content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def log_report(): """ The log report shows the log file. The user can filter and search the log. """ log_main = open(main_log, 'r').readlines() data_main = [] for line in log_main: split_line = line.split(' ') data_main.append([' '.join(split_line[:2]), ' '.join(split_line[2:])]) return render_template( 'log.html', title="Logs", data_main=data_main)
53905c90bed2666c7e668bf76ff03a6ba93eca5b
6,520
def int_or_none(x) -> int: """Either convert x to an int or return None.""" try: return int(x) except TypeError: return None except ValueError: return None
e7fbd422a6c61293c9f4f71df211a85570d4400e
6,521
def needed_to_build_multi(deriv_outputs, existing=None, on_server=None): """ :param deriv_outputs: A mapping from derivations to sets of outputs. :type deriv_outputs: ``dict`` of ``Derivation`` to ``set`` of ``str`` """ if existing is None: existing = {} if on_server is None: on_server = {} needed, need_fetch = {}, {} for deriv, outputs in deriv_outputs.items(): needed_to_build(deriv, outputs, needed=needed, need_fetch=need_fetch, existing=existing, on_server=on_server) return needed, need_fetch
d05083ea9c71c982d312e8b420b21bba92b80ee4
6,523
def iscode(c): """ Tests if argument type could be lines of code, i.e. list of strings """ if type(c) == type([]): if c: return type(c[0]) == type('') else: return True else: return False
e60da6c05922ff1e67db15fa4caa1500a8f470c7
6,524
def get_comment_list(request, thread_id, endorsed, page, page_size, requested_fields=None): """ Return the list of comments in the given thread. Arguments: request: The django request object used for build_absolute_uri and determining the requesting user. thread_id: The id of the thread to get comments for. endorsed: Boolean indicating whether to get endorsed or non-endorsed comments (or None for all comments). Must be None for a discussion thread and non-None for a question thread. page: The page number (1-indexed) to retrieve page_size: The number of comments to retrieve per page requested_fields: Indicates which additional fields to return for each comment. (i.e. ['profile_image']) Returns: A paginated result containing a list of comments; see discussion.rest_api.views.CommentViewSet for more detail. """ response_skip = page_size * (page - 1) cc_thread, context = _get_thread_and_context( request, thread_id, retrieve_kwargs={ "with_responses": True, "recursive": False, "user_id": request.user.id, "response_skip": response_skip, "response_limit": page_size, } ) # Responses to discussion threads cannot be separated by endorsed, but # responses to question threads must be separated by endorsed due to the # existing comments service interface if cc_thread["thread_type"] == "question": if endorsed is None: # lint-amnesty, pylint: disable=no-else-raise raise ValidationError({"endorsed": ["This field is required for question threads."]}) elif endorsed: # CS does not apply resp_skip and resp_limit to endorsed responses # of a question post responses = cc_thread["endorsed_responses"][response_skip:(response_skip + page_size)] resp_total = len(cc_thread["endorsed_responses"]) else: responses = cc_thread["non_endorsed_responses"] resp_total = cc_thread["non_endorsed_resp_total"] else: if endorsed is not None: raise ValidationError( {"endorsed": ["This field may not be specified for discussion threads."]} ) responses = cc_thread["children"] resp_total = cc_thread["resp_total"] # The comments service returns the last page of results if the requested # page is beyond the last page, but we want be consistent with DRF's general # behavior and return a PageNotFoundError in that case if not responses and page != 1: raise PageNotFoundError("Page not found (No results on this page).") num_pages = (resp_total + page_size - 1) // page_size if resp_total else 1 results = _serialize_discussion_entities(request, context, responses, requested_fields, DiscussionEntity.comment) paginator = DiscussionAPIPagination(request, page, num_pages, resp_total) return paginator.get_paginated_response(results)
980e52645e96853339df0525359ddba4698bf7e7
6,525
from typing import List def files(name: str, dependencies=False, excludes=None) -> List[PackagePath]: """ List all files belonging to a distribution. Arguments: name: The name of the distribution. dependencies: Recursively collect files of dependencies too. excludes: Distributions to ignore if **dependencies** is true. Returns: All filenames belonging to the given distribution. With ``dependencies=False``, this is just a shortcut for:: conda_support.distribution(name).files """ return [file for dist in _iter_distributions(name, dependencies, excludes) for file in dist.files]
cfda01bb7e6858e378aadeea47e6e4a0d76dda2f
6,526
def ready_to_delete_data_node(name, has_executed, graph): """ Determines if a DataPlaceholderNode is ready to be deleted from the cache. Args: name: The name of the data node to check has_executed: set A set containing all operations that have been executed so far graph: The networkx graph containing the operations and data nodes Returns: A boolean indicating whether the data node can be deleted or not. """ data_node = get_data_node(name, graph) return set(gr.successors(graph, data_node)).issubset(has_executed)
7da3c6053146a1772223e29e1eca15107e0347b6
6,527
import hashlib def extract_hash_parts(repo): """Extract hash parts from repo""" full_hash = hashlib.sha1(repo.encode("utf-8")).hexdigest() return full_hash[:2], full_hash[2:]
aa1aebaf9b8330539eb0266c4ff97fd3459753c8
6,528
def create_cloud_mask(im_QA, satname, cloud_mask_issue): """ Creates a cloud mask using the information contained in the QA band. KV WRL 2018 Arguments: ----------- im_QA: np.array Image containing the QA band satname: string short name for the satellite: ```'L5', 'L7', 'L8' or 'S2'``` cloud_mask_issue: boolean True if there is an issue with the cloud mask and sand pixels are being erroneously masked on the images Returns: ----------- cloud_mask : np.array boolean array with True if a pixel is cloudy and False otherwise """ # convert QA bits (the bits allocated to cloud cover vary depending on the satellite mission) if satname == 'L8': cloud_values = [2800, 2804, 2808, 2812, 6896, 6900, 6904, 6908] elif satname == 'L7' or satname == 'L5' or satname == 'L4': cloud_values = [752, 756, 760, 764] elif satname == 'S2': cloud_values = [1024, 2048] # 1024 = dense cloud, 2048 = cirrus clouds # find which pixels have bits corresponding to cloud values cloud_mask = np.isin(im_QA, cloud_values) # remove cloud pixels that form very thin features. These are beach or swash pixels that are # erroneously identified as clouds by the CFMASK algorithm applied to the images by the USGS. if sum(sum(cloud_mask)) > 0 and sum(sum(~cloud_mask)) > 0: morphology.remove_small_objects(cloud_mask, min_size=10, connectivity=1, in_place=True) if cloud_mask_issue: elem = morphology.square(3) # use a square of width 3 pixels cloud_mask = morphology.binary_opening(cloud_mask,elem) # perform image opening # remove objects with less than 25 connected pixels morphology.remove_small_objects(cloud_mask, min_size=25, connectivity=1, in_place=True) return cloud_mask
5143c1c61425a131bdb3b0f91018643c9a9d4123
6,529
import re def split_bucket(s3_key): """ Returns the bucket name and the key from an s3 location string. """ match = re.match(r'(?:s3://)?([^/]+)/(.*)', s3_key, re.IGNORECASE) if not match: return None, s3_key return match.group(1), match.group(2)
6b854bdc9d105643a9fa528e6fefd19672451e63
6,530
def contains_chinese(ustr): """ 将字符串中的中文去除 Args: ustr: 字符串 Returns: 去除中文的字符串 """ return any('\u4e00' <= char <= '\u9fff' for char in ustr)
8d53a214e1754e1c129f1583a298f5a19e1f76d3
6,531
def payment_activity(): """Request for extra-curricular activity""" try: req_json = request.get_json(force=True) except TypeError: return jsonify(message='Invalid json input'), 400 activity_info = req_json['activity'] student = req_json['student'] envelope_args = { 'signer_client_id': 1000, 'ds_return_url': req_json['callback-url'], 'gateway_account_id': session.get('payment_gateway_account_id'), 'gateway_name': session.get('payment_gateway'), 'gateway_display_name': session.get('payment_display_name') } try: # Create envelope with payment envelope = DsDocument.create_with_payment( 'payment-activity.html', student, activity_info, envelope_args ) # Submit envelope to Docusign envelope_id = Envelope.send(envelope, session) except ApiException as exc: return process_error(exc) user_documents = session.get('ds_documents') if not user_documents: session['ds_documents'] = [envelope_id] else: session['ds_documents'].append(envelope_id) try: # Get the recipient view result = Envelope.get_view(envelope_id, envelope_args, student, session) except ApiException as exc: return process_error(exc) return jsonify({'envelope_id': envelope_id, 'redirect_url': result.url})
a313b6e5ed00ffc9b3685ce28a9c640e96276347
6,532
def gdc_to_dos_list_response(gdcr): """ Takes a GDC list response and converts it to GA4GH. :param gdc: :return: """ mres = {} mres['data_objects'] = [] for id_ in gdcr.get('ids', []): mres['data_objects'].append({'id': id_}) if len(gdcr.get('ids', [])) > 0: mres['next_page_token'] = gdcr['ids'][-1:][0] return mres
a237a64f55c15fb10070d76b6f3cc4f283460a96
6,533
def get_labels_by_db_and_omic_from_graph(graph): """Return labels by db and omic given a graph.""" db_subsets = defaultdict(set) db_entites = defaultdict(dict) entites_db = defaultdict(dict) # entity_type_map = {'Gene':'genes', 'mirna_nodes':'mirna', 'Abundance':'metabolites', 'BiologicalProcess':'bps'} for u, v, k in graph.edges(keys=True): if ANNOTATIONS not in graph[u][v][k]: continue if 'database' not in graph[u][v][k][ANNOTATIONS]: continue for database in graph[u][v][k][ANNOTATIONS]['database']: db_subsets[database].add(u) db_subsets[database].add(v) for database, nodes in db_subsets.items(): db_entites[database] = calculate_database_sets_as_dict(nodes, database) database_sets = calculate_database_sets_as_dict(nodes, database) db_entites[database] = database_sets for entity_type, entities in database_sets.items(): entites_db[entity_type][database] = entities return db_entites, entites_db
14374977afb09fded25f78e14fced607bb8f9ea1
6,534
import logging def covid_API_england (): """Function retrieves date, hospital admissions, total deaths and daily cases using government API""" england_only = [ 'areaType=nation', 'areaName=England' ] dates_and_cases = { "date": "date", "newCasesByPublishDate": "newCasesByPublishDate", "newAdmissions": "newAdmissions", "cumDailyNsoDeathsByDeathDate":"cumDailyNsoDeathsByDeathDate" } api = Cov19API(filters=england_only, structure=dates_and_cases) logging.info('API has received query for national data') global DATA2 DATA2 = api.get_json() return DATA2
a13090a052a35dd675c1fb31b861cbcc4b9e7c4a
6,536
from meerschaum.actions.shell import default_action_completer from typing import Optional from typing import List from typing import Any def _complete_uninstall( action : Optional[List[str]] = None, **kw : Any ) -> List[str]: """ Override the default Meerschaum `complete_` function. """ if action is None: action = [] options = { 'plugin': _complete_uninstall_plugins, 'plugins': _complete_uninstall_plugins, } if len(action) > 0 and action[0] in options: sub = action[0] del action[0] return options[sub](action=action, **kw) return default_action_completer(action=(['uninstall'] + action), **kw)
