content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_contact(): """ Get a contact form submission """ data = request.get_json(force=True) contact = ContactDAO.create(**data) return jsonify(contact.to_dict())
af2c5efbd06d3220faf3b16059ea9d612cece19e
10,613
from typing import DefaultDict from typing import Tuple from typing import List import copy def separate_sets( hand: DefaultDict[int, int], huro_count: int, koutsu_first: bool = True ) -> Tuple[List[Tile], List[List[Tile]], Tile]: """Helper function for seperating player's remaining hands into sets. It should either be 14, 11, 8, 5, or 2 tiles. The arg koutsu_first would change the priority for koutsu and shuntsu, for example in the usecase for checking 全帯么九, shuntsu should have priority over koutsu. """ def check_koutsu(sets_to_find): if remain_tiles[tile_index] >= 3: # check for Koutsu remain_tiles[tile_index] -= 3 sets_to_find -= 1 koutsu.append(Tile.from_index(tile_index)) return sets_to_find def check_shuntsu(sets_to_find): if remain_tiles[tile_index + 2] > 0: # check for Shuntsu chii_n = min( remain_tiles[tile_index], remain_tiles[tile_index + 1], remain_tiles[tile_index + 2] ) if chii_n > 0: remain_tiles[tile_index] -= chii_n remain_tiles[tile_index + 1] -= chii_n remain_tiles[tile_index + 2] -= chii_n sets_to_find -= chii_n for _ in range(chii_n): shuntsu.append([ Tile.from_index(tile_index), Tile.from_index(tile_index + 1), Tile.from_index(tile_index + 2) ]) return sets_to_find for possible_jantou in hand.keys(): if hand[possible_jantou] >= 2: # try using it as jantou remain_tiles = copy.deepcopy(hand) remain_tiles[possible_jantou] -= 2 koutsu = [] shuntsu = [] sets_to_find = 4 - huro_count for tile_index in sorted(remain_tiles.keys()): if tile_index < Tile(Suit.MANZU.value, 1).index: if remain_tiles[tile_index] == 3: sets_to_find -= 1 koutsu.append(Tile.from_index(tile_index)) else: # numbered tiles if koutsu_first: sets_to_find = check_koutsu(sets_to_find) sets_to_find = check_shuntsu(sets_to_find) else: sets_to_find = check_shuntsu(sets_to_find) sets_to_find = check_koutsu(sets_to_find) if sets_to_find == 0: return koutsu, shuntsu, Tile.from_index(possible_jantou) return [], [], None
894a712a739e16a98e2150c4461a3d66c759bace
10,615
def units(legal_codes): """ Return sorted list of the unique units for the given dictionaries representing legal_codes """ return sorted(set(lc["unit"] for lc in legal_codes))
85803ecb3d1f51c058c959b7e060c3cb5263f6a3
10,616
def resize_terms(terms1, terms2, patterns_to_pgS, use_inv): """ Resize the terms to ensure that the probabilities are the same on both sides. This is necessary to maintain the null hypothesis that D = 0 under no introgression. Inputs: terms1 --- a set of patterns to count and add to each other to determine introgression terms2 --- a set of other patterns to count and add to each other to determine introgression use_inv --- boolean for determining if inverse site patterns will be used patterns_to_pgS --- a mapping of site patterns to their p(gt|st) values Outputs: terms1 --- a set of patterns to count and add to each other to determine introgression terms2 --- a set of other patterns to count and add to each other to determine introgression """ terms1 = list(terms1) terms2 = list(terms2) # Create a mapping of pgtst to trees for each term pgtst_to_trees1 = defaultdict(set) pgtst_to_trees2 = defaultdict(set) for tree in terms1: # Round the probability to the 15th digit to prevent the randomness issues with small values prob = float(format(patterns_to_pgS[tree], '.15f')) pgtst_to_trees1[prob].add(tree) for tree in terms2: # Round the probability to the 15th digit to prevent the randomness issues with small values prob = float(format(patterns_to_pgS[tree], '.15f')) pgtst_to_trees2[prob].add(tree) # Balance terms terms1_prob_counts = defaultdict(int) terms2_prob_counts = defaultdict(int) # Round each probability and count the number of times it occurs for tree in terms1: prob = float(format(patterns_to_pgS[tree], '.15f')) terms1_prob_counts[prob] += 1 for tree in terms2: prob = float(format(patterns_to_pgS[tree], '.15f')) terms2_prob_counts[prob] += 1 # Iterate over each probability for prob in terms1_prob_counts: # Get the number of times each probability occurs count1, count2 = terms1_prob_counts[prob], terms2_prob_counts[prob] removed = set([]) # The number of site patterns to remove is the difference in counts num_remove = abs(count2 - count1) if use_inv: # If not using inverses remove the inverse along with the normal pattern num_remove = num_remove / 2 # If probabilities do not occur an equal number of times remove site patterns until they do if count1 > count2: for i in range(num_remove): # Get a pattern to remove and remove it from the possible removals r = sorted(list(pgtst_to_trees1[prob])).pop(0) pgtst_to_trees1[prob].remove(r) removed.add(r) terms1_remove = True if count1 < count2: for i in range(num_remove): # Get a pattern to remove and remove it from the possible removals r = sorted(list(pgtst_to_trees2[prob])).pop(0) pgtst_to_trees2[prob].remove(r) removed.add(r) terms1_remove = False if use_inv: # Remove site patterns and their inverses rm = set([]) inv_rm = pattern_inverter(removed) for pattern in inv_rm: rm.add(''.join(pattern)) removed = removed.union(rm) # Iterate over each pattern to be removed and remove it for pattern in removed: if terms1_remove: terms1.remove(pattern) else: terms2.remove(pattern) terms1, terms2 = tuple(terms1), tuple(terms2) return terms1, terms2
d422e3d5b32df55036afa3788cdb0bdd4aa95001
10,617
def get_network_list(): """Get a list of networks. --- tags: - network """ return jsonify([ network.to_json(include_id=True) for network in manager.cu_list_networks() ])
6a54b76091160fc28cd45502aea4c54d2862a588
10,618
def bfixpix(data, badmask, n=4, retdat=False): """Replace pixels flagged as nonzero in a bad-pixel mask with the average of their nearest four good neighboring pixels. :INPUTS: data : numpy array (two-dimensional) badmask : numpy array (same shape as data) :OPTIONAL_INPUTS: n : int number of nearby, good pixels to average over retdat : bool If True, return an array instead of replacing-in-place and do _not_ modify input array `data`. This is always True if a 1D array is input! :RETURNS: another numpy array (if retdat is True) :TO_DO: Implement new approach of Popowicz+2013 (http://arxiv.org/abs/1309.4224) """ # 2010-09-02 11:40 IJC: Created #2012-04-05 14:12 IJMC: Added retdat option # 2012-04-06 18:51 IJMC: Added a kludgey way to work for 1D inputs # 2012-08-09 11:39 IJMC: Now the 'n' option actually works. if data.ndim==1: data = np.tile(data, (3,1)) badmask = np.tile(badmask, (3,1)) ret = bfixpix(data, badmask, n=2, retdat=True) return ret[1] nx, ny = data.shape badx, bady = np.nonzero(badmask) nbad = len(badx) if retdat: data = np.array(data, copy=True) for ii in range(nbad): thisloc = badx[ii], bady[ii] rad = 0 numNearbyGoodPixels = 0 while numNearbyGoodPixels<n: rad += 1 xmin = max(0, badx[ii]-rad) xmax = min(nx, badx[ii]+rad) ymin = max(0, bady[ii]-rad) ymax = min(ny, bady[ii]+rad) x = np.arange(nx)[xmin:xmax+1] y = np.arange(ny)[ymin:ymax+1] yy,xx = np.meshgrid(y,x) #print ii, rad, xmin, xmax, ymin, ymax, badmask.shape rr = abs(xx + 1j*yy) * (1. - badmask[xmin:xmax+1,ymin:ymax+1]) numNearbyGoodPixels = (rr>0).sum() closestDistances = np.unique(np.sort(rr[rr>0])[0:n]) numDistances = len(closestDistances) localSum = 0. localDenominator = 0. for jj in range(numDistances): localSum += data[xmin:xmax+1,ymin:ymax+1][rr==closestDistances[jj]].sum() localDenominator += (rr==closestDistances[jj]).sum() #print badx[ii], bady[ii], 1.0 * localSum / localDenominator, data[xmin:xmax+1,ymin:ymax+1] data[badx[ii], bady[ii]] = 1.0 * localSum / localDenominator if retdat: ret = data else: ret = None return ret
ae6b6c44e82dc70f998b31d9645cf74fef92c9fd
10,619
import re def parse_discount(element): """Given an HTML element, parse and return the discount.""" try: # Remove any non integer characters from the HTML element discount = re.sub("\D", "", element) except AttributeError: discount = "0" return discount
658f8a6bef8ba4bf82646a10c495904c03a717c7
10,620
import bisect def read_files(allVCFs): """ Load all vcfs and count their number of entries """ # call exists in which files call_lookup = defaultdict(list) # total number of calls in a file file_abscnt = defaultdict(float) for vcfn in allVCFs: v = parse_vcf(vcfn) # disallow intra vcf duplicates seen = {} for entry in v: key = entry_key(entry) if key in seen: continue seen[key] = True bisect.insort(call_lookup[key], vcfn) file_abscnt[vcfn] += 1 return call_lookup, file_abscnt
8518eac3c43772016fd5cbe0fd6c423a1e463ebc
10,621
def parse_dat_file(dat_file): """ Parse a complete dat file. dat files are transposed wrt the rest of the data formats here. In addition, they only contain integer fields, so we can use np.loadtxt. First 6 columns are ignored. Note: must have a bims and info file to process completely. Parameters ---------- dat_file: str Path for dat file to process. Returns ------- data: array-like """ data = np.loadtxt(dat_file) data = data[:, 6:].T return data
3b84730a347075c5be1e0ebe5a195338a86ed0c6
10,622
from typing import List def next_whole_token( wordpiece_subtokens, initial_tokenizer, subword_tokenizer): """Greedily reconstitutes a whole token from a WordPiece list. This function assumes that the wordpiece subtokens were constructed correctly from a correctly subtokenized CuBERT tokenizer, but the sequence may be truncated and thus incomplete. The implementation is done in two stages: recognizing the first whole token and then finding the correspondence of that first whole token to a prefix of the subtoken sequence. The implementation assumes that untokenization can do the best job on the full context. So, it first untokenizes the whole sequence, and chooses the first whole token. To figure out the subtoken prefix that corresponds to that whole token, the implementation greedily untokenizes longer and longer subtoken prefixes, until the whole token is recognized in the output. The reason for this somewhat expensive implementation is that the logic for merging subtokens (for WordPiece and then for CuBERT) is intricate, and does not export how many initial subtokens were consumed for each output token of the next higher abstraction. What's more, a subtoken may align itself with the previous or the next whole token, when the subtoken sequence is incomplete. Args: wordpiece_subtokens: The subtokens to scan through. initial_tokenizer: A CuBERT tokenizer. subword_tokenizer: A SubwordTextEncoder. Returns: The first whole token matched, and the end index of the first subtoken index after the first whole token. wordpiece_subtokens[0:end_index] should be the subtokens corresponding to the whole token returned. Raises: ValueError if no whole token can be parsed. """ wordpiece_ids = wordpiece_ids_from_wordpiece_tokens(wordpiece_subtokens, subword_tokenizer) full_cubert_subtokens: List[str] = ( subword_tokenizer._subtoken_ids_to_tokens( # pylint: disable=protected-access wordpiece_ids)) full_cubert_subtokens.append( unified_tokenizer.quote_special(unified_tokenizer.TokenKind.EOS.name)) full_whole_tokens = initial_tokenizer.untokenize_agnostic( full_cubert_subtokens) if len(full_whole_tokens) < 2: # It all came out a jumble. Reject it. raise ValueError(f'Whole tokens {full_whole_tokens} ended up ' f'undifferentiable in {wordpiece_subtokens}.') whole_token = full_whole_tokens[0] for end_index in range(1, len(wordpiece_ids) + 1): prefix_list = wordpiece_ids[:end_index] partial_cubert_subtokens: List[str] = ( subword_tokenizer._subtoken_ids_to_tokens( # pylint: disable=protected-access prefix_list)) # We strip EOS in `code_to_cubert_sentences`, so we have to add it back # here. partial_cubert_subtokens.append( unified_tokenizer.quote_special(unified_tokenizer.TokenKind.EOS.name)) partial_whole_tokens = initial_tokenizer.untokenize_agnostic( partial_cubert_subtokens) if len(partial_whole_tokens) > 1: if partial_whole_tokens[0] == whole_token: return whole_token, end_index # We got here because we couldn't match the whole token we found from the # full sequence raise ValueError('Could not find a whole token in %r' % (wordpiece_subtokens,))
