content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Dict from pathlib import Path from sys import path from typing import Counter def get_word_counts(filepath: str) -> Dict[str, int]: """ Return a dictionary of key-value pairs where keys are words from the given file and values are their counts. If there is no such file, return an empty dictionary. :param filepath: path to the file :return: a dictionary of word counts >>> get_word_counts(Path('scripts/The Invisible Man 1933.txt'))['snow'] 6 >>> get_word_counts(Path('scripts/The Time Machine 2002.txt'))['high'] 10 """ filepath = Path(__file__).parent / filepath if not path.exists(filepath): return None with open(filepath, 'r') as file: words = list(map(lambda word: word.strip('.,!?;:-').lower(), file.readline().split(' '))) word_counts = dict(Counter(words)) return word_counts
30fd14031b00766320ad0f1728042438cb05fd4e
13,800
import ctypes def getVanHoveDistances(positions, displacements, L): """ Compte van Hove distances between particles of a system of size `L', with `positions' and `displacements'. Parameters ---------- positions : (*, 2) float array-like Positions of the particles. displacements : (*, 2) float array-like Displacements of the particles. L : float Size of the system box. Returns ------- distances : (*^2,) float Numpy array Van Hove distances. """ positions = np.array(positions, dtype=np.double) N = len(positions) assert positions.shape == (N, 2) displacements = np.array(displacements, dtype=np.double) assert displacements.shape == (N, 2) distances = np.empty((N**2,), dtype=np.double) _pycpp.getVanHoveDistances.argtypes = [ ctypes.c_int, ctypes.c_double, np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='C_CONTIGUOUS'), np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='C_CONTIGUOUS'), np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='C_CONTIGUOUS'), np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='C_CONTIGUOUS'), np.ctypeslib.ndpointer(dtype=np.double, ndim=1, flags='C_CONTIGUOUS')] _pycpp.getVanHoveDistances( N, L, np.ascontiguousarray(positions[:, 0]), np.ascontiguousarray(positions[:, 1]), np.ascontiguousarray(displacements[:, 0]), np.ascontiguousarray(displacements[:, 1]), np.ascontiguousarray(distances)) return distances
a66150cfe238b151f098733d4570c438f1c93906
13,801
from typing import Any from typing import Union from typing import List def plot_local_coordinate_system_matplotlib( lcs, axes: plt.Axes.axes = None, color: Any = None, label: str = None, time: Union[pd.DatetimeIndex, pd.TimedeltaIndex, List[pd.Timestamp]] = None, time_ref: pd.Timestamp = None, time_index: int = None, show_origin: bool = True, show_trace: bool = True, show_vectors: bool = True, ) -> plt.Axes.axes: """Visualize a `weldx.transformations.LocalCoordinateSystem` using matplotlib. Parameters ---------- lcs : weldx.transformations.LocalCoordinateSystem The coordinate system that should be visualized axes : matplotlib.axes.Axes The target matplotlib axes. If `None` is provided, a new one will be created color : Any An arbitrary color. The data type must be compatible with matplotlib. label : str Name of the coordinate system time : pandas.DatetimeIndex, pandas.TimedeltaIndex, List[pandas.Timestamp], or \ LocalCoordinateSystem The time steps that should be plotted time_ref : pandas.Timestamp A reference timestamp that can be provided if the ``time`` parameter is a `pandas.TimedeltaIndex` time_index : int Index of a specific time step that should be plotted show_origin : bool If `True`, the origin of the coordinate system will be highlighted in the color passed as another parameter show_trace : If `True`, the trace of a time dependent coordinate system will be visualized in the color passed as another parameter show_vectors : bool If `True`, the the coordinate axes of the coordinate system are visualized Returns ------- matplotlib.axes.Axes : The axes object that was used as canvas for the plot """ if axes is None: _, axes = plt.subplots(subplot_kw={"projection": "3d", "proj_type": "ortho"}) if lcs.is_time_dependent and time is not None: lcs = lcs.interp_time(time, time_ref) if lcs.is_time_dependent and time_index is None: for i, _ in enumerate(lcs.time): draw_coordinate_system_matplotlib( lcs, axes, color=color, label=label, time_idx=i, show_origin=show_origin, show_vectors=show_vectors, ) label = None else: draw_coordinate_system_matplotlib( lcs, axes, color=color, label=label, time_idx=time_index, show_origin=show_origin, show_vectors=show_vectors, ) if show_trace and lcs.coordinates.values.ndim > 1: coords = lcs.coordinates.values if color is None: color = "k" axes.plot(coords[:, 0], coords[:, 1], coords[:, 2], ":", color=color) return axes
2df77f0e3343f6ac541ff37991208fb894b44660
13,802
def saved_searches_list(request): """ Renders the saved_searches_list html """ args = get_saved_searches_list(request.user) return render('saved_searches_list.html', args, request)
a2f92c06733113f05501cb242d2ee2bad91917be
13,803
import os def upload(): """Upload files. This endpoint is used to upload "trusted" files; E.i. files created by CERT-EU E.g. CITAR, CIMBL, IDS signatures, etc. **Example request**: .. sourcecode:: http POST /api/1.0/upload HTTP/1.1 Host: do.cert.europa.eu Accept: application/json Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryklDA9 ------WebKitFormBoundaryklDA94BtcALil3R2 Content-Disposition: form-data; name="files[0]"; filename="test.gz" Content-Type: application/x-gzip ------WebKitFormBoundaryklDA94BtcALil3R2-- **Example response**: .. sourcecode:: http HTTP/1.0 201 CREATED Content-Type: application/json { "files": [ "test.gz" ], "message": "Files uploaded" } :reqheader Accept: Content type(s) accepted by the client :reqheader Content-Type: multipart/form-data required :resheader Content-Type: this depends on `Accept` header or request :>json array files: List of files saved to disk :>json string message: Status message :statuscode 201: Files successfully saved """ uploaded_files = [] for idx, file in request.files.items(): filename = secure_filename(file.filename) file.save(os.path.join(current_app.config['APP_UPLOADS'], filename)) uploaded_files.append(filename) return ApiResponse({ 'message': 'Files uploaded', 'files': uploaded_files }, 201)
5da57c64928c9212162667d036423070acbdb4f7
13,804
def get_active_loan_by_item_pid(item_pid): """Return any active loans for the given item.""" return search_by_pid( item_pid=item_pid, filter_states=current_app.config.get( "CIRCULATION_STATES_LOAN_ACTIVE", [] ), )
6922336876fddd72ce7655bf2cfee298fdc4a766
13,805
from typing import Set from re import X def _get_szymkiewicz_simpson_coefficient(a: Set[X], b: Set[X]) -> float: """Calculate the Szymkiewicz–Simpson coefficient. .. seealso:: https://en.wikipedia.org/wiki/Overlap_coefficient """ if a and b: return len(a.intersection(b)) / min(len(a), len(b)) return 0.0
42d39edf9fa2465605717e0892bcbca05df7799b
13,806
def data_splitter( input: pd.DataFrame, ) -> Output(train=pd.DataFrame, test=pd.DataFrame,): """Splits the input dataset into train and test slices.""" train, test = train_test_split(input, test_size=0.1, random_state=13) return train, test
ddcc28b4430a8901fcde540cf321d4ea43f123d7
13,807
def reload(module, exclude=('sys', 'os.path', 'builtins', '__main__', 'numpy', 'numpy._globals')): """Recursively reload all modules used in the given module. Optionally takes a list of modules to exclude from reloading. The default exclude list contains sys, __main__, and __builtin__, to prevent, e.g., resetting display, exception, and io hooks. """ global found_now for i in exclude: found_now[i] = 1 try: with replace_import_hook(deep_import_hook): return deep_reload_hook(module) finally: found_now = {}
c97fd1942dae583ff236ed73d33b53b685cafd32
13,808
def get_words_for_board(words, board_size, packing_constant=1.1): """Pick a cutoff which is just beyond limit of the board size.""" # Order the words by length. It's easier to pack shorter words, so prioritize them. # This is SUPER hacky, should have a Word class that handles these representational differences. words = sorted(words, key=lambda w: len(w.replace(" ", "").replace("-", ""))) cum_len = np.cumsum([len(word.replace(" ", "").replace("-", "")) for word in words]) num_words = None for word_idx, cum_letters in enumerate(cum_len): # Try to pack in slightly more letters than would fit on the word without overlaps, # as governed by the packing constant. if cum_letters > packing_constant * board_size**2: num_words = word_idx break if not num_words: raise ValueError(f"Too few semantic neighbor words to pack a {board_size}x{board_size} board.") return words[:num_words]
e5f74806fa15c1f1fbe78e0ac218d6d808611dfe
13,809
def booleans(key, val): """returns ucsc formatted boolean""" if val in (1, True, "on", "On", "ON"): val = "on" else: val = "off" return val
f210a2ce6b998e65d2e5934f1318efea0f96c709
13,810
def merge_param_classes(*cls_list, merge_positional_params: bool = True) -> type(Params): """ Merge multiple Params classes into a single merged params class and return the merged class. Note that this will not flatten the nested classes. :param cls_list: A list of Params subclasses or classes to merge into a single Params class :param merge_positional_params: Whether or not to merge the positional params in the classes """ if len(cls_list) == 1: return cls_list[0] class MergedParams(Params): __doc__ = f'A Combination of {len(cls_list)} Params Classes:\n' append_params_attributes(MergedParams, *cls_list) for params_cls in cls_list: MergedParams.__doc__ += f'\n\t {params_cls.__name__} - {params_cls.__doc__}' # resolve positional arguments: if merge_positional_params: params_to_delete, positional_param = _merge_positional_params( [(k, v) for k, v in MergedParams.__dict__.items() if not k.startswith('_')]) if positional_param is None and params_to_delete == []: return MergedParams setattr(MergedParams, 'positionals', positional_param) positional_param.__set_name__(MergedParams, 'positionals') for k in params_to_delete: delattr(MergedParams, k) return MergedParams
