content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import json def update_alert(): """ Make Rest API call to security graph to update an alert """ if flask.request.method == 'POST': flask.session.pop('UpdateAlertData', None) result = flask.request.form flask.session['VIEW_DATA'].clear() alert_data = {_: result[_] for _ in result} # Iterate over html form POST from Graph.html if alert_data.get('AlertId'): # Id form was not empty alert_data['AlertId'] = alert_data.get('AlertId').strip(' ') else: flask.session['VIEW_DATA']['UpdateAlertError'] = "Please enter valid alert Id" return flask.redirect(flask.url_for('homepage')) alert_id = alert_data['AlertId'] old_alert = get_alert_by_id(alert_id) # store old alert before updating it if not old_alert: # alert not found flask.session['VIEW_DATA']['UpdateAlertError'] = "No alert matching this ID " + alert_id + " was found" return flask.redirect(flask.url_for('homepage')) else: flask.session['VIEW_DATA']['OldAlert'] = old_alert properties_to_update = {} properties_to_update["assignedTo"] = flask.session['email'] if alert_data.get("SelectStatusToUpdate") != "Unknown": properties_to_update["status"] = alert_data.get("SelectStatusToUpdate") if alert_data.get("SelectFeedbackToUpdate") != "Unknown": properties_to_update["feedback"] = alert_data.get("SelectFeedbackToUpdate") if alert_data.get("Comments") != "": comments = old_alert.get("comments") new_comment = alert_data.get("Comments") comments.append(new_comment) properties_to_update["comments"] = comments # include the required vendor information in the body of the PATCH properties_to_update["vendorInformation"] = old_alert.get("vendorInformation") # update the alert update_security_alert(alert_id, properties_to_update) # make another call to graph to get the updated alert updated_alert = get_alert_by_id(alert_id) # store the alert to be rendered in the table in Graph.html flask.session['VIEW_DATA']['UpdateAlertResults'] = updated_alert flask.session['VIEW_DATA']['UpdateQueryDetails'] = "REST query PATCH: '" \ + config.SECURITYAPI_URL \ + "alerts/" \ + alert_id \ + "'" flask.session['VIEW_DATA']['UpdateQueryBody'] = "Request Body: " \ + json.dumps(properties_to_update, sort_keys=True, indent=4, separators=(',', ': ')) flask.session['UpdateAlertData'] = alert_data return flask.redirect(flask.url_for('homepage'))
52248bda1271fbd39ab056c5384f6318e30cc712
11,648
def simulate_bet(odds, stake): """ Simulate the bet taking place assuming the odds accurately represent the probability of the event :param odds: numeric: the odds given for the event :param stake: numeric: the amount of money being staked :return: decimal: the returns from the bet """ probability = odds_to_prob(odds) if np.random.rand() <= probability: return stake * (1 + odds) else: return 0
0a56bc4b9a3071cc777786a1a7cf8b1410e3f941
11,649
from typing import OrderedDict def lrcn(num_classes, lrcn_time_steps, lstm_hidden_size=200, lstm_num_layers=2): """ Args: num_classes (int): Returns: torch.nn.modules.module.Module """ class TimeDistributed(nn.Module): def __init__(self, layer, time_steps): super(TimeDistributed, self).__init__() # self.layers = nn.ModuleList([layer for _ in range(time_steps)]) self.layers = nn.ModuleList([nn.Linear(10, 10) for _ in range(time_steps)]) def forward(self, x): batch_size, time_steps, *_ = x.size() # outputs = list() for i, layer in enumerate(self.layers): x = layer(x) # output_t = layer(x[:, i]) # if i == 0: # output = output_t.unsqueeze(1) # else: # output = torch.cat((output, output_t.unsqueeze(1)), 1) # outputs.append(output_t) # output = torch.stack(outputs, dim=1) # return output return x class BiLSTMHidden2Dense(nn.Module): def __init__(self): super(BiLSTMHidden2Dense, self).__init__() def forward(self, x): lstm_output, (hn, cn) = x lstm_last_hidden_state = hn[-2:].transpose(0, 1).contiguous().view(hn.size(1), -1) return lstm_last_hidden_state cnn_model = squeezenet1_1(pretrained=False, progress=True) model = nn.Sequential(OrderedDict([ ('timedistributed_cnn', TimeDistributed(nn.Conv2d(3, 60, (1, 1)), time_steps=lrcn_time_steps)), # ('timedistributed_cnn', TimeDistributed(cnn_model, time_steps=lrcn_time_steps)), # ('bidirectional_stacked_lstm', nn.LSTM(input_size=1000, hidden_size=lstm_hidden_size, num_layers=lstm_num_layers, # batch_first=True, dropout=0.2, bidirectional=True)), # ('hidden2dense', BiLSTMHidden2Dense()), # ('dense', nn.Linear(in_features=2*lstm_hidden_size, out_features=lstm_hidden_size)), # ('norm', nn.BatchNorm1d(num_features=lstm_hidden_size)), # ('relu', nn.ReLU()), # ('dropout', nn.Dropout(p=0.25)), # ('last', nn.Linear(in_features=lstm_hidden_size, out_features=num_classes)) ])) return model
a17f58906f4d5b514e56f5cba22ac60bdf739b9c
11,650
import tokenize def index_document(connection, doc_id, content): """对document建立反向索引""" words = tokenize(content) pipe = connection.pipeline(True) for word in words: pipe.sadd('idx:' + word, doc_id) return len(pipe.execute())
89572980c0bfadef9e1557b7e7831fc7aebe6716
11,651
def get_incar_magmoms(incarpath,poscarpath): """ Read in the magnetic moments in the INCAR Args: incarpath (string): path to INCAR poscarpath (string): path to POSCAR Returns: mof_mag_list (list of floats): magnetic moments """ mof_mag_list = [] init_mof = read(poscarpath) with open(incarpath,'r') as incarfile: for line in incarfile: line = line.strip() if 'MAGMOM' in line: mag_line = line.split('= ')[1:][0].split(' ') for val in mag_line: mag = float(val.split('*')[1]) num = int(val.split('*')[0]) mof_mag_list.extend([mag]*num) if not bool(mof_mag_list): mof_mag_list = np.zeros(len(init_mof)) if len(mof_mag_list) != len(mof_mag_list): raise ValueError('Error reading INCAR magnetic moments') return mof_mag_list
6b75f415e7128213bab63d251a3fb6feb7576656
11,652
import plistlib def remove_report_from_plist(plist_file_obj, skip_handler): """ Parse the original plist content provided by the analyzer and return a new plist content where reports were removed if they should be skipped. If the remove failed for some reason None will be returned. WARN !!!! If the 'files' array in the plist is modified all of the diagnostic section (control, event ...) nodes should be re indexed to use the proper file array indexes!!! """ report_data = None try: report_data = parse_plist(plist_file_obj) if not report_data: return except Exception as ex: LOG.error("Plist parsing error") LOG.error(ex) return file_ids_to_remove = [] try: for i, f in enumerate(report_data['files']): if skip_handler.should_skip(f): file_ids_to_remove.append(i) kept_diagnostics, kept_files = get_kept_report_data(report_data, file_ids_to_remove) report_data['diagnostics'] = kept_diagnostics report_data['files'] = kept_files if kept_diagnostics else [] return plistlib.dumps(report_data) except KeyError: LOG.error("Failed to modify plist content, " "keeping the original version") return
fb14ccf1b0a1ad6b5e3b3e536e21386dbbcac84e
11,654
def isTask(item): # pragma: no cover """Is the given item an OmniFocus task?""" return item.isKindOfClass_(taskClass)
b0e2c813b29315e7b84cd9f2a4d211552dab9baf
11,655
from typing import Tuple import torch def cox_cc_loss(g_case: Tensor, g_control: Tensor, shrink : float = 0., clamp: Tuple[float, float] = (-3e+38, 80.)) -> Tensor: """Torch loss function for the Cox case-control models. For only one control, see `cox_cc_loss_single_ctrl` instead. Arguments: g_case {torch.Tensor} -- Result of net(input_case) g_control {torch.Tensor} -- Results of [net(input_ctrl1), net(input_ctrl2), ...] Keyword Arguments: shrink {float} -- Shrinkage that encourage the net got give g_case and g_control closer to zero (a regularizer in a sense). (default: {0.}) clamp {tuple} -- See code (default: {(-3e+38, 80.)}) Returns: [type] -- [description] """ control_sum = 0. shrink_control = 0. if g_case.shape != g_control[0].shape: raise ValueError(f"Need `g_case` and `g_control[0]` to have same shape. Got {g_case.shape}"+ f" and {g_control[0].shape}") for ctr in g_control: shrink_control += ctr.abs().mean() ctr = ctr - g_case ctr = torch.clamp(ctr, *clamp) # Kills grads for very bad cases (should instead cap grads!!!). control_sum += torch.exp(ctr) loss = torch.log(1. + control_sum) shrink_zero = shrink * (g_case.abs().mean() + shrink_control) / len(g_control) return torch.mean(loss) + shrink_zero.abs()
1f528ff25984e0bb09bc49edf59d793a44281ddb
11,657
def vector_field(mesh, v): """ Returns a np.array with values specified by `v`, where `v` should be a iterable of length 3, or a function that returns an iterable of length 3 when getting the coordinates of a cell of `mesh`. """ return field(mesh, v, dim=3)
2d82fa86bc76367e2668b37815c068097d88c6fa
11,658
def is_fav_recipe(request): """ Handles the requests from /ajax/is_fav_recipe/ Checks if a :model:`matega.recipe` is a saved recipe for a :model:'matega.user' **Data** Boolean if :model:`matega.recipe` is a saved recipe for :model:'matega.user' """ user_id = int(request.GET.get('user_id', None)) recipe_id = int(request.GET.get('recipe_id', None)) is_fav = False user = User.objects.get(pk=user_id) for rec in user.saved_recipes.values_list(): if rec[0] == recipe_id: is_fav = True data = { 'is_fav': is_fav } return JsonResponse(data)
f5ee3b21409f7a9ffe4ee427e19317f03b8db9c3
11,659
def people_interp(): """ <enumeratedValueSet variable="People"> <value value="500"/> </enumeratedValueSet> Integer between 1 and 500 """ return f'<enumeratedValueSet variable="People"> <value value="%s"/> </enumeratedValueSet>'
2aba1330a774e022c280d2e50e3fb63631989a88
11,660
def through_omas_s3(ods, method=['function', 'class_method'][1]): """ Test save and load S3 :param ods: ods :return: ods """ filename = 'test.pkl' if method == 'function': save_omas_s3(ods, filename, user='omas_test') ods1 = load_omas_s3(filename, user='omas_test') else: ods.save('s3', filename=filename, user='omas_test') ods1 = ODS().load('s3', filename=filename, user='omas_test') return ods1
f89bb1c31a9bcbae869d07313ab10a7df658fd1c
11,662
def read_packages(filename): """Return a python list of tuples (repository, branch), given a file containing one package (and branch) per line. Comments are excluded """ lines = load_order_file(filename) packages = [] for line in lines: if "," in line: # user specified a branch path, branch = [k.strip() for k in line.split(",", 1)] packages.append((path, branch)) else: packages.append((line, "master")) return packages
e73573003bd0388ed850fd2e996643a91199d30a
11,663
import heapq def find_min(x0, capacities): """ (int list, int list) --> (int list, int) Find the schedule that minimizes the passenger wait time with the given capacity distribution Uses a mixture of Local beam search and Genetic Algorithm Returns the min result """ scores_and_schedules = [] # Generate 199 neighbouring schedules using the input schedule x0 init_neighbours = find_neighbours(199, 10, x0) min_score = all_trains(x0, capacities, passengers) min_sched = x0 heapq.heappush(scores_and_schedules,(min_score, x0)) # Add them all to the list, as well as the input schedule for i in init_neighbours: score = all_trains(i, capacities, passengers) heapq.heappush(scores_and_schedules,(score, i)) if score < min_score: min_score, min_sched = score, i local_min_counter = 0 # Perform the genetic algorithm for optimization while local_min_counter < 500: scores_and_schedules = best_n(scores_and_schedules, capacities, 5) if scores_and_schedules[0][0] < min_score: min_score, min_sched = scores_and_schedules[0] local_min_counter = 0 else: local_min_counter += 1 return min_sched, min_score
016cdd310f4b59e61349edd94b3b7cc387c3c7c1
11,664
def versioning(version: str) -> str: """ version to specification Author: Huan <[email protected]> (https://github.com/huan) X.Y.Z -> X.Y.devZ """ sem_ver = semver.parse(version) major = sem_ver['major'] minor = sem_ver['minor'] patch = str(sem_ver['patch']) if minor % 2: patch = 'dev' + patch fin_ver = '%d.%d.%s' % ( major, minor, patch, ) return fin_ver
bfef27712b8595f52314f300743012270a42e64f
11,665
def device_create_from_symmetric_key(transportType, deviceId, hostname, symmetricKey): # noqa: E501 """Create a device client from a symmetric key # noqa: E501 :param transportType: Transport to use :type transportType: str :param deviceId: :type deviceId: str :param hostname: name of the host to connect to :type hostname: str :param symmetricKey: key to use for connection :type symmetricKey: str :rtype: ConnectResponse """ return "do some magic!"