d26f4da0932030242c2209bc998bc32b6ce98cdf
10,625
def match_seq_len(*arrays: np.ndarray): """ Args: *arrays: Returns: """ max_len = np.stack([x.shape[-1] for x in arrays]).max() return [np.pad(x, pad_width=((0, 0), (0, 0), (max_len - x.shape[-1], 0)), mode='constant', constant_values=0) for x in arrays]
2cd8715eb634e0b3604e1d5c305a5209bb0ae03d
10,627
import torch import math def get_cmws_5_loss( generative_model, guide, memory, obs, obs_id, num_particles, num_proposals, insomnia=1.0 ): """Normalize over particles-and-memory for generative model gradient Args: generative_model guide memory obs: tensor of shape [batch_size, *obs_dims] obs_id: long tensor of shape [batch_size] num_particles (int): number of particles used to marginalize continuous latents num_proposals (int): number of proposed elements to be considered as new memory Returns: [batch_size] """ # Extract batch_size = obs.shape[0] # SAMPLE d'_{1:R} ~ q(d | x) # [num_proposals, batch_size, ...] proposed_discrete_latent = guide.sample_discrete(obs, (num_proposals,)) # ASSIGN d_{1:(R + M)} = CONCAT(d'_{1:R}, d_{1:M}) # [memory_size + num_proposals, batch_size, ...] discrete_latent_concat = cmws.memory.concat(memory.select(obs_id), proposed_discrete_latent) # COMPUTE SCORES s_i = log p(d_i, x) for i {1, ..., (R + M)} # -- c ~ q(c | d, x) # [num_particles, memory_size + num_proposals, batch_size, ...] _continuous_latent = guide.sample_continuous(obs, discrete_latent_concat, [num_particles]) # -- log q(c | d) # [num_particles, memory_size + num_proposals, batch_size] _log_q_continuous = guide.log_prob_continuous(obs, discrete_latent_concat, _continuous_latent) # -- log p(d, c, x) # [num_particles, memory_size + num_proposals, batch_size] _log_p = generative_model.log_prob_discrete_continuous( discrete_latent_concat, _continuous_latent, obs ) # [memory_size + num_proposals, batch_size] log_marginal_joint = torch.logsumexp(_log_p - _log_q_continuous, dim=0) - math.log( num_particles ) # ASSIGN d_{1:M} = TOP_K_UNIQUE(d_{1:(R + M)}, s_{1:(R + M)}) # [memory_size, batch_size, ...], [memory_size, batch_size] discrete_latent_selected, _, indices = cmws.memory.get_unique_and_top_k( discrete_latent_concat, log_marginal_joint, memory.size, return_indices=True ) # SELECT log q(c | d, x) and log p(d, c, x) # [num_particles, memory_size, batch_size] _log_q_continuous = torch.gather( _log_q_continuous, 1, indices[None].expand(num_particles, memory.size, batch_size) ) # [num_particles, memory_size, batch_size] _log_p = torch.gather(_log_p, 1, indices[None].expand(num_particles, memory.size, batch_size)) # COMPUTE WEIGHT # [num_particles, memory_size, batch_size] _log_weight = _log_p - _log_q_continuous # COMPUTE log q(d_i | x) for i in {1, ..., M} # [memory_size, batch_size] _log_q_discrete = guide.log_prob_discrete(obs, discrete_latent_selected,) # UPDATE MEMORY with d_{1:M} memory.update(obs_id, discrete_latent_selected) # CHECK UNIQUE # if not memory.is_unique(obs_id).all(): # raise RuntimeError("memory not unique") # COMPUTE losses # --Compute generative model loss # [num_particles, memory_size, batch_size] _log_weight_v = torch.softmax(_log_weight.view(-1, batch_size), dim=0).view( num_particles, memory.size, batch_size ) # [batch_size] generative_model_loss = -(_log_weight_v.detach() * _log_p).sum(dim=[0, 1]) # --Compute guide loss # ----Compute guide wake loss batch_size = obs.shape[0] if insomnia < 1.0: # [batch_size] guide_loss_sleep = ( get_sleep_loss(generative_model, guide, num_particles * batch_size) .view(batch_size, num_particles) .mean(-1) ) # ----Compute guide CMWS loss if insomnia > 0.0: # [memory_size, batch_size] _log_weight_omega = torch.logsumexp(_log_weight_v, dim=0) # [batch_size] discrete_guide_loss_cmws = -(_log_weight_omega.detach() * _log_q_discrete).sum(dim=0) # [batch_size] continuous_guide_loss_cmws = -( (torch.softmax(_log_weight, dim=0).detach() * _log_q_continuous).sum(dim=0).mean(dim=0) ) # [batch_size] guide_loss_cmws = discrete_guide_loss_cmws + continuous_guide_loss_cmws # ----Combine guide sleep and CMWS losses if insomnia == 0.0: guide_loss = guide_loss_sleep elif insomnia == 1.0: guide_loss = guide_loss_cmws else: guide_loss = insomnia * guide_loss_cmws + (1 - insomnia) * guide_loss_sleep return generative_model_loss + guide_loss
5e2b87a7d19eab1f09e5207f4c16c8e4a56b2225
10,628
import torch def to_float_tensor(np_array): """ convert to long torch tensor :param np_array: :return: """ return torch.from_numpy(np_array).type(torch.float)
84512d8383999bf22841c0e7e1fc8048bcba9a1a
10,630
def display_heatmap(salience_scores, salience_scores_2=None, title=None, title_2=None, cell_labels=None, cell_labels_2=None, normalized=True, ui=False): """ A utility function that displays a Seaborn heatmap. Input: - ('salience scores') A list of floats . If task is something like NLI, then these are the salience scores for the premise, or first sequence. - ('salience_scores_2') A list of floats . Optional. Only necessary when task is a relation labeling task between 2 sequences like NLI. Then these are the salience scores for the hypothesis, or second sequence. - ('title') Any object (string, integer, float, etc.) that can be printed. Optional. Usually is descriptive blurb for the heatmap for ('salience_scores') - ('title_2') Any object (string, integer, float, etc.) that can be printed. Optional. Usually is descriptive blurb for the heatmap for ('salience scores_2') - ('cell_labels') Optional. list of the same size as ('salience_scores') that is printed on the corresponding cell. Usually something like salience score values. - ('cell_labels_2') Optional. list of the same size as ('salience_scores_2') that is printed on the corresponding cell. Usually something like salience score values. - ('normalized') A boolean denoting whether the data is normalized or not. If normalized, the range is from -1 to 1. - ('ui') A boolean for option of saving the plot instead to a file and returning the filename Output: - Return the matplotlib object """ if cell_labels is not None: assert len(cell_labels) == len(salience_scores) if cell_labels_2 is not None: assert len(cell_labels_2) == len(salience_scores_2) cmap = sns.diverging_palette(10, 240, as_cmap=True) if salience_scores_2 is not None: fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 12)) ax1.set_title(title if title is not None else "") ax2.set_title(title_2 if title_2 is not None else "") sns.heatmap([salience_scores], ax=ax1, annot=[cell_labels] if cell_labels is not None else False, fmt='', cmap=cmap, linewidths=0.5, square=True, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) sns.heatmap([salience_scores_2], ax=ax2, annot=[cell_labels_2] if cell_labels_2 is not None else False, fmt='', cmap=cmap, linewidths=0.5, square=True, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) else: m = sns.heatmap([salience_scores], annot=[cell_labels] if cell_labels is not None else False, fmt='', linewidths=0.5, square=True, cmap=cmap, center=0, vmin=-1 if normalized else None, vmax=1 if normalized else None) plt.title(title if title is not None else "") #plt.show() return plt
8229db9630c8553567f0f93f8320c71397180ced
10,631
import re def _cleanse_line(line, main_character): """ Cleanse the extracted lines to remove formatting. """ # Strip the line, just in case. line = line.strip() # Clean up formatting characters. line = line.replace('\\' , '') # Remove escape characters. line = line.replace('[mc]', main_character) # Standardize MC name. line = re.sub(r'{/?i}' , '*', line) # Convert italics to Markdown. line = re.sub(r'{cps=\d+}', '' , line) # Remove scroll speed formatting. return line
87177c557ab89b77c63cc1df10874e52606258a7
10,632
def require_pandapower(f): """ Decorator for functions that require pandapower. """ @wraps(f) def wrapper(*args, **kwds): try: getattr(pp, '__version__') except AttributeError: raise ModuleNotFoundError("pandapower needs to be manually installed.") return f(*args, **kwds) return wrapper
35b0e5a5f9c4e189d849e3a6ba843b6f9e6b49b1
10,633
def optimal_path_fixture(): """An optimal path, and associated distance, along the nodes of the pyramid""" return [0, 1, 2, 3], 10 + 2 + 5
10c4e436907ecb99740a2514c927f05fd8488cf4
10,634
import timeit def evaluate_DynamicHashtablePlusRemove(output=True): """ Compare performance using ability in open addressing to mark deleted values. Nifty trick to produce just the squares as keys in the hashtable. """ # If you want to compare, then add following to end of executable statements: # print([e[0] for e in ht]) tbl = DataTable([8,20,20], ['M', 'Separate Chaining', 'Open Addressing w/ Remove'], output=output) for size in [512, 1024, 2048]: linked_list = min(timeit.repeat(stmt=''' ht = Hashtable({0}) N = {0} // 4 for i in range(1, N, 1): flip_every_k(ht, i, N)'''.format(size), setup=''' from ch03.hashtable_linked import Hashtable from ch03.challenge import flip_every_k''', repeat=7, number=5))/5 hashtable_plus = min(timeit.repeat(stmt=''' ht = DynamicHashtablePlusRemove({0}) N = {0} // 4 for i in range(1, N, 1): flip_every_k(ht, i, N)'''.format(size), setup=''' from ch03.hashtable_open import DynamicHashtablePlusRemove from ch03.challenge import flip_every_k''', repeat=7, number=5))/5 tbl.row([size, linked_list, hashtable_plus]) return tbl
243b5f4972b8eaa2630b6920c2d640d729feae61
10,635
def closest(lat1, lon1): """Return distance (km) and city closest to given coords.""" lat1, lon1 = float(lat1), float(lon1) min_dist, min_city = None, None for city, lat2, lon2 in CITIES: dist = _dist(lat1, lon1, lat2, lon2) if min_dist is None or dist < min_dist: min_dist, min_city = dist, city return min_dist, min_city
4227e357f41619b6e2076bdcf3bb67b92daa9c4a
10,636
def get_previous_term(): """ Returns a uw_sws.models.Term object, for the previous term. """ url = "{}/previous.json".format(term_res_url_prefix) return Term(data=get_resource(url))
a261bc9d744f8f0b70ac76ac596f922b63ea9a46
10,637
from re import T def used(obj: T) -> T: """Decorator indicating that an object is being used. This stops the UnusedObjectFinder from marking it as unused. """ _used_objects.add(obj) return obj
33d241fe4a0953352ecad2ba306f915a88500d46
10,638
import scipy def fit_double_gaussian(x_data, y_data, maxiter=None, maxfun=5000, verbose=1, initial_params=None): """ Fitting of double gaussian Fitting the Gaussians and finding the split between the up and the down state, separation between the max of the two gaussians measured in the sum of the std. Args: x_data (array): x values of the data y_data (array): y values of the data maxiter (int): maximum number of iterations to perform maxfun (int): maximum number of function evaluations to make verbose (int): set to >0 to print convergence messages initial_params (None or array): optional, initial guess for the fit parameters: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] Returns: par_fit (array): fit parameters of the double gaussian: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] initial_params (array): initial guess for the fit parameters, either the ones give to the function, or generated by the function: [A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up] separation (float): separation between the max of the two gaussians measured in the sum of the std split (float): value that seperates the up and the down level """ def func(params): return _cost_double_gaussian(x_data, y_data, params) maxsignal = np.percentile(x_data, 98) minsignal = np.percentile(x_data, 2) if initial_params is None: A_dn = np.max(y_data[:int((len(y_data) / 2))]) A_up = np.max(y_data[int((len(y_data) / 2)):]) sigma_dn = (maxsignal - minsignal) * 1 / 20 sigma_up = (maxsignal - minsignal) * 1 / 20 mean_dn = minsignal + 1 / 4 * (maxsignal - minsignal) mean_up = minsignal + 3 / 4 * (maxsignal - minsignal) initial_params = np.array([A_dn, A_up, sigma_dn, sigma_up, mean_dn, mean_up]) par_fit = scipy.optimize.fmin(func, initial_params, maxiter=maxiter, maxfun=maxfun, disp=verbose >= 2) # separation is the difference between the max of the gaussians devided by the sum of the std of both gaussians separation = (par_fit[5] - par_fit[4]) / (abs(par_fit[2]) + abs(par_fit[3])) # split equal distant to both peaks measured in std from the peak split = par_fit[4] + separation * abs(par_fit[2]) result_dict = {'parameters initial guess': initial_params, 'separation': separation, 'split': split} return par_fit, result_dict
