content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def siblings_list(): """ Shows child element iteration """ o = untangle.parse( """ <root> <child name="child1"/> <child name="child2"/> <child name="child3"/> </root> """ ) return ",".join([child["name"] for child in o.root.child])
06737cb187e18c9fa8b9dc9164720e68f5fd2c36
8,738
def combine_histogram(old_hist, arr): """ Collect layer histogram for arr and combine it with old histogram. """ new_max = np.max(arr) new_min = np.min(arr) new_th = max(abs(new_min), abs(new_max)) (old_hist, old_hist_edges, old_min, old_max, old_th) = old_hist if new_th <= old_th: hist, _ = np.histogram(arr, bins=len(old_hist), range=(-old_th, old_th)) return (old_hist + hist, old_hist_edges, min(old_min, new_min), max(old_max, new_max), old_th) else: old_num_bins = len(old_hist) old_step = 2 * old_th / old_num_bins half_increased_bins = int((new_th - old_th) // old_step + 1) new_num_bins = half_increased_bins * 2 + old_num_bins new_th = half_increased_bins * old_step + old_th hist, hist_edges = np.histogram(arr, bins=new_num_bins, range=(-new_th, new_th)) hist[half_increased_bins:new_num_bins - half_increased_bins] += old_hist return (hist, hist_edges, min(old_min, new_min), max(old_max, new_max), new_th)
bc6e6edc9531b07ed347dc0083f86ee921d77c11
8,740
from typing import Mapping def unmunchify(x): """ Recursively converts a Munch into a dictionary. >>> b = Munch(foo=Munch(lol=True), hello=42, ponies='are pretty!') >>> sorted(unmunchify(b).items()) [('foo', {'lol': True}), ('hello', 42), ('ponies', 'are pretty!')] unmunchify will handle intermediary dicts, lists and tuples (as well as their subclasses), but ymmv on custom datatypes. >>> b = Munch(foo=['bar', Munch(lol=True)], hello=42, ... ponies=('are pretty!', Munch(lies='are trouble!'))) >>> sorted(unmunchify(b).items()) #doctest: +NORMALIZE_WHITESPACE [('foo', ['bar', {'lol': True}]), ('hello', 42), ('ponies', ('are pretty!', {'lies': 'are trouble!'}))] nb. As dicts are not hashable, they cannot be nested in sets/frozensets. """ # Munchify x, using `seen` to track object cycles seen = dict() def unmunchify_cycles(obj): # If we've already begun unmunchifying obj, just return the already-created unmunchified obj try: return seen[id(obj)] except KeyError: pass # Otherwise, first partly unmunchify obj (but without descending into any lists or dicts) and save that seen[id(obj)] = partial = pre_unmunchify(obj) # Then finish unmunchifying lists and dicts inside obj (reusing unmunchified obj if cycles are encountered) return post_unmunchify(partial, obj) def pre_unmunchify(obj): # Here we return a skeleton of unmunchified obj, which is enough to save for later (in case # we need to break cycles) but it needs to filled out in post_unmunchify if isinstance(obj, Mapping): return dict() elif isinstance(obj, list): return type(obj)() elif isinstance(obj, tuple): type_factory = getattr(obj, "_make", type(obj)) return type_factory(unmunchify_cycles(item) for item in obj) else: return obj def post_unmunchify(partial, obj): # Here we finish unmunchifying the parts of obj that were deferred by pre_unmunchify because they # might be involved in a cycle if isinstance(obj, Mapping): partial.update((k, unmunchify_cycles(obj[k])) for k in iterkeys(obj)) elif isinstance(obj, list): partial.extend(unmunchify_cycles(v) for v in obj) elif isinstance(obj, tuple): for (value_partial, value) in zip(partial, obj): post_unmunchify(value_partial, value) return partial return unmunchify_cycles(x)
90ee373099d46ca80cf78c4d8cca885f2258bce2
8,741
def split_data(mapping, encoded_sequence): """ Function to split the prepared data in train and test Args: mapping (dict): dictionary mapping of all unique input charcters to integers encoded_sequence (list): number encoded charachter sequences Returns: numpy array : train and test split numpy arrays """ encoded_sequence_ = np.array(encoded_sequence) X, y = encoded_sequence_[:, :-1], encoded_sequence_[:, -1] y = to_categorical(y, num_classes=len(mapping)) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.1, random_state=42) return X_train, X_test, y_train, y_test
b8044b3c1686b37d4908dd28db7cbe9bff2e899a
8,742
def fsp_loss(teacher_var1_name, teacher_var2_name, student_var1_name, student_var2_name, program=None): """Combine variables from student model and teacher model by fsp-loss. Args: teacher_var1_name(str): The name of teacher_var1. teacher_var2_name(str): The name of teacher_var2. Except for the second dimension, all other dimensions should be consistent with teacher_var1. student_var1_name(str): The name of student_var1. student_var2_name(str): The name of student_var2. Except for the second dimension, all other dimensions should be consistent with student_var1. program(Program): The input distiller program. If not specified, the default program will be used. Default: None Returns: Variable: fsp distiller loss. """ if program == None: program = paddle.static.default_main_program() teacher_var1 = program.global_block().var(teacher_var1_name) teacher_var2 = program.global_block().var(teacher_var2_name) student_var1 = program.global_block().var(student_var1_name) student_var2 = program.global_block().var(student_var2_name) teacher_fsp_matrix = paddle.fluid.layers.fsp_matrix(teacher_var1, teacher_var2) student_fsp_matrix = paddle.fluid.layers.fsp_matrix(student_var1, student_var2) fsp_loss = paddle.mean( paddle.nn.functional.square_error_cost(student_fsp_matrix, teacher_fsp_matrix)) return fsp_loss
b8937a64ec8f5e215128c61edee522c9b2cd83d7
8,743
def diff_numpy_array(A, B): """ Numpy Array A - B return items in A that are not in B By Divakar https://stackoverflow.com/a/52417967/1497443 """ return A[~np.in1d(A, B)]
72139ba49cf71abd5ea60772143c26f384e0e171
8,744
def _find_data_between_ranges(data, ranges, top_k): """Finds the rows of the data that fall between each range. Args: data (pd.Series): The predicted probability values for the postive class. ranges (list): The threshold ranges defining the bins. Should include 0 and 1 as the first and last value. top_k (int): The number of row indices per bin to include as samples. Returns: list(list): Each list corresponds to the row indices that fall in the range provided. """ results = [] for i in range(1, len(ranges)): mask = data[(data >= ranges[i - 1]) & (data < ranges[i])] if top_k != -1: results.append(mask.index.tolist()[: min(len(mask), top_k)]) else: results.append(mask.index.tolist()) return results
323986cba953a724f9cb3bad8b2522fc711529e5
8,746
def validar_entero_n(): """ """ try: n = int(input('n= ')) #si es un float también funciona el programa except: print ('Número no válido') return False else: return n
a1238025fd2747c597fc2adf34de441ae6b8055d
8,747
def Conv_Cifar10_32x64x64(): """A 3 hidden layer convnet designed for 32x32 cifar10.""" base_model_fn = _cross_entropy_pool_loss([32, 64, 64], jax.nn.relu, num_classes=10) datasets = image.cifar10_datasets(batch_size=128) return _ConvTask(base_model_fn, datasets)
e41e2f0da80f8822187a2ee82dcfe6f70e324213
8,748
from typing import List def rotate(angle_list: List, delta: float) -> List: """Rotates a list of angles (wraps around at 2 pi) Args: angle_list (List): list of angles in pi radians delta (float): amount to change in pi radians Returns: List: new angle list in pi radians """ new_angle_list = [] for angle in angle_list: new_angle = angle + delta if new_angle >= 2.0: new_angle -= 2.0 new_angle_list.append(new_angle) new_angle_list.sort() return new_angle_list
560c5138486bd3e67ad956fb2439236a3e3886cc
8,749
def global_average_pooling_3d(tensor: TorchTensorNCX) -> TorchTensorNCX: """ 3D Global average pooling. Calculate the average value per sample per channel of a tensor. Args: tensor: tensor with shape NCDHW Returns: a tensor of shape NC """ assert len(tensor.shape) == 5, 'must be a NCDHW tensor!' return F.avg_pool3d(tensor, tensor.shape[2:]).squeeze(2).squeeze(2).squeeze(2)
27a73d29fd9dd63b461f2275ed2941bf6bd83348
8,750
def get_LAB_L_SVD_s(image): """Returns s (Singular values) SVD from L of LAB Image information Args: image: PIL Image or Numpy array Returns: vector of singular values Example: >>> from PIL import Image >>> from ipfml.processing import transform >>> img = Image.open('./images/test_img.png') >>> s = transform.get_LAB_L_SVD_s(img) >>> len(s) 200 """ L = get_LAB_L(image) return compression.get_SVD_s(L)
50a4bd4e4a8b3834baa3aca1f5f1e635baa7a145
8,751
def path_inclusion_filter_fn(path, param, layer): """Returns whether or not layer name is contained in path.""" return layer in path
c93aa83e67c600cd83d053d50fbeaee4f7eebf94
8,752
from typing import Tuple def _parse_feature(line: PipelineRecord) -> Tuple[str, Coordinates, Feature]: """ Creates a Feature from a line of output from a CSVReader """ contig = line[0] coordinates = parse_coordinates(line[1]) feature = line[2] # Piler-cr and BLAST both use 1-based indices, but Opfi uses 0-based indices. # To make both coordinate systems consistent, we subtract 1 from the start # since feature coordinates come directly from those tools. # If features are on the reverse strand, the second coordinate will be larger # than the first, but operon_analyzer assumes the start is always less than the # end first_coord, second_coord = parse_coordinates(line[3]) feature_start = min(first_coord, second_coord) - 1 feature_end = max(first_coord, second_coord) query_orfid = line[4] strand = int(line[5]) if line[5] else (1 if feature_start < feature_end else -1) hit_accession = line[6] hit_eval = float(line[7]) if line[7] else None description = line[8] sequence = line[9] if len(line) > 10: bit_score = float(line[10]) if line[10] != '' else None raw_score = int(line[11]) if line[11] != '' else None aln_len = int(line[12]) if line[12] != '' else None pident = float(line[13]) if line[13] != '' else None nident = int(line[14]) if line[14] != '' else None mismatch = int(line[15]) if line[15] != '' else None positive = int(line[16]) if line[16] != '' else None gapopen = int(line[17]) if line[17] != '' else None gaps = int(line[18]) if line[18] != '' else None ppos = float(line[19]) if line[19] != '' else None qcovhsp = int(line[20]) if line[20] != '' else None contig_filename = line[21] if line[21] else '' else: bit_score = None raw_score = None aln_len = None pident = None nident = None mismatch = None positive = None gapopen = None gaps = None ppos = None qcovhsp = None contig_filename = None return contig, contig_filename, coordinates, Feature( feature, (feature_start, feature_end), query_orfid, strand, hit_accession, hit_eval, description, sequence, bit_score, raw_score, aln_len, pident, nident, mismatch, positive, gapopen, gaps, ppos, qcovhsp)
