content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import string def generate_create_account_key(): """ Generates a random account creation key. Implementation is very similar to generate_reset_key(). """ chars = string.ascii_lowercase + string.digits return misc_utils.generate_random_string(constants.CREATE_ACCOUNT_KEY_LENGTH, chars=chars)
e52405a325b787b9473da5530c909bfdcff0d9b4
14,800
import re def parse_dblife(file): """Parse an DBLife file, returning a tuple: positions: list of (x,y) co-ordinates comments: all comments in file, as a list of strings, one per line. """ lines = file.split("\n") comments = [] positions = [] x = 0 y = 0 dblife_pattern = r"((\d*)(\.|O|o|\*))*" for line in lines: line = line.strip().rstrip() if line.startswith("!"): comments.append(line[2:]) # check if this is part of the pattern if re.match(dblife_pattern, line): count = 0 for char in line: # repeat counts if char.isdigit(): count *= 10 count += int(char) # blanks if char in ".": if count != 0: x += int(count) else: x += 1 count = 0 # ons if char in "oO*": if count != 0: for i in range(count): positions.append((x, y)) x += 1 else: positions.append((x, y)) x += 1 count = 0 count = 0 # newlines y += 1 x = 0 count = 0 return positions, comments
b2d54240280b657c82d8a70da9e9f0ce47a92c7a
14,801
from typing import Any from typing import Callable def db_handle_error(logger: Logger, default_return_val: Any) \ -> Any: """Handle operational database errors via decorator.""" def decorator(func: Callable) -> Any: def wrapper(*args, **kwargs): # type: ignore # Bypass attempt to perform query and just return default value is_db_disabled: bool = app_config.get( 'BROWSE_DISABLE_DATABASE') or False if is_db_disabled: if logger: logger.info( 'Database is disabled per BROWSE_DISABLE_DATABASE') return default_return_val try: return func(*args, **kwargs) except NoResultFound: return default_return_val except (OperationalError, DBAPIError) as ex: if logger: logger.warning( f'Error executing query in {func.__name__}: {ex}') return default_return_val except Exception as ex: if logger: logger.warning( f'Unknown exception in {func.__name__}: {ex}') raise return wrapper return decorator
1a807bc7a49abc9b50970145c520e823103f3607
14,802
from typing import Iterable from typing import Optional from typing import List from pathlib import Path def climb_directory_tree(starting_path: PathOrStr, file_patterns: Iterable[str]) -> Optional[List[Path]]: """Climb the directory tree looking for file patterns.""" current_dir: Path = Path(starting_path).absolute() if current_dir.is_file(): current_dir = current_dir.parent while current_dir.root != str(current_dir): for root_file in file_patterns: found_files = list(current_dir.glob(root_file)) if found_files: return found_files current_dir = current_dir.parent return None
80f036da4cf5564a2b96359ea67db19602333420
14,803
def serve_file(request, token, require_requester=True, verify_requester=True, signer=None): """Basic view to serve a file. Uses ``evaluate_request`` under the hood. Please refer to that function to view information about exceptions. :param request: the file request :type request: bgfiles.models.FileRequest :param token: the token :type token: str :param require_requester: whether we expect the token to contain the request :type require_requester: bool :param verify_requester: whether we need to verify the current user is the requester :type verify_requester: bool :param signer: signer to use :return: django.http.HTTPResponse """ file_request, data = evaluate_request(request, token, require_requester=require_requester, verify_requester=verify_requester, signer=signer) return toolbox.serve(file_request)
98bfae971e141130e94932afb8fdee2a285f2a5a
14,804
def d2_rho_heterodyne(t, rho_vec, A, args): """ Need to cythonize, docstrings """ M = A[0] + A[3] e1 = cy_expect_rho_vec(M, rho_vec, 0) d1 = spmv(M, rho_vec) - e1 * rho_vec M = A[0] - A[3] e1 = cy_expect_rho_vec(M, rho_vec, 0) d2 = spmv(M, rho_vec) - e1 * rho_vec return [1.0 / np.sqrt(2) * d1, -1.0j / np.sqrt(2) * d2]
6628c1a7299ee7842a839fd63b00857808bcd3ec
14,805
from pathlib import Path def get_venv(): """Return virtual environment path or throw an error if not found""" env = environ.get("VIRTUAL_ENV", None) if env: return Path(env) else: raise EnvironmentError("No virtual environment found.")
44dd4660198a8f5538cbe91ffe52468adc8ee0e8
14,806
from typing import List from typing import Dict from typing import Tuple from typing import Union from pathlib import Path import os def parse_pascal_voc_anno( anno_path: str, labels: List[str] = None, keypoint_meta: Dict = None ) -> Tuple[List[AnnotationBbox], Union[str, Path], np.ndarray]: """ Extract the annotations and image path from labelling in Pascal VOC format. Args: anno_path: the path to the annotation xml file labels: list of all possible labels, used to compute label index for each label name keypoint_meta: meta data of keypoints which should include at least "labels". Return A tuple of annotations, the image path and keypoints. Keypoints is a numpy array of shape (N, K, 3), where N is the number of objects of the category that defined the keypoints, and K is the number of keypoints defined in the category. `len(keypoints)` would be 0 if no keypoints found. """ anno_bboxes = [] keypoints = [] tree = ET.parse(anno_path) root = tree.getroot() # get image path from annotation. Note that the path field might not be set. anno_dir = os.path.dirname(anno_path) if root.find("path") is not None: im_path = os.path.realpath( os.path.join(anno_dir, root.find("path").text) ) else: im_path = os.path.realpath( os.path.join(anno_dir, root.find("filename").text) ) # extract bounding boxes, classification and keypoints objs = root.findall("object") for obj in objs: label = obj.find("name").text # Get keypoints if any. # For keypoint detection, currently only one category (except # background) is allowed. We assume all annotated objects are of that # category. if keypoint_meta is not None: kps = [] kps_labels = keypoint_meta["labels"] # Assume keypoints are available kps_annos = obj.find("keypoints") if kps_annos is None: raise Exception(f"No keypoints found in {anno_path}") assert set([kp.tag for kp in kps_annos]).issubset( kps_labels ), "Incompatible keypoint labels" # Read keypoint coordinates: [x, y, visibility] # Visibility 0 means invisible, non-zero means visible for name in kps_labels: kp_anno = kps_annos.find(name) if kp_anno is None: # return 0 for invisible keypoints kps.append([0, 0, 0]) else: kps.append( [ int(float(kp_anno.find("x").text)), int(float(kp_anno.find("y").text)), 1, ] ) keypoints.append(kps) # get bounding box bnd_box = obj.find("bndbox") left = int(bnd_box.find("xmin").text) top = int(bnd_box.find("ymin").text) right = int(bnd_box.find("xmax").text) bottom = int(bnd_box.find("ymax").text) # Set mapping of label name to label index if labels is None: label_idx = None else: label_idx = labels.index(label) anno_bbox = AnnotationBbox.from_array( [left, top, right, bottom], label_name=label, label_idx=label_idx, im_path=im_path, ) assert anno_bbox.is_valid() anno_bboxes.append(anno_bbox) return anno_bboxes, im_path, np.array(keypoints)
5bb8131f359fc3a50db03dd4dad9845e81b3c25c
14,807
def load_user(user_id): """Login manager load user method.""" return User.query.get(int(user_id))
40d5f35aa88163a6ab69c1da7bad6634225f2cf3
14,808
def test_interpolate_energy_dispersion(): """Test of interpolation of energy dispersion matrix using a simple dummy model.""" x = [0.9, 1.1] y = [8., 11.5] n_grid = len(x) * len(y) n_offset = 1 n_en = 30 n_mig = 20 clip_level = 1.e-3 # define simple dummy bias and resolution model using two parameters x and y def get_bias_std(i_en, x, y): i_en = i_en + 3 * ((x - 1) + (y - 10.)) de = n_en - i_en de[de < 0] = 0. bias = de**0.5 + n_mig / 2 rms = 5 - 2 * (i_en / n_en) bias[i_en < 3] = 2 * n_mig # return high values to zero out part of the table rms[i_en < 3] = 0 return bias, rms en = np.arange(n_en)[:, np.newaxis] mig = np.arange(n_mig)[np.newaxis, :] # auxiliary function to compute profile of the 2D distribution # used to check if the expected and interpolated matrixes are similar def calc_mean_std(matrix): n_en = matrix.shape[0] means = np.empty(n_en) stds = np.empty(n_en) for i_en in np.arange(n_en): w = matrix[i_en, :] if np.sum(w) > 0: means[i_en] = np.average(mig[0, :], weights=w) stds[i_en] = np.sqrt(np.cov(mig[0, :], aweights=w)) else: # we need to skip the empty columns means[i_en] = -1 stds[i_en] = -1 return means, stds # generate true values interp_pars = (1, 10) bias, sigma = get_bias_std(en, *interp_pars) mig_true = np.exp(-(mig - bias)**2 / (2 * sigma**2)) mig_true[mig_true < clip_level] = 0 # generate a grid of migration matrixes i_grid = 0 pars_all = np.empty((n_grid, 2)) mig_all = np.empty((n_grid, n_en, n_mig, n_offset)) for xx in x: for yy in y: bias, sigma = get_bias_std(en, xx, yy) mig_all[i_grid, :, :, 0] = (np.exp(-(mig - bias)**2 / (2 * sigma**2))) pars_all[i_grid, :] = (xx, yy) i_grid += 1 # do the interpolation and compare the results with expected ones mig_interp = interp.interpolate_energy_dispersion(mig_all, pars_all, interp_pars, method='linear') # check if all the energy bins have normalization 1 or 0 (can happen because of empty bins) sums = np.sum(mig_interp[:, :, 0], axis=1) assert np.logical_or(np.isclose(sums, 0., atol=1.e-5), np.isclose(sums, 1., atol=1.e-5)).min() # now check if we reconstruct the mean and sigma roughly fine after interpolation bias0, stds0 = calc_mean_std(mig_true) # true bias, stds = calc_mean_std(mig_interp[:, :, 0]) # interpolated # first remove the bins that are empty in true value idxs = bias0 > 0 bias0 = bias0[idxs] bias = bias[idxs] stds0 = stds0[idxs] stds = stds[idxs] # allowing for a 0.6 bin size error on the interpolated values assert np.allclose(bias, bias0, atol=0.6, rtol=0.) assert np.allclose(stds, stds0, atol=0.6, rtol=0.)
