content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_transform_dest_array(output_size): """ Returns a destination array of the desired size. This is also used to define the order of points necessary for cv2.getPerspectiveTransform: the order can change, but it must remain consistent between these two arrays. :param output_size: The size to make the output image ((width, height) tuple) :return: The destination array, suitable to feed into cv2.getPerspectiveTransform """ bottom_right = [output_size[0] - 1, output_size[1] - 1] bottom_left = [0, output_size[1] - 1] top_left = [0, 0] top_right = [output_size[0] - 1, 0] return np.array( [bottom_right, bottom_left, top_left, top_right], dtype="float32")
84f092b5f263f3dd65ea9dfb18890454666e982d
3,648,931
def fetch(url): """ 引数urlで与えられたURLのWebページを取得する。 WebページのエンコーディングはContent-Typeヘッダーから取得する。 戻り値:str型のHTML """ f = urlopen(url) # HTTPヘッダーからエンコーディングを取得する(明示されていない場合はutf-8とする)。 encoding = f.info().get_content_charset(failobj="utf-8") html = f.read().decode(encoding) # 得られたエンコーディングを指定して文字列にデコードする。 return html
31b69019f35e983a7a6c9d60b4367502b6540c56
3,648,932
def get_rounded_coordinates(point): """Helper to round coordinates for use in permalinks""" return str(round(point.x, COORDINATE_ROUND)) + '%2C' + str(round(point.y, COORDINATE_ROUND))
a707864e4b62a91e609b3674bdfe0de7fdddf154
3,648,934
def rgb_to_hls(image: np.ndarray, eps: float = 1e-8) -> np.ndarray: """Convert a RGB image to HLS. Image data is assumed to be in the range of [0.0, 1.0]. Args: image (np.ndarray[B, 3, H, W]): RGB image to be converted to HLS. eps (float): Epsilon value to avoid div by zero. Returns: hls (np.ndarray[B, 3, H, W]): HLS version of the image. """ return cv2.cvtColor(image, cv2.COLOR_RGB2HLS)
841379110bd273a7a6239e3598656c46acbde583
3,648,935
def array_max_dynamic_range(arr): """ Returns an array scaled to a minimum value of 0 and a maximum value of 1. """ finite_arr = arr[np.isfinite(arr)] low = np.nanmin(finite_arr) high = np.nanmax(finite_arr) return (arr - low)/(high - low)
b2182c43dea2981b3759119cf1381a82a9e168b1
3,648,936
def production(*args): """Creates a production rule or list of rules from the input. Supports two kinds of input: A parsed string of form "S->ABC" where S is a single character, and ABC is a string of characters. S is the input symbol, ABC is the output symbols. Neither S nor ABC can be any of the characters "-", ">" for obvious reasons. A tuple of type (S, Seq, ...) where S is the symbol of some hashable type and seq is an finite iterable representing the output symbols. Naturally if you don't want to use characters/strings to represent symbols then you'll typically need to use the second form. You can pass multiple inputs to generate multiple production rules, in that case the result is a list of rules, not a single rule. If you pass multiple inputs the symbol must differ since a simple L-System only supports one production rule per symbol. Example: >>> production("F->Ab[]") ('F', ['A', 'b', '[', ']']) >>> production("F->Ab[]", ("P", "bAz"), (1, (0,1))) [('F', ['A', 'b', '[', ']']), ('P', ['b', 'A', 'z']), (1, [0, 1])] """ if len(args) < 1: raise ValueError("missing arguments") res = [] for a in args: if issubclass(str, type(a)): parts = a.split(sep="->", maxsplit=1) if len(parts) < 2: raise ValueError("couldn't parse invalid string \"{}\"".format(a)) res.append((parts[0], list(parts[1]))) elif issubclass(tuple, type(a)): s, to, *vals = a res.append((s, list(to))) else: raise TypeError("sorry don't know what to do with " + str(type(a))) if len(res) == 1: return res[0] return res
bcb3e415a283f654ab65e0656a3c7e3912eeb53b
3,648,937
def _unpack_compute(input_place, num, axis): """Unpack a tensor into `num` tensors along axis dimension.""" input_shape = get_shape(input_place) for index, _ in enumerate(input_shape): input_shape[index] = input_shape[index] if index != axis else 1 output_shape_list = [input_shape for i in range(num)] offset = 0 out_tensor_list = [] for i, t_shape in enumerate(output_shape_list): out_tensor = tvm.compute( t_shape, lambda *index, t_shape=t_shape: input_place(*_index_offset(t_shape, axis, offset, *index)), name='tensor' + str(i)) out_tensor_list.append(out_tensor) offset = offset + 1 return tuple(out_tensor_list)
89972e932d3c0bf3b5cbc548633dd2b2a6173c85
3,648,938
def flatten(items): """Convert a sequence of sequences to a single flat sequence. Works on dictionaries, tuples, lists. """ result = [] for item in items: if isinstance(item, list): result += flatten(item) else: result.append(item) return result
d44e3391f791dfd2ec9b323c37c510a415bb23bf
3,648,939
from typing import Dict def _datum_to_cap(datum: Dict) -> float: """Cap value of a datum.""" return _cap_str_to_mln_float(datum["cap"])
4554cb021f077e3b69495a6266a2596a968ee79d
3,648,940
def add_eval_to_game(game: chess.pgn.Game, engine: chess.engine.SimpleEngine, analysis_time: float, should_re_add_analysis: bool = False) -> chess.pgn.Game: """ MODIFIES "game" IN PLACE """ current_move = game while len(current_move.variations): if "eval" in current_move.comment and not should_re_add_analysis: continue score, actual_eval = get_score(current_move.board(), engine, analysis_time=analysis_time) current_move.comment += f'[%eval {score}]' if current_move.eval().pov(chess.WHITE) != actual_eval: # assert not rounding error assert abs(current_move.eval().pov(chess.WHITE).score() - actual_eval.score()) == 1, \ f"eval's not equal, not rounding error: {current_move.eval().pov(chess.WHITE)} != {actual_eval}" current_move = current_move.variations[0] return game
72c677fc9f71cafca6af5b86cca69d896547835d
3,648,941
def MC_no(a,b,N,pi,mp): """ Monte Carlo simulation drawn from beta distribution for the uninsured agents Args: N (integer): number of draws a (integer): parameter b (integer): parameter Returns: (numpy float): Monte Carlo integration that computes expected utility for given gamma and premium """ x = np.random.beta(a,b,N) return np.mean(utility(mp['y']-x,mp))
7910a1894839eaac89af9df61a3f64fbb1eaf933
3,648,942
def get_conflicting_types(type, tyepdef_dict): """Finds typedefs defined in the same class that conflict. General algo is: Find a type definition that is identical to type but for a different key. If the type definitions is coming from a different class, neglect it. This is a pretty slow function for large dictionaries.""" conflicting_types = [] if type in typedef_dict: typedef = typedef_dict[type] # Look for an identical typedef mapped under a different key. for key, value in typedef_dict.items(): if((typedef == value) and (type != key) and (type.rpartition("::")[0] == key.rpartition("::")[0])): conflicting_types.append(key) return conflicting_types
5270ddfbf8a1f887de7ea9fcf2dcd32511ce6a32
3,648,943
from typing import Tuple def extract_entity_type_and_name_from_uri(uri: str) -> Tuple[str, str]: """ 从entity uri中提取出其type和name :param uri: 如 http://www.kg.com/kg/ontoligies/ifa#Firm/百度 :return: ('Firm', '百度') """ name_separator = uri.rfind('/') type_separator = uri.rfind('#') return uri[type_separator + 1: name_separator], uri[name_separator + 1:]
a70b1fdb5490f029cc6a88bee53eee048731a709
3,648,944
def ret_dict() -> dict: """ Returns ------- """ # blahs return {}
79a29f69f5d0389d266f917500d25d696415c25a
3,648,946
def load_rokdoc_well_markers(infile): """ Function to load well markers exported from RokDoc in ASCII format. """ with open(infile, 'r') as fd: buf = fd.readlines() marker = [] well = [] md = [] tvdkb = [] twt = [] tvdss = [] x = [] y = [] for line in buf[5:]: c1, c2, c3, c4, c5 = line.split("'") c6, c7, c8, c9, c10, c11 = c5.strip().split() marker.append(c2) well.append(c4) md.append(float(c6)) tvdkb.append(float(c7)) twt.append(float(c8)) tvdss.append(float(c9)) x.append(float(c10)) y.append(float(c11)) markers = {} for each in list(set(well)): markers[each] = {} for i in range(len(marker)): cur_well = well[i] cur_marker = marker[i] cur_md = md[i] cur_tvdkb = tvdkb[i] cur_tvdss = tvdss[i] cur_twt = twt[i] cur_x = x[i] cur_y = y[i] markers[cur_well][cur_marker] = {'md': cur_md, 'tvdkb': cur_tvdkb, 'tvdss': cur_tvdss, 'twt': cur_twt, 'x': cur_x, 'y': cur_y} return markers
