content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import requests def zoom_api_call(user, verb, url, *args, **kwargs): """ Perform an API call to Zoom with various checks. If the call returns a token expired event, refresh the token and try the call one more time. """ if not settings.SOCIAL_AUTH_ZOOM_OAUTH2_KEY: raise DRFValidationError( "Server is not configured with Zoom OAuth2 credentials." ) if not user.is_authenticated: raise DRFValidationError("You are not authenticated.") social = user.social_auth.filter(provider="zoom-oauth2").first() if social is None: raise DRFValidationError("You have not linked your Zoom account yet.") is_retry = "retry" in kwargs if is_retry: del kwargs["retry"] out = requests.request( verb, url.format(uid=social.uid), *args, headers={"Authorization": f"Bearer {social.get_access_token(load_strategy())}"}, **kwargs, ) if out.status_code == 204: return out # check for token expired event data = out.json() if data.get("code") == 124 and not is_retry: social.refresh_token(load_strategy()) kwargs["retry"] = True return zoom_api_call(user, verb, url, *args, **kwargs) return out
5c359a4a7acd69a942aedcb78fc156b8218ab239
10,725
def addHtmlImgTagExtension(notionPyRendererCls): """A decorator that add the image tag extension to the argument list. The decorator pattern allows us to chain multiple extensions. For example, we can create a renderer with extension A, B, C by writing: addAExtension(addBExtension(addCExtension(notionPyRendererCls))) """ def newNotionPyRendererCls(*extraExtensions): new_extension = [HTMLBlock, HTMLSpan] return notionPyRendererCls(*chain(new_extension, extraExtensions)) return newNotionPyRendererCls
914d2395cdf9c5f52f94eef80e3f7469a70eb0ae
10,727
def get_symmetry_projectors(character_table, conjugacy_classes, print_results=False): """ :param character_table: each row gives the characters of a different irreducible rep. Each column corresponds to a different conjugacy classes :param conjugacy_classes: List of lists of conjugacy class elements :param print_results: :return projs: """ if not validate_char_table(character_table, conjugacy_classes): raise Exception("invalid character table/conjugacy class combination") # columns (or rows, since orthogonal mat) represent basis states that can be transformed into one another by symmetries states_related_by_symm = sum([sum([np.abs(g) for g in cc]) for cc in conjugacy_classes]) # only need sums over conjugacy classes to build projectors class_sums = [sum(cc) for cc in conjugacy_classes] projs = [reduce_symm_projector( sum([np.conj(ch) * cs for ch, cs in zip(chars, class_sums)]), chars[0], states_related_by_symm, print_results=print_results) for chars in character_table] # test projector size proj_to_dims = np.asarray([p.shape[0] for p in projs]).sum() proj_from_dims = projs[0].shape[1] if proj_to_dims != proj_from_dims: raise Exception("total span of all projectors was %d, but expected %d." % (proj_to_dims, proj_from_dims)) return projs
8780ef1a9ebb3f6e6960d04d07677e323e7565b9
10,729
from typing import List def is_permutation_matrix(matrix: List[List[bool]]) -> bool: """Returns whether the given boolean matrix is a permutation matrix.""" return (all(sum(v) == 1 for v in matrix) and sum(any(v) for v in matrix) == len(matrix))
b53d6f4ba6e8e1ba445783350de831b614aa187e
10,730
import torch def DPT_Hybrid(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT-Hybrid model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="vitb_rn50_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/intel-isl/MiDaS/releases/download/v3/dpt_hybrid-midas-501f0c75.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model
0a5cb661e9e0f08daae73b8c49ba8324e0cfb3e9
10,731
def show_counts(input_dict): """Format dictionary count information into a string Args: input_dict (dictionary): input keys and their counts Return: string: formatted output string """ out_s = '' in_dict_sorted = {k: v for k, v in sorted(input_dict.items(), key=lambda item: item[1], reverse=True)} for idx, (k, v) in enumerate(in_dict_sorted.items()): out_s += '\t{}:\t{} ({})\n'.format(idx, k, v) out_s += '\n' return out_s
078d1f7599b22741f474c0e6d1b02f44edfc1f9b
10,732
def encipher_railfence(message,rails): """ Performs Railfence Encryption on plaintext and returns ciphertext Examples ======== >>> from sympy.crypto.crypto import encipher_railfence >>> message = "hello world" >>> encipher_railfence(message,3) 'horel ollwd' Parameters ========== message : string, the message to encrypt. rails : int, the number of rails. Returns ======= The Encrypted string message. References ========== .. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher """ r = list(range(rails)) p = cycle(r + r[-2:0:-1]) return ''.join(sorted(message, key=lambda i: next(p)))
b1a56cdb255065b18caa4ba6da1fa11759f87152
10,733
import inspect def format_signature(name: str, signature: inspect.Signature) -> str: """Formats a function signature as if it were source code. Does not yet handle / and * markers. """ params = ', '.join( format_parameter(arg) for arg in signature.parameters.values()) if signature.return_annotation is signature.empty: return_annotation = '' else: return_annotation = ' -> ' + _annotation_name( signature.return_annotation) return f'{name}({params}){return_annotation}'
a14fde11850d420d15d2f9d7f3ac4cbe9aee03cc
10,734
def extract_ratios_from_ddf(ddf): """The same as the df version, but works with dask dataframes instead.""" # we basicaly abuse map_partition's ability to expand indexes for lack of a working # groupby(level) in dask return ddf.map_partitions(extract_ratios_from_df, meta={'path': str, 'ratio': str, 'url': str}).clear_divisions()
fcb816677d3d0816b2327d458a3fdd1b820bac9e
10,735
def check_if_prime(number): """checks if number is prime Args: number (int): Raises: TypeError: if number of type float Returns: [bool]: if number prime returns ,True else returns False """ if type(number) == float: raise TypeError("TypeError: entered float type") if number > 1 : for i in range( 2, int(number / 2) + 1 ): if number % i == 0: return False return True else: return False
0a15a4f133b12898b32b1f52a317939cf5e30d34
10,736
import inspect def get_signatures() -> {}: """ Helper method used to identify the valid arguments that can be passed to any of the pandas IO functions used by the program :return: Returns a dictionary containing the available arguments for each pandas IO method """ # Creates an empty dictionary to collect the function names and signatures sigreturn = {} # Loops over the functions that are used for IO operations for io in PANDAS_IO: # Gets the name of the function in question funcname = io.__name__ # Gets the list of arguments that the function can take args = list(inspect.signature(io).parameters.keys()) # Adds the arguments to the dictionary with the function name as the key sigreturn[funcname] = args # Returns the dictionary object return sigreturn
243b798e1c4c57a89749fff1d33be660ab4e973b
10,737
from typing import List def batch_answer_same_context(questions: List[str], context: str) -> List[str]: """Answers the questions with the given context. :param questions: The questions to answer. :type questions: List[str] :param context: The context to answer the questions with. :type context: str :return: The answers. :rtype: List[str] """ return _batch_answer_same_context[get_mode()](questions, context)
b58df72f1252427ea3e58e2f8379b8e77ea55273
10,740
import typing def dynamic_embedding_lookup(keys: tf.Tensor, config: de_config_pb2.DynamicEmbeddingConfig, var_name: typing.Text, service_address: typing.Text = "", skip_gradient_update: bool = False, timeout_ms: int = -1) -> tf.Tensor: """Returns the embeddings of from given keys. Args: keys: A string `Tensor` of shape [batch_size] or [batch_size, max_sequence_length] where an empty string would be mapped to an all zero embedding. config: A DynamicEmbeddingConfig proto that configures the embedding. var_name: A unique name for the given embedding. service_address: The address of a knowledge bank service. If empty, the value passed from --kbs_address flag will be used instead. skip_gradient_update: A boolean indicating if gradient update is needed. timeout_ms: Timeout millseconds for the connection. If negative, never timout. Returns: A `Tensor` of shape with one of below: - [batch_size, config.embedding_dimension] if the input Tensor is 1D, or - [batch_size, max_sequence_length, config.embedding_dimension] if the input is 2D. Raises: ValueError: If name is not specified. """ if not var_name: raise ValueError("Must specify a valid var_name.") # If skip_gradient_update is true, reate a dummy variable so that the # gradients can be passed in. if skip_gradient_update: grad_placeholder = tf.constant(0.0) else: grad_placeholder = tf.Variable(0.0) context.add_to_collection(var_name, config) resource = gen_carls_ops.dynamic_embedding_manager_resource( config.SerializeToString(), var_name, service_address, timeout_ms) return gen_carls_ops.dynamic_embedding_lookup(keys, grad_placeholder, resource, config.embedding_dimension)
c1d69548e60ff00e55ab04fe83607cae31b6558c
10,742
def register_unary_op(registered_name, operation): """Creates a `Transform` that wraps a unary tensorflow operation. If `registered_name` is specified, the `Transform` is registered as a member function of `Series`. Args: registered_name: the name of the member function of `Series` corresponding to the returned `Transform`. operation: a unary TensorFlow operation. """ doc = DOC_FORMAT_STRING.format(operation.__name__, operation.__doc__) @property def name(self): return operation.__name__ @property def input_valency(self): return 1 @property def _output_names(self): return "output" def _apply_transform(self, input_tensors): input_tensor = input_tensors[0] if isinstance(input_tensor, ops.SparseTensor): result = ops.SparseTensor(input_tensor.indices, operation(input_tensor.values), input_tensor.shape) else: result = operation(input_tensor) # pylint: disable=not-callable return self.return_type(result) cls = type(operation.__name__, (transform.Transform,), {"name": name, "__doc__": doc, "input_valency": input_valency, "_output_names": _output_names, "_apply_transform": _apply_transform}) series.Series.register_unary_op(registered_name)(cls)
