content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
from .esri_basemap import esrimap
def classFactory(iface): # pylint: disable=invalid-name
"""Load esrimap class from file esrimap.
:param iface: A QGIS interface instance.
:type iface: QgsInterface
"""
#
return esrimap(iface) | 3e067a97cba21a07c818077e4207cd8e337143d9 | 8,849 |
def gpib_open(name):
"""
Start a device session.
Returns a unique integer for the instrument at the specified GPIB address.
For example::
>>> gpib_open(lan[158.154.1.110]:19)
4
@param name : LAN/GPIB address of the device
@type name : str
@return: int
"""
(devtype,devID) = name.split()
address = eval(devtype)[devID]['addr']
return _open(address) | fa9e87a3873248866586758c0b0f370a3ad29e6e | 8,850 |
def myjobs_view(request):
"""
Renderbox view
:param request:
:return:
"""
return render(request, 'renderbox/myjobs.html') | ac0ffbc92a33657a165beb5e12905e3dc495c943 | 8,851 |
def _match_contact(filter_criteria):
"""
This default matching strategy function will attempt to get a single result
for the specified criteria.
It will fail with an `unmatched` result if there are no matching contacts.
It will fail with a `multiple_matches` result if there are multiple matches
for this criteria.
"""
contact = None
try:
contact = get_queryset_object(Contact.objects.all(), **filter_criteria)
contact_matching_status = ContactMatchingStatus.matched
except Contact.DoesNotExist:
contact_matching_status = ContactMatchingStatus.unmatched
except Contact.MultipleObjectsReturned:
contact_matching_status = ContactMatchingStatus.multiple_matches
return contact, contact_matching_status | 088199ac26dc226e1412b43ed0c9b380c669c64e | 8,853 |
from typing import Generator
def get_objects_dictionary():
"""
creates a dictionary with the types and the circuit objects
:return: Dictionary instance
"""
object_types = {'bus': Bus(),
'load': Load(),
'static_generator': StaticGenerator(),
'battery': Battery(),
'generator': Generator(),
'shunt': Shunt(),
'wires': Wire(),
'overhead_line_types': Tower(),
'underground_cable_types': UndergroundLineType(),
'sequence_line_types': SequenceLineType(),
'transformer_types': TransformerType(),
'branch': Branch(),
'transformer2w': Transformer2W(),
'line': Line(),
'dc_line': DcLine(None, None),
'hvdc': HvdcLine(),
'vsc': VSC(Bus(), Bus(is_dc=True)),
}
return object_types | bd82c2dc30877f841e4275aafbe054849b6f6ba2 | 8,854 |
def create_stripe_onboarding_link(request, stripe_id=None,):
"""Creates stripe connect onboarding link by calling Stripe API."""
account_links = stripe.AccountLink.create(
account=stripe_id,
return_url=request.build_absolute_uri(
reverse("users:stripe_callback")
),
refresh_url=request.build_absolute_uri(
reverse("users:stripe_authorize")
),
type="account_onboarding",
)
return account_links | 1dd1e7c50645fb5eaa36d7426abd5cff198e1610 | 8,855 |
def add_scheme_if_missing(url):
"""
>>> add_scheme_if_missing("example.org")
'http://example.org'
>>> add_scheme_if_missing("https://example.org")
'https://example.org'
"""
if "//" not in url:
url = "http://%s" % url
return url | 97a33ce1f60ab67e6a807ef1bd1d95250b5d18c6 | 8,856 |
from typing import Dict
def _extract_assembly_information(job_context: Dict) -> Dict:
"""Determine the Ensembl assembly version and name used for this index.
Ensembl will periodically release updated versions of the
assemblies which are where the input files for this processor
comes from. All divisions other than the main one have identical
release versions, but we don't know which division these files
came from so we can't just hit thier API again. Therefore, look at
the URL we used to get the files because it contains the assembly
version and name.
I'll admit this isn't the most elegant solution, but since the
transcriptome index's only database model is the OriginalFiles
until processing is complete, there's no other way to pass this
information through to this processor without modifying the
OriginalFile model.
The URL path we're attempting follows this pattern (defined in the surveyor)
ftp://ftp.{url_root}/gtf/{species_sub_dir}/{filename_species}.{assembly_name}.{assembly_version}.gtf.gz
and we are attempting to extract {assembly_version} and {assembly_name}.
"""
original_files = job_context["original_files"]
for og_file in original_files:
if ".gtf.gz" in og_file.source_filename:
extensionless_url = og_file.source_url[:-7]
version_start_index = extensionless_url.rfind(".") + 1
job_context["assembly_version"] = extensionless_url[version_start_index:]
# Decrement the index to skip the period.
versionless_url = extensionless_url[:version_start_index-1]
assembly_name_start_index = versionless_url.rfind(".") + 1
job_context["assembly_name"] = versionless_url[assembly_name_start_index:]
return job_context | b78513b826c0a12bf87563095e33320aee328b76 | 8,857 |
def fixture_circle_2() -> Circle:
"""Return an example circle."""
return Circle(Point(0.0, 0.0), 1.0) | 4040cb356a1e09cfe83280711d93a43b9352ff66 | 8,858 |
from warnings import warn
import logging
from fparser import api
from loopy.frontend.fortran.translator import F2LoopyTranslator
from loopy.transform.callable import merge
from loopy.frontend.fortran.translator import specialize_fortran_division
def parse_fortran(source, filename="<floopy code>", free_form=None, strict=None,
seq_dependencies=None, auto_dependencies=None, target=None):
"""
:returns: a :class:`loopy.TranslationUnit`
"""
parse_plog = ProcessLogger(logger, "parsing fortran file '%s'" % filename)
if seq_dependencies is not None and auto_dependencies is not None:
raise TypeError(
"may not specify both seq_dependencies and auto_dependencies")
if auto_dependencies is not None:
warn("auto_dependencies is deprecated, use seq_dependencies instead",
DeprecationWarning, stacklevel=2)
seq_dependencies = auto_dependencies
if seq_dependencies is None:
seq_dependencies = True
if free_form is None:
free_form = True
if strict is None:
strict = True
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter("%(name)-12s: %(levelname)-8s %(message)s")
console.setFormatter(formatter)
logging.getLogger("fparser").addHandler(console)
tree = api.parse(source, isfree=free_form, isstrict=strict,
analyze=False, ignore_comments=False)
if tree is None:
raise LoopyError("Fortran parser was unhappy with source code "
"and returned invalid data (Sorry!)")
f2loopy = F2LoopyTranslator(filename, target=target)
f2loopy(tree)
kernels = f2loopy.make_kernels(seq_dependencies=seq_dependencies)
prog = merge(kernels)
all_kernels = [clbl.subkernel
for clbl in prog.callables_table.values()]
for knl in all_kernels:
prog.with_kernel(_add_assignees_to_calls(knl, all_kernels))
if len(all_kernels) == 1:
# guesssing in the case of only one function
prog = prog.with_entrypoints(all_kernels[0].name)
prog = specialize_fortran_division(prog)
parse_plog.done()
return prog | 69d85ba20fd429598d3441297a89a12933f69925 | 8,859 |
def compute_sources(radius, evolved_vars):
"""
Computes source terms for the symmetry.
"""
mass_density = evolved_vars[0]
momentum_density = evolved_vars[1]
energy_density = evolved_vars[2]
factor = -_symmetry_alpha / radius
pressure = compute_pressure(mass_density, momentum_density, energy_density)
return (factor * momentum_density,
factor * momentum_density**2 / mass_density, factor *
(energy_density + pressure) * momentum_density / mass_density) | f2c7c68f3d00a063f9a29b220f98f71c6bb02aef | 8,860 |
def average_pq(ps, qs):
""" average the multiple position and quaternion array
Args:
ps (np.array): multiple position array of shape Nx3
qs (np.array): multiple quaternion array of shape Nx4
Returns:
p_mean (np.array): averaged position array
q_mean (np.array): averaged quaternion array
"""
p_average = np.mean(np.asarray(ps), axis=0)
q_average = average_q(np.asarray(qs))
return p_average, q_average | b7064d75f07361d60375de1dad91e0139533b042 | 8,861 |
def logobase(**kwargs):
"""Create a PyGraphviz graph for a logo."""
ag = pygraphviz.AGraph(bgcolor='#D0D0D0', strict=False, directed=True, ranksep=0.3, **kwargs)
ag.edge_attr['penwidth'] = 1.4
ag.edge_attr['arrowsize'] = 0.8
return ag | 60772de3f3b33f58559ecfd3293cffc26cfe8e70 | 8,862 |
import torch
def integral_raycasting(
pixels: Tensor,
mu: Tensor,
rho: Tensor,
lambd: Tensor,
appearance: Tensor,
background_appearance: Tensor,
K: Tensor,
dist_coef: Tensor = None,
alpha: float = 2.5e-2,
beta: float = 2e0,
eps: float = 1e-8,
) -> Tensor:
"""
:param pixels: [H, W, 3, 1]
:param mu: [*, N, 3, 1]
:param rho: [*, N, 3, 3]
:param lambd: [*, N, 3, 1]
:param appearance: [*, N, 3]
:param background_appearance: [*, 1, 3]
:param K: [*, 3, 3]
:param dist_coef: [*, D]
:param alpha:
:param beta:
:param function:
:param eps:
:return:
"""
rays = pixel_grid_to_ray_grid(
xyz=pixels,
K=K,
dist_coef=dist_coef,
)
lambd, alpha = invert_lambd(
lambd=lambd,
alpha=alpha,
eps=eps,
)
rays_sigma_rays, mu_sigma_mu, rays_sigma_mu = compute_quantities(
rays=rays,
mu=mu,
rho=rho,
lambd=lambd,
)
z = optimal_z(rays_sigma_mu=rays_sigma_mu, rays_sigma_rays=rays_sigma_rays, eps=eps)
z_background = beta * max_z(z=z)
weights = density(x=z) * integral(
rays_sigma_rays=rays_sigma_rays,
mu_sigma_mu=mu_sigma_mu,
rays_sigma_mu=rays_sigma_mu,
alpha=alpha,
eps=eps,
)
weight_background = density(x=z_background) * background_integral(
z=z_background,
alpha=alpha,
)
shape = weights.shape[:-1] + weight_background.shape[-1:]
weight_background = weight_background.expand(shape)
weights = torch.cat([weights, weight_background], dim=-1)
weights = normalize_weights(weights=weights, eps=eps)
appearance = torch.cat([appearance, background_appearance], dim=-2)
image = splat_image(weights=weights, appearance=appearance)
return image | fc5165c04732ea021d105df5d5f997524b037abd | 8,863 |
async def cors_handler(request, handler):
"""Middleware to add CORS response headers
"""
response = await handler(request)
response.headers['Access-Control-Allow-Origin'] = '*'
return response | c9f33261b1fb2e6dc3ab3139e657106a94c5bfd1 | 8,864 |
def validate_image(task: ExternalTask):
"""
To simulate BPMN/Failure/Success, this handler uses image name variable (to be passed when launching the process)
"""
log_context = {"WORKER_ID": task.get_worker_id(),
"TASK_ID": task.get_task_id(),
"TOPIC": task.get_topic_name()}
log_with_context("executing validate_image", log_context)
img_name = task.get_variable('imgName')
if "poor" in img_name:
return task.bpmn_error("POOR_QUALITY_IMAGE", "Image quality is bad",
{"img_rejection_code": "POOR_QUALITY_CODE_XX",
"img_rejection_reason": f"Image quality must be at least GOOD"})
elif "jpg" in img_name:
return task.complete({"img_approved": True})
elif "corrupt" in img_name:
return task.failure("Cannot validate image", "image is corrupted", 0, default_config.get("retryTimeout"))
else:
return task.bpmn_error("INVALID_IMAGE", "Image extension must be jpg",
{"img_rejection_code": "INVALID_IMG_NAME",
"img_rejection_reason": f"Image name {img_name} is invalid"}) | 97413656181bfc4480dc7b2a195713e8124d44f2 | 8,865 |
def simulate_patch(app, path, **kwargs):
"""Simulates a PATCH request to a WSGI application.