f3a781accdd84ff2f5aff12e59aeff05aa428d6a
3,648,947
def get_fees(): """ Returns all information related to fees configured for the institution. :returns: String containing xml or an lxml element. """ return get_anonymous('getFees')
17d16c65d8aefa5989f0c371ed2db2527691ccf9
3,648,948
import torch from typing import Tuple def resample_uv_to_bbox( predictor_output: DensePoseChartPredictorOutput, labels: torch.Tensor, box_xywh_abs: Tuple[int, int, int, int], ) -> torch.Tensor: """ Resamples U and V coordinate estimates for the given bounding box Args: predictor_output (DensePoseChartPredictorOutput): DensePose predictor output to be resampled labels (tensor [H, W] of uint8): labels obtained by resampling segmentation outputs for the given bounding box box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs Return: Resampled U and V coordinates - a tensor [2, H, W] of float """ x, y, w, h = box_xywh_abs w = max(int(w), 1) h = max(int(h), 1) u_bbox = F.interpolate(predictor_output.u, (h, w), mode="bilinear", align_corners=False) v_bbox = F.interpolate(predictor_output.v, (h, w), mode="bilinear", align_corners=False) uv = torch.zeros([2, h, w], dtype=torch.float32, device=predictor_output.u.device) for part_id in range(1, u_bbox.size(1)): uv[0][labels == part_id] = u_bbox[0, part_id][labels == part_id] uv[1][labels == part_id] = v_bbox[0, part_id][labels == part_id] return uv
655fa330a0fb68d0a6f94084b1a4fde2e1368792
3,648,949
from typing import List def get_error_code(output: int, program: List[int] ) -> int: """ Determine what pair of inputs, "noun" and "verb", produces the output. The inputs should be provided to the program by replacing the values at addresses 1 and 2. The value placed in address 1 is called the "noun", and the value placed in address 2 is called the "verb". It returns the error code: 100 * noun + verb Implementation options: - By brute force, looping twice over 0-99 - Looping over the noun linearly, and using binary search for the verb, since all the values of the program are integers, and therefore positive (IMPLEMENTED) - Optimize the possible value intervals for both noun and verb checking the possible min and max outputs for each pair """ # Reset the memory program = program.copy() # Linear loop over the noun for noun in range(0, 100): program[1] = noun # Binary search over the verb verb = binary_search_code(program, output) # Return the code if found if verb != -1: return (100 * noun + verb) raise ValueError('Code not found!')
a3ff93557217197c3988b1f2ffde0a114ec6de81
3,648,951
def page(page_id): """Gets one page from the database.""" page = Page.objects.get(id=page_id) return render_template('page.html', page=page)
011d0d96564e328674c9e919eed3647c41ebb0a4
3,648,952
def compute_Csigma_from_alphaandC(TT,minT,alphaT,CT,ibrav=4): """ This function calculate the difference between the constant stress heat capacity :math:`C_{\sigma}` and the constant strain heat capacity :math:`C_{\epsilon}` from the *V* (obtained from the input lattice parameters *minT*, the thermal expansion tensor *alphaT* and the elastic constant tensor *CT*, all as a function of temperature. This is essentially the anisotropic equivalent of the equation :math:`Cp - Cv = T V beta^2 B0` for the isotropic case (volume only) and it avoids a further numerical derivation to obtain :math:`C_{\sigma}`. It is however more complex in the anisotropic case since *minT*, *alphaT* and in particul the elastic constant tensor *CT* must me known in principle including their temperature dependence. .. Warning:: Still very experimental... """ CT = CT / RY_KBAR Csigma = np.zeros(len(TT)) for i in range(1,len(TT)): V = compute_volume(minT[i],ibrav) for l in range(0,6): for m in range(0,6): temp = alphaT[i,l] * CT[l,m] * alphaT[i,m] Csigma[i] = V * TT[i] * temp # this is C_sigma-C_epsilon at a given T return Csigma
66159810aeeadd4614f66b6c7bc43a11a5ebf28d
3,648,953
def services(request): """ """ context = {} services = Service.objects.filter(active=True, hidden=False) context["services"] = services context["services_nav"] = True return render(request, "services.html", context)
45792f2032236a74f8edd2141bf10a2dd7b6c075
3,648,954
def _create_presigned_url(method, object_name, duration_in_seconds=600): """ Create presigned S3 URL """ s3_client = boto3.client('s3', endpoint_url=CONFIG.get('s3', 'url'), aws_access_key_id=CONFIG.get('s3', 'access_key_id'), aws_secret_access_key=CONFIG.get('s3', 'secret_access_key')) if method == 'get': try: response = s3_client.generate_presigned_url('get_object', Params={'Bucket':CONFIG.get('s3', 'bucket'), 'Key': object_name}, ExpiresIn=duration_in_seconds) except Exception: logger.critical('Unable to generate presigned url for get') return None else: try: response = s3_client.generate_presigned_url('put_object', Params={'Bucket':CONFIG.get('s3', 'bucket'), 'Key':object_name}, ExpiresIn=duration_in_seconds, HttpMethod='PUT') except Exception: logger.critical('Unable to generate presigned url for put') return None return response
f285d90058d3f6d450e82917d883f97100b78889
3,648,955
def read_data(model_parameters, ARGS): """Read the data from provided paths and assign it into lists""" data = pd.read_pickle(ARGS.path_data) y = pd.read_pickle(ARGS.path_target)['target'].values data_output = [data['codes'].values] if model_parameters.numeric_size: data_output.append(data['numerics'].values) if model_parameters.use_time: data_output.append(data['to_event'].values) return (data_output, y)
66f89d87b22579f3d06a1d8f0faf0db4bc0fd13d
3,648,956
def _is_src(file): """ Returns true if the file is a source file Bazel allows for headers in the srcs attributes, we need to filter them out. Args: file (File): The file to check. """ if file.extension in ["c", "cc", "cpp", "cxx", "C", "c++", "C++"] and \ file.is_source: return True return False
b0466073d4d1b05c5cab37946fb6ca8432dc752d
3,648,957
def constructResponseObject(responsePassed): """ constructs an Error response object, even if the """ if (not (responsePassed is None)): temp_resp = Response() temp_resp.status_code = responsePassed.status_code or 404 if((temp_resp.status_code >= 200) and (temp_resp.status_code < 300)): temp_resp.status_code = 404 temp_resp.reason = 'Bad Request' details = 'UnexpectedError' temp_resp.headers = {'Content-Type': 'text/html', 'Warning': details} else: temp_resp.reason = responsePassed.reason or 'Bad Request' details = responsePassed.content or 'UnexpectedError' temp_resp.headers = {'Content-Type': 'text/html', 'WWW-Authenticate': details} else: temp_resp = Response() temp_resp.reason = 'Bad Request' temp_resp.status_code = 404 details = 'UnexpectedError' temp_resp.headers = {'Content-Type': 'text/html', 'WWW-Authenticate': details} return temp_resp
e5f5aa0f87db30598e85fe66e8bf3062eac4388c
3,648,958
def calculate_signal_strength(rssi): # type: (int) -> int """Calculate the signal strength of access point.""" signal_strength = 0 if rssi >= -50: signal_strength = 100 else: signal_strength = 2 * (rssi + 100) return signal_strength
d5a0955446e0fe0548639ddd1a849f7e7901c36b
3,648,959
from datetime import datetime async def verify_email(token: str, auth: AuthJWT = Depends()): """Verify the user's email with the supplied token""" # Manually assign the token value auth._token = token # pylint: disable=protected-access user = await User.by_email(auth.get_jwt_subject()) if user.email_confirmed_at is not None: raise HTTPException(400, "Email is already verified") if user.disabled: raise HTTPException(400, "Your account is disabled") user.email_confirmed_at = datetime.now(tz=timezone.utc) await user.save() return Response(status_code=200)
4e6eebd22b6206fa20f9c03230c09b470c414740
3,648,960