1cfdc5694a069c924316f57e4804ae04d63bb4af
6,537
def test_bucket(): """Universal bucket name for use throughout testing""" return 'test_bucket'
2f78b1b1bf7ccfff07ca29213d975f3b20f0e9a5
6,538
def us_send_code(): """ Send code view. This takes an identity (as configured in USER_IDENTITY_ATTRIBUTES) and a method request to send a code. """ form_class = _security.us_signin_form if request.is_json: if request.content_length: form = form_class(MultiDict(request.get_json()), meta=suppress_form_csrf()) else: form = form_class(formdata=None, meta=suppress_form_csrf()) else: form = form_class(meta=suppress_form_csrf()) form.submit_send_code.data = True if form.validate_on_submit(): # send code user = form.user if not user.us_totp_secret: after_this_request(_commit) user.us_totp_secret = _security._totp_factory.generate_totp_secret() _datastore.put(user) send_security_token( user, form.chosen_method.data, user.us_totp_secret, user.us_phone_number, send_magic_link=True, ) if _security._want_json(request): # Not authenticated yet - so don't send any user info. return base_render_json(form, include_user=False) return _security.render_template( config_value("US_SIGNIN_TEMPLATE"), us_signin_form=form, methods=config_value("US_ENABLED_METHODS"), chosen_method=form.chosen_method.data, code_sent=True, skip_loginmenu=True, **_security._run_ctx_processor("us_signin") ) # Here on GET or failed validation if _security._want_json(request): payload = {"methods": config_value("US_ENABLED_METHODS")} return base_render_json(form, include_user=False, additional=payload) return _security.render_template( config_value("US_SIGNIN_TEMPLATE"), us_signin_form=form, methods=config_value("US_ENABLED_METHODS"), skip_loginmenu=True, **_security._run_ctx_processor("us_signin") )
7ca09dc6d6fdc7840d893e01b4166d65a1b9cc02
6,541
def merge_texts(files, file_index, data_type): """ merge the dataframes in your list """ dfs, filenames = get_dataframe_list(files, file_index, data_type) # enumerate over the list, merge, and rename columns try: df = dfs[0] # print(*[df_.columns for df_ in dfs],sep='\n') for i, frame in enumerate(dfs[1:]): if data_type == 'gene': try: # rename first columns to metadata value df = df.rename(columns={'raw_counts': get_metadata_tag(filenames[0])}) df = df.merge(frame, on='gene').rename(columns={'raw_counts':'raw_counts_' + get_metadata_tag(filenames[i-1])}) except: continue elif data_type == 'transcript': try: df = df.merge(frame, on='transcript') # df = df.merge(frame, on=frame.index) except: continue return df except: print("Could not merge dataframe")
4e336a240afd100797b707efc9ccc96feb8d2919
6,542
def create_dictionary(names, months, years, max_sustained_winds, areas_affected, updated_damages, deaths): """Create dictionary of hurricanes with hurricane name as the key and a dictionary of hurricane data as the value.""" hurricanes = dict() num_hurricanes = len(names) for i in range(num_hurricanes): hurricanes[names[i]] = {"Name": names[i], "Month": months[i], "Year": years[i], "Max Sustained Wind": max_sustained_winds[i], "Areas Affected": areas_affected[i], "Damage": updated_damages[i], "Deaths": deaths[i]} return hurricanes
5a27d5349113f29d2af55df27a2ee2c2cc524549
6,543
def create_variable_type(parent, nodeid, bname, datatype): """ Create a new variable type args are nodeid, browsename and datatype or idx, name and data type """ nodeid, qname = _parse_nodeid_qname(nodeid, bname) if datatype and isinstance(datatype, int): datatype = ua.NodeId(datatype, 0) if datatype and not isinstance(datatype, ua.NodeId): raise RuntimeError("Data type argument must be a nodeid or an int refering to a nodeid, received: {}".format(datatype)) return node.Node(parent.server, _create_variable_type(parent.server, parent.nodeid, nodeid, qname, datatype))
b2202b929bc51e2a2badfef6ec31df45e9736268
6,544
def load_NWP(input_nc_path_decomp, input_path_velocities, start_time, n_timesteps): """Loads the decomposed NWP and velocity data from the netCDF files Parameters ---------- input_nc_path_decomp: str Path to the saved netCDF file containing the decomposed NWP data. input_path_velocities: str Path to the saved numpy binary file containing the estimated velocity fields from the NWP data. start_time: numpy.datetime64 The start time of the nowcasting. Assumed to be a numpy.datetime64 type n_timesteps: int Number of time steps to forecast Returns ------- R_d: list A list of dictionaries with each element in the list corresponding to a different time step. Each dictionary has the same structure as the output of the decomposition function uv: array-like Array of shape (timestep,2,m,n) containing the x- and y-components of the advection field for the (NWP) model field per forecast lead time. """ if not NETCDF4_IMPORTED: raise MissingOptionalDependency( "netCDF4 package is required to load the decomposed NWP data, " "but it is not installed" ) # Open the file ncf_decomp = netCDF4.Dataset(input_nc_path_decomp, "r", format="NETCDF4") velocities = np.load(input_path_velocities) # Initialise the decomposition dictionary decomp_dict = dict() decomp_dict["domain"] = ncf_decomp.domain decomp_dict["normalized"] = bool(ncf_decomp.normalized) decomp_dict["compact_output"] = bool(ncf_decomp.compact_output) # Convert the start time and the timestep to datetime64 and timedelta64 type zero_time = np.datetime64("1970-01-01T00:00:00", "ns") analysis_time = np.timedelta64(int(ncf_decomp.analysis_time), "ns") + zero_time timestep = ncf_decomp.timestep timestep = np.timedelta64(timestep, "m") valid_times = ncf_decomp.variables["valid_times"][:] valid_times = np.array( [np.timedelta64(int(valid_times[i]), "ns") for i in range(len(valid_times))] ) valid_times = valid_times + zero_time # Find the indices corresponding with the required start and end time start_i = (start_time - analysis_time) // timestep assert analysis_time + start_i * timestep == start_time end_i = start_i + n_timesteps + 1 # Add the valid times to the output decomp_dict["valid_times"] = valid_times[start_i:end_i] # Slice the velocity fields with the start and end indices uv = velocities[start_i:end_i, :, :, :] # Initialise the list of dictionaries which will serve as the output (cf: the STEPS function) R_d = list() for i in range(start_i, end_i): decomp_dict_ = decomp_dict.copy() cascade_levels = ncf_decomp.variables["pr_decomposed"][i, :, :, :] # In the netcdf file this is saved as a masked array, so we're checking if there is no mask assert not cascade_levels.mask means = ncf_decomp.variables["means"][i, :] assert not means.mask stds = ncf_decomp.variables["stds"][i, :] assert not stds.mask # Save the values in the dictionary as normal arrays with the filled method decomp_dict_["cascade_levels"] = np.ma.filled(cascade_levels) decomp_dict_["means"] = np.ma.filled(means) decomp_dict_["stds"] = np.ma.filled(stds) # Append the output list R_d.append(decomp_dict_) return R_d, uv
d96dacc14404f59b15a428e62608765486623460
6,545
def get_ts(fn, tc, scale=0): """Returns timestamps from a frame number and timecodes file or cfr fps fn = frame number tc = (timecodes list or Fraction(fps),tc_type) scale default: 0 (ns) examples: 3 (µs); 6 (ms); 9 (s) """ scale = 9 - scale tc, tc_type = tc if tc_type == 'cfr': ts = round(10 ** scale * fn * Fraction(tc.denominator, tc.numerator)) return ts elif tc_type == 'vfr': ts = round(float(tc[fn]) * 10 ** (scale - 3)) return ts
845b2600268a2942ca0fe2b09336ab724b00e299
6,546
import numpy def adapt_array(array): """ Using the numpy.save function to save a binary version of the array, and BytesIO to catch the stream of data and convert it into a BLOB. :param numpy.array array: NumPy array to turn into a BLOB :return: NumPy array as BLOB :rtype: BLOB """ out = BytesIO() numpy.save(out, array) out.seek(0) return out.read()
36a62c745de0e933b520821ea7cce70f5013c5d2
6,547
def make_queue(paths_to_image, labels, num_epochs=None, shuffle=True): """returns an Ops Tensor with queued image and label pair""" images = tf.convert_to_tensor(paths_to_image, dtype=tf.string) labels = tf.convert_to_tensor(labels, dtype=tf.uint8) input_queue = tf.train.slice_input_producer( tensor_list=[images, labels], num_epochs=num_epochs, shuffle=shuffle) return input_queue
7a2ad9338642a5d6c7af59fe972ee9fd07f128b8
6,548
def display_import(request, import_id): """Display the details of an import.""" import_object = get_object_or_404(RegisteredImport, pk=import_id) context_data = {'import': import_object} return render(request, 'eats/edit/display_import.html', context_data)
b5676dd5da1791fb6eda3d6989b9c7c0c8b02b8c
6,549
def TransformContainerAnalysisData(image_name, occurrence_filter=None, deployments=False): """Transforms the occurrence data from Container Analysis API.""" analysis_obj = container_analysis_data_util.ContainerAndAnalysisData( image_name) occs = FetchOccurrencesForResource(image_name, occurrence_filter) for occ in occs: analysis_obj.add_record(occ) if deployments: depl_occs = FetchDeploymentsForImage(image_name, occurrence_filter) for depl_occ in depl_occs: analysis_obj.add_record(depl_occ) analysis_obj.resolveSummaries() return analysis_obj
d7021dde08a77ac6922274f3e69d841983728f4e
6,550
def bilinear_initializer(shape, dtype, partition_info): """ Bilinear initializer for deconvolution filters """ kernel = get_bilinear_kernel(shape[0], shape[1], shape[2]) broadcasted_kernel = np.repeat(kernel.reshape(shape[0], shape[1], shape[2], -1), repeats=shape[3], axis=3) return broadcasted_kernel
48a7cc2808e72df816c9b6ff7a8975eb52e4185e
6,552
def pdf(): """ Демо-версия PDF отчеа, открывается прямо в браузере, это удобнее, чем каждый раз скачивать """ render_pdf(sample_payload_obj, './output.pdf') upload_file('./output.pdf') return send_file('./output.pdf', attachment_filename='output.pdf')
a2a60c26df9844e605606538d40d1402cd5a4985
6,553
def run_clear_db_es(app, arg_env, arg_skip_es=False): """ This function actually clears DB/ES. Takes a Pyramid app as well as two flags. _Use with care!_ For safety, this function will return without side-effect on any production system. Also does additional checks based on arguments supplied: If an `arg_env` (default None) is given as a non-empty string value, this function will return without side-effect if the current app environment does not match the given value. If `arg_skip_es` (default False) is True, this function will return after DB clear and before running create_mapping. Args: app: Pyramid application arg_env (str): if provided, only run if environment matches this value arg_skip_es (bool): if True, do not run create_mapping after DB clear Returns: bool: True if DB was cleared (regardless of ES) """ env = app.registry.settings.get('env.name', '') # for now, do NOT allow clearing of production systems if is_stg_or_prd_env(env): log.error('clear_db_es_contents: will NOT run on env %s. Exiting...' % env) return False if arg_env and arg_env != env: log.error('clear_db_es_contents: environment mismatch! Given --env %s ' 'does not match current env %s. Exiting....' % (arg_env, env)) return False log.info('clear_db_es_contents: clearing DB tables...') db_success = clear_db_tables(app) if not db_success: log.error('clear_db_es_contents: clearing DB failed! Try to run again.' ' This command can fail if there are external DB connections') return False log.info('clear_db_es_contents: successfully cleared DB') # create mapping after clear DB to remove ES contents if not arg_skip_es: log.info('clear_db_es_contents: clearing ES with create_mapping...') run_create_mapping(app, purge_queue=True) log.info('clear_db_es_contents: done!') return True
