content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def network_instance_create(network, host, attrs=None): """ Creates a network_instance of given kind and host, configuring it with the given attributes. Parameter *kind*: The parameter *kind* must be a string identifying one of the supported network_instance kinds. Parameter *host*: The parameter *host* must be a string giving a host for the network_instance. Parameter *attrs*: The attributes of the network_instance can be given as the parameter *attrs*. This parameter must be a dict of attributes if given. Attributes can later be changed using :py:func:`network_instance_modify`. Return value: The return value of this method is the info dict of the new network_instance as returned by :py:func:`resource_info`. """ if not attrs: attrs = {} attrs = dict(attrs) attrs.update(host=host, network=network) res = NetworkInstance.create(attrs) return res.info()
23efa27090081bc59f917cdcf7497f75be0f93b4
11,423
def update_get(): """Fetches the state of the latest update job. Returns: On success, a JSON data structure with the following properties: status: str describing the status of the job. Can be one of ["NOT_RUNNING", "DONE", "IN_PROGRESS"]. Example: { "status": "NOT_RUNNING" } Returns error object on failure. """ status, error = update.status.get() if error: return json_response.error(error), 500 return json_response.success({'status': str(status)})
9e1a2438fc8b4d1dd1bd1354d478c4d4e3e58098
11,424
def create_github_url(metadata, is_file=False): """Constrói a URL da API Constrói a URL base da API do github a partir dos dados presentes no metadata. Args: metadata: JSON com informações acerca do dataset. is_file: FLAG usada pra sinalizar se o dataset é apenas um elemento. """ url_params = metadata['url'].split('/') server_idx = url_params.index('github.com') username = url_params[server_idx + 1] repo = url_params[server_idx + 2] data_path = metadata['path'] return ("https://raw.githubusercontent.com/{}/{}/master{}" if is_file else "https://api.github.com/repos/{}/{}/contents{}").format(username, repo, data_path)
6c138d92cd7b76f87c225a1fd98e7d397b0d6d28
11,425
def kge_2012(obs, sim, missing="drop", weighted=False, max_gap=30): """Compute the (weighted) Kling-Gupta Efficiency (KGE). Parameters ---------- sim: pandas.Series Series with the simulated values. obs: pandas.Series Series with the observed values. missing: str, optional string with the rule to deal with missing values. Only "drop" is supported now. weighted: bool, optional Weight the values by the normalized time step to account for irregular time series. Default is False. max_gap: int, optional maximum allowed gap period in days to use for the computation of the weights. All time steps larger than max_gap are replace with the max_gap value. Default value is 30 days. Notes ----- The (weighted) Kling-Gupta Efficiency [kling_2012]_ is computed as follows: .. math:: \\text{KGE} = 1 - \\sqrt{(r-1)^2 + (\\beta-1)^2 - (\\gamma-1)^2} where :math:`\\beta = \\bar{x} / \\bar{y}` and :math:`\\gamma = \\frac{\\bar{\\sigma}_x / \\bar{x}}{\\bar{\\sigma}_y / \\bar{y}}`. If weighted equals True, the weighted mean, variance and pearson correlation are used. References ---------- .. [kling_2012] Kling, H., Fuchs, M., and Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425:264 - 277. """ if missing == "drop": obs = obs.dropna() sim = sim.reindex(obs.index).dropna() # Return nan if the time indices of the sim and obs don't match if sim.index.size == 0: logger.warning("Time indices of the sim and obs don't match.") return nan r = pearsonr(obs=obs, sim=sim, weighted=weighted, max_gap=max_gap) mu_sim = mean(sim, weighted=weighted, max_gap=max_gap) mu_obs = mean(obs, weighted=weighted, max_gap=max_gap) beta = mu_sim / mu_obs gamma = (std(sim, weighted=weighted, max_gap=max_gap) / mu_sim) / \ (std(obs, weighted=weighted, max_gap=max_gap) / mu_obs) kge = 1 - sqrt((r - 1) ** 2 + (beta - 1) ** 2 + (gamma - 1) ** 2) return kge
974735f9deb8ffedf88711af5c059ac0aae90218
11,426
def hms_to_dms(h, m, s): """ Convert degrees, arcminutes, arcseconds to an ``(hour, minute, second)`` tuple. """ return degrees_to_dms(hms_to_degrees(h, m, s))
b99b051699f8a5395fe24e2e909f1690c0e67e4c
11,427
def getChiv6ch(mol): """ Chiv6h related to ring 6 """ return getChivnch(mol, 6)
31a688b1d0b98b75d81b9c4c5e93bb8d62ee732e
11,429
def is_outside_of_range(type_key: CLTypeKey, value: int) -> bool: """Returns flag indicating whether a value is outside of numeric range associated with the CL type. """ constraints = NUMERIC_CONSTRAINTS[type_key] return value < constraints.MIN or value > constraints.MAX
fb8ec41d7edc094242df6bad13b8f32285a86007
11,430
def read_skel(dset, path): """ :param dset: name of dataset, either 'ntu-rgbd' or 'pku-mmd' :param path: path to the skeleton file :return: """ if dset == 'ntu-rgbd': file = open(path, 'r') lines = file.readlines() num_lines = len(lines) num_frames = int(lines[0]) # print(num_lines, num_frames) line_id = 1 data = [] for i in range(num_frames): num_skels = int(lines[line_id]) # print(num_skels) joints = [] for _ in range(num_skels): num_joints = int(lines[line_id+2]) # print(num_joints) joint = [] for k in range(num_joints): tmp = lines[line_id+3+k].rstrip().split(' ') x_3d, y_3d, z_3d, x_depth, y_depth, x_rgb, y_rgb, orientation_w,\ orientation_x, orientation_y, orientation_z = list( map(float, tmp[:-1])) joint.append([x_3d, y_3d, z_3d]) joints.append(joint) line_id += 2+num_joints joints = np.array(joints) data.append(joints) line_id += 1 assert line_id == num_lines elif dset == 'pku-mmd': file = open(path, 'r') lines = file.readlines() # num_lines = len(lines) data = [] for line in lines: joints = list(map(float, line.rstrip().split(' '))) joints = np.array(joints).reshape(2, -1, 3) if not np.any(joints[1]): joints = joints[0][np.newaxis, :, :] data.append(joints) elif dset == 'cad-60': f = open(path, 'r') lines = f.readlines() data = [] # Last line is "END" for line in lines[:-1]: # fist item is frame number, last item is empty row = line.split(',')[1:-1] row = list(map(float, row)) joints = [] for i in range(15): if i < 11: # First 11 joints index = 14 * i + 10 else: # Joint 12 ~ 15 index = 11 * 14 + (i - 11) * 4 joint = row[index: index+3] joints.append(joint) joints = np.array(joints) / 1000.0 # millimeter to meter joints = joints[np.newaxis, :, :] # To match ntu-rgb format data.append(joints) else: raise NotImplementedError return data
f461ecb30ec1e7b66ce5d162ccc21b3ba34e6be8
11,431
def humanize_date(date_string): """ returns dates as in this form: 'August 24 2019' """ return convert_date(date_string).strftime("%B %d %Y")
d9656af2c4091219d6ee259b557caadbde2cc393
11,432
def tree_sanity_check(tree: Node) -> bool: """ Sanity check for syntax trees: One and the same node must never appear twice in the syntax tree. Frozen Nodes (EMTPY_NODE, PLACEHOLDER) should only exist temporarily and must have been dropped or eliminated before any kind of tree generation (i.e. parsing) or transformation is finished. :param tree: the root of the tree to be checked :returns: `True`, if the tree is "sane", `False` otherwise. """ node_set = set() # type: Set[Node] for node in tree.select_if(lambda nd: True, include_root=True): if not isinstance(node, Node) or node in node_set or isinstance(node, FrozenNode): return False node_set.add(node) return True
03b61729c67859bbf9820489ef8fc9768ea59f9f
11,435
def compute_std_error(g,theta,W,Omega,Nobs,Nsim=1.0e+10,step=1.0e-5,args=()): """ calculate standard errors from minimum-distance type estimation g should return a vector with: data moments - simulated moments as a function of theta Args: g (callable): moment function (return vector of length J) theta (np.ndarray): parameter vector (length K) W (np.ndarray): weigting matrix (dim J-by-J) Omega (np.ndarray): covaraince matrix of empirical moments (dim J-by-J) Nobs (scalar): number of observations Nsim (scalar,optional): number of simulations step (scalar,optional): finite step in numerical gradients args (tupple,optinal): additional arguments passed to g """ # a. dimensions K = len(theta) J = len(W[0]) # b. numerical gradient. grad = np.empty((J,K)) for p in range(K): theta_now = theta.copy() step_now = np.zeros(K) step_now[p] = np.fmax(step,step*np.abs(theta_now[p])) g_forward = g(theta_now + step_now,*args) g_backward = g(theta_now - step_now,*args) grad[:,p] = (g_forward - g_backward)/(2.0*step_now[p]) # c. asymptotic variance GW = grad.T @ W GWG = GW @ grad Avar = np.linalg.inv(GWG) @ ( GW @ Omega @ GW.T ) @ np.linalg.inv(GWG) # d. return asymptotic standard errors fac = (1.0 + 1.0/Nsim)/Nobs std_error = np.sqrt(fac*np.diag(Avar)) return std_error
176710e3b6c18efc535c67e257bc1014b4862135
11,437
def lhs(paramList, trials, corrMat=None, columns=None, skip=None): """ Produce an ndarray or DataFrame of 'trials' rows of values for the given parameter list, respecting the correlation matrix 'corrMat' if one is specified, using Latin Hypercube (stratified) sampling. The values in the i'th column are drawn from the ppf function of the i'th parameter from paramList, and each columns i and j are rank correlated according to corrMat[i,j]. :param paramList: (list of rv-like objects representing parameters) Only requirement on parameter objects is that they must implement the ppf function. :param trials: (int) number of trials to generate for each parameter. :param corrMat: a numpy matrix representing the correlation between the parameters. corrMat[i,j] should give the correlation between the i'th and j'th entries of paramlist. :param columns: (None or list(str)) Column names to use to return a DataFrame. :param skip: (list of params)) Parameters to process later because they are dependent on other parameter values (e.g., they're "linked"). These cannot be correlated. :return: ndarray or DataFrame with `trials` rows of values for the `paramList`. """ ranks = genRankValues(len(paramList), trials, corrMat) if corrMat is not None else None samples = np.zeros((trials, len(paramList))) # @UndefinedVariable skip = skip or [] for i, param in enumerate(paramList): if param in skip: continue # process later values = param.ppf(getPercentiles(trials)) # extract values from the RV for these percentiles if corrMat is None: # Sequence is a special case for which we don't shuffle (and we ignore stratified sampling) if param.param.dataSrc.distroName != 'sequence': np.random.shuffle(values) # randomize the stratified samples else: indices = ranks[:, i] - 1 # make them 0-relative values = values[indices] # reorder to respect correlations samples[:, i] = values return DataFrame(samples, columns=columns) if columns else samples
787042db9773f4da6a2dbb4552269ac2740fb02e
11,438