def lookAtThisMethod( first_parameter, second_paramter=None, third_parameter=32, fourth_parameter="a short string as default argument", **kwargs ): """The point of this is see how it reformats parameters It might be fun to see what goes on Here I guess it should respect this spacing, since we are in a comment. We are done! """ return kwargs["whatever"]( first_parameter * third_parameter, second_paramter, fourth_parameter, "extra string because I want to", )
8dab028b40184bb7cf686c524d5abd452cee2bc3
3,648,962
from typing import Sequence from typing import Callable from typing import List from typing import Set def data_incremental_benchmark( benchmark_instance: GenericCLScenario, experience_size: int, shuffle: bool = False, drop_last: bool = False, split_streams: Sequence[str] = ("train",), custom_split_strategy: Callable[ [ClassificationExperience], Sequence[AvalancheDataset] ] = None, experience_factory: Callable[ [ClassificationStream, int], ClassificationExperience ] = None, ): """ High-level benchmark generator for a Data Incremental setup. This generator accepts an existing benchmark instance and returns a version of it in which experiences have been split in order to produce a Data Incremental stream. In its base form this generator will split train experiences in experiences of a fixed, configurable, size. The split can be also performed on other streams (like the test one) if needed. The `custom_split_strategy` parameter can be used if a more specific splitting is required. Beware that experience splitting is NOT executed in a lazy way. This means that the splitting process takes place immediately. Consider optimizing the split process for speed when using a custom splitting strategy. Please note that each mini-experience will have a task labels field equal to the one of the originating experience. The `complete_test_set_only` field of the resulting benchmark instance will be `True` only if the same field of original benchmark instance is `True` and if the resulting test stream contains exactly one experience. :param benchmark_instance: The benchmark to split. :param experience_size: The size of the experience, as an int. Ignored if `custom_split_strategy` is used. :param shuffle: If True, experiences will be split by first shuffling instances in each experience. This will use the default PyTorch random number generator at its current state. Defaults to False. Ignored if `custom_split_strategy` is used. :param drop_last: If True, if the last experience doesn't contain `experience_size` instances, then the last experience will be dropped. Defaults to False. Ignored if `custom_split_strategy` is used. :param split_streams: The list of streams to split. By default only the "train" stream will be split. :param custom_split_strategy: A function that implements a custom splitting strategy. The function must accept an experience and return a list of datasets each describing an experience. Defaults to None, which means that the standard splitting strategy will be used (which creates experiences of size `experience_size`). A good starting to understand the mechanism is to look at the implementation of the standard splitting function :func:`fixed_size_experience_split_strategy`. :param experience_factory: The experience factory. Defaults to :class:`GenericExperience`. :return: The Data Incremental benchmark instance. """ split_strategy = custom_split_strategy if split_strategy is None: split_strategy = partial( fixed_size_experience_split_strategy, experience_size, shuffle, drop_last, ) stream_definitions: TStreamsUserDict = dict( benchmark_instance.stream_definitions ) for stream_name in split_streams: if stream_name not in stream_definitions: raise ValueError( f"Stream {stream_name} could not be found in the " f"benchmark instance" ) stream = getattr(benchmark_instance, f"{stream_name}_stream") split_datasets: List[AvalancheDataset] = [] split_task_labels: List[Set[int]] = [] exp: ClassificationExperience for exp in stream: experiences = split_strategy(exp) split_datasets += experiences for _ in range(len(experiences)): split_task_labels.append(set(exp.task_labels)) stream_def = StreamUserDef( split_datasets, split_task_labels, stream_definitions[stream_name].origin_dataset, False, ) stream_definitions[stream_name] = stream_def complete_test_set_only = ( benchmark_instance.complete_test_set_only and len(stream_definitions["test"].exps_data) == 1 ) return GenericCLScenario( stream_definitions=stream_definitions, complete_test_set_only=complete_test_set_only, experience_factory=experience_factory, )
e24756245b3d6b5126d32fb66541e4cd23a993c2
3,648,963
import typing def generate_doc_from_endpoints( routes: typing.List[tornado.web.URLSpec], *, api_base_url, description, api_version, title, contact, schemes, security_definitions, security ): """Generate doc based on routes""" from tornado_swagger.model import export_swagger_models # pylint: disable=C0415 swagger_spec = { "openapi": "3.0.0", "info": { "title": title, "description": _clean_description(description), "version": api_version, }, "basePath": api_base_url, "schemes": schemes, "components": { "schemas": export_swagger_models(), }, "paths": _extract_paths(routes), } if contact: swagger_spec["info"]["contact"] = {"name": contact} if security_definitions: swagger_spec["securityDefinitions"] = security_definitions if security: swagger_spec["security"] = security return swagger_spec
943a3c7a8bdd71bce92089c9dd89a7c262124dc0
3,648,964
def _filter_builds(build: Build) -> bool: """ Determine if build should be filtered. :param build: Build to check. :return: True if build should not be filtered. """ if build.display_name.startswith("!"): return True return False
c3bbc91595752b92b77034afcdd35d4a0b70f737
3,648,965
def load_transformers(model_name, skip_model=False): """Loads transformers config, tokenizer, and model.""" config = AutoConfig.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained( model_name, add_prefix_space=True, additional_special_tokens=('[T]', '[P]'), ) model = AutoModelForMaskedLM.from_pretrained(model_name, config=config) return config, tokenizer, model
49b8809745ba70b2a2a8ccd6063bbe2ea3acbae0
3,648,966
def build_test_data(data): """ Generates various features needed to predict the class of the news. Input: DataFrame Returns Array of generated features. """ data = process(data) generators = [ CountFeatureGenerator, TfidfFeatureGenerator, Word2VecFeatureGenerator, SentimentFeatureGenerator, ReadabilityFeatureGenerator ] # Class generators one by one to generate features features = [feature for generator in generators for feature in generator(data)] print("Total number of raw features: {}".format(len(features))) # Stack and return the features return np.hstack(features)
a4bd3af16deff190471ffbd6028cb47b314d498f
3,648,967
def set_password_for_sub_account(account_id, password): """ Create a message to set the password for a given sub-account. :param account_id: Integer representing the ID of the account :param password: String representing the password for the sub-account :return: Message (dict) """ data = sanitize(account_id=account_id, password=password) msg = message(method=ACCOUNT_GET_SUB_ACCOUNTS) params = {"sid": data["account_id"], "password": data["password"]} return add_params_to_message(params, msg)
02887e73bd11c551f472c033e256882206e9042a
3,648,968
def generate_batch(n, batch_size): """ Generates a set of batch indices Args: n: total number of samples in set batch_size: size of batch Returns: batch_index: a list of length batch_size containing randomly sampled indices """ batch_index = a.sample(range(n), batch_size) return batch_index
a8fe7d9356b30824210c89e2defa4b6bae697ffd
3,648,970
