content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def fix_lng_degrees(lng: float) -> float: """ For a lng degree outside [-180;180] return the appropriate degree assuming -180 = 180°W and 180 = 180°E. """ sign = 1 if lng > 0 else -1 lng_adj = (abs(lng) % 360) * sign if lng_adj > 180: return (lng_adj % 180) - 180 elif lng_adj < -180: return lng_adj % 180 return lng_adj
bde58152883874095b15ec38cfb24ea68d73c188
16,700
def create_code(traits): """Assign bits to list of traits. """ code = 1 result = {INVALID: code} if not traits: return result for trait in traits: code = code << 1 result[trait] = code return result
cfc7b1662edaf7f3e3763009a460157f7ec677bb
16,701
from typing import List from typing import Dict from typing import Any from typing import Optional def get_current_table(grid_id: str) -> List[Dict[Any, Any]]: """ Get current Data from the grid Args: grid_id: Grid ID to retrieve data from. Returns: list: Exsiting grid data. """ current_table: Optional[List[dict]] = demisto.incidents()[0].get("CustomFields", {}).get(grid_id) if current_table is None: raise ValueError(f"The grid id isn't valid: {grid_id}") return pd.DataFrame(current_table)
d1a8c21398aa2aca54ca587aa577c8ff50d8d46f
16,702
def read_graph(filepath): """Creates a graph based on the content of the file at given filepath. Parameters ---------- filename : filepath Path to a file containing an adjacency matrix. """ g_data = np.loadtxt(open(filepath, "rb"), delimiter=",") return nx.from_numpy_matrix(g_data)
74e0b687c6cf9e404d9446505799a84b5680c5b3
16,703
def get_seed(seed=None): """Get valid Numpy random seed value""" # https://groups.google.com/forum/#!topic/briansupport/9ErDidIBBFM random = np.random.RandomState(seed) return random.randint(0, 2147483647)
5ac1280a30265518edcf8bb07a03cfe5fb0ae21d
16,704
import traceback import sys def explain_predictions_best_worst(pipeline, input_features, y_true, num_to_explain=5, top_k_features=3, include_shap_values=False, metric=None, output_format="text"): """Creates a report summarizing the top contributing features for the best and worst points in the dataset as measured by error to true labels. XGBoost models and CatBoost multiclass classifiers are not currently supported. Arguments: pipeline (PipelineBase): Fitted pipeline whose predictions we want to explain with SHAP. input_features (ww.DataTable, pd.DataFrame): Input data to evaluate the pipeline on. y_true (ww.DataColumn, pd.Series): True labels for the input data. num_to_explain (int): How many of the best, worst, random data points to explain. top_k_features (int): How many of the highest/lowest contributing feature to include in the table for each data point. include_shap_values (bool): Whether SHAP values should be included in the table. Default is False. metric (callable): The metric used to identify the best and worst points in the dataset. Function must accept the true labels and predicted value or probabilities as the only arguments and lower values must be better. By default, this will be the absolute error for regression problems and cross entropy loss for classification problems. output_format (str): Either "text" or "dict". Default is "text". Returns: str, dict, or pd.DataFrame - A report explaining the top contributing features for the best/worst predictions in the input_features. For each of the best/worst rows of input_features, the predicted values, true labels, metric value, feature names, prediction contribution, and SHAP Value (optional) will be listed. Raises: ValueError: if input_features does not have more than twice the requested features to explain. ValueError: if y_true and input_features have mismatched lengths. ValueError: if an output_format outside of "text", "dict" or "dataframe is provided. """ input_features = infer_feature_types(input_features) input_features = _convert_woodwork_types_wrapper(input_features.to_dataframe()) y_true = infer_feature_types(y_true) y_true = _convert_woodwork_types_wrapper(y_true.to_series()) if not (input_features.shape[0] >= num_to_explain * 2): raise ValueError(f"Input features must be a dataframe with more than {num_to_explain * 2} rows! " "Convert to a dataframe and select a smaller value for num_to_explain if you do not have " "enough data.") if y_true.shape[0] != input_features.shape[0]: raise ValueError("Parameters y_true and input_features must have the same number of data points. Received: " f"true labels: {y_true.shape[0]} and {input_features.shape[0]}") if output_format not in {"text", "dict", "dataframe"}: raise ValueError(f"Parameter output_format must be either text, dict, or dataframe. Received {output_format}") if not metric: metric = DEFAULT_METRICS[pipeline.problem_type] try: if is_regression(pipeline.problem_type): if is_time_series(pipeline.problem_type): y_pred = pipeline.predict(input_features, y=y_true).to_series() else: y_pred = pipeline.predict(input_features).to_series() y_pred_values = None y_true_no_nan, y_pred_no_nan = drop_rows_with_nans(y_true, y_pred) errors = metric(y_true_no_nan, y_pred_no_nan) else: if is_time_series(pipeline.problem_type): y_pred = pipeline.predict_proba(input_features, y=y_true).to_dataframe() y_pred_values = pipeline.predict(input_features, y=y_true).to_series() else: y_pred = pipeline.predict_proba(input_features).to_dataframe() y_pred_values = pipeline.predict(input_features).to_series() y_true_no_nan, y_pred_no_nan, y_pred_values_no_nan = drop_rows_with_nans(y_true, y_pred, y_pred_values) errors = metric(pipeline._encode_targets(y_true_no_nan), y_pred_no_nan) except Exception as e: tb = traceback.format_tb(sys.exc_info()[2]) raise PipelineScoreError(exceptions={metric.__name__: (e, tb)}, scored_successfully={}) errors = pd.Series(errors, index=y_pred_no_nan.index) sorted_scores = errors.sort_values() best_indices = sorted_scores.index[:num_to_explain] worst_indices = sorted_scores.index[-num_to_explain:] index_list = best_indices.tolist() + worst_indices.tolist() pipeline_features = pipeline.compute_estimator_features(input_features, y_true).to_dataframe() data = _ReportData(pipeline, pipeline_features, input_features, y_true, y_pred, y_pred_values, errors, index_list, metric) report_creator = _report_creator_factory(data, report_type="explain_predictions_best_worst", output_format=output_format, top_k_features=top_k_features, include_shap_values=include_shap_values, num_to_explain=num_to_explain) return report_creator(data)
9138b92d13e3aa44a31b91d512cbbbd08e35ecd6
16,705
import typing import inspect def resolve_lookup( context: dict, lookup: str, call_functions: bool = True ) -> typing.Any: """ Helper function to extract a value out of a context-dict. A lookup string can access attributes, dict-keys, methods without parameters and indexes by using the dot-accessor (e.g. ``person.name``) This is based on the implementation of the variable lookup of the django template system: https://github.com/django/django/blob/master/django/template/base.py """ current = context for bit in lookup.split("."): try: current = current[bit] except (TypeError, AttributeError, KeyError, ValueError, IndexError): try: current = getattr(current, bit) except (TypeError, AttributeError): # Reraise if the exception was raised by a @property if not isinstance(current, dict) and bit in dir(current): raise try: # list-index lookup current = current[int(bit)] except ( IndexError, # list index out of range ValueError, # invalid literal for int() KeyError, # current is a dict without `int(bit)` key TypeError, ): # unsubscriptable object return None # raise LookupError( # "Failed lookup for key " "[%s] in %r", (bit, current) # ) # missing attribute if callable(current) and call_functions: try: # method call (assuming no args required) current = current() except TypeError: signature = inspect.signature(current) # type: ignore try: signature.bind() except TypeError: # arguments *were* required pass # but we continue because we might use an attribute on the object instead of calling it else: raise return current
a2090f2488ee10f7c11684952fd7a2498f6d4979
16,706
def check_actions_tool(tool): """2.2.x to 2.3.0 upgrade step checker """ atool = getToolByName(tool, 'portal_actions') try: atool['user']['change_password'] except KeyError: return True try: atool['global']['members_register'] except KeyError: return True try: atool['global']['search_form'] except KeyError: return True try: atool['global']['search'] except KeyError: return True try: atool['global']['syndication'] except KeyError: return True return False
2ecc6064cd26aa670743c25018dd27e2ce0f41ca
16,707
def integer_byte_length(number): """ Number of bytes needed to represent a integer excluding any prefix 0 bytes. :param number: Integer value. If num is 0, returns 0. :returns: The number of bytes in the integer. """ quanta, remainder = divmod(integer_bit_length(number), 8) if remainder: quanta += 1 return quanta
0de5828117107461e23e36cf3c38bab0850b7203
16,708
def ones(input_dim, output_dim, name=None): """All zeros.""" initial = tf.ones((input_dim, output_dim), dtype=tf.float32) return tf.Variable(initial, name=name)
02867b278e224e436e470a9eaeac32b44e99a99a
16,709
def enrichment_score2(mat, idx, line_width, norm_factors, distance_range=(20, 40), window_size=10, stats_test_log=({}, {})): """ Calculate the enrichment score of a stripe given its location, width and the contact matrix Parameters: ---------- mat: np.array (2D) Contact matrix generated with strata2horizontal() or strata2vertical() idx: int The location (index) of the candidate stripe line_width: int Stripe width (# of bins) norm_factors: np.array (1D) The vector of normalization factors of the contact map. distance_range: tuple The distance range (# of bins) for the diagonal for calculating the scores window_size: int Window size (# of bins) stats_test_log: tuple of dict Previous log for accelerating statistical tests Returns ---------- new_mat: np.array (1D) The enrichment score of each pixel along the candidate stripe """ _calculated_values, _poisson_stats = stats_test_log half = int(line_width // 2) x1, x2 = idx - half, idx - half + line_width if x1 == x2: x2 += 1 new_mat = np.zeros((distance_range[1] - distance_range[0],)) for j in range(distance_range[0], distance_range[1]): y = j - distance_range[0] _min_temp = subsetNpMatrix(mat, (x1, x2), (j - window_size - half, j + window_size + half + 1)) line_min = np.median([_min_temp]) # print(_min_temp, line_min) _inner_neighbor = subsetNpMatrix(mat, (idx - half - window_size, x1), (j - window_size - half, j + window_size + half + 1)) _outer_neighbor = subsetNpMatrix(mat, (x2 + 1, idx + half + window_size + 1), (j - window_size - half, j + window_size + half + 1)) if _outer_neighbor.size == 0 or _inner_neighbor.size == 0: continue neighbor_mean = max(np.mean(_inner_neighbor), np.mean(_outer_neighbor)) # There should be a lower bound for the expected value, # otherwise situations like (exp=0.01 and obs=0.02) would also be significant # Currently we can set this to 0 until KR norm factors can be loaded lower_b = 1 / norm_factors[idx] # This should be (1 / KR_norm_factors) if we refer to JuiceTools HICCUPS _exp = max(neighbor_mean, lower_b) _obs = int(line_min) # the same as floor function when line_min > 0 # _calculated_values: store all calculated exp-obs pairs in dictionary, in which keys are obs since # they are always integers. Each _calculated_values[obs] is a binary tree for quick searching, # and each tree leaf is a exp value corresponding to the obs value. Since exp values are float, # there is also an integer index attached for searching the exp-obs in dictionary _poisson_stats # (float cannot be dict keys). # _poisson_stats: record all calculated result in a dict. It should be # _poisson_stats[(_exp, _obs)] = -log10(p). But _exp is a float and cannot be a dict key, we give # each _exp a unique index and use the index. # stats_log: record all p value calculation. Just for benchmarking. Delete this when publishing. # global _calculated_values, _poisson_stats # , stats_log tolerance = 0.02 # check if obs is a value calculated before if _obs in _calculated_values: # Find the nearest _exp values which were calculated before # One larger, one smaller (_upper, _lower) = _calculated_values[_obs].search(_exp) # If _upper is close enough to _exp, directly use the p value from (_upper-_obs) pair if _upper is not None and (_upper.key - _exp) < tolerance * _exp: _exp = _upper.key _exp_idx = _upper.val # The integer index for _upper (float cannot be dict keys!) mlog_p_val = _poisson_stats[(_exp_idx, _obs)] else: # Else, calculate p value for _obs-_exp pair and store them in _calculated_values and _poisson_stats _exp_idx = _calculated_values[_obs].insert(_exp) # insert to the binary tree and return an index Poiss = poisson(_exp) p_val = 1 - Poiss.cdf(_obs) if 0 < p_val < 1: mlog_p_val = - np.log10(p_val) else: # Some p values are too small, -log(0) will return an error, so we use -1 to temporarily replace mlog_p_val = -1 _poisson_stats[(_exp_idx, _obs)] = mlog_p_val # stats_log.append([_exp, _obs, mlog_p_val]) else: # If _obs is not used before, generate a new binary tree _calculated_values[_obs] _calculated_values[_obs] = AVLTree() _exp_idx = _calculated_values[_obs].insert(_exp) # calculate p value for _obs-_exp pair and store them in _calculated_values and _poisson_stats Poiss = poisson(_exp) p_val = 1 - Poiss.cdf(_obs) if 0 < p_val < 1: mlog_p_val = - np.log10(p_val) else: # Some p values are too small, -log(0) will return an error, so we use -1 to temporarily replace mlog_p_val = -1 _poisson_stats[(_exp_idx, _obs)] = mlog_p_val # stats_log.append([_exp, _obs, mlog_p_val]) # Store enrichment score in new_mat new_mat[y] = mlog_p_val new_mat[new_mat < 0] = np.max(new_mat) # Replace all "-1"s with the largest -log(p) return new_mat
bfb987bd2e2d0770d81f811ba2486893b62d269d
16,710
def paginate(data, page=1, per_page=None): """Create a paginated response of the given query set. Arguments: data -- A flask_mongoengine.BaseQuerySet instance """ per_page = app.config['DEFAULT_PER_PAGE'] if not per_page else per_page pagination_obj = data.paginate(page=page, per_page=per_page) return { 'data': build_pagination_data(pagination_obj), 'meta': build_pagination_metadata(pagination_obj), }
c5a692067e5f58a971762316c83bcfe6f75051bf
16,711
def compute_mean_wind_dirs(res_path, dset, gids, fracs): """ Compute mean wind directions for given dset and gids """ with Resource(res_path) as f: wind_dirs = np.radians(f[dset, :, gids]) sin = np.mean(np.sin(wind_dirs) * fracs, axis=1) cos = np.mean(np.cos(wind_dirs) * fracs, axis=1) mean_wind_dirs = np.degrees(np.arctan2(sin, cos)) mask = mean_wind_dirs < 0 mean_wind_dirs[mask] += 360 return mean_wind_dirs
