content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def arg_return_greetings(name):
"""
This is greeting function with arguments and return greeting message
:param name:
:return:
"""
message = F"hello {name}"
return message | 23bab521832358692c3aa653c6138ffee13c4e7a | 6,636 |
from typing import Any
def basic_usage(card_id: str, parent: Any = None):
"""Basic usage of the application, minus the card recognition bits"""
data = pull_card_data(card_id)
qt_window = Card(parent, data)
qt_window.setWindowTitle("YGO Scanner")
qt_window.show()
return qt_window | 6960697ef12959a7aaaf47607c3026d0925b0a88 | 6,637 |
from typing import Dict
from typing import Optional
from pathlib import Path
import json
def get_abi(
contract_sources: Dict[str, str],
allow_paths: Optional[str] = None,
remappings: Optional[list] = None,
silent: bool = True,
) -> Dict:
"""
Generate ABIs from contract interfaces.
Arguments
---------
contract_sources : dict
a dictionary in the form of {'path': "source code"}
allow_paths : str, optional
Compiler allowed filesystem import path
remappings : list, optional
List of solidity path remappings
silent : bool, optional
Disable verbose reporting
Returns
-------
dict
Compiled ABIs in the format `{'contractName': [ABI]}`
"""
final_output = {
Path(k).stem: {
"abi": json.loads(v),
"contractName": Path(k).stem,
"type": "interface",
"sha1": sha1(v.encode()).hexdigest(),
}
for k, v in contract_sources.items()
if Path(k).suffix == ".json"
}
for path, source in [(k, v) for k, v in contract_sources.items() if Path(k).suffix == ".vy"]:
input_json = generate_input_json({path: source}, language="Vyper")
input_json["settings"]["outputSelection"]["*"] = {"*": ["abi"]}
try:
output_json = compile_from_input_json(input_json, silent, allow_paths)
except Exception:
# vyper interfaces do not convert to ABIs
# https://github.com/vyperlang/vyper/issues/1944
continue
name = Path(path).stem
final_output[name] = {
"abi": output_json["contracts"][path][name]["abi"],
"contractName": name,
"type": "interface",
"sha1": sha1(contract_sources[path].encode()).hexdigest(),
}
solc_sources = {k: v for k, v in contract_sources.items() if Path(k).suffix == ".sol"}
if solc_sources:
compiler_targets = find_solc_versions(solc_sources, install_needed=True, silent=silent)
for version, path_list in compiler_targets.items():
to_compile = {k: v for k, v in contract_sources.items() if k in path_list}
set_solc_version(version)
input_json = generate_input_json(
to_compile,
language="Vyper" if version == "vyper" else "Solidity",
remappings=remappings,
)
input_json["settings"]["outputSelection"]["*"] = {"*": ["abi"]}
output_json = compile_from_input_json(input_json, silent, allow_paths)
output_json = {k: v for k, v in output_json["contracts"].items() if k in path_list}
final_output.update(
{
name: {
"abi": data["abi"],
"contractName": name,
"type": "interface",
"sha1": sha1(contract_sources[path].encode()).hexdigest(),
}
for path, v in output_json.items()
for name, data in v.items()
}
)
return final_output | bd9eb4959796d549950f8dd0372ee42c95cd0dd6 | 6,638 |
def predict(w , b , X ):
"""
使用学习逻辑回归参数logistic (w,b)预测标签是0还是1,
参数:
w - 权重,大小不等的数组(num_px * num_px * 3,1)
b - 偏差,一个标量
X - 维度为(num_px * num_px * 3,训练数据的数量)的数据
返回:
Y_prediction - 包含X中所有图片的所有预测【0 | 1】的一个numpy数组(向量)
"""
m = X.shape[1] #图片的数量
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0],1)
#计预测猫在图片中出现的概率
A = sigmoid(np.dot(w.T , X) + b)
for i in range(A.shape[1]):
#将概率a [0,i]转换为实际预测p [0,i]
Y_prediction[0,i] = 1 if A[0,i] > 0.5 else 0
#使用断言
assert(Y_prediction.shape == (1,m))
return Y_prediction | 4e258d7de1788d6da5c8a832ff11a5e8718b5d84 | 6,639 |
def delta_C(parcels_old, parcels_new, normed=False):
"""
Compute the number of vertices that change connected component from
old parcellation to new parcellation.
Parameters:
- - - - -
parcels_old : dictionary
old connected component sample assignments
parcels_new : dictionary
new connected component sample assignments
Returns:
- - - -
deltaC : int
number of vertices that changed label
"""
new = set(map(len, parcels_new.values()))
old = set(map(len, parcels_old.values()))
deltaC = np.int32(list(new.difference(old))).sum()
if normed:
deltaC = deltaC / np.sum(list(new))
return deltaC | 07f48d30fbaa4b0278871b199d7768c6f2d49508 | 6,640 |
def increment(number):
"""Increases a given number by 1"""
return number + 1 | ad10a887ee571182247e76fe41fddd6d53b2dc6a | 6,641 |
def get_recent_added_companies(parser, token):
"""
Gets any number of the recent added comapnies.
Syntax::
{% get_recent_added_companies [limit] as [var_name] %}
"""
return base_tag(parser, token, RecentCreatedCompanies) | 73c7c0f12951ba9d6b6a3220c2f88055ea027624 | 6,642 |
import glob
def search_data(templates, pols, matched_pols=False, reverse_nesting=False, flatten=False):
"""
Glob-parse data templates to search for data files.
Parameters
----------
templates : str or list
A glob-parsable search string, or list of such strings, with a {pol}
spot for string formatting. Ex. ["zen.even.{pol}.LST.*.HH.uv"]
pols : str or list
A polarization string, or list of polarization strings, to search for.
Ex. ["xx", "yy"]
matched_pols : boolean
If True, only use datafiles that are present for all polarizations.
reverse_nesting : boolean
If True, flip the nesting of datafiles to be datafile-polarization.
By default, the output is polarization-datafile.
flatten : boolean
If True, flatten the nested output datafiles to a single hierarchy.
Returns
-------
datafiles : list
A nested list of paths to datafiles. By default, the structure is
polarization-datafile nesting. If reverse_nesting, then the structure
is flipped to datafile-polarization structure.
datapols : list
List of polarizations for each file in datafile
"""
# type check
if isinstance(templates, (str, np.str)):
templates = [templates]
if isinstance(pols, (str, np.str, np.integer, int)):
pols = [pols]
# search for datafiles
datafiles = []
datapols = []
for pol in pols:
dps = []
dfs = []
for template in templates:
_dfs = glob.glob(template.format(pol=pol))
if len(_dfs) > 0:
dfs.extend(_dfs)
dps.extend([pol for df in _dfs])
if len(dfs) > 0:
datafiles.append(sorted(dfs))
datapols.append(dps)
# get unique files
allfiles = [item for sublist in datafiles for item in sublist]
allpols = [item for sublist in datapols for item in sublist]
unique_files = set()
for _file in allfiles:
for pol in pols:
if ".{pol}.".format(pol=pol) in _file:
unique_files.update(set([_file.replace(".{pol}.".format(pol=pol), ".{pol}.")]))
break
unique_files = sorted(unique_files)
# check for unique files with all pols
if matched_pols:
Npols = len(pols)
_templates = []
for _file in unique_files:
goodfile = True
for pol in pols:
if _file.format(pol=pol) not in allfiles:
goodfile = False
if goodfile:
_templates.append(_file)
# achieve goal by calling search_data with new _templates that are polarization matched
datafiles, datapols = search_data(_templates, pols, matched_pols=False, reverse_nesting=False)
# reverse nesting if desired
if reverse_nesting:
datafiles = []
datapols = []
for _file in unique_files:
dfs = []
dps = []
for pol in pols:
df = _file.format(pol=pol)
if df in allfiles:
dfs.append(df)
dps.append(pol)
datafiles.append(dfs)
datapols.append(dps)
# flatten
if flatten:
datafiles = [item for sublist in datafiles for item in sublist]
datapols = [item for sublist in datapols for item in sublist]
return datafiles, datapols | 9f8018de15db0659928e28779ebf4acda0ddba74 | 6,643 |
import re
def normalize_word(word):
"""
:type word: str
:rtype: str
"""
acronym_pattern = r'^(?:[A-Z]\.)+$'
if re.match(pattern=acronym_pattern, string=word):
word = word.replace('.', '')
if word.lower() in _REPLACE_WORDS:
replacement = _REPLACE_WORDS[word.lower()]
if word.islower():
return replacement.lower()
elif word.isupper():
return replacement.upper()
elif word[0].isupper() and word[1:].islower():
return replacement.capitalize()
else:
return replacement
else:
return word | e2c96d456cc8b555b68f2c7498a6d2898ce5990e | 6,644 |
def _ggm_qsize_prob_gt_0_whitt_5_2(arr_rate, svc_rate, c, ca2, cs2):
"""
Return the approximate P(Q>0) in G/G/m queue using Whitt's simple
approximation involving rho and P(W>0).
This approximation is exact for M/M/m and has strong theoretical
support for GI/M/m. It's described by Whitt as "crude" but is
"a useful quick approximation".
See Section 5 of Whitt, Ward. "Approximations for the GI/G/m queue"
Production and Operations Management 2, 2 (Spring 1993): 114-161. In
particular, this is Equation 5.2.