def solve(si, y, infile): """Conducts the solution step, based on the dopri5 integrator in scipy :param si: the simulation info object :type si: SimInfo :param y: the solution vector :type y: np.ndarray :param infile: the imported infile module :type infile: imported module """ n = ode(f_n).set_integrator('dopri5') n.set_initial_value(y0_n(si), si.timer. t0.magnitude) n.set_f_params(si) th = ode(f_th).set_integrator('dopri5', nsteps=infile.nsteps) th.set_initial_value(y0_th(si), si.timer.t0.magnitude) th.set_f_params(si) while (n.successful() and n.t < si.timer.tf.magnitude and th.t < si.timer.tf.magnitude): si.timer.advance_one_timestep() si.db.record_all() n.integrate(si.timer.current_time().magnitude) update_n(n.t, n.y, si) th.integrate(si.timer.current_time().magnitude) update_th(th.t, n.y, th.y, si) return si.y
079e97394befb39d6c65dc0c8a7eb2d57cf37920
3,648,971
def base(request, format=None): """Informational version endpoint.""" message = f"Welcome to {VERSION} of the Cannlytics API. Available endpoints:\n\n" for endpoint in ENDPOINTS: message += f"{endpoint}\n" return Response({ "message": message}, content_type="application/json")
51d8deaa6b5fda2b69fc8674e0d9d927d910c0ba
3,648,972
def discover(discover_system: bool = True) -> Discovery: """ Discover Reliably capabilities from this extension. """ logger.info("Discovering capabilities from chaostoolkit-reliably") discovery = initialize_discovery_result( "chaostoolkit-reliably", __version__, "reliably" ) discovery["activities"].extend(load_exported_activities()) return discovery
78bb7bcb086d08099f5585c3e27452647ecb8d64
3,648,973
from collections import Counter def frequent_word(message: str) -> str: """get frequent word.""" words = Counter(message.split()) result = max(words, key=words.get) print(result) return result
86af88287a8874d824b96e1a96e430555db64f2e
3,648,974
def parse_bjobs_nodes(output): """Parse and return the bjobs command run with options to obtain node list, i.e. with `-w`. This function parses and returns the nodes of a job in a list with the duplicates removed. :param output: output of the `bjobs -w` command :type output: str :return: compute nodes of the allocation or job :rtype: list of str """ nodes = [] lines = output.split("\n") nodes_str = lines[1].split()[5] nodes = nodes_str.split(":") return list(dict.fromkeys(nodes))
a582307d0d869d2dbde454928571246320cb6e31
3,648,975
def find_nearest_array(array, array_comparison, tol = 1e-4): """ Find nearest array @ In, array, array-like, the array to compare from @ In, array_comparison, array-like, the array to compare to @ In, tol, float, the tolerance """ array_comparison = np.asarray(array_comparison) indeces = np.zeros(len(array), dtype=bool) notFound = np.zeros(len(array), dtype=bool) for val in array_comparison: idx, diff = find_nearest(array, val) rel = (np.abs(diff / val)) if val != 0 else np.abs(val) if rel <= tol: indeces[idx] = True else: notFound[idx] = True return indeces, not np.any(notFound)
5c15cb58d50eef03ae7bcffed18bc60587fec0fc
3,648,976
from datetime import datetime def create_block_statistics_on_addition( block_hash: str, block_hash_parent: str, chain_name: str, deploy_cost_total: int, deploy_count: int, deploy_gas_price_avg: int, era_id: int, height: int, is_switch_block: bool, network: str, size_bytes: str, state_root_hash: str, status: int, timestamp: datetime, proposer: str, ) -> BlockStatistics: """Returns a domain object instance: BlockStatistics. """ return BlockStatistics( block_hash = block_hash, block_hash_parent = block_hash_parent, chain_name = chain_name, deploy_cost_total = deploy_cost_total, deploy_count = deploy_count, deploy_gas_price_avg = deploy_gas_price_avg, era_id = era_id, height = height, is_switch_block = is_switch_block, network = network, size_bytes = size_bytes, state_root_hash = state_root_hash, status = status, timestamp = timestamp, proposer = proposer, )
921e7045ff0df080a3769d0e62753e0e5a13e4af
3,648,978
def text(title='Text Request', label='', parent=None, **kwargs): """ Quick and easy access for getting text input. You do not have to have a QApplication instance, as this will look for one. :return: str, or None """ # -- Ensure we have a QApplication instance q_app = qApp() # -- Get the text name, ok = Qt.QtWidgets.QInputDialog.getText( parent, title, label, **kwargs ) if not ok: return None return name
c3d0c4fab15f6882fea614f5eec252738abc3e1c
3,648,980
def get_key_score(chroma_vector, keys, key_index): """Returns the score of an approximated key, given the index of the key weights to try out""" chroma_vector = np.rot90(chroma_vector,3) chroma_vector = chroma_vector[0,:] key_vector = keys[key_index,:] score = np.dot(key_vector,chroma_vector) return score
b41d4f3af4d621ba46b8786a5c906c470454fcc1
3,648,981
def app(): """Create the test application.""" return flask_app
01fbd44671a342be38560bc4c5b089a55214caf3
3,648,982
def coord_for(n, a=0, b=1): """Function that takes 3 parameters or arguments, listed above, and returns a list of the interval division coordinates.""" a=float(a) b=float(b) coords = [] inc = (b-a)/ n for x in range(n+1): coords.append(a+inc*x) return coords
57e12200dcc113786c9deeb4865d7906d74c763f
3,648,983
def find_indeces_vector(transect_lons, transect_lats, model_lons, model_lats, tols={ 'NEMO': {'tol_lon': 0.104, 'tol_lat': 0.0388}, 'GEM2.5': {'tol_lon': 0.016, 'tol_lat': 0.012}, }): """Find all indeces for the given vector :arg transect_lons: Longitude of point 1. :type lon1: float or :py:class:`numpy.ndarray` :arg transect_lats: Latitude of point 1. :type lat1: float or :py:class:`numpy.ndarray` :arg model_lons: Longitude of point 2. :type lon2: float or :py:class:`numpy.ndarray` :arg model_lats: Latitude of point 2. :type lat2: float or :py:class:`numpy.ndarray` :returns: vector of i and j indices associated with the input lons and lats :rtype: float or :py:class:`numpy.ndarray` """ transect_i = np.array([]) transect_j = np.array([]) for k in range(0,len(transect_lons)): i, j = find_closest_model_point(transect_lons[k], transect_lats[k], model_lons, model_lats,tols=tols) try: transect_i = np.append(transect_i, int(i)) transect_j = np.append(transect_j, int(j)) except: transect_i = np.append(transect_i, np.nan) transect_j = np.append(transect_j, np.nan) return transect_i, transect_j
93ad7a8cd16e154069618e606293e64ee3266501
3,648,984
def _make_prediction_ops(features, hparams, mode, num_output_classes): """Returns (predictions, predictions_for_loss).""" del hparams, mode logits = tf.layers.dense( features, num_output_classes, name='logits') confidences = tf.nn.softmax(logits) confidence_of_max_prediction = tf.reduce_max(confidences, axis=-1) predicted_index = tf.argmax(confidences, axis=-1) predictions = { 'label': predicted_index, 'logits': logits, 'confidences': confidences, 'confidence_of_max_prediction': confidence_of_max_prediction } predictions_for_loss = logits return predictions, predictions_for_loss
0a58ab8753a39b3e9da67dfc7988383585e6562e
3,648,985
def manhattan_loadings( iteration, gtf, loadings, title=None, size=4, hover_fields=None, collect_all=False, n_divisions=500, ): """modify hail manhattan plot""" palette = [ '#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf', ] # add gene names, p-values, and locus info loadings = loadings.annotate(gene_names=gtf[loadings.locus].gene_name) pvals = hl.abs(loadings.loadings[iteration]) locus = loadings.locus if hover_fields is None: hover_fields = {} hover_fields['locus'] = hl.str(locus) hover_fields['gene'] = hl.str(loadings.gene_names) source_pd = ( hl.plot.plots._collect_scatter_plot_data( # pylint: disable=protected-access ('_global_locus', locus.global_position()), ('_pval', pvals), fields=hover_fields, n_divisions=None if collect_all else n_divisions, ) ) source_pd['p_value'] = source_pd['_pval'] source_pd['_contig'] = [locus.split(':')[0] for locus in source_pd['locus']] observed_contigs = set(source_pd['_contig']) ref = locus.dtype.reference_genome observed_contigs = [ contig for contig in ref.contigs.copy() if contig in observed_contigs ] contig_ticks = [ ref._contig_global_position(contig) # pylint: disable=protected-access + ref.contig_length(contig) // 2 for contig in observed_contigs ] color_mapper = CategoricalColorMapper( factors=ref.contigs, palette=palette[:2] * int((len(ref.contigs) + 1) / 2) ) p = figure( title=title, x_axis_label='Chromosome', y_axis_label='Loadings', width=1000 ) ( p, _, legend, _, _, _, ) = hl.plot.plots._get_scatter_plot_elements( # pylint: disable=protected-access p, source_pd, x_col='_global_locus', y_col='_pval', label_cols=['_contig'], colors={'_contig': color_mapper}, size=size, ) legend.visible = False p.xaxis.ticker = contig_ticks p.xaxis.major_label_overrides = dict(zip(contig_ticks, observed_contigs)) p.select_one(HoverTool).tooltips = [ t for t in p.select_one(HoverTool).tooltips if not t[0].startswith('_') ] return p