201f9c6ed5cd618fc63ec5e07a5b99977f4ef2b0
8,753
def average_summary_df_tasks(df, avg_columns): """ Create averages of the summary df across tasks.""" new_df = [] # Columns to have after averaging keep_cols = ["dataset", "method_name", "trial_number"] subsetted = df.groupby(keep_cols) for subset_indices, subset_df in subsetted: return_dict = {} return_dict.update(dict(zip(keep_cols, subset_indices))) for column in avg_columns: task_values = subset_df[column].values min_length = min([len(i) for i in task_values]) new_task_values = [] for j in task_values: j = np.array(j) if len(j) > min_length: percentiles = np.linspace(0, len(j) - 1, min_length).astype(int) new_task_values.append(j[percentiles]) else: new_task_values.append(j) avg_task = np.mean(np.array(new_task_values), axis=0).tolist() return_dict[column] = avg_task new_df.append(return_dict) return pd.DataFrame(new_df)
9c506132cc406a91979777255c092db20d786d12
8,754
def ml_variance(values, mean): """ Given a list of values assumed to come from a normal distribution and their maximum likelihood estimate of the mean, compute the maximum likelihood estimate of the distribution's variance of those values. There are many libraries that do something like this, but they likely don't do exactly what you want, so you should not use them directly. (And to be clear, you're not allowed to use them.) """ # Your code here return 1.0
440d8d2d2f0a5ed40e01e640aadafb83f16ee14b
8,755
def add_landmarks(particle, d, angle): """ Adds a set of landmarks to the particle. Only used on first SLAM cycle when no landmarks have been added. :param particle: The particle to be updated :param d: An array of distances to the landmarks :param angle: An array of observation angles for the landmarks :return: Returns the updated particle with landmarks added """ # Evaluate sine and cosine values for each observation in z s = np.sin(pi_2_pi(particle.x[2, 0] + angle)) c = np.cos(pi_2_pi(particle.x[2, 0] + angle)) # Add new landmark locations to mu particle.mu = np.vstack((particle.mu, np.array( [particle.x[0, 0] + d * c, particle.x[1, 0] + d * s]).T)) # Distance values dpos = np.zeros((len(d), 2)) dpos[:, 0] = d * c # dx dpos[:, 1] = d * s # dy d_sq = dpos[:, 0]**2 + dpos[:, 1]**2 d = np.sqrt(d_sq) H = calc_H(particle, dpos, d_sq, d) # Add covariance matrices for landmarks particle.sigma = np.vstack((particle.sigma, np.linalg.inv(H) @ Q @ np.linalg.inv(H.transpose((0, 2, 1))))) particle.i = np.append(particle.i, np.full(len(d), 1)) return particle
d1d168e48f62f60d58e57a79223793108d50dac9
8,756
def walk_forward_val_multiple(model, ts_list, history_size=HISTORY_SIZE, target_size=TARGET_SIZE) -> float: """ Conduct walk-forward validation for all states, average the results. Parameters ---------- model -- The model to be validated ts_list {list | np.ndarray} -- Array of time series vector history_size {int} -- The window to use for model input target_size {int} -- The target prediction window size Returns ------- 'mse' {float} -- The weighted average MSE across all the states (weighted by length of time series) """ total_error = 0. total_steps = 0 for ts in ts_list: mse_state, n_preds = walk_forward_val(model, ts, history_size=history_size, target_size=target_size, return_count=True) total_error += mse_state * n_preds total_steps += n_preds return total_error / total_steps
b3f73ceeddb720fdc7c7d9470a49bccc3c21f81b
8,757
def inverse_project_lambert_equal_area(pt): """ Inverse Lambert projections Parameters: pt: point, as a numpy array """ X = pt[0] Y = pt[1] f = np.sqrt(1.0-(X**2.0+Y**2.0)/4) return tensors.Vector([f*X,f*Y,-1.0+(X**2.0+Y**2.0)/2])
f8ab5fb44d2d271a8da13623273d8d687d38b772
8,759
import dataclasses def _get_field_default(field: dataclasses.Field): """ Return a marshmallow default value given a dataclass default value >>> _get_field_default(dataclasses.field()) <marshmallow.missing> """ # Remove `type: ignore` when https://github.com/python/mypy/issues/6910 is fixed default_factory = field.default_factory # type: ignore if default_factory is not dataclasses.MISSING: return default_factory elif field.default is dataclasses.MISSING: return marshmallow.missing return field.default
0c45e55a1c14cb6b47365ef90cb68e517342dbbc
8,760
from typing import List from typing import Tuple import select def get_all_votes(poll_id: int) -> List[Tuple[str, int]]: """ Get all votes for the current poll_id that are stored in the database Args: poll_id (int): Telegram's `message_id` for the poll Returns: List[Tuple[str, int]]: A list with the current votes in tuples (user, votes) """ postgres: Database = get_database() select_query = ( select([postgres.motos_counter.c.username, postgres.motos_counter.c.vote]) .where(postgres.motos_counter.c.poll_id == poll_id) .order_by(postgres.motos_counter.c.vote, postgres.motos_counter.c.date) ) results = postgres.engine.execute(select_query) return [(row["username"], row["vote"]) for row in results]
cf0ad8ee700a0da70bf29d53d08ab71e08c941ea
8,762
def getUnitConversion(): """ Get the unit conversion from kT to kJ/mol Returns factor: The conversion factor (float) """ temp = 298.15 factor = Python_kb/1000.0 * temp * Python_Na return factor
cb7b33231a53a68358713ce65137cbf13a397923
8,763
def find_where_and_nearest(array, value): """ Returns index and array[index] where value is closest to an array element. """ array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx, array[idx]
a34ac1d59c8093989978fbca7c2409b241cedd5b
8,764
import numpy def twoexpdisk(R,phi,z,glon=False, params=[1./3.,1./0.3,1./4.,1./0.5,logit(0.1)]): """ NAME: twoexpdisk PURPOSE: density of a sum of two exponential disks INPUT: R,phi,z - Galactocentric cylindrical coordinates or (l/rad,b/rad,D/kpc) glon= (False) if True, input coordinates above are (l,b,D) params= parameters [1/hR,1/hz,1/hR2,1/hz2,logit(amp2)] OUTPUT: density or log density HISTORY: 2015-03-24 - Written - Bovy (IAS) """ amp= ilogit(params[4]) return (1.-amp)/2.*numpy.fabs(params[1])\ *numpy.exp(-params[0]*(R-_R0)-params[1]*numpy.fabs(z))\ +amp/2.*params[3]*numpy.exp(-params[2]*(R-_R0)-params[3]*numpy.fabs(z))
bf8c5e0afa28e715846401274941e281a8731f24
8,765
def sc(X): """Silhouette Coefficient""" global best_k score_list = [] # 用来存储每个K下模型的平局轮廓系数 silhouette_int = -1 # 初始化的平均轮廓系数阀值 for n_clusters in range(3, 10): # 遍历从2到10几个有限组 model_kmeans = KMeans(n_clusters=n_clusters, random_state=0) # 建立聚类模型对象 cluster_labels_tmp = model_kmeans.fit_predict(X) # 训练聚类模型 silhouette_tmp = metrics.silhouette_score(X, cluster_labels_tmp) # 得到每个K下的平均轮廓系数 score_list.append([n_clusters, silhouette_tmp]) # 将每次K及其得分追加到列表 if silhouette_tmp > silhouette_int: # 如果平均轮廓系数更高 best_k = n_clusters # 将最好的K存储下来 silhouette_int = silhouette_tmp # 将最好的平均轮廓得分存储下来 # best_kmeans = model_kmeans # 将最好的模型存储下来 # cluster_labels_k = cluster_labels_tmp # 将最好的聚类标签存储下来 return best_k
c2898e115db04c1f1ac4d6a7f8c583ea0a8b238e
8,766
import socket import time def is_tcp_port_open(host: str, tcp_port: int) -> bool: """Checks if the TCP host port is open.""" sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.settimeout(2) # 2 Second Timeout try: sock.connect((host, tcp_port)) sock.shutdown(socket.SHUT_RDWR) except ConnectionRefusedError: return False except socket.timeout: return False finally: sock.close() # Other errors are propagated as odd exceptions. # We shutdown and closed the connection, but the server may need a second # to start listening again. If the following error is seen, this timeout # should be increased. 300ms seems to be the minimum. # # Connecting to J-Link via IP...FAILED: Can not connect to J-Link via \ # TCP/IP (127.0.0.1, port 19020) time.sleep(0.5) return True
cbe4d0ae58610b863c30b4e1867b47cb1dbdfc3d
8,767
from typing import Callable from typing import Any import itertools def recursive_apply_dict(node: dict, fn: Callable) -> Any: """ Applies `fn` to the node, if `fn` changes the node, the changes should be returned. If the `fn` does not change the node, it calls `recursive_apply` on the children of the node. In case the recursion on the children results in one or more `runtool.datatypes.Versions` objects, the cartesian product of these versions is calculated and a new `runtool.datatypes.Versions` object will be returned containing the different versions of this node. """ # else merge children of type Versions into a new Versions object expanded_children = [] new_node = {} for key, value in node.items(): child = recursive_apply(value, fn) # If the child is a Versions object, map the key to all its versions, # child = Versions([1,2]), # key = ['a'] # -> # (('a':1), ('a':2)) if isinstance(child, Versions): expanded_children.append(itertools.product([key], child)) else: new_node[key] = child if expanded_children: # example: # expanded_children = [(('a':1), ('a':2)), (('b':1), ('b':2))] # new_node = {"c": 3} # results in: # [ # {'a':1, 'b':1, 'c':3}, # {'a':1, 'b':2, 'c':3}, # {'a':2, 'b':1, 'c':3}, # {'a':3, 'b':2, 'c':3}, # ] new_node = [ fn( dict(version_of_node, **new_node) ) # apply fn to the new version of the node for version_of_node in itertools.product(*expanded_children) ] # if the current node generated Versions object, these # need to be flattened as well. For example: # new_node = [Versions([1,2]), Versions([3,4])] # results in # Versions([[1,3], [1,4], [2,3], [2,4]]) if all(isinstance(val, Versions) for val in new_node): return Versions(list(*itertools.product(*new_node))) return Versions(new_node) return fn(new_node)