c0fb56a8e93936a4c45e199e28889ccef67d19de
10,743
def add_climatology(data, clim): """Add 12-month climatology to a data array with more times. Suppose you have anomalies data and you want to add back its climatology to it. In this sense, this function does the opposite of `get_anomalies`. Though in this case there is no way to obtain the climatology so it has to be provided. Parameters ---------- data: xarray.DataArray Input must have a named `time` coordinate. clim: xarray.DataArray The climatology must have the same spatial dimensions as `data`. Naturally, the time dimension can differ. The values of this array will be replicated as many times as `data` has. Returns ------- xarray.DataArray with both fields added. """ # noqa # make sure shapes are correct ddims = len(data.dims) cdims = len(clim.dims) if ddims != cdims: msg = 'both data arrays must have same dimensions' raise ValueError(msg) # get number of years in dataarray years = np.unique(data.time.dt.year) nyear = years.size # get tiled shape tshape = np.ones(ddims, dtype=int) tshape[0] = nyear # create tiled climatology tclim = np.tile(clim.values, tshape) # add climatology to data array new = data.copy() new.values = np.array(data.values) + tclim return new
28845fc1455bc317d158b503ed07a7d0c1af5655
10,744
from typing import List def already_exists(statement: str, lines: List[str]) -> bool: """ Check if statement is in lines """ return any(statement in line.strip() for line in lines)
194d8c6c48609f5a2accacdb2ed0857815d48d1d
10,745
import random def uniform(lower_list, upper_list, dimensions): """Fill array """ if hasattr(lower_list, '__iter__'): return [random.uniform(lower, upper) for lower, upper in zip(lower_list, upper_list)] else: return [random.uniform(lower_list, upper_list) for _ in range(dimensions)]
59bcb124f0d71fd6e5890cd1d6c200319ab5910e
10,746
import torch def prepare_data(files, voxel_size, device='cuda'): """ Loads the data and prepares the input for the pairwise registration demo. Args: files (list): paths to the point cloud files """ feats = [] xyz = [] coords = [] n_pts = [] for pc_file in files: pcd0 = o3d.io.read_point_cloud(pc_file) xyz0 = np.array(pcd0.points) # Voxelization sel0 = ME.utils.sparse_quantize(xyz0 / voxel_size, return_index=True) # Make point clouds using voxelized points xyz0 = xyz0[sel0[1],:] # Get features npts0 = xyz0.shape[0] xyz.append(to_tensor(xyz0)) n_pts.append(npts0) feats.append(np.ones((npts0, 1))) coords.append(np.floor(xyz0 / voxel_size)) coords_batch0, feats_batch0 = ME.utils.sparse_collate(coords, feats) data = {'pcd0': torch.cat(xyz, 0).float(), 'sinput0_C': coords_batch0, 'sinput0_F': feats_batch0.float(), 'pts_list': torch.tensor(n_pts)} return data
1c11444d4f6ca66396651bb49b8c655bedf6b8fa
10,747
def reshape(box, new_size): """ box: (N, 4) in y1x1y2x2 format new_size: (N, 2) stack of (h, w) """ box[:, :2] = new_size * box[:, :2] box[:, 2:] = new_size * box[:, 2:] return box
56fbeac7c785bd81c7964d7585686e11864ff034
10,748
import json def sort_actions(request): """Sorts actions after drag 'n drop. """ action_list = request.POST.get("objs", "").split('&') if len(action_list) > 0: pos = 10 for action_str in action_list: action_id = action_str.split('=')[1] action_obj = Action.objects.get(pk=action_id) action_obj.position = pos action_obj.save() pos = pos + 10 result = json.dumps({ "message": _(u"The actions have been sorted."), }, cls=LazyEncoder) return HttpResponse(result, content_type='application/json')
80f2042858f7a0ecad3663ae4bf50ad73935be3b
10,749
def fetch_file(parsed_url, config): """ Fetch a file from Github. """ if parsed_url.scheme != 'github': raise ValueError(f'URL scheme must be "github" but is "{parsed_url.github}"') ghcfg = config.get('github') if not ghcfg: raise BuildRunnerConfigurationError('Missing configuration for github in buildrunner.yaml') nlcfg = ghcfg.get(parsed_url.netloc) if not nlcfg: gh_cfgs = ', '.join(ghcfg.keys()) raise BuildRunnerConfigurationError( f'Missing github configuration for {parsed_url.netloc} in buildrunner.yaml' f' - known github configurations: {gh_cfgs}' ) ver = nlcfg.get('version') # NOTE: potentially the v3_fetch_file() works for other github API versions. if ver == 'v3': contents = v3_fetch_file(parsed_url, nlcfg) else: raise NotImplementedError(f'No version support for github API version {ver}') return contents
c688a68aeaa4efa0cda21f3b58a94075e4555004
10,750
import calendar def number_of_days(year: int, month: int) -> int: """ Gets the number of days in a given year and month :param year: :type year: :param month: :type month: :return: :rtype: """ assert isinstance(year, int) and 0 <= year assert isinstance(month, int) and 0 < month <= 12 c = calendar.Calendar() days = c.itermonthdays(year, month) days = set(days) days.remove(0) return len(days)
d585f037292eef36ecc753fbf702035577513a15
10,751
from functools import reduce def medstddev(data, mask=None, medi=False, axis=0): """ This function computes the stddev of an n-dimensional ndarray with respect to the median along a given axis. Parameters: ----------- data: ndarray A n dimensional array frmo wich caculate the median standar deviation. mask: ndarray Mask indicating the good and bad values of data. medi: boolean If True return a tuple with (stddev, median) of data. axis: int The axis along wich the median std deviation is calculated. Examples: -------- >>> import medstddev as m >>> b = np.array([[1, 3, 4, 5, 6, 7, 7], [4, 3, 4, 15, 6, 17, 7], [9, 8, 7, 6, 5, 4, 3]]) >>> c = np.array([b, 1-b, 2+b]) >>> std, med = m.medstddev(c, medi=True, axis=2) >>> print(median(c, axis=2)) [[ 5. 6. 6.] [-4. -5. -5.] [ 7. 8. 8.]] >>> print(med) [[ 5. 6. 6.] [-4. -5. -5.] [ 7. 8. 8.]] >>> print(std) [[ 2.23606798 6.05530071 2.1602469 ] [ 2.23606798 6.05530071 2.1602469 ] [ 2.23606798 6.05530071 2.1602469 ]] >>> # take a look at the first element of std >>> d = c[0,0,:] >>> print(d) [1, 3, 4, 5, 6, 7, 7] >>> print(m.medstddev1d(d)) 2.2360679775 >>> # See medstddev1d for masked examples Modification history: --------------------- 2010-11-05 patricio Written by Patricio Cubillos [email protected] """ # flag to return median value retmed = medi # get shape shape = np.shape(data) # default mask, all good. if mask is None: mask = np.ones(shape) # base case: 1D if len(shape) == 1: return medstddev1d(data, mask, retmed) newshape = np.delete(shape, axis) # results std = np.zeros(newshape) medi = np.zeros(newshape) # reduce dimensions until 1D case reduce(medstddev1d, data, mask, std, medi, axis) # return statement: if retmed: return (std, medi) return std
bbab9eede714d7c64344af271f8b6e817723d837
10,753
def load_npz(filename: FileLike) -> JaggedArray: """ Load a jagged array in numpy's `npz` format from disk. Args: filename: The file to read. See Also: save_npz """ with np.load(filename) as f: try: data = f["data"] shape = f["shape"] return JaggedArray(data, shape) except KeyError: msg = "The file {!r} does not contain a valid jagged array".format(filename) raise RuntimeError(msg)
640add32dab0b7bd12784a7a29331b59521a0f8a
10,754
import re def _egg_link_name(raw_name: str) -> str: """ Convert a Name metadata value to a .egg-link name, by applying the same substitution as pkg_resources's safe_name function. Note: we cannot use canonicalize_name because it has a different logic. """ return re.sub("[^A-Za-z0-9.]+", "-", raw_name) + ".egg-link"
923ff815b600b95ccb5750a8c1772ee9156e53b2
10,755
def my_view(request): """Displays info details from nabuco user""" owner, c = User.objects.get_or_create(username='nabuco') # Owner of the object has full permissions, otherwise check RBAC if request.user != owner: # Get roles roles = get_user_roles(request.user, owner) # Get operation op, c = RBACOperation.objects.get_or_create(name='display') # Per-model permission: # Has user permission to display groups that nabuco belongs to? if not RBACGenericPermission.objects.get_permission(owner, Group, op, roles): return HttpResponseForbidden("Sorry, you are not allowed to see nabuco groups") # Per-object permission: # Has user permission to see this group which nabuco belong to? group_inst = get_object_or_404(Group, name='punks') if not RBACPermission.objects.get_permission(owner, owner, op, roles): return HttpResponseForbidden("Sorry, you are not allowed to see this group details") return render_to_response("base.html", {'owner': owner, 'model': Group, 'model_inst': owner, 'operation': op, 'roles': roles}, context_instance=RequestContext(request))
55c3443f24d56b6ea22e02c9685d6057dfc79c7e
10,756
def handler500(request): """ Custom 500 view :param request: :return: """ return server_error(request, template_name='base/500.html')
91db9daeaac6f7f6b2207a3c8be7fa09f932b50f
10,757
def get_badpixel_mask(shape, bins): """Get the mask of bad pixels and columns. Args: shape (tuple): Shape of image. bins (tuple): CCD bins. Returns: :class:`numpy.ndarray`: 2D binary mask, where bad pixels are marked with *True*, others *False*. The bad pixels are found *empirically*. """ mask = np.zeros(shape, dtype=np.bool) if bins == (1, 1) and shape == (4136, 4096): ny, nx = shape mask[349:352, 627:630] = True mask[349:ny//2, 628] = True mask[1604:ny//2, 2452] = True mask[280:284,3701] = True mask[274:ny//2, 3702] = True mask[272:ny//2, 3703] = True mask[274:282, 3704] = True mask[1720:1722, 3532:3535] = True mask[1720, 3535] = True mask[1722, 3532] = True mask[1720:ny//2,3533] = True mask[347:349, 4082:4084] = True mask[347:ny//2,4083] = True mask[ny//2:2631, 1909] = True else: print('No bad pixel information for this CCD size.') raise ValueError return mask
