content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import json def get_json(url, **kwargs): """Downloads json data and converts it to a dict""" raw = get(url, **kwargs) if raw == None: return None return json.loads(raw.decode('utf8'))
16504c03beaa1a5913f2256ad6a1871049694e14
14,600
def get_text(im): """ 得到图像中的文本部分 """ return im[3:24, 116:288]
86db2a16372aacb6cde29a2bf16c84f14f65d715
14,601
def homepage(): """Display tweets""" tweet_to_db() output = [a for a in Tweet.query.order_by(desc('time_created')).all()] # to display as hyper links for tweet in output: tweet.handle = linkyfy(tweet.handle, is_name=True) tweet.text = linkyfy(tweet.text) return render_template("home.html", output=output)
d37138ea2ed6bdf8a650e644943e330400417f57
14,602
def watch_list_main_get(): """ Render watch list page. Author: Jérémie Dierickx """ watchlist = env.get_template('watchlists.html') return header("Watch List") + watchlist.render(user_name=current_user.pseudo) + footer()
760c8f2acf4a3ea1791860568ae747b9bd35593c
14,603
def input_file(inp_str): """ Parse the input string """ # Parse the sections of the input into keyword-val dictionaries train_block = ioformat.ptt.symb_block(inp_str, '$', 'training_data') fform_block = ioformat.ptt.symb_block(inp_str, '$', 'functional_form') exec_block = ioformat.ptt.symb_block(inp_str, '$', 'fortran_execution') train_dct = ioformat.ptt.keyword_dct_from_block( train_block[1], formatvals=False) fform_dct = ioformat.ptt.keyword_dct_from_block( fform_block[1], formatvals=False) exec_dct = ioformat.ptt.keyword_dct_from_block( exec_block[1], formatvals=False) # Set defaults (maybe use fancy version later if more defaults can be set) if 'Units' not in train_dct: train_dct['Units'] = DEFAULT_DCT['Units'] # Check that the dictionaries are built correctly _check_dcts(train_dct, fform_dct, exec_dct) return train_dct, fform_dct, exec_dct
9ae7c55c59e6b89b43271836738fd4fffbf38455
14,604
import ck.net import hashlib import zipfile import os def download(i): """ Input: { (repo_uoa) (module_uoa) (data_uoa) (new_repo_uoa) - new repo UOA; "local" by default (skip_module_check) - if 'yes', do not check if module for a given component exists } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ o=i.get('out','') ruoa=i.get('repo_uoa','') muoa=i.get('module_uoa','') duoa=i.get('data_uoa','') smc=(i.get('skip_module_check','')=='yes') # Check components to skip if muoa in ['repo', 'befd7892b0d469e9', 'env', '9b9b3208ac44b891', 'kernel', 'b1e99f6461424276', 'cfg', 'b34231a3467566f8']: return {'return':0} if muoa=='': return {'return':1, 'error':'module UOA is not defined'} if duoa=='': duoa='*' # return {'return':1, 'error':'data UOA is not defined'} nruoa=i.get('new_repo_uoa','') if nruoa=='': nruoa='local' # Check if writing to new repo is allowed r=find_path_to_repo({'repo_uoa':nruoa}) if r['return']>0: return r nruoa=r['repo_uoa'] nruid=r['repo_uid'] nrd=r['dict'] npath=r['path'] ii={'repo_uoa':nruoa, 'repo_uid':nruid, 'repo_dict':nrd} r=check_writing(ii) if r['return']>0: return r rz={'return':0} if o=='con': # out('') out(' WARNING: downloading missing CK component "'+muoa+':'+duoa+'" from the cKnowledge.io portal ...') ii={ 'action':'download', 'dict':{ 'module_uoa':muoa, 'data_uoa':duoa } } r=ck.net.access_ck_api({'url':cfg['cknowledge_api'], 'dict':ii}) if r['return']>0: return r d=r['dict'] if d['return']>0: if d['return']!=16: return {'return':d['return'], 'error':d['error']} out(' Warning: component not found') return {'return':0} nlst=d.get('components',[]) # Check if module:module there (bootstrapping) lst1=[] lst=[] path_to_module='' for q in nlst: nmuoa=q['module_uoa'] nmuid=q['module_uid'] nduoa=q['data_uoa'] nduid=q['data_uid'] if nmuoa=='module' and nduoa=='module': out(' Bootstrapping '+nmuoa+':'+nduoa+' ...') # TBD: Check split dirs in local repo... iii={'path':npath, 'data_uoa':'module', 'data_uid':nduid} rz=find_path_to_entry(iii) if rz['return']>0 and rz['return']!=16: return rz elif rz['return']==16: rz=create_entry(iii) if rz['return']>0: return rz npath2=rz['path'] iii={'path':npath2, 'data_uoa':'module', 'data_uid':nduid} rz=find_path_to_entry(iii) if rz['return']>0 and rz['return']!=16: return rz elif rz['return']==16: rz=create_entry(iii) if rz['return']>0: return rz path_to_module=rz['path'] lst.append(q) else: lst1.append(q) lst+=lst1 # Recording downloaded components for q in lst: # Get UOA nmuoa=q['module_uoa'] nmuid=q['module_uid'] nduoa=q['data_uoa'] nduid=q['data_uid'] file_url=q['file_url'] file_md5=q['file_md5'] out(' Downloading and extracting '+nmuoa+':'+nduoa+' ...') # Check that module:module exists if nmuoa=='module' and nduoa=='module' and path_to_module!='': new_path=path_to_module else: if not smc: save_state=cfg['download_missing_components'] cfg['download_missing_components']='no' rz=access({'action':'find', 'module_uoa':'module', 'data_uoa':'module', 'common_func':'yes'}) if rz['return']>0 and rz['return']!=16: return rz if rz['return']==16: rz=download({'repo_uoa':nruoa, 'module_uoa':'module', 'data_uoa':'module', 'skip_module_check':'yes'}) if rz['return']>0: return rz cfg['download_missing_components']=save_state # Adding dummy module rz=access({'action':'add', 'module_uoa':nmuoa, 'module_uid':nmuoa, 'data_uoa':nduoa, 'data_uid':nduid, 'repo_uoa':'local', 'common_func':'yes'}) if rz['return']>0: out(' Skipping ...') continue new_path=rz['path'] # Prepare pack ppz=os.path.join(new_path, 'pack.zip') if os.path.isfile(ppz): os.remove(ppz) # Download file # Import modules compatible with Python 2.x and 3.x try: from urllib.request import urlretrieve except: from urllib import urlretrieve # Connect try: urlretrieve(file_url, ppz) except Exception as e: return {'return':1, 'error':'download failed ('+format(e)+')'} statinfo = os.stat(ppz) file_size=statinfo.st_size # MD5 of the pack rx=load_text_file({'text_file':ppz, 'keep_as_bin':'yes'}) if rx['return']>0: return rx bpack=rx['bin'] md5=hashlib.md5(bpack).hexdigest() if md5!=file_md5: return {'return':1, 'error':'MD5 of the newly created pack ('+md5+') did not match the one from the portal ('+file_md5+')'} # Unzipping archive new_f=open(ppz, 'rb') new_z=zipfile.ZipFile(new_f) for new_d in new_z.namelist(): if new_d!='.' and new_d!='..' and not new_d.startswith('\\'): new_pp=os.path.join(new_path,new_d) if new_d.endswith('/'): if not os.path.exists(new_pp): os.makedirs(new_pp) else: new_ppd=os.path.dirname(new_pp) if not os.path.exists(new_ppd): os.makedirs(new_ppd) # extract file new_fo=open(new_pp, 'wb') new_fo.write(new_z.read(new_d)) new_fo.close() new_f.close() # Remove pack file os.remove(ppz) return {'return':0}
4853ea5b79cd8b2a015f85ab2f4297f6528fece3
14,605
def recursiveUpdate(target, source): """ Recursively update the target dictionary with the source dictionary, leaving unfound keys in place. This is different than dict.update, which removes target keys not in the source :param dict target: The dictionary to be updated :param dict source: The dictionary to be integrated :return: target dict is returned as a convenience. This function updates the target dict in place. :rtype: dict """ for k, v in source.items(): if isinstance(v, dict): target[k] = recursiveUpdate(target.get(k, {}), v) else: target[k] = v return target
e1c11d0801be9526e8e73145b1dfc7be204fc7d0
14,606
import time import requests import json def macro_bank_usa_interest_rate(): """ 美联储利率决议报告, 数据区间从19820927-至今 https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v=1578581921 :return: 美联储利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国利率决议"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "24", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_interest_rate" temp_df = temp_df.astype("float") return temp_df
52885b4cfbb607d3ecbb0f89f19cac7e1f097ccd
14,607
def get_kwd_group(soup): """ Find the kwd-group sections for further analysis to find subject_area, research_organism, and keywords """ kwd_group = None kwd_group = extract_nodes(soup, 'kwd-group') return kwd_group
626a85b5274880d1e4520f4afe5a270e5f20832a
14,608
def read_transport_file(input_file_name): """ Reads File "input_file_name".dat, and returns lists containing the atom indices of the device atoms, as well as the atom indices of the contact atoms. Also, a dictionary "interaction_distances" is generated, which spcifies the maximum interaction distance between each type of atom. """ transport_file_path = "./" + INPUT_FOLDER_NAME + "/" + \ str(input_file_name) + "_" + "transport.dat" file = open(transport_file_path, 'r') max_file_lines = 1000 iterations = 0 # IMPORTANT: In file, first atom has index is one, but in my program, # first atom has index is zero region_list = [] # List of regions, starting with device region line = file.readline() entries = line.split() #A single list of device atom indices. device_region = [] # A list of lists, one list of atom indices for each contact. contact_regions = [] iterations = 0 while iterations < max_file_lines: new_indices = list(range(int(entries[1]) - 1, int(entries[2]))) if "Device" in entries[0]: # Don't append, because we want a single list of indices for the # device region. device_region = device_region + new_indices if "Contact" in entries[0]: contact_regions.append(new_indices) line = file.readline() entries = line.split() iterations += 1 if not("Device" in entries[0] or "Contact" in entries[0]): break region_list.append(device_region) region_list += contact_regions interaction_distances = {} #line = file.readline() #stripped_line = line.replace(" ", "").replace("\n", "") #entries = line.split() # loop terminates at first empty line, or at end of file # (since readline() returns empty string at end of file) iterations = 0 while iterations < max_file_lines: key = entries[0] + entries[1] interaction_distances[key] = float(entries[2]) line = file.readline() entries = line.split() iterations += 1 stripped_line = line.replace(" ", "").replace("\n", "") if stripped_line == '': break # print("In read_transport_file: " + str(region_list)) return (region_list, interaction_distances)
d62e3cc1dfbe2ac4865579dca86133bedb06182f
14,609
def handle_srv6_path(operation, grpc_address, grpc_port, destination, segments=None, device='', encapmode="encap", table=-1, metric=-1, bsid_addr='', fwd_engine='linux', key=None, update_db=True, db_conn=None, channel=None): """ Handle a SRv6 Path. """ # Dispatch depending on the operation if operation == 'add': return add_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'get': return get_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'change': return change_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'del': return del_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) # Operation not supported, raise an exception logger.error('Operation not supported') raise utils.OperationNotSupportedException
3181f9b4e99a6414c92614caee7af0ff133ad01d
14,610
def mask_outside_polygon(poly_verts, ax, facecolor=None, edgecolor=None, alpha=0.25): """ Plots a mask on the specified axis ("ax", defaults to plt.gca()) such that all areas outside of the polygon specified by "poly_verts" are masked. "poly_verts" must be a list of tuples of the verticies in the polygon in counter-clockwise order. Returns the matplotlib.patches.PathPatch instance plotted on the figure. """ # Get current plot limits xlim = ax.get_xlim() ylim = ax.get_ylim() # Verticies of the plot boundaries in clockwise order bound_verts = [ (xlim[0], ylim[0]), (xlim[0], ylim[1]), (xlim[1], ylim[1]), (xlim[1], ylim[0]), (xlim[0], ylim[0]), ] # A series of codes (1 and 2) to tell matplotlib whether to draw a line or # move the "pen" (So that there's no connecting line) bound_codes = [mpath.Path.MOVETO] + (len(bound_verts) - 1) * [mpath.Path.LINETO] poly_codes = [mpath.Path.MOVETO] + (len(poly_verts) - 1) * [mpath.Path.LINETO] # Plot the masking patch path = mpath.Path(bound_verts + poly_verts, bound_codes + poly_codes) patch = mpatches.PathPatch( path, facecolor=facecolor, edgecolor=edgecolor, alpha=alpha ) patch = ax.add_patch(patch) # Reset the plot limits to their original extents ax.set_xlim(xlim) ax.set_ylim(ylim) return patch
1c46d12d7f3c92e3ff4522bb88713eae3c9138b1
14,611