def percentError(mean, sd, y_output, logits): """ Calculates the percent error between the prediction and real value. The percent error is calculated with the formula: 100*(|real - predicted|)/(real) The real and predicted values are un normalized to see how accurate the true predictions are. This metric is created in the name scope "percentError". Input: * mean: The mean of the original output distribution * sd: The standard deviation of the original output distribution * y_output: The y_output symbolic output from the iterator * logits: The symbolic prediction output from the nerual network Returns: * percentErr: An operation which calculates the percent error when * used in a training or validation run of the network """ with tf.name_scope("percentError", values=[y_output, logits]): predictions= tf.exp(tf.reduce_sum(logits, axis=-1)*sd + mean) actualValue = tf.exp(y_output*sd + mean) percentErr = tf.reduce_mean(abs((actualValue-predictions)*100/(actualValue))) tf.summary.scalar('Percent_Error', percentErr) return(percentErr)
017291a71388ccf2ecb8db6808965b164dfbfe3d
11,439
def parse_multiple_files(*actions_files): """Parses multiple files. Broadly speaking, it parses sequentially all files, and concatenates all answers. """ return parsing_utils.parse_multiple_files(parse_actions, *actions_files)
186a984d91d04ae82f79e7d22f24bd834b8a0366
11,441
def frequent_combinations(spark_df: DataFrame, n=10, export=True): """ takes a dataframe containing visitor logs and computes n most frequent visitor-visite pairs :param spark_df: Spark Dataframe :param n: number of top visitors :return: pandas dataframe with visitor-visite pairs """ # compute aggregate and convert to pandas for visualization freq_pairs = spark_df.groupBy(['VISITOR_NAME', 'VISITEE_NAME']).agg( \ count('APPT_START_DATE').alias('Visits') ). \ orderBy('Visits', ascending=False). \ limit(n). \ toPandas() print(freq_pairs) # persist if export: freq_pairs.to_csv(catalog['business/frequent_pairs'], index=False) return freq_pairs
5a4ce5e8199acd1462414fa2de95d4af48923434
11,442
import random def reservoir_sampling(items, k): """ Reservoir sampling algorithm for large sample space or unknow end list See <http://en.wikipedia.org/wiki/Reservoir_sampling> for detail> Type: ([a] * Int) -> [a] Prev constrain: k is positive and items at least of k items Post constrain: the length of return array is k """ sample = items[0:k] for i in range(k, len(items)): j = random.randrange(1, i + 1) if j <= k: sample[j] = items[i] return sample
ab2d0dc2bb3cb399ae7e6889f028503d165fbbe4
11,443
import json def create_db_engine(app: Flask) -> Engine: """Create and return an engine instance based on the app's database configuration.""" url = URL( drivername=app.config['DATABASE_DRIVER'], username=app.config['DATABASE_USER'], password=app.config['DATABASE_PASSWORD'], host=app.config['DATABASE_HOST'], port=app.config['DATABASE_PORT'], database=app.config['DATABASE_DB'] ) return create_engine( url, json_serializer=lambda obj: json.dumps(obj, default=json_serialize_default) )
5a67f294b58e699345f517ae07c80851ae30eca9
11,444
import math def wgs84_to_gcj02(lat, lng): """ WGS84转GCJ02(火星坐标系) :param lng:WGS84坐标系的经度 :param lat:WGS84坐标系的纬度 :return: """ dlat = _transformlat(lng - 105.0, lat - 35.0) dlng = _transformlng(lng - 105.0, lat - 35.0) radlat = lat / 180.0 * pi magic = math.sin(radlat) magic = 1 - ee * magic * magic sqrtmagic = math.sqrt(magic) dlat = (dlat * 180.0) / ((a * (1 - ee)) / (magic * sqrtmagic) * pi) dlng = (dlng * 180.0) / (a / sqrtmagic * math.cos(radlat) * pi) mglat = lat + dlat mglng = lng + dlng return [mglat, mglng]
64f2d8a088a159c5751838ba1fc00824bcc3e91e
11,445
def _normalize_kwargs(kwargs, kind='patch'): """Convert matplotlib keywords from short to long form.""" # Source: # github.com/tritemio/FRETBursts/blob/fit_experim/fretbursts/burst_plot.py if kind == 'line2d': long_names = dict(c='color', ls='linestyle', lw='linewidth', mec='markeredgecolor', mew='markeredgewidth', mfc='markerfacecolor', ms='markersize',) elif kind == 'patch': long_names = dict(c='color', ls='linestyle', lw='linewidth', ec='edgecolor', fc='facecolor',) for short_name in long_names: if short_name in kwargs: kwargs[long_names[short_name]] = kwargs.pop(short_name) return kwargs
829f4dfd449064f4c1fc92aa8e481364eb997973
11,446
def fprime_to_jsonable(obj): """ Takes an F prime object and converts it to a jsonable type. :param obj: object to convert :return: object in jsonable format (can call json.dump(obj)) """ # Otherwise try and scrape all "get_" getters in a smart way anonymous = {} getters = [attr for attr in dir(obj) if attr.startswith("get_")] for getter in getters: # Call the get_ functions, and call all non-static methods try: func = getattr(obj, getter) item = func() # If there is a property named "args" it needs to be handled specifically unless an incoming command if ( getter == "get_args" and not "fprime_gds.common.data_types.cmd_data.CmdData" in str(type(obj)) ): args = [] for arg_spec in item: arg_dict = { "name": arg_spec[0], "description": arg_spec[1], "value": arg_spec[2].val, "type": str(arg_spec[2]), } if arg_dict["type"] == "Enum": arg_dict["possible"] = arg_spec[2].keys() args.append(arg_dict) # Fill in our special handling item = args anonymous[getter.replace("get_", "")] = item except TypeError: continue return anonymous
899674167b51cd752c7a8aaa9979856218759022
11,447
import torch def subsequent_mask(size: int) -> Tensor: """ Mask out subsequent positions (to prevent attending to future positions) Transformer helper function. :param size: size of mask (2nd and 3rd dim) :return: Tensor with 0s and 1s of shape (1, size, size) """ mask = np.triu(np.ones((1, size, size)), k=1).astype("uint8") return torch.from_numpy(mask) == 0
e065c32164d5250215c846aef39d510f6a93f0cd
11,448
def process_entries(components): """Process top-level entries.""" data = {} for index, value in enumerate(STRUCTURE): label = value[0] mandatory = value[1] # Raise error if mandatory elements are missing if index >= len(components): if mandatory is True: raise ValueError('UNH header is missing mandatory entry for {label}'.format(label=label)) else: break # Process if len(value) == LENGTH_OF_A_SIMPLE_ENTRY: data[label] = components[index] elif len(value) == LENGTH_OF_A_NESTED_ENTRY: data[label] = process_subentries(components, index) else: raise ValueError('unexpected structure') return data
344b9aa601b71fd9352fdb412d9dfa7492312d1a
11,449
from typing import Tuple def normalize_input_vector(trainX: np.ndarray, testX: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Normalize the input vector Args: trainX (np.ndarray): train embedding array. testX (np.ndarray): test embedding array. Returns: np.ndarray, np.ndarray: normalized train and test arrays. """ in_encoder = Normalizer(norm='l2') trainX = in_encoder.transform(trainX) testX = in_encoder.transform(testX) return trainX, testX
34324541e7db302bd46d41f70bd7fdedb6055ae6
11,450
def update_cache(cache_data, new_data, key): """ Add newly collected data to the pre-existing cache data Args: cache_data (dict): Pre-existing chip data new_data (dict): Newly acquired chip data key (str): The chip UL coordinates Returns: """ if key in cache_data.keys(): cache_data[key].update(new_data[key]) else: cache_data[key] = new_data[key] return cache_data
f439f34d1e95ccd69dc10d5f8c06ca20fc869b1e
11,451
def status(command, **keys): """Run a subprogram capturing it's output and return the exit status.""" return _captured_output(command, **keys).status
f2bb97448a812548dfbdea770db9a43d8c46301a
11,452
def normalize(flow: Tensor) -> Tensor: """Re-scales the optical flow vectors such that they correspond to motion on the normalized pixel coordinates in the range [-1, 1] x [-1, 1]. Args: flow: the optical flow tensor of shape (B, 2, H, W) Returns: The optical flow tensor with flow vectors rescaled to the normalized pixel coordinate system. """ # flow: (B, 2, H, W) assert flow.size(1) == 2 h, w = flow.shape[-2:] return scale(flow, (2.0 / max(w - 1, 1), 2.0 / max(h - 1, 1)))
9164686650e0728ba1d99b65e5757b0e12d6c934
11,453
def to_graph6_bytes(G, nodes=None, header=True): """Convert a simple undirected graph to bytes in graph6 format. Parameters ---------- G : Graph (undirected) nodes: list or iterable Nodes are labeled 0...n-1 in the order provided. If None the ordering given by ``G.nodes()`` is used. header: bool If True add '>>graph6<<' bytes to head of data. Raises ------ NetworkXNotImplemented If the graph is directed or is a multigraph. ValueError If the graph has at least ``2 ** 36`` nodes; the graph6 format is only defined for graphs of order less than ``2 ** 36``. Examples -------- >>> nx.to_graph6_bytes(nx.path_graph(2)) b'>>graph6<<A_\\n' See Also -------- from_graph6_bytes, read_graph6, write_graph6_bytes Notes ----- The returned bytes end with a newline character. The format does not support edge or node labels, parallel edges or self loops. If self loops are present they are silently ignored. References ---------- .. [1] Graph6 specification <http://users.cecs.anu.edu.au/~bdm/data/formats.html> """ if nodes is not None: G = G.subgraph(nodes) H = nx.convert_node_labels_to_integers(G) nodes = sorted(H.nodes()) return b"".join(_generate_graph6_bytes(H, nodes, header))
05617e6ebe6d4a374bfa125e3b5afb1bca3304c1
11,454
def get_arrays_from_img_label(img, label, img_mode=None): """Transform a SimpleITK image and label map into numpy arrays, and optionally select a channel. Parameters: img (SimpleITK.SimpleITK.Image): image label (SimpleITK.SimpleITK.Image): label map img_mode (int or None): optional mode channel, so output is 3D Returns: (numpy.ndarray, numpy.ndarray): image and label in numpy format """ img_np = sitk.GetArrayFromImage(img) if img_mode is not None: img_np = img_np[img_mode] label_np = sitk.GetArrayFromImage(label) return img_np, label_np.astype(int)
902cd2cd5f31121e4a57a335a37b42b4caeafb4a
11,455
def _get_error_code(exception): """Get the most specific error code for the exception via superclass""" for exception in exception.mro(): try: return error_codes[exception] except KeyError: continue
c4c9a2ec2f5cf510b6e9a7f6058287e4faf7b5b4
11,456
def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered
0f1c1207016695ee1440fea214f8f92f8c6398ac
11,457
import json def read_json_file(file_name: str, encoding: str = "utf-8") -> dict: """Reads a json file :param file_name: path :param encoding: encoding to use :return: dict content """ with open(file_name, "r", encoding=encoding) as json_file: return json.load(json_file)
313aee72b06303dfffd8a2e9f3641d1346329a91
11,458
def pretty_print_row(col_full_widths, row, max_field_size): """ pretty print a row such that each column is padded to have the widths in the col_full_widths vector """ start = "| " if len(row) == len(col_full_widths): end = " |" else: end = "|" return start + "|".join(pretty_print_field(full_width, field, max_field_size) for full_width, field in zip(col_full_widths, row)) + end