e7d865dec8691c4d0db7bef71b68bab9bc5174a2
6,554
def init_total_population(): """ Real Name: b'init total population' Original Eqn: b'init Infected asymptomatic+init Susceptible' Units: b'person' Limits: (None, None) Type: component b'' """ return init_infected_asymptomatic() + init_susceptible()
cf742a00d0140c48dbdb4692dabbb8bbd6c5c6b2
6,555
def one_hot(dim: int, idx: int): """ Get one-hot vector """ v = np.zeros(dim) v[idx] = 1 return v
84b87b357dc7b7bf54af4718885aa1d6fbcb35e4
6,556
import re def process_priors(prior_flat, initial_fit): """Process prior input array into fit object.""" if any( [float(val) <= 0 for key, val in prior_flat.items() if key.endswith("sdev")] ): raise ValueError("Standard deviations must be larger than zero.") prior = {} for key, val in initial_fit.prior.items(): if hasattr(val, "__len__"): nmax = len( [k for k in prior_flat if re.match(f"{key}__array_[0-9]+-mean", k)] ) prior[key] = gv.gvar( [prior_flat[f"{key}__array_{n}-mean"] for n in range(nmax)], [prior_flat[f"{key}__array_{n}-sdev"] for n in range(nmax)], ) else: prior[key] = gv.gvar(prior_flat[f"{key}-mean"], prior_flat[f"{key}-sdev"]) fit = nonlinear_fit(initial_fit.data, initial_fit.fcn, prior) for attr in ["models", "meta"]: if hasattr(initial_fit, attr): setattr(fit, attr, getattr(initial_fit, attr)) return fit
32358fb494a221e5e7d5d4d73776993f1c363f0f
6,557
def _sample_data(ice_lines, frac_to_plot): """ Get sample ice lines to plot :param ice_lines: all ice lines :param frac_to_plot: fraction to plot :return: the sampled ice lines """ if frac_to_plot < 1.: ice_plot_data = ice_lines.sample(int(ice_lines.shape[0] * frac_to_plot)) elif frac_to_plot > 1: ice_plot_data = ice_lines.sample(frac_to_plot) else: ice_plot_data = ice_lines.copy() ice_plot_data = ice_plot_data.reset_index(drop=True) return ice_plot_data
e5da9b1ecaf615863504e81cdd246336de97b319
6,558
def fast_dot(M1, M2): """ Specialized interface to the numpy.dot function This assumes that A and B are both 2D arrays (in practice) When A or B are represented by 1D arrays, they are assumed to reprsent diagonal arrays This function then exploits that to provide faster multiplication """ if len(M1.shape) in [1, 2] and len(M2.shape) == 1: return M1*M2 elif len(M1.shape) == 1 and len(M2.shape) == 2: return M1[:,None]*M2 elif len(M1.shape) == 2 and len(M2.shape) == 2: return M1.dot(M2) else: raise Exception('fast_dot requires shapes to be 1 or 2')
b34e44787f48dfb25af4975e74262f3d8eaa5096
6,559
async def autoredeem( bot: commands.Bot, guild_id: int ) -> bool: """Iterates over the list of users who have enabled autoredeem for this server, and if one of them does redeem some of their credits and alert the user.""" await bot.wait_until_ready() conn = bot.db.conn guild = bot.get_guild(guild_id) if guild is None: return False async with bot.db.lock: async with conn.transaction(): ar_members = await conn.fetch( """SELECT * FROM members WHERE guild_id=$1 AND autoredeem=True""", guild_id ) redeemed = False for m in ar_members: ms = await get_members([int(m['user_id'])], guild) if len(ms) == 0: continue current_credits = await get_credits( bot, int(m['user_id']) ) if current_credits < bot_config.PREMIUM_COST: continue try: await alert_user( bot, int(m['user_id']), f"You have autoredeem enabled in {guild.name}, " f"so {bot_config.PREMIUM_COST} credits were taken " "from your account since they ran out of premium." ) except Exception: continue try: await redeem( bot, int(m['user_id']), guild_id, 1 ) redeemed = True except errors.NotEnoughCredits: pass return redeemed
ee0a34e4aa9d85e9402dcbec8a1ecce5a2ca58e1
6,560
from typing import Optional from typing import Sequence def plot_heatmap( data: DataFrame, columns: Optional[Sequence[str]] = None, droppable: bool = True, sort: bool = True, cmap: Optional[Sequence[str]] = None, names: Optional[Sequence[str]] = None, yaxis: bool = False, xaxis: bool = True, legend_kws: dict = None, sb_kws: dict = None) -> SubplotBase: """NA heatmap. Plots NA values as red lines and normal values as black lines. Parameters ---------- data : DataFrame Input data. columns : Optional[Sequence[str]], optional Columns names. droppable : bool, optional Show values to be dropped by :py:meth:`pandas.DataFrame.dropna()` method. sort : bool, optional Sort DataFrame by selected columns. cmap : Optional[Sequence[str]], optional Heatmap and legend colormap: non-missing values, droppable values, NA values, correspondingly. Passed to :py:meth:`seaborn.heatmap()` method. names : Optional[Sequence[str]], optional Legend labels: non-missing values, droppable values, NA values, correspondingly. yaxis : bool, optional Show Y axis. xaxis : bool, optional Show X axis. legend_kws : dict, optional Keyword arguments passed to :py:meth:`matplotlib.axes._subplots.AxesSubplot()` method. sb_kws : dict, optional Keyword arguments passed to :py:meth:`seaborn.heatmap` method. Returns ------- matplotlib.axes._subplots.AxesSubplot AxesSubplot object. """ if not cmap: cmap = ['green', 'orange', 'red'] if not names: names = ['Filled', 'Droppable', 'NA'] if not sb_kws: sb_kws = {'cbar': False} cols = _select_cols(data, columns).tolist() data_na = data.loc[:, cols].isna().copy() if sort: data_na.sort_values(by=cols, inplace=True) if droppable: non_na_mask = ~data_na.values na_rows_mask = data_na.any(axis=1).values[:, None] droppable_mask = non_na_mask & na_rows_mask data_na = data_na.astype(float) data_na.values[droppable_mask] = 0.5 labels = names else: labels = [names[0], names[-1]] if not legend_kws: legend_kws = {'bbox_to_anchor': (0.5, 1.15), 'loc': 'upper center', 'ncol': len(labels)} ax_heatmap = heatmap(data_na, cmap=cmap, **sb_kws) ax_heatmap.yaxis.set_visible(yaxis) ax_heatmap.xaxis.set_visible(xaxis) legend_elements = [Patch(facecolor=cmap[0]), Patch(facecolor=cmap[-1])] if droppable: legend_elements.insert(1, Patch(facecolor=cmap[1])) ax_heatmap.legend(legend_elements, labels, **legend_kws) return ax_heatmap
84233ee9293131ce98072f880a3c1a57fc71b321
6,562
def iadd_tftensor(left, right, scale=1): """This function performs an in-place addition. However, TensorFlow returns a new object after a mathematical operation. This means that in-place here only serves to avoid the creation of a TfTensor instance. We do not have any control over the memory where the Tensor is stored.""" _check_shape(left, right) # If scale=1 we obtain a x2 speed-up if we do not multiply by the scale. if scale == 1: left._tf = left._tf + right._tf else: left._tf = left._tf + scale*right._tf return left
3f14de3df3544b74f0a900fca33eb6cdf6e11c00
6,563
def encode(string_): """Change String to Integers""" return (lambda f, s: f(list( ord(c) for c in str(string_) ) , \ s))(lambda f, s: sum(f[i] * 256 ** i for i in \ range(len(f))), str(string_))
da3a729c2024d80792e08424745dc267ca67dff7
6,565
def generate_file_prefix(bin_params): """ Use the bin params to generate a file prefix.""" prefix = "bin_" for j in range(0, len(bin_params)): if (j + 1) % 2 != 0: prefix += str(bin_params[j]) + "-" else: prefix += str(bin_params[j]) + "_" return prefix
cc058a64fcab77f6a4794a8bf7edb1e0e86c040c
6,566
def extract_features_from_html(html, depth, height): """Given an html text, extract the node based features including the descendant and ancestor ones if depth and height are respectively nonzero.""" root = etree.HTML(html.encode('utf-8')) # get the nodes, serve bytes, unicode fails if html has meta features = extract_features_from_nodes(list(root.iter()), depth, height) # add the paths to the elements for identification features.loc[:, 'path'] = pd.Series((node.getroottree().getpath(node) for node in root.iter())) return features
ee7b627bf7c859fc886eab10f6a8b6b793653262
6,567
def __clean_field(amazon_dataset, option): """Cleanes the Text field from the datset """ clean = [] if option == 1: for i in amazon_dataset['Text']: clean.append(__one(i)) elif option == 2: for i in amazon_dataset['Summary']: clean.append(__one(i)) else: pass return clean
1e8ef28c810413b87804a42514059c347d715972
6,568
import warnings def _read_atom_line(line): """ COLUMNS DATATYPE FIELD DEFINITION ------------------------------------------------------------------------------------- 1 - 6 RecordName "ATOM " 7 - 11 Integer serial Atom serial number. 13 - 16 Atom name Atom name. 17 Character altLoc Alternate location indicator. 18 - 20 Residue name resName Residue name. 22 Character chainID Chain identifier. 23 - 26 Integer resSeq Residue sequence number. 27 AChar iCode Code for insertion of residues. 31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms. 39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms. 47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms. 55 - 60 Real(6.2) occupancy Occupancy. 61 - 66 Real(6.2) tempFactor Temperature factor. 77 - 78 LString(2) element Element symbol, right-justified. 79 - 80 LString(2) charge Charge on the atom. """ lineInfo = {} lineInfo['RecordName'] = line[0:6] lineInfo['serial'] = int(line[7:12].strip()) lineInfo['name'] = line[12:16].strip() lineInfo['altLoc'] = line[16].strip() lineInfo['resName'] = line[17:21].strip() lineInfo['chainID'] = line[21].strip() lineInfo['resSeq'] = int(line[22:26].strip()) lineInfo['iCode'] = line[26].strip() try: lineInfo['position'] = np.array( [float(line[30:38]), float(line[38:46]), float(line[46:54])], ) except ValueError: raise ValueError("Invalid or missing coordinate(s)") try: lineInfo['occupancy'] = float(line[54:60]) except ValueError: lineInfo['occupancy'] = None # Rather than arbitrary zero or one if lineInfo['occupancy'] is not None and lineInfo['occupancy'] < 0: warnings.warn("Negative occupancy in one or more atoms") try: lineInfo['bfactor'] = float(line[60:66]) except ValueError: # The PDB use a default of zero if the data is missing lineInfo['bfactor'] = 0.0 lineInfo['segid'] = line[72:76].strip() lineInfo['element'] = line[76:78].strip().upper() lineInfo['charge'] = line[79:81].strip() return lineInfo
e511352dcc0bfcdec98035673adf759256c13e4c
6,570
from typing import List def semantic_parse_entity_sentence(sent: str) -> List[str]: """ @param sent: sentence to grab entities from @return: noun chunks that we consider "entities" to work with """ doc = tnlp(sent) ents_ke = textacy.ke.textrank(doc, normalize="lemma") entities = [ent for ent, _ in ents_ke] return entities
c65fa1d8da74b86b3e970cbf7f351e03d5a3fcec
6,571
from numpy import array def match_cam_time(events, frame_times): """ Helper function for mapping ephys events to camera times. For each event in events, we return the nearest camera frame before the event. Parameters ---------- events : 1D numpy array Events of interest. Sampled at a higher rate than frame_times. frame_times : 1D numpy array Timepoints of camera frames to be assigned to events. Sampled at a lower rate than events. """ output = [] for a in events: lags = array(a - frame_times) before = len(lags[lags > 0]) - 1 if before >= 0: output.append(before) return array(output)
3f086a0f65a34183a429cf3c50e90fdc742672d3
6,574