def setup_data(cluster): """ Get decision boundaries by means of np.meshgrid :return: Tuple (vectors, centroids, X component of mesghgrid, Y component of meshgrid, ) """ feature_vectors, _, centroids, _, kmeans = cluster # Step size of the mesh. Decrease to increase the quality of the VQ. h = .2 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = feature_vectors[:, 0].min() - 1, feature_vectors[:, 0].max() + 1 y_min, y_max = feature_vectors[:, 1].min() - 1, feature_vectors[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) return feature_vectors, centroids, xx, yy, Z
edcfede8e8f7fc18fc9e7255127f0f14688df2f2
14,612
import time import os import numpy def Routing_Table(projdir, rootgrp, grid_obj, fdir, strm, Elev, Strahler, gages=False, Lakes=None): """If "Create reach-based routing files?" is selected, this function will create the Route_Link.nc table and Streams.shp shapefiles in the output directory.""" # Stackless topological sort algorithm, adapted from: http://stackoverflow.com/questions/15038876/topological-sort-python def sort_topologically_stackless(graph): '''This function will navigate through the list of segments until all are accounted for. The result is a sorted list of which stream segments should be listed first. Simply provide a topology dictionary {Fromnode:[ToNode,...]} and a sorted list is produced that will provide the order for navigating downstream. This version is "stackless", meaning it will not hit the recursion limit of 1000.''' levels_by_name = {} names_by_level = defaultdict(set) def add_level_to_name(name, level): levels_by_name[name] = level names_by_level[level].add(name) def walk_depth_first(name): stack = [name] while(stack): name = stack.pop() if name in levels_by_name: continue if name not in graph or not graph[name]: level = 0 add_level_to_name(name, level) continue children = graph[name] children_not_calculated = [child for child in children if child not in levels_by_name] if children_not_calculated: stack.append(name) stack.extend(children_not_calculated) continue level = 1 + max(levels_by_name[lname] for lname in children) add_level_to_name(name, level) for name in graph: walk_depth_first(name) list1 = list(takewhile(lambda x: x is not None, (names_by_level.get(i, None) for i in count()))) list2 = [item for sublist in list1 for item in sublist][::-1] # Added by KMS 9/2/2015 to reverse sort the list list3 = [x for x in list2 if x is not None] # Remove None values from list return list3 print(' Routing table will be created...') tic1 = time.time() # Setup whitebox tool object and options wbt = WhiteboxTools() wbt.verbose = False wbt.work_dir = projdir esri_pntr = True zero_background = False id_field = 'STRM_VAL' # Whitebox-assigned stream ID field # Setup temporary and other outputs stream_id_file = os.path.join(projdir, stream_id) streams_vector_file = os.path.join(projdir, streams_vector) outStreams = os.path.join(projdir, StreamSHP) RoutingNC = os.path.join(projdir, RT_nc) # Run Whitebox functions for creating link IDs and vectors ''' The stream_link_identifier appears to output an int16 raster, limiting the number of individual stream link IDs possible. Further, it will populate negative values in the output, providing both positive and negative IDs. Unfortunately, any IDs that are assigned negative values in the output will not be resolved as stream vectors in the raster_streams_to_vector routine. ''' wbt.stream_link_identifier(fdir, strm, stream_id, esri_pntr=esri_pntr, zero_background=zero_background) wbt.raster_streams_to_vector(stream_id, fdir, streams_vector, esri_pntr=esri_pntr) print(' Stream to features step complete.') # Read the link IDs as an array from the output file strm_link_arr, ndv = return_raster_array(stream_id_file) if numpy.unique(strm_link_arr).shape[0] > 32768 or strm_link_arr[strm_link_arr<0].shape[0] > 0: print(' Warning: Number of unique IDs exceeds limit of 16-bit unsigned integer type. ' + \ 'Not all reaches may be converted to stream vectors. Check output carefully.') strm_link_arr[strm_link_arr==ndv] = NoDataVal # Set nodata values to WRF-Hydro nodata value strm_link_arr[strm_link_arr<1] = NoDataVal # Remove zeros from background of grid # Find any LINKID reach ID values that did not get transferred to the stream vector file. # These are typically single-cell channel cells on the edge of the grid. ds = ogr.Open(streams_vector_file) lyr = ds.GetLayer(0) # Get the 'layer' object from the data source vector_reach_IDs = numpy.unique([feature.GetField('STRM_VAL') for feature in lyr]) print(' Found {0} unique IDs in stream vector layer.'.format(len(vector_reach_IDs))) ds = lyr = None # Resolve issue where LINKID values are present that do not correspond to a vector ID (10/25/2020) grid_reach_IDs = numpy.unique(strm_link_arr[strm_link_arr!=NoDataVal]) missing_reach_IDs = grid_reach_IDs[~numpy.in1d(grid_reach_IDs, vector_reach_IDs)] print(' Eliminating {0} IDs in LINKID grid that could not be resolved in stream vector layer.'.format(missing_reach_IDs.shape[0])) print(' {0}'.format(missing_reach_IDs.tolist())) channel_arr = rootgrp.variables['CHANNELGRID'][:] strorder_arr = rootgrp.variables['STREAMORDER'][:] for idVal in missing_reach_IDs: arr_mask = strm_link_arr==idVal # Build a boolean mask for masking all array elements to be changed strm_link_arr[arr_mask] = NoDataVal # Set all linkid values that didn't get resolved in the routelink file to nodata. channel_arr[arr_mask] = NoDataVal # Set all channel values that didn't get resolved in the routelink file to nodata. strorder_arr[arr_mask] = NoDataVal # Set all channel values that didn't get resolved in the routelink file to nodata. del arr_mask rootgrp.variables['LINKID'][:] = strm_link_arr rootgrp.variables['CHANNELGRID'][:] = channel_arr rootgrp.variables['STREAMORDER'][:] = strorder_arr del channel_arr, strorder_arr, grid_reach_IDs, missing_reach_IDs gage_linkID = {} if gages: print(' Adding forecast points:LINKID association.') gage_arr = rootgrp.variables['frxst_pts'][:] unique_gages = numpy.unique(gage_arr[gage_arr!=NoDataVal]) gage_linkID = {gage:strm_link_arr[gage_arr==gage][0] for gage in unique_gages} # Create blank dictionary so that it exists and can be deleted later print(' Found {0} forecast point:LINKID associations.'.format(len(gage_linkID))) del unique_gages, gage_arr linkID_gage = {val:key for key, val in gage_linkID.items()} # Reverse the dictionary del strm_link_arr, ndv, gage_linkID # Setup coordinate transform for calculating lat/lon from x/y wgs84_proj = osr.SpatialReference() wgs84_proj.ImportFromProj4(wgs84_proj4) # Added 11/19/2020 to allow for GDAL 3.0 changes to the order of coordinates in transform if int(osgeo.__version__[0]) >= 3: # GDAL 3 changes axis order: https://github.com/OSGeo/gdal/issues/1546 wgs84_proj.SetAxisMappingStrategy(osgeo.osr.OAMS_TRADITIONAL_GIS_ORDER) coordTrans = osr.CoordinateTransformation(grid_obj.proj, wgs84_proj) # Transformation from grid projection to WGS84 # Initiate dictionaries for storing topology and attribute information Lengths = {} # Gather the stream feature length StrOrder = {} # Store stream order for each node NodeElev = {} # Elevation of the start node slope_dic = {} # Slope (unitless drop/length) NodeLL = {} # Dictionary to store geocentric (longitude, latitude) coordinates for every start node NodeXY = {} # Dictionary to store projectedc (x, y) coordinates for every start node # Open shapefile driver = ogr.GetDriverByName("ESRI Shapefile") data_source = driver.Open(streams_vector_file, 1) lyr = data_source.GetLayer() topology_dic = {} coords_dic = {} for feature in lyr: # Open each feature and get geometry flowline_id = int(feature.GetField(id_field)) geom = feature.GetGeometryRef() flowline_length = geom.Length() # Get coordinates of first and last point, flow line ID, and flow line length first_point = geom.GetPoint(0) last_point = geom.GetPoint(geom.GetPointCount() - 1) first_point_coords = (first_point[0], first_point[1]) last_point_coords = (last_point[0], last_point[1]) # Create topology dictionary of 'bottom_point geometry: stream flowline ID' try: topology_dic[last_point_coords] += [flowline_id] except KeyError: topology_dic[last_point_coords] = [flowline_id] # Create coordinate dictionary of flowline ID: first point, last point, length coords_dic[flowline_id] = first_point_coords, last_point_coords, flowline_length feature = geom = first_point = last_point = None lyr.ResetReading() # Create to/from dictionary matching bottom point to top point, creating dic of 'from ID: to ID' to_from_dic = {} for flowline_id, (first_point_coords, last_point_coords, flowline_length) in coords_dic.items(): if first_point_coords in topology_dic: #for feature_id in topology_dic[first_point_coords]: for feature_id in topology_dic.pop(first_point_coords): to_from_dic[feature_id] = flowline_id # Add in flowlines with nothing downstream for feature_id in coords_dic: if feature_id not in to_from_dic: to_from_dic[feature_id] = 0 del topology_dic # Get the order of segments according to a simple topological sort order = sort_topologically_stackless({key:[val] for key,val in to_from_dic.items()}) # Open elevation raster dem_array = gdal.Open(Elev, 0) dem_rb = dem_array.GetRasterBand(1) # Open strahler stream order raster strahler_array = gdal.Open(Strahler, 0) strahler_rb = strahler_array.GetRasterBand(1) # Iterate over coordinate dictionary​ tic2 = time.time() for idval, (top_xy, bot_xy, length) in coords_dic.items(): # Get top/first coordinates values from DEM row, col = grid_obj.xy_to_grid_ij(top_xy[0], top_xy[1]) top_elevation = float(dem_rb.ReadAsArray(col, row, 1, 1)) strahler_value = int(strahler_rb.ReadAsArray(col, row, 1, 1)) # Get bottom/last coordinates values from DEM row, col = grid_obj.xy_to_grid_ij(bot_xy[0], bot_xy[1]) bottom_elevation = dem_rb.ReadAsArray(col, row, 1, 1) # Fix negative slopes drop = top_elevation - bottom_elevation slope = drop/length if slope < minSo: slope = minSo # Populate all dictionaries slope_dic[idval] = float(slope) StrOrder[idval] = strahler_value NodeElev[idval] = top_elevation Lengths[idval] = length NodeXY[idval] = (top_xy[0], top_xy[1]) point = ogr.Geometry(ogr.wkbPoint) point.AddPoint(top_xy[0], top_xy[1]) point.Transform(coordTrans) # Transform the geometry NodeLL[idval] = (point.GetX(), point.GetY()) point = None del coords_dic print(' All dictionaries have been created in {0: 3.2f} seconds.'.format(time.time()-tic2)) # Create new field in shapefile field_defn = ogr.FieldDefn("to", ogr.OFTInteger64) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("Order_", ogr.OFTInteger) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("GageID", ogr.OFTString) field_defn.SetWidth(15) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("LakeID", ogr.OFTInteger64) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("length", ogr.OFTReal) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("Slope", ogr.OFTReal) lyr.CreateField(field_defn) field_defn = ogr.FieldDefn("TopElev", ogr.OFTReal) lyr.CreateField(field_defn) # Iterate over shapefile to add new values to the newly created field for feature in lyr: link_id = int(feature.GetField(id_field)) feature.SetField("to", to_from_dic.get(link_id, 0)) feature.SetField("Order_", StrOrder[link_id]) feature.SetField("GageID", str(linkID_gage.get(link_id, None))) feature.SetField("LakeID", NoDataVal) feature.SetField("length", Lengths[link_id]) feature.SetField("Slope", slope_dic[link_id]) feature.SetField("TopElev", NodeElev[link_id]) lyr.SetFeature(feature) data_source = feature = lyr = None print(' Fields have been added to the shapefile.') # We need to define the projection for the streams file: this is not done automatically by Whitebox. define_projection(streams_vector_file, grid_obj.proj) # Added 8/16/2020 because a value of 0 exists in the order list order.remove(0) # Call function to build the netCDF parameter table build_RouteLink(RoutingNC, order, to_from_dic, NodeElev, NodeLL, NodeXY, Lengths, StrOrder, slope_dic, gageDict=linkID_gage) del linkID_gage, order, to_from_dic, NodeElev, Lengths, StrOrder, NodeLL, NodeXY, slope_dic print('Reach-based routing inputs generated in {0:3.2f} seconds.'.format(time.time()-tic1)) return rootgrp
4af012fadf2fa7f84ac945638db52413155f900d
14,613