65a54120e2d244301d36d0bba1e25fc711a9d6bb
10,639
def _set_advanced_network_attributes_of_profile(config, profile): """ Modify advanced network attributes of profile. @param config: current configparser configuration. @param profile: the profile to set the attribute in. @return: configparser configuration. """ config = _set_attribute_of_profile( config, profile, 'vpc_offering_id', 'VPC offering id', '' ) return config
f5254f5f055865bf43f0e97f2dcf791bbbe61011
10,640
def ring_bond_equal(b1, b2, reverse=False): """Check if two bonds are equal. Two bonds are equal if the their beginning and end atoms have the same symbol and formal charge. Bond type not considered because all aromatic (so SINGLE matches DOUBLE). Parameters ---------- b1 : rdkit.Chem.rdchem.Bond An RDKit bond object. b2 : rdkit.Chem.rdchem.Bond An RDKit bond object. reverse : bool Whether to interchange the role of beginning and end atoms of the second bond in comparison. Returns ------- bool Whether the two bonds are equal. """ b1 = (b1.GetBeginAtom(), b1.GetEndAtom()) if reverse: b2 = (b2.GetEndAtom(), b2.GetBeginAtom()) else: b2 = (b2.GetBeginAtom(), b2.GetEndAtom()) return atom_equal(b1[0], b2[0]) and atom_equal(b1[1], b2[1])
e0c5ab25d69f5770dcf58dd284519b3ed593ad33
10,642
import _warnings def survey_aligned_velocities(od): """ Compute horizontal velocities orthogonal and tangential to a survey. .. math:: (v_{tan}, v_{ort}) = (u\\cos{\\phi} + v\\sin{\\phi}, v\\cos{\\phi} - u\\sin{\\phi}) Parameters ---------- od: OceanDataset oceandataset used to compute Returns ------- ds: xarray.Dataset | rot_ang_Vel: Angle to rotate geographical to survey aligned velocities | tan_Vel: Velocity component tangential to survey | ort_Vel: Velocity component orthogonal to survey See Also -------- subsample.survey_stations """ # Check parameters _check_instance({'od': od}, 'oceanspy.OceanDataset') if 'station' not in od._ds.dims: raise ValueError('oceandatasets must be subsampled using' ' `subsample.survey_stations`') # Get zonal and meridional velocities var_list = ['lat', 'lon'] try: # Add missing variables varList = ['U_zonal', 'V_merid'] + var_list od = _add_missing_variables(od, varList) # Extract variables U = od._ds['U_zonal'] V = od._ds['V_merid'] except Exception as e: # Assume U=U_zonal and V=V_zonal _warnings.warn(("\n{}" "\nAssuming U=U_zonal and V=V_merid." "\nIf you are using curvilinear coordinates," " run `compute.geographical_aligned_velocities`" " before `subsample.survey_stations`").format(e), stacklevel=2) # Add missing variables varList = ['U', 'V'] + var_list od = _add_missing_variables(od, varList) # Extract variables U = od._ds['U'] V = od._ds['V'] # Extract varibles lat = _np.deg2rad(od._ds['lat']) lon = _np.deg2rad(od._ds['lon']) # Extract grid grid = od._grid # Message print('Computing survey aligned velocities.') # Compute azimuth # Translated from matlab: # https://www.mathworks.com/help/map/ref/azimuth.html az = _np.arctan2(_np.cos(lat[1:]).values * _np.sin(grid.diff(lon, 'station')), _np.cos(lat[:-1]).values * _np.sin(lat[1:]).values - _np.sin(lat[:-1]).values * _np.cos(lat[1:]).values * _np.cos(grid.diff(lon, 'station'))) az = grid.interp(az, 'station', boundary='extend') az = _xr.where(_np.rad2deg(az) < 0, _np.pi*2 + az, az) # Compute rotation angle rot_ang_rad = _np.pi/2 - az rot_ang_rad = _xr.where(rot_ang_rad < 0, _np.pi*2 + rot_ang_rad, rot_ang_rad) rot_ang_deg = _np.rad2deg(rot_ang_rad) rot_ang_Vel = rot_ang_deg long_name = 'Angle to rotate geographical to survey aligned velocities' rot_ang_Vel.attrs['long_name'] = long_name rot_ang_Vel.attrs['units'] = 'deg (+: counterclockwise)' # Rotate velocities tan_Vel = U*_np.cos(rot_ang_rad) + V*_np.sin(rot_ang_rad) tan_Vel.attrs['long_name'] = 'Velocity component tangential to survey' if 'units' in U.attrs: units = U.attrs['units'] else: units = ' ' tan_Vel.attrs['units'] = ('{} ' '(+: flow towards station indexed' ' with higher number)' ''.format(units)) ort_Vel = V*_np.cos(rot_ang_rad) - U*_np.sin(rot_ang_rad) ort_Vel.attrs['long_name'] = 'Velocity component orthogonal to survey' if 'units' in V.attrs: units = V.attrs['units'] else: units = ' ' ort_Vel.attrs['units'] = ('{} ' '(+: flow keeps station indexed' ' with higher number to the right)' ''.format(units)) # Create ds ds = _xr.Dataset({'rot_ang_Vel': rot_ang_Vel, 'ort_Vel': ort_Vel, 'tan_Vel': tan_Vel}, attrs=od.dataset.attrs) return _ospy.OceanDataset(ds).dataset
c506f8ca5db1ed6045ac02fb1988900f0ae10451
10,643
def insertion_sort(numbers): """ At worst this is an O(n2) algorithm At best this is an O(n) algorithm """ for index in xrange(1, len(numbers)): current_num = numbers[index] current_pos = index while current_pos > 0 and numbers[current_pos - 1] > current_num: numbers[current_pos] = numbers[current_pos - 1] current_pos = current_pos - 1 numbers[current_pos] = current_num return numbers
d32a73b156f8b469cfcbdda70f349c7f3173d6a9
10,644
def ratio_shimenreservoir_to_houchiweir(): """ Real Name: Ratio ShiMenReservoir To HouChiWeir Original Eqn: Sum Allocation ShiMenReservoir To HouChiWeir/Sum Allcation From ShiMenReservoir Units: m3/m3 Limits: (None, None) Type: component """ return sum_allocation_shimenreservoir_to_houchiweir() / sum_allcation_from_shimenreservoir()
e49969f53d6641a02b6cea5d3010ac34eb0739fd
10,645
import torch def torch_profiler_full(func): """ A decorator which will run the torch profiler for the decorated function, printing the results in full. Note: Enforces a gpu sync point which could slow down pipelines. """ @wraps(func) def wrapper(*args, **kwargs): with torch.autograd.profiler.profile(use_cuda=True) as prof: result = func(*args, **kwargs) print(prof, flush=True) return result return wrapper
7a92eb75d0131c6d151c9908fdcf2e84f6499468
10,646
def bias_add(x, bias, data_format=None): """Adds a bias vector to a tensor. # Arguments x: Tensor or variable. bias: Bias tensor to add. data_format: string, `"channels_last"` or `"channels_first"`. # Returns Output tensor. # Raises ValueError: In one of the two cases below: 1. invalid `data_format` argument. 2. invalid bias shape. the bias should be either a vector or a tensor with ndim(x) - 1 dimension """ data_format = normalize_data_format(data_format) bias_shape = int_shape(bias) if len(bias_shape) != 1 and len(bias_shape) != ndim(x) - 1: raise ValueError('Unexpected bias dimensions %d, ' 'expect to be 1 or %d dimensions' % (len(bias_shape), ndim(x))) if ndim(x) == 5: if len(bias_shape) == 1: new_shape = (1, 1, 1, 1, bias_shape[0]) else: new_shape = (1,) + bias_shape new_shape = transpose_shape(new_shape, data_format, spatial_axes=(1, 2, 3)) x += reshape(bias, new_shape) elif ndim(x) == 4: if data_format == 'channels_first': if len(bias_shape) == 1: if _has_nchw_support(): x = tf.nn.bias_add(x, bias, data_format='NCHW') else: x += reshape(bias, (1, bias_shape[0], 1, 1)) else: x += reshape(bias, (1, bias_shape[2]) + bias_shape[:2]) elif data_format == 'channels_last': if len(bias_shape) == 1: x = tf.nn.bias_add(x, bias, data_format='NHWC') else: x += reshape(bias, (1,) + bias_shape) elif ndim(x) == 3: if len(bias_shape) == 1: new_shape = (1, 1, bias_shape[0]) else: new_shape = (1,) + bias_shape new_shape = transpose_shape(new_shape, data_format, spatial_axes=(1,)) x += reshape(bias, new_shape) else: x = tf.nn.bias_add(x, bias) return x
1b783bbd6f685be336b565d7e5db9c5aa91a1f16
10,647
def get_news_with_follow(request, user_id): """ 获取用户关注类型的前30条,未登录300未登录 :param request: 请求对象 :return: Json数据 """ data = {} try: user = User.objects.get(pk=user_id) follow_set = user.follow_type.value_list('id').all() follow_list = [x[0] for x in follow_set] news_set = NewsArticle.objects.filter(type_id__in=follow_list).order_by('-publish_time')[:30] except db.Error: data['code'] = 400 data['msg'] = '服务器忙,请稍后再试' return JsonResponse(data) except ObjectDoesNotExist: data['code'] = 505 data['msg'] = '用户不存在' return JsonResponse(data) news_list = [] for news in news_set: item = { 'id': news.id, 'title': news.title, 'type': news.type.name, 'publish_time': news.publish_time } news_list.append(item) data['code'] = 200 data['msg'] = '请求成功' data['news_list'] = news_list return JsonResponse(data)
41e9c8cb20c9c1757a8633d584f738b6a64e4f2b
10,648
def trigger(): """Trigger salt-api call.""" data = {'foo': 'bar'} return request('/hook/trigger', data=data)
6aa469468711c3c94e0b5a20d9825fc9c0a73d83
10,650
from typing import List import math def fitness_function(cams: List[Coord], pop: List[Coord]) -> int: """ Function to calculate number of surveilled citizens. Check if all the cameras can see them, if any can score increases """ score = [] for cit in pop: test = False for cam in cams: if ( math.sqrt(((cam[0] - cit[0]) ** 2) + ((cam[1] - cit[1]) ** 2)) <= view_radius ): test = True score.append(test) return score.count(True)
d10c02a7b182a8c38d8db37f13aec5b4c9def593
10,651
import requests def scrape_opening_hours(): """"scrape opening hours from https://www.designmuseumgent.be/bezoek""" r = requests.get("https://www.designmuseumgent.be/bezoek") data = r.text return data
297a35f3bc4e10d453da495e031fae5ce79ca643
10,652
import torch def _demo_mm_inputs(input_shape=(1, 3, 256, 256)): """Create a superset of inputs needed to run test or train batches. Args: input_shape (tuple): input batch dimensions """ (N, C, H, W) = input_shape rng = np.random.RandomState(0) imgs = rng.rand(*input_shape) target = np.zeros([N, 17, H // 32, W // 32], dtype=np.float32) mask = np.ones([N, H // 32, W // 32], dtype=np.float32) joints = np.zeros([N, 30, 17, 2], dtype=np.float32) img_metas = [{ 'image_file': 'test.jpg', 'aug_data': [torch.zeros(1, 3, 256, 256)], 'test_scale_factor': [1], 'base_size': (256, 256), 'center': np.array([128, 128]), 'scale': np.array([1.28, 1.28]), 'flip_index': [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] } for _ in range(N)] mm_inputs = { 'imgs': torch.FloatTensor(imgs).requires_grad_(True), 'target': [torch.FloatTensor(target)], 'mask': [torch.FloatTensor(mask)], 'joints': [torch.FloatTensor(joints)], 'img_metas': img_metas } return mm_inputs
abef4e006fe6e530c5ca372904a40eecc3dbb5b7
10,653
import random def compute_one_epoch_baseline(): """ Function to compute the performance of a simple one epoch baseline. :return: a line to display (string reporting the experiment results) """ best_val_obj_list = [] total_time_list = [] for nb201_random_seed in nb201_random_seeds: for random_seed in random_seeds: # randomly sample 256 configurations for the given dataset and NASBench201 seed # use the same seeds as for our other experiments random.seed(random_seed) cfg_list = random.sample( range(len(df_dict[nb201_random_seed][dataset_name])), 256 ) selected_subset = df_dict[nb201_random_seed][dataset_name].iloc[cfg_list] # find configuration with the best performance after doing one epoch max_idx = selected_subset["val_acc_epoch_0"].argmax() best_configuration = selected_subset.iloc[max_idx] # find the best validation accuracy of the selected configuration # as that is the metric that we compare best_val_obj = best_configuration[epoch_names].max() # we also need to calculate the time it took for this # taking into account the number of workers total_time = selected_subset["eval_time_epoch"].sum() / n_workers best_val_obj_list.append(best_val_obj) total_time_list.append(total_time) line = " & {:.2f} $\pm$ {:.2f}".format( np.mean(best_val_obj_list), np.std(best_val_obj_list) ) line += " & {:.1f}h $\pm$ {:.1f}h".format( np.mean(total_time_list) / 3600, np.std(total_time_list) / 3600 ) line += " & {:.1f}x".format(reference_time / np.mean(total_time_list)) line += " & 1.0 $\pm$ 0.0" return line
1bc3b03d49f0bbb8e2213acb31c64367b577aed2
10,654
