content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import urllib import json def fetch_object(object_id: int, url: str): """ Fetch a single object from a feature layer. We have to fetch objects one by one, because they can get pretty big. Big enough, that if you ask for more than one at a time, you're likely to encounter 500 errors. object_id: object id to fetch (e.g. 1) url: layer url to fetch (e.g. https://maps.gov.bc.ca/arcserver/rest/services/whse/bcgw_pub_whse_legal_admin_boundaries/MapServer/2) """ print(f'fetching object {object_id}') params = { 'where': f'objectid={object_id}', 'geometryType': 'esriGeometryEnvelope', 'spatialRel': 'esriSpatialRelIntersects', # 'outSR': '102100', 'outFields': '*', 'returnGeometry': 'true', 'returnIdsOnly': 'false', 'f': 'geojson' } encode_params = urllib.parse.urlencode(params).encode("utf-8") print(f'{url}/query?{encode_params.decode()}') with urllib.request.urlopen(f'{url}/query?', encode_params) as response: json_data = json.loads(response.read()) return json_data
d193d9368eec79028beeb545a3fe411fa0c131bc
14,000
def density_forecast_param(Yp, sigma, _, rankmatrix, errordist_normed, dof): """creates a density forecast for Yp with Schaake Schuffle Parameters ---------- Yp: numpy.array 24-dimensional array with point-predictions of day ahead prices sigma: numpy.array Variance prediction for each hour _ : rankmatrix: numpy.array Matrix with rank positions of forecast samples errordist_normed: numpy.array Realized normed prediction errors dof: int Degrees of Freedom of parametric margins 0: Normal distribution >0: t-distribution Returns ------- newdataarray: numpy.array Array containing the density predictions of day ahead price """ # Initialize errordist=errordist_normed.copy() nzero=np.size(rankmatrix,axis=0) n_sample=np.size(errordist, axis=0) sqrtsigma = np.sqrt(sigma) # for h in range(24): # Assume Normal distribution for dof==0 if dof[0]==0: errordist[:, h]=np.linspace(st.norm(Yp[0, h], sqrtsigma[h]).ppf(1 / (n_sample + 1)), st.norm(Yp[0, h], sqrtsigma[h]).ppf(n_sample / (n_sample + 1)), n_sample) # Assume t-distribution with given degrees of freedom else: errordist[:, h] = np.linspace(st.t(loc=Yp[0, h], scale=sqrtsigma[h],df=dof[h]).ppf(1 / (n_sample + 1)), st.t(loc=Yp[0, h], scale=sqrtsigma[h],df=dof[h]).ppf(n_sample / (n_sample + 1)), n_sample) Yt = np.zeros(shape=(nzero, 24)) u_new = np.arange(1, nzero + 1) / (nzero + 1) std_error = np.zeros(shape=(nzero, 24)) for h in range(24): helper = np.sort(errordist[:, h]) std_error_pos = np.array(np.floor(u_new * np.size(errordist, axis=0)), dtype='int') std_error[:, h] = helper[std_error_pos] for i in range(nzero): Yt[i, :] = std_error[i, :] # order newdata according to rank-matrix newdataarray = np.zeros(shape=(nzero, 24)) for col in range(24): for i in range(0, nzero): help = int(rankmatrix[i, col] - 1) newdataarray[i, col] = Yt[help, col] return newdataarray
809458a7d3de0ae2997f392e52f91a9b4c02e181
14,001
def gaussian_blur(img: np.ndarray, kernel_size: int) -> np.ndarray: """Applies a Gaussian Noise kernel""" if not is_valid_kernel_size(kernel_size): raise ValueError( "kernel_size must either be 0 or a positive, odd integer") return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
6bedc6b15848c18ed52c8348f3bec1b4181f74d7
14,002
def get_controls_snapshots_count(selenium, src_obj): """Return dictionary with controls snapshots actual count and count taken from tab title.""" controls_ui_service = webui_service.ControlsService(selenium) return { "controls_tab_count": controls_ui_service.get_count_objs_from_tab( src_obj=src_obj), "controls_count": len(controls_ui_service.get_list_objs_from_tree_view( src_obj=src_obj))}
5e6a11a2a94093850f810e0ec6c93037a9f40bca
14,003
import random import math def fast_gnp_random_graph(n, p, seed=None, directed=False): """Returns a `G_{n,p}` random graph, also known as an Erdős-Rényi graph or a binomial graph. Parameters ---------- n : int The number of nodes. p : float Probability for edge creation. seed : int, optional Seed for random number generator (default=None). directed : bool, optional (default=False) If ``True``, this function returns a directed graph. Notes ----- The `G_{n,p}` graph algorithm chooses each of the `[n (n - 1)] / 2` (undirected) or `n (n - 1)` (directed) possible edges with probability `p`. This algorithm runs in `O(n + m)` time, where `m` is the expected number of edges, which equals `p n (n - 1) / 2`. This should be faster than :func:`gnp_random_graph` when `p` is small and the expected number of edges is small (that is, the graph is sparse). See Also -------- gnp_random_graph References ---------- .. [1] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005. """ G = empty_graph(n) G.name="fast_gnp_random_graph(%s,%s)"%(n,p) if not seed is None: random.seed(seed) if p <= 0 or p >= 1: return nx.gnp_random_graph(n,p,directed=directed) w = -1 lp = math.log(1.0 - p) if directed: G = nx.DiGraph(G) # Nodes in graph are from 0,n-1 (start with v as the first node index). v = 0 while v < n: lr = math.log(1.0 - random.random()) w = w + 1 + int(lr/lp) if v == w: # avoid self loops w = w + 1 while w >= n and v < n: w = w - n v = v + 1 if v == w: # avoid self loops w = w + 1 if v < n: G.add_edge(v, w) else: # Nodes in graph are from 0,n-1 (start with v as the second node index). v = 1 while v < n: lr = math.log(1.0 - random.random()) w = w + 1 + int(lr/lp) while w >= v and v < n: w = w - v v = v + 1 if v < n: G.add_edge(v, w) return G
f84c577a4f575186913980c8d9a5dcc16d771291
14,004
import math def round_to(f: float, p: int = 0) -> float: """Round to the specified precision using "half up" rounding.""" # Do no rounding, just return a float with full precision if p == -1: return float(f) # Integer rounding elif p == 0: return round_half_up(f) # Round to the specified precision else: whole = int(f) digits = 0 if whole == 0 else int(math.log10(-whole if whole < 0 else whole)) + 1 return round_half_up(whole if digits > p else f, p - digits)
ad464bced2e2b1b87208f61e7ca73b42d5e31fa5
14,005
def get_interface_type(interface): """Gets the type of interface """ if interface.upper().startswith('GI'): return 'GigabitEthernet' elif interface.upper().startswith('TE'): return 'TenGigabitEthernet' elif interface.upper().startswith('FA'): return 'FastEthernet' elif interface.upper().startswith('FO'): return 'FortyGigabitEthernet' elif interface.upper().startswith('LON'): return 'LongReachEthernet' elif interface.upper().startswith('ET'): return 'Ethernet' elif interface.upper().startswith('VL'): return 'Vlan' elif interface.upper().startswith('LO'): return 'loopback' elif interface.upper().startswith('PO'): return 'Port-channel' elif interface.upper().startswith('NV'): return 'nve' elif interface.upper().startswith('TWE'): return 'TwentyFiveGigE' elif interface.upper().startswith('HU'): return 'HundredGigE' else: return 'unknown'
8a898f75e0e05715e0ced7258b8e8d4bf9905377
14,006
def __get_global_options(cmd_line_options, conf_file_options=None): """ Get all global options :type cmd_line_options: dict :param cmd_line_options: Dictionary with all command line options :type conf_file_options: dict :param conf_file_options: Dictionary with all config file options :returns: dict """ options = {} for option in DEFAULT_OPTIONS['global'].keys(): options[option] = DEFAULT_OPTIONS['global'][option] if conf_file_options and option in conf_file_options: options[option] = conf_file_options[option] if cmd_line_options and option in cmd_line_options: options[option] = cmd_line_options[option] return options
3c9880616ae274f4254cdd29558f1022fdfc6ff4
14,007
def download_file(service, drive_file): """Download a file's content. Args: service: Drive API service instance. drive_file: Drive File instance. Returns: File's content if successful, None otherwise. """ download_url = drive_file.get('downloadUrl') if download_url: resp, content = service._http.request(download_url) if resp.status == 200: #print 'Status: %s' % resp return content else: #print 'An error occurred: %s' % resp return None else: # The file doesn't have any content stored on Drive. return None
fa8ad859e47dbaec0cb9a4eea0be5497239e359e
14,008
def get_include_file_end_before(block: Block) -> str: """ >>> # test end-before set to 'end-marker' >>> block = lib_test.get_test_block_ok() >>> get_include_file_end_before(block) '# end-marker' >>> assert block.include_file_end_before == '# end-marker' >>> # test end-before not set >>> block = lib_test.get_test_block_end_before_not_set() >>> get_include_file_end_before(block) '' >>> # test end-before invalid >>> block = lib_test.get_test_block_end_before_invalid() >>> get_include_file_end_before(block) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE Traceback (most recent call last): ... ValueError: Error in File ".../README.template.rst", Line 47106: option "end-before" has no value """ include_file_end_before = block.include_file_end_before if lib_block_options.is_option_in_block('end-before', block): include_file_end_before = lib_block_options.get_option_value_from_block_or_raise_if_empty_or_invalid('end-before', block) block.include_file_end_before = include_file_end_before return include_file_end_before
c8ae330fb24a2a7e5304d8a5e5c5438bf9346c63
14,009
import torch import random def add_random_circles(tensor: torch.Tensor, n_circles: int, equalize_overlaps: bool = True): """Adds n_circles random circles onto the image.""" height, width = tensor.shape circle_img = torch.zeros_like(tensor) for _ in range(n_circles): circle_img = add_circle(circle_img, {'x': random.randint(0, width), 'y': random.randint(0, height)}, random.randint(1, int(max(height, width) / 30))) tensor += (circle_img != 0) if equalize_overlaps: tensor = (tensor != 0) return tensor.type(torch.FloatTensor)
17e0cf8d53cf0f8b3c542f0fd0f49151c6842ba9
14,010
def sample_quadric_surface(quadric, center, samples): """Samples the algebraic distance to the input quadric at sparse locations. Args: quadric: Tensor with shape [..., 4, 4]. Contains the matrix of the quadric surface. center: Tensor with shape [..., 3]. Contains the [x,y,z] coordinates of the center of the coordinate frame of the quadric surface in NIC space with a top-left origin. samples: Tensor with shape [..., N, 3], where N is the number of samples to evaluate. These are the sample locations in the same space in which the quadric surface center is defined. Supports broadcasting the batching dimensions. Returns: distances: Tensor with shape [..., N, 1]. Contains the algebraic distance to the surface at each sample. """ with tf.name_scope('sample_quadric_surface'): batching_dimensions = quadric.get_shape().as_list()[:-2] batching_rank = len(batching_dimensions) tf_util.assert_shape(quadric, batching_dimensions + [4, 4], 'sample_quadric_surface:quadric') tf_util.assert_shape(center, batching_dimensions + [-1], 'sample_quadric_surface:center') tf_util.assert_shape(samples, batching_rank * [-1] + [-1, 3], 'sample_quadric_surface:samples') # We want to transform the coordinates so that they are in the coordinate # frame of the conic section matrix, so we subtract the center of the # conic. samples = samples - tf.expand_dims(center, axis=batching_rank) sample_count = samples.get_shape().as_list()[-2] homogeneous_sample_ones = tf.ones( samples.get_shape().as_list()[:-1] + [1], dtype=tf.float32) homogeneous_sample_coords = tf.concat([samples, homogeneous_sample_ones], axis=-1) # When we transform the coordinates per-image, we broadcast on both sides- # the batching dimensions broadcast up the coordinate grid, and the # coordinate center broadcasts up along the height and width. # Per-pixel, the algebraic distance is v^T * M * v, where M is the matrix # of the conic section, and v is the homogeneous column vector [x y z 1]^T. half_distance = tf.matmul( quadric, homogeneous_sample_coords, transpose_b=True) rank = batching_rank + 2 half_distance = tf.transpose( half_distance, perm=list(range(rank - 2)) + [rank - 1, rank - 2]) algebraic_distance = tf.reduce_sum( tf.multiply(homogeneous_sample_coords, half_distance), axis=-1) return tf.reshape(algebraic_distance, batching_dimensions + [sample_count, 1])
e4448be0058f4a8010a72eaf9506e95695b1b35e
14,011
def mol2df(mols: Mols[pd.DataFrame], multiindex=False) -> pd.DataFrame: """ flattens a mol into a dataframe with the columns containing the start, stop and price :param mols: mols to transform :return: """ if multiindex: flat = { ((start, stop), price): series for (start, stop), mol in mols.items() for price, series in mol.items() } else: flat = { f"{start} -> {stop}: {price}": series for (start, stop), mol in mols.items() for price, series in mol.items() } return pd.concat(flat, axis="columns")