c42907652f971d7cd6d208017b8faaacacddb5b2
13,811
import random import collections def make_pin_list(eff_cnt): """Generates a pin list with an effect pin count given by eff_cnt.""" cards = [1] * eff_cnt cards.extend([0] * (131 - len(cards))) random.shuffle(cards) deck = collections.deque(cards) pin_list = [] for letters, _ in KEY_WHEEL_DATA: pins = [c for c in letters if deck.pop()] pin_list.append(''.join(pins)) return pin_list
2c15a09928231993f09a373354ee29723463280d
13,812
import select def drop(cols, stmt): """ Function: Drops columns from the statement. Input: List of columns to drop. Output: Statement with columns that are not dropped. """ col_dict = column_dict(stmt) col_names = [c for c in col_dict.keys()] colintention = [c.evaluate(stmt).name if isinstance(c, Intention) else c for c in cols] new_cols = list(filter(lambda c: c not in colintention, col_names)) undrop = select(new_cols, stmt) return undrop
73ecf35077824281a5ebc4e26776b963e0cb378e
13,813
def ConvertVolumeSizeString(volume_size_gb): """Converts the volume size defined in the schema to an int.""" volume_sizes = { "500 GB (128 GB PD SSD x 4)": 500, "1000 GB (256 GB PD SSD x 4)": 1000, } return volume_sizes[volume_size_gb]
b1f90e5ded4d543d88c4f129ea6ac03aeda0c04d
13,814
def render_template_with_system_context(value): """ Render provided template with a default system context. :param value: Template string. :type value: ``str`` :param context: Template context. :type context: ``dict`` """ context = { SYSTEM_KV_PREFIX: KeyValueLookup(), } rendered = render_template(value=value, context=context) return rendered
6df2e7a652595b35919638791aae5465258edf0f
13,815
def ToTranslation(tree, placeholders): """Converts the tree back to a translation, substituting the placeholders back in as required. """ text = tree.ToString() assert text.count(PLACEHOLDER_STRING) == len(placeholders) transl = tclib.Translation() for placeholder in placeholders: index = text.find(PLACEHOLDER_STRING) if index > 0: transl.AppendText(text[:index]) text = text[index + len(PLACEHOLDER_STRING):] transl.AppendPlaceholder(placeholder) if text: transl.AppendText(text) return transl
36fca25dfc78e0f37ddc6193a17f2d29c6192228
13,816
import torch def complex(real, imag): """Return a 'complex' tensor - If `fft` module is present, returns a propert complex tensor - Otherwise, stack the real and imaginary compoenents along the last dimension. Parameters ---------- real : tensor imag : tensor Returns ------- complex : tensor """ if _torch_has_complex: return torch.complex(real, imag) else: return torch.stack([real, imag], -1)
272a293e3918e5e067f251a7dae10a4d2c56abf4
13,817
def get_snps(x: str) -> tuple: """Parse a SNP line and return name, chromsome, position.""" snp, loc = x.split(' ') chrom, position = loc.strip('()').split(':') return snp, chrom, int(position)
52672c550c914d70033ab45fd582fb9e0f97f023
13,818
def qr_match(event, context, user=None): """ Function used to associate a given QR code with the given email """ user_coll = coll('users') result = user_coll.update_one({'email': event["link_email"]}, {'$push': {'qrcode': event["qr_code"]}}) if result.matched_count == 1: return {"statusCode": 200, "body": "success"} else: return {"statusCode": 404, "body": "User not found"}
7af48bc9fc97d34eb182eb8f429d93396079db87
13,819
def update_has_started(epoch, settings): """ Tells whether update has started or not :param epoch: epoch number :param settings: settings dictionary :return: True if the update has started, False otherwise """ return is_baseline_with_update(settings['baseline']) and epoch >= settings['update']['start_epoch']
d2d2c8d7d8de0a13414a116121fb3cec47bc1d3f
13,820
import torch def compute_i_th_moment_batches(input, i): """ compute the i-th moment for every feature map in the batch :param input: tensor :param i: the moment to be computed :return: """ n, c, h, w = input.size() input = input.view(n, c, -1) mean = torch.mean(input, dim=2).view(n, c, 1, 1) eps = 1e-5 var = torch.var(input, dim=2).view(n, c, 1, 1) + eps std = torch.sqrt(var) if i == 1: return mean elif i == 2: return std else: sol = ((input.view(n, c, h, w) - mean.expand(n, c, h, w)) / std).pow(i) sol = torch.mean(sol.view(n, c, -1), dim=2).view(n, c, 1, 1) return sol
2ab3b7bfd34b482cdf55d5a066b57852182b5b6a
13,821
def hs_online_check(onion, put_url): """Online check for hidden service.""" try: print onion return hs_http_checker(onion, put_url) except Exception as error: print "Returned nothing." print error return ""
19b7b2f45581e2bdb907d416be1885f569841a86
13,822
def plotfile(fname, cols=(0,), plotfuncs=None, comments='#', skiprows=0, checkrows=5, delimiter=',', names=None, subplots=True, newfig=True, **kwargs): """ Plot the data in a file. *cols* is a sequence of column identifiers to plot. An identifier is either an int or a string. If it is an int, it indicates the column number. If it is a string, it indicates the column header. matplotlib will make column headers lower case, replace spaces with underscores, and remove all illegal characters; so ``'Adj Close*'`` will have name ``'adj_close'``. - If len(*cols*) == 1, only that column will be plotted on the *y* axis. - If len(*cols*) > 1, the first element will be an identifier for data for the *x* axis and the remaining elements will be the column indexes for multiple subplots if *subplots* is *True* (the default), or for lines in a single subplot if *subplots* is *False*. *plotfuncs*, if not *None*, is a dictionary mapping identifier to an :class:`~matplotlib.axes.Axes` plotting function as a string. Default is 'plot', other choices are 'semilogy', 'fill', 'bar', etc. You must use the same type of identifier in the *cols* vector as you use in the *plotfuncs* dictionary, e.g., integer column numbers in both or column names in both. If *subplots* is *False*, then including any function such as 'semilogy' that changes the axis scaling will set the scaling for all columns. - *comments*: the character used to indicate the start of a comment in the file, or *None* to switch off the removal of comments - *skiprows*: is the number of rows from the top to skip - *checkrows*: is the number of rows to check to validate the column data type. When set to zero all rows are validated. - *delimiter*: is the character(s) separating row items - *names*: if not None, is a list of header names. In this case, no header will be read from the file If *newfig* is *True*, the plot always will be made in a new figure; if *False*, it will be made in the current figure if one exists, else in a new figure. kwargs are passed on to plotting functions. Example usage:: # plot the 2nd and 4th column against the 1st in two subplots plotfile(fname, (0,1,3)) # plot using column names; specify an alternate plot type for volume plotfile(fname, ('date', 'volume', 'adj_close'), plotfuncs={'volume': 'semilogy'}) Note: plotfile is intended as a convenience for quickly plotting data from flat files; it is not intended as an alternative interface to general plotting with pyplot or matplotlib. """ if newfig: fig = figure() else: fig = gcf() if len(cols) < 1: raise ValueError('must have at least one column of data') if plotfuncs is None: plotfuncs = {} with cbook._suppress_matplotlib_deprecation_warning(): r = mlab._csv2rec(fname, comments=comments, skiprows=skiprows, checkrows=checkrows, delimiter=delimiter, names=names) def getname_val(identifier): 'return the name and column data for identifier' if isinstance(identifier, str): return identifier, r[identifier] elif isinstance(identifier, Number): name = r.dtype.names[int(identifier)] return name, r[name] else: raise TypeError('identifier must be a string or integer') xname, x = getname_val(cols[0]) ynamelist = [] if len(cols) == 1: ax1 = fig.add_subplot(1, 1, 1) funcname = plotfuncs.get(cols[0], 'plot') func = getattr(ax1, funcname) func(x, **kwargs) ax1.set_ylabel(xname) else: N = len(cols) for i in range(1, N): if subplots: if i == 1: ax = ax1 = fig.add_subplot(N - 1, 1, i) else: ax = fig.add_subplot(N - 1, 1, i, sharex=ax1) elif i == 1: ax = fig.add_subplot(1, 1, 1) yname, y = getname_val(cols[i]) ynamelist.append(yname) funcname = plotfuncs.get(cols[i], 'plot') func = getattr(ax, funcname) func(x, y, **kwargs) if subplots: ax.set_ylabel(yname) if ax.is_last_row(): ax.set_xlabel(xname) else: ax.set_xlabel('') if not subplots: ax.legend(ynamelist) if xname == 'date': fig.autofmt_xdate()
493fccdf7d3661b9acffd22dbfd5799126a3d4f8
13,823