5f99c1f5a16ee35c056ef019870d2d89a31ba988
3,648,986
def preprocess_point(p, C): """Preprocess a single point (a clip). WARN: NAN-preserving Arguments: p {ndarray} -- shape = (variable, C.joint_n, C.joint_d) C {DDNetConfig} -- A Config object Returns: ndarray, ndarray -- X0, X1 to input to the net """ assert p.shape[1:] == (C.joint_n, C.joint_d) p = zoom(p,target_l=C.frame_l,joints_num=C.joint_n,joints_dim=C.joint_d) # interploate to the right number of frames assert p.shape == (C.frame_l, C.joint_n, C.joint_d) M = get_CG(p, C) return M, p
a1f2c1eda877562439c0b194490a6ac50df6bd81
3,648,987
def link_to_existing_user_by_email_if_backend_is_trusted(backend, details, user=None, *args, **kwargs): """Return user entry with same email address as one returned on details.""" if user or not _is_trusted_email_backend(backend): return email = details.get('email') if email: # try to link accounts registered with the same email address, # only if it's a single object. AuthException is raised if multiple # objects are returned try: return {'user': EmailAddress.objects.get(email=email).user} except MultipleObjectsReturned: raise AuthException(kwargs['backend'], 'Not unique email address.') except ObjectDoesNotExist: pass
58f2363030ae0b8f8d3533dedbae6c7af304136c
3,648,988
def get_global_threshold(image_gray, threshold_value=130): """ 이미지에 Global Threshold 를 적용해서 흑백(Binary) 이미지객체를 반환합니다. 하나의 값(threshold_value)을 기준으로 이미지 전체에 적용하여 Threshold 를 적용합니다. 픽셀의 밝기 값이 기준 값 이상이면 흰색, 기준 값 이하이면 검정색을 적용합니다. 이 때 인자로 입력되는 이미지는 Gray-scale 이 적용된 2차원 이미지여야 합니다. :param image_gray: :param threshold_value: 이미지 전체에 Threshold 를 적용할 기준 값. :return: Global Threshold 를 적용한 흑백(Binary) 이미지 """ copy = image_gray.copy() # copy the image to be processed _, binary_image = cv2.threshold(copy, threshold_value, 255, cv2.THRESH_BINARY) return binary_image
03c344a40c5a84027d790ddf404106efe29716e9
3,648,990
import torch def get_batch(src_gen, trgt_gen, batch_size=10): """ Return a batch of batch_size of results as in get_rotated_src_target_spirals Args: batch_size (int): number of samples in the batch factor (float): scaling factor for the spiral Return: [torch.tensor,torch.tensor]: src and target batches """ batch_points = [src_gen.generate() for _ in range(batch_size)] batch_targets = [trgt_gen.generate() for _ in range(batch_size)] batch_points = [to_torch_tensor(i) for i in batch_points] batch_targets = [to_torch_tensor(i) for i in batch_targets] return torch.cat(batch_points), torch.cat(batch_targets)
6e0e4549c12fb252c54496f7947e5787970b64eb
3,648,991
def compute_crop_parameters(image_size, bbox, image_center=None): """ Computes the principal point and scaling factor for focal length given a square bounding box crop of an image. These intrinsic parameters are used to preserve the original principal point even after cropping the image. Args: image_size (int or array): Size of image, either length of longer dimension or (N, H, C). bbox: Square bounding box in xyxy (4,). image_center: Center of projection/principal point (2,). Returns: principal_point: Coordinates in NDC using Pytorch3D convention with (1, 1) as upper-left (2,). crop_scale (float): Scaling factor for focal length. """ bbox = np.array(bbox) b = max(bbox[2:] - bbox[:2]) if isinstance(image_size, int): h = w = image_size else: h, w, *c = image_size image_size = max(image_size) if image_center is None: image_center = np.array([w / 2, h / 2]) bbox_center = (bbox[:2] + bbox[2:]) / 2 crop_scale = b / image_size principal_point = 2 * (bbox_center - image_center) / b return principal_point, crop_scale
18ca5822bf86fb01ff8652fc9239ce6ae4d2801f
3,648,992
def input_fn_builder(input_file, seq_length, num_labels, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([num_labels], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _cast_features(features): # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in features: t = features[name] if t.dtype == tf.int64: t = tf.cast(t, tf.int32) features[name] = t return features def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" features = tf.parse_single_example(record, name_to_features) return _cast_features(features) def file_based_input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.data.experimental.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d def serving_input_receiver_fn(): """An input_fn that expects a serialized tf.Example.""" serialized_tf_example = tf.placeholder( dtype=tf.string, name='input_example_tensor') receiver_tensors = {'examples': serialized_tf_example} features = tf.parse_example(serialized_tf_example, name_to_features) features = _cast_features(features) return tf.estimator.export.ServingInputReceiver(features, receiver_tensors) if input_file is not None: return file_based_input_fn else: return serving_input_receiver_fn
ad82ded8691561eb8f60b645497200cd36d94a21
3,648,993
def get_user_by_username(username): """Return User by username""" try: return User.objects.get(username=username) except User.DoesNotExist: return None
b6c676d22c7ef586392b20a072d2239c2dfce7e6
3,648,994
def get_xyz_to_rgb_matrix(name): """ XYZ to RGB の Matrix を求める。 DCI-P3 で D65 の係数を返せるように内部関数化した。 """ if name != "DCI-P3": xyz_to_rgb_matrix = RGB_COLOURSPACES[name].XYZ_to_RGB_matrix else: rgb_to_xyz_matrix\ = calc_rgb_to_xyz_matrix(RGB_COLOURSPACES[DCI_P3].primaries, xy_to_XYZ(ILLUMINANTS[CMFS_NAME]['D65'])) xyz_to_rgb_matrix = linalg.inv(rgb_to_xyz_matrix) return xyz_to_rgb_matrix
007b71f52af4e23ada073c712a840e05c0ac33a5
3,648,995
def find_bordering_snapnums( snap_times_gyr, dGyr=.005, tmin=None, tmax=None): """ """ ## handle default maximum time tmax = snap_times_gyr[-1] if tmax is None else tmax ## handle default minimum time if tmin is None: tmin = snap_times_gyr[0] ## remove dGyr so that tmin is included in arange below elif tmin - dGyr > 0: tmin = tmin-dGyr ## create list of times, -1e-9 to avoid landing exactly on a snapshot number times_gyr = np.arange(tmax,tmin,-dGyr)[::-1]-1e-9 inds_next = np.argmax((times_gyr - snap_times_gyr[:,None]) < 0 ,axis=0) inds_prev = inds_next-1 return ( times_gyr, np.array(list(zip(inds_prev,inds_next))), np.array(list(zip(snap_times_gyr[inds_prev],snap_times_gyr[inds_next]))))
23a58ecce4036d9b7a6a91991de237dd30b87129
3,648,996
def maxIterationComb(N,k,l): """ title:: maxIterationComb description:: Compute N!/k!l!(N-k-l)! (max iterations). attributes:: N Number of targets (graph size) k Number of human patrollers l Number of drones returns:: Resulting maximum iterations (integer). author:: Elizabeth Bondi ([email protected]) Hoon Oh, Haifeng Xu, Kai Wang disclaimer:: This source code is provided "as is" and without warranties as to performance or merchantability. The author and/or distributors of this source code may have made statements about this source code. Any such statements do not constitute warranties and shall not be relied on by the user in deciding whether to use this source code. This source code is provided without any express or implied warranties whatsoever. Because of the diversity of conditions and hardware under which this source code may be used, no warranty of fitness for a particular purpose is offered. The user is advised to test the source code thoroughly before relying on it. The user must assume the entire risk of using the source code. """ return int(comb(N,k)*comb(N-k,l))