Parameters
----------
arr_rate : float
average arrival rate to queueing system
svc_rate : float
average service rate (each server). 1/svc_rate is mean service time.
c : int
number of servers
cv2_svc_time : float
squared coefficient of variation for service time distribution
Returns
-------
float
~ P(Q > 0)
"""
rho = arr_rate / (svc_rate * float(c))
pdelay = ggm_prob_wait_whitt(arr_rate, svc_rate, c, ca2, cs2)
prob_gt_0 = rho * pdelay
return prob_gt_0 | 3eded5597dc199e61c4d79187369e1a84531ac3d | 6,645 |
def pds3_label_gen_date(file):
"""Returns the creation date of a given PDS3 label.
:param path: File path
:type path: str
:return: Creation date
:rtype: str
"""
generation_date = "N/A"
with open(file, "r") as f:
for line in f:
if "PRODUCT_CREATION_TIME" in line:
generation_date = line.split("=")[1].strip()
return generation_date | c2877fa9246dd0c12c6ea47635ab248dc038b179 | 6,646 |
def harmony(*args):
"""
Takes an arbitrary number of floats and prints their harmonic
medium value. Calculation is done with formula:
number_of_args \ (1 \ item1 + 1 \ item2 + ...)
Args:
*args (tuple): number of arguments with a type: float, integer
Returns:
float: harmonic medium value
"""
result = 0
if 0 in args:
return 0.0
for item in args:
result += 1 / item
return len(args) / result | bc66276b3ef27ef0bfd059afa8ca7afd5d9cbb82 | 6,647 |
def node_gdf_from_graph(G, crs = 'epsg:4326', attr_list = None, geometry_tag = 'geometry', xCol='x', yCol='y'):
"""
Function for generating GeoDataFrame from Graph
:param G: a graph object G
:param crs: projection of format {'init' :'epsg:4326'}. Defaults to WGS84. note: here we are defining the crs of the input geometry - we do NOT reproject to this crs. To reproject, consider using geopandas' to_crs method on the returned gdf.
:param attr_list: list of the keys which you want to be moved over to the GeoDataFrame, if not all. Defaults to None, which will move all.
:param geometry_tag: specify geometry attribute of graph, default 'geometry'
:param xCol: if no shapely geometry but Longitude present, assign here
:param yCol: if no shapely geometry but Latitude present, assign here
:returns: a geodataframe of the node objects in the graph
"""
nodes = []
keys = []
# finds all of the attributes
if attr_list is None:
for u, data in G.nodes(data = True):
keys.append(list(data.keys()))
flatten = lambda l: [item for sublist in l for item in sublist]
attr_list = list(set(flatten(keys)))
if geometry_tag in attr_list:
non_geom_attr_list = attr_list
non_geom_attr_list.remove(geometry_tag)
else:
non_geom_attr_list = attr_list
if 'node_ID' in attr_list:
non_geom_attr_list = attr_list
non_geom_attr_list.remove('node_ID')
z = 0
for u, data in G.nodes(data = True):
if geometry_tag not in attr_list and xCol in attr_list and yCol in attr_list :
try:
new_column_info = {
'node_ID': u,
'geometry': Point(data[xCol], data[yCol]),
'x': data[xCol],
'y': data[yCol]}
except:
print('Skipped due to missing geometry data:',(u, data))
else:
try:
new_column_info = {
'node_ID': u,
'geometry': data[geometry_tag],
'x':data[geometry_tag].x,
'y':data[geometry_tag].y}
except:
print((u, data))
for i in non_geom_attr_list:
try:
new_column_info[i] = data[i]
except:
pass
nodes.append(new_column_info)
z += 1
nodes_df = pd.DataFrame(nodes)
nodes_df = nodes_df[['node_ID', *non_geom_attr_list, geometry_tag]]
nodes_df = nodes_df.drop_duplicates(subset = ['node_ID'], keep = 'first')
nodes_gdf = gpd.GeoDataFrame(nodes_df, geometry = nodes_df.geometry, crs = crs)
return nodes_gdf | cf5849c672877010aae7b1fb841a6993a53d232f | 6,648 |
def views():
""" Used for the creation of Orientation objects with
`Orientations.from_view_up`
"""
return [[1, 0, 0], [2, 0, 0], [-1, 0, 0]] | 21ffce8e8a56cf31e2d03a6384d584bcb4bfb2c8 | 6,649 |
def check_closed(f):
"""Decorator that checks if connection/cursor is closed."""
def g(self, *args, **kwargs):
if self.closed:
raise exceptions.Error(f'{self.__class__.__name__} already closed')
return f(self, *args, **kwargs)
return g | 4772de94c28022266ee01f0c900e8937859cc58c | 6,651 |
def get_diff_comparison_score(git_commit, review_url, git_checkout_path,
cc): # pragma: no cover
"""Reads the diff for a specified commit
Args:
git_commit(str): a commit hash
review_url(str): a rietveld review url
git_checkout_path(str): path to a local git checkout
cc: a cursor for the Cloud SQL connection
Return:
score(float): a score in [0,1] where 0 is no similarity and 1 is a perfect
match
"""
git_diff = get_git_diff(git_commit, git_checkout_path)
comparable_git_diff = [x for x in git_diff if x.startswith('+') \
or x.startswith('-')]
rietveld_diff = get_rietveld_diff(review_url, cc, git_checkout_path)
comparable_rietveld_diff = [x for x in rietveld_diff if x.startswith('+') \
or x.startswith('-')]
matching = list(set(comparable_git_diff) - set(comparable_rietveld_diff))
total = max(len(comparable_git_diff), len(comparable_rietveld_diff))
score = 1 - float(len(matching)) / total if total != 0 else 0
return score | b68904a62d1e42b8e147705984c9455ff0f5d6fc | 6,653 |
def pack(pieces=()):
"""
Join a sequence of strings together.
:param list pieces: list of strings
:rtype: bytes
"""
return b''.join(pieces) | ffd0852a16c6292f921e5cf205301171e3a96fd3 | 6,654 |
def compte_var(f, var):
"""compte le nombre d'apparition de la variable var dans f"""
n = f.nb_operandes()
if n == 0:
v = f.get_val()
if v == var:
return 1
else:
return 0
elif n == 1:
f2 = (f.decompose())[0]
return compte_var(f2, var)
else:
[f2, f3] = f.decompose()
return compte_var(f2, var) + compte_var(f3, var) | 002051e3bf723cfcc1a2cb3d094b58980591adc5 | 6,656 |
from watchlist.models import User
def inject_vars(): # 函数名可以随意修改
"""模板上下文处理函数"""
user = User.query.first() # 用户对象
if not user:
user = User()
user.name = 'BL00D'
return locals() | edf9126fb919cb825acac3f951f481575fe2ef57 | 6,657 |
def try_parse_section(text: str, section_name: str) -> str:
"""
Parse a section. Return an empty string if section not found.
Args:
text (str): text
section_name (str): section's name
Returns:
(str): section
"""
try:
return parse_section(text, section_name)
except Exception:
return "" | 26c8d6d3f8475954fcf742e662981ad5f1223e53 | 6,658 |
from bs4 import BeautifulSoup
def get_location_based_lifers(web_page):
"""
a method that takes in a web page and returns back location frequency for lifers and lifer details.
"""
bs4_object = BeautifulSoup(web_page, html_parser)
table_list = bs4_object.find_all('li', class_=myebird_species_li_class)
lifer_data_list = []
for item in table_list:
bird_name = item.find_all('div')[1].find('a').find_all('span')[0].contents[0].strip()
location = item.find_all('div')[2].find_all('div')[1].find_all('a')[0].contents[0].strip()
date = item.find_all('div')[2].find_all('div')[0].find('a').contents[0].strip()
lifer_data_list.append([bird_name, location, date])
location_frequency = dict()
for item in range(len(lifer_data_list)):
if lifer_data_list[item][1] in location_frequency.keys():
location_frequency[lifer_data_list[item][1]] += 1
else:
location_frequency[lifer_data_list[item][1]] = 1
sorted_location_frequency = sorted(location_frequency.items(), key=lambda x: x[1], reverse=True)
return sorted_location_frequency, lifer_data_list | 1c6b85962f6c142ab816255a1fe5c98f272dfebb | 6,659 |
def parse_show_qos_queue_profile(raw_result):
"""
Parse the show command raw output.
:param str raw_result: vtysh raw result string.
:rtype: dict
:return: The parsed result of the 'show qos queue-profile' command in a \
dictionary:
for 'show qos queue-profile':
::
{
'default': {'profile_name': 'default',
'profile_status': 'applied'},
'factory-default': {'profile_name': 'factory-default',
'profile_status': 'complete'}
}
for 'show qos queue-profile <name>':
::
{
'0': {'queue_num': '0',
'local_priorities': '0',
'name': 'Scavenger_and_backup_data'},
'1': {'queue_num': '1',
'local_priorities': '1',
'name': ''},
...
}
"""
hyphen_line = raw_result.splitlines()[1]
columns = [pos for pos, char in enumerate(hyphen_line) if char == ' ']
result = {}
if len(columns) + 1 == 2:
# All profiles.
# Skip the first two banner lines.
for line in raw_result.splitlines()[2:]:
profile_name = line[columns[0]:len(line)].strip()
result[profile_name] = {}
result[profile_name]['profile_status'] = \
line[0:columns[0]].strip()
result[profile_name]['profile_name'] = \
line[columns[0]:len(line)].strip()
elif len(columns) + 1 == 3:
# Single profile.
# Skip the first two banner lines.
for line in raw_result.splitlines()[2:]:
queue_num = line[0:columns[0]].strip()
result[queue_num] = {}
result[queue_num]['queue_num'] = \
line[0:columns[0]].strip()
result[queue_num]['local_priorities'] = \
line[columns[0]:columns[1]].strip()
result[queue_num]['name'] = \
line[columns[1]:len(line)].strip()
else:
# Error.
raise ValueError("Unexpected number of columns.")
return result | 2a883a50663607356e0edadeb2d4cf17d34ab028 | 6,660 |
import random
import io
def plot_png(num_x_points=50):
""" renders the plot on the fly.