bd3f91cc0f4b05f630d252f6026e3f27c56cd134
16,712
import numpy def plot_area_and_score(samples: SampleList, compound_name: str, include_none: bool = False): """ Plot the peak area and score for the compound with the given name :param samples: A list of samples to plot on the chart :param compound_name: :param include_none: Whether samples where the compound was not found should be plotted. """ peak_areas, scores = samples.get_areas_and_scores(compound_name, include_none) fig, ax1 = plt.subplots() y_positions = numpy.arange(len(peak_areas)) y_positions = [x * 1.5 for x in y_positions] bar_width = 0.5 offset = bar_width / 2 area_y_pos = [x + offset for x in y_positions] area_bar = ax1.barh( area_y_pos, list(peak_areas.values()), label="Peak Area", color="tab:orange", height=bar_width, ) ax1.set_xscale("log") ax1.set_xlabel("Log10(Peak Area)") ax2 = ax1.twiny() score_scatter = ax2.scatter(list(scores.values()), area_y_pos, label="Score", color="tab:blue") ax2.set_xlabel("Score") ax1.barh([], [], label="Score", color="tab:blue", height=bar_width) ax1.set_yticks(y_positions) ax1.set_yticklabels(list(peak_areas.keys())) fig.suptitle(f"Peak Area and Score for {compound_name}\n") fig.set_size_inches(A4_landscape) plt.tight_layout() plt.subplots_adjust(top=0.9) ax1.legend() return fig, ax1, ax2
cce2dd3c3fca742627dca5c893f498d83e0d7840
16,713
def get_strides(fm: NpuFeatureMap) -> NpuShape3D: """Calculates STRIDE_C/Y/X""" if fm.strides is not None: return fm.strides elem_size = fm.data_type.size_in_bytes() if fm.layout == NpuLayout.NHWC: stride_c = elem_size stride_x = fm.shape.depth * stride_c stride_y = fm.shape.width * stride_x else: stride_x = 16 * elem_size stride_c = stride_x * fm.shape.width stride_y = elem_size * fm.shape.width * numeric_util.round_up(fm.shape.depth, 16) return NpuShape3D(depth=stride_c, height=stride_y, width=stride_x)
e933fd3b06fb53e44b81bcb28341137a14990dec
16,714
def gram_linear(x): """Compute Gram (kernel) matrix for a linear kernel. Args: x: A num_examples x num_features matrix of features. Returns: A num_examples x num_examples Gram matrix of examples. """ return x.dot(x.T)
f0a625d3ca6b846396c3c7c723b1bc8130a6c140
16,715
def to_feature(shape, properties={}): """ Create a GeoJSON Feature object for the given shapely.geometry :shape:. Optionally give the Feature a :properties: dict. """ collection = to_feature_collection(shape) feature = collection["features"][0] feature["properties"] = properties # remove some unecessary and redundant data if "id" in feature: del feature["id"] if isinstance(shape, shapely.geometry.Point) and "bbox" in feature: del feature["bbox"] return dict(feature)
39d8e7658ae2043c081d137f0a69ddd4344876fc
16,716
def read_responses(file): """ Read dialogs from file :param file: str, file path to the dataset :return: list, a list of dialogue (context) contained in file """ with open(file, 'r') as f: samples = f.read().split('<|endoftext|>') samples = samples[1:] # responses = [i.strip() for i in f.readlines() if len(i.strip()) != 0] return samples
e654a075622f04c3eca6c18e3d092593387ef237
16,717
def build_parametric_ev(data, onset, name, value, duration=None, center=None, scale=None): """Make design info for a multi-column constant-value ev. Parameters ---------- data : DataFrame Input data; must have "run" column and any others specified. onset : string Column name containing event onset information. name : string Condition name to use for this ev. value : string Column name containing event amplitude information. duration : string, float, or ``None`` Column name containing event duration information, or a value to use for all events, or ``None`` to model events as impulses. center : float, optional Value to center the ``value`` column at before scaling. If absent, center at the mean across runs. scale : callable, optional Function to scale the centered value column with. Returns ------- ev : DataFrame Returned DataFrame will have "run", "onset", "duration", "value", and "condition" columns. """ ev = data[["run", onset, value]].copy() ev.columns = ["run", "onset", "value"] # Center the event amplitude if center is None: ev["value"] -= ev.value.mean() else: ev["value"] = ev.value - center # (Possibly) scale the event amplitude if scale is not None: ev["value"] = scale(ev["value"]) # Set a condition name for all events ev["condition"] = name # Determine the event duration ev = _add_duration_information(data, ev, duration) return ev
47400052e2b2f4bf8217d9eaf71a83257180f5c4
16,718
import operator import bisect def time_aware_indexes(t, train_size, test_size, granularity, start_date=None): """Return a list of indexes that partition the list t by time. Sorts the list of dates t before dividing into training and testing partitions, ensuring a 'history-aware' split in the ensuing classification task. Args: t (np.ndarray): Array of timestamp tags. train_size (int): The training window size W (in τ). test_size (int): The testing window size Δ (in τ). granularity (str): The unit of time τ, used to denote the window size. Acceptable values are 'year|quarter|month|week|day'. start_date (date): The date to begin partioning from (eg. to align with the start of the year). Returns: (list, list): Indexing for the training partition. List of indexings for the testing partitions. """ # Order the dates as well as their original positions with_indexes = zip(t, range(len(t))) ordered = sorted(with_indexes, key=operator.itemgetter(0)) # Split out the dates from the indexes dates = [tup[0] for tup in ordered] indexes = [tup[1] for tup in ordered] # Get earliest date start_date = utils.resolve_date(start_date) if start_date else ordered[0][0] # Slice out training partition boundary = start_date + get_relative_delta(train_size, granularity) to_idx = bisect.bisect_left(dates, boundary) train = indexes[:to_idx] tests = [] # Slice out testing partitions while to_idx < len(indexes): boundary += get_relative_delta(test_size, granularity) from_idx = to_idx to_idx = bisect.bisect_left(dates, boundary) tests.append(indexes[from_idx:to_idx]) return train, tests
96e27c7a3f7284476d615a8d03f7c365f0406187
16,719
def send_invite_mail(invite, request): """ Send an email invitation to user not yet registered in the system. :param invite: ProjectInvite object :param request: HTTP request :return: Amount of sent email (int) """ invite_url = build_invite_url(invite, request) message = get_invite_body( project=invite.project, issuer=invite.issuer, role_name=invite.role.name, invite_url=invite_url, date_expire_str=localtime(invite.date_expire).strftime( '%Y-%m-%d %H:%M' ), ) message += get_invite_message(invite.message) message += get_email_footer() subject = get_invite_subject(invite.project) return send_mail(subject, message, [invite.email], request)
4554bb6bea20e03749739026583d6215714febbf
16,720
import os import json import google def get_credentials(quota_project_id=None): """Obtain credentials object from json file and environment configuration.""" credentials_path = os.environ.get("GOOGLE_APPLICATION_CREDENTIALS") with open(credentials_path, "r", encoding="utf8") as file_handle: credentials_data = file_handle.read() credentials_dict = json.loads(credentials_data) if "client_email" in credentials_dict: return service_account.Credentials.from_service_account_file(credentials_path) if "audience" in credentials_dict: return identity_pool.Credentials.from_info(credentials_dict) return google.auth.default(quota_project_id=quota_project_id)[0]
b88c2de4adb034d7373fc8191ecc590c2201d344
16,721
def binary_n(total_N, min_n=50): """ Creates a list of values by successively halving the total length total_N until the resulting value is less than min_n. Non-integer results are rounded down. Args: total_N (int): total length Kwargs: min_n (int): minimal length after division Returns: list of integers: total_N/2, total_N/4, total_N/8, ... until total_N/2^i < min_n """ max_exp = np.log2(1.0 * total_N / min_n) max_exp = int(np.floor(max_exp)) return [int(np.floor(1.0 * total_N / (2**i))) for i in range(1, max_exp + 1)]
240296c6024243da5750cb5aa7e64bea45ae91ca
16,722
def thresholding(pred,label,thres): """ Given the threshold return boolean matrix with 1 if > thres 0 if <= 1 """ conf =[] for i in thres: pr_th,lab_th = (pred>i),(label>i) conf += confusion(pr_th,lab_th) return np.array(conf).reshape(-1,4)
97727a75b4f7648c82a095c7804709e9a52f13ed
16,723
def unicode_test(request, oid): """Simple view to test funky characters from the database.""" funky = News.objects.using('livewhale').get(pk=oid) return render(request, 'bridge/unicode.html', {'funky': funky})
8357d76bfc22fdc3f12176332a4b19fd3bfb79c9
16,724
from typing import Optional from typing import Dict from typing import Any def _field_to_schema_object(field: BaseType, apistrap: Optional[Apistrap]) -> Optional[Dict[str, Any]]: """ Convert a field definition to OpenAPI 3 schema. :param field: the field to be converted :param apistrap: the extension used for adding reusable schema definitions :return: a schema """ if isinstance(field, ModelType): return _model_field_to_schema_object(field, apistrap) elif isinstance(field, ListType): if isinstance(field.field, ModelType): return _model_array_to_schema_object(field, apistrap) elif isinstance(field.field, BaseType): return _primitive_array_to_schema_object(field) elif isinstance(field, DictType): if isinstance(field.field, ModelType): return _model_dict_to_schema_object(field, apistrap) elif isinstance(field.field, UnionType): return _union_dict_to_schema_object(field, apistrap) elif isinstance(field.field, ListType) and isinstance(field.field.field, ModelType): return _dict_of_model_lists_to_schema_object(field, apistrap) elif isinstance(field.field, BaseType): return _primitive_dict_to_schema_object(field) elif isinstance(field, StringType): return _string_field_to_schema_object(field, apistrap) elif isinstance(field, AnyType): return {} elif isinstance(field, UnionType): return _union_field_to_schema_object(field, apistrap) elif isinstance(field, DiscriminatedModelType): return _discriminated_model_field_to_schema_object(field, apistrap) elif isinstance(field, PolyModelType): return _poly_model_field_to_schema_object(field, apistrap) elif isinstance(field, BaseType): return _primitive_field_to_schema_object(field) return None
1451f8795dc39d3168c141fd0ad8dd2615903163
16,725
import os import subprocess def linux_gcc_name(): """Returns the name of the `gcc` compiler. Might happen that we are cross-compiling and the compiler has a longer name. Args: None Returns: str: Name of the `gcc` compiler or None """ cc_env = os.getenv('CC') if cc_env is not None: if subprocess.Popen([cc_env, "--version"], stdout=subprocess.DEVNULL): return cc_env return "gcc" if subprocess.Popen(["gcc", "--version"], stdout=subprocess.DEVNULL) else None
47cf0ee9af4b1b7c9169632b86bc9b5e1db96ad3
16,726
from typing import Dict from typing import Any def drop_test(robot, *, z_rot: float, min_torque: bool, initial_height: float = 1.) -> Dict[str, Any]: """Params which have been tested for this task: nfe = 20, total_time = 1.0, vary_timestep_with=(0.8,1.2), 5 mins for solving if min_torque is True, quite a bit more time is needed as IPOPT refines things """ nfe = len(robot.m.fe) ncp = len(robot.m.cp) tested_models = ('3D monoped', '3D biped', '3D quadruped', '3D prismatic monoped') if not robot.name in tested_models: visual.warn( f'This robot configuration ("{robot.name}") hasn\'t been tested!\n' f'Tested models are: {tested_models}') body = robot['base_B'] if robot.name == '3D quadruped' else robot['base'] # start at the origin body['q'][1, ncp, 'x'].fix(0) body['q'][1, ncp, 'y'].fix(0) body['q'][1, ncp, 'z'].fix(initial_height) # fix initial angle for link in robot.links: for ang in ('phi', 'theta'): link['q'][1, ncp, ang].fix(0) link['q'][1, ncp, 'psi'].fix(z_rot) # start stationary for link in robot.links: for q in link.pyomo_sets['q_set']: link['dq'][1, ncp, q].fix(0) # init to y plane for link in robot.links: for ang in ('phi', 'theta'): link['q'][:, :, ang].value = 0 link['q'][:, :, 'psi'].value = z_rot # legs slightly forward at the end uplopairs = (('upper', 'lower'),) if robot.name == '3D monoped' \ else (('UL', 'LL'), ('UR', 'LR')) if robot.name == '3D biped' \ else (('UFL', 'LFL'), ('UFR', 'LFR'), ('UBL', 'LBL'), ('UBR', 'LBR')) if robot.name == '3D quadruped' \ else tuple() # <- iterating over this will result in the body not being evaluated for upper, lower in uplopairs: ang = 0.01 if not ( robot.name == '3D quadruped' and upper[1] == 'B') else -0.01 robot[upper]['q'][nfe, ncp, 'theta'].setlb(ang) robot[lower]['q'][nfe, ncp, 'theta'].setub(-ang) # but not properly fallen over body['q'][nfe, ncp, 'z'].setlb(0.2) # objective: reduce CoT, etc utils.remove_constraint_if_exists(robot.m, 'cost') torque_cost = torque_squared_penalty(robot) pen_cost = feet_penalty(robot) robot.m.cost = Objective(expr=(torque_cost if min_torque else 0) + 1000*pen_cost) return {'torque': torque_cost, 'penalty': pen_cost}
e6a070fd52356a314e5d2992d03fa61ead40f950
16,727
from typing import List from typing import Union from datetime import datetime from typing import Dict from typing import Any import httpx from typing import cast def get_user_list( *, client: Client, an_enum_value: List[AnEnum], some_date: Union[date, datetime], ) -> Union[ List[AModel], HTTPValidationError, ]: """ Get a list of things """ url = "{}/tests/".format(client.base_url) headers: Dict[str, Any] = client.get_headers() json_an_enum_value = [] for an_enum_value_item_data in an_enum_value: an_enum_value_item = an_enum_value_item_data.value json_an_enum_value.append(an_enum_value_item) if isinstance(some_date, date): json_some_date = some_date.isoformat() else: json_some_date = some_date.isoformat() params: Dict[str, Any] = { "an_enum_value": json_an_enum_value, "some_date": json_some_date, } response = httpx.get(url=url, headers=headers, params=params,) if response.status_code == 200: return [AModel.from_dict(item) for item in cast(List[Dict[str, Any]], response.json())] if response.status_code == 422: return HTTPValidationError.from_dict(cast(Dict[str, Any], response.json())) else: raise ApiResponseError(response=response)
77ca30fafb6c29f4cb04d25b52b7cca37e3ede04
16,728
def old_func5(self, x): """Summary. Bizarre indentation. """ return x
5bc9cdbc406fa49960613578296e81bdd4eeb771
16,729