import ctypes def _glibc_version_string_ctypes() -> Optional[str]: """ Fallback implementation of glibc_version_string using ctypes. """ try: except ImportError: return None # ctypes.CDLL(None) internally calls dlopen(NULL), and as the dlopen # manpage says, "If filename is NULL, then the returned handle is for the # main program". This way we can let the linker do the work to figure out # which libc our process is actually using. # # We must also handle the special case where the executable is not a # dynamically linked executable. This can occur when using musl libc, # for example. In this situation, dlopen() will error, leading to an # OSError. Interestingly, at least in the case of musl, there is no # errno set on the OSError. The single string argument used to construct # OSError comes from libc itself and is therefore not portable to # hard code here. In any case, failure to call dlopen() means we # can proceed, so we bail on our attempt. try: process_namespace = ctypes.CDLL(None) except OSError: return None try: gnu_get_libc_version = process_namespace.gnu_get_libc_version except AttributeError: # Symbol doesn't exist -> therefore, we are not linked to # glibc. return None # Call gnu_get_libc_version, which returns a string like "2.5" gnu_get_libc_version.restype = ctypes.c_char_p version_str: str = gnu_get_libc_version() # py2 / py3 compatibility: if not isinstance(version_str, str): version_str = version_str.decode("ascii") return version_str
86ae885182585eeb1c5e53ee8109036dd93d06d3
6,575
from typing import Sequence from typing import List from typing import Tuple def encode_instructions( stream: Sequence[Instruction], func_pool: List[bytes], string_pool: List[bytes], ) -> Tuple[bytearray, List[bytes], List[bytes]]: """ Encode the bytecode stream as a single `bytes` object that can be written to file or kept in memory. Parameters ---------- stream: Sequence[Instruction] The bytecode instruction objects to be encoded. func_pool: List[bytes] Where the generated bytecode for function objects is stored before being put in the final bytecode stream. string_pool: List[bytes] Where string objects are stored before being put in the final bytecode stream. Returns ------- bytes The encoded stream of bytecode instructions. It is guaranteed to have a length proportional to the length of `stream`. """ result_stream = bytearray(len(stream) * 8) for index, instruction in enumerate(stream): start = index * 8 end = start + 8 opcode_space = instruction.opcode.value.to_bytes(1, BYTE_ORDER) operand_space = encode_operands( instruction.opcode, instruction.operands, func_pool, string_pool ) operand_space = operand_space.ljust(7, b"\x00") result_stream[start:end] = opcode_space + operand_space return result_stream, func_pool, string_pool
0a371731f627b96ca3a07c5ac992fd46724a7817
6,576
def get_random(selector): """Return one random game""" controller = GameController return controller.get_random(MySQLFactory.get(), selector)
89f458a434cd20e10810d03e7addb1c5d6f1475a
6,577
def get_ssh_dispatcher(connection, context): """ :param Message context: The eliot message context to log. :param connection: The SSH connection run commands on. """ @deferred_performer def perform_run(dispatcher, intent): context.bind( message_type="flocker.provision.ssh:run", command=intent.log_command_filter(intent.command), ).write() endpoint = SSHCommandClientEndpointWithTTY.existingConnection( connection, intent.command) d = Deferred() connectProtocol(endpoint, CommandProtocol( deferred=d, context=context)) return d return TypeDispatcher({ Run: perform_run, Sudo: perform_sudo, Put: perform_put, Comment: perform_comment, })
1cb965c4e175276672173d5696e3196da5725fce
6,578
def read_ac(path, cut_off, rnalen): """Read the RNA accessibility file and output its positions and values The file should be a simple table with two columns: The first column is the position and the second one is the value '#' will be skipped """ access = [] with open(path) as f: i = 0 while i < rnalen: for line in f: line = line.split() if not line: continue elif line[0][0] == "#": continue elif len(line) < 2: continue else: v = line[1] if v == "NA": access.append(0) else: try: v = 2 ** (-float(v)) except: continue if v >= cut_off: access.append(1) else: access.append(0) i += 1 return access
0a8b6c2ff6528cf3f21d3b5efce14d59ff8ad2b6
6,579
def subtableD0(cxt: DecoderContext, fmt: Format): """ ORI """ fmt = FormatVI(fmt) return MNEM.ORI, [Imm(fmt.imm16, width=16, signed=False), Reg(fmt.reg1), Reg(fmt.reg2)], 2
2bb307bd74568745b7f453365f7667c383cae9ff
6,580
from datetime import datetime def format_date(unix_timestamp): """ Return a standardized date format for use in the two1 library. This function produces a localized datetime string that includes the UTC timezone offset. This offset is computed as the difference between the local version of the timestamp (python's datatime.fromtimestamp) and the utc representation of the input timestamp. Args: unix_timestamp (float): a floating point unix timestamp Returns: string: A string formatted with "%Y-%m-%d %H:%M:%S %Z" """ local_datetime = datetime.fromtimestamp(unix_timestamp) utz_offset = local_datetime - datetime.utcfromtimestamp(unix_timestamp) local_date = local_datetime.replace( tzinfo=timezone(utz_offset) ).strftime("%Y-%m-%d %H:%M:%S %Z") return local_date
cc1a6ee0c604e14f787741ff2cb0e118134c9b92
6,581
import copy from operator import and_ def or_(kb, goals, substitutions=dict(), depth=0, mask=None, k_max=None, max_depth=1): """Base function of prover, called recursively. Calls and_, which in turn calls or_, in order to recursively calculate scores for every possible proof in proof tree. Args: kb: dict of facts / rules goals: goal to be proved substitutions: dict which contains current variable substitutions and scores of current proof path depth: current proof depth mask: mask to apply so that goal facts (which are drawn from kb) cannot be proved by unifying with themselves k_max: number of fact unifications to retain from unifications with all facts in kb max_depth: maximum allowed proof depth before termination Returns: List of proof paths of goal with corresponding scores """ proofs = [] # initialize history and substitutions as empty if substitutions == {}: substitutions['VARSUBS'] = {} substitutions['HISTORY'] = [] for struct in kb: # avoid fake added struct if struct == 'goal': continue # Check if struct order matches if len(struct[0]) != len(goals): continue rule = rule_struct_form(kb[struct], struct) head = substitute(rule[0], substitutions, kb) body = rule[1:] mask_id = None if mask is not None: mask_key, mask_id = mask mask_id = mask_id if mask_key == struct else None is_fact = len(struct) == 1 and all([not is_variable(x) for x in struct[0]]) if not is_fact and depth == max_depth: # maximum depth reached continue # rule has been applied before elif applied_before(rule, substitutions, kb): continue substitutions_copy = copy.deepcopy(substitutions) substitutions_copy['HISTORY'].append([struct, depth]) substitutions_ = unify(head, goals, substitutions_copy, kb, depth, mask_id, transpose=is_fact) if is_fact and k_max is not None: new_success, success_indices = tf.nn.top_k(substitutions_["SUCCESS"], k_max) substitutions_["SUCCESS"] = new_success for value in substitutions_['VARSUBS'].values(): if value['struct'] != 'goal' and not 'subset' in value: value['subset'] = success_indices if substitutions_ != 'FAILURE': proof = and_(kb, body, substitutions_, depth, mask, k_max=k_max, max_depth=max_depth) if not isinstance(proof, list): proof = [proof] else: proof = flatten_proofs(proof) for proof_substitutions in proof: if proof_substitutions != 'FAILURE': proofs.append(proof_substitutions) return flatten_proofs(proofs)
d19382167143ffc3b5267fda126cc4f8d45fc86c
6,582
import copy def print_term(thy, t): """More sophisticated printing function for terms. Handles printing of operators. Note we do not yet handle name collisions in lambda terms. """ def get_info_for_operator(t): return thy.get_data("operator").get_info_for_fun(t.head) def get_priority(t): if nat.is_binary(t) or hol_list.is_literal_list(t): return 100 # Nat atom case elif t.is_comb(): op_data = get_info_for_operator(t) if op_data is not None: return op_data.priority elif t.is_all() or logic.is_exists(t) or logic.is_if(t): return 10 else: return 95 # Function application elif t.is_abs(): return 10 else: return 100 # Atom case def helper(t, bd_vars): LEFT, RIGHT = OperatorData.LEFT_ASSOC, OperatorData.RIGHT_ASSOC # Some special cases: # Natural numbers: if nat.is_binary(t): return N(str(nat.from_binary(t))) if hol_list.is_literal_list(t): items = hol_list.dest_literal_list(t) res = N('[') + commas_join(helper(item, bd_vars) for item in items) + N(']') if hasattr(t, "print_type"): return N("(") + res + N("::") + print_type(thy, t.T) + N(")") else: return res if set.is_literal_set(t): empty_set = "∅" if settings.unicode() else "{}" if hasattr(t, "print_type"): return N("(") + N(empty_set) + N("::") + print_type(thy, t.T) + N(")") else: return N(empty_set) if logic.is_if(t): P, x, y = t.args return N("if ") + helper(P, bd_vars) + N(" then ") + helper(x, bd_vars) + \ N(" else ") + helper(y, bd_vars) if t.is_var(): return V(t.name) elif t.is_const(): if hasattr(t, "print_type") and t.print_type: return N("(" + t.name + "::") + print_type(thy, t.T) + N(")") else: return N(t.name) elif t.is_comb(): op_data = get_info_for_operator(t) # First, we take care of the case of operators if op_data and op_data.arity == OperatorData.BINARY and t.is_binop(): arg1, arg2 = t.args # Obtain output for first argument, enclose in parenthesis # if necessary. if (op_data.assoc == LEFT and get_priority(arg1) < op_data.priority or op_data.assoc == RIGHT and get_priority(arg1) <= op_data.priority): str_arg1 = N("(") + helper(arg1, bd_vars) + N(")") else: str_arg1 = helper(arg1, bd_vars) if settings.unicode() and op_data.unicode_op: str_op = N(' ' + op_data.unicode_op + ' ') else: str_op = N(' ' + op_data.ascii_op + ' ') # Obtain output for second argument, enclose in parenthesis # if necessary. if (op_data.assoc == LEFT and get_priority(arg2) <= op_data.priority or op_data.assoc == RIGHT and get_priority(arg2) < op_data.priority): str_arg2 = N("(") + helper(arg2, bd_vars) + N(")") else: str_arg2 = helper(arg2, bd_vars) return str_arg1 + str_op + str_arg2 # Unary case elif op_data and op_data.arity == OperatorData.UNARY: if settings.unicode() and op_data.unicode_op: str_op = N(op_data.unicode_op) else: str_op = N(op_data.ascii_op) if get_priority(t.arg) < op_data.priority: str_arg = N("(") + helper(t.arg, bd_vars) + N(")") else: str_arg = helper(t.arg, bd_vars) return str_op + str_arg # Next, the case of binders elif t.is_all(): all_str = "!" if not settings.unicode() else "∀" if hasattr(t.arg, "print_type"): var_str = B(t.arg.var_name) + N("::") + print_type(thy, t.arg.var_T) else: var_str = B(t.arg.var_name) body_repr = helper(t.arg.body, [t.arg.var_name] + bd_vars) return N(all_str) + var_str + N(". ") + body_repr elif logic.is_exists(t): exists_str = "?" if not settings.unicode() else "∃" if hasattr(t.arg, "print_type"): var_str = B(t.arg.var_name) + N("::") + print_type(thy, t.arg.var_T) else: var_str = B(t.arg.var_name) body_repr = helper(t.arg.body, [t.arg.var_name] + bd_vars) return N(exists_str) + var_str + N(". ") + body_repr # Function update elif function.is_fun_upd(t): f, upds = function.strip_fun_upd(t) upd_strs = [helper(a, bd_vars) + N(" := ") + helper(b, bd_vars) for a, b in upds] return N("(") + helper(f, bd_vars) + N(")(") + commas_join(upd_strs) + N(")") # Finally, usual function application else: if get_priority(t.fun) < 95: str_fun = N("(") + helper(t.fun, bd_vars) + N(")") else: str_fun = helper(t.fun, bd_vars) if get_priority(t.arg) <= 95: str_arg = N("(") + helper(t.arg, bd_vars) + N(")") else: str_arg = helper(t.arg, bd_vars) return str_fun + N(" ") + str_arg elif t.is_abs(): lambda_str = "%" if not settings.unicode() else "λ" if hasattr(t, "print_type"): var_str = B(t.var_name) + N("::") + print_type(thy, t.var_T) else: var_str = B(t.var_name) body_repr = helper(t.body, [t.var_name] + bd_vars) return N(lambda_str) + var_str + N(". ") + body_repr elif t.is_bound(): if t.n >= len(bd_vars): raise OpenTermException else: return B(bd_vars[t.n]) else: raise TypeError() t = copy(t) # make copy here, because infer_printed_type may change t. infertype.infer_printed_type(thy, t) res = helper(t, []) if settings.highlight(): res = optimize_highlight(res) return res