63b16fa99a9c76a29cbef8755cf29928f05637f6
14,012
from typing import Tuple def load_sequence_classifier_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]: """ Load the model, training and evaluation configs for a regular sequence classifier from the given command line arguments. This classifier can either be used as a standalone model or as the final classifier for PET/iPET. """ model_cfg = WrapperConfig( model_type=args.model_type, model_name_or_path=args.model_name_or_path, wrapper_type=SEQUENCE_CLASSIFIER_WRAPPER, task_name=args.task_name, label_list=args.label_list, max_seq_length=args.sc_max_seq_length, verbalizer_file=args.verbalizer_file, cache_dir=args.cache_dir, ) train_cfg = pet.TrainConfig( device=args.device, per_gpu_train_batch_size=args.sc_per_gpu_train_batch_size, per_gpu_unlabeled_batch_size=args.sc_per_gpu_unlabeled_batch_size, n_gpu=args.n_gpu, num_train_epochs=args.sc_num_train_epochs, max_steps=args.sc_max_steps, min_steps=args.sc_min_steps, temperature=args.temperature, gradient_accumulation_steps=args.sc_gradient_accumulation_steps, weight_decay=args.weight_decay, learning_rate=args.learning_rate, adam_epsilon=args.adam_epsilon, warmup_steps=args.warmup_steps, logging_steps=args.logging_steps, logging_number=args.logging_number, max_grad_norm=args.max_grad_norm, use_logits=args.method != "sequence_classifier", local_rank=args.local_rank, ) eval_cfg = pet.EvalConfig( device=args.device, n_gpu=args.n_gpu, metrics=args.metrics, per_gpu_eval_batch_size=args.sc_per_gpu_eval_batch_size, local_rank=args.local_rank, ) return model_cfg, train_cfg, eval_cfg
8729851faae06ed7c0331960db4f933283e7278e
14,013
def gender(word): """ Returns the gender for the given word, either: MALE, FEMALE, (MALE, FEMALE), (MALE, PLURAL) or (FEMALE, PLURAL). """ w = word.lower() # Adjectives ending in -e: cruciale, difficile, ... if w.endswith(("ale", "ile", "ese", "nte")): return (MALE, FEMALE) # Most nouns ending in -a (-e) are feminine, -o (-i) masculine: if w.endswith(("ore", "ista", "mma")): return MALE if w.endswith(("a", u"tà", u"tù", "ione", "rice")): return FEMALE if w.endswith(("e", "oni")): return (FEMALE, PLURAL) if w.endswith("i"): return (MALE, PLURAL) if w.endswith("o"): return MALE return MALE
7a8384d778b9aec9fcc5eb32f26c282805cdfa0b
14,014
from typing import Counter def fcmp(d,r): """ Compares two files, d and r, cell by cell. Float comparisons are made to 4 decimal places. Extending this function could be a project in and of itself. """ # we need to compare the files dh=open(d,'rb') rh=open(r,'rb') dlines = dh.readlines() rlines = rh.readlines() boolCounter = Counter() for dline, rline in zip(dlines,rlines): for dc,rc in zip(dline.split(','), rline.split(',')): if _isfloat(dc): if round(float(dc),4)!=round(float(rc),4): boolCounter[False] += 1 else: boolCounter[True] += 1 else: pass if dc!=rc: boolCounter[False]+= 1 else: boolCounter[True]+= 1 dh.close() rh.close() if all(boolCounter): return True else: return False
9f6f24314316fbef26ce0fb404a88d34c3049b2b
14,015
def is_vector_equal(vec1, vec2, tolerance=1e-10): """Compare if two vectors are equal (L1-norm) according to a tolerance""" return np.all(np.abs(vec1 - vec2) <= tolerance)
9bb42fa3bc2cbb25edd6eabeddb2aa2d8d93e5c8
14,016
def partition_pair(bif_point): """Calculate the partition pairs at a bifurcation point. The number of nodes in each child tree is counted. The partition pairs is the number of bifurcations in the two child subtrees at each branch point. """ n = float(sum(1 for _ in bif_point.children[0].ipreorder())) m = float(sum(1 for _ in bif_point.children[1].ipreorder())) return (n, m)
7889eb95a0ac3b2a7d1138061a4651b1e79427c0
14,017
def readPyCorrFit(file): """ Read header and data of .csv PyCorrFit output file ========== =============================================================== Input Meaning ---------- --------------------------------------------------------------- file String with path to .csv file ========== =============================================================== ========== =============================================================== Output Meaning ---------- --------------------------------------------------------------- outputdata Object with the tau, G, Gfit, Gres in data field, and separate fields for the fitted values n, SP, offset, and chi2 ========== =============================================================== """ # create object outputdata = PyCorrFitData() # read .csv header f = open(file, "r") if f.mode == "r": contents = f.read() start = contents.find("Parameters:") [n, start] = readPyCorrFitSingleParam(contents, "# n\t", "\n", start) [tauD, start] = readPyCorrFitSingleParam(contents, "_diff [ms]\t", "\n", start) [SP, start] = readPyCorrFitSingleParam(contents, "# SP\t", "\n", start) [offset, start] = readPyCorrFitSingleParam(contents, "# offset\t", "\n", start) start = contents.find("Fitting:", start) [chi2, start] = readPyCorrFitSingleParam(contents, "\t", "\n", start) [Gfitstart, start] = readPyCorrFitSingleParam(contents, "# Ival start [ms]\t", "\n", start) [Gfitstop, start] = readPyCorrFitSingleParam(contents, "# Ival end [ms]\t", "\n", start) outputdata.n = n outputdata.tauD = tauD outputdata.SP = SP outputdata.offset = offset outputdata.chi2 = chi2 outputdata.Gfitstart = Gfitstart outputdata.Gfitstop = Gfitstop # load .csv file data = csv2array(file) # extract data tau = data[:,0] G = data[:,1] Gfit = data[:,2] Gres = G - Gfit outputdata.data = np.stack((tau, G, Gfit, Gres), axis=1) return outputdata
0dcaa26c0ef2f8270748241cbd03bc6aaa750672
14,018
def end_of_time(t): """ Return the next hour of the passed time. e.g, 18:25:36 --> 19:00:00 """ return t + timedelta(minutes=60) - timedelta(minutes=t.minute) - timedelta(seconds=t.second)
dce1f0cde67c834580edb349e0dfbcdee0b4d171
14,019
def modf(x): """modf(x) Return the fractional and integer parts of x. Both results carry the sign of x. """ signx = sign(x) absx = Abs(x) return (signx * Mod(absx, 1), signx * floor(absx))
18f4e9aca22591f2960bb6ddf28fcf677bedee65
14,020
from typing import Tuple def get_user_from_request(request, available_query_params: list()) -> Tuple[User, GeneralApiResponse]: """ Entra com o request da view e uma lista de query params do user que podem ser consultados Retorna um user caso seja si mesmo, ou tenha permissão de acesso a outros usuários Retorna uma resposta de erro caso algo não possa ser completado """ get_keys = list(request.GET.keys()) if len(get_keys) != 0 or (len(get_keys) > 1 and 'page' in get_keys): if request.user.is_superuser: if any(query_param not in available_query_params for query_param in get_keys): return None, GeneralApiResponse.bad_request() # algum query param na requisição de user ta zoado ignore_page_query_params = {key: v for key, v in request.GET.dict().items() if key not in ['page']} users = User.objects.filter(**ignore_page_query_params) # ignora o query param "page" if not users.exists(): return None, GeneralApiResponse.not_found() # não achou usuário que atendesse à query elif len(users) > 1: return None, GeneralApiResponse.bad_request('a query retorna mais de um user') else: return users[0], None else: return None, GeneralApiResponse.unauthorized() else: return request.user, None
b9d0274ac5ea8e0cbc210b1f4f5e8d46398e8e6d
14,021
def longest_CD(values): """ Return the sequence range for the longest continuous disorder (CDl) subsequence. """ # Filter residues with score equal or greater than 0.5 # and store its position index dis_res = [index for index, res in enumerate(values) if float(res) >= 0.5] # Initialize longest CD region CDl = [] # Counter to store partial results of each continuous region c = [] # Iterate over disordered residues list for i, j in zip(dis_res, dis_res[1:]): # Check if residues are consecutive if j - i == 1: # Update counter c.append(i) # Not consecutive else: # Add last residue of the interval c.append(i) # Update CDl if len(c) > len(CDl): CDl = c # Reset counter for the next interval c = [] return CDl
f07b74b9553c156d2d4b62e17ea02b466a16fe74
14,022
def get_read_length(filename): """ Return the first read length of fastq file. :param str filename: fastq file. """ with FastqReader(filename) as filin: read_len = len(next(iter(filin))) return read_len
961af7ff12c422c68349dabee064acd465a1a090
14,023
def no_outliers_estimator(base_estimator, x, alpha=0.01): """ Calculate base_estimator function after removal of extreme quantiles from the sample """ x = np.array(x) if len(x.shape) < 3: x = np.expand_dims(x, -1) low_value = np.quantile(x, alpha, axis=(0, 1)) high_value = np.quantile(x, 1 - alpha, axis=(0, 1)) result = np.zeros(x.shape[2], x.dtype) for i in range(x.shape[2]): x_ch = x[:, :, i] x_ch = x_ch[(x_ch >= low_value[i]) & (x_ch <= high_value[i])] result[i] = base_estimator(x_ch) return result
3c23f9cacc1108d6ecb24b690ff731e3a3554b44
14,024
from server.forms import FormNotCompleteError, FormValidationError from typing import cast from typing import Tuple def error_state_to_dict(err: ErrorState) -> ErrorDict: """Return an ErrorDict based on the exception, string or tuple in the ErrorState. Args: err: ErrorState from a api error state Returns: An ErrorDict containing the error message a status_code and a traceback if available """ # Import here to prevent cyclic imports if isinstance(err, FormValidationError): return { "class": type(err).__name__, "error": str(err), "traceback": err, "validation_errors": err.errors, # type:ignore "status_code": HTTPStatus.BAD_REQUEST, } elif isinstance(err, FormNotCompleteError): return { "class": type(err).__name__, "error": str(err), "traceback": err, "form": err.form, "status_code": HTTPStatus.NOT_EXTENDED, } elif isinstance(err, Exception): if is_api_exception(err): err = cast(ApiException, err) return { "class": type(err).__name__, "error": err.reason, "status_code": err.status, "body": err.body, "headers": "\n".join(f"{k}: {v}" for k, v in err.headers.items()), "traceback": err, } return { "class": type(err).__name__, "error": str(err), "traceback": show_ex(err), } elif isinstance(err, tuple): cast(Tuple, err) error, status_code = err return {"error": str(error), "status_code": int(status_code)} elif isinstance(err, str): return {"error": err} elif isinstance(err, dict) and "error" in err: # type: ignore return err else: raise TypeError("ErrorState should be a tuple, exception or string")
79cf9a971886241c8760bf0091af0c91a4d80ade
14,025
from typing import Set def english_words() -> Set[str]: """Return a set of english words from the nltk corpus "words". Returns: Set of english words. """ nltk_resource("corpora/words") return set(nltk.corpus.words.words())
2cda38fb0026805c7792bcf45727492b09b38a89
14,026
def bipartite_matching_wrapper(a, b, score_func, symmetric=False): """A wrapper to `bipartite_matching()` that returns `(matches, unmatched_in_a, unmatched_in_b)` The list of `matches` contains tuples of `(score, a_element, b_element)`. The two unmatched lists are elements from each of the respective input lists. """ found_a, found_b = set(), set() matches = [] for score, i, j in bipartite_matching(a, b, score_func, symmetric=symmetric): matches.append((score, i, j)) found_a.add(i) found_b.add(j) unmatched_in_a = set(a) - found_a unmatched_in_b = set(b) - found_b return matches, unmatched_in_a, unmatched_in_b
702c290b6874b595fb0249c865c5723c84d485ba
14,027
import itertools def gen_seldicts( da, dims=None, check_empty=True, unstack=True ): """ TODO: improve documentation generates a list of dictionaries to be passed into dataarray selection functions. Parameters ---------- da : xr.DataArray datarray to generate selection dicts for dims dimensions to generate seldicts over, if None then use all dimensions check_empty : bool only generate seldicts that give values that are not all nan unstack : if Returns ------- seldicts : List[Dict] """ if unstack: #unstacks in case of multiindex. using unstacked seldict on stacked multindex da seems to work da = da.unstack() if dims is None: dims = list(da.dims) idxs = {dim: da.indexes[dim] for dim in dims} seldicts = [dict(zip(idxs, x)) for x in itertools.product(*idxs.values())] seldicts_red = [] if check_empty: # checks to see if the seldict produces all nans and only appends the # seldict to the list if that is not true for i, seldict in enumerate(seldicts): sel = da.sel(seldict).values t = (sel != sel) # test for nan if type(t) == np.ndarray: t = t.all() if not t: seldicts_red.append(seldict) seldicts = seldicts_red return seldicts
2bd46bcf9d94ab64593d889bbae89f4e07d689b2
14,028