c94807e4de18e4454e0263e25f4103cd914df2cd
11,459
def _get_data_for_agg(new_svarcube, new_tacube): """Reshape data for use in iris aggregator based on two cubes.""" dims_to_collapse = set() dims_to_collapse.update(new_svarcube.coord_dims('air_pressure')) untouched_dims = set(range(new_svarcube.ndim)) -\ set(dims_to_collapse) dims = list(untouched_dims) + list(dims_to_collapse) unrolled_data = np.moveaxis(new_tacube.data, dims, range(new_svarcube.ndim)) return unrolled_data
51c2683e3477528809fcf229c94125020cdfee6d
11,460
def refs_changed_by_other_cc(current_user): """ Return dictionary with id of reference and log object changed by other cooperative centers """ current_user_cc = current_user.profile.get_attribute('cc') result_list = defaultdict(list) # get last references of current user cooperative center refs_from_cc = Reference.objects.filter(cooperative_center_code=current_user_cc).order_by('-id')[:100] for reference in refs_from_cc: # get correct class (source our analytic) c_type = reference.get_content_type_id # filter by logs of current reference, change type and made by other users log_list = LogEntry.objects.filter(object_id=reference.id, content_type=c_type, action_flag=2) \ .exclude(user=current_user).order_by('-id') if log_list: # exclude from list all changes that was already reviewed (logreview is created) log_list = log_list.exclude(logreview__isnull=False) # create list of log users of same cc exclude_user_list = [] for log in log_list: log_user_cc = log.user.profile.get_attribute('cc') if log_user_cc == current_user_cc: exclude_user_list.append(log.user) # exclude from log list users from same cc as current user if exclude_user_list: log_list = log_list.exclude(user__in=exclude_user_list) if log_list: # group result by id (one line for each reference) for log in log_list: result_list[log.object_id] = log return result_list
aa2012f1efe6eeb796e3871af691b685e3388e67
11,461
from typing import Dict def chain_head(head: int, child: int, heads: Dict[int, int]): """ >>> chain_head(0, 2, {1: 2, 2: 3, 3: 0}) True >>> chain_head(2, 0, {1: 2, 2: 3, 3: 0}) False """ curr_child = child while curr_child != -1: if curr_child == head: return True curr_child = heads.get(curr_child, -1) return False
d786d3dbbdc496a1a7515d9df04fa2a09968b87d
11,462
def UpgradeFile(file_proto): """In-place upgrade a FileDescriptorProto from v2[alpha\d] to v3alpha. Args: file_proto: v2[alpha\d] FileDescriptorProto message. """ # Upgrade package. file_proto.package = UpgradedType(file_proto.package) # Upgrade imports. for n, d in enumerate(file_proto.dependency): file_proto.dependency[n] = UpgradedPath(d) # Upgrade comments. for location in file_proto.source_code_info.location: location.leading_comments = UpgradedComment(location.leading_comments) location.trailing_comments = UpgradedComment(location.trailing_comments) for n, c in enumerate(location.leading_detached_comments): location.leading_detached_comments[n] = UpgradedComment(c) # Upgrade services. for s in file_proto.service: UpgradeService(s) # Upgrade messages. for m in file_proto.message_type: UpgradeMessage(m) for e in file_proto.enum_type: UpgradeEnum(e) return file_proto
942646c67bb987757449fbb16a6164008957cf99
11,463
import ipaddress import logging def _get_ip_block(ip_block_str): """ Convert string into ipaddress.ip_network. Support both IPv4 or IPv6 addresses. Args: ip_block_str(string): network address, e.g. "192.168.0.0/24". Returns: ip_block(ipaddress.ip_network) """ try: ip_block = ipaddress.ip_network(ip_block_str) except ValueError: logging.error("Invalid IP block format: %s", ip_block_str) return None return ip_block
b887c615091926ed7ebbbef8870e247348e2aa27
11,464
def mul_ntt(f_ntt, g_ntt, q): """Multiplication of two polynomials (coefficient representation).""" assert len(f_ntt) == len(g_ntt) deg = len(f_ntt) return [(f_ntt[i] * g_ntt[i]) % q for i in range(deg)]
504838bb812792b6bb83b1d485e4fb3221dec36e
11,465
def _expected_datatypes(product_type): """ Aux function. Contains the most current lists of keys we expect there to be in the different forms of metadata. """ if product_type == "SLC": # Only the datetimes need to be parsed. expected_dtypes = { "acquisition_start_utc": "parse_datetime_single", "acquisition_end_utc": "parse_datetime_single", "dc_estimate_time_utc": "parse_datetime_single", "first_pixel_time_utc": "parse_datetime_single", "state_vector_time_utc": "parse_datetime_vect", "zerodoppler_start_utc": "parse_datetime_single", "zerodoppler_end_utc": "parse_datetime_single", } elif product_type == "GRD": # All the fields need to be parsed, so all the datatypes are input. expected_dtypes = { "acquisition_end_utc": "parse_datetime_single", # single datetime "acquisition_mode": str, "acquisition_prf": float, "acquisition_start_utc": str, "ant_elev_corr_flag": bool, "area_or_point": str, "avg_scene_height": float, "azimuth_spacing": float, "azimuth_look_bandwidth": float, "azimuth_look_overlap": float, "azimuth_looks": int, "azimuth_time_interval": float, "calibration_factor": float, "carrier_frequency": float, "chirp_bandwidth": float, "chirp_duration": float, "coord_center": "parse_float_vect", # 1d vect of floats, needs to be parsed "coord_first_far": "parse_float_vect", "coord_first_near": "parse_float_vect", "coord_last_far": "parse_float_vect", "coord_last_near": "parse_float_vect", "dc_estimate_coeffs": "parse_float_vect", "dc_estimate_poly_order": int, "dc_estimate_time_utc": "parse_datetime_vect", # datetime vector "dc_reference_pixel_time": float, "doppler_rate_coeffs": "parse_float_vect", "doppler_rate_poly_order": int, "doppler_rate_reference_pixel_time": float, "gcp_terrain_model": str, "geo_ref_system": str, "grsr_coefficients": "parse_float_vect", "grsr_ground_range_origin": float, "grsr_poly_order": int, "grsr_zero_doppler_time": "parse_datetime_single", # single datetime "heading": float, "incidence_angle_coefficients": "parse_float_vect", "incidence_angle_ground_range_origin": float, "incidence_angle_poly_order": int, "incidence_angle_zero_doppler_time": "parse_datetime_single", # single datetime "incidence_center": float, "incidence_far": float, "incidence_near": float, "look_side": str, "mean_earth_radius": float, "mean_orbit_altitude": float, "number_of_azimuth_samples": int, "number_of_dc_estimations": int, "number_of_range_samples": int, "number_of_state_vectors": int, "orbit_absolute_number": int, "orbit_direction": str, "orbit_processing_level": str, "orbit_relative_number": int, "orbit_repeat_cycle": int, "polarization": str, "posX": "parse_float_vect", "posY": "parse_float_vect", "posZ": "parse_float_vect", "processing_prf": float, "processing_time": "parse_datetime_single", # single datetime "processor_version": str, "product_file": str, "product_level": str, "product_name": str, "product_type": str, "range_looks": int, "range_sampling_rate": float, "range_spacing": float, "range_spread_comp_flag": bool, "sample_precision": str, "satellite_look_angle": str, "satellite_name": str, "slant_range_to_first_pixel": float, "state_vector_time_utc": "parse_datetime_vect", # 1d vect of datetimes, need to be parsed. "total_processed_bandwidth_azimuth": float, "velX": "parse_float_vect", "velY": "parse_float_vect", "velZ": "parse_float_vect", "window_function_azimuth": str, "window_function_range": str, "zerodoppler_end_utc": "parse_datetime_single", # single datetime "zerodoppler_start_utc": "parse_datetime_single", # single datetime } elif product_type == "xml": raise NotImplementedError elif not isinstance(product_type, str): raise TypeError( 'Did not understand input "product_type", a str was expected but a %s datatype variable was input.' % type(product_type) ) else: raise ValueError( 'Did not understand input "product_type", either "SLC", "GRD" or "xml" was expected but %s was input.' % product_type ) return expected_dtypes
ea5a2d78bc5693259955e60847de7a663dcdbf2c
11,467
from typing import List import copy def convert_vecs_to_var( c_sys: CompositeSystem, vecs: List[np.ndarray], on_para_eq_constraint: bool = True ) -> np.ndarray: """converts hs of povm to vec of variables. Parameters ---------- c_sys : CompositeSystem CompositeSystem of this state. vecs : List[np.ndarray] list of vec of povm elements. on_para_eq_constraint : bool, optional uses equal constraints, by default True. Returns ------- np.ndarray list of vec of variables. """ var = copy.copy(vecs) if on_para_eq_constraint: del var[-1] var = np.hstack(var) return var
cea5d80a7213e12113b1bec425b142667f9bb36e
11,468
def timetable_to_subrip(aligned_timetable): """ Converts the aligned timetable into the SubRip format. Args: aligned_timetable (list[dict]): An aligned timetable that is output by the `Aligner` class. Returns: str: Text representing a SubRip file. """ # Define a variable to contain the file's contents file_contents = "" # Process each block for i, block in enumerate(aligned_timetable): # Define a temporary variable to store this caption block block_text = f"{i + 1}\n" # Every SubRip caption block starts with a number # Get the start and end time of the block start_time = timedelta_to_subrip_time(timedelta(seconds=block["start_time"])) end_time = timedelta_to_subrip_time(timedelta(seconds=block["end_time"])) # Add the timing line to the block of text block_text += f"{start_time} --> {end_time}\n" # Add the line of text from the `block` to the block of text block_text += block["text"] + "\n\n" # Add the `block_text` to the `file_contents` file_contents += block_text # Return the final file's contents return file_contents
cddcf115ccb9441966d9c1a0a2b67ba25e00e6da
11,470
from re import T def add(a: T.Tensor, b: T.Tensor) -> T.Tensor: """ Add tensor a to tensor b using broadcasting. Args: a: A tensor b: A tensor Returns: tensor: a + b """ return a + b
a555de4341b874163c551fff4b7674af1e60ace2
11,471
def integrate(que): """ check if block nears another block and integrate them @param que: init blocks @type que: deque @return: integrated block @rtype: list """ blocks = [] t1, y, x = que.popleft() blocks.append([y, x]) if t1 == 2: blocks.append([y, x + 1]) elif t1 == 3: blocks.append([y + 1, x]) return blocks
a91235f34e1151b6dd9c6c266658cca86b375278
11,472