import string import random def generate_random_string( length ): """Generate a random string of a given length containing uppercase and lowercase letters, digits and ASCII punctuation.""" source = string.ascii_lowercase + string.ascii_uppercase + string.digits + string.punctuation return ''.join( random.choice( source ) for i in range( length ) )
9bb1ee7e21f27231e498f48bff505d963565f582
10,655
from typing import Mapping from typing import Sequence def pretty_table(rows, header=None): """ Returns a string with a simple pretty table representing the given rows. Rows can be: - Sequences such as lists or tuples - Mappings such as dicts - Any object with a __dict__ attribute (most plain python objects) which is equivalent to passing the __dict__ directly. If no header is given then either all or none of the rows must be sequences to ensure the correct order. If there are no sequences then the header will be derived from the keys of the mappings. >>> print(pretty_table([['a', 'hello', 'c', 1], ['world', 'b', 'd', 2]])) a | hello | c | 1 world | b | d | 2 >>> print(pretty_table([['a', 'hello', 'c', 1], ['world', 'b', 'd', 2]], header='col1 col2 col3 col4')) col1 | col2 | col3 | col4 --------------------------- a | hello | c | 1 world | b | d | 2 >>> print(pretty_table([{'a': 1, 'b': 2}, {'a': 3, 'b': 4}])) a | b ----- 1 | 2 3 | 4 >>> class C(object): ... def __init__(self, a, b): ... self.a = a ... self.b = b ... >>> print(pretty_table([{'a': 1, 'b': 2}, C(3, 4), [5, 6]], header=['b', 'a'])) b | a ----- 2 | 1 4 | 3 5 | 6 >>> print(pretty_table([{'a': 1, 'b': 2}, C(3, 4), [5, 6]])) Traceback (most recent call last): ... ValueError: Cannot mix sequences and other types of rows without specifying a header >>> print(pretty_table([[1, 2], [3, 4, 5]])) Traceback (most recent call last): ... ValueError: Mismatched lengths. First row (len = 2): [1, 2] Current row (len = 3): [3, 4, 5] >>> print(pretty_table([{'a': 1, 'b': 2}], header='c d')) Traceback (most recent call last): .... KeyError: "Tried to access 'c', only keys are: ['a', 'b']" """ rows2 = [] if header: header = ensure_list_if_string(header) rows2.insert(0, header) row_type = ['any'] else: header = [] row_type = [None] def require_type(t): if row_type[0] not in (None, t, 'any'): raise ValueError('Cannot mix sequences and other types of rows without specifying a header') if row_type[0] is None: row_type[0] = t def handle_dict(d): require_type('mapping') if not header: header[:] = sorted(d.keys()) rows2.insert(0, header) return [helpful_error_dict_get(d, key) for key in header] for row in rows: if isinstance(row, Mapping): row = handle_dict(row) elif isinstance(row, Sequence): require_type('sequence') if rows2 and len(row) != len(rows2[0]): raise ValueError('Mismatched lengths.\n' 'First row (len = %s):\n%s\n' 'Current row (len = %s):\n%s' % (len(rows2[0]), rows2[0], len(row), row)) else: row = handle_dict(row.__dict__) rows2.append(row) rows = [[str(cell) for cell in row] for row in rows2] widths = [max(len(row[i]) for row in rows) for i in range(len(rows[0]))] lines = [' | '.join(cell.ljust(width) for cell, width in zip(row, widths)).strip() for row in rows] if header: lines.insert(1, '-' * len(lines[0])) return '\n'.join(lines)
1b4707932b27277ef22f17631e7a5778a38f99eb
10,657
def interpolate_trajectory(world_map, waypoints_trajectory, hop_resolution=1.0): """ Given some raw keypoints interpolate a full dense trajectory to be used by the user. Args: world: an reference to the CARLA world so we can use the planner waypoints_trajectory: the current coarse trajectory hop_resolution: is the resolution, how dense is the provided trajectory going to be made Return: route: full interpolated route both in GPS coordinates and also in its original form. """ dao = GlobalRoutePlannerDAO(world_map, hop_resolution) grp = GlobalRoutePlanner(dao) grp.setup() # Obtain route plan route = [] for i in range(len(waypoints_trajectory) - 1): # Goes until the one before the last. waypoint = waypoints_trajectory[i] waypoint_next = waypoints_trajectory[i + 1] interpolated_trace = grp.trace_route(waypoint, waypoint_next) for wp_tuple in interpolated_trace: route.append((wp_tuple[0].transform, wp_tuple[1])) return route
df544616954868aaa25c86b50420202bea860d9b
10,658
def import_data(filepath="/home/vagrant/countries/NO.txt", mongodb_url="mongodb://localhost:27017"): """ Import the adress data into mongodb CLI Example: salt '*' mongo.import_data /usr/data/EN.txt """ client = MongoClient(mongodb_url) db = client.demo address_col = db.address #Delete collection if present print("Dropping collection of addresses") address_col.delete_many({}) #Create compound indices for full text search address_col.create_index([ ("country_code", TEXT), ("postal_code", TEXT), ("place_name", TEXT), ("admin_name1", TEXT), ("admin_name2", TEXT), ("admin_name3", TEXT), ]) # Split line on the tab character since this is the delimiter. for line in _read_file(filepath): parts = line.split("\t") if parts and len(parts) >= 12: address = { "country_code": parts[0], "postal_code": parts[1], "place_name": parts[2], "admin_name1": parts[3], "admin_code1": parts[4], "admin_name2": parts[5], "admin_code2": parts[6], "admin_name3": parts[7], "admin_code3": parts[8], "latitude": parts[9], "longitude": parts[10], "accuracy": parts[11].strip() } address_col.insert(address) else: log.error("Element has to few parts to parse") return "Done importing all data"
8f80343c60000a8ab988c02bac54e2f748e346b9
10,659
import async_timeout import requests async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the Enphase Envoy sensor.""" ip_address = config[CONF_IP_ADDRESS] monitored_conditions = config[CONF_MONITORED_CONDITIONS] name = config[CONF_NAME] username = config[CONF_USERNAME] password = config[CONF_PASSWORD] _LOGGER.info("Envoy async_setup_platform called") f = EnvoyReaderFactory(host=ip_address, username=username, password=password) # The factory will return a reader based on the SW/FW version found in info.xml envoy_reader = await f.get_reader() entities = [] async def async_update_data(): try: async with async_timeout.timeout(10): return await envoy_reader.get_data() except requests.exceptions.HTTPError as err: raise UpdateFailed(f"Error communicating with API: {err}") coordinator = DataUpdateCoordinator( hass, _LOGGER, name="EnphaseEnvoy", update_method=async_update_data, update_interval= timedelta(seconds=30), ) # Do an initial data collection so the list with inverters is filled await coordinator.async_refresh() # Iterate through the list of sensors configured for condition in monitored_conditions: if condition == "inverters": # The initial data collection made sure we know all inverters that are available at this point for inverter in coordinator.data['inverters']: entities.append( EnvoyInverter( coordinator, inverter['serial_number'], envoy_reader, condition, f"{name}{SENSORS[condition][0]} {inverter['serial_number']}", SENSORS[condition][1], SENSORS[condition][2], SENSORS[condition][3] ) ) else: entities.append( Envoy( coordinator, coordinator.data['serial_number'], envoy_reader, condition, f"{name}{SENSORS[condition][0]}", SENSORS[condition][1], SENSORS[condition][2], SENSORS[condition][3] ) ) async_add_entities(entities)
07e762a8fbcc987b57d38bc8a10d3f51e6fa58a4
10,660
from .register import PIPING_SIGNS from .verb import Verb import ast def _get_piping_verb_node(calling_node: ast.Call) -> ast.Call: """Get the ast node that is ensured the piping verb call Args: calling_node: Current Call node Returns: The verb call node if found, otherwise None """ # check if we have the piping node (i.e. >>) child = calling_node parent = getattr(child, "parent", None) token = PIPING_SIGNS[Verb.CURRENT_SIGN].token while parent: if ( # data >> verb(...) (isinstance(parent, ast.BinOp) and parent.right is child) or # data >>= verb(...) (isinstance(parent, ast.AugAssign) and parent.value is child) ) and isinstance(parent.op, token): return child child = parent parent = getattr(parent, "parent", None) return None
2f6be9b382f2bf2e31d39ff9682f5b26618aa1af
10,661
def slot(**kwargs): """Creates a SlotConfig instance based on the arguments. Args: **kwargs: Expects the following keyed arguments. in_dist: Distribution for inbound in msec. Optional in_max_bytes: Optional. Ignored when in_dist is missing. in_max_pkts: Optional. Ignored when in_dist is missing. out_dist: Distribution for outbound in msec. Optional At least one of in_dist and out_dist must be available. out_max_bytes: Optional. Ignored when out_dist is missing. out_max_pkts: Optional. Ignored when out_dist is missing. Returns: The SlotConfig instance. Raises: ValueError: When both in_dist and out_dist are missing. When an unexpected key is passed. """ expected_keys = {'in_dist', 'in_max_bytes', 'in_max_pkts', 'out_dist', 'out_max_bytes', 'out_max_pkts'} if any(set(kwargs) - expected_keys): raise ValueError('unexpected args: %s' % ','.join(set(kwargs) - expected_keys)) in_slot = None out_slot = None if 'in_dist' in kwargs: in_slot = Slot( kwargs['in_dist'], kwargs['in_max_bytes'] if 'in_max_bytes' in kwargs else 0, kwargs['in_max_pkts'] if 'in_max_pkts' in kwargs else 0) if 'out_dist' in kwargs: out_slot = Slot( kwargs['out_dist'], kwargs['out_max_bytes'] if 'out_max_bytes' in kwargs else 0, kwargs['out_max_pkts'] if 'out_max_pkts' in kwargs else 0) if not bool(in_slot or out_slot): raise ValueError('in_dist or out_dist must be defined') return SlotConfig(in_slot, out_slot)
4b26f7a805b88a7a6bd03f7d23db7a14d7979eeb
10,662
def get_agent_type(player): """ Prompts user for info as to the type of agent to be created """ print('There are two kinds of Agents you can initialise.') print(' 1 - <Human> - This would be a totally manually operated agent.') print(' You are playing the game yourself.') print(' 2 - <Random> - This is an agent who simply makes totally random moves.') print(' They select from the set of all legal moves.') # print(' 3 - <Engine> - This is an agent which selects moves on the basis of some') # print(' pre-programmed algorithm.') print(f'\nWhich type of agent should {player} be?') while True: result = input(' : ') if result.isalpha(): # check response is all letters result = result.lower() # make them all lowercase if result.lower() == 'human': agent_type = result.capitalize() break elif result.lower() == 'random': agent_type = result.capitalize() break # elif result.lower() == 'engine': # not_implemented('Engine') # continue elif result.lower() in ('close', 'quit', 'exit', 'no'): exit_program() elif result.isnumeric(): if result == '1': agent_type = 'Human' break elif result == '2': agent_type = 'Random' break # elif result == '3': # not_implemented('Engine') # continue agent_name = player print(f'And their name? Typing nothing will use the default name: {player}') while True: result = input(' : ') if result == '': break elif result.isalnum(): if result.lower() in ('close', 'quit', 'exit', 'no'): exit_program() agent_name = result break else: print('\n Can only include letters or numbers.\n') return agent_type, agent_name
3d0fce9faafaa6c993cb2b5b54a1480268c22ab3
10,663