def get_interface_type(interface): """Gets the type of interface Args: interface (str): full name of interface, i.e. Ethernet1/1, loopback10, port-channel20, vlan20 Returns: type of interface: ethernet, svi, loopback, management, portchannel, or unknown """ if interface.upper().startswith('ET'): return 'ethernet' elif interface.upper().startswith('VL'): return 'svi' elif interface.upper().startswith('LO'): return 'loopback' elif interface.upper().startswith('MG'): return 'management' elif interface.upper().startswith('MA'): return 'management' elif interface.upper().startswith('PO'): return 'portchannel' else: return 'unknown'
8196bfa37ef25f0fa1c08577d215329ecc977c4a
14,029
def create_int_feature_list(name, key, prefix="", module_dict=None): """Creates accessor functions for bytes feature lists. The provided functions are has_${NAME}, get_${NAME}_size, get_${NAME}_at, clear_${NAME}, and add_${NAME}. example = tensorflow.train.SequenceExample() add_image_timestamp(1000000, example) add_image_timestamp(2000000, example) if has_image_timestamp: for i in range(get_image_timestamp_size(example): timestamp = get_image_timestamp_at(i, example) clear_image_timestamp(example) Args: name: the name of the feature to use in function names. key: the key for this feature in the SequenceExample. prefix: a prefix to append to the key in the SequenceExample module_dict: adds the functions to the corresponding module dict. """ def _has(sequence_example, prefix=prefix): return has_feature_list(key, sequence_example, prefix=prefix) def _get_size(sequence_example, prefix=prefix): return get_feature_list_size(key, sequence_example, prefix=prefix) def _get_at(index, sequence_example, prefix=prefix): return get_int_at(key, index, sequence_example, prefix=prefix) def _clear(sequence_example, prefix=prefix): clear_feature_list(key, sequence_example, prefix=prefix) def _add(value, sequence_example, prefix=prefix): add_int(key, value, sequence_example, prefix=prefix) def _get_key(prefix=prefix): return merge_prefix(prefix, key) def _get_default_parser(): return tf.io.FixedLenSequenceFeature((), tf.int64) function_dict = { "has_" + name: _has, "get_" + name + "_size": _get_size, "get_" + name + "_at": _get_at, "clear_" + name: _clear, "add_" + name: _add, "get_" + name + "_key": _get_key, "get_" + name + "_default_parser": _get_default_parser, } add_functions_to_module(function_dict, module_dict)
58b08f518050a67db72f0572a78f7dab5a68d468
14,030
def ROC(y_pred, y_true, positive_column = 0,draw = True): """ ROC """ y_pred = y_pred[:,0] y_true = y_true[:,0] # sort by y_pred sort_index = np.argsort(-y_pred) y_pred = y_pred[sort_index] y_true = y_true[sort_index] tprs = [] fprs = [] positive_num = (y_true == 1.0).sum() negivate_num = len(y_true) - positive_num for threshold in np.arange(0,1+0.1,0.1): t = ((y_true == 1.0)& (y_pred >= threshold)).sum() f = ((y_true == 0.0) & (y_pred >= threshold)).sum() tprs.append(t*1.0/positive_num) fprs.append(f*1.0/negivate_num) if draw: plt.plot(fprs,tprs,c='r') plt.show() return tprs, fprs
efeefbd570988c83f912345794cbd19e15ec67a2
14,031
def ignore_check(self, channel: discord.TextChannel, ignore_dm: bool = False, from_main: bool = False): """ A function that checks whether or not that channel allows command. Args: self: instance of the class this command calls or this can be commands.Bot channel (discord.TextChannel): the channel the command call happened in ignore_dm (bool): whether or not the command is being ignored in direct messages from_main (bool): indicator for whether or not this call is from Main.py, which switches changes how self is read Returns: True: if channel needs to be ignored False: if channel is fine """ if ignore_dm: if channel.type is discord.ChannelType.private: return True try: if from_main: ignore = self.get_cog("Ignores").find(channel.guild.id, channel.id) else: ignore = self.bot.get_cog('Ignores').find(channel.guild.id, channel.id) except AttributeError: return False if ignore: return True return False
284ba6432d792a3382383cf9b53a5932897b5e53
14,032
def network_count_allocated_ips(context, network_id): """Return the number of allocated non-reserved ips in the network.""" return IMPL.network_count_allocated_ips(context, network_id)
33f7ce340d222c3843962e6e64a06440e5dfd526
14,033
def _parse_transform_spec( transform_spec ): """ Parses a transform specification into its name and parameters dictionary. Raises ValueError if the specification is invalid, it represents an unknown transform, or if the encoded parameters do not match the transform's expected types. Takes 1 argument: transform_spec - Transform specification string. See lookup_transform() for details. Returns 2 values: transform_name - Name of the specified transform. transform_parameters - Dictionary of parameters for the specified transform. Dictionary values are cast to the types expected the transform. """ try: # break the "<name>:<parameters>" string. make sure we don't break # the <parameters> into multiple components so it can contain colons # in the (key, value) pairs. (transform_name, transform_parameters_spec) = transform_spec.split( ":", maxsplit=1 ) except ValueError: raise ValueError( "Failed to get a transform name and parameters " "specification from '{:s}'.".format( transform_spec ) ) # make sure this is a known transform. if transform_name not in _transform_map: raise ValueError( "Unknown transform '{:s}'!".format( transform_name ) ) # get the associated parameter parser for this transform. _, parameter_parser = _transform_map[transform_name] try: # split the remaining <parameters> into (key, value) pairs. each # (key, value) set is colon-delimited, and each set equal # sign-delimited. # # e.g. "parameter1=value1:parameter2=value2a,value2b,value2c" # transform_parameters = dict( map( lambda key_value: key_value.split( "=" ), transform_parameters_spec.split( ":" ) ) ) # map individual parameters to their expected data types. transform_parameters = parameter_parser( transform_parameters ) except ValueError as e: raise ValueError( "<parameters> -> (<key>, <value>) ({:s})".format( str( e ) ) ) return (transform_name, transform_parameters)
b914d96d9ad1e8da3deb10f1c6500c2ee58b4928
14,034
from typing import Union from typing import List def parse_text_multiline(data: Union[str, List[str]]) -> str: """Parse the text in multiline mode.""" if isinstance(data, str): return data elif isinstance(data, list) and all(map(is_str, data)): return '\n'.join(data) else: raise ValueError(data)
ba8e50422a89de14a464d4917138c5faa051124d
14,035
def get_latest_episode_release(series, downloaded=True, season=None): """ :param series series: SQLAlchemy session :param downloaded: find only downloaded releases :param season: season to find newest release for :return: Instance of Episode or None if not found. """ session = Session.object_session(series) releases = ( session.query(Episode) .join(Episode.releases, Episode.series) .filter(Series.id == series.id) ) if downloaded: releases = releases.filter(EpisodeRelease.downloaded == True) if season is not None: releases = releases.filter(Episode.season == season) if series.identified_by and series.identified_by != 'auto': releases = releases.filter(Episode.identified_by == series.identified_by) if series.identified_by in ['ep', 'sequence']: latest_episode_release = releases.order_by( desc(Episode.season), desc(Episode.number) ).first() elif series.identified_by == 'date': latest_episode_release = releases.order_by(desc(Episode.identifier)).first() else: # We have to label the order_by clause to disambiguate from Release.first_seen #3055 latest_episode_release = releases.order_by( desc(Episode.first_seen.label('ep_first_seen')) ).first() if not latest_episode_release: log.debug( 'no episodes found for series `%s` with parameters season: %s, downloaded: %s', series.name, season, downloaded, ) return log.debug( 'latest episode for series %s, with downloaded set to %s and season set to %s', series, downloaded, season, ) return latest_episode_release
bcf01b5f3af00bb9bc8ddfb0609be771c9350a79
14,036
def _set_user_permissions_for_volumes(users, volumes): """ Returns the section of the user data script to create a Linux user group and grant the group permission to access the mounted volumes on the EC2 instance. """ group_name = 'volumes' user_data_script_section = f""" groupadd {group_name} """ for user in users: user_data_script_section += f""" usermod -a -G {group_name} {user.login} """ for volume in volumes: user_data_script_section += f""" chgrp -R {group_name} {volume.mount} chmod -R 2775 {volume.mount} """ return user_data_script_section
2d262a52cfa2f3e142da3dd7767dcc6cff14c929
14,037
def cached_examples(): """This view should be cached for 60 sec""" examples = ExampleModel.query() return render_template('list_examples_cached.html', examples=examples)
f598589967f82daaf3c7e9cb88f7679786e5bf18
14,038
def corona_surface_integral(solution, E, candidate_attach_pts, corona_elem, phys_param, debug_flag=False): """ Surface integral around the points that are marked as possible attachment candidates """ pcg_idx_vec = np.zeros((len(candidate_attach_pts.keys())), dtype=np.int64) Q_vec = np.zeros((len(candidate_attach_pts.keys()))) for i, pt in enumerate(candidate_attach_pts): pcg_idx_vec[i] = pt elem_above_thresh_in_radius = np.intersect1d(candidate_attach_pts[pt], corona_elem) # if debug_flag: # pts_list = [229096, 229099, 229129, 229132, 229155, 229167, 229168, 229171, 229176, 229189, 229190, 229191, 229195, 229196, 229201, 229213, 229214, 229217, 229218, 229220, 229233, 229234, 229238, 229241, 229244, 229245, 229261, 229270, 229286, 229419] # elem_indicator = np.zeros((solution['surf_mesh']['t'].shape[0], len(pts_list))) # if pt in pts_list: # logger.info('visualizing') # logger.info(pt) # elem_indicator = np.zeros((solution['surf_mesh']['t'].shape[0], 1)) # # elem_indicator[candidate_attach_pts[pt]] = 1 # elem_indicator[elem_above_thresh_in_radius] = 1 # viz.generate_vtu(solution['surf_mesh']['p'], solution['surf_mesh']['t'], None, None, {'cell_data': {0: 'E threshold'}}, 'test_radius{}'.format(pt), False, cell_data=elem_indicator) Q_vec[i] = phys_param['eps0']*quadrature.surface_integral(solution['surf_mesh'], solution['master'], E, elem_above_thresh_in_radius) return Q_vec, pcg_idx_vec
72f16e1f9afbd35f6f877263abe1af9d0ebbf6d0
14,039
from typing import Callable import datasets def librispeech_adversarial( split_type: str = "adversarial", epochs: int = 1, batch_size: int = 1, dataset_dir: str = None, preprocessing_fn: Callable = None, cache_dataset: bool = True, framework: str = "numpy", clean_key: str = "clean", adversarial_key: str = "adversarial", ) -> datasets.ArmoryDataGenerator: """ Adversarial dataset based on Librispeech-dev-clean using Universal Perturbation with PGD. split_type - one of ("adversarial") returns: Generator """ if clean_key != "clean": raise ValueError(f"{clean_key} != 'clean'") if adversarial_key != "adversarial": raise ValueError(f"{adversarial_key} != 'adversarial'") return datasets._generator_from_tfds( "librispeech_adversarial:1.0.0", split_type=split_type, batch_size=batch_size, epochs=epochs, dataset_dir=dataset_dir, preprocessing_fn=preprocessing_fn, as_supervised=False, supervised_xy_keys=("audio", "label"), variable_length=bool(batch_size > 1), cache_dataset=cache_dataset, framework=framework, lambda_map=lambda x, y: ((x[clean_key], x[adversarial_key]), y), )
2ab2da4f56194dada3cd361371ef32b1f2fd6194
14,040
def search4letters(phrase, letters='aeiou'): """ ->return a set of the 'letters' found in 'phrase'. :param phrase: phrase where the search will be made :param letters:set of letters that will be searched for in the sentence :return returns a set () """ return set(letters).intersection(set(phrase))
e58d0863aa090ac3644cd7bf26e783efe2956d35
14,041
import argparse def handle_cmdline_args(): """ Return an object with attributes 'infile' and 'outfile', after handling the command line arguments """ parser = argparse.ArgumentParser( description='Generate synthetic data from a specification in a json ' 'file using the "synth-method" described in the json file. ') parser.add_argument( '-i', dest='infile', required=True, help='The input json file. Must contain a "synth-method" property') parser.add_argument( '-o', dest='outfile_prefix', required=True, help='The prefix of the output paths (data json and csv), ' 'relative to the QUIPP-pipeline root directory') args = parser.parse_args() return args
434316ca9333182b370e4863b6cda5fe2fb37b25
14,042