2e636aef86d2462815683a975ef99fbcdeeaee19
10,758
import six import yaml def maybe_load_yaml(item): """Parses `item` only if it is a string. If `item` is a dictionary it is returned as-is. Args: item: Returns: A dictionary. Raises: ValueError: if unknown type of `item`. """ if isinstance(item, six.string_types): return yaml.load(item) elif isinstance(item, dict): return item else: raise ValueError("Got {}, expected string or dict", type(item))
9288012f0368e2b087c9ef9cd9ffaca483b4f11b
10,760
def histeq(im,nbr_bins=256): """histogram equalize an image""" #get image histogram im = np.abs(im) imhist,bins = np.histogram(im.flatten(),nbr_bins,normed=True) cdf = imhist.cumsum() #cumulative distribution function cdf = 255 * cdf / cdf[-1] #normalize #use linear interpolation of cdf to find new pixel values im2 = np.interp(im.flatten(),bins[:-1],cdf) return im2.reshape(im.shape)
bbb0e758e519a7cfcc866e3193cd1ff26bf5efbc
10,761
def txgamma(v, t, gamma, H0): """ Takes in: v = values at z=0; t = list of redshifts to integrate over; gamma = interaction term. Returns a function f = [dt/dz, d(a)/dz, d(e'_m)/dz, d(e'_de)/dz, d(z)/dz, d(dl)/dz] """ (t, a, ombar_m, ombar_de, z, dl) = v #omegam, omegade, z, dl) = v Hz = H0 * (ombar_m + ombar_de)**(1/2) if np.isnan(Hz): print('txgamma') print('z = %s, Hz = %s, gamma = %s, ombar_m = %s, ombar_de = %s' %(z, Hz, gamma, ombar_m, ombar_de)) irate = (gamma/(-t+0.0001))*(1-ombar_de/(ombar_de+ombar_m)) /(1+z)/Hz # first derivatives of functions I want to find: f = [# dt/dz (= f.d wrt z of time) -1/((1+z) * Hz), # d(a)/dz (= f.d wrt z of scale factor) -(1+z)**(-2), # d(ombar_m)/dz (= f.d wrt z of density_m(t) / crit density(t0)) 3*ombar_m /(1+z) - irate, # d(ombar_de)/dz (= f.d wrt z of density_de(t) / crit desnity(t0)) irate, # d(z)/dz (= f.d wrt z of redshift) 1, # d(dl)/dz (= f.d wrt z of luminosty distance) 1/Hz] # H + Hdz*(1+z) return f
a1506ea0b54f468fd63cd2a8bd96e8a9c46a92f3
10,762
def text_pb(tag, data, description=None): """Create a text tf.Summary protobuf. Arguments: tag: String tag for the summary. data: A Python bytestring (of type bytes), a Unicode string, or a numpy data array of those types. description: Optional long-form description for this summary, as a `str`. Markdown is supported. Defaults to empty. Raises: TypeError: If the type of the data is unsupported. Returns: A `tf.Summary` protobuf object. """ try: tensor = tensor_util.make_tensor_proto(data, dtype=np.object) except TypeError as e: raise TypeError("tensor must be of type string", e) summary_metadata = metadata.create_summary_metadata( display_name=None, description=description ) summary = summary_pb2.Summary() summary.value.add(tag=tag, metadata=summary_metadata, tensor=tensor) return summary
43d652ebb9ab1d52c0514407a3c47d56816cbb65
10,763
def sanitize_input(args: dict) -> dict: """ Gets a dictionary for url params and makes sure it doesn't contain any illegal keywords. :param args: :return: """ if "mode" in args: del args["mode"] # the mode should always be detailed trans = str.maketrans(ILLEGAL_CHARS, ' ' * len(ILLEGAL_CHARS)) for k, v in args.copy().items(): if isinstance(v, str): # we only need to verify v because k will never be entered by a user args[k] = v.translate(trans) return args
063d314cb3800d24606b56480ce63b7dda3e8e51
10,764
def sum_to(containers, goal, values_in_goal=0): """ Find all sets of containers which sum to goal, store the number of containers used to reach the goal in the sizes variable. """ if len(containers) == 0: return 0 first = containers[0] remain = containers[1:] if first > goal: with_first = 0 elif first == goal: sizes.append(values_in_goal + 1) with_first = 1 else: with_first = sum_to(remain, goal-first, values_in_goal + 1) return with_first + sum_to(remain, goal, values_in_goal)
db5297929332a05606dec033318ca0d7c9661b1d
10,765
def rt2add_enc_v1(rt, grid): """ :param rt: n, k, 2 | log[d, tau] for each ped (n,) to each vic (k,) modifies rt during clipping to grid :param grid: (lx, ly, dx, dy, nx, ny) lx, ly | lower bounds for x and y coordinates of the n*k (2,) in rt dx, dy | step sizes of the regular grid nx, ny | number of grid points in each coordinate (so nx*ny total) :return: n, m | m = nx*ny, encoding for each ped uses row-major indexing for the flattened (2d) indices for nx 'rows' and ny 'columns' """ n, k = rt.shape[:2] nx, ny = np.array(grid[-2:]).astype(np.int32) m = nx * ny Z = np.zeros((n, m), dtype=np.float32) clip2grid(rt, grid) # n, k a_x = np.empty((n, k), dtype=np.int32) r_x = np.empty((n, k), dtype=np.float32) np.divmod(rt[..., 0] - grid[0], grid[2], a_x, r_x, casting='unsafe') th_x = 1 - r_x / grid[2] a_y = np.empty((n, k), dtype=np.int32) r_y = np.empty((n, k), dtype=np.float32) np.divmod(rt[..., 1] - grid[1], grid[3], a_y, r_y, casting='unsafe') th_y = 1 - r_y / grid[3] # 1d inds for m, | n, k c_x = ny * a_x + a_y offsets = np.array([0, ny, 1, ny+1], dtype=np.int32) # n, k, 4 inds = c_x[..., np.newaxis] + offsets[np.newaxis, :] vals = np.dstack((th_x*th_y, (1-th_x)*th_y, th_x*(1-th_y), (1-th_x)*(1-th_y))) row_inds = np.repeat(np.arange(n, dtype=np.int32), 4*k) np.add.at(Z, (row_inds, inds.ravel()), vals.ravel()) return Z
3af0b8e15fdcc4d9bbeb604faffbd45cf013e86b
10,766
import heapq def draw_with_replacement(heap): """Return ticket drawn with replacement from given heap of tickets. Args: heap (list): an array of Tickets, arranged into a heap using heapq. Such a heap is also known as a 'priority queue'. Returns: the Ticket with the least ticket number in the heap. Side-effects: the heap maintains its size, as the drawn ticket is replaced by the next ticket for that id. Example: >>> x = Ticket('0.234', 'x', 2) >>> y = Ticket('0.354', 'y', 1) >>> z = Ticket('0.666', 'z', 2) >>> heap = [] >>> heapq.heappush(heap, x) >>> heapq.heappush(heap, y) >>> heapq.heappush(heap, z) >>> heap [Ticket(ticket_number='0.234', id='x', generation=2), Ticket(ticket_number='0.354', id='y', generation=1), Ticket(ticket_number='0.666', id='z', generation=2)] >>> draw_with_replacement(heap) Ticket(ticket_number='0.234', id='x', generation=2) >>> heap [Ticket(ticket_number='0.354', id='y', generation=1), Ticket(ticket_number='0.666', id='z', generation=2), Ticket(ticket_number='0.54783080274940261636464668679572\ 2512609112766306951592422621788875312684400211', id='x', generation=3)] """ ticket = heapq.heappop(heap) heapq.heappush(heap, next_ticket(ticket)) return ticket
06eb982ecf32090da51f02356a6996429773e233
10,767
def get_string(entry): """ This function ... :param entry: :return: """ value = entry.split(" / ")[0].rstrip() return value
38a1dc41fd06b49aa8724cc783466b485c9017fb
10,769
import collections def get_top_words(words): """ Получить список наиболее часто встречающихся слов, с указанием частоты :param words: список слов для анализа :return: [(слово1, количество повторений слова1), ..] """ return collections.Counter(words).most_common()
632317f57e734a93b6f3f20dfef001028b40c6b3
10,771
def get_slope(x, y, L): """ Funcao que retorna o slope da serie temporal dos dados """ try: x=np.array(x).reshape(-1, 1) y=np.array(y).reshape(-1, 1) lr=LinearRegression() lr.fit (x[:L],y[:L]) return lr.coef_[0][0] except: return 0
23f3419049ee1372d5963823e2f52b895bc766e8
10,772
from typing import Dict from typing import Any def _minimize_price(price: Dict[str, Any]) -> Price: """ Return only the keys and values of a price the end user would be interested in. """ keys = ['id', 'recurring', 'type', 'currency', 'unit_amount', 'unit_amount_decimal', 'nickname', 'product', 'metadata'] return {k: price[k] for k in keys}
7414e0f3e5ae11f55b5781a679e593294122aed2
10,773
def project(signals, q_matrix): """ Project the given signals on the given space. Parameters ---------- signals : array_like Matrix with the signals in its rows q_matrix : array_like Matrix with an orthonormal basis of the space in its rows Returns ------- proj_signals : ndarray Matrix with the projected signals in its rows """ signals = np.asarray(signals) q_matrix = np.asarray(q_matrix) return q_matrix.T.dot(q_matrix.dot(signals.T)).T
0d6aa780d0d424260df5f8391821c806e12c81e5
10,774
def all_movies(): """ Returns all movie in the database for Movies service """ movies = ut.get_movies() if len(movies) == 0: abort(404) return make_response(jsonify({"movies":movies}),200)
d8b2e3a66adf52830d7027953c22071449d2b29a
10,775
def format_map(mapping, st): """ Format string st with given map. """ return st.format_map(mapping)
462e0a744177d125db50739eac1f2e7a62128010
10,776
def communities_greedy_modularity(G,f): """ Adds a column to the dataframe f with the community of each node. The communitys are detected using greedy modularity. G: a networkx graph. f: a pandas dataframe. It works with networkx vesion: '2.4rc1.dev_20190610203526' """ if not(set(f.name) == set(G.nodes()) and len(f.name) == len(G.nodes())): raise ValueError('The number of nodes and the length of the datadrame should be the same.') communities_dic = nx.algorithms.community.greedy_modularity_communities(G) communities_df = pd.DataFrame(data = {'name': [i for j in range(len(communities_dic)) for i in list(communities_dic[j])], 'communities_greedy_modularity': [j for j in range(len(communities_dic)) for i in list(communities_dic[j])] }) f = pd.merge(f, communities_df, on='name') return f
cfca6ef66730f3a6ef467f1c51c66c5d46296351
10,777
import json def load_loglin_stats(infile_path): """read in data in json format""" # convert all 'stats' to pandas data frames with open(infile_path) as infile: data = json.load(infile) new_data = {} for position_set in data: try: new_key = eval(position_set) except NameError: new_key = position_set new_data[new_key] = {} for key, value in list(data[position_set].items()): if key == "stats": value = read_json(value) new_data[new_key][key] = value return new_data