73c60f2b01d20b6e399dfb15da2c3c4b8622a90c
14,809
def _transpose_list_array(x): """Transposes a list matrix """ n_dims = len(x) assert n_dims > 0 n_samples = len(x[0]) rows = [None] * n_samples for i in range(n_samples): r = [None] * n_dims for j in range(n_dims): r[j] = x[j][i] rows[i] = r return rows
8815526c6485475aeaf791c2b1350449730b94f6
14,810
def load_businessgroup(request): """ Business Group Dependent/Chained Dropdown List """ business_type_id = request.GET.get('business_type') business_group_list = BusinessGroup.objects.filter( business_type_id=business_type_id).order_by('name') context = {'business_group_list': business_group_list} return render(request, 'app_sme12/form_partial/bus_group_dropdown_list_options.html', context)
8801fbd6ae99ed939721d94bd7f3539b5b050d0a
14,811
def seed_normalization(train_X, train_Y, test_X, testY, nor_method=0, merge=0, column=0): """ 0 for minmax 1 for standard, 2 for nothing :param nor_method: :param merge:是否训练集测试集一起归一化 :return: """ # imp_mean = SimpleImputer(missing_values=np.nan, strategy="mean") imp_mean = KNNImputer(n_neighbors=10,weights="uniform") train_X = imp_mean.fit_transform(train_X) test_X = imp_mean.fit_transform(test_X) if column == 0: if nor_method == 0: scaler = MinMaxScaler() elif nor_method == 1: scaler = StandardScaler() elif nor_method == 2: scaler = Normalizer() elif nor_method == 3: scaler = Pipeline([('min_max', MinMaxScaler()), ('standard', StandardScaler())]) else: return train_X, train_Y, test_X, testY if merge == 0: scaler.fit(np.vstack((train_X, test_X))) train_X = scaler.transform(train_X) test_X = scaler.transform(test_X) elif merge == 1: scaler.fit(train_X) train_X = scaler.transform(train_X) test_X = scaler.transform(test_X) else: train_X = scaler.fit_transform(train_X) test_X = scaler.fit_transform(test_X) #scaler.fit(np.vstack((train_X, test_X))) return train_X, train_Y, test_X, testY else: train_X = train_X.T x_mean = np.mean(train_X, axis=0) x_std = np.std(train_X, axis=0) train_X = (train_X - x_mean) / (x_mean - x_std) test_X = test_X.T x_mean = np.mean(test_X, axis=0) x_std = np.std(test_X, axis=0) test_X = (test_X - x_mean) / (x_mean - x_std) return train_X.T, train_Y, test_X.T, testY
bae1181b6cca53444f09a69abaa3958e8500f71c
14,812
import pathlib def combine_matrix_runs(path, runs, pacc_file): """Combine a set of transition matrix files. Args: path: The base path containing the data to combine. runs: The list of runs to combine. pacc_file: The name of the file to combine. Returns: A TransitionMatrix object with the combined data. """ true_path = pathlib.Path(path) return combine_matrices([read_matrix(true_path / run / pacc_file) for run in runs])
dee47a3f4bfb6229a5c6aec531a0b50df5275a0b
14,813
import json def get_pkg_descr(package, version=None, last_modified=None): """ Get package description from registry """ json_data = fetch_page('http://registry.npmjs.org/%s' % package, last_modified=last_modified) if json_data is None: # NB: empty string is not None but will fail the check return None else: return json.loads(json_data)
9be485ee3e63f25da995b6d454a8dd15de4b7a66
14,814
def has_pattern(str_or_strlist): """When passed a string, equivalent to calling looks_like_pattern. When passed a string list, returns True if any one of the strings looks like a pattern, False otherwise.""" strlist = [str_or_strlist] if isinstance(str_or_strlist, str) else str_or_strlist return len([s for s in strlist if looks_like_pattern(s)]) > 0
902069f01a59b5e42c25635271dc27375732437b
14,815
def update_hidden_area(*args): """update_hidden_area(hidden_area_t ha) -> bool""" return _idaapi.update_hidden_area(*args)
19739a98283203ece9f29d4fe073633318c0c2a4
14,816
def after_update_forecast_datasets(msg, config, checklist): """Calculate the list of workers to launch after the update_forecast_datasets worker ends. :arg msg: Nowcast system message. :type msg: :py:class:`nemo_nowcast.message.Message` :arg config: :py:class:`dict`-like object that holds the nowcast system configuration that is loaded from the system configuration file. :type config: :py:class:`nemo_nowcast.config.Config` :arg dict checklist: System checklist: data structure containing the present state of the nowcast system. :returns: Worker(s) to launch next :rtype: list """ next_workers = { "crash": [], "failure fvcom forecast": [], "failure nemo forecast": [], "failure nemo forecast2": [], "failure wwatch3 forecast": [], "failure wwatch3 forecast2": [], "success fvcom forecast": [], "success nemo forecast": [], "success nemo forecast2": [], "success wwatch3 forecast": [], "success wwatch3 forecast2": [], } if msg.type.startswith("success"): model = msg.type.split()[1] run_type = msg.type.split()[2] try: run_date = checklist[f"{model.upper()} run"][run_type]["run date"] except KeyError: # FVCOM run has model config prefixed to run type run_date = checklist[f"{model.upper()} run"][f"x2 {run_type}"]["run date"] next_workers[msg.type].append( NextWorker("nowcast.workers.ping_erddap", args=[f"{model}-forecast"]) ) if model == "nemo": next_workers[msg.type].extend( [ NextWorker( "nowcast.workers.make_plots", args=["nemo", run_type, "publish", "--run-date", run_date], ), NextWorker( "nowcast.workers.make_surface_current_tiles", args=[run_type, "--run-date", run_date], ), ] ) return next_workers[msg.type]
3ef9a6d37f871900e96f6227fea2f7678843acca
14,817
def index(request): """Homepage for this app. """ with open('index.html') as fp: return HttpResponse(fp.read())
b9ce38f59443e38e5d27ff7f153a834e1c11b429
14,818
def SECH(*args) -> Function: """ The SECH function returns the hyperbolic secant of an angle. Learn more: https//support.google.com/docs/answer/9116560 """ return Function("SECH", args)
594921375aaa7d4fb409e1a4792a6752f81b6bb2
14,819
def read_ATAC_10x(matrix, cell_names='', var_names='', path_file=''): """ Load sparse matrix (including matrices corresponding to 10x data) as AnnData objects. read the mtx file, tsv file coresponding to cell_names and the bed file containing the variable names Parameters ---------- matrix: sparse count matrix cell_names: optional, tsv file containing cell names var_names: optional, bed file containing the feature names Return ------ AnnData object """ mat = mmread(''.join([path_file, matrix])) mat = mat.toarray() mat = np.matrix(mat.transpose()) with open(path_file+cell_names) as f: barcodes = f.readlines() barcodes = [x[:-1] for x in barcodes] with open(path_file+var_names) as f: var_names = f.readlines() var_names = ["_".join(x[:-1].split('\t')) for x in var_names] adata = ad.AnnData(mat, obs=pd.DataFrame(index=barcodes), var=pd.DataFrame(index=var_names)) adata.uns['omic'] = 'ATAC' return(adata)
9f2073d7582f93db2f714f401fc0fb5e0762a2fc
14,820
def get_html_subsection(name): """ Return a subsection as HTML, with the given name :param name: subsection name :type name: str :rtype: str """ return "<h2>{}</h2>".format(name)
2e0f37a7bb9815eda24eba210d8518e64595b9b7
14,821
def compute_norms(items): """ Compute the norms of the item vectors provided. Arguments: items -- a hashmap which maps itemIDs to the characteristic vectors """ norms = {} for item in items: norms[item] = np.sqrt(np.sum(np.square(items[item]))) return norms
ff0a805b6a143b7b52c653226b69aed8319eb5ce
14,822
def do_part_1(): """ Solves part 1 """ digested_lines = list(map(digest_line, input_lines(2))) # Poor man's partial doubles = sum(map(lambda l: contains_nple(l, reps=2), digested_lines)) triples = sum(map(lambda l: contains_nple(l, reps=3), digested_lines)) print(doubles * triples) return doubles * triples
75fa72804d8721b4332d74f00c0bea4d82bcdd02
14,823
import torch def create_Rz_batch(a): """ Creates a batch of rotation matrices about z of angles a. Input (batch) Output (batch, 3, 3) """ return torch.stack([ torch.stack([torch.cos(a), torch.sin(a), torch.zeros_like(a)], dim=1), torch.stack([-torch.sin(a), torch.cos(a), torch.zeros_like(a)], dim=1), torch.stack([torch.zeros_like(a), torch.zeros_like(a), torch.ones_like(a)], dim=1) ], dim=2)
7abed1ef608c9985605096679d28c86f5fabab8e
14,824
import torch def get_upsample_filter(size): """Make a 2D bilinear kernel suitable for upsampling""" factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] filter = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) return torch.from_numpy(filter).float()
8c286e6c20f3400c5206f3f15514a65dc8f3b0b5
14,825
import math def lst2gmst(longitude, hour, minute=None, second=None, longitudeDirection='W', longitudeUnits='DEGREES'): """ Converts Local Sidereal Time to Greenwich Mean Sidereal Time. Parameters ---------- longitude : float (any numeric type) The longitude of the site to calculate the Local Sidereal Time. Defaults are Longitude WEST and units DEGREES, but these can be changed with the optional parameters lonDirection and lonUnits. hour : int (or float) If an integer, the function will expect a minute and second. If a float, it will ignore minute and second and convert from decimal hours to hh:mm:ss. minute : int Ignored if hour is a float. second : int (any numeric type, to include microseconds) Ignored if hour is a float. longitudeDirection : string Default is longitude WEST, 'W', but you can specify EAST by passing 'E'. longitudeUnits : string Default units are 'DEGREES', but this can be switched to radians by passing 'RADIANS' in this parameter. Returns ------- hour : int The hour of the calculated GMST minute : int The minutes of the calculated GMST second: float The seconds of the calculated GMST Examples -------- >>> lst2gmst(70.3425, hour=14, minute=26, second=18) (19, 7, 40.20000000000607) >>> lst2gmst(5.055477, hour=14.4383333333333333, longitudeDirection='E', longitudeUnits='RADIANS') (19, 7, 40.20107388985991) """ if minute != None and second != None: hours = sex2dec(hour, minute, second) elif minute == None and second == None: hours = hour else: raise AssertionError('minute and second must either be both set, or both unset.') if longitudeUnits.upper() == 'DEGREES': longitudeTime = longitude / 15.0 elif longitudeUnits.upper() == 'RADIANS': longitudeTime = longitude * 180.0 / math.pi / 15.0 if longitudeDirection.upper() == 'W': gmst = hours + longitudeTime elif longitudeDirection.upper() == 'E': gmst = hours - longitudeTime else: raise AssertionError('longitudeDirection must be W or E') gmst = gmst % 24.0 return dec2sex(gmst)