import gc def merge_flights(prev_flights_filename, next_flights_filename, ids_df, log): """ Gets the next days flights that are the continuation of the previous days flights and merges them with the previous days flights. It writes the new next days and previous days flights to files prepended with new. it returns True if successful, False otherwise. """ new_items_df = get_next_day_items(next_flights_filename, ids_df, log) # free memory used by get_next_day_items gc.collect() prev_flights_df = pd.DataFrame() try: prev_flights_df = pd.read_csv(prev_flights_filename, index_col='FLIGHT_ID', converters={'FLIGHT_ID': lambda x: UUID(x)}, memory_map=True) log.info('%s read ok', prev_flights_filename) except EnvironmentError: log.error('could not read file: %s', prev_flights_filename) return False # merge next days flight data with the previous days flight data update_flight_data(prev_flights_df, new_items_df) # Output the new previous flights new_prev_flights_filename = 'new_' + prev_flights_filename try: is_bz2 = has_bz2_extension(prev_flights_filename) if is_bz2: new_prev_flights_filename = new_prev_flights_filename[:-BZ2_LENGTH] prev_flights_df.to_csv(new_prev_flights_filename, index=True, date_format=ISO8601_DATETIME_FORMAT) log.info('written file: %s', new_prev_flights_filename) except EnvironmentError: log.error('could not write file: %s', new_prev_flights_filename) return False return True
6d0cec2c8cc66d04facdde01e24ce0b3aa57dc55
14,043
def findClusters( peaks, thresh ): """Since the peaks are in sequence, this method follows a very simplistic approach. For each peak it checks its distance from the previous peak. If it is less than threshold, it clusters that peak with the previous one. Note that in each of the clusters, input order is maintained.""" clusters, cluster = [], [] cluster.append(peaks[0]) for peak in peaks[1:]: if euclideanDistance( cluster[-1], peak ) < thresh: cluster.append( peak ) else: clusters.append(cluster) cluster = [peak] clusters.append( cluster ) print( clusters ) return clusters
f74e504557e7c7e796d29290dccabe043ac70dc0
14,044
import os def docker_compose_file(pytestconfig): """Get docker compose file""" return os.path.join(str(pytestconfig.rootdir), "docker-compose.yml")
8f723f0a6144bf687567c6e998ae54495dcd936d
14,045
import os def sample(): """ Returns the path to the sample of the given name. """ def inner(name): return os.path.join( os.path.join( os.path.dirname(os.path.abspath(__file__)), 'samples' ), name ) return inner
e042b6da15ee85d818ac830e6cfd74a1f11745a2
14,046
def acq_max_single_seed(ac, gp, y_max, bounds): """ A function to find the maximum of the acquisition function using the 'L-BFGS-B' method. Input Parameters ---------- ac: The acquisition function object that return its point-wise value. gp: A gaussian process fitted to the relevant data. y_max: The current maximum known value of the target function. bounds: The variables bounds to limit the search of the acq max. Returns ------- :return: x_max, The arg max of the acquisition function. """ # Start with the lower bound as the argmax x_max = bounds[:, 0] #max_acq = None dim=bounds.shape[0] x_tries = np.random.uniform(bounds[:, 0], bounds[:, 1],size=(50*dim, dim)) # evaluate y_tries=ac(x_tries,gp=gp, y_max=y_max) #find x optimal for init idx_max=np.argmax(y_tries) x_init_max=x_tries[idx_max] #x_try=np.array(bounds[:, 0]) # Find the minimum of minus the acquisition function res = minimize(lambda x: -ac(x.reshape(1, -1), gp=gp, y_max=y_max), x_init_max.reshape(1, -1), bounds=bounds, method="L-BFGS-B") x_max = res.x #max_acq = -res.fun # Clip output to make sure it lies within the bounds. Due to floating # point technicalities this is not always the case. return np.clip(x_max, bounds[:, 0], bounds[:, 1])
5a705e15e41be8063f476a40b1cfae9385b98af7
14,047
def futures_pig_rank(symbol: str = "外三元") -> pd.DataFrame: """ 价格排行榜 https://zhujia.zhuwang.cc/lists.shtml :param symbol: choice of {"外三元", "内三元", "土杂猪", "玉米", "豆粕"} :type symbol: str :return: 价格排行榜 :rtype: pandas.DataFrame """ if symbol == "外三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "内三元": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-1.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "土杂猪": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-2.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "玉米": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-3.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df elif symbol == "豆粕": temp_df = pd.read_html("https://zhujia.zhuwang.cc/lists-4.shtml")[0] temp_df.columns = [ '排名', '品种', '省份', '价格-公斤', '价格-斤', ] temp_df['价格-公斤'] = temp_df['价格-公斤'].str.strip("元") temp_df['价格-斤'] = temp_df['价格-斤'].str.strip("元") temp_df['价格-公斤'] = pd.to_numeric(temp_df['价格-公斤']) temp_df['价格-斤'] = pd.to_numeric(temp_df['价格-斤']) return temp_df
9afc155021afc2b8ffbef4a0e778f1ab6360219f
14,048
import math def psubl_T(T): """ EQ 6 / Sublimation Pressure """ T_star = 273.16 p_star = 611.657E-6 a = (-0.212144006E2, 0.273203819E2, -0.610598130E1) b = ( 0.333333333E-2, 0.120666667E1, 0.170333333E1) theta = T / T_star sum = 0 for i in range(0, 3): sum += a[i] * theta ** b[i] pi_subl = math.exp((theta ** -1) * sum) return pi_subl * p_star
0e3f875fc2d249c78a5db6268dcc0df31213a7ff
14,049
def map_key_values(f, dct): """ Like map_with_obj but expects a key value pair returned from f and uses it to form a new dict :param f: Called with a key and value :param dct: :return: """ return from_pairs(values(map_with_obj(f, dct)))
0918ff4ff9ab994b10fe2543dce305f99b7278fb
14,050
def plot_ppc( ax, length_plotters, rows, cols, figsize, animated, obs_plotters, pp_plotters, posterior_predictive, pp_sample_ix, kind, alpha, linewidth, mean, xt_labelsize, ax_labelsize, jitter, total_pp_samples, legend, markersize, animation_kwargs, num_pp_samples, ): """Matplotlib ppc plot.""" if ax is None: fig, axes = _create_axes_grid(length_plotters, rows, cols, figsize=figsize) else: axes = np.ravel(ax) if len(axes) != length_plotters: raise ValueError( "Found {} variables to plot but {} axes instances. They must be equal.".format( length_plotters, len(axes) ) ) if animated: fig = axes[0].get_figure() if not all([ax.get_figure() is fig for ax in axes]): raise ValueError("All axes must be on the same figure for animation to work") for i, ax_i in enumerate(axes): var_name, selection, obs_vals = obs_plotters[i] pp_var_name, _, pp_vals = pp_plotters[i] dtype = posterior_predictive[pp_var_name].dtype.kind # flatten non-specified dimensions obs_vals = obs_vals.flatten() pp_vals = pp_vals.reshape(total_pp_samples, -1) pp_sampled_vals = pp_vals[pp_sample_ix] if kind == "kde": plot_kwargs = {"color": "C5", "alpha": alpha, "linewidth": 0.5 * linewidth} if dtype == "i": plot_kwargs["drawstyle"] = "steps-pre" ax_i.plot([], color="C5", label="Posterior predictive {}".format(pp_var_name)) if dtype == "f": plot_kde( obs_vals, label="Observed {}".format(var_name), plot_kwargs={"color": "k", "linewidth": linewidth, "zorder": 3}, fill_kwargs={"alpha": 0}, ax=ax_i, legend=legend, ) else: bins = get_bins(obs_vals) _, hist, bin_edges = histogram(obs_vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, label="Observed {}".format(var_name), color="k", linewidth=linewidth, zorder=3, drawstyle=plot_kwargs["drawstyle"], ) pp_densities = [] pp_xs = [] for vals in pp_sampled_vals: vals = np.array([vals]).flatten() if dtype == "f": pp_density, lower, upper = _fast_kde(vals) pp_x = np.linspace(lower, upper, len(pp_density)) pp_densities.append(pp_density) pp_xs.append(pp_x) else: bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) pp_densities.append(hist) pp_xs.append(bin_edges) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, dtype=dtype, kind=kind, plot_kwargs=plot_kwargs ) else: if dtype == "f": ax_i.plot(np.transpose(pp_xs), np.transpose(pp_densities), **plot_kwargs) else: for x_s, y_s in zip(pp_xs, pp_densities): ax_i.plot(x_s, y_s, **plot_kwargs) if mean: if dtype == "f": rep = len(pp_densities) len_density = len(pp_densities[0]) new_x = np.linspace(np.min(pp_xs), np.max(pp_xs), len_density) new_d = np.zeros((rep, len_density)) bins = np.digitize(pp_xs, new_x, right=True) new_x -= (new_x[1] - new_x[0]) / 2 for irep in range(rep): new_d[irep][bins[irep]] = pp_densities[irep] ax_i.plot( new_x, new_d.mean(0), color="C0", linestyle="--", linewidth=linewidth, zorder=2, label="Posterior predictive mean {}".format(pp_var_name), ) else: vals = pp_vals.flatten() bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, color="C0", linewidth=linewidth, label="Posterior predictive mean {}".format(pp_var_name), zorder=2, linestyle="--", drawstyle=plot_kwargs["drawstyle"], ) ax_i.tick_params(labelsize=xt_labelsize) ax_i.set_yticks([]) elif kind == "cumulative": drawstyle = "default" if dtype == "f" else "steps-pre" ax_i.plot( *_empirical_cdf(obs_vals), color="k", linewidth=linewidth, label="Observed {}".format(var_name), drawstyle=drawstyle, zorder=3 ) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, kind=kind, alpha=alpha, drawstyle=drawstyle, linewidth=linewidth, ) else: pp_densities = np.empty((2 * len(pp_sampled_vals), pp_sampled_vals[0].size)) for idx, vals in enumerate(pp_sampled_vals): vals = np.array([vals]).flatten() pp_x, pp_density = _empirical_cdf(vals) pp_densities[2 * idx] = pp_x pp_densities[2 * idx + 1] = pp_density ax_i.plot( *pp_densities, alpha=alpha, color="C5", drawstyle=drawstyle, linewidth=linewidth ) ax_i.plot([], color="C5", label="Posterior predictive {}".format(pp_var_name)) if mean: ax_i.plot( *_empirical_cdf(pp_vals.flatten()), color="C0", linestyle="--", linewidth=linewidth, drawstyle=drawstyle, label="Posterior predictive mean {}".format(pp_var_name) ) ax_i.set_yticks([0, 0.5, 1]) elif kind == "scatter": if mean: if dtype == "f": plot_kde( pp_vals.flatten(), plot_kwargs={ "color": "C0", "linestyle": "--", "linewidth": linewidth, "zorder": 3, }, label="Posterior predictive mean {}".format(pp_var_name), ax=ax_i, legend=legend, ) else: vals = pp_vals.flatten() bins = get_bins(vals) _, hist, bin_edges = histogram(vals, bins=bins) hist = np.concatenate((hist[:1], hist)) ax_i.plot( bin_edges, hist, color="C0", linewidth=linewidth, label="Posterior predictive mean {}".format(pp_var_name), zorder=3, linestyle="--", drawstyle="steps-pre", ) _, limit = ax_i.get_ylim() limit *= 1.05 y_rows = np.linspace(0, limit, num_pp_samples + 1) jitter_scale = y_rows[1] - y_rows[0] scale_low = 0 scale_high = jitter_scale * jitter obs_yvals = np.zeros_like(obs_vals, dtype=np.float64) if jitter: obs_yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(obs_vals)) ax_i.plot( obs_vals, obs_yvals, "o", color="C0", markersize=markersize, alpha=alpha, label="Observed {}".format(var_name), zorder=4, ) if animated: animate, init = _set_animation( pp_sampled_vals, ax_i, kind=kind, height=y_rows.mean() * 0.5, markersize=markersize, ) else: for vals, y in zip(pp_sampled_vals, y_rows[1:]): vals = np.ravel(vals) yvals = np.full_like(vals, y, dtype=np.float64) if jitter: yvals += np.random.uniform(low=scale_low, high=scale_high, size=len(vals)) ax_i.plot( vals, yvals, "o", zorder=2, color="C5", markersize=markersize, alpha=alpha ) ax_i.plot([], "C5o", label="Posterior predictive {}".format(pp_var_name)) ax_i.set_yticks([]) if var_name != pp_var_name: xlabel = "{} / {}".format(var_name, pp_var_name) else: xlabel = var_name ax_i.set_xlabel(make_label(xlabel, selection), fontsize=ax_labelsize) if legend: if i == 0: ax_i.legend(fontsize=xt_labelsize * 0.75) else: ax_i.legend([]) if animated: ani = animation.FuncAnimation( fig, animate, np.arange(0, num_pp_samples), init_func=init, **animation_kwargs ) return axes, ani else: return axes
83d01e6b9f9f170b9e8dc2ff3cf95916106196c5
14,051
import importlib def load_module(name): """Load the named module without registering it in ``sys.modules``. Parameters ---------- name : string Module name Returns ------- mod : module Loaded module """ spec = importlib.util.find_spec(name) mod = importlib.util.module_from_spec(spec) mod.__spec__ = spec mod.__loader__ = spec.loader spec.loader.exec_module(mod) return mod
762c99efcc17f9f1d1659cdae52989c9cfa9423a
14,052
def make_no_graph_input_fn(graph_data, args, treatments, outcomes, filter_test=False): """ A dataset w/ all the label processing, but no graph structure. Used at evaluation and prediction time """ def input_fn(): vertex_dataset = tf.data.Dataset.from_tensor_slices( ({'vertex_index': np.expand_dims(np.array(range(graph_data.num_vertices)), 1), 'is_positive': np.expand_dims(np.array(range(graph_data.num_vertices)), 1)},)) data_processing = adapters.compose( adapters.append_vertex_labels(treatments, 'treatment'), adapters.append_vertex_labels(outcomes, 'outcome'), adapters.make_split_vertex_labels( graph_data.num_vertices, args.proportion_censored, np.random.RandomState(args.seed)), adapters.format_features_labels()) dataset = vertex_dataset.map(data_processing, 8) if filter_test: def filter_test_fn(features, labels): return tf.equal(tf.squeeze(features['in_test']), 1) dataset = dataset.filter(filter_test_fn) batch_size = args.batch_size dataset = dataset.batch(batch_size=batch_size, drop_remainder=False) return dataset return input_fn