import argparse def parse_options(): """Parses and checks the command-line options. Returns: A tuple containing the options structure. """ usage = 'Usage: ./update_mapping.py [options]' desc = ('Example: ./update_mapping.py -o mapping.json.\n' 'This script generates and stores a file that gives the\n' 'mapping between phone serial numbers and BattOr serial numbers\n' 'Mapping is based on which physical ports on the USB hubs the\n' 'devices are plugged in to. For instance, if there are two hubs,\n' 'the phone connected to port N on the first hub is mapped to the\n' 'BattOr connected to port N on the second hub, for each N.') parser = argparse.ArgumentParser(usage=usage, description=desc) parser.add_argument('-o', '--output', dest='out_file', default='mapping.json', type=str, action='store', help='mapping file name') parser.add_argument('-u', '--hub', dest='hub_types', action='append', choices=['plugable_7port'], help='USB hub types.') options = parser.parse_args() if not options.hub_types: options.hub_types = ['plugable_7port'] return options
7f7ee6a90e152023dbf6c6e163361a8c327108ae
13,824
def retrieve(object_type, **kwargs): """Get objects from the Metatlas object database. This will automatically select only objects created by the current user unless `username` is provided. Use `username='*'` to search against all users. Parameters ---------- object_type: string The type of object to search for (i.e. "Groups"). **kwargs Specific search queries (i.e. name="Sargasso"). Use '%' for wildcard patterns (i.e. description='Hello%'). If you want to match a '%' character, use '%%'. Returns ------- objects: list List of Metatlas Objects meeting the criteria. Will return the latest version of each object. """ workspace = Workspace.get_instance() out = workspace.retrieve(object_type, **kwargs) workspace.close_connection() return out
54d35c23dd92ad65c5911d8c451b5b1fcbd131da
13,825
def read_plot_pars() : """ Parameters are (in this order): Minimum box width, Maximum box width, Box width iterations, Minimum box length, Maximum box length, Box length iterations, Voltage difference """ def extract_parameter_from_string(string): #returns the part of the string after the ':' sign parameter = "" start_index = string.find(':') for i in range(start_index+1, len(string)-1): parameter += string[i] return parameter f = open("input.txt", "r") pars = [] line_counter = 0 for line in f: if ((line_counter > 0) and (line_counter < 8)): pars.append(extract_parameter_from_string(line)) line_counter += 1 return pars
c78dc8e2a86b20eb6007850a70c038de5bf9f841
13,826
import typing def create(subscribe: typing.Subscription) -> Observable: """Creates an observable sequence object from the specified subscription function. .. marble:: :alt: create [ create(a) ] ---1---2---3---4---| Args: subscribe: Subscription function. Returns: An observable sequence that can be subscribed to via the given subscription function. """ return Observable(subscribe)
79c149545475a7686f8f8dffaed8f343604dd4aa
13,827
def tocl(d): """Generate TOC, in-page links to the IDs we're going to define below""" anchors = sorted(d.keys(), key=_lower) return TemplateData(t='All The Things', e=[a for a in anchors])
8c27c42f05e4055a8e195d4d352345acc7821bae
13,828
def get_upper_parentwidget(widget, parent_position: int): """This function replaces this: self.parentWidget().parentWidget().parentWidget() with this: get_upper_parentwidget(self, 3) :param widget: QWidget :param parent_position: Which parent :return: Wanted parent widget """ while parent_position > 0: widget = widget.parentWidget() parent_position -= 1 else: return widget
ff010f3d9e000cfa3c58160e150c858490f2412d
13,829
def DirectorySizeAsString(directory): """Returns size of directory as a string.""" return SizeAsString(DirectorySize(directory))
3e3d3b029da40502c2f0e7e5867786d586ad8109
13,830
def patch_is_tty(value): """ Wrapped test function will have peltak.core.shell.is_tty set to *value*. """ def decorator(fn): # pylint: disable=missing-docstring @wraps(fn) def wrapper(*args, **kw): # pylint: disable=missing-docstring is_tty = shell.is_tty shell.is_tty = value try: return fn(*args, **kw) finally: shell.is_tty = is_tty return wrapper return decorator
77655d32a5572824978910a12378a54d83b7e81e
13,831
import torch import math def uniform_unit_scaling(tensor: torch.Tensor, nonlinearity: str = "linear"): """ An initaliser which preserves output variance for approximately gaussian distributed inputs. This boils down to initialising layers using a uniform distribution in the range `(-sqrt(3/dim[0]) * scale, sqrt(3 / dim[0]) * scale)`, where `dim[0]` is equal to the input dimension of the parameter and the `scale` is a constant scaling factor which depends on the non-linearity used. See `Random Walk Initialisation for Training Very Deep Feedforward Networks <https://www.semanticscholar.org/paper/Random-Walk-Initialization-for-Training-Very-Deep-Sussillo-Abbott/be9728a0728b6acf7a485225b1e41592176eda0b>`_ for more information. # Parameters tensor : `torch.Tensor`, required. The tensor to initialise. nonlinearity : `str`, optional (default = `"linear"`) The non-linearity which is performed after the projection that this tensor is involved in. This must be the name of a function contained in the `torch.nn.functional` package. # Returns The initialised tensor. """ size = 1.0 # Estimate the input size. This won't work perfectly, # but it covers almost all use cases where this initialiser # would be expected to be useful, i.e in large linear and # convolutional layers, as the last dimension will almost # always be the output size. for dimension in list(tensor.size())[:-1]: size *= dimension activation_scaling = torch.nn.init.calculate_gain(nonlinearity, tensor) max_value = math.sqrt(3 / size) * activation_scaling return tensor.data.uniform_(-max_value, max_value)
aa14ec45c389c55c141d9bffd6ef370313fdf446
13,832
def get_results(elfFile): """Converts and returns collected data.""" staticSizes = parseElf(elfFile) romSize = sum([size for key, size in staticSizes.items() if key.startswith("rom_")]) ramSize = sum([size for key, size in staticSizes.items() if key.startswith("ram_")]) results = { "rom": romSize, "rom_rodata": staticSizes["rom_rodata"], "rom_code": staticSizes["rom_code"], "rom_misc": staticSizes["rom_misc"], "ram": ramSize, "ram_data": staticSizes["ram_data"], "ram_zdata": staticSizes["ram_zdata"], } return results
b60052f702e53655ab1a109ea2bb039e78aabaf5
13,833
def path_element_to_dict(pb): """datastore.entity_pb.Path_Element converter.""" return { 'type': pb.type(), 'id': pb.id(), 'name': pb.name(), }
2a4e757dedf6707dc412248f84b377c2f375e70c
13,834
import tempfile import os def copy_to_tmp(in_file): """Copies a file to a tempfile. The point of this is to copy small files from CNS to tempdirs on the client when using code that's that hasn't been Google-ified yet. Examples of files are the vocab and config files of the Hugging Face tokenizer. Arguments: in_file: Path to the object to be copied, likely in CNS Returns: Path where the object ended up (inside of the tempdir). """ # We just want to use Python's safe tempfile name generation algorithm with tempfile.NamedTemporaryFile(delete=False) as f_out: target_path = os.path.join(tempfile.gettempdir(), f_out.name) gfile.Copy(in_file, target_path, overwrite=True) return target_path
97b98214df23079d5aa9ee0ece072204d36d2f33
13,835
def get_orr_tensor(struct): """ Gets orientation of all molecules in the struct """ molecule_list = get_molecules(struct) orr_tensor = np.zeros((len(molecule_list),3,3)) for i,molecule_struct in enumerate(molecule_list): orr_tensor[i,:,:] = get_molecule_orientation(molecule_struct) return orr_tensor
faf42cf76168191835d9dd354ae9bc03198829ad
13,836
def make_request_for_quotation(supplier_data=None): """ :param supplier_data: List containing supplier data """ supplier_data = supplier_data if supplier_data else get_supplier_data() rfq = frappe.new_doc('Request for Quotation') rfq.transaction_date = nowdate() rfq.status = 'Draft' rfq.company = '_Test Company' rfq.message_for_supplier = 'Please supply the specified items at the best possible rates.' for data in supplier_data: rfq.append('suppliers', data) rfq.append("items", { "item_code": "_Test Item", "description": "_Test Item", "uom": "_Test UOM", "qty": 5, "warehouse": "_Test Warehouse - _TC", "schedule_date": nowdate() }) rfq.submit() return rfq
ee0663231fc0bb06f6f43fa5abecdced048c1458
13,837
def mlrPredict(W, data): """ mlrObjFunction predicts the label of data given the data and parameter W of Logistic Regression Input: W: the matrix of weight of size (D + 1) x 10. Each column is the weight vector of a Logistic Regression classifier. X: the data matrix of size N x D Output: label: vector of size N x 1 representing the predicted label of corresponding feature vector given in data matrix """ label = np.zeros((data.shape[0], 1)) row = data.shape[0] ################## # YOUR CODE HERE # ################## # HINT: Do not forget to add the bias term to your input data # Adding biases biases = np.full((row,1),1) X = np.concatenate((biases,data), axis=1) t = np.sum(np.exp(np.dot(X,W)),axis=1) t = t.reshape(t.shape[0],1) theta_value = np.exp(np.dot(X,W))/t label = np.argmax(theta_value,axis=1) label = label.reshape(row,1) return label
a37359433b020eb625b37ea57cb15282c4f82c8d
13,838