c307ff2cf4e07bbb7843971cceaf74744422276c
10,778
def _simple_logistic_regression(x,y,beta_start=None,verbose=False, CONV_THRESH=1.e-3,MAXIT=500): """ Faster than logistic_regression when there is only one predictor. """ if len(x) != len(y): raise ValueError, "x and y should be the same length!" if beta_start is None: beta_start = NA.zeros(2,x.dtype.char) iter = 0; diff = 1.; beta = beta_start # initial values if verbose: print 'iteration beta log-likliehood |beta-beta_old|' while iter < MAXIT: beta_old = beta p = NA.exp(beta[0]+beta[1]*x)/(1.+NA.exp(beta[0]+beta[1]*x)) l = NA.sum(y*NA.log(p) + (1.-y)*NA.log(1.-p)) # log-likliehood s = NA.array([NA.sum(y-p), NA.sum((y-p)*x)]) # scoring function # information matrix J_bar = NA.array([[NA.sum(p*(1-p)),NA.sum(p*(1-p)*x)], [NA.sum(p*(1-p)*x),NA.sum(p*(1-p)*x*x)]]) beta = beta_old + NA.dot(LA.inverse(J_bar),s) # new value of beta diff = NA.sum(NA.fabs(beta-beta_old)) # sum of absolute differences if verbose: print iter+1, beta, l, diff if diff <= CONV_THRESH: break iter = iter + 1 return beta, J_bar, l
c37190b167e634df31127f79163aaeb56bac217e
10,779
def preemphasis(signal,coeff=0.95): """perform preemphasis on the input signal. :param signal: The signal to filter. :param coeff: The preemphasis coefficient. 0 is no filter, default is 0.95. :returns: the filtered signal. """ return np.append(signal[0],signal[1:]-coeff*signal[:-1])
c5173708e7b349decd34ac886493103eaadb023d
10,780
from sacremoses import MosesTokenizer from sacremoses import MosesPunctNormalizer def build_moses_tokenizer(tokenizer: MosesTokenizerSpans, normalizer: MosesPunctNormalizer = None) -> Callable[[str], List[Token]]: """ Wrap Spacy model to build a tokenizer for the Sentence class. :param model a Moses tokenizer instance :return a tokenizer function to provide to Sentence class constructor """ try: except ImportError: raise ImportError( "Please install sacremoses or better before using the Spacy tokenizer, otherwise you can use segtok_tokenizer as advanced tokenizer." ) moses_tokenizer: MosesTokenizerSpans = tokenizer if normalizer: normalizer: MosesPunctNormalizer = normalizer def tokenizer(text: str) -> List[Token]: if normalizer: text = normalizer.normalize(text=text) doc = moses_tokenizer.span_tokenize(text=text, escape=False) previous_token = None tokens: List[Token] = [] for word, (start_pos, end_pos) in doc: word: str = word token = Token( text=word, start_position=start_pos, whitespace_after=True ) tokens.append(token) if (previous_token is not None) and ( token.start_pos - 1 == previous_token.start_pos + len(previous_token.text) ): previous_token.whitespace_after = False previous_token = token return tokens return tokenizer
0dee31ab9030e387dd6907efad60c188eb0241b2
10,781
from typing import Callable from typing import Hashable from typing import Union def horizontal_block_reduce( obj: T_DataArray_or_Dataset, coarsening_factor: int, reduction_function: Callable, x_dim: Hashable = "xaxis_1", y_dim: Hashable = "yaxis_1", coord_func: Union[str, CoordFunc] = coarsen_coords_coord_func, ) -> T_DataArray_or_Dataset: """A generic horizontal block reduce function for xarray data structures. This is a convenience wrapper around block_reduce for applying coarsening over n x n patches of array elements. It should only be used if a dask implementation of the reduction method has not been implemented (e.g. for median) or if a custom reduction method is used that is not implemented in xarray. Otherwise, block_coarsen should be used. Args: obj: Input Dataset or DataArray. coarsening_factor: Integer coarsening factor to use. reduction_function: Array reduction function which accepts a tuple of axes to reduce along. x_dim: x dimension name (default 'xaxis_1'). y_dim: y dimension name (default 'yaxis_1'). coord_func: function that is applied to the coordinates, or a mapping from coordinate name to function. See `xarray's coarsen method for details <http://xarray.pydata.org/en/stable/generated/xarray.DataArray.coarsen.html>`_. Returns: xr.Dataset or xr.DataArray. """ block_sizes = {x_dim: coarsening_factor, y_dim: coarsening_factor} return xarray_block_reduce( obj, block_sizes, reduction_function, coord_func=coord_func, )
07fc497ae8c5cd90699bc73bfbeab705c13ed0c6
10,782
def statements_api(context, request): """List all the statements for a period.""" dbsession = request.dbsession owner = request.owner owner_id = owner.id period = context.period inc_case = case([(AccountEntry.delta > 0, AccountEntry.delta)], else_=None) dec_case = case([(AccountEntry.delta < 0, AccountEntry.delta)], else_=None) statement_rows = ( dbsession.query( Statement.id, Statement.source, Statement.filename, func.count(inc_case).label('inc_count'), func.count(dec_case).label('dec_count'), func.sum(inc_case).label('inc_total'), func.sum(dec_case).label('dec_total'), ) .outerjoin(AccountEntry, AccountEntry.statement_id == Statement.id) .filter( Statement.owner_id == owner_id, Statement.file_id == period.file_id, Statement.period_id == period.id, ) .group_by(Statement.id) .order_by(Statement.id) .all() ) statements = [{ 'id': str(row.id), 'source': row.source, 'filename': row.filename, 'inc_count': row.inc_count, 'dec_count': row.dec_count, 'inc_total': row.inc_total, 'dec_total': row.dec_total, } for row in statement_rows] now = dbsession.query(now_func).scalar() return { 'now': now, 'statements': statements, }
87a1ec3e5fc5730eda30367a5f9f34aef6cf7339
10,783
def fp(x): """Function used in **v(a, b, th, nu, dimh, k)** for **analytic_solution_slope()** :param x: real number :type x: list :return: fp value :rtype: list """ rx = np.sqrt(x * 2 / np.pi) s_fresnel, c_fresnel = sp.fresnel(rx) return - 2 * 1j * np.sqrt(x) * np.exp(-1j * x) * np.sqrt(np.pi / 2.) \ * (.5 - c_fresnel + 1j * (.5 - s_fresnel))
202000557fb239e589ffd4d7b9709b60678ab784
10,784
def get_truck_locations(given_address): """ Get the location of the food trucks in Boston TODAY within 1 mile of a given_address :param given_address: a pair of coordinates :return: a list of features with unique food truck locations """ formatted_address = '{x_coordinate}, {y_coordinate}'.format( x_coordinate=given_address['x'], y_coordinate=given_address['y'] ) QUERY["geometry"] = formatted_address trucks = gis_utils.get_features_from_feature_server(BASE_URL, QUERY) truck_unique_locations = [] for t in trucks: if t['attributes']['Day'] == DAY: truck_unique_locations.append(t) return truck_unique_locations
f1d5e290c5c46e1587a2f98c2e82edee3890fc05
10,785
import inspect import warnings def _getRelevantKwds(method, kwds): """return kwd args for the given method, and remove them from the given kwds""" argspec = inspect.getargspec(method) d = dict() for a in kwds: if a not in argspec.args: warnings.warn("Unrecognized kwd: {!r}".format(a)) for a in argspec.args: if a in kwds: d[a] = kwds[a] del kwds[a] return d
bca410b99e750f233a5e4476413e6bacfa52dcb9
10,786
import requests def find_overview_details(park_code): """ Find overview details from park code """ global API_KEY fields = "&fields=images,entranceFees,entrancePasses,operatingHours,exceptions" url = "https://developer.nps.gov/api/v1/parks?parkCode=" + park_code + "&api_key=" + API_KEY + fields response = requests.get(url) json_object = response.json() overview = json_object['data'] return {'overview': overview}
95cf281828154c45eae1e239f33d2de8bcf9e7fa
10,787
import torch def embed_nomenclature( D, embedding_dimension, loss="rank", n_steps=1000, lr=10, momentum=0.9, weight_decay=1e-4, ignore_index=None, ): """ Embed a finite metric into a target embedding space Args: D (tensor): 2D-cost matrix of the finite metric embedding_dimension (int): dimension of the target embedding space loss (str): embedding loss to use distortion base (loss='disto') or rank based (loss='rank') n_steps (int): number of gradient iterations lr (float): learning rate momentum (float): momentum weight_decay (float): weight decay Returns: embedding (tensor): embedding of each vertex of the finite metric space, shape n_vertex x embedding_dimension """ n_vertex = D.shape[0] mapping = torch.rand( (n_vertex, embedding_dimension), requires_grad=True, device=D.device ) if loss == "rank": crit = RankLoss(D, n_triplets=1000) elif loss == "disto": crit = DistortionLoss(D, scale_free=False) else: raise ValueError optimizer = torch.optim.SGD( [mapping], lr=lr, momentum=momentum, weight_decay=weight_decay ) print("Embedding nomenclature . . .") for i in range(n_steps): loss = crit(mapping) optimizer.zero_grad() loss.backward() optimizer.step() print( "Step {}: loss {:.4f} ".format(i + 1, loss.cpu().detach().numpy(), end="\r") ) print("Final loss {:.4f}".format(crit(mapping).cpu().detach().numpy())) return mapping.detach()
1e9ca98dec0c3e42af0af483b6e9ef9efa11b225
10,788
def raw_env(): """ To support the AEC API, the raw_env() function just uses the from_parallel function to convert from a ParallelEnv to an AEC env """ env = parallel_env() env = parallel_to_aec(env) return env
dcb491c2beb50f73ba0fdab96bcd069916ce9b6d
10,789
def cmd_line(preprocessor: Preprocessor, args: str) -> str: """the line command - prints the current line number""" if args.strip() != "": preprocessor.send_warning("extra-arguments", "the line command takes no arguments") context = preprocessor.context.top pos = context.true_position(preprocessor.current_position.begin) return str(context.file.line_number(pos)[0])
061bcf2ced6c22c77d81bb30ec00a5c1964c3624
10,790
from xml.dom import expatbuilder from xml.dom import pulldom def parse(file, parser=None, bufsize=None): """Parse a file into a DOM by filename or file object.""" if parser is None and not bufsize: return expatbuilder.parse(file) else: return _do_pulldom_parse(pulldom.parse, (file,), {'parser': parser, 'bufsize': bufsize})