8526a64b55608f986ef4b000b2cb75a99160e1a0
14,053
import torch def compute_gradient_penalty(D, real_samples, fake_samples): """Calculates the gradient penalty loss for WGAN GP""" # Random weight term for interpolation between real and fake samples alpha = torch.tensor(np.random.random((real_samples.size(0), 1, 1, 1,1)), dtype = real_samples.dtype, device = real_samples.device) # Get random interpolation between real and fake samples #print(alpha.shape, fake_samples.shape) interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True) d_interpolates = D(interpolates) fake = Variable(Tensor(d_interpolates.shape[0], 1).fill_(1.0), requires_grad=False).view(-1) #print(d_interpolates.shape, interpolates.shape, fake.shape) # Get gradient w.r.t. interpolates gradients = autograd.grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=fake, create_graph=True, retain_graph=True, only_inputs=True, )[0] gradients = gradients.view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() return gradient_penalty
110e4854284be694c0813fd5fc71d2ff51d3b6d8
14,054
import copy import json def _perform_aggregation(resource, pipeline, options): """ .. versionadded:: 0.7 """ # TODO move most of this down to the Mongo layer? # TODO experiment with cursor.batch_size as alternative pagination # implementation def parse_aggregation_stage(d, key, value): for st_key, st_value in d.items(): if isinstance(st_value, dict): parse_aggregation_stage(st_value, key, value) if key == st_value: d[st_key] = value response = {} documents = [] req = parse_request(resource) req_pipeline = copy.deepcopy(pipeline) if req.aggregation: try: query = json.loads(req.aggregation) except ValueError: abort(400, description='Aggregation query could not be parsed.') for key, value in query.items(): if key[0] != '$': pass for stage in req_pipeline: parse_aggregation_stage(stage, key, value) if req.max_results > 1: limit = {"$limit": req.max_results} skip = {"$skip": (req.page - 1) * req.max_results} req_pipeline.append(skip) req_pipeline.append(limit) cursor = app.data.aggregate(resource, req_pipeline, options) for document in cursor: documents.append(document) response[config.ITEMS] = documents # PyMongo's CommandCursor does not return a count, so we cannot # provide paination/total count info as we do with a normal (non-aggregate) # GET request. return response, None, None, 200, []
f0c8bbd35dbc8f40c1dcd2a7851fa18585387e5f
14,055
def tab(num): """ Get tab indentation. Parameters ---------- num : int indentation depth """ return num * 4 * " "
39311a9f28aa70f105271432916745dddeb0b46a
14,056
def merge_sort(lst): """Sorts the input list into ascending order.""" if len(lst) < 2: return lst half = len(lst) // 2 # This variant of merge sort uses O(N * log N) memory, since list slicing in Python 3 creates a copy. return merge(merge_sort(lst[:half]), merge_sort(lst[half:]))
e8cada6428fde5aa430497c3c562dc4361c11c1e
14,057
from typing import Optional def get_top_experts_per_item_dispatcher(gates: Array, name: str, num_selected_experts: int, batch_priority: bool, capacity: Optional[int] = None, capacity_factor: Optional[float] = None, **dispatcher_kwargs) -> BaseDispatcher: """Returns a dispatcher implementing Top-Experts-Per-Item routing. For each item, the `num_selected_experts` experts with the largest gating score are selected in a greedy fashion. However, because each expert has a fixed `capacity`, if more items than `capacity` select a given expert some of the assignments will be ignored. All top-1 choices have priority over top-2 choices and so on. In addition, the choices that are ignored also depend on `batch_priority`. If it is False, the "Vanilla" algorithm is used, meaning that items in earlier positions of the array have priority. If it is True, the "Batch Priority Routing" algorithm (see https://arxiv.org/abs/2106.05974) is used, which gives more priority to the items whose largest score is greater. Args: gates: (S, E) array with the gating values for each (item, expert). These values will also be used as combine_weights for the selected pairs. name: String with the type of dispatcher to use (supported values are "einsum" and "indices"). num_selected_experts: Maximum number of experts to select per each item (K). batch_priority: Whether to use batch priority routing or not. capacity: If given, maximum number of items processed by each expert. Either this or `capacity_factor` must be given. capacity_factor: If given, sets the `capacity` to this factor of S * K / E. Either this or `capacity` must be given. **dispatcher_kwargs: Additional arguments for the dispatcher object. Returns: A dispatcher. """ if (capacity is None) == (capacity_factor is None): raise ValueError( "You must specify either 'capacity' or 'capacity_factor', and not both." f" Current values are capacity = {capacity!r}, " f"capacity_factor = {capacity_factor!r}") if not capacity: group_size, num_experts = gates.shape capacity = _compute_capacity( # Target number of tokens to split among the `num_experts` experts. num_tokens=group_size * num_selected_experts, num_experts=num_experts, capacity_factor=capacity_factor) fn_map = { "einsum": _get_top_experts_per_item_einsum_dispatcher, "indices": _get_top_experts_per_item_expert_indices_dispatcher, } if name not in fn_map: raise ValueError(f"Unknown dispatcher type: {name!r}") return fn_map[name](gates, num_selected_experts, capacity, batch_priority, **dispatcher_kwargs)
94e090bc3de59fd03903151fa2e34b2daca50198
14,058
import subprocess def nix_prefetch_url(url, algo='sha256'): """Prefetches the content of the given URL.""" print(f'nix-prefetch-url {url}') out = subprocess.check_output(['nix-prefetch-url', '--type', algo, url]) return out.decode('utf-8').rstrip()
9aed687bed1a015a4da03836ce6438b0cf9b55ec
14,059
def find_files_list(*args, **kwargs): """ Returns a list of find_files generator""" return list(find_files(*args, **kwargs))
b51595dbc75308c583b75c3151c41ea84aafaeaf
14,060
def bool_from_string(subject, strict=False, default=False): """Interpret a subject as a boolean. A subject can be a boolean, a string or an integer. Boolean type value will be returned directly, otherwise the subject will be converted to a string. A case-insensitive match is performed such that strings matching 't','true', 'on', 'y', 'yes', or '1' are considered True and, when `strict=False`, anything else returns the value specified by 'default'. Useful for JSON-decoded stuff and config file parsing. If `strict=True`, unrecognized values, including None, will raise a ValueError which is useful when parsing values passed in from an API call. Strings yielding False are 'f', 'false', 'off', 'n', 'no', or '0'. """ if isinstance(subject, bool): return subject if not isinstance(subject, str): subject = str(subject) lowered = subject.strip().lower() if lowered in TRUE_STRINGS: return True elif lowered in FALSE_STRINGS: return False elif strict: acceptable = ", ".join( "'%s'" % s for s in sorted(TRUE_STRINGS + FALSE_STRINGS)) msg = ("Unrecognized value '%(val)s', acceptable values are:" " %(acceptable)s") % {"val": subject, "acceptable": acceptable} raise ValueError(msg) else: return default
b3f7728eb5fdd4c660144279200daabd25034bf3
14,061
from typing import Optional from typing import Tuple def scan_quality_check(label: str, pivots: list, energies: list, scan_res: float = rotor_scan_resolution, used_methods: Optional[list] = None, log_file: Optional[str] = None, species: Optional[ARCSpecies] = None, preserve_params: Optional[list] = None, trajectory: Optional[list] = None, original_xyz: Optional[dict] = None, ) -> Tuple[bool, str, str, dict]: """ Checks the scan's quality: 1. Based on intermediate conformers if available: - whether the initial and final points are consistent - whether it is relatively "smooth" 2. Based on the PES curve (if intermediate conformers are unavailable): - whether the initial and final points are consistent - whether it is relatively "smooth" 3. Common: - whether the optimized geometry indeed represents the minimum energy conformer (for a non-TS species) - whether the barrier height is reasonable 4. Based on requested parameters to preserve: - whether specified atom distances to preserve criteria aren't violated Args: label (str): The species label. pivots (list): The rotor pivots. energies (list): The scan energies in kJ/mol. scan_res (float, optional): The scan resolution in degrees. used_methods (list, optional): Troubleshooting methods already tried out. log_file (str, optional): The path to the output file. species (ARCSpecies, optional): The ARCSpecies this scan is related to. preserve_params (list, optional): Entries are length 2 lists of atom indices (1-indexed) between which the distance as well as a torsion dihedral angle with these atoms as its pivots must be preserved throughout the scan to a tolerance. trajectory (list, optional): Entries are Cartesian coordinates along the scan trajectory. original_xyz (dict, optional): The optimized coordinated for the species. Returns: Tuple[bool, str, str, dict] - Whether to invalidate this rotor, ``True`` to invalidate. - Reason for invalidating this rotor. - Error or warning message. - Troubleshooting methods to apply, including conformational changes. Todo: - adjust to ND """ message, invalidation_reason = '', '' invalidate = False actions = dict() used_methods = used_methods or list() energies = np.array(energies, np.float64) scan_conformers = None # Check if the conformer based method is valid if log_file: try: scan_conformers = parse_scan_conformers(log_file) except NotImplementedError: message = f'Rotor scan quality check using conformer internal coordinates ' \ f'has not been implemented for current ESS. Using PES curve based ' \ f'check for rotor scan of {label} between pivots {pivots}.' logger.warning(message) # 1. Check based on intermediate conformers if scan_conformers is not None and (species is None or not species.is_ts): bonds = scan_conformers[scan_conformers['type'] == 'R'] angles = scan_conformers[scan_conformers['type'] == 'A'] non_scan_rotor = scan_conformers[(scan_conformers['type'] == 'D') \ & (scan_conformers['scan'] == False)] scan_rotor = scan_conformers[scan_conformers['scan'] == True] # 1.1 Find significant changes of internal coordinates expected_step_num = int(360 / scan_res) # 5 below refers to type, atoms, scan, redundant and initial guess actual_step_num = scan_conformers.shape[1] - 5 step_num = min(expected_step_num, actual_step_num) changed_ic_dict = {} for index_1 in range(step_num + 1): if index_1 != 0: # Compare the 'adjacent' conformers index_2 = index_1 - 1 delta = scan_res # scan[index_1] - scan[index_2] = scan_res elif step_num == expected_step_num: # Compare the first and the last conformer index_2 = step_num delta = 0 else: # When the scan is not finished as desired continue # Identify changes by type bond_change = (2 * (bonds[index_1] - bonds[index_2]) / (bonds[index_1] + bonds[index_2])).abs() > preserve_params_in_scan['bond'] angle_change = (angles[index_1] - angles[index_2]).abs() > preserve_params_in_scan['angle'] non_scan_rotor_change = check_torsion_change(torsions=non_scan_rotor, index_1=index_1, index_2=index_2, threshold=preserve_params_in_scan['dihedral']) scan_rotor_change = check_torsion_change(torsions=scan_rotor, index_1=index_1, index_2=index_2, threshold=preserve_params_in_scan['dihedral'], delta=delta) # Summarize changes change_sum = pd.concat([bond_change, angle_change, non_scan_rotor_change, scan_rotor_change]) changed_ics = change_sum[change_sum == True].index.to_list() # Save changes in the format of {conformer index: problematic ics} if changed_ics: invalidate = True changed_ic_dict.update({index_1: changed_ics}) # 1.2 Check broken bond and any lowest conformation # Exclude those with broken bonds (different species) # Better to just freeze the broken bond when bond changing first happens for conf_index, ics in changed_ic_dict.items(): # R(X,Y) refers to bonds in ics broken_bonds = [ic for ic in ics if 'R' in ic] if broken_bonds and conf_index != 0: # Find the bond that changes the most, to avoid accompanied changes, like C-O transforms # to C=O, which we don't want to freeze. If other bonds need to be frozen as well, # it can be done in the following troubleshooting. bonds = scan_conformers.loc[broken_bonds, :] bond_change = (2 * (bonds[conf_index] - bonds[conf_index - 1]) / (bonds[conf_index] + bonds[conf_index - 1])).abs() broken_bond_label = bond_change.sort_values().index[-1] # the largest change # Freeze the bonds, no further freezing other ics to prevent over-constraining broken_bonds = [scan_conformers['atoms'][broken_bond_label]] invalidate = True invalidation_reason = f'Bond ({broken_bonds}) broke during the scan.' message = f'Rotor scan of {label} between pivots {pivots} has broken bonds: ' \ f'{broken_bonds}. ARC will attempt to troubleshoot this rotor scan.' logger.error(message) actions = {'freeze': broken_bonds} return invalidate, invalidation_reason, message, actions # If no bond broke, ideally all conformers should be isomorphic. # Switch to the lowest conformer energy_diff = energies[0] - np.min(energies) # Use tighter threshold to find lower conformer if energy_diff >= 0.5 or energy_diff > 0.5 * (max(energies) - min(energies)) \ and (species is None or not species.is_ts): invalidate = True invalidation_reason = f'Another conformer for {label} exists which is ' \ f'{energy_diff:.2f} kJ/mol lower.' message = f'Species {label} is not oriented correctly around pivots {pivots}, ' \ f'searching for a better conformation...' logger.info(message) # Find the dihedrals in degrees of the lowest conformer: min_index = np.argmin(energies) conf_xyzs = parse_1d_scan_coords(log_file) actions = {'change conformer': conf_xyzs[min_index]} return invalidate, invalidation_reason, message, actions # 1.3 Check consistency if 0 in changed_ic_dict.keys() and len(changed_ic_dict) == 1: # A smooth scan with different initial and final conformer. invalidate = True invalidation_reason = 'Inconsistent initial and final conformers' message = f'Rotor scan of {label} between pivots {pivots} has inconsistent initial ' \ f'and final conformers.