d0019a1498a50f3733474fb0212627d1b061484d
3,648,997
def create_project_details_list (project): """makes a projects details section for the html Parameters ---------- project: HeatRecovery A HeatRecovery object thats run function has been called Returns ------- dict with values used by summary """ try: costs = '${:,.0f}'.format(project.get_NPV_costs()) except ValueError: costs = project.get_NPV_costs() try: benefits = '${:,.0f}'.format(project.get_NPV_benefits()) except ValueError: benefits = project.get_NPV_benefits() try: net_benefits = '${:,.0f}'.format(project.get_NPV_net_benefit()) except ValueError: net_benefits = project.get_NPV_net_benefit() try: BC = '{:,.1f}'.format(project.get_BC_ratio()) except ValueError: BC = project.get_BC_ratio() try: source = "<a href='" + \ project.comp_specs['link'] + "'> link </a>" except StandardError as e: source = "unknown" try: notes = project.comp_specs['notes'] except StandardError as e: notes = "N/a" try: potential_hr = '{:,.0f} gallons'.format(float( project.comp_specs[ 'proposed gallons diesel offset'])) except ValueError: potential_hr =\ str(project.comp_specs[ 'proposed gallons diesel offset']) try: dist = \ '{:,.0f} ft'.format(\ float(project.comp_specs['total feet piping needed'])) except ValueError: dist = 'Unknown' #~ print dist return [ {'words':'Capital cost', 'value': costs}, {'words':'Lifetime energy cost savings', 'value': benefits}, {'words':'Net lifetime savings', 'value': net_benefits}, {'words':'Benefit-cost ratio', 'value': BC}, {'words':'Est. potential annual heating fuel gallons displaced', 'value': potential_hr}, {'words':'Number of buildings to be connected', 'value': str(project.comp_specs['estimate buildings to heat'])}, {'words':'Round-trip distance of piping', 'value': dist}, {'words':'Source', 'value': source}, {'words':'Notes', 'value': notes}, ]
74c68b0592939cc819091ac2d30bee44b455f27b
3,648,998
def compute_cluster_top_objects_by_distance(precomputed_distances, max_top_number=10, object_clusters=None): """ Compute the most representative objects for each cluster using the precomputed_distances. Parameters ---------- precomputed_distances : np.array array of shape (n_topics, n_objects) - a matrix of pairwise distances: distance from ith cluster centroid to the jth object max_top_number : int maximum number of top objects of cluster (resulting number can be less than it) (Default value = 10) object_clusters : np,array array of shape n_objects - precomputed clusters for objects Returns ------- clusters_top_objects : list of list of indexes (Default value = None) """ # noqa: W291 # prediction for objects if object_clusters is None: object_clusters = predict_cluster_by_precomputed_distances(precomputed_distances) # transformation from list to dict clusters = transform_cluster_objects_list_to_dict(object_clusters) n_topics = precomputed_distances.shape[0] clusters_top_objects = [] for cluster_label in range(n_topics): # cluster is empty if cluster_label not in clusters.keys(): clusters_top_objects.append([]) continue cluster_objects = np.array(clusters[cluster_label]) cluster_objects_to_center_distances = ( precomputed_distances[cluster_label][cluster_objects] ) if max_top_number >= cluster_objects.shape[0]: # cluster is too small; grab all objects indexes_of_top_objects = np.arange(0, cluster_objects.shape[0]) else: # filter by distance with partition indexes_of_top_objects = np.argpartition( cluster_objects_to_center_distances, kth=max_top_number )[:max_top_number] distances_of_top_objects = cluster_objects_to_center_distances[indexes_of_top_objects] top_objects = cluster_objects[indexes_of_top_objects] # sorted partitioned array indexes_of_top_objects_sorted_by_distance = np.argsort(distances_of_top_objects) sorted_top_objects = top_objects[indexes_of_top_objects_sorted_by_distance] clusters_top_objects.append(sorted_top_objects.tolist()) return clusters_top_objects
2ff29d6b59d2db3d9e169a44c0addf42d9abea9b
3,648,999
def validate_ints(*args): """ validates that inputs are ints only """ for value in args: if not isinstance(value, int): return False return True
e56ebf78e072731188b2c8282289d307fcfaabdf
3,649,001
def smooth_l1_loss(y_true, y_pred): """ Computes the smooth-L1 loss. Parameters ---------- y_true : tensor Ground-truth targets of any shape. y_pred : tensor Estimates of same shape as y_true. Returns ------- loss : tensor The loss, sumed over all elements from the last dim of y_true, i.e., same shape as y_true without the last dim. """ y_pred = tf.convert_to_tensor(y_pred) y_true = tf.convert_to_tensor(y_true, dtype=y_pred.dtype) diff = tf.math.abs(y_true - y_pred) less_than_one = tf.cast(tf.math.less(diff, 1.0), y_pred.dtype) # smooth l1 loss, loss.shape == y_true.shape loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) # sum over all elements in the last dim loss = tf.math.reduce_sum(loss, axis=-1) return loss
dcf18b7d14feecdbc8b6637ccc3d35ff1880f9d2
3,649,002
def get_class_occurrences(layer_types): """ Takes in a numpy.ndarray of size (nb_points, 10) describing for each point of the track the types of clouds identified at each of the 10 heights times counting the number of times 8 type of clouds was spotted vertically. and returns occrrences (binary) as the label of the present/absent of cloud The height and cloud type information is then lost. """ layer_types = np.array(layer_types) total = 0 occurrences = np.zeros((layer_types.shape[0], 1)) for occ, labels in zip(occurrences, layer_types): for l in labels: # keep only cloud types (no 0 or -9) if l > 0: total += 1 if total > 0: occ = 1 return occurrences
20c611089a50751e6a6b1d0ebaedc02474b04443
3,649,003
def parse_duration(datestring): """ Parses an ISO 8601 durations into a float value containing seconds. The following duration formats are supported: -PnnW duration in weeks -PnnYnnMnnDTnnHnnMnnS complete duration specification Years and month are not supported, values must be zero! """ if not isinstance(datestring, str): raise TypeError("Expecting a string %r" % datestring) match = ISO8601_PERIOD_REGEX.match(datestring) if not match: raise ValueError("Unable to parse duration string %r" % datestring) groups = match.groupdict() for key, val in groups.items(): if key not in ('separator', 'sign'): if val is None: groups[key] = "0n" # print groups[key] if key in ('years', 'months'): groups[key] = Decimal(groups[key][:-1].replace(',', '.')) else: # these values are passed into a timedelta object, # which works with floats. groups[key] = float(groups[key][:-1].replace(',', '.')) if groups["years"] != 0 or groups["months"] != 0: raise ValueError("Unable to parse duration string %r (Non zero year or month)" % datestring) else: ret = timedelta(days=groups["days"], hours=groups["hours"], minutes=groups["minutes"], seconds=groups["seconds"], weeks=groups["weeks"]) if groups["sign"] == '-': ret = timedelta(0) - ret return ret.total_seconds()
4fce243684fd2305198ae49693327a110f781a1d
3,649,004
import math from functools import reduce import operator from typing import Counter def knn(position, data_set, labels, k): """ k-近邻算法 :param position: 待分类点 :param data_set: 数据样本 :param labels: 标签集合 :param k: 取值 :return: 所属标签 """ distance_list = [] for index, item in enumerate(data_set): distance_list.append(( labels[index], math.sqrt(reduce(operator.add, [(v - position[i]) ** 2 for i, v in enumerate(item)])) )) distance_list = sorted(distance_list, key=lambda x: x, reverse=True) result = Counter([val[0] for val in distance_list[:k]]) result_labels = sorted(result.items(), lambda x, y: cmp(x[1], y[1]), reverse=True) return result_labels[0][0]
137f87c6a63fbafd3140694386dfd418108ad5b9
3,649,005
def _cals(raw): """Helper to deal with the .cals->._cals attribute change.""" try: return raw._cals except AttributeError: return raw.cals
a08273a559b780022c04fe5d5d60a71c600fd481