"""
fig = Figure()
axis = fig.add_subplot(1, 1, 1)
x_points = range(num_x_points)
axis.plot(x_points, [random.randint(1, 30) for x in x_points])
output = io.BytesIO()
FigureCanvasAgg(fig).print_png(output)
return Response(output.getvalue(), mimetype="image/png") | bac5e9146bf0b60d943e5d58376a84eddebd21ec | 6,661 |
def render_message(session, window, msg, x, y):
"""Render a message glyph.
Clears the area beneath the message first
and assumes the display will be paused
afterwards.
"""
# create message box
msg = GlyphCoordinate(session, msg, x, y)
# clear existing glyphs which intersect
for gly in (
session.query(GlyphCoordinate)
.join(GlyphCoordinate.glyph)
.filter(GlyphCoordinate.intersects(msg))
):
gly.blank(window)
# render
msg.render(window, {})
window.refresh()
return msg | 2f0362dfa1f884571339456b0a610e0f6cdd75a6 | 6,662 |
from pathlib import Path
def part_one(filename='input.txt', target=2020):
"""Satisfies part one of day one by first sorting the input rows so we can
avoid the worst case O(n**2). We incur O(n log n) to do the sort followed by
a brute force search with short circuiting if the sum exceeds our target.
This is possible since we know in sorted order, only larger values will
follow.
Note, we assume only one valid solution in the given file. If more than one,
there is no guarantee which will be returned.
Parameters
----------
filename : str, optional
The file to parse as input will contain one integer per line,
by default 'input.txt'
target : int, optional
The target sum we want to reach, by default 2020
Returns
-------
int
The product of the two integers that sum to the target value
Raises
------
Exception
Probably overkill, but I wanted to know if my code was failing to find
a solution. Also, I could have looked for a more appropriate exception
than the base one.
"""
items = sorted(map(int, Path(filename).read_text().split()))
count = len(items)
for i in range(count):
for j in range(i+1, count):
summand = items[i] + items[j]
if summand > target:
break
elif summand == target:
return items[i]*items[j]
raise Exception('No solution!') | d9c6790f9c5b5de7fbd9555a8483f2cb0e156b3b | 6,663 |
def get_urls(name, version=None, platform=None):
"""
Return a mapping of standard URLs
"""
dnlu = rubygems_download_url(name, version, platform)
return dict(
repository_homepage_url=rubygems_homepage_url(name, version),
repository_download_url=dnlu,
api_data_url=rubygems_api_url(name, version),
download_url=dnlu,
) | d11666a72771187166a6b9f620237639fd8422f3 | 6,664 |
def getEHfields(m1d, sigma, freq, zd, scaleUD=True, scaleValue=1):
"""Analytic solution for MT 1D layered earth. Returns E and H fields.
:param discretize.base.BaseMesh, object m1d: Mesh object with the 1D spatial information.
:param numpy.ndarray, vector sigma: Physical property of conductivity corresponding with the mesh.
:param float, freq: Frequency to calculate data at.
:param numpy.ndarray, vector zd: location to calculate EH fields at
:param bool, scaleUD: scales the output to be scaleValue at the top, increases numerical stability.
Assumes a halfspace with the same conductive as the deepest cell.
"""
# Note add an error check for the mesh and sigma are the same size.
# Constants: Assume constant
mu = mu_0 * np.ones((m1d.nC + 1))
eps = eps_0 * np.ones((m1d.nC + 1))
# Angular freq
w = 2 * np.pi * freq
# Add the halfspace value to the property
sig = np.concatenate((np.array([sigma[0]]), sigma))
# Calculate the wave number
k = np.sqrt(eps * mu * w ** 2 - 1j * mu * sig * w)
# Initiate the propagation matrix, in the order down up.
UDp = np.zeros((2, m1d.nC + 1), dtype=complex)
UDp[
1, 0
] = scaleValue # Set the wave amplitude as 1 into the half-space at the bottom of the mesh
# Loop over all the layers, starting at the bottom layer
for lnr, h in enumerate(m1d.hx): # lnr-number of layer, h-thickness of the layer
# Calculate
yp1 = k[lnr] / (w * mu[lnr]) # Admittance of the layer below the current layer
zp = (w * mu[lnr + 1]) / k[lnr + 1] # Impedance in the current layer
# Build the propagation matrix
# Convert fields to down/up going components in layer below current layer
Pj1 = np.array([[1, 1], [yp1, -yp1]], dtype=complex)
# Convert fields to down/up going components in current layer
Pjinv = 1.0 / 2 * np.array([[1, zp], [1, -zp]], dtype=complex)
# Propagate down and up components through the current layer
elamh = np.array(
[[np.exp(-1j * k[lnr + 1] * h), 0], [0, np.exp(1j * k[lnr + 1] * h)]]
)
# The down and up component in current layer.
UDp[:, lnr + 1] = elamh.dot(Pjinv.dot(Pj1)).dot(UDp[:, lnr])
if scaleUD:
# Scale the values such that 1 at the top
scaleVal = UDp[:, lnr + 1 :: -1] / UDp[1, lnr + 1]
if np.any(~np.isfinite(scaleVal)):
# If there is a nan (thickness very great), rebuild the move up cell
scaleVal = np.zeros_like(UDp[:, lnr + 1 :: -1], dtype=complex)
scaleVal[1, 0] = scaleValue
UDp[:, lnr + 1 :: -1] = scaleVal
# Calculate the fields
Ed = np.empty((zd.size,), dtype=complex)
Eu = np.empty((zd.size,), dtype=complex)
Hd = np.empty((zd.size,), dtype=complex)
Hu = np.empty((zd.size,), dtype=complex)
# Loop over the layers and calculate the fields
# In the halfspace below the mesh
dup = m1d.vectorNx[0]
dind = dup >= zd
Ed[dind] = UDp[1, 0] * np.exp(-1j * k[0] * (dup - zd[dind]))
Eu[dind] = UDp[0, 0] * np.exp(1j * k[0] * (dup - zd[dind]))
Hd[dind] = (k[0] / (w * mu[0])) * UDp[1, 0] * np.exp(-1j * k[0] * (dup - zd[dind]))
Hu[dind] = -(k[0] / (w * mu[0])) * UDp[0, 0] * np.exp(1j * k[0] * (dup - zd[dind]))
for ki, mui, epsi, dlow, dup, Up, Dp in zip(
k[1::],
mu[1::],
eps[1::],
m1d.vectorNx[:-1],
m1d.vectorNx[1::],
UDp[0, 1::],
UDp[1, 1::],
):
dind = np.logical_and(dup >= zd, zd > dlow)
Ed[dind] = Dp * np.exp(-1j * ki * (dup - zd[dind]))
Eu[dind] = Up * np.exp(1j * ki * (dup - zd[dind]))
Hd[dind] = (ki / (w * mui)) * Dp * np.exp(-1j * ki * (dup - zd[dind]))
Hu[dind] = -(ki / (w * mui)) * Up * np.exp(1j * ki * (dup - zd[dind]))
# Return return the fields
return Ed, Eu, Hd, Hu | e850762955ff513adef7099b61eb285d059c1ffe | 6,665 |
def repeated(f, n):
"""Returns a function that takes in an integer and computes
the nth application of f on that integer.
Implement using recursion!
>>> add_three = repeated(lambda x: x + 1, 3)
>>> add_three(5)
8
>>> square = lambda x: x ** 2
>>> repeated(square, 2)(5) # square(square(5))
625
>>> repeated(square, 4)(5) # square(square(square(square(5))))
152587890625
>>> repeated(square, 0)(5)
5
>>> from construct_check import check
>>> # ban iteration
>>> check(HW_SOURCE_FILE, 'repeated',
... ['For', 'While'])
True
"""
if n == 0:
return identity
else:
return compose1(f, repeated(f, n - 1)) | dd2024ffa7c5abbcfb43b1a6a8d6ea00c3fb42c4 | 6,666 |
def method_functions():
"""
Returns a dictionary containing the valid method keys and their
corresponding dispersion measure functions.
"""
return _available | 6d9ea23e4c0449b4b2d0a27b5117be30400a7d43 | 6,667 |
def generate_auth_token():
"""Generate a token using jwt.
Returns:
token.
"""
key = PRIVATE_KEY
data = {'appId': APPLICATION_ID}
token = jwt.encode(data, key, algorithm='RS256')
return token | a2e9307f392a8a6c0d83e9f1064475c11fc4eeec | 6,669 |
from typing import Dict
from typing import Any
from typing import List
def dict_expand(d: Dict[Any, Any]) -> List[Dict[Any, Any]]:
"""Converts a dictionary of lists to a list of dictionaries.
The resulting list will be of the same length as the longest dictionary
value. If any values are not lists then they will be repeated to the
required length.
Args:
d: The dictionary of arrays to expand.
Returns:
The resulting list of dictionaries.
"""
size = max([_len_arg(arg) for arg in d.values()])
d = {k: _expand_arg(v, size) for k, v in d.items()}
return [{k: v[i] for k, v in d.items()} for i in range(size)] | 6ca2c25318a3b6bc0b2a45bf3aeec7187ad78e5c | 6,670 |
def get_asexual_lineage_num_discrete_state_changes(lineage, attribute_list):
"""Get the number of discrete state changes from an asexual lineage.
State is described by the aggregation of all attributes give by attribute list.