def _try_match_and_transform_pattern_1(reduce_op, block) -> bool: """ Identify the pattern: y = gamma * (x - mean) / sqrt(variance + epsilon) + beta y = x * [gamma * rsqrt(variance + eps)] + (beta - mean * [gamma * rsqrt(variance + eps)]) x --> reduce_mean --> sub --> square --> reduce_mean --> add(epsilon) --> rsqrt | | ^ | | | | V |----------------------- mul (gamma) | | | | | --------|--------- | | | | | | | V | |----------------------------------------------------------------> mul | | | | V | |--------------------------------------------------------------> mul | | V | sub (beta) --> add --> [...] | ^ |------------------------------- This pattern corresponds to either layer_norm or instance_norm. It is instance_norm if all of the following are true: - input is rank 4 - axes of reduce_mean is [-2, -1] or [-3, -2] (when [-3, -2], a channel first to channel last transpose would be inserted) - gamma and beta are rank 1, after squeeze It is layer_norm if all of the following are true: - axes is either [-1] or [-1, -2] or [-1, -2, -3] and so on - rank of gamma and beta is equal to the length of the axes """ ops_to_remove = [] root_var = reduce_op.x if root_var.shape is None: return False # check that root_var feeds into exactly 3 ops if len(list(root_var.child_ops)) != 3: return False if root_var.op is not None and not _check_child_op_types( root_var.op, child_op_types=["reduce_mean", "sub", "mul"] ): return False # check 1st reduce_mean op if not _check_reduce_op(reduce_op): return False ops_to_remove.append(reduce_op) # check 1st sub op if not _check_child_op_types(reduce_op, ["sub", "mul"], check_order=False): return False child_ops_reduce_mean = list(reduce_op.outputs[0].child_ops) op_a = child_ops_reduce_mean[0] op_b = child_ops_reduce_mean[1] sub_op1 = op_a if op_a.op_type == "sub" else op_b if not (sub_op1.x == root_var and sub_op1.y == reduce_op.outputs[0]): return False ops_to_remove.append(sub_op1) # check square op square_op = _try_get_child_op_type(sub_op1, "square") if square_op is None: return False ops_to_remove.append(square_op) # check second reduce mean reduce_op2 = _try_get_child_op_type(square_op, "reduce_mean") if not _check_reduce_op(reduce_op2): return False ops_to_remove.append(reduce_op2) # check add op (with epsilon) add_op1 = _try_get_child_op_type(reduce_op2, "add") if add_op1 is None: return False epsilon_var = add_op1.y if add_op1.x == reduce_op2.outputs[0] else add_op1.x if epsilon_var.val is None or len(epsilon_var.val.shape) != 0: return False # must be scalar ops_to_remove.append(add_op1) # check rsqrt rsqrt_op = _try_get_child_op_type(add_op1, "rsqrt") if rsqrt_op is None: return False ops_to_remove.append(rsqrt_op) # check mul (gamma) mul_op1 = _try_get_child_op_type(rsqrt_op, "mul") if mul_op1 is None: return False gamma_var = mul_op1.y if mul_op1.x == rsqrt_op.outputs[0] else mul_op1.x if gamma_var.val is None: return False ops_to_remove.append(mul_op1) # check 2 muls after the gamma mul if not _check_child_op_types(mul_op1, ["mul", "mul"]): return False child_ops = list(mul_op1.outputs[0].child_ops) mul_op2 = child_ops[0] mul_op3 = child_ops[1] mul_op2_other_var = mul_op2.x if mul_op2.y == mul_op1.outputs[0] else mul_op2.y mul_op3_other_var = mul_op3.x if mul_op3.y == mul_op1.outputs[0] else mul_op3.y if not ( (mul_op2_other_var == root_var and mul_op3_other_var == reduce_op.outputs[0]) or (mul_op2_other_var == reduce_op.outputs[0] and mul_op3_other_var == root_var) ): return False if mul_op2_other_var == root_var: mul_root_op = mul_op2 mul_mean_op = mul_op3 else: mul_root_op = mul_op3 mul_mean_op = mul_op2 ops_to_remove.append(mul_mean_op) ops_to_remove.append(mul_root_op) # check sub with beta sub_op2 = _try_get_child_op_type(mul_mean_op, "sub") if sub_op2 is None: return False if sub_op2.y != mul_mean_op.outputs[0]: return False beta_var = sub_op2.x if beta_var.val is None: return False ops_to_remove.append(sub_op2) # check last add op add_op2 = _try_get_child_op_type(sub_op2, "add") if add_op2 is None: return False if not (add_op2.x == mul_root_op.outputs[0] or add_op2.y == mul_root_op.outputs[0]): return False ops_to_remove.append(add_op2) return _try_apply_transform( reduce_op, block, gamma_var, beta_var, epsilon_var, add_op2, ops_to_remove )
f1baecfc53daf731c5b518aadcc11c88508258e3
10,664
import click def cli_resize(maxsize): """Resize images to a maximum side length preserving aspect ratio.""" click.echo("Initializing resize with parameters {}".format(locals())) def _resize(images): for info, image in images: yield info, resize(image, maxsize) return _resize
f0695940531c45a88ff1722c002dacc6103962e0
10,665
import numpy def _fetch_object_array(cursor): """ _fetch_object_array() fetches arrays with a basetype that is not considered scalar. """ arrayShape = cursor_get_array_dim(cursor) # handle a rank-0 array by converting it to # a 1-dimensional array of size 1. if len(arrayShape) == 0: arrayShape.append(1) # now create the (empty) array of the correct type and shape array = numpy.empty(dtype=object,shape=arrayShape) # goto the first element cursor_goto_first_array_element(cursor) # loop over all elements excluding the last one arraySizeMinOne = array.size - 1 for i in range(arraySizeMinOne): array.flat[i] = _fetch_subtree(cursor) cursor_goto_next_array_element(cursor) # final element then back tp parent scope array.flat[arraySizeMinOne] = _fetch_subtree(cursor) cursor_goto_parent(cursor) return array
7c84306c0b84a126f401e51bac5896203357380a
10,666
def sldParse(sld_str): """ Builds a dictionary from an SldStyle string. """ sld_str = sld_str.replace("'", '"').replace('\"', '"') keys = ['color', 'label', 'quantity', 'opacity'] items = [el.strip() for el in sld_str.split('ColorMapEntry') if '<RasterSymbolizer>' not in el] sld_items = [] for i in items: tmp = {} for k in keys: v = find_between(i, f'{k}="', '"') if v: tmp[k] = v sld_items.append(tmp) return { 'type': find_between(sld_str, 'type="', '"'), 'extended': find_between(sld_str, 'extended="', '"'), 'items': sld_items }
888a2ee3251a0d1149b478d32ccb88ff0e309ec3
10,667
def x_ideal(omega, phase): """ Generates a complex-exponential signal with given frequency and phase. Does not contain noise """ x = np.empty(cfg.N, dtype=np.complex_) for n in range(cfg.N): z = 1j*(omega * (cfg.n0+n) * cfg.Ts + phase) x[n] = cfg.A * np.exp(z) return x
87e4df7cbbfe698e5deb461642de72efb6bfffad
10,668
def _wrap_stdout(outfp): """ Wrap a filehandle into a C function to be used as `stdout` or `stderr` callback for ``set_stdio``. The filehandle has to support the write() and flush() methods. """ def _wrap(instance, str, count): outfp.write(str[:count]) outfp.flush() return count return c_stdstream_call_t(_wrap)
f7d773890b17b18855d2d766bd147c67ac7ade3b
10,669
def svn_fs_apply_textdelta(*args): """ svn_fs_apply_textdelta(svn_fs_root_t root, char path, char base_checksum, char result_checksum, apr_pool_t pool) -> svn_error_t """ return _fs.svn_fs_apply_textdelta(*args)
d8d228415d8768ec297415a42113e0eb2463163f
10,670
def find(x): """ Find the representative of a node """ if x.instance is None: return x else: # collapse the path and return the root x.instance = find(x.instance) return x.instance
5143e9d282fb1988d22273996dae36ed587bd9d2
10,671
def convert_shape(node, **kwargs): """Map MXNet's shape_array operator attributes to onnx's Shape operator and return the created node. """ return create_basic_op_node('Shape', node, kwargs)
7d4414eac78208b0c35d7ab5a9f21ab70a0947ae
10,672
import time def get_timestamp(prev_ts=None): """Internal helper to return a unique TimeStamp instance. If the optional argument is not None, it must be a TimeStamp; the return value is then guaranteed to be at least 1 microsecond later the argument. """ t = time.time() t = TimeStamp(*time.gmtime(t)[:5] + (t % 60,)) if prev_ts is not None: t = t.laterThan(prev_ts) return t
89751c53679f11efd26b88609887c4a2ed475418
10,674
def get_element_as_string(element): """ turn xml element from etree to string :param element: :return: """ return lxml.etree.tostring(element, pretty_print=True).decode()
f62945ff4bdd3bea2562ba52a89d8d01c74e0b10
10,675
def _select_ports(count, lower_port, upper_port): """Select and return n random ports that are available and adhere to the given port range, if applicable.""" ports = [] sockets = [] for i in range(count): sock = _select_socket(lower_port, upper_port) ports.append(sock.getsockname()[1]) sockets.append(sock) for sock in sockets: sock.close() return ports
2f92cb7e4ab26c54bc799369cd950c4269049291
10,677
def is_solution_quad(var, coeff, u, v): """ Check whether `(u, v)` is solution to the quadratic binary diophantine equation with the variable list ``var`` and coefficient dictionary ``coeff``. Not intended for use by normal users. """ reps = dict(zip(var, (u, v))) eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()]) return _mexpand(eq) == 0
b19d7678c725a41df755352f5af1ce322f3efad7
10,678
def is_callable(x): """Tests if something is callable""" return callable(x)
72584deb62ac5e34e69325466236792c5299a51b
10,679
def validate_version_argument(version, hint=4): """ validate the version argument against the supported MDF versions. The default version used depends on the hint MDF major revision Parameters ---------- version : str requested MDF version hint : int MDF revision hint Returns ------- valid_version : str valid version """ if version not in SUPPORTED_VERSIONS: if hint == 2: valid_version = "2.14" elif hint == 3: valid_version = "3.30" else: valid_version = "4.10" message = ( 'Unknown mdf version "{}".' " The available versions are {};" ' automatically using version "{}"' ) message = message.format(version, SUPPORTED_VERSIONS, valid_version) logger.warning(message) else: valid_version = version return valid_version
e29342f78236f043b079cf5e4473f6dccb29d35c
10,680
import torch def roc_auc(probs, labels): """ Computes the area under the receiving operator characteristic between output probs and labels for k classes. Source: https://github.com/HazyResearch/metal/blob/master/metal/utils.py args: probs (tensor) (size, k) labels (tensor) (size, 1) """ probs = torch.nn.functional.softmax(probs, dim=1) probs = probs.numpy() # Convert labels to one-hot indicator format, using the k inferred from probs labels = hard_to_soft(labels, k=probs.shape[1]).numpy() return skl.roc_auc_score(labels, probs)
9ae79a4ff5cbf93d2187857c8ac62014c6fa98f0
10,681
from typing import Collection def show_collection(request, collection_id): """Shows a collection""" collection = get_object_or_404(Collection, pk=collection_id) # New attribute to store the list of problems and include the number of submission in each problem collection.problem_list = collection.problems() for problem in collection.problem_list: problem.num_submissions = problem.num_submissions_by_user(request.user) problem.solved = problem.solved_by_user(request.user) return render(request, 'collection.html', {'collection': collection})
a23efc449258839a7d7bfa0c0a73d889a6891a0f
10,682
from typing import Union from typing import Callable from typing import List def alpha( data: np.ndarray, delta: Union[Callable[[int, int], float], List[List[float]], str] = "nominal", ): """Calculates Krippendorff's alpha coefficient [1, sec. 11.3] for inter-rater agreement. [1] K. Krippendorff, Content analysis: An introduction to its methodology. Sage publications, 2004. Args: ----- data: numpy.ndarray The data matrix, shape (n_raters, n_units). Each cell (i, j) represents the value assigned to unit j by rater i, or 0 representing no response. delta: callable, 2-D array-like or str The delta metric. Default is the nominal metric, which takes the value 1 in case c != k and 0 otherwise. """ # The following implementation was based off the Wikipedia article: # https://en.wikipedia.org/wiki/Krippendorff%27s_alpha # Response categories go from 1 to R, 0 represents no response R = np.max(data) counts = np.apply_along_axis(lambda x: np.bincount(x, minlength=R + 1), 0, data).T count_sum = np.sum(counts, 0) assert len(count_sum) == R + 1 def ordinal(c: int, k: int): if k < c: c, k = k, c s = ( sum(count_sum[g] for g in range(c, k + 1)) - (count_sum[c] + count_sum[k]) / 2 ) return s ** 2 if isinstance(delta, str): delta = { "nominal": Deltas.nominal, "ordinal": ordinal, "interval": Deltas.interval, }[delta] if not callable(delta): try: delta[0][0] except IndexError: raise TypeError("delta must be either str, callable or 2D array.") def _delta(c, k): new_delta = delta return new_delta[c][k] delta = _delta m_u = np.sum(counts[:, 1:], 1) valid = m_u >= 2 counts = counts[valid] m_u = m_u[valid] data = data[:, valid] n = np.sum(m_u) n_cku = np.matmul(counts[:, :, None], counts[:, None, :]) for i in range(R + 1): n_cku[:, i, i] = counts[:, i] * (counts[:, i] - 1) D_o = 0 for c in range(1, R + 1): for k in range(1, R + 1): D_o += delta(c, k) * n_cku[:, c, k] D_o = np.sum(D_o / (n * (m_u - 1))) D_e = 0 P_ck = np.bincount(data.flat) for c in range(1, R + 1): for k in range(1, R + 1): D_e += delta(c, k) * P_ck[c] * P_ck[k] D_e /= n * (n - 1) return 1 - D_o / D_e
98c86120287d9d4b2c7f10ad074702c2088ade8d
10,683