4e651dde2b5dadb1af5d00bc1813272190f07cdf
14,826
import ast def filter_funcs(node) -> bool: """Filter to get functions names and remove dunder names""" if not isinstance(node, ast.FunctionDef): return False elif node.name.startswith('__') or node.name.endswith('__'): return False else: return True
022181afa887965af0f2d4c5ec33de07b8a3c089
14,827
from ptvsd.server import api def attach(address, log_dir=None, multiprocess=True): """Starts a DAP (Debug Adapter Protocol) server in this process, and connects it to the IDE that is listening for an incoming connection on a socket with the specified address. address must be a (host, port) tuple, as defined by the standard socket module for the AF_INET address family. If specified, log_dir must be a path to some existing directory; the debugger will then create its log files in that directory. A separate log file is created for every process, to accommodate scenarios involving multiple processes. The log file for a process with process ID <pid> will be named "ptvsd_<pid>.log". If multiprocess is true, ptvsd will also intercept child processes spawned by this process, inject a debug server into them, and configure it to attach to the same IDE before the child process starts running any user code. This function doesn't return until connection to the IDE has been established. """ return api.attach(address, log_dir)
aa36e20df5b7d4ad5eb769987ab6e36d368afbb7
14,828
from typing import Optional def create_api_token( creator_id: UserID, permissions: set[PermissionID], *, description: Optional[str] = None, ) -> ApiToken: """Create an API token.""" num_bytes = 40 token = token_urlsafe(num_bytes) db_api_token = DbApiToken( creator_id, token, permissions, description=description ) db.session.add(db_api_token) db.session.commit() return _db_entity_to_api_token(db_api_token)
044d041bd013cb5b0ebc9c534b8c0162c3996172
14,829
import argparse def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser(description="Update OCFL inventory sidecar file", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("path", type=str, nargs="*", help="OCFL inventory files or directories containing them") parser.add_argument("--digest", default=None, help="Digest algorithm to use overriding any in inventory") ocfl.add_shared_args(parser) args = parser.parse_args() ocfl.check_shared_args(args) return args
4e280ba0471a9bf215871d00e77ae2c4b9f41ebb
14,830
from typing import Tuple def match_image_widths( image_i1: Image, image_i2: Image ) -> Tuple[Image, Image, Tuple[float, float], Tuple[float, float]]: """Automatically chooses the target width (larger of the two inputs), and scales both images to that width. Args: image_i1: 1st image to match width. image_i2: 2nd image to match width. Returns: Scaled image_i1. Scaled image_i2. Scaling factor (W, H) for image_i1. Scaling factor (W, H) for image_i2. """ max_width = max(image_i1.width, image_i2.width) # scale image_i1 new_width = int(max_width) new_height = int(image_i1.height * new_width / image_i1.width) scale_factor_i1 = (new_width / image_i1.width, new_height / image_i1.height) scaled_image_i1 = resize_image(image_i1, new_height, new_width) # scale image_i2 new_width = int(max_width) new_height = int(image_i2.height * new_width / image_i2.width) scale_factor_i2 = (new_width / image_i2.width, new_height / image_i2.height) scaled_image_i2 = resize_image(image_i2, new_height, new_width) return scaled_image_i1, scaled_image_i2, scale_factor_i1, scale_factor_i2
86f043a3069202b2dfc3eb24f9ac10e9077b2237
14,831
from typing import Optional from typing import Union from typing import Any from typing import Dict import copy def get_parameter_value_and_validate_return_type( domain: Optional[Domain] = None, parameter_reference: Optional[Union[Any, str]] = None, expected_return_type: Optional[Union[type, tuple]] = None, variables: Optional[ParameterContainer] = None, parameters: Optional[Dict[str, ParameterContainer]] = None, ) -> Optional[Any]: """ This method allows for the parameter_reference to be specified as an object (literal, dict, any typed object, etc.) or as a fully-qualified parameter name. In either case, it can optionally validate the type of the return value. """ if isinstance(parameter_reference, dict): parameter_reference = dict(copy.deepcopy(parameter_reference)) parameter_reference = get_parameter_value( domain=domain, parameter_reference=parameter_reference, variables=variables, parameters=parameters, ) if expected_return_type is not None: if not isinstance(parameter_reference, expected_return_type): raise ge_exceptions.ProfilerExecutionError( message=f"""Argument "{parameter_reference}" must be of type "{str(expected_return_type)}" \ (value of type "{str(type(parameter_reference))}" was encountered). """ ) return parameter_reference
9cdd3106a0397a63a13d71b1c0ce5815a41e47ed
14,832
def diff_tags(list_a, list_b): """ Return human readable diff string of tags changed between two tag lists :param list_a: Original tag list :param list_b: New tag list :return: Difference string """ status_str = text_type("") tags_added = [tag for tag in list_b if tag not in list_a] tags_removed = [tag for tag in list_a if tag not in list_b] if tags_added and tags_removed: status_str += "added: {0}".format(text_type(tags_added)) status_str += " removed: {0}".format(text_type(tags_removed)) elif tags_added: status_str += "added: {0}".format(text_type(tags_added)) elif tags_removed: status_str += "removed: {0}".format(text_type(tags_removed)) if not status_str: status_str = "no changes required." return status_str
e9f69bcdee0e2cb6fd260c56f8bbfe5f568afc63
14,833
import numpy def distance_on_great_circle(start_point, direction, distance): """compute the location of a point a specified distance along a great circle NOTE: This assumes a spherical earth. The error introduced in the location is pretty small (~15 km for a 13000 km path), but it totall screws with the altitude. YOU SHOULD NOT USE THE ALTITUDE COMING OUT OF THIS, ESPECIALLY IF YOU HAVE ANY MEANGINFUL DISTANCE Arguments: start_point: the starting point of the great circle. The direction is given in a NED frame at this point. Numpy (3,) array in radians, lla direction: a NED vector indicating the direction of the great circle distance: the length of the great circle arc (m) Returns: end_point: the end of a great circle path of length <distance> from <start_point> with initial <direction> """ start_xyz = geodesy.conversions.lla_to_xyz(start_point) direction = geometry.conversions.to_unit_vector(direction) delta_xyz = geodesy.conversions.ned_to_xyz( direction, numpy.array(start_point, ndmin=2)) rotation_axis = -geometry.conversions.to_unit_vector( numpy.cross(start_xyz, delta_xyz)) rotation_magnitude = distance / environments.earth.constants['r0'] rotation_quaternion = geometry.quaternion.Quaternion() rotation_quaternion.from_axis_and_rotation( rotation_axis, rotation_magnitude) end_point_xyz = rotation_quaternion.rot(start_xyz) end_point = geodesy.conversions.xyz_to_lla(end_point_xyz) return end_point
e39c62435c208cb2ea4e951b91b641cfbfcd45a8
14,834
def construct_tree_framework(bracket): """Given the tree in bracket form, creates a tree with labeled leaves and unlabeled inner nodes.""" if type(bracket)==int: #base case, creates leaf return Node(tree) else: #recursive step, inner nodes root = Node(None, construct_tree_framework(bracket[0]), construct_tree_framework(bracket[1])) return root
a54651fcc5604f46985b11d0d783c76f4368a9d0
14,835
def eckart_transform(atommasses, atomcoords): """Compute the Eckart transform. This transform is described in https://gaussian.com/vib/. Parameters ---------- atommasses : array-like Atomic masses in atomic mass units (amu). atomcoords : array-like Atomic coordinates. Returns ------- array-like Examples -------- >>> from overreact import _datasets as datasets >>> data = datasets.logfiles["tanaka1996"]["Cl·@UMP2/cc-pVTZ"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> data = datasets.logfiles["symmetries"]["dihydrogen"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[...]]) >>> data = datasets.logfiles["symmetries"]["water"] >>> eckart_transform(data.atommasses, data.atomcoords) array([[-9.42386999e-01, 0.00000000e+00, 0.00000000e+00, 2.99716727e-01, -2.86166258e-06, -7.42376895e-02, -1.19022276e-02, 4.33736541e-03, -1.28081683e-01], [-0.00000000e+00, -9.42386999e-01, 0.00000000e+00, 1.40934586e-02, -1.34562803e-07, 1.01850683e-01, -1.52466204e-01, -2.78628770e-01, -2.13218735e-02], [-0.00000000e+00, -0.00000000e+00, -9.42386999e-01, -1.47912143e-01, 1.41224899e-06, -1.40724409e-01, -3.86450545e-02, -1.77596105e-02, -2.61565554e-01], [-2.36544652e-01, -0.00000000e+00, -0.00000000e+00, -5.97037403e-01, -6.33525274e-01, 2.70812665e-02, -2.34354970e-01, 8.09905642e-02, 3.52169811e-01], [-0.00000000e+00, -2.36544652e-01, -0.00000000e+00, -2.80742485e-02, -2.97900030e-02, -6.93753868e-01, 5.78451116e-01, 2.06337502e-01, 2.89647600e-01], [-0.00000000e+00, -0.00000000e+00, -2.36544652e-01, 2.94641819e-01, 3.12648820e-01, -1.12274948e-02, -4.19760855e-01, 1.83772848e-01, 7.41205673e-01], [-2.36544652e-01, -0.00000000e+00, -0.00000000e+00, -5.97025305e-01, 6.33536675e-01, 2.68679525e-01, 2.81773098e-01, -9.82705016e-02, 1.58103880e-01], [-0.00000000e+00, -2.36544652e-01, -0.00000000e+00, -2.80736797e-02, 2.97905391e-02, 2.87983715e-01, 2.89697972e-02, 9.03711399e-01, -2.04701877e-01], [-0.00000000e+00, -0.00000000e+00, -2.36544652e-01, 2.94635849e-01, -3.12654446e-01, 5.71869440e-01, 5.73721626e-01, -1.13019078e-01, 3.00863871e-01]]) """ atommasses = np.asarray(atommasses) natom = len(atommasses) dof = 3 * natom moments, axes, atomcoords = inertia(atommasses, atomcoords, align=False) x = np.block( [ np.ones(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], ] ) y = np.block( [ np.zeros(natom)[:, np.newaxis], np.ones(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], ] ) z = np.block( [ np.zeros(natom)[:, np.newaxis], np.zeros(natom)[:, np.newaxis], np.ones(natom)[:, np.newaxis], ] ) x *= np.sqrt(atommasses[:, np.newaxis]) y *= np.sqrt(atommasses[:, np.newaxis]) z *= np.sqrt(atommasses[:, np.newaxis]) D_trans = np.block([x.reshape(1, dof).T, y.reshape(1, dof).T, z.reshape(1, dof).T]) D_rot = np.array( [ np.cross((atomcoords @ axes)[i], axes[:, j]) / np.sqrt(atommasses[i]) for i in range(natom) for j in range(3) ] ) D = np.block([D_trans, D_rot]) return np.linalg.qr(D, mode="complete")[0]