15ac85df5a41f88044cf449f0f9d99bfcd72d570
11,667
def create_with_index(data, columns): """ Create a new indexed pd.DataFrame """ to_df = {columns[0]: [x for x in range(1, len(data) + 1)], columns[1]: data} data_frame = pd.DataFrame(to_df) data_frame.set_index("Index", inplace=True) return data_frame
f9bb854af5d77f4355d64c8c56a9fdda7bd2cf93
11,668
def random_aes_key(blocksize=16): """Set 2 - Challenge 11""" return afb(np.random.bytes(blocksize))
f5bfad117886e51bbb810274c62e44e89ec2c79a
11,669
import json import torch def create_and_load(directory: str, name: str, new_name: str = None) -> nn.Module: """Instantiate an unkown function (uf) required by the high-order functions with a trained neural network Args: directory: directory to the saved weights of an NN name: name of the unknown function new_name: the new name of the unknown function """ if new_name is None: new_name = name with open('{}/{}.json'.format(directory, name)) as json_data: params_dict = json.load(json_data) params_dict['name'] = new_name if params_dict['output_activation'] == 'None': params_dict['output_activation'] = None elif params_dict['output_activation'] == 'sigmoid': params_dict['output_activation'] = torch.sigmoid elif params_dict['output_activation'] == 'softmax': params_dict['output_activation'] = nn.Softmax(dim=1) else: raise NotImplementedError() new_fn, _ = get_nn_from_params_dict(params_dict) new_fn.load('{}/{}.pth'.format(directory, name)) new_fn.eval() return new_fn
1ebf471fb624918b52953748a4f275b22aeaba1a
11,670
def select_region_climatedata(gcm_name, rcp, main_glac_rgi): """ Get the regional temperature and precipitation for a given dataset. Extracts all nearest neighbor temperature and precipitation data for a given set of glaciers. The mean temperature and precipitation of the group of glaciers is returned. If two glaciers have the same temp/prec data, that data is only used once in the mean calculations. Additionally, one would not expect for different GCMs to be similar because they all have different resolutions, so this mean calculations will have different numbers of pixels. Parameters ---------- gcm_name : str GCM name rcp : str rcp scenario (ex. rcp26) main_glac_rgi : pd.DataFrame glacier dataset used to select the nearest neighbor climate data """ # Date tables print('select_region_climatedata fxn dates supplied manually') dates_table_ref = modelsetup.datesmodelrun(startyear=2000, endyear=2100, spinupyears=0, option_wateryear=1) dates_table = modelsetup.datesmodelrun(startyear=2000, endyear=2100, spinupyears=0, option_wateryear=1) # Load gcm lat/lons gcm = class_climate.GCM(name=gcm_name, rcp_scenario=rcp) # Select lat/lon from GCM ds_elev = xr.open_dataset(gcm.fx_fp + gcm.elev_fn) gcm_lat_values_all = ds_elev.lat.values gcm_lon_values_all = ds_elev.lon.values ds_elev.close() # Lat/lon dictionary to convert gcm_lat_dict = dict(zip(range(gcm_lat_values_all.shape[0]), list(gcm_lat_values_all))) gcm_lon_dict = dict(zip(range(gcm_lon_values_all.shape[0]), list(gcm_lon_values_all))) # Find nearest neighbors for glaciers that have pixles latlon_nearidx = pd.DataFrame(np.zeros((main_glac_rgi.shape[0],2)), columns=['CenLat','CenLon']) latlon_nearidx.iloc[:,0] = (np.abs(main_glac_rgi.CenLat.values[:,np.newaxis] - gcm_lat_values_all).argmin(axis=1)) latlon_nearidx.iloc[:,1] = (np.abs(main_glac_rgi.CenLon.values[:,np.newaxis] - gcm_lon_values_all).argmin(axis=1)) latlon_nearidx = latlon_nearidx.drop_duplicates().sort_values(['CenLat', 'CenLon']) latlon_nearidx.reset_index(drop=True, inplace=True) latlon_reg = latlon_nearidx.copy() latlon_reg.CenLat.replace(gcm_lat_dict, inplace=True) latlon_reg.CenLon.replace(gcm_lon_dict, inplace=True) # ===== LOAD CLIMATE DATA ===== # Reference climate data ref_gcm = class_climate.GCM(name=input.ref_gcm_name) # Air temperature [degC], Precipitation [m], Elevation [masl], Lapse rate [K m-1] ref_temp, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.temp_fn, ref_gcm.temp_vn, latlon_reg, dates_table_ref) ref_prec, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.prec_fn, ref_gcm.prec_vn, latlon_reg, dates_table_ref) # ref_elev = ref_gcm.importGCMfxnearestneighbor_xarray(ref_gcm.elev_fn, ref_gcm.elev_vn, latlon_reg) # GCM climate data gcm_temp_all, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.temp_fn, gcm.temp_vn, latlon_reg, dates_table) gcm_prec_all, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.prec_fn, gcm.prec_vn, latlon_reg, dates_table) # gcm_elev = gcm.importGCMfxnearestneighbor_xarray(gcm.elev_fn, gcm.elev_vn, latlon_reg) # GCM subset to agree with reference time period to calculate bias corrections gcm_subset_idx_start = np.where(dates_table.date.values == dates_table_ref.date.values[0])[0][0] gcm_subset_idx_end = np.where(dates_table.date.values == dates_table_ref.date.values[-1])[0][0] gcm_temp = gcm_temp_all[:,gcm_subset_idx_start:gcm_subset_idx_end+1] gcm_prec = gcm_prec_all[:,gcm_subset_idx_start:gcm_subset_idx_end+1] ## ===== BIAS ADJUSTMENTS ===== # OPTION 2: Adjust temp and prec according to Huss and Hock (2015) accounts for means and interannual variability if input.option_bias_adjustment == 2: # TEMPERATURE BIAS CORRECTIONS # Mean monthly temperature ref_temp_monthly_avg = (ref_temp.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) gcm_temp_monthly_avg = (gcm_temp.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) # Monthly bias adjustment gcm_temp_monthly_adj = ref_temp_monthly_avg - gcm_temp_monthly_avg # Monthly temperature bias adjusted according to monthly average t_mt = gcm_temp_all + np.tile(gcm_temp_monthly_adj, int(gcm_temp_all.shape[1]/12)) # Mean monthly temperature bias adjusted according to monthly average t_m25avg = np.tile(gcm_temp_monthly_avg + gcm_temp_monthly_adj, int(gcm_temp_all.shape[1]/12)) # Calculate monthly standard deviation of temperature ref_temp_monthly_std = (ref_temp.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).std(1).reshape(12,-1).transpose()) gcm_temp_monthly_std = (gcm_temp.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).std(1).reshape(12,-1).transpose()) variability_monthly_std = ref_temp_monthly_std / gcm_temp_monthly_std # Bias adjusted temperature accounting for monthly mean and variability gcm_temp_bias_adj = t_m25avg + (t_mt - t_m25avg) * np.tile(variability_monthly_std, int(gcm_temp_all.shape[1]/12)) # PRECIPITATION BIAS CORRECTIONS # Calculate monthly mean precipitation ref_prec_monthly_avg = (ref_prec.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) gcm_prec_monthly_avg = (gcm_prec.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) bias_adj_prec = ref_prec_monthly_avg / gcm_prec_monthly_avg # Bias adjusted precipitation accounting for differences in monthly mean gcm_prec_bias_adj = gcm_prec_all * np.tile(bias_adj_prec, int(gcm_temp_all.shape[1]/12)) # Regional means reg_mean_temp_biasadj = gcm_temp_bias_adj.mean(axis=0) reg_mean_prec_biasadj = gcm_prec_bias_adj.mean(axis=0) return reg_mean_temp_biasadj, reg_mean_prec_biasadj
8e2c4bf8a942b4a21d5549e9af87bacb75f92f26
11,671
def get_patch_boundaries(mask_slice, eps=2): """ Computes coordinates of SINGLE patch on the slice. Behaves incorrectly in the case of multiple tumors on the slice. :mask_slice: 2D ndarray, contains mask with <0, 1, 2> values of pixels :eps: int, number of additional pixels we extract around the actual mask coordinates :return: `x_min`, `x_max`, `y_min`, `ymax` """ # check if we work with mask_slice that contains at least one non-zero pixel if np.sum(mask_slice[:, :]) <= 0: raise ValueError("Slice does not contains any tumors.") # smallest index that has something except in its layer x_min = None for x in range(mask_slice.shape[0]): if np.sum(mask_slice[x, :]) > 0: # get first from the left index of nonzero 1D slice and break x_min = x break x_max = None for x in range(mask_slice.shape[0] - 1, -1, -1): if np.sum(mask_slice[x, :]) > 0: # get the first from the right index of nonzero 1D slice and break x_max = x break y_min = None for y in range(mask_slice.shape[1]): if np.sum(mask_slice[:, y]) > 0: # get the first from the bottom index of nonzero 1D slice and break y_min = y break y_max = None for y in range(mask_slice.shape[1] - 1, -1, -1): if np.sum(mask_slice[:, y]) > 0: # get the first from the top index of nonzero 1D slice and break y_max = y break # apply `eps` parameter to the actual `min` and `max` values x_min = max(x_min - eps, 0) x_max = min(x_max + eps, mask_slice.shape[0] - 1) y_min = max(y_min - eps, 0) y_max = min(y_max + eps, mask_slice.shape[1] - 1) return x_min, x_max, y_min, y_max
0af985273b3e509bf9ee2580a64c8ddd6392d5a7
11,672
from typing import Union from typing import List def get_sqrt_ggn_extension( subsampling: Union[None, List[int]], mc_samples: int ) -> Union[SqrtGGNExact, SqrtGGNMC]: """Instantiate ``SqrtGGN{Exact, MC} extension. Args: subsampling: Indices of active samples. mc_samples: Number of MC-samples to approximate the loss Hessian. ``0`` uses the exact loss Hessian. Returns: Instantiated SqrtGGN extension. """ return ( SqrtGGNExact(subsampling=subsampling) if mc_samples == 0 else SqrtGGNMC(subsampling=subsampling, mc_samples=mc_samples) )
47f074a387d0a6182d93061cbaaf4fc397be26c0
11,673
def gray_to_rgb(image): """convert cv2 image from GRAYSCALE to RGB :param image: the image to be converted :type image: cv2 image :return: converted image :rtype: cv2 image """ return cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
feede538a2822d6d7f36bb6bbe40c845ca55808d
11,674
def win_to_cygwin(winpath): """run `cygpath winpath` to get cygwin path""" x = detail.command.run(['cygpath', winpath]) assert(len(x) == 1) return x[0]
1f941628fae51cfca7621c62c454e80d984f7019
11,675
def nucleotide_composition_to_letter(composition): """ Converts dictionary of {nucleotide letter: proportion} pairs to IUPAC degenerate DNA letter. Usage: c = {'A': 1} print(nucleotide_composition_to_letter(c)) --> 'A' c = dict(zip('ACGT', [1, 1, 1, 1])) print(nucleotide_composition_to_letter(c)) --> 'N' c = dict(zip('ACGT', [1, 1, 2, 1])) print(nucleotide_composition_to_letter(c)) --> 'n' """ nonzero_nucleotides = ''.join(sorted([n for n, v in composition.items() if v > 0])) nonzero_proportions = [composition[n] for n in nonzero_nucleotides] equimolar = min(nonzero_proportions) == max(nonzero_proportions) letter = DEGENERATE_NUCLEOTIDE_CODE_REVERSED.get(nonzero_nucleotides, DEFAULT_NUCLEOTIDE_LABEL) if equimolar: return letter return letter.lower()
2ad080d3a04cfc754f46d490a272362cadecbfd2
11,676
def forcast(doc): """ :param: doc object :returns: tuple with grade level, age level """ word_tokens = doc.word_tokens monosyllables = 0 for i in word_tokens: if i.isalpha() == False and len(i) < 2: word_tokens.remove(i) for i in word_tokens[10:159]: if syllable_count(i) < 2: monosyllables += 1 gl = 20 - (monosyllables/10) ra = 25 - (monosyllables/10) return (gl, ra, monosyllables)
e71debbdaf057c61eaa620419b0357e603868989
11,677
def convert_coordinates_to_country(deg_x: float, deg_y: float) -> str: """ returns country name """ return geocoder.osm([deg_x, deg_y], method="reverse").country
5dca9d54bfa154a33a94550f983a3e9457cf2d52
11,678
def fixture_items(test_list): """Returns an instance of ItemCollection for testing""" return test_list.get_items(query=QUERY)