def set_( computer_policy=None, user_policy=None, cumulative_rights_assignments=True, adml_language="en-US", ): """ Set a local server policy. Args: computer_policy (dict): A dictionary of "policyname: value" pairs of computer policies to set. 'value' should be how it is displayed in the gpedit GUI, i.e. if a setting can be 'Enabled'/'Disabled', then that should be passed Administrative Template data may require dicts within dicts, to specify each element of the Administrative Template policy. Administrative Templates policies are always cumulative. Policy names can be specified in a number of ways based on the type of policy: Windows Settings Policies: These policies can be specified using the GUI display name or the key name from the _policy_info class in this module. The GUI display name is also contained in the _policy_info class in this module. Administrative Template Policies: These can be specified using the policy name as displayed in the GUI (case sensitive). Some policies have the same name, but a different location (for example, "Access data sources across domains"). These can be differentiated by the "path" in the GUI (for example, "Windows Components\\Internet Explorer\\Internet Control Panel\\Security Page\\Internet Zone\\Access data sources across domains"). Additionally, policies can be specified using the "name" and "id" attributes from the ADMX files. For Administrative Templates that have policy elements, each element can be specified using the text string as seen in the GUI or using the ID attribute from the ADMX file. Due to the way some of the GUI text is laid out, some policy element names could include descriptive text that appears lbefore the policy element in the GUI. Use the get_policy_info function for the policy name to view the element ID/names that the module will accept. user_policy (dict): The same setup as the computer_policy, except with data to configure the local user policy. cumulative_rights_assignments (bool): Determine how user rights assignment policies are configured. If True, user right assignment specifications are simply added to the existing policy If False, only the users specified will get the right (any existing will have the right revoked) adml_language (str): The language files to use for looking up Administrative Template policy data (i.e. how the policy is displayed in the GUI). Defaults to 'en-US' (U.S. English). Returns: bool: True is successful, otherwise False CLI Example: .. code-block:: bash salt '*' lgpo.set computer_policy="{'LockoutDuration': 2, 'RestrictAnonymous': 'Enabled', 'AuditProcessTracking': 'Succes, Failure'}" """ if computer_policy and not isinstance(computer_policy, dict): raise SaltInvocationError("computer_policy must be specified as a dict") if user_policy and not isinstance(user_policy, dict): raise SaltInvocationError("user_policy must be specified as a dict") policies = {} policies["User"] = user_policy policies["Machine"] = computer_policy if policies: adml_policy_resources = _get_policy_resources(language=adml_language) for p_class in policies: _secedits = {} _netshs = {} _advaudits = {} _modal_sets = {} _admTemplateData = {} _regedits = {} _lsarights = {} _policydata = _policy_info() if policies[p_class]: for policy_name in policies[p_class]: _pol = None policy_key_name = policy_name if policy_name in _policydata.policies[p_class]["policies"]: _pol = _policydata.policies[p_class]["policies"][policy_name] else: # Case-sensitive search first for policy in _policydata.policies[p_class]["policies"]: _p = _policydata.policies[p_class]["policies"][policy][ "Policy" ] if _p == policy_name: _pol = _policydata.policies[p_class]["policies"][policy] policy_key_name = policy if _pol is None: # Still not found, case-insensitive search for policy in _policydata.policies[p_class]["policies"]: _p = _policydata.policies[p_class]["policies"][policy][ "Policy" ] # Case-sensitive search first if _p.lower() == policy_name.lower(): _pol = _policydata.policies[p_class]["policies"][ policy ] policy_key_name = policy if _pol: # transform and validate the setting _value = _transform_value( value=policies[p_class][policy_name], policy=_policydata.policies[p_class]["policies"][ policy_key_name ], transform_type="Put", ) if not _validateSetting( value=_value, policy=_policydata.policies[p_class]["policies"][ policy_key_name ], ): raise SaltInvocationError( "The specified value {} is not an acceptable setting" " for policy {}.".format( policies[p_class][policy_name], policy_name ) ) if "Registry" in _pol: # set value in registry log.trace("%s is a registry policy", policy_name) _regedits[policy_name] = {"policy": _pol, "value": _value} elif "Secedit" in _pol: # set value with secedit log.trace("%s is a Secedit policy", policy_name) if _pol["Secedit"]["Section"] not in _secedits: _secedits[_pol["Secedit"]["Section"]] = [] _secedits[_pol["Secedit"]["Section"]].append( " ".join([_pol["Secedit"]["Option"], "=", str(_value)]) ) elif "NetSH" in _pol: # set value with netsh log.trace("%s is a NetSH policy", policy_name) _netshs.setdefault( policy_name, { "profile": _pol["NetSH"]["Profile"], "section": _pol["NetSH"]["Section"], "option": _pol["NetSH"]["Option"], "value": str(_value), }, ) elif "AdvAudit" in _pol: # set value with advaudit _advaudits.setdefault( policy_name, { "option": _pol["AdvAudit"]["Option"], "value": str(_value), }, ) elif "NetUserModal" in _pol: # set value via NetUserModal log.trace("%s is a NetUserModal policy", policy_name) if _pol["NetUserModal"]["Modal"] not in _modal_sets: _modal_sets[_pol["NetUserModal"]["Modal"]] = {} _modal_sets[_pol["NetUserModal"]["Modal"]][ _pol["NetUserModal"]["Option"] ] = _value elif "LsaRights" in _pol: log.trace("%s is a LsaRights policy", policy_name) _lsarights[policy_name] = {"policy": _pol, "value": _value} else: _value = policies[p_class][policy_name] log.trace('searching for "%s" in admx data', policy_name) ( success, the_policy, policy_name_list, msg, ) = _lookup_admin_template( policy_name=policy_name, policy_class=p_class, adml_language=adml_language, ) if success: policy_name = the_policy.attrib["name"] policy_namespace = the_policy.nsmap[the_policy.prefix] if policy_namespace not in _admTemplateData: _admTemplateData[policy_namespace] = {} _admTemplateData[policy_namespace][policy_name] = _value else: raise SaltInvocationError(msg) if ( policy_namespace and policy_name in _admTemplateData[policy_namespace] and the_policy is not None ): log.trace( "setting == %s", str( _admTemplateData[policy_namespace][policy_name] ).lower(), ) log.trace( str( _admTemplateData[policy_namespace][policy_name] ).lower() ) if ( str( _admTemplateData[policy_namespace][policy_name] ).lower() != "disabled" and str( _admTemplateData[policy_namespace][policy_name] ).lower() != "not configured" ): if ELEMENTS_XPATH(the_policy): if isinstance( _admTemplateData[policy_namespace][policy_name], dict, ): for elements_item in ELEMENTS_XPATH(the_policy): for child_item in elements_item: # check each element log.trace( "checking element %s", child_item.attrib["id"], ) temp_element_name = None this_element_name = _getFullPolicyName( policy_item=child_item, policy_name=child_item.attrib["id"], return_full_policy_names=True, adml_language=adml_language, ) log.trace( 'id attribute == "%s" ' ' this_element_name == "%s"', child_item.attrib["id"], this_element_name, ) if ( this_element_name in _admTemplateData[ policy_namespace ][policy_name] ): temp_element_name = ( this_element_name ) elif ( child_item.attrib["id"] in _admTemplateData[ policy_namespace ][policy_name] ): temp_element_name = ( child_item.attrib["id"] ) else: raise SaltInvocationError( 'Element "{}" must be included' " in the policy configuration" " for policy {}".format( this_element_name, policy_name, ) ) if ( "required" in child_item.attrib and child_item.attrib[ "required" ].lower() == "true" ): if not _admTemplateData[ policy_namespace ][policy_name][temp_element_name]: raise SaltInvocationError( 'Element "{}" requires a value ' "to be specified".format( temp_element_name ) ) if ( etree.QName(child_item).localname == "boolean" ): if not isinstance( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ], bool, ): raise SaltInvocationError( "Element {} requires a boolean " "True or False".format( temp_element_name ) ) elif ( etree.QName(child_item).localname == "decimal" or etree.QName(child_item).localname == "longDecimal" ): min_val = 0 max_val = 9999 if "minValue" in child_item.attrib: min_val = int( child_item.attrib[ "minValue" ] ) if "maxValue" in child_item.attrib: max_val = int( child_item.attrib[ "maxValue" ] ) if ( int( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ] ) < min_val or int( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ] ) > max_val ): raise SaltInvocationError( 'Element "{}" value must be between ' "{} and {}".format( temp_element_name, min_val, max_val, ) ) elif ( etree.QName(child_item).localname == "enum" ): # make sure the value is in the enumeration found = False for enum_item in child_item: if ( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ] == _getAdmlDisplayName( adml_policy_resources, enum_item.attrib[ "displayName" ], ).strip() ): found = True break if not found: raise SaltInvocationError( 'Element "{}" does not have' " a valid value".format( temp_element_name ) ) elif ( etree.QName(child_item).localname == "list" ): if ( "explicitValue" in child_item.attrib and child_item.attrib[ "explicitValue" ].lower() == "true" ): if not isinstance( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ], dict, ): raise SaltInvocationError( "Each list item of element " '"{}" requires a dict ' "value".format( temp_element_name ) ) elif not isinstance( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ], list, ): raise SaltInvocationError( 'Element "{}" requires a' " list value".format( temp_element_name ) ) elif ( etree.QName(child_item).localname == "multiText" ): if not isinstance( _admTemplateData[ policy_namespace ][policy_name][ temp_element_name ], list, ): raise SaltInvocationError( 'Element "{}" requires a' " list value".format( temp_element_name ) ) _admTemplateData[policy_namespace][ policy_name ][ child_item.attrib["id"] ] = _admTemplateData[ policy_namespace ][ policy_name ].pop( temp_element_name ) else: raise SaltInvocationError( 'The policy "{}" has elements which must be' " configured".format(policy_name) ) else: if ( str( _admTemplateData[policy_namespace][ policy_name ] ).lower() != "enabled" ): raise SaltInvocationError( 'The policy {} must either be "Enabled", ' '"Disabled", or "Not Configured"'.format( policy_name ) ) if _regedits: for regedit in _regedits: log.trace("%s is a Registry policy", regedit) # if the value setting is None or "(value not set)", we will delete the value from the registry if ( _regedits[regedit]["value"] is not None and _regedits[regedit]["value"] != "(value not set)" ): _ret = __utils__["reg.set_value"]( _regedits[regedit]["policy"]["Registry"]["Hive"], _regedits[regedit]["policy"]["Registry"]["Path"], _regedits[regedit]["policy"]["Registry"]["Value"], _regedits[regedit]["value"], _regedits[regedit]["policy"]["Registry"]["Type"], ) else: _ret = __utils__["reg.read_value"]( _regedits[regedit]["policy"]["Registry"]["Hive"], _regedits[regedit]["policy"]["Registry"]["Path"], _regedits[regedit]["policy"]["Registry"]["Value"], ) if _ret["success"] and _ret["vdata"] != "(value not set)": _ret = __utils__["reg.delete_value"]( _regedits[regedit]["policy"]["Registry"]["Hive"], _regedits[regedit]["policy"]["Registry"]["Path"], _regedits[regedit]["policy"]["Registry"]["Value"], ) if not _ret: raise CommandExecutionError( "Error while attempting to set policy {} via the" " registry. Some changes may not be applied as" " expected".format(regedit) ) if _lsarights: for lsaright in _lsarights: _existingUsers = None if not cumulative_rights_assignments: _existingUsers = _getRightsAssignments( _lsarights[lsaright]["policy"]["LsaRights"]["Option"] ) if _lsarights[lsaright]["value"]: for acct in _lsarights[lsaright]["value"]: _ret = _addAccountRights( acct, _lsarights[lsaright]["policy"]["LsaRights"][ "Option" ], ) if not _ret: raise SaltInvocationError( "An error occurred attempting to configure the" " user right {}.".format(lsaright) ) if _existingUsers: for acct in _existingUsers: if acct not in _lsarights[lsaright]["value"]: _ret = _delAccountRights( acct, _lsarights[lsaright]["policy"]["LsaRights"][ "Option" ], ) if not _ret: raise SaltInvocationError( "An error occurred attempting to remove previously " "configured users with right {}.".format( lsaright ) ) if _secedits: # we've got secedits to make log.trace(_secedits) ini_data = "\r\n".join(["[Unicode]", "Unicode=yes"]) _seceditSections = [ "System Access", "Event Audit", "Registry Values", "Privilege Rights", ] for _seceditSection in _seceditSections: if _seceditSection in _secedits: ini_data = "\r\n".join( [ ini_data, "".join(["[", _seceditSection, "]"]), "\r\n".join(_secedits[_seceditSection]), ] ) ini_data = "\r\n".join( [ini_data, "[Version]", 'signature="$CHICAGO$"', "Revision=1"] ) log.trace("ini_data == %s", ini_data) if not _write_secedit_data(ini_data): raise CommandExecutionError( "Error while attempting to set policies via " "secedit. Some changes may not be applied as " "expected" ) if _netshs: # we've got netsh settings to make for setting in _netshs: log.trace("Setting firewall policy: %s", setting) log.trace(_netshs[setting]) _set_netsh_value(**_netshs[setting]) if _advaudits: # We've got AdvAudit settings to make for setting in _advaudits: log.trace("Setting Advanced Audit policy: %s", setting) log.trace(_advaudits[setting]) _set_advaudit_value(**_advaudits[setting]) if _modal_sets: # we've got modalsets to make log.trace(_modal_sets) for _modal_set in _modal_sets: try: _existingModalData = win32net.NetUserModalsGet( None, _modal_set ) _newModalSetData = dictupdate.update( _existingModalData, _modal_sets[_modal_set] ) log.trace("NEW MODAL SET = %s", _newModalSetData) _ret = win32net.NetUserModalsSet( None, _modal_set, _newModalSetData ) # TODO: This needs to be more specific except Exception as exc: # pylint: disable=broad-except msg = ( "An unhandled exception occurred while " "attempting to set policy via " "NetUserModalSet\n{}".format(exc) ) log.exception(msg) raise CommandExecutionError(msg) if _admTemplateData: _ret = False log.trace( "going to write some adm template data :: %s", _admTemplateData ) _ret = _writeAdminTemplateRegPolFile( _admTemplateData, adml_language=adml_language, registry_class=p_class, ) if not _ret: raise CommandExecutionError( "Error while attempting to write Administrative Template" " Policy data. Some changes may not be applied as expected" ) return True else: raise SaltInvocationError("You have to specify something!")