from datetime import datetime def list_errors( conx: Connection, ) -> t.List[t.Tuple[int, datetime.datetime, str, str, str, str]]: """Return list of all errors. The list returned contains each error as an element in the list. Each element is a tuple with the following layout: (seq nr, date, err msg, err detail, level, state mask) The 'err detail' and 'level' elements are not always present and thus may be empty. NOTE: this method is expensive and slow, as it retrieves a file from the controller over FTP and parses it. :returns: A list of all errors and their details :rtype: list(tuple(int, datetime.datetime, str, str, str, str)) """ errs = get_file_as_bytes(conx, remote_name='/md:/errall.ls') res = [] for line in errs.decode('ascii').splitlines(): # check for really empty lines if ('Robot Name' in line) or (line == ''): continue fields = list(map(str.strip, line.split('"'))) # check for empty rows (seen on just installed controllers) if not fields[2]: continue # probably OK, try to continue parsing level_state = fields[4].split() if len(level_state) > 1: ( err_level, err_state, ) = level_state else: err_level, err_state, = ( '', level_state[0], ) stamp = datetime.datetime.strptime(fields[1], '%d-%b-%y %H:%M:%S') res.append((int(fields[0]), stamp, fields[2], fields[3], err_level, err_state)) return res
2aea677d8e69a76c5a6922d9c7e6ce3078ad7488
14,614
async def get_incident(incident_id): """ Get incident --- get: summary: Get incident tags: - incidents parameters: - name: id in: path required: true description: Object ID responses: 200: description: The requested object content: application/json: schema: Incident """ incident = g.Incident.find_by_id(incident_id) if incident is None: raise exceptions.NotFound(description="Incident {} was not found".format(incident_id)) return jsonify(incident), HTTPStatus.OK
f70703b43944dfa2385a2a35249dd692fe18a1ba
14,615
from typing import List def partition_vector(vector, sets, fdtype: str='float64') -> List[NDArrayNfloat]: # pragma: no cover """partitions a vector""" vectors = [] for unused_aname, aset in sets: if len(aset) == 0: vectors.append(np.array([], dtype=fdtype)) continue vectori = vector[aset] vectors.append(vectori) return vectors
e73494d146ec56a8287c0e0e3ec3dec7f7d93c37
14,616
def calculate_G4( n_numbers, neighborsymbols, neighborpositions, G_elements, theta, zeta, eta, Rs, cutoff, cutofffxn, Ri, normalized=True, image_molecule=None, n_indices=None, weighted=False, ): """Calculate G4 symmetry function. These are 3 body or angular interactions. Parameters ---------- n_symbols : list of int List of neighbors' chemical numbers. neighborsymbols : list of str List of symbols of neighboring atoms. neighborpositions : list of list of floats List of Cartesian atomic positions of neighboring atoms. G_elements : list of str A list of two members, each member is the chemical species of one of the neighboring atoms forming the triangle with the center atom. theta : float Parameter of Gaussian symmetry functions. zeta : float Parameter of Gaussian symmetry functions. eta : float Parameter of Gaussian symmetry functions. Rs : float Parameter to shift the center of the peak. cutoff : float Cutoff radius. cutofffxn : object Cutoff function. Ri : list Position of the center atom. Should be fed as a list of three floats. normalized : bool Whether or not the symmetry function is normalized. image_molecule : ase object, list List of atoms in an image. n_indices : list List of indices of neighboring atoms from the image object. weighted : bool True if applying weighted feature of Gaussian function. See Ref. 2. Returns ------- feature : float G4 feature value. Notes ----- The difference between the calculate_G3 and the calculate_G4 function is that calculate_G4 accounts for bond angles of 180 degrees. """ feature = 0.0 counts = range(len(neighborpositions)) for j in counts: for k in counts[(j + 1) :]: els = sorted([neighborsymbols[j], neighborsymbols[k]]) if els != G_elements: continue Rij_vector = neighborpositions[j] - Ri Rij = np.linalg.norm(Rij_vector) Rik_vector = neighborpositions[k] - Ri Rik = np.linalg.norm(Rik_vector) cos_theta_ijk = np.dot(Rij_vector, Rik_vector) / Rij / Rik theta_ijk = np.arccos( np.clip(cos_theta_ijk, -1.0, 1.0) ) # Avoids rounding issues cos_theta = np.cos(theta_ijk - theta) term = (1.0 + cos_theta) ** zeta term *= np.exp(-eta * ((Rij + Rik) / 2.0 - Rs) ** 2.0) if weighted: term *= weighted_h(image_molecule, n_indices) term *= cutofffxn(Rij) term *= cutofffxn(Rik) feature += term feature *= 2.0 ** (1.0 - zeta) return feature
5a864c615d2b835da4bb3d99435b9e2e2a40e136
14,617
import argparse def parse_arguments(): """Parse command line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--output', type=str, required=False, help='GCS URL where results will be saved as a CSV.') parser.add_argument( '--query', type=str, required=True, help='The SQL query to be run in BigQuery') parser.add_argument( '--dataset_id', type=str, required=True, help='Dataset of the destination table.') parser.add_argument( '--table_id', type=str, required=True, help='Name of the destination table.') parser.add_argument( '--project', type=str, required=True, help='The GCP project to run the query.') args = parser.parse_args() return args
9bbf5d16e94b5cac8ff230592d2cbe544e771e7a
14,618
def paths_from_root(graph, start): """ Generates paths from `start` to every other node in `graph` and puts it in the returned dictionary `paths`. ie.: `paths_from_node(graph, start)[node]` is a list of the edge names used to get to `node` form `start`. """ paths = {start: []} q = [start] seen = set() while q: node = q.pop() seen.add(node) for relation, child in graph[node]: if isnode(child) and child not in seen: q.append(child) paths[child] = paths[node] + [relation] return paths
9b8399b67e14a6fbfe0d34c087317d06695bca65
14,619
from typing import Sequence from typing import Optional from typing import Callable from typing import Dict def list_to_dict(l:Sequence, f:Optional[Callable]=None) -> Dict: """ Convert the list to a dictionary in which keys and values are adjacent in the list. Optionally, a function `f` can be passed to apply to each value before adding it to the dictionary. Parameters ---------- l: typing.Sequence The list of items f: typing.Callable A function to apply to each value before inserting it into the list. For example, `float` could be passed to convert each value to a float. Returns ------- d: typing.Dict The dictionary, defined as described above Examples -------- .. code-block:: python l = ["key1", "value1", "key2", "value2"] list_to_dict(l, f) == {"key1": f("value1"), "key2": f("value2")} """ if len(l) % 2 != 0: msg = ("[collection_utils.list_to_dict]: the list must contain an even number" "of elements") raise ValueError(msg) if f is None: f = lambda x: x keys = l[::2] values = l[1::2] d = {k:f(v) for k, v in zip(keys, values)} return d
a1f47582a2de8fa47bbf4c79c90165f8cf703ca1
14,620
def inner(a, b): """Computes an inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation). Parameters ---------- a, b : array_like If *a* and *b* are nonscalar, their shape must match. Returns ------- out : ndarray out.shape = a.shape[:-1] + b.shape[:-1] Restriction ----------- If *a* or *b* is not 1-D array : *NotImplementedError* occurs. Note ---- For vectors (1-D arrays) it computes the ordinary inner-product:: import nlcpy as vp vp.inner(a, b) # equivalent to sum(a[:]*b[:]) if *a* or *b* is scalar, in which case:: vp.inner(a, b) # equivalent to a*b See Also -------- dot : Computes a dot product of two arrays. Examples -------- Ordinary inner product for vectors: >>> import nlcpy as vp >>> a = vp.array([1,2,3]) >>> b = vp.array([0,1,0]) >>> vp.inner(a, b) array(2) An example where b is a scalar: >>> vp.inner(vp.eye(2), 7) array([[7., 0.], [0., 7.]]) """ a = nlcpy.asanyarray(a) b = nlcpy.asanyarray(b) if a.ndim == 0 or b.ndim == 0: return ufunc_op.multiply(a, b) elif a.ndim == 1 and b.ndim == 1: return cblas_wrapper.cblas_dot(a, b) else: raise NotImplementedError("Only 1-D array is supported.")
248f1069251770073bc6bb4eedda0ef557aaeb9f
14,621
from typing import Sequence from re import T def remove_list_redundancies(lst: Sequence[T]) -> list[T]: """ Used instead of list(set(l)) to maintain order Keeps the last occurrence of each element """ return list(reversed(dict.fromkeys(reversed(lst))))
f17408e7c3e3f5b2994e943b668c81b71933a2c9
14,622
def concatenate(arrays, axis): """Concatenate along axis. Differs from numpy.concatenate in that it works if the axis doesn't exist. """ logger.debug('Applying asarray to each element of arrays.') arrays = [np.asarray(array) for array in arrays] logger.debug('Adding axes to each element of arrays as necessary') if axis >= 0: arrays = [array[(Ellipsis,) + (None,) * max(axis - array.ndim + 1, 0)] for array in arrays] # [array[[Ellipsis]+[None]*max(axis-array.ndim+1,0)] for array in arrays] else: arrays = [array[(None,) * max(-axis - array.ndim, 0) + (Ellipsis,)] for array in arrays] # arrays=[array[[None]*max(-axis-array.ndim,0)+[Ellipsis]] for array in arrays] logger.debug('Calling numpy.concatenate') return np.concatenate(arrays, axis)
08fc2e45506273afef4c826611d270886b9b99d4
14,623
import os import subprocess def s7_blastn_xml(qry, base, threads): """ run blastn with xml output qry and base are absolute paths """ print("Step7 ... :" + qry) os.makedirs(os.path.join(hivdrm_work_dir, s7_prefix), exist_ok = True) qry_file = os.path.basename(qry) base_file = os.path.basename(base) sample_name = os.path.splitext(qry_file)[0] result_file = f"{sample_name}.xml" result_path = os.path.realpath(os.path.join(hivdrm_work_dir, s7_prefix, result_file)) if os.path.exists(result_path): return result_file cmd = (f"blastn -num_threads {threads} " f"-query {qry} " f"-db {base} " f"-out {result_path} " \ f"-dust no " \ f"-num_alignments 1 " \ f"-outfmt 5") subprocess.check_call(cmd, shell = True) return result_file
7f1ed3e5a581082c1f7f6ecb9ee06bc21c7f0f65
14,624
def bpformat(bp): """ Format the value like a 'human-readable' file size (i.e. 13 Kbp, 4.1 Mbp, 102 bp, etc.). """ try: bp = int(bp) except (TypeError, ValueError, UnicodeDecodeError): return avoid_wrapping("0 bp") def bp_number_format(value): return formats.number_format(round(value, 1), 1) kbp = 1 << 10 mbp = 1 << 20 gbp = 1 << 30 tbp = 1 << 40 pbp = 1 << 50 negative = bp < 0 if negative: bp = -bp # Allow formatting of negative numbers. if bp < kbp: value = "%(size)d byte" % {"size": bp} elif bp < mbp: value = "%s Kbp" % bp_number_format(bp / kbp) elif bp < gbp: value = "%s Mbp" % bp_number_format(bp / mbp) elif bp < tbp: value = "%s Gbp" % bp_number_format(bp / gbp) elif bp < pbp: value = "%s Tbp" % bp_number_format(bp / tbp) else: value = "%s Pbp" % bp_number_format(bp / bp) if negative: value = "-%s" % value return avoid_wrapping(value)
4c2b587b3aecd4dd287f7f04b3860f63440154a1
14,625
def get_module_id_from_event(event): """ Helper function to get the module_id from an EventHub message """ if "iothub-connection-module_id" in event.message.annotations: return event.message.annotations["iothub-connection-module-id".encode()].decode() else: return None
e183824fff183e3f95ef35c623b13245eb68a8b7
14,626
def pipe_literal_representer(dumper, data): """Create a representer for pipe literals, used internally for pyyaml.""" return dumper.represent_scalar('tag:yaml.org,2002:str', data, style='|')
b73e7d451ae50bc4638d3cb45546f2a197765717
14,627
def RecognitionNeuralNetworkModelSmall(ih, iw, ic, nl): """ A simple model used to test the machinery on TrainSmall2. ih, iw, ic - describe the dimensions of the input image mh, mw - describe the dimensions of the output mask """ dropout = 0.1 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(ih, iw, ic))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Conv2D(32, (3, 3), activation="relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Conv2D(32, (3, 3), activation="relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Flatten()) model.add(Dense(32, activation="relu")) #model.add(Dropout(0.5)) model.add(Dense((nl), activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adadelta", metrics=["accuracy"]) print("\n ---> Model summary <--- \n") model.summary() return model
e4ec0ccb958eb9b406c079aeb9526e5adc1f6978
14,628