6351ffdb9ce8a65d7a08d55c6cfa9db8ef4aa978
11,679
def get_daily_discussion_post(subreddit_instance: praw.models.Subreddit): """Try to get the daily discussions post for a subreddit. Args: subreddit_instance Returns: The submission object for the discussion post, or None if it couldn't be found. Works by searching the stickied posts of the subreddit for a post with 'daily discussion' in the title. """ print('Searching stickied posts for daily discussion posts..') for sticky_num in [1, 2]: discussion_post = subreddit_instance.sticky(number=sticky_num) if 'daily discussion' in discussion_post.title.lower(): print(f'Got daily discussion post, title {discussion_post.title}') return discussion_post print("Couldn't find daily discussion post!") return None
841612a8b2d2fa7a8a74f081e360a69884b20925
11,681
def metric_by_training_size(X, y, classifier_list, training_set, metric, as_percentage=True): """ This is a refactoriation of code to repeat metrics for best fitted models by training set percentage size. i.e.: Find accuracy rating for multiple training-test splits for svm, random forests, and naive bayes and return an np.ndarray :param X: :param y: :param classifier_list: :param training_set: :param metric: :param as_percentage: :return: np.ndarray """ metric_array = np.zeros((len(training_set), len(classifier_list))) for row_num, training_size in enumerate(training_set): X_train_iter, X_test_iter, y_train_iter, y_test_iter = train_test_split(X, y, test_size=1 - training_size, random_state=0) metric_list = [] for classifier in classifier_list: y_pred = classifier.fit(X_train_iter, y_train_iter).predict(X_test_iter) metric_list.append(metric(y_test_iter, y_pred)) metric_array[row_num] = metric_list metric_array = metric_array.transpose() return 100 * metric_array if as_percentage else metric_array
3d918989b28db47479da3479b1804b7a502b9ce0
11,682
def remove_namespace(tag, ns): """Remove namespace from xml tag.""" for n in ns.values(): tag = tag.replace('{' + n + '}', '') return tag
d4837a3d906baf8e439806ccfea76284e8fd9b87
11,684
def false_prediction_pairs(y_pred, y_true): """ Prints pairs of predicted and true classes that differ. Returns ------- false_pairs The pairs of classes that differ. counts Number of occurences of the pairs. """ cond = y_pred != y_true false_preds = np.stack([y_true[cond], y_pred[cond]], axis=-1) false_pairs, counts = np.unique(false_preds, axis=0, return_counts=True) return false_pairs, counts
460acb967b95d9e4c03e557e6bd1ede2dd7d0902
11,685
def draw_boxes_and_labels_to_image_multi_classes(image, classes, coords, scores=None, classes_name=None, classes_colors=None, font_color=[0, 0, 255]): """ Draw bboxes and class labels on image. Return or save the image with bboxes Parameters ----------- image : numpy.array The RGB image [height, width, channel]. classes : list of int A list of class ID (int). coords : list of int A list of list for coordinates. - Should be [x, y, x2, y2] scores : list of float A list of score (float). (Optional) classes_name : list of str For converting ID to string on image. classes_colors : list of color A list of color [ [r,g,b], ...]. font_color : front color Front color Returns ------- numpy.array The output image. """ image = image.copy() imh, imw = image.shape[0:2] thick = int((imh + imw) // 500) # 粗细 for i, _v in enumerate(coords): x, y, x2, y2 = np.asarray(coords[i], np.int32) bbox_color = [0, 255, 0] if classes_colors is None else classes_colors[classes[i]] cv2.rectangle(image, (x, y), (x2, y2), bbox_color, thick) if classes is not None: text = [] for c in classes[i]: class_text = classes_name[c] if classes_name is not None else str(c) # score_text = " %.2f" % (scores[i]) if scores is not None else '' t = class_text #+ score_text text.append(t) text = '\n'.join(text) score_text = " %.2f" % (scores[i]) if scores is not None else '' text += score_text font_scale = 1.0e-3 * imh # text_size, _ = cv2.getTextSize(text, 0, font_scale, int(thick / 2) + 1) # cv2.rectangle(image, (x, y), (x+text_size[0], y-text_size[1]), bbox_color, -1) # cv2.putText(image, text, (x, y), 0, font_scale, font_color, int(thick / 3) + 1) image = im_tool.put_text(image, text, (x, y), font_scale*32, font_color, bbox_color) return image
5a11dd98019e5096c83137c43457a312598e2be8
11,686
def simulate(): """ Runs a simulation given a context, a simulator, a trace, and a depth Method PUT """ context = request.get_json()['context'] simulator = request.get_json()['simulator'] trace = request.get_json()['trace'] depth = request.get_json()['depth'] if context is None or simulator is None or trace is None or depth is None: return {'result': 'error'}, 400 ctx = contexts[context]['context'] sim = contexts[context]['simulators'][simulator] tra = contexts[context]['traces'][trace] dep = int(depth) assert ctx is not None assert sim is not None assert tra is not None sim.simulate(tra, dep) return {'result': 'ok'}, 200
d905eb9fa34454588d4d1ab95794a6b9c41074ac
11,688
def soft_expected_backup_rl( next_q: Array, next_pol: Array, next_log_pol: Array, rew: Array, done: Array, discount: float, er_coef: float, ) -> Array: """Do soft expected bellman-backup :math:`r + \gamma P \langle \pi, q - \tau * \log{\pi}\rangle`. Args: next_q (Array): ? x dA q-values. next_pol (Array): ? x dA policy. next_log_pol (Array): ? x dA log-policy. rew (Array): ? x 1 rewards. done (Array): ? x 1 done flags. discount (float): Discount factor. er_coef (float): Entropy coefficient. Returns: q (Array): ? x 1 q-values. """ chex.assert_rank([next_q, next_pol], 2) next_v = next_pol * (next_q - er_coef * next_log_pol) next_v = next_v.sum(axis=-1, keepdims=True) # ? x 1 q = rew + discount * next_v * (~done) return q
fb1fed9946e05e4ad464f54c559be5e32c1f2e8e
11,689
def generate_bias(series: pd.Series, effect_size: float = 1, power: float = 1) -> pd.Series: """ Calculate bias for sensitive attribute Parameters ---------- series : pd.Series sensitive attribute for which the bias is calculated. effect_size : float, optional Size of the bias for 1 std from the mean. The default is 1. power : float, optional power=1: linear bias, power=2: quadratic bias, etc. The default is 1. Returns ------- pd.Series DESCRIPTION. """ bias = series.sub(series.mean()).pow(power) bias = (bias - bias.mean())/bias.std() # Make the bias neutral return bias * effect_size
a23a201dfeac8ed25cb923080f9c968d1a8a6583
11,692
def get_thellier_gui_meas_mapping(input_df, output=2): """ Get the appropriate mapping for translating measurements in Thellier GUI. This requires special handling for treat_step_num/measurement/measurement_number. Parameters ---------- input_df : pandas DataFrame MagIC records output : int output to this MagIC data model (2 or 3) Output -------- mapping : dict (used in convert_meas_df_thellier_gui) """ if int(output) == 2: thellier_gui_meas3_2_meas2_map = meas_magic3_2_magic2_map.copy() if 'treat_step_num' in input_df.columns: thellier_gui_meas3_2_meas2_map.update( {'treat_step_num': 'measurement_number'}) thellier_gui_meas3_2_meas2_map.pop('measurement') return thellier_gui_meas3_2_meas2_map # 2 --> 3 else: thellier_gui_meas2_2_meas3_map = meas_magic2_2_magic3_map.copy() if 'measurement' in input_df.columns: thellier_gui_meas2_2_meas3_map.pop('measurement_number') try: res = int(input_df.iloc[0]['measurement_number']) if res < 100: thellier_gui_meas2_2_meas3_map['measurement_number'] = 'treat_step_num' except ValueError as ex: pass return thellier_gui_meas2_2_meas3_map
ba32104db56cfdb450015a0a43f0717263d5ea44
11,694
import time def new_unsigned_vaccination_credential( passenger_first_name: str, passenger_last_name: str, passenger_id_number: str, passenger_date_of_birth: str, vaccination_disease: str, vaccination_vaccine: str, vaccination_product: str, vaccination_auth_holder: str, vaccination_dose_number: str, vaccination_total_doses: str, vaccination_batch: str, vaccination_date: str, vaccination_next_date: str, vaccination_center: str, vaccination_professional: str, vaccination_country: str, issuer_did: str ): """Create a Claims object for a Verifiable Credentia in JWT format. The returned object has just the plain claims object, and has to be signed later. """ # Generate a random UUID, not related to anything in the credential # This is important for privacy reasons to avoid possibility of # correlation if the UUID is used for Revocation Lists in a blockchain uid = unique_id.uuid4().hex # Current time and expiration now = int(time.time()) exp = now + 365*24*60*60 # The token will expire in 365 days # Generate a template Verifiable Credential credential = { "iss": issuer_did, "sub": passenger_id_number, "iat": now, "exp": exp, "uuid": uid, "vc": { "@context": [ "https://www.w3.org/2018/credentials/v1", "https://alastria.github.io/identity/credentials/v1", "https://safeisland.org/.well-known/w3c-covid-test/v1" ], "type": [ "VerifiableCredential", "AlastriaVerifiableCredential", "SafeIslandVaccinationCredential" ], "credentialSchema": { "id": "vaccinationCredential", "type": "JsonSchemaValidator2018" }, "credentialSubject": { "vaccinationCredential": { "patient": { "name": passenger_last_name.upper() + "/" + passenger_first_name.upper(), "idnumber": passenger_id_number, "dob": passenger_date_of_birth }, "vaccination": { "disease": vaccination_disease, "vaccine": vaccination_vaccine, "product": vaccination_product, "auth_holder": vaccination_auth_holder, "dose_number": vaccination_dose_number, "total_doses": vaccination_total_doses, "batch": vaccination_batch, "date": vaccination_date, "next_date": vaccination_next_date, "center": vaccination_center, "professional": vaccination_professional, "country": vaccination_country, }, "comments": "These are some comments" }, "issuedAt": ["redt.alastria"], "levelOfAssurance": 2 } } } return credential
e3a072e1d16a3520a5bad92e692e5f4de72e8b1d
11,695
def calc_pk_integrated_intensities(p,x,pktype,num_pks): """ Calculates the area under the curve (integrated intensities) for fit peaks Required Arguments: p -- (m x u + v) peak parameters for number of peaks, m is the number of parameters per peak ("gaussian" and "lorentzian" - 3, "pvoigt" - 4, "split_pvoigt" - 5), v is the number of parameters for chosen bgtype x -- (n) ndarray of coordinate positions f -- (n) ndarray of intensity measurements at coordinate positions x pktype -- string, type of analytic function that will be used to fit the data, current options are "gaussian","lorentzian","pvoigt" (psuedo voigt), and "split_pvoigt" (split psuedo voigt) num_pks -- integer 'u' indicating the number of pks, must match length of p Outputs: ints -- (m) integrated intensities for m fit peaks """ ints=np.zeros(num_pks) if pktype == 'gaussian' or pktype == 'lorentzian': p_fit=np.reshape(p[:3*num_pks],[num_pks,3]) elif pktype == 'pvoigt': p_fit=np.reshape(p[:4*num_pks],[num_pks,4]) elif pktype == 'split_pvoigt': p_fit=np.reshape(p[:6*num_pks],[num_pks,6]) for ii in np.arange(num_pks): if pktype == 'gaussian': ints[ii]=integrate.simps(pkfuncs._gaussian1d_no_bg(p_fit[ii],x),x) elif pktype == 'lorentzian': ints[ii]=integrate.simps(pkfuncs._lorentzian1d_no_bg(p_fit[ii],x),x) elif pktype == 'pvoigt': ints[ii]=integrate.simps(pkfuncs._pvoigt1d_no_bg(p_fit[ii],x),x) elif pktype == 'split_pvoigt': ints[ii]=integrate.simps(pkfuncs._split_pvoigt1d_no_bg(p_fit[ii],x),x) return ints
