_path): log.trace( "Signature file %s already exists, please remove it first and " "try again", sign_path, ) else: with salt.utils.files.fopen(sign_path, "wb+") as sig_f: sig_f.write(salt.utils.stringutils.to_bytes(mpub_sig_64)) log.trace("Wrote signature to %s", sign_path) return True
b3bc99fc0faf38cc83e7d441417147d9fc127b66
16,877
import six import collections def stringify(value): """ PHPCS uses a , separated strings in many places because of how it handles options we have to do bad things with string concatenation. """ if isinstance(value, six.string_types): return value if isinstance(value, collections.Iterable): return ','.join(value) return str(value)
1ca24ff986f3cd02c845ad0e11b8b1cfd3c7f779
16,878
def read_requirements_file(path): """ reads requirements.txt file """ with open(path) as f: requires = [] for line in f.readlines(): if not line: continue requires.append(line.strip()) return requires
ab224bd3adac7adef76a2974a9244042f9aedf84
16,879
def vsa_get_all(context): """ Get all Virtual Storage Array records. """ session = get_session() return session.query(models.VirtualStorageArray).\ options(joinedload('vsa_instance_type')).\ filter_by(deleted=can_read_deleted(context)).\ all()
3568997b060fbeab115ec79c2c0cba77f78c6cba
16,880
import os import glob import logging def find_files_match_names_across_dirs(list_path_pattern, drop_none=True): """ walk over dir with images and segmentation and pair those with the same name and if the folder with centers exists also add to each par a center .. note:: returns just paths :param list(str) list_path_pattern: list of paths with image name patterns :param bool drop_none: drop if there are some none - missing values in rows :return: DF<path_1, path_2, ...> >>> def _mp(d, n): ... return os.path.join(update_path('data_images'), ... 'drosophila_ovary_slice', d, n) >>> df = find_files_match_names_across_dirs([_mp('image', '*.jpg'), ... _mp('segm', '*.png'), ... _mp('center_levels', '*.csv')]) >>> len(df) > 0 True >>> df.columns.tolist() ['path_1', 'path_2', 'path_3'] >>> df = find_files_match_names_across_dirs([_mp('image', '*.png'), ... _mp('segm', '*.jpg'), ... _mp('center_levels', '*.csv')]) >>> len(df) 0 """ list_path_pattern = [pp for pp in list_path_pattern if pp is not None] assert len(list_path_pattern) > 1, 'at least 2 paths required' for p in list_path_pattern: assert os.path.exists(os.path.dirname(p)), \ 'missing "%s"' % os.path.dirname(p) def _get_name(path, pattern='*'): name = os.path.splitext(os.path.basename(path))[0] for s in pattern.split('*'): name = name.replace(s, '') return name def _get_paths_names(path_pattern): paths_ = glob.glob(path_pattern) if not paths_: return [None], [None] names_ = [_get_name(p, os.path.basename(path_pattern)) for p in paths_] return paths_, names_ logging.info('find match files...') paths_0, names_0 = _get_paths_names(list_path_pattern[0]) list_paths = [paths_0] for path_pattern_n in list_path_pattern[1:]: paths_n = [None] * len(paths_0) name_pattern = os.path.basename(path_pattern_n) list_files = glob.glob(path_pattern_n) logging.debug('found %i files in %s', len(list_files), path_pattern_n) for path_n in list_files: name_n = _get_name(path_n, name_pattern) if name_n in names_0: idx = names_0.index(name_n) paths_n[idx] = path_n list_paths.append(paths_n) col_names = ['path_%i' % (i + 1) for i in range(len(list_paths))] df_paths = pd.DataFrame(list(zip(*list_paths)), columns=col_names) # filter None if drop_none: df_paths.dropna(inplace=True) return df_paths
3ee8b79ccce1c7b873037bb59067acbb893df047
16,881
import threading def thread_it(obj, timeout = 10): """ General function to handle threading for the physical components of the system. """ thread = threading.Thread(target = obj.run()) thread.start() # Run the 'run' function in the obj obj.ready.wait(timeout = timeout) # Clean up thread.join() obj.ready.clear() return None
02ed60a560ffa65f0364aa7414b1fda0d3e62ac5
16,882