def _quick_rec_str(rec): """try to print an identifiable description of a record""" if rec['tickets']: return "[tickets: %s]" % ", ".join(rec["tickets"]) else: return "%s..." % rec["raw_text"][0:25]
e666198de84fe9455ad2cee59f8ed85144589be0
14,629
from typing import Collection def A006577(start: int = 0, limit: int = 20) -> Collection[int]: """Number of halving and tripling steps to reach 1 in '3x+1' problem, or -1 if 1 is never reached. """ def steps(n: int) -> int: if n == 1: return 0 x = 0 while True: if n % 2 == 0: n //= 2 else: n = 3 * n + 1 x += 1 if n < 2: break return x return [steps(n) for n in range(start, start + limit)]
47829838af8e2fdb191fdefa755e728db9c09559
14,630
def split_to_sentences_per_pages(text): """ splitting pdfminer outputted text into list of pages and cleanup paragraphs""" def split_into_sentences(line): """cleanup paragraphs""" return ifilter(None, (i.strip() for i in line.split('\n\n'))) return ifilter(None, imap(split_into_sentences, text.split('\x0c')))
b40ac7d6b4f3e9482897934999858271aeaf9494
14,631
def lookup(_id=None, article_id=None, user_id=None, mult=False): """ Lookup a reaction in our g.db """ query = {} if article_id: query["article_id"] = ObjectId(article_id) if user_id: query["user_id"] = ObjectId(user_id) if _id: query["_id"] = ObjectId(_id) if mult: return g.db.reactions.find(query) else: return g.db.reactions.find_one(query)
5d3c064278da8419e6305508a3bf47bba60c818c
14,632
def connection(user='m001-student', password='m001-mongodb-basics'): """connection: This function connects mongoDB to get MongoClient Args: user (str, optional): It's user's value for URL ATLAS srv. Defaults to 'm001-student'. password (str, optional): It's password's value for URL ATLAS srv. Defaults to 'm001-mongodb-basics'. Returns: object: Returns a MongoClient object """ try: MONGO_URL_ATLAS = f'mongodb+srv://{user}:{password}@sandbox.dec55.mongodb.net/?retryWrites=true&w=majority' mongo = pymongo.MongoClient(MONGO_URL_ATLAS, tlsAllowInvalidCertificates=False) except pymongo.errors.ConnectionFailure as conn_error: print("ERROR - Cannot connect to DataBase", conn_error) else: print('Correct Connection!!') return mongo
0714ffa01aa21dd71d6eefcadb0ebc2379cd3e6f
14,633
import random import asyncio async def get_selection(ctx, choices, delete=True, pm=False, message=None, force_select=False): """Returns the selected choice, or None. Choices should be a list of two-tuples of (name, choice). If delete is True, will delete the selection message and the response. If length of choices is 1, will return the only choice unless force_select is True. :raises NoSelectionElements if len(choices) is 0. :raises SelectionCancelled if selection is cancelled.""" if len(choices) == 0: raise NoSelectionElements() elif len(choices) == 1 and not force_select: return choices[0][1] page = 0 pages = paginate(choices, 10) m = None selectMsg = None def chk(msg): valid = [str(v) for v in range(1, len(choices) + 1)] + ["c", "n", "p"] return msg.author == ctx.author and msg.channel == ctx.channel and msg.content.lower() in valid for n in range(200): _choices = pages[page] names = [o[0] for o in _choices if o] embed = discord.Embed() embed.title = "Multiple Matches Found" selectStr = "Which one were you looking for? (Type the number or \"c\" to cancel)\n" if len(pages) > 1: selectStr += "`n` to go to the next page, or `p` for previous\n" embed.set_footer(text=f"Page {page + 1}/{len(pages)}") for i, r in enumerate(names): selectStr += f"**[{i + 1 + page * 10}]** - {r}\n" embed.description = selectStr embed.colour = random.randint(0, 0xffffff) if message: embed.add_field(name="Note", value=message, inline=False) if selectMsg: try: await selectMsg.delete() except: pass if not pm: selectMsg = await ctx.channel.send(embed=embed) else: embed.add_field(name="Instructions", value="Type your response in the channel you called the command. This message was PMed to " "you to hide the monster name.", inline=False) selectMsg = await ctx.author.send(embed=embed) try: m = await ctx.bot.wait_for('message', timeout=30, check=chk) except asyncio.TimeoutError: m = None if m is None: break if m.content.lower() == 'n': if page + 1 < len(pages): page += 1 else: await ctx.channel.send("You are already on the last page.") elif m.content.lower() == 'p': if page - 1 >= 0: page -= 1 else: await ctx.channel.send("You are already on the first page.") else: break if delete and not pm: try: await selectMsg.delete() await m.delete() except: pass if m is None or m.content.lower() == "c": raise SelectionCancelled() return choices[int(m.content) - 1][1]
663f60c73bc6c1e3d7db5992b6dbb6d6953d0e24
14,634
import os def data_dir(): """ Get SUNCG data path (must be symlinked to ~/.suncg) :return: Path to suncg dataset """ if 'SUNCG_DATA_DIR' in os.environ: path = os.path.abspath(os.environ['SUNCG_DATA_DIR']) else: path = os.path.join(os.path.abspath(os.path.expanduser('~')), ".suncg") rooms_exist = os.path.isdir(os.path.join(path, "room")) houses_exist = os.path.isdir(os.path.join(path, "house")) if not os.path.isdir(path) or not rooms_exist or not houses_exist: raise Exception("Couldn't find the SUNCG dataset in '~/.suncg' or with environment variable SUNCG_DATA_DIR. " "Please symlink the dataset there, so that the folders " "'~/.suncg/room', '~/.suncg/house', etc. exist.") return path
8025d99b394e963b05afb430801c1baf7c2b894f
14,635
def total_variation(images, name=None): """Calculate and return the total variation for one or more images. (A mirror to tf.image total_variation) The total variation is the sum of the absolute differences for neighboring pixel-values in the input images. This measures how much noise is in the images. This can be used as a loss-function during optimization so as to suppress noise in images. If you have a batch of images, then you should calculate the scalar loss-value as the sum: `loss = tf.reduce_sum(tf.image.total_variation(images))` This implements the anisotropic 2-D version of the formula described here: https://en.wikipedia.org/wiki/Total_variation_denoising Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for the operation (optional). Raises: ValueError: if images.shape is not a 3-D or 4-D vector. Returns: The total variation of `images`. If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the total variation for each image in the batch. If `images` was 3-D, return a scalar float with the total variation for that image. """ return tf.image.total_variation(images=images, name=name)
c12e822cd09ff6ea5f9bbc45ffa71121de5ff3e7
14,636
def get_vivareal_data(driver_path: str, address: str, driver_options: Options = None) -> list: """ Scrapes vivareal site and build a array of maps in the following format: [ { "preço": int, "valor_de_condominio": int, "banheiros": int, "quartos": int, "área": int, "vagas": int, "endereço": str "texto": str }, ... ] :param address: Address to search for :param driver_options: driver options :return: json like string """ # Initialize browser chrome = init_driver(driver_path, driver_options) chrome.get(SITE) # Collect data try: accept_cookies(chrome) select_rent_option(chrome) send_address(chrome, address) real_state_elements = collect_real_state_raw_data(chrome) real_state_parsed_data = collect_elements_data(real_state_elements, chrome) except Exception as e: print(e) real_state_parsed_data = None finally: chrome.close() return real_state_parsed_data
e3495c05f39e7cb301fa90e62b5a398a69658e74
14,637
import logging def extract_image(data): """Tries and extracts the image inside data (which is a zipfile)""" with ZipFile(BytesIO(data)) as zip_file: for name in zip_file.namelist()[::-1]: try: return Image.open(BytesIO(zip_file.read(name))) except UnidentifiedImageError: logging.warning("%s does not seem to be an image", name)
2aa333d493a1a3ce637fb2d42bca85bbbb089728
14,638
import six def construct_getatt(node): """ Reconstruct !GetAtt into a list """ if isinstance(node.value, (six.text_type, six.string_types)): return node.value.split(".") elif isinstance(node.value, list): return [s.value for s in node.value] else: raise ValueError("Unexpected node type: {}".format(type(node.value)))
657b957a06c79905b557dd397efea2c598d8c6b3
14,639
import os def check_root(): """ Check whether the program is running as root or not. Args: None Raises: None Returns: bool: True if running as root, else False """ user = os.getuid() return user == 0
a11285efc5ca430e5538b547b56468036611763f
14,640
def rss(x, y, w, b): """residual sum of squares for linear regression """ return sum((yi-(xi*wi+b))**2 for xi, yi, wi in zip(x,y, w))
955e0b5e3dcf8373fe5ef1b95244d06abe512084
14,641
def get_index(lang, index): """ Given an integer index this function will return the proper string version of the index based on the language and other considerations Parameters ---------- lang : str One of the supported languages index : int Returns ------- str The string corresponding to the correct index to be formatted into the code """ retval = None if lang in ['fortran', 'matlab']: return str(index + 1) if lang in ['c', 'cuda']: return str(index)
bcb3a88857b13eea95d5a1bb939c9c4e175ea677
14,642
def sampleFunction(x: int, y: float) -> float: """ Multiply int and float sample. :param x: x value :type x: int :param y: y value :type y: float :return: result :return type: float """ return x * y
f70708b3ece2574969834a62841da3e4506f704b
14,643
def n_elements_unique_intersection_np_axis_0(a: np.ndarray, b: np.ndarray) -> int: """ A lot faster than to calculate the real intersection: Example with small numbers: a = [1, 4, 2, 13] # len = 4 b = [1, 4, 9, 12, 25] # (len = 5) # a, b need to be unique!!! unique(concat(a, b)) = [1, 4, 2, 13, 9, 12, 25] # (len = 7) intersect(a, b) = [1, 4] # (len = 2) to expensive to call # Formular (fast to calculate) len(intersect(a, b)) = len(b) - n_elements_in_b_and_not_in_a len(intersect(a, b)) = len(b) - (len(unique(concat(a, b))) - len(a)) """ a = np.unique(a, axis=0) b = np.unique(b, axis=0) return len(b) - (len(np.unique(np.concatenate((a, b), axis=0), axis=0)) - len(a))
ce8e3cfd158205a0fa2c5f1d10622c6901bc3224
14,644
import logging def Setup(test_options): """Runs uiautomator tests on connected device(s). Args: test_options: A UIAutomatorOptions object. Returns: A tuple of (TestRunnerFactory, tests). """ test_pkg = test_package.TestPackage(test_options.uiautomator_jar, test_options.uiautomator_info_jar) tests = test_pkg.GetAllMatchingTests(test_options.annotations, test_options.exclude_annotations, test_options.test_filter) if not tests: logging.error('No uiautomator tests to run with current args.') def TestRunnerFactory(device, shard_index): return test_runner.TestRunner( test_options, device, shard_index, test_pkg) return (TestRunnerFactory, tests)
2d50c53d211bbddae495a89687cf0cf95b08b1ba
14,645
def barcode_junction_counts(inhandle): """Return count dict from vdjxml file with counts[barcode][junction]""" counts = dict() for chain in vdj.parse_VDJXML(inhandle): try: # chain may not have barcode counts_barcode = counts.setdefault(chain.barcode,dict()) except AttributeError: continue counts_barcode[chain.junction] = counts_barcode.get(chain.junction,0) + 1 return counts
5cc29e44e34989fbd2afb4a2d34f63c7e7adf160
14,646
def is_following(user, actor): """ retorna True si el usuario esta siguiendo al actor :: {% if request.user|is_following:another_user %} You are already following {{ another_user }} {% endif %} """ return Follow.objects.is_following(user, actor)
963ccc2f75f19609943aba6b61a7522573665033
14,647
from typing import Union def rf_make_ones_tile(num_cols: int, num_rows: int, cell_type: Union[str, CellType] = CellType.float64()) -> Column: """Create column of constant tiles of one""" jfcn = RFContext.active().lookup('rf_make_ones_tile') return Column(jfcn(num_cols, num_rows, _parse_cell_type(cell_type)))
8ed63c974613e0451a3d8c78eac964c93c6f8154
14,648
def get_block_hash_from_height(height): """ Request a block hash by specifying the height :param str height: a bitcoin block height :return: a bitcoin block address """ resource = f'block-height/{height}' return call_api(resource)
877f4c4268cb3c7c36bd530a38d4b32abbedcaf4
14,649