833b18ecdb299d3183da24c3b9d40227e387a385
14,836
def as_java_array(gateway, java_type, iterable): """Creates a Java array from a Python iterable, using the given p4yj gateway""" java_type = gateway.jvm.__getattr__(java_type) lst = list(iterable) arr = gateway.new_array(java_type, len(lst)) for i, e in enumerate(lst): jobj = as_java_object(gateway, e) arr[i] = jobj return arr
d8a14a6506a0cbde6f09b4d071f6968da3e4d17d
14,837
import scipy def match(a: np.ndarray, b: np.ndarray) -> np.ndarray: """Finds the matrix R that minimizes the frobenius norm of RA - B, where R is orthonormal. Args: a (np.ndarray[samples, features]): the first matrix to match b (np.ndarray[samples, features]): the second matrix to match Returns: np.ndarray: the orthonormal matching matrix R """ tus.check_ndarrays( a=(a, ('samples', 'features'), ('float32', 'float64')), b=(b, (('samples', a.shape[0]), ('features', a.shape[1])), a.dtype) ) m = b @ a.T u, _, vh = scipy.linalg.svd(m) return np.real(u @ vh)
461f3f05ab1164bfbac3f9e8f6ccd5622791a6ff
14,838
import time import requests import json def macro_cons_silver_amount(): """ 全球最大白银ETF--iShares Silver Trust持仓报告, 数据区间从20060429-至今 :return: pandas.Series 2006-04-29 263651152 2006-05-02 263651152 2006-05-03 445408550 2006-05-04 555123947 2006-05-05 574713264 ... 2019-10-17 Show All 2019-10-18 Show All 2019-10-21 Show All 2019-10-22 Show All 2019-10-23 Show All """ t = time.time() res = requests.get( JS_CONS_SLIVER_ETF_URL.format( str(int(round(t * 1000))), str(int(round(t * 1000)) + 90) ) ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["白银"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["总价值(美元)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "etf", "attr_id": "2", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, [0, 3]] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", keep="last", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "silver_amount" url = "https://cdn.jin10.com/data_center/reports/etf_2.json" r = requests.get(url) data_json = r.json() append_temp_df = pd.DataFrame(data_json["values"]).T append_temp_df.columns = [item["name"] for item in data_json["keys"]] temp_append_df = append_temp_df["总价值"] temp_append_df.name = "silver_amount" temp_df = temp_df.reset_index() temp_df["index"] = temp_df["index"].astype(str) temp_df = temp_df.append(temp_append_df.reset_index()) temp_df.drop_duplicates(subset=["index"], keep="last", inplace=True) temp_df.index = pd.to_datetime(temp_df["index"]) del temp_df["index"] temp_df = temp_df[temp_df != 'Show All'] temp_df.sort_index(inplace=True) temp_df = temp_df.astype(float) return temp_df
d60bac23a480c056d237dda6b16eb267b2f54ee5
14,839
import random def shuffle(answers): """ Returns mixed answers and the index of the correct one, assuming the first answer is the correct one. """ indices = list(range(len(answers))) random.shuffle(indices) correct = indices.index(0) answers = [answers[i] for i in indices] return answers, correct
e597b4aeb65fecf47f4564f2fddb4d76d484707a
14,840
from typing import Union from pathlib import Path def annotations_to_xml(annotations_df: pd.DataFrame, image_path: Union[str, Path], write_file=True) -> str: """ Load annotations from dataframe (retinanet output format) and convert them into xml format (e.g. RectLabel editor / LabelImg). Args: annotations_df (DataFrame): Format [xmin,ymin,xmax,ymax,label,...] image_path: string/Path path to the file where these bboxes are found write_file: Writes the xml at the same path as the image it describes. Overwrites the existent file, if any. Returns: XML <annotation> <folder>unlabeled_imgs</folder> <filename>autumn-forest-from-above-2210x1473.jpeg</filename> <path>/work/trees/unlabeled_imgs/autumn-forest-from-above-2210x1473.jpeg</path> <source> <database>Unknown</database> </source> <size> <width>2210</width> <height>1473</height> <depth>3</depth> </size> <segmented>0</segmented> <object> <name>tree</name> <pose>Unspecified</pose> <truncated>0</truncated> <difficult>0</difficult> <bndbox> <xmin>718</xmin> <ymin>603</ymin> <xmax>792</xmax> <ymax>705</ymax> </bndbox> </object> </annotation> """ image_path = Path(image_path) out_dict = { 'folder': image_path.parent.name, 'filename': image_path.name, 'path': str(image_path), 'segmented': 0 } xml_out = '<annotation>\n' xml_out += dict2xml(out_dict, indent=" ") + '\n' xml_out += "\n".join([__annotation_row_to_dict(row) for _, row in annotations_df.iterrows()]) xml_out += '\n</annotation>\n' if write_file: # annotations file should be near its image file_path = image_path.parent / f'{image_path.stem}.xml' with open(file_path, 'w+') as the_file: the_file.write(xml_out) return xml_out
68ab235299da7026b77feb715e260f3e1749ec3b
14,841
def depth(sequence, func=max, _depth=0): """ Find the nesting depth of a nested sequence """ if isinstance(sequence, dict): sequence = list(sequence.values()) depth_list = [ depth(item, func=func, _depth=_depth + 1) for item in sequence if (isinstance(item, dict) or util_type.is_listlike(item)) ] if len(depth_list) > 0: return func(depth_list) else: return _depth
84b6e7ccaa0f7924fa4a775eca41edf8422222d0
14,842
def tei_email(elem_text): """ create TEI element <email> with given element text """ email = etree.Element("email") email.text = elem_text return email
cd3d6cf53f7ea5a29c4a02a4ea0d0a2d2144645c
14,843
def rebuild(request): """Rebuild ``XPI`` file. It can be provided as POST['location'] :returns: (JSON) contains one field - hashtag it is later used to download the xpi using :meth:`xpi.views.check_download` and :meth:`xpi.views.get_download` """ # validate entries secret = request.POST.get('secret', None) if not secret or secret != settings.AMO_SECRET_KEY: log.error("Rebuild requested with an invalid key. Rejecting.") return HttpResponseForbidden('Access denied') options = request.POST.get('options', None) location = request.POST.get('location', None) addons = request.POST.get('addons', None) upload = request.FILES.get('upload', None) if not location and not upload and not addons: log.error("Rebuild requested but files weren't specified. Rejecting.") return HttpResponseBadRequest('Please provide XPI files to rebuild') if location and upload: log.error("Rebuild requested but location and upload provided." "Rejecting") return HttpResponseBadRequest('Please provide XPI files to rebuild') # locate SDK source directory sdk_version = request.POST.get('sdk_version', None) if sdk_version: sdk = get_object_or_404(SDK, version=sdk_version) sdk_source_dir = sdk.get_source_dir() else: sdk_source_dir = (settings.REPACKAGE_SDK_SOURCE or _get_latest_sdk_source_dir()) sdk_manifest = '%s/packages/%s/package.json' % (sdk_source_dir, 'addon-kit') try: handle = open(sdk_manifest) except Exception, err: log.critical("Problems loading SDK manifest\n%s" % str(err)) raise else: sdk_version = simplejson.loads(handle.read())['version'] handle.close() pingback = request.POST.get('pingback', None) priority = request.POST.get('priority', None) post = request.POST.urlencode() if priority and priority == 'high': rebuild_task = tasks.high_rebuild else: rebuild_task = tasks.low_rebuild response = {'status': 'success'} errors = [] counter = 0 if location or upload: hashtag = get_random_string(10) if location: log.debug('[%s] Single rebuild started for location (%s)' % (hashtag, location)) else: log.debug('[%s] Single rebuild started from upload' % hashtag) filename = request.POST.get('filename', None) try: package_overrides = _get_package_overrides(request.POST, sdk_version) except BadManifestFieldException, err: errors.append('[%s] %s' % (hashtag, str(err))) else: rebuild_task.delay( location, upload, sdk_source_dir, hashtag, package_overrides=package_overrides, filename=filename, pingback=pingback, post=post, options=options) counter = counter + 1 if addons: try: addons = simplejson.loads(addons) except Exception, err: errors.append('[%s] %s' % (hashtag, str(err))) else: for addon in addons: error = False filename = addon.get('filename', None) hashtag = get_random_string(10) location = addon.get('location', None) upload_name = addon.get('upload', None) upload = None if upload_name: upload = request.FILES.get(upload_name, None) if not (location or upload): errors.append("[%s] Files not specified." % hashtag) error = True if location and upload: errors.append(("[%s] Location and upload provided. " "Rejecting") % hashtag) error = True try: package_overrides = _get_package_overrides(addon, sdk_version) except Exception, err: errors.append('[%s] %s' % (hashtag, str(err))) error = True if not error: rebuild_task.delay( location, upload, sdk_source_dir, hashtag, package_overrides=package_overrides, filename=filename, pingback=pingback, post=post) counter = counter + 1 if errors: log.error("Errors reported when rebuilding") response['status'] = 'some failures' response['errors'] = '' for e in errors: response['errors'] = "%s%s\n" % (response['errors'], e) log.error(" Error: %s" % e) response['addons'] = counter uuid = request.POST.get('uuid', 'no uuid') log.info("%d addon(s) will be created, %d syntax errors, uuid: %s" % (counter, len(errors), uuid)) return HttpResponse(simplejson.dumps(response), mimetype='application/json')
41d2ca3d73507a99dd790254606d11e743971ba9
14,844
from typing import List from pathlib import Path def get_requirements(req_file: str) -> List[str]: """ Extract requirements from provided file. """ req_path = Path(req_file) requirements = req_path.read_text().split("\n") if req_path.exists() else [] return requirements
3433cd117bbb0ced7ee8238e36f20c69e15c5260
14,845