def test_binary_query(cbcsdk_mock): """Testing Binary Querying""" called = False def post_validate(url, body, **kwargs): nonlocal called if not called: called = True assert body['expiration_seconds'] == 3600 else: assert body['expiration_seconds'] == 10 return BINARY_GET_FILE_RESP sha256 = "00a16c806ff694b64e566886bba5122655eff89b45226cddc8651df7860e4524" cbcsdk_mock.mock_request("GET", f"/ubs/v1/orgs/test/sha256/{sha256}", BINARY_GET_METADATA_RESP) api = cbcsdk_mock.api binary = api.select(Binary, sha256) assert isinstance(binary, Binary) cbcsdk_mock.mock_request("GET", f"/ubs/v1/orgs/test/sha256/{sha256}/summary/device", BINARY_GET_DEVICE_SUMMARY_RESP) summary = binary.summary cbcsdk_mock.mock_request("POST", "/ubs/v1/orgs/test/file/_download", post_validate) url = binary.download_url() assert summary is not None assert url is not None url = binary.download_url(expiration_seconds=10) assert url is not None
5cfd7c7d1ab714b342e13c33cf896032f8387cde
11,473
import typing def parse_struct_encoding(struct_encoding: bytes) -> typing.Tuple[typing.Optional[bytes], typing.Sequence[bytes]]: """Parse an array type encoding into its name and field type encodings.""" if not struct_encoding.startswith(b"{"): raise ValueError(f"Missing opening brace in struct type encoding: {struct_encoding!r}") if not struct_encoding.endswith(b"}"): raise ValueError(f"Missing closing brace in struct type encoding: {struct_encoding!r}") try: # Stop searching for the equals if an opening brace # (i. e. the start of another structure type encoding) # is reached. # This is necessary to correctly handle struct types with no name that contain a struct type with a name, # such as b"{{foo=ii}}" (an unnamed struct containing a struct named "foo" containing two integers). try: end = struct_encoding.index(b"{", 1) except ValueError: end = -1 equals_pos = struct_encoding.index(b"=", 1, end) except ValueError: name = None field_type_encoding_string = struct_encoding[1:-1] else: name = struct_encoding[1:equals_pos] field_type_encoding_string = struct_encoding[equals_pos+1:-1] field_type_encodings = list(split_encodings(field_type_encoding_string)) return name, field_type_encodings
47455b192049b976dce392b928932d8291d1d008
11,474
def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : Slot19 A Slot19 object Returns ------- point_list: list A list of Points """ Rbo = self.get_Rbo() # alpha is the angle to rotate Z0 so ||Z1,Z8|| = W0 alpha0 = self.comp_angle_opening() / 2 alpha1 = self.comp_angle_bottom() / 2 # comp point coordinate (in complex) Z_ = Rbo * exp(1j * 0) Z0 = Z_ * exp(1j * alpha0) if self.is_outwards(): Z1 = (Rbo + self.H0) * exp(1j * alpha1) else: # inward slot Z1 = (Rbo - self.H0) * exp(1j * alpha1) # symetry Z2 = Z1.conjugate() Z3 = Z0.conjugate() return [Z3, Z2, Z1, Z0]
c74c28af57ea90f208ac61cd2433376e9c1a47ac
11,475
import inspect def getargspec(func): """Like inspect.getargspec but supports functools.partial as well.""" if inspect.ismethod(func): func = func.__func__ if type(func) is partial: orig_func = func.func argspec = getargspec(orig_func) args = list(argspec[0]) defaults = list(argspec[3] or ()) kwoargs = list(argspec[4]) kwodefs = dict(argspec[5] or {}) if func.args: args = args[len(func.args):] for arg in func.keywords or (): try: i = args.index(arg) - len(args) del args[i] try: del defaults[i] except IndexError: pass except ValueError: # must be a kwonly arg i = kwoargs.index(arg) del kwoargs[i] del kwodefs[arg] return inspect.FullArgSpec(args, argspec[1], argspec[2], tuple(defaults), kwoargs, kwodefs, argspec[6]) while hasattr(func, '__wrapped__'): func = func.__wrapped__ if not inspect.isfunction(func): raise TypeError('%r is not a Python function' % func) return inspect.getfullargspec(func)
df1745daaf7cad09d75937cce399d705ce10de2b
11,476
from typing import Optional from typing import Union from typing import Tuple from typing import Dict def empirical_kernel_fn(f: ApplyFn, trace_axes: Axes = (-1,), diagonal_axes: Axes = () ) -> EmpiricalKernelFn: """Returns a function that computes single draws from NNGP and NT kernels. Args: f: the function whose NTK we are computing. `f` should have the signature `f(params, inputs[, rng])` and should return an `np.ndarray` outputs. trace_axes: output axes to trace the output kernel over, i.e. compute only the trace of the covariance along the respective pair of axes (one pair for each axis in `trace_axes`). This allows to save space and compute if you are only interested in the respective trace, but also improve approximation accuracy if you know that covariance along these pairs of axes converges to a `constant * identity matrix` in the limit of interest (e.g. infinite width or infinite `n_samples`). A common use case is the channel / feature / logit axis, since activation slices along such axis are i.i.d. and the respective covariance along the respective pair of axes indeed converges to a constant-diagonal matrix in the infinite width or infinite `n_samples` limit. Also related to "contracting dimensions" in XLA terms. (https://www.tensorflow.org/xla/operation_semantics#dotgeneral) diagonal_axes: output axes to diagonalize the output kernel over, i.e. compute only the diagonal of the covariance along the respective pair of axes (one pair for each axis in `diagonal_axes`). This allows to save space and compute, if off-diagonal values along these axes are not needed, but also improve approximation accuracy if their limiting value is known theoretically, e.g. if they vanish in the limit of interest (e.g. infinite width or infinite `n_samples`). If you further know that on-diagonal values converge to the same constant in your limit of interest, you should specify these axes in `trace_axes` instead, to save even more compute and gain even more accuracy. A common use case is computing the variance (instead of covariance) along certain axes. Also related to "batch dimensions" in XLA terms. (https://www.tensorflow.org/xla/operation_semantics#dotgeneral) Returns: A function to draw a single sample the NNGP and NTK empirical kernels of a given network `f`. """ kernel_fns = { 'nngp': empirical_nngp_fn(f, trace_axes, diagonal_axes), 'ntk': empirical_ntk_fn(f, trace_axes, diagonal_axes) } @utils.get_namedtuple('EmpiricalKernel') def kernel_fn(x1: np.ndarray, x2: Optional[np.ndarray], get: Union[None, str, Tuple[str, ...]], params: PyTree, **apply_fn_kwargs) -> Dict[str, np.ndarray]: """Computes a single sample of the empirical kernel of type `get`. Args: x1: first batch of inputs. x2: second batch of inputs. `x2=None` means `x2=x1`. `f(x2)` must have a matching shape with `f(x1)` on `trace_axes` and `diagonal_axes`. get: type of the empirical kernel. `get=None` means `get=("nngp", "ntk")`. Can be a string (`"nngp"`) or a tuple of strings (`("ntk", "nngp")`). params: A `PyTree` of parameters about which we would like to compute the neural tangent kernel. **apply_fn_kwargs: keyword arguments passed to `apply_fn`. `apply_fn_kwargs` will be split into `apply_fn_kwargs1` and `apply_fn_kwargs2` by the `_split_kwargs` function which will be passed to `apply_fn`. In particular, the rng key in `apply_fn_kwargs`, will be split into two different (if `x1!=x2`) or same (if `x1==x2`) rng keys. See the `_read_key` function for more details. Returns: A single sample of the empirical kernel. The shape is "almost" `zip(f(x1).shape, f(x2).shape)` except for: 1) `trace_axes` are absent as they are contracted over. 2) `diagonal_axes` are present only once. All other axes are present twice. If `get` is a string, returns the requested `np.ndarray`. If `get` is a tuple, returns an `EmpiricalKernel` namedtuple containing the requested information. """ if get is None: get = ('nngp', 'ntk') return {g: kernel_fns[g](x1, x2, params, **apply_fn_kwargs) for g in get} # pytype: disable=wrong-arg-count return kernel_fn
890de1ebdd5f41f5aa257cedf1f03325f11e707c
11,477
def read_image_batch(image_paths, image_size=None, as_list=False): """ Reads image array of np.uint8 and shape (num_images, *image_shape) * image_paths: list of image paths * image_size: if not None, image is resized * as_list: if True, return list of images, else return np.ndarray (default) :return: np.ndarray or list """ images = None for i, image_path in enumerate(image_paths): im = load_img(image_path) if image_size is not None: im = im.resize(image_size, Image.LANCZOS) x = img_to_array(im).astype(np.uint8) if images is None: if not as_list: images = np.zeros((len(image_paths),) + x.shape, dtype=np.uint8) else: images = [] if not as_list: images[i, ...] = x else: images.append(x) return images
7ee4e01682c5175a6b22db5d48acdb76471d03da
11,478
def dc_vm_backup(request, dc, hostname): """ Switch current datacenter and redirect to VM backup page. """ dc_switch(request, dc) return redirect('vm_backup', hostname=hostname)
168576ac2b3384c1e35a1f972b7362a9ba379582
11,479
def compute_total_distance(path): """compute total sum of distance travelled from path list""" path_array = np.diff(np.array(path), axis=0) segment_distance = np.sqrt((path_array ** 2).sum(axis=1)) return np.sum(segment_distance)
c0c4d0303bdeaafdfda84beb65fd4e60a4ff7436
11,480
def get_relative_positions_matrix(length_x, length_y, max_relative_position): """Generates matrix of relative positions between inputs.""" range_vec_x = tf.range(length_x) range_vec_y = tf.range(length_y) # shape: [length_x, length_y] distance_mat = tf.expand_dims(range_vec_x, -1) - tf.expand_dims(range_vec_y, 0) distance_mat_clipped = tf.clip_by_value(distance_mat, -max_relative_position, max_relative_position) # Shift values to be >= 0. Each integer still uniquely identifies a relative # position difference. final_mat = distance_mat_clipped + max_relative_position return final_mat
661cabfbcb3e8566dd8d9ec4e56a71a4d62091fd
11,481
def func_split_item(k): """ Computes the expected value and variance of the splitting item random variable S. Computes the expression (26b) and (26c) in Theorem 8. Remember that r.v. S is the value of index s such that $\sum_{i=1}^{s-1} w(i) \leq k$ and $\sum_{i=1}^s w(i) > k$. Args: k: Int. The capacity of the Knapsack Problem instance. Returns: s: float. The expected value of the splitting item random variable. var_split: float. The variance of the splitting item random variable. """ b = 1 + 1 / k # Defining a cumbersome base s = (1 + 1 / k) ** k # Computing the split item var_split = (3 + 1 / k) * b ** (k - 1) - b ** (2 * k) # Computing the variance of the split item return s, var_split
84ec7f4d76ced51ebdbd28efdc252b5ff3809e79
11,482
def eq(equation: str) -> int: """Evaluate the equation.""" code = compile(equation, "<string>", "eval") return eval(code)
5e88cad8009dc3dcaf36b216fa217fbadfaa50b3
11,483
def is_client_in_data(hass: HomeAssistant, unique_id: str) -> bool: """Check if ZoneMinder client is in the Home Assistant data.""" prime_config_data(hass, unique_id) return const.API_CLIENT in hass.data[const.DOMAIN][const.CONFIG_DATA][unique_id]
740e74b2d77bcf29aba7d2548930a98ec508fec0
11,484
from datetime import datetime def parse_date(datestr): """ Given a date in xport format, return Python date. """ return datetime.strptime(datestr, "%d%b%y:%H:%M:%S")
b802a528418a24300aeba3e33e9df8a268f0a27b
11,485