from typing import Tuple from typing import Set from typing import List def analyze_json( snippet_data_json: str, root_dir: str ) -> Tuple[Set[str], Set[str], Set[str], List[pdd.PolyglotDriftData]]: """Perform language-agnostic AST analysis on a directory This function processes a given directory's language-specific analysis (stored in a polyglot_snippet_data.json file) into a list of automatically detected snippets. It then augments the automatic detection results with useful manual data (specified in .drift-data.yml files). Finally, it repackages all this data into a tuple containing 4 useful lists of data as shown in the 'returns' section. Arguments: snippet_data_json: A path to a polyglot_snippet_data.json file generated for the specified root_dir root_dir: The root directory to perform AST analysis on Returns: A tuple containing the following: - A list of tags found (via grep/text search) within the given directory and its subdirectories - A list of tags detected (by the AST parser) within the given directory and its subdirectories - A list of tags that the AST parser detected, but chose to ignore (due to constants or user specification in .drift-data.yml files) - A list of snippet objects (as typed NamedTuples) detected by the AST parser in the given directory and its subdirectories """ tuple_methods, test_method_map = _get_data(snippet_data_json) source_filepaths = set(method.source_path for method in tuple_methods) grep_tags: Set[str] = set() ignored_tags: Set[str] = set() for source_file in source_filepaths: grep_tag_names, ignored_tag_names = ( _process_file_region_tags( source_file, snippet_data_json, tuple_methods)) grep_tags = grep_tags.union(grep_tag_names) ignored_tags = ignored_tags.union(ignored_tag_names) source_methods = [method for method in tuple_methods if method.region_tags or method.name in constants.SNIPPET_INVOCATION_METHODS] source_methods = _dedupe_source_methods(source_methods) _store_tests_on_methods(source_methods, test_method_map) polyglot_parser.add_children_drift_data(source_methods) yaml_utils.add_yaml_data_to_source_methods(source_methods, root_dir) source_tags: Set[str] = set() for method in source_methods: source_tags = source_tags.union(set(method.region_tags)) # Remove automatically ignored region tags from region tag lists grep_tags = set(tag for tag in grep_tags if tag not in ignored_tags) source_tags = set(tag for tag in source_tags if tag not in ignored_tags) # Add manually ignored (via yaml) tags to ignored tags list # These should *not* overlap w/ source_tags, but we # check that in validate_yaml_syntax - *not here!* ignored_tags = ignored_tags.union( yaml_utils.get_untested_region_tags(root_dir)) return grep_tags, source_tags, ignored_tags, source_methods
9129b1fad5172f9b7054ba9b4e64cc4ece5ab09c
14,650
import json def list_clusters(event, context): """List clusters""" clusters = [] cluster_items = storage.get_cluster_table().scan() for cluster in cluster_items.get('Items', []): clusters.append(cluster['id']) return { "statusCode": 200, "body": json.dumps(clusters) }
5f88ca446e8d07d7584b1dfd12fb64cddefc918c
14,651
def round(data): """Compute element-wise round of data. Parameters ---------- data : relay.Expr The input data Returns ------- result : relay.Expr The computed result. """ return _make.round(data)
e3adfdc29d9cc641ca33fb375649caf176098d75
14,652
def deserialize(member, class_indexing): """ deserialize """ class_name = member[0].text if class_name in class_indexing: class_num = class_indexing[class_name] else: return None bnx = member.find('bndbox') box_x_min = float(bnx.find('xmin').text) box_y_min = float(bnx.find('ymin').text) box_x_max = float(bnx.find('xmax').text) box_y_max = float(bnx.find('ymax').text) width = float(box_x_max - box_x_min + 1) height = float(box_y_max - box_y_min + 1) # try: # ignore = float(member.find('ignore').text) # except ValueError: ignore = 0.0 return [class_num, box_x_min, box_y_min, width, height, ignore]
087102acec79ec5d0ecad91453885579c2395895
14,653
def interval_weighting(intervals, lower, upper): """ Compute a weighting function by finding the proportion within the dataframe df's lower and upper bounds. Note: intervals is of the form ((lower, upper, id), ...) """ if len(intervals) == 1: return np.asarray([1]) wts = np.ones(len(intervals)) lower_limit, upper_limit = intervals[0], intervals[-1] wts[0] = (lower_limit[1] - lower) / np.diff(lower_limit[:2]) wts[-1] = (upper - upper_limit[0]) / np.diff(upper_limit[:2]) return wts
5eaf974597ad13d2b2204526d84412a22a104bc2
14,654
def centroid_precursor_frame(mzml_data_struct): """ Read and returns a centroid spectrum for a precursor frame This function uses the SDK to get and return an MS1 centroid spectrum for the requested frame. Parameters ---------- mzml_data_struct : dict structure of the mzml data Returns ------- list of lists list of mz and i lists [[mz,[i]] """ precursor_frame_id = mzml_data_struct['current_precursor']['id'] num_scans = mzml_data_struct['td'].conn.execute("SELECT NumScans FROM Frames WHERE Id={0}".format(precursor_frame_id)).fetchone()[0] data_list = mzml_data_struct['td'].extractCentroidedSpectrumForFrame (precursor_frame_id, 0, num_scans) return np.array(data_list)
24d6f19afeafcd731dd316c36aa4784d60224ee8
14,655
from typing import Union def floor_ts( ts: Union[pd.Timestamp, pd.DatetimeIndex], freq=None, future: int = 0 ) -> Union[pd.Timestamp, pd.DatetimeIndex]: """Floor timestamp to period boundary. i.e., find (latest) period start that is on or before the timestamp. Parameters ---------- ts : Timestamp or DatetimeIndex. Timestamp(s) to floor. freq : {'15T' (quarter-hour), 'H' (hour), 'D' (day), 'MS' (month), 'QS' (quarter), 'AS' (year)}, optional What to floor it to, e.g. 'QS' to get start of quarter it's contained in. If none specified, use .freq attribute of timestamp. future : int, optional (default: 0) 0 to get latest period start that is ``ts`` or earlier. 1 (-1) to get start of period after (before) that. 2 (-2) .. etc. Returns ------- Timestamp or DatetimeIndex (same type as ``ts``). At begin of period. Notes ----- If ``ts`` is exactly at the start of the period, ceil_ts(ts, 0) == floor_ts(ts, 0) == ts. Examples -------- >>> floor_ts(pd.Timestamp('2020-04-21 15:42'), 'AS') Timestamp('2020-01-01 00:00:00') >>> floor_ts(pd.Timestamp('2020-04-21 15:42'), 'MS') Timestamp('2020-04-01 00:00:00') >>> floor_ts(pd.Timestamp('2020-04-21 15:42'), '15T') Timestamp('2020-04-21 15:30:00') >>> floor_ts(pd.Timestamp('2020-04-21 15:42', tz='Europe/Berlin'), 'MS') Timestamp('2020-04-01 00:00:00+0200', tz='Europe/Berlin') >>> floor_ts(pd.Timestamp('2020-04-21 15:42'), 'MS', 2) Timestamp('2020-06-01 00:00:00') """ if freq is None: freq = ts.freq # Rounding to short (< day) frequencies. try: # Can only infer if it's an index. kwargs = {"ambiguous": "infer"} if isinstance(ts, pd.DatetimeIndex) else {} if freq == "15T": return ts.floor("15T", **kwargs) + pd.Timedelta(minutes=future * 15) elif freq == "H": return ts.floor("H", **kwargs) + pd.Timedelta(hours=future) except AmbiguousTimeError: # converting to UTC and then flooring to nearest hour. # TODO: this is incorrect for timezones with fractional offset to UTC. return floor_ts(ts.tz_convert("UTC"), freq, future).tz_convert(ts.tz) # Rounding to longer (>= day) frequencies. ts = ts.floor("D") # make sure we return a midnight value if freq == "D": return ts + pd.Timedelta(days=future) elif freq == "MS": return ts + pd.offsets.MonthBegin(1) + pd.offsets.MonthBegin(future - 1) elif freq == "QS": return ( ts + pd.offsets.QuarterBegin(1, startingMonth=1) + pd.offsets.QuarterBegin(future - 1, startingMonth=1) ) elif freq == "AS": return ts + pd.offsets.YearBegin(1) + pd.offsets.YearBegin(future - 1) else: raise ValueError( f"Parameter ``freq`` must be one of {', '.join(FREQUENCIES)}; got {freq}." )
76114fba5f94bbdd40143ca48a901b01e4cdbece
14,656
import os def check_results(jobname, app_config): """" return T/F if there is a results file """ fp = results_file_path(jobname, app_config) # if results file exists and it's non-zero size, then true return( os.path.exists(fp) and os.path.getsize(fp) > 0)
9164f7da2e73adc430565e7faa5013ce835bcea9
14,657
import socket import time def create_geo_database(): """ Create a geo db. """ log.info("Starting to create the geo db") log.info("Waiting for the database to be ready") log.info(f"Testing connection on host: {ctx.geo_db_hostname} and port {ctx.geo_db_port}") # We need to sleep and retry ubtil the db wakes up s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) while True: try: s.connect((ctx.geo_db_hostname, int(ctx.geo_db_port))) s.close() break except socket.error as ex: log.debug("Database not ready..") time.sleep(5) # 5 seconds between tests log.info("Geo database is now ready.") if create_db(DB_TYPE_GEO): if create_geo_db(): log.info("Geo database creation is complete.") return True else: log.info("Failed to make the airspace db, could not create the tables.") else: log.info("Failed to make the airspace db, could not create the database.")
0d3337a9b274d3a4ecaed6f593b0db9064f3475e
14,658
import random def createNewForest(): """Returns a dictionary for a new forest data structure.""" forest = {'width': WIDTH, 'height': HEIGHT} for x in range(WIDTH): for y in range(HEIGHT): if (random.randint(1, 10000) / 100) <= INITIAL_TREE_DENSITY: forest[(x, y)] = TREE # Start as a tree. else: forest[(x, y)] = EMPTY # Start as an empty space. return forest
1c58bb3faeba7b866a7b406b742106adccb64a0f
14,659
def test_filter(): """ Base class filter function """ def test(): """ Test the filter function """ try: for i in _TEST_FRAME_.keys(): for j in range(10): test = _TEST_FRAME_.filter(i, "<", j) assert all(map(lambda x: x < j, test[i])) test = _TEST_FRAME_.filter(i, "<=", j) assert all(map(lambda x: x <= j, test[i])) test = _TEST_FRAME_.filter(i, "=", j) assert all(map(lambda x: x == j, test[i])) test = _TEST_FRAME_.filter(i, "==", j) assert all(map(lambda x: x == j, test[i])) test = _TEST_FRAME_.filter(i, '!=', j) assert all(map(lambda x: x != j, test[i])) test = _TEST_FRAME_.filter(i, ">=", j) assert all(map(lambda x: x >= j, test[i])) test = _TEST_FRAME_.filter(i, ">", j) assert all(map(lambda x: x > j, test[i])) except: return False return True return ["vice.core.dataframe.base.filter", test]
5623ba98d8b06b2e2f395bf8387268f7857236e0
14,660
def exp_moving_average(values, window): """ Numpy implementation of EMA """ if window >= len(values): if len(values) == 0: sma = 0.0 else: sma = np.mean(np.asarray(values)) a = [sma] * len(values) else: weights = np.exp(np.linspace(-1., 0., window)) weights /= weights.sum() a = np.convolve(values, weights, mode='full')[:len(values)] a[:window] = a[window] return a
1563ac9898296e253c7733d341d30ee36cfb822c
14,661
def parabolic(f, x): """ Quadratic interpolation in order to estimate the location of a maximum https://gist.github.com/endolith/255291 Args: f (ndarray): a vector a samples x (int): an index on the vector Returns: (vx, vy): the vertex coordinates of a parabola passing through x and its neighbors """ xv = 1/2. * (f[x-1] - f[x+1]) / (f[x-1] - 2 * f[x] + f[x+1]) + x yv = f[x] - 1/4. * (f[x-1] - f[x+1]) * (xv - x) return (xv, yv)
4373ee6390f3523d0fd69487c27e05522bd8c230
14,662
def arith_expr(draw): """ arith_expr: term (('+'|'-') term)* """ return _expr_builder(draw, term, '+-')
277361c91c5967b36ec24b87402d2444e40f2a31
14,663
import glob def extract_running_speed(module_params): """Writes the stimulus and pkl paths to the input json Parameters ---------- module_params: dict Session or probe unique information, used by each module Returns ------- module_params: dict Session or probe unique information, used by each module input_json_write_dict: dict A dictionary representing the values that will be written to the input json """ # trim_discontiguous_frame_times = module_params['trim'] output_path = module_params['output_path'] input_json_write_dict = \ { 'stimulus_pkl_path': glob(join(module_params['base_directory'], "*.stim.pkl"))[0], 'sync_h5_path': glob(join(module_params['base_directory'], "*.sync"))[0], 'output_path': join(output_path, "running_speed.h5"), "log_level": 'INFO' } return module_params, input_json_write_dict
d04908a9161bebdc74b5a35f14568e50bf4f8559
14,664