Args:
lineage (networkx.DiGraph): an asexual lineage
attribute_list (list): list of attributes (strings) to use when defining
a state
Returns:
Returns the number of discrete states along the lineage.
"""
# Check that lineage is an asexual lineage.
if not utils.is_asexual_lineage(lineage): raise Exception("the given lineage is not an asexual lineage")
# Check that all nodes have all given attributes in the attribute list
if not utils.all_taxa_have_attributes(lineage, attribute_list): raise Exception("given attributes are not universal among all taxa along the lineage")
# get the first state (root node)
lineage_id = utils.get_root_ids(lineage)[0]
num_states = 1
cur_state = [lineage.nodes[lineage_id][attr] for attr in attribute_list]
# count the number of state changes moving down the lineage
while True:
successor_ids = list(lineage.successors(lineage_id))
if len(successor_ids) == 0: break # We've hit the last thing!
lineage_id = successor_ids[0]
state = [lineage.nodes[lineage_id][attr] for attr in attribute_list]
if cur_state != state:
cur_state = state
num_states += 1
return num_states | 9c0d4badc7b4fea70c56ce69727e48eb991a96e1 | 6,671 |
def check_downloaded(dataset: str,
directory: str = None) -> bool:
"""
Check whether dataset is downloaded
Args:
dataset (str): String of dataset's name, e.g. ml-100k, bx
directory (str, optional): String of directory of downloaded data.
Defaults to None.
Returns:
bool: Boolean flag to show if the dataset is downloaded,
i.e. name of dataset is in the list of subdirectory in input directory.
"""
return True if dataset in get_downloaded_data(directory=directory) else False | bf3342e7da11b34918bc2cb9939c95145d2f4feb | 6,672 |
from pathlib import Path
def enterprise_1_9_installer() -> Path:
"""
Return the path to an installer for DC/OS Enterprise 1.9.
"""
return Path('/tmp/dcos_generate_config_1_9.ee.sh') | 857b5d339e05cbb225189d7ee47d0415fc539c54 | 6,673 |
def Laplacian(n):
"""
Create Laplacian on 2-dimensional grid with n*n nodes
"""
B = forward_diff_matrix(n)
D = -B.T @ B
Dx = sparse.kron(sparse.eye(n), D).tocsr()
Dy = sparse.kron(D, sparse.eye(n)).tocsr()
return Dx + Dy | 47d70e635dc8e7d722e069435d17214a6ea3c6de | 6,674 |
import re
def LookupGitSVNRevision(directory, depth):
"""
Fetch the Git-SVN identifier for the local tree.
Parses first |depth| commit messages.
Errors are swallowed.
"""
if not IsGitSVN(directory):
return None
git_re = re.compile(r'^\s*git-svn-id:\s+(\S+)@(\d+)')
proc = RunGitCommand(directory, ['log', '-' + str(depth)])
if proc:
for line in proc.stdout:
match = git_re.match(line)
if match:
id = match.group(2)
if id:
proc.stdout.close() # Cut pipe for fast exit.
return id
return None | 664da44ee6057a62eb8ece161ade5cabac15bc7b | 6,675 |
def collect_jars(
dep_targets,
dependency_analyzer_is_off = True,
unused_dependency_checker_is_off = True,
plus_one_deps_is_off = True):
"""Compute the runtime and compile-time dependencies from the given targets""" # noqa
if dependency_analyzer_is_off:
return _collect_jars_when_dependency_analyzer_is_off(
dep_targets,
unused_dependency_checker_is_off,
plus_one_deps_is_off,
)
else:
return _collect_jars_when_dependency_analyzer_is_on(dep_targets) | 10203c31bb2d1b5df9336d606355b497f7dd755a | 6,676 |
def _cred1_adapter(user=None, password=None):
"""Just a sample adapter from one user/pw type to another"""
return dict(user=user + "_1", password=password + "_2") | 9e7c218d2dc01793cba232ba1f6d69a54bf21fee | 6,677 |
def acc_metric(y_true, y_pred):
"""
Accuracy
"""
diff = K.abs(y_pred - y_true) * 5000
return K.mean(diff, axis=-1) | 0722791db5546f16648f74b8927590de8696e3d5 | 6,678 |
async def confirm(message: discord.Message, fallback: str = None) -> bool:
"""
Helper function to send a checkmark reaction on a message. This would be
used for responding to a user that an action completed successfully,
without sending a whole other message. If a checkmark reaction cannot
be added, the optional `fallback` message will be sent instead.
:param discord.Message message: The message to add the reaction to.
:param str fallback: The fallback message to be sent to the channel, if the reaction could not be added.
:return: Whether confirming the message succeeded.
"""
try:
await message.add_reaction("☑")
except:
pass
else:
return True
if fallback is None:
return False
# now still executing only if the above failed
try:
await message.channel.send(fallback)
except:
return False # we weren't able to send any feedback to the user at all
else:
return True | 2567957d4239605072bd4f707c12e2b265b8cfbe | 6,679 |
def get_layer_version(
lambda_client: BaseClient,
layer_name: str,
version: int,
) -> "definitions.LambdaLayer":
"""Retrieve the configuration for the specified lambda layer."""
return definitions.LambdaLayer(
lambda_client.get_layer_version(
LayerName=layer_name,
VersionNumber=version,
)
) | cfa2121ac757ae24b67bb25f7fd3046f017df85d | 6,680 |
import requests
def get_detail_msg(detail_url):
"""
2.获取某个职位的详细数据
:param detail_url: 职位详细页面的url
:return: 职位数据
"""
# print('请求的详细地址是:' + detail_url)
response = requests.get(detail_url, headers=HEADERS)
html_element = etree.HTML(response.text)
position = {}
# 【数据】获取职位标题
title = html_element.xpath('//tr[@class="h"]/td/text()')[0]
position['title'] = title
# 【数据】工作地点/职位类别
top_infos = html_element.xpath('//tr[@class="c bottomline"]//text()')
position['location'] = top_infos[top_infos.index('工作地点:') + 1]
position['category'] = top_infos[top_infos.index('职位类别:') + 1]
content_infos = html_element.xpath('//ul[@class="squareli"]')
# 【数据】工作职责
work_do_info = content_infos[0]
position['duty'] = work_do_info.xpath("./li/text()")
# 【数据】工作要求
work_ask_info = content_infos[1]
position['ask'] = work_ask_info.xpath('./li/text()')
return position | 2fc5b316abed9eb9aeff99ae87cdd8e5e59a5e70 | 6,681 |
def wizard_process_received_form(form):
""" Processing of form received during the time measure
Expected result example: {1: '00:43.42', 2: '00:41.35', 3: '00:39.14', 4: '00:27.54'}
"""
lines = {key.split('_')[1]: value.split('_')[1] for key, value in form.items() if key.startswith("line")}
# print(lines)
times = {key.split('_')[1]: value for key, value in form.items() if key.startswith("time")}
# print(times)
return {int(value): times[key] for key, value in lines.items()} | 54b10589cab7ce689b64f5373d2f0a998044db82 | 6,682 |
import inspect
def getsource(obj,is_binary=False):
"""Wrapper around inspect.getsource.
This can be modified by other projects to provide customized source
extraction.
Inputs:
- obj: an object whose source code we will attempt to extract.
Optional inputs:
- is_binary: whether the object is known to come from a binary source.
This implementation will skip returning any output for binary objects, but
custom extractors may know how to meaningfully process them."""
if is_binary:
return None
else:
return inspect.getsource(obj) | 9e97a030c695b9ea50d27abc5253e47be7d4c06a | 6,683 |
import re
def extract_sector_id(room):
"""Given a room identifier of the form:
'aaa-bbb-cc-d-e-123[abcde]'
Return the sector id:
'123'
"""
m = re.search(r'(?P<sector_id>\d+)', room)
return m.group('sector_id') if m else None | f5bfb64d32769cd4b6c2b7309d41450fa807d7a2 | 6,684 |
def splitext_all(_filename):
"""split all extensions (after the first .) from the filename
should work similar to os.path.splitext (but that splits only the last extension)
"""
_name, _extensions = _filename.split('.')[0], '.'.join(_filename.split('.')[1:])
return(_name, "."+ _extensions) | bf9e4ee06eb30dfeb7898ce6e34607bef20b290b | 6,685 |
def tag_in_tags(entity, attribute, value):
"""
Return true if the provided entity has
a tag of value in its tag list.
"""
return value in entity.tags | ad88be5f8848b387f2a261ce5506dffde285a1d8 | 6,687 |
def generate_finding_title(title):
"""
Generate a consistent title for a finding in AWS Security Hub
* Setup as a function for consistency
"""
return "Trend Micro: {}".format(title) | 0cf390c2579e06c2166b086332035b864d3db1e3 | 6,688 |
def makeHexagon(x,y,w,h):
"""Return hexagonal QPolygon. (x,y) is top left coner"""
points=[]
cos=[1.,0.5,-0.5,-1,-0.5,0.5]
sin=[0,0.866025,0.866025,0,-0.866025,-0.866025]
for i in range(len (cos)):
points.append(QPoint(x+w*cos[i],y+h*sin[i]))
return QPolygonF(points) | 7310e0313130f54b125c81f332a541b2b2b9b9a9 | 6,689 |
def save_conv_output(activations, name):
"""
Saves layer output in activations dict with name key
"""
def get_activation(m, i, o):
activations[name] = F.relu(o).data.cpu().numpy()
return get_activation | 13034128234ea6a9633ae144ac02788f2d49986a | 6,690 |
async def get_profile_xp(user_id: int):
"""
Get a user's profile xp.