\nInternal coordinates {changed_ic_dict[0]} are different. ' \ f'ARC will attempt to troubleshoot this rotor scan.' logger.error(message) actions = {'freeze': [scan_conformers['atoms'][ic_label] for ic_label in changed_ic_dict[0]]} return invalidate, invalidation_reason, message, actions elif len(changed_ic_dict) > 0: # Not a smooth scan. invalidate = True invalidation_reason = 'Significant difference observed between consecutive conformers' message = f'Rotor scan of {label} between pivots {pivots} is inconsistent between ' \ f'two consecutive conformers.\nInconsistent consecutive conformers and problematic ' \ f'internal coordinates:' changed_ic_label = [] for index, ics in changed_ic_dict.items(): if index > 0: # Do not include the initial/final differences which may include more ics message += f'\nconformer #{index:>3d} / #{index+1:>3d} ' message += ', '.join(ics) changed_ic_label += ics message += '\nARC will attempt to troubleshoot this rotor scan.' # list(set()) is used to remove duplicate labels changed_ic_label = list(set(changed_ic_label)) logger.error(message) actions = {'freeze': [scan_conformers['atoms'][ic_label] for ic_label in changed_ic_label]} return invalidate, invalidation_reason, message, actions else: # 2. Check rotor scan quality according to the PES curve # 2.1. Check consistency between initial and final points if abs(energies[-1] - energies[0]) > inconsistency_az: # initial and final points differ by more than `inconsistency_az` kJ/mol. # seems like this rotor broke the conformer. Invalidate invalidate = True invalidation_reason = f'initial and final points are inconsistent by more than {inconsistency_az:.2f} kJ/mol' message = f'Rotor scan of {label} between pivots {pivots} is inconsistent by more ' \ f'than {inconsistency_az:.2f} kJ/mol between initial and final positions. ' \ f'Initial energy = {energies[0]}, final energy = {energies[-1]}. ARC will ' \ f'attempt to troubleshoot this rotor scan.' logger.error(message) actions = {'inc_res': None, 'freeze': 'all'} return invalidate, invalidation_reason, message, actions # 2.2. Check consistency between consecutive points for j in range(len(energies) - 1): if abs(energies[j] - energies[j + 1]) > inconsistency_ab * np.max(energies): # Two consecutive points on the scan differ by more than `inconsistency_ab` kJ/mol. # This is a serious inconsistency. Invalidate invalidate = True invalidation_reason = f'Two consecutive points are inconsistent by more than ' \ f'{inconsistency_ab * max(energies):.2f} kJ/mol' message = f'Rotor scan of {label} between pivots {pivots} is inconsistent by' \ f'more than {inconsistency_ab * max(energies):.2f} kJ/mol between ' \ f'two consecutive points. ARC will attempt to troubleshoot this rotor scan.' logger.error(message) # Propose a method # Try increasing resolution firstly, and try increasing res. and freezing all # torsions jointly, afterwards. # TODO: If we figure out that solely increasing res. is not effective, # we can simplify the process to actions = {'inc_res': None, 'freeze': 'all'} if any(['scan_res' in used_method for used_method in used_methods]): # Check if increasing scan resolution is ever applied if not any([used_method['scan_trsh'] != '' for used_method in used_methods]): # Case where freezing torisions has not been applied actions = {'inc_res': None, 'freeze': 'all'} else: # Since all torsions are frozen, there's not much we can do except increasing # scan resolution. But it is not that effective either. So stop and do nothing. pass else: # Case where neither increasing scan resolution nor freezing # torisions has been applied actions = {'inc_res': None} return invalidate, invalidation_reason, message, actions # 2.3 Check energy and change conformation if needed: energy_diff = energies[0] - np.min(energies) if energy_diff >= 2 or energy_diff > 0.5 * (max(energies) - min(energies)) \ and (species is None or not species.is_ts): invalidate = True invalidation_reason = f'Another conformer for {label} exists which is {energy_diff:.2f} kJ/mol lower.' message = f'Species {label} is not oriented correctly around pivots {pivots}. ' \ f'Another conformer exists which is {energy_diff:.2f} kJ/mol lower. ' \ f'searching for a better conformation...' logger.info(message) # Find the lowest conformer, and use the new conformer for further jobs. # Since at this point, the scan has passed previous checks, the possibility # to switch to a non-isomorphic conformer is low. min_index = np.argmin(energies) conf_xyzs = parse_1d_scan_coords(log_file) actions = {'change conformer': conf_xyzs[min_index]} return invalidate, invalidation_reason, message, actions # 3. Check the barrier height if (np.max(energies) - np.min(energies)) > maximum_barrier: # The barrier for the internal rotation is higher than `maximum_barrier` num_wells = determine_rotor_symmetry(label=label, pivots=pivots, rotor_path='', energies=energies, return_num_wells=True, log=False, )[-1] if num_wells == 1: invalidate = True invalidation_reason = f'The rotor scan has a barrier of {np.max(energies) - np.min(energies):.2f} ' \ f'kJ/mol, which is higher than the maximal barrier for rotation ' \ f'({maximum_barrier:.2f} kJ/mol)' message = f'Rotor scan of {label} between pivots {pivots} has a barrier ' \ f'larger than {maximum_barrier:.2f} kJ/mol. Invalidating rotor.' logger.warning(message) return invalidate, invalidation_reason, message, actions else: logger.warning(f'The maximal barrier for rotor {pivots} of {label} is ' f'{(np.max(energies) - np.min(energies)):.2f} kJ/mol, which is higher than the set threshold ' f'of {maximum_barrier} kJ/mol. Since this mode when treated as torsion has {num_wells}, ' f'this mode is not invalidated: treating it as a vibrational mode will be less accurate than ' f'the hindered rotor treatment, since the entropy contribution from the population of ' f'this species at the higher wells will not be taken into account. NOT invalidating this ' f'torsional mode.') # 4. Check requested atom constraints are preserved (particularly useful for TSs) if preserve_params is not None: success = True pivots = list() for atoms in preserve_params: for i, xyz in enumerate(trajectory): if i != 0: # check that the distance between this atom pair is preserved relative to the previous entry # in the trajectory, as well as relative to the original value (final_xyz). current_distance = calculate_distance(coords=xyz, atoms=atoms, index=1) previous_distance = calculate_distance(coords=trajectory[i - 1], atoms=atoms, index=1) original_distance = calculate_distance(coords=original_xyz, atoms=atoms, index=1) if previous_distance * (1.0 - preserve_params_in_scan['bond']) < \ current_distance < \ previous_distance * (1.0 + preserve_params_in_scan['bond']) \ or original_distance * (1.0 - preserve_params_in_scan['bond']) < \ current_distance < \ original_distance * (1.0 + preserve_params_in_scan['bond']): success = False pivots.append(atoms) message = f"The rotor breaks the TS around pivots {pivots}: In trajectory {i}, the distance " \ f"between pivots is {current_distance} Angstroms, which is " \ f"{current_distance / previous_distance:.2f} of the previous frame, and " \ f"{current_distance / original_distance:.2f} of the original geometry." break if species.mol is not None: scan = [determine_smallest_atom_index_in_scan(atom1=species.mol.atoms.index(atoms[0]), atom2=species.mol.atoms.index(atoms[1]), mol=species.mol)] scan.extend(atoms) scan.append( determine_smallest_atom_index_in_scan(atom1=species.mol.atoms.index(atoms[1]), atom2=species.mol.atoms.index(atoms[0]), mol=species.mol)) # check that a dihedral angle with this atom pair as its pivots is preserved relative to the # previous entry in the trajectory, as well as relative to the original value (final_xyz). current_dihedral = calculate_dihedral_angle(coords=xyz, torsion=scan, index=1) previous_dihedral = calculate_dihedral_angle(coords=trajectory[i - 1], torsion=scan, index=1) original_dihedral = calculate_dihedral_angle(coords=original_xyz, torsion=scan, index=1) if abs(current_dihedral - previous_dihedral) < preserve_params_in_scan['dihedral'] \ or abs(current_dihedral - original_dihedral) < preserve_params_in_scan['dihedral']: success = False pivots.append(atoms) message = f"The rotor breaks the TS around pivots {pivots}: In trajectory {i}, the " \ f"dihedral angle is {current_dihedral} degrees, a " \ f"{abs(current_dihedral - previous_dihedral)} change relative to the previous " \ f"frame, and a {abs(current_dihedral - original_dihedral)} change relative to " \ f"the original geometry." break if species.mol is None: logger.warning( f'Cannot check that the dihedral angle of {species.label} is consistent throughout rotor ' f'scans without a .mol attribute') if not success: invalidate = True invalidation_reason = message logger.info(message) actions = dict() return invalidate, invalidation_reason, message, actions return invalidate, invalidation_reason, message, actions
3b14e0d576d06c03c34a0e800e9fb0449d3a1428
14,062
import logging def get_msg_timeout(options): """Reads the configured sbd message timeout from each device. Key arguments: options -- options dictionary Return Value: msg_timeout (integer, seconds) """ # get the defined msg_timeout msg_timeout = -1 # default sbd msg timeout cmd = generate_sbd_command(options, "dump") (return_code, out, err) = run_command(options, cmd) for line in out.split("\n"): if len(line) == 0: continue if "msgwait" in line: tmp_msg_timeout = int(line.split(':')[1]) if -1 != msg_timeout and tmp_msg_timeout != msg_timeout: logging.warn(\ "sbd message timeouts differ in different devices") # we only save the highest timeout if tmp_msg_timeout > msg_timeout: msg_timeout = tmp_msg_timeout return msg_timeout
4b2df955ac796da38b5b9fa176477fec3c0470a2
14,063
import requests import logging def odata_getone(url, headers): """ Get a single object from Odata """ r = requests.get(url, headers=headers) if not r.ok: logging.warning(f"Fetch url {url} hit {r.status_code}") return None rjson = r.json() if 'error' in rjson: logging.warning(f"Fetching of {url} returned error {r.text}") return None return rjson
5d6c668845132d821f175a2e8c1a924492a9eb2f
14,064
import json def _tokenizer_from_json(json_string): """Parses a JSON tokenizer configuration file and returns a tokenizer instance. # Arguments json_string: JSON string encoding a tokenizer configuration. # Returns A Keras Tokenizer instance """ tokenizer_config = json.loads(json_string) config = tokenizer_config.get('config') word_counts = json.loads(config.pop('word_counts')) word_docs = json.loads(config.pop('word_docs')) index_docs = json.loads(config.pop('index_docs')) # Integer indexing gets converted to strings with json.dumps() index_docs = {int(k): v for k, v in index_docs.items()} index_word = json.loads(config.pop('index_word')) index_word = {int(k): v for k, v in index_word.items()} word_index = json.loads(config.pop('word_index')) tokenizer = tf.keras.preprocessing.text.Tokenizer(**config) tokenizer.word_counts = word_counts tokenizer.word_docs = word_docs tokenizer.index_docs = index_docs tokenizer.word_index = word_index tokenizer.index_word = index_word return tokenizer