def generate_database(m, n, uni_range_low=None, uni_range_high=None, exact_number=False): """ - Generate Universe by picking n random integers from low (inclusive) to high (exclusive). If exact_number, then Universe.size == n - Generate a Database of m records, over the Universe """ # generate Universe if exact_number: objects = range(n) else: objects = list(np.random.randint(uni_range_low, uni_range_high, size=n)) uni = Universe(objects) # generate Database db = uni.random_db(m) return db
a6fad1192d0c286f7fdb585933b5648f0ee9cb4c
11,486
from Foundation import NSUserDefaults as NSUD def interface_style(): """Return current platform interface style (light or dark).""" try: # currently only works on macOS except ImportError: return None style = NSUD.standardUserDefaults().stringForKey_("AppleInterfaceStyle") if style == "Dark": return "dark" else: return "light"
5c30da34a3003ec52c3f97fb86dbf2ba73101a88
11,487
def get_num_forces(cgmodel): """ Given a CGModel() class object, this function determines how many forces we are including when evaluating the energy. :param cgmodel: CGModel() class object :type cgmodel: class :returns: - total_forces (int) - Number of forces in the coarse grained model :Example: >>> from foldamers.cg_model.cgmodel import CGModel >>> cgmodel = CGModel() >>> total_number_forces = get_num_forces(cgmodel) """ total_forces = 0 if cgmodel.include_bond_forces: total_forces = total_forces + 1 if cgmodel.include_nonbonded_forces: total_forces = total_forces + 1 if cgmodel.include_bond_angle_forces: total_forces = total_forces + 1 if cgmodel.include_torsion_forces: total_forces = total_forces + 1 return total_forces
5f5b897f1b0def0b858ca82319f9eebfcf75454a
11,488
def cybrowser_dialog(id=None, text=None, title=None, url=None, base_url=DEFAULT_BASE_URL): """Launch Cytoscape's internal web browser in a separate window Provide an id for the window if you want subsequent control of the window e.g., via cybrowser hide. Args: id (str): The identifier for the new browser window text (str): HTML text to initially load into the browser title (str): Text to be shown in the title bar of the browser window url (str): The URL the browser should load base_url (str): Ignore unless you need to specify a custom domain, port or version to connect to the CyREST API. Default is http://127.0.0.1:1234 and the latest version of the CyREST API supported by this version of py4cytoscape. Returns: dict: {'id': id} where ``id`` is the one provided as a parameter to this function Raises: requests.exceptions.RequestException: if can't connect to Cytoscape or Cytoscape returns an error Examples: >>> cybrowser_dialog(id='Test Window', title='Hello Africa', text='<HTML><HEAD><TITLE>Hello</TITLE></HEAD><BODY>Hello, world!</BODY></HTML>') {'id': 'Test Window'} >>> cybrowser_dialog(id='CytoWindow', title='Cytoscape Home Page', url='http://www.cytoscape.org') {'id': 'CytoWindow'} See Also: :meth:`cybrowser_show`, :meth:`cybrowser_hide` """ id_str = f' id="{id}"' if id else '' text_str = f' text="{text}"' if text else '' title_str = f' title="{title}"' if title else '' url_str = f' url="{url}"' if url else '' res = commands.commands_post(f'cybrowser dialog{id_str}{text_str}{title_str}{url_str}', base_url=base_url) return res
d892fe1a4e48cba8f8561fbe208aec7e2cb4afd7
11,489
def initialize_stat_dict(): """Initializes a dictionary which will hold statistics about compositions. Returns: A dictionary containing the appropriate fields initialized to 0 or an empty list. """ stat_dict = dict() for lag in [1, 2, 3]: stat_dict['autocorrelation' + str(lag)] = [] stat_dict['notes_not_in_key'] = 0 stat_dict['notes_in_motif'] = 0 stat_dict['notes_in_repeated_motif'] = 0 stat_dict['num_starting_tonic'] = 0 stat_dict['num_repeated_notes'] = 0 stat_dict['num_octave_jumps'] = 0 stat_dict['num_fifths'] = 0 stat_dict['num_thirds'] = 0 stat_dict['num_sixths'] = 0 stat_dict['num_seconds'] = 0 stat_dict['num_fourths'] = 0 stat_dict['num_sevenths'] = 0 stat_dict['num_rest_intervals'] = 0 stat_dict['num_special_rest_intervals'] = 0 stat_dict['num_in_key_preferred_intervals'] = 0 stat_dict['num_resolved_leaps'] = 0 stat_dict['num_leap_twice'] = 0 stat_dict['num_high_unique'] = 0 stat_dict['num_low_unique'] = 0 return stat_dict
42a10b93a960663a42260e1a77d0e8f5a4ff693a
11,490
def nrrd_to_nii(file): """ A function that converts the .nrrd atlas to .nii file format Parameters ---------- file: tuples Tuple of coronal, sagittal, and horizontal slices you want to view Returns ------- F_im_nii: nibabel.nifti2.Nifti2Image A nifti file format that is used by various medical imaging techniques. Notes ------- From: #from: https://nipy.org/nibabel/coordinate_systems.html """ _nrrd = nrrd.read(file) data = _nrrd[0] header = _nrrd[1] # noqa: F841 F_im_nii = nib.Nifti2Image(data, np.eye(4)) return F_im_nii
240e94758ef3f52d4e9a4ebb6f0574ade13a1044
11,491
def reqeustVerifyAuthhandler(request): """ 본인인증 전자서명을 요청합니다. - 본인인증 서비스에서 이용기관이 생성하는 Token은 사용자가 전자서명할 원문이 됩니다. 이는 보안을 위해 1회용으로 생성해야 합니다. - 사용자는 이용기관이 생성한 1회용 토큰을 서명하고, 이용기관은 그 서명값을 검증함으로써 사용자에 대한 인증의 역할을 수행하게 됩니다. """ try: # Kakaocert 이용기관코드, Kakaocert 파트너 사이트에서 확인 clientCode = '020040000001' # 본인인증 요청정보 객체 requestObj = RequestVerifyAuth( # 고객센터 전화번호, 카카오톡 인증메시지 중 "고객센터" 항목에 표시 CallCenterNum = '1600-8536', # 인증요청 만료시간(초), 최대값 1000, 인증요청 만료시간(초) 내에 미인증시 만료 상태로 처리됨 Expires_in = 60, # 수신자 생년월일, 형식 : YYYYMMDD ReceiverBirthDay = '19900108', # 수신자 휴대폰번호 ReceiverHP = '01043245117', # 수신자 성명 ReceiverName = '정요한', # 별칭코드, 이용기관이 생성한 별칭코드 (파트너 사이트에서 확인가능) # 카카오톡 인증메시지 중 "요청기관" 항목에 표시 # 별칭코드 미 기재시 이용기관의 이용기관명이 "요청기관" 항목에 표시 SubClientID = '', # 인증요청 메시지 부가내용, 카카오톡 인증메시지 중 상단에 표시 TMSMessage = 'TMSMessage0423', # 인증요청 메시지 제목, 카카오톡 인증메시지 중 "요청구분" 항목에 표시 TMSTitle = 'TMSTitle 0423', # 은행계좌 실명확인 생략여부 # true : 은행계좌 실명확인 절차를 생략 # false : 은행계좌 실명확인 절차를 진행 # 카카오톡 인증메시지를 수신한 사용자가 카카오인증 비회원일 경우, 카카오인증 회원등록 절차를 거쳐 은행계좌 실명확인 절차를 밟은 다음 전자서명 가능 isAllowSimpleRegistYN = False, # 수신자 실명확인 여부 # true : 카카오페이가 본인인증을 통해 확보한 사용자 실명과 ReceiverName 값을 비교 # false : 카카오페이가 본인인증을 통해 확보한 사용자 실명과 RecevierName 값을 비교하지 않음. isVerifyNameYN = True, # 전자서명할 토큰 원문 Token = 'Token Value 2345', # PayLoad, 이용기관이 생성한 payload(메모) 값 PayLoad = 'Payload123', ) result = kakaocertService.requestVerifyAuth(clientCode, requestObj) return render(request, 'response.html', {'receiptId': result.receiptId}) except KakaocertException as KE: return render(request, 'exception.html', {'code': KE.code, 'message': KE.message})
75bce664f11804ed0abb649ce80ef261ebfd0a34
11,492
import ipaddress import six def cidr_validator(value, return_ip_interface=False): """Validate IPv4 + optional subnet in CIDR notation""" try: if '/' in value: ipaddr, netmask = value.split('/') netmask = int(netmask) else: ipaddr, netmask = value, 32 if not validators.ipv4_re.match(ipaddr) or not 1 <= netmask <= 32: raise ValueError ipi = ipaddress.ip_interface(six.text_type(value)) if ipi.is_reserved: raise ValueError except ValueError: raise ValidationError(_('Enter a valid IPv4 address or IPv4 network.')) if return_ip_interface: return ipi
1c0afd08f3f4f079dc4004400449fe6e27cf0ef7
11,494
def rh2a(rh, T, e_sat_func=e_sat_gg_water): """ Calculate the absolute humidity from relative humidity, air temperature, and pressure. Parameters ---------- rh: Relative humidity in Pa / Pa T: Temperature in K e_sat_func: func, optional Function to estimate the saturation pressure. E.g. e_sat_gg_water for water and e_sat_gg_ice for ice. Returns ------- float : absolute humidity [kg / kg] """ with np.errstate(divide='ignore', invalid='ignore'): if np.any(rh > 5): raise TypeError("rh must not be in %") e = rh*e_sat_func(T) a = e / (meteo_si.constants.Rvapor*T) return a
cabbae69d28a68531cf79dfe645e0065ab34534e
11,495
def encoder_decoder_generator(start_img): """ """ layer1 = Conv2D(64, kernel_size=4, strides=2, activation='elu', padding='same')(start_img) layer2 = Conv2D(64, kernel_size=4, strides=2, activation='elu', padding='same')(layer1) layer3 = Conv2D(64, kernel_size=4, strides=1, activation='elu', padding='same')(layer2) layer4 = Conv2DTranspose(64, kernel_size=4, strides=2, activation='elu', padding="same")(layer3) layer5 = Conv2DTranspose(64, kernel_size=4, strides=2, activation='elu', padding="same")(layer4) layer6 = Conv2D(64, kernel_size=2, strides=1, activation='elu', padding='same')(layer5) # Make sure that generator output is in the same range as `inputs` # ie [-1, 1]. net = Conv2D(3, kernel_size=1, activation = 'tanh', padding='same')(layer6) return net
9f0ccb7ebae8f0742fdcd464ce9cd072a9099d3e
11,496
def off(): """ Turns the buzzer off (sets frequency to zero Hz) Returns: None """ return _rc.writeAttribute(OPTYPE.BUZZER_FREQ, [0])
66e2160fed93ba49bf6c39dff0003a05f2875a77
11,497
def get_shodan_dicts(): """Build Shodan dictionaries that hold definitions and naming conventions.""" risky_ports = [ "ftp", "telnet", "http", "smtp", "pop3", "imap", "netbios", "snmp", "ldap", "smb", "sip", "rdp", "vnc", "kerberos", ] name_dict = { "ftp": "File Transfer Protocol", "telnet": "Telnet", "http": "Hypertext Transfer Protocol", "smtp": "Simple Mail Transfer Protocol", "pop3": "Post Office Protocol 3", "imap": "Internet Message Access Protocol", "netbios": "Network Basic Input/Output System", "snmp": "Simple Network Management Protocol", "ldap": "Lightweight Directory Access Protocol", "smb": "Server Message Block", "sip": "Session Initiation Protocol", "rdp": "Remote Desktop Protocol", "kerberos": "Kerberos", } risk_dict = { "ftp": "FTP", "telnet": "Telnet", "http": "HTTP", "smtp": "SMTP", "pop3": "POP3", "imap": "IMAP", "netbios": "NetBIOS", "snmp": "SNMP", "ldap": "LDAP", "smb": "SMB", "sip": "SIP", "rdp": "RDP", "vnc": "VNC", "kerberos": "Kerberos", } # Create dictionaries for CVSSv2 vector definitions using https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator av_dict = { "NETWORK": "A vulnerability exploitable with network access means the vulnerable software is bound to the network stack and the attacker does not require local network access or local access. Such a vulnerability is often termed “remotely exploitable”. An example of a network attack is an RPC buffer overflow.", "ADJACENT_NETWORK": "A vulnerability exploitable with adjacent network access requires the attacker to have access to either the broadcast or collision domain of the vulnerable software. Examples of local networks include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet segment.", "LOCAL": "A vulnerability exploitable with only local access requires the attacker to have either physical access to the vulnerable system or a local (shell) account. Examples of locally exploitable vulnerabilities are peripheral attacks such as Firewire/USB DMA attacks, and local privilege escalations (e.g., sudo).", } ac_dict = { "LOW": "Specialized access conditions or extenuating circumstances do not exist. The following are examples: The affected product typically requires access to a wide range of systems and users, possibly anonymous and untrusted (e.g., Internet-facing web or mail server). The affected configuration is default or ubiquitous. The attack can be performed manually and requires little skill or additional information gathering. The 'race condition' is a lazy one (i.e., it is technically a race but easily winnable).", "MEDIUM": "The access conditions are somewhat specialized; the following are examples: The attacking party is limited to a group of systems or users at some level of authorization, possibly untrusted. Some information must be gathered before a successful attack can be launched. The affected configuration is non-default, and is not commonly configured (e.g., a vulnerability present when a server performs user account authentication via a specific scheme, but not present for another authentication scheme). The attack requires a small amount of social engineering that might occasionally fool cautious users (e.g., phishing attacks that modify a web browser’s status bar to show a false link, having to be on someone’s “buddy” list before sending an IM exploit).", "HIGH": "Specialized access conditions exist. For example, in most configurations, the attacking party must already have elevated privileges or spoof additional systems in addition to the attacking system (e.g., DNS hijacking). The attack depends on social engineering methods that would be easily detected by knowledgeable people. For example, the victim must perform several suspicious or atypical actions. The vulnerable configuration is seen very rarely in practice. If a race condition exists, the window is very narrow.", } ci_dict = { "NONE": "There is no impact to the confidentiality of the system", "PARTIAL": "There is considerable informational disclosure. Access to some system files is possible, but the attacker does not have control over what is obtained, or the scope of the loss is constrained. An example is a vulnerability that divulges only certain tables in a database.", "COMPLETE": "There is total information disclosure, resulting in all system files being revealed. The attacker is able to read all of the system's data (memory, files, etc.).", } return risky_ports, name_dict, risk_dict, av_dict, ac_dict, ci_dict
2aace61b8339db848e95758fcb9f30856915d6fc
11,499
def safe_download(f): """ Makes a download safe, by trapping any app errors and redirecting to a default landing page. Assumes that the first 2 arguments to the function after request are domain and app_id, or there are keyword arguments with those names """ @wraps(f) def _safe_download(request, *args, **kwargs): domain = args[0] if len(args) > 0 else kwargs["domain"] app_id = args[1] if len(args) > 1 else kwargs["app_id"] latest = True if request.GET.get('latest') == 'true' else False target = request.GET.get('target') or None try: request.app = get_app(domain, app_id, latest=latest, target=target) return f(request, *args, **kwargs) except (AppEditingError, CaseError), e: logging.exception(e) messages.error(request, "Problem downloading file: %s" % e) return HttpResponseRedirect(reverse("corehq.apps.app_manager.views.view_app", args=[domain,app_id])) return _safe_download
1d48c48ac067fcc180af37b90949123c5dc864d9
11,500
def Moebius(quaternion_or_infinity, a,b=None,c=None,d=None): """ The Moebius transformation of a quaternion (z) with parameters a,b,c and d >>> import qmath >>> a = qmath.quaternion([1,1,1,0]) >>> b = qmath.quaternion([-2,1,0,1]) >>> c = qmath.quaternion([1,0,0,0]) >>> d = qmath.quaternion([0,-1,-3,-4]) >>> z = qmath.quaternion([1,1,3,4]) >>> qmath.Moebius(z,a,b,c,d) (-5.0+7.0i+7.0k) >>> d = - z >>> z = qmath.Moebius(z,a,b,c,d) >>> z 'Infinity' >>> qmath.Moebius(z,a,b,c,d) (1.0+1.0i+1.0j) """ if type(a) == tuple: return Moebius(quaternion_or_infinity,a[0],a[1],a[2],a[3]) else: A = quaternion(a) B = quaternion(b) C = quaternion(c) D = quaternion(d) if A * D - B * C == 0: raise RuntimeError(' this is not a Moebius transformation') elif quaternion_or_infinity == 'Infinity': return A / C else: Z = quaternion(quaternion_or_infinity) try: return (A * Z + B) * quaternion.inverse(C * Z + D) except: return 'Infinity'
9bfd05268caa6aad1247886717932ca332212e4b
11,501
def _passthrough_zotero_data(zotero_data): """ Address known issues with Zotero metadata. Assumes zotero data should contain a single bibliographic record. """ if not isinstance(zotero_data, list): raise ValueError('_passthrough_zotero_data: zotero_data should be a list') if len(zotero_data) > 1: # Sometimes translation-server creates multiple data items for a single record. # If so, keep only the parent item, and remove child items (such as notes). # https://github.com/zotero/translation-server/issues/67 zotero_data = zotero_data[:1] return zotero_data
cec2271a7a966b77e2d380686ecccc0307f78116
11,502
import json def telebot(): """endpoint responsible to parse and respond bot webhook""" payload = json.loads(request.data) message = payload.get('message', payload.get('edited_message','')) msg_from = message.get('from') user_id = msg_from.get('id') user_first_name = msg_from.get('first_name','') user_last_name = msg_from.get('last_name','') user_is_bot = msg_from.get('is_bot') chat = message.get('chat') chat_id = chat.get('id') command = message.get('text') if user_is_bot or message == '': return jsonify({'method': 'sendMessage','chat_id' : chat_id,'text': 'Sorry I can\'t answer you!'}) bot_response = { 'method': 'sendMessage', 'chat_id' : chat_id, 'text': f'[{user_first_name} {user_last_name}](tg://user?id={user_id}) {command}', 'parse_mode':'Markdown', } return jsonify(bot_response)
3a42fee4a89e1be3fa1ec17da21738bfcefba4ba
11,503
def root(tmpdir): """Return a pytest temporary directory""" return tmpdir
9fa01d67461f8ce1e3d3ad900cf8a893c5a075aa
11,505
from app.crud.core import ready import logging def _check_storage(log_fn: tp.Callable) -> bool: """See if the storage system is alive.""" try: log_fn('Attempting to contact storage system', depth=1) result = ready() return result except Exception as ex: log_fn(ex, level=logging.WARN, depth=1) return False
b20ca64094126a40fd8eb0ce76e3329c8b4da6cb
11,506
def ignore_ip_addresses_rule_generator(ignore_ip_addresses): """ generate tshark rule to ignore ip addresses Args: ignore_ip_addresses: list of ip addresses Returns: rule string """ rules = [] for ip_address in ignore_ip_addresses: rules.append("-Y ip.dst != {0}".format(ip_address)) return rules
3ac43f28a4c8610d4350d0698d93675572d6ba44
11,507
def readmission(aFileName): """ Load a mission from a file into a list. The mission definition is in the Waypoint file format (http://qgroundcontrol.org/mavlink/waypoint_protocol#waypoint_file_format). This function is used by upload_mission(). """ print "\nReading mission from file: %s" % aFileName cmds = vehicle.commands missionlist=[] with open(aFileName) as f: for i, line in enumerate(f): if i==0: if not line.startswith('QGC WPL 110'): raise Exception('File is not supported WP version') else: linearray=line.split('\t') ln_index=int(linearray[0]) ln_currentwp=int(linearray[1]) ln_frame=int(linearray[2]) ln_command=int(linearray[3]) ln_param1=float(linearray[4]) ln_param2=float(linearray[5]) ln_param3=float(linearray[6]) ln_param4=float(linearray[7]) ln_param5=float(linearray[8]) ln_param6=float(linearray[9]) ln_param7=float(linearray[10]) ln_autocontinue=int(linearray[11].strip()) cmd = Command( 0, 0, 0, ln_frame, ln_command, ln_currentwp, ln_autocontinue, ln_param1, ln_param2, ln_param3, ln_param4, ln_param5, ln_param6, ln_param7) missionlist.append(cmd) return missionlist
08e92ef784340dcd9bbd3ca8bb85a9c8a9211841
11,508
def remove_stop_words(words): """Remove all stop words. Args: words (list): The list of words Returns: list: An updated word list with stopwords removed. """ # http://stackoverflow.com/questions/5486337/ # how-to-remove-stop-words-using-nltk-or-python return [w for w in words if w.lower() not in stopwords.words('english')]
29910d1c04cb27ac281428a5401501e4c0e633ae
11,509
def synthetic_costs_1(): """ Uncertainty in 5 points at [0,0] on X1 can cause it to flip to [1,0] if needed to misclassify Uncertainty in 1 point at [1,1] on X2 can cause it to flip to [1,0] if needed to misclassify All other points certain """ costs = np.array([[1,4],[1,4],[1,4],[1,4],[1,4],[4,4],[4,4], [4,4],[4,4],[4,4], [4,1], [4,4],[4,4]]) return costs
97753d9e816feba56b609685831df2d183ab408f
11,510
def example_one(request, context=None): """ Return web page for example one. """ if context is None: context = {} session = request.session.get("ApiSession", None) if session is None: return no_session_set(request) session = Session.deserialize(session) origin_codes = get_codes_with_filter(session, REPORTING_AIRPORT_CODE, 0) context.update( { "title": "Example 1", "active": "example_one", "origin_codes": origin_codes, "dest_codes": EXAMPLE_ONE_DESTS, } ) return render(request, "example_one.html", context)
25bc3fea514e4011c3be513868fd58d0c2b80d2f
11,511
from typing import Any def decode(cls: Any, value: bytes) -> Any: """Decode value in katcp message to a type. If a union type is provided, the value must decode successfully (i.e., without raising :exc:`ValueError`) for exactly one of the types in the union, otherwise a :exc:`ValueError` is raised. Parameters ---------- cls The target type, or a :class:`typing.Union` of types. value Raw (but unescaped) value in katcp message Raises ------ ValueError if `value` does not have a valid value for `cls` TypeError if `cls` is not a registered type or union of registered types. See also -------- :func:`register_type` """ union_args = _union_args(cls) if union_args is not None: values = [] # type: List[Any] for type_ in union_args: try: values.append(decode(type_, value)) except ValueError: pass if len(values) == 1: return values[0] elif not values: raise ValueError('None of the types in {} could decode {!r}'.format( cls, value)) else: raise ValueError('{!r} is ambiguous for {}'.format(value, cls)) else: return get_type(cls).decode(cls, value)
3036b69089e68d2a47c3ca110024bde6a026ba5d
11,512
from typing import TextIO def load_f0(fhandle: TextIO) -> annotations.F0Data: """Load an ikala f0 annotation Args: fhandle (str or file-like): File-like object or path to f0 annotation file Raises: IOError: If f0_path does not exist Returns: F0Data: the f0 annotation data """ lines = fhandle.readlines() f0_midi = np.array([float(line) for line in lines]) f0_hz = librosa.midi_to_hz(f0_midi) * (f0_midi > 0) confidence = (f0_hz > 0).astype(float) times = (np.arange(len(f0_midi)) * TIME_STEP) + (TIME_STEP / 2.0) f0_data = annotations.F0Data(times, f0_hz, confidence) return f0_data