0d4bc592143ecb7c093eceaf4f5fe0d18869ea9c
10,792
import hashlib def create_hash256(max_length=None): """ Generate a hash that can be used as an application secret Warning: this is not sufficiently secure for tasks like encription Currently, this is just meant to create sufficiently random tokens """ hash_object = hashlib.sha256(force_bytes(get_random_string(32))) hash_object.update(force_bytes(settings.SECRET_KEY)) output_hash = hash_object.hexdigest() if max_length is not None and len(output_hash) > max_length: return output_hash[:max_length] return output_hash
4856be59c475bcfc07137b62511de4d5c7531eb3
10,793
from io import StringIO def assert_content_in_file(file_name, expected_content): """ Fabric assertion: Check if some text is in the specified file (result of installing a test product) Provision dir: PROVISION_ROOT_PATH :param file_name: File name :param expected_content: String to be found in file :return: True if given content is in file (dir: PROVISION_ROOT_PATH). """ file_path = PROVISION_ROOT_PATH.format(file_name) fd = StringIO() get(file_path, fd) file_content = fd.getvalue() return expected_content in file_content
eba68222d39c55902da1c4c4ae7055b7edc170e0
10,794
import math import numpy def _calculate_hwp_storage_fut( hwp_shapes, base_dataset_uri, c_hwp_uri, bio_hwp_uri, vol_hwp_uri, yr_cur, yr_fut, process_pool=None): """Calculates carbon storage, hwp biomassPerPixel and volumePerPixel due to harvested wood products in parcels on current landscape. hwp_shapes - a dictionary containing the current and/or future harvest maps (or nothing) hwp_shapes['cur'] - oal shapefile indicating harvest map from the current landscape hwp_shapes['fut'] - oal shapefile indicating harvest map from the future landscape c_hwp - an output GDAL rasterband representing carbon stored in harvested wood products for current calculation bio_hwp - an output GDAL rasterband representing carbon stored in harvested wood products for land cover under interest vol_hwp - an output GDAL rasterband representing carbon stored in harvested wood products for land cover under interest yr_cur - year of the current landcover map yr_fut - year of the current landcover map process_pool - a process pool for parallel processing (can be None) No return value""" ############### Start pixel_area = pygeoprocessing.geoprocessing.get_cell_size_from_uri(base_dataset_uri) ** 2 / 10000.0 #convert to Ha nodata = -5.0 c_hwp_cur_uri = pygeoprocessing.geoprocessing.temporary_filename() bio_hwp_cur_uri = pygeoprocessing.geoprocessing.temporary_filename() vol_hwp_cur_uri = pygeoprocessing.geoprocessing.temporary_filename() pygeoprocessing.geoprocessing.new_raster_from_base_uri(base_dataset_uri, c_hwp_uri, 'GTiff', nodata, gdal.GDT_Float32, fill_value=nodata) pygeoprocessing.geoprocessing.new_raster_from_base_uri(base_dataset_uri, bio_hwp_uri, 'GTiff', nodata, gdal.GDT_Float32, fill_value=nodata) pygeoprocessing.geoprocessing.new_raster_from_base_uri(base_dataset_uri, vol_hwp_uri, 'GTiff', nodata, gdal.GDT_Float32, fill_value=nodata) #Create a temporary shapefile to hold values of per feature carbon pools #HWP biomassPerPixel and volumePerPixel, will be used later to rasterize #those values to output rasters calculatedAttributeNames = ['c_hwp_pool', 'bio_hwp', 'vol_hwp'] if 'cur' in hwp_shapes: hwp_shape = ogr.Open(hwp_shapes['cur']) hwp_shape_copy = \ ogr.GetDriverByName('Memory').CopyDataSource(hwp_shape, '') hwp_shape_layer_copy = \ hwp_shape_copy.GetLayer() #Create fields in the layers to hold hardwood product pools, #biomassPerPixel and volumePerPixel for fieldName in calculatedAttributeNames: field_def = ogr.FieldDefn(fieldName, ogr.OFTReal) hwp_shape_layer_copy.CreateField(field_def) #Visit each feature and calculate the carbon pool, biomassPerPixel, #and volumePerPixel of that parcel for feature in hwp_shape_layer_copy: #This makes a helpful dictionary to access fields in the feature #later in the code field_args = _get_fields(feature) #If start date and/or the amount of carbon per cut is zero, it #doesn't make sense to do any calculation on carbon pools or #biomassPerPixel/volumePerPixel if field_args['start_date'] != 0 and field_args['cut_cur'] != 0: time_span = (yr_fut + yr_cur) / 2.0 - field_args['start_date'] start_years = yr_fut - field_args['start_date'] #Calculate the carbon pool due to decaying HWP over the #time_span feature_carbon_storage_per_pixel = ( pixel_area * _carbon_pool_in_hwp_from_parcel( field_args['cut_cur'], time_span, start_years, field_args['freq_cur'], field_args['decay_cur'])) #Claculate biomassPerPixel and volumePerPixel of harvested wood numberOfHarvests = \ math.ceil(time_span / float(field_args['freq_cur'])) #The measure of biomass is in terms of Mg/ha biomassInFeaturePerArea = field_args['cut_cur'] * \ numberOfHarvests / float(field_args['c_den_cur']) biomassPerPixel = biomassInFeaturePerArea * pixel_area volumePerPixel = biomassPerPixel / field_args['bcef_cur'] #Copy biomassPerPixel and carbon pools to the temporary #feature for rasterization of the entire layer later for field, value in zip(calculatedAttributeNames, [feature_carbon_storage_per_pixel, biomassPerPixel, volumePerPixel]): feature.SetField(feature.GetFieldIndex(field), value) #This saves the changes made to feature back to the shape layer hwp_shape_layer_copy.SetFeature(feature) #burn all the attribute values to a raster for attributeName, raster_uri in zip(calculatedAttributeNames, [c_hwp_cur_uri, bio_hwp_cur_uri, vol_hwp_cur_uri]): nodata = -1.0 pygeoprocessing.geoprocessing.new_raster_from_base_uri(base_dataset_uri, raster_uri, 'GTiff', nodata, gdal.GDT_Float32, fill_value=nodata) raster = gdal.Open(raster_uri, gdal.GA_Update) gdal.RasterizeLayer(raster, [1], hwp_shape_layer_copy, options=['ATTRIBUTE=' + attributeName]) raster.FlushCache() raster = None #handle the future term if 'fut' in hwp_shapes: hwp_shape = ogr.Open(hwp_shapes['fut']) hwp_shape_copy = \ ogr.GetDriverByName('Memory').CopyDataSource(hwp_shape, '') hwp_shape_layer_copy = \ hwp_shape_copy.GetLayer() #Create fields in the layers to hold hardwood product pools, #biomassPerPixel and volumePerPixel for fieldName in calculatedAttributeNames: field_def = ogr.FieldDefn(fieldName, ogr.OFTReal) hwp_shape_layer_copy.CreateField(field_def) #Visit each feature and calculate the carbon pool, biomassPerPixel, #and volumePerPixel of that parcel for feature in hwp_shape_layer_copy: #This makes a helpful dictionary to access fields in the feature #later in the code field_args = _get_fields(feature) #If start date and/or the amount of carbon per cut is zero, it #doesn't make sense to do any calculation on carbon pools or #biomassPerPixel/volumePerPixel if field_args['cut_fut'] != 0: time_span = yr_fut - (yr_fut + yr_cur) / 2.0 start_years = time_span #Calculate the carbon pool due to decaying HWP over the #time_span feature_carbon_storage_per_pixel = pixel_area * \ _carbon_pool_in_hwp_from_parcel( field_args['cut_fut'], time_span, start_years, field_args['freq_fut'], field_args['decay_fut']) #Claculate biomassPerPixel and volumePerPixel of harvested wood numberOfHarvests = \ math.ceil(time_span / float(field_args['freq_fut'])) biomassInFeaturePerArea = field_args['cut_fut'] * \ numberOfHarvests / float(field_args['c_den_fut']) biomassPerPixel = biomassInFeaturePerArea * pixel_area volumePerPixel = biomassPerPixel / field_args['bcef_fut'] #Copy biomassPerPixel and carbon pools to the temporary #feature for rasterization of the entire layer later for field, value in zip(calculatedAttributeNames, [feature_carbon_storage_per_pixel, biomassPerPixel, volumePerPixel]): feature.SetField(feature.GetFieldIndex(field), value) #This saves the changes made to feature back to the shape layer hwp_shape_layer_copy.SetFeature(feature) #burn all the attribute values to a raster for attributeName, (raster_uri, cur_raster_uri) in zip( calculatedAttributeNames, [(c_hwp_uri, c_hwp_cur_uri), (bio_hwp_uri, bio_hwp_cur_uri), (vol_hwp_uri, vol_hwp_cur_uri)]): temp_filename = pygeoprocessing.geoprocessing.temporary_filename() pygeoprocessing.geoprocessing.new_raster_from_base_uri( base_dataset_uri, temp_filename, 'GTiff', nodata, gdal.GDT_Float32, fill_value=nodata) temp_raster = gdal.Open(temp_filename, gdal.GA_Update) gdal.RasterizeLayer(temp_raster, [1], hwp_shape_layer_copy, options=['ATTRIBUTE=' + attributeName]) temp_raster.FlushCache() temp_raster = None #add temp_raster and raster cur raster into the output raster nodata = -1.0 base_nodata = pygeoprocessing.geoprocessing.get_nodata_from_uri( raster_uri) cur_nodata = pygeoprocessing.geoprocessing.get_nodata_from_uri( cur_raster_uri) def add_op(base, current): """add two rasters""" nodata_mask = (base == base_nodata) | (current == cur_nodata) return numpy.where(nodata_mask, nodata, base+current) pixel_size_out = ( pygeoprocessing.geoprocessing.get_cell_size_from_uri( raster_uri)) pygeoprocessing.geoprocessing.vectorize_datasets( [cur_raster_uri, temp_filename], add_op, raster_uri, gdal.GDT_Float32, nodata, pixel_size_out, "intersection", dataset_to_align_index=0, vectorize_op=False)
71b597c62014c120a3deb99ceea14d84612e3b19
10,796
def wcxf2arrays_symmetrized(d): """Convert a dictionary with a Wilson coefficient name followed by underscore and numeric indices as keys and numbers as values to a dictionary with Wilson coefficient names as keys and numbers or numpy arrays as values. In contrast to `wcxf2arrays`, here the numpy arrays fulfill the same symmetry relations as the operators (i.e. they contain redundant entries) and they do not contain undefined indices. Zero arrays are added for missing coefficients.""" C = wcxf2arrays(d) C = symmetrize_nonred(C) C = add_missing(C) return C