3,649,006
def irnn_data_iterator(X, y, batch_size, math_engine): """Slices numpy arrays into batches and wraps them in blobs""" def make_blob(data, math_engine): """Wraps numpy data into neoml blob""" shape = data.shape if len(shape) == 2: # data # Wrap 2-D array into blob of (BatchWidth, Channels) shape return neoml.Blob.asblob(math_engine, data, (1, shape[0], 1, 1, 1, 1, shape[1])) elif len(shape) == 1: # dense labels # Wrap 1-D array into blob of (BatchWidth,) shape return neoml.Blob.asblob(math_engine, data, (1, shape[0], 1, 1, 1, 1, 1)) else: assert(False) start = 0 data_size = y.shape[0] while start < data_size: yield (make_blob(X[start : start+batch_size], math_engine), make_blob(y[start : start+batch_size], math_engine)) start += batch_size
5a6b6726d3d0f78929b2551b8720bfbbb39471eb
3,649,007
def naive_forecast(series, steps_ahead=3, freq='D', series_name='naive'): """ Function fits data into the last available observation value. INPUT: :param series: pandas Series of data, :param steps_ahead: number of steps into the future to predict, default is 3, :param freq: (str) representation of a time frequency, :param series_name: str OUTPUT: :return: series with extrapolated values equal to the last observation. """ obs = [series.iloc[-1] for _ in range(steps_ahead)] future = set_future_series(forecasted_values=obs, series_name=series_name, last_date=series.index[-1], steps_ahead=steps_ahead, frequency=freq) return future
1b64edb39ab986d2e850ec5329fb2ed8ae5cd136
3,649,008
def show_current_task(): """ 显示当前任务正在运行的任务 :return: """ try: current_user_name = session["user_name"] current_user = RedisService.get_user(current_user_name) current_task = TaskService.get_working_tasks(user_id=current_user.id)[0] if current_task: hook_rule = RedisService.get_task(current_task.id)["hook_rule"] unscaned_url_num = UrlService.count(where=(Url.task_id == current_task.id, Url.status != TaskStatus.DONE)) scaned_url_num = UrlService.count(where=(Url.task_id == current_task.id, Url.status == TaskStatus.DONE)) total_url_num = unscaned_url_num + scaned_url_num if current_task.task_status in [TaskStatus.KILLED, TaskStatus.DONE]: percent = 100 else: percent = 0 if total_url_num == 0 else (scaned_url_num / total_url_num) * 100 response_data = jsonify(status=200, message="查询成功", data={'receiver_emails': current_task.receivers_email, 'task_name': current_task.task_name, 'create_time': current_task.created_time.strftime("%Y-%m-%d %H:%M"), 'percent': percent, 'unscaned_url_num': unscaned_url_num, 'scaned_url_num': scaned_url_num, 'total_url_num': total_url_num, 'hook_rule': hook_rule, 'task_id': current_task.id, "task_access_key": current_task.access_key, 'task_status': current_task.task_status, 'user_name': current_user_name}) return response_data except Exception as e: if isinstance(e, IndexError): return jsonify(status=400, message="获取失败", data={"extra_info": "后台无正在运行任务,请登录后台并创建任务"}) logger.exception("show_current_task rasie error") return jsonify(status=500, message="获取失败", data={"extra_info": "未知异常,可以联系管理员到后台查看"})
09e0077232343e46db606b9a3642bfb5d6b17a69
3,649,011
from rsc.service.ImageService import ImageService def access_image(access_code:str): """ 下载图像 post header : { Content-Type: application/json, access_token: access_token from vans-token-manager client_id: client_id from vans-token-manager conf. create by developers. } :return: """ try: # 获取图片 service = ImageService() image_data, mime = service.get_image(access_code) data = json_res_success({"image":image_data, "mime":mime}) return render_json(data) except Exception as e: return E400(str(e))
d1ac9efd9e4ba7c7fb9f63d2f0d188e09367fee9
3,649,012
def workaround_issue_20(handler): """ Workaround for https://github.com/pytest-dev/pytest-services/issues/20, disabling installation of a broken handler. """ return hasattr(handler, 'socket')
20d688aedad9e771362d97ad9cac391e7dbfac32
3,649,013
def item_count(sequences, sequence_column_name): """ input:Dataframe sequences """ item_max_id = sequences[sequence_column_name].map(max).max() return int(item_max_id)
9bcb64ff3389ef34ed297bca4f55b4de66ac5966
3,649,014
def bare_stft(x: Tensor, padded_window: Tensor, hop_size: int) -> Tensor: """Compute STFT of real 1D signal. This function does not handle padding of x, and the window tensor. This function assumes fft_size = window_size. Args: x: [..., n_sample] padded_window: [fft_size], a window padded to fft_size. hop_size: Also referred to as the frame shift. Returns: n_frame: see frame_signal definition. X: [..., n_frame, fft_size], where n_frame = n_sample // hop_size """ fft_size = len(padded_window) # Squash x's batch_sizes batch_size = x.shape[:-1] n_sample = x.size(-1) squashed_x = x.reshape(-1, 1, n_sample) # shape: [prod(batch_size), 1, n_sample] framed_squashed_x = frame_signal(squashed_x, fft_size, hop_size) # shape: [prod(batch_size), fft_size, n_frame] windowed_framed_squashed_x = \ framed_squashed_x * padded_window.unsqueeze(-1) squashed_X = fft( windowed_framed_squashed_x.transpose(-1, -2), dim=-1 ) # shape: [prod(batch_size), n_frame, fft_size] X = squashed_X.reshape(*batch_size, *(squashed_X.shape[1:])) # shape: [*batch_size, n_frame, fft_size] return X
ccefbdc55478de91640a322735dd02f87a185578
3,649,015
def IsDragResultOk(*args, **kwargs): """IsDragResultOk(int res) -> bool""" return _misc_.IsDragResultOk(*args, **kwargs)
87e4c1968b3e5d7adbdc4cfb393481fca647beba
3,649,016
def element_wise(counter_method): """This is a decorator function allowing multi-process/thread input. Note that this decorator should always follow the decorator 'tag_maker'. """ def _make_iterator(*args): """Make a compound iterator from a process iterator and a thread one. Note that 'Application' case should not execute this function.""" monitor_level = args[1] arg_pid = args[2] if hasattr(arg_pid, '__iter__'): pid_itr = (i for i in xrange(arg_pid[0], arg_pid[1])) else: pid_itr = (arg_pid,) if monitor_level == 'Thread': arg_tid = args[3] if hasattr(arg_tid, '__iter__'): tid_itr = (i for i in xrange(arg_tid[0], arg_tid[1])) else: tid_itr = (arg_tid,) if monitor_level == 'Process': return_itr = pid_itr elif monitor_level == 'Thread': return_itr = (pid_itr, tid_itr) return return_itr @wraps(counter_method) def _element_wise(*args): """Distribute multi-process/thread input""" if args[1] == 'Thread': pid_itr, tid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid, tid) for pid, tid in product(pid_itr, tid_itr)] return np.array(retval) elif args[1] == 'Process': pid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid) for pid in pid_itr] return np.array(retval) elif args[1] == 'Application': return np.array(counter_method(*args)) else: print 'Unknown monitor level' return _element_wise
44c00b9a40b7dba53dcfaac52bc866341a924d01
3,649,020
import requests def get_datacite_dates(prefix): """Get sumbitted date for DataCite DOIs with specific prefix""" doi_dates = {} doi_urls = {} url = ( "https://api.datacite.org/dois?query=prefix:" + prefix + "&page[cursor]=1&page[size]=500" ) next_link = url meta = requests.get(next_link).json()["meta"] for j in progressbar(range(meta["totalPages"])): r = requests.get(next_link) data = r.json() for doi in data["data"]: date = doi["attributes"]["registered"].split("T")[0] doi_dates[doi["id"]] = date doi_urls[doi["id"]] = doi["attributes"]["url"] if "next" in data["links"]: next_link = data["links"]["next"] else: next_link = None return doi_dates, doi_urls
2b75cdfbb7c5f7085ab95f22ec601fbccdac07ea
3,649,021