import glob import filecmp import subprocess def write_urdb_rate_data(urdb_rate_data, urdb_filepath = './', overwrite_identical=True): """ Takes Pandas DataFrame containing URDB rate data and stores as .csv at urdb_filepath. The 'overwrite_identical' variable indicates whether 'urdb_rate_data' should be compared to previous URDB download and replace it if they are found to be identical. This avoids data duplication when it is unnecessary. Function returns True if data previously exists, False if it is unique, and None if the comparison was never performed (overwrite_identical == False). """ todays_date = helpers.todays_date() new_urdb_file = urdb_filepath+'usurdb_{}.csv'.format(todays_date) urdb_rate_data.to_csv(new_urdb_file, index=False) # Check if db has changed since last download if overwrite_identical: prev_urdb_files = glob.glob(urdb_filepath+'*.csv') if len(prev_urdb_files)>1: prev_urdb_dates = [fp.split('usurdb_')[1].split('.csv')[0] for fp in prev_urdb_files] prev_urdb_dates.remove(todays_date) most_recent_date = pd.Series(prev_urdb_dates).map(int).max() most_recent_urdb_file = urdb_filepath+'usurdb_{}.csv'.format(most_recent_date) if filecmp.cmp(new_urdb_file, most_recent_urdb_file, shallow=True): subprocess.run('rm {}'.format(most_recent_urdb_file), shell=True) prev_exists = True else: prev_exists = False else: prev_exists = False else: prev_exists = None return prev_exists
cde6f16f4ba8abf2c744fb6ef579c0beddd407fd
13,839
def add(n): """Add 1.""" return n + 1
c62cee4660540ae62b5b73369bdeb56ccb0088d6
13,840
import psutil import os def get_system_status(memory_total=False, memory_total_actual=False, memory_total_usage=False, memory_total_free=False, all_pids=False, swap_memory=False, pid=False): """ Parameters ---------- threads: bool return dict {id: (user_time, system_time)} memory_maps: bool return dict {path: rss} Note ---- All memory is returned in `MiB` To calculate memory_percent: get_system_status(memory_usage=True) / get_system_status(memory_total=True) * 100 """ # ====== general system query ====== # if memory_total: return psutil.virtual_memory().total / float(2**20) if memory_total_actual: return psutil.virtual_memory().available / float(2**20) if memory_total_usage: return psutil.virtual_memory().used / float(2**20) if memory_total_free: return psutil.virtual_memory().free / float(2**20) if swap_memory: tmp = psutil.swap_memory() tmp.total /= float(2**20) tmp.used /= float(2**20) tmp.free /= float(2**20) tmp.sin /= float(2**20) tmp.sout /= float(2**20) return tmp if all_pids: return psutil.pids() if pid: return os.getpid()
79b3b43a3e046c2fc1237cde103c6f416ae1f01b
13,841
def _area(x1, y1, x2, y2, x3, y3): """Heron's formula.""" a = np.sqrt(pow(x1 - x2, 2) + pow(y1 - y2, 2)) b = np.sqrt(pow(x3 - x2, 2) + pow(y3 - y2, 2)) c = np.sqrt(pow(x1 - x3, 2) + pow(y3 - y1, 2)) s = (a + b + c) / 2 return np.sqrt(s * (s - a) * (s - b) * (s - c))
456ffe56a76fbea082939c278b5f0f2ebaf8c395
13,842
def plot_coarray(array, ax=None, show_location_errors=False): """Visualizes the difference coarray of the input array. Args: array (~doatools.model.arrays.ArrayDesign): A sensor array. ax (~matplotlib.axes.Axes): Matplotlib axes used for the plot. If not specified, a new figure will be created. Default value is ``None``. show_location_errors (bool): If set to ``True``, will visualized the perturbed array if the input array has location errors. Returns: The axes object containing the plot. """ return _plot_array_impl(array, ax, True, show_location_errors)
e4a0d1fe4ab48b5050c55d44bd4ca4342cc9f9a9
13,843
def get_publicKey(usrID): # TODO: from barbican """ Get the user's public key Returns: Public key from meta-container (Keys) in meta-tenant """ auth = v3.Password(auth_url=AUTH_URL,username=SWIFT_USER,password=SWIFT_PASS,project_name='demo',project_domain_id="Default",user_domain_name='Default') sess = session.Session(auth=auth) barbican = bc.Client(session=sess) keystone = kc.Client(session=sess) try: user = keystone.users.get(usrID) dict_keys = json.loads(user.description) ref = dict_keys.get('Public_Key','') ref = "%s/secrets/%s" %(BARBICAN_URL,ref) secret_node = barbican.secrets.get(ref) except Exception,err: return return secret_node.payload
545dec9826273830767f395903cae878df8213b0
13,844
def pad_sequence(sequences, batch_first=False, padding_value=0.0): """Pad a list of variable-length Variables. This method stacks a list of variable-length :obj:`nnabla.Variable` s with the padding_value. :math:`T_i` is the length of the :math:`i`-th Variable in the sequences. :math:`B` is the batch size equal to the length of the sequences. :math:`T` is the max of :math:`T_i` for all :math:`i`. :math:`*` is the remaining dimensions including none. .. note:: This function **must** be used the dynamic computation mode. Example: .. code-block:: python import numpy as np import nnabla as nn import nnabla.functions as F import nnabla.utils.rnn as rnn_utils nn.set_auto_forward(True) l2v = lambda ldata: nn.Variable.from_numpy_array(np.asarray(ldata)) a = l2v([1, 1, 1, 1]) b = l2v([2, 2, 2]) c = l2v([2, 2, 2]) d = l2v([3, 3]) e = l2v([3, 3]) sequences = [a, b, c, d, e] padded_sequence = rnn_utils.pad_sequence(sequences) print(padded_sequence.d) Args: sequences (list of :obj:`nnabla.Variable`): Sequence of the variable of (:math:`T_i`, :math:`*`) shape. batch_first (bool): If False, output is of (:math:`T`, :math:`B`, :math:`*`) shape, otherwise (:math:`B`, :math:`T`, :math:`*`). padding_value (float): Padding value. Returns: :obj:`nnabla.Variable` of (:math:`T`, :math:`B`, :math:`*`) or (:math:`B`, :math:`T`, :math:`*`) shape """ B = len(sequences) T = max([e.shape[0] for e in sequences]) shape0 = (B, T) if batch_first else (T, B) shape1 = sequences[0].shape[1:] padded_sequence = F.constant(padding_value, shape0 + shape1) for b, s in enumerate(sequences): l = s.shape[0] if batch_first: padded_sequence[b, :l, ...] = s else: padded_sequence[:l, b, ...] = s return padded_sequence
449c7681d39edc0494269aefd488aa44548a68df
13,845
import urllib import yaml import requests def _fetch_global_config(config_url, github_release_url, gh_token): """ Fetch the index_runner_spec configuration file from the Github release using either the direct URL to the file or by querying the repo's release info using the GITHUB API. """ if config_url: print('Fetching config from the direct url') # Fetch the config directly from config_url with urllib.request.urlopen(config_url) as res: # nosec return yaml.safe_load(res) # type: ignore else: print('Fetching config from the release info') # Fetch the config url from the release info if gh_token: headers = {'Authorization': f'token {gh_token}'} else: headers = {} tries = 0 # Sometimes Github returns usage errors and a retry will solve it while True: release_info = requests.get(github_release_url, headers=headers).json() if release_info.get('assets'): break if tries == _FETCH_CONFIG_RETRIES: raise RuntimeError(f"Cannot fetch config from {github_release_url}: {release_info}") tries += 1 for asset in release_info['assets']: if asset['name'] == 'config.yaml': download_url = asset['browser_download_url'] with urllib.request.urlopen(download_url) as res: # nosec return yaml.safe_load(res) raise RuntimeError("Unable to load the config.yaml file from index_runner_spec")
c436bfb7692ce0d100367691588d511ed95bce99
13,846
def parse_color(c, desc): """Check that a given value is a color.""" return c
ebabefbd56de120a753723f1dccb0f7c12af2fe6
13,847
import os def get_package_dir(): """ Gets directory where package is installed :return: """ return os.path.dirname(ndextcgaloader.__file__)
447b6ed962119787c3c11f457fcf81bc31b0ae0d
13,848
def __virtual__(): """Only load gnocchiv1 if requirements are available.""" if REQUIREMENTS_MET: return 'gnocchiv1' else: return False, ("The gnocchiv1 execution module cannot be loaded: " "os_client_config or keystoneauth are unavailable.")
5dc2a83ba6a93a37f037978bfe89edf6ec2fe103
13,849
def setup(): """Start headless Chrome in docker container.""" options = webdriver.ChromeOptions() options.add_argument('--no-sandbox') options.add_argument('--headless') options.add_argument('--disable-gpu') driver = webdriver.Chrome(options=options) driver.implicitly_wait(5) return driver
79c135732b39513f270ac0f670ffddc89b576f75
13,850
import json def lambdaResponse(statusCode, body, headers={}, isBase64Encoded=False): """ A utility to wrap the lambda function call returns with the right status code, body, and switches. """ # Make sure the body is a json object if not isinstance(body, str): body = json.dumps(body) # Make sure the content type is json header = headers header["Content-Type"] = "application/json" header["Access-Control-Allow-Origin"]= "*" response = { "isBase64Encoded": isBase64Encoded, "statusCode": statusCode, "headers": header, "body": body } return response
0159ba871c38ce550752d47ffea536c33a5d6b3e
13,851
def singleton(class_): """ Specify that a class is a singleton :param class_: :return: """ instances = {} def getinstance(*args, **kwargs): if class_ not in instances: instances[class_] = class_(*args, **kwargs) return instances[class_] return getinstance
678205d133783f6b0720876546deed9ed7c59d72
13,852