6cca03761b9799a3af7b933877ff70d6d68f7644
10,799
def gather_inputs(headers, test_suites, inputs_class=Inputs): """Read the list of inputs to test psa_constant_names with.""" inputs = inputs_class() for header in headers: inputs.parse_header(header) for test_cases in test_suites: inputs.parse_test_cases(test_cases) inputs.gather_arguments() return inputs
18300cab225f817a7a09f73e4b957713ee45d0c8
10,800
def key_create(adapter_id): """Creates a key using a certain adapter.""" adapter = get_adapter(adapter_id) if not adapter: return output.failure("That adapter doesn't (yet) exist. Please check the adapter name and try again.", 501) if not adapter.do_verify(request.headers): return output.failure("Credential verification failed. Please check your credentials and try again.", 401) result = adapter.do_key_create(request.headers, request.json) if 'error' in result: return output.failure(result['error'], result['status']) return output.success(result['data'], result['status'])
ec07091f3bb96f469338643f36b63ade50de3205
10,801
def is_right(side1, side2, side3): """ Takes three side lengths and returns true if triangle is right :param side1: int or float :param side2: int or float :param side3: int or float :return: bool """ return False
2d22bbc7d0d363b360f578002a6380a4ae5f5b63
10,802
def parser_electron_number(electron_line): """ function of parser for electron information Args: electron_line (str): line Returns: list: electron information """ electron_list = parser_split_line_by_length(electron_line.rstrip(), CPF_FORMAT["ELECTRON"]["length"], "int") return electron_list
3a444aa0cb062ea5cfaac3e7686ff762e42ebf4c
10,803
def summary(t, rtol=1e-5, atol=1e-8): """ Parameters ---------- t rtol atol Returns ------- """ deltas = np.diff(t) if np.allclose(deltas, deltas[0], rtol, atol): # constant time steps return deltas[0], deltas, '' # non-constant time steps! unqdt = np.unique(deltas) mode = stats.mode(deltas) dt = mode.mode if len(unqdt) > 5: info = f'{len(unqdt)} unique values between {deltas.min(), deltas.max()}' else: info = str(unqdt) return dt, unqdt, f'Non-constant time steps: {info}'
0f1a5a65d832be8db35b8bdf145e6240d6072f71
10,804
def masked_huber(input, target, lengths): """ Always mask the first (non-batch dimension) -> usually time :param input: :param target: :param lengths: :return: """ m = mask(input.shape, lengths, dim=1).float().to(input.device) return F.smooth_l1_loss(input * m, target * m, reduction='sum') / m.sum()
c4eab136b73ffc92034a217252ac290848f77982
10,805
def calcProbabilisticResiduals( coords_actual, coords_desired, covariances_actual ): """ Calculate the probabilistic residual. Parameters ---------- coords_actual : `~numpy.ndarray` (N, M) Actual N coordinates in M dimensions. coords_desired : `~numpy.ndarray` (N, M) The desired N coordinates in M dimensions. sigmas_actual : `~numpy.ndarray` (N, M) The 1-sigma uncertainties of the actual coordinates. covariances_actual : list of N `~numpy.ndarray`s (M, M) The covariance matrix in M dimensions for each actual observation if available. Returns ------- p : `~numpy.ndarray` (N) The probability that the actual coordinates given their uncertainty belong to the same multivariate normal distribution as the desired coordinates. d : `~numpy.ndarray` (N) The Mahalanobis distance of each coordinate compared to the desired coordinates. """ d = np.zeros(len(coords_actual)) p = np.zeros(len(coords_actual)) for i, (actual, desired, covar) in enumerate(zip(coords_actual, coords_desired, covariances_actual)): # Calculate the degrees of freedom k = len(actual) # Calculate the mahalanobis distance between the two coordinates d_i = mahalanobis( actual, desired, np.linalg.inv(covar) ) # Calculate the probability that both sets of coordinates are drawn from # the same multivariate normal p_i = 1 - chi2.cdf(d_i, k) # Append results d[i] = d_i p[i] = p_i return p, d
c5bdc4048d9fef2e6b40e3bc48c80e6f6e2fcca7
10,806
import re def split_words_and_quoted_text(text): """Split string text by space unless it is wrapped inside double quotes, returning a list of the elements. For example if text = 'Should give "3 elements only"' the resulting list would be: ['Should', 'give', '3 elements only'] """ # using shlex # return shlex.split(text) # using re result = list() pattern = re.findall(r'\w+\s*|\".+?\"', text) for char in pattern: result.append(char.strip().replace('"', '')) return result
befb31949d4c52fac96765fd78bc1b9d644282ba
10,807
def scheduler(epoch): """Generating learning rate value for a given epoch. inputs: epoch = number of current epoch outputs: learning_rate = float learning rate value """ if epoch < 100: return 1e-3 elif epoch < 125: return 1e-4 else: return 1e-5
916cbc12ff76b8d022a96c89083b8bd2a3078c69
10,808
def external_search(query, feature_type, url): """ Makes an external search request to a specified URL. The url will have the search text appended to it. Returns geojson matches with extra data for the geocoder. """ logger.info("using external API for feature lookup: %s", url + query) req = ExternalAPIRequest( url=url + query, layer=feature_type, q={}, paginate=False ) # Fetch features. feature_collection = fetch_geojson_features([req]) features = feature_collection[0].geojson['features'] geocoder_features = [] for feature in features: feature['layer'] = feature_type feature['center'] = (feature.geometry.coordinates[0], feature.geometry.coordinates[1]) feature['place_name'] = str(feature.properties['well_tag_number']) geocoder_features.append(feature) return geocoder_features
f90ea54dd8036b4237a74dd398cf3f2698ab4d0f
10,809
def joinpath(base, end): """Like Path.joinpath(), but ensures the result is inside `base`. Should be used for user-supplied `end`. """ result = (base / end).resolve() if base not in result.parents: print(base, end, result) raise ValueError(end) return result
1b4f5afcdca21ceb6e676385602dd07b252db3ad
10,812
def multicolored_line_collection(x, y, z, colors): """ Color a 2D line based on which state it is in :param x: data x-axis values :param y: data y-axis values :param z: values that determine the color of each (x, y) pair """ nstates = colors.shape[0] # come up with color map and normalization (i.e. boundaries of colors) cmap = ListedColormap(colors) bounds = np.arange(-1, nstates) + 0.1 norm = BoundaryNorm(bounds, cmap.N) # add # create line segments to color individually points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) # Set the values used for colormapping lc = LineCollection(segments, cmap=cmap, norm=norm) lc.set_array(z) lc.set_linewidth(2) return lc
6d9438a58547d4be253ca2a505e05da259c73118
10,813
def featurise_distances(diagram): """Create feature vector by distance-to-diagonal calculation. Creates a feature vector by calculating distances to the diagonal for every point in the diagram and returning a sorted vector. The representation is *stable* but might not be discriminative. Parameters ---------- diagram : `PersistenceDiagram` Persistence diagram to featurise. Can also be a generic 2D container for iterating over tuples. Returns ------- Sorted vector of distances to diagonal. The vector is sorted in descending order, such that high persistence points precede the ones of low persistence. """ distances = [_persistence(x, y) for x, y in diagram] return sorted(distances, reverse=True)
9c4f20be1deb2ed5073015939d48615f3b04c21b
10,815
def resize(source, width=None, height=None, filter=None, radius=1, wrapx=False, wrapy=False): """Create a new numpy image with the desired size. Either width or height can be null, in which case its value is inferred from the aspect ratio of the source image. Filter can be HERMITE, TRIANGLE, GAUSSIAN, NEAREST, LANCZOS, or MITCHELL. """ assert len(source.shape) == 3, 'Shape is not rows x cols x channels' assert width != None or height != None, 'Missing target size' aspect = source.shape[1] / source.shape[0] if width == None: width = height * aspect if height == None: height = width / aspect magnifying = width > source.shape[1] if filter == None: filter = MITCHELL if magnifying else LANCZOS return resample(source, width, height, filter, radius, wrapx, wrapy)
08fdc077dcea013fd8b0be4a195a860e6d5291ec
10,816
def load_and_classify_payload(config, service, entity, raw_record): """Return a loaded and classified payload.""" # prepare the payloads payload = load_stream_payload(service, entity, raw_record) payload = list(payload.pre_parse())[0] classifier = StreamClassifier(config=config) classifier.load_sources(service, entity) classifier.classify_record(payload) return payload
1931804b1535ba00b495879061492e25a43f91e8
10,817