745b378dac77411ba678911c478b6f5c8915c762
6,583
def build_model(): """Builds the model.""" return get_model()()
f843bce4edf099efd138a198f12c392aa2e723cd
6,584
def truncate_field_data(model, data): """Truncate all data fields for model by its ``max_length`` field attributes. :param model: Kind of data (A Django Model instance). :param data: The data to truncate. """ fields = dict((field.name, field) for field in model._meta.fields) return dict((name, truncate_by_field(fields[name], value)) for name, value in data.items())
3f0c77d279e712258d3a064ca9fed06cd64d9eaf
6,585
import io def get_all_students(zip): """Returns student tuple for all zipped submissions found in the zip file.""" students = [] # creating all the student objects that we can zip files of for filename in zip.namelist(): if not filename.endswith(".zip"): continue firstname, surname = split_zipname(filename) student_zip_data = io.BytesIO(zip.open(filename).read()) student_zipfile = zf.ZipFile(student_zip_data) students.append(Student(firstname, surname, student_zipfile)) return students
d5088ecf43275664e8420f30f508e70fad7cef77
6,586
def is_shipping_method_applicable_for_postal_code( customer_shipping_address, method ) -> bool: """Return if shipping method is applicable with the postal code rules.""" results = check_shipping_method_for_postal_code(customer_shipping_address, method) if not results: return True if all( map( lambda rule: rule.inclusion_type == PostalCodeRuleInclusionType.INCLUDE, results.keys(), ) ): return any(results.values()) if all( map( lambda rule: rule.inclusion_type == PostalCodeRuleInclusionType.EXCLUDE, results.keys(), ) ): return not any(results.values()) # Shipping methods with complex rules are not supported for now return False
cca519a35ab01dddac71ac18bdf8a40e1b032b83
6,587
def populate_api_servers(): """ Find running API servers. """ def api_server_info(entry): prefix, port = entry.rsplit('-', 1) project_id = prefix[len(API_SERVER_PREFIX):] return project_id, int(port) global api_servers monit_entries = yield monit_operator.get_entries() server_entries = [api_server_info(entry) for entry in monit_entries if entry.startswith(API_SERVER_PREFIX)] for project_id, port in server_entries: api_servers[project_id] = port
0543e350917c3fe419022aebdd9002098021923a
6,588
def create_recipe_json(image_paths: list) -> dict: """ Orchestrate the various services to respond to a create recipe request. """ logger.info('Creating recipe json from image paths: {}'.format(image_paths)) full_text = load_images_return_text(image_paths) recipe_json = assign_text_to_recipe(full_text) return recipe_json
25ef26d15bf20384df81f46da519c07ea883d5a7
6,590
def rstrip_extra(fname): """Strip extraneous, non-discriminative filename info from the end of a file. """ to_strip = ("_R", "_", "fastq", ".", "-") while fname.endswith(to_strip): for x in to_strip: if fname.endswith(x): fname = fname[:len(fname) - len(x)] break return fname
281ff6dcfae1894dd4685acf433bde89538fe87e
6,591
def run(preprocessors, data, preprocessing=defaultdict(lambda: None), fit=True): """Applies preprocessing to data. It currently suppoerts StandardScaler and OneHotEncoding Parameters ---------- preprocessors : list preprocessors to be applied data : pd.DataFrame data to be preprocessed preprocessing : dict, optional encoders of each preprocessor, by default defaultdict(lambda: None) fit : bool, optional if False, it applies to current encoder, by default True Returns ------- pd.DataFrame dict preprocessed data and preprocessors used """ scaler_to_data_type = { 'StandardScaler': 'numeric', 'OneHotEncoder': 'object'} if len(preprocessors) == 0: return data, preprocessing preprocessor = preprocessors[0] data_type = scaler_to_data_type[preprocessor] splited_data = split_by_type(data) splited_data[data_type], preprocessing[preprocessor] = \ apply_preprocessor(splited_data[data_type], preprocessor, fit=fit, encoder=preprocessing[preprocessor]) processed_data = pd.concat(splited_data.values(), axis=1) return run(preprocessors[1:], processed_data, preprocessing, fit)
94b10007896062760a278cdeaf60388152c96f73
6,592
def vouchers_tab(request, voucher_group, deleted=False, template_name="manage/voucher/vouchers.html"): """Displays the vouchers tab """ vouchers = voucher_group.vouchers.all() paginator = Paginator(vouchers, 20) page = paginator.page((request.POST if request.method == 'POST' else request.GET).get("page", 1)) taxes = Tax.objects.all() if (request.method == "POST") and (deleted is False): voucher_form = VoucherForm(data=request.POST) else: voucher_form = VoucherForm() return render_to_string(template_name, request=request, context={ "voucher_group": voucher_group, "taxes": taxes, "form": voucher_form, "vouchers_inline": vouchers_inline(request, voucher_group, vouchers, paginator, page), })
f488c21a83b6b22e3c0e4d5fa2e35156435bada7
6,593
def spots_rmsd(spots): """ Calculate the rmsd for a series of small_cell_spot objects @param list of small_cell_spot objects @param RMSD (pixels) of each spot """ rmsd = 0 count = 0 print 'Spots with no preds', [spot.pred is None for spot in spots].count(True), 'of', len(spots) for spot in spots: if spot.pred is None: continue rmsd += measure_distance(col((spot.spot_dict['xyzobs.px.value'][0],spot.spot_dict['xyzobs.px.value'][1])),col(spot.pred))**2 count += 1 if count == 0: return 0 return math.sqrt(rmsd/count)
13809a7a0353dc18b037cd2d78944ed5f9cdc596
6,595
def sanitize_df(data_df, schema, setup_index=True, missing_column_procedure='fill_zero'): """ Sanitize dataframe according to provided schema Returns ------- data_df : pandas DataFrame Will have fields provided by schema Will have field types (categorical, datetime, etc) provided by schema. """ data_df = data_df.reset_index() for ff, field_name in enumerate(schema.field_names): type_ff = schema.fields[ff].descriptor['type'] if field_name not in data_df.columns: if missing_column_procedure == 'fill_zero': if type_ff == 'integer': data_df[field_name] = 0 elif type_ff == 'number': data_df[field_name] = 0.0 # Reorder columns to match schema data_df = data_df[schema.field_names] # Cast fields to required type (categorical / datetime) for ff, name in enumerate(schema.field_names): ff_spec = schema.descriptor['fields'][ff] if 'pandas_dtype' in ff_spec and ff_spec['pandas_dtype'] == 'category': data_df[name] = data_df[name].astype('category') elif 'type' in ff_spec and ff_spec['type'] == 'datetime': data_df[name] = pd.to_datetime(data_df[name]) if hasattr(schema, 'primary_key'): data_df = data_df.sort_values(schema.primary_key) if setup_index: data_df = data_df.set_index(schema.primary_key) return data_df
8664f9dd8feea60044397072d85d21c8b5dfd6d4
6,596
def get_id_argument(id_card): """ 获取身份证号码信息 :param id_card: :return: """ id_card = id_card.upper() id_length = len(id_card) if id_length == 18: code = { 'body': id_card[0:17], 'address_code': id_card[0:6], 'birthday_code': id_card[6:14], 'order_code': id_card[14:17], 'check_bit': id_card[17:18], 'type': 18 } else: code = { 'body': id_card, 'address_code': id_card[0:6], 'birthday_code': '19' + id_card[6:12], 'order_code': id_card[12:15], 'check_bit': '', 'type': 15 } return code
ae4cad97e787fe1b0697b6a0f842f0da09795d6a
6,597
def rhypergeometric(n, m, N, size=None): """ Returns hypergeometric random variates. """ if n == 0: return np.zeros(size, dtype=int) elif n == N: out = np.empty(size, dtype=int) out.fill(m) return out return np.random.hypergeometric(n, N - n, m, size)
e8ea95bb742891037de264462be168fab9d68923
6,598
def my_model_builder(my_model: MyModel) -> KerasModel: """Build the siamese network model """ input_1 = layers.Input(my_model.input_shape) input_2 = layers.Input(my_model.input_shape) # As mentioned above, Siamese Network share weights between # tower networks (sister networks). To allow this, we will use # same embedding network for both tower networks. embedding_network = build_model_tower(my_model) tower_1 = embedding_network(input_1) tower_2 = embedding_network(input_2) merge_layer = layers.Lambda(euclidean_distance)([tower_1, tower_2]) normal_layer = tf.keras.layers.BatchNormalization()(merge_layer) output_layer = layers.Dense(1, activation="sigmoid")(normal_layer) keras_model = keras.Model(inputs=[input_1, input_2], outputs=output_layer) keras_model.compile( loss=my_model.loss, optimizer=my_model.optimizer, metrics=my_model.metrics ) return keras_model
53b32468469e7fc8cbc8f2776a1711181363bf60
6,600
from datetime import datetime def create_embed( title, description, fields = None, colour = None, timestamp = datetime.utcnow(), author = None, author_icon = None, thumbnail = None, image = None, footer = None ): """Create an Embed Args: title (str): Set title description (str): Set description fields (list of tuples): Set fields colour (int, optional): Set color. Defaults to None. timestamp (datetime, optional): Set timestamp. Defaults to current time. author (str, optional): Set author. Defaults to None. author_icon (str, optional): Set author icon using image url. Defaults to None. thumbnail (str, optional): Set thumbnail using image url. Defaults to None. image (str, optional): Set image using image url. Defaults to None. footer (str, optional): Set footer. Defaults to None. Returns: embed: returns an embed """ embed = Embed( title=title, description=description, colour=colour, timestamp=timestamp ) if fields is not None: for name, value, inline in fields: embed.add_field(name=name, value=value, inline=inline) embed.set_author(name=author, icon_url=author_icon) embed.set_footer(text=footer) embed.set_thumbnail(url=thumbnail) embed.set_image(url=image) return embed
741238fc50e2eda98a5cbfeab0c5c4d5cb3adbf2
6,601