from typing import Optional from typing import Union from typing import List from datetime import datetime def is_datetime( value: Scalar, formats: Optional[Union[str, List[str]]] = None, typecast: Optional[bool] = True ) -> bool: """Test if a given string value can be converted into a datetime object for a given data format. The function accepts a single date format or a list of formates. If no format is given, ISO format is assumed as the default. Parameters ---------- value: scalar Scalar value that is tested for being a date. formats: string or list(string) Date format string using Python strptime() format directives. This can be a list of date formats. typecast: bool, default=True Attempt to parse string values as dates if True. Returns ------- bool """ if isinstance(value, datetime): return True elif not typecast or not isinstance(value, str): return False # Try to convert the given string to a datatime object with the format # that was specified at object instantiation. This will raise an # exception if the value does not match the datetime format string. # Duplicate code depending on whether format is a list of a string. if formats is None: # Issue \#39: dateutil.parse (falsely?) identifies the following # strings as dates. For column profiling we want to exclude these: # 14A; 271 1/2; 41-05; 6-8 # # As a work-around for now we expect a valid date to have at least six # characters (one for day, month, two for year and at least two # non-alphanumeric characters. # # An alternative solution was pointed out by @remram44: # https://gitlab.com/ViDA-NYU/datamart/datamart/-/blob/39462a5dca533a1e55596ddcbfc0ac7e98dce4de/lib_profiler/datamart_profiler/temporal.py#L63 # noqa: E501 # # All solutions seem to suffer from the problem that values like # 152-12 are valid dates (e.g., 152-12-01 in this case) but also # valid house numbers, for example. There is no good solution here. # For now we go with the assumption that if someone wants to specify # a date it should have at least a day, month and year separated by # some special (non-alphanumeric) charcater. if len(value) >= 6 and has_two_spec_chars(value): try: parse(value, fuzzy=False) return True except (OverflowError, TypeError, ValueError): pass else: return to_datetime_format(value=value, formats=formats) is not None return False
642fbe509c7b13a905dc4c65b43dcec20f36fb7e
13,853
def sortkey(d): """Split d on "_", reverse and return as a tuple.""" parts=d.split("_") parts.reverse() return tuple(parts)
1d8f8864a3d0bfd7dae8711bca183317e0f3fc0e
13,854
def resolve_stream_name(streams, stream_name): """Returns the real stream name of a synonym.""" if stream_name in STREAM_SYNONYMS and stream_name in streams: for name, stream in streams.items(): if stream is streams[stream_name] and name not in STREAM_SYNONYMS: return name return stream_name
48fe2f5eca72b30bd669477807c9b7476eb4ef18
13,855
def get_split_cifar100_tasks(num_tasks, batch_size,run,paradigm,dataset): """ Returns data loaders for all tasks of split CIFAR-100 :param num_tasks: :param batch_size: :return: datasets = {} # convention: tasks starts from 1 not 0 ! # task_id = 1 (i.e., first task) => start_class = 0, end_class = 4 cifar_transforms = torchvision.transforms.Compose([torchvision.transforms.ToTensor(),]) cifar_train = torchvision.datasets.CIFAR100('./data/', train=True, download=True, transform=cifar_transforms) cifar_test = torchvision.datasets.CIFAR100('./data/', train=False, download=True, transform=cifar_transforms) for task_id in range(1, num_tasks+1): train_loader, test_loader = get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} return datasets """ """ datasets = {} paradigm = 'class_iid' run = 0 dataset = core50( paradigm, run) for task_id in range(0, num_tasks): train_loader, val, test_loader = dataset.getNextClasses(task_id) #get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} return datasets """ datasets = {} #paradigm = 'class_iid' #run = 0 #dataset = load_datasets( paradigm, run) if dataset == 'core50': for task_id in range(0, num_tasks): train_loader, test_loader = dataset_core50(task_id,batch_size,run,paradigm,dataset) #get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} if dataset == 'toybox': for task_id in range(0, num_tasks): train_loader, test_loader = dataset_toybox(task_id,batch_size,run,paradigm,dataset) #get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} if dataset == 'ilab': for task_id in range(0, num_tasks): train_loader, test_loader = dataset_ilab(task_id,batch_size,run,paradigm,dataset) #get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} if dataset == 'cifar100': for task_id in range(0, num_tasks): train_loader, test_loader = dataset_cifar100(task_id,batch_size,run,paradigm,dataset) #get_split_cifar100(task_id, batch_size, cifar_train, cifar_test) datasets[task_id] = {'train': train_loader, 'test': test_loader} return datasets
003c74a55a4e9a1f645a6bc930abf65342abd0fc
13,856
def is_point_in_triangle(pt, v1, v2, v3): """Returns True if the 2D point pt is within the triangle defined by v1-3. https://www.gamedev.net/forums/topic/295943-is-this-a-better-point-in-triangle-test-2d/ """ b1 = sign(pt, v1, v2) < 0.0 b2 = sign(pt, v2, v3) < 0.0 b3 = sign(pt, v3, v1) < 0.0 return ((b1 == b2) and (b2 == b3))
2ff58dfb4efe939513cc901772aa744296ebb960
13,857
def precomputed_aug_experiment( clf, auged_featurized_x_train, auged_featurized_y_train, auged_featurized_x_train_to_source_idxs, auged_featurized_x_test, auged_featurized_y_test, auged_featurized_x_test_to_source_idxs, aug_iter, train_idxs_scores, n_aug_sample_points, update_scores=False, weight_aug_samples=False, use_loss=False, stratified_sampling_x_train_ks=None, ): """ This is a precomputed version of the aug_experiment. Here, we expect training sets to be augmented and featurized up front. This function will index into the augmented set (with featurization) to get the input that would be fed into the classifier. @param clf The classifier to use (e.g., logistic regression) @param auged_featurized_x_train The augmented and featurized training set. @param auged_featurized_y_train The labels of the training set. @param auged_featurized_x_train_to_source_idxs A list of idxs corresponding to the source of augmented images from the original training set. -1 means that the point is an original point. @param auged_featurized_x_test The augmented and featurized test set. @param auged_featurized_y_test The labels of the test set. @param auged_featurized_x_test_to_source_idxs A list of idxs corresponding to the source of augmented images from the original test set. -1 means that the point is an original point. @param aug_iter The policy to use. @param train_idxs_scores The scores to use for the policies (e.g., LOO influence or loss). @param stratified_sampling_x_train_ks The population type of each train sample for stratified sampling. Sampling is round robin in numeric order. @return An list of accuracies on the test set and a list of the points that were chosen for augmentation. """ influence_acc = [] aug_iter_idxs = [] original_mask_train = auged_featurized_x_train_to_source_idxs < 0 original_x_train = auged_featurized_x_train[original_mask_train] original_y_train = auged_featurized_y_train[original_mask_train] auged_x_train = np.copy(original_x_train) auged_y_train = np.copy(original_y_train) n_aug_sample_points = set(n_aug_sample_points) if weight_aug_samples: sample_weight = np.ones(len(original_x_train)) else: sample_weight = None if stratified_sampling_x_train_ks is not None: aug_idxs = stratified_sampling_to_aug_idxs( train_idxs_scores, aug_iter, stratified_sampling_x_train_ks, ) else: aug_idxs = np.array(list(aug_iter(train_idxs_scores))).flatten() assert len(np.unique(aug_idxs)) == len(aug_idxs) already_auged = set() while len(already_auged) < len(original_x_train): assert len(train_idxs_scores) == len(original_x_train) next_idxs = [idx for idx in aug_idxs if idx not in already_auged] idx = next_idxs[0] already_auged.add(idx) aug_mask = auged_featurized_x_train_to_source_idxs == idx x_aug_ = auged_featurized_x_train[aug_mask] auged_x_train = np.concatenate( [ auged_x_train, x_aug_, ], axis=0) y_aug_ = auged_featurized_y_train[aug_mask] auged_y_train = np.concatenate( [ auged_y_train, y_aug_, ], axis=0) if weight_aug_samples: # We downweight all points from the original train point rescale_weight = 1.0 / (len(x_aug_) + 1) weight_aug_ = np.full(len(x_aug_), rescale_weight) sample_weight = np.concatenate([ sample_weight, weight_aug_, ], axis=0) sample_weight[idx] = rescale_weight if len(already_auged) in n_aug_sample_points: fit_params = {"logistic_reg__sample_weight": sample_weight} clf.fit(auged_x_train, auged_y_train, **fit_params) aug_train_poisoned_acc = clf.score( auged_featurized_x_test, auged_featurized_y_test) influence_acc.append(aug_train_poisoned_acc) aug_iter_idxs.append(idx) if update_scores: if isinstance(clf, sklearn.model_selection.GridSearchCV): if use_loss: train_idxs_scores = (clf .best_estimator_ .named_steps["logistic_reg"] .log_losses(L2_alpha=0.0)) else: train_idxs_scores = (clf .best_estimator_ .named_steps["logistic_reg"] .LOO_influence()) else: if use_loss: train_idxs_scores = (clf .named_steps["logistic_reg"] .log_losses(L2_alpha=0.0)) else: train_idxs_scores = (clf .named_steps["logistic_reg"] .LOO_influence()) train_idxs_scores = train_idxs_scores[:len(original_x_train)] if stratified_sampling_x_train_ks is not None: aug_idxs = stratified_sampling_to_aug_idxs( train_idxs_scores, aug_iter, stratified_sampling_x_train_ks, ) else: aug_idxs = np.array( list(aug_iter(train_idxs_scores)) ).flatten() return influence_acc, aug_iter_idxs
50f03f08c7ce0777658ca3f84691b940f190e4cd
13,858
def get_yahoo_data(symbol, start_date, end_date): """Returns pricing data for a YAHOO stock symbol. Parameters ---------- symbol : str Symbol of the stock in the Yahoo. You can refer to this link: https://www.nasdaq.com/market-activity/stocks/screener?exchange=nasdaq. start_date : str Starting date (YYYY-MM-DD) of the period that you want to get data on end_date : str Ending date (YYYY-MM-DD) of the period you want to get data on Returns ------- pandas.DataFrame Stock data (in OHLCAV format) for the specified company and date range """ df = yf.download(symbol, start=start_date, end=end_date) df = df.reset_index() rename_dict = { "Date": "dt", "Open": "open", "High": "high", "Low": "low", "Close": "close", "Adj Close": "adj_close", "Volume": "volume", } rename_list = ["dt", "open", "high", "low", "close", "adj_close", "volume"] df = df.rename(columns=rename_dict)[rename_list].drop_duplicates() df["dt"] = pd.to_datetime(df.dt) return df.set_index("dt")