d3ab50d6e6e5d2187917e06a8258a46ac5d4db18
11,696
def read_fid_ntraces(filename, shape=None, torder='flat', as_2d=False, read_blockhead=False): """ Read a Agilent/Varian binary (fid) file possibility having multiple traces per block. Parameters ---------- filename : str Filename of Agilent/Varian binary file (fid) to read. shape : tuple of ints, optional Shape of the binary data. If not provided data is returned as a 2D array. Required if more than one trace per block (non-standard). torder : {'f', 'n', 'o'} Trace order. See :py:func:`read` for details. as_2d : bool, optional True to return the data as a 2D array, ignoring the shape and torder parameters. read_blockhead : bool, optional True to read the Agilent/Varian blockheaders(s) into the returned dictionary. False ignores them. Returns ------- dic : dict Dictionary of Agilent/Varian binary file parameters. data : array_like Low memory object which can access NMR data on demand. See Also -------- read_fid : Read a Agilent/Varian binary file with one trace per block. read_fid_lowmem : Read a Agilent/Varian binary file with one trace per block using minimal amounts of memory. """ # open the file f = open(filename, 'rb') # read the fileheader dic = fileheader2dic(get_fileheader(f)) # data parameters dt = find_dtype(dic) nblocks = dic["nblocks"] pts = dic["np"] nbheaders = dic["nbheaders"] ntraces = dic["ntraces"] # read the data if read_blockhead: bdic, data = get_nblocks_ntraces(f, nblocks, ntraces, pts, nbheaders, dt, read_blockhead) dic["blockheader"] = bdic else: data = get_nblocks_ntraces(f, nblocks, ntraces, pts, nbheaders, dt, read_blockhead) f.close() # uninterleave the real and imaginary data data = uninterleave_data(data) # if 2D array requested, return unshaped if as_2d: return dic, data # check for 1D if data.shape[0] == 1: return dic, np.squeeze(data) # try to reshape if shape is None: warn("unknown shape, returning unshaped data") return dic, data # reorder 3D/4D data if len(shape) >= 3: return dic, reorder_data(data, shape, torder) try: data = data.reshape(shape) except ValueError: warn(str(data.shape) + "cannot be shaped into" + str(shape)) return dic, data return dic, data
d82f341326d089dad9def8a95b4233cf4dde607d
11,697
import typing async def async_get_erc20_decimals( token: spec.ERC20Reference, block: typing.Optional[spec.BlockNumberReference] = None, **rpc_kwargs: typing.Any ) -> int: """get decimals of an erc20""" return await erc20_generic.async_erc20_eth_call( function_name='decimals', token=token, block=block, **rpc_kwargs )
665c9e697caffd9470c4f71769c8d215ce7d14a0
11,698
def get_game_log(game_id: int): """ Method used to get list of important events of macau game with given game id. :param game_id: integer value of existing game :return: list with string with all important events in game """ if game_id >= len(games_container): return JSONResponse(content={'status': 'No game', 'output': None}, status_code=404) outputs = games_container[game_id]['outputs']['game'] return {"status": "OK", "output": outputs}
837b43b24f747fabb819fe5eeb3e284694fd02a3
11,699
import time def time_this_function(func): """ Time the function. use as a decorator. Examples --------- :: @time_this_function def func(x): return x a= func(1) Parameters ---------- func: Callable function Returns ------- result function results """ @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() print(func.__name__, "time", end - start) return result return wrapper
6ee2d12dc2301e1c3efe2ca02548297aa83d316f
11,701
def power_plot(data, sfreq, toffset, log_scale, zscale, title): """Plot the computed power of the iq data.""" print("power") t_axis = np.arange(0, len(data)) / sfreq + toffset if log_scale: lrxpwr = 10 * np.log10(data + 1e-12) else: lrxpwr = data zscale_low, zscale_high = zscale if zscale_low == 0 and zscale_high == 0: if log_scale: zscale_low = np.min(lrxpwr[np.where(lrxpwr.real != -np.Inf)]) zscale_high = np.max(lrxpwr) + 3.0 else: zscale_low = np.min(lrxpwr) zscale_high = np.max(lrxpwr) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) ax.plot(t_axis, lrxpwr.real) ax.grid(True) ax.axis([toffset, t_axis[len(t_axis) - 1], zscale_low, zscale_high]) ax.set_xlabel("time (seconds)") if log_scale: ax.set_ylabel("power (dB)") else: ax.set_ylabel("power") ax.set_title(title) return fig
06d7fab09c027ec2dbf7a11fa78f3b6fcd97e2d7
11,702
import torchvision import torch def load_dataset(dataset): """ Loads a dataset and returns train, val and test partitions. """ dataset_to_class = { 'mnist': torchvision.datasets.MNIST, 'cifar10': torchvision.datasets.CIFAR10, 'fa-mnist': torchvision.datasets.FashionMNIST } assert dataset in dataset_to_class.keys() transform = transforms.Compose([transforms.ToTensor()]) train_dataset = dataset_to_class[dataset](root='./data', train=True, download=True, transform=transform) train_split, val_split = torch.utils.data.random_split(train_dataset, lengths=[len(train_dataset)-10000, 10000]) test_split = dataset_to_class[dataset](root='./data', train=False, download=True, transform=transform) return train_split, val_split, test_split
e17dcec84603a742cb6eec0fa18ad40af2454461
11,703
def compareTo(s1, s2): """Compares two strings to check if they are the same length and whether one is longer than the other""" move_slice1 = 0 move_slice2 = 1 if s1[move_slice1:move_slice2] == '' and s2[move_slice1:move_slice2] == '': return 0 # return 0 if same length elif s1[move_slice1:move_slice2] == '' and s2[move_slice1:move_slice2] != '': return len(s2) * -1 # return negative number if s2 > s1 elif s1[move_slice1:move_slice2] != '' and s2[move_slice1:move_slice2] == '': return len(s1) # return positive number if s1 > s2 else: move_slice1 += 1 # with each new call, the next object in the string is checked if empty or not move_slice2 += 1 return compareTo(s1[1:], s2[1:])
4700360d10561227a6d4995c66953993dce1cea3
11,704
def is_unique(x): # A set cannot contain any duplicate, so we just check that the length of the list is the same as the length of the corresponding set """Check that the given list x has no duplicate Returns: boolean: tells if there are only unique values or not Args: x (list): elements to be compared """ return len(x) == len(set(x))
12b4513a71fc1b423366de3f48dd9e21db79e73a
11,705
def str2format(fmt, ignore_types=None): """Convert a string to a list of formats.""" ignore_types = ignore_types if ignore_types else () token_to_format = { "s": "", "S": "", "d": "g", "f": "f", "e": "e", } base_fmt = "{{:{}}}" out = [] for i, token in enumerate(fmt.split(",")): n = token[:-1] if i in ignore_types: out.append(base_fmt.format(n.split(".")[0])) elif token[-1].lower() == "s": out.append(base_fmt.format("{}.{}".format(n, n))) else: out.append(base_fmt.format(">{}{}".format(n, token_to_format[token[-1]]))) return out
9cbe719abe6b37a0adcd52af250dfe768f850ffa
11,706
from pathlib import Path def _read_concordance(filename: Path, Sample_IDs: pd.Index) -> pd.DataFrame: """Create a flag of known replicates that show low concordance. Given a set of samples that are known to be from the same Subject. Flag samples that show low concordance with one or more replicates. Returns: pd.Series: - Sample_ID (pd.Index) - is_discordant_replicate (bool): True if replicates show a concordance below the supplied threshold. Otherwise False. """ df = sample_concordance.read(filename) return ( df.melt( id_vars=["is_discordant_replicate"], value_vars=["Sample_ID1", "Sample_ID2"], var_name="To_Drop", value_name="Sample_ID", ) .drop("To_Drop", axis=1) .groupby("Sample_ID") .max() # Flag a sample as True if it is True for any comparison. .astype("boolean") .reindex(Sample_IDs) )
2c7049ff5b521927ffbf863471fc23e073bce531
11,707
def load_image(name): """ Get and cache an enaml Image for the given icon name. """ path = icon_path(name) global _IMAGE_CACHE if path not in _IMAGE_CACHE: with open(path, 'rb') as f: data = f.read() _IMAGE_CACHE[path] = Image(data=data) return _IMAGE_CACHE[path]
6ce56c1a9d4d9e80d25a19aca239f43ebd119840
11,708
def add_shipment_comment( tracking_id: str, body: CreateComment = Body(...), client: VBR_Api = Depends(vbr_admin_client), ): """Add a Comment to a Shipment. Requires: **VBR_WRITE_PUBLIC**""" tracking_id = sanitize_identifier_string(tracking_id) shipment = client.get_shipment_by_tracking_id(tracking_id) data_event = client.create_and_link(comment=body.comment, link_target=shipment)[0] return Comment(comment=data_event.comment, timestamp=data_event.event_ts)
d115d230bbf47a8f1cf625f0ab66e855f382244c
11,709
def _mp2_energy(output_str): """ Reads the MP2 energy from the output file string. Returns the energy in Hartrees. :param output_str: string of the program's output file :type output_str: str :rtype: float """ ene = ar.energy.read( output_str, app.one_of_these([ app.escape('Total MP2 energy'), app.escape('MP2 energy') ])) return ene
febd9f4c5759cb6150ff16bda2e9050199c48c5f
11,711
def fastlcs(a,b,Dmax=None): """ return the length of the longest common substring or 0 if the maximum number of difference Dmax cannot be respected Implementation: see the excellent paper "An O(ND) Difference Algorithm and Its Variations" by EUGENE W. MYERS, 1986 NOTE: let D be the minimal number of insertion or deletion that transform A into B let L be the length of a longest common substring we always have D = M + N - 2 * L """ N, M = len(a), len(b) if N+M == 0: return 0 #very special case... if Dmax == None: Dmax = N + M #worse case else: Dmax = min(Dmax, M+N) #a larger value does not make sense! assert Dmax >= 0, "SOFWARE ERROR: Dmax must be a positive integer" sesLength = None W = [0] * (Dmax * 2 + 2) #for i in -Dmax..Dmax, V[i] == W[i+Dmax) for D in range(0, Dmax+1): for k in range(-D, +D+1, 2): if k == -D or (k != D and W[k-1+Dmax] < W[k+1+Dmax]): #k == -D or (k != D and V[k-1] < V[k+1]) x = W[k+1+Dmax] #x = V[k+1] else: x = W[k-1+Dmax]+1 #x = V[k-1]+1 y = x - k while x < N and y < M and a[x] == b[y]: #follow any snake x += 1 y += 1 W[k+Dmax] = x # V[k] = x #farstest reaching point with D edits if x >= N and y >= M: sesLength = D L = (M+N-D) / 2 assert D == M+N-L-L, ("INTERNAL SOFWARE ERROR", M,N,D) return L return 0
d8a88c7ffaae892e48a292b7a045da9f5dc58173
11,712
from typing import Optional from typing import Mapping def FeaturesExtractor( # pylint: disable=invalid-name eval_config: config_pb2.EvalConfig, tensor_representations: Optional[Mapping[ Text, schema_pb2.TensorRepresentation]] = None) -> extractor.Extractor: """Creates an extractor for extracting features. The extractor acts as follows depending on the existence of certain keys within the incoming extracts: 1) Extracts contains tfma.ARROW_RECORD_BATCH_KEY The features stored in the RecordBatch will be extracted and added to the output extract under the key tfma.FEATURES_KEY and the raw serialized inputs will be added under the tfma.INPUT_KEY. Any extracts that already exist will be merged with the values from the RecordBatch with the RecordBatch values taking precedence when duplicate keys are detected. The tfma.ARROW_RECORD_BATCH_KEY key will be removed from the output extracts. 2) Extracts contains tfma.FEATURES_KEY (but not tfma.ARROW_RECORD_BATCH_KEY) The operation will be a no-op and the incoming extracts will be passed as is to the output. 3) Extracts contains neither tfma.FEATURES_KEY | tfma.ARROW_RECORD_BATCH_KEY An exception will be raised. Args: eval_config: Eval config. tensor_representations: Optional tensor representations to use when parsing the data. If tensor_representations are not passed or a representation is not found for a given feature name a default representation will be used where possible, otherwise an exception will be raised. Returns: Extractor for extracting features. """ del eval_config # pylint: disable=no-value-for-parameter return extractor.Extractor( stage_name=_FEATURES_EXTRACTOR_STAGE_NAME, ptransform=_ExtractFeatures(tensor_representations or {}))