Equivalent to::
simulate_request(app, 'PATCH', path, **kwargs)
Args:
app (callable): The WSGI application to call
path (str): The URL path to request
Keyword Args:
params (dict): A dictionary of query string parameters,
where each key is a parameter name, and each value is
either a ``str`` or something that can be converted
into a ``str``, or a list of such values. If a ``list``,
the value will be converted to a comma-delimited string
of values (e.g., 'thing=1,2,3').
params_csv (bool): Set to ``False`` to encode list values
in query string params by specifying multiple instances
of the parameter (e.g., 'thing=1&thing=2&thing=3').
Otherwise, parameters will be encoded as comma-separated
values (e.g., 'thing=1,2,3'). Defaults to ``True``.
headers (dict): Additional headers to include in the request
(default: ``None``)
body (str): A string to send as the body of the request.
Accepts both byte strings and Unicode strings
(default: ``None``). If a Unicode string is provided,
it will be encoded as UTF-8 in the request.
json(JSON serializable): A JSON document to serialize as the
body of the request (default: ``None``). If specified,
overrides `body` and the Content-Type header in
`headers`.
protocol: The protocol to use for the URL scheme
(default: 'http')
host(str): A string to use for the hostname part of the fully qualified
request URL (default: 'falconframework.org')
remote_addr (str): A string to use as the remote IP address for the
request (default: '127.0.0.1')
extras (dict): Additional CGI variables to add to the WSGI ``environ``
dictionary for the request (default: ``None``)
"""
return simulate_request(app, 'PATCH', path, **kwargs) | 48fda74dc2765e3a281a71c7ba6f4144e9a258cd | 8,866 |
def minimum_image_box(sizes):
"""Creates a distance wrapper using the minimum image convention
Arguments:
sizes (array-like of float): box sizes
"""
def _box(sizes, distance_vectors):
"""A minimum image wrapper for distances"""
shift = sizes[None, None, :] * np.round(distance_vectors / sizes[None, None, :])
distance_vectors -= shift
return distance_vectors
return partial(_box, np.array(sizes)) | 5d26092a988a011e9fb1967a74c3ceec935f5b1b | 8,867 |
def mlrPredict(W, data):
"""
mlrObjFunction predicts the label of data given the data and parameter W
of Logistic Regression
Input:
W: the matrix of weight of size (D + 1) x 10. Each column is the weight
vector of a Logistic Regression classifier.
X: the data matrix of size N x D
Output:
label: vector of size N x 1 representing the predicted label of
corresponding feature vector given in data matrix
"""
label = np.zeros((data.shape[0], 1))
##################
# YOUR CODE HERE #
##################
# HINT: Do not forget to add the bias term to your input data
x = np.hstack((np.ones((data.shape[0], 1)),data))
label = (np.argmax((np.exp(np.dot(x, W)) / np.sum(np.exp(np.dot(x, W)))), axis=1)).reshape((data.shape[0],1))
return label | 57542e5b54ddd223f4cbcae7adf932e85c4ffeeb | 8,868 |
def calc_mean_score(movies):
"""Helper method to calculate mean of list of Movie namedtuples,
round the mean to 1 decimal place"""
return round(sum([movie.score for movie in movies]) / len(movies), 1) | ccf52f813091d1c907470996c62dafa61303e245 | 8,869 |
import hmac
import hashlib
def get_proxy_signature(query_dict, secret):
"""
Calculate the signature of the given query dict as per Shopify's documentation for proxy requests.
See: http://docs.shopify.com/api/tutorials/application-proxies#security
"""
# Sort and combine query parameters into a single string.
sorted_params = ''
for key in sorted(query_dict.keys()):
sorted_params += "{0}={1}".format(key, ",".join(query_dict.getlist(key)))
signature = hmac.new(secret.encode('utf-8'), sorted_params.encode('utf-8'), hashlib.sha256)
return signature.hexdigest() | c234f18c1d44a936c4844ae2fe1b912a624eef61 | 8,870 |
def candlestick_echarts(data_frame: pd.DataFrame, time_field: str = 'time', open_field: str = "open",
high_field: str = 'high',
low_field: str = 'low',
close_field: str = 'close',
volume_field: str = 'volume', mas: list = [5, 10, 30], log_y: bool = True, title: str = "",
width: str = "100%", height: str = "600px", left_padding: str = '5%',
right_padding: str = '3%') -> Echarts:
"""
绘制K线
:param data_frame:
:param time_field: 时间列名, 如果指定的列不存在,使用index作为time
:param open_field: open列名
:param high_field: high列名
:param low_field: low列名
:param close_field: close列名
:param volume_field: volume列名
:param mas: 均线组
:param log_y: y轴 log分布 底为1.1 一个格子对应10%
:param title: 可选标题
:param width: 输出div的宽度 支持像素和百分比 比如800px/100%
:param height: 输出div的高度 支持像素和百分比 比如800px/100%
:param left_padding: 左侧padding宽度
:param right_padding: 右侧padding宽度
:return:
"""
df = data_frame.copy()
if time_field not in data_frame.columns: # 使用index作为时间
df[time_field] = df.index
df[close_field] = df[close_field].fillna(method="ffill")
df[open_field] = df[open_field].fillna(df[close_field])
df[high_field] = df[high_field].fillna(df[close_field])
df[low_field] = df[low_field].fillna(df[close_field])
df[volume_field] = df[volume_field].fillna(0)
volumes = (df[volume_field]).round(2).tolist()
vol_filter = (df[volume_field]).quantile([0.05, 0.95]).values
bar_items = [({"value": vol} if vol >= vol_filter[0] and vol <= vol_filter[1] else (
{"value": vol, "itemStyle": {"color": "red"}} if vol > vol_filter[1] else {"value": vol,
"itemStyle": {"color": "green"}}))
for vol in volumes]
options = {
'animation': False,
'title': {'text': title},
'legend': {'top': 10, 'left': 'center', 'data': [title]},
'tooltip': {
'trigger': 'axis', 'axisPointer': {'type': 'cross'},
'borderWidth': 1,
'borderColor': '#ccc',
'padding': 10,
'formatter': Js("""
function(params){
var dt = params[0]['axisValue'];
var labels = [];
labels.push('<b><span>时间: </span></b>' + dt + '<br/>');
params.sort(function(a, b) {
if (a.seriesName < b.seriesName ) {return -1;}
else if (a.seriesName > b.seriesName ) {return 1;}
else{ return 0;}
});
for (let i = 0; i < params.length; i++) {
const param = params[i];
var label=["<b><span>"+param['seriesName']+"("+param['seriesType']+"): </span></b>"];
var dimensionNames=param["dimensionNames"];
if (typeof(param['value'])=='object' && dimensionNames.length==param['data'].length){
label.push("<br/>");
for (let j = 1; j <dimensionNames.length; j++) {
var value= param['data'][j];
if (typeof(value)=='number'){
if (value%1==0 || value>100000){
label.push("<span>"+dimensionNames[j]+': '+value.toFixed(0)+"</span><br/>");
}else{
label.push("<span>"+dimensionNames[j]+': '+value.toFixed(2)+"</span><br/>");
}
}else{
label.push("<div style='max-width:15em;word-break:break-all;white-space: normal;'>"+dimensionNames[j]+': '+value+"</div>");
}
}
}else if(param['seriesType']=="candlestick"){
label.push("<br/>");
label.push("<span>open: "+param['data'][1].toFixed(2)+"</span><br/>");
label.push("<span>close: "+param['data'][2].toFixed(2)+"</span><br/>");
label.push("<span>high: "+param['data'][4].toFixed(2)+"</span><br/>");
label.push("<span>low: "+param['data'][3].toFixed(2)+"</span><br/>");
}else if(typeof(param['value'])=='number'){
if (param['value']%1==0){
label.push("<span>"+param['value'].toFixed(0)+"</span><br/>");
}else{
label.push("<span>"+param['value'].toFixed(2)+"</span><br/>");
}
}else if(param['value']){
label.push("<div style='max-width:15em;word-break:break-all;white-space: normal;'>"+value+"</div>");
}else{
label.push("<br/>");
}
var cardStr= label.join('');
labels.push(cardStr);
}
return labels.join('');
}"""),
'textStyle': {'color': '#000'},
'position': Js("""
function (pos, params, el, elRect, size){
var obj = {top: 10};
obj[['left', 'right'][+(pos[0] < size.viewSize[0] / 2)]] = 30;
return obj;
}
""")
},
'axisPointer': {
'link': {'xAxisIndex': 'all'},
'label': {'backgroundColor': '#777'}
},
'grid': [
{'left': left_padding, 'right': right_padding, 'height': '70%'},
{'left': left_padding, 'right': right_padding, 'top': '71%', 'height': '16%'}
],
'xAxis': [
{
'type': 'category',
'data': df[time_field].tolist(),
'scale': True,
'boundaryGap': False,
'axisLine': {'show': False},
'axisLabel': {'show': False},