adc2a6186d96c76a75a62391c7f8d7534836f5bd
13,859
def first_n(m: dict, n: int): """Return first n items of dict""" return {k: m[k] for k in list(m.keys())[:n]}
57ccc9f8913c60c592b38211900fe8d28feffb4c
13,860
from typing import List from typing import Dict from typing import Union def listdictnp_combine( lst: List, method: str = "concatenate", axis: int = 0, keep_nested: bool = False, allow_error: bool = False, ) -> Dict[str, Union[np.ndarray, List]]: """Concatenate or stack a list of dictionaries contains numpys along with error handling Parameters ---------- lst : list list of dicts containings np arrays method : str 'concatenate' or 'stack' axis : int axis to concat or stack over keep_nested : bool keep nested structure of list or not allow_error : bool allow for error handling. If op does not succes, list is provided Returns ------- np.array OR list of np.array in case of error """ for k in range(len(lst)): assert ( lst[0].keys() == lst[k].keys() ), "Dict keys do not match in listdictnp_combine fct" # get keys keys = lst[0].keys() output_dict = dict() for key in keys: # merge nested list if keep_nested: tmp = [None] * len(lst) for k in range(len(lst)): tmp[k] = lst[k][key] else: tmp = list() for k in range(len(lst)): tmp = [*tmp, *lst[k][key]] # convert to numpy if possible output_dict[key] = listnp_combine( tmp, method=method, axis=axis, allow_error=allow_error ) return output_dict
b4527342c8a3b90c797e7ef88326c97b4933d1b0
13,861
def find_pure_symbol(symbols, clauses): """Find a symbol and its value if it appears only as a positive literal (or only as a negative) in clauses. >>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A]) (A, True) """ for s in symbols: found_pos, found_neg = False, False for c in clauses: if not found_pos and s in disjuncts(c): found_pos = True if not found_neg and ~s in disjuncts(c): found_neg = True if found_pos != found_neg: return s, found_pos return None, None
657c011fb0ee865252e7deed4672cde08c6db2e9
13,862
def cross_entropy_emphasized_loss(labels, predictions, corrupted_inds, axis=0, alpha=0.3, beta=0.7, regularizer=None): """ Compute cross entropy loss over training examples that have been corrupted along certain dimensions :param labels: tensor of training example with no corruption added :param predictions: output tensor of autoencoder :param corrupted_inds: indices of corrupted dimensions (if any) :param axis: axis along which components are taken :param alpha: weight for error on components that were corrupted :param beta: weight for error on components that were not corrupted :return: cross entropy loss, emphasized by corrupted component weight """ assert (labels.shape[axis] == predictions.shape[axis]) assert (labels.dtype == predictions.dtype) num_elems = labels.shape[axis].value * FLAGS.batch_size # corrupted features x_c = tf.boolean_mask(labels, corrupted_inds) z_c = tf.boolean_mask(predictions, corrupted_inds) # uncorrupted features x = tf.boolean_mask(labels, ~corrupted_inds) z = tf.boolean_mask(predictions, ~corrupted_inds) # if training on examples with corrupted indices if x_c is not None: lhs = alpha * (-tf.reduce_sum(tf.add(tf.multiply(x_c, tf.log(z_c)), tf.multiply(1.0 - x_c, tf.log(1.0 - z_c))))) rhs = beta * (-tf.reduce_sum(tf.add(tf.multiply(x, tf.log(z)), tf.multiply(1.0 - x, tf.log(1.0 - z))))) else: lhs = 0 rhs = -tf.reduce_sum(tf.add(tf.multiply(labels, tf.log(predictions)), tf.multiply(1.0 - labels, tf.log(1.0 - predictions)))) return tf.add(lhs, rhs) / num_elems
e4ebb4e3198dea085789c81388522130ed867e3f
13,863
def get_process_list(node: Node): """Analyse the process description and return the Actinia process chain and the name of the processing result :param node: The process node :return: (output_objects, actinia_process_list) """ input_objects, process_list = check_node_parents(node=node) output_objects = [] # First analyse the data entry if "id" not in node.arguments: raise Exception("Process %s requires parameter <id>" % PROCESS_NAME) input_object = DataObject.from_string(node.arguments["id"]) spatial_extent = None if "spatial_extent" in node.arguments: spatial_extent = node.arguments["spatial_extent"] temporal_extent = None if "temporal_extent" in node.arguments: temporal_extent = node.arguments["temporal_extent"] bands = None if "bands" in node.arguments: bands = node.arguments["bands"] if input_object.is_strds() and \ (temporal_extent is not None or bands is not None): output_object = DataObject( name=create_output_name(input_object.name, PROCESS_NAME), datatype=input_object.datatype) else: output_object = input_object output_objects.append(output_object) node.add_output(output_object) pc = create_process_chain_entry(input_object, spatial_extent, temporal_extent, bands, output_object) process_list.extend(pc) return output_objects, process_list
00f5e6c767975def09fbea800a8b74cfcd12f935
13,864
def _validate_image_formation(the_sicd): """ Validate the image formation. Parameters ---------- the_sicd : sarpy.io.complex.sicd_elements.SICD.SICDType Returns ------- bool """ if the_sicd.ImageFormation is None: the_sicd.log_validity_error( 'ImageFormation attribute is not populated, and ImageFormType is {}. This ' 'cannot be valid.'.format(the_sicd.ImageFormType)) return False # nothing more to be done. alg_types = [] for alg in ['RgAzComp', 'PFA', 'RMA']: if getattr(the_sicd, alg) is not None: alg_types.append(alg) if len(alg_types) > 1: the_sicd.log_validity_error( 'ImageFormation.ImageFormAlgo is set as {}, and multiple SICD image formation parameters {} are set.\n' 'Only one image formation algorithm should be set, and ImageFormation.ImageFormAlgo ' 'should match.'.format(the_sicd.ImageFormation.ImageFormAlgo, alg_types)) return False elif len(alg_types) == 0: if the_sicd.ImageFormation.ImageFormAlgo is None: the_sicd.log_validity_warning( 'ImageFormation.ImageFormAlgo is not set, and there is no corresponding\n' 'RgAzComp, PFA, or RMA SICD parameters set. Setting ImageFormAlgo ' 'to "OTHER".'.format(the_sicd.ImageFormation.ImageFormAlgo)) the_sicd.ImageFormation.ImageFormAlgo = 'OTHER' return True elif the_sicd.ImageFormation.ImageFormAlgo != 'OTHER': the_sicd.log_validity_error( 'No RgAzComp, PFA, or RMA SICD parameters populated, but ImageFormation.ImageFormAlgo ' 'is set as {}.'.format(the_sicd.ImageFormation.ImageFormAlgo)) return False return True # there is exactly one algorithm type populated return _validate_image_form_parameters(the_sicd, alg_types[0])
b68c9a767e2499b8149389e2e207a0f05d20bf44
13,865
def handle_closet(player, level, reward_list): """ Handle a closet :param player: The player object for the player :param level: The level that the player is on :return reward: The reward given to the player """ # Print the dialogue for the closet print "You found a closet. It appears to be unlocked." print "Should you open it?" # Get the players move player_move = handle_options(player, ["Open the Closet!", "No! Its a trap!"]) reward = None if player_move == 1: # Decide what happens when the person opens the closet closet_outcome = randint(0, 5) if closet_outcome < level: # There is a rat inside the closet print "OH NO! There is a giant man eating rat in there!" handle_fight(player, 3, 10) else: # You get a helpful reward from the closet reward = reward_list[randint(0, len(reward_list)-1)] print "Congratulations! You found a " + reward + "!" print "This item increases your damage points by", 2 * level player.add_damage_points(2*level) return reward
ab170cb556fd688edeac80eac9bb7577df771a33
13,866
def module_path_to_test_path(module): """Convert a module locator to a proper test filename. """ return "test_%s.py" % module_path_to_name(module)
17997d17d64686deec97d4aa9f23a14f04ff5516
13,867
def inspect_bom(filename): """Inspect file for bom.""" encoding = None try: with open(filename, "rb") as f: encoding = has_bom(f.read(4)) except Exception: # pragma: no cover # print(traceback.format_exc()) pass return encoding
84da40bc941053c4e6d18934c27b3e1d63318762
13,868
from packaging.specifiers import SpecifierSet def parse_requirement(text): """ Parse a requirement such as 'foo>=1.0'. Returns a (name, specifier) named tuple. """ match = REQUIREMENT_RE.match(text) if not match: raise ValueError("Invalid requirement: %s" % text) name = match.group('name').strip() spec = SpecifierSet(match.group('specifier') or '') return Requirement(name, spec)
95dab6f3dd6784bf73233e80cfb946f904984a1d
13,869
def H_split(k, N, eps): """Entropy of the split in binary search including overlap, specified by eps""" return (k / N) * (np.log(k) + H_epsilon(k, eps)) + ((N - k) / N) * (np.log(N - k) + H_epsilon(N - k, eps))
555d5e56550851084fdfa148dc7936c75649a197
13,870
def date_features(inputs, features_slice, columns_index) -> tf.Tensor: """Return an input and output date tensors from the features tensor.""" date = features(inputs, features_slice, columns_index) date = tf.cast(date, tf.int32) date = tf.strings.as_string(date) return tf.strings.reduce_join(date, separator="-", axis=-1, keepdims=True)
3362019b24a6f3104d858d2ddf17f0fae4060d7b
13,871
import pickle def save_calib(filename, calib_params): """ Saves calibration parameters as '.pkl' file. Parameters ---------- filename : str Path to save file, must be '.pkl' extension calib_params : dict Calibration parameters to save Returns ------- saved : bool Saved successfully. """ if type(calib_params) != dict: raise TypeError("calib_params must be 'dict'") output = open(filename, 'wb') try: pickle.dump(calib_params, output) except: raise IOError("filename must be '.pkl' extension") output.close() saved = True return saved