def autoCalibration(I): """Returns horizontal and vertical factors by which every distance in pixels should be multiplied in order to obtain the equivalent distance in millimeters. This program assumes that the scale presents clear axis ticks and that the distance between two biggest ticks is equal to 10 mm. It also assumes that both horizontal and vertical scales are present in the up right quarter of image I. Args: I (array): one canal image. If I is a RGB image, it is transformed to a grayscale image. Returns: calibFactorX (double) and calibFactorY (double) are respectively the horizontal and vertical calibration factors """ #Check if I is a 1-canal image if len(I.shape) > 2: I = cv2.cvtColor(I, cv2.COLOR_RGB2GRAY) length, width = I.shape[0], I.shape[1] #Cropping with empirical percentages and binarization of the selection # !!! EMPIRICAL TCP = 0.1 #Top cropping percentage - #empirical percentage LCP = 0.5 #Left cropping percentage BCP = 0.65 #Bottom cropping percentage RCP = 0.1 #Right cropping percentage Scale_image = I[int(TCP * length):length-int(BCP * length),\ int(LCP * width):width-int(RCP * width)] Binar_I = cv2.threshold(Scale_image, 220., 255, cv2.THRESH_BINARY)[1] #Selection of the biggest axis ticks: contours of white objects are found as #well as minimal rectangles encapsulating each object. Conditions on the #size of these contours/bounding rectangles enable the removal of objects #that are not the biggest ticks contours = cv2.findContours(Binar_I, cv2.RETR_EXTERNAL, \ cv2.CHAIN_APPROX_NONE)[0] contours_size = [contours[i].size for i in range (len(contours))] BoundingRectangles = [] for i in range(len(contours)): if contours_size[i]<=1.7*np.mean(contours_size): #condition to stop considering the objects corresponding to figures p1, p2, l1, l2 = cv2.boundingRect(contours[i]) #rectangles identified with point (p1,p2) and vectors (l2,0), (0,l1) BoundingRectangles.append([i, (p1,p2,l1,l2), 2.*l1+2.*l2]) MeanPerim = np.mean([BoundingRectangles[i][2] for i in range(len(BoundingRectangles))]) Dashes = [BoundingRectangles[i] for i in range(len(BoundingRectangles)) if BoundingRectangles[i][2]>MeanPerim] #removal of points and small dashes #Calculation of the minimal distances between two horizontal ticks and #two vertical ticks #browse all detected axis ticks horiz = 10000000. vertic = 10000000. for i in range (0, len(Dashes)-1): ref_Dash = Dashes[i][1] for j in range(i+1,len(Dashes)): if len(set(list(range(Dashes[j][1][0],Dashes[j][1][0]+Dashes[j][1][2])))\ .intersection(list(range(ref_Dash[0],ref_Dash[0]+ref_Dash[2]))))>2: h = abs(ref_Dash[1]+ref_Dash[3]-Dashes[j][1][1]-Dashes[j][1][3]) if h<vertic: vertic = h if len(set(list(range(Dashes[j][1][1],Dashes[j][1][1]+Dashes[j][1][3])))\ .intersection(list(range(ref_Dash[1],ref_Dash[1]+ref_Dash[3]))))>2: h = abs(ref_Dash[0]-Dashes[j][1][0]) if h<horiz: horiz = h #Factors to convert distance in pixels into distance in millimeters if horiz == 10000000. or horiz == 0: calibFactorX = None else: calibFactorX = 10./horiz if vertic == 10000000. or vertic == 0: calibFactorY = None else: calibFactorY = 10./vertic ''' visual check for d in range(len(Dashes)): p1 = Dashes[d][1][0] p2 = Dashes[d][1][1] l1 = Dashes[d][1][2] l2 = Dashes[d][1][3] for l in range(p1,p1+l1+1): Binar_I[p2,l] = 150 Binar_I[p2+l2,l] = 150 for c in range(p2,p2+l2+1): Binar_I[c,p1] = 150 Binar_I[c,p1+l1] = 150 cv2.imshow('Binary image', Binar_I) cv2.waitKey(0) & 0xFF cv2.destroyAllWindows() ''' return calibFactorX, calibFactorY
30016c41a8b21531cfd277a669a6b16b01322387
6,602
def reverse_handler(handler_input): """Check if a verb is provided in slot values. If provided, then looks for the paradigm in the irregular_verbs file. If not, then it asks user to provide the verb again. """ # iterate over the dictionaries in irregular_verbs.py and looks for # the verb in the slot. If it finds it, it returns the dictionary def get_verb(irregular_verbs, filled_verboconiugato_slot): for dictionary in IRREGULAR_VERBS["verbs"]: if dictionary["PS"] == verboconiugato or dictionary["PP"] == verboconiugato: return dictionary # type: (HandlerInput) -> Response attribute_manager = handler_input.attributes_manager session_attr = attribute_manager.session_attributes slots = handler_input.request_envelope.request.intent.slots if verboconiugato_slot in slots: # if slot is filled verboconiugato = slots[verboconiugato_slot].value handler_input.attributes_manager.session_attributes[ verboconiugato_slot_key] = verboconiugato # verbo is equal to what i said ex. know # execute the function based on the verb the user asks for. askedVerb # becomes equal to the dictionary returned by the function askedVerb = get_verb(irregular_verbs.IRREGULAR_VERBS, verboconiugato) if verboconiugato == "read" and askedVerb: baseVerb = askedVerb["Base"] pastSimple = askedVerb["PS"] pastPart = askedVerb["PP"] traduzione = askedVerb["Italiano"] speech = ("<lang xml:lang='en-GB'>{}</lang> è il verbo <voice name='Emma'><lang xml:lang='en-GB'>to {}</lang></voice>. Il suo paradigma è <voice name='Emma'><lang xml:lang='en-GB'>to {}, <phoneme alphabet='ipa' ph='rɛd'>{}</phoneme>, <phoneme alphabet='ipa' ph='rɛd'>{}</phoneme></lang></voice>. Significa <phoneme alphabet='ipa' ph='ˈlɛdʤere'>{}</phoneme>.".format(verboconiugato, baseVerb, baseVerb, pastSimple, pastPart, traduzione)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) elif askedVerb: baseVerb = askedVerb["Base"] pastSimple = askedVerb["PS"] pastPart = askedVerb["PP"] traduzione = askedVerb["Italiano"] speech = ("<lang xml:lang='en-GB'>{}</lang> è il verbo <voice name='Emma'><lang xml:lang='en-GB'>to {}</lang></voice>. Il suo paradigma è <voice name='Emma'><lang xml:lang='en-GB'>to {}, {}, {}</lang></voice>. Significa {}.".format( verboconiugato, baseVerb, baseVerb, pastSimple, pastPart, traduzione)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) else: speech = ( "Non trovo il verbo <lang xml:lang='en-GB'>{}</lang>. Se è corretto, allora la sua coniugazione è regolare".format(verboconiugato)) reprompt = ("Cosa vuoi chiedermi?") handler_input.response_builder.set_should_end_session(True) # if slot isn't filled, repeat helptext else: speech = ("Non ho capito." + help_text) handler_input.response_builder.ask(help_text) handler_input.response_builder.speak(speech).ask( reprompt).set_should_end_session(True) return handler_input.response_builder.response
f1b49b88314f3218af03c6910d72729f888f2a11
6,603
def load_wrf_data(filename): """Load required data form the WRF output file : filename""" base_data=load_vars(filename,wrfvars) skin_t=load_tskin(filename,tsvar,landmask) base_data.append(skin_t) atts=mygis.read_atts(filename,global_atts=True) return Bunch(data=base_data,global_atts=atts)
da6439d3d4adfc8b84d5bf5911aa5e4b9d628baa
6,604
def sanitize_date(date_dict: dict): """ Function to take the date values entered by the user and check their validity. If valid it returns True, otherwise it sets the values to None and returns False :param date_dict: :return: """ month = date_dict["month"] day = date_dict["day"] year = date_dict["year"] date = [month, day, year] date_is_valid = not any([component is None for component in date]) if date_is_valid: date_is_valid &= not (month == 2 and day > 29) date_is_valid &= not (month in [4, 6, 9, 11] and day > 30) is_leap_year = (year % 4) == 0 is_leap_year &= ((year % 100) != 0 or (year % 400) == 0) date_is_valid &= not (month == 2 and day == 29 and not is_leap_year) if not date_is_valid: date_dict["month"] = date_dict["day"] = date_dict["year"] = None return False return True
c8cc01c8c1259ab8c4b263e36ae9f85a95356017
6,606
def create_scale(tonic, pattern, octave=1): """ Create an octave-repeating scale from a tonic note and a pattern of intervals Args: tonic: root note (midi note number) pattern: pattern of intervals (list of numbers representing intervals in semitones) octave: span of scale (in octaves) Returns: list of midi notes in the scale """ assert(sum(pattern)==12) scale = [tonic] note = tonic for o in range(octave): for i in pattern: note += i if note <= 127: scale.append(note) return scale
f9337289fda2e1b08cd371d3e91cc5a23c9c9822
6,607
def _qfloat_append(qf, values, axis=None): """Implement np.append for qfloats.""" # First, convert to the same unit. qf1, qf2 = same_unit(qf, values, func=np.append) nominal = np.append(qf1.nominal, qf2.nominal, axis) std = np.append(qf1.uncertainty, qf2.uncertainty, axis) return QFloat(nominal, std, qf1.unit)
46049a2ba43997578ae502acd395cfa767e623ca
6,608
from typing import List def filter_by_mean_color(img:np.ndarray, circles:List[Circle], threshold=170) -> List[Circle]: """Filter circles to keep only those who covers an area which high pixel mean than threshold""" filtered = [] for circle in circles: box = Box(circle=circle) area = box.get_region(img) if np.mean(area) > threshold: filtered.append(circle) return filtered
d23f92d363cd4df70ba0d0d01450865546d7f289
6,609
def ParseSortByArg(sort_by=None): """Parses and creates the sort by object from parsed arguments. Args: sort_by: list of strings, passed in from the --sort-by flag. Returns: A parsed sort by string ending in asc or desc. """ if not sort_by: return None fields = [] for field in sort_by: if field.startswith('~'): field = field.lstrip('~') + ' desc' else: field += ' asc' fields.append(field) return ','.join(fields)
cc2c40d8d810396420e5c3ede0d65159ed21d6bc
6,610
def dense_to_text(decoded, originals): """ Convert a dense, integer encoded `tf.Tensor` into a readable string. Create a summary comparing the decoded plaintext with a given original string. Args: decoded (np.ndarray): Integer array, containing the decoded sequences. originals (np.ndarray): String tensor, containing the original input string for comparision. `originals` can be an empty tensor. Returns: np.ndarray: 1D string Tensor containing only the decoded text outputs. [decoded_string_0, ..., decoded_string_N] np.ndarray: 2D string Tensor with layout: [[decoded_string_0, original_string_0], ... [decoded_string_N, original_string_N]] """ decoded_strings = [] original_strings = [] for d in decoded: decoded_strings.append(''.join([itoc(i) for i in d])) if len(originals) > 0: for o in originals: original_strings.append(''.join([c for c in o.decode('utf-8')])) else: original_strings = ['n/a'] * len(decoded_strings) decoded_strings = np.array(decoded_strings, dtype=np.object) original_strings = np.array(original_strings, dtype=np.object) summary = np.vstack([decoded_strings, original_strings]) return np.array(decoded_strings), summary
d7d4ec6ef2653a4e9665711201cef807a6c9830b
6,611
def admin_view_all_working_curriculums(request): """ views all the working curriculums offered by the institute """ user_details = ExtraInfo.objects.get(user = request.user) des = HoldsDesignation.objects.all().filter(user = request.user).first() if str(des.designation) == "student" or str(des.designation) == "Associate Professor" or str(des.designation) == "Professor" or str(des.designation) == "Assistant Professor" : return HttpResponseRedirect('/programme_curriculum/mainpage/') elif str(request.user) == "acadadmin" : pass curriculums = Curriculum.objects.filter(working_curriculum=1) return render(request,'programme_curriculum/acad_admin/admin_view_all_working_curriculums.html',{'curriculums':curriculums})
8ba99fe5712c8a93b62e2ab0c9e22594a442d9bd
6,612
def getEmuAtVa(vw, va, maxhit=None): """ Build and run an emulator to the given virtual address from the function entry point. (most useful for state analysis. kinda heavy though...) """ fva = vw.getFunction(va) if fva == None: return None cbva,cbsize,cbfva = vw.getCodeBlock(va) fgraph = v_graphutil.buildFunctionGraph(vw, fva) # Just take the first one off the iterator... for path in v_graphutil.getCodePathsTo(fgraph, cbva): emu = vw.getEmulator() opcodes = v_graphutil.getOpsFromPath(vw, fgraph, path) for op in opcodes: if op.va == va: break emu.executeOpcode(op) return emu
bea812a1d74b39e9ba83fde56bf90e4055425b89
6,613