ee000c61cf4eb0653367340d87160b2e8e0f09d2
16,730
def get_dotenv_variable(var_name: str) -> str: """ """ try: return config.get(var_name) except KeyError: error_msg = f"{var_name} not found!\nSet the '{var_name}' environment variable" raise ImproperlyConfigured(error_msg)
e3a06f3a439f5eb238688805985fb54eea7221e4
16,731
def load_dataset(): """ Create a PyTorch Dataset for the images. Notes ----- - See https://discuss.pytorch.org/t/computing-the-mean-and-std-of-dataset/34949 """ transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.9720, 0.9720, 0.9720), (0.1559, 0.1559, 0.1559)) # Normalize with the mean and std of the whole dataset ]) dataset = ImageFolder(root='images', transform=transform) return dataset
204e33cb7cb79ef81349b083e21ed6779c04dad0
16,732
import sys def load(): """Load list of available storage managers.""" storage_type = config.get("rights", "type") if storage_type == "custom": rights_module = config.get("rights", "custom_handler") __import__(rights_module) module = sys.modules[rights_module] else: root_module = __import__("rights.regex", globals=globals(), level=2) module = root_module.regex sys.modules[__name__].authorized = module.authorized return module
f65c76af008c4cf2d41347d84815921d6897edc7
16,733
def vote(pred1, pred2, pred3=None): """Hard voting for the ensembles""" vote_ = [] index = [] if pred3 is None: mean = np.mean([pred1, pred2], axis=0) for s, x in enumerate(mean): if x == 1 or x == 0: vote_.append(int(x)) else: vote_.append(pred2[s]) index.append(s) else: mean = np.mean([pred1, pred2, pred3], axis=0) for s, x in enumerate(mean): if x == 1 or x == 0: vote_.append(int(x)) elif x > 0.5: vote_.append(1) index.append(s) else: vote_.append(0) index.append(s) return mean, vote_, index
a24858c0f14fe51a70ff2c0146a4e1aa3a2afdeb
16,734
from pathlib import Path def generate_master_flat( science_frame : CCDData, bias_path : Path, dark_path : Path, flat_path : Path, use_cache : bool=True ) -> CCDData: """ """ cache_path = generate_cache_path(science_frame, flat_path) / 'flat' if use_cache and cache_path.is_dir(): flat_frames = ccdp.ImageFileCollection(location=cache_path) else: cache_path.mkdir(parents=True, exist_ok=True) flat_frames = calibrate_flat(science_frame=science_frame, bias_path=bias_path, dark_path=dark_path, flat_path=flat_path, output_path=cache_path) ccd = select_flat_frame(science_frame=science_frame, flat_frames=flat_frames) return ccd
5448e6f95e1d2c9249ac9419c767e675dc424c5b
16,735
def natrix_mqttclient(client_id): """Generate a natrix mqtt client. This function encapsulates all configurations about natrix mqtt client. Include: - client_id The unique id about mqtt connection. - username & password Username is device serial number which used to identify who am I; :return: """ client = NatrixMQTTClient(client_id) return client
20960873f265068aff035ec554b880fa93c49e32
16,736
def insert_singletons(words, singletons, p=0.5): """ Replace singletons by the unknown word with a probability p. """ new_words = [] for word in words: if word in singletons and np.random.uniform() < p: new_words.append(0) else: new_words.append(word) return new_words
c99e9ed38287c175cd97f9cec0c0f8fb8f3629a7
16,737
def talk(text, is_yelling=False, trim=False, verbose=True): """ Prints text is_yelling capitalizes text trim - trims whitespace from both ends verbose - if you want to print something on screen returns transformed text """ if trim: text = text.strip() if is_yelling: text = text.upper() if verbose: print(text) # printing is considered a side effect inside a function return text
22728a877460b4504653e2a0ea9ecdf81fa422f9
16,738
def getNorthPoleAngle(target, position, C, B, camera): """ Get angle north pole of target makes with image y-axis, in radians. """ # get target spin axis # the last row of the matrix is the north pole vector, *per spice docs* # seems correct, as it's nearly 0,0,1 Bz = B[2] print 'Bz=north pole spin axis',Bz # get target radius, km nvalues, radii = spice.bodvrd(target, 'RADII', 3) targetRadiusEquator = (radii[0] + radii[1]) / 2 targetRadiusPoles = radii[2] targetRadius = sum(radii) / 3 # flatteningCoefficient = (targetRadiusEquator - targetRadiusPoles) / targetRadiusEquator # print 'target radius in km', targetRadius # get north pole location positionNP = position + targetRadius * Bz print 'positionNP=north pole in world coords', positionNP # get target position in camera space c = np.dot(C, position) cNP = np.dot(C, positionNP) print 'c=position in camera space',c print 'cNP=north pole in camera space',cNP # get camera fov and focal length fovDegrees = config.cameraFOVs[camera] # 0.424 or 3.169 deg fovRadians = fovDegrees * math.pi / 180 f = 1.0 / math.tan(fovRadians/2) # focal length (relative to screen halfwidth of 1.0) print 'f=focal length',f # get camera-to-screen matrix S cz = c[2] fz = f/cz # print 'fz=f/cz',fz S = np.array([[fz,0,0],[0,fz,0]]) # get screen coordinate (-1 to 1, -1 to 1) s = np.dot(S, c) sNP = np.dot(S, cNP) # ie sx=cx*f/cz; sy=cy*f/cz print 's=screen space (-1 to 1)',s print 'sNP=screen space north pole (-1 to 1)',sNP # get angle between north pole and image y-axis npDelta = sNP-s npRadians = math.atan(npDelta[0]/npDelta[1]) npAngle = npRadians * 180/math.pi print 'npAngle',npAngle return npRadians
cf6d79ef3af005a170694d5fe00b93e9dd2665dd
16,739
def ray_casting(polygon, ray_line): """ checks number of intersection a ray makes with polygon parameters: Polygon, ray (line) output: number of intersection """ vertex_num = polygon.get_count() ray_casting_result = [False] * vertex_num ''' count for vertices that is colinear and intersects with ray ''' vertex_colinear_intersect_with_ray = 0 cursor = polygon.head for index in range(vertex_num): edge = LineSegment(cursor.data, cursor.next.data) ray_casting_result[index] = does_lines_intersect(edge, ray_line) cursor = cursor.next ''' added to check whether vertex is colinear with ray ''' if is_vertex_colinear(ray_line, cursor.data) and ray_casting_result[index]: vertex_colinear_intersect_with_ray = vertex_colinear_intersect_with_ray + 1 # print(ray_casting_result) # print(vertex_colinear_intersect_with_ray) ''' adjusted for colinear vertices ''' return ray_casting_result.count(True) - vertex_colinear_intersect_with_ray
004c73fbef35bec5af35b6b93cc5b2bdb2e40f33
16,740
import os import subprocess import re import glob import shutil from pathlib import Path def main_install(args, config=None): """ Main function for the 'install' command. """ if not config: # Load configuration file config = autokernel.config.load_config(args.autokernel_config) # Use correct umask when installing saved_umask = os.umask(config.install.umask.value) # Mount new_mounts = [] for i in config.install.mount: if not os.access(i, os.R_OK): log.die("Permission denied on accessing '{}'. Aborting.".format(i)) if not os.path.ismount(i): log.info("Mounting {}".format(i)) new_mounts.append(i) try: subprocess.run(['mount', '--', i], check=True) except subprocess.CalledProcessError as e: log.die("Could not mount '{}', mount returned code {}. Aborting.".format(i, e.returncode)) # Check mounts for i in config.install.mount + config.install.assert_mounted: if not os.access(i, os.R_OK): log.die("Permission denied on accessing '{}'. Aborting.".format(i)) if not os.path.ismount(i): log.die("'{}' is not mounted. Aborting.".format(i)) # Execute pre hook execute_command(args, 'install.hooks.pre', config.install.hooks.pre, replace_common_vars) kernel_version = autokernel.kconfig.get_kernel_version(args.kernel_dir) target_dir = replace_common_vars(args, config.install.target_dir) # Config output is "{KERNEL_DIR}/.config" config_output = os.path.join(args.kernel_dir, '.config.autokernel') # Initramfs basename "initramfs-{KERNEL_VERSION}.cpio" # The .cpio suffix is cruical, as the kernel makefile requires it to detect initramfs archives initramfs_basename = 'initramfs-{}.cpio'.format(kernel_version) # Initramfs output is "{KERNEL_DIR}/initramfs-{KERNEL_VERSION}.cpio" initramfs_output = os.path.join(args.kernel_dir, initramfs_basename) # bzImage output bzimage_output = os.path.join(args.kernel_dir, 'arch', autokernel.kconfig.get_uname_arch(), 'boot/bzImage') def _purge_old(path): keep_old = config.install.keep_old.value # Disable purging on negative count if keep_old < 0: return # Disable purging for non versionated paths if not '{KERNEL_VERSION}' in path: return tokens = path.split('{KERNEL_VERSION}') if len(tokens) > 2: log.warn("Cannot purge path with more than one {{KERNEL_VERSION}} token: '{}'".format(path)) return re_semver = re.compile(r'^[\d\.]+\d') def _version_sorter(i): suffix = i[len(tokens[0]):] basename = suffix.split('/')[0] st = os.stat(i) try: time_create = st.st_birthtime except AttributeError: time_create = st.st_mtime semver = re_semver.match(basename).group() val = autokernel.config.semver_to_int(semver) return val, time_create escaped_kv = re.escape('{KERNEL_VERSION}') # matches from {KERNEL_VERSION} until first / exclusive in an regex escaped path match_basename = re.compile(re.escape(escaped_kv) + r"(.+?(?=\\\/|$)).*$") # derive regex to check if a valid semver is contained and prefix and suffix are given re_match_valid_paths = re.compile('^' + match_basename.sub(lambda m: r'[0-9]+(\.[0-9]+(\.[0-9]+)?)?(-[^\/]*)?' + m.group(1) + r'.*$', re.escape(path))) # matches from {KERNEL_VERSION} until first / exclusive in a normal path re_replace_wildcard = re.compile(escaped_kv + r"[^\/]*") # replace {KERNEL_VERSION}-* component with * wildcard_path = re_replace_wildcard.sub('*', glob.escape(path)) # sort out paths that don't contain valid semvers valid_globbed = [i for i in glob.glob(wildcard_path) if re_match_valid_paths.match(i)] for i in sorted(valid_globbed, key=_version_sorter)[:-(keep_old + 1)]: # For security, we will not call rmtree on a path that doesn't end with a slash, # or if the realpath has less then two slash characters in it. # Otherwise we only call unlink if i[-1] == '/' and os.path.realpath(i).count('/') >= 2: try: shutil.rmtree(i) except OSError as e: log.warn("Could not remove {}: {}".format(i, str(e))) else: try: os.unlink(i) except IOError as e: log.warn("Could not remove {}: {}".format(i, str(e))) def _move_to_old(path): re_old_suffix = re.compile(r'^.*\.old(\.\d+)?\/*$') dst = path + '.old' highest_num = -1 for i in glob.glob(glob.escape(dst) + '*'): m = re_old_suffix.match(i) old_num = int((m.group(1) or '.0')[1:]) if m else 0 if highest_num < old_num: highest_num = old_num if highest_num >= 0: dst += ".{:d}".format(highest_num + 1) shutil.move(path, dst) def _install(name, src, target_var): # If the target is disabled, return. if not target_var: return # Figure out destination, and move existing filed if necessary dst = os.path.join(target_dir, replace_common_vars(args, target_var)) if os.path.exists(dst): _move_to_old(dst) # Create directory if it doesn't exist Path(os.path.dirname(dst)).mkdir(parents=True, exist_ok=True) log.info("Installing {:<11s} {}".format(name + ':', dst)) # Install target file shutil.copyfile(src, dst) # Purge old files _purge_old(os.path.join(target_dir, str(target_var))) # Move target_dir, if it is dynamic if '{KERNEL_VERSION}' in str(config.install.target_dir) and os.path.exists(target_dir): _move_to_old(os.path.realpath(target_dir)) # Load symbols from Kconfig kconfig = autokernel.kconfig.load_kconfig(args.kernel_dir) sym_modules = kconfig.syms['MODULES'] # Install modules if config.install.modules_prefix and sym_modules.str_value != 'n': modules_prefix = str(config.install.modules_prefix) modules_prefix_with_lib = os.path.join(modules_prefix, "lib/modules") modules_dir = os.path.join(modules_prefix_with_lib, kernel_version) if os.path.exists(modules_dir): _move_to_old(os.path.realpath(modules_dir)) log.info("Installing modules: {}".format(modules_prefix_with_lib)) install_modules(args, prefix=modules_prefix) _purge_old(modules_prefix_with_lib + "/{KERNEL_VERSION}/") # Install targets _install('bzimage', bzimage_output, config.install.target_kernel) _install('config', config_output, config.install.target_config) if config.initramfs.enabled: _install('initramfs', initramfs_output, config.install.target_initramfs) # Purge old target_dirs (will only be done if it is dynamic) _purge_old(str(config.install.target_dir) + '/') # Execute post hook execute_command(args, 'install.hooks.post', config.install.hooks.post, replace_common_vars) # Undo what we have mounted for i in reversed(new_mounts): log.info("Unmounting {}".format(i)) try: subprocess.run(['umount', '--', i], check=True) except subprocess.CalledProcessError as e: log.warn("Could not umount '{}' (returned {})".format(i, e.returncode)) # Restore old umask os.umask(saved_umask)
647e2558532274d061c823682e831f928aafaadc
16,741