6735c8a6e96158b9fc580b6e61609b5ae7733fe0
13,872
def context_to_dict(context): """convert a django context to a dict""" the_dict = {} for elt in context: the_dict.update(dict(elt)) return the_dict
b319c6be4efa83c91eefa249c8be90824bc0158f
13,873
def returnItemsWithMinSupport(itemSet, transactionList, minSupport, freqSet): """calculates the support for items in the itemSet and returns a subset of the itemSet each of whose elements satisfies the minimum support""" _itemSet = set() localSet = defaultdict(int) for item in itemSet: for transaction in transactionList: if item.issubset(transaction): freqSet[item] += 1 localSet[item] += 1 for item, count in list(localSet.items()): support = float(count)/len(transactionList) if support >= minSupport: _itemSet.add(item) return _itemSet
e1290778548f198f87fc210c8a78bbfadaf0de9f
13,874
def create_P(P_δ, P_ζ, P_ι): """ Combine `P_δ`, `P_ζ` and `P_ι` into a single matrix. Parameters ---------- P_δ : ndarray(float, ndim=1) Probability distribution over the values of δ. P_ζ : ndarray(float, ndim=2) Markov transition matrix for ζ. P_ι : ndarray(float, ndim=1) Probability distribution over the values of ι. Returns ---------- P : ndarray(float, ndim=3) Joint probability distribution over the values of δ, ζ and ι. Probabilities vary by δ on the first axis, by ζ on the second axis, and by ι on the third axis. """ P = \ P_δ[:, None, None, None] * P_ζ[None, :, :, None] * \ P_ι[None, None, None, :] return P
0afdef50c50563421bb7c6f3f928fa6b3e5f4733
13,875
import attrs def sel_nearest( dset, lons, lats, tolerance=2.0, unique=False, exact=False, dset_lons=None, dset_lats=None, ): """Select sites from nearest distance. Args: dset (Dataset): Stations SpecDataset to select from. lons (array): Longitude of sites to interpolate spectra at. lats (array): Latitude of sites to interpolate spectra at. tolerance (float): Maximum distance to use site for interpolation. unique (bool): Only returns unique sites in case of repeated inexact matches. exact (bool): Require exact matches. dset_lons (array): Longitude of stations in dset. dset_lats (array): Latitude of stations in dset. Returns: Selected SpecDataset at locations defined by (lons, lats). Note: Args `dset_lons`, `dset_lats` are not required but can improve performance when `dset` is chunked with site=1 (expensive to access station coordinates) and improve precision if projected coordinates are provided at high latitudes. """ coords = Coordinates(dset, lons=lons, lats=lats, dset_lons=dset_lons, dset_lats=dset_lats) station_ids = [] for lon, lat in zip(coords.lons, coords.lats): closest_id, closest_dist = coords.nearest(lon, lat) if closest_dist > tolerance: raise AssertionError( f"Nearest site from (lat={lat}, lon={lon}) is {closest_dist:g} " f"deg away but tolerance is {tolerance:g} deg." ) if exact and closest_dist > 0: raise AssertionError( f"Exact match required but no site at (lat={lat}, lon={lon}), " f"nearest site is {closest_dist} deg away." ) station_ids.append(closest_id) if unique: station_ids = list(set(station_ids)) dsout = dset.isel(**{attrs.SITENAME: station_ids}) # Return longitudes in the convention provided if coords.consistent is False: dsout.lon.values = coords._swap_longitude_convention(dsout.lon.values) dsout = dsout.assign_coords({attrs.SITENAME: np.arange(len(station_ids))}) return dsout
ebf22cdeb30215a76312f2cdd8223a2d24bf6af6
13,876
import datasets def evaluate(dataset, predictions, gts, output_folder): """evaluate dataset using different methods based on dataset type. Args: dataset: Dataset object predictions(dict): each item in the list represents the prediction results for one image. gt(dict): Ground truth for each batch output_folder: output folder, to save evaluation files or results. Returns: evaluation result """ args = dict( predictions=predictions, gts=gts, output_folder=output_folder, ) if isinstance(dataset, datasets.MNIST): return do_mnist_evaluation(**args) elif isinstance(dataset, datasets.MWPose): return do_mwpose_evaluation(dataset=dataset, **args) elif isinstance(dataset, datasets.ModelNetHdf): return do_modelnet_evaluation(**args) else: dataset_name = dataset.__class__.__name__ raise NotImplementedError("Unsupported dataset type {}.".format(dataset_name))
85c0232c53de091f2293d042b944fe8768a9ac91
13,877
from vlescrapertools import getAuthedSession def html_xml_save( s=None, possible_sc_link=None, table="htmlxml", course_presentation=None ): """Save the HTML and XML for a VLE page page.""" if not possible_sc_link: # should really raise error here print("need a link") if not s: if "learn2.open.ac.uk" in possible_sc_link: s = getAuthedSession() else: s = possible_sc_link typ, html_page_url, rawxml, html_src = get_sc_page(possible_sc_link, s) if typ: dbrowdict = { "possible_sc_link": possible_sc_link, "doctype": typ, "html_url": html_page_url, "xml": rawxml, "html_src": html_src, "course_presentation": course_presentation, "courseCode": "", "courseTitle": "", "itemTitle": "", } else: dbrowdict = {} # Get some metadata from the XML # Item/CourseCode # Item/CourseTitle # Item/ItemTitle if typ == "XML": root = etree.fromstring(rawxml.encode("utf-8")) # If the course code is contaminated by a presentation suffix, get rid of the presentation code dbrowdict["courseCode"] = flatten(root.find("CourseCode")).split("-")[0] dbrowdict["courseTitle"] = flatten(root.find("CourseTitle")) dbrowdict["itemTitle"] = flatten(root.find("ItemTitle")) if dbrowdict: DB[table].insert(dbrowdict) return typ, html_page_url, rawxml, html_src
37bb86769c86d851e3fec8dabc17534dfdecde60
13,878
import os def app(request): """An instance of the Flask app that points at a test database. If the TEST_DATABASE environment variable is set to "postgres", launch a temporary PostgreSQL server that gets torn down at the end of the test run. """ database = os.environ.get('TEST_DATABASE', 'sqlite') if database == 'postgres': try: psql = request.getfixturevalue('postgresql_proc') uri = f'postgresql+psycopg2://{psql.user}:@{psql.host}:{psql.port}/' except pytest.FixtureLookupError as error: raise Exception('TEST_POSTGRESQL was set but pytest-postgresql was not installed') from error else: uri = 'sqlite://' main.app.app.config['SQLALCHEMY_DATABASE_URI'] = uri return main.app.app
52cac3b340ef0fb5a92449242644c1061a5cba2b
13,879
def htmr(t,axis="z"): """ Calculate the homogeneous transformation matrix of a rotation respect to x,y or z axis. """ from sympy import sin,cos,tan if axis in ("z","Z",3): M = Matrix([[cos(t),-sin(t),0,0], [sin(t),cos(t),0,0], [0,0,1,0], [0,0,0,1]]) elif axis in ("y","Y",2): M = Matrix([[cos(t),0,sin(t),0], [0,1,0,0], [-sin(t),0,cos(t),0], [0,0,0,1]]) elif axis in ("x","X",1): M = Matrix([[1,0,0,0], [0,cos(t),-sin(t),0,], [0,sin(t),cos(t),0], [0,0,0,1]]) else: return eye(4) return M
b3941680f22b2eb48da15b2bb1a6e39c05e3b5c3
13,880
def vt(n, gm, gsd, dmin=None, dmax=10.): """Evaluate the total volume of the particles between two diameters. The CDF of the lognormal distribution is calculated using equation 8.12 from Seinfeld and Pandis. Mathematically, it is represented as: .. math:: V_t=\\frac{π}{6}∫_{-∞}^{∞}D_p^3n_N^e(ln D_p)d lnD_p \\;\\;(\mu m^3 cm^{-3}) Parameters ---------- n : float Total aerosol number concentration in units of #/cc gm : float Median particle diameter (geometric mean) in units of :math:`\mu m`. gsd : float Geometric Standard Deviation of the distribution. dmin : float The minimum particle diameter in microns. Default value is 0 :math:`\mu m`. dmax : float The maximum particle diameter in microns. Default value is 10 :math:`\mu m`. Returns ------- Volume | float Returns the total volume of particles between :math:`D_{min}` and :math:`D_{max}` in units of :math:`\mu m^3 cm^{-3}` See Also -------- opcsim.equations.pdf.dv_ddp opcsim.equations.pdf.dv_dlndp opcsim.equations.pdf.dv_dlogdp Examples -------- Integrate a sample distribution between 0 and 2.5 microns: >>> d = opcsim.AerosolDistribution() >>> d.add_mode(1e3, 100, 1.5, "mode 1") >>> n = opcsim.equations.cdf.vt(1e3, 0.1, 1.5, dmax=2.5) """ res = (np.pi/12.)*n*(gm**3) * np.exp(9./2.*(np.log(gsd)**2)) * \ erfc((1.5*np.sqrt(2) * np.log(gsd)) - (np.log(dmax/gm) / (np.sqrt(2) * np.log(gsd)))) if dmin is not None and dmin > 0.0: res -= vt(n, gm, gsd, dmin=None, dmax=dmin) return res
ba407dc86bbf3201bd597f729f2397ef9428e72b
13,881
def core_value_encode(origin): """ 转换utf-8编码为社会主义核心价值观编码 :param origin: :return: """ hex_str = str2hex(origin) twelve = hex2twelve(hex_str) core_value_iter = twelve_2_core_value(twelve) return ''.join(core_value_iter)
7b81540f7e7184ec60fb6820e3548201d67eec29
13,882
def user_query_ahjs_is_ahj_official_of(self, request, queryset): """ Admin action for the User model. Redirects the admin to a change list of AHJs the selected users are AHJ officials of. """ model_name = 'ahj' field_key_pairs = [field_key_pair('AHJPK', 'AHJPK')] queryset = AHJUserMaintains.objects.filter(UserID__in=queryset, MaintainerStatus=True) return load_change_list_with_queryset(request, queryset, model_name, field_key_pairs)
4d97f25f2647a92a9690bf3360bd3fd63b03d631
13,883