7c0f47e63db1a6fee4718420d74799fa73740b52
11,513
def remove_fallen(lst): """removes fallen orcs from a list""" return [x for x in lst if x.standing]
9e621321909dc7aa13da3d2a7902bb4604ae62f6
11,514
def gc_resnet152(num_classes): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(GCBottleneck, [3, 8, 36, 3], num_classes=num_classes) model.avgpool = nn.AdaptiveAvgPool2d(1) return model
a1986afd48284471045b08322e008796ee7743bb
11,515
def consume_entropy(generated_password: str, quotient: int, max_length: int) -> str: """ Takes the entropy (quotient) and the length of password (max_length) required and uses the remainder of their division as the index to pick a character from the characters list. This process occurs recursively until the password is of the required length. """ if len(generated_password) >= max_length: return generated_password quotient, remainder = divmod(quotient, len(characters)) generated_password += characters[remainder] return consume_entropy(generated_password, quotient, max_length)
8ba58b34704e9db389241a255e9ec1963e508c99
11,516
def randomNormal(n, height, baseshape=[]): """ Generate random positions, normally distributed along z. Base shape can be: [] (1D sim) [Ly] (2D sim) [Lx, Ly] (3D sim) Where Lx, Ly are lengths along x, y. """ nDim = len(baseshape) + 1 pos = np.zeros([n, nDim]) z = np.random.randn(n) z *= height pos[:,-1] = z for i in range(nDim - 1): pos[:, i] = np.random.rand(n) * baseshape[i] return pos
96d703ecc059fe180b71f547dfee7f259d803a87
11,517
def _parseCellContentsSection(fileAsList, lineIdx): """ returns fractCoords from Cell Contents section of castep Args: fileAsList(str list): Each entry is 1 line of the castep input file lineIdx(int): The index containing the line "cell contents" Returns fractCoords: nx4 iter with each containing [x,y,z,symbol]. Used to init UnitCell objects """ finished = False while not finished: currLine = fileAsList[lineIdx].strip() if "Fractional coord" in fileAsList[lineIdx]: lineIdx = lineIdx + 3 fractCoords = list() while "xx" not in currLine: currLine = fileAsList[lineIdx].strip() splitLine = currLine.split() if len(splitLine) == 1: break currCoords = [float(x) for x in splitLine[3:6]] + [splitLine[1]] fractCoords.append(currCoords) lineIdx = lineIdx + 1 break else: lineIdx = lineIdx+1 return fractCoords, lineIdx
3baa1a200442ef8681a0741bfa2a60d9ca1e20b2
11,520
def get_avg_no_of_feat_values(contents): """ Helper to calculate numbers of different values of categorical features, averaged for all features """ total = 0 for i in range(0, len(contents[0])): total += len(set([x[i] for x in contents])) return float(total) / float(len(contents[0]))
4e913298d7f133eb08afe23e4999f5b20f455dc1
11,521
def plot_trend_line(axes_, xd, yd, c='r', alpha=1, cus_loc = None, text_color='black', return_params=False, extra_text='', t_line_1_1=True, fit_function=None, fontsize_=12, add_text=True): """Make a line of best fit""" #create clean series x_, y_ = coincidence(xd,yd) if fit_function is not None: params = curve_fit(fit_function, x_, y_) print('fitted parameters') print(params[0]) fit_line_x = np.arange(int(np.nanmin(x_)),int(np.nanmax(x_))+1,.1) plotting_par_list = [fit_line_x] for fit_par in params[0]: plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) axes_.plot(fit_line_x, fit_line_y, c, alpha=alpha) # calculate R2 plotting_par_list = [x_] params_str_ = '' for i_, fit_par in enumerate(params[0]): if extra_text == '': params_str_ = params_str_ + 'fit parameters ' + str(i_+1) + ': ' + '$%0.2f$' % (fit_par) + '\n' else: params_str_ = params_str_ + extra_text + '$%0.2f$' % (fit_par) + '\n' plotting_par_list.append(fit_par) funt_par = tuple(plotting_par_list) fit_line_y = fit_function(*funt_par) residuals = y_ - fit_line_y ss_res = np.sum(residuals**2) ss_tot = np.sum((y_ - np.mean(y_))**2) Rsqr = float(1 - (ss_res / ss_tot)) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) error_text = '$R^2 = %0.2f$' % Rsqr if cus_loc is None: axes_.text(x_1, y_2 , params_str_ + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color, bbox={'facecolor': 'white', 'edgecolor': 'none'}) else: axes_.text(cus_loc[0], cus_loc[1] , params_str_ + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color, bbox={'facecolor': 'white', 'edgecolor': 'none'}) else: # Calculate trend line params = np.polyfit(x_, y_, 1) intercept = params[-1] slope = params[-2] minxd = np.nanmin(x_) maxxd = np.nanmax(x_) xl = np.array([minxd, maxxd]) yl = slope * xl + intercept print('fitted parameters') print(slope, intercept) # Plot trend line axes_.plot(xl, yl, c, alpha=alpha) # Calculate R Squared poly_1d = np.poly1d(params) ybar = np.sum(y_) / len(y_) ssreg = np.sum((poly_1d(x_) - ybar) ** 2) sstot = np.sum((y_ - ybar) ** 2) Rsqr = float(ssreg / sstot) # Plot R^2 value x_1 = np.nanmin(x_) y_2 = np.nanmax(y_) if intercept >= 0: if extra_text=='': equat_text = '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x + %0.2f$' % (slope,intercept) else: if extra_text=='': equat_text = '$Y = %0.2f*x %0.2f$' % (slope,intercept) else: equat_text = extra_text + '\n' + '$Y = %0.2f*x %0.2f$' % (slope,intercept) error_text = '$R^2 = %0.2f$' % Rsqr if add_text: if cus_loc is None: axes_.text(x_1, y_2 , equat_text + '\n' + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color) else: axes_.text(cus_loc[0], cus_loc[1] , equat_text + '\n' + error_text, fontsize=fontsize_, horizontalalignment='left',verticalalignment='top',color=text_color) # plot 1:1 line if true if t_line_1_1: xy_min = np.min([np.nanmin(x_),np.nanmin(y_)]) xy_max = np.max([np.nanmax(x_),np.nanmax(y_)]) axes_.plot([xy_min, xy_max], [xy_min, xy_max], 'k--') if return_params: return Rsqr, params else: return Rsqr
a4d6e41bf03524f257531bbb0f2bb43d1b3b6b8b
11,522
from pathlib import Path import yaml def get_oil_type_atb( oil_attrs, origin, destination, transport_data_dir, random_generator ): """Randomly choose type of cargo oil spilled from an ATB (articulated tug and barge) based on AIS track origin & destination, and oil cargo attribution analysis. Unlike traditional tank barges, the vessels with 'atb' designation are known oil-cargo vessels. We used three different data sources to verify: AIS, Dept of Ecology's fuel transfer records and Charlie Costanzo's ATB list. Details of traffic can be seen in this google spreadsheet: https://docs.google.com/spreadsheets/d/1dlT0JydkFG43LorqgtHle5IN6caRYjf_3qLrUYqANDY/edit Because of this pre-identification and selection method, we can assume that all ATBs are oil-cargo atbs and that the absence of origin-destination information is due to issues in linking ship tracks and not ambiguity about whether traffic is oil-cargo traffic. :param dict oil_attrs: Oil attribution information from the output of make_oil_attrs.py. :param str or None origin: Origin of AIS track from which spill occurs. :param str or None destination: Destination of AIS track from which spill occurs. :param transport_data_dir: Directory path to marine_transport_data files repository cloned from https://github.com/MIDOSS/marine_transport_data. :type transport_data_dir: :py:class:`pathlib.Path` :param random_generator: PCG-64 random number generator :type random_generator: :py:class:`numpy.random.Generator` :return: Type of oil spilled. :rtype: str """ vessel_type = "atb" # Assign US and CAD origin/destinations from oil_attrs file CAD_origin_destination = oil_attrs["categories"]["CAD_origin_destination"] US_origin_destination = oil_attrs["categories"]["US_origin_destination"] # Get cargo oil type attribution information from oil-type yaml files yaml_file = transport_data_dir / Path(oil_attrs["files"]["CAD_origin"]).name with yaml_file.open("rt") as f: CAD_yaml = yaml.safe_load(f) yaml_file = transport_data_dir / Path(oil_attrs["files"]["WA_destination"]).name with yaml_file.open("rt") as f: WA_in_yaml = yaml.safe_load(f) WA_in_noinfo = _calc_no_info_facilities(WA_in_yaml) yaml_file = transport_data_dir / Path(oil_attrs["files"]["WA_origin"]).name with yaml_file.open("rt") as f: WA_out_yaml = yaml.safe_load(f) WA_out_noinfo = _calc_no_info_facilities(WA_out_yaml) # US_origin is for US as origin yaml_file = transport_data_dir / Path(oil_attrs["files"]["US_origin"]).name with yaml_file.open("rt") as f: US_yaml = yaml.safe_load(f) # US_combined represents the combined import and export of oil yaml_file = transport_data_dir / Path(oil_attrs["files"]["US_combined"]).name with yaml_file.open("rt") as f: USall_yaml = yaml.safe_load(f) yaml_file = transport_data_dir / Path(oil_attrs["files"]["Pacific_origin"]).name with yaml_file.open("rt") as f: Pacific_yaml = yaml.safe_load(f) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # NOTE: these pairs need to be used together for "get_oil_type_cargo" # (but don't yet have error-checks in place): # - "WA_in_yaml" and "destination" # - "WA_out_yaml" and "origin" # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if origin in CAD_origin_destination: if origin == "Westridge Marine Terminal": if destination == "U.S. Oil & Refining": oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif destination in US_origin_destination: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif destination in CAD_origin_destination: # assume export within CAD is from Jet fuel storage tanks # as there is a pipeline to Parkland for crude oil oil_type = "jet" else: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) else: if destination in US_origin_destination: # we have better information on WA fuel transfers, # so I prioritize this information source oil_type = get_oil_type_cargo( WA_in_yaml, destination, vessel_type, random_generator ) elif destination == "ESSO Nanaimo Departure Bay": oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) elif destination == "Suncor Nanaimo": oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) else: oil_type = get_oil_type_cargo( CAD_yaml, origin, vessel_type, random_generator ) elif origin in US_origin_destination and origin not in WA_out_noinfo[vessel_type]: if destination == "Westridge Marine Terminal": # Westridge stores jet fuel from US for re-distribution oil_type = "jet" else: oil_type = get_oil_type_cargo( WA_out_yaml, origin, vessel_type, random_generator ) elif ( destination in US_origin_destination and destination not in WA_in_noinfo[vessel_type] ): oil_type = get_oil_type_cargo( WA_in_yaml, destination, vessel_type, random_generator ) elif destination in CAD_origin_destination: if destination == "Westridge Marine Terminal": # Westridge doesn't receive crude for storage oil_type = "jet" else: oil_type = get_oil_type_cargo( CAD_yaml, destination, vessel_type, random_generator ) elif origin == "Pacific": oil_type = get_oil_type_cargo( Pacific_yaml, origin, vessel_type, random_generator ) elif origin == "US": oil_type = get_oil_type_cargo(US_yaml, origin, vessel_type, random_generator) else: # For all other traffic, use a generic fuel attribution from the combined # US import and export oil_type = get_oil_type_cargo(USall_yaml, None, vessel_type, random_generator) return oil_type