:param user_id: Discord User ID
"""
return (await self.conn.fetchrow("SELECT profilexp FROM currency.levels WHERE userid = $1", user_id))[0] | d029bb335442aa3ba5ef02b143351e8ccc6b6434 | 6,691 |
from typing import Optional
def validate_raw_data(data: Optional[UserPackage]) -> bool:
"""Returns False if invalid data"""
# NOTE: add more validation as more fields are required
if data is None or data.contribs is None:
return False
if (
data.contribs.total_stats.commits_count > 0
and len(data.contribs.total_stats.languages) == 0
):
return False
return True | 22185bc2691b6a5fce98749c119ea14649c0d676 | 6,693 |
def extractTheSunIsColdTranslations(item):
"""
Parser for 'The Sun Is Cold Translations'
"""
vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title'])
if not (chp or vol) or 'preview' in item['title'].lower():
return None
if '108 maidens' in item['tags']:
return buildReleaseMessageWithType(item, '108 Maidens of Destiny', vol, chp, frag=frag, postfix=postfix)
if 'Back to the Apocalypse' in item['tags']:
return buildReleaseMessageWithType(item, 'Back to the Apocalypse', vol, chp, frag=frag, postfix=postfix)
return False | 94ef69f42dd183a2155a02c8035c12da30eb34e2 | 6,694 |
import torch
def to_device(x, device):
"""Cast a hierarchical object to pytorch device"""
if isinstance(x, torch.Tensor):
return x.to(device)
elif isinstance(x, dict):
for k in list(x.keys()):
x[k] = to_device(x[k], device)
return x
elif isinstance(x, list) or isinstance(x, tuple):
return type(x)(to_device(t, device) for t in x)
else:
raise ValueError('Wrong type !') | a315905fb0cf6d6720103c0d22440418ebd41bf1 | 6,695 |
def git_show_oneline(obj):
"""Returns: One-line description of a git object `obj`, which is typically a commit.
https://git-scm.com/docs/git-show
"""
return exec_headline(['git', 'show', '--oneline', '--quiet', obj]) | 77427786a8d1b9e3b01d5194387f047c1c9ce505 | 6,696 |
from operator import and_
import logging
def like_post():
""" Like a post """
try:
# This will prevent old code from adding invalid post_ids
post_id = int(request.args.get('post_id', '-1'))
if post_id < 0:
return "No Post Found to like!"
vote = (db_session.query(Vote)
.filter(and_(Vote.object_id == post_id,
Vote.user_id == current_user.id))
.first())
if not vote:
vote = Vote(user_id=current_user.id, object_id=post_id)
db_session.add(vote)
db_session.commit()
except Exception as e:
logging.warning(f'ERROR processing request {e}')
return "" | 8cdde2ec6f71104178c49661a9e3fdf5c62bb67d | 6,697 |
def login_post():
"""Obdelaj izpolnjeno formo za prijavo"""
# Uporabniško ime, ki ga je uporabnik vpisal v formo
username = bottle.request.forms.user
# Izračunamo MD5 hash geslo, ki ga bomo spravili
password = password_md5(bottle.request.forms.psw)
# Preverimo, ali se je uporabnik pravilno prijavil
c = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)
c.execute("SELECT 1 FROM uporabnik WHERE username=%s AND geslo=%s",
[username, password])
if c.fetchone() is None:
# Username in geslo se ne ujemata
return bottle.template("login.html",
napaka="Nepravilna prijava", # v template login nastavljeno opozorilo
username=username) # ohranimo isto uporabnisko ime
else:
# Vse je v redu, nastavimo cookie in preusmerimo na glavno stran
bottle.response.set_cookie('username', username, path='/', secret=secret)
bottle.redirect("/") | 9b2243f7e618833d59a7d07454ed8fe86d4b18fc | 6,698 |
def parse_symbol_file(filepath, fapi=None):
"""Read in stock symbol list from a text file.
Args:
filepath: Path to file containing stock symbols, one per line.
fapi: If this is supplied, the symbols read will be conformed
to a financial API; currently 'google' or 'yahoo'.
Returns:
List of stock symbols; list may be empty if file could not be
parsed.
"""
try:
with open(filepath, 'r') as file_handle:
symbols = [line.strip() for line in list(file_handle)
if '#' not in line]
if fapi:
symbols = conform_symbols(symbols, fapi)
except IOError:
symbols = []
return symbols | af0f085fd5424045c71dee6a290a07645f242ff8 | 6,699 |
def trader_tactic_snapshot(symbol, strategy, end_dt=None, file_html=None, fq=True, max_count=1000):
"""使用聚宽的数据对任意标的、任意时刻的状态进行策略快照
:param symbol: 交易标的
:param strategy: 择时交易策略
:param end_dt: 结束时间,精确到分钟
:param file_html: 结果文件
:param fq: 是否复权
:param max_count: 最大K线数量
:return: trader
"""
tactic = strategy(symbol)
base_freq, freqs = tactic['base_freq'], tactic['freqs']
bg, data = get_init_bg(symbol, end_dt, base_freq=base_freq, freqs=freqs, max_count=max_count, fq=fq)
trader = create_advanced_trader(bg, data, strategy)
if file_html:
trader.take_snapshot(file_html)
print(f'saved into {file_html}')
else:
trader.open_in_browser()
return trader | 0b979008f3c950ed41aa85eff2031e6cb34b8685 | 6,700 |
def preprocess(batch):
""" Add zero-padding to a batch. """
tags = [example.tag for example in batch]
# add zero-padding to make all sequences equally long
seqs = [example.words for example in batch]
max_length = max(map(len, seqs))
seqs = [seq + [PAD] * (max_length - len(seq)) for seq in seqs]
return seqs, tags | 832b6453714e7b7eb23271b771bbc156a09d3784 | 6,701 |
def append_include_as(include_match):
"""Convert ``#include x`` to ``#include x as y``, where appropriate; also,
convert incorrect "as" statements. See INCLUDE_AS dict for mapping from
resource to its "as" target.
Parameters
----------
include_match : re._pattern_type
Match produced by INCLUDE_RE.match(string)
Returns
-------
repl : string
Replacement text for whatever comes after the "#include "
"""
include_text = include_match.groups()[0]
include_as_match = PISAConfigParser.INCLUDE_AS_RE.match(include_text)
as_section = None
if include_as_match:
gd = include_as_match.groupdict()
resource = gd['file']
as_section = gd['as']
else:
resource = include_text
if resource in INCLUDE_AS.keys():
as_section = INCLUDE_AS[resource]
if as_section is None:
repl = '#include ' + resource
else:
repl = '#include %s as %s' % (resource, as_section)
return repl | 0eaaa356efa33f0e64db6b3a843236fd15ebb66d | 6,702 |
def get_user_profiles(page=1, limit=10):
"""Retrieves a list of user profiles.
:param page: Page number
:type page: int
:param limit: Maximum number of results to show
:type limit: int
:returns: JSON string of list of user profiles; status code
:rtype: (str, int)
"""
# initialize query
query = Query.make(
UserProfile,
UserProfile.id.asc(),
{
'id.asc': UserProfile.id.asc(),
'id.desc': UserProfile.id.desc(),
'user_id.asc': UserProfile.user_id.asc(),
'user_id.desc': UserProfile.user_id.desc(),
'joined_at.asc': UserProfile.joined_at.asc(),
'joined_at.desc': UserProfile.joined_at.desc(),
},
request.args,
Query.STATUS_FILTER_ADMIN)
# retrieve and return results
results = list(query.limit(limit).offset((page - 1) * limit))
if len(results) > 0:
# prep initial output
output = {
'user_profiles': UserProfileAdminSchema(many=True).dump(results),
'page': page,
'limit': limit,
'total': query.count()
}
# add pagination URIs and return
output.update(
Pager.get_uris('admin_user_profiles.get_user_profiles', page,
limit, output['total'], request.args))
return jsonify(output), 200
return '', 204 | 7bcfe33925e49a90ac593fad53e4e169b107886e | 6,703 |
import sqlite3
def _repository():
"""Helper dependency injection"""
db = sqlite3.connect('covid_database.db', isolation_level=None)
return CovidTestDataRepository(db) | e30d30f3b4f9673df4863d261655aa6f38a527d7 | 6,704 |
def f(x):
"""Cubic function."""
return x**3 | 13832221de3490dbd92f4f1a26854baec7010023 | 6,705 |
from outliers import smirnov_grubbs as grubbs
def correct_anomalies(peaks, alpha=0.05, save_name=""):
"""
Outlier peak detection (Grubb's test) and removal.