'axisTick': {'show': False},
'splitLine': {'show': True},
'splitNumber': 20,
'min': 'dataMin',
'max': 'dataMax',
'axisPointer': {
'z': 100
}
},
{
'type': 'category',
'gridIndex': 1,
'data': df[time_field].tolist(),
'scale': True,
'boundaryGap': False,
'axisLine': {'onZero': False, 'show': True},
'axisLine': {'show': True},
'axisLabel': {'show': True},
'axisTick': {'show': True},
'splitLine': {'show': True},
'axisLabel': {'show': True},
'splitNumber': 20,
'min': 'dataMin',
'max': 'dataMax'
}
],
'yAxis': [
{
'scale': True,
'type': 'log' if log_y else 'value',
'logBase': 1.1,
'splitNumber': 10,
'axisLabel': {'show': True,
'formatter': Js("""
function(value,index){
return value.toFixed(2);
}
""")},
'axisLine': {'show': False},
'axisTick': {'show': True},
'splitLine': {'show': True}
},
{
'scale': True,
'gridIndex': 1,
'splitNumber': 2,
'axisLabel': {'show': True,
'formatter': Js("""
function(value,index){
var si = [
{ value: 1, symbol: "" },
{ value: 1E3, symbol: "K" },
{ value: 1E6, symbol: "M" },
{ value: 1E9, symbol: "G" },
{ value: 1E12, symbol: "T" },
{ value: 1E15, symbol: "P" },
{ value: 1E18, symbol: "E" }
];
var rx = /\.0+$|(\.[0-9]*[1-9])0+$/;
var i;
for (i = si.length - 1; i > 0; i--) {
if (value >= si[i].value) {
break;
}
}
return (value / si[i].value).toFixed(2).replace(rx, "$1") + si[i].symbol;
}
""")
},
'axisLine': {'show': False},
'axisTick': {'show': False},
'splitLine': {'show': False}
}
],
'dataZoom': [
{
'type': 'inside',
'xAxisIndex': [0, 1],
'start': 0,
'end': 100
}
],
'series': [
{
'name': title,
'type': 'candlestick',
'data': df[[open_field, close_field, low_field, high_field]].values.tolist(),
'emphasis': {
'itemStyle': {
'borderColor': "#333",
'borderWidth': 1,
'shadowColor': 'rgba(0, 0, 0, 0.5)',
'shadowBlur': 15
}
}
},
{
'name': 'Volume',
'type': 'bar',
'xAxisIndex': 1,
'yAxisIndex': 1,
'data': bar_items,
'emphasis': {
'itemStyle': {
'borderColor': "#333",
'borderWidth': 1,
'shadowColor': 'rgba(0, 0, 0, 0.5)',
'shadowBlur': 15
}
}
}
]
}
for ma_len in mas:
name = "MA" + str(ma_len)
df[name] = df[close_field].rolling(ma_len).mean().round(2)
series_ma = {
'name': name,
'type': 'line',
'data': df[name].tolist(),
'smooth': True,
'showSymbol': False,
'lineStyle': {'opacity': 0.5}
}
options['series'].append(series_ma)
options['legend']['data'].append(name)
return Echarts(options=options, width=width, height=height) | f8bc3d1ef876a5df0f2fdbdf7dbf97b039a54cc4 | 8,871 |
def select_sounder_hac(path_sounder, sounder):
"""
Donne les indices pour un sondeur (sounder) dans un hac (path sounder), et retourne les index de sondeur et de transducer correspondant
inputs:
path_sounder: path du hac à analyser
sounder: nom du transducer
outputs:
index du sondeur et du transducer
"""
list_sounder = util.hac_sounder_descr(FileName=path_sounder)
list_st = [
[
list_sounder.GetSounder(isdr).GetTransducer(itsd).m_transName
for itsd in range(list_sounder.GetSounder(isdr).m_numberOfTransducer)
]
for isdr in range(list_sounder.GetNbSounder())
]
for i in range(len(list_st)):
for j in range(len(list_st[i])):
if list_st[i][j] == sounder:
return i, j
return None | 2f054ef6a8e3a64f0910e5eb4bce9407befc4b33 | 8,872 |
def upvote_checklist(request, checklist_id):
# for "messages", refer https://stackoverflow.com/a/61603003/6543250
"""if user cannot retract upvote, then this code be uncommented
if Upvote.objects.filter(user=User.objects.filter(username=username).first(), checklist=Checklist.objects.get(id=checklist_id)):
msg = 'You have already upvoted the checklist once!'
messages.info(request, msg)
"""
"""
Note: notifications recorded only when a user upvotes the checklist not downvote in order to promote healthy behaviour and not let the author inundate with downvote notifs in case some user decides to harass the author.
"""
if Checklist.objects.get(id=checklist_id).author == request.user:
msg = "Action Denied! You cannot upvote your own checklist!"
messages.error(request, msg)
else:
# remove user's upvote if he has already upvoted
obj = Upvote.objects.filter(
user=request.user, checklist=Checklist.objects.get(id=checklist_id)
)
msg = ""
if obj:
obj.delete()
msg = "Upvote retracted!"
else:
upvote_obj = Upvote(
user=request.user,
checklist=Checklist.objects.get(id=checklist_id),
)
upvote_obj.save()
msg = "Checklist upvoted!"
# also update notifications table so relevant notif can be shown to author
fromUser = request.user
toUser = Checklist.objects.get(id=checklist_id).author
Notification(
fromUser=fromUser,
toUser=toUser,
notif_type=1,
checklist=Checklist.objects.get(id=checklist_id),
).save()
messages.success(request, msg)
if request.META.get("HTTP_REFERER"):
if "login" in request.META.get("HTTP_REFERER") and "next" in request.META.get(
"HTTP_REFERER"
):
return redirect("checklist-home")
# redirect to home url; simply reload the page
# return redirect('checklist-home')
return redirect(request.META.get("HTTP_REFERER", "checklist-home")) | 559f9e0341652391b824b215448f87fa3250baae | 8,873 |
def index(request):
"""查询页面"""
ctx = {}
Advert_1 = Advert.objects.get(advert_num=1) # 广告1
Advert_2 = Advert.objects.get(advert_num=2) # 广告2
ctx['Adverturl1'] = Advert_1.advert_url
ctx['Adverturl2'] = Advert_2.advert_url
ctx['Advertimg1'] = '/advert/'+ str(Advert_1.img)
ctx['Advertimg2'] = '/advert/'+ str(Advert_2.img)
return render(request, 'srsys/index.html',ctx) | 91e7a771273ed262e7025bc289defe7f6a52047e | 8,874 |
def load_amazon():
"""
"""
df = pd.read_csv('data/amazon.txt',
header=None,
delimiter='\t')
X_data = df[0].tolist()
y_data = df[1].tolist()
print 'Preprocessing...'
vectorizer = TfidfVectorizer(strip_accents='unicode',
lowercase=True,
stop_words='english',
ngram_range=(1, 2),
max_df=0.5,
min_df=5,
max_features=20000,
norm='l2',
use_idf=True,
smooth_idf=True,
sublinear_tf=False)
vectorizer.fit(X_data)
X_data = vectorizer.transform(X_data)
X_train, X_test, y_train, y_test = train_test_split(X_data,
y_data,
test_size=0.1,
random_state=0)
X_train, X_val, y_train, y_val = train_test_split(X_train,
y_train,
test_size=0.2,
random_state=0)
return X_train, y_train, X_val, y_val, X_test, y_test | 8e11cf91d616f7dfe17e26da2fcf43d82ea26f80 | 8,875 |
def get_switch_filters(
switch_id, exception_when_missing=True,
user=None, session=None, **kwargs
):
"""get filters of a switch."""
return _get_switch(
switch_id, session=session,
exception_when_missing=exception_when_missing
) | db270f761fcdfb40a9d2970923b4643ebecf7cc3 | 8,876 |
def generalized_zielonka_with_psolC(g):
"""
Zielonka's algorithm with psolC partial solver.
:param g: the game to solve.
:return: the solution in the following format : (W_0, W_1).
"""
return generalized_parity_solver_with_partial(g, psolC_gen.psolC_generalized) | 1ac4a81df393970c16a5f303155c89cf74db34ab | 8,877 |
from datetime import datetime
def read_properties_core(xml_source):
"""Read assorted file properties."""
properties = DocumentProperties()
root = fromstring(xml_source)
creator_node = root.find(QName(NAMESPACES['dc'], 'creator').text)
if creator_node is not None:
properties.creator = creator_node.text
else:
properties.creator = ''
last_modified_by_node = root.find(
QName(NAMESPACES['cp'], 'lastModifiedBy').text)
if last_modified_by_node is not None:
properties.last_modified_by = last_modified_by_node.text
else:
properties.last_modified_by = ''
created_node = root.find(QName(NAMESPACES['dcterms'], 'created').text)
if created_node is not None:
properties.created = W3CDTF_to_datetime(created_node.text)
else:
properties.created = datetime.datetime.now()
modified_node = root.find(QName(NAMESPACES['dcterms'], 'modified').text)
if modified_node is not None:
properties.modified = W3CDTF_to_datetime(modified_node.text)
else:
properties.modified = properties.created
return properties | 357411103a52bbbfc6e621c47b734b9d11f04284 | 8,879 |
import torch
def batch_decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
boxes[:, :, 2:] += boxes[:, :, :2]
return boxes | 7963b771e2c7bc560e5f9e5051abea43de2f46e3 | 8,880 |
def _step2_macs_seq (configs):
"""Step2 MACS if the raw data type is seq. So it will use the output from step1.