def _create_test_validity_conditional(metric): """Creates BigQuery SQL clauses to specify validity rules for an NDT test. Args: metric: (string) The metric for which to add the conditional. Returns: (string) A set of SQL clauses that specify conditions an NDT test must meet to be considered a valid, completed test. """ # NDT test is supposed to last 10 seconds, give some buffer for tests that # ended slighly before 10 seconds. MIN_DURATION = _seconds_to_microseconds(9) # Tests that last > 1 hour are likely erroneous. MAX_DURATION = _seconds_to_microseconds(3600) # A test that did not exchange at least 8,192 bytes is likely erroneous. MIN_BYTES = 8192 # web100 state variable constants from # http://www.web100.org/download/kernel/tcp-kis.txt STATE_CLOSED = 1 STATE_ESTABLISHED = 5 STATE_TIME_WAIT = 11 # For RTT metrics, exclude results of tests with 10 or fewer round trip time # samples, because there are not enough samples to accurately estimate the # RTT. MIN_RTT_SAMPLES = 10 conditions = [] # Must have completed the TCP three-way handshake. conditions.append(( '(web100_log_entry.snap.State = {state_closed}\n\t' '\tOR (web100_log_entry.snap.State >= {state_established}\n\t' '\t\tAND web100_log_entry.snap.State <= {state_time_wait}))').format( state_closed=STATE_CLOSED, state_established=STATE_ESTABLISHED, state_time_wait=STATE_TIME_WAIT)) # Must have been determined to be unaffected by platform error. conditions.append(('blacklist_flags == 0')) if _is_server_to_client_metric(metric): # Must leave slow start phase of TCP, indicated by reaching # congestion at least once. conditions.append('web100_log_entry.snap.CongSignals > 0') # Must send at least the minimum number of bytes. conditions.append('web100_log_entry.snap.HCThruOctetsAcked >= %d' % MIN_BYTES) # Must last for at least the minimum test duration. conditions.append( ('(web100_log_entry.snap.SndLimTimeRwin +\n\t' '\tweb100_log_entry.snap.SndLimTimeCwnd +\n\t' '\tweb100_log_entry.snap.SndLimTimeSnd) >= %u') % MIN_DURATION) # Must not exceed the maximum test duration. conditions.append( ('(web100_log_entry.snap.SndLimTimeRwin +\n\t' '\tweb100_log_entry.snap.SndLimTimeCwnd +\n\t' '\tweb100_log_entry.snap.SndLimTimeSnd) < %u') % MAX_DURATION) # Exclude results of tests with fewer than 10 round trip time samples, # because there are not enough samples to accurately estimate the RTT. if metric == 'minimum_rtt' or metric == 'average_rtt': conditions.append('web100_log_entry.snap.CountRTT > %u' % MIN_RTT_SAMPLES) else: # Must receive at least the minimum number of bytes. conditions.append('web100_log_entry.snap.HCThruOctetsReceived >= %u' % MIN_BYTES) # Must last for at least the minimum test duration. conditions.append('web100_log_entry.snap.Duration >= %u' % MIN_DURATION) # Must not exceed the maximum test duration. conditions.append('web100_log_entry.snap.Duration < %u' % MAX_DURATION) return '\n\tAND '.join(conditions)
8c65150bdbed3ba75546fc64d8b322d9950339c1
6,614
from typing import Union from typing import Sequence def tfds_train_test_split( tfds: tf.data.Dataset, test_frac: float, dataset_size: Union[int, str], buffer_size: int = 256, seed: int = 123, ) -> Sequence[Union[tf.data.Dataset, tf.data.Dataset, int, int]]: """ !!! does not properly work, seems to be dependant on hardware, open isssue on github/tensorflow? Split tf-dataset into a train and test dataset. https://stackoverflow.com/questions/48213766/split-a-dataset-created-by-tensorflow-dataset-api-in-to-train-and-test Args: tfds (tf.data.Dataset): Tf-dataset, that will be split into a train- and testset. test_frac (float): Fract Returns: [tf.data.Dataset, tf.data.Dataset, int, int]: Returns train and test datasets as well as the absolut sizes of the full and the train dataset. """ logger.warning( "This methods of data splitting does not gurantee same split on every machine.") full_ds_size = None if dataset_size == "auto": logger.warning( "dataset_size='auto': In order to calculate the size of the dataset, all " "samples will be loaded.") full_ds_size = get_tfds_size(tfds) elif isinstance(dataset_size, int): full_ds_size = dataset_size logger.info(f"Using following seed to shuffle data: {seed}") tfds = tfds.shuffle(buffer_size, reshuffle_each_iteration=False, seed=seed) train_ds_fraction = 1.0 - test_frac train_ds_size = int(train_ds_fraction * full_ds_size) logger.info(f"train dataset size: {train_ds_size}, val dataset size: " "{full_ds_size - train_ds_size}") train_dataset = tfds.take(train_ds_size) test_dataset = tfds.skip(train_ds_size) return train_dataset, test_dataset, full_ds_size, train_ds_size
8bbb554eca8a09716279a5d818e1cc3e7bd5ad16
6,615
from datetime import datetime def seconds_to_hms(seconds): """ Convert seconds to H:M:S format. Works for periods over 24H also. """ return datetime.timedelta(seconds=seconds)
e862be76c6ef6b76f8e4f6351e033193ddefd5b8
6,616
def _add_spot_2d(image, ground_truth, voxel_size_yx, precomputed_gaussian): """Add a 2-d gaussian spot in an image. Parameters ---------- image : np.ndarray, np.uint A 2-d image with shape (y, x). ground_truth : np.ndarray Ground truth array with shape (nb_spots, 4). - coordinate_y - coordinate_x - sigma_yx - amplitude voxel_size_yx : int or float Size of a voxel on the yx plan, in nanometer. precomputed_gaussian : Tuple[np.ndarray] Tuple with one tables of precomputed values for the erf, with shape (nb_value, 2). One table per dimension. Returns ------- new_image : np.ndarray, np.uint A 2-d image with simulated spots and shape (y, x). """ # cast image original_dtype = image.dtype image = image.astype(np.float64) # compute reference spot shape max_sigma = max(ground_truth[:, 2]) radius_yx, _ = stack.get_radius( voxel_size_z=None, voxel_size_yx=voxel_size_yx, psf_z=None, psf_yx=max_sigma) radius_yx = np.ceil(radius_yx).astype(np.int64) yx_shape = radius_yx * 2 + 1 # build a grid to represent a spot image image_spot = np.zeros((yx_shape, yx_shape), dtype=np.uint8) grid = detection.initialize_grid( image_spot=image_spot, voxel_size_z=None, voxel_size_yx=voxel_size_yx, return_centroid=False) # pad image image_padded = np.pad(image, ((radius_yx, radius_yx), (radius_yx, radius_yx)), mode="constant") # loop over every spot for (coord_y, coord_x, sigma_yx, amp) in ground_truth: # simulate spot signal position_spot = np.asarray((radius_yx, radius_yx), dtype=np.int64) position_spot = np.ravel_multi_index( position_spot, dims=image_spot.shape) position_spot = list(grid[:, position_spot]) simulated_spot = detection.gaussian_2d( grid=grid, mu_y=position_spot[0], mu_x=position_spot[1], sigma_yx=sigma_yx, voxel_size_yx=voxel_size_yx, psf_amplitude=amp, psf_background=0, precomputed=precomputed_gaussian) simulated_spot = np.reshape(simulated_spot, image_spot.shape) # add spot coord_y_min = int(coord_y) coord_y_max = int(coord_y + 2 * radius_yx + 1) coord_x_min = int(coord_x) coord_x_max = int(coord_x + 2 * radius_yx + 1) image_padded[coord_y_min:coord_y_max, coord_x_min:coord_x_max] += simulated_spot # unpad image image = image_padded[radius_yx:-radius_yx, radius_yx:-radius_yx] image_raw = np.reshape(image, image.size) # sample Poisson distribution from gaussian values image_raw = np.random.poisson(lam=image_raw, size=image_raw.size) # reshape and cast image new_image = np.reshape(image_raw, image.shape) new_image = np.clip(new_image, 0, np.iinfo(original_dtype).max) new_image = new_image.astype(original_dtype) return new_image
45c32a181df1d0239b0ad872d7c0ad83862338ed
6,618
import requests def bing(text, bot): """<query> - returns the first bing search result for <query>""" api_key = bot.config.get("api_keys", {}).get("bing_azure") # handle NSFW show_nsfw = text.endswith(" nsfw") # remove "nsfw" from the input string after checking for it if show_nsfw: text = text[:-5].strip().lower() rating = NSFW_FILTER if show_nsfw else DEFAULT_FILTER if not api_key: return "Error: No Bing Azure API details." # why are these all differing formats and why does format have a $? ask microsoft params = { "Sources": bingify("web"), "Query": bingify(text), "Adult": bingify(rating), "$format": "json" } request = requests.get(API_URL, params=params, auth=(api_key, api_key)) # I'm not even going to pretend to know why results are in ['d']['results'][0] j = request.json()['d']['results'][0] if not j["Web"]: return "No results." result = j["Web"][0] # not entirely sure this even needs un-escaping, but it wont hurt to leave it in title = formatting.truncate(unescape(result["Title"]), 60) desc = formatting.truncate(unescape(result["Description"]), 150) url = unescape(result["Url"]) return colors.parse('{} -- $(b){}$(b): "{}"'.format(url, title, desc))
5aa5fe7acdc64c815d4a8727b06c13f1e3e3b2ce
6,619
from typing import List def single_length_RB( RB_number: int, RB_length: int, target: int = 0 ) -> List[List[str]]: """Given a length and number of repetitions it compiles Randomized Benchmarking sequences. Parameters ---------- RB_number : int The number of sequences to construct. RB_length : int The number of Cliffords in each individual sequence. target : int Index of the target qubit Returns ------- list List of RB sequences. """ S = [] for _ in range(RB_number): seq = np.random.choice(24, size=RB_length - 1) + 1 seq = np.append(seq, inverseC(seq)) seq_gates = [] for cliff_num in seq: g = [f"{c}[{target}]" for c in cliffords_decomp[cliff_num - 1]] seq_gates.extend(g) S.append(seq_gates) return S
dda3f5a191c666460fc4c791c33530940986b623
6,620
def decode(text_file_abs_path, threshold=10): """ Decodes a text into a ciphertext. Parameters --------- text_file_abs_path: str Returns ------- ciphertext: str """ try: with open(text_file_abs_path, "rb") as f: text = f.read() except Exception: return None freq_limit = limit_freq_threshold(threshold) renamed_ciphertext = ''.join( MarkovToolbox.derive_first_letter_of_every_sentence(text)) ciphertext = revert_renamed_number(renamed_ciphertext, freq_limit) if threshold != 10: ciphertext = NumericalToolbox.change_base(ciphertext, threshold, 10, standard_formatting=False) return ciphertext
c0c8c96438baedda43940e2373edc4714511b507
6,621
def templatetag(parser, token): """ Outputs one of the bits used to compose template tags. Since the template system has no concept of "escaping", to display one of the bits used in template tags, you must use the ``{% templatetag %}`` tag. The argument tells which template bit to output: ================== ======= Argument Outputs ================== ======= ``openblock`` ``{%`` ``closeblock`` ``%}`` ``openvariable`` ``{{`` ``closevariable`` ``}}`` ``openbrace`` ``{`` ``closebrace`` ``}`` ``opencomment`` ``{#`` ``closecomment`` ``#}`` ================== ======= """ # token.split_contents() isn't useful here because this tag doesn't accept variable as arguments bits = token.contents.split() if len(bits) != 2: raise TemplateSyntaxError("'templatetag' statement takes one argument") tag = bits[1] if tag not in TemplateTagNode.mapping: raise TemplateSyntaxError("Invalid templatetag argument: '%s'." " Must be one of: %s" % (tag, list(TemplateTagNode.mapping))) return TemplateTagNode(tag)
3b441ec3035f8efde9fd2507ab83c83ec5940a7a
6,622