665485d9faad1352927879e81c381dd81b77b5c5
14,065
from typing import List from pathlib import Path def get_all_pip_requirements_files() -> List[Path]: """ If the root level hi-ml directory is available (e.g. it has been installed as a submodule or downloaded directly into a parent repo) then we must add it's pip requirements to any environment definition. This function returns a list of the necessary pip requirements files. If the hi-ml root directory does not exist (e.g. hi-ml has been installed as a pip package, this is not necessary and so this function returns an empty list.) :return: An list list of pip requirements files in the hi-ml and hi-ml-azure packages if relevant, or else an empty list """ files = [] if paths.is_himl_used_from_git_repo(): git_root = paths.git_repo_root_folder() for folder in [Path("hi-ml") / "run_requirements.txt", Path("hi-ml-azure") / "run_requirements.txt"]: files.append(git_root / folder) return files
7ce5a327af6961ad23555ba5334246b75d8bd782
14,066
def load_data(dataset_name: str, split: str) -> object: """ Load the data from datasets library and convert to dataframe Parameters ---------- dataset_name : str name of the dataset to be downloaded. split : str type of split (train or test). Returns ------- object dataframe. """ data = load_dataset(dataset_name, split=split) logger.info(split + " dataset downloaded!") return data
f6dc374d8c12fa74b9f390a1766af369791bc3b2
14,067
def horizontal_south_link_neighbor(shape, horizontal_ids, bad_index_value=-1): """ID of south horizontal link neighbor. Parameters ---------- shape : tuple of int Shape of grid of nodes. horizontal_ids : array of int Array of all horizontal link ids *must be of len(horizontal_links)*. bad_index_value: int, optional Value assigned to inactive indicies in the array. Returns ------- ndarray : Link IDs of south horizontal neighbor links. Length of number_of_horizontal_links. Examples -------- The following example uses this grid:: *--27-->*--28-->*--29-->*--30-->* *--18-->*--19-->*--20-->*--21-->* *---9-->*--10-->*--11-->*--12-->* *---0-->*---1-->*---2-->*---3-->* .. note:: Only horizontal links are shown. When no neighbor is found, bad_index_value is returned. ``*`` indicates nodes Numeric values correspond to the horizontal IDs. >>> from landlab import RasterModelGrid >>> from landlab.components.overland_flow._links import (horizontal_link_ids, ... horizontal_north_link_neighbor) >>> rmg = RasterModelGrid((4, 5)) >>> horizontal_links = horizontal_link_ids(rmg.shape).flatten() >>> horizontal_south_link_neighbor(rmg.shape, horizontal_links) array([-1, -1, -1, -1, 0, 1, 2, 3, 9, 10, 11, 12, 18, 19, 20, 21]) """ links = np.roll(horizontal_ids.reshape((shape[0], shape[1] - 1)), 1, axis=0) links[0, :] = bad_index_value return links.reshape(-1)
413fdd5a4af8a0e77b0c3ab191bac60f2ba2cc26
14,068
def _get_output(algorithm, iport=0, iconnection=0, oport=0, active_scalar=None, active_scalar_field='point'): """A helper to get the algorithm's output and copy input's vtki meta info""" ido = algorithm.GetInputDataObject(iport, iconnection) data = wrap(algorithm.GetOutputDataObject(oport)) data.copy_meta_from(ido) if active_scalar is not None: data.set_active_scalar(active_scalar, preference=active_scalar_field) return data
dd70cbb1ee6c2d6ed085fc589c24e88fc62a17ab
14,069
def read_cesar_out(cesar_line): """Return ref and query sequence.""" cesar_content = cesar_line.split("\n") # del cesar_content[0] fractions = parts(cesar_content, 4) cesar_fractions = [] for fraction in fractions: if len(fraction) == 1: continue ref_seq = fraction[1] query_name = fraction[2][1:] query_seq = fraction[3] if len(ref_seq) != len(query_seq): die("Error! Ref and query sequences must have the same length!") elif len(ref_seq) == 0: die("Error! The input is empty!") fraction = (query_name, ref_seq, query_seq) cesar_fractions.append(fraction) return cesar_fractions
fb1a1a66647fb6d3e6fec1b27d26836067c6b023
14,070
def aa_i2c_slave_write_stats (aardvark): """usage: int return = aa_i2c_slave_write_stats(Aardvark aardvark)""" if not AA_LIBRARY_LOADED: return AA_INCOMPATIBLE_LIBRARY # Call API function return api.py_aa_i2c_slave_write_stats(aardvark)
87e64465b1bc79c7ab48e39274e39cab17f74755
14,071
import json def get_aliases_user(request): """ Returns all the Aliases API_ENDPOINT:api/v1/aliases ---------- payload { "email":"[email protected]" } """ alias_array = [] payload = {} print("came to get_aliases_user()") data_received = json.loads(request.body) email = data_received["email"] print(f"Email body:{email}") db_data = Aliases.objects.filter(user__email=email) print(f"QuerySet->{db_data}") for x in db_data: alias_array.append(x.alias) return JsonResponse({"alias":alias_array}, safe=False)
2501fa15bafc2214585bd1e7d568a9a685725020
14,072
def _sorted_attributes(features, attrs, attribute): """ When the list of attributes is a dictionary, use the sort key parameter to order the feature attributes. evaluate it as a function and return it. If it's not in the right format, attrs isn't a dict then returns None. """ sort_key = attrs.get('sort_key') reverse = attrs.get('reverse') assert sort_key is not None, "Configuration " + \ "parameter 'sort_key' is missing, please " + \ "check your configuration." # first, we find the _minimum_ ordering over the # group of key values. this is because we only do # the intersection in groups by the cutting # attribute, so can only sort in accordance with # that. group = dict() for feature in features: val = feature[1].get(sort_key) key = feature[1].get(attribute) val = _no_none_min(val, group.get(key)) group[key] = val # extract the sorted list of attributes from the # grouped (attribute, order) pairs, ordering by # the order. all_attrs = sorted(group.iteritems(), key=lambda x: x[1], reverse=bool(reverse)) # strip out the sort key in return return [x[0] for x in all_attrs]
473c3d30c4fde5f00932adfb50c4d34c08324d54
14,073
import subprocess import time import random def get_gpus(num_gpu=1, worker_index=-1, format=AS_STRING): """Get list of free GPUs according to nvidia-smi. This will retry for ``MAX_RETRIES`` times until the requested number of GPUs are available. Args: :num_gpu: number of GPUs desired. :worker_index: index "hint" for allocation of available GPUs. Returns: Comma-delimited string of GPU ids, or raises an Exception if the requested number of GPUs could not be found. """ # get list of gpus (index, uuid) list_gpus = subprocess.check_output(["nvidia-smi", "--list-gpus"]).decode() logger.debug("all GPUs:\n{0}".format(list_gpus)) # parse index and guid gpus = [x for x in list_gpus.split('\n') if len(x) > 0] def parse_gpu(gpu_str): cols = gpu_str.split(' ') return cols[5].split(')')[0], cols[1].split(':')[0] gpu_list = [parse_gpu(gpu) for gpu in gpus] free_gpus = [] retries = 0 while len(free_gpus) < num_gpu and retries < MAX_RETRIES: smi_output = subprocess.check_output(["nvidia-smi", "--format=csv,noheader,nounits", "--query-compute-apps=gpu_uuid"]).decode() logger.debug("busy GPUs:\n{0}".format(smi_output)) busy_uuids = [x for x in smi_output.split('\n') if len(x) > 0] for uuid, index in gpu_list: if uuid not in busy_uuids: free_gpus.append(index) if len(free_gpus) < num_gpu: logger.warn("Unable to find available GPUs: requested={0}, available={1}".format(num_gpu, len(free_gpus))) retries += 1 time.sleep(30 * retries) free_gpus = [] logger.info("Available GPUs: {}".format(free_gpus)) # if still can't find available GPUs, raise exception if len(free_gpus) < num_gpu: smi_output = subprocess.check_output(["nvidia-smi", "--format=csv", "--query-compute-apps=gpu_uuid,pid,process_name,used_gpu_memory"]).decode() logger.info(": {0}".format(smi_output)) raise Exception("Unable to find {} free GPU(s)\n{}".format(num_gpu, smi_output)) # Get logical placement num_available = len(free_gpus) if worker_index == -1: # use original random placement random.shuffle(free_gpus) proposed_gpus = free_gpus[:num_gpu] else: # ordered by worker index if worker_index * num_gpu + num_gpu > num_available: worker_index = worker_index * num_gpu % num_available proposed_gpus = free_gpus[worker_index * num_gpu:(worker_index * num_gpu + num_gpu)] logger.info("Proposed GPUs: {}".format(proposed_gpus)) if format == AS_STRING: return ','.join(str(x) for x in proposed_gpus) elif format == AS_LIST: return proposed_gpus else: raise Exception("Unknown GPU format")
97956eaffa16514e34737d0733a69a1b176f7067
14,074
def ldensity_laplace_uniform_dist(prob_laplace, location, scale, low, high, val): """ A mixture of a Laplace and a uniform distribution """ return np.log((prob_laplace * np.exp(-np.abs(val - location) / scale) / (2 * scale)) + ((1 - prob_laplace) / (high - low)))
b069b2de4c2da3c69245b6a5507b61e918d5bb76
14,075
def readConfirmInput(): """asks user for confirmation Returns: bool: True if user confirms, False if doesn't """ try: result = readUserInput("(y/n): ") # UnrecognisedSelectionException return 'y' in result[0].lower() # IndexError except (UnrecognisedSelectionException, IndexError) as e: return False
007fe5e0002711db7cd0bcb1869dcbef9c667213
14,076
def linkElectron(inLep, inLepIdx, lepCollection, genPartCollection): """process input Electron, find lineage within gen particles pass "find" as inLepIdx of particle to trigger finding within the method""" linkChain = [] lepIdx = -1 if inLepIdx == "find": for Idx, lep in enumerate(lepCollection): if inLep == lep: lepIdx = Idx break elif -1 < inLepIdx < len(lepCollection): lepIdx = inLepIdx else: lepIdx = -999 tmpMoth = inLep.genPartIdx #temporary deltaR with a default (only stored under logic error) and a calculation against the 'head' of the chain tmpDeltaR = -9999.786 if len(linkChain) > 0: tmpDeltaR = deltaR(inPart, linkChain[0][6]) elif len(linkChain) == 0: tmpDeltaR = 0.0 linkChain.append( ("Electron", lepIdx, tmpMoth, inLep.pdgId, tmpDeltaR, inLep.genPartFlav, inLep) ) if -1 < tmpMoth < len(genPartCollection): __ = linkGenPart(genPartCollection[tmpMoth], tmpMoth, genPartCollection, linkChain=linkChain) return linkChain
87747414f5e086f16a455dbc732f86ddcb0db630
14,077
def status(): """Determines whether or not if CrowdStrike Falcon is loaded. :return: A Boolean on whether or not crowdstrike is loaded. :rtype: bool .. code-block:: bash salt '*' crowdstrike.status """ if not __salt__['crowdstrike.system_extension'](): # if we should be using a kext, just check the kext as falconctl stats # can take a long time to run if falcon is already unloaded. if not __salt__['kext.running']('com.crowdstrike.sensor'): return False try: __salt__['crowdstrike.falconctl']('stats', timeout=5) return True except CommandExecutionError: return False
e9bdbce3e290967b95d58ddf75c2054e06542043
14,078
def sparse_search(arr, s): """ 10.5 Sparse Search: Given a sorted array of strings that is interspersed with empty strings, write a method to find the location of a given string. EXAMPLE: Input: find "ball" in {"at", "", "", "" , "ball", "", "", "car", "" , "" , "dad", ""} Output: 4 """ def spread(arr, middle, left, right): k = 1 while middle - k >= left and middle + k <= right: if arr[middle - k] != "": return middle - k if arr[middle + k] != "": return middle + k k += 1 return middle def rec_sparse_search(arr, s, left, right): if left > right: return None middle = (left + right) / 2 if arr[middle] == "": new_middle = spread(arr, middle, left, right) if new_middle == middle: return None middle = new_middle if arr[middle] == s: return middle if arr[middle] < s: return rec_sparse_search(arr, s, left, middle - 1) return rec_sparse_search(arr, s, middle + 1, right) return rec_sparse_search(arr, s, 0, len(arr) - 1)
605a56c518539117a83382c9e73d37d5e56b535f
14,079
import uuid def uuid_pk(): """ Generate uuid1 and cut it to 12. UUID default size is 32 chars. """ return uuid.uuid1().hex[:12]
9efb12a6e72b02adcd4a64ca721ceab8c688055a
14,080
def infected_symptomatic_00x80(): """ Real Name: b'Infected symptomatic 00x80' Original Eqn: b'Infected symptomatic 00+Infected symptomatic 80' Units: b'person' Limits: (None, None) Type: component b'' """ return infected_symptomatic_00() + infected_symptomatic_80()
0a3500659fad466c92fcd3d073003094c56efe9d
14,081