"""
# check the input
t_rep_files = configs["samtools.treat_output_replicates"]
t_comb_file = configs["samtools.treat_output"]
c_comb_file = configs["samtools.control_output"]
macs_genome_option = " -g "+ configs["sample.species"]+" "
# run MACS, first for each replicate
for i in range(1,configs["data.number_replicates"]+1):
if configs["data.has_control"]:
# run MACS w/ control
command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_rep_files[i-1]+" -c "+ c_comb_file + " -n "+configs["sample.sample_id"]+"_rep"+str(i)
run_cmd(command_line)
# copy out and rename the wiggle file
command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_rep"+str(i)+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig_replicates"][i-1]
run_cmd(command_line)
else:
# run MACS w/o control
command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_rep_files[i-1]+" -n "+configs["sample.sample_id"]+"_rep"+str(i)
run_cmd(command_line)
# copy out and rename the wiggle file
command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_rep"+str(i)+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig_replicates"][i-1]
run_cmd(command_line)
# run MACS for the combined treatment
if configs["data.number_replicates"] == 1:
# no need to run MACS again, simply copy the previous results
command_line = "cp "+configs["sample.sample_id"]+"_rep1_peaks.xls"+" "+configs["macs.output_xls"]
run_cmd(command_line)
command_line = "cp "+configs["sample.sample_id"]+"_rep1_peaks.bed"+" "+configs["macs.output_bed"]
run_cmd(command_line)
command_line = "cp "+configs["sample.sample_id"]+"_rep1_summits.bed"+" "+configs["macs.output_summits"]
run_cmd(command_line)
command_line = "cp "+configs["macs.output_treat_wig_replicates"][0]+" "+configs["macs.output_treat_wig"]
run_cmd(command_line)
if configs["data.has_control"]:
command_line = "zcat "+configs["sample.sample_id"]+"_rep"+str(i)+"_MACS_wiggle/control/"+configs["sample.sample_id"]+"_rep1_control_afterfiting_all.wig.gz > "+configs["macs.output_control_wig"]
run_cmd(command_line)
else:
# run MACS on combined alignment files
if configs["data.has_control"]:
command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_comb_file+" -c "+c_comb_file+" -n "+configs["sample.sample_id"]
run_cmd(command_line)
# copy out and rename the wiggle file
command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig"]
run_cmd(command_line)
command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/control/"+configs["sample.sample_id"]+"_control_afterfiting_all.wig.gz > "+configs["macs.output_control_wig"]
run_cmd(command_line)
else:
command_line = configs["macs.macs_main"]+macs_genome_option+" -w -S -t "+t_comb_file+" -n "+configs["sample.sample_id"]
run_cmd(command_line)
# copy out and rename the wiggle file
command_line = "zcat "+configs["sample.sample_id"]+"_MACS_wiggle/treat/"+configs["sample.sample_id"]+"_treat_afterfiting_all.wig.gz > "+configs["macs.output_treat_wig"]
run_cmd(command_line)
return True | 69deb8fafeb3f7054901d431d6e32c647504258f | 8,881 |
def menu_entry_to_db(entry):
"""
Converts a MenuEntry into Meal, Menu, and MenuItem objects which are stored in the database.
"""
menu, _ = Menu.objects.get_or_create(date=entry.date)
meal = Meal.objects.create(meal_type=entry.meal_type, vendor=entry.vendor)
for item_name in entry.items:
item, _ = MenuItem.objects.get_or_create(name=item_name)
meal.items.add(item)
if entry.meal_type == 'L':
if menu.lunch:
menu.lunch.delete()
menu.lunch = meal
if entry.meal_type == 'D':
if menu.dinner:
menu.dinner.delete()
menu.dinner = meal
menu.save()
return menu | f35ddb4bb715a3a8bcee073fd863a5f4d8240651 | 8,882 |
import torch
def get_device_of(tensor: torch.Tensor) -> int:
"""
Returns the device of the tensor.
"""
if not tensor.is_cuda:
return -1
else:
return tensor.get_device() | 5532712bd812842fc462951e7c763b9753370174 | 8,883 |
def test_script_task(scheduler: Scheduler) -> None:
"""
Tasks should be definable as shell scripts.
"""
@task(script=True)
def task1(message):
return """echo Hello, {message}!""".format(message=message)
assert scheduler.run(task1("World")) == b"Hello, World!\n" | c5f764b06f1245feb9ab0c1af5a13fd368fde362 | 8,884 |
import copy
def __yaml_tag_test(*args, **kwargs):
"""YAML tag constructor for testing only"""
return copy.deepcopy(args), copy.deepcopy(kwargs) | 0abeb68caf32912c7b5a78dacbc89e537061a144 | 8,885 |
def format_data_for_training(data):
"""
Create numpy array with planet features ready to feed to the neural net.
:param data: parsed features
:return: numpy array of shape (number of frames, PLANET_MAX_NUM, PER_PLANET_FEATURES)
"""
training_input = []
training_output = []
for d in data:
features, expected_output = d
if len(expected_output.values()) == 0:
continue
features_matrix = []
for planet_id in range(PLANET_MAX_NUM):
if str(planet_id) in features:
features_matrix.append(features[str(planet_id)])
else:
features_matrix.append([0] * PER_PLANET_FEATURES)
fm = np.array(features_matrix)
output = [0] * PLANET_MAX_NUM
for planet_id, p in expected_output.items():
output[int(planet_id)] = p
result = np.array(output)
training_input.append(fm)
training_output.append(result)
return np.array(training_input), np.array(training_output) | b241a932f7a5321ed28dccd8a583fbcf7529e482 | 8,887 |
import urllib
import json
def idcardcert(appcode, card_no):
""" 身份证实名认证身份证二要素一致性验证 """
host = 'http://idquery.market.alicloudapi.com'
path = '/idcard/query'
# method = 'GET'
appcode = appcode
querys = 'number=%s' % card_no
# bodys = {}
url = host + path + '?' + querys
try:
request = urllib.request.Request(url)
request.add_header('Authorization', 'APPCODE ' + appcode)
response = urllib.request.urlopen(request)
content = response.read()
if content:
return json.loads(content.decode("unicode-escape"))
return content
except BaseException:
return None | a359edf15e7b8795fc80ceda1008f1809d9c52a0 | 8,888 |
def custom_error_exception(error=None, exception=None):
"""Define custom exceptions for MySQL server errors
This function defines custom exceptions for MySQL server errors and
returns the current set customizations.
If error is a MySQL Server error number, then you have to pass also the
exception class.
The error argument can also be a dictionary in which case the key is
the server error number, and value the exception to be raised.
If none of the arguments are given, then custom_error_exception() will
simply return the current set customizations.
To reset the customizations, simply supply an empty dictionary.
Examples:
import mysql.connector
from mysql.connector import errorcode
# Server error 1028 should raise a DatabaseError
mysql.connector.custom_error_exception(
1028, mysql.connector.DatabaseError)
# Or using a dictionary:
mysql.connector.custom_error_exception({
1028: mysql.connector.DatabaseError,
1029: mysql.connector.OperationalError,
})
# Reset
mysql.connector.custom_error_exception({})
Returns a dictionary.
"""
global _CUSTOM_ERROR_EXCEPTIONS
if isinstance(error, dict) and not len(error):
_CUSTOM_ERROR_EXCEPTIONS = {}
return _CUSTOM_ERROR_EXCEPTIONS
if not error and not exception:
return _CUSTOM_ERROR_EXCEPTIONS
if not isinstance(error, (int, dict)):
raise ValueError(
"The error argument should be either an integer or dictionary")
if isinstance(error, int):
error = { error: exception }
for errno, exception in error.items():
if not isinstance(errno, int):
raise ValueError("error number should be an integer")
try:
if not issubclass(exception, Exception):
raise TypeError
except TypeError:
raise ValueError("exception should be subclass of Exception")
_CUSTOM_ERROR_EXCEPTIONS[errno] = exception
return _CUSTOM_ERROR_EXCEPTIONS | eb24301d2511199e1ee1407152f27d00b72adba5 | 8,889 |
import hashlib
def cal_md5(content):
"""
计算content字符串的md5
:param content:
:return:
"""
# 使用encode
result = hashlib.md5(content.encode())
# 打印hash
md5 = result.hexdigest()
return md5 | 0cd26654c364e34ecc27b0a0b4d410a539e286c3 | 8,890 |
def pas(al, ap, bl,bp):
""" Postion-angle from spherical coordinates.
:param al: longitude of point A in radians.
:type al: float
:param ap: latitude of point A in radians.
:type ap: float
:param bl: longitude of point B in radians.
:type bl: float
:param bp: latitude of point B in radians.
:type bp: float
:returns: position angle of B with respect to A in radians (float).
.. seealso:: |MANUAL| page 145
"""
return _sofa.iauPas(float(al), float(ap), float(bl), float(bp)) | 9d8321c908c793df84e5ff28c51e4a79f6db99c6 | 8,894 |
def get_messy_items_for_training(mod_factor=5):
"""
Fetch a subset of `FacilityListItem` objects that have been parsed and are
not in an error state.
Arguments:
mod_factor -- Used to partition a subset of `FacilityListItem` records. The
larger the value, the fewer records will be contained in the
subset.
Returns:
A dictionary. The key is the `FacilityListItem` ID. The value is a
dictionary of clean field values keyed by field name (country, name,
address). A "clean" value is one which has been passed through the `clean`
function.
"""
facility_list_item_set = FacilityListItem.objects.exclude(
Q(status=FacilityListItem.UPLOADED)
| Q(status=FacilityListItem.ERROR)
| Q(status=FacilityListItem.ERROR_PARSING)
| Q(status=FacilityListItem.ERROR_GEOCODING)
| Q(status=FacilityListItem.ERROR_MATCHING)
).extra(
select={'country': 'country_code'}).values(
'id', 'country', 'name', 'address')
records = [record for (i, record) in enumerate(facility_list_item_set)
if i % mod_factor == 0]
return {str(i['id']): {k: clean(i[k]) for k in i if k != 'id'}
for i in records} | d04f5471266c33cfea122adac72835043ed6c34a | 8,895 |
def tanh_squared(x: np.ndarray, margin: float, loss_at_margin: float = 0.95):
"""Returns a sigmoidal shaping loss based on Hafner & Reidmiller (2011).
Args:
x: A numpy array representing the error.
margin: Margin parameter, a positive `float`.
loss_at_margin: The loss when `l2_norm(x) == margin`. A `float` between 0
and 1.
Returns:
Shaping loss, a `float` bounded in the half-open interval [0, 1).
Raises:
ValueError: If the value of `margin` or `loss_at_margin` is invalid.
"""
if not margin > 0:
raise ValueError("`margin` must be positive.")
if not 0.0 < loss_at_margin < 1.0:
raise ValueError("`loss_at_margin` must be between 0 and 1.")
error = np.linalg.norm(x)
# Compute weight such that at the margin tanh(w * error) = loss_at_margin
w = np.arctanh(np.sqrt(loss_at_margin)) / margin
s = np.tanh(w * error)
return s * s | 4c8dbb826dad5b047682fe030362f4fe71021f06 | 8,896 |
def _inv_Jacobian_2D(J, detJ):
""" manually invert 2x2 jacobians J in place """
tmp = J[:, 1, 1, :] / detJ
J[:, 0, 1, :] = -J[:, 0, 1, :] / detJ
J[:, 1, 0, :] = -J[:, 1, 0, :] / detJ
J[:, 1, 1, :] = J[:, 0, 0, :] / detJ
J[:, 0, 0, :] = tmp
return J | 23b1ff231e32f09f09dbae781f7e97354f3ca811 | 8,897 |
def ratio_error_acc(y_true, y_pred, epsilon, threshold):
"""
Calculate the ratio error accuracy with the threshold.