86e58783fca3ebb23de1e6b7ac9cdd4030e99c38
11,713
def assert__(engine, obj, condition, message=u'Assertion failed'): """:yaql:assert Evaluates condition against object. If it evaluates to true returns the object, otherwise throws an exception with provided message. :signature: obj.assert(condition, message => "Assertion failed") :arg obj: object to evaluate condition on :argType obj: any :arg condition: lambda function to be evaluated on obj. If result of function evaluates to false then trows exception message :argType condition: lambda :arg message: message to trow if condition returns false :argType message: string :returnType: obj type or message .. code:: yaql> 12.assert($ < 2) Execution exception: Assertion failed yaql> 12.assert($ < 20) 12 yaql> [].assert($, "Failed assertion") Execution exception: Failed assertion """ if utils.is_iterator(obj): obj = utils.memorize(obj, engine) if not condition(obj): raise AssertionError(message) return obj
c29e073bf6673ce0c89ed339c27f2287d6952991
11,714
from typing import Iterable from typing import List def build_level_codes(incoming_column_name: str, levels: Iterable) -> List[str]: """ Pick level names for a set of levels. :param incoming_column_name: :param levels: :return: """ levels = [str(lev) for lev in levels] levels = [incoming_column_name + "_lev_" + clean_string(lev) for lev in levels] if len(set(levels)) != len(levels): levels = [levels[i] + "_" + str(i) for i in range(len(levels))] return levels
994ccc0673bd27dcce30709a97372c29d75a8e67
11,716
def get_all(isamAppliance, check_mode=False, force=False): """ Get all rsyslog objects """ return isamAppliance.invoke_get("Get all rsyslog objects", "/core/rsp_rsyslog_objs")
55ff144577a9ef25b555ca3a37db65bfdb0f0af4
11,717
def genomic_dup1_37_loc(): """Create test fixture GRCh37 duplication subject""" return { "_id": "ga4gh:VSL.CXcLL6RUPkro3dLXN0miGEzlzPYiqw2q", "sequence_id": "ga4gh:SQ.VNBualIltAyi2AI_uXcKU7M9XUOuA7MS", "interval": { "type": "SequenceInterval", "start": {"value": 49568693, "type": "Number"}, "end": {"value": 49568695, "type": "Number"}, }, "type": "SequenceLocation", }
470af80795c649bc0f4dd29393d1093c45c9f0da
11,718
def parse(f, _bytes): """ Parse function will take a parser combinator and parse some set of bytes """ if type(_bytes) == Parser: return f(_bytes) else: s = Parser(_bytes, 0) return f(s)
7f824c46477a384ce97f66806813f4b42412d6d8
11,719
def spiral_tm(wg_width=0.5, length=2): """ sample of component cutback """ c = spiral_inner_io_euler(wg_width=wg_width, length=length, dx=10, dy=10, N=5) cc = add_gratings_and_loop_back( component=c, grating_coupler=pp.c.grating_coupler_elliptical_tm, bend_factory=pp.c.bend_circular, ) return cc
e7fcec9e61984d8f89558d7479cc942db389ba3a
11,720
from typing import List from typing import Tuple def _chunk(fst: pynini.Fst) -> List[Tuple[str, str]]: """Chunks a string transducer into tuples. This function is given a string transducer of the form: il1 il2 il3 il4 il5 il6 ol1 eps eps ol2 eps ol3 And returns the list: [(il1 il2 il3, ol1), (il4 il5, ol2), (il6, ol3)] It thus recovers the "many-to-one" alignment. Args: fst: a string transducer containing the alignment. Returns: A list of string, char tuples. """ # Input epsilon-normalization and removal forces a sensible alignment. fst = pynini.epsnormalize(fst).rmepsilon() assert ( fst.properties(pynini.STRING, True) == pynini.STRING ), "FST is not a string automaton" alignment: List[Tuple[str, str]] = [] state = 0 arc = fst.arcs(state).value() assert arc.ilabel, f"Input label leaving state {state} contains epsilon" ilabels = bytearray([arc.ilabel]) assert arc.olabel, f"Output label leaving state {state} contains epsilon" olabel = arc.olabel for state in range(1, fst.num_states() - 1): arc = fst.arcs(state).value() assert ( arc.ilabel ), f"Input label leaving state {state} contains epsilon" # A non-epsilon olabel signals a new chunk. if arc.olabel: alignment.append((ilabels.decode("utf8"), chr(olabel))) ilabels.clear() olabel = arc.olabel ilabels.append(arc.ilabel) assert ( ilabels ), f"Input label leaving penultimate state {state} contains epsilon" alignment.append((ilabels.decode("utf8"), chr(olabel))) return alignment
fa50e13062267e8929df5f538ab9a924822bc265
11,722
def auth_token_required(func): """Your auth here""" return func
e65b94d40c914c57ff8d894409b664cf97aa790d
11,723
def base_convert_money(amount, currency_from, currency_to): """ Convert 'amount' from 'currency_from' to 'currency_to' """ source = get_rate_source() # Get rate for currency_from. if source.base_currency != currency_from: rate_from = get_rate(currency_from) else: # If currency from is the same as base currency its rate is 1. rate_from = Decimal(1) # Get rate for currency_to. rate_to = get_rate(currency_to) if isinstance(amount, float): amount = Decimal(amount).quantize(Decimal('.000001')) # After finishing the operation, quantize down final amount to two points. return ((amount / rate_from) * rate_to).quantize(Decimal("1.00"))
5417ba7a9d757bafc835df8f55a1d4e6de72cb2f
11,724
async def contestant() -> dict: """Create a mock contestant object.""" return { "id": "290e70d5-0933-4af0-bb53-1d705ba7eb95", "first_name": "Cont E.", "last_name": "Stant", "birth_date": date(1970, 1, 1).isoformat(), "gender": "M", "ageclass": "G 12 år", "region": "Oslo Skikrets", "club": "Lyn Ski", "team": "Team Kollen", "email": "[email protected]", "event_id": "ref_to_event", "bib": 1, }
261fd560107489b58c645efb1bb9c19a396e0dce
11,726
import requests import http def GetApitoolsTransport(timeout='unset', enable_resource_quota=True, response_encoding=None, ca_certs=None, allow_account_impersonation=True, use_google_auth=None, response_handler=None, redact_request_body_reason=None): """Get an transport client for use with apitools. Args: timeout: double, The timeout in seconds to pass to httplib2. This is the socket level timeout. If timeout is None, timeout is infinite. If default argument 'unset' is given, a sensible default is selected. enable_resource_quota: bool, By default, we are going to tell APIs to use the quota of the project being operated on. For some APIs we want to use gcloud's quota, so you can explicitly disable that behavior by passing False here. response_encoding: str, the encoding to use to decode the response. ca_certs: str, absolute filename of a ca_certs file that overrides the default allow_account_impersonation: bool, True to allow use of impersonated service account credentials for calls made with this client. If False, the active user credentials will always be used. use_google_auth: bool, True if the calling command indicates to use google-auth library for authentication. If False, authentication will fallback to using the oauth2client library. response_handler: requests.ResponseHandler, handler that gets executed before any other response handling. redact_request_body_reason: str, the reason why the request body must be redacted if --log-http is used. If None, the body is not redacted. Returns: 1. A httplib2.Http-like object backed by httplib2 or requests. """ if base.UseRequests(): if response_handler: if not isinstance(response_handler, core_requests.ResponseHandler): raise ValueError('response_handler should be of type ResponseHandler.') if (properties.VALUES.core.log_http.GetBool() and properties.VALUES.core.log_http_streaming_body.GetBool()): # We want to print the actual body instead of printing the placeholder. # To achieve this, we need to set streaming_response_body as False. # Not that the body will be empty if the response_handler has already # consumed the stream. streaming_response_body = False else: streaming_response_body = response_handler.use_stream else: streaming_response_body = False session = requests.GetSession( timeout=timeout, enable_resource_quota=enable_resource_quota, ca_certs=ca_certs, allow_account_impersonation=allow_account_impersonation, streaming_response_body=streaming_response_body, redact_request_body_reason=redact_request_body_reason) return core_requests.GetApitoolsRequests(session, response_handler, response_encoding) return http.Http(timeout=timeout, enable_resource_quota=enable_resource_quota, response_encoding=response_encoding, ca_certs=ca_certs, allow_account_impersonation=allow_account_impersonation, use_google_auth=use_google_auth)
21fc8d521703580a51c753811b7f0d401f68bba5
11,727
def user_requested_anomaly7(): """ Checks if the user requested an anomaly, and returns True/False accordingly. """ digit = 0 res = False if is_nonzero_file7(summon_filename): lines = [] with open(get_full_path(summon_filename)) as f: lines = f.readlines() if len(lines) > 0: try: digit = int(lines[0]) if digit > 0: res = True except Exception as e: res = False append_logs("ERROR:" + str(e), name4logs, "always") else: res = False else: res = False # Disable summoning of anomalies after the requested number of anomalies were added if res: with open(get_full_path(summon_filename), "w") as f: if digit > 0: f.write(str(digit - 1)) else: f.write("0") return res
bed54831c00deb6c11ce81c731fe37f35ef070b7
11,728
def mat_to_r(_line, _mat_object : MatlabObject, _r_object : RObject = RObject()): """Move variables from Matlab to R Parameters ---------- _line : str, Iterable[str] If str, one of the following: 1. '#! m[at[lab]] -> <vars>' 2. '<vars>' where <vars> is a comma separated list of Matlab variable names If Iterable[str]: [<var1>, <var2>, ...] where <varX> is the name of a Matlab variable All variables must be str, int, float. _mat_object : Matlabobject The Matlab environment where the variables are stored _r_object : optional[RObject] The R environment to load the variables into Default: new RObject() Returns ------- MatlabObject A Matlab environment with the given variables loaded Raises ------ RuntimeError: If _mat_object or _r_object is not alive ValueError If _line is not the right format NameError If a requested variable is not in the given Matlab environment """ ## input validation if not _mat_object.isalive: # can't do anything raise RuntimeError('Matlab connection was killed before things could be brought back to Python.') if type(_line) is str and ('#!' in _line or '%!' in _line): # _line = '#! <lang> -> <vars>' if not '->' in _line: raise ValueError('Misformatted line: "' + _line + '"') _to_load = _line.split('->')[1].replace(' ','').split(',') elif type(_line) is str: # _line = '<vars>' _to_load = _line.replace(' ','').split(',') elif hasattr(_line, '__iter__') and all([type(i) is str for i in _line]): # _line = [<var i>, ...] _to_load = list(_line) else: raise ValueError('Unrecognized _line') if not _r_object.isalive: # can't do anything raise RuntimeError('R connection was killed before things could be send to it.') if _to_load[0] == '': # null case return _r_object # check the variables _who = _mat_object.who for i in _to_load: if i not in _who: raise NameError(str(i) + ' not in Matlab environment') # bundle them _random_name = ''.join(choices('abcdefghijklmnopqrstuvwxyz', k=10)) _mat_object.sendline(_random_name + ' = tempname') _temp_file = _mat_object.before.split('\r\n\r\n')[2].strip()[1:-1] # get them _mat_object.sendlines([ 'save ' + _temp_file + '.mat ' + ' '.join(_to_load), 'clear ' + _random_name ]) # load them _r_object.sendlines( [ 'library("R.matlab")', _random_name + ' <- readMat("' + _temp_file + '.mat")' ] + [ _current + ' <- ' + _random_name + '$' + _current for _current in _to_load ] + [ 'rm(' + _random_name + ')' ] ) return _r_object