def sliced_transposed_product( mat, block_size, axes=(-1,), precision=lax.Precision.DEFAULT, ): """Returns the blocked slices representing a symmetric contraction. Specifically, the output is a contraction of the input mat with itself, in the specified axes. Args: mat: The matrix for which we will compute a contraction with itself. block_size: The size of row blocks to compute. axes: Axes to use for the contraction. precision: The precision to use in each computation. Raises: ValueError: Raised when the specified block size does not evenly divide the number of rows of the input mat. """ rank = len(mat.shape) def _make_axis_positive(ax): assert -rank <= ax < rank return ax + rank if ax < 0 else ax positive_axes = [_make_axis_positive(ax) for ax in axes] assert len(positive_axes) == len(axes) remaining_axes = set(range(rank)) - set(positive_axes) assert len(remaining_axes) == 1 remaining_ax = remaining_axes.pop() num_rows = mat.shape[remaining_ax] if num_rows % block_size != 0: raise ValueError( "The row dimension must be divisible by block_size. " f"Instead got row dimension={num_rows} and block_size={block_size}." ) block_rows = [] for i in range(num_rows // block_size): start_indices = [0] * rank start_indices[remaining_ax] = i * block_size slice_sizes = list(mat.shape) slice_sizes[remaining_ax] = block_size slice_sizes_full = list(mat.shape) slice_sizes_full[remaining_ax] = (i + 1) * block_size block_rows.append( product_with_transpose( lax.dynamic_slice( mat, start_indices=start_indices, slice_sizes=slice_sizes ), lax.dynamic_slice( mat, start_indices=[0] * rank, slice_sizes=slice_sizes_full ), axes=(axes, axes), precision=precision, ) ) return SlicedSymmetricMatrix(block_rows=block_rows)
1bb2016dd485b2da9e74d4a70c703e8fefacf8ff
14,665
import re def _is_ipython_line_magic(line): """ Determines if the source line is an IPython magic. e.g., %%bash for i in 1 2 3; do echo $i done """ return re.match(_IS_IPYTHON_LINE_MAGIC, line) is not None
90575b556f6f6d62bb82b6fb18b2bc979735e808
14,666
def osu_to_excel( osu_path: str, excel_path: str = '', n: int = None, compact_log: bool = False, display_progress=True, **kwargs ) -> str: """Export metadata and hitobjects in a xlsx file.""" metadata = from_osu( osu_path, n=n, compact_log=compact_log, display_progress=display_progress ) mode = 'w' if not excel_path.strip() else 'a' excel_path = './osu_data.xlsx' if not excel_path else excel_path with pd.ExcelWriter(excel_path, mode=mode) as writer: Logs.info("the 'metadata' sheet is being created...") metadata[:MAX_EXCEL_LINES].to_excel(writer, sheet_name='metadata', index=False, **kwargs) if metadata.shape[0] > MAX_EXCEL_LINES: Logs.warning(f'The sheet "metadata" is too large ({metadata.shape[0]} lines), the maximum size has been keeping (MAX_EXCEL_LINES)') else: Logs.success('There is not error during the export data') return excel_path
5d26d70706ec74febc8be0c0d49eaf7f0c48186d
14,667
from pathlib import Path import os def get_cluster_env() -> ClusterEnv: """Get cardano cluster environment.""" socket_path = Path(os.environ["CARDANO_NODE_SOCKET_PATH"]).expanduser().resolve() state_dir = socket_path.parent work_dir = state_dir.parent repo_dir = Path(os.environ.get("CARDANO_NODE_REPO_PATH") or work_dir) instance_num = int(state_dir.name.replace("state-cluster", "") or 0) cluster_env = ClusterEnv( socket_path=socket_path, state_dir=state_dir, repo_dir=repo_dir, work_dir=work_dir, instance_num=instance_num, cluster_era=configuration.CLUSTER_ERA, tx_era=configuration.TX_ERA, ) return cluster_env
ef504a3b43c3a438a0e3c0ed10258a4541a78673
14,668
def convert_pybites_chars(text): """Swap case all characters in the word pybites for the given text. Return the resulting string.""" return "".join( char.swapcase() if char.lower() in PYBITES else char for char in text )
73dff55cc7cd2f1c85d1f51319c12f8335803dce
14,669
def get_meminfo(): """ Return the total memory (in MB). :return: memory (float). """ mem = 0.0 with open("/proc/meminfo", "r") as fd: mems = fd.readline() while mems: if mems.upper().find("MEMTOTAL") != -1: try: mem = float(mems.split()[1]) / 1024 # value listed by command as kB, convert to MB except ValueError as e: logger.warning('exception caught while trying to convert meminfo: %s' % e) break mems = fd.readline() return mem
5aaa671d7d407b1593099a2fb7a1f2fcb0a88542
14,670
def process_inline_semantic_match(placeholder_storage, match_object): """ Process a single inline-semantic match object. """ delimiter = match_object.group('delimiter') tag_name = TAG_NAME_FROM_INLINE_SEMANTIC_DELIMITER[delimiter] attribute_specification = match_object.group('attribute_specification') attribute_dictionary = parse_attribute_specification(attribute_specification) attributes = build_html_attributes(placeholder_storage, attribute_dictionary) content = match_object.group('content') content = strip_whitespace(content) # Process nested inline semantics content = process_inline_semantics(placeholder_storage, content) inline_semantic = f'<{tag_name}{attributes}>{content}</{tag_name}>' return inline_semantic
a1f66093ed361f5e7f924061a1c9770d880d4acc
14,671
async def insert_cd_inurl_name(cluster_id: str, iso_name: str): """ Find SR by Name """ try: try: session = create_session( _id=cluster_id, get_xen_clusters=Settings.get_xen_clusters() ) except KeyError as key_error: raise HTTPException( status_code=400, detail=f"{key_error} is not a valid path" ) srs = SR.get_by_name(session=session, name=iso_name) if srs is not None: __srs_list = [] srs_list = __srs_list.append for sr in srs: srs_list(serialize(sr)) ret = dict(success=True, data=__srs_list) else: ret = dict(success=False) session.xenapi.session.logout() return ret except Fault as xml_rpc_error: raise HTTPException( status_code=int(xml_rpc_error.faultCode), detail=xml_rpc_error.faultString, ) except RemoteDisconnected as rd_error: raise HTTPException(status_code=500, detail=rd_error.strerror)
7c6df12f6de461d559c63adb5e014708e2122760
14,672
def main_add(args): """Start the add-environment command and return exit status code.""" return add_env_spec(args.directory, args.name, args.packages, args.channel)
6358464086e3fc01553df301514976d04a44b3c4
14,673
def write(objct, fileoutput, binary=True): """ Write 3D object to file. (same as `save()`). Possile extensions are: - vtk, vti, npy, npz, ply, obj, stl, byu, vtp, vti, mhd, xyz, tif, png, bmp. """ obj = objct if isinstance(obj, Points): # picks transformation obj = objct.polydata(True) elif isinstance(obj, (vtk.vtkActor, vtk.vtkVolume)): obj = objct.GetMapper().GetInput() elif isinstance(obj, (vtk.vtkPolyData, vtk.vtkImageData)): obj = objct if hasattr(obj, 'filename'): obj.filename = fileoutput fr = fileoutput.lower() if fr.endswith(".vtk"): writer = vtk.vtkDataSetWriter() elif fr.endswith(".ply"): writer = vtk.vtkPLYWriter() writer.AddComment("PLY file generated by vedo") lut = objct.GetMapper().GetLookupTable() if lut: pscal = obj.GetPointData().GetScalars() if not pscal: pscal = obj.GetCellData().GetScalars() if pscal and pscal.GetName(): writer.SetArrayName(pscal.GetName()) writer.SetLookupTable(lut) elif fr.endswith(".stl"): writer = vtk.vtkSTLWriter() elif fr.endswith(".vtp"): writer = vtk.vtkXMLPolyDataWriter() elif fr.endswith(".vtu"): writer = vtk.vtkXMLUnstructuredGridWriter() elif fr.endswith(".vtm"): g = vtk.vtkMultiBlockDataGroupFilter() for ob in objct: if isinstance(ob, (Points, Volume)): # picks transformation ob = ob.polydata(True) g.AddInputData(ob) # elif isinstance(ob, (vtk.vtkActor, vtk.vtkVolume)): # ob = ob.GetMapper().GetInput() # g.AddInputData(ob) g.Update() mb = g.GetOutputDataObject(0) wri = vtk.vtkXMLMultiBlockDataWriter() wri.SetInputData(mb) wri.SetFileName(fileoutput) wri.Write() return mb elif fr.endswith(".xyz"): writer = vtk.vtkSimplePointsWriter() elif fr.endswith(".facet"): writer = vtk.vtkFacetWriter() elif fr.endswith(".tif"): writer = vtk.vtkTIFFWriter() # print("GetCompression ", writer.GetCompression ()) writer.SetFileDimensionality(len(obj.GetDimensions())) elif fr.endswith(".vti"): writer = vtk.vtkXMLImageDataWriter() elif fr.endswith(".mhd"): writer = vtk.vtkMetaImageWriter() elif fr.endswith(".nii"): writer = vtk.vtkNIFTIImageWriter() elif fr.endswith(".png"): writer = vtk.vtkPNGWriter() elif fr.endswith(".jpg"): writer = vtk.vtkJPEGWriter() elif fr.endswith(".bmp"): writer = vtk.vtkBMPWriter() elif fr.endswith(".npy") or fr.endswith(".npz"): if utils.isSequence(objct): objslist = objct else: objslist = [objct] dicts2save = [] for obj in objslist: dicts2save.append( toNumpy(obj) ) np.save(fileoutput, dicts2save) return dicts2save elif fr.endswith(".obj"): outF = open(fileoutput, "w") outF.write('# OBJ file format with ext .obj\n') outF.write('# File generated by vedo\n') for p in objct.points(): outF.write("v {:.5g} {:.5g} {:.5g}\n".format(*p)) # pdata = objct.polydata().GetPointData().GetScalars() # if pdata: # ndata = vtk_to_numpy(pdata) # for vd in ndata: # outF.write('vp '+ str(vd) +'\n') #ptxt = objct.polydata().GetPointData().GetTCoords() # not working #if ptxt: # ntxt = vtk_to_numpy(ptxt) # print(len(objct.faces()), objct.points().shape, ntxt.shape) # for vt in ntxt: # outF.write('vt '+ str(vt[0]) +" "+ str(vt[1])+ ' 0\n') for i,f in enumerate(objct.faces()): fs = '' for fi in f: fs += " {:d}".format(fi+1) outF.write('f' + fs + '\n') for l in objct.lines(): ls = '' for li in l: ls += str(li+1)+" " outF.write('l '+ ls + '\n') outF.close() return objct elif fr.endswith(".xml"): # write tetrahedral dolfin xml vertices = objct.points().astype(str) faces = np.array(objct.faces()).astype(str) ncoords = vertices.shape[0] outF = open(fileoutput, "w") outF.write('<?xml version="1.0" encoding="UTF-8"?>\n') outF.write('<dolfin xmlns:dolfin="http://www.fenicsproject.org">\n') if len(faces[0]) == 4:# write tetrahedral mesh ntets = faces.shape[0] outF.write(' <mesh celltype="tetrahedron" dim="3">\n') outF.write(' <vertices size="' + str(ncoords) + '">\n') for i in range(ncoords): x, y, z = vertices[i] outF.write(' <vertex index="'+str(i)+'" x="'+x+'" y="'+y+'" z="'+z+'"/>\n') outF.write(' </vertices>\n') outF.write(' <cells size="' + str(ntets) + '">\n') for i in range(ntets): v0, v1, v2, v3 = faces[i] outF.write(' <tetrahedron index="'+str(i) + '" v0="'+v0+'" v1="'+v1+'" v2="'+v2+'" v3="'+v3+'"/>\n') elif len(faces[0]) == 3:# write triangle mesh ntri = faces.shape[0] outF.write(' <mesh celltype="triangle" dim="2">\n') outF.write(' <vertices size="' + str(ncoords) + '">\n') for i in range(ncoords): x, y, dummy_z = vertices[i] outF.write(' <vertex index="'+str(i)+'" x="'+x+'" y="'+y+'"/>\n') outF.write(' </vertices>\n') outF.write(' <cells size="' + str(ntri) + '">\n') for i in range(ntri): v0, v1, v2 = faces[i] outF.write(' <triangle index="'+str(i)+'" v0="'+v0+'" v1="'+v1+'" v2="'+v2+'"/>\n') outF.write(' </cells>\n') outF.write(" </mesh>\n") outF.write("</dolfin>\n") outF.close() return objct else: colors.printc("\noentry Unknown format", fileoutput, "file not saved.", c="r") return objct try: if hasattr(writer, 'SetFileTypeToBinary'): if binary: writer.SetFileTypeToBinary() else: writer.SetFileTypeToASCII() writer.SetInputData(obj) writer.SetFileName(fileoutput) writer.Write() except Exception as e: colors.printc("\noentry Error saving: " + fileoutput, "\n", e, c="r") return objct
51e595a83d54a90dd392d09a67289527cb8a4510
14,674
def instantiate_env_class(builder: IRBuilder) -> Value: """Assign an environment class to a register named after the given function definition.""" curr_env_reg = builder.add( Call(builder.fn_info.env_class.ctor, [], builder.fn_info.fitem.line) ) if builder.fn_info.is_nested: builder.fn_info.callable_class._curr_env_reg = curr_env_reg builder.add(SetAttr(curr_env_reg, ENV_ATTR_NAME, builder.fn_info.callable_class.prev_env_reg, builder.fn_info.fitem.line)) else: builder.fn_info._curr_env_reg = curr_env_reg return curr_env_reg
14e3113fe6ba3ec107fcd36e36c7dc525bf11cc5
14,675
import json def validate_recaptcha(token): """ Send recaptcha token to API to check if user response is valid """ url = 'https://www.google.com/recaptcha/api/siteverify' values = { 'secret': settings.RECAPTCHA_PRIVATE_KEY, 'response': token } data = urlencode(values).encode("utf-8") response = builtin_request.urlopen(url, data) result = json.load(response) if result['success']: return True, "" return False, "Invalid reCAPTCHA. Please try again."