:param y_true:
:param y_pred:
:param epsilon:
:param threshold:
:return:
"""
ratio_1 = keras.layers.Lambda(lambda x: (x[0] + x[2]) / (x[1] + x[2]))([y_true, y_pred, epsilon])
ratio_2 = keras.layers.Lambda(lambda x: (x[0] + x[2]) / (x[1] + x[2]))([y_pred, y_true, epsilon])
ratio = K.maximum(ratio_1, ratio_2)
mask = K.cast(K.less(ratio, threshold), dtype="float32")
return K.mean(mask) | 9ae487e056800ac9fb5cc6e92301b74c00d65c21 | 8,898 |
def error_embed(ctx: context.ApplicationContext, title: str, description: str, author: bool = True) -> discord.Embed:
"""Make a basic error message embed."""
return make_embed(
ctx=ctx,
title=title if title else "Error:",
description=description,
color=discord.Color.red(),
author=author,
) | aca18ec2d25c4f0a2dec7f4c083716ab9bf4dbae | 8,899 |
from typing import Dict
from typing import Any
import toml
from pathlib import Path
import textwrap
def load_configuration() -> Dict[str, Any]:
"""
Return dict from TOML formatted string or file.
Returns:
The dict configuration.
"""
default_config = """
[key_bindings]
AUTOCLEAR = "c"
CANCEL = "esc"
ENTER = "enter"
FILTER = ["F4", "\\\\"]
FOLLOW_ROW = "F"
HELP = ["F1", "?"]
MOVE_DOWN = ["down", "j"]
MOVE_DOWN_STEP = "J"
MOVE_END = "end"
MOVE_HOME = "home"
MOVE_LEFT = ["left", "h"]
MOVE_RIGHT = ["right", "l"]
MOVE_UP = ["up", "k"]
MOVE_UP_STEP = "K"
NEXT_SORT = ["p", ">"]
PREVIOUS_SORT = "<"
PRIORITY_DOWN = ["F8", "d", "]"]
PRIORITY_UP = ["F7", "u", "["]
QUIT = ["F10", "q"]
REMOVE_ASK = ["del", "F9"]
RETRY = "r"
RETRY_ALL = "R"
REVERSE_SORT = "I"
SEARCH = ["F3", "/"]
SELECT_SORT = "F6"
SETUP = "F2"
TOGGLE_EXPAND_COLLAPSE = "x"
TOGGLE_EXPAND_COLLAPSE_ALL = "X"
TOGGLE_RESUME_PAUSE = "space"
TOGGLE_RESUME_PAUSE_ALL = "P"
TOGGLE_SELECT = "s"
UN_SELECT_ALL = "U"
ADD_DOWNLOADS = "a"
[colors]
BRIGHT_HELP = "CYAN BOLD BLACK"
FOCUSED_HEADER = "BLACK NORMAL CYAN"
FOCUSED_ROW = "BLACK NORMAL CYAN"
HEADER = "BLACK NORMAL GREEN"
METADATA = "WHITE UNDERLINE BLACK"
SIDE_COLUMN_FOCUSED_ROW = "BLACK NORMAL CYAN"
SIDE_COLUMN_HEADER = "BLACK NORMAL GREEN"
SIDE_COLUMN_ROW = "WHITE NORMAL BLACK"
STATUS_ACTIVE = "CYAN NORMAL BLACK"
STATUS_COMPLETE = "GREEN NORMAL BLACK"
STATUS_ERROR = "RED BOLD BLACK"
STATUS_PAUSED = "YELLOW NORMAL BLACK"
STATUS_WAITING = "WHITE BOLD BLACK"
"""
config_dict = {}
config_dict["DEFAULT"] = toml.loads(default_config)
# Check for configuration file
config_file_path = Path(user_config_dir("aria2p")) / "config.toml"
if config_file_path.exists():
try:
config_dict["USER"] = toml.load(config_file_path)
except Exception as error: # noqa: W0703 (too broad exception)
logger.error(f"Failed to load configuration file: {error}")
else:
# Write initial configuration file if it does not exist
config_file_path.parent.mkdir(parents=True, exist_ok=True)
with config_file_path.open("w") as fd:
fd.write(textwrap.dedent(default_config).lstrip("\n"))
return config_dict | a7a53382dd43023b74fbb88b9c2540499c9beb4f | 8,900 |
def type_weapon(stage, bin, data=None):
"""Weapon"""
if data == None:
return 1
if stage == 1:
return (str(data),'')
try:
v = int(data)
if 0 > v or v > 255:
raise
except:
raise PyMSError('Parameter',"Invalid Weapon value '%s', it must be 1 for ground attack or not 1 for air attack." % data)
return v | 51ad1c627b05b57ad67f5558bb76de3fe6e48f27 | 8,901 |
def to_square_feet(square_metres):
"""Convert metres^2 to ft^2"""
return square_metres * 10.7639 | 50510aad230efcb47662936237a232662fef5596 | 8,902 |
def middle_name_handler(update: Update, context: CallbackContext) -> str:
"""Get and save patronymic of user. Send hello with full name."""
u = User.get_user(update, context)
name = (f'{context.user_data[LAST_NAME]} {context.user_data[FIRST_NAME]} '
f'{context.user_data[MIDDLE_NAME]}')
context.bot.send_message(
chat_id=u.user_id,
text=static_text.HELLO_FULL_NAME.format(name=name)
)
update.message.reply_text(
text=static_text.ASK_GENDER,
parse_mode=ParseMode.HTML,
reply_markup=keyboard_utils.get_keyboard_for_gender()
)
return GENDER | dab2144282aeb63c2a3c4218236d04c3bb940ac8 | 8,903 |
def submit_barcodes(barcodes):
"""
Submits a set of {release1: barcode1, release2:barcode2}
Must call auth(user, pass) first
"""
query = mbxml.make_barcode_request(barcodes)
return _do_mb_post("release", query) | 6e975e791196ed31ef6f52cdd0ca04d71a8d19eb | 8,904 |
from typing import Counter
def get_idf_dict(arr, tokenizer, nthreads=4):
"""
Returns mapping from word piece index to its inverse document frequency.
Args:
- :param: `arr` (list of str) : sentences to process.
- :param: `tokenizer` : a BERT tokenizer corresponds to `model`.
- :param: `nthreads` (int) : number of CPU threads to use
"""
idf_count = Counter()
num_docs = len(arr)
process_partial = partial(process, tokenizer=tokenizer)
with Pool(nthreads) as p:
idf_count.update(chain.from_iterable(p.map(process_partial, arr)))
idf_dict = defaultdict(lambda: log((num_docs + 1) / (1)))
idf_dict.update({idx: log((num_docs + 1) / (c + 1)) for (idx, c) in idf_count.items()})
return idf_dict | e98a9578695781e4965b36d713c4c0a4351e53da | 8,905 |
import json
def load_id_json_file(json_path):
"""
load the JSON file and get the data inside
all this function does is to call json.load(f)
inside a with statement
Args:
json_path (str): where the target JSON file is
Return:
ID list (list): all the data found in the file
"""
with open(json_path, 'r') as f:
return json.load(f) | fd0f7fb73636cdf407b4de3e1aa3ae66dcc8f964 | 8,906 |
def check_github_scopes(exc: ResponseError) -> str:
"""
Parse github3 ResponseError headers for the correct scopes and return a
warning if the user is missing.
@param exc: The exception to process
@returns: The formatted exception string
"""
user_warning = ""
has_wrong_status_code = exc.response.status_code not in (403, 404)
if has_wrong_status_code:
return user_warning
token_scopes = get_oauth_scopes(exc.response)
# Gist resource won't return X-Accepted-OAuth-Scopes for some reason, so this
# string might be `None`; we discard the empty string if so.
accepted_scopes = exc.response.headers.get("X-Accepted-OAuth-Scopes") or ""
accepted_scopes = set(accepted_scopes.split(", "))
accepted_scopes.discard("")
request_url = urlparse(exc.response.url)
if not accepted_scopes and request_url.path == "/gists":
accepted_scopes = {"gist"}
missing_scopes = accepted_scopes.difference(token_scopes)
if missing_scopes:
user_warning = f"Your token may be missing the following scopes: {', '.join(missing_scopes)}\n"
# This assumes we're not on enterprise and 'api.github.com' == request_url.hostname
user_warning += (
"Visit Settings > Developer settings > Personal access tokens to add them."
)
return user_warning | ebb3fffcaddc792dac7c321d9029b5042a42be86 | 8,907 |
def user_login():
"""
# 显示页面的设置
:return: 接收前端的session信息来显示不同的页面
"""
# 获取参数
name = session.get("name")
if name is not None:
return jsonify(errno=RET.OK, errmsg="True", data={"name": name})
else:
return jsonify(errno=RET.SESSIONERR, errmsg="用户未登入") | 213ad2338260364186c0539a9e995b84ee889b42 | 8,908 |
def sample_conditional(node: gtsam.GaussianConditional, N: int, parents: list = [], sample: dict = {}):
"""Sample from conditional """
# every node ~ exp(0.5*|R x + S p - d|^2)
# calculate mean as inv(R)*(d - S p)
d = node.d()
n = len(d)
rhs = d.reshape(n, 1)
if len(parents) > 0:
rhs = rhs - node.S() @ np.vstack([sample[p] for p in parents])
# sample from conditional Gaussian
invR = np.linalg.inv(node.R())
return invR @ (rhs + np.random.normal(size=(n, N))) | b9ab05ea50eea05a779c6d601db4643a86b343d5 | 8,909 |
def _liftover_data_path(data_type: str, version: str) -> str:
"""
Paths to liftover gnomAD Table.
:param data_type: One of `exomes` or `genomes`
:param version: One of the release versions of gnomAD on GRCh37
:return: Path to chosen Table
"""
return f"gs://gnomad-public-requester-pays/release/{version}/liftover_grch38/ht/{data_type}/gnomad.{data_type}.r{version}.sites.liftover_grch38.ht" | 8da0f93c86568d56b3211bcb9e226b9cb495c8e2 | 8,910 |
def valueinfo_to_tensor(vi):
"""Creates an all-zeroes numpy tensor from a ValueInfoProto."""
dims = [x.dim_value for x in vi.type.tensor_type.shape.dim]
return np.zeros(
dims, dtype=onnx.mapping.TENSOR_TYPE_TO_NP_TYPE[vi.type.tensor_type.elem_type]
) | b814373e7c9d4f1e43f9d1af0c6e48b82989602e | 8,911 |
def signup_email():
"""Create a new account using data encoded in the POST body.