import logging import os import tqdm def kmeans_clustering_missing(reduced_components, output_path, n_clusters=2, max_iter=10): """ Performs a K-means clustering with missing data. :param reduced_components: reduced components matrix :type reduced_components: np.ndarray :param output_path: path to output directory :type output_path: str :param n_clusters: number of clusters :type n_clusters: int :param max_iter: maximum iterations for convergence :type max_iter: int :return: clustered array, centroids of clusters, filled matrix :rtype: np.ndarray, list, np.ndarray """ logging.basicConfig(filename=os.path.join(output_path, 'clustering_FC_states_missing.log'), level=logging.INFO) # Initialize missing values to their column means missing = ~np.isfinite(reduced_components) mu = np.nanmean(reduced_components, axis=0) X_filled = np.where(missing, mu, reduced_components) for i in tqdm(range(max_iter)): if i > 0: # k means with previous centroids cls = KMeans(n_clusters, init=prev_centroids) else: # do multiple random initializations in parallel cls = KMeans(n_clusters, n_jobs=-1) # perform clustering on the filled-in data labels = cls.fit_predict(X_filled) centroids = cls.cluster_centers_ # fill in the missing values based on their cluster centroids X_filled[missing] = centroids[labels][missing] # when the labels have stopped changing then we have converged if i > 0 and np.all(labels == prev_labels): break prev_labels = labels prev_centroids = cls.cluster_centers_ # perform the silhouette analysis as a metric for the clustering model silhouette_avg = silhouette_score(X_filled, cls.labels_, sample_size=300) logging.info('For n_clusters = {}, the average silhouette score is: {}' .format(n_clusters, silhouette_avg)) logging.info('For n_clusters = {}, the cluster centers are: {} and the ' 'sum of squared distances of samples to their closest ' 'cluster center are: {}'.format(n_clusters, centroids, cls.inertia_)) np.savez(os.path.join(output_path, 'clustered_matrix'), labels) return labels, centroids, X_filled
f6e5310982526b581a99ef2961ea8c5b30008f04
16,742
def ErrorWrapper(err, resource_name): """Wraps http errors to handle resources names with more than 4 '/'s. Args: err: An apitools.base.py.exceptions.HttpError. resource_name: The requested resource name. Returns: A googlecloudsdk.api_lib.util.exceptions.HttpException. """ exc = exceptions.HttpException(err) if exc.payload.status_code == 404: # status_code specific error message exc.error_format = ('{{api_name}}: {resource_name} not found.').format( resource_name=resource_name) else: # override default error message exc.error_format = ('Unknown error. Status code {status_code}.') return exc
ebcce6241f88d0fa4f093f6823d0ccb9ae1bd431
16,743
def get_str_cmd(cmd_lst): """Returns a string with the command to execute""" params = [] for param in cmd_lst: if len(param) > 12: params.append('"{p}"'.format(p=param)) else: params.append(param) return ' '.join(params)
a7cc28293eb381604112265a99b9c03e762c2f2c
16,744
def calculate_score(arr): """Inside calculate_score() check for a blackjack (a hand with only 2 cards: ace + 10) and return 0 instead of the actual score. 0 will represent a blackjack in our game. It check for an 11 (ace). If the score is already over 21, remove the 11 and replace it with a 1""" if sum(arr) == 21 and len(arr) == 2: return 0 # represents blackjack if sum(arr) > 21 and 11 in arr: arr.remove(11) arr.append(1) return sum(arr)
0890c55068b8a92d9f1f577ccf2c5a770f7887d4
16,745
def tt_true(alpha): """Is the propositional sentence alpha a tautology? (alpha will be coerced to an expr.) >>> tt_true(expr("(P >> Q) <=> (~P | Q)")) True """ return tt_entails(TRUE, expr(alpha))
91ca0d445407f50d4b985e16428dfeb7f1e1b5a2
16,746
from e2e_simulators import webbpsf_imaging as webbim import time import os def contrast_jwst_ana_num(matdir, matrix_mode="analytical", rms=1. * u.nm, im_pastis=False, plotting=False): """ Calculate the contrast for an RMS WFE with image PASTIS, matrix PASTIS :param matdir: data directory to use for matrix and calibration coefficients from :param matrix_mode: use 'analytical or 'numerical' matrix :param rms: RMS wavefront error in pupil to calculate contrast for; in NANOMETERS :param im_pastis: default False, whether to also calculate contrast from image PASTIS :param plotting: default False, whether to save E2E and PASTIS DH PSFs; works only if im_pastis=True :return: """ log.warning("THIS ONLY WORKS FOR PISTON FOR NOW") # Keep track of time start_time = time.time() # runtime currently is around 12 min # Parameters dataDir = os.path.join(CONFIG_PASTIS.get('local', 'local_data_path'), matdir) which_tel = CONFIG_PASTIS.get('telescope', 'name') nb_seg = CONFIG_PASTIS.getint(which_tel, 'nb_subapertures') filter = CONFIG_PASTIS.get(which_tel, 'filter_name') fpm = CONFIG_PASTIS.get(which_tel, 'focal_plane_mask') # focal plane mask lyot_stop = CONFIG_PASTIS.get(which_tel, 'pupil_plane_stop') # Lyot stop inner_wa = CONFIG_PASTIS.getint(which_tel, 'IWA') outer_wa = CONFIG_PASTIS.getint(which_tel, 'OWA') tel_size_px = CONFIG_PASTIS.getint('numerical', 'tel_size_px') sampling = CONFIG_PASTIS.getfloat(which_tel, 'sampling') #real_samp = sampling * tel_size_px / im_size zern_number = CONFIG_PASTIS.getint('calibration', 'local_zernike') zern_mode = util.ZernikeMode(zern_number) zern_max = CONFIG_PASTIS.getint('zernikes', 'max_zern') # Import PASTIS matrix matrix_pastis = None if matrix_mode == 'numerical': filename = 'PASTISmatrix_num_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) matrix_pastis = fits.getdata(os.path.join(dataDir, 'matrix_numerical', filename + '.fits')) elif matrix_mode == 'analytical': filename = 'PASTISmatrix_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) matrix_pastis = fits.getdata(os.path.join(dataDir, 'matrix_analytical', filename + '.fits')) # Create random aberration coefficients aber = np.random.random([nb_seg]) # piston values in input units #log.info(f'PISTON ABERRATIONS: {aber}') # Normalize to the RMS value I want rms_init = util.rms(aber) aber *= rms.value / rms_init calc_rms = util.rms(aber) * u.nm aber *= u.nm # making sure the aberration has the correct units log.info(f"Calculated RMS: {calc_rms}") # Remove global piston aber -= np.mean(aber) # Make equivalent aberration array that goes into the WebbPSF function Aber_WSS = np.zeros([nb_seg, zern_max]) Aber_WSS[:,0] = aber.to(u.m).value # index "0" works because we're using piston currently; convert to meters ### BASELINE PSF - NO ABERRATIONS, NO CORONAGRAPH log.info('Generating baseline PSF from E2E - no coronagraph, no aberrations') psf_perfect = webbim.nircam_nocoro(filter, np.zeros_like(Aber_WSS)) normp = np.max(psf_perfect) psf_perfect = psf_perfect / normp ### WEBBPSF log.info('Generating E2E coro contrast') start_webb = time.time() # Set up NIRCam and coronagraph, get PSF psf_webbpsf = webbim.nircam_coro(filter, fpm, lyot_stop, Aber_WSS) psf_webbpsf = psf_webbpsf / normp # Create dark hole dh_area = util.create_dark_hole(psf_webbpsf, inner_wa, outer_wa, sampling) # Get the mean contrast from the WebbPSF coronagraph webb_dh_psf = psf_webbpsf * dh_area contrast_webbpsf = np.mean(webb_dh_psf[np.where(webb_dh_psf != 0)]) end_webb = time.time() #TODO: save plots of phase on segmented pupil # Load in baseline contrast contrastname = 'base-contrast_' + zern_mode.name + '_' + zern_mode.convention + str(zern_mode.index) coro_floor = float(np.loadtxt(os.path.join(dataDir, 'calibration', contrastname+'.txt'))) ### IMAGE PASTIS contrast_am = np.nan if im_pastis: log.info('Generating contrast from image-PASTIS') start_impastis = time.time() # Create calibrated image from analytical model psf_am, full_psf = impastis.analytical_model(zern_number, aber, cali=True) # Get the mean contrast from image PASTIS contrast_am = np.mean(psf_am[np.where(psf_am != 0)]) + coro_floor end_impastis = time.time() ### MATRIX PASTIS log.info('Generating contrast from matrix-PASTIS') start_matrixpastis = time.time() # Get mean contrast from matrix PASTIS contrast_matrix = util.pastis_contrast(aber, matrix_pastis) + coro_floor # calculating contrast with PASTIS matrix model end_matrixpastis = time.time() ratio = None if im_pastis: ratio = contrast_am / contrast_matrix # Outputs log.info('\n--- CONTRASTS: ---') log.info(f'Mean contrast from E2E: {contrast_webbpsf}') log.info(f'Mean contrast with image PASTIS: {contrast_am}') log.info(f'Contrast from matrix PASTIS: {contrast_matrix}') log.info(f'Ratio image PASTIS / matrix PASTIS: {ratio}') log.info('\n--- RUNTIMES: ---') log.info(f'E2E: {end_webb-start_webb}sec = {(end_webb-start_webb)/60}min') if im_pastis: log.info(f'Image PASTIS: {end_impastis-start_impastis}sec = {(end_impastis-start_impastis)/60}min') log.info(f'Matrix PASTIS: {end_matrixpastis-start_matrixpastis}sec = {(end_matrixpastis-start_matrixpastis)/60}min') end_time = time.time() runtime = end_time - start_time log.info(f'Runtime for contrast_calculation_simple.py: {runtime} sec = {runtime/60} min') # Save the PSFs if im_pastis: if plotting: # As fits files util.write_fits(util.zoom_cen(webb_dh_psf, psf_am.shape[0]/2), os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+str(rms.unit)+'RMS_e2e.fits')) util.write_fits(psf_am, os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+str(rms.unit)+'RMS_am.fits')) # As PDF plot plt.clf() plt.figure() plt.suptitle('{:.2e}'.format(rms.value) + str(rms.unit) + " RMS") plt.subplot(1, 2, 1) plt.title("E2E") plt.imshow(util.zoom_cen(webb_dh_psf, psf_am.shape[0]/2), norm=LogNorm()) plt.colorbar() plt.subplot(1, 2, 2) plt.title("PASTIS image") plt.imshow(psf_am, norm=LogNorm()) plt.colorbar() plt.savefig(os.path.join(dataDir, 'results', 'dh_images_'+matrix_mode, '{:.2e}'.format(rms.value)+'DH_PSFs.pdf')) #TODO: check image rotation, I think there is a 90 degree difference in them for the JWST simulations return contrast_webbpsf, contrast_am, contrast_matrix
93336020d4d1c276fd7918d12b648476d63505f1
16,747
import configparser def show_config_data_by_section(data:configparser.ConfigParser, section:str): """Print a section's data by section name Args: data (configparser.ConfigParser): Data section (str): Section name """ if not _check_data_section_ok(data, section): return None val = data[section] print("[{}]".format(section)) for k, v in val.items(): print("{} = {}".format(k, v)) print()
620abac7791a9e34707236ea6186b4e77591a393
16,748
def train_save_tfidf(filein, target): """input is a bow corpus saved as a tfidf file. The output is a saved tfidf corpus""" try: corpus = corpora.MmCorpus(filein) except: raise NameError('HRMMPH. The file does not seem to exist. Create a file'+ 'first by running the "train_save_dictionary_corpus" function.') tfidf = models.TfidfModel(corpus) tfidf.save(f'nlp_training_data/{target}_tfidf_model.tfidf') tfidf_corpus = tfidf[corpus] return tfidf_corpus
e4d41443d27f8b55f9fd6ba4b8c13a42d381a980
16,749
def ScrewTrajectoryList(Xstart, Xend, Tf, N, method, gripper_state, traj_list): """ Modified from the modern_robotics library ScrewTrajectory Computes a trajectory as a list of SE(3) matrices with a gripper value and converts into a list of lists Args: Xstart : The initial end-effector configuration Xend : The final end-effector configuration Tf : Total time of the motion in seconds from rest to rest N : The number of points N > 1 in the discrete representation of the trajectory method : The time-scaling method gripper_state : The gripper open (0) and closed (1) value Returns: traj_list : list of rotations, positions, and gripper state """ N = int(N) timegap = Tf / (N - 1.0) traj = [[None]] * N for i in range(N): if method == 3: s = CubicTimeScaling(Tf, timegap * i) else: s = QuinticTimeScaling(Tf, timegap * i) traj[i] = np.dot(Xstart, MatrixExp6(MatrixLog6(np.dot(TransInv(Xstart), Xend)) * s)) traj = np.asarray(traj) for i in range(N): r11 = traj[i][0][0] r12 = traj[i][0][1] r13 = traj[i][0][2] r21 = traj[i][1][0] r22 = traj[i][1][1] r23 = traj[i][1][2] r31 = traj[i][2][0] r32 = traj[i][2][1] r33 = traj[i][2][2] px = traj[i][0][3] py = traj[i][1][3] pz = traj[i][2][3] traj_list.append([r11, r12, r13, r21, r22, r23, r31, r32, r33, px, py, pz, gripper_state]) return traj_list
146f4f7b96207c74bbe0ed08e162c3ba656d7a43
16,750
def calculate_phase(time, period): """Calculates phase based on period. Parameters ---------- time : type Description of parameter `time`. period : type Description of parameter `period`. Returns ------- list Orbital phase of the object orbiting the star. """ return (time % period) / period
a537810a7705b5d8b0144318469b249f64a01456
16,751
import os import re def get_sbappname(filepath): """ Given a file path, find an acceptable name on the BL filesystem """ filename = os.path.split(filepath)[1] filename = filename.split('.')[0] return re.sub(r'[:*?"<>|]', "", filename)[:24]
c81154ee8ec97cd51f3fae55ba8b1778170de1b6
16,752
def perspective_transform(img): """ Do a perspective transform over an image. Points are hardcoded and depend on the camera and it's positioning :param img: :return: """ pts1 = np.float32([[250, 686], [1040, 680], [740, 490], [523, 492]]) pts2 = np.float32([[295, 724], [980, 724], [988, 164], [297, 150]]) M = cv2.getPerspectiveTransform(pts1, pts2) transformed_image = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0])) return transformed_image
51411c1fc73e897a657e2e89c44275796b16a1b6
16,753
def login(): """Log user in""" # Forget any user_id session.clear() # User reached route via POST (as by submitting a form via POST) if request.method == "POST": # Ensure username was submitted if not request.form.get("username"): return apology("must provide username", 400) # Ensure password was submitted elif not request.form.get("password"): return apology("must provide password", 400) # Query database for username rows = db.execute("SELECT * FROM users WHERE username = :username", username=request.form.get("username")) # Ensure username exists and password is correct if len(rows) != 1 or not check_password_hash(rows[0]["hash"], request.form.get("password")): return apology("invalid username and/or password", 400) # Remember which user has logged in session["user_id"] = rows[0]["id"] # Redirect user to home page return redirect("/") # User reached route via GET (as by clicking a link or via redirect) else: return render_template("login.html")
ffa2152cffdbfd161f3e8aa23aefa3c49993e630
16,754