c40daa68caaea02d16511fcc1cd3ee1949c73633
8,768
import six def encode_image_array_as_jpg_str(image): """Encodes a numpy array into a JPEG string. Args: image: a numpy array with shape [height, width, 3]. Returns: JPEG encoded image string. """ image_pil = Image.fromarray(np.uint8(image)) output = six.BytesIO() image_pil.save(output, format='JPEG') jpg_string = output.getvalue() output.close() return jpg_string
4c2d27c15c6979678a1c9619a347b7aea5718b2c
8,769
def minify_response(response): """Minify response to save bandwith.""" if response.mimetype == u'text/html': data = response.get_data(as_text=True) response.set_data(minify(data, remove_comments=True, remove_empty_space=True, reduce_boolean_attributes=True)) return response
29a942d870636337eaf0d125ba6b2ca9945d1d1c
8,770
def get_shorturlhash(myurl): """Returns a FNV1a hash of the UNquoted version of the passed URL.""" x = get_hash(unquote(myurl)) return x
f61ef1cfe14fc69a523982888a7b1082244b7bd5
8,771
def filter_privacy_level(qs, clearance_level, exact=False): """ Function to exclude objects from a queryset, which got a higher clearance level than the wanted maximum clearance level. :qs: Django queryset. :clearance_level: Minimum clearance level. :exact: Boolean to check for the exact clearance level. """ if not qs: return qs c_type = ContentType.objects.get_for_model(qs.model) kwargs = { 'content_type': c_type, 'object_id__in': qs.values_list('pk'), 'level__clearance_level{}'.format( '' if exact else '__gt'): clearance_level, } private_objects = PrivacySetting.objects.filter(**kwargs).values_list( 'object_id') if exact: return qs.filter(pk__in=private_objects) return qs.exclude(pk__in=private_objects)
a5fd864b3a9efd86bf40e0a3b966edb047979b2a
8,772
def get_configuration_store(name=None,resource_group_name=None,opts=None): """ Use this data source to access information about an existing App Configuration. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.appconfiguration.get_configuration_store(name="existing", resource_group_name="existing") pulumi.export("id", example.id) ``` :param str name: The Name of this App Configuration. :param str resource_group_name: The name of the Resource Group where the App Configuration exists. """ __args__ = dict() __args__['name'] = name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('azure:appconfiguration/getConfigurationStore:getConfigurationStore', __args__, opts=opts).value return AwaitableGetConfigurationStoreResult( endpoint=__ret__.get('endpoint'), id=__ret__.get('id'), location=__ret__.get('location'), name=__ret__.get('name'), primary_read_keys=__ret__.get('primaryReadKeys'), primary_write_keys=__ret__.get('primaryWriteKeys'), resource_group_name=__ret__.get('resourceGroupName'), secondary_read_keys=__ret__.get('secondaryReadKeys'), secondary_write_keys=__ret__.get('secondaryWriteKeys'), sku=__ret__.get('sku'), tags=__ret__.get('tags'))
4c0baa2cdd089439f1a53415ff9679568a097094
8,773
def _linear(args, output_size, bias, scope=None, use_fp16=False): """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable. Args: args: a 2D Tensor or a list of 2D, batch x n, Tensors. output_size: int, second dimension of W[i]. bias: boolean, whether to add a bias term or not. bias_start: starting value to initialize the bias; 0 by default. scope: VariableScope for the created subgraph; defaults to "Linear". Returns: A 2D Tensor with shape [batch x output_size] equal to sum_i(args[i] * W[i]), where W[i]s are newly created matrices. Raises: ValueError: if some of the arguments has unspecified or wrong shape. """ if args is None or (nest.is_sequence(args) and not args): raise ValueError("`args` must be specified") if not nest.is_sequence(args): args = [args] # Calculate the total size of arguments on dimension 1. total_arg_size = 0 shapes = [a.get_shape().as_list() for a in args] for shape in shapes: if len(shape) != 2: raise ValueError( "Linear is expecting 2D arguments: %s" % str(shapes)) if not shape[1]: raise ValueError( "Linear expects shape[1] of arguments: %s" % str(shapes)) else: total_arg_size += shape[1] dtype = [a.dtype for a in args][0] # Now the computation. with vs.variable_scope(scope or "Linear"): matrix = _variable_on_cpu('Matrix', [total_arg_size, output_size], use_fp16=use_fp16) if use_fp16: dtype = tf.float16 else: dtype = tf.float32 args = [tf.cast(x, dtype) for x in args] if len(args) == 1: res = math_ops.matmul(args[0], matrix) else: res = math_ops.matmul(array_ops.concat(args, 1), matrix) if not bias: return res bias_term = _variable_on_cpu('Bias', [output_size], tf.constant_initializer(0), use_fp16=use_fp16) return res + bias_term
d8daafaf1dfab0bc6425aef704543833bfbf731a
8,774
def find_CI(method, samples, weights=None, coverage=0.683, logpost=None, logpost_sort_idx=None, return_point_estimate=False, return_coverage=False, return_extras=False, options=None): """Compute credible intervals and point estimates from samples. Arguments --------- method : str Method to compute CI. Options are "PJ-HPD", "tail CI", "std", and "HPD". PJ-HPD: Compute the CI from the joint posterior HPD region such that the projected range of the HPDR has coverage ``coverage``. See Joachimi et al. 2020. The point estimate is the joint posterior MAP. tail CI: This is the usual quantile CI. I.e., for CI (l,u) and coverage c, P(x<l) = (1-c)/2 and P(x>u) = 1-(1-c)/2. The point estimate is the median. std: Compute the CI as (mean - n_sigma*std, mean + n_sigma*std). ``n_sigma`` is the number of standard devations that cover ``coverage`` in a normal distribution. The point estimate is the mean. HPD: Compute the HPDI of the samples. The point estimate is the MAP. samples : array Samples to use. weights : array, optional Sample weights. coverage : float, optional Target coverage. This gets converted into sigmas. Default: 0.683. logpost : array, optional Array of the log posterior values of the samples. Required for method ``PJ-HPD``. logpost_sort_idx : array, optional Array of indices that sort the samples in descending posterior value. If method is ``PJ-HPD`` and it is not provided, this will be computed internally from logpost. return_point_estimate : bool, optional Whether to return the point_estimate. return_coverage : bool, optional Whether to return the actual coverage of the CI. options : dict, optional Additional options passed to the CI methods. Returns ------- (l, u) : tuple Credible interval of the samples. p : float Point estimate. Only returned if return_point_estimate is true. coverage : float The achieved coverage of the returned CI. """ options = options or {} extras = None if method.lower() == "pj-hpd" or method.lower() == "projected joint hpd": if logpost is None and logpost_sort_idx is None: raise ValueError("For method PJ-HPD, either logpost or " "logpost_sort_idx need to be specified.") CI, MAP, alpha, n_sample = find_projected_joint_HPDI( samples, weights, coverage_1d_threshold=coverage, sort_idx=logpost_sort_idx, log_posterior=logpost, return_map=True, return_coverage_1d=True, return_n_sample=True, **options) point_estimate = MAP extras = n_sample elif method.lower() == "hpd" or method.lower() == "m-hpd": CI, marg_MAP, alpha, no_constraints = find_marginal_HPDI( samples, weights, coverage=coverage, return_map=True, return_coverage=True, check_prior_edges=True, **options) point_estimate = marg_MAP extras = no_constraints elif method.lower() == "tail ci" or method.lower() == "quantile ci": CI, marg_median, alpha = find_quantile_CI( samples, weights, coverage=coverage, return_median=True, return_coverage=True) point_estimate = marg_median elif method.lower() == "std": CI, marg_mean, alpha = find_std_CI( samples, weights, coverage=coverage, return_mean=True, return_coverage=True) point_estimate = marg_mean else: raise NotImplementedError(f"Method {method} not supported.") result = [CI] if return_point_estimate: result += [point_estimate] if return_coverage: result += [alpha] if return_extras: result += [extras] if len(result) == 1: # Only CI return result[0] else: return tuple(result)
6b5ab3ac47f4f4a0251862946336948fd2ff66ed
8,775
def load_csv(filename, fields=None, y_column=None, sep=','): """ Read the csv file.""" input = pd.read_csv(filename, skipinitialspace=True, usecols=fields, sep=sep, low_memory=False) input = input.dropna(subset=fields) # dtype={"ss_list_price": float, "ss_wholesale_cost": float} input_data = input.values data = DataSource() if y_column == None: data.features = input_data[:, :-1] data.labels = input_data[:, -1] data.headers = input.keys() else: data.features = np.delete( input_data, [y_column], axis=1) # input_data[:, :-1] data.labels = input_data[:, y_column] headers = np.array(input.keys()) data.headers = list(np.delete(headers, [y_column])) data.headers.append(input.keys()[y_column]) # print(data.headers) try: data.file = filename.split("/")[-1] except Exception: data.file = filename return data
126b96e94f4a5ab201460b427828807cf31eb6ae
8,776