Expects the following form data:
first_name: E.g. 'Taylor'
last_name: E.g. 'Swift'
email: E.g. '[email protected]'
password: E.g. 'iknewyouweretrouble'
Responds with the session cookie via the `set-cookie` header on success.
Send the associated cookie for all subsequent API requests that accept
user authentication.
"""
# Prevent a CSRF attack from replacing a logged-in user's account with
# a new account with known credentials
current_user = view_helpers.get_current_user()
if current_user:
return api_util.jsonify({'message': 'A user is already logged in.'})
params = flask.request.form.copy()
# Don't log the password
password = params.pop('password', None)
rmclogger.log_event(
rmclogger.LOG_CATEGORY_API,
rmclogger.LOG_EVENT_SIGNUP, {
'params': params,
'type': rmclogger.LOGIN_TYPE_STRING_EMAIL,
},
)
first_name = params.get('first_name')
last_name = params.get('last_name')
email = params.get('email')
if not first_name:
raise api_util.ApiBadRequestError('Must provide first name.')
if not last_name:
raise api_util.ApiBadRequestError('Must provide last name.')
if not email:
raise api_util.ApiBadRequestError('Must provide email.')
if not password:
raise api_util.ApiBadRequestError('Must provide password.')
try:
user = m.User.create_new_user_from_email(
first_name, last_name, email, password)
except m.User.UserCreationError as e:
raise api_util.ApiBadRequestError(e.message)
view_helpers.login_as_user(user)
return api_util.jsonify({
'message': 'Created and logged in user %s' % user.name
}) | e3ecca4bd244d1d20ad166a153a6c3f5c80f4876 | 8,912 |
def calculate_multi_rmse(regressor, n_task):
"""
Method which calculate root mean squared error value for trained model
Using regressor attributes
Return RMSE metrics as dict for train and test datasets
:param regressor: trained regression model object
:param n_task:
:type regressor: TrainedModel, TrainedModelDNN, TrainedModelCV
:return: rmse metrics
:rtype: dict
"""
# calculate mse metric
test_mse_tmp = mean_squared_error(
regressor.y_test.values[:, n_task],
regressor.predict_classes['test'][:, n_task]
)
train_mse_tmp = mean_squared_error(
regressor.y_train.values[:, n_task],
regressor.predict_classes['train'][:, n_task]
)
# convert mse to rmse
return {
(str(n_task), 'train', 'RMSE'): train_mse_tmp ** 0.5,
(str(n_task), 'test', 'RMSE'): test_mse_tmp ** 0.5,
} | 53daee6abb97a96af44831df59767a447fd2786e | 8,913 |
import torch
from re import T
def detr_predict(model, image, thresh=0.95):
"""
Function used to preprocess the image, feed it into the detr model, and prepare the output draw bounding boxes.
Outputs are thresholded.
Related functions: detr_load, draw_boxes in coco.py
Args:
model -- the detr model from detr_load()
image -- Array the original image from openCV [width, height, channels]
Returns:
boxes -- Torch tensor of coordinates of the top left and bottom right of the bounding box ordered as [(x1, y1, x2, y2)]
labels -- Torch tensor of index labels for each bounding box [<label indices>]
scores -- Torch tensor of class confidence scores for each bounding box [<class scores>]. For COCO, expects 91 different classes
"""
def box_cxcywh_to_xyxy(x):
# Converts bounding boxes to (x1, y1, x2, y2) coordinates of top left and bottom right corners
# (center_x, center_y, h, w)
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
# Scale the bounding boxes to the image size
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
# Preprocess image
transform = T.Compose([
T.ToPILImage(),
T.Resize(800),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
t_image = transform(image).unsqueeze(0)
# output is a dict containing "pred_logits" of [batch_size x num_queries x (num_classes + 1)]
# and "pred_boxes" of shape (center_x, center_y, height, width) normalized to be between [0, 1]
output = model(t_image)
# Scale the class probabilities to add up to 1
probas = output['pred_logits'].softmax(-1)[0,:,:-1]
# Create outputs
boxes = rescale_bboxes(output['pred_boxes'][0], (image.shape[1], image.shape[0])).detach()
labels = probas.max(-1).indices
conf = probas.max(-1).values.detach()
### Threshold scores
conf = conf.detach()
keep = conf > thresh
# Filter out scores, boxes, and labels using threshold
conf = conf[keep]
boxes = boxes.detach()[keep]
labels = labels.detach()[keep]
return boxes, labels, conf | 394824358138eb66b69569963b21ccc2d0f5a4d3 | 8,914 |
def comp_fill_factor(self):
"""Compute the fill factor of the winding"""
if self.winding is None:
return 0
else:
(Nrad, Ntan) = self.winding.get_dim_wind()
S_slot_wind = self.slot.comp_surface_wind()
S_wind_act = (
self.winding.conductor.comp_surface_active()
* self.winding.Ntcoil
* Nrad
* Ntan
)
return S_wind_act / S_slot_wind | 55be8ac7aa2961ad970cd16de961fdcf857016fd | 8,915 |
def idewpt(vp):
"""
Calculate the dew point given the vapor pressure
Args:
vp - array of vapor pressure values in [Pa]
Returns:
dewpt - array same size as vp of the calculated
dew point temperature [C] (see Dingman 2002).
"""
# ensure that vp is a numpy array
vp = np.array(vp)
# take the log and convert to kPa
vp = np.log(vp/float(1000))
# calculate the vapor pressure
Td = (vp + 0.4926) / (0.0708 - 0.00421*vp)
return Td | 68b58d7702a50472a4851e1a7ecdd6ba13fe540a | 8,916 |
def _hexify(num):
"""
Converts and formats to hexadecimal
"""
num = "%x" % num
if len(num) % 2:
num = '0'+num
return num.decode('hex') | 71fabff1191f670ec503c76a3be916636e8045ce | 8,917 |
def syn_ucbpe(num_workers, gp, acq_optimiser, anc_data):
""" Returns a recommendation via UCB-PE in the synchronous setting. """
# Define some internal functions.
beta_th = _get_ucb_beta_th(gp.input_dim, anc_data.t)
# 1. An LCB for the function
def _ucbpe_lcb(x):
""" An LCB for GP-UCB-PE. """
mu, sigma = gp.eval(x, uncert_form='std')
return mu - beta_th * sigma
# 2. A modified UCB for the function using hallucinated observations
def _ucbpe_2ucb(x):
""" An LCB for GP-UCB-PE. """
mu, sigma = gp.eval(x, uncert_form='std')
return mu + 2 * beta_th * sigma
# 3. UCB-PE acquisition for the 2nd point in the batch and so on.
def _ucbpe_acq(x, yt_dot, halluc_pts):
""" Acquisition for GP-UCB-PE. """
_, halluc_stds = gp.eval_with_hallucinated_observations(x, halluc_pts,
uncert_form='std')
return (_ucbpe_2ucb(x) > yt_dot).astype(np.double) * halluc_stds
# Now the algorithm
yt_dot_arg = _optimise_acquisition(_ucbpe_lcb, acq_optimiser, anc_data)
yt_dot = _ucbpe_lcb(yt_dot_arg.reshape((-1, gp.input_dim)))
recommendations = [asy_ucb(gp, acq_optimiser, anc_data)]
for _ in range(1, num_workers):
curr_acq = lambda x: _ucbpe_acq(x, yt_dot, np.array(recommendations))
new_rec = _optimise_acquisition(curr_acq, acq_optimiser, anc_data)
recommendations.append(new_rec)
return recommendations | 2c12a608c87d61f64b219aaf301189b6c8ee73a2 | 8,918 |
def get_reward(intervention, state, time):
"""Compute the reward based on the observed state and choosen intervention."""
A_1, A_2, A_3 = 60, 500, 60
C_1, C_2, C_3, C_4 = 25, 20, 30, 40
discount = 4.0 / 365
cost = (
A_1 * state.asymptomatic_humans
+ A_2 * state.symptomatic_humans
+ A_3 * state.mosquito_population
)
cost += 0.5 * (
C_1 * intervention.updates["treated_bednet_use"] ** 2
+ C_2 * intervention.updates["condom_use"] ** 2
+ C_3 * intervention.updates["treatment_of_infected"] ** 2
+ C_4 * intervention.updates["indoor_spray_use"] ** 2
)
return -cost * np.exp(-discount * time) | 72803b1a5f09d0856d29601bc766b6787a8255e7 | 8,919 |
def array_of_floats(f):
"""Read an entire file of text as a list of floating-point numbers."""
words = f.read().split()
return [builtin_float(x) for x in words] | 8b357afb3f977761118f7df2632a4f1c198d721a | 8,920 |
def change_currency():
""" Change user's currency """
form = CurrencyForm()
if form.validate_on_submit():
currency = form.rate.data
redirected = redirect(url_for('cashtrack.overview'))
redirected.set_cookie('filter', currency)
symbol = rates[currency]['symbol']
flash(f'Currency has been changed to {currency} ({symbol})', 'success')
return redirected
return rnd_tmp('currency.html', form=form, rates=rates) | 08a23e47a603ee5d5e49cff0259a83f4a2ffc3e0 | 8,921 |
def q2_1(df: pd.DataFrame) -> int:
"""
Finds # of entries in df
"""
return df.size[0] | d98a3d5592994e7dd3758dfab683cb96b532ce6d | 8,923 |
def is_shell(command: str) -> bool:
"""Check if command is shell."""
return command.startswith(get_shell()) | 0cc1497dc17e1535fdfb23c1b160bfcd63141eb1 | 8,924 |
def board_init():
"""
Initializes board with all available values 1-9 for each cell
"""
board = [[[i for i in range(1,n+1)] for j in range(n)] for k in range(n)]
return board | e4b7192c02e298de915eb3024f32f194942a061b | 8,926 |
def gen_int_lists(num):
"""
Generate num list strategies of integers
"""
return [
s.lists(s.integers(), max_size=100)
for _ in range(num)
] | f1bd151a09f78b1eee9803ce2a077a4f01d34aaa | 8,927 |
def is_blob(bucket: str, file:str):
""" checking if it's a blob """
client = storage.Client()
blob = client.get_bucket(bucket).get_blob(file)
return hasattr(blob, 'exists') and callable(getattr(blob, 'exists')) | ba9bb07f1f15175a28027907634c37b402c6b292 | 8,928 |
from typing import Union
def _is_whitelisted(name: str, doc_obj: Union['Module', 'Class']):
"""
Returns `True` if `name` (relative or absolute refname) is
contained in some module's __pdoc__ with a truish value.