def reflected_phase_curve(phases, omega, g, a_rp): """ Reflected light phase curve for a homogeneous sphere by Heng, Morris & Kitzmann (2021). Parameters ---------- phases : `~np.ndarray` Orbital phases of each observation defined on (0, 1) omega : tensor-like Single-scattering albedo as defined in g : tensor-like Scattering asymmetry factor, ranges from (-1, 1). a_rp : float, tensor-like Semimajor axis scaled by the planetary radius Returns ------- flux_ratio_ppm : tensor-like Flux ratio between the reflected planetary flux and the stellar flux in units of ppm. A_g : tensor-like Geometric albedo derived for the planet given {omega, g}. q : tensor-like Integral phase function """ # Convert orbital phase on (0, 1) to "alpha" on (0, np.pi) alpha = jnp.asarray(2 * np.pi * phases - np.pi) abs_alpha = jnp.abs(alpha) alpha_sort_order = jnp.argsort(alpha) sin_abs_sort_alpha = jnp.sin(abs_alpha[alpha_sort_order]) sort_alpha = alpha[alpha_sort_order] gamma = jnp.sqrt(1 - omega) eps = (1 - gamma) / (1 + gamma) # Equation 34 for Henyey-Greestein P_star = (1 - g ** 2) / (1 + g ** 2 + 2 * g * jnp.cos(alpha)) ** 1.5 # Equation 36 P_0 = (1 - g) / (1 + g) ** 2 # Equation 10: Rho_S = P_star - 1 + 0.25 * ((1 + eps) * (2 - eps)) ** 2 Rho_S_0 = P_0 - 1 + 0.25 * ((1 + eps) * (2 - eps)) ** 2 Rho_L = 0.5 * eps * (2 - eps) * (1 + eps) ** 2 Rho_C = eps ** 2 * (1 + eps) ** 2 alpha_plus = jnp.sin(abs_alpha / 2) + jnp.cos(abs_alpha / 2) alpha_minus = jnp.sin(abs_alpha / 2) - jnp.cos(abs_alpha / 2) # Equation 11: Psi_0 = jnp.where( (alpha_plus > -1) & (alpha_minus < 1), jnp.log((1 + alpha_minus) * (alpha_plus - 1) / (1 + alpha_plus) / (1 - alpha_minus)), 0 ) Psi_S = 1 - 0.5 * (jnp.cos(abs_alpha / 2) - 1.0 / jnp.cos(abs_alpha / 2)) * Psi_0 Psi_L = (jnp.sin(abs_alpha) + (np.pi - abs_alpha) * jnp.cos(abs_alpha)) / np.pi Psi_C = (-1 + 5 / 3 * jnp.cos(abs_alpha / 2) ** 2 - 0.5 * jnp.tan(abs_alpha / 2) * jnp.sin(abs_alpha / 2) ** 3 * Psi_0) # Equation 8: A_g = omega / 8 * (P_0 - 1) + eps / 2 + eps ** 2 / 6 + eps ** 3 / 24 # Equation 9: Psi = ((12 * Rho_S * Psi_S + 16 * Rho_L * Psi_L + 9 * Rho_C * Psi_C) / (12 * Rho_S_0 + 16 * Rho_L + 6 * Rho_C)) flux_ratio_ppm = 1e6 * (a_rp ** -2 * A_g * Psi) q = _integral_phase_function( Psi, sin_abs_sort_alpha, sort_alpha, alpha_sort_order ) return flux_ratio_ppm, A_g, q
e6f9fadaec4614b5ea0058d13956cb5ef13d57b5
6,623
from operator import pos def costspec( currencies: list[str] = ["USD"], ) -> s.SearchStrategy[pos.CostSpec]: """Generates a random CostSpec. Args: currencies: An optional list of currencies to select from. Returns: A new search strategy. """ return s.builds(pos.CostSpec, currency=common.currency(currencies))
4147a7046e5d4b16a6f919d77683a849ceb2ce54
6,624
import json import base64 def _process_input(data, context): """ Pre-process request input before it is sent to TensorFlow Serving REST API Args: data (obj): the request data stream context (Context): an object containing request and configuration details Returns: (dict): a JSON-serializable dict that contains request body and headers """ read_data = data.read() # endpoint API if context.request_content_type == 'application/json': # read as numpy array image_np = np.asarray(json.loads(read_data)).astype(np.dtype('uint8')) image_np = np.array(Image.fromarray(image_np).resize((INPUT_HEIGHT,INPUT_WIDTH))) # batch transform of jpegs elif context.request_content_type == 'application/x-image': # load image from bytes and resize image_from_bytes = Image.open(BytesIO(read_data)).convert('RGB') image_from_bytes = image_from_bytes.resize((INPUT_HEIGHT,INPUT_WIDTH)) image_np = np.array(image_from_bytes) # batch transform of tfrecord elif context.request_content_type == 'application/x-tfexample': example = tf.train.Example() example.ParseFromString(read_data) example_feature = MessageToDict(example.features) image_encoded = str.encode(example_feature['feature']['image']['bytesList']['value'][0]) image_b64 = base64.decodebytes(image_encoded) image_np = np.frombuffer(image_b64, dtype=np.dtype('uint8')).reshape(32,32,3) image_np = np.array(Image.fromarray(image_np).resize((INPUT_HEIGHT,INPUT_WIDTH))) # raise error if content type is not supported else: print("") _return_error(415, 'Unsupported content type "{}"'.format( context.request_content_type or 'Unknown')) # preprocess for resnet50 image_np = tf.keras.applications.resnet_v2.preprocess_input(image_np) # json serialize data_np_json = {"instances": [image_np.tolist()]} data_np_json_serialized = json.dumps(data_np_json) return data_np_json_serialized
542e9d04a8e93cb835f049ebd3c9105e24e3b5ac
6,626
def similarity_matrix_2d(X, Y, metric='cos'): """ Calculate similarity matrix Parameters: X: ndarray input matrix 1 Y: ndarray input matrix 2 distFunc: function distance function Returns: result: ndarray similarity matrix """ n_X = len(X) n_Y = len(Y) if metric == 'cos': dist_func = cos_dist_2d elif metric == 'euclid': dist_func = euclid_dist_2d elif metric == 'mahal': dist_func = mahal_dist_2d else: dist_func = cos_dist_2d #SM = sp.zeros((nX, nY)) SM = [map(dist_func, n_X * [X[i]], Y) for i in xrange(n_X)] #for i in xrange(nX): # SM.append(map(distFunc, nX * [X[i]], Y)) SM = sp.array(SM) return SM
02d78531347c3acb90049505297c009c845e27d2
6,627
def issue_list_with_tag(request, tag=None, sortorder=None): """ For a tag. display list of issues """ if tag: stag = "\"%s\"" % tag issues = Issue.tagged.with_any(stag) tag_cloud = [] if issues: tag_cloud = get_tagcloud_issues(issues) issues = issues.filter(is_draft=False) return issue_list( request, issues=issues, sortorder=sortorder, min_tv=1, subset=True, extra_context = { 'selected_tag' : tag, 'issue_tags' : tag_cloud, 'sort_url' : reverse('issue_with_tag', args=[tag,]), }) else: return issue_list(request)
1f51db85a0b5008819fda73d3d86fa184b56b327
6,628
def update_deal(id, deal_dict): """ Runs local validation on the given dict and gives passing ones to the API to update """ if utils.validate_deal_dict(utils.UPDATE, deal_dict, skip_id=True): resp = utils.request(utils.UPDATE, 'deals', {'id': id}, data=deal_dict) return utils.parse(resp) else: # validation failed but the exception was suppressed pass
82355c1a0204128f30b66a91fc22e3650b99f74d
6,629
def plot_tilt_hist(series, ntile: str, group_name: str, extra_space: bool = True): """ Plots the histogram group tilts for a single ntile :param series: frame containing the avg tilts, columns: group, index: pd.Period :param ntile: the Ntile we are plotting for :param group_name: the name of the group :return: None """ if extra_space: fig, ax = plt.subplots(1, 2, figsize=LARGE_FIGSIZE) else: _, ax = plt.subplots(1, 1, figsize=(4.5, 4.5)) title = 'Weight Relative to Universe' if 'Ntile' in group_name else 'Group Exposure' plotter_frame = series.to_frame('weight') plotter_frame['colors'] = [TILTS_COLOR_MAP(i) for i in np.linspace(0, 1, len(series))] plotter_frame = plotter_frame.sort_values('weight') ax[0].barh(plotter_frame.index.tolist(), plotter_frame['weight'].tolist(), align='center', color=plotter_frame['colors'].tolist()) ax[0].set(title=f'{ntile}, {group_name}'.title(), ylabel='Group', xlabel=title) ax[0].axvline(0, linestyle='-', color='black', lw=1) if extra_space: return ax[1] plt.show()
8f3077831cd11092e2a14bc60152ba693c0da6a6
6,630
def get_constraints_for_x(cell, board): """ Get the constraints for a given cell cell @param cell Class instance of Variable; a cell of the Sudoku board @param board @return Number of constraints """ nconstraints = 0 # Row for cellj in board[cell.row][:cell.col]: if cellj.get_domain_size() > 1: nconstraints += 1 for cellj in board[cell.row][cell.col+1:]: if cellj.get_domain_size() > 1: nconstraints += 1 # Col for irow in range(cell.row): if board[irow][cell.col].get_domain_size() > 1: nconstraints += 1 for irow in range(cell.row+1, cell.max_domain_val): if board[irow][cell.col].get_domain_size() > 1: nconstraints += 1 # .. This would not generalize to a new board, but leave for now ibox_row = int(cell.row/3) * 3 ibox_col = int(cell.col/3) * 3 if board[ibox_row+1][ibox_col+1].get_domain_size() > 1 \ or board[ibox_row+1][ibox_col+2].get_domain_size() > 1 \ or board[ibox_row+2][ibox_col+1].get_domain_size() > 1 \ or board[ibox_row+2][ibox_col+2].get_domain_size() > 1: nconstraints += 1 return nconstraints
a46cda54569a12e80b9d52896f07335480799cb1
6,631
def average(values): """Computes the arithmetic mean of a list of numbers. >>> print average([20, 30, 70]) 40.0 """ try: return stats.mean(values) except ZeroDivisionError: return None
85d02529404301891e0ecd1f2a9b76695a357504
6,632
def get_subgraph_pos(G, pos): """ Returns the filtered positions for subgraph G. If subgraph = original graph then pos will be returned. Parameters ---------- G : nx.Graph A graph object. Pos : dict A dictionary with nodes as keys and positions as values. Example ------- >>> pos = nx.spring_layout(G) >>> subgraph_nodes = ['1','2','3'] >>> subgraph = G.subgraph(subgraph_nodes) >>> subgraph_positions = get_subgraph_pos(subgraph,pos) Returns ------- dict Assuming positions were generated earlier for a larger graph with some layout algorithm this functions returns the filtered positions by the subgraph. """ return {k: v for k, v in pos.items() if k in G.nodes()}
ca7fc389cc51aaace7a751f2107fe5cfbfd22e6c
6,633
def _calculateWindowPosition(screenGeometry, iconGeometry, windowWidth, windowHeight): """ Calculate window position near-by the system tray using geometry of a system tray and window geometry @param screenGeometry: geometry of the screen where system tray is located @type screenGeometry: QRect @param iconGeometry: geometry of the system tray icon in screen coordinates @type iconGeometry: QRect @param windowWidth: width of the main window @type windowWidth: int @param windowHeight: height of the main window including header @type windowHeight: int @return: coordinates for main window positioning @rtype: QPoint """ possibleWindowPositions = { LEFT: { 'x': iconGeometry.x() + iconGeometry.width(), 'y': iconGeometry.y() + iconGeometry.height() / 2 - windowHeight / 2 }, BOTTOM: { 'x': iconGeometry.x() + iconGeometry.width() / 2 - windowWidth / 2, 'y': iconGeometry.y() - windowHeight }, RIGHT: { 'x': iconGeometry.x() - windowWidth, 'y': iconGeometry.y() + iconGeometry.height() / 2 - windowHeight / 2 }, TOP: { 'x': iconGeometry.x() + iconGeometry.width() / 2 - windowWidth / 2, 'y': iconGeometry.y() + iconGeometry.height() }, } position = possibleWindowPositions[_guessTrayPosition(screenGeometry, iconGeometry)] return QPoint(position['x'], position['y'])
112011828dcfd0a6a54b6fe2c3d8acd92baf6c64
6,634
def build_from_config(config: dict, name: str) -> HomingMotor: """Build the named HomingMotor from data found in config""" def check_for_key(key, cfg): if key not in cfg: raise RuntimeError('Key "{}" for HomingMotor "{}" not found.'.format(key, name)) else: return cfg[key] if name not in config: raise RuntimeError('Config for HomingMotor "{}" not found.'.format(name)) my_config = config[name] inverted = check_for_key('inverted', my_config) max_steps = check_for_key('max_steps', my_config) name = check_for_key('name', my_config) pulse_delay = float(check_for_key('pulse_delay', my_config)) sensor = check_for_key('sensor', my_config) stepper = check_for_key('stepper', my_config) dir_pin = int(check_for_key("dir_pin", stepper)) ms1_pin = int(check_for_key("ms1_pin", stepper)) ms2_pin = int(check_for_key("ms2_pin", stepper)) ms3_pin = int(check_for_key("ms3_pin", stepper)) step_pin = int(check_for_key("step_pin", stepper)) step_size = int(check_for_key("step_size", stepper)) input_pin = int(check_for_key('input_pin', sensor)) m = build(name, dir_pin, step_pin, ms1_pin, ms2_pin, ms3_pin, input_pin, max_steps, inverted, pulse_delay) m.set_step_size(step_size) # print('{} built from config OK'.format(m.get_name())) return m
ce39fc8db48da8145b9221120c3ec02f3bdda40f
6,635