def _subsize_sub_pixel_align_cy_ims(pixel_aligned_cy_ims, subsize, n_samples): """ The inner loop of _sub_pixel_align_cy_ims() that executes on a "subsize" region of the larger image. Is subsize is None then it uses the entire image. """ n_max_failures = n_samples * 2 sub_pixel_offsets = np.zeros((n_samples, pixel_aligned_cy_ims.shape[0], 2)) pixel_aligned_cy0_im = pixel_aligned_cy_ims[0] im_mea = pixel_aligned_cy_ims.shape[-1] assert pixel_aligned_cy_ims.shape[-2] == im_mea def _subregion(im, pos): if subsize is None: return im else: return imops.crop(im, off=pos, dim=WH(subsize, subsize), center=False) sample_i = 0 n_failures = 0 while sample_i < n_samples and n_failures < n_max_failures: try: if subsize is None: pos = XY(0, 0) else: pos = XY( np.random.randint(0, im_mea - subsize - 16), np.random.randint(0, im_mea - subsize - 16), ) subregion_pixel_aligned_cy0_im = _subregion(pixel_aligned_cy0_im, pos) for cy_i, pixel_aligned_cy_im in enumerate(pixel_aligned_cy_ims): if cy_i == 0: continue # Use a small region to improve speed subregion_pixel_aligned_cy_im = _subregion(pixel_aligned_cy_im, pos) try: _dy, _dx = _subpixel_align_one_im( subregion_pixel_aligned_cy0_im, subregion_pixel_aligned_cy_im, ) sub_pixel_offsets[sample_i, cy_i, :] = (_dy, _dx) except Exception: # This is a general exception handler because there # are a number of ways that the _subpixel_align_one_im # can fail including linear algebera, etc. All # of which end up with a skip and a retry. n_failures += 1 raise AlignmentError sample_i += 1 except AlignmentError: # Try again with a new pos if n_failures >= n_max_failures: raise AlignmentError return np.mean(sub_pixel_offsets, axis=0)
f96a2bc9b4c55976fd4c49da3f59afa991c53ff1
16,883
def obj_setclass(this, klass): """ set Class for `this`!! """ return this.setclass(klass)
4447df2f3055f21c9066a254290cdd037e812b64
16,884
def format(number, separator=' ', format=None, add_check_digit=False): """Reformat the number to the standard presentation format. The separator used can be provided. If the format is specified (either 'hex' or 'dec') the number is reformatted in that format, otherwise the current representation is kept. If add_check_digit is True a check digit will be added if it is not present yet.""" # first parse the number number, cd = _parse(number) # format conversions if needed if format == 'dec' and len(number) == 14: # convert to decimal number = '%010d%08d' % (int(number[0:8], 16), int(number[8:14], 16)) if cd: cd = calc_check_digit(number) elif format == 'hex' and len(number) == 18: # convert to hex number = '%08X%06X' % (int(number[0:10]), int(number[10:18])) if cd: cd = calc_check_digit(number) # see if we need to add a check digit if add_check_digit and not cd: cd = calc_check_digit(number) # split number according to format if len(number) == 14: number = [number[i * 2:i * 2 + 2] for i in range(7)] + [cd] else: number = (number[:5], number[5:10], number[10:14], number[14:], cd) return separator.join(x for x in number if x)
6890ed398eb7c173540c0392b9ed8ef66f8d170b
16,885
def parse_equal_statement(line): """Parse super-sequence statements""" seq_names = line.split()[1:] return seq_names
ee0de00a990ac10c365af16dccf491b7ea8ed785
16,886
def B5(n): """Factor Variables B5.""" return np.maximum(0, c4(n) - 3 * np.sqrt(1 - c4(n) ** 2))
bc2fbd91e337310fe5d4326d55440ce2055da650
16,887