Parameters
----------
peaks : array
vector of peak locations
alpha : real
significance level for Grubb's test
save_name : str
filename to save peaks as to, empty does not save
Results
-------
corrected_peaks2 : array
vector of corrected peak locations
max_indices : array
indices of original peaks marked as too slow
min_indices : array
indices of original peaks marked as too fast
"""
peak_diffs = abs(np.diff(peaks))
max_indices = grubbs.max_test_indices(peak_diffs, alpha=alpha)
min_indices = grubbs.min_test_indices(peak_diffs, alpha=alpha)
grubb_idxs = max_indices + min_indices
# Compute representative difference based on its distribution
mean_rr = np.mean(
peak_diffs[[ii for ii in range(len(peak_diffs))
if ii not in grubb_idxs]]
)
mean_rr = int(np.round(mean_rr))
corrected_peaks = peaks.copy()
for ix in max_indices:
n = int(np.round((peaks[ix + 1] - peaks[ix]) / mean_rr))
if n == 1:
continue
new_peaks = np.linspace(peaks[ix],
peaks[ix + 1],
n,
dtype=int,
endpoint=False)[1:]
corrected_peaks = np.append(corrected_peaks, new_peaks)
corrected_peaks = np.sort(corrected_peaks)
corrected_peak_diffs = abs(np.diff(corrected_peaks))
min_indices = grubbs.min_test_indices(corrected_peak_diffs, alpha=alpha)
# deleting peak such that resultant RR interval is furthest from mean RR
# (i.e. gives longer RR interval)
too_fast = np.array(min_indices)
# index of peaks to delete (and then reinsert)
peaks_to_replace = np.zeros_like(too_fast)
new_peaks2 = np.zeros_like(too_fast, dtype=float)
for index, i in enumerate(too_fast):
# print(index, i)
if i == (corrected_peak_diffs.size - 1):
# if last RR interval (edge case)
peaks_to_replace[index] = i # replace first peak
# compute new diff_peak
new_diff = (corrected_peaks[i + 1] - corrected_peaks[i - 1])/2
new_peaks2[index] = corrected_peaks[i - 1] + new_diff
else:
# replace first peak
new_diff1 = corrected_peaks[i + 1] - corrected_peaks[i - 1]
# replace second peak
new_diff2 = corrected_peaks[i + 2] - corrected_peaks[i]
if new_diff1 > new_diff2:
# replacing first peak results in new RR interval
# furthest from mean RR interval
peaks_to_replace[index] = i
# compute new diff_peak
new_diff = (corrected_peaks[i + 1] - corrected_peaks[i - 1])/2
new_peaks2[index] = corrected_peaks[i - 1] + new_diff
else:
# replacing second peak results in new RR interval
# furthest from mean RR interval
peaks_to_replace[index] = i + 1
# compute new diff_peak
new_diff = (corrected_peaks[i + 2] - corrected_peaks[i])/2
new_peaks2[index] = corrected_peaks[i] + new_diff
corrected_peaks2 = corrected_peaks.copy()
np.put(corrected_peaks2, peaks_to_replace.astype(int), new_peaks2)
# save peaks
if save_name != "":
np.savetxt(save_name, corrected_peaks2, delimiter=",")
return corrected_peaks2, max_indices, min_indices | cf33123e963b245007c8be4777cecd1224d4e3fa | 6,707 |
def svn_wc_walk_entries(*args):
"""
svn_wc_walk_entries(char path, svn_wc_adm_access_t adm_access, svn_wc_entry_callbacks_t walk_callbacks,
void walk_baton,
svn_boolean_t show_hidden, apr_pool_t pool) -> svn_error_t
"""
return apply(_wc.svn_wc_walk_entries, args) | 791e0f635aa56329f78a1ed0f171217518f9be05 | 6,708 |
def dlp_to_datacatalog_builder(
taskgroup: TaskGroup,
datastore: str,
project_id: str,
table_id: str,
dataset_id: str,
table_dlp_config: DlpTableConfig,
next_task: BaseOperator,
dag,
) -> TaskGroup:
"""
Method for returning a Task Group for scannign a table with DLP, and creating BigQuery policy tags based on the results
1) Scan table with DLP and write results to BigQuery
2) Schedule future DLP
3) Read results of DLP scan from BigQuery
4) Update Policy Tags in BQ
Returns the first task
"""
assert table_dlp_config.source_config is not None
# setup tables vars
dlp_results_dataset_id = table_dlp_config.source_config.results_dataset_id
table_ref = TableReference(DatasetReference(project_id, dataset_id), table_id)
dlp_results_table_ref = TableReference(
DatasetReference(project_id, dlp_results_dataset_id), f"{table_id}_dlp_results"
)
dlp_results_table = f"{dlp_results_table_ref.project}.{dlp_results_table_ref.dataset_id}.{dlp_results_table_ref.table_id}"
# setup DLP scan vars
dlp_template_name = table_dlp_config.get_template_name()
rows_limit_percent = table_dlp_config.get_rows_limit_percent()
inspect_job = build_inspect_job_config(
dlp_template_name, table_ref, rows_limit_percent, dlp_results_table_ref
)
# 1 First delete the results table
delete_dlp_results = BigQueryDeleteTableOperator(
task_id=f"delete_old_dlp_results_{datastore}",
deletion_dataset_table=dlp_results_table,
ignore_if_missing=True,
task_group=taskgroup,
dag=dag,
)
# 2 Scan table
scan_task = CloudDLPCreateDLPJobOperator(
task_id=f"scan_table_{datastore}",
project_id=project_id,
inspect_job=inspect_job,
wait_until_finished=True,
task_group=taskgroup,
dag=dag,
)
# 4. Read results
read_results_task = DlpBQInspectionResultsOperator(
task_id=f"read_dlp_results_{datastore}",
project_id=dlp_results_table_ref.project,
dataset_id=dlp_results_table_ref.dataset_id,
table_id=dlp_results_table_ref.table_id,
do_xcom_push=True,
min_match_count=table_dlp_config.get_min_match_count(),
task_group=taskgroup,
dag=dag,
)
# 5. Update policy tags
update_tags_task = PythonOperator(
task_id=f"update_bq_policy_tags_{datastore}",
python_callable=update_bq_policy_tags, # <--- PYTHON LIBRARY THAT COPIES FILES FROM SRC TO DEST
task_group=taskgroup,
dag=dag,
templates_dict={
"dlp_results": f"{{{{ti.xcom_pull(task_ids='{read_results_task.task_id}')}}}}",
# "dlp_results": "{{ti.xcom_pull(task_ids='dlp_policy_tags.read_dlp_results_test')}}",
},
op_kwargs={
"project_id": project_id,
"dataset_id": table_ref.dataset_id,
"table_id": table_ref.table_id,
"policy_tag_config": table_dlp_config.source_config.policy_tag_config,
"task_ids": read_results_task.task_id,
},
provide_context=True,
)
delete_dlp_results >> scan_task >> read_results_task >> update_tags_task >> next_task
return delete_dlp_results | 53950a99dddc4f2a61dca12908c3b2a17a3765c4 | 6,709 |
import textwrap
def dedent(ind, text):
"""
Dedent text to the specific indentation level.
:param ind: common indentation level for the resulting text (number of spaces to append to every line)
:param text: text that should be transformed.
:return: ``text`` with all common indentation removed, and then the specified amount of indentation added.
"""
text2 = textwrap.dedent(text)
if ind == 0:
return text2
indent_str = " " * ind
return "\n".join(indent_str + line for line in text2.split("\n")) | 271b9fd270d78c4bc952af31d3d9be0ff6bdab73 | 6,711 |
def get_vendor(request):
"""
Returns the ``JSON`` serialized data of the requested vendor on ``GET`` request.
.. http:get:: /get_vendor/
Gets the JSON serialized data of the requested vendor.
**Example request**:
.. sourcecode:: http
GET /get_vendor/ HTTP/1.1
Host: localhost:8000
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
:param vendor_id: Vendor primary key.
**Example response**:
.. sourcecode:: http
HTTP/1.1 200 OK
Vary: Accept
Content-Type: application/json; charset=utf-8
[
{
"name": "Lug Vendor",
"identifier": "TBPN-02692",
"gstin": "89AAC4683897343",
"address": {
"name": "Kuame Burns",
"address": "Nonummy Avenue",
"city": "Chung Cheong",
"phone": "679 166-3127",
"state": "Guanacaste",
"country": "tellusidnunc.net",
"post": "8949"
}
}
]
:resheader Content-Type: application/json
:statuscode 200: List of vendors received successfully.
:statuscode 400: Bad request version
:statuscode 500: Vendor matching query does not exist.
"""
if request.method == 'GET':
vendor_id = request.GET.get('vendor_id')
vendor = VendorSerializer(Vendor.objects.get(id=vendor_id))
return JsonResponse(vendor.data) | e142854426ef406bdfe6e34d0629e80d49493c91 | 6,713 |
def ensure_bin_str(s):
"""assert type of s is basestring and convert s to byte string"""
assert isinstance(s, basestring), 's should be string'
if isinstance(s, unicode):
s = s.encode('utf-8')
return s | 3ce171f02a371073c5474596da9c963b0a77a415 | 6,714 |
def _word_accuracy(pred_data, ref_data):
"""compute word-level accuracy"""
pred_size = len(pred_data)
ref_size = len(ref_data)
if pred_size <= 0 or ref_size <= 0:
raise ValueError("size of predict or reference data is less than or equal to 0")
if pred_size != ref_size:
raise ValueError("size of predict and reference data don't match")
total_count = 0
for i in range(pred_size):
pred_word = pred_data[i].strip().slipt(" ")
ref_word = ref_data[i].strip().slipt(" ")
pred_len = len(pred_word)
ref_len = len(ref_word)
match_count = 0
for j in range(min(pred_len, ref_len)):
predict_word = pred_word[j]
reference_word = ref_word[j]
if predict_word == reference_word:
match_count += 1
total_accuracy += 100.0 * match_count / max(pred_len, ref_len)
total_count += 1
word_accuracy = total_accuracy / total_count
return word_accuracy | c4abfcc439fca5d14b5edc8289ef9ee2d46807fe | 6,715 |
import requests
def api_retrieve_part(pt_id):
"""
Allows the client to call "retrieve" method on the server side to
retrieve the part from the ledger.
Args:
pt_id (str): The uuid of the part
Returns:
type: str
String representing JSON object which allows the client to know that
the call was either a success or a failure.