7be09a76cbf946edbe8b1d717b2e2e2cdef9a902
14,676
def aggregate_hts(style="all_modes_combined"): """Use the 'processed' version of the HTS table to summarize the flows. Using the 'style' parameter, you can: - aggregate by mode using 'by_mode' - aggregate by mode and o&d location types using 'by_mode_and_location_type' - aggregate without considering mode, using the default 'all_modes_combined' """ def _use_the_right_query(style: str, query: str) -> str: """If the 'style' is 'by_mode': - add 'mode_agg' into the query If the 'style' is 'by_mode_and_location_type': - add 'trip_type' and 'mode_agg' into the query Otherwise, just return the query as it was originally. """ if style == "by_mode": return query.replace("o_cpa, d_cpa", "o_cpa, d_cpa, mode_agg") elif style == "by_mode_and_location_type": return query.replace("o_cpa, d_cpa", "o_cpa, d_cpa, mode_agg, trip_type") else: return query db = db_connection() all_combos_query = """ select o_cpa, d_cpa, count(*) as numtrips_24hr, sum(compositeweight) as sum_24hr from hts_2013_processed where trip_num < 97 group by o_cpa, d_cpa order by sum(compositeweight) desc """ am_query = """ select o_cpa, d_cpa, count(*) as numtrips_am, sum(compositeweight) as sum_am from hts_2013_processed where trip_num < 97 and time_window like '%%AM%%' group by o_cpa, d_cpa """ pm_query = """ select o_cpa, d_cpa, count(*) as numtrips_pm, sum(compositeweight) as sum_pm from hts_2013_processed where trip_num < 97 and time_window like '%%PM%%' group by o_cpa, d_cpa """ # Add the 'mode_agg' column if the 'style' is 'by_mode' all_combos_query = _use_the_right_query(style, all_combos_query) am_query = _use_the_right_query(style, am_query) pm_query = _use_the_right_query(style, pm_query) # Also, join on the 'mode_agg' column if we're analyzing 'by_mode' join_cols = ["o_cpa", "d_cpa"] if style == "by_mode": join_cols.append("mode_agg") elif style == "by_mode_and_location_type": join_cols.append("mode_agg") join_cols.append("trip_type") # Get the 24-hour totals df = db.query_as_df(all_combos_query) # Query and join the AM trips df_am = db.query_as_df(am_query) df = pd.merge(df, df_am, how="left", on=join_cols) # Repeat for the PM trips df_pm = db.query_as_df(pm_query) df = pd.merge(df, df_pm, how="left", on=join_cols) # Save the resulting dataframe back to SQL new_table_name = f"hts_2013_aggregated_{style}" db.import_dataframe(df, new_table_name, if_exists="replace")
b200b312351408e4615a503f56f301c3b775f35a
14,677
def pix2sky(shape, wcs, pix, safe=True, corner=False): """Given an array of corner-based pixel coordinates [{y,x},...], return sky coordinates in the same ordering.""" pix = np.asarray(pix).astype(float) if corner: pix -= 0.5 pflat = pix.reshape(pix.shape[0], -1) coords = np.asarray(wcsutils.nobcheck(wcs).wcs_pix2world(*(tuple(pflat)[::-1]+(0,)))[::-1])*get_unit(wcs) coords = coords.reshape(pix.shape) if safe and not wcsutils.is_plain(wcs): coords = utils.unwind(coords) return coords
288d3f67080611773273aaed950385b19d7aebc8
14,678
def getRelativeSilenceVideo(videoPath): """Function to get relative silence videos before and after each video""" silVid = ['', ''] vidData = getVideoDataFromPath(videoPath) videoNameList = videoPath.split('/') tempVidName = videoNameList[0] + '/' + videoNameList[1] + '/' + videoNameList[2] + '/Silence/sil_{}.mp4' vidNumber = int((vidData.identifier.split('_')[1]).split('.')[0]) silVid[0] = tempVidName.format(vidNumber * 2) silVid[1] = tempVidName.format((vidNumber * 2) + 1) return silVid
b829915c4cfa7592e394914ba40457200b352ab4
14,679
def convert_to_xyxy_coordinates(boxes: tf.Tensor) -> tf.Tensor: """Convert boxes to their center coordinates y_cent, x_cent, h, w -> y_min, x_min, y_max, x_max Arguments: - *boxes*: A Tensor of shape [N, ..., (y_cent, x_cent, h, w)] Returns: A tensor of shape [N, ..., num_boxes, (y_min, x_min, y_max, x_max)] """ y_cent, x_cent, h, w = tf.split(value=boxes, num_or_size_splits=4, axis=-1) y_min = y_cent - 0.5 * h x_min = x_cent - 0.5 * w y_max = y_cent + 0.5 * h x_max = x_cent + 0.5 * w return tf.concat([y_min, x_min, y_max, x_max], axis=-1)
2412d3383d4335d707e220a52ac5e5198513d8ab
14,680
from typing import Optional import logging def ceilo2nc(full_path: str, output_file: str, site_meta: dict, keep_uuid: Optional[bool] = False, uuid: Optional[str] = None, date: Optional[str] = None) -> str: """Converts Vaisala / Lufft ceilometer data into Cloudnet Level 1b netCDF file. This function reads raw Vaisala (CT25k, CL31, CL51, CL61-D) and Lufft (CHM15k) ceilometer files and writes the data into netCDF file. Three variants of the attenuated backscatter are saved in the file: 1. Raw backscatter, `beta_raw` 2. Signal-to-noise screened backscatter, `beta` 3. SNR-screened backscatter with smoothed weak background, `beta_smooth` With CL61-D `beta_raw` is not saved due to large file size. Instead, two dditional depolarisation parameters are saved: 1. Signal-to-noise screened depolarisation, `depolarisation` 2. SNR-screened depolarisation with smoothed weak background, `depolarisation_smooth` Args: full_path: Ceilometer file name. For Vaisala it is a text file, for CHM15k it is a netCDF file. output_file: Output file name, e.g. 'ceilo.nc'. site_meta: Dictionary containing information about the site and instrument. Required key value pairs are `name` and `altitude` (metres above mean sea level). Also 'calibration_factor' is recommended because the default value is probably incorrect. keep_uuid: If True, keeps the UUID of the old file, if that exists. Default is False when new UUID is generated. uuid: Set specific UUID for the file. date: Expected date as YYYY-MM-DD of all profiles in the file. Returns: UUID of the generated file. Raises: RuntimeError: Failed to read or process raw ceilometer data. Examples: >>> from cloudnetpy.instruments import ceilo2nc >>> site_meta = {'name': 'Mace-Head', 'altitude': 5} >>> ceilo2nc('vaisala_raw.txt', 'vaisala.nc', site_meta) >>> site_meta = {'name': 'Juelich', 'altitude': 108, 'calibration_factor': 2.3e-12} >>> ceilo2nc('chm15k_raw.nc', 'chm15k.nc', site_meta) """ ceilo_obj = _initialize_ceilo(full_path, date) logging.debug('reading daily file') ceilo_obj.read_ceilometer_file(site_meta.get('calibration_factor', None)) if 'cl61' in ceilo_obj.model.lower(): depol_variants = ceilo_obj.calc_depol() else: depol_variants = None beta_variants = ceilo_obj.calc_beta() _append_data(ceilo_obj, beta_variants, depol_variants) _append_height(ceilo_obj, site_meta['altitude']) attributes = output.add_time_attribute(ATTRIBUTES, ceilo_obj.date) output.update_attributes(ceilo_obj.data, attributes) return _save_ceilo(ceilo_obj, output_file, site_meta['name'], keep_uuid, uuid)
dcf5544c4f0e7cfde0dc48510b7e3f0717971510
14,681
import click def classify(mapper: object, files: list or dict, samples: list = None, fmt: str = None, demux: bool = None, trimsub: str = None, tree: dict = None, rankdic: dict = None, namedic: dict = None, root: str = None, ranks: str = None, rank2dir: dict = None, outzip: str = None, uniq: bool = False, major: int = None, above: bool = False, subok: bool = False, sizes: dict = None, unasgd: bool = False, stratmap: dict = None, chunk: int = None, cache: int = 1024, zippers: dict = None, outcov_dir: str = None) -> dict: """Core of the classification workflow. Parameters ---------- mapper : object Mapping module (Plain or Ordinal). files : list or dict Paths to input alignment files, if multiplexed, or dictionary of file paths to sample IDs, if per-sample. samples : list of str, optional Sample ID list to include. fmt : str, optional Format of input alignment file. Options: - 'b6o': BLAST tabular format. - 'sam': SAM format. - 'map': Simple map of query <tab> subject. If None, program will automatically infer from file content. demux : bool, optional Whether perform demultiplexing. trimsub : str, optional Trim subject IDs at the last given delimiter. tree : dict, optional Taxonomic tree. rankdic : dict, optional Rank dictionary. namedic : dict, optional Taxon name dictionary. root : str, optional Root identifier. ranks: list of str, optional List of ranks at each of which sequences are to be classified. Can also be "none" to omit classification (simply report subject IDs) or "free" to perform free-rank classification (LCA of subjects regardless of rank will be reported). rank2dir : dict, otional Write classification map per rank to directory. outzip : str, optional Output read map compression method (gz, bz2, xz or None). uniq : bool, optional Assignment must be unique. Otherwise, report all possible assignments and normalize counts (for none- and fixed-rank assignments). major : int, optional In given-rank classification, perform majority-rule assignment based on this percentage threshold. Range: [51, 99]. above : bool, optional Allow assigning to a classification unit higher than given rank. subok : bool, optional In free-rank classification, allow assigning sequences to their direct subjects instead of higher classification units, if applicable. sizes : dict, optional Subject size dictionary. unasgd : bool, optional Report unassigned sequences. stratmap : dict, optional Map of sample ID to stratification file. chunk : int, optional Number of lines per chunk to read from alignment file. cache : int, optional LRU cache size for classification results at each rank. zippers : dict, optional External compression programs. outcov_dir : str, optional Write Subject coverage maps to directory. Returns ------- dict of dict Per-rank profiles generated from classification. Notes ----- Subject(s) of each query are sorted and converted into a tuple, which is hashable, a property necessary for subsequent assignment result caching. """ data = {x: {} for x in ranks} # assigners for each rank assigners = {} # assignment parameters kwargs = {'assigners': assigners, 'cache': cache, 'tree': tree, 'rankdic': rankdic, 'namedic': namedic, 'root': root, 'uniq': uniq, 'major': major and major / 100, 'above': above, 'subok': subok, 'sizes': sizes, 'unasgd': unasgd, 'rank2dir': rank2dir, 'outzip': outzip if outzip != 'none' else None} # (optional) subject coverage data covers = {} if outcov_dir else None # current sample Id csample = False # parse input alignment file(s) and generate profile(s) for fp in sorted(files): click.echo(f'Parsing alignment file {basename(fp)} ', nl=False) # read alignment file into query-to-subject(s) map with readzip(fp, zippers) as fh: # query and progress counters nqry, nstep = 0, -1 # parse alignment file by chunk for qryque, subque in mapper(fh, fmt=fmt, n=chunk): nqry += len(qryque) # (optional) demultiplex and generate per-sample maps rmaps = demultiplex(qryque, subque, samples) if demux else { files[fp] if files else None: (qryque, subque)} # (optional) calculate subject coverage if outcov_dir: parse_ranges(rmaps, covers) # assign reads at each rank for sample, (qryque, subque) in rmaps.items(): # (optional) strip suffixes from subject Ids subque = deque(map(tuple, map(sorted, strip_suffix( subque, trimsub) if trimsub else subque))) # (optional) read strata of current sample into cache if stratmap and sample != csample: kwargs['strata'] = read_strata( stratmap[sample], zippers) csample = sample # call assignment workflow for each rank for rank in ranks: assign_readmap( qryque, subque, data, rank, sample, **kwargs) # show progress istep = nqry // 1000000 - nstep if istep: click.echo('.' * istep, nl=False) nstep += istep click.echo(' Done.') click.echo(f' Number of sequences classified: {nqry}.') # write coverage maps if outcov_dir: click.echo('Calculating per sample coverage...', nl=False) write_coverage(calc_coverage(covers), outcov_dir) click.echo(' Done.') click.echo('Classification completed.') return data
1d1976dcf35617a3860af39d77fb206880071105
14,682
import re def get_better_loci(filename, cutoff): """ Returns a subset of loci such that each locus includes at least "cutoff" different species. :param filename: :param cutoff: :return: """ f = open(filename) content = f.read() f.close() loci = re.split(r'//.*|', content) better_loci = [] for locus in loci: found_species = set() for line in locus.strip().split("\n"): if line == "": continue (individual, sequence) = line[1:].split() found_species.add(individual.split("_")[-1]) if len(found_species) >= cutoff: better_loci.append(locus) return better_loci
e2d563c9d0568cef59ea0280aae61a78bf4a6e7b
14,683
import math def paginate_data(data_list, page=1 ,per_page=10): """将数据分页返回""" pages = int(math.ceil(len(data_list) / per_page)) page = int(page) per_page = int(per_page) has_next = True if pages > page else False has_prev = True if 1 < page <= int(pages) else False items = data_list[(page-1)*per_page : page*per_page] return { "item_list": items, "page": page, "total": len(data_list), "pages": pages, "has_next": has_next, "next_num": page + 1 if has_next else None, "per_page": per_page, "has_prev": has_prev, "prev_num": page - 1 if has_prev else None }
63a4602462e0c2e38329107b10b5d72b63c3108d
14,684
import torch def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) return rotMat
6590272c0ed3a97f8f5ef5eacd3605b0c7b91626
14,685
def has_multimethods(cls): """ Declare class as one that have multimethods.""" for name, obj in cls.__dict__.items(): if isinstance(obj, MethodDispatcher): obj.proceed_unbound_rules(cls) return cls
4248af44c0ba6b585a80a4eb0d8da1ca5e9f2299
14,686