from typing import List import sys def _generate_ngram_contexts(ngram: str) -> 'List[Acronym]': """ Generate a list of contextualized n-grams with a decreasing central n-gram and increasing \ lateral context. :param ngram: :return: """ tokens = ngram.split(" ") ngram_size = len(tokens) contexts = [] # Walk only until half and `max_diff` more. for i in range(0, int((ngram_size + 1 + MAX_DIFF) / 2)): # Allow up to `max_diff` difference in size. for j in range(ngram_size - i + MAX_DIFF, ngram_size - i - MAX_DIFF - 1, -1): # Do not allow empty acronym. if i >= j: break # Do not walk past the n-gram. if j > ngram_size: continue left = sys.intern(" ".join(tokens[0:i])) right = sys.intern(" ".join(tokens[j:ngram_size])) center = sys.intern(" ".join(tokens[i:j])) contexts.append(Acronym(acronym=center, left_context=left, right_context=right)) return contexts
4beb0fb1f9170191e4118f0c7bb18d0a41e58a63
14,846
def get_gmail_account(slug): """ Return the details of the given account - just pass in the slug e.g. get_account('testcity') """ service = get_gapps_client() if not service: return None try: return service.users().get(userKey=make_email(slug)).execute() except HttpError: return None
959685e6f40b8333103e47f9ce8c50050ca95961
14,847
def unisolate_machine_command(): """Undo isolation of a machine. Returns: (str, dict, dict). Human readable, context, raw response """ headers = ['ID', 'Type', 'Requestor', 'RequestorComment', 'Status', 'MachineID', 'ComputerDNSName'] machine_id = demisto.args().get('machine_id') comment = demisto.args().get('comment') machine_action_response = unisolate_machine_request(machine_id, comment) machine_action_data = get_machine_action_data(machine_action_response) entry_context = { 'MicrosoftATP.MachineAction(val.ID === obj.ID)': machine_action_data } human_readable = tableToMarkdown("The request to stop the isolation has been submitted successfully:", machine_action_data, headers=headers, removeNull=True) return human_readable, entry_context, machine_action_response
d981005753030a1be50a3c0ff40022241096ea2f
14,848
def func(*listItems): """ 1、遍历所有的列表元素 2、遍历所有的列表元素里面的所有元素放进去一个列表里面 3、排序这个列表,返回最大的那个元素 """ tmp_list=[] for item in listItems: if isinstance(item,list): for i in item: tmp_list.append(i) tmp_list=list(filter(lambda k:isinstance(k,int),tmp_list)) tmp_list.sort(reverse=True) max_value=tmp_list[0] return max_value
adbef2744871f1d8f714cbf2a71d4321e3fb72f5
14,849
def factory(name: str): """Factory function to return a processing function for Part of Speech tagging. Parameters: ----------- name : str Identifier, e.g. 'spacy-de', 'stanza-de', 'flair-de', 'someweta-de', 'someweta-web-de' Example: -------- import nlptasks as nt import nlptasks.pos sequences = [['Die', 'Kuh', 'ist', 'bunt', '.']] myfn = nt.pos.factory("spacy-de") idseqs, TAGSET = myfn(sequences, maxlen=4) """ if name in ("spacy", "spacy-de"): return spacy_de elif name in ("stanza", "stanza-de"): return stanza_de elif name == "flair-de": return flair_de elif name in ("someweta", "someweta-de"): return someweta_de elif name in ("someweta-web", "someweta-web-de"): return someweta_web_de else: raise Exception(f"Unknown PoS tagger: '{name}'")
9166613ba98beeb56dcc5766217d951ff13f9b38
14,850
def backoff_handler(debug_only=True): """Backoff logging handler for when polling occurs. Args: details (dict): Backoff context containing the number of tries, target function currently executing, kwargs, args, value, and wait time. """ def _wrapped(details): message = '[Backoff]: Calling \'{}\' again in {:f} seconds with {:d} tries so far'.format( details['target'].__name__, details['wait'], details['tries'] ) if not debug_only: LOGGER.info(message) else: LOGGER.debug(message) return _wrapped
db76c6d857fd5df000b2bc3ff048d0d180f71a37
14,851
def align_dataframes(framea, frameb, fill_value = 0.0): """Use pandas DataFrame structure to align two-dimensional data :param framea: First pandas dataframe to align :param frameb: Other pandas dataframe to align :param fill_value: default fill value (0.0 float) return: tuple of aligned frames """ zeroframe = frameb.copy() zeroframe[:] = fill_value aligneda = framea.add(zeroframe, fill_value = fill_value) zeroframe = framea.copy() zeroframe[:] = fill_value alignedb = frameb.add(zeroframe, fill_value = fill_value) return aligneda, alignedb
86a5e8c399ab47a10715af6c90d0901c2207597c
14,852
def flip_ud(img): """ Expects shape to be (num_examples, modalities, depth, width, height) """ return np.flip(img.copy(), 3)
f7a14641a89f5a170cb3d19b412acdbcbe3ac2f3
14,853
def data_context_service_interface_pointuuid_otsi_service_interface_point_spec_otsi_capability_get(uuid): # noqa: E501 """data_context_service_interface_pointuuid_otsi_service_interface_point_spec_otsi_capability_get returns tapi.photonic.media.OtsiCapabilityPac # noqa: E501 :param uuid: Id of service-interface-point :type uuid: str :rtype: TapiPhotonicMediaOtsiCapabilityPac """ return 'do some magic!'
99b3ed0e843f0dd405cd0d0b618a4da92fbdcf55
14,854
def _get_trial_event_times(events, units, trial_cond_name): """ Get median event start times from all unit-trials from the specified "trial_cond_name" and "units" - aligned to GO CUE :param events: list of events """ events = list(events) + ['go'] event_types, event_times = (psth.TrialCondition().get_trials(trial_cond_name) * (experiment.TrialEvent & [{'trial_event_type': eve} for eve in events]) & units).fetch('trial_event_type', 'trial_event_time') period_starts = [(event_type, np.nanmedian((event_times[event_types == event_type] - event_times[event_types == 'go']).astype(float))) for event_type in events[:-1] if len(event_times[event_types == event_type])] present_events, event_starts = list(zip(*period_starts)) return np.array(present_events), np.array(event_starts)
c7198fdba392d7b5301109175408d3c0d95adbb9
14,855
import os def is_path_exists_or_creatable(pathname=None): """ `True` if the passed pathname is a valid pathname for the current OS _and_ either currently exists or is hypothetically creatable; `False` otherwise. This function is guaranteed to _never_ raise exceptions. """ try: # To prevent "os" module calls from raising undesirable exceptions on # invalid pathnames, is_pathname_valid() is explicitly called first. return is_pathname_valid(pathname) and (os.path.exists(pathname) or is_path_creatable(pathname)) # Report failure on non-fatal filesystem complaints (e.g., connection # timeouts, permissions issues) implying this path to be inaccessible. All # other exceptions are unrelated fatal issues and should not be caught here. except OSError: return False
ca93215ab86fb9d68d21262a3b941f32bea3c474
14,856
from typing import Iterable def select_region(selections, positions, region): """ selection in region from selections """ if not region: return selections region = list(region) + [None, None] assert all([x is None or isinstance(x, Iterable) and len(x) == 2 for x in region]), 'region should be collections of x,y,z region' output = [] for sel in selections: for regi, reg in enumerate(region[:3]): if reg: if reg[0] <= positions[sel][regi] <= reg[1]: output.append(sel) return output
b9efc393b7d60773554130ded49d9dc9e00081e5
14,857
def summarize_center_and_dispersion( analysis_layer, summarize_type=["CentralFeature"], ellipse_size=None, weight_field=None, group_field=None, output_name=None, context=None, gis=None, estimate=False, future=False): """ .. image:: _static/images/summarize_center_and_dispersion/summarize_center_and_dispersion.png The ``summarize_center_and_dispersion`` method finds central features and directional distributions. It can be used to answer questions such as: * Where is the center? * Which feature is the most accessible from all other features? * How dispersed, compact, or integrated are the features? * Are there directional trends?s ==================== ========================================================= **Argument** **Description** -------------------- --------------------------------------------------------- analysis_layer Required frature layer. The point, line, or polygon features to be analyzed. See :ref:`Feature Input<FeatureInput>`. -------------------- --------------------------------------------------------- summarize_type Required list of strings. The method with which to summarize the ``analysis_layer``. Choice list: ["CentralFeature", "MeanCenter", "MedianCenter", "Ellipse"] -------------------- --------------------------------------------------------- ellipse_size Optional string. The size of the output ellipse in standard deviations. Choice list: ['1 standard deviations', '2 standard deviations', '3 standard deviations'] The default ellipse size is '1 standard deviations'. -------------------- --------------------------------------------------------- weight_field Optional field. A numeric field in the ``analysis_layer`` to be used to weight locations according to their relative importance. -------------------- --------------------------------------------------------- group_field Optional field. The field used to group features for separate directional distribution calculations. The ``group_field`` can be of integer, date, or string type. -------------------- --------------------------------------------------------- output_name Optional string. If provided, the method will create a feature service of the results. You define the name of the service. If ``output_name`` is not supplied, the method will return a feature collection. -------------------- --------------------------------------------------------- context Optional string. Context contains additional settings that affect task execution. For ``summarize_center_and_dispersion``, there are two settings. #. Extent (``extent``) - a bounding box that defines the analysis area. Only those features in the input layer that intersect the bounding box will be buffered. #. Output Spatial Reference (``outSR``) - the output features will be projected into the output spatial reference. -------------------- --------------------------------------------------------- estimate Optional boolean. If True, the number of credits to run the operation will be returned. -------------------- --------------------------------------------------------- future Optional boolean. If True, the result will be a GPJob object and results will be returned asynchronously. ==================== ========================================================= :returns: list of items if ``output_name`` is supplied else, a Python dictionary with the following keys: "central_feature_result_layer" : layer (FeatureCollection) "mean_feature_result_layer" : layer (FeatureCollection) "median_feature_result_layer" : layer (FeatureCollection) "ellipse_feature_result_layer" : layer (FeatureCollection) .. code-block:: python # USAGE EXAMPLE: To find central features and mean center of earthquake over past months. central_features = summarize_center_and_dispersion(analysis_layer=earthquakes, summarize_type=["CentralFeature","MeanCenter"], ellipse_size='2 standard deviations', weight_field='mag', group_field='magType', output_name='find central features and mean center of earthquake over past months') """ gis = _arcgis.env.active_gis if gis is None else gis return gis._tools.featureanalysis.summarize_center_and_dispersion( analysis_layer, summarize_type, ellipse_size, weight_field, group_field, output_name, context, estimate=estimate, future=future)