22f78c06bcf47a71596563debf6115c954d89e21
11,729
def RecalculatedEdgeDegreeAttack(G, remove_fraction = 1.0): """ Recalculated Edge Degree Attack """ n = G.number_of_nodes() m = int(G.number_of_edges() * (remove_fraction+0.0) ) tot_ND = [0] * (m + 1) tot_T = [0] * (m + 1) ND, ND_lambda = ECT.get_number_of_driver_nodes(G) tot_ND[0] = ND tot_T[0] = 0 for i in range(m): # calculate max edge degree cur_max_edge_degree = -1 cur_max_u = -1 cur_max_v = -1 for u, v in G.edges(): temp = G.degree(u) * G.degree(v) if temp > cur_max_edge_degree: cur_max_edge_degree = temp cur_max_u = u cur_max_v = v # remove edge G.remove_edge(cur_max_u, cur_max_v) # calculate and save ND ND, ND_lambda = ECT.get_number_of_driver_nodes(G) tot_ND[i+1] = ND tot_T [i+1] = i + 1 return (tot_ND, tot_T)
ff88430f172a1ca319af9d637c292091cab2bf6f
11,731
def get(url, params=None, headers=None): """Return the contents from a URL Params: - url (str): Target website URL - params (dict, optional): Param payload to add to the GET request - headers (dict, optional): Headers to add to the GET request Example: ``` get('https://httpbin.org/anything', {'soup': 'gazpacho'}) ``` """ opener = build_opener() if params: url += "?" + urlencode(params) if headers: for h in headers.items(): opener.addheaders = [h] if (headers and not headers.get("User-Agent")) or not headers: UA = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:69.0) Gecko/20100101 Firefox/69.0" opener.addheaders = [("User-Agent", UA)] with opener.open(url) as f: content = f.read().decode("utf-8") return content
edb0fe25728fe1bd11d9e74509a630f2d3823af1
11,732
def get_param_num(model): """ get the number of parameters Args: model: Returns: """ return sum(p.numel() for p in model.parameters())
19d98a1bcbdcb827be4a657f82cda2ff09f119e4
11,733
from typing import Union def format_tensor_to_ndarray(x: Union[ms.Tensor, np.ndarray]) -> np.ndarray: """Unify `mindspore.Tensor` and `np.ndarray` to `np.ndarray`. """ if isinstance(x, ms.Tensor): x = x.asnumpy() if not isinstance(x, np.ndarray): raise TypeError('input should be one of [ms.Tensor or np.ndarray],' ' but receive {}'.format(type(x))) return x
6e64a40bbafe2b2f89f5afd200077be369adcfe7
11,735
from typing import Pattern import re def hunt_csv(regex: Pattern, body: str) -> list: """ finds chunk of csv in a larger string defined as regex, splits it, and returns as list. really useful only for single lines. worse than StringIO -> numpy or pandas csv reader in other cases. """ csv_string = re.search(regex, body)[0] if r"\n" in csv_string: lines = csv_string.split(r"\n") processed_lines = [] for line in lines: csv_fields = line.split(",") csv_fields = [field.strip() for field in csv_fields] processed_lines.append(csv_fields) return processed_lines csv_fields = csv_string.split(",") return [field.strip() for field in csv_fields]
9c5574f059ef05e6f99e468a9272f42393d79030
11,736
import re def time_key(file_name): """ provides a time-based sorting key """ splits = file_name.split('/') [date] = re.findall(r'(\d{4}_\d{2}_\d{2})', splits[-2]) date_id = [int(token) for token in date.split('_')] recording_id = natural_key(splits[-1]) session_id = session_key(splits[-2]) return date_id + session_id + recording_id
07a5448b7b39b00780f53080b316981198d54c91
11,737
def sizeRange(contourList, low, high): """Only keeps contours that are in range for size""" newList = [] for i in contourList: if (low <= cv2.contourArea(i) <= high): newList.append(i) return newList
ac83b09acfd8d8e23a03965b52c5c4cc0361710d
11,739
def number_field_choices(field): """ Given a field, returns the number of choices. """ try: return len(field.get_flat_choices()) except AttributeError: return 0
b8776e813e9eb7471a480df9d6e49bfeb48a0eb6
11,740
def _is_an_unambiguous_user_argument(argument: str) -> bool: """Check if the provided argument is a user mention, user id, or username (name#discrim).""" has_id_or_mention = bool(commands.IDConverter()._get_id_match(argument) or RE_USER_MENTION.match(argument)) # Check to see if the author passed a username (a discriminator exists) argument = argument.removeprefix("@") has_username = len(argument) > 5 and argument[-5] == "#" return has_id_or_mention or has_username
adecc093a0597d43292171f867ebcf5a64edc7d8
11,741
def resize_image(image, size): """ Resize the image to fit in the specified size. :param image: Original image. :param size: Tuple of (width, height). :return: Resized image. :rtype: :py:class: `~PIL.Image.Image` """ image.thumbnail(size) return image
67db04eac8a92d27ebd3ec46c4946b7662f9c03f
11,742
def one_hot_vector(val, lst): """Converts a value to a one-hot vector based on options in lst""" if val not in lst: val = lst[-1] return map(lambda x: x == val, lst)
401ff1d6666c392b3a217659929a4f7832c52522
11,743
def follow(request, username): """ Add user with username to current user's following list """ request.user.followers.add(User.objects.get(username=username)) return redirect('accounts:followers')
72530b32cfcb2282045cd2ef112df62a19e03239
11,744
def sesteva_stolpce(seznam_seznamov_stolpcev): """sešteje vse 'stolpce' v posameznem podseznamu """ matrika_stolpcev = [] for i in range(len(seznam_seznamov_stolpcev)): sez = seznam_seznamov_stolpcev[i] stolpec11 = sez[0] while len(sez) > 1: i = 0 stolpec22 = sez[1] stolpec11 = vsota_stolpcev(stolpec11, stolpec22) sez = sez[i+1:] matrika_stolpcev.append(stolpec11) return matrika_stolpcev
fe69368a79b60e549983a07e140ec3b5e532868e
11,745
def create_response(data={}, status=200, message=''): """ Wraps response in a consistent format throughout the API Format inspired by https://medium.com/@shazow/how-i-design-json-api-responses-71900f00f2db Modifications included: - make success a boolean since there's only 2 values - make message a single string since we will only use one message per response IMPORTANT: data must be a dictionary where: - the key is the name of the type of data - the value is the data itself """ response = { 'success': 200 <= status < 300, 'code': status, 'message': message, 'result': data } return jsonify(response), status
51346e3a92bdf93085b12eaccc99511b66a34bcf
11,746
def do_sizes_match(imgs): """Returns if sizes match for all images in list.""" return len([*filter(lambda x: x.size != x.size[0], imgs)]) > 0
7da30972ecfd4d3cac3d21ff380255865ec3b5c8
11,747
def gaussian_sampling(len_x, len_y, num_samples, spread_factor=5, origin_ball=1): """ Create a gaussian sampling pattern where each point is sampled from a bivariate, concatenated normal distribution. Args: len_x (int): Size of output mask in x direction (width) len_y (int): Size of output mask in y direction (height) num_samples (int): Number of samples to pick spread_factor (float): Concentration of samples (ie, the SD of the probability distributions are len/spread_factor) origin_ball (int): Radius of ball around origin where all samples are included. Returns: np.ndarray: A boolean numpy array (mask) depicting sampling pattern. """ # Create two truncated normal distributions for x and y dir lower = 0 upper_x = len_x mu_x = len_x // 2 sigma_x = len_x // spread_factor randgen_x = stats.truncnorm( (lower - mu_x) / sigma_x, (upper_x - mu_x) / sigma_x, loc=mu_x, scale=sigma_x ) upper_y = len_y mu_y = len_y // 2 sigma_y = len_y // spread_factor randgen_y = stats.truncnorm( (lower - mu_y) / sigma_y, (upper_y - mu_y) / sigma_y, loc=mu_y, scale=sigma_y ) # Create mask mask = np.zeros([len_y, len_x], dtype=np.bool) # Add origin ball if origin_ball > 0: y_grid, x_grid = np.ogrid[:len_y, :len_x] dist_from_center = np.sqrt((y_grid - mu_y) ** 2 + (x_grid - mu_x) ** 2) mask = dist_from_center <= origin_ball # Subtract origin ball from number of samples num_samples -= np.sum(mask) # Sample points from distribution xs = randgen_x.rvs(num_samples).astype(np.uint32) ys = randgen_y.rvs(num_samples).astype(np.uint32) for i in range(num_samples): x, y = xs[i], ys[i] # Ensure unique samples while mask[y, x]: x = randgen_x.rvs(1).astype(np.uint32) y = randgen_y.rvs(1).astype(np.uint32) xs[i], ys[i] = x, y mask[y, x] = True return mask
fce7396b02778aa832c5d24028fb1f55f1013b15
11,748
import json def from_cx_jsons(graph_json_str: str) -> BELGraph: """Read a BEL graph from a CX JSON string.""" return from_cx(json.loads(graph_json_str))
c61e415199ce0bfc610c1a4277aa8ba1b74a070a
11,749
from typing import Tuple def _calculate_dimensions(image: Image) -> Tuple[int, int]: """ Returns the width and height of the given pixel data. The height of the image is the number of rows in the list, while the width of the image is determined by the number of pixels on the first row. It is assumed that each row contains the same number of pixels. :param image: pixel data :return: width and height as a tuple """ try: width = 0 height = len(image) if height != 0: width = len(image[0]) return width, height except (IndexError, TypeError): # Either data is not subscribable, or the # length of the first row cannot be obtained. raise ValueError("invalid pixel data - could not determine dimensions")
7e74f181839b70e45cb64ca8b8517ef663c7caf8
11,750
def cli(ctx, invocation_id): """Get a summary of an invocation, stating the number of jobs which succeed, which are paused and which have errored. Output: The invocation summary. For example:: {'states': {'paused': 4, 'error': 2, 'ok': 2}, 'model': 'WorkflowInvocation', 'id': 'a799d38679e985db', 'populated_state': 'ok'} """ return ctx.gi.invocations.get_invocation_summary(invocation_id)
94197a9c55c0d37b311585fdfce9d615c6986cb5
11,751
import numpy as np def remove_observations_mean(data,data_obs,lats,lons): """ Removes observations to calculate model biases """ ### Import modules ### Remove observational data databias = data - data_obs[np.newaxis,np.newaxis,:,:,:] return databias
8f0cf60137660878f57dc35caa8c23896944d6ab
11,752