def y_yhat_plots(y, yh, title="y and y_score", y_thresh=0.5): """Output plots showing how y and y_hat are related: the "confusion dots" plot is analogous to the confusion table, and the standard ROC plot with its AOC value. The y=1 threshold can be changed with the y_thresh parameter. """ # The predicted y value with threshold = y_thresh y_pred = 1.0 * (yh > y_thresh) # Show table of actual and predicted counts crosstab = pd.crosstab(y, y_pred, rownames=[ 'Actual'], colnames=[' Predicted']) print("\nConfusion matrix (y_thresh={:.3f}):\n\n".format(y_thresh), crosstab) # Calculate the various metrics and rates tn = crosstab[0][0] fp = crosstab[1][0] fn = crosstab[0][1] tp = crosstab[1][1] ##print(" tn =",tn) ##print(" fp =",fp) ##print(" fn =",fn) ##print(" tp =",tp) this_fpr = fp / (fp + tn) this_fnr = fn / (fn + tp) this_recall = tp / (tp + fn) this_precision = tp / (tp + fp) this_accur = (tp + tn) / (tp + fn + fp + tn) this_posfrac = (tp + fn) / (tp + fn + fp + tn) print("\nResults:\n") print(" False Pos = ", 100.0 * this_fpr, "%") print(" False Neg = ", 100.0 * this_fnr, "%") print(" Recall = ", 100.0 * this_recall, "%") print(" Precision = ", 100.0 * this_precision, "%") print("\n Accuracy = ", 100.0 * this_accur, "%") print(" Pos. fract. = ", 100.0 * this_posfrac, "%") # Put them in a dataframe ysframe = pd.DataFrame([y, yh, y_pred], index=[ 'y', 'y-hat', 'y-pred']).transpose() # If the yh is discrete (0 and 1s only) then blur it a bit # for a better visual dots plot if min(abs(yh - 0.5)) > 0.49: ysframe["y-hat"] = (0.51 * ysframe["y-hat"] + 0.49 * np.random.rand(len(yh))) # Make a "confusion dots" plot # Add a blurred y column ysframe['y (blurred)'] = y + 0.1 * np.random.randn(len(y)) # Plot the real y (blurred) vs the predicted probability # Note the flipped ylim values. ysframe.plot.scatter('y-hat', 'y (blurred)', figsize=(12, 5), s=2, xlim=(0.0, 1.0), ylim=(1.8, -0.8)) # show the "correct" locations on the plot plt.plot([0.0, y_thresh], [0.0, 0.0], '-', color='green', linewidth=5) plt.plot([y_thresh, y_thresh], [0.0, 1.0], '-', color='gray', linewidth=2) plt.plot([y_thresh, 1.0], [1.0, 1.0], '-', color='green', linewidth=5) plt.title("Confusion-dots Plot: " + title, fontsize=16) # some labels ythr2 = y_thresh/2.0 plt.text(ythr2 - 0.03, 1.52, "FN", fontsize=16, color='red') plt.text(ythr2 + 0.5 - 0.03, 1.52, "TP", fontsize=16, color='green') plt.text(ythr2 - 0.03, -0.50, "TN", fontsize=16, color='green') plt.text(ythr2 + 0.5 - 0.03, -0.50, "FP", fontsize=16, color='red') plt.show() # Make the ROC curve # Set the y-hat as the index and sort on it ysframe = ysframe.set_index('y-hat').sort_index() # Put y-hat back as a column (but the sorting remains) ysframe = ysframe.reset_index() # Initialize the counts for threshold = 0 p_thresh = 0 FN = 0 TN = 0 TP = sum(ysframe['y']) FP = len(ysframe) - TP # Assemble the fpr and recall values recall = [] fpr = [] # Go through each sample in y-hat order, # advancing the threshold and adjusting the counts for iprob in range(len(ysframe['y-hat'])): p_thresh = ysframe.iloc[iprob]['y-hat'] if ysframe.iloc[iprob]['y'] == 0: FP -= 1 TN += 1 else: TP -= 1 FN += 1 # Recall and FPR: recall.append(TP / (TP + FN)) fpr.append(FP / (FP + TN)) # Put recall and fpr in the dataframe ysframe['Recall'] = recall ysframe['FPR'] = fpr # - - - ROC - - - could be separate routine zoom_in = False # Calculate the area under the ROC roc_area = 0.0 for ifpr in range(1, len(fpr)): # add on the bit of area (note sign change, going from high fpr to low) roc_area += 0.5 * (recall[ifpr] + recall[ifpr - 1] ) * (fpr[ifpr - 1] - fpr[ifpr]) plt.figure(figsize=(8, 8)) plt.title("ROC: " + title, size=16) plt.plot(fpr, recall, '-b') # Set the scales if zoom_in: plt.xlim(0.0, 0.10) plt.ylim(0.0, 0.50) else: # full range: plt.xlim(0.0, 1.0) plt.ylim(0.0, 1.0) # The reference line plt.plot([0., 1.], [0., 1.], '--', color='orange') # The point at the y_hat = y_tresh threshold if True: plt.plot([this_fpr], [this_recall], 'o', c='blue', markersize=15) plt.xlabel('False Postive Rate', size=16) plt.ylabel('Recall', size=16) plt.annotate('y_hat = {:.2f}'.format(y_thresh), xy=(this_fpr + 0.015, this_recall), size=14, color='blue') plt.annotate(' Pos.Fraction = ' + ' {:.0f}%'.format(100 * this_posfrac), xy=(this_fpr + 0.02, this_recall - 0.03), size=14, color='blue') # Show the ROC area (shows on zoomed-out plot) plt.annotate('ROC Area = ' + str(roc_area) [:5], xy=(0.4, 0.1), size=16, color='blue') # Show the plot plt.show() return ysframe