"""
refname = doc_obj.refname + '.' + name
module = doc_obj.module
while module:
qualname = refname[len(module.refname) + 1:]
if module.__pdoc__.get(qualname) or module.__pdoc__.get(refname):
return True
module = module.supermodule
return False | c54c69ae0180c1764c8885d00e96640f1bfff0f8 | 8,930 |
import copy
def permute_bond_indices(atomtype_vector):
"""
Permutes the set of bond indices of a molecule according to the complete set of valid molecular permutation cycles
atomtype_vector: array-like
A vector of the number of each atoms, the length is the total number of atoms.
An A3B8C system would be [3, 8, 1]
Returns many sets permuted bond indices, the number of which equal to the number of cycles
"""
natoms = sum(atomtype_vector)
bond_indices = generate_bond_indices(natoms)
cycles_by_atom = molecular_cycles(atomtype_vector)
bond_indice_permutations = [] # interatomic distance matrix permutations
for atom in cycles_by_atom:
for cycle in atom:
tmp_bond_indices = copy.deepcopy(bond_indices) # need a deep copy, list of lists
for subcycle in cycle:
for i, bond in enumerate(tmp_bond_indices):
tmp_bond_indices[i] = permute_bond(bond, subcycle)
bond_indice_permutations.append(tmp_bond_indices)
return bond_indice_permutations | ebf398e55d8a80a2e4ce2cef4f48d957e47d68a3 | 8,931 |
def get_cell_integer_param(device_resources,
cell_data,
name,
force_format=None):
"""
Retrieves definition and decodes value of an integer cell parameter. The
function can optionally force a specific encoding format if needed.
"""
# Get the parameter definition to determine its type
param = device_resources.get_parameter_definition(cell_data.cell_type,
name)
# Force the format if requested by substituting the paraameter
# definition object.
if not param.is_integer_like() and force_format is not None:
if force_format != param.string_format:
param = ParameterDefinition(
name=name,
string_format=force_format,
default_value=cell_data.attributes[name])
# Decode
return param.decode_integer(cell_data.attributes[name]) | 6ab281004f324e8c40e176d5676cd7e42f50eaa9 | 8,932 |
import hashlib
def get_md5(filename):
""" Calculates the MD5 sum of the passed file
Args:
filename (str): File to hash
Returns:
str: MD5 hash of file
"""
# Size of buffer in bytes
BUF_SIZE = 65536
md5 = hashlib.md5()
# Read the file in 64 kB blocks
with open(filename, "rb") as f:
while True:
data = f.read(BUF_SIZE)
if not data:
break
md5.update(data)
return md5.hexdigest() | c43538aee954f670c671c2e26e18f4a17e298455 | 8,933 |
def is_recurrent(sequence):
"""
Returns true if the given sequence is recurrent (elements can exist more than once), otherwise returns false.
Example
---------
>>> sequence = [1,2,3,4,5]
>>> ps.is_recurrent(sequence)
False
>>> sequence = [1,1,2,2,3]
>>> ps.is_recurrent(sequence)
True
"""
element_counts = get_element_counts(sequence)
truths = [count > 1 for element, count in element_counts.items()]
if True in truths:
return True
return False | e123ddd960b262651b20e54ccbd3d5b11fe3695e | 8,935 |
import torch
def flex_stack(items, dim=0):
"""
"""
if len(items) < 1:
raise ValueError("items is empty")
if len(set([type(item) for item in items])) != 1:
raise TypeError("items are not of the same type")
if isinstance(items[0], list):
return items
elif isinstance(items[0], torch.Tensor):
return torch.stack(items, dim=0)
elif isinstance(items[0], np.ndarray):
return np.stack(items, axis=0)
else:
raise TypeError(f"Unrecognized type f{type(items[0])}") | 47ca0e47647ce86619f1cdc86eef560fbbb9304e | 8,936 |
from pathlib import Path
def download_image_data(gpx_file,
padding,
square,
min_lat,
min_long,
max_lat,
max_long,
cache_dir):
"""
Download satellite imagery from USGS
Args:
gpx_file: (str) A file containing one of more tracks to use to determine the area of terrain to model
padding: (float) Padding to add around the GPX track, in miles
min_lat (float) Southern boundary of the region to model
min_long (float) Eastern boundary of the region to model
max_lat (float) Northern boundary of the region to model
max_long (float) Western boundary of the region to model
cache_dir (str) Directory to download the files to
"""
log = GetLogger()
# Determine the bounds of the output
if gpx_file:
log.info("Parsing GPX file")
gpx = GPXFile(gpx_file)
try:
min_lat, min_long, max_lat, max_long = gpx.GetBounds(padding, square)
except ApplicationError as ex:
log.error(ex)
return False
if None in (min_lat, min_long, max_lat, max_long):
raise InvalidArgumentError("You must specify an area to download")
log.info(f"Requested boundaries top(max_lat)={max_lat} left(min_long)={min_long} bottom(min_lat)={min_lat} right(max_long)={max_long}")
# Get the image data
cache_dir = Path(cache_dir)
image_filename = Path(get_cropped_image_filename(max_lat, min_long, min_lat, max_long))
try:
get_image_data(image_filename, min_lat, min_long, max_lat, max_long, cache_dir)
except ApplicationError as ex:
log.error(ex)
return False
log.passed("Successfully downloaded images")
return True | 4ceef45da21622ab716031e8f68ed4724e168062 | 8,937 |
def find_nearest_values(array, value):
"""Find indexes of the two nearest values of an array to a given value
Parameters
----------
array (numpy.ndarray) : array
value (float) : value
Returns
-------
idx1 (int) : index of nearest value in the array
idx2 (int) : index of second nearest value in the array
"""
# index of nearest value in the array
idx1 = (np.abs(array-value)).argmin()
# check if value is bigger or smaller than nearest value
if array[idx1] >= value:
idx2 = idx1 - 1
else:
idx2 = idx1 + 1
return idx1, idx2 | 9c873692878ef3e4de8762bb89306e7ef907f90a | 8,938 |
def channel_info(channel_id):
"""
Get Slack channel info
"""
channel_info = slack_client.api_call("channels.info", channel=channel_id)
if channel_info:
return channel_info['channel']
return None | 260eeaa2849350e2ede331ddecd68aead798f76c | 8,939 |
from typing import Callable
from typing import Any
import logging
def log(message: str) -> Callable:
"""Returns a decorator to log info a message before function call.
Parameters
----------
message : str
message to log before function call
"""
def decorator(function: Callable) -> Callable:
@wraps(function)
def wrapper(*args: Any, **kwargs: Any) -> None:
logging.info(message)
return function(*args, **kwargs)
return wrapper
return decorator | c8ed8f8119be8d6e80935d73034f752ad2cb1dd9 | 8,940 |
def client(identity: PrivateIdentity) -> Client:
"""Client for easy access to iov42 platform."""
return Client(PLATFORM_URL, identity) | a0ad172765b50a76485bd3ec630a2c3ffeae85ef | 8,941 |
def init_weights(module, init='orthogonal'):
"""Initialize all the weights and biases of a model.
:param module: any nn.Module or nn.Sequential
:param init: type of initialize, see dict below.
:returns: same module with initialized weights
:rtype: type(module)
"""
if init is None: # Base case, no change to default.
return module
init_dict = {
'xavier_uniform': nn.init.xavier_uniform_,
'xavier_normal': nn.init.xavier_normal_,
'orthogonal': nn.init.orthogonal_,
'kaiming_normal': nn.init.kaiming_normal_,
'kaiming_uniform': nn.init.kaiming_uniform_,
}
for m in module.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
# print("initializing {} with {} init.".format(m, init))
init_dict[init](m.weight)
if hasattr(m, 'bias') and m.bias is not None:
# print("initial bias from ", m, " with zeros")
nn.init.constant_(m.bias, 0.0)
elif isinstance(m, (nn.Sequential, nn.ModuleList, nn.ModuleDict)):
for mod in m:
init_weights(mod, init)
return module | e8cd95743b8a36dffdb53c7f7b9723e896d2071d | 8,942 |
def getsoundchanges(reflex, root): # requires two ipastrings as input
"""
Takes a modern-day L1 word and its reconstructed form and returns \
a table of sound changes.
:param reflex: a modern-day L1-word
:type reflex: str
:param root: a reconstructed proto-L1 word
:type root: str
:return: table of sound changes
:rtype: pandas.core.frame.DataFrame
:Example:
>>> from loanpy import reconstructor as rc
>>> rc.getsoundchanges("ɟɒloɡ", "jɑlkɑ")
+---+--------+------+
| # | reflex | root |
+---+--------+------+
| 0 | #0 | 0 |
+---+--------+------+
| 1 | #ɟ | j |
+---+--------+------+
| 2 | ɒ | ɑ |
+---+--------+------+
| 3 | l | lk |
+---+--------+------+
| 4 | o | ɑ |
+---+--------+------+
| 5 | ɡ# | 0 |
+---+--------+------+
"""
reflex = ipa2clusters(reflex)
root = ipa2clusters(root)
reflex[0], reflex[-1] = "#" + reflex[0], reflex[-1] + "#"
reflex, root = ["#0"] + reflex, ["0"] + root
if reflex[1][1:] in vow and root[1] in cns:
root = root[1:]
elif reflex[1][1:] in cns and root[1] in vow:
reflex = reflex[1:]
diff = abs(len(root) - len(reflex)) # "a,b","c,d,e,f,g->"a,b,000","c,d,efg
if len(reflex) < len(root):
reflex += ["0#"]
root = root[:-diff] + ["".join(root[-diff:])]
elif len(reflex) > len(root):
root += ["0"]
reflex = reflex[:-diff] + ["".join(reflex[-diff:])]
else:
reflex, root = reflex + ["0#"], root + ["0"]
return pd.DataFrame({"reflex": reflex, "root": root}) | 8230e836e109ed8453c6fdbc72e6a4f77833f69b | 8,943 |
def compute_normals(filename, datatype='cell'):
"""
Given a file, this method computes the surface normals of the mesh stored
in the file. It allows to compute the normals of the cells or of the points.
The normal computed in a point is the interpolation of the cell normals of
the cells adiacent to the point.