import logging def joint_extraction_model_fn(features, labels, mode, params): """Runs the node-level sequence labeling model.""" logging.info("joint_extraction_model_fn") inputs = features # Arg "features" is the overall inputs. # Read vocabs and inputs. dropout = params["dropout"] if params["circle_features"]: nnodes, friend_has_label, (words, nwords), ( prev_text_words, n_prev_text_words), (chars_list, chars_len_list), (partner_words, _), ( friends_words, n_friends_words), (friends_fix, friends_var), ( leaf_type_list, goldmine_feat_list), (_, _), ( node_xpath_list, node_xpath_len_list), (attributes, attributes_plus_none), ( position_list) = inputs else: nnodes, (words, nwords), (prev_text_words, n_prev_text_words), ( chars_list, chars_len_list), (leaf_type_list, goldmine_feat_list), ( _, _), (node_xpath_list, node_xpath_len_list), (attributes), (position_list) = inputs # nnodes, the number of nodes in each page; # shape is [?]; length is the number of pages. # words, nwords are the node_text feature, shape is [?, ?, ?] # the first two dimension is the batch * pages, # the last one is the maximum length of the word lists # prev_text_words, n_prev_text_words, similar as above for previous nodes'text # chars_list, chars_len_list, shape is [?,?,?,?] also for node_text features # the additional dim is for the length of the character sequences. # friends_words, shape is [?, ?, ?], gathers all the words from different # friends of one node. # friends_fix, friends_var, shapes are [?, ?, ?, ?] # the first two dimension is the batch * pages, # the last two are the maximum length of friend nodes and words. nnodes = merge_first_two_dims(nnodes) training = (mode == tf.estimator.ModeKeys.TRAIN) vocab_words = _index_table_from_file( params["words"], num_oov_buckets=params["num_oov_buckets"]) with tf.gfile.Open(params["tags"]) as f: indices = [idx for idx, tag in enumerate(f) if tag.strip() != "none"] num_tags = len(indices) + 1 # Make "None" as the tag with the last index. # NodeText Char Embeddings. with tf.gfile.Open(params["chars"]) as f: num_chars = sum(1 for _ in f) + params["num_oov_buckets"] vocab_chars = _index_table_from_file( params["chars"], num_oov_buckets=params["num_oov_buckets"]) char_ids = vocab_chars.lookup(chars_list) variable = tf.get_variable("chars_embeddings", [num_chars + 1, params["dim_chars"]], tf.float32) char_embeddings = tf.nn.embedding_lookup(variable, char_ids) char_embeddings = tf.layers.dropout( char_embeddings, rate=dropout, training=training) logging.info("char_embeddings.shape: %s", char_embeddings.shape) # Char 1d convolution. weights = tf.sequence_mask(chars_len_list) char_embeddings = masked_conv1d_and_max(char_embeddings, weights, params["filters"], params["kernel_size"]) logging.info("char_embeddings.shape after CNN: %s", char_embeddings.shape) # Word Embeddings. word_ids = vocab_words.lookup(words) glove = np.load(tf.gfile.Open(params["glove"], "rb"))["embeddings"] # np.array variable = np.vstack([glove, [[0.] * params["dim_word_embedding"]]]) # To finetune the GloVe embedding by setting trainable as True. variable = tf.Variable(variable, dtype=tf.float32, trainable=True) word_embeddings = tf.nn.embedding_lookup(variable, word_ids) logging.info("word_embeddings.shape: %s", word_embeddings.shape) # Prev_Text Representations. prev_text_word_ids = vocab_words.lookup(prev_text_words) prev_text_word_embeddings = tf.nn.embedding_lookup(variable, prev_text_word_ids) if params["use_prev_text_lstm"]: # PREV_text LSTM. logging.info("prev_text_representation using lstm") prev_t = merge_first_two_dims(prev_text_word_embeddings) # Seq * batch * input prev_t = tf.transpose(prev_t, perm=[1, 0, 2]) # Need time-major. prev_output_fw, prev_output_bw = _bidirectional_lstm( prev_t, params["lstm_size"], merge_first_two_dims(n_prev_text_words)) prev_output = tf.concat([prev_output_fw, prev_output_bw], axis=-1) prev_output = tf.reduce_mean(prev_output, 0) prev_output = tf.layers.dropout( prev_output, rate=dropout, training=training) logging.info("prev_output.shape (after reduce_mean): %s", prev_output.shape) context_representation = split_first_two_dims_by_example( prev_output, prev_text_word_embeddings) logging.info("context_representation.shape (after split): %s", context_representation.shape) else: logging.info("prev_text_word_embeddings.shape: %s", prev_text_word_embeddings.shape) context_representation = tf.reduce_mean(prev_text_word_embeddings, 2) logging.info("context_representation.shape: %s", context_representation.shape) if params["circle_features"]: partner_embeddings, circle_representation = circle_feature_modeling( variable, vocab_words, partner_words, friends_words, n_friends_words, friends_fix, friends_var, word_embeddings, dropout, training, params) context_representation = circle_representation if params["use_friend_semantic"]: friends_ids = vocab_words.lookup(friends_words) friend_embeddings = tf.nn.embedding_lookup(variable, friends_ids) if params["use_xpath_lstm"]: h_output = xpath_feature_modeling(node_xpath_list, node_xpath_len_list, training, params) context_representation = tf.concat([h_output, context_representation], axis=2) if params["use_position_embedding"]: position_representation = position_modeling(position_list, params) context_representation = tf.concat( [context_representation, position_representation], axis=2) # Text Embeddings: Concatenate Word and Char and Feature Embeddings. embeddings = tf.concat([word_embeddings, char_embeddings], axis=-1) embeddings = tf.layers.dropout(embeddings, rate=dropout, training=training) logging.info("embeddings.shape: %s", embeddings.shape) # LSTM inside node texts. t = merge_first_two_dims(embeddings) t = tf.transpose(t, perm=[1, 0, 2]) # Need time-major. output_fw, output_bw = _bidirectional_lstm(t, params["lstm_size"], merge_first_two_dims(nwords)) output = tf.concat([output_fw, output_bw], axis=-1) output = tf.reduce_mean(output, 0) output = tf.layers.dropout(output, rate=dropout, training=training) logging.info("output.shape (after reduce_mean): %s", output.shape) output = split_first_two_dims_by_example(output, embeddings) logging.info("output.shape (after split): %s", output.shape) node_seq_input = tf.concat([output, context_representation], axis=2) logging.info("output.shape (after + prev): %s", node_seq_input.shape) # Leaf Type Features. if params["add_leaf_types"]: with tf.gfile.Open(params["leaf_types"]) as f: num_leaf_types = sum(1 for _ in f) + params["num_oov_buckets"] vocab_leaf_types = _index_table_from_file( params["leaf_types"], num_oov_buckets=params["num_oov_buckets"]) leaf_type_ids = vocab_leaf_types.lookup(leaf_type_list) leaf_variable = tf.get_variable( "leaf_type_embeddings", [num_leaf_types + 1, params["dim_leaf_type"]], tf.float32) leaf_type_embeddings = tf.nn.embedding_lookup(leaf_variable, leaf_type_ids) leaf_type_embeddings = tf.layers.dropout( leaf_type_embeddings, rate=dropout, training=training) logging.info("leaf_type_embeddings.shape: %s", char_embeddings.shape) logging.info("node_seq_input.shape before leaf: %s", node_seq_input.shape) node_seq_input = tf.concat([node_seq_input, leaf_type_embeddings], axis=2) logging.info("node_seq_input.shape after leaf: %s", node_seq_input.shape) # Goldmine Feat Embeddings. if params["add_goldmine"]: vocab_goldmine_features = _index_table_from_file( params["goldmine_features"], num_oov_buckets=1) goldmine_feature_variable = tf.get_variable("goldmine_feature_embeddings", [8 + 1, params["dim_goldmine"]], tf.float32) goldmine_feat_ids = vocab_goldmine_features.lookup(goldmine_feat_list) goldmine_feat_embeddings = tf.nn.embedding_lookup(goldmine_feature_variable, goldmine_feat_ids) goldmine_feat_embeddings = tf.reduce_sum(goldmine_feat_embeddings, 2) logging.info("goldmine_feat_embeddings.shape: %s", goldmine_feat_embeddings.shape) node_seq_input = tf.concat([node_seq_input, goldmine_feat_embeddings], axis=2) logging.info("node_seq_input.shape after goldmine: %s", node_seq_input.shape) # Node-level LSTM modeling. if params["node_encoder"] == "lstm": # Node-Sequence-LSTM. n_t = tf.transpose(node_seq_input, perm=[1, 0, 2]) # Need time-major. node_output_fw, node_output_bw = _bidirectional_lstm( n_t, params["node_lstm_size"], nnodes) node_seq_output = tf.concat([node_output_fw, node_output_bw], axis=-1) node_seq_output = tf.transpose(node_seq_output, perm=[1, 0, 2]) elif params["node_encoder"] == "cnn": node_weights = tf.sequence_mask(nnodes) node_seq_output = masked_conv1d_and_max( node_seq_input, node_weights, params["node_filters"], params["node_kernel_size"], reducemax=False) elif params["node_encoder"] == "transformer": # Node-Sequence-Transformer. node_seq_output = transformer_encoding(node_seq_input, nnodes, params, mode) else: node_seq_output = node_seq_input logging.info("node_seq_input.shape after encoder: %s", node_seq_output.shape) if params["node_encoder"] != "transformer": # Add the dropout layer if the encoder is not a transformer. node_seq_output = tf.layers.dropout( node_seq_output, rate=dropout, training=training) if params["use_friends_discrete_feature"] and params["circle_features"]: friend_has_label = tf.expand_dims(friend_has_label, axis=-1) node_seq_output = tf.concat([node_seq_output, friend_has_label], axis=-1) logging.info("node_seq_input.shape after friend_has_label: %s", node_seq_output.shape) node_seq_output = tf.layers.dense(node_seq_output, params["last_hidden_layer_size"]) logits = tf.layers.dense(node_seq_output, num_tags, name="label_dense_1") if params["semantic_encoder"] and params["circle_features"]: partner_similarity_emb = semantic_similarity(variable, vocab_words, partner_embeddings, attributes, params) node_seq_output = tf.concat( [node_seq_output, tf.nn.softmax(partner_similarity_emb)], axis=-1) logging.info("node_seq_output.shape after semantic encoder: %s", node_seq_output.shape) if params["use_friend_semantic"]: friends_similarity_emb = semantic_similarity(variable, vocab_words, friend_embeddings, attributes, params) node_seq_output = tf.concat([node_seq_output, friends_similarity_emb], axis=-1) if params["objective"] == "classification": node_seq_output = tf.layers.dense( node_seq_output, params["dim_word_embedding"], activation="relu") node_seq_output = tf.layers.dense(node_seq_output, params["last_hidden_layer_size"]) logging.info("node_seq_output.shape after semantic encoder: %s", node_seq_output.shape) logits = tf.layers.dense(node_seq_output, num_tags, name="label_dense_2") elif params["objective"] == "semantic_scorer": logits = semantic_scorer(attributes_plus_none, node_seq_output, params) elif params["objective"] == "binary_scorer": logits = binary_scorer(attributes_plus_none, node_seq_output, training, params) if params["use_crf"]: # CRF Layer. logging.info("logits.shape: %s", logits.shape) crf_params = tf.get_variable("crf", [num_tags, num_tags], dtype=tf.float32) pred_ids, _ = tfa.text.crf.crf_decode(logits, crf_params, nnodes) logging.info("pred_ids.shape: %s", pred_ids.shape) else: pred_ids = tf.argmax(logits, 2) logging.info("pred_ids.shape: %s", pred_ids.shape) # Predict for new sentences in target set. if mode == tf.estimator.ModeKeys.PREDICT: reverse_vocab_tags = _index_table_from_file(params["tags"], 1) pred_strings = reverse_vocab_tags.lookup(tf.strings.as_string(pred_ids)) predictions = { "pred_ids": pred_ids, "tags": pred_strings, "scores": tf.nn.softmax(logits), "raw_scores": logits, } # Store the intermediate weights. if params["semantic_encoder"]: predictions["similarity"] = partner_similarity_emb if params["friend_encoder"]: predictions["friends_embs"] = circle_representation if params["extract_node_emb"]: predictions["node_embs"] = node_seq_output return tf.estimator.EstimatorSpec(mode, predictions=predictions) vocab_tags = _index_table_from_file(params["tags"], 1) tags = vocab_tags.lookup(labels) logging.info("tags.shape: %s", logits.shape) logging.info( "Parameter size: %s", np.sum( [np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()])) if params["use_crf"]: log_likelihood, _ = tfa.text.crf.crf_log_likelihood(logits, tags, nnodes, crf_params) loss = tf.reduce_mean(-log_likelihood) else: loss = tf.losses.sparse_softmax_cross_entropy(labels=tags, logits=logits) # Processing the metrics. weights = tf.sequence_mask(nnodes) metrics = { "acc": tf.metrics.accuracy(tags, pred_ids, weights), "precision": seq_tagging_metric_util.precision(tags, pred_ids, num_tags, indices, weights), "recall": seq_tagging_metric_util.recall(tags, pred_ids, num_tags, indices, weights), "f1": seq_tagging_metric_util.f1(tags, pred_ids, num_tags, indices, weights), } for metric_name, op in metrics.items(): tf.summary.scalar(metric_name, op[1]) if mode == tf.estimator.ModeKeys.TRAIN: with tf.name_scope("train_scope"): optimizer = tf.train.AdamOptimizer() train_op = optimizer.minimize( loss, global_step=tf.train.get_or_create_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=metrics)