82a8154bd618cc1451a44b2b42fca0407e9979cb
16,888
def _derive_scores(model, txt_file, base_words): """ Takes a model, a text file, and a list of base words. Returns a dict of {base_word: score}, where score is an integer between 0 and 100 which represents the average similarity of the text to the given word. """ with open(txt_file, 'r') as f: text = f.read() words = sample_words(text) # This is a list of dicts of the form {base_word: score}. raw_scores = [_single_word_score(model, base_words, word) for word in words] summed_scores = {} for base_word in base_words: summed_scores[base_word] = sum([item[base_word] for item in raw_scores]) summed_scores[base_word] = round( 100 * summed_scores[base_word] / len(words) ) return summed_scores
9c377b5dec742f5ba174f780252fd78d162a8713
16,889
import os def verifyRRD(fix_rrd=False): """ Go through all known monitoring rrds and verify that they match existing schema (could be different if an upgrade happened) If fix_rrd is true, then also attempt to add any missing attributes. """ global rrd_problems_found global monitorAggregatorConfig mon_dir = monitorAggregatorConfig.monitor_dir status_dict = {} completed_stats_dict = {} completed_waste_dict = {} counts_dict = {} # initialize the RRD dictionaries to match the current schema for verification for tp in list(status_attributes.keys()): if tp in list(type_strings.keys()): tp_str = type_strings[tp] attributes_tp = status_attributes[tp] for a in attributes_tp: status_dict[f"{tp_str}{a}"] = None for jobrange in glideFactoryMonitoring.getAllJobRanges(): completed_stats_dict[f"JobsNr_{jobrange}"] = None for timerange in glideFactoryMonitoring.getAllTimeRanges(): completed_stats_dict[f"Lasted_{timerange}"] = None completed_stats_dict[f"JobsLasted_{timerange}"] = None for jobtype in glideFactoryMonitoring.getAllJobTypes(): for timerange in glideFactoryMonitoring.getAllMillRanges(): completed_waste_dict[f"{jobtype}_{timerange}"] = None for jobtype in ("Entered", "Exited", "Status"): for jobstatus in ("Wait", "Idle", "Running", "Held"): counts_dict[f"{jobtype}{jobstatus}"] = None for jobstatus in ("Completed", "Removed"): counts_dict["{}{}".format("Entered", jobstatus)] = None # FROM: lib2to3.fixes.fix_ws_comma # completed_waste_dict["%s_%s"%(jobtype, timerange)]=None # # for jobtype in ('Entered', 'Exited', 'Status'): # for jobstatus in ('Wait', 'Idle', 'Running', 'Held'): # counts_dict["%s%s"%(jobtype, jobstatus)]=None # for jobstatus in ('Completed', 'Removed'): # counts_dict["%s%s"%('Entered', jobstatus)]=None # # verifyHelper(os.path.join(total_dir, # "Status_Attributes.rrd"), status_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed.rrd"), # glideFactoryMonitoring.getLogCompletedDefaults(), fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed_Stats.rrd"), completed_stats_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Completed_WasteTime.rrd"), completed_waste_dict, fix_rrd) # verifyHelper(os.path.join(total_dir, # "Log_Counts.rrd"), counts_dict, fix_rrd) # for filename in os.listdir(dir): # if filename[:6]=="entry_": # entrydir=os.path.join(dir, filename) # for subfilename in os.listdir(entrydir): # if subfilename[:9]=="frontend_": # current_dir=os.path.join(entrydir, subfilename) # verifyHelper(os.path.join(current_dir, # "Status_Attributes.rrd"), status_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed.rrd"), # glideFactoryMonitoring.getLogCompletedDefaults(), fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed_Stats.rrd"), completed_stats_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Completed_WasteTime.rrd"), # completed_waste_dict, fix_rrd) # verifyHelper(os.path.join(current_dir, # "Log_Counts.rrd"), counts_dict, fix_rrd) # return not rrd_problems_found completed_dict = glideFactoryMonitoring.getLogCompletedDefaults() rrdict = { "Status_Attributes.rrd": status_dict, "Log_Completed.rrd": completed_dict, "Log_Completed_Stats.rrd": completed_stats_dict, "Log_Completed_WasteTime.rrd": completed_waste_dict, "Log_Counts.rrd": counts_dict, } for dir_name, sdir_name, f_list in os.walk(mon_dir): for file_name in f_list: if file_name in list(rrdict.keys()): verifyHelper(os.path.join(dir_name, file_name), rrdict[file_name], fix_rrd) return not rrd_problems_found