def Normalize(array): """Normalizes numpy arrays into scale 0.0 - 1.0""" array_min, array_max = array.min(), array.max() return ((array - array_min)/(array_max - array_min))
a8f3bae56f8e17aed80f8e41030d049a69ac8cae
8,777
def obtener_cantidad_anualmente(PaisDestino, AnioInicio, AnioFin): """ Obtener cantidad de vuelos entrantes anualmente dado un pais destino y un rango de años Obtiene la cantidad total de vuelos entrantes de cada año :param PaisDestino: Pais al que llegan los vuelos :type PaisDestino: str :param AnioInicio: Anio Inicio :type AnioInicio: int :param AnioFin: Anio Fin :type AnioFin: int :rtype: Dict[str, int] """ conversor = Conversor() repository = DBRepository() cursor, labels = repository.ObtenerDatosVuelosEntrantesAenaDadoPaisDestinoAnioMinMax(PaisDestino, AnioInicio, AnioFin) arrayTuplas = conversor.ConvertirCursorToTuplas(cursor) ##Mostrar JSON Extendido matriz, lista = conversor.ConvertirTuplasToMatriz(arrayTuplas, labels) retval = conversor.ObtenerDataJSONExtendido(matriz) return retval
8364a08f4b42124b70a7769dc6a9649cdd9841d7
8,778
def calculate_shap_for_test(training_data, y, pipeline, n_points_to_explain): """Helper function to compute the SHAP values for n_points_to_explain for a given pipeline.""" points_to_explain = training_data[:n_points_to_explain] pipeline.fit(training_data, y) return _compute_shap_values(pipeline, pd.DataFrame(points_to_explain), training_data)
d8a88b3c9af05a8274a0cca1a0e63c3a9faaa8d0
8,779
def read_num_write(input_string): """ read in the number of output files """ pattern = ('NumWrite' + one_or_more(SPACE) + capturing(INTEGER)) block = _get_training_data_section(input_string) keyword = first_capture(pattern, block) assert keyword is not None return keyword
0ee1a9ac178eb4c49a01a36208e4c59d6b9023bc
8,780
import requests import json def stock_zh_a_minute(symbol: str = 'sh600751', period: str = '5', adjust: str = "") -> pd.DataFrame: """ 股票及股票指数历史行情数据-分钟数据 http://finance.sina.com.cn/realstock/company/sh600519/nc.shtml :param symbol: sh000300 :type symbol: str :param period: 1, 5, 15, 30, 60 分钟的数据 :type period: str :param adjust: 默认为空: 返回不复权的数据; qfq: 返回前复权后的数据; hfq: 返回后复权后的数据; :type adjust: str :return: specific data :rtype: pandas.DataFrame """ url = "https://quotes.sina.cn/cn/api/jsonp_v2.php/=/CN_MarketDataService.getKLineData" params = { "symbol": symbol, "scale": period, "datalen": "1023", } r = requests.get(url, params=params) temp_df = pd.DataFrame(json.loads(r.text.split('=(')[1].split(");")[0])).iloc[:, :6] try: stock_zh_a_daily(symbol=symbol, adjust="qfq") except: return temp_df if adjust == "": return temp_df if adjust == "qfq": temp_df[["date", "time"]] = temp_df["day"].str.split(" ", expand=True) need_df = temp_df[temp_df["time"] == "15:00:00"] need_df.index = need_df["date"] stock_zh_a_daily_qfq_df = stock_zh_a_daily(symbol=symbol, adjust="qfq") result_df = stock_zh_a_daily_qfq_df.iloc[-len(need_df):, :]["close"].astype(float) / need_df["close"].astype(float) temp_df.index = pd.to_datetime(temp_df["date"]) merged_df = pd.merge(temp_df, result_df, left_index=True, right_index=True) merged_df["open"] = merged_df["open"].astype(float) * merged_df["close_y"] merged_df["high"] = merged_df["high"].astype(float) * merged_df["close_y"] merged_df["low"] = merged_df["low"].astype(float) * merged_df["close_y"] merged_df["close"] = merged_df["close_x"].astype(float) * merged_df["close_y"] temp_df = merged_df[["day", "open", "high", "low", "close", "volume"]] temp_df.reset_index(drop=True, inplace=True) return temp_df if adjust == "hfq": temp_df[["date", "time"]] = temp_df["day"].str.split(" ", expand=True) need_df = temp_df[temp_df["time"] == "15:00:00"] need_df.index = need_df["date"] stock_zh_a_daily_qfq_df = stock_zh_a_daily(symbol=symbol, adjust="hfq") result_df = stock_zh_a_daily_qfq_df.iloc[-len(need_df):, :]["close"].astype(float) / need_df["close"].astype(float) temp_df.index = pd.to_datetime(temp_df["date"]) merged_df = pd.merge(temp_df, result_df, left_index=True, right_index=True) merged_df["open"] = merged_df["open"].astype(float) * merged_df["close_y"] merged_df["high"] = merged_df["high"].astype(float) * merged_df["close_y"] merged_df["low"] = merged_df["low"].astype(float) * merged_df["close_y"] merged_df["close"] = merged_df["close_x"].astype(float) * merged_df["close_y"] temp_df = merged_df[["day", "open", "high", "low", "close", "volume"]] temp_df.reset_index(drop=True, inplace=True) return temp_df
b54f7dce68e102ebfa6c1784de5ebd49fcb405cb
8,781
import random def randomize_case(s: str) -> str: """Randomize string casing. Parameters ---------- s : str Original string Returns ------- str String with it's letters in randomized casing. """ result = "".join( [c.upper() if random.randint(0, 1) == 1 else c.lower() for c in s] ) # If result contains letters and the result is same as original try again. if UNICODE_LETTERS_RE.search(s) is not None and result == s: return randomize_case(s) else: return result
5e00ce336e2886a0d3bd52bc033b02560f0fb9ae
8,782
def _get_results(): """Run speedtest with speedtest.py""" s = speedtest.Speedtest() print("Testing download..") s.download() print("Testing upload..") s.upload() return s.results.ping, s.results.download, s.results.upload
7092a5aa7200ebc93e266dbd6b7885095b0433bb
8,783
def findCursor(query, keyname, page_no, page_size): """Finds the cursor to use for fetching results from the given page. We store a mapping of page_no->cursor in memcache. If this result is missing, we look for page_no-1, if that's missing we look for page_no-2 and so on. Once we've found one (or we get back to page_no=0) then we need to fetch results from that page forward, storing the results back in memcache as we go. Args: query: A query used to fetch data from the data store keyname: A string that'll make the keys unique (e.g. all blog posts could have keyname='blog' page_no: The page number we're after page_size: The size of pages we're after""" cursor_page = page_no cursor = memcache.get('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size)) while not cursor: cursor_page -= 1 if cursor_page == 0: break cursor = memcache.get('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size)) while cursor_page < page_no: # if we have to fast-forward through pages then we'll store the pages in memcache as we go if cursor_page == 0: it = query.run() else: it = query.with_cursor(cursor) n = 0 for _ in it: n += 1 if n >= page_size: break cursor = query.cursor() cursor_page += 1 memcache.set('post-page-cursor:%s:%d:%d' % (keyname, cursor_page, page_size), cursor) return cursor
9af3368ef0011d7c6c9758f57bc2c956d540f675
8,784
def _get_seq(window,variants,ref,genotypeAware): """ Using the variation in @variants, construct two haplotypes, one which contains only homozygous variants, the other which contains both hom and het variants by placing those variants into the reference base string @param variants: A vcf_eval.ChromVariants object @param low: the starting position @param high: the ending position @param ref: a parsers.genome object @param loc: the location that we are trying to rescue @param genotype: whether to phase hets onto their own sequence to check for genotype accuracy (if there are multiple and they don't overlap, phasing doesn't matter) @return: a tuple of sequences of bases that comes from modifying the reference sequence with the variants """ low = window[0] high = window[1] hetChunks = [] homChunks = [] hetOffset = low homOffset = low # note: if genotypeAware is False, the het chunks/offset will not be used def get_ref_bases(start,end): """VCF parser is 1-based, but genome is 0-based.""" return ref.ref(window[2],start-1,end-1) def add_ref_bases_until(chunks,begin,end): chunks.append(get_ref_bases(begin,end)) def add_alt(chunk,start,var): add_ref_bases_until(chunk,start,var.pos) chunk.append(var.alt[0]) for variant in variants: loc = variant.pos #print((variant.ref, get_ref_bases(variant.pos,variant.pos+len(variant.ref)))) verifyRefBases = get_ref_bases(variant.pos,variant.pos+len(variant.ref)) if ( variant.ref != verifyRefBases ): raise RescueError("Variant ref does not match reference at " + window[2] + " " + str(loc) + ": " +variant.ref + " != " + verifyRefBases ) if not ( hetOffset <= loc and homOffset <= loc ): raise RescueError("Attempted to rescue sequence containing overlapping variants around " + window[2] + " " + str(loc)) assert variant.genotype_type != GENOTYPE_TYPE.HOM_REF assert variant.genotype_type != GENOTYPE_TYPE.NO_CALL if ( (not genotypeAware) or variant.genotype_type == GENOTYPE_TYPE.HOM_VAR): add_alt(homChunks,homOffset,variant) homOffset = len(variant.ref) + loc else: # ( variant.genotype_type == GENOTYPE_TYPE.HET ) add_alt(hetChunks,hetOffset,variant) hetOffset = len(variant.ref) + loc # NB: this check seems redundant with the assert after it if ( hetOffset > high or homOffset > high ): print("-----fail-----") print(window) print(map(str,variants)) print((homOffset,high)) assert hetOffset <= high and homOffset <= high if ( genotypeAware ): add_ref_bases_until(hetChunks,hetOffset,high) add_ref_bases_until(homChunks,homOffset,high) return (''.join(homChunks),''.join(hetChunks))
316c19f964c6ce29d52358070d994f0fdfbcc1b8
8,785
import scipy def interp_logpsd(data, rate, window, noverlap, freqs, interpolation='linear'): """Computes linear-frequency power spectral density, then uses interpolation (linear by default) to estimate the psd at the desired frequencies.""" stft, linfreqs, times = specgram(data, window, Fs=rate, noverlap=noverlap, window = np.hamming(window)) ntimes = len(times) logpsd = np.log10(np.abs(stft.T)**2) interps = [scipy.interpolate.interp1d(linfreqs, logpsd[t,:], kind=interpolation) for t in range(ntimes)] interped_logpsd = np.array([interps[t](freqs) for t in range(ntimes)]) return interped_logpsd, freqs, times