a1fc44cb1781bb11f39dda597fe884552ec07a99
14,858
def length_entropy(r: np.ndarray, minlen: int = 2) -> float: """Calculate entropy of diagonal lengths in RQ matrix. Args: r (np.ndarray[bool, bool]): Recurrence matrix minlen (int): Minimum length of a line Returns: float: Shannon entropy of distribution of segment lengths """ dlens = diagonal_lengths(r, minlen) counts = _dlen_counts(dlens, minlen, r.shape[0]) return entropy(counts)
fe20e36aade8bae5e8a2fc139ad887495818f336
14,859
def verify_scholarship_chair(user): """ Verify user has Scholarship Chair permissions """ user_id = user.brother.id if Position.objects.filter(title='President')[0].brother.id == user_id or \ Position.objects.filter(title='Scholarship Chair')[0].brother.id == user_id or \ debug: return True else: return False
53b1f0331e9af87cced904b2c26bef7a1d600cf2
14,860
def rotate(posList, axis, angle): """Rotate the points about a given axis by a given angle.""" #normalize axis, turn angle into radians axis = axis/np.linalg.norm(axis) angle = np.deg2rad(angle) #rotation matrix construction ux, uy, uz = axis sin, cos = np.sin(angle), np.cos(angle) rotMat = np.array([[cos+ux*ux*(1.-cos), ux*uy*(1.-cos)-uz*sin, ux*uz*(1.-cos)+uy*sin], [uy*ux*(1.-cos)+uz*sin, cos+uy*uy*(1.-cos), uy*uz*(1.-cos)-ux*sin], [uz*ux*(1.-cos)-uy*sin, uz*uy*(1.-cos)+ux*sin, cos+uz*uz*(1.-cos)]]) #rotate points return np.transpose(np.dot(rotMat,np.transpose(posList)))
0719bf548f5d952e78f0b2551f2edcd9510b1eca
14,861
def _make_frame_with_filename(tb, idx, filename): """Return a copy of an existing stack frame with a new filename.""" frame = tb[idx] return FrameSummary( filename, frame.lineno, frame.name, frame.line)
c775b77c3c282ed598adc25996fb418a9b85529e
14,862
def median(X): """ Middle value after sorting all values by size, or mean of the two middle values. Parameters ---------- X : np.array Dataset. Should be a two-dimensional array. Returns ------- a: np.array One-dimensional array that contains the median for each feature. """ return np.nanmedian(X, axis=0)
232d1ce560c4030b01b048cb9087d5e8c49b39ec
14,863
def _filter_none_values(d: dict): """ Filter out the key-value pairs with `None` as value. Arguments: d dictionary Returns: filtered dictionary. """ return {key: value for (key, value) in d.items() if value is not None}
bed2629e4fa96a391e15b043aa3a0d64c75d6ed0
14,864
def new_project(request): """ if this is a new project, call crud_project without a slug and with action set to New """ return crud_project(request, slug=None, action="New")
fc224a23fb2ecc39fce20a927c57be0ff74ed9d1
14,865
def get_Simon_instance(simon_instance): """Return an instance of the Simon family as a `Cipher`.""" if simon_instance == SimonInstance.simon_32_64: default_rounds = 32 n = 16 m = 4 z = "11111010001001010110000111001101111101000100101011000011100110" elif simon_instance == SimonInstance.simon_48_96: default_rounds = 36 n = 24 m = 4 z = "10001110111110010011000010110101000111011111001001100001011010" elif simon_instance == SimonInstance.simon_64_128: default_rounds = 44 n = 32 m = 4 z = "11011011101011000110010111100000010010001010011100110100001111" else: raise ValueError("invalid instance of Simon") class SimonKeySchedule(RoundBasedFunction): """Key schedule function.""" num_rounds = default_rounds input_widths = [n for _ in range(m)] output_widths = [n for _ in range(default_rounds)] @classmethod def set_num_rounds(cls, new_num_rounds): cls.num_rounds = new_num_rounds cls.input_widths = [n for _ in range(min(m, new_num_rounds))] cls.output_widths = [n for _ in range(new_num_rounds)] @classmethod def eval(cls, *master_key): if cls.num_rounds <= m: return list(reversed(master_key))[:cls.num_rounds] k = [None for _ in range(cls.num_rounds)] k[:m] = list(reversed(master_key)) for i in range(m, cls.num_rounds): tmp = RotateRight(k[i - 1], 3) if m == 4: tmp ^= k[i - 3] tmp ^= RotateRight(tmp, 1) k[i] = ~k[i - m] ^ tmp ^ int(z[(i - m) % 62]) ^ 3 return k class SimonEncryption(Encryption, RoundBasedFunction): """Encryption function.""" num_rounds = default_rounds input_widths = [n, n] output_widths = [n, n] round_keys = None @classmethod def set_num_rounds(cls, new_num_rounds): cls.num_rounds = new_num_rounds @classmethod def eval(cls, x, y): for i in range(cls.num_rounds): x, y = (y ^ SimonRF(x) ^ cls.round_keys[i], x) cls.add_round_outputs(x, y) return x, y class SimonCipher(Cipher): key_schedule = SimonKeySchedule encryption = SimonEncryption _simon_instance = simon_instance @classmethod def set_num_rounds(cls, new_num_rounds): cls.key_schedule.set_num_rounds(new_num_rounds) cls.encryption.set_num_rounds(new_num_rounds) @classmethod def test(cls): old_num_rounds = cls.num_rounds cls.set_num_rounds(default_rounds) if cls._simon_instance == SimonInstance.simon_32_64: plaintext = (0x6565, 0x6877) key = (0x1918, 0x1110, 0x0908, 0x0100) assert cls(plaintext, key) == (0xc69b, 0xe9bb) elif cls._simon_instance == SimonInstance.simon_48_96: plaintext = (0x726963, 0x20646e) key = (0x1a1918, 0x121110, 0x0a0908, 0x020100) assert cls(plaintext, key) == (0x6e06a5, 0xacf156) elif cls._simon_instance == SimonInstance.simon_64_128: plaintext = (0x656b696c, 0x20646e75) key = (0x1b1a1918, 0x13121110, 0x0b0a0908, 0x03020100) assert cls(plaintext, key) == (0x44c8fc20, 0xb9dfa07a) else: raise ValueError("invalid instance of Simon") cls.set_num_rounds(old_num_rounds) return SimonCipher
41ce1cdfdb58b15af8167f5e0d03fcd0beb94c80
14,866
import os import struct def load_mnist(path, kind="train"): """ Documentation: --- Description: Load MNIST images and labels from unzipped source files. --- Parameters: kind : str Used to identify training data vs. validation data. Pass "train" to load training data, and "t10k" to load validation data. --- Returns images : Numpy array Numpy array containing all images in dataset. Has shape N by 784, where N is the number of samples and 784 is the number of pixels. targets : Numpy array Numpy array containing all targets associated with images. Has shape N by 1, where N is the number of samples. """ labels_path = os.path.join(path, "{}-labels-idx1-ubyte".format(kind)) images_path = os.path.join(path, "{}-images-idx3-ubyte".format(kind)) with open(labels_path, "rb") as lbpath: magic, n = struct.unpack(">II", lbpath.read(8)) targets = np.fromfile(lbpath, dtype=np.uint8) with open(images_path, "rb") as imgpath: magic, num, rows, cols = struct.unpack(">IIII", imgpath.read(16)) images = np.fromfile(imgpath, dtype=np.uint8).reshape( len(targets), 784) return images, targets
0e67fe5930e652a7a153dfe9f1c3e1ac1a4eb51c
14,867
def clamp(val: float) -> int: """Clamp a number to that expected by a reasonable RGB component This ensures that we don't have negative values, or values exceeding one byte Additionally, all number inputs are rounded Args: val (float): Raw float value to clamp Returns: int: Clamped R/G/B value """ return floor(min(max(0, val), 255))
b908afd06f8e5bf9b98f2729424e0b007c62a18a
14,868
import scipy def componental_mfpt(trans: np.ndarray, **kwargs) -> np.ndarray: """Compute Markov mean first passage times per connected component of the chain.""" n_comps, comp_labels = scipy.sparse.csgraph.connected_components( trans, **kwargs ) hier_trans = transition_matrix(trans) absorbing = np.isclose(np.diag(hier_trans), 1) if n_comps == 1 and not absorbing.any(): print('shortcut') return mfpt(hier_trans) else: print('longrun') times = np.full_like(hier_trans, fill_value=np.inf) # for each autonomous subsystem for comp_i in range(n_comps): is_comp = (comp_labels == comp_i) absorbing_i = np.flatnonzero(absorbing & is_comp) nonabsorbing_i = np.flatnonzero(~absorbing & is_comp) times[nonabsorbing_i[:, None], nonabsorbing_i] = mfpt( hier_trans[nonabsorbing_i[:, None], nonabsorbing_i] ) times[absorbing_i, absorbing_i] = 1 return times
76c9ade340668e5f564b874bc808170b2d0903cb
14,869
import os def get_snippet(path): """Get snippet source string""" current_file_dir = os.path.dirname(__file__) absolute_path = os.path.join(current_file_dir, path) with open(absolute_path) as src: return src.read()
e101a25c61313d0531e0c38e27b120d56fcd8a47
14,870
def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- array1, array2, ... : array_like One or more input arrays. Returns ------- ret : ndarray An array, or sequence of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary. See Also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([ 1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.]]) >>> np.atleast_1d(x) is x True >>> np.atleast_1d(1, [3, 4]) [array([1]), array([3, 4])] """ res = [] for ary in arys: ary = asanyarray(ary) if len(ary.shape) == 0 : result = ary.reshape(1) else : result = ary res.append(result) if len(res) == 1: return res[0] else: return res
440782c7c5a5b231425cc1c1282110e983dd8dc2
14,871
def lines2str(lines, sep = "\n"): """Merge a list of lines into a single string Args: lines (list, str, other): a list of lines or a single object sep (str, optional): a separator Returns: str: a single string which is either a concatenated lines (using a custom or the default separator) or a str(lines) result """ if isinstance(lines, str): return lines if hasattr(lines, '__iter__'): return sep.join(lines) return str(lines)
a9209bd8eda92f42a287725aaeccfcb35dab24cd
14,872