"""
response = requests.get(
"http://127.0.0.1:852/tp/part/{}".format(pt_id)
)
output = response.content.decode("utf-8").strip()
return output | 5043415dcdb95e59ec87271bf62d1f04f818af9b | 6,717 |
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
"""
完整的线性SMO算法
Parameters:
dataMatIn - 数据矩阵
classLabels - 数据标签
C - 松弛变量
toler - 容错率
maxIter - 最大迭代次数
kTup - 包含核函数信息的元组
Returns:
oS.b - SMO算法计算的b
oS.alphas - SMO算法计算的alphas
"""
oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup) #初始化数据结构
iter = 0 #初始化当前迭代次数
entireSet = True; alphaPairsChanged = 0
while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
alphaPairsChanged = 0
if entireSet: #遍历整个数据集
for i in range(oS.m):
alphaPairsChanged += innerL(i,oS) #使用优化的SMO算法
print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
else: #遍历非边界值
nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] #遍历不在边界0和C的alpha
for i in nonBoundIs:
alphaPairsChanged += innerL(i,oS)
print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
iter += 1
if entireSet: #遍历一次后改为非边界遍历
entireSet = False
elif (alphaPairsChanged == 0): #如果alpha没有更新,计算全样本遍历
entireSet = True
print("迭代次数: %d" % iter)
return oS.b,oS.alphas #返回SMO算法计算的b和alphas | fb38ef33ab624a74f3da320c5e90a48aa307d588 | 6,718 |
def _get_output_data(output_list, heat, stack_id):
"""
获取output数据
"""
response = {
'code': 200,
'msg': 'ok',
'status': utils.INSTANTIATED,
'data': []
}
for item in output_list['outputs']:
output = heat.stacks.output_show(stack_id, item['output_key'])
output_value = output['output']['output_value']
item = {
'vmId': output_value['vmId'],
'vncUrl': output_value['vncUrl'],
'networks': []
}
if 'networks' in output_value and output_value['networks'] is not None:
for net_name, ip_data in output_value['networks'].items():
if utils.validate_uuid(net_name):
continue
network = {
'name': net_name,
'ip': ip_data[0]['addr']
}
item['networks'].append(network)
response['data'].append(item)
return response | aca183c1b158e6e7b9e414151e7f5d5505de1188 | 6,719 |
def _ensure_str(s):
"""convert bytestrings and numpy strings to python strings"""
return s.decode() if isinstance(s, bytes) else str(s) | 05f549166cc459371b380f62393bbc835aa7ff48 | 6,720 |
def get_polarimeter_index(pol_name):
"""Return the progressive number of the polarimeter within the board (0…7)
Args:
pol_name (str): Name of the polarimeter, like ``R0`` or ``W3``.
Returns:
An integer from 0 to 7.
"""
if pol_name[0] == "W":
return 7
else:
return int(pol_name[1]) | 0068931868e214896f6263e58fc09215352d502c | 6,721 |
def merge_sort(collection):
"""
Pure implementation of the fastest ordered collection with heterogeneous
: parameter collection : some mutable ordered collection with heterogeneous
comparable items inside
: return : a sollectiojn order by ascending
Examples :
>>> merge_sort([0, 5, 3, 2, 2])
[0, 2, 2, 3, 5]
>>> merge_sort([])
[]
>>> merge_sort([-45, -5, -2])
[-45, -5, -2]
"""
start, end = [], []
while len(collection) > 1 :
min_one, max_one = min(collection), max(collection)
start.append(min_one)
end.append(max_one)
collection.remove(min_one)
collection.remove(max_one)
end.reverse()
return start + collection + end | b704792ef49629e7e9e04c22ffe03f08b3ef76fa | 6,722 |
def sma_centroids(dataframe, column, short_window, long_window, min_width=None, **kwargs):
"""Identify centermost point between two SMA interception points
Define regions as being bounded by two consecutive interceptions of SMAs
with different window widths, then choose the centermost data point within
that region. Useful for defining regions that capture the crossover of
SMAs.
Essentially a wrapper around `sma_to_centroids`.
Args:
dataframe (pandas.DataFrame): dataframe from which SMAs should be
calculated and regions defined
column (str): name of column over in dataframe from which sliding-window
slopes should be calculated
short_window (int): number of consecutive dataframe rows to include in
the short window
long_window (int): number of consecutive dataframe rows to include in
the long window
min_width: minimum width, expressed in units of `x_column`, below which
an intercept should be disregarded as a valid end of a window
kwargs: arguments to be passed to calculate_sma()
Returns:
DataFrame with indices corresponding to dataframe
"""
x_column = '_datetime_start'
sma_short = calculate_sma(dataframe, x_column, column, window=short_window, **kwargs)
sma_long = calculate_sma(dataframe, x_column, column, window=long_window, **kwargs)
intercepts = find_sma_intercepts(sma_short, sma_long, dataframe[x_column])
return find_sma_centroids(dataframe=dataframe,
sma_short=sma_short,
sma_long=sma_long,
intercepts=intercepts,
x_column=x_column,
min_width=min_width) | 1157318d90ce514a3a85461851c158a0df9d2a3e | 6,723 |
def delMsg(msgNum):
"""Deletes a specified message from the inbox"""
global usrPrompt
try:
inboxMessages = json.loads(api.getAllInboxMessages())
# gets the message ID via the message index number
msgId = inboxMessages['inboxMessages'][int(msgNum)]['msgid']
msgAck = api.trashMessage(msgId)
except:
print '\n Connection Error\n'
usrPrompt = 0
main()
return msgAck | b3cc7a4568ca6eae3267cd5247abe88c5ccb8bec | 6,724 |
def capitalize_first(str):
"""Capitalizes only the first letter of the given string.
:param str: string to capitalize
:return: str with only the first letter capitalized
"""
if str == "":
return ""
return str[0].upper() + str[1:] | ed6dfdfd9709de1682c29ed152131b9da732441b | 6,725 |
def min_cost_edge(G, T):
"""Returns the edge with the lowest cost/weight.
Parameters
----------
G : NetworkX graph
T : Prim's Algorithm
Returns
-------
The edge with the lowest cost/weight.
"""
edge_list = possible_edges(G, T)
edge_list.sort(key = lambda e : cost(G, e))
return edge_list[0] | 3720bb59cddf0b29beb9f9162941ddf7f86dd429 | 6,726 |
import io
import base64
def get_image_html_tag(fig, format="svg"):
"""
Returns an HTML tag with embedded image data in the given format.
:param fig: a matplotlib figure instance
:param format: output image format (passed to fig.savefig)
"""
stream = io.BytesIO()
# bbox_inches: expand the canvas to include the legend that was put outside the plot
# see https://stackoverflow.com/a/43439132
fig.savefig(stream, format=format, bbox_inches="tight")
data = stream.getvalue()
if format == "svg":
return data.decode("utf-8")
data = base64.b64encode(data).decode("utf-8")
return f"<img src=\"data:image/{format};base64,{data}\">" | f5c59a6f4f70fb6616cec4619d8cbf9ca2e28529 | 6,727 |
def reformat_language_tuple(langval):
"""Produce standardly-formatted language specification string using given language tuple.
:param langval: `tuple` in form ('<language>', '<language variant>'). Example: ('en', 'US')
:return: `string` formatted in form '<language>-<language-variant>'
"""
if langval:
langval_base, langval_variant = langval
if langval_variant:
langval_base = '{0}-{1}'.format(langval_base, langval_variant)
return langval_base
else:
return None | 63c479d7dd273f31b9bdcc6c0ce81d4267a43714 | 6,728 |
def _create_ghostnet(variant, width=1.0, pretrained=False, **kwargs):
"""
Constructs a GhostNet model
"""
cfgs = [
# k, t, c, SE, s
# stage1
[[3, 16, 16, 0, 1]],
# stage2
[[3, 48, 24, 0, 2]],
[[3, 72, 24, 0, 1]],
# stage3
[[5, 72, 40, 0.25, 2]],
[[5, 120, 40, 0.25, 1]],
# stage4
[[3, 240, 80, 0, 2]],
[[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 0.25, 1],
[3, 672, 112, 0.25, 1]
],
# stage5
[[5, 672, 160, 0.25, 2]],
[[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1]
]
]
model_kwargs = dict(
cfgs=cfgs,
width=width,
**kwargs,
)
return build_model_with_cfg(
GhostNet, variant, pretrained,
default_cfg=default_cfgs[variant],
feature_cfg=dict(flatten_sequential=True),
**model_kwargs) | 8b0bca5e4d711dce5150d8c3cdb187c9b1a23ec3 | 6,729 |
def re_suffix(string):
""" Remove any “os.extsep” prefixing a string, and ensure that
it ends with a “$” – to indicate a regular expression suffix.
"""
if not string:
return None
return rf"{string.casefold().lstrip(QUALIFIER).rstrip(DOLLA)}{DOLLA}" | fd1767f0d539e284f56c32f5ed4a8789a6638fca | 6,730 |
def _alternate_dataclass_repr(object) -> None:
"""
Overrides the default dataclass repr by not printing fields that are
set to None. i.e. Only prints fields which have values.
This is for ease of reading.