def stencilCompare(firstElem, secondElem): """ stencilCompare(const std::pair< int, FP_PRECISION > &firstElem, const std::pair< int, FP_PRECISION > &secondElem) -> bool Comparitor for sorting k-nearest stencil std::pair objects """ return _openmoc.stencilCompare(firstElem, secondElem)
3eda1a57e521134e77ba55ae38771f151699fdfd
14,082
import random def bisect_profiles_wrapper(decider, good, bad, perform_check=True): """Wrapper for recursive profile bisection.""" # Validate good and bad profiles are such, otherwise bisection reports noise # Note that while decider is a random mock, these assertions may fail. if perform_check: if decider.run(good, save_run=False) != StatusEnum.GOOD_STATUS: raise ValueError('Supplied good profile is not actually GOOD') if decider.run(bad, save_run=False) != StatusEnum.BAD_STATUS: raise ValueError('Supplied bad profile is not actually BAD') common_funcs = sorted(func for func in good if func in bad) if not common_funcs: return {'ranges': [], 'individuals': []} # shuffle because the results of our analysis can be quite order-dependent # but this list has no inherent ordering. By shuffling each time, the chances # of finding new, potentially interesting results are increased each time # the program is run random.shuffle(common_funcs) results = bisect_profiles(decider, good, bad, common_funcs, 0, len(common_funcs)) results['ranges'].sort() results['individuals'].sort() return results
8fbe2f018c7dfb7fdeb71dd5080993a9773a41d7
14,083
import typing def rolling_median_with_nan_forward_fill(vector: typing.List[float], window_length: int) -> typing.List[float]: """Computes a rolling median of a vector of floats and returns the results. NaNs will be forward filled.""" forward_fill(vector) return rolling_median_no_nan(vector, window_length)
708cd1f6371846ea3b7acb4d7b59a7a61f85de7c
14,084
def build_class_docstring(class_to_doc: ClassToDocument, formatter: Formatter) -> str: """A function to build the docstring of a class Parameters ---------- class_to_doc : ClassToDocument The class to document formatter : Formatter The formatter to use Returns ------- docstring : str The docstring for this class """ _logger.debug(f"Build class docstring for '{class_to_doc.name}'...") return formatter.format_docstring(nb_base_tab=class_to_doc.nb_base_tab, description=class_to_doc.description, fields={ 'Attributes': class_to_doc.attributes, 'Public methods': class_to_doc.public_methods, 'Protected methods': class_to_doc.protected_methods, })
ab9c487cd0c3059675e476fbab541f95fb912d2b
14,085
from typing import Optional from typing import Dict def Subprocess( identifier: Optional[str] = None, variables: Optional[Dict] = None, env: Optional[Dict] = None, volume: Optional[str] = None ) -> Dict: """Get base configuration for a subprocess worker with the given optional arguments. Parameters ---------- identifier: string, default=None Unique worker identifier. If no identifier is given, a new unique identifier will be generated. variables: dict, default=None Mapping with default values for placeholders in command template strings. env: dict, default=None Default settings for environment variables when executing workflow steps. These settings can get overridden by step-specific settings. volume: string, default=None Identifier for the storage volume that the worker has access to. Returns ------- dict """ return WorkerSpec( worker_type=SUBPROCESS_WORKER, variables=variables, env=env, identifier=identifier, volume=volume )
97a90179c91ec862c6008e12ae6c12368ec301c5
14,086
def get_var(name): """ Returns the value of a settings variable. The full name is CONTROLLED_VOCABULARY_ + name. First look into django settings. If not found there, use the value defined in this file. """ full_name = "CONTROLLED_VOCABULARY_" + name ret = globals().get(full_name, None) ret = getattr(settings, full_name, ret) return ret
3c7b5507a387917b9639510023948571160b5973
14,087
def get_schema_from_dataset_url_carbon(dataset_url, key=None, secret=None, endpoint=None, proxy=None, proxy_port=None, filesystem=None): """Returns a :class:`petastorm.unischema.Unischema` object loaded from a dataset specified by a url. :param dataset_url: A dataset URL :param key: access key :param secret: secret key :param endpoint: endpoint_url :param proxy: proxy :param proxy_port: proxy_port :param filesystem: filesystem :return: A :class:`petastorm.unischema.Unischema` object """ # Get a unischema stored in the dataset metadata. stored_schema = get_schema_carbon(CarbonDataset(dataset_url, key=key, secret=secret, endpoint=endpoint, proxy=proxy, proxy_port=proxy_port, filesystem=filesystem)) return stored_schema
2c562e39232dfbe1ac7359d0c88bd2a1efa5a334
14,088
import time def get_all_metrics(model, epoch, val_x, val_y, start_time, loss_fn): """每个epoch结束后在发展集上预测,得到一些指标 :param model: tf.keras.Model, epoch训练后的模型 :param epoch: int, 轮数 :param val_x: tf.data.Dataset, 发展集的输入, 和val_y一样的sample_size :param val_y: tf.data.Dataset, 发展集的标签 :param start_time: time.time, 开始时间 :param loss_fn: 损失函数 :return: 模型在发展集上的损失 """ y_pred_val, y_true_val = [], [] loss_val = 0 sample_size_val = 0 for x_tmp, y_tmp in zip(val_x.as_numpy_iterator(), val_y.as_numpy_iterator()): pred_tmp = model.predict(x_tmp) y_pred_val.append(pred_tmp) y_true_val.append(y_tmp) loss_tmp = loss_fn(y_tmp, pred_tmp) loss_val += np.sum(loss_tmp) sample_size_val += x_tmp[0].shape[0] # 计算损失 loss_val /= sample_size_val # 计算auc y_pred = np.concatenate(y_pred_val).astype(dtype=float) y_true = np.concatenate(y_true_val).astype(dtype=float) roc_auc_val = roc_auc_score(y_true, y_pred) # 转化预测概率为类别 y_pred = np.where(y_pred > 0.5, np.ones_like(y_pred), np.zeros_like(y_pred)) # 计算混淆矩阵相关的 recall = recall_score(y_true=y_true, y_pred=y_pred) precision = precision_score(y_true=y_true, y_pred=y_pred) accuracy = accuracy_score(y_true=y_true, y_pred=y_pred) line = f"""For epoch {epoch}, on val set loss is {round(loss_val, 5)}, auc is {round(roc_auc_val, 4)}, recall is {round(recall, 4)}, precision is {round(precision, 4)}, accuracy is {round(accuracy, 4)}, confusion_matrix is {confusion_matrix(y_true=y_true, y_pred=y_pred)}""" line += f", time elapsed {(time.time() - start_time) / 60} mins" print("HZJ info: ", line) return loss_val
24025cbdcc702ca32c5887f1ec2ccf424d492e69
14,089
def get_labels(decode_steps: DecodeSteps) -> LabelsDict: """Returns labels dict given DecodeSteps.""" return { "target_action_types": decode_steps.action_types, "target_action_ids": decode_steps.action_ids, }
66047e41b3d173e53b676a60e48647e3862aac16
14,090
def get_body_barycentric_posvel(body, time, ephemeris=None): """Calculate the barycentric position and velocity of a solar system body. Parameters ---------- body : str or other The solar system body for which to calculate positions. Can also be a kernel specifier (list of 2-tuples) if the ``ephemeris`` is a JPL kernel. time : `~astropy.time.Time` Time of observation. ephemeris : str, optional Ephemeris to use. By default, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` Returns ------- position, velocity : tuple of `~astropy.coordinates.CartesianRepresentation` Tuple of barycentric (ICRS) position and velocity. See also -------- get_body_barycentric : to calculate position only. This is faster by about a factor two for JPL kernels, but has no speed advantage for the built-in ephemeris. Notes ----- The velocity cannot be calculated for the Moon. To just get the position, use :func:`~astropy.coordinates.get_body_barycentric`. """ return _get_body_barycentric_posvel(body, time, ephemeris)
41be03294a5cd21163afae9650f556fc64257110
14,091
def recurDraw(num, data): """ Purpose: to draw polygons Parameters: num - indicator of what layer the program is on, data - instance of the Data class Returns: data - instance of the data class Calls: recurDraw - itself, Data - data processing class, toDraw - drawing intermediary function """ if num == 0: return num num -= 1 data = recurDraw(num, data) data = Data(num, data) toDraw(data) return data
d94d2f250396b6acfcf02306fd78b180f070aa92
14,092
def cont4(): """ Two clusters, namely <cont1> (5 contours) and <cont3> 4 contours). The enclosing contours of the clusters have a different value. Contains 3 minima. """ cont_min = [ cncc(5, (6.00, 3.00), 0.2, (1, 1)), cncc(2, (7.00, 4.00), 0.1, (4, 1), rmin=0.15), cncc(2, (6.25, 3.25), 0.3, (6, 1), rmin=1.6, no_min=True), cncc(5, (3.00, 3.00), 0.2, (1, 1)), ] cont = [e for lst in cont_min for e in lst[0]] min = [e for lst in cont_min for e in lst[1]] return cont, min
c83cb48c3bc257dcf1ead50312d186464acdd57d
14,093
def predict(test_data, qrnn, add_noise = False): """ predict the posterior mean and median """ if add_noise: x_noise = test_data.add_noise(test_data.x, test_data.index) x = (x_noise - test_data.mean)/test_data.std y_prior = x_noise y = test_data.y_noise y0 = test_data.y else: x = (test_data.x - test_data.mean)/test_data.std y_prior = test_data.x y = test_data.y y0 = test_data.y0 y_pre = qrnn.predict(x.data) y_pos_mean = qrnn.posterior_mean(x.data) return y_pre, y_prior, y0, y, y_pos_mean, x.data
d45e843d529babb99baa160ad976c0c9753da42d
14,094
def handle_login_GET(): """ Displays the index (the login page). """ if request.args.get('next'): url_kwargs = dict(next=request.args.get('next')) else: url_kwargs = {} try: weblab_api.api.check_user_session() except SessionNotFoundError: pass # Expected behavior else: # User is already logged in, send him to the next url return redirect(get_next_url()) return render_template("webclient/login.html", url_kwargs = url_kwargs)
f496519518b5d3b8a71ff4a8e60be2a2fe2110f3
14,095
import copy def get_role_actions(): """Returns the possible role to actions items in the application. Returns: dict(str, list(str)). A dict presenting key as role and values as list of actions corresponding to the given role. """ return copy.deepcopy(_ROLE_ACTIONS)
79b53e4003b1dc9264d9210f03395ce32d737c1e
14,096
import json def jsons_str_tuple_to_jsons_tuple(ctx, param, value): """ Converts json str into python map """ if value is None: return [] else: return [json.loads(a) for a in value]
8b6f03650d566d74b0400868f12b59c2fa37bc3e
14,097
def get_webelements_in_active_area(xpath, **kwargs): """Find element under another element. If ${ACTIVE_AREA_FUNC} returns an element then the xpath is searched from that element. Otherwise the element is searched under body element. Parameters ---------- xpath : str Xpath expression without xpath= prefix. Returns ------- :obj:`list` of :obj:`WebElement` List of visible WebElements. """ active_area_xpath = CONFIG["ActiveAreaXpath"] if ACTIVE_AREA_FUNCTION is not None: active_area = ACTIVE_AREA_FUNCTION() if active_area: xpath = xpath.replace('//', './/', 1) else: driver = browser.get_current_browser() active_area = driver.find_element_by_xpath(active_area_xpath) else: driver = browser.get_current_browser() try: active_area = driver.find_element_by_xpath(active_area_xpath) if active_area is None: logger.debug('Got None for active area. Is page still loading ' 'or is it missing body tag?') return None # //body not found, is page still loading? Return None to continue looping except NoSuchElementException: logger.debug("Cannot locate //body element. Is page still loading?") return None try: webelements = active_area.find_elements_by_xpath(xpath) logger.trace('XPath {} matched {} webelements' .format(xpath, len(webelements))) webelements = get_visible_elements_from_elements(webelements, **kwargs) except StaleElementReferenceException: raise QWebStalingElementError('Got StaleElementException') except (JavascriptException, InvalidSelectorException) as e: logger.debug('Got {}, returning None'.format(e)) webelements = None return webelements
91579a7195c865734b4119e33d0668a4951eb3f4
14,098
import sys def create_double_group(): """ Returns: Create two simple control for all object under selected """ selections = cm.ls(selection=True) if len(selections) < 1: return om.MGlobal.displayError("This function need at lest two object to work with") for selection in selections: if "End" in str(selection): continue else: for each_name in list_tail_name: if str(each_name) in selection: base_name = selection.replace(str(each_name), "") else: base_name = selection parent = cm.listRelatives(selection, parent=True) group_orient = cm.group(empty=True, world=True, name="{0}_orient".format(base_name)) group_offset = cm.group(empty=True, world=True, name="{0}_offset".format(base_name)) cm.parent(group_offset, group_orient) if parent is not None: cm.parent(group_orient, parent) cm.matchTransform(group_orient, selection) cm.makeIdentity(group_orient, apply=True, scale=True) cm.parent(selection, group_offset) sys.stdout.write("Create double group completed.\n")
a240c5f7220e4e9270db1b6e84204ebf399e77b0
14,099