:param str filename: the name of the file to parse in order to extract
the geometry information.
:param str datatype: indicate if the normals have to be computed for the
points or the cells. The allowed values are: 'cell', 'point'. Default
value is 'cell'.
:return: the array that contains the normals.
:rtype: numpy.ndarray
"""
points, cells = FileHandler(filename).get_geometry(get_cells=True)
normals = np.array(
[normalize(normal(*points[cell][0:3])) for cell in cells])
if datatype == 'point':
normals_cell = np.empty((points.shape[0], 3))
for i_point in np.arange(points.shape[0]):
cell_adiacent = [cells.index(c) for c in cells if i_point in c]
normals_cell[i_point] = normalize(
np.mean(normals[cell_adiacent], axis=0))
normals = normals_cell
return normals | e0cfc90a299f6db52d9cec2f39eebfc96158265c | 8,944 |
from typing import List
from typing import Optional
def build_layers_url(
layers: List[str], *, size: Optional[LayerImageSize] = None
) -> str:
"""Convenience method to make the server-side-rendering URL of the provided layer URLs.
Parameters
-----------
layers: List[:class:`str`]
The image urls, in ascending order of Zone ID's
size: Optional[:class:`LayerImageSize`]
The desired size for the render. If one is not supplied, it defaults to `LayerImageSize.SIZE_600`.
"""
size_str = str(size or LayerImageSize.SIZE_600)[-3:]
joined = ",".join(quote(layer) for layer in layers)
return f"https://impress-2020.openneo.net/api/outfitImage?size={size_str}&layerUrls={joined}" | 2cc7ab58af2744a4c898903d9a035c77accbae2e | 8,945 |
def SyncBatchNorm(*args, **kwargs):
"""In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead"""
if paddle.get_device() == 'cpu':
return nn.BatchNorm2D(*args, **kwargs)
else:
return nn.SyncBatchNorm(*args, **kwargs) | f08a7141700b36286893bbbc82b28686d1ca88a9 | 8,946 |
def data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_capacity_bandwidth_profile_peak_burst_size_get(uuid, local_id): # noqa: E501
"""data_context_connectivity_context_connectivity_serviceuuid_end_pointlocal_id_capacity_bandwidth_profile_peak_burst_size_get
returns tapi.common.CapacityValue # noqa: E501
:param uuid: Id of connectivity-service
:type uuid: str
:param local_id: Id of end-point
:type local_id: str
:rtype: TapiCommonCapacityValue
"""
return 'do some magic!' | 340189bc76bdbbc14666fe542aa05d467c7d4898 | 8,947 |
import re
def parse_path_length(path):
"""
parse path length
"""
matched_tmp = re.findall(r"(S\d+)", path)
return len(matched_tmp) | 762e2b86fe59689800ed33aba0419f83b261305b | 8,948 |
def check_permisions(request, allowed_groups):
""" Return permissions."""
try:
profile = request.user.id
print('User', profile, allowed_groups)
is_allowed = True
except Exception:
return False
else:
return is_allowed | 4bdb54bd1edafd7a0cf6f50196d470e0d3425c66 | 8,949 |
def kanji2digit(s):
"""
1から99までの漢数字をアラビア数字に変換する
"""
k2d = lambda m, i: _kanjitable[m.group(i)]
s = _re_kanjijiu1.sub(lambda m: k2d(m,1) + k2d(m,2), s)
s = _re_kanjijiu2.sub(lambda m: u'1' + k2d(m,1), s)
s = _re_kanji.sub(lambda m: k2d(m,1), s)
s = s.replace(u'十', u'10')
return s | 27589cee8a9b4f14ad7120061f05077b736b8632 | 8,950 |
def load_featurizer(pretrained_local_path):
"""Load pretrained model."""
return CNN_tf("vgg", pretrained_local_path) | 1f39acdae01e484302d8f8051c2f55a178aa2301 | 8,952 |
from templateflow.conf import setup_home
def make_cmdclass(basecmd):
"""Decorate setuptools commands."""
base_run = basecmd.run
def new_run(self):
setup_home()
base_run(self)
basecmd.run = new_run
return basecmd | dc66370f19e2d1b3dbc2da3942f8923a07d8d9a6 | 8,954 |
def rmse(predictions, targets):
"""Compute root mean squared error"""
rmse = np.sqrt(((predictions - targets) ** 2).mean())
return rmse | 1a5fe824c5ef768f3df34463724fdd057d37901a | 8,955 |
import math
def format_timedelta(value, time_format=None):
""" formats a datetime.timedelta with the given format.
Code copied from Django as explained in
http://stackoverflow.com/a/30339105/932593
"""
if time_format is None:
time_format = "{days} days, {hours2}:{minutes2}:{seconds2}"
if hasattr(value, 'seconds'):
seconds = value.seconds + value.days * 24 * 3600
else:
seconds = int(value)
seconds_total = seconds
minutes = int(math.floor(seconds / 60))
minutes_total = minutes
seconds -= minutes * 60
hours = int(math.floor(minutes / 60))
hours_total = hours
minutes -= hours * 60
days = int(math.floor(hours / 24))
days_total = days
hours -= days * 24
years = int(math.floor(days / 365))
years_total = years
days -= years * 365
return time_format.format(**{
'seconds': seconds,
'seconds2': str(seconds).zfill(2),
'minutes': minutes,
'minutes2': str(minutes).zfill(2),
'hours': hours,
'hours2': str(hours).zfill(2),
'days': days,
'years': years,
'seconds_total': seconds_total,
'minutes_total': minutes_total,
'hours_total': hours_total,
'days_total': days_total,
'years_total': years_total,
}) | 0ee6a48e0eee5e553e665d44173f0a4843b4007f | 8,956 |
def categorical_log_likelihood(probs: chex.Array, labels: chex.Array):
"""Computes joint log likelihood based on probs and labels."""
num_data, unused_num_classes = probs.shape
assert len(labels) == num_data
assigned_probs = probs[jnp.arange(num_data), jnp.squeeze(labels)]
return jnp.sum(jnp.log(assigned_probs)) | 6209fc59dc6a76f8afc49788b9e5c5a11f58354f | 8,957 |
def ask_name(question: str = "What is your name?") -> str:
"""Ask for the users name."""
return input(question) | 1cc9ec4d3bc48d7ae4be1b2cf8eb64a0b4f94b23 | 8,958 |
from typing import Sequence
def _maxcut(g: Graph, values: Sequence[int]) -> float:
"""
cut by given values $$\pm 1$$ on each vertex as a list
:param g:
:param values:
:return:
"""
cost = 0
for e in g.edges:
cost += g[e[0]][e[1]].get("weight", 1.0) / 2 * (1 - values[e[0]] * values[e[1]])
return cost | 1ca8d2cfce6a741fb4eab55f7fcd9d9db5e3578f | 8,959 |
def cp_als(X, rank, random_state=None, init='randn', **options):
"""Fits CP Decomposition using Alternating Least Squares (ALS).
Parameters
----------
X : (I_1, ..., I_N) array_like
A tensor with ``X.ndim >= 3``.
rank : integer
The `rank` sets the number of components to be computed.
random_state : integer, ``RandomState``, or ``None``, optional (default ``None``)
If integer, sets the seed of the random number generator;
If RandomState instance, random_state is the random number generator;
If None, use the RandomState instance used by ``numpy.random``.
init : str, or KTensor, optional (default ``'randn'``).
Specifies initial guess for KTensor factor matrices.
If ``'randn'``, Gaussian random numbers are used to initialize.
If ``'rand'``, uniform random numbers are used to initialize.
If KTensor instance, a copy is made to initialize the optimization.
options : dict, specifying fitting options.
tol : float, optional (default ``tol=1E-5``)
Stopping tolerance for reconstruction error.
max_iter : integer, optional (default ``max_iter = 500``)
Maximum number of iterations to perform before exiting.
min_iter : integer, optional (default ``min_iter = 1``)
Minimum number of iterations to perform before exiting.
max_time : integer, optional (default ``max_time = np.inf``)
Maximum computational time before exiting.
verbose : bool ``{'True', 'False'}``, optional (default ``verbose=True``)
Display progress.
Returns
-------
result : FitResult instance
Object which holds the fitted results. It provides the factor matrices
in form of a KTensor, ``result.factors``.
Notes
-----
Alternating Least Squares (ALS) is a very old and reliable method for
fitting CP decompositions. This is likely a good first algorithm to try.
References
----------
Kolda, T. G. & Bader, B. W.
"Tensor Decompositions and Applications."
SIAM Rev. 51 (2009): 455-500
http://epubs.siam.org/doi/pdf/10.1137/07070111X
Comon, Pierre & Xavier Luciani & Andre De Almeida.
"Tensor decompositions, alternating least squares and other tales."
Journal of chemometrics 23 (2009): 393-405.
http://onlinelibrary.wiley.com/doi/10.1002/cem.1236/abstract
Examples
--------
```
import tensortools as tt
I, J, K, R = 20, 20, 20, 4
X = tt.randn_tensor(I, J, K, rank=R)
tt.cp_als(X, rank=R)
```
"""
# Check inputs.
optim_utils._check_cpd_inputs(X, rank)
# Initialize problem.
U, normX = optim_utils._get_initial_ktensor(init, X, rank, random_state)
result = FitResult(U, 'CP_ALS', **options)
# Main optimization loop.
while result.still_optimizing:
# Iterate over each tensor mode.
for n in range(X.ndim):
# i) Normalize factors to prevent singularities.
U.rebalance()
# ii) Compute the N-1 gram matrices.
components = [U[j] for j in range(X.ndim) if j != n]
grams = sci.multiply.reduce([sci.dot(u.T, u) for u in components])
# iii) Compute Khatri-Rao product.
kr = khatri_rao(components)
# iv) Form normal equations and solve via Cholesky
c = linalg.cho_factor(grams, overwrite_a=False)
p = unfold(X, n).dot(kr)
U[n] = linalg.cho_solve(c, p.T, overwrite_b=False).T
# U[n] = linalg.solve(grams, unfold(X, n).dot(kr).T).T
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Update the optimization result, checks for convergence.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Compute objective function
# grams *= U[-1].T.dot(U[-1])
# obj = np.sqrt(np.sum(grams) - 2*sci.sum(p*U[-1]) + normX**2) / normX
obj = linalg.norm(U.full() - X) / normX
# Update result
result.update(obj)
# Finalize and return the optimization result.
return result.finalize() | b6402f03ba4e8be7d0abb2b13232d88b07a73be9 | 8,960 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.