def enforce(action, target, creds, do_raise=True): """Verifies that the action is valid on the target in this context. :param creds: user credentials :param action: string representing the action to be checked, which should be colon separated for clarity. Or it can be a Check instance. :param target: dictionary representing the object of the action for object creation this should be a dictionary representing the location of the object e.g. {'project_id': object.project_id} :param rule_dict: instance of oslo_policy.policy.Rules, it's actually a dict, with keys are the actions to be protected and values are parsed Check trees. :raises: `exception.Forbidden` if verification fails. Actions should be colon separated for clarity. For example: * identity:list_users """ init() # Add the exception arguments if asked to do a raise extra = {} if do_raise: extra.update(exc=exception.ForbiddenAction, service=action[0], permission=action[1], do_raise=do_raise) return _ENFORCER.enforce(action, target, creds, **extra)
16cdefe38bfc56f529a735b8517d94ade7db780d
10,684
from operator import and_ from operator import or_ def query_data(session, agency_code, period, year): """ Request A file data Args: session: DB session agency_code: FREC or CGAC code for generation period: The period for which to get GTAS data year: The year for which to get GTAS data Returns: The rows using the provided dates for the given agency. """ # set a boolean to determine if the original agency code is frec or cgac frec_provided = len(agency_code) == 4 tas_gtas = tas_gtas_combo(session, period, year) # Make a list of FRECs to compare to for 011 AID entries frec_list = [] if not frec_provided: frec_list = session.query(FREC.frec_code).select_from(outerjoin(CGAC, FREC, CGAC.cgac_id == FREC.cgac_id)).\ filter(CGAC.cgac_code == agency_code).all() # Group agencies together that need to be grouped agency_array = [] if agency_code == '097': agency_array = ['017', '021', '057', '097'] elif agency_code == '1601': agency_array = ['1601', '016'] elif agency_code == '1125': agency_array = ['1125', '011'] # Save the ATA filter agency_filters = [] if not agency_array: agency_filters.append(tas_gtas.c.allocation_transfer_agency == agency_code) else: agency_filters.append(tas_gtas.c.allocation_transfer_agency.in_(agency_array)) # Save the AID filter if agency_code == '097' and not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier.in_(agency_array))) elif not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == agency_code)) else: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.fr_entity_type == agency_code)) # If we're checking a CGAC, we want to filter on all of the related FRECs for AID 011, otherwise just filter on # that FREC if frec_list: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == '011', tas_gtas.c.fr_entity_type.in_(frec_list))) elif not frec_provided: agency_filters.append(and_(tas_gtas.c.allocation_transfer_agency.is_(None), tas_gtas.c.agency_identifier == '011', tas_gtas.c.fr_entity_type == agency_code)) rows = initial_query(session, tas_gtas.c).\ filter(func.coalesce(tas_gtas.c.financial_indicator2, '') != 'F').\ filter(or_(*agency_filters)).\ group_by(tas_gtas.c.allocation_transfer_agency, tas_gtas.c.agency_identifier, tas_gtas.c.beginning_period_of_availa, tas_gtas.c.ending_period_of_availabil, tas_gtas.c.availability_type_code, tas_gtas.c.main_account_code, tas_gtas.c.sub_account_code) return rows
0eb856f699eebf95bf10ff2d3dd6c9a72ec0843a
10,685
def vocublary(vec_docs): """ vocabulary(vec_docs) -> tuple: (int avg_doc_len, updated vec_docs, corpus Vocabulary dictionary {"word": num_docs_have__this_term, ...}) vec_docs = list of documents as dictionaries [{ID:"word_i word_i+1 ..."} , {ID:"word_i word_i+1"}, ...}] """ vocabulary = {} count_vec = [] #used for aggregating doc lengths in a list to determining avg_doc_len #Extract len of docs anonymously, convert vec_docs values to c(w,d), Create corups Vocabulary as c(d,w) for key,value in vec_docs.items(): #recall: {key = "doc_ID": value = [list, of, words, in, each, document]} doc_words = {} count_vec.append(len(value)) for word in value: #convert doc word list into dict storing c(w,d) ∈ D if word in doc_words: doc_words[word] = doc_words[word] + 1 else: doc_words[word] = 1 #Next, create vocubulary c(d,w) ∈ Corpus for word,count in doc_words.items(): if word in vocabulary: vocabulary[word] = vocabulary[word] + 1 else: vocabulary[word] = 1 #last convert {ID:[list,of,words]} -> {ID: {dict:1,of:1,word:1,counts:2} } vec_docs[key] = doc_words avg_dl = sum(count_vec) / len(count_vec) return (avg_dl,vocabulary)
4e6f4df1e36c2fdf3d7d1d20750d74f91a0214b6
10,686
import warnings def _build_type(type_, value, property_path=None): """ Builds the schema definition based on the given type for the given value. :param type_: The type of the value :param value: The value to build the schema definition for :param List[str] property_path: The property path of the current type, defaults to None, optional :return: The built schema definition :rtype: Dict[str, Any] """ if not property_path: property_path = [] for (type_check, builder) in ( (is_enum_type, _build_enum_type), (is_null_type, _build_null_type), (is_bool_type, _build_bool_type), (is_string_type, _build_string_type), (is_integer_type, _build_integer_type), (is_number_type, _build_number_type), (is_array_type, _build_array_type), (is_object_type, _build_object_type), ): if type_check(type_): return builder(value, property_path=property_path) # NOTE: warning ignores type None (as that is the config var default) if type_: warnings.warn(f"unhandled translation for type {type_!r} with value {value!r}") return {}
7033e5f8bc5cd5b667f25b8554bfe3296191762f
10,688
def lidar_2darray_to_rgb(array: np.ndarray) -> np.ndarray: """Returns a `NumPy` array (image) from a 4 channel LIDAR point cloud. Args: array: The original LIDAR point cloud array. Returns: The `PyGame`-friendly image to be visualized. """ # Get array shapes. W, H, C = array.shape assert C == 2 # Select channel. img = np.c_[array, np.zeros(shape=(W, H, 1))] # Convert to 8-bit image. img = 255 * (img / img.max()) return img
69e2de793b9280b269ac8ab9f3d313e51c932c8c
10,689
from typing import Tuple from typing import Union from typing import List from typing import Dict import tqdm import torch def rollout(dataset: RPDataset, env: RPEnv, policy: Policy, batch_size: int, num_workers: int = 4, disable_progress_bar: bool = False, **kwargs) -> Tuple[Tensor, Union[List, Dict]]: """Policy evaluation rollout Args: dataset: dataset to evaluate on env: the routing simulation environment policy: policy model batch_size: size of mini-batches num_workers: num cores to distribute data loading disable_progress_bar: flag to disable tqdm progress bar Returns: tensor of final costs per instance """ costs, infos = [], [] for batch in tqdm( DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=lambda x: x, # identity -> returning simple list of instances shuffle=False # do not random shuffle data in rollout! ), disable=disable_progress_bar, ): with torch.no_grad(): cost, info = eval_episode(batch, env, policy, **kwargs) costs.append(cost.cpu()) infos.append(info) env.clear_cache() return torch.cat(costs, dim=0), infos
1b88ff01b86d567de2c78d4450825e4fd1120311
10,691
def regex_ignore_case(term_values): """ turn items in list "term_values" to regexes with ignore case """ output=[] for item in term_values: output.append(r'(?i)'+item) return output
5dbf5fba758fe91fb0bbfaed6ab3cfa5f05357eb
10,692
from typing import Callable def importance_sampling_integrator(function: Callable[..., np.ndarray], pdf: Callable[..., np.ndarray], sampler: Callable[..., int], n: int = 10000, seed: int = 1 ) -> np.array: """ Parameters ---------- function : TYPE DESCRIPTION. pdf : TYPE DESCRIPTION. sampler : TYPE DESCRIPTION. n : TYPE, optional DESCRIPTION. The default is 10000. seed : TYPE, optional DESCRIPTION. The default is 1. Returns ------- TYPE DESCRIPTION. """ # Set a random seed. np.random.seed(seed) # Generate n samples from the probability distribution. samples = sampler(n) #ipdb.set_trace() # Evaluate the function at the samples and divide by the probability # density of the distribution at those samples. sampled_values = function(samples) / pdf(samples) # Add the estimate of the integral to the estimates list. estimates = np.mean(sampled_values, axis=1) # Altered this for the batching. # Return the mean of the estimates as the estimate of the integral. return np.array(estimates)
14b6abfaa38f37430ec0e9abcd330f1392543978
10,693
from apex.amp._amp_state import _amp_state import torch def r1_gradient_penalty_loss(discriminator, real_data, mask=None, norm_mode='pixel', loss_scaler=None, use_apex_amp=False): """Calculate R1 gradient penalty for WGAN-GP. R1 regularizer comes from: "Which Training Methods for GANs do actually Converge?" ICML'2018 Diffrent from original gradient penalty, this regularizer only penalized gradient w.r.t. real data. Args: discriminator (nn.Module): Network for the discriminator. real_data (Tensor): Real input data. mask (Tensor): Masks for inpainting. Default: None. norm_mode (str): This argument decides along which dimension the norm of the gradients will be calculated. Currently, we support ["pixel" , "HWC"]. Defaults to "pixel". Returns: Tensor: A tensor for gradient penalty. """ batch_size = real_data.shape[0] real_data = real_data.clone().requires_grad_() disc_pred = discriminator(real_data) if loss_scaler: disc_pred = loss_scaler.scale(disc_pred) elif use_apex_amp: _loss_scaler = _amp_state.loss_scalers[0] disc_pred = _loss_scaler.loss_scale() * disc_pred.float() gradients = autograd.grad( outputs=disc_pred, inputs=real_data, grad_outputs=torch.ones_like(disc_pred), create_graph=True, retain_graph=True, only_inputs=True)[0] if loss_scaler: # unscale the gradient inv_scale = 1. / loss_scaler.get_scale() gradients = gradients * inv_scale elif use_apex_amp: inv_scale = 1. / _loss_scaler.loss_scale() gradients = gradients * inv_scale if mask is not None: gradients = gradients * mask if norm_mode == 'pixel': gradients_penalty = ((gradients.norm(2, dim=1))**2).mean() elif norm_mode == 'HWC': gradients_penalty = gradients.pow(2).reshape(batch_size, -1).sum(1).mean() else: raise NotImplementedError( 'Currently, we only support ["pixel", "HWC"] ' f'norm mode but got {norm_mode}.') if mask is not None: gradients_penalty /= torch.mean(mask) return gradients_penalty
d142375d89f39ae2510575d0615a878bd67e9574
10,694
import json import re def visualize(args): """Return the visualized output""" ret = "" cmd_list = json.load(args.results)['cmd_list'] cmd_list = util.filter_cmd_list(cmd_list, args.labels_to_include, args.labels_to_exclude) (cmd_list, label_map) = util.translate_dict(cmd_list, args.label_map) for cmd in cmd_list: values = [] if 'jobs' in cmd: for job in cmd['jobs']: if 'results' in job: for res in job['results']: match_list = re.findall(args.parse_regex, res['stdout']) if res['success'] and len(match_list) > 0: for match in match_list: values.append(args.py_type(match)) else: values.append("N/A") succeed_values = util.extract_succeed_results(cmd, args.parse_regex, args.py_type) mean = util.mean(succeed_values) std = util.standard_deviation(succeed_values) if args.csv: sep = args.csv_separator ret += "%s%s %.4f%s %.4f" % (label_map[cmd['label']], sep, mean, sep, std) else: ret += "%s: %s" % (label_map[cmd['label']], values) if len(succeed_values) > 0: ret += " %.4f" % mean ret += " (%.4f)" % std ret += "\n" return ret
8a9e655adfc9713785f96ab487d579a19d9d09b2
10,695
def send_request(apikey, key_root, data, endpoint): """Send a request to the akismet server and return the response.""" url = 'http://%s%s/%s/%s' % ( key_root and apikey + '.' or '', AKISMET_URL_BASE, AKISMET_VERSION, endpoint ) try: response = open_url(url, data=url_encode(data)) except: return try: return response.data.strip() finally: response.close()
aea5ac8eb0b8b91002e680376c6f2647a631e58c
10,696
def request_set_bblk_trace_options(*args): """ request_set_bblk_trace_options(options) Post a 'set_bblk_trace_options()' request. @param options (C++: int) """ return _ida_dbg.request_set_bblk_trace_options(*args)
728d7e2a7a0ef0085d4bb72763b2a019d89896ec
10,697