0822f776063da9f0797aa898b0305fb295d8c0f1
8,786
def load_replica_camera_traj(traj_file_path): """ the format: index """ camera_traj = [] traj_file_handle = open(traj_file_path, 'r') for line in traj_file_handle: split = line.split() #if blank line, skip if not len(split): continue camera_traj.append(split) traj_file_handle.close() return camera_traj
1879c97ed5ce24834689b156ffdc971b023e67f2
8,787
def test_model(sess, graph, x_, y_): """ :param sess: :param graph: :param x_: :param y_: :return: """ data_len = len(x_) batch_eval = batch_iter(x_, y_, 64) total_loss = 0.0 total_acc = 0.0 input_x = graph.get_operation_by_name('input_x').outputs[0] input_y = graph.get_operation_by_name('input_y').outputs[0] drop_prob = graph.get_operation_by_name('drop_prob').outputs[0] loss = graph.get_operation_by_name('loss/loss').outputs[0] acc = graph.get_operation_by_name('accuracy/acc').outputs[0] for x_batch, y_batch in batch_eval: batch_len = len(x_batch) feed_dict = {input_x: x_batch, input_y: y_batch, drop_prob: 0} test_loss, test_acc = sess.run([loss, acc], feed_dict=feed_dict) total_loss += test_loss * batch_len total_acc += test_acc * batch_len return total_loss / data_len, total_acc / data_len
7c310a7cf979004d9f14fbd1ec57228dbfc81cd2
8,788
def epanechnikov(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Epanechnikov kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 3 / 4 * (1 - u**2) * (np.abs(u) <= 1) assert out.shape == (Xi.shape[0], x.shape[1]) return out
45902e9396661a6c0f8faf9cfc2d017125f6a427
8,789
def punctuation(chars=r',.\"!@#\$%\^&*(){}\[\]?/;\'`~:<>+=-'): """Finds characters in text. Useful to preprocess text. Do not forget to escape special characters. """ return rf'[{chars}]'
b2fd23d8485c3b6d429723a02a95c981982559b5
8,790
import time import logging def log_http_request(f): """Decorator to enable logging on an HTTP request.""" level = get_log_level() def new_f(*args, **kwargs): request = args[1] # Second argument should be request. object_type = 'Request' object_id = time.time() log_name = object_type + '.' + str(object_id) setattr(request, 'LOG_ID', object_id) logger = logging.getLogger(log_name) logger.setLevel(level) handler = LogModelHandler(object_type, object_id) logger.addHandler(handler) return f(*args, **kwargs) new_f.func_name = f.func_name return new_f
ecb62d0501307330fc0a56d8eadfbee8e729adf6
8,791
def look_at(vertices, eye, at=[0, 0, 0], up=[0, 1, 0]): """ "Look at" transformation of vertices. """ if (vertices.ndimension() != 3): raise ValueError('vertices Tensor should have 3 dimensions') place = vertices.place # if list or tuple convert to numpy array if isinstance(at, list) or isinstance(at, tuple): at = paddle.to_tensor(at, dtype=paddle.float32, place=place) # if numpy array convert to tensor elif isinstance(at, np.ndarray): at = paddle.to_tensor(at).to(place) elif paddle.is_tensor(at): at = at.to(place) if isinstance(up, list) or isinstance(up, tuple): up = paddle.to_tensor(up, dtype=paddle.float32, place=place) elif isinstance(up, np.ndarray): up = paddle.to_tensor(up).to(place) elif paddle.is_tensor(up): up = up.to(place) if isinstance(eye, list) or isinstance(eye, tuple): eye = paddle.to_tensor(eye, dtype=paddle.float32, place=place) elif isinstance(eye, np.ndarray): eye = paddle.to_tensor(eye).to(place) elif paddle.is_tensor(eye): eye = eye.to(place) batch_size = vertices.shape[0] if eye.ndimension() == 1: eye = eye[None, :].tile([batch_size, 1]) if at.ndimension() == 1: at = at[None, :].tile([batch_size, 1]) if up.ndimension() == 1: up = up[None, :].tile([batch_size, 1]) # prevent paddle no grad error at.stop_gradient = False eye.stop_gradient = False up.stop_gradient = False # create new axes # eps is chosen as 0.5 to match the chainer version z_axis = F.normalize(at - eye, epsilon=1e-5) x_axis = F.normalize(paddle.cross(up, z_axis), epsilon=1e-5) y_axis = F.normalize(paddle.cross(z_axis, x_axis), epsilon=1e-5) # create rotation matrix: [bs, 3, 3] r = paddle.concat((x_axis[:, None, :], y_axis[:, None, :], z_axis[:, None, :]), axis=1) # apply # [bs, nv, 3] -> [bs, nv, 3] -> [bs, nv, 3] if vertices.shape != eye.shape: eye = eye[:, None, :] vertices = vertices - eye vertices = paddle.matmul(vertices, r.swapaxes(1,2)) return vertices
10a6b94ecba08fecd829758f9c94765c718a5add
8,792
import types def _count(expr, pat, flags=0): """ Count occurrences of pattern in each string of the sequence or scalar :param expr: sequence or scalar :param pat: valid regular expression :param flags: re module flags, e.g. re.IGNORECASE :return: """ return _string_op(expr, Count, output_type=types.int64, _pat=pat, _flags=flags)
c4c387f18ac75977a661662dae7606a066242b57
8,793
def simplex3_vertices(): """ Returns the vertices of the standard 3-simplex. Each column is a vertex. """ v = np.array([ [1, 0, 0], [-1/3, +np.sqrt(8)/3, 0], [-1/3, -np.sqrt(2)/3, +np.sqrt(2/3)], [-1/3, -np.sqrt(2)/3, -np.sqrt(2/3)], ]) return v.transpose()
b10c2c781d1f7ed7050e14f069efd3e0e9a80a2b
8,794
def get_output_msg(status, num_logs): """ Returnes the output message in accordance to the script status """ if status == EXECUTION_STATE_COMPLETED: return "Retrieved successfully {} logs that triggered the alert".format(num_logs) else: return "Failed to retrieve logs. Please check the script's logs to see what went wrong..."
caec8de737251cc7c386a85a098d73d19617e71a
8,795
import re def insert_channel_links(message: str) -> str: """ Takes a message and replaces all of the channel references with links to those channels in Slack formatting. :param message: The message to modify :return: A modified copy of the message """ message_with_links = message matches = re.findall(r'#[a-z0-9\-_(){}\[\]\'\"/]{1,22}', message) for match in matches: channel_name = match[1:] channel = bot.channels.get(channel_name) if channel is not None: channel_link_string = f"<#{channel.id}|{channel.name}>" message_with_links = message_with_links.replace(match, channel_link_string) return message_with_links
ce56e81e8eb66dc0f2754141bcfc30f42db50c5a
8,797
def check_int_uuid(uuid): """Check that the int uuid i pass is valid.""" try: converted = UUID(int=uuid, version=4) except ValueError: return False return converted.int == uuid
a0ba7447e6c8cc0c35b68024fb4ade25f0802239
8,798
def calc_E_E_C_hs_d_t_i(i, device, region, A_A, A_MR, A_OR, L_CS_d_t, L_CL_d_t): """暖冷房区画𝑖に設置された冷房設備機器の消費電力量(kWh/h)を計算する Args: i(int): 暖冷房区画の番号 device(dict): 暖冷房機器の仕様 region(int): 省エネルギー地域区分 A_A(float): 床面積の合計 (m2) A_MR(float): 主たる居室の床面積 (m2) A_OR(float): その他の居室の床面積 (m2) L_CS_d_t(ndarray): 冷房区画の冷房顕熱負荷 L_CL_d_t(ndarray): 冷房区画の冷房潜熱負荷 Returns: ndarray: 暖冷房区画𝑖に設置された冷房設備機器の消費電力量(kWh/h) """ if device['type'] == 'ルームエアコンディショナー': # 仕様の取得 A_HCZ_i = calc_A_HCZ_i(i, A_A, A_MR, A_OR) q_rtd_C = rac_spec.get_q_rtd_C(A_HCZ_i) e_rtd_C = rac_spec.get_e_rtd_C(device['e_class'], q_rtd_C) # 電力消費量の計算 E_E_C_d_t_i = rac.calc_E_E_C_d_t( region=region, q_rtd_C=q_rtd_C, e_rtd_C=e_rtd_C, dualcompressor=device['dualcompressor'], L_CS_d_t=L_CS_d_t[i - 1], L_CL_d_t=L_CL_d_t[i - 1] ) else: raise ValueError(device['type']) print('{} E_E_C_d_t_{} = {} [kWh] (L_H_d_t_{} = {} [MJ])'.format(device['type'], i, np.sum(E_E_C_d_t_i), i, np.sum(L_CS_d_t + L_CL_d_t))) return E_E_C_d_t_i
8dbd0119ac90f3847de1f5af05891583a9bda26b
8,799
def shift_time(x, dt): """Shift time axis to the left by dt. Used to account for pump & lamp delay""" x -= dt return x
c93fdddea8e41221583139dcc7a2d81177ba7c17
8,800
from datetime import datetime import json def eps_xfer(request,client_slug=None,show_slug=None): """ Returns all the episodes for a show as json. Used to synk public url's with the main conference site. """ client=get_object_or_404(Client,slug=client_slug) show=get_object_or_404(Show,client=client,slug=show_slug) # eps = Episode.objects.filter(show=show) eps=eps_filters(request.GET).filter(show=show).order_by('start') if "id" in request.GET: eps = eps.filter( id=request.GET['id'] ) fields=['id', 'state', 'location', 'location_slug', 'sequence', 'name', 'slug', 'authors', 'description', 'start', 'duration', 'released', 'license', 'tags', 'conf_key', 'conf_url', 'host_url', 'public_url', 'rax_mp4_url', 'archive_url', 'archive_mp4_url', 'twitter_url', 'comment', ] if request.user.is_authenticated(): fields.extend(['emails', 'edit_key',]) if "fields" in request.GET: fields_whitelist = request.GET['fields'].split(',') print(fields_whitelist) fields = [f for f in fields if f in fields_whitelist] """ serializers.serialize("json", eps, fields=fields, use_natural_foreign_keys=True, stream=response) """ gold_list = ['location', 'location_slug'] ds=[] for ep in eps: d = {} for f in fields: if f == 'location': d[f] = ep.location.name elif f == 'location_slug': d[f] = ep.location.name = ep.location.slug else: d[f]=getattr(ep,f) # archive_mp4_url is really the url of the page # make a mp4 url too # the mp4 link is now: # https://archive.org/download/pyohio_2019-Changing_Lives_through_Open_Source_Passion_and_Mentoring/Changing_Lives_through_Open_Source_Passion_and_Mentoring.mp4 if 'archive_mp4_url' in d: d['archive_url'] = d['archive_mp4_url'] d['archive_mp4_url'] = "" if 'start' in d: d['start_at'] = (d['start'] - datetime.timedelta(minutes=5) ).strftime('%H:%M %d.%m.%Y') ds.append(d) response = HttpResponse(content_type="application/json") json.dump( ds, response, cls=serializers.json.DjangoJSONEncoder ) return response
9a6691e0ac750919b5915e45ace0c347aa83cbe3
8,801
def register(class_, option=None, get_funcs={}): """A decorator to register a function as the way to display an object of class_ """ if option: key = (class_, option) else: key = class_ def decorator(func): class_function_mapping[key] = (func, get_funcs) return func return decorator