485842bcf262059125b9d9d6af91bb7c97b82704
16,890
def features_ids_argument_parser() -> ArgumentParser: """ Creates a parser suitable to parse the argument describing features ids in different subparsers """ parser = ArgumentParser(add_help=False, parents=[collection_option_parser()]) parser.add_argument(FEATURES_IDS_ARGNAME, nargs='+', help='features identifiers or features UUIDs') return parser
df24ebaff182c88c7ad6cf38e2e4a5784d54a48b
16,891
def isolate_blue_blocks(image, area_min=10, side_ratio=0.5): """Return a sequence of masks on the original area showing significant blocks of blue.""" contours, _ = cv2.findContours( blue(image).astype(np.uint8) * 255, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE ) rects = [] for c in contours: x, y, w, h = cv2.boundingRect(c) if min(w, h) / max(w, h) > side_ratio and cv2.contourArea(c) > area_min: rects.append((x, y, w, h)) masks = np.zeros_like() return filtered
7cd6e895750f208e18c60a48d2bc0e8d1710d6c0
16,892
from typing import Union from io import StringIO from pathlib import Path from typing import Optional from typing import Dict from typing import Callable from typing import List from typing import Tuple def read_gtf( filepath_or_buffer: Union[str, StringIO, Path], expand_attribute_column: bool = True, infer_biotype_column: bool = False, column_converters: Optional[Dict[str, Callable[..., str]]] = None, usecols: Optional[List[str]] = None, features: Optional[Tuple[str]] = None, chunksize: int = 1024 * 1024, ) -> pd.DataFrame: """ Parse a GTF into a dictionary mapping column names to sequences of values. Parameters ---------- filepath_or_buffer : str or buffer object Path to GTF file (may be gzip compressed) or buffer object such as StringIO expand_attribute_column : bool Replace strings of semi-colon separated key-value values in the 'attribute' column with one column per distinct key, with a list of values for each row (using None for rows where key didn't occur). infer_biotype_column : bool Due to the annoying ambiguity of the second GTF column across multiple Ensembl releases, figure out if an older GTF's source column is actually the gene_biotype or transcript_biotype. column_converters : dict, optional Dictionary mapping column names to conversion functions. Will replace empty strings with None and otherwise passes them to given conversion function. usecols : list of str or None Restrict which columns are loaded to the give set. If None, then load all columns. features : set of str or None Drop rows which aren't one of the features in the supplied set chunksize : int """ if isinstance(filepath_or_buffer, str): filepath_or_buffer = Path(filepath_or_buffer) if isinstance(filepath_or_buffer, Path) and not filepath_or_buffer.exists(): logger.exception(f"GTF file does not exist: {filepath_or_buffer}") raise FileNotFoundError if expand_attribute_column: result_df = parse_gtf_and_expand_attributes( filepath_or_buffer, chunksize=chunksize, restrict_attribute_columns=usecols ) else: result_df = parse_gtf( filepath_or_buffer, chunksize=chunksize, features=features ) if column_converters: for column_name in column_converters: result_df[column_name] = result_df[column_name].astype( column_converters[column_name], errors="ignore" ) # Hackishly infer whether the values in the 'source' column of this GTF # are actually representing a biotype by checking for the most common # gene_biotype and transcript_biotype value 'protein_coding' if infer_biotype_column: unique_source_values = result_df["source"].unique() if "protein_coding" in unique_source_values: column_names = result_df.columns.unique() # Disambiguate between the two biotypes by checking