"""
populated_fields = {
field.name: getattr(object, f"{field.name}")
for field in fields(object)
if getattr(object, f"{field.name}") is not None
}
class_name = object.__class__.__name__
repr_string = f"{class_name}(" + ", ".join([f"{field}={value}" for field, value in populated_fields.items()]) + ")"
return repr_string | c9c07508a39c0732698c1ed6803ef00c4b2f65d6 | 6,731 |
def which_coords_in_bounds(coords, map_shape):
"""
Checks the coordinates given to see if they are in bounds
:param coords Union[array(2)[int], array(N,2)[int]]: [int, int] or [[int, int], ...], Nx2 ndarray
:param map_shape Tuple[int]: shape of the map to check bounds
:return Union[bool array(N)[bool]]: corresponding to whether the coord is in bounds (if array is given, then it will be
array of bool)
"""
assert isinstance(coords, np.ndarray) and coords.dtype == np.int
assert np.array(map_shape).dtype == np.int
if len(coords.shape) == 1:
return coords[0] >= 0 and coords[0] < map_shape[0] and coords[1] >= 0 and coords[1] < map_shape[1]
else:
return np.logical_and(np.logical_and(coords[:, 0] >= 0, coords[:, 0] < map_shape[0]),
np.logical_and(coords[:, 1] >= 0, coords[:, 1] < map_shape[1])) | 5606c24430e9967cade8bdeb789f10bed1248eb1 | 6,732 |
def get_activation_function(activation_function_name: str):
"""
Given the name of an activation function, retrieve the corresponding function and its derivative
:param cost_function_name: the name of the cost function
:return: the corresponding activation function and its derivative
"""
try:
return activation_functions[activation_function_name]
except KeyError:
raise UnknownActivationFunctionName(activation_function_name) | f2a830c15cb93bd9fce1b66c2b5ca14530005cd5 | 6,733 |
def url_split(url, uses_hostname=True, split_filename=False):
"""Split the URL into its components.
uses_hostname defines whether the protocol uses a hostname or just a path (for
"file://relative/directory"-style URLs) or not. split_filename defines whether the
filename will be split off in an attribute or whether it will be part of the path
"""
# urlparse.urlparse() is a bit deficient for our needs.
try:
if uses_hostname:
match = URL_RE_HOSTNAME.match(url).groupdict()
else:
match = URL_RE_PLAIN.match(url).groupdict()
except AttributeError:
raise AttributeError, "Invalid URL."
for key, item in match.items():
if item is None:
if key == "port":
# We should leave port as None if it's not defined.
match[key] = "0"
else:
match[key] = ""
if uses_hostname:
match["port"] = int(match["port"])
if not split_filename:
match["path"] = match["path"] + match["file"]
match["file"] = ""
return URLSplitResult(match) | 5c76eb58c520043ab922c941806f24c60f9ee721 | 6,734 |
def memdiff_search(bytes1, bytes2):
"""
Use binary searching to find the offset of the first difference
between two strings.
:param bytes1: The original sequence of bytes
:param bytes2: A sequence of bytes to compare with bytes1
:type bytes1: str
:type bytes2: str
:rtype: int offset of the first location a and b differ, None if strings match
"""
# Prevent infinite recursion on inputs with length of one
half = (len(bytes1) // 2) or 1
# Compare first half of the string
if bytes1[:half] != bytes2[:half]:
# Have we found the first diff?
if bytes1[0] != bytes2[0]:
return 0
return memdiff_search(bytes1[:half], bytes2[:half])
# Compare second half of the string
if bytes1[half:] != bytes2[half:]:
return memdiff_search(bytes1[half:], bytes2[half:]) + half | fbcb221c77730c45be4c81a6ae7515e602468af5 | 6,735 |
def decomposeJonesMatrix(Jmat):
""" Decompose 2x2 Jones matrix to retardance and diattenuation vectors """
Jmat = Jmat / cp.sqrt(cp.linalg.det(Jmat))
q = cp.array([Jmat[0, 0] - Jmat[1, 1], Jmat[1, 0] + Jmat[0, 1], -1j * Jmat[1, 0] + 1j * Jmat[0, 1]]) / 2
tr = cp.trace(Jmat) / 2
c = cp.arccosh(tr)
csin = c / cp.sinh(c)
if c == 0:
csin = 1
f = 2 * q * csin
rotVector = -cp.imag(f)
diatVector = cp.real(f)
return rotVector, diatVector | 151320a0f77f2fb3a77d8e06b1e623c0fed6c673 | 6,736 |
def format_utc(time):
"""Format a time in UTC."""
return as_utc(time).strftime('%Y-%m-%d %H:%M:%S.%f') | 88624b8e166aa07172abd14c391945e33c77332f | 6,737 |
def _expand_sources(sources):
"""
Expands a user-provided specification of source files into a list of paths.
"""
if sources is None:
return []
if isinstance(sources, str):
sources = [x.strip() for x in sources.split(",")]
elif isinstance(sources, (float, int)):
sources = [str(sources)]
return [path for source in sources for path in _glob(source)] | 6e16eaae5edb68a5be7e0af4be777fc76b70d22a | 6,740 |
from typing import Optional
def get_stream(stream_id: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetStreamResult:
"""
This data source provides details about a specific Stream resource in Oracle Cloud Infrastructure Streaming service.
Gets detailed information about a stream, including the number of partitions.
## Example Usage
```python
import pulumi
import pulumi_oci as oci
test_stream = oci.streaming.get_stream(stream_id=oci_streaming_stream["test_stream"]["id"])
```
:param str stream_id: The OCID of the stream.
"""
__args__ = dict()
__args__['streamId'] = stream_id
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('oci:streaming/getStream:getStream', __args__, opts=opts, typ=GetStreamResult).value
return AwaitableGetStreamResult(
compartment_id=__ret__.compartment_id,
defined_tags=__ret__.defined_tags,
freeform_tags=__ret__.freeform_tags,
id=__ret__.id,
lifecycle_state_details=__ret__.lifecycle_state_details,
messages_endpoint=__ret__.messages_endpoint,
name=__ret__.name,
partitions=__ret__.partitions,
retention_in_hours=__ret__.retention_in_hours,
state=__ret__.state,
stream_id=__ret__.stream_id,
stream_pool_id=__ret__.stream_pool_id,
time_created=__ret__.time_created) | fd7eb6675f5d232e90a94e18e4c68e6d538ca7e4 | 6,741 |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
"""
Fusion method.
"""
n_channels_int = n_channels
in_act = input_a + input_b
t_act = ops.Tanh()(in_act[:, :n_channels_int, :])
s_act = ops.Sigmoid()(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts | 9412a3b20960b0a280a06569846df744f14a9d63 | 6,743 |
import json
def _classes_dict(filename):
"""
Open JSON file and read the data for the Classes (and Origins).
filename - the file name as a string.
Runtime: O(n)
"""
class_dict = {} # {'robot': ['blitzcrank']}
class_bonus_dict = {}
dict = { 1: {}, 2: {}, 3: {}, 4 : {}, 6 : {}} # { 1 : { 'robot' : set['blitzcrank'], 'exile' : set['yasuo'] }, 2 : ... }
with open(filename) as json_file:
data = json.load(json_file)
for class_obj in data.items(): # O(n)
key = class_obj[1]['key'] # String
name = class_obj[1]['name'] # String
description = class_obj[1]['description'] # String
accentChampionImage = class_obj[1]['accentChampionImage'] # URL as String
bonuses = class_obj[1]['bonuses'] # Array [{'needed': int, 'effect': string}]
needed = bonuses[-1]['needed'] # Check the highest number for needed. (In this case it's the last item in the array)
class_dict[key] = []
class_bonus_dict[key] = needed
dict[needed].update({class_obj[0]: []})
return dict | 44fa2acec6c7235995bfdabaab149b4cba2cb7cc | 6,744 |
def set_incident_seen(incident, user=None):
"""
Updates the incident to be seen
"""
is_org_member = incident.organization.has_access(user)
if is_org_member:
is_project_member = False
for incident_project in IncidentProject.objects.filter(incident=incident).select_related(
"project"
):
if incident_project.project.member_set.filter(user=user).exists():
is_project_member = True
break
if is_project_member:
incident_seen, created = IncidentSeen.objects.create_or_update(
incident=incident, user=user, values={"last_seen": timezone.now()}
)
return incident_seen
return False | 8b970ec492bdb72b6e05c053f7a5b9bf919b15e7 | 6,745 |
def single_parity_check(
llr: np.array,
mask_steps: int = 0,
last_chunk_type: int = 0,
) -> np.array:
"""Compute beta value for Single parity node."""
all_sign = np.sign(np.prod(llr))
abs_alpha = np.fabs(llr)
first_min_idx, second_min_idx = np.argsort(abs_alpha)[:2]
result = np.sign(llr) * all_sign
for i in range(result.size):
if i == first_min_idx:
result[i] *= abs_alpha[second_min_idx]
else:
result[i] *= abs_alpha[first_min_idx]
return result | 5cc9984bb86fdfd777b2a968fb887388a5422e4f | 6,746 |
def _deserialize_job_result(user_input: JSON) -> JobResult:
"""Deserialize a JobResult from JSON."""
job = _deserialize_job(user_input['job'])
plan = _deserialize_plan(user_input['plan'])
is_done = user_input['is_done']
outputs = dict() # type: Dict[str, Asset]
for name, asset in user_input['outputs'].items():
outputs[name] = _deserialize_asset(asset)
return JobResult(job, plan, is_done, outputs) | 883629fa2650fc043124c6ccf721ed38093daa19 | 6,747 |
def _brute_force_knn(X, centers, k, return_distance=True):
"""
:param X: array of shape=(n_samples, n_features)
:param centers: array of shape=(n_centers, n_features)
:param k: int, only looking for the nearest k points to each center.
:param return_distance: bool, if True the return the distance along with the points
:return:
"""
if k == 1:
nearest, dists = pairwise_distances_argmin_min(centers, X)
return (dists, nearest) if return_distance else nearest
else:
dists = pairwise_distances(centers, X)
nearest = np.argsort(dists, axis=1)[:, :k]
return (np.vstack([dists[i, nearest[i]] for i in range(dists.shape[0])]),
nearest) if return_distance else nearest | b185a8d9e901a12a1385ed5ffc3183a5cc51c1b5 | 6,748 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.