c060691dd9e2760905e29a2c643dfa63d4ed029c
8,802
def startup(target: machine.Machine, workload: str, count: int = 5, port: int = 0, **kwargs): """Time the startup of some workload. Args: target: A machine object. workload: The workload to run. count: Number of containers to start. port: The port to check for liveness, if provided. **kwargs: Additional container options. Returns: The mean start-up time in seconds. """ # Load before timing. image = target.pull(workload) netcat = target.pull("netcat") count = int(count) port = int(port) with helpers.Timer() as timer: for _ in range(count): if not port: # Run the container synchronously. target.container(image, **kwargs).run() else: # Run a detached container until httpd available. with target.container(image, port=port, **kwargs).detach() as server: (server_host, server_port) = server.address() target.container(netcat).run(host=server_host, port=server_port) return timer.elapsed() / float(count)
c53b627d95270aa074f9178e1ebcd6ea49b8eeaa
8,803
def log2_fold_change(df, samp_grps): """ calculate fold change - fixed as samp_grps.mean_names[0] over samp_grps.mean_names[1], where the mean names are sorted alphabetically. The log has already been taken, so the L2FC is calculated as mean0 - mean1 :param df: expanded and/or filtered dataframe :param samp_grps: SampleGroups() object :return: dataframe with fold change column appended, with name as in samp_grps.fc_name """ mean1 = samp_grps.mean_names[0] mean2 = samp_grps.mean_names[1] df[samp_grps.fc_name] = df[mean1] - df[mean2] return df
07fcef6f5143095f4f8f77d0251bbd7ecd486fd9
8,805
def infer_wheel_units(pos): """ Given an array of wheel positions, infer the rotary encoder resolution, encoding type and units The encoding type varies across hardware (Bpod uses X1 while FPGA usually extracted as X4), and older data were extracted in linear cm rather than radians. :param pos: a 1D array of extracted wheel positions :return units: the position units, assumed to be either 'rad' or 'cm' :return resolution: the number of decoded fronts per 360 degree rotation :return encoding: one of {'X1', 'X2', 'X4'} """ if len(pos.shape) > 1: # Ensure 1D array of positions pos = pos.flatten() # Check the values and units of wheel position res = np.array([wh.ENC_RES, wh.ENC_RES / 2, wh.ENC_RES / 4]) # min change in rad and cm for each decoding type # [rad_X4, rad_X2, rad_X1, cm_X4, cm_X2, cm_X1] min_change = np.concatenate([2 * np.pi / res, wh.WHEEL_DIAMETER * np.pi / res]) pos_diff = np.median(np.abs(np.ediff1d(pos))) # find min change closest to min pos_diff idx = np.argmin(np.abs(min_change - pos_diff)) if idx < len(res): # Assume values are in radians units = 'rad' encoding = idx else: units = 'cm' encoding = idx - len(res) enc_names = {0: 'X4', 1: 'X2', 2: 'X1'} return units, int(res[encoding]), enc_names[int(encoding)]
82d1a63c11c31d4de83ba5360def223b85194ef9
8,806
def extract_tform(landmarks, plane_name): """Compute the transformation that maps the reference xy-plane at origin to the GT standard plane. Args: landmarks: [landmark_count, 3] where landmark_count=16 plane_name: 'tv' or 'tc' Returns: trans_vec: translation vector [3] quat: quaternions [4] mat: 4x4 transformation matrix [4, 4] """ if plane_name == 'tv': # Landmarks lying on the TV plane landmarks_plane = np.vstack((landmarks[1:8], landmarks[12:14])) # Compute transformation z_vec, p_plane = fit_plane(landmarks_plane) landmarks_plane_proj = project_on_plane(landmarks_plane, z_vec, p_plane) landmarks_line = landmarks_plane_proj[[0, 1, 2, 7, 8], :] x_vec, p_line = fit_line(landmarks_line) y_vec = geometry.unit_vector(np.cross(z_vec, x_vec)) # 4x4 transformation matrix mat = np.eye(4) mat[:3, :3] = np.vstack((x_vec, y_vec, z_vec)).transpose() mat[:3, 3] = landmarks_plane_proj[0] # Quaternions and translation vector quat = geometry.quaternion_from_matrix(mat[:3, :3]) trans_vec = mat[:3, 3] elif plane_name == 'tc': # Landmarks lying on the TC plane cr = landmarks[10] cl = landmarks[11] csp = landmarks[12] # Compute transformation csp_cl = cl - csp csp_cr = cr - csp z_vec = np.cross(csp_cl, csp_cr) z_vec = geometry.unit_vector(z_vec) cr_cl_mid = (cr + cl) / 2.0 x_vec = geometry.unit_vector(cr_cl_mid - csp) y_vec = geometry.unit_vector(np.cross(z_vec, x_vec)) # 4x4 transformation matrix mat = np.eye(4) mat[:3, :3] = np.vstack((x_vec, y_vec, z_vec)).transpose() mat[:3, 3] = (cr_cl_mid + csp) / 2.0 # Quaternions and translation vector quat = geometry.quaternion_from_matrix(mat[:3, :3]) trans_vec = mat[:3, 3] else: raise ValueError('Invalid plane name.') return trans_vec, quat, mat
d9d4ed43c9572cdd76b34235e380f22a6eb27d03
8,807
from typing import TextIO import csv def load_events(fhandle: TextIO) -> annotations.Events: """Load an URBAN-SED sound events annotation file Args: fhandle (str or file-like): File-like object or path to the sound events annotation file Raises: IOError: if txt_path doesn't exist Returns: Events: sound events annotation data """ times = [] labels = [] confidence = [] reader = csv.reader(fhandle, delimiter="\t") for line in reader: times.append([float(line[0]), float(line[1])]) labels.append(line[2]) confidence.append(1.0) events_data = annotations.Events( np.array(times), "seconds", labels, "open", np.array(confidence) ) return events_data
2c2017d754fe12ebd37349b359ba6a92ec115421
8,808
def set_nan(df, chrom_bed_file): """This function will take in a dataframe and chromosome length bed file and will replace 0's with np.nan according to each chromosome length. This will fix any issues when calculating Z-scores""" # Build dictionary of key=chromosome and value=chromosome_length chrom_length_dict = {} for v in chrom_bed_file.itertuples(): chrom_length_dict[v[1]] = v[2] continue # Iterate through each column for chrom in df.columns.to_list(): current_chrom_length = chrom_length_dict[str(chrom)] # Iterate through each value of a column in reverse for index, value in zip( reversed(df.index.to_list()), reversed(df[chrom].to_list()) ): # Check if index is greater than length of chromosome if index > current_chrom_length: df.at[index, chrom] = np.nan else: break return df
e90008c42db5a94c8676c941da5832438301a724
8,810
def configure_smoothing(new_d,smoothing_scans): """ # <batchstep method="net.sf.mzmine.modules.peaklistmethods.peakpicking.smoothing.SmoothingModule"> # <parameter name="Peak lists" type="BATCH_LAST_PEAKLISTS"/> # <parameter name="Filename suffix">smoothed</parameter> # <parameter name="Filter width">9</parameter> # <parameter name="Remove original peak list">false</parameter> # </batchstep> """ idx = [i for i,d in enumerate(new_d['batch']['batchstep']) if 'SmoothingModule' in d['@method']][0] idx2 = [i for i,d in enumerate(new_d['batch']['batchstep'][idx]['parameter']) if 'Filter width' in d['@name']][0] new_d['batch']['batchstep'][idx]['parameter'][idx2]['#text'] = '%.3f'%(smoothing_scans) return new_d
031586cf5dbb9fdf1fb6762a89a988367d172942
8,811
def contact_us(): """ Contact Us Route Route to lead to the contact page Args: None Returns: rendered template for contact_us.html """ return render_template('contact_us.html', title='CONP | Contact Us', user=current_user)
2597038074e8f60e14066f10390a161b15cf7071
8,812
import pandas def query_field(boresight, r1=None, r2=None, observatory='apo', mag_range=None, mag_column=None, database_params=None): """Selects Gaia DR2 stars for a field, from the database. Parameters ---------- boresight : tuple A tuple with the right ascension and declination of the boresight, in degrees. r1,r2 : float The internal and external radii along which the GFAs are located, in degrees. observatory : str The observatory, used to load the default configuration for the GFAs. mag_range : tuple The range of magnitudes used to select stars. mag_column : str The name of the magnitude column to query. database_params : dict A dictionary of database parameters to create the connection. Can include ``user``, ``host``, ``port``, and ``dbname``. Returns ------- `~pandas.Dataframe` A dataframe with the selected stars. """ obs_data = config[observatory] r1 = r1 or obs_data['r1'] r2 = r2 or obs_data['r2'] mag_range = mag_range or config['mag_range'] mag_column = mag_column or config['mag_column'] query = ('WITH x AS MATERIALIZED (SELECT source_id, ra, dec, ' '{mag_column}, pmra, pmdec ' 'FROM gaia_dr2_source WHERE ' 'q3c_radial_query(ra, dec, {ra}, {dec}, {r2}) AND ' 'NOT q3c_radial_query(ra, dec, {ra}, {dec}, {r1})) ' 'SELECT * FROM x WHERE {mag_column} > {g_min} AND ' '{mag_column} < {g_max};') query = query.format(ra=boresight[0], dec=boresight[1], r1=r1, r2=r2, g_min=mag_range[0], g_max=mag_range[1], mag_column=mag_column) if database_params is None: database_params = config['database'] conn_str = '' for key in database_params: conn_str += f'{key}={database_params[key]} ' connection = psycopg2.connect(conn_str) data = pandas.read_sql(query, connection) connection.close() return data
c05276ecfac3b33dcc5382cf54e220b416614656
8,814