def value_iteration(P, nS, nA, gamma=0.9, tol=1e-3): """ Learn value function and policy by using value iteration method for a given gamma and environment. Parameters: ---------- P, nS, nA, gamma: defined at beginning of file tol: float Terminate value iteration when max |value(s) - prev_value(s)| < tol Returns: ---------- value: np.ndarray[nS] policy: np.ndarray[nS] """ value = np.zeros(nS) # value function initialized policy = np.zeros(nS, dtype=int) # policy initialized while True: # until convergence or finite horizon overflow new_value = np.zeros(nS) for state in range(nS): # for each state best_Q_value = -float("inf") # we are looking for the best action in term of Q value for action in range(nA): # for each action p = P[state][action] # {(probability, nextstate, reward, terminal),...}[state,action] reward = sum([i[0]*i[2] for i in p]) # expected reward for this state-action Q_value = reward + gamma*(sum([i[0]*value[i[1]] for i in p])) # expected reward + gamma * expected value for this state-action if Q_value > best_Q_value: new_value[state] = Q_value # max_a Q for this state policy[state] = action # argmax_a Q for this state best_Q_value = Q_value if np.max(np.abs(new_value - value)) < tol: # convergence value = new_value break value = new_value return value, policy
7362b95cd453f0983e6b82acf73d0350eae2734c
16,755
def get_clients(): """ Determine if the current user has a connected client. """ return jsonify(g.user.user_id in clients)
602d77b25b6608db24fca66d5bc55bc83a0530e8
16,756
def get_split_indices(word, curr_tokens, include_joiner_token, joiner): """Gets indices for valid substrings of word, for iterations > 0. For iterations > 0, rather than considering every possible substring, we only want to consider starting points corresponding to the start of wordpieces in the current vocabulary. Args: word: string we want to split into substrings curr_tokens: string to int dict of tokens in vocab (from previous iteration) include_joiner_token: bool whether to include joiner token joiner: string used to indicate suffixes Returns: list of ints containing valid starting indices for word """ indices = [] start = 0 while start < len(word): end = len(word) while end > start: subtoken = word[start:end] # Subtoken includes the joiner token. if include_joiner_token and start > 0: subtoken = joiner + subtoken # If subtoken is part of vocab, 'end' is a valid start index. if subtoken in curr_tokens: indices.append(end) break end -= 1 if end == start: return None start = end return indices
495d924716cfd0e14430d225e50b313fea305dbb
16,757
def perspective( vlist: list[list[Number, Number, Number]], rotvec: list[list[float, float], list[float, float], list[float, float]], dispvec: list[Number, Number, Number], d: float) -> tuple: """Projects 3D points to 2D and apply rotation and translation vectors Args: vlist : list of 3D vertices rotvec : 3D rotation vector dispvec: 3D translation vector d : Distance of observer from the screen Returns: tuple (list, list) """ projvlist = [] rotvlist = [] ((sroll, croll), (spitch, cpitch), (syaw, cyaw)) = rotvec for p in vlist: (px, py, pz) = p x1 = -cyaw * px - syaw * pz y1 = croll * py - sroll * x1 z1 = -syaw * px + cyaw * pz x = croll * x1 + sroll * py y = spitch * z1 + cpitch * y1 z = cpitch * z1 - spitch * y1 x += dispvec[0] y += dispvec[1] z += dispvec[2] rotvlist.append([x, y, z]) projvlist.append([-d * x / z, -d * y / z]) return (rotvlist, projvlist)
daece49851ecca55ba30d4f6f82fe59d5deb5497
16,758
import os def _check_shebang(filename, disallow_executable): """Return 0 if the filename's executable bit is consistent with the presence of a shebang line and the shebang line is in the whitelist of acceptable shebang lines, and 1 otherwise. If the string "# noqa: shebang" is present in the file, then this check will be ignored. """ with open(filename, mode='r', encoding='utf8') as file: content = file.read() if "# noqa: shebang" in content: # Ignore. return 0 is_executable = os.access(filename, os.X_OK) if is_executable and disallow_executable: print("ERROR: {} is executable, but should not be".format(filename)) print("note: fix via chmod a-x '{}'".format(filename)) return 1 lines = content.splitlines() assert len(lines) > 0, f"Empty file? {filename}" shebang = lines[0] has_shebang = shebang.startswith("#!") if is_executable and not has_shebang: print("ERROR: {} is executable but lacks a shebang".format(filename)) print("note: fix via chmod a-x '{}'".format(filename)) return 1 if has_shebang and not is_executable: print("ERROR: {} has a shebang but is not executable".format(filename)) print("note: fix by removing the first line of the file") return 1 shebang_whitelist = { "bash": "#!/bin/bash", "python": "#!/usr/bin/env python3", } if has_shebang and shebang not in list(shebang_whitelist.values()): print(("ERROR: shebang '{}' in the file '{}' is not in the shebang " "whitelist").format(shebang, filename)) for hint, replacement_shebang in shebang_whitelist.items(): if hint in shebang: print(("note: fix by replacing the shebang with " "'{}'").format(replacement_shebang)) return 1 return 0
205fa2bc88b4c80899223e691b6f9cd00492c011
16,759
def actor_is_contact(api_user, nick, potential_contact): """Determine if one is a contact. PARAMETERS: potential_contact - stalkee. RETURNS: boolean """ nick = clean.user(nick) potential_contact = clean.user(potential_contact) key_name = Relation.key_from(relation='contact', owner=nick, target=potential_contact) rel_ref = Relation.get_by_key_name(key_name) return rel_ref and True
93a3bfd0a52b2acb043c162428f0fa45754702bf
16,760
def compute_mem(w, n_ring=1, spectrum='nonzero', tol=1e-10): """Compute Moran eigenvectors map. Parameters ---------- w : BSPolyData, ndarray or sparse matrix, shape = (n_vertices, n_vertices) Spatial weight matrix or surface. If surface, the weight matrix is built based on the inverse geodesic distance between each vertex and the vertices in its `n_ring`. n_ring : int, optional Neighborhood size to build the weight matrix. Only used if user provides a surface mesh. Default is 1. spectrum : {'all', 'nonzero'}, optional Eigenvalues/vectors to select. If 'all', recover all eigenvectors except the smallest one. Otherwise, select all except non-zero eigenvectors. Default is 'nonzero'. tol : float, optional Minimum value for an eigenvalue to be considered non-zero. Default is 1e-10. Returns ------- w : 1D ndarray, shape (n_components,) Eigenvalues in descending order. With ``n_components = n_vertices - 1`` if ``spectrum == 'all'`` and ``n_components = n_vertices - n_zero`` if ``spectrum == 'nonzero'``, and `n_zero` is number of zero eigenvalues. mem : 2D ndarray, shape (n_vertices, n_components) Eigenvectors of the weight matrix in same order. See Also -------- :func:`.moran_randomization` :class:`.MoranRandomization` References ---------- * Wagner H.H. and Dray S. (2015). Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods in Ecology and Evolution, 6(10):1169-78. """ if spectrum not in ['all', 'nonzero']: raise ValueError("Unknown autocor '{0}'.".format(spectrum)) # If surface is provided instead of affinity if not (isinstance(w, np.ndarray) or ssp.issparse(w)): w = me.get_ring_distance(w, n_ring=n_ring, metric='geodesic') w.data **= -1 # inverse of distance # w /= np.nansum(w, axis=1, keepdims=True) # normalize rows if not is_symmetric(w): w = make_symmetric(w, check=False, sparse_format='coo') # Doubly centering weight matrix if ssp.issparse(w): m = w.mean(axis=0).A wc = w.mean() - m - m.T if not ssp.isspmatrix_coo(w): w_format = w.format w = w.tocoo(copy=False) row, col = w.row, w.col w = getattr(w, 'to' + w_format)(copy=False) else: row, col = w.row, w.col wc[row, col] += w.data else: m = w.mean(axis=0, keepdims=True) wc = w.mean() - m - m.T wc += w # when using float64, eigh is unstable for sparse matrices ev, mem = np.linalg.eigh(wc.astype(np.float32)) ev, mem = ev[::-1], mem[:, ::-1] # Remove zero eigen-value/vector ev_abs = np.abs(ev) mask_zero = ev_abs < tol n_zero = np.count_nonzero(mask_zero) if n_zero == 0: raise ValueError('Weight matrix has no zero eigenvalue.') # Multiple zero eigenvalues if spectrum == 'all': if n_zero > 1: n = w.shape[0] memz = np.hstack([mem[:, mask_zero], np.ones((n, 1))]) q, _ = np.linalg.qr(memz) mem[:, mask_zero] = q[:, :-1] idx_zero = mask_zero.argmax() else: idx_zero = ev_abs.argmin() ev[idx_zero:-1] = ev[idx_zero+1:] mem[:, idx_zero:-1] = mem[:, idx_zero + 1:] ev = ev[:-1] mem = mem[:, :-1] else: # only nonzero mask_nonzero = ~mask_zero ev = ev[mask_nonzero] mem = mem[:, mask_nonzero] return mem, ev
fe622d75816629aaf5fce34405eb7a3021393d7d
16,761
def eval_BenchmarkModel(x, a, y, model, loss): """ Given a dataset (x, a, y) along with predictions, loss function name evaluate the following: - average loss on the dataset - DP disp """ pred = model(x) # apply model to get predictions n = len(y) if loss == "square": err = mean_squared_error(y, pred) # mean square loss elif loss == "absolute": err = mean_absolute_error(y, pred) # mean absolute loss ## functions from sklearn.metrics library. ## The strange thing is that in the evaluate_FairModel function, the author uses his own function. elif loss == "logistic": # assuming probabilistic predictions # take the probability of the positive class pred = pd.DataFrame(pred).iloc[:, 1] err = log_loss(y, pred, eps=1e-15, normalize=True) else: raise Exception('Loss not supported: ', str(loss)) disp = pred2_disp(pred, a, y, loss) ## this function seems incomplete ## because i cannot find the definition of function argument quantization. loss_vec = loss_vec2(pred, y, loss) ## Isn't this equal to the error part??? loss_mean, loss_std = norm.fit(loss_vec) evaluation = {} evaluation['pred'] = pred evaluation['average_loss'] = err evaluation['DP_disp'] = disp['DP'] evaluation['disp_std'] = KS_confbdd(n, alpha=0.05) evaluation['loss_std'] = loss_std / np.sqrt(n) return evaluation
cdb4e82004d94c7b25a705d33f716ac3d81e38de
16,762
def parse_sgf_game(s): """Read a single SGF game from a string, returning the parse tree. s -- 8-bit string Returns a Coarse_game_tree. Applies the rules for FF[4]. Raises ValueError if can't parse the string. If a property appears more than once in a node (which is not permitted by the spec), treats it the same as a single property with multiple values. Identifies the start of the SGF content by looking for '(;' (with possible whitespace between); ignores everything preceding that. Ignores everything following the first game. """ game_tree, _ = _parse_sgf_game(s, 0) if game_tree is None: raise ValueError("no SGF data found") return game_tree
4315277a91f732f92c3001cf570221ab6aa657a7
16,763
import re def retrieve( framework, region, version=None, py_version=None, instance_type=None, accelerator_type=None, image_scope=None, container_version=None, distribution=None, base_framework_version=None, ): """Retrieves the ECR URI for the Docker image matching the given arguments. Args: framework (str): The name of the framework or algorithm. region (str): The AWS region. version (str): The framework or algorithm version. This is required if there is more than one supported version for the given framework or algorithm. py_version (str): The Python version. This is required if there is more than one supported Python version for the given framework version. instance_type (str): The SageMaker instance type. For supported types, see https://aws.amazon.com/sagemaker/pricing/instance-types. This is required if there are different images for different processor types. accelerator_type (str): Elastic Inference accelerator type. For more, see https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html. image_scope (str): The image type, i.e. what it is used for. Valid values: "training", "inference", "eia". If ``accelerator_type`` is set, ``image_scope`` is ignored. container_version (str): the version of docker image distribution (dict): A dictionary with information on how to run distributed training (default: None). Returns: str: the ECR URI for the corresponding SageMaker Docker image. Raises: ValueError: If the combination of arguments specified is not supported. """ config = _config_for_framework_and_scope(framework, image_scope, accelerator_type) original_version = version version = _validate_version_and_set_if_needed(version, config, framework) version_config = config["versions"][_version_for_config(version, config)] if framework == HUGGING_FACE_FRAMEWORK: if version_config.get("version_aliases"): full_base_framework_version = version_config["version_aliases"].get( base_framework_version, base_framework_version ) _validate_arg(full_base_framework_version, list(version_config.keys()), "base framework") version_config = version_config.get(full_base_framework_version) py_version = _validate_py_version_and_set_if_needed(py_version, version_config, framework) version_config = version_config.get(py_version) or version_config registry = _registry_from_region(region, version_config["registries"]) hostname = utils._botocore_resolver().construct_endpoint("ecr", region)["hostname"] repo = version_config["repository"] processor = _processor( instance_type, config.get("processors") or version_config.get("processors") ) if framework == HUGGING_FACE_FRAMEWORK: pt_or_tf_version = ( re.compile("^(pytorch|tensorflow)(.*)$").match(base_framework_version).group(2) ) tag_prefix = f"{pt_or_tf_version}-transformers{original_version}" else: tag_prefix = version_config.get("tag_prefix", version) tag = _format_tag( tag_prefix, processor, py_version, container_version, ) if _should_auto_select_container_version(instance_type, distribution): container_versions = { "tensorflow-2.3-gpu-py37": "cu110-ubuntu18.04-v3", "tensorflow-2.3.1-gpu-py37": "cu110-ubuntu18.04", "tensorflow-2.3.2-gpu-py37": "cu110-ubuntu18.04", "tensorflow-1.15-gpu-py37": "cu110-ubuntu18.04-v8", "tensorflow-1.15.4-gpu-py37": "cu110-ubuntu18.04", "tensorflow-1.15.5-gpu-py37": "cu110-ubuntu18.04", "mxnet-1.8-gpu-py37": "cu110-ubuntu16.04-v1", "mxnet-1.8.0-gpu-py37": "cu110-ubuntu16.04", "pytorch-1.6-gpu-py36": "cu110-ubuntu18.04-v3", "pytorch-1.6.0-gpu-py36": "cu110-ubuntu18.04", "pytorch-1.6-gpu-py3": "cu110-ubuntu18.04-v3", "pytorch-1.6.0-gpu-py3": "cu110-ubuntu18.04", } key = "-".join([framework, tag]) if key in container_versions: tag = "-".join([tag, container_versions[key]]) if tag: repo += ":{}".format(tag) return ECR_URI_TEMPLATE.format(registry=registry, hostname=hostname, repository=repo)