if # gene_biotype is already present in another column. If it is, # the 2nd column is the transcript_biotype (otherwise, it's the # gene_biotype) if "gene_biotype" not in column_names: logger.info("Using column 'source' to replace missing 'gene_biotype'") result_df["gene_biotype"] = result_df["source"] if "transcript_biotype" not in column_names: logger.info( "Using column 'source' to replace missing 'transcript_biotype'" ) result_df["transcript_biotype"] = result_df["source"] if usecols is not None: column_names = result_df.columns.unique() valid_columns = [c for c in usecols if c in column_names] result_df = result_df[valid_columns] return result_df
c7478d88ce5d6d6e823bf28c965f366b9b8d1522
16,893
from whoosh.filedb.filestore import FileStorage from sys import version def version_in(dirname, indexname = None): """Returns a tuple of (release_version, format_version), where release_version is the release version number of the Whoosh code that created the index -- e.g. (0, 1, 24) -- and format_version is the version number of the on-disk format used for the index -- e.g. -102. The second number (format version) may be useful for figuring out if you need to recreate an index because the format has changed. However, you can just try to open the index and see if you get an IndexVersionError exception. Note that the release and format version are available as attributes on the Index object in Index.release and Index.version. :param dirname: the file path of a directory containing an index. :param indexname: the name of the index. If None, the default index name is used. :returns: ((major_ver, minor_ver, build_ver), format_ver) """ storage = FileStorage(dirname) return version(storage, indexname=indexname)
25b9f2416fa5d0213b24785aedbd5afd43edfba6
16,894
def trimAlphaNum(value): """ Trims alpha numeric characters from start and ending of a given value >>> trimAlphaNum(u'AND 1>(2+3)-- foobar') u' 1>(2+3)-- ' """ while value and value[-1].isalnum(): value = value[:-1] while value and value[0].isalnum(): value = value[1:] return value
e9d44ea5dbe0948b9db0c71a5ffcdd5c80e95746
16,895
def hrm_job_title_represent(id, row=None): """ FK representation """ if row: return row.name elif not id: return current.messages.NONE db = current.db table = db.hrm_job_title r = db(table.id == id).select(table.name, limitby = (0, 1)).first() try: return r.name except: return current.messages.UNKNOWN_OPT
ca3d2bfb4056b28b712f4cbf37c8c91d840c0161
16,896
def is_empty_array_expr(ir: irast.Base) -> bool: """Return True if the given *ir* expression is an empty array expression. """ return ( isinstance(ir, irast.Array) and not ir.elements )
dcf3775e7544ad64e9a533238a9549ed21dc3393
16,897
def get_raw_entity_names_from_annotations(annotations): """ Args: annotated_utterance: annotated utterance Returns: Wikidata entities we received from annotations """ raw_el_output = annotations.get("entity_linking", [{}]) entities = [] try: if raw_el_output: if isinstance(raw_el_output[0], dict): entities = raw_el_output[0].get("entity_ids", []) if isinstance(raw_el_output[0], list): entities = raw_el_output[0][0] except Exception as e: error_message = f"Wrong entity linking output format {raw_el_output} : {e}" sentry_sdk.capture_exception(e) logger.exception(error_message) return entities
482be69ef5fec52b70ade4839b48ae2f4155033b
16,898
def nextPara(file, line): """Go forward one paragraph from the specified line and return the line number of the first line of that paragraph. Paragraphs are delimited by blank lines. It is assumed that the current line is standalone (which is bogus). - file is an array of strings - line is the starting point (zero-based)""" maxLine = len(file) - 1 # Skip over current paragraph while (line != maxLine and not isempty(file[line])): line = line + 1 # Skip over white space while (line != maxLine and isempty(file[line])): line = line + 1 return line
a104042225bc9404a5b5fe8f5410a3021e45f64d
16,899