def range_str(values: iter) -> str: """ Given a list of integers, returns a terse string expressing the unique values. Example: indices = [0, 1, 2, 3, 4, 7, 8, 11, 15, 20] range_str(indices) >> '0-4, 7-8, 11, 15 & 20' :param values: An iterable of ints :return: A string of unique value ranges """ trial_str = '' values = list(set(values)) for i in range(len(values)): if i == 0: trial_str += str(values[i]) elif values[i] - (values[i - 1]) == 1: if i == len(values) - 1 or values[i + 1] - values[i] > 1: trial_str += f'-{values[i]}' else: trial_str += f', {values[i]}' # Replace final comma with an ampersand k = trial_str.rfind(',') if k > -1: trial_str = f'{trial_str[:k]} &{trial_str[k + 1:]}' return trial_str
85dedc97342b07dcb2a8dda753768309aa31ed43
10,698
import json def analyze(request): """ 利用soar分析SQL :param request: :return: """ text = request.POST.get('text') instance_name = request.POST.get('instance_name') db_name = request.POST.get('db_name') if not text: result = {"total": 0, "rows": []} else: soar = Soar() if instance_name != '' and db_name != '': soar_test_dsn = SysConfig().get('soar_test_dsn') # 获取实例连接信息 instance_info = Instance.objects.get(instance_name=instance_name) online_dsn = "{user}:{pwd}@{host}:{port}/{db}".format(user=instance_info.user, pwd=instance_info.raw_password, host=instance_info.host, port=instance_info.port, db=db_name) else: online_dsn = '' soar_test_dsn = '' args = {"report-type": "markdown", "query": '', "online-dsn": online_dsn, "test-dsn": soar_test_dsn, "allow-online-as-test": "false"} rows = generate_sql(text) for row in rows: args['query'] = row['sql'].replace('"', '\\"').replace('`', '').replace('\n', ' ') cmd_args = soar.generate_args2cmd(args=args, shell=True) stdout, stderr = soar.execute_cmd(cmd_args, shell=True).communicate() row['report'] = stdout if stdout else stderr result = {"total": len(rows), "rows": rows} return HttpResponse(json.dumps(result, cls=ExtendJSONEncoder, bigint_as_string=True), content_type='application/json')
a033774727242783357a35a6608d7154f77bc016
10,699
import math def sin(c): """ sin(a+x)= sin(a) cos(x) + cos(a) sin(x) """ if not isinstance(c,pol): return math.sin(c) a0,p=c.separate(); lst=[math.sin(a0),math.cos(a0)] for n in range(2,c.order+1): lst.append( -lst[-2]/n/(n-1)) return phorner(lst,p)
a6ec312df4362c130343133dae9a09b377f56cf5
10,700
def _calc_metadata() -> str: """ Build metadata MAY be denoted by appending a plus sign and a series of dot separated identifiers immediately following the patch or pre-release version. Identifiers MUST comprise only ASCII alphanumerics and hyphen [0-9A-Za-z-]. """ if not is_appveyor: return "local-build" is_pr = PR_NUM in env assert (PR_NUM in env) == (PR_BRANCH in env) assert VER in env if is_pr: return "{VER}.pr{PR_NUM}-{PR_BRANCH}".format(**env) else: if env[BRANCH] != "master": # Shouldn't happen, since side branches are not built. return "{VER}.{BRANCH}".format(**env) else: return "{VER}".format(**env)
ccbd4912622808b5845d8e30546d6eb27e299342
10,701
import functools def authorization_required(func): """Returns 401 response if user is not logged-in when requesting URL with user ndb.Key in it or Returns 403 response if logged-in user's ndb.Key is different from ndb.Key given in requested URL. """ @functools.wraps(func) def decorated_function(*pa, **ka): # pylint: disable=missing-docstring if auth.is_authorized(ndb.Key(urlsafe=ka['key'])): return func(*pa, **ka) if not auth.is_logged_in(): return abort(401) return abort(403) return decorated_function
12c0d645b0b26bf419e413866afaf1b4e7a19869
10,702
import torch def pad_col(input, val=0, where='end'): """Addes a column of `val` at the start of end of `input`.""" if len(input.shape) != 2: raise ValueError(f"Only works for `phi` tensor that is 2-D.") pad = torch.zeros_like(input[:, :1]) if val != 0: pad = pad + val if where == 'end': return torch.cat([input, pad], dim=1) elif where == 'start': return torch.cat([pad, input], dim=1) raise ValueError(f"Need `where` to be 'start' or 'end', got {where}")
77caa028bb76da922ba12492f077811d2344c2a9
10,703
from typing import List import itertools def seats_found_ignoring_floor(data: List[List[str]], row: int, col: int) -> int: """ Search each cardinal direction util we hit a wall or a seat. If a seat is hit, determine if it's occupied. """ total_seats_occupied = 0 cardinal_direction_operations = itertools.product([-1, 0, 1], repeat=2) for row_modifier, col_modifier in cardinal_direction_operations: if row_modifier or col_modifier: total_seats_occupied += next_seat_on_path_occupied( data, row, col, row_modifier, col_modifier ) return total_seats_occupied
e5442d757df6304da42f817c975969723ad0abca
10,704
def product_design_space() -> ProductDesignSpace: """Build a ProductDesignSpace for testing.""" alpha = RealDescriptor('alpha', lower_bound=0, upper_bound=100, units="") beta = RealDescriptor('beta', lower_bound=0, upper_bound=100, units="") gamma = CategoricalDescriptor('gamma', categories=['a', 'b', 'c']) dimensions = [ ContinuousDimension(alpha, lower_bound=0, upper_bound=10), ContinuousDimension(beta, lower_bound=0, upper_bound=10), EnumeratedDimension(gamma, values=['a', 'c']) ] return ProductDesignSpace(name='my design space', description='does some things', dimensions=dimensions)
93468cc7aaeb6a6bf7453d2f3e974bc28dece31f
10,705
def compute_percents_of_labels(label): """ Compute the ratio/percentage size of the labels in an labeled image :param label: the labeled 2D image :type label: numpy.ndarray :return: An array of relative size of the labels in the image. Indices of the sizes in the array \ is corresponding to the labels in the labeled image. E.g. output [0.2, 0.5, 0.3] means label 0's size \ is 0.2 of the labeled image, label 1' size is 0.5 of the labeled image, and label 2's size is 0.3 of \ the labeled image. :rtype: numpy.ndarray """ # Get the bins of the histogram. Since the last bin of the histogram is [label, label+1] # We add 1 to the number of different labels in the labeled image when generating bins num_labels = np.arange(0, len(np.unique(label)) + 1) # Histogramize the label image and get the frequency array percent_of_dominance (percent_of_dominance, _) = np.histogram(label, bins=num_labels) # Convert the dtype of frequency array to float percent_of_dominance = percent_of_dominance.astype("float") # Normalized by the sum of frequencies (number of pixels in the labeled image) percent_of_dominance /= percent_of_dominance.sum() return percent_of_dominance
6dfe34b7da38fa17a5aa4e42acc5c812dd126f77
10,706
def removepara(H,M,Hmin = '1/2',Hmax = 'max',output=-1,kwlc={}): """ Retrieve lineal contribution to cycle and remove it from cycle. **H** y **M** corresponds to entire cycle (two branches). I.e. **H** starts and ends at the same value (or an aproximate value). El ciclo M vs H se separa en sus dos ramas. H1,M1 y H2,M2, defined by:: H1,M1: curva con dH/dt < 0. El campo decrece con el tiempo. H2,M2: curva con dH/dt > 0. El campo aumenta con el tiempo. Con la variable global FIGS = True shows intermediate states of proceso de determinarion y linear contribution removing. Figure Shows **Hmin** and **Hmax** positions in the cycle. output: kind of output, (0 or -1) out.params or (1) out. (v 0.210304) Note: output is set to -1 as default to achive backward compatibility. But it should be changed in future to 1. kwlc = dictionary with kwargs to be passed to lienar contribution. Returns: if output = -1: H1,M1,H2,M2,[pendiente,salto,desp] if output = 1: returns plain objtect with previous attributes and others. """ if PRINT: print('**********************************************************') print('removepara ') print('**********************************************************') if Hmax == 'max': Hmax = max(abs(H)) if Hmin == '1/2': Hmin = 0.5*max(abs(H)) H1,M1,H2,M2 = splitcycle(H,M) o1 = linealcontribution(H1,M1,[Hmax,Hmin],label='dH/dt < 0',output=output,**kwlc) o2 = linealcontribution(H2,M2,[Hmax,Hmin],label='dH/dt > 0',output=output,**kwlc) if output == 1: p1 = o1.params p2 = o2.params elif output == -1: p1 = o1 p2 = o2 Ms = (p1['Ms'].value + p2['Ms'].value)*0.5 if p1['Ms'].stderr == None or p2['Ms'].stderr == None: eMs = None else: eMs = (p1['Ms'].stderr + p2['Ms'].stderr)*0.5 # Fin de ajustes if PRINT: print('slope 1:',p1['Xi']) print('slope 2:',p2['Xi']) print('Ms 1 :',p1['Ms']) print('Ms 2 :',p2['Ms']) print('Ms :%s +/- %s'%(Ms,eMs)) print('offset 1 :',p1['offset']) print('offset 2 :',p2['offset']) print('a 1 :',p1['a']) print('a 2 :',p2['a']) print('b 1 :',p1['b']) print('b 2 :',p2['b']) # Armamos una pendiente promedio a partir de la obtenida para cada rama. # Corregimos ambas ramas eliminando esta pendiente. pend =(p1['Xi']+p2['Xi'])/2. salto=(p1['Ms']+p2['Ms'])/2. desp =(p1['offset']+p2['offset'])/2. M1 = (M1-H1*pend) M2 = (M2-H2*pend) if FIGS: __newfig__() pyp.plot(H1,M1,'b.-',label = 'dH/dt < 0') pyp.plot(H2,M2,'r.-',label = 'dH/dt > 0') pyp.axhline(salto,color = 'k', alpha =0.5) pyp.axhline(-salto,color= 'k', alpha =0.5) pyp.legend(loc=0) if output == 1: out = ReturnClass() out.H1 = H1 out.H2 = H2 out.M1 = M1 out.M2 = M2 out.pend = pend out.desp = desp out.salto = salto out.o1 = o1 out.o2 = o2 return out else: return H1,M1,H2,M2,[pend,salto,desp]
1d70c60f60b3ab7b976a0ec12a3541e5a7e53426
10,707
def flush(): """ Remove all mine contents of minion. :rtype: bool :return: True on success CLI Example: .. code-block:: bash salt '*' mine.flush """ if __opts__["file_client"] == "local": return __salt__["data.update"]("mine_cache", {}) load = { "cmd": "_mine_flush", "id": __opts__["id"], } return _mine_send(load, __opts__)
fe7d120362393fcb4380473cdaf76e153646644a
10,708
def polygon_to_shapely_polygon_wkt_compat(polygon): """ Convert a Polygon to its Shapely Polygon representation but with WKT compatible coordinates. """ shapely_points = [] for location in polygon.locations(): shapely_points.append(location_to_shapely_point_wkt_compat(location)) return shapely.geometry.Polygon(shapely.geometry.LineString(shapely_points))
54c889d2071cc8408c2bb4b739a30c3458c80f4c
10,709
import six def ccd_process(ccd, oscan=None, trim=None, error=False, masterbias=None, bad_pixel_mask=None, gain=None, rdnoise=None, oscan_median=True, oscan_model=None): """Perform basic processing on ccd data. The following steps can be included: * overscan correction * trimming of the image * create edeviation frame * gain correction * add a mask to the data * subtraction of master bias The task returns a processed `ccdproc.CCDData` object. Parameters ---------- ccd: `ccdproc.CCDData` Frame to be reduced oscan: None, str, or, `~ccdproc.ccddata.CCDData` For no overscan correction, set to None. Otherwise proivde a region of `ccd` from which the overscan is extracted, using the FITS conventions for index order and index start, or a slice from `ccd` that contains the overscan. trim: None or str For no trim correction, set to None. Otherwise proivde a region of `ccd` from which the image should be trimmed, using the FITS conventions for index order and index start. error: boolean If True, create an uncertainty array for ccd masterbias: None, `~numpy.ndarray`, or `~ccdproc.CCDData` A materbias frame to be subtracted from ccd. bad_pixel_mask: None or `~numpy.ndarray` A bad pixel mask for the data. The bad pixel mask should be in given such that bad pixels havea value of 1 and good pixels a value of 0. gain: None or `~astropy.Quantity` Gain value to multiple the image by to convert to electrons rdnoise: None or `~astropy.Quantity` Read noise for the observations. The read noise should be in `~astropy.units.electron` oscan_median : bool, optional If true, takes the median of each line. Otherwise, uses the mean oscan_model : `~astropy.modeling.Model`, optional Model to fit to the data. If None, returns the values calculated by the median or the mean. Returns ------- ccd: `ccdproc.CCDData` Reduded ccd """ # make a copy of the object nccd = ccd.copy() # apply the overscan correction if isinstance(oscan, ccdproc.CCDData): nccd = ccdproc.subtract_overscan(nccd, overscan=oscan, median=oscan_median, model=oscan_model) elif isinstance(oscan, six.string_types): nccd = ccdproc.subtract_overscan(nccd, fits_section=oscan, median=oscan_median, model=oscan_model) elif oscan is None: pass else: raise TypeError('oscan is not None, a string, or CCDData object') # apply the trim correction if isinstance(trim, six.string_types): nccd = ccdproc.trim_image(nccd, fits_section=trim) elif trim is None: pass else: raise TypeError('trim is not None or a string') # create the error frame if error and gain is not None and rdnoise is not None: nccd = ccdproc.create_deviation(nccd, gain=gain, rdnoise=rdnoise) elif error and (gain is None or rdnoise is None): raise ValueError( 'gain and rdnoise must be specified to create error frame') # apply the bad pixel mask if isinstance(bad_pixel_mask, np.ndarray): nccd.mask = bad_pixel_mask elif bad_pixel_mask is None: pass else: raise TypeError('bad_pixel_mask is not None or numpy.ndarray') # apply the gain correction if isinstance(gain, u.quantity.Quantity): nccd = ccdproc.gain_correct(nccd, gain) elif gain is None: pass else: raise TypeError('gain is not None or astropy.Quantity') # test subtracting the master bias if isinstance(masterbias, ccdproc.CCDData): nccd = nccd.subtract(masterbias) elif isinstance(masterbias, np.ndarray): nccd.data = nccd.data - masterbias elif masterbias is None: pass else: raise TypeError( 'masterbias is not None, numpy.ndarray, or a CCDData object') return nccd