def get_cache_node_count( cluster_id: str, configuration: Configuration = None, secrets: Secrets = None ) -> int: """Returns the number of cache nodes associated to the cluster :param cluster_id: str: the name of the cache cluster :param configuration: Configuration :param secrets: Secrets :example: { "type": "probe", "name": "validate cache node count", "tolerance": 3, "provider": { "type": "python", "module": "chaosaws.elasticache.probes", "func": "get_cache_node_count", "arguments": { "cluster_id": "MyTestCluster" } } } """ response = describe_cache_cluster( cluster_id, configuration=configuration, secrets=secrets ) return response["CacheClusters"][0].get("NumCacheNodes", 0)
e4a4b3cd6d0bf7416ffe5a3d86725a614ad1c41c
13,884
import string def top_sentences(query, sentences, idfs, n): """ Given a `query` (a set of words), `sentences` (a dictionary mapping sentences to a list of their words), and `idfs` (a dictionary mapping words to their IDF values), return a list of the `n` top sentences that match the query, ranked according to idf. If there are ties, preference should be given to sentences that have a higher query term density. """ # Process query. query = set( [ word.lower() for word in query if word not in string.punctuation and word not in nltk.corpus.stopwords.words("english") ] ) # Create a list tuples (sentence, sum_idfs, qt_density) to sort the sentences. results = [] for sentence, words in sentences.items(): # Determine the total sum of IDF values and query term density for each # sentence. sum_idfs = 0 for word in query: if word in words: sum_idfs += idfs[word] qt_density = sum(words.count(word) for word in query) / len(words) results.append((sentence, sum_idfs, qt_density)) # Sort sentences by their total sum of IDF values and query term density. ranked_sentences = [ sentence for sentence, sum_idfs, qt_density in sorted( results, key=itemgetter(1, 2), reverse=True ) ] # Return the 'n' top sentences. return ranked_sentences[:n]
5533b96848baea5afa614e691d2d2ae07c4a16a9
13,885
def load_distribution(label): """Load sample distributions as described by Seinfeld+Pandis Table 8.3. There are currently 7 options including: Urban, Marine, Rural, Remote continental, Free troposphere, Polar, and Desert. Parameters ---------- label : {'Urban' | 'Marine' | 'Rural' | 'Remote Continental' | 'Free Troposphere' | 'Polar' | 'Desert'} Choose which sample distribution to load. Returns ------- An instance of the AerosolDistribution class Examples -------- >>> d = opcsim.load_distribution("Urban") """ label = label.lower() if label not in DISTRIBUTION_DATA.keys(): raise ValueError("Invalid label.") _tmp = AerosolDistribution(label) for each in DISTRIBUTION_DATA[label]: _tmp.add_mode(each[0], each[1], 10**each[2], each[3]) return _tmp
3dfd2fea5c165c331255e3b350e1f92a37919726
13,886
from typing import List def split_4d_itk(img_itk: sitk.Image) -> List[sitk.Image]: """ Helper function to split 4d itk images into multiple 3 images Args: img_itk: 4D input image Returns: List[sitk.Image]: 3d output images """ img_npy = sitk.GetArrayFromImage(img_itk) spacing = img_itk.GetSpacing() origin = img_itk.GetOrigin() direction = np.array(img_itk.GetDirection()).reshape(4, 4) spacing = tuple(list(spacing[:-1])) assert len(spacing) == 3 origin = tuple(list(origin[:-1])) assert len(origin) == 3 direction = tuple(direction[:-1, :-1].reshape(-1)) assert len(direction) == 9 images_new = [] for i, t in enumerate(range(img_npy.shape[0])): img = img_npy[t] images_new.append( create_itk_image_spatial_props(img, spacing, origin, direction)) return images_new
21ad4f6c0cbdb05cf6f67469e3d32e732d1500ee
13,887
from bs4 import BeautifulSoup def parse_results(html, keyword): """[summary] Arguments: html {str} -- google search engine html response keyword {str} -- search term Returns: pandas.DataFrame -- Dataframe with the following columns ['keyword', 'rank', 'title', 'link', 'domain'] """ soup = BeautifulSoup(html, 'html.parser') found_results = [] rank = 1 result_block = soup.find_all('div', attrs={'class': 'g'}) for result in result_block: link = result.find('a', href=True) title = result.find('h3') # description = result.find('span', attrs={'class': 'st'}) if link and title: link = link['href'] title = title.get_text() # if description: # description = description.get_text() if link != '#': domain = DOMAIN_RE.findall(link)[0] found_results.append( {'keyword': keyword, 'rank': rank, 'title': title, 'link': link, 'domain': domain}) rank += 1 return pd.DataFrame(found_results, columns=['keyword', 'rank', 'title', 'link', 'domain'])
4c89e919b3f3285565efe5bdf5c4ec5b87664c79
13,888
def maybe_iter_configs_with_path(x, with_params=False): """ Like x.maybe_iter_configs_with_path(), but returns [(x, [{}])] or [(x, {}, [{}])] if x is just a config object and not a Tuner object. """ if is_tuner(x): return x.iter_configs_with_path(with_params=with_params) else: if with_params: return [(deepcopy(x), {}, [{}])] else: return [(deepcopy(x), {})]
947a62067f3eacb4d5c8ba419d8018ad2ab3320c
13,889
import typing def median(vals: typing.List[float]) -> float: """Calculate median value of `vals` Arguments: vals {typing.List[float]} -- list of values Returns: float -- median value """ index = int(len(vals) / 2) - 1 return sorted(vals)[index]
9f840d11409a570a718fdfe56d7a282af43bc798
13,890
def melody_mapper(notes): """ Makes a map of a melody to be played each item in the list 'notes' should be formatted using these chars: duration - length in seconds the sound will be played note - the note to play sleep - time in seconds to pause (note, duration) example: [('A4', 1), ('C3', 0.5)] :param notes: List of notes :return: list of melody map info """ m_map = {} num_of_notes = 1 for note_info in notes: note, duration, sleep = note_info m_map[str(num_of_notes)] = {'note': note, 'frequency': get_note(note)[1], 'duration': duration, 'sleep': sleep} num_of_notes += 1 return m_map
cf4c8f7864e91e771d3a70bfc4d8a7f4edb38967
13,891
def sample_bounding_box_scale_balanced_black(landmarks): """ Samples a bounding box for cropping so that the distribution of scales in the training data is uniform. """ bb_min = 0.9 bb_old = image.get_bounding_box(landmarks) bb_old_shape = np.array((bb_old[2] - bb_old[0], bb_old[3] - bb_old[1])) bb_old_size = np.max(bb_old_shape) margin = (1 - bb_min) / 2 bb_old_min = np.round([bb_old[0] + bb_old_shape[0] * margin, bb_old[1] + bb_old_shape[1] * margin, bb_old[2] - bb_old_shape[0] * margin, bb_old[3] - bb_old_shape[1] * margin]) scale = np.random.random_sample() * 0.94 + 0.08 bb_crop_size = int(round(bb_old_size / scale)) bb_crop_start_x = np.random.random_integers(low=bb_old_min[2] - bb_crop_size, high=bb_old_min[0] + 1) bb_crop_start_y = np.random.random_integers(low=bb_old_min[3] - bb_crop_size, high=bb_old_min[1] + 1) bb_crop_end_x = bb_crop_start_x + bb_crop_size bb_crop_end_y = bb_crop_start_y + bb_crop_size bb_crop = [bb_crop_start_x, bb_crop_start_y, bb_crop_end_x, bb_crop_end_y] return np.array(bb_crop)
789cbe92803b77614ab8a018434745b2d9bba3a4
13,892
import glob import os def get_files(data_path): """ 获取目录下以及子目录下的图片 :param data_path: :return: """ files = [] exts = ['jpg', 'png', 'jpeg', 'JPG','bmp'] for ext in exts: # glob.glob 得到所有文件名 # 一层 2层子目录都取出来 files.extend(glob.glob(os.path.join(data_path, '*.{}'.format(ext)))) files.extend(glob.glob(os.path.join(data_path, '*', '*.{}'.format(ext)))) return files
1a81aa7679eb2c70d29d3e80423c4b2e860c307d
13,893
def get_trainable_layers(layers): """Returns a list of layers that have weights.""" layers = [] # Loop through all layers for l in layers: # If layer is a wrapper, find inner trainable layer l = find_trainable_layer(l) # Include layer if it has weights if l.get_weights(): layers.append(l) return layers
2d3f00cb061a6c2ee7081468be564f0b8621441d
13,894
def outcome_from_application_return_code(return_code: int) -> outcome.Outcome: """Create either an :class:`outcome.Value` in the case of a 0 `return_code` or an :class:`outcome.Error` with a :class:`ReturnCodeError` otherwise. Args: return_code: The return code to be processed. Returns: The outcome wrapping the passed in return code. """ if return_code == 0: return outcome.Value(return_code) return outcome.Error(qtrio.ReturnCodeError(return_code))
c5b786906e0f3fd99ed6660c55213b18139003c0
13,895
import re def group_by_scale(labels): """ Utility that groups attribute labels by time scale """ groups = defaultdict(list) # Extract scales from labels (assumes that the scale is given by the last numeral in a label) for s in labels: m = re.findall("\d+", s) if m: groups[m[-1]].append(s) else: print("Bad attribute: ", s) return list(groups.values())
661ea03f8d463b1e0d5746df60e9e2cb969737ab
13,896
def FontMapper_GetEncodingDescription(*args, **kwargs): """FontMapper_GetEncodingDescription(int encoding) -> String""" return _gdi_.FontMapper_GetEncodingDescription(*args, **kwargs)
0f154eaa616c3b18bc8828f63137c26c75397d56
13,897
from typing import Counter def create_merged_ngram_dictionaries(indices, n): """Generate a single dictionary for the full batch. Args: indices: List of lists of indices. n: Degree of n-grams. Returns: Dictionary of hashed(n-gram tuples) to counts in the batch of indices. """ ngram_dicts = [] for ind in indices: ngrams = n_gram.find_all_ngrams(ind, n=n) ngram_counts = n_gram.construct_ngrams_dict(ngrams) ngram_dicts.append(ngram_counts) merged_gen_dict = Counter() for ngram_dict in ngram_dicts: merged_gen_dict += Counter(ngram_dict) return merged_gen_dict
bd313ea7eab835102e94f6c7d66fec8882531385
13,898
import base64 def compute_hash_base64(*fields): """bytes -> base64 string""" value = compute_hash(*fields) return base64.b64encode(value).decode()
b29b77b44a51417d63f8cae1970b5c1f4fb40317
13,899