def render_text(self, block: str, block_type: str, y: int) -> int: """ :param self: MarkdownRenderer :param block: string of text :param block_type: type of the text (e.g. headers, ordered/unordered lists, blockquotes, code etc) :param y: y-coordinate to start rendering on :return: y-coordinate after rendering is finished """ start_of_line_x = self.x if block_type == 'blockquote': start_of_line_x += self.indentation_quote quote_y_start = y x = start_of_line_x # Cleanup and stripping block = block \ .replace('\n', ' ') \ .strip(' ') if block[:3] == '<p>': block = block[3:] if block[-4:] == '</p>': block = block[:-4] code_flag = False bold_flag = False italic_flag = False position = None if block_type in ('h1', 'h2', 'h3'): # insert additional gap in front of h1 or h2 headers y += self.gap_line for word in block.split(" "): # _________ PREPARATION _________ # # inline code, bold and italic formatting word, position, code_flag, bold_flag, italic_flag = self.inline_formatting_preparation(word, position, code_flag, bold_flag, italic_flag) # _________ TEXT BLITTING _________ # # create surface to get width of the word to identify necessary linebreaks word = word + " " word = word.replace("&gt;", ">").replace("&lt;", "<") if code_flag: if position == 'first' or position == 'single': x += self.code_padding surface = self.get_surface(word, 'code', bold_flag, italic_flag) else: surface = self.get_surface(word, block_type, bold_flag, italic_flag) text_height = surface.get_height() # update for next line if not(x + surface.get_width() < self.x + self.w): # new line necessary y = y + text_height + self.gap_line x = start_of_line_x if self.is_visible(y) and self.is_visible(y + text_height): if block_type == 'blockquote': # draw quote-rectangle in front of text self.draw_quote_rect(y, y + self.get_surface(word, 'blockquote').get_height()) self.draw_code_background(code_flag, word, x, y, position) self.screen.blit(surface, (x, y)) # Update x for the next word x = x + surface.get_width() if code_flag and position in ('single', 'last'): x -= self.code_padding # reduce empty space by padding. # _________ FORMATTING RESET FOR NEXT WORD _________ # bold_flag = False if bold_flag and position == 'last' else bold_flag code_flag = False if code_flag and (position == 'last' or position == 'single') else code_flag italic_flag = False if italic_flag and position == 'last' else italic_flag position = 'Middle' if position == 'first' else position if block_type in ('h1', 'h2'): y = y + text_height * 0.5 # add an additional margin below h1 and h2 headers if block_type == 'h1': # insert subline below h1 headers y = y + text_height * 0.5 # add an additional margin below h1 headers for the subheader line y = self.draw_subheader_line(y) return y
ed3e18d9988d612f911d9f6c647cbdf7dfbf7b07
10,818
def tvadam_reconstructor(dataset='ellipses', name=None): """ :param dataset: Can be 'ellipses' or 'lodopab' :return: TV reconstructor for the specified dataset """ try: params = Params.load('{}_tvadam'.format(dataset)) standard_dataset = load_standard_dataset(dataset) if name is None: name = 'TV-Adam' reconstructor = TVAdamReconstructor(standard_dataset.ray_trafo, hyper_params=params.dict, name=name) return reconstructor except Exception as e: raise Exception('The reconstructor doesn\'t exist')
0b69d0ce60f05dc522449af66f70ee655389e13c
10,819
import re def process_spf_data(res, data): """ This function will take the text info of a TXT or SPF record, extract the IPv4, IPv6 addresses and ranges, request process include records and return a list of IP Addresses for the records specified in the SPF Record. """ # Declare lists that will be used in the function. ipv4 = [] ipv6 = [] includes = [] ip_list = [] # check first if it is a sfp record if not re.search(r'v\=spf', data): return # Parse the record for IPv4 Ranges, individual IPs and include TXT Records. ipv4.extend(re.findall('ip4:(\S*) ', "".join(data))) ipv6.extend(re.findall('ip6:(\S*)', "".join(data))) # Create a list of IPNetwork objects. for ip in ipv4: for i in IPNetwork(ip): ip_list.append(i) for ip in ipv6: for i in IPNetwork(ip): ip_list.append(i) # Extract and process include values. includes.extend(re.findall('include:(\S*)', "".join(data))) for inc_ranges in includes: for spr_rec in res.get_txt(inc_ranges): spf_data = process_spf_data(res, spr_rec[2]) if spf_data is not None: ip_list.extend(spf_data) # Return a list of IP Addresses return [str(ip) for ip in ip_list]
537a59dd9091df35ac2502e8b03f87e625b74b76
10,820
def create_knight(): """ Creates a new knight according to player input. Checks the knights module for how many points are to spend, and which attributes are available. It then asks the player for a name for the knight and to spend their points on the available attributes. Returns: A knight instance with the player's values """ knight_class = get_class() # get the constants from the knights module max_attr_points = knights.MAX_ATTRIBUTE_POINTS attributes = knights.ATTRIBUTES knight = None # this will be the instance to be returned name = input("What is your name?\n") # reapet until the input was correct and a knight was created while not knight: # display the attributes and how many points are to be spent spent_points = input( f"You have {max_attr_points} points to spend on " f"the attributes: { ', '.join(attributes) }.\n" "Submit your points separated either by commas or by spaces, " "like the list above with numbers instead of attribute names. " "Points must be integers.\n" ) try: # we allow to use commas or spaces, so we check what was used # we cast all input attribute points to integer since # attribute points are integer numbers if "," in spent_points: points = [int(val) for val in spent_points.split(",")] else: points = [int(val) for val in spent_points.split(" ")] # if not enough attributes were inputted, repeat the loop if len(points) != len(attributes): continue # knight the knight! Since knights take attributes as # one parameter each, we unzip the input list into the call knight = knight_class(name, *points) except ValueError: # When the casting to integer fails print("Could not parse. Were the points all integer?") continue except knights.KnightError as e: # a special error from the knights module that occurs when # there are errors in knighting a new knight print(f"Could not knight the knight: {str(e)}") continue return knight
8feed9cd71b68868d14cd1bcfe14ff9291cf2abd
10,821
async def get_bank_name(guild: discord.Guild = None) -> str: """Get the current bank name. Parameters ---------- guild : `discord.Guild`, optional The guild to get the bank name for (required if bank is guild-specific). Returns ------- str The bank's name. Raises ------ RuntimeError If the bank is guild-specific and guild was not provided. """ return await bank.get_bank_name(guild)
1e0e3f1a1de7925daf5810ac3bcc75508993a642
10,822
from typing import Optional from typing import Dict from typing import Any import tempfile def build_cli_lib(to_save_location: Optional[str] = None, render_kwargs: Optional[Dict[str, Any]] = None) -> str: """Create project-specific cli.fif lib""" if not to_save_location: to_save_location: str = tempfile.mkstemp(suffix='.fif')[1] logger.info(f"👽 Save ton-cli to {to_save_location}") loader = FileSystemLoader(f"{project_root}/modules/fift") env = Environment( loader=loader, autoescape=select_autoescape() ) template = env.get_template(f"cli.fif.template") render_kwargs = {} if render_kwargs is None else render_kwargs if 'is_project' not in render_kwargs: render_kwargs['is_project'] = 0 rendered = template.render(**render_kwargs) with open(to_save_location, 'w', encoding='utf-8') as f: f.write(rendered) return to_save_location
0231433f94b129213de95ac50b406ede88860f23
10,823
def match(A, S, trueS): """Rearranges columns of S to best fit the components they likely represent (maximizes sum of correlations)""" cov = np.cov(trueS, S) k = S.shape[0] corr = np.zeros([k, k]) for i in range(k): for j in range(k): corr[i][j] = cov[i + k][j] / np.sqrt(cov[i + k][i + k] * cov[j][j]) arrangement = linear_sum_assignment(-corr) resS = np.zeros_like(S) resAT = np.zeros_like(A.T) for t in range(k): resS[arrangement[1][t]] = S[arrangement[0][t]] resAT[arrangement[1][t]] = A.T[arrangement[0][t]] return resAT.T, resS
a0ec70ec768a1dfc610e8a5050d190a94266b307
10,824
def image_field_data(request, include_empty_option=False): """Returns a list of tuples of all images. Generates a sorted list of images available. And returns a list of (id, name) tuples. :param request: django http request object :param include_empty_option: flag to include a empty tuple in the front of the list :return: list of (id, name) tuples """ try: images = get_available_images(request, request.user.project_id) except Exception: exceptions.handle(request, _('Unable to retrieve images')) images.sort(key=lambda c: c.name) images_list = [('', _('Select Image'))] for image in images: image_label = u"{} ({})".format(image.name, sizeformat.diskgbformat(image.size)) images_list.append((image.id, image_label)) if not images: return [("", _("No images available")), ] return images_list
f209cbc9ae9aa18fd22e320fdc96ba97690f8a7d
10,825
def posts_completed(scraped_posts, limit): """Returns true if the amount of posts scraped from profile has reached its limit. """ if len(scraped_posts) == limit: return True else: return False
ff72474349a32f326b63b95070927c4b379be800
10,826
def mag(x): """Returns the absolute value squared of the input""" return np.abs(x)**2
bd081775a0b99e050287160cf3369faa819e20cf
10,827
def get_zero_columns(matrix): """ Returns a list of the columns which are all 0 """ rows = matrix.shape[0] columns = matrix.shape[1] result = [] for j in range(columns): is_zero_column = True for i in range(rows): is_zero_column = is_zero_column and matrix[i, j] == 0.0 result.append(is_zero_column) return result
35694592f4155f710e5ed3c2148a138591cd683f
10,828
def traditional_constants_icr_equation_empty_fixed(fixed_params, X_col): """ Traditional ICR equation with constants from ACE consensus """ a = 450 tdd = X_col[0] return a / tdd
2931e4b3592a94690d98b0cb4cb90f712ff4a449
10,829
def sort_completions_key(completion): """ sort completions according to their type Args: completion (jedi.api.classes.Completion): completion Returns: int: sorting order """ if completion.type == "function": return 2 elif completion.type == "instance": return 1 else: return 3
7bf767d908c83c11dafa5e0fd694bbb31a98c404
10,830
def _is_git_url_mismatch(mismatch_item): """Returns whether the given mismatch item is for a GitHub URL.""" _, (required, _) = mismatch_item return required.startswith('git')
b1c3cec3d8cf3c7d3ffa5c405522b1a08754223b
10,831
def from_url(url, output_path=None, options=None): """ Convert file of files from URLs to PDF document :param url: URL or list of URLs to be saved :param output_path: (optional) path to output PDF file. If not provided, PDF will be returned as string :param options: (optional) dict to configure pyppeteer page.pdf action Returns: output_path if provided else PDF Binary """ return async_to_sync(api_async.from_url)(url, output_path, options)