e7e6e51ece2bb5b4fffc70d2507c2e5ff062bbd8
11,523
def get_jwt(): """ Get Authorization token and validate its signature against the application's secret key, . """ expected_errors = { KeyError: WRONG_PAYLOAD_STRUCTURE, AssertionError: JWK_HOST_MISSING, InvalidSignatureError: WRONG_KEY, DecodeError: WRONG_JWT_STRUCTURE, InvalidAudienceError: WRONG_AUDIENCE, TypeError: KID_NOT_FOUND } token = get_auth_token() try: jwks_payload = jwt.decode(token, options={'verify_signature': False}) assert 'jwks_host' in jwks_payload jwks_host = jwks_payload.get('jwks_host') key = get_public_key(jwks_host, token) aud = request.url_root payload = jwt.decode( token, key=key, algorithms=['RS256'], audience=[aud.rstrip('/')] ) set_ctr_entities_limit(payload) return payload except tuple(expected_errors) as error: message = expected_errors[error.__class__] raise AuthorizationError(message)
9c52369b38db9815769ea8277c3e3721ba20c1c9
11,524
def start_volume(name, force=False): """ Start a gluster volume name Volume name force Force the volume start even if the volume is started .. versionadded:: 2015.8.4 CLI Example: .. code-block:: bash salt '*' glusterfs.start mycluster """ cmd = "volume start {0}".format(name) if force: cmd = "{0} force".format(cmd) volinfo = info(name) if name not in volinfo: log.error("Cannot start non-existing volume %s", name) return False if not force and volinfo[name]["status"] == "1": log.info("Volume %s already started", name) return True return _gluster(cmd)
6dc936b4e09beb9713c32e4c93e8649999f82c3c
11,525
def hist_equal(img, z_max=255): """ 直方图均衡化,将暗的地方变量,亮的地方变暗 :param img: :param z_max: 原图像最亮的地方减去最暗的地方的值 :return: """ if len(img.shape) == 2: height, width = img.shape n_chan = 1 elif len(img.shape) == 3: height, width, n_chan = img.shape print(img[:, :, 0].shape) # H, W = img.shape # S is the total of pixels n_pixle = height * width out = img.copy() sum_h = 0. if n_chan == 1: for i in range(1, 255): ind = np.where(img == i) sum_h += len(img[ind]) z_prime = z_max / n_pixle * sum_h out[ind] = z_prime else: for c in range(n_chan): tmp_img = img[:, :, c] tmp_out = tmp_img.copy() for i in range(1, 255): ind = np.where(tmp_img == i) sum_h += len(tmp_img[ind]) z_prime = z_max / n_pixle * sum_h tmp_out[ind] = z_prime out[:, :, c] = tmp_out out = out.astype(np.uint8) return out
e6aaf76ce8088b9519cd896d8236a84f01761976
11,526
def combine(*indices_lists): """ Return all the combinations from lists of indices :param indices_lists: each argument is a list of indices (it must be a list) :return: The combined list of indices """ if len([*indices_lists]) > 1: return [i for i in product(*indices_lists)] else: return set(*indices_lists)
839762c9645e0c8d6ea31a21113a5efd6b97f1de
11,527
import re def get_endpoint(query): """ Regex to parse domain and API endpoint from a SoQL query via FROM statement :param query: str, SoQL-formatted query :return url, endpoint, query: str objects, domain, endpoint, and original query sans FROM statement """ url = re.search(r'\w+\.\w+\.(\w{2,3})', query, flags=re.I) endpoint = re.search(r'(\w{4}-\w{4})\.json', query, flags=re.I) query = re.sub(r'from( +|\t+|\n+).+', '', query, flags=re.I) return url.group(), endpoint.group(1), query
4496c85f2e6f908bd5dcef7195b821998ef79c42
11,528
def load_data(filename: str) ->pd.DataFrame: """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ df = pd.read_csv(filename) df.fillna(0, inplace=True) df[["id", "price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "floors", "waterfront", "view", "condition", "grade", "sqft_above", "sqft_basement", "yr_built", "yr_renovated", "zipcode", "lat", "long", "sqft_living15", "sqft_lot15"]] = df[ ["id", "price", "bedrooms", "bathrooms", "sqft_living", "sqft_lot", "floors", "waterfront", "view", "condition", "grade", "sqft_above", "sqft_basement", "yr_built", "yr_renovated", "zipcode", "lat", "long", "sqft_living15", "sqft_lot15"]].apply(pd.to_numeric) df['date'] = df['date'].astype("str").apply(lambda s: s[:8]) df['date'] = df['date'].astype('float64') df = df[ (df["id"] >= 1) & (df["date"] >= 20000000) & (df["date"] <= 20220000) & (df["price"] >= 50000) & (df["price"] <= 10000000) & (df["bedrooms"] >= 0) & (df["bedrooms"] <= 15) & (df["bathrooms"] >= 0) & (df["bathrooms"] <= 12) & (df["sqft_living"] >= 200) & (df["sqft_living"] <= 100000) & (df["sqft_lot"] >= 450) & (df["sqft_lot"] <= 1800000) & (df["floors"] >= 1) & (df["floors"] <= 4) & (df["waterfront"] == 0) | (df["waterfront"] == 1) & (df["view"] >= 0) & (df["view"] <= 4) & (df["condition"] >= 1) & (df["condition"] <= 5) & (df["grade"] >= 1) & (df["grade"] <= 13) & (df["sqft_above"] >= 250) & (df["sqft_above"] <= 10000) & (df["sqft_basement"] >= 0) & (df["sqft_basement"] <= 5000) & (df["yr_built"] >= 1800) & (df["yr_built"] <= 2022) & (df["yr_renovated"] >= 0) & (df["yr_renovated"] <= 2022) & (df["zipcode"] >= 98000) & (df["zipcode"] <= 99000) & (df["lat"] >= 47) & (df["lat"] <= 48) & (df["long"] >= -123) & (df["long"] <= -121) & (df["sqft_living15"] >= 300) & (df["sqft_living15"] <= 10000) & (df["sqft_lot15"] >= 300) & (df["sqft_lot15"] <= 1000000) ] # inserting the "yr_renovated" col the last year in which the building had had any renovation. df["yr_renovated"] = df[["yr_built", "yr_renovated"]].max(axis=1) prices_by_zipcode = pd.DataFrame({'zipcode': df['zipcode'], 'price': df['price']}) prices_by_zipcode = prices_by_zipcode.groupby('zipcode').mean() prices_by_zipcode.rename(columns={'price': 'mean_price'}, inplace=True) df = pd.merge(df, prices_by_zipcode, on='zipcode') df = df.drop(['id', 'zipcode', 'lat', 'long'], 1) return df
26c785cb72b883cab03b9da6c7718b71e7ccea76
11,529
def version_match(required, candidate): """Test that an available version is a suitable match for a required version. To be suitable a version must be of the same major version as required and be at least a match in minor/patch level. eg. 3.3 is a match for a required 3.1 but 4.1 is not. :param tuple required: the version that must be met. :param tuple candidate: the version to test against required. :returns: True if candidate is suitable False otherwise. :rtype: bool """ return _discover.version_match(required, candidate)
bc537fdae084a3c3ccb7b8336703ef4c2476de6e
11,530
from typing import Optional from datetime import datetime def get_last_upgraded_at(module: base.Module) -> Optional[datetime.datetime]: """ Get the timestamp of the last time this module was upgraded. """ return settings.get_last_upgraded_at(module.name)
bf884bf4c249448929b987504d400d6ba1b12927
11,531
import collections import re import logging def parse_header_file(header_file): """Parse a single header file to get all defined constants out of it.""" resolved_values = collections.OrderedDict() raw_matches = {} with open(header_file, "r") as fd: all_file_lines = collections.OrderedDict( [ (lineno, line.strip()) for lineno, line in enumerate(fd, start=1) if not line.isspace() ] ) line_iterator = iter(all_file_lines.items()) for lineno, line in line_iterator: line, _comment = clean_line(line) # First check to see if this is a #define statement match = re.match(r"^#define\s+UC_(?P<id>\w+)\s+(?P<value>.*)$", line) if match: name = "UC_" + match.group("id") raw_value = match.group("value") try: resolved_values[name] = ast.literal_eval(raw_value) except (NameError, SyntaxError, ValueError): raw_matches[name] = raw_value continue # Not a #define; see if it's an enum. if "enum uc_" not in line.lower(): continue # This is the beginning of an enum. Subsequent lines until the closing `}` are # part of it. We need to keep track because enums without an explicitly defined # value are incremented by one from the previous enum value. next_enum_value = 0 enum_start_line = lineno while True: lineno, line = next(line_iterator, (None, None)) if line is None: # Hit EOF before we hit the end of the enum. That's odd. logging.warning( "Hit EOF before end of enum beginning on line %d.", enum_start_line ) break elif "}" in line: # Hit the end of the enum. break line, _comment = clean_line(line) # Sometimes we have multiple enum definitions on one line. We need to handle # these one at a time. Splitting the line by commas should be enough to # separate out multiple expressions. for expression in line.strip(",").split(","): expression = expression.strip() if not expression: continue # See if this enum value is being assigned rather than implicit. match = re.match(r"^UC_(?P<id>\w+)\s*=\s*(?P<expr>.+)$", expression) if match: # Enum value is assigned. Whatever's on the right-hand side, any # names it references must already be defined. name = "UC_" + match.group("id") raw_value = match.group("expr") try: processed_value = eval(raw_value, resolved_values) except NameError as nerr: logging.error( "Failed to resolve %r on line %d: %s", name, lineno, nerr ) continue resolved_values[name] = processed_value next_enum_value = processed_value + 1 else: # Not an explicit assignment. Expect this expression to be just a # single identifier. match = re.match(r"^UC_(\w+)$", expression) if match: name = match.group(1) resolved_values["UC_" + name] = next_enum_value next_enum_value += 1 else: raise SyntaxError( "Couldn't match any expression type to: %r" % expression ) for name, raw_value in raw_matches.items(): # Convert any remaining values that are still unresolved. This usually only # applies to #define macros that reference other constants. if name not in resolved_values: resolved_values[name] = eval(raw_value, resolved_values) return resolved_values
1681939a78efe6426cdea1577a8781a7f046c02d
11,532
import platform def get_linux_distribution(get_full_name, supported_dists): """Abstract platform.linux_distribution() call which is deprecated as of Python 3.5 and removed in Python 3.7""" try: supported = platform._supported_dists + (supported_dists,) osinfo = list( platform.linux_distribution( full_distribution_name=get_full_name, supported_dists=supported ) ) if not osinfo or osinfo == ['', '', '']: return get_linux_distribution_from_distro(get_full_name) full_name = platform.linux_distribution()[0].strip() osinfo.append(full_name) except AttributeError: return get_linux_distribution_from_distro(get_full_name) return osinfo
01ceea04eeb4e8130e9ce5899a116af557d9f954
11,533
def check_disabled(func): """ Decorator to wrap up checking if the Backdrop connection is set to disabled or not """ @wraps(func) def _check(*args, **kwargs): if _DISABLED: return else: return func(*args, **kwargs) return _check
53d6b0b44558d09ed73556f6854f004c6767856c
11,534