eeee1aec620de5b29650b9605c7fb2b13aed76e5
16,764
def deconstruct_DMC(G, alpha, beta): """Deconstruct a DMC graph over a single step.""" # reverse complementation if G.has_edge(alpha, beta): G.remove_edge(alpha, beta) w = 1 else: w = 0 # reverse mutation alpha_neighbors = set(G.neighbors(alpha)) beta_neighbors = set(G.neighbors(beta)) x = len(alpha_neighbors & beta_neighbors) y = len(alpha_neighbors | beta_neighbors) for neighbor in alpha_neighbors: G.add_edge(beta, neighbor) # reverse duplication G.remove_node(alpha) return (w, x, y)
fa32a325fd49435e3191a20b908ac0e9c3b992f8
16,765
def new_followers_view(request): """ View to show new followers. :param request: :return: """ current_author = request.user.user followers_new = FollowRequest.objects.all().filter(friend=current_author).filter(acknowledged=False) for follow in followers_new: follow.acknowledged = True follow.save() request.context['followers_new'] = followers_new return render(request, 'authors/follower_request.html', request.context)
88277967b8185c47b9bb955dabf6fcd79ea3a530
16,766
def inv(a, p): """Inverse of a in :math:`{mathbb Z}_p` :param a,p: non-negative integers :complexity: O(log a + log p) """ return bezout(a, p)[0] % p
d2caab3a564d5f58d1be345900382e762350a2ea
16,767
import os import zipfile def get_iSUN(location=None): """ Loads or downloads and caches the iSUN dataset. @type location: string, defaults to `None` @param location: If and where to cache the dataset. The dataset will be stored in the subdirectory `iSUN` of location and read from there, if already present. @return: Training stimuli, validation stimuli, testing stimuli, training fixation trains, validation fixation trains .. seealso:: P. Xu, K. A. Ehinger, Y. Zhang, A. Finkelstein, S. R. Kulkarni, and J. Xiao.: TurkerGaze: Crowdsourcing Saliency with Webcam based Eye Tracking http://lsun.cs.princeton.edu/ http://vision.princeton.edu/projects/2014/iSUN/ """ if location: location = os.path.join(location, 'iSUN') if os.path.exists(location): stimuli_training = _load(os.path.join(location, 'stimuli_training.hdf5')) stimuli_validation = _load(os.path.join(location, 'stimuli_validation.hdf5')) stimuli_testing = _load(os.path.join(location, 'stimuli_testing.hdf5')) fixations_training = _load(os.path.join(location, 'fixations_training.hdf5')) fixations_validation = _load(os.path.join(location, 'fixations_validation.hdf5')) return stimuli_training, stimuli_validation, stimuli_testing, fixations_training, fixations_validation os.makedirs(location) with TemporaryDirectory(cleanup=True) as temp_dir: download_and_check('http://lsun.cs.princeton.edu/challenge/2015/eyetracking/data/training.mat', os.path.join(temp_dir, 'training.mat'), '5a8b15134b17c7a3f69b087845db1363') download_and_check('http://lsun.cs.princeton.edu/challenge/2015/eyetracking/data/validation.mat', os.path.join(temp_dir, 'validation.mat'), 'f68e9b011576e48d2460b883854fd86c') download_and_check('http://lsun.cs.princeton.edu/challenge/2015/eyetracking/data/testing.mat', os.path.join(temp_dir, 'testing.mat'), 'be008ef0330467dcb9c9cd9cc96a8546') download_and_check('http://lsun.cs.princeton.edu/challenge/2015/eyetracking/data/fixation.zip', os.path.join(temp_dir, 'fixation.zip'), 'aadc15784e1b0023cda4536335b7839c') download_and_check('http://lsun.cs.princeton.edu/challenge/2015/eyetracking/data/image.zip', os.path.join(temp_dir, 'image.zip'), '0a3af01c5307f1d44f5dd309f71ea963') # Stimuli print('Creating stimuli') f = zipfile.ZipFile(os.path.join(temp_dir, 'image.zip')) namelist = f.namelist() namelist = filter_files(namelist, ['.DS_Store']) f.extractall(temp_dir, namelist) def get_stimuli_names(name): data_file = os.path.join(temp_dir, '{}.mat'.format(name)) data = loadmat(data_file)[name] stimuli_names = [d[0] for d in data['image'][:, 0]] stimuli_names = ['{}.jpg'.format(n) for n in stimuli_names] return stimuli_names stimulis = [] stimuli_src_location = os.path.join(temp_dir, 'images') for name in ['training', 'validation', 'testing']: print("Creating {} stimuli".format(name)) stimuli_target_location = os.path.join(location, 'stimuli_{}'.format(name)) if location else None images = get_stimuli_names(name) stimulis.append(create_stimuli(stimuli_src_location, images, stimuli_target_location)) # FixationTrains print('Creating fixations') def get_fixations(name): data_file = os.path.join(temp_dir,'{}.mat'.format(name)) data = loadmat(data_file)[name] gaze = data['gaze'][:, 0] ns = [] train_xs = [] train_ys = [] train_ts = [] train_subjects = [] for n in range(len(gaze)): fixation_trains = gaze[n]['fixation'][0, :] for train in fixation_trains: xs = train[:, 0] ys = train[:, 1] ns.append(n) train_xs.append(xs) train_ys.append(ys) train_ts.append(range(len(xs))) train_subjects.append(0) fixations = FixationTrains.from_fixation_trains(train_xs, train_ys, train_ts, ns, train_subjects) return fixations fixations = [] for name in ['training', 'validation']: print("Creating {} fixations".format(name)) fixations.append(get_fixations(name)) if location: stimulis[0].to_hdf5(os.path.join(location, 'stimuli_training.hdf5')) stimulis[1].to_hdf5(os.path.join(location, 'stimuli_validation.hdf5')) stimulis[2].to_hdf5(os.path.join(location, 'stimuli_test.hdf5')) fixations[0].to_hdf5(os.path.join(location, 'fixations_training.hdf5')) fixations[1].to_hdf5(os.path.join(location, 'fixations_validation.hdf5')) return stimulis + fixations
76f429a8caf4090b1df09550e3455888928f71d6
16,768
def metadata_columns(request, metadata_column_headers): """Make a metadata column header and column value dictionary.""" template = 'val{}' columns = {} for header in metadata_column_headers: columns[header] = [] for i in range(0, request.param): columns[header].append(template.format(i)) return columns
ca1f89935260e9d55d57df5fe5fbb0946b5948ac
16,769
def all_done_tasks_for_person(person, client=default): """ Returns: list: Tasks that are done for given person (only for open projects). """ person = normalize_model_parameter(person) return raw.fetch_all("persons/%s/done-tasks" % person["id"], client=client)
68883d7ac9c1e0cd009ff02ae4944782ae6fc637
16,770
def transform_cfg_to_wcnf(cfg: CFG) -> CFG: """ Transform given cfg into Weakened Normal Chomsky Form (WNCF) Parameters ---------- cfg: CFG CFG object to transform to WNCF Returns ------- wncf: CFG CFG in Weakened Normal Chomsky Form (WNCF) """ wncf = ( cfg.remove_useless_symbols() .eliminate_unit_productions() .remove_useless_symbols() ) new_productions = wncf._get_productions_with_only_single_terminals() new_productions = wncf._decompose_productions(new_productions) return CFG(start_symbol=wncf.start_symbol, productions=new_productions)
55d72634b02feab7150d290619b40fc2976ffae3
16,771
def add_def() -> bool: """ Retrieves the definition from the user and enters it into the database. """ logger.info("Start <add_def>") fields = ["what", "def_body", "subject"] fields_dict = {"what": '', "def_body": '', "subject": ''} for fi in fields: phrase = PHRASES[fi] fields_dict[fi] = input(colored(phrase[0], "green")) if not fields_dict[fi]: cprint(phrase[1], "green") fields_dict[fi] = input(colored(phrase[2], "green")) if not fields_dict[fi]: cprint("Mm-m, no - some help?..") return False lecture = input(colored("Lecture #", "green")) if (not lecture and lecture.isalnum()): cprint("Number of lecture must be integer, did you know that?", color="yellow") lecture = input(colored("Lecture #", "green")) if (not lecture and lecture.isalnum()): cprint("Mm-m, no - some help?..") return False # what = what.lower() lecture = int(lecture) if lecture else -1 result = [ fields_dict["what"], fields_dict["def_body"], fields_dict["subject"], lecture ] result[2] = result[2].capitalize() logger.info(f"Get what=<{result[0]}>") logger.debug(f"Get def_body=<{result[1]}>") logger.debug(f"Get subject=<{result[2]}>") logger.debug(f"Get lecture=<{result[3]}>") data_base.add_def(*result) cprint(f"All done! New definition of '{result[0]}' has been saved", color="green") return True
20888544e2e7293c5226b62532ffa32a4aa2b874
16,772
def insert_scope_name(urls): """ given a tuple of URLs for webpy with '%s' as a placeholder for SCOPE_NAME_REGEXP, return a finalised tuple of URLs that will work for all SCOPE_NAME_REGEXPs in all schemas """ regexps = get_scope_name_regexps() result = [] for i in range(0, len(urls), 2): if "%s" in urls[i]: # add a copy for each unique SCOPE_NAME_REGEXP for scope_name_regexp in regexps: result.append(urls[i] % scope_name_regexp) result.append(urls[i + 1]) else: # pass through unmodified result.append(urls[i]) result.append(urls[i + 1]) return tuple(result)
28cda0956f232adf176666c776b39463caca9847
16,773
def fit_cochrane_orcutt(ts, regressors, maxIter=10, sc=None): """ Fit linear regression model with AR(1) errors , for references on Cochrane Orcutt model: See [[https://onlinecourses.science.psu.edu/stat501/node/357]] See : Applied Linear Statistical Models - Fifth Edition - Michael H. Kutner , page 492 The method assumes the time series to have the following model Y_t = B.X_t + e_t e_t = rho*e_t-1+w_t e_t has autoregressive structure , where w_t is iid ~ N(0,&sigma 2) Outline of the method : 1) OLS Regression for Y (timeseries) over regressors (X) 2) Apply auto correlation test (Durbin-Watson test) over residuals , to test whether e_t still have auto-regressive structure 3) if test fails stop , else update update coefficients (B's) accordingly and go back to step 1) Parameters ---------- ts: Vector of size N for time series data to create the model for as a Numpy array regressors: Matrix N X K for the timed values for K regressors over N time points as a Numpy array maxIter: maximum number of iterations in iterative cochrane-orchutt estimation Returns instance of class [[RegressionARIMAModel]] """ assert sc != None, "Missing SparkContext" jvm = sc._jvm fnord = _nparray2breezematrix(sc, regressors) print(fnord) jmodel = jvm.com.cloudera.sparkts.models.RegressionARIMA.fitCochraneOrcutt( _nparray2breezevector(sc, ts), _nparray2breezematrix(sc, regressors), maxIter ) return RegressionARIMAModel(jmodel=jmodel, sc=sc)
958ca88e6ac37ebd58c7f1ff88c191d801e4cb87
16,774
def get_nodeweight(obj): """ utility function that returns a node class and it's weight can be used for statistics to get some stats when NO Advanced Nodes are available """ k = obj.__class__.__name__ if k in ('Text',): return k, len(obj.caption) elif k == 'ImageLink' and obj.isInline(): return 'InlineImageLink', 1 return k, 1
1ab88f73621c8396fca08551dd14c9a757d019ad
16,775
def CMYtoRGB(C, M, Y): """ convert CMY to RGB color :param C: C value (0;1) :param M: M value (0;1) :param Y: Y value (0;1) :return: RGB tuple (0;255) """ RGB = [(1.0 - i) * 255.0 for i in (C, M, Y)] return tuple(RGB)
cfc2c7b91dd7f1faf93351e28ffdd9906613471a
16,776
def update_local_artella_root(): """ Updates the environment variable that stores the Artella Local Path NOTE: This is done by Artella plugin when is loaded, so we should not do it manually again """ metadata = get_metadata() if metadata: metadata.update_local_root() return True return False
23fb9f0eb47aec566dc6b9862474535545b963dc
16,777
def app_tests(enable_migrations, tags, verbosity): """Gets the TestRunner and runs the tests""" # prepare the actual test environment setup(enable_migrations, verbosity) # reuse Django's DiscoverRunner if not hasattr(settings, 'TEST_RUNNER'): settings.TEST_RUNNER = 'django.test.runner.DiscoverRunner' TestRunner = get_runner(settings) test_runner = TestRunner( verbosity=verbosity, tags=tags, ) failures = test_runner.run_tests(['.']) return failures
c56ca20ea98dadf97f39a30e2f07c0eb3952b418
16,778
def quicksort(numbers, low, high): """Python implementation of quicksort.""" if low < high: pivot = _partition(numbers, low, high) quicksort(numbers, low, pivot) quicksort(numbers, pivot + 1, high) return numbers
064aa30f032036aa73f08b2b94ce4556ffc565fd
16,779
import scipy def bsput_delta(k, t, *, x0=1., r=0., q=0., sigma=1.): """ bsput_delta(k, t, *, x0=1., r=0., q=0., sigma=1.) Black-Scholes put option delta. See Also -------- bscall """ r, q = np.asarray(r), np.asarray(q) d1, d2 = bsd1d2(k, t, x0=x0, r=r, q=q, sigma=sigma) return -exp(-q*t) * scipy.stats.norm.cdf(-d1)
d6e1e3e6c2f97fa856b156170ac49ea3d5530423
16,780
from typing import Sequence import re def regex_filter(patterns: Sequence[Regex], negate: bool = False, **kwargs) -> SigMapper: """Filter out the signals that do not match regex patterns (or do match if negate=True).""" patterns = list(map(re.compile, patterns)) def filt(sigs): def map_sig(sig): return _regex_map(sig, patterns, on_match = lambda s, p: (s if not negate else None), on_no_match = lambda s: (None if not negate else s), **kwargs) return list(filter(None, map(map_sig, sigs))) return filt
4c76d4bd5f76d5d35373ec14c910291b155cd4db
16,781
def cpncc(img, vertices_lst, tri): """cython version for PNCC render: original paper""" h, w = img.shape[:2] c = 3 pnccs_img = np.zeros((h, w, c)) for i in range(len(vertices_lst)): vertices = vertices_lst[i] pncc_img = crender_colors(vertices, tri, pncc_code, h, w, c) pnccs_img[pncc_img > 0] = pncc_img[pncc_img > 0] pnccs_img = pnccs_img.squeeze() * 255 return pnccs_img