def get_throttling_equilibria(simulation_config, input_params, priority_queue=True, dev_team_factor=1.0): """ Returns the equilibrium profiles for throttling configuration under analysis. :param simulation_config: :param input_params: :return: """ desc_inf003 = "THROTTLING_INF003" process_configuration_inf003 = dict(simulation_config) process_configuration_inf003["THROTTLING_ENABLED"] = True process_configuration_inf003["GATEKEEPER_CONFIG"] = None process_configuration_inf003["INFLATION_FACTOR"] = 0.03 process_configuration_inf003["SUCCESS_RATE"] = 0.95 if priority_queue and dev_team_factor == 0.5: filename_inf003 = "INF3.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_True_DEVFACTOR_0.5_equilibrium_results.csv" elif priority_queue and dev_team_factor == 1.0: filename_inf003 = "INF3.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_True_DEVFACTOR_1.0_equilibrium_results.csv" elif not priority_queue and dev_team_factor == 0.5: filename_inf003 = "INF3.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_False_DEVFACTOR_0.5_equilibrium_results.csv" elif not priority_queue and dev_team_factor == 1.0: filename_inf003 = "INF3.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf010 = "INF10.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" filename_inf020 = "INF20.0_PRIQUEUE_False_DEVFACTOR_1.0_equilibrium_results.csv" equilibrium_profiles_inf003 = get_profiles_from_file("csv/" + filename_inf003, scenario_desc=desc_inf003, input_params=input_params) desc_inf010 = "THROTTLING_INF010" process_configuration_inf010 = dict(process_configuration_inf003) process_configuration_inf010["INFLATION_FACTOR"] = 0.10 equilibrium_profiles_inf010 = get_profiles_from_file("csv/" + filename_inf010, scenario_desc=desc_inf010, input_params=input_params) desc_inf020 = "THROTTLING_INF020" process_configuration_inf020 = dict(process_configuration_inf003) process_configuration_inf020["INFLATION_FACTOR"] = 0.20 equilibrium_profiles_inf020 = get_profiles_from_file("csv/" + filename_inf020, scenario_desc=desc_inf020, input_params=input_params) return [{"desc": desc_inf003, "simulation_configuration": process_configuration_inf003, "equilibrium_profiles": equilibrium_profiles_inf003}, {"desc": desc_inf010, "simulation_configuration": process_configuration_inf010, "equilibrium_profiles": equilibrium_profiles_inf010}, {"desc": desc_inf020, "simulation_configuration": process_configuration_inf020, "equilibrium_profiles": equilibrium_profiles_inf020}]
4e0f6dd8fa3b0b36b713b33ab1a5aaf8394d4942
8,815
def signature(part): """ return the signature of a partial object """ return (part.func, part.args, part.keywords, part.__dict__)
522ae88538d6dd880492292c6f2ef169f3bbd06d
8,816
def clean_key(func): """Provides a clean, readable key from the funct name and module path. """ module = func.__module__.replace("formfactoryapp.", "") return "%s.%s" % (module, func.__name__)
946288cd231148eb39af5d1e7e0b957d9f2131e8
8,817
def rotY(M, alpha): """Rotates polygon M around Y axis by alpha degrees. M needs to be a Numpy Array with shape (4,N) with N>=1""" T = np.eye(4) alpha_radians = np.radians(alpha) sin = np.sin(alpha_radians) cos = np.cos(alpha_radians) T[0,0] = cos T[2,2] = cos T[0,2] = sin T[2,0] = -sin return np.dot(T,M)
49e850ff66b3c7877e6d8b4a450baaa6707d4f15
8,818
def is_image_file(filename): """ :param filename: :return: """ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
40125478c6440efc9a740d2df57ba2f7bb15a5d1
8,819
def invert_comp_specifier(comp_specifier): """ return the opposite (logical negation) of @p comp_specifier """ inverse_map = { Comparison.Equal: Comparison.NotEqual, Comparison.Less: Comparison.GreaterOrEqual, Comparison.LessOrEqual: Comparison.Greater, Comparison.NotEqual: Comparison.Equal, Comparison.Greater: Comparison.LessOrEqual, Comparison.GreaterOrEqual: Comparison.Less, } return inverse_map[comp_specifier]
187392dd1dc7f52c744536e8e372cab752ff8c85
8,820
import utm def latlong2utm(point): """ This function converts a point from lat long to utm Input : point : (lat,long) Output : utm point : (x,y,z, n) """ return utm.from_latlon(point[0],point[1])
3ee82f9df84b02aa35fa0f2a35ec0916edf30e42
8,821
def multiply(a,b): """ multiply values Args: a ([float/int]): any value b ([float/int]): any value """ return a*b
67a85b1675da48684e9de7e9834d3daa4357699b
8,822
from typing import Tuple from typing import Dict from typing import List import regex def merge_vocab(pair: Tuple[str, str], input_vocab: Dict[str, int]) -> Tuple[Dict[str, int], List]: """ >>> pair = ('w', 'o') >>> input_vocab = {'b i r d @': 3, 'w o r d @': 7, 'w o g @': 13} >>> new_vocab, new_pairs = merge_vocab(pair, input_vocab) >>> new_vocab {'b i r d @': 3, 'wo r d @': 7, 'wo g @': 13} >>> new_pairs [(('wo', 'r'), 7), (('o', 'r'), -7), (('wo', 'g'), 13), (('o', 'g'), -13)] """ output_vocab = {} concat_pair_with_space = ' '.join(pair) concat_pair_with_space_escaped = regex.escape(concat_pair_with_space) concat_pair = ''.join(pair) reg = regex.compile('(^|[^ ]+ )(' + concat_pair_with_space_escaped + ')( [^ ]+|$)') added_pairs = [] for word in input_vocab: word_occurences = input_vocab[word] match = reg.search(word) while match: # word changed if match.group(1) != '': subtoken_before = match.group(1)[:-1] added_pairs.append(((subtoken_before, concat_pair), word_occurences)) if pair != (subtoken_before, pair[0]): added_pairs.append(((subtoken_before, pair[0]), -word_occurences)) if match.group(3) != '': subtoken_after = match.group(3)[1:] added_pairs.append(((concat_pair, subtoken_after), word_occurences)) if pair != (pair[1], subtoken_after): added_pairs.append(((pair[1], subtoken_after), -word_occurences)) start, end = match.span(2) replacement = concat_pair word = word[:start] + replacement + word[end:] match = reg.search(word) output_vocab[word] = word_occurences return output_vocab, added_pairs
15226aa9ebd9cae73e5bd00b60cb1b3bbb5d8e07
8,823
def visualize_bbox_act(img, bboxes,labels, act_preds, classes=None,thickness=1, font_scale=0.4,show=False, wait_time=0,out_file=None): """Show the tracks with opencv.""" assert bboxes.ndim == 2 assert labels.ndim == 1 assert bboxes.shape[0] == labels.shape[0] assert bboxes.shape[1] == 5 if isinstance(img, str): img = mmcv.imread(img) img_shape = img.shape bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, img_shape[1]) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, img_shape[0]) text_width, text_height = 8, 15 for i, (bbox, label) in enumerate(zip(bboxes, labels), 0): x1, y1, x2, y2 = bbox[:4].astype(np.int32) score = float(bbox[-1]) # bbox bbox_color = random_color(label) bbox_color = [int(255 * _c) for _c in bbox_color][::-1] cv2.rectangle(img, (x1, y1), (x2, y2), bbox_color, thickness=thickness) # score text = '{:.02f}'.format(score) width = len(text) * text_width img[y1 - text_height:y1, x1:x1 + width, :] = bbox_color cv2.putText( img, text, (x1, y1 - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale, color=(0, 0, 0)) classes_color = random_color(label + 1) text = classes[label] width = len(text) * text_width img[y1:y1 + text_height, x1:x1 + width, :] = bbox_color cv2.putText(img,text, (x1, y1 + text_height - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale,color=classes_color) #background_color = random_color(label + 5) background_color = [255, 204, 153] if (act_preds is not None) and (len(bboxes)==len(labels)==len(act_preds)): for j, act_pred in enumerate(act_preds[i]): text = '{}: {:.02f}'.format(act_pred[0], act_pred[1]) width = len(text) * (text_width) img[y1+text_height*(j+2) :y1 + text_height*(j+3), x1:x1 + width, :] = background_color cv2.putText(img, text, (x1, y1 + text_height*(j+3) - 2), cv2.FONT_HERSHEY_COMPLEX, font_scale, color=classes_color) if show: mmcv.imshow(img, wait_time=wait_time) if out_file is not None: mmcv.imwrite(img, out_file) return img
de67d5acba2b2994ec2b66ae4e7e0c58498ecebe
8,824
def calculate_similarity(subgraph_degrees): """ Given a list of subgraph degrees, this function calls the guidance function and calculates the similarity of a particular node with all it's non-connected nodes. :param subgraph_degrees: A list of lists containing the non connected node and degrees of common neighbours from the subgraph. :return: A dictionary of similarity of each non-connected node """ similarity_dict = [] for nc_node in subgraph_degrees: similarity = 0 for common_node in nc_node[1]: # Getting the degree of the common neighbour node from the original # graph original_degree = graph.degrees.filter("id = '{}'".format( common_node.id)).select("degree").collect() # Getting the degree of the common neighbour node from the subgraph sub_degree = common_node.degree # Calling the function to calculate guidance for the common # neighbour node guidance = get_guidance(sub_degree, original_degree[0].degree) # Adding the guidance to the similarity of the non-connected node similarity += guidance similarity_dict.append((nc_node[0], similarity)) return similarity_dict
cd4be7c405b2974f35db24dbd7d7db7bdf9a867e
8,825
def balance_thetas(theta_sets_types, theta_sets_values): """Repeats theta values such that all thetas lists have the same length """ n_sets = max([len(thetas) for thetas in theta_sets_types]) for i, (types, values) in enumerate(zip(theta_sets_types, theta_sets_values)): assert len(types) == len(values) n_sets_before = len(types) if n_sets_before != n_sets: theta_sets_types[i] = [types[j % n_sets_before] for j in range(n_sets)] theta_sets_values[i] = [values[j % n_sets_before] for j in range(n_sets)] return theta_sets_types, theta_sets_values
3ca7316a18d57c95adbfbdfec5f5be36f33dc0ea
8,826
def _format_weights(df, col, targets, regs): """ Reformat the edge table (target -> regulator) that's output by amusr into a pivoted table that the rest of the inferelator workflow can handle :param df: pd.DataFrame An edge table (regulator -> target) with columns containing model values :param col: Which column to pivot into values :param targets: list A list of target genes (the index of the output data) :param regs: list A list of regulators (the columns of the output data) :return out: pd.DataFrame [G x K] A [targets x regulators] dataframe pivoted from the edge dataframe """ # Make sure that the value column is all numeric df[col] = pd.to_numeric(df[col]) # Pivot an edge table into a matrix of values out = pd.pivot_table(df, index='target', columns='regulator', values=col, fill_value=0.) # Reindex to a [targets x regulators] dataframe and fill anything missing with 0s out = out.reindex(targets).reindex(regs, axis=1) out = out.fillna(value=0.) return out