8543410dcfba9d44adc8939f3dc8be702f5e922b
10,832
def parse_identifier(stream: TokenStream) -> expression.Identifier: """Read an identifier from the token stream. <ident>.<ident> <ident>["<ident>"] <ident>["<ident>"].<ident> <ident>[<ident --> int/str>] <ident>[<ident>.<ident --> int/str>] <ident>[<int>] <ident>[<int>].<ident> """ path: expression.IdentifierPath = [] while stream.current.type in IDENTIFIER_TOKENS: if stream.current.type == TOKEN_IDENTIFIER: path.append(IdentifierPathElement(stream.current.value)) elif stream.current.type == TOKEN_INTEGER: path.append(IdentifierPathElement(int(stream.current.value))) elif stream.current.type == TOKEN_LBRACKET: stream.next_token() # Eat open bracket if stream.current.type == TOKEN_STRING: path.append(IdentifierPathElement(stream.current.value)) elif stream.current.type == TOKEN_NEGATIVE: expect_peek(stream, TOKEN_INTEGER) stream.next_token() path.append(IdentifierPathElement(-int(stream.current.value))) elif stream.current.type == TOKEN_INTEGER: path.append(IdentifierPathElement(int(stream.current.value))) elif stream.current.type == TOKEN_IDENTIFIER: # Recursive call to parse_identifier. If it's not a string or # integer, anything inside a pair of square brackets could be # another identifier that resolves to a string or integer. path.append(parse_identifier(stream)) else: raise LiquidSyntaxError( f"invalid identifier, found {stream.current.type}" ) expect_peek(stream, TOKEN_RBRACKET) stream.next_token() # Eat close bracket elif stream.current.type == TOKEN_DOT: pass else: raise LiquidSyntaxError(f"invalid identifier, found {stream.current.type}") stream.next_token() stream.push(stream.current) return expression.Identifier(path)
0679a112a841d90d51806d83cd381aad7632c77b
10,834
from typing import List def cubemap_projection_matrices(from_point: Vector3D, far_plane: float) -> List[np.ndarray]: """ Create the required Cubemap projection matrices. This method is suitable for generating a Shadow Map. Simply speaking, this method generates 6 different camera matrices from the center of an imaginary cube and covers all surfaces without conflicting. Keyword arguments; from_point -- Imaginary camera location far_plane -- How far the camera is capable of seeing. (Effects performance!) """ def a2np(a: List[float]) -> np.ndarray: return np.array(a, dtype=np.float32) shadow_proj = pyrr.matrix44.create_perspective_projection(90.0, 1.0, 0.01, far_plane, np.float32) lightpos = np.array(list(from_point), dtype=np.float32)[:3] nx = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([-1.0, 0, 0]), dtype=np.float32, ), a2np([0, -1.0, 0]), dtype=np.float32, ) px = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([1, 0, 0]), dtype=np.float32, ), a2np([0, -1.0, 0]), dtype=np.float32, ) ny = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([0, -1, 0]), dtype=np.float32, ), a2np([0, 0, -1.0]), dtype=np.float32, ) py = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([0, 1, 0]), dtype=np.float32, ), a2np([0, 0, 1.0]), dtype=np.float32, ) pz = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([0, 0, 1]), dtype=np.float32, ), a2np([0, -1.0, 0]), dtype=np.float32, ) nz = pyrr.matrix44.create_look_at( lightpos, np.array( lightpos + a2np([0, 0, -1]), dtype=np.float32, ), a2np([0, -1.0, 0]), dtype=np.float32, ) return [ px.dot(shadow_proj), nx.dot(shadow_proj), py.dot(shadow_proj), ny.dot(shadow_proj), pz.dot(shadow_proj), nz.dot(shadow_proj), ]
e576aceec831df8267bff1c4de3cb7f0a58c3be7
10,835
from win32com.shell import shellcon, shell def loadOptionsFile(): """Find the .buildbot/FILENAME file. Crawl from the current directory up towards the root, and also look in ~/.buildbot . The first directory that's owned by the user and has the file we're looking for wins. Windows skips the owned-by-user test. @rtype: dict @return: a dictionary of names defined in the options file. If no options file was found, return an empty dict. """ here = os.path.abspath(os.getcwd()) if runtime.platformType == 'win32': # never trust env-vars, use the proper API appdata = shell.SHGetFolderPath(0, shellcon.CSIDL_APPDATA, 0, 0) home = os.path.join(appdata, "buildbot") else: home = os.path.expanduser("~/.buildbot") searchpath = [] toomany = 20 while True: searchpath.append(os.path.join(here, ".buildbot")) next = os.path.dirname(here) if next == here: break # we've hit the root here = next toomany -= 1 # just in case if toomany == 0: raise ValueError("Hey, I seem to have wandered up into the " "infinite glories of the heavens. Oops.") searchpath.append(home) localDict = {} for d in searchpath: if os.path.isdir(d): if runtime.platformType != 'win32': if os.stat(d)[stat.ST_UID] != os.getuid(): print "skipping %s because you don't own it" % d continue # security, skip other people's directories optfile = os.path.join(d, "options") if os.path.exists(optfile): try: f = open(optfile, "r") options = f.read() exec options in localDict except: print "error while reading %s" % optfile raise break for k in localDict.keys(): if k.startswith("__"): del localDict[k] return localDict
2674c6e37de32f673e4fb9aeb6bb11981bee23d0
10,836
def get_high_accuracy_voronoi_nodes(structure, rad_dict, probe_rad=0.1): """ Analyze the void space in the input structure using high accuracy voronoi decomposition. Calls Zeo++ for Voronoi decomposition. Args: structure: pymatgen.core.structure.Structure rad_dict (optional): Dictionary of radii of elements in structure. If not given, Zeo++ default values are used. Note: Zeo++ uses atomic radii of elements. For ionic structures, pass rad_dict with ionic radii probe_rad (optional): Sampling probe radius in Angstroms. Default is 0.1 A Returns: voronoi nodes as pymatgen.core.structure.Strucutre within the unit cell defined by the lattice of input structure voronoi face centers as pymatgen.core.structure.Strucutre within the unit cell defined by the lattice of input structure """ with ScratchDir('.'): name = "temp_zeo1" zeo_inp_filename = name + ".cssr" ZeoCssr(structure).write_file(zeo_inp_filename) rad_flag = True rad_file = name + ".rad" with open(rad_file, 'w+') as fp: for el in rad_dict.keys(): print("{} {}".format(el, rad_dict[el].real), file=fp) atmnet = AtomNetwork.read_from_CSSR( zeo_inp_filename, rad_flag=rad_flag, rad_file=rad_file) # vornet, vor_edge_centers, vor_face_centers = \ # atmnet.perform_voronoi_decomposition() red_ha_vornet = \ prune_voronoi_network_close_node(atmnet) # generate_simplified_highaccuracy_voronoi_network(atmnet) # get_nearest_largest_diameter_highaccuracy_vornode(atmnet) red_ha_vornet.analyze_writeto_XYZ(name, probe_rad, atmnet) voro_out_filename = name + '_voro.xyz' voro_node_mol = ZeoVoronoiXYZ.from_file(voro_out_filename).molecule species = ["X"] * len(voro_node_mol.sites) coords = [] prop = [] for site in voro_node_mol.sites: coords.append(list(site.coords)) prop.append(site.properties['voronoi_radius']) lattice = Lattice.from_parameters(structure.lattice.parameters) vor_node_struct = Structure( lattice, species, coords, coords_are_cartesian=True, to_unit_cell=True, site_properties={"voronoi_radius": prop}) return vor_node_struct
2f671f9c8a357bd82f364f767cd387fae2661979
10,837
def setUpBlobDetector(): """ Configure parameters for a cv2 blob detector, and returns the detector. """ params = cv2.SimpleBlobDetector_Params() params.minThreshold = 0 params.maxThreshold = 255 params.filterByArea = True params.minArea = 1500 params.maxArea = 25000 params.filterByCircularity = False params.filterByColor = False params.filterByConvexity = False params.filterByInertia = False detector = cv2.SimpleBlobDetector_create(params) return detector
d311f46d9b87d759edae0f15583c66dc31f80602
10,838
def raise_keymap(): """ ! @ # $ % || ^ & * ( ) DEL ESC || PGDN PGUP PSCR CAPS volup ENT reset || UP voldn super shift space bspc|| alt ent LEFT DOWN RGHT """ left = [ [KC.N1, KC.N2, KC.N3, KC.N4, KC.N5], [KC.F1, KC.F2, KC.F3, KC.F4, KC.F5], [KC.F11, KC.F12, KC.LPRN, KC.RPRN, KC.AMPR], [KC.NO, KC.INS, KC.LGUI, KC.LSFT, KC.SPC, KC.BSPC], ] right = [ [ KC.N6, KC.N7, KC.N8, KC.N9, KC.N0], [ KC.F6, KC.F7, KC.F8, KC.F9, KC.F10], [ KC.GRV, KC.LBRC, KC.RBRC, KC.PSLS, KC.BSLS], [KC.LALT, KC.ENT, KC.TRNS, KC.DOT, KC.PMNS, KC.EQL], ] return [left, right]
94beda8275f65f16353b12b22809138d0342f512
10,839
import click from typing import cast def sample_cmd() -> Command: """Useful for testing constraints against a variety of parameter kinds. Parameters have names that should make easy to remember their "kind" without the need for looking up this code.""" @cloup.command() # Optional arguments @click.argument('arg1', required=False) @click.argument('arg2', required=False) # Plain options without default @cloup.option('--str-opt') @cloup.option('--int-opt', type=int) @cloup.option('--bool-opt', type=bool) # Flags @cloup.option('--flag / --no-flag') @cloup.option('--flag2', is_flag=True) # Options with default @cloup.option('--def1', default=1) @cloup.option('--def2', default=2) # Options that take a tuple @cloup.option('--tuple', nargs=2, type=int) # Options that can be specified multiple times @cloup.option('--mul1', type=int, multiple=True) @cloup.option('--mul2', type=int, multiple=True) def f(**kwargs): print('It works') return cast(Command, f)
c5a8ed369d910872e52ef080707c8f0ae7436487
10,840
import inspect def get_linenos(obj): """Get an object’s line numbers in its source code file""" try: lines, start = inspect.getsourcelines(obj) except TypeError: # obj is an attribute or None return None, None except OSError: # obj listing cannot be found # This happens for methods that are not explicitly defined # such as the __init__ method for a dataclass return None, None else: return start, start + len(lines) - 1
248ad7e377995e03969d3f7e1ded88670d8b08ea
10,841