import os import subprocess def tail(fname, n=10, with_tail='tail'): """Get the last lines in a file. Parameters ---------- fname : str File name. n : int, optional Number of lines to get (default is 10). with_tail : str, optional The 'tail' command to use (default is `tail`). Returns ------- str The last lines in file, or None on error. """ fname = os.path.abspath(fname) try: lines = subprocess.check_output( [with_tail, '-n{n}'.format(n=n), fname]) except subprocess.CalledProcessError: raise RuntimeError('Unable to get status. Please try again.') except Exception: raise else: return lines.strip()
6fe1f0cae399653401dec8226e2e9f3c271bdc16
14,873
def evaluate(board): """ Evaluates chess board input parameter(s): board --> The chess board to be evaluated return parameter(s): score --> The board evaluation """ score = 0 for i in range(len(board)): for j in range(len(board[i])): # Add piece value and it's current square value (A Queen on d4 will be worth 900 + 5) piece_value = piece_values[board[i][j]] + \ square_values[board[i][j]][i][j] # Add piece value to overall board score score += piece_value return score
6b02f085ab47d241f7639143d82570e97891975a
14,874
def get_atom(value): """atom = [CFWS] 1*atext [CFWS] An atom could be an rfc2047 encoded word. """ atom = Atom() if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) if value and value[0] in ATOM_ENDS: raise errors.HeaderParseError( "expected atom but found '{}'".format(value)) if value.startswith('=?'): try: token, value = get_encoded_word(value) except errors.HeaderParseError: # XXX: need to figure out how to register defects when # appropriate here. token, value = get_atext(value) else: token, value = get_atext(value) atom.append(token) if value and value[0] in CFWS_LEADER: token, value = get_cfws(value) atom.append(token) return atom, value
f7d93daabfc96138e79443eb2e5c7e7a9b28fbbc
14,875
def create_page(): """新增页面""" tags = dbutils.get_tags() return render_template('edit.html', title='新建', edit=False, tags=tags)
48c14aabc76ff3c4886b2ff7f1340035936d81ce
14,876
def calculate_class_weights(): """ :return: class-wise true-label-area / false-label-area as a dictionary """ df = collect_stats() df = df.fillna(0) df = df.pivot(index = 'Class', columns = 'ImageId', values = 'TotalArea') df = df.sum(axis=1) df = df / (2500. - df) return df.to_dict()
42d006daee27d1400d76e9233e64e4d09683573c
14,877
def get_data_layer(roidb, num_classes): """return a data layer.""" if cfg.TRAIN.HAS_RPN: if cfg.IS_MULTISCALE: layer = GtDataLayer(roidb) else: layer = RoIDataLayer(roidb, num_classes) else: layer = RoIDataLayer(roidb, num_classes) return layer
32035fc837b402949a5fb75af0ad5dbe26a2e129
14,878
def split_on_first_brace(input,begin_brace = "{",end_brace = "}",error_replacement="brace_error"): """ input: string with {Something1} Something2 output: tuple (Something1,Something2) """ if error_replacement=="chapter_error": print(input[:20]) input = remove_empty_at_begin(input) if len(input) == 0: #raise RuntimeError("hi") print("first brace empty string ERROR") return error_replacement,input if input[0] != begin_brace: print("first brace NOT Brace ERROR") return error_replacement,input brace_count = 0 out1 = "" for elem in input: out1 += elem if elem == begin_brace: brace_count = brace_count + 1 if elem == end_brace: brace_count = brace_count - 1 if brace_count == 0: break out2 = input[len(out1):] out1 = out1[1:-1] return out1, out2
201f6789f9db65aa98b857c923e3ed0484aaea89
14,879
import os import re def find_files(folder_path: str, pattern: str, maxdepth: int = 1): """ Read the absolute path of files under a folder TODO: make it recursive """ assert isinstance(folder_path, str), 'folder path must be a string' assert maxdepth >= 0 if maxdepth == 0: return [] res = [] for file_name in os.listdir(folder_path): if file_name.startswith('__') or file_name.startswith('.'): continue abs_path = osp.join(folder_path, file_name) if osp.isfile(abs_path): if re.search(pattern, file_name): res.append(abs_path) elif osp.isdir(abs_path): sub_list = find_files(abs_path, pattern, maxdepth-1) res += sub_list return res
c8c3b59281b183d69b829f164504acc520c89239
14,880
import warnings def check_count(value, total_count, dimension_type): """check the value for count.""" value = validate(value, "count", int) if value > total_count: raise ValueError( f"Cannot set the count, {value}, more than the number of coordinates, " f"{total_count}, for the {dimension_type} dimensions." ) if value < total_count: warnings.warn(f"The number of labels, {total_count}, are truncated to {value}.") return value
aed0b31e041c3c8ca791533697c2ad9e292a8fcc
14,881
import json def request_certificate(request): """Request the on-demand creation of a certificate for some user, course. A request doesn't imply a guarantee that such a creation will take place. We intentionally use the same machinery as is used for doing certification at the end of a course run, so that we can be sure users get graded and then if and only if they pass, do they get a certificate issued. """ if request.method == "POST": if request.user.is_authenticated(): # Enter your api key here xqci = CertificateGeneration( api_key=settings.APPSEMBLER_FEATURES['ACCREDIBLE_API_KEY'] ) username = request.user.username student = User.objects.get(username=username) course_key = CourseKey.from_string( request.POST.get('course_id') ) course = get_course(course_key) status = certificate_status_for_student( student, course_key)['status'] if status in [CertificateStatuses.unavailable, CertificateStatuses.notpassing, CertificateStatuses.error]: logger.info( 'Grading and certification requested for user {} in course {} via /request_certificate call'.format(username, course_key)) status = xqci.add_cert(student, course_key, course=course) return HttpResponse( json.dumps( {'add_status': status} ), content_type='application/json') return HttpResponse( json.dumps( {'add_status': 'ERRORANONYMOUSUSER'} ), content_type='application/json')
73605a4d02d515656ddbd4cb63e1c810d65f5f2e
14,882
def get_useable_checkers(): """ 列出可用插件列表 :return: """ useable_checkers = list() for (checker_name, checker_instance) in CHECKER_INSTANCE_DICT.items(): if checker_instance.useable: useable_checkers.append(checker_instance) return useable_checkers
9548c4423f2176081e59957a823afb986f134c7a
14,883
def get_training_roidb(imdb): """Returns a roidb (Region of Interest database) for use in training.""" if cfg.TRAIN.USE_FLIPPED: print 'Appending horizontally-flipped training examples...' imdb.append_flipped_images() print 'done' print 'Preparing training data...' wrdl_roidb.prepare_roidb(imdb) print 'done' return imdb.roidb
adec6258d6ffa810aef475ec5257ef92a762f1fa
14,884
def _used_in_calls(schedule_name: str, schedule: ScheduleBlock) -> bool: """Recursively find if the schedule calls a schedule with name ``schedule_name``. Args: schedule_name: The name of the callee to identify. schedule: The schedule to parse. Returns: True if ``schedule``calls a ``ScheduleBlock`` with name ``schedule_name``. """ blocks_have_schedule = False for block in schedule.blocks: if isinstance(block, Call): if block.subroutine.name == schedule_name: return True else: blocks_have_schedule = blocks_have_schedule or _used_in_calls( schedule_name, block.subroutine ) if isinstance(block, ScheduleBlock): blocks_have_schedule = blocks_have_schedule or _used_in_calls(schedule_name, block) return blocks_have_schedule
9d6ff0b3a415047252ef2148aa6e59e229531ef7
14,885
def font_size_splitter(font_map): """ Split fonts to 4 category (small,medium,large,xlarge) by maximum length of letter in each font. :param font_map: input fontmap :type font_map : dict :return: splitted fonts as dict """ small_font = [] medium_font = [] large_font = [] xlarge_font = [] fonts = set(font_map.keys()) - set(RANDOM_FILTERED_FONTS) for font in fonts: length = max(map(len, font_map[font][0].values())) if length <= FONT_SMALL_THRESHOLD: small_font.append(font) elif length > FONT_SMALL_THRESHOLD and length <= FONT_MEDIUM_THRESHOLD: medium_font.append(font) elif length > FONT_MEDIUM_THRESHOLD and length <= FONT_LARGE_THRESHOLD: large_font.append(font) else: xlarge_font.append(font) return { "small_list": small_font, "medium_list": medium_font, "large_list": large_font, "xlarge_list": xlarge_font}
d047e182df8d9015997c2debd6269012cb779df5
14,886
from typing import Optional from typing import Collection from typing import Union from typing import List import pandas def get_candidate_set_size( mapped_triples: MappedTriples, restrict_entities_to: Optional[Collection[int]] = None, restrict_relations_to: Optional[Collection[int]] = None, additional_filter_triples: Union[None, MappedTriples, List[MappedTriples]] = None, num_entities: Optional[int] = None, ) -> pandas.DataFrame: """ Calculate the candidate set sizes for head/tail prediction for the given triples. :param mapped_triples: shape: (n, 3) the evaluation triples :param restrict_entities_to: The entity IDs of interest. If None, defaults to all entities. cf. :func:`restrict_triples`. :param restrict_relations_to: The relations IDs of interest. If None, defaults to all relations. cf. :func:`restrict_triples`. :param additional_filter_triples: shape: (n, 3) additional filter triples besides the evaluation triples themselves. cf. `_prepare_filter_triples`. :param num_entities: the number of entities. If not given, this number is inferred from all triples :return: columns: "index" | "head" | "relation" | "tail" | "head_candidates" | "tail_candidates" a dataframe of all evaluation triples, with the number of head and tail candidates """ # optionally restrict triples (nop if no restriction) mapped_triples = restrict_triples( mapped_triples=mapped_triples, entities=restrict_entities_to, relations=restrict_relations_to, ) # evaluation triples as dataframe columns = [LABEL_HEAD, LABEL_RELATION, LABEL_TAIL] df_eval = pandas.DataFrame( data=mapped_triples.numpy(), columns=columns, ).reset_index() # determine filter triples filter_triples = prepare_filter_triples( mapped_triples=mapped_triples, additional_filter_triples=additional_filter_triples, ) # infer num_entities if not given if restrict_entities_to: num_entities = len(restrict_entities_to) else: # TODO: unique, or max ID + 1? num_entities = num_entities or filter_triples[:, [0, 2]].view(-1).unique().numel() # optionally restrict triples filter_triples = restrict_triples( mapped_triples=filter_triples, entities=restrict_entities_to, relations=restrict_relations_to, ) df_filter = pandas.DataFrame( data=filter_triples.numpy(), columns=columns, ) # compute candidate set sizes for different targets # TODO: extend to relations? for target in [LABEL_HEAD, LABEL_TAIL]: total = num_entities group_keys = [c for c in columns if c != target] df_count = df_filter.groupby(by=group_keys).agg({target: "count"}) column = f"{target}_candidates" df_count[column] = total - df_count[target] df_count = df_count.drop(columns=target) df_eval = pandas.merge(df_eval, df_count, on=group_keys, how="left") df_eval[column] = df_eval[column].fillna(value=total) return df_eval