def elastic_depth(f, time, method="DP2", lam=0.0, parallel=True): """ calculates the elastic depth between functions in matrix f :param f: matrix of size MxN (M time points for N functions) :param time: vector of size M describing the sample points :param method: method to apply optimization (default="DP2") options are "DP","DP2","RBFGS" :param lam: controls the elasticity (default = 0.0) :rtype: scalar :return amp: amplitude depth :return phase: phase depth """ obs, fns = f.shape amp_dist = zeros((fns,fns)) phs_dist = zeros((fns,fns)) if parallel: out = Parallel(n_jobs=-1)(delayed(distmat)(f, f[:, n], time, n, method) for n in range(fns)) for i in range(0, fns): amp_dist[i, :] = out[i][0] phs_dist[i, :] = out[i][1] else: for i in range(0, fns): amp_dist[i, :], phs_dist[i, :] = distmat(f, f[:, i], time, i, method) amp_dist = amp_dist + amp_dist.T phs_dist = phs_dist + phs_dist.T amp = 1 / (1 + median(amp_dist,axis=0)) phase = 1 / (1 + median(phs_dist,axis=0)) phase = ((2+pi)/pi) * (phase - 2/(2+pi)) return amp, phase
574880a5cc3d26d756286a5d7a8959c67141678a
14,687
from typing import Any def run_coro_thread(func: callable, *args, **kwargs) -> Any: """ Run a Python AsyncIO coroutine function within a new event loop using a thread, and return the result / raise any exceptions as if it were ran normally within an AsyncIO function. .. Caution:: If you're wanting to run a coroutine within a thread from an AsyncIO function/method, then you should use :func:`.run_coro_thread_async` instead, which uses :func:`asyncio.sleep` while waiting for a result/exception to be transmitted via a queue. This allows you to run and wait for multiple coroutine threads simultaneously, as there's no synchronous blocking wait - unlike this function. This will usually allow you to run coroutines from a synchronous function without running into the dreaded "Event loop is already running" error - since the coroutine will be ran inside of a thread with it's own dedicated event loop. **Example Usage**:: >>> async def example_func(lorem: int, ipsum: int): ... if lorem > 100: raise AttributeError("lorem is greater than 100!") ... return f"example: {lorem + ipsum}" >>> run_coro_thread(example_func, 10, 20) example: 30 >>> run_coro_thread(example_func, 3, ipsum=6) example: 9 >>> run_coro_thread(example_func, lorem=40, ipsum=1) example: 41 >>> run_coro_thread(example_func, 120, 50) File "", line 2, in example_func if lorem > 100: raise AttributeError("lorem is greater than 100!") AttributeError: lorem is greater than 100! Creates a new :class:`threading.Thread` with the target :func:`.coro_thread_func` (via :func:`.run_coro_thread_base`), passing the coroutine ``func`` along with the passed positional ``args`` and keyword ``kwargs``, which creates a new event loop, and then runs ``func`` within that thread event loop. Uses the private :class:`queue.Queue` threading queue :attr:`._coro_thread_queue` to safely relay back to the calling thread - either the result from the coroutine, or an exception if one was raised while trying to run the coroutine. :param callable func: A reference to the ``async def`` coroutine function that you want to run :param args: Positional arguments to pass-through to the coroutine function :param kwargs: Keyword arguments to pass-through to the coroutine function :return Any coro_res: The result returned from the coroutine ``func`` """ t_co = run_coro_thread_base(func, *args, **kwargs, _output_queue=_coro_thread_queue) t_co.join() res = _coro_thread_queue.get(block=True, timeout=10) if isinstance(res, (Exception, BaseException)): raise res return res
078b17d38552aa5d9a30efd1374d8f4e8f7e9b40
14,688
def get_all_ports(entity): """ Recursively descends through the entity hierarchy and collects all ports defined within the parameter or any of its children. Parameters ---------- entity : Entity The root from which to start collecting. Returns ------- list of Port A list of ports within the entity or its children. """ return [p for e in get_all_entities(entity) for p in get_ports(e)]
a490ba48d647a1d82a2c7ae7d75e61afb089c907
14,689
def deploy(**kwargs): """Deploy a PR into a remote server via Fabric""" return apply_pr(**kwargs)
26d11e6d6ab08e1298aa99203925c45b96535df9
14,690
import torch def word_list2tensor(word_list, dictionary): """ args word_list: [batch_size, seq_len, token_id] dictionary: Dictionary return source, target [batch_size, seq_len, token_id] """ word_list_padded = add_word_padding(word_list, dictionary) batch = torch.LongTensor(word_list_padded) return batch
6e484c282779bfd709030735268468f3bacde268
14,691
import six def canonicalize_monotonicity(monotonicity, allow_decreasing=True): """Converts string constants representing monotonicity into integers. Args: monotonicity: The monotonicities hyperparameter of a `tfl.layers` Layer (e.g. `tfl.layers.PWLCalibration`). allow_decreasing: If decreasing monotonicity is considered a valid monotonicity. Returns: monotonicity represented as -1, 0, 1, or None. Raises: ValueError: If monotonicity is not in the set {-1, 0, 1, 'decreasing', 'none', 'increasing'} and allow_decreasing is True. ValueError: If monotonicity is not in the set {0, 1, 'none', 'increasing'} and allow_decreasing is False. """ if monotonicity is None: return None if monotonicity in [-1, 0, 1]: if not allow_decreasing and monotonicity == -1: raise ValueError( "'monotonicities' must be from: [0, 1, 'none', 'increasing']. " "Given: {}".format(monotonicity)) return monotonicity elif isinstance(monotonicity, six.string_types): if monotonicity.lower() == "decreasing": if not allow_decreasing: raise ValueError( "'monotonicities' must be from: [0, 1, 'none', 'increasing']. " "Given: {}".format(monotonicity)) return -1 if monotonicity.lower() == "none": return 0 if monotonicity.lower() == "increasing": return 1 raise ValueError("'monotonicities' must be from: [-1, 0, 1, 'decreasing', " "'none', 'increasing']. Given: {}".format(monotonicity))
a9d0870d03f11d7bdff4c8f673cd78d072fa8478
14,692
def add_gdp(df, gdp, input_type="raw", drop=True): """Adds the `GDP` to the dataset. Assuming that both passed dataframes have a column named `country`. Parameters ---------- df : pd.DataFrame Training of test dataframe including the `country` column. gdp : pd.DataFrame Mapping between `country` and `GDP` input_type : {"raw", "aggregated"} Whether the operation should run on the raw, or the aggregated dataset. drop : bool Whether the old country columns should be droped. Returns ------- pd.DataFrame The passed `df` with a new column corresponding to the mapped GDP. """ def stringify(maybe_string): # Handles Unicode country names like "Côte d’Ivoire" , "Réunion" etc, as well as countries only existing # in one of the two dataframes. try: return str(maybe_string) except UnicodeEncodeError: return "Unknown" if input_type == "aggregated": country_cols = [col for col in df.columns if col.startswith("country") and col != "country"] def inverse_ohe(row): for c in country_cols: if row[c] == 1: return c.split("_")[1] df["country"] = df.apply(inverse_ohe, axis=1) if drop: df = df.drop(country_cols, axis=1) elif input_type != "raw": msg = "Only {} and {} are supported. \n" + \ "\tThe former assumes the original form where only the JSON has been flattened.\n" + \ "\tThe latter assumes that OHE has already occured on top." raise ValueError(msg) df["country"] = df["country"].fillna("Unknown").apply(stringify) result = df.merge(gdp, on="country", how='left') if drop: result.drop("country", axis=1, inplace=True) return result
72e2b5fe839f3dbc71ca2def4be442535a0adb84
14,693
import argparse def get_options(cmd_args): """ Argument Parser. """ parser = argparse.ArgumentParser( prog='activitygen.py', usage='%(prog)s -c configuration.json', description='SUMO Activity-Based Mobility Generator') parser.add_argument( '-c', type=str, dest='config', required=True, help='JSON configuration file.') parser.add_argument( '--profiling', dest='profiling', action='store_true', help='Enable Python3 cProfile feature.') parser.add_argument( '--no-profiling', dest='profiling', action='store_false', help='Disable Python3 cProfile feature.') parser.set_defaults(profiling=False) return parser.parse_args(cmd_args)
e8ddde36e83df2ca46652e0f104c718e8f747715
14,694
from scipy.ndimage.filters import maximum_filter def no_background_patches(threshold=0.4, percentile=99.9): """Returns a patch filter to be used by :func:`create_patches` to determine for each image pair which patches are eligible for sampling. The purpose is to only sample patches from "interesting" regions of the raw image that actually contain a substantial amount of non-background signal. To that end, a maximum filter is applied to the target image to find the largest values in a region. Parameters ---------- threshold : float, optional Scalar threshold between 0 and 1 that will be multiplied with the (outlier-robust) maximum of the image (see `percentile` below) to denote a lower bound. Only patches with a maximum value above this lower bound are eligible to be sampled. percentile : float, optional Percentile value to denote the (outlier-robust) maximum of an image, i.e. should be close 100. Returns ------- function Function that takes an image pair `(y,x)` and the patch size as arguments and returns a binary mask of the same size as the image (to denote the locations eligible for sampling for :func:`create_patches`). At least one pixel of the binary mask must be ``True``, otherwise there are no patches to sample. Raises ------ ValueError Illegal arguments. """ (np.isscalar(percentile) and 0 <= percentile <= 100) or _raise(ValueError()) (np.isscalar(threshold) and 0 <= threshold <= 1) or _raise(ValueError()) def _filter(datas, patch_size, dtype=np.float32): image = datas[0] if dtype is not None: image = image.astype(dtype) # make max filter patch_size smaller to avoid only few non-bg pixel close to image border patch_size = [(p//2 if p>1 else p) for p in patch_size] filtered = maximum_filter(image, patch_size, mode='constant') return filtered > threshold * np.percentile(image,percentile) return _filter
b1ffd8b7bb2023c483da35565044b02f7fd96cd8
14,695
def start_thread(): """Start new thread with or without first comment.""" subject = request.form.get('subject') or '' comment = request.form.get('comment') or '' if not subject: return error('start_thread:subject') storage.start_thread(g.username, subject, comment) flash('New Thread Started: {0}'.format(subject), 'success') return to_threads()
a8fabcddac91cc5cc6d5a63382e1ba433f425c20
14,696
def get_package_data(name, package=None): """Retrieve metadata information for the given package name""" if not package: package = models.Package(name=name) releases = {} else: releases = package.get_all_releases() client = xmlrpclib.ServerProxy('http://pypi.python.org/pypi') versions = client.package_releases(package.name, True) # package_releases() method is case-sensitive, if nothing found # then we search for it # XXX: Ask pypi to make it case-insensitive? if not versions: for item in client.search({'name': name}): if name.lower() == item['name'].lower(): package.name = name = item['name'] break else: logger.info("No packages found matching %r", name) return # Retry retrieving the versions with the new/correct name versions = client.package_releases(package.name, True) # Save the package if it is new if not package.pk: package.save() for version in versions: release, files = releases.get(version, (None, {})) if not release: release = models.Release(package=package, version=version) release.save() data = client.release_data(package.name, release.version) release_form = forms.PypiReleaseDataForm(data, instance=release) if release_form.is_valid(): release_form.save() release_files = client.package_urls(package.name, release.version) for info in release_files: release_file = files.get(info['filename']) if not release_file: release_file = models.ReleaseFile( release=release, filename=info['filename']) release_file.python_version = info['python_version'] release_file.filetype = info['packagetype'] release_file.url = info['url'] release_file.size = info['size'] release_file.md5_digest = info['md5_digest'] release_file.save() package.update_timestamp = now() package.save() return package
98824594fdd245760387f912192037b2e024aadc
14,697
def _extract_xbstream( input_stream, working_dir, xbstream_binary=XBSTREAM_BINARY ): """ Extract xbstream stream in directory :param input_stream: The stream in xbstream format :param working_dir: directory :param xbstream_binary: Path to xbstream :return: True if extracted successfully """ try: cmd = [xbstream_binary, "-x"] LOG.debug("Running %s", " ".join(cmd)) LOG.debug("Working directory: %s", working_dir) LOG.debug("Xbstream binary: %s", xbstream_binary) proc = Popen( cmd, stdin=input_stream, stdout=PIPE, stderr=PIPE, cwd=working_dir ) cout, cerr = proc.communicate() ret = proc.returncode if ret: LOG.error("%s exited with code %d", " ".join(cmd), ret) if cout: LOG.error("STDOUT: %s", cout) if cerr: LOG.error("STDERR: %s", cerr) return ret == 0 except OSError as err: raise TwinDBBackupError("Failed to extract xbstream: %s" % err) from err
f5f95347de55c352eb568c5bb5cb17517040e20c
14,698
from sys import path import re def load_version(pkg_dir, pkg_name): """Load version from variable __version__ in file __init__.py with a regular expression""" try: filepath_init = path.join(pkg_dir, pkg_name, '__init__.py') file_content = read_file(filepath_init) re_for_version = re.compile(r'''__version__\s+=\s+['"](.*)['"]''') match = re_for_version.search(file_content) version = match.group(1) return version except Exception: raise ValueError('Version could not be read from variable __version__ in file __init__.py')
70ca891203b44f65263494d39390ec3500d00b4e
14,699