8c7e380b56e26197cfb6b9b65c8d373ada0be4b1
16,782
import time def run_net(X, y, batch_size, dnn, data_layer_name, label_layer_name, loss_layer, accuracy_layer, accuracy_sink, is_train): """Runs dnn on given data""" start = time.time() total_loss = 0. run_iter = dnn.learn if is_train else dnn.run math_engine = dnn.math_engine accuracy_layer.reset = True # Reset previous statistics for X_batch, y_batch in irnn_data_iterator(X, y, batch_size, math_engine): run_iter({data_layer_name: X_batch, label_layer_name: y_batch}) total_loss += loss.last_loss * y_batch.batch_width accuracy_layer.reset = False # Don't reset statistics within one epoch avg_loss = total_loss / y.shape[0] acc = accuracy_sink.get_blob().asarray()[0] run_time = time.time() - start return avg_loss, acc, run_time
43121dff269df6a03763f130e8f75f0ce6984a57
16,783
from typing import Any import json def json_safe(arg: Any): """ Checks whether arg can be json serialized and if so just returns arg as is otherwise returns none """ try: json.dumps(arg) return arg except: return None
97ac87464fb4b31b4fcfc7896252d23a10e57b72
16,784
def _key_iv_check(key_iv): """ 密钥或初始化向量检测 """ # 密钥 if key_iv is None or not isinstance(key_iv, string_types): raise TypeError('Parameter key or iv:{} not a basestring'.format(key_iv)) if isinstance(key_iv, text_type): key_iv = key_iv.encode(encoding=E_FMT) if len(key_iv) > BLOCK_BYTE: raise ValueError('Parameter key or iv:{} byte greater than {}'.format(key_iv.decode(E_FMT), BLOCK_BYTE)) return key_iv
809ff811a433f9843b330a56be926411871d8b7a
16,785
def decomposeArbitraryLength(number): """ Returns decomposition for the numbers Examples -------- number 42 : 32 + 8 + 2 powers : 5, 3, 1 """ if number < 1: raise WaveletException("Number should be greater than 1") tempArray = list() current = number position = 0 while current >= 1.: power = getExponent(current) tempArray.append(power) current = current - scalb(1., power) position += 1 return tempArray[:position]
5645c9024dd93aa3bfaf904d7a69f4d46977fb5a
16,786
def ax_draw_macd2(axes, ref, kdata, n1=12, n2=26, n3=9): """绘制MACD :param axes: 指定的坐标轴 :param KData kdata: KData :param int n1: 指标 MACD 的参数1 :param int n2: 指标 MACD 的参数2 :param int n3: 指标 MACD 的参数3 """ macd = MACD(CLOSE(kdata), n1, n2, n3) bmacd, fmacd, smacd = macd.getResult(0), macd.getResult(1), macd.getResult(2) text = 'MACD(%s,%s,%s) DIF:%.2f, DEA:%.2f, BAR:%.2f'%(n1,n2,n3,fmacd[-1],smacd[-1],bmacd[-1]) #axes.text(0.01,0.97, text, horizontalalignment='left', verticalalignment='top', transform=axes.transAxes) total = len(kdata) x = [i for i in range(total)] y = bmacd y1,y2,y3 = [y[0]],[y[0]],[y[0]] for i in range(1, total): if ref[i]-ref[i-1]>0 and y[i]-y[i-1]>0: y2.append(y[i]) y1.append('-') y3.append('-') elif ref[i]-ref[i-1]<0 and y[i]-y[i-1]<0: y3.append(y[i]) y1.append('-') y2.append('-') else: y1.append(y[i]) y2.append('-') y3.append('-') style = gcf().get_style(axes) bar = Bar(subtitle=text, title_pos='10%', title_top='8%') bar.add('1', x, y1, is_stack=True, is_legend_show=False, **style) bar.add('2', x, y2, is_stack=True, is_legend_show=False, **style) bar.add('3', x, y3, is_stack=True, is_legend_show=False, **style) axes.add(bar) fmacd.plot(axes=axes, line_type='dotted') smacd.plot(axes=axes) gcf().add_axis(axes) return gcf()
3bcb73756211a8906f3bf601207092177aa45ade
16,787
import scipy def scipy_bfgs( criterion_and_derivative, x, *, convergence_absolute_gradient_tolerance=CONVERGENCE_ABSOLUTE_GRADIENT_TOLERANCE, stopping_max_iterations=STOPPING_MAX_ITERATIONS, norm=np.inf, ): """Minimize a scalar function of one or more variables using the BFGS algorithm. For details see :ref:`list_of_scipy_algorithms`. """ options = { "gtol": convergence_absolute_gradient_tolerance, "maxiter": stopping_max_iterations, "norm": norm, } res = scipy.optimize.minimize( fun=criterion_and_derivative, x0=x, method="BFGS", jac=True, options=options, ) return process_scipy_result(res)
e1d61454e7ea782d37b4ab222599c69b2c89df1b
16,788
from random import shuffle import six def assign_to_coders_backend(sample, limit_to_unassigned, shuffle_pieces_before_assigning, assign_each_piece_n_times, max_assignments_per_piece, coders, max_pieces_per_coder, creation_time, creator): """Assignment to coders currently uses the following algorithm: #. Get a list of all pieces in the sample. #. If "shuffle pieces before assigning" is checked, shuffle the list of pieces #. Make a numbering of "target coders" for this assignment, determine a coder whose "turn" it is. #. For each piece in the list of pieces, do the following: #. If "limit to unassigned" is checked, and the piece is assigned to someone, continue to the next piece. #. Find how often this piece has already been assigned as ``n_piece_assignments``. #. Determine number of new assignments *n* for this piece as:: n = min( max_assignments_per_piece-n_piece_assignments, assign_each_piece_n_times)) #. Do the following *n* times: #. Try to assign the piece to the coder whose 'turn' it is. #. If that coder already has this article assigned, go round-robin among coders until someone does not have the article assigned to them. #. If no-one is found, skip this piece. #. Advance the "turn", taking into account ``pieces_per_coder``. If all coders have reached their ``pieces_per_coder`` (in this assignment round), stop. """ log_lines = [] coder_idx_to_count = {} num_coders = len(coders) pieces = sample.pieces.all() if shuffle_pieces_before_assigning: pieces = list(pieces) shuffle(pieces) quit_flag = False coder_idx = 0 for piece in pieces: n_piece_assignments = CodingAssignment.objects.filter( sample=sample, piece=piece).count() if (limit_to_unassigned and n_piece_assignments): log_lines.append("%s already assigned to someone, skipping." % six.text_type(piece)) continue assign_times = assign_each_piece_n_times if max_assignments_per_piece is not None: max_assign_times = assign_times = max( 0, max_assignments_per_piece - n_piece_assignments) assign_times = min( max_assign_times, assign_times) if assign_times == 0: log_lines.append("Piece '%s' has reached max assignment count, skipping." % six.text_type(piece)) continue for i_assignment in range(assign_times): local_coder_idx = coder_idx assignment_tries = 0 # was this piece already assigned to this coder? (if so, try next) # Note that, in its desperation, this may assign a few more items # to a coder than are technically allowed by their limit. while ( CodingAssignment.objects.filter( sample=sample, piece=piece, coder=coders[local_coder_idx]).count() and assignment_tries < num_coders): local_coder_idx = (local_coder_idx + 1) % num_coders assignment_tries += 1 if assignment_tries >= num_coders: log_lines.append("Piece '%s' already assigned " "to all coders, skipping." % six.text_type(piece)) break assmt = CodingAssignment() assmt.coder = coders[local_coder_idx] assmt.piece = piece assmt.sample = sample assmt.state = assignment_states.not_started assmt.latest_state_time = creation_time assmt.creation_time = creation_time assmt.creator = creator assmt.save() coder_idx_to_count[local_coder_idx] = \ coder_idx_to_count.get(local_coder_idx, 0) + 1 # {{{ advance coder turn find_coder_tries = 0 while find_coder_tries < num_coders: coder_idx = (coder_idx + 1) % num_coders if ( max_pieces_per_coder is None or coder_idx_to_count.get(coder_idx, 0) < max_pieces_per_coder): break find_coder_tries += 1 if find_coder_tries >= num_coders: log_lines.append("All coders have reached their item limit, " "stopping.") quit_flag = True break # }}} if quit_flag: break for coder_idx, coder in enumerate(coders): log_lines.append("%s: %d new items assigned" % (coder, coder_idx_to_count.get(coder_idx, 0))) return log_lines
ffe59dce1b85f7b77e652a1823f298b643d104c7
16,789
def mask_rcnn_heads_add_mask_rcnn_losses(model, blob_mask): """Add Mask R-CNN specific losses.""" loss_mask = model.net.SigmoidCrossEntropyLoss( [blob_mask, 'masks_int32'], 'loss_mask', scale=model.GetLossScale() * cfg.MRCNN.WEIGHT_LOSS_MASK ) loss_gradients = blob_utils_get_loss_gradients(model, [loss_mask]) model.AddLosses('loss_mask') return loss_gradients
1f94662948d2576874ca4bb13a602e0a0482d787
16,790
def parse_ns_headers(ns_headers): """Ad-hoc parser for Netscape protocol cookie-attributes. The old Netscape cookie format for Set-Cookie can for instance contain an unquoted "," in the expires field, so we have to use this ad-hoc parser instead of split_header_words. XXX This may not make the best possible effort to parse all the crap that Netscape Cookie headers contain. Ronald Tschalar's HTTPClient parser is probably better, so could do worse than following that if this ever gives any trouble. Currently, this is also used for parsing RFC 2109 cookies. """ known_attrs = ("expires", "domain", "path", "secure", # RFC 2109 attrs (may turn up in Netscape cookies, too) "version", "port", "max-age") result = [] for ns_header in ns_headers: pairs = [] version_set = False # XXX: The following does not strictly adhere to RFCs in that empty # names and values are legal (the former will only appear once and will # be overwritten if multiple occurrences are present). This is # mostly to deal with backwards compatibility. for ii, param in enumerate(ns_header.split(';')): param = param.strip() key, sep, val = param.partition('=') key = key.strip() if not key: if ii == 0: break else: continue # allow for a distinction between present and empty and missing # altogether val = val.strip() if sep else None if ii != 0: lc = key.lower() if lc in known_attrs: key = lc if key == "version": # This is an RFC 2109 cookie. if val is not None: val = strip_quotes(val) version_set = True elif key == "expires": # convert expires date to seconds since epoch if val is not None: val = http2time(strip_quotes(val)) # None if invalid pairs.append((key, val)) if pairs: if not version_set: pairs.append(("version", "0")) result.append(pairs) return result
91d1006d6495b1ad86ff65abbc1575d9c759f183
16,791
def same_kind_right_null(a: DataType, _: Null) -> bool: """Return whether `a` is nullable.""" return a.nullable
005e9d62702d8f9c6d1e1a4911c7dedf7d81bb73
16,792
def unary_col(op, v): """ interpretor for executing unary operator expressions on columnars """ if op == "+": return v if op == "-": return compute.subtract(0.0, v) if op.lower() == "not": return compute.invert(v) raise Exception("unary op not implemented")
ff4eec1f333cd0425cb1b7c533ec4dc94179512e
16,793
def test_start_sep_graph() -> nx.Graph: """test graph with known clique partition that needs start_separate""" G = nx.Graph() G.add_nodes_from(range(6)) G.add_edges_from([(0, 1, {'weight': 1.0}), (0, 2, {'weight': -10}), (0, 3, {'weight': 1}), (0, 4, {'weight': -10}), (0, 5, {'weight': -10}), (1, 2, {'weight': 1.2}), (1, 3, {'weight': -10}), (1, 4, {'weight': -10}), (1, 5, {'weight': -10}), (2, 3, {'weight': 1}), (2, 4, {'weight': -1}), (2, 5, {'weight': 0.5}), (3, 4, {'weight': 0.5}), (3, 5, {'weight': -1})]) return G
84bd5a140ff7c8882513395a305f69d64d1830a7
16,794
def structure(table_toplevels): """ Accepts an ordered sequence of TopLevel instances and returns a navigable object structure representation of the TOML file. """ table_toplevels = tuple(table_toplevels) obj = NamedDict() last_array_of_tables = None # The Name of the last array-of-tables header for toplevel in table_toplevels: if isinstance(toplevel, toplevels.AnonymousTable): obj[''] = toplevel.table_element elif isinstance(toplevel, toplevels.Table): if last_array_of_tables and toplevel.name.is_prefixed_with(last_array_of_tables): seq = obj[last_array_of_tables] unprefixed_name = toplevel.name.without_prefix(last_array_of_tables) seq[-1] = CascadeDict(seq[-1], NamedDict({unprefixed_name: toplevel.table_element})) else: obj[toplevel.name] = toplevel.table_element else: # It's an ArrayOfTables if last_array_of_tables and toplevel.name != last_array_of_tables and \ toplevel.name.is_prefixed_with(last_array_of_tables): seq = obj[last_array_of_tables] unprefixed_name = toplevel.name.without_prefix(last_array_of_tables) if unprefixed_name in seq[-1]: seq[-1][unprefixed_name].append(toplevel.table_element) else: cascaded_with = NamedDict({unprefixed_name: [toplevel.table_element]}) seq[-1] = CascadeDict(seq[-1], cascaded_with) else: obj.append(toplevel.name, toplevel.table_element) last_array_of_tables = toplevel.name return obj
c34590f604d52ff4bfcf3cf1bae1fc41a7a1f3ec
16,795
import math def h(q): """Binary entropy func""" if q in {0, 1}: return 0 return (q * math.log(1 / q, 2)) + ((1 - q) * math.log(1 / (1 - q), 2))
ad3d02d6e7ddf622c16ec8df54752ac5c77f8972
16,796
def has_next_page(page_info: dict) -> bool: """ Extracts value from a dict with hasNextPage key, raises an error if the key is not available :param page_info: pagination info :return: a bool indicating if response hase a next page """ has_next_page = page_info.get('hasNextPage') if has_next_page is None: raise KeyNotFoundException('hasNextPage key not available') else: return has_next_page
13c7bf0096127e054adaa8a331d2168bfb76c1d3
16,797
def _stuw_code(current_name=None): """" Zoekt door TYPESTUW naar de naam van het stuwtype, geeft attribuut waarde uit DAMO """ if current_name not in TYPESTUW.values(): return 99 for i, name in TYPESTUW.items(): if name == current_name: return i
f0444885fd9956bdb150442dc1de7de09a0ac693
16,798
def _build_init_nodes(context, device): """ Build initial inputs for beam search algo """ decoder_input = _prepare_init_inputs(context, device) root_node = BeamSearchNode(None, None, decoder_input, 0, len(context)) return [root_node]
009cf7b09f39eb5c9722015d310ecab0b32f7c59
16,799