610a53693ff84ba2e1a68662dd0a19e55228c129
10,710
def get_role_keyids(rolename): """ <Purpose> Return a list of the keyids associated with 'rolename'. Keyids are used as identifiers for keys (e.g., rsa key). A list of keyids are associated with each rolename. Signing a metadata file, such as 'root.json' (Root role), involves signing or verifying the file with a list of keys identified by keyid. <Arguments> rolename: An object representing the role's name, conformant to 'ROLENAME_SCHEMA' (e.g., 'root', 'snapshot', 'timestamp'). <Exceptions> tuf.FormatError, if 'rolename' does not have the correct object format. tuf.UnknownRoleError, if 'rolename' cannot be found in the role database. tuf.InvalidNameError, if 'rolename' is incorrectly formatted. <Side Effects> None. <Returns> A list of keyids. """ # Raises tuf.FormatError, tuf.UnknownRoleError, or tuf.InvalidNameError. _check_rolename(rolename) roleinfo = _roledb_dict[rolename] return roleinfo['keyids']
4888a09740560d760bfffe9eecd50bfa67ff0613
10,711
def _DX(X): """Computes the X finite derivarite along y and x. Arguments --------- X: (m, n, l) numpy array The data to derivate. Returns ------- tuple Tuple of length 2 (Dy(X), Dx(X)). Note ---- DX[0] which is derivate along y has shape (m-1, n, l). DX[1] which is derivate along x has shape (m, n-1, l). """ return (X[1:, :, :] - X[:-1, :, :], # D along y X[:, 1:, :] - X[:, 0:-1, :]) # D along x
4aff05c2c25089c9f93b762a18dad42b0142db09
10,712
def load_spectra_from_dataframe(df): """ :param df:pandas dataframe :return: """ total_flux = df.total_flux.values[0] spectrum_file = df.spectrum_filename.values[0] pink_stride = df.spectrum_stride.values[0] spec = load_spectra_file(spectrum_file, total_flux=total_flux, pinkstride=pink_stride, as_spectrum=True) return spec
31d1cbbee8d999dac5ee0d7f8d4c71f7f58afc3b
10,713
def included_element(include_predicates, exclude_predicates, element): """Return whether an index element should be included.""" return (not any(evaluate_predicate(element, ep) for ep in exclude_predicates) and (include_predicates == [] or any(evaluate_predicate(element, ip) for ip in include_predicates)))
00e0d66db26e8bca7e3cb8505596247065422cb6
10,714
def _insertstatushints(x): """Insert hint nodes where status should be calculated (first path) This works in bottom-up way, summing up status names and inserting hint nodes at 'and' and 'or' as needed. Thus redundant hint nodes may be left. Returns (status-names, new-tree) at the given subtree, where status-names is a sum of status names referenced in the given subtree. """ if x is None: return (), x op = x[0] if op in {'string', 'symbol', 'kindpat'}: return (), x if op == 'not': h, t = _insertstatushints(x[1]) return h, (op, t) if op == 'and': ha, ta = _insertstatushints(x[1]) hb, tb = _insertstatushints(x[2]) hr = ha + hb if ha and hb: return hr, ('withstatus', (op, ta, tb), ('string', ' '.join(hr))) return hr, (op, ta, tb) if op == 'or': hs, ts = zip(*(_insertstatushints(y) for y in x[1:])) hr = sum(hs, ()) if sum(bool(h) for h in hs) > 1: return hr, ('withstatus', (op,) + ts, ('string', ' '.join(hr))) return hr, (op,) + ts if op == 'list': hs, ts = zip(*(_insertstatushints(y) for y in x[1:])) return sum(hs, ()), (op,) + ts if op == 'func': f = getsymbol(x[1]) # don't propagate 'ha' crossing a function boundary ha, ta = _insertstatushints(x[2]) if getattr(symbols.get(f), '_callstatus', False): return (f,), ('withstatus', (op, x[1], ta), ('string', f)) return (), (op, x[1], ta) raise error.ProgrammingError('invalid operator %r' % op)
956fe03a7f5747f93034501e63cc31ff2956c2d6
10,715
def make_sine(freq: float, duration: float, sr=SAMPLE_RATE): """Return sine wave based on freq in Hz and duration in seconds""" N = int(duration * sr) # Number of samples return np.sin(np.pi*2.*freq*np.arange(N)/sr)
622b03395da5d9f8a22ac0ac30282e23d6596055
10,716
def _widget_abbrev(o): """Make widgets from abbreviations: single values, lists or tuples.""" float_or_int = (float, int) if isinstance(o, (list, tuple)): if o and all(isinstance(x, string_types) for x in o): return DropdownWidget(values=[unicode_type(k) for k in o]) elif _matches(o, (float_or_int, float_or_int)): min, max, value = _get_min_max_value(o[0], o[1]) if all(isinstance(_, int) for _ in o): cls = IntSliderWidget else: cls = FloatSliderWidget return cls(value=value, min=min, max=max) elif _matches(o, (float_or_int, float_or_int, float_or_int)): step = o[2] if step <= 0: raise ValueError("step must be >= 0, not %r" % step) min, max, value = _get_min_max_value(o[0], o[1], step=step) if all(isinstance(_, int) for _ in o): cls = IntSliderWidget else: cls = FloatSliderWidget return cls(value=value, min=min, max=max, step=step) else: return _widget_abbrev_single_value(o)
f5a57f2d74811ff21ea56631fd9fb22fea4ae91f
10,717
def get_conditions(): """ List of conditions """ return [ 'blinded', 'charmed', 'deafened', 'fatigued', 'frightened', 'grappled', 'incapacitated', 'invisible', 'paralyzed', 'petrified', 'poisoned', 'prone', 'restrained', 'stunned', 'unconscious', 'exhaustion' ]
816ccb50581cafa20bdefed2a075a3370704cef4
10,718
def negative_predictive_value(y_true: np.array, y_score: np.array) -> float: """ Calculate the negative predictive value (duplicted in :func:`precision_score`). Args: y_true (array-like): An N x 1 array of ground truth values. y_score (array-like): An N x 1 array of predicted values. Returns: npv (float): The negative predictive value. """ tn = true_negative(y_true, y_score) fn = false_negative(y_true, y_score) npv = tn / (tn + fn) return npv
28f1d4fce76b6201c6dbeb99ad19337ca84b74c5
10,719
def flat_list(*alist): """ Flat a tuple, list, single value or list of list to flat list e.g. >>> flat_list(1,2,3) [1, 2, 3] >>> flat_list(1) [1] >>> flat_list([1,2,3]) [1, 2, 3] >>> flat_list([None]) [] """ a = [] for x in alist: if x is None: continue if isinstance(x, (tuple, list)): a.extend([i for i in x if i is not None]) else: a.append(x) return a
5a68495e507e9a08a9f6520b83a912cf579c6688
10,720
from typing import List def do_regression(X_cols: List[str], y_col: str, df: pd.DataFrame, solver='liblinear', penalty='l1', C=0.2) -> LogisticRegression: """ Performs regression. :param X_cols: Independent variables. :param y_col: Dependent variable. :param df: Data frame. :param solver: Solver. Default is liblinear. :param penalty: Penalty. Default is ``l1``. :param C: Strength of regularlization. Default is ``0.2``. :return: Logistic regression model. """ X = df[X_cols] y = df[y_col] model = LogisticRegression(penalty=penalty, solver=solver, C=C) model.fit(X, y) return model
8a65d49e64e96b3fc5271545afe1761382ec1396
10,721
def gaussian_smooth(var, sigma): """Apply a filter, along the time dimension. Applies a gaussian filter to the data along the time dimension. if the time dimension is missing, raises an exception. The DataArray that is returned is shortened along the time dimension by sigma, half of sigma on each end. The width of the window is 2xsigma + 1. """ if type(var) is not xr.DataArray: raise TypeError("First argument must be an Xarray DataArray.") if 'time' not in var.dims: raise IndexError("Time coordinate not found.") # The convolution window must have the same number of dimensions as the # variable. The length of every dimension is one, except time, which is # 2xsigma + 1. var_dimensions = np.ones( len(var.coords), dtype=np.int ) timepos = var.dims.index('time') var_dimensions[timepos] = 2*sigma + 1 # Use a normalized gaussian so the average of the variable does not change. gausswin = gaussian(2*sigma + 1, sigma) gausswin = gausswin/np.sum(gausswin) # The window series used in the convolve operation is the gaussion for the # time dimension and a singleton zero for the other dimensions. This way # the multidimension covolve is: # # g(m,n,...) = \sum_k \sum_l ... f[k,l,...]h[k-m]\delta_l0... # timeslice_specification = [0 for x in range(len(var.coords))] timeslice_specification[timepos] = slice(None) win = np.zeros(var_dimensions) win[timeslice_specification] = gausswin # The third parameter 'same' specifies a return array of the same shape as # var. out = convolve(var, win, 'same') outda = xr.DataArray(out, name=var.name, coords=var.coords, dims=var.dims) outda.attrs = var.attrs # # Append "(Gaussian filtered: sigma = ###" to the end of th variable name. # newname = "{0} (Gaussian filtered: sigma = {1})".format(var.name, sigma) # outda.name = newname return outda
809ec7b135ab7d915dd62ad10baea71bfd146e34
10,722
import logging def make_ood_dataset(ood_dataset_cls: _BaseDatasetClass) -> _BaseDatasetClass: """Generate a BaseDataset with in/out distribution labels.""" class _OodBaseDataset(ood_dataset_cls): """Combine two datasets to form one with in/out of distribution labels.""" def __init__( self, in_distribution_dataset: BaseDataset, shuffle_datasets: bool = False, **kwargs): super().__init__(**kwargs) # This should be the builder for whatever split will be considered # in-distribution (usually the test split). self._in_distribution_dataset = in_distribution_dataset self._shuffle_datasets = shuffle_datasets def load(self, *, preprocess_fn=None, batch_size: int = -1) -> tf.data.Dataset: # Set up the in-distribution dataset using the provided dataset builder. if preprocess_fn: dataset_preprocess_fn = preprocess_fn else: dataset_preprocess_fn = ( self._in_distribution_dataset._create_process_example_fn()) # pylint: disable=protected-access dataset_preprocess_fn = ops.compose( dataset_preprocess_fn, _create_ood_label_fn(True)) dataset = self._in_distribution_dataset.load( preprocess_fn=dataset_preprocess_fn, batch_size=batch_size) # Set up the OOD dataset using this class. if preprocess_fn: ood_dataset_preprocess_fn = preprocess_fn else: ood_dataset_preprocess_fn = super()._create_process_example_fn() ood_dataset_preprocess_fn = ops.compose( ood_dataset_preprocess_fn, _create_ood_label_fn(False)) ood_dataset = super().load( preprocess_fn=ood_dataset_preprocess_fn, batch_size=batch_size) # We keep the fingerprint id in both dataset and ood_dataset # Combine the two datasets. try: combined_dataset = dataset.concatenate(ood_dataset) except TypeError: logging.info( 'Two datasets have different types, concat feature and label only') def clean_keys(example): # only keep features and labels, remove the rest return { 'features': example['features'], 'labels': example['labels'], 'is_in_distribution': example['is_in_distribution'] } combined_dataset = dataset.map(clean_keys).concatenate( ood_dataset.map(clean_keys)) if self._shuffle_datasets: combined_dataset = combined_dataset.shuffle(self._shuffle_buffer_size) return combined_dataset @property def num_examples(self): return ( self._in_distribution_dataset.num_examples + super().num_examples) return _OodBaseDataset
c1c26206e352932d3a5397f047365c8c5c8b7fa7
10,723
def _title_case(value): """ Return the title of the string but the first letter is affected. """ return value[0].upper() + value[1:]
037bce973580f69d87c2e3b4e016b626a2b76abb
10,724