b683846d9d059a39280077a714455718bd710670
8,827
def put_thread(req_thread: ReqThreadPut): """Put thread for video to DynamoDB""" try: input = thread_input.update_item(req_thread) res = table.update_item(**input) return res except ClientError as err: err_message = err.response["Error"]["Message"] raise HTTPException(status_code=404, detail=err_message) except BaseException as err: raise HTTPException(status_code=404, detail=str(err))
dba9fe080451a3cb68365824faf8dbccad03b1b6
8,828
def check_method(adata): """Check that method output fits expected API.""" assert "labels_pred" in adata.obs return True
78c1a5181395f1675854333c30bf617c578cc1d4
8,830
def build_index_block(in_channels, out_channels, kernel_size, stride=2, padding=0, groups=1, norm_cfg=dict(type='BN'), use_nonlinear=False, expansion=1): """Build an conv block for IndexBlock. Args: in_channels (int): The input channels of the block. out_channels (int): The output channels of the block. kernel_size (int): The kernel size of the block. stride (int, optional): The stride of the block. Defaults to 2. padding (int, optional): The padding of the block. Defaults to 0. groups (int, optional): The groups of the block. Defaults to 1. norm_cfg (dict, optional): The norm config of the block. Defaults to dict(type='BN'). use_nonlinear (bool, optional): Whether use nonlinearty in the block. If true, a ConvModule with kernel size 1 will be appended and an ``ReLU6`` nonlinearty will be added to the origin ConvModule. Defaults to False. expansion (int, optional): Expandsion ratio of the middle channels. Effective when ``use_nonlinear`` is true. Defaults to 1. Returns: nn.Module: The built conv block. """ if use_nonlinear: return nn.Sequential( ConvModule( in_channels, in_channels * expansion, kernel_size, stride=stride, padding=padding, groups=groups, norm_cfg=norm_cfg, act_cfg=dict(type='ReLU6')), ConvModule( in_channels * expansion, out_channels, 1, stride=1, padding=0, groups=groups, bias=False, norm_cfg=None, act_cfg=None)) else: return ConvModule( in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=False, norm_cfg=None, act_cfg=None)
03e15760146ce75f06de64ffd6886fe627afcf9b
8,831
def nodes(*paths, type=None): """Call node() on each given path and return the list of results. nodes('foo', 'bar', ...) is equivalent to [node('foo'), node('bar'), ...] """ return list(map(lambda p: node(p, type=type), paths))
d1ae50237a275c70b9b9e85684e898494fc6c954
8,832
def parse_rule(parameter_string): """Parse a parameter string into its constituent name, type, and pattern For example: `parse_parameter_string('<param_one:[A-z]>')` -> ('param_one', str, '[A-z]') :param parameter_string: String to parse :return: tuple containing (parameter_name, parameter_type, parameter_pattern) """ # We could receive NAME or NAME:PATTERN if str(parameter_string).startswith('/'): parameter_string = parameter_string[1:] parameter_string = str(parameter_string).strip('<>') name = parameter_string pattern = 'string' if ':' in parameter_string: name, pattern = parameter_string.split(':', 1) default = (str, pattern) # Pull from pre-configured types _type, pattern = REGEX_TYPES.get(pattern, default) return name, _type, pattern
881e219ab59c801da078e91cf82ccb15caa7798d
8,834
def plan(): """ 改进方案 :return: """ return render_template('plan.htm')
135d8b003adbe8f6311f781f0d4ff7ed206a81d6
8,835
def extract_traceback(notebook): """ Extracts information about an error from the notebook. Parameters ---------- notebook: :class:`nbformat.notebooknode.NotebookNode` Executed notebook to find an error traceback. Returns ------- bool Whether the executed notebook has an error traceback. int or None Number of a cell with a traceback. If None, then the notebook doesn't contain an error traceback. str Error traceback if exists. """ for cell in notebook['cells']: # Find a cell output with a traceback and extract the traceback outputs = cell.get('outputs', []) for output in outputs: traceback = output.get('traceback', []) if traceback: traceback = '\n'.join(traceback) return True, cell['execution_count'], traceback return False, None, ""
9af26f973e6810936eaa68058efcdb7bc145803b
8,836
def get_log() -> str: """get_log() -> str (internal) """ return str()
3e2d7bf82128afc664eded15e6c11f1ed9da45e7
8,837
def start_server(self, parameters): # pragma: no cover """adds the server start to celery's queue Args: parameters(dict): The POST JSON parameters """ self.update_state(state=CeleryStates.started) session = ServerSession(parameters) return session()
c20e2233ee7c1e6b1718b0c4bfbb2b9b5f52e0e1
8,838
def generate_config(context): """ Entry point for the deployment resources. """ properties = context.properties name = properties.get('name', context.env['name']) project_id = properties.get('project', context.env['project']) bgp = properties.get('bgp', {'asn': properties.get('asn')}) router = { 'name': context.env['name'], # https://cloud.google.com/compute/docs/reference/rest/v1/routers 'type': 'gcp-types/compute-v1:routers', 'properties': { 'name': name, 'project': project_id, 'region': properties['region'], 'bgp': bgp, 'network': properties.get('networkURL', generate_network_uri( project_id, properties.get('network', ''))), } } optional_properties = [ 'description', 'bgpPeers', 'interfaces', 'nats', ] for prop in optional_properties: append_optional_property(router, properties, prop) return { 'resources': [router], 'outputs': [ { 'name': 'name', 'value': name }, { 'name': 'selfLink', 'value': '$(ref.' + context.env['name'] + '.selfLink)' }, { 'name': 'creationTimestamp', 'value': '$(ref.' + context.env['name'] + '.creationTimestamp)' } ] }
506c7ded703b8c00fb9a2a6d7645e9e5d0da6905
8,839
import time def cachedmethod(timeout): """ Function decorator to enable caching for instance methods. """ def _cached(func): if not(hasattr(func, 'expires')): func.expires = {} func.cache = {} def __cached(self, *args, **kwargs): if(timeout and func.expires.get(repr(self), 0) < time.time()): if(repr(self) in func.cache): del func.cache[repr(self)] if(repr(self) in func.cache): return func.cache[repr(self)] result = func(self, *args, **kwargs) if(result): func.cache[repr(self)] = result func.expires[repr(self)] = time.time() + timeout return result return __cached try: # see if it's an int int(timeout) except TypeError: func = timeout timeout = 0 return _cached(func) return _cached
dd8999a60aa6d92e6b442c7c0661d88cd0e8590e
8,840
def __build_pyramid(models, features): """Applies all submodels to each FPN level. Args: models (list): List of submodels to run on each pyramid level (by default only regression, classifcation). features (list): The FPN features. Returns: list: A list of tensors, one for each submodel. """ return [__build_model_pyramid(n, m, features) for n, m in models]
269be978f9aafbdc36b1c9d726171785a85f54a4
8,841
def get_ap_list(): """ Method to return list of aps present in the network """ return jsonify_params( CELLULAR_NETWORK.ap_list )
da0777219025499603425f3147b2897d2bce2da6
8,842
def _merge_url_rule(rule_before, rule_after): """ Merges two url rule parts. Parameters ---------- rule_before : `None` or `tuple` of `tuple` (`int`, `str`) First url part if any to join `rule_after` to. rule_after : `None` or `tuple` of `tuple` (`int`, `str`) Second url part what's start is extended by `rule_before`. Returns ------- merged_rule : `None` or `tuple` of `tuple` (`int`, `str`) The merged rule. """ if rule_before is None: return rule_after if rule_after is None: return rule_before if rule_after[0] == DUMMY_RULE_PART: rule_after = rule_after[1:] return (*rule_before, *rule_after)
0682734a82b227f746325363652d1c3f378f2e51
8,843
def create_graphic_model(nodes, edges, gtype): """ Create a graphic model given nodes and edges Parameters ---------- nodes : dict for each node {key, text, math} edges : dict for each edge {key, text, math} gtype : str [default="text"] "text" for a verbose version, "math" for a compact version """ mod = Digraph() if gtype == "math": tindx = 1 else: tindx = 0 for ckey in nodes.keys(): if ckey == "Like": cstyle = "filled" else: cstyle = None mod.node(ckey, nodes[ckey][tindx], style=cstyle) for ckey in edges.keys(): for cval in np.atleast_1d(edges[ckey]): mod.edge(ckey, cval) return mod
028c740cc7fa003642815a8ec0f27154fc6e0dab
8,845
def zero_cross_bounds(arr, dim, num_cross): """Find the values bounding an array's zero crossing.""" sign_switch = np.sign(arr).diff(dim) switch_val = arr[dim].where(sign_switch, drop=True)[num_cross] lower_bound = max(0.999*switch_val, np.min(arr[dim])) upper_bound = min(1.001*switch_val, np.max(arr[dim])) return arr.sel(**{dim: [lower_bound, upper_bound], "method": "backfill"})
52d3431c32f61f47223fdccf4c5a85a92589534f
8,846
def remove_tseqs(t: ST_Type) -> ST_Type: """ Get just the sseqs and the non-nested types, removing the tseqs """ if type(t) == ST_SSeq or type(t) == ST_SSeq_Tuple: inner_tseqs_removed = remove_tseqs(t.t) return replace(t, t=inner_tseqs_removed) elif is_nested(t): return remove_tseqs(t.t) else: return t
323f9cd3c007c1decf11653091f641dc453d32cb
8,847
def prod_cart(in_list_1: list, in_list_2: list) -> list: """ Compute the cartesian product of two list :param in_list_1: the first list to be evaluated :param in_list_2: the second list to be evaluated :return: the prodotto cartesiano result as [[x,y],..] """ _list = [] for element_1 in in_list_1: for element_2 in in_list_2: _list.append([element_1,element_2]) return _list
9fdbfc558f5ec3b11c78535b9125e0a1c293035e
8,848