1e6eb2028c8924733329bc4fc3079ca12af12d94
11,753
def make_ss_matrices(sigma_x, dt): """ To make Q full-rank for inversion (so the mle makes sense), use: Q = [ dt**2 dt/2 dt/2 1 ] to approximate Q = (dt 1)(dt 1)' System: x = [p_x p_y v_x v_y] y = [p_x' p_y'] :param sigma_x: :param dt: :return: sigma_0: starting value for sigma_v, with process variance (sigma_v^2 Q) """ i2 = np.eye(2) _ = np.zeros((2, 2)) A = np.block([ [i2, dt*i2], [_, i2], ]) Q = np.block([ [dt**2 * i2, dt*i2 * .5], [dt*i2 * .5, i2], ]) C = np.block([i2, _]) R = sigma_x**2 * i2 sigma_0 = float(sigma_x) / 2 return A, Q, C, R, sigma_0
551a1d46ee67360e159ab966c0b3f30dd77254c8
11,755
def get_icp_val(tmr): """Read input capture value""" return peek(tmr + ICRx) | (peek(tmr + ICRx + 1) << 8)
0aef45e0c6edeb3c6540a51ae44013ded03c7be7
11,756
import torch def validate(segmenter, val_loader, epoch, num_classes=-1): """Validate segmenter Args: segmenter (nn.Module) : segmentation network val_loader (DataLoader) : training data iterator epoch (int) : current epoch num_classes (int) : number of classes to consider Returns: Mean IoU (float) """ val_loader.dataset.set_stage("val") segmenter.eval() cm = np.zeros((num_classes, num_classes), dtype=int) with torch.no_grad(): for i, sample in enumerate(val_loader): input = sample["image"] target = sample["mask"] input_var = torch.autograd.Variable(input).float().cuda() # Compute output output = segmenter(input_var) output = ( cv2.resize( output[0, :num_classes].data.cpu().numpy().transpose(1, 2, 0), target.size()[1:][::-1], interpolation=cv2.INTER_CUBIC, ) .argmax(axis=2) .astype(np.uint8) ) # Compute IoU gt = target[0].data.cpu().numpy().astype(np.uint8) gt_idx = ( gt < num_classes ) # Ignore every class index larger than the number of classes cm += fast_cm(output[gt_idx], gt[gt_idx], num_classes) if i % args.print_every == 0: logger.info( " Val epoch: {} [{}/{}]\t" "Mean IoU: {:.3f}".format( epoch, i, len(val_loader), compute_iu(cm).mean() ) ) ious = compute_iu(cm) logger.info(" IoUs: {}".format(ious)) miou = np.mean(ious) logger.info(" Val epoch: {}\tMean IoU: {:.3f}".format(epoch, miou)) return miou
716f1eda3a283c2707fa8ffd6e8073c351bda560
11,757
def detect_forward(CoreStateMachine, PostConditionStateMachine): """A 'forward ambiguity' denotes a case where the post condition implementation fails. This happens if an iteration in the core pattern is a valid path in the post- condition pattern. In this case no decision can be made about where to reset the input position. Example: x+/x At the end of the post condition an incoming 'x' guides through a path in the post condition and the core pattern. It cannot be determined by a flag where the input position ends. NOTE: For many cases where there is a forward ambiguity quex can gnerate an inverse post-condition that goes backwards from the end of the post condition (see function 'mount()'). However, there are cases where even this is not possible (see function 'detect_backward()'). """ ## print_callstack() __assert_state_machines(CoreStateMachine, PostConditionStateMachine) core_acceptance_state_list = CoreStateMachine.get_acceptance_state_list() pcsm_init_state = PostConditionStateMachine.get_init_state() for csm_state in core_acceptance_state_list: if __dive_to_detect_iteration(CoreStateMachine, csm_state, PostConditionStateMachine, pcsm_init_state): return True return False
4d6c1952a201f3505b0770f12f42609847728a54
11,758
def price_sensitivity(results): """ Calculate the price sensitivity of a strategy results results dataframe or any dataframe with the columns open, high, low, close, profit returns the percentage of returns sensitive to open price Note ----- Price sensitivity is calculated by 1) Calculating the profit in cases where open=high and open=low 2) Dividing these profits by the total profits A high percentage indicates that most of your orders may not get executed at the LIMIT price since the stock tends have a sharp movement when open=low or open=high. A value of 1 indicates that all returns are sensitive to prices This is somewhat a rough measure and it doesn't take into account whether you BUY or SELL """ profit = results["profit"].sum() sen1 = results.query("open==low")["profit"].sum() sen2 = results.query("open==high")["profit"].sum() return (sen1 + sen2) / profit
02ab811bf689e760e011db6d091dcb7c3079f0d1
11,759
def wrap_zone(tz, key=KEY_SENTINEL, _cache={}): """Wrap an existing time zone object in a shim class. This is likely to be useful if you would like to work internally with non-``pytz`` zones, but you expose an interface to callers relying on ``pytz``'s interface. It may also be useful for passing non-``pytz`` zones to libraries expecting to use ``pytz``'s interface. :param tz: A :pep:`495`-compatible time zone, such as those provided by :mod:`dateutil.tz` or :mod:`zoneinfo`. :param key: The value for the IANA time zone key. This is optional for ``zoneinfo`` zones, but required for ``dateutil.tz`` zones. :return: A shim time zone. """ if key is KEY_SENTINEL: key = getattr(tz, "key", KEY_SENTINEL) if key is KEY_SENTINEL: raise TypeError( "The `key` argument is required when wrapping zones that do not " + "have a `key` attribute." ) instance = _cache.get((id(tz), key), None) if instance is None: instance = _cache.setdefault((id(tz), key), _PytzShimTimezone(tz, key)) return instance
7776153859b30ee758b16498b1122d0af294d371
11,760
async def async_browse_media( hass, media_content_type, media_content_id, *, can_play_artist=True ): """Browse Spotify media.""" info = list(hass.data[DOMAIN].values())[0] return await async_browse_media_internal( hass, info[DATA_SPOTIFY_CLIENT], info[DATA_SPOTIFY_ME], media_content_type, media_content_id, can_play_artist=can_play_artist, )
d3f912ecbd8949a637d461a453a4b9a9ea73a20c
11,761
from typing import Tuple import json def bounds(url: str) -> Tuple[str, str, str]: """Handle bounds requests.""" info = main.bounds(url) return ("OK", "application/json", json.dumps(info))
2da1ec2db8b2c0c3a3d28854dc2f68b71aa96bf1
11,762
import email def make_message_id(): """ Generates rfc message id. The returned message id includes the angle brackets. """ return email.utils.make_msgid('sndlatr')
7030efe1d61f4e54d833bb5c808f582689c626c6
11,763
def _understand_err_col(colnames): """Get which column names are error columns Examples -------- >>> colnames = ['a', 'a_err', 'b', 'b_perr', 'b_nerr'] >>> serr, terr = _understand_err_col(colnames) >>> np.allclose(serr, [1]) True >>> np.allclose(terr, [2]) True >>> serr, terr = _understand_err_col(['a', 'a_nerr']) Traceback (most recent call last): ... ValueError: Missing positive error... >>> serr, terr = _understand_err_col(['a', 'a_perr']) Traceback (most recent call last): ... ValueError: Missing negative error... """ shift = 0 serr = [] terr = [] for i, col in enumerate(colnames): if col.endswith("_err"): # The previous column, but they're numbered from 1! # Plus, take shift into account serr.append(i - shift) shift += 1 elif col.endswith("_perr"): terr.append(i - shift) if len(colnames) == i + 1 or not colnames[i + 1].endswith('_nerr'): raise ValueError("Missing negative error") shift += 2 elif col.endswith("_nerr") and not colnames[i - 1].endswith('_perr'): raise ValueError("Missing positive error") return serr, terr
2fab9346a3ea8fa6e84e406856eef8ad14ad9f66
11,764
def unpivot(frame): """ Example: >>> df date variable value 0 2000-01-03 A 0.895557 1 2000-01-04 A 0.779718 2 2000-01-05 A 0.738892 3 2000-01-03 B -1.513487 4 2000-01-04 B -0.543134 5 2000-01-05 B 0.902733 6 2000-01-03 C -0.053496 7 2000-01-04 C 0.298079 8 2000-01-05 C -1.962022 9 2000-01-03 D -0.174269 10 2000-01-04 D -0.047428 11 2000-01-05 D -1.871996 >>> tm.makeTimeDataFrame(3) A B C D 2000-01-03 -0.911447 0.274853 -0.740769 2.330942 2000-01-04 -0.208471 -1.024612 0.512266 -0.708707 2000-01-05 -1.368389 -3.464163 -1.940530 -1.149835 """ N, K = frame.shape data = { "value": frame.to_numpy().ravel("F"), "variable": np.asarray(frame.columns).repeat(N), "date": np.tile(np.asarray(frame.index), K), } return pd.DataFrame(data, columns=["date", "variable", "value"])
6cda1c29e7e7c9b4176e83b6a0e1d907458721b2
11,765
import type def find_viable_generators_aux (target_type, prop_set): """ Returns generators which can be used to construct target of specified type with specified properties. Uses the following algorithm: - iterates over requested target_type and all it's bases (in the order returned bt type.all-bases. - for each type find all generators that generate that type and which requirements are satisfied by properties. - if the set of generators is not empty, returns that set. Note: this algorithm explicitly ignores generators for base classes if there's at least one generator for requested target_type. """ # Select generators that can create the required target type. viable_generators = [] initial_generators = [] # Try all-type generators first. Assume they have # quite specific requirements. all_bases = type.all_bases(target_type) for t in all_bases: initial_generators = __type_to_generators.get(t, []) if initial_generators: dout("there are generators for this type") if t != target_type: # We're here, when no generators for target-type are found, # but there are some generators for a base type. # We'll try to use them, but they will produce targets of # base type, not of 'target-type'. So, we clone the generators # and modify the list of target types. generators2 = [] for g in initial_generators[:]: # generators.register adds generator to the list of generators # for toolsets, which is a bit strange, but should work. # That list is only used when inheriting toolset, which # should have being done before generators are run. ng = g.clone_and_change_target_type(t, target_type) generators2.append(ng) register(ng) initial_generators = generators2 break for g in initial_generators: dout("trying generator " + g.id() + "(" + str(g.source_types()) + "->" + str(g.target_types()) + ")") m = g.match_rank(prop_set) if m: dout(" is viable") viable_generators.append(g) return viable_generators
40764a16b17b54c28495e08623d616d0927451d1
11,766