ccef15c8dd42e63405bfcaa45231f8efa04e0fd5
14,887
def dm2skin_normalizeWeightsConstraint(x): """Constraint used in optimization that ensures the weights in the solution sum to 1""" return sum(x) - 1.0
79024cb70fd6cbc3c31b0821baa1bcfb29317043
14,888
import os def _load_bitmap(filename): """ Load a bitmap file from the backends/images subdirectory in which the matplotlib library is installed. The filename parameter should not contain any path information as this is determined automatically. Returns a wx.Bitmap object """ basedir = os.path.join(rcParams['datapath'],'images') bmpFilename = os.path.normpath(os.path.join(basedir, filename)) if not os.path.exists(bmpFilename): raise IOError('Could not find bitmap file "%s"; dying'%bmpFilename) bmp = wx.Bitmap(bmpFilename) return bmp
9d6d53aa7e370ac064e7db20c7e825f8cc004177
14,889
import requests def get_auth(): """ POST request to users/login, returns auth token """ try: url_user_login = f"https://{url_core_data}/users/login" json = { "username": creds_name, "password": creds_pw } headers = { "Accept": "application/json" } r = requests.post(url_user_login, headers=headers, json=json, verify=False) response = r.json() code = r.status_code token = response["token"] # print(f"RESPONSE: {response}") # print(f"STATUS_CODE: {code}") # print(f"TOKEN: {token}") return token except Exception as e: auth_err_msg = f"Error authenticating with the DIVA API: \n\ {e}" logger.error(auth_err_msg)
86aa225a8c856dd46ece14d982a24b32a52a87ef
14,890
def vector_between_points(P, Q): """ vector between initial point P and terminal point Q """ return vector_subtract(Q, P);
de86c29dfe8c75b31040942d7195b8b92d731106
14,891
import time def before_train(loaded_train_model, train_model, train_sess, global_step, hparams, log_f): """Misc tasks to do before training.""" stats = init_stats() info = {"train_ppl": 0.0, "speed": 0.0, "avg_step_time": 0.0, "avg_grad_norm": 0.0, "avg_train_sel": 0.0, "learning_rate": loaded_train_model.learning_rate.eval( session=train_sess)} start_train_time = time.time() print_out("# Start step %d, lr %g, %s" % (global_step, info["learning_rate"], time.ctime()), log_f) # Initialize all of the iterators skip_count = hparams.qe_batch_size * hparams.epoch_step print_out("# Init train iterator, skipping %d elements" % skip_count) train_sess.run( train_model.iterator.initializer, feed_dict={train_model.skip_count_placeholder: skip_count}) return stats, info, start_train_time
d333808bec0771e74d709f859b7423b9e561703f
14,892
import os def reg_file_comp(ref_file, comp_file): """Compare the reference file 'ref_file' with 'comp_file'. The order of these two files matter. The ref_file MUST be given first. Only values specified by reg_write() are compared. All other lines are ignored. Floating point values are compared based on rel_tol and abs_tol""" all_ref_lines = [] ref_values = [] comp_values = [] try: f = open(ref_file, "r") except IOError: print("File %s was not found. Cannot do comparison." % (ref_file)) return REG_ERROR for line in f.readlines(): all_ref_lines.append(line) if line[0:6] == "@value": ref_values.append(line) # end for f.close() try: f = open(comp_file, "r") except IOError: print("File %s was not found. Cannot do comparison." % (comp_file)) return REG_ERROR for line in f.readlines(): if line[0:6] == "@value": comp_values.append(line) # end for f.close() # Copy the comp_file to compe_file.orig os.system("cp %s %s.orig" % (comp_file, comp_file)) # We must check that we have the same number of @value's to compare: if len(ref_values) != len(comp_values): print("Error: number of @value lines in file not the same!") return REG_FILES_DO_NOT_MATCH # end if # Open the (new) comp_file: f = open(comp_file, "w") # Loop over all the ref_lines, for value lines, do the # comparison. If comparison is ok, write the ref line, otherwise # write orig line. j = 0 res = REG_FILES_MATCH for i in range(len(all_ref_lines)): line = all_ref_lines[i] if line[0:6] == "@value": if _reg_str_comp(line, comp_values[j]) is False: f.write(comp_values[j]) res = REG_FILES_DO_NOT_MATCH else: f.write(line) # end if j += 1 else: f.write(line) # end if # end for f.close() return res
4b3999625880cbf30de5cc4ec062ce700866a539
14,893
def methodInDB(method_name, dict_link, interface_db_cursor): #checks the database to see if the method exists already """ Method used to check the database to see if a method exists in the database returns a list [Boolean True/False of if the method exists in the db, dictionary link/ID] """ crsr = interface_db_cursor #splitting method into parts if "::" in method_name: method = method_name.split('::') cn = method[0].strip() mn = '::'.join(method[1:]).strip() else: cn = "Unknown" mn = method_name if dict_link == '': #dict link should only be empty on the initial call # search for any method with the same name and class crsr.execute("SELECT class_name, method_name, method_text, dict_link FROM methods WHERE class_name = ? AND method_name = ?", (cn, mn)) res = crsr.fetchall() if len(res) == 0: #method not in table return [False, ''] else: # found something, verify it is right if len(res) == 1: print('Method found in database.') if res[0][0] == 'Unknown': print(res[0][1]) else: print('::'.join(res[0][0:2])) print(res[0][2]) print('Is this the correct method? (Y/N)') #prompt the user to confirm that this is the right method k = input() k = k.strip() while( k not in ['N', 'n', 'Y', 'y' ] ): print('Invalid input, try again') k = input() if k == 'Y' or k == 'y': return [True, res[0][3]] elif k == 'N' or k == 'n': return [False, ''] elif len(res) > 1: print("\nMethod found in database") count = 1 for r in res: tmp = str(count) + ': ' print(tmp) if r[0] == 'Unknown': print(r[1]) else: print('::'.join(r[0:2])) print(r[2],'\n') count += 1 print('Which one of these is the correct method?\nPut 0 for none of them.') #if there are multiple versions of the method in the db # prompt the user to select which method is the right method, prints the method text k = input() try: k = int(k) except: k = -1 while( int(k) > len(res) or int(k) < 0 ): print("Invalid input: try again please") k = input() try: k = int(k) except: k = -1 if k == 0: return [False, ''] elif k > 0 and k <= len(res): return [True, res[k-1][3]] else: #there is a dict_link, can check for exact, usually what happens crsr.execute("SELECT class_name, method_name FROM methods WHERE class_name = ? AND method_name = ? AND dict_link = ?", (cn, mn, dict_link)) #simple sql select res = crsr.fetchall() if len(res) == 0: #method not in table return [False, dict_link] elif len(res) > 0: # we found something return [True, dict_link]
8dc3ecc256b696a06906e63a461c241ff429e8ae
14,894
def dict_to_image(screen): """ Takes a dict of room locations and their block type output by RunGame. Renders the current state of the game screen. """ picture = np.zeros((51, 51)) # Color tiles according to what they represent on screen:. for tile in screen: pos_x, pos_y = tile if pos_x < 51 and pos_y < 51: if screen[tile] == 46: picture[pos_y][pos_x] = 0; elif screen[tile] == 35: picture[pos_y][pos_x] = 240; else: picture[pos_y][pos_x] = 150 return picture
5657d3984a035d11854ef2b1f6dff642a00032a1
14,895
from .model_store import download_model import os def get_mobilenet(version, width_scale, model_name=None, pretrained=False, root=os.path.join('~', '.keras', 'models'), **kwargs): """ Create MobileNet or FD-MobileNet model with specific parameters. Parameters: ---------- version : str Version of SqueezeNet ('orig' or 'fd'). width_scale : float Scale factor for width of layers. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.keras/models' Location for keeping the model parameters. """ if version == 'orig': channels = [[32], [64], [128, 128], [256, 256], [512, 512, 512, 512, 512, 512], [1024, 1024]] first_stage_stride = False elif version == 'fd': channels = [[32], [64], [128, 128], [256, 256], [512, 512, 512, 512, 512, 1024]] first_stage_stride = True else: raise ValueError("Unsupported MobileNet version {}".format(version)) if width_scale != 1.0: channels = [[int(cij * width_scale) for cij in ci] for ci in channels] net = mobilenet( channels=channels, first_stage_stride=first_stage_stride, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") download_model( net=net, model_name=model_name, local_model_store_dir_path=root) return net
da4f81d06bc041b63b47f096eed0c41dc7c39390
14,896
def can_fuse_to(wallet): """We can only fuse to wallets that are p2pkh with HD generation. We do *not* need the private keys.""" return isinstance(wallet, Standard_Wallet)
1ee8693d7457591a64057a4913d9739f96319e7a
14,897
def _build_context(hps, encoder_outputs): """Compute feature representations for attention/copy. Args: hps: hyperparameters. encoder_outputs: outputs by the encoder RNN. Returns: Feature representation of [batch_size, seq_len, decoder_dim] """ with tf.variable_scope("memory_context"): context = tf.layers.dense( encoder_outputs, units=hps.decoder_dim, activation=None, use_bias=False, kernel_initializer=tf.contrib.layers.xavier_initializer(), name="memory_projector") return context
6ce8a9a7845376f1804610d371d23b32fa9991f7
14,898
from typing import Union def rf_local_divide(left_tile_col: Column_type, rhs: Union[float, int, Column_type]) -> Column: """Divide two Tiles cell-wise, or divide a Tile's cell values by a scalar""" if isinstance(rhs, (float, int)): rhs = lit(rhs) return _apply_column_function('rf_local_divide', left_tile_col, rhs)
76740879461e6dea302568d3bebc4dd6d7eb9363
14,899