def rate_answer(): """ **Rates an already given answer** **Args:** * json: * {"insight" : String with the name of the Insight * "paper_id" : String with the paper_id which is in our case the completet link to the paper * "upvote" : Boolean if the answer was upvoted(= true) or downvoted (= false) * "answer" : String with the Answer} **Returns:** * json: * {'status': 'success'} """ response_object = {'status': 'success'} #fetch data from request post_data = request.get_json() in_insight_name = post_data.get('insight') in_paper_id = post_data.get('paper_id') in_paper_id = url_checker(in_paper_id) in_upvote = post_data.get('upvote') in_answer = post_data.get('answer') #query 'information' inf = Information.query.filter(Information.paper_id == in_paper_id).filter(Information.insight_name==str(in_insight_name)).first() #query 'answers' ans = Answers.query.filter(Answers.information_id==inf.information_id).all() #upvote correct answer if (in_upvote): for a in ans: if (a.answer==in_answer): a.answer_upvotes = a.answer_upvotes + 1 a.answer_score = a.answer_score + 1 #downvote correct answer else : for a in ans: if (a.answer==in_answer): a.answer_downvotes = a.answer_downvotes + 2 a.answer_score = a.answer_score - 2 db.session.commit() return jsonify(response_object)
5efc00e015d2127f91462348050f2d445530690d
3,649,022
def get_ip(): """ Query the ipify service (https://www.ipify.org) to retrieve this machine's public IP address. :rtype: string :returns: The public IP address of this machine as a string. :raises: ConnectionError if the request couldn't reach the ipify service, or ServiceError if there was a problem getting the IP address from ipify's service. """ try: resp = _get_ip_resp() except RequestException: raise ConnectionError("The request failed because it wasn't able to reach the ipify service. This is most likely due to a networking error of some sort.") if resp.status_code != 200: raise ServiceError('Received an invalid status code from ipify:' + str(resp.status_code) + '. The service might be experiencing issues.') return resp.text
d560c90986cc99be3ad07c0099743821104e514a
3,649,023
import ast def update_plot(p1, p2, arrow, txt, ax, fig, reset_points, line): """ Given a line with an agent's move and the current plot, update the plot based on the agent's move. """ l = line.strip() if 'Agent score' in l: txt.remove() txt = plt.text(2, 33, 'Agent Score: {0:.2f}'.format(float(l.split()[2])), fontsize=8) reset_points = True else: p = ast.literal_eval(l[l.find('('):]) if 'actually at point' in l: p1 = Circle(p, radius=0.2, facecolor='yellow') ax.add_patch(p1) elif 'actually attempting to reach point' in l: p2 = Circle(p, radius=0.2, facecolor='green') ax.add_patch(p2) elif 'now at point' in l: arrow = YAArrow(fig, p2.center, p1.center, width=0.1, headwidth=0.5, facecolor='red') ax.add_patch(arrow) elif 'Resetting agent to point' in l: p2 = Circle(p, radius=1, facecolor='green') ax.add_patch(p2) arrow = YAArrow(fig, p2.center, p1.center, width=0.25, headwidth=1, facecolor='red') ax.add_patch(arrow) return p1, p2, arrow, txt, ax, fig, reset_points
579b4f218fc17eae9b8595e916571e24eba27cb5
3,649,024
import csv def upload_file_view(request): """Upload file page and retrieve headers""" data = {} global ROW_COUNT if request.method == "GET": return render(request, "pages/upload-file.html", data) try: if request.FILES: csv_file = request.FILES['csv_file'] request.session['csv'] = str(csv_file) if not csv_file.name.endswith('.csv'): messages.error(request, 'File is not CSV type') return redirect('upload-file') decoded_file = csv_file.read().decode('utf-8').splitlines() reader = csv.DictReader(decoded_file) data['fieldnames'] = reader.fieldnames data['filename'] = csv_file.name fs = FileSystemStorage() fs.save(csv_file.name, csv_file) file = FilesStatus.objects.create( user=request.user, file_name=csv_file.name, ) ROW_COUNT = sum(1 for row in reader) request.session['file_status'] = file.id else: messages.error(request, 'No file was selected.') return redirect('upload-file') except IOError: return messages.error(request, 'Could not read file') return render(request, 'pages/upload-file.html', data)
62d76c398aee02a61a3dd8dd7ac1251367786c9c
3,649,025
from typing import Optional def get_user_by_login_identifier(user_login_identifier) -> Optional[UserSchema]: """Get a user by their login identifier. :param str user_login_identifier: The user's login identifier, either their \ ``email`` or ``display_name`` are valid inputs :return: The discovered user if they exist :rtype: Optional[UserSchema] """ user = get_user_by_email(user_email=user_login_identifier) if not user: return get_user_by_display_name(user_display_name=user_login_identifier) return user
821ba79ed56ec9b918dbec60af91e9b472cdb689
3,649,026
def decode_fixed64(buf, pos): """Decode a single 64 bit fixed-size value""" return decode_struct(_fixed64_fmt, buf, pos)
298df6d28f77132bac6d9924b9628af5efa940b5
3,649,027
def from_xfr(xfr, zone_factory=Zone, relativize=True): """Convert the output of a zone transfer generator into a zone object. @param xfr: The xfr generator @type xfr: generator of dns.message.Message objects @param relativize: should names be relativized? The default is True. It is essential that the relativize setting matches the one specified to dns.query.xfr(). @type relativize: bool @raises dns.zone.NoSOA: No SOA RR was found at the zone origin @raises dns.zone.NoNS: No NS RRset was found at the zone origin @rtype: dns.zone.Zone object """ z = None for r in xfr: if z is None: if relativize: origin = r.origin else: origin = r.answer[0].name rdclass = r.answer[0].rdclass z = zone_factory(origin, rdclass, relativize=relativize) for rrset in r.answer: znode = z.nodes.get(rrset.name) if not znode: znode = z.node_factory() z.nodes[rrset.name] = znode zrds = znode.find_rdataset(rrset.rdclass, rrset.rdtype, rrset.covers, True) zrds.update_ttl(rrset.ttl) for rd in rrset: rd.choose_relativity(z.origin, relativize) zrds.add(rd) z.check_origin() return z
cc3aa11a8ff3dff6cf0609c3527daa193602b522
3,649,028
from datetime import datetime def compare_sql_datetime_with_string(filter_on, date_string): """Filter an SQL query by a date or range of dates Returns an SQLAlchemy `BinaryExpression` that can be used in a call to `filter`. `filter_on` should be an SQLAlchemy column expression that has a date or datetime value. `date_string` is a string that includes date(s) in format `YYYY-MM-DD` and a range operator such as `>` or `<=`. In full: ====================== ======================================== Query Description ====================== ======================================== YYYY-MM-DD Matches dates on day >YYYY-MM-DD Matches dates after day >=YYYY-MM-DD Matches dates on or after day <YYYY-MM-DD Matches dates before day <=YYYY-MM-DD Matches dates on or before day YYYY-MM-DD..YYYY-MM-DD Matches dates between days (inclusively) ====================== ======================================== Examples: >>> from app.models.main import AuditEvent >>> # Equivalent to AuditEvent.created_at >= datetime.date(2012, 1, 1) >>> compare_sql_datetime_with_string(AuditEvent.created_at, ">=2012-01-01") <sqlalchemy.sql.elements.BinaryExpression object ...> >>> # Equivalent to AuditEvent.created_at.between(datetime.date(2010, 1, 1), datetime.date(2019-01-31)) >>> AuditEvent.query.filter( compare_sql_datetime_with_string(AuditEvent.created_at, "2010-01-01..2019-01-31")) <app.models.main.AuditEvent.query_class object ...> """ filter_test = None def parse_date(s): return datetime.datetime.strptime(s, DATE_FORMAT) if date_string.startswith(">="): date = parse_date(date_string[2:]) filter_test = (filter_on >= date) elif date_string.startswith(">"): date = parse_date(date_string[1:]) filter_test = (filter_on > date) elif date_string.startswith("<="): date = parse_date(date_string[2:]) filter_test = (filter_on <= date) elif date_string.startswith("<"): date = parse_date(date_string[1:]) filter_test = (filter_on < date) elif ".." in date_string: args = date_string.partition("..") from_ = parse_date(args[0]) to_ = parse_date(args[2]) filter_test = filter_on.between(from_, to_) else: date = parse_date(date_string) filter_test = filter_on.between(date, date + datetime.timedelta(days=1)) return filter_test
2938872ffdd3e30c2d364ae30e3a93fa560e55ef
3,649,029
def get_users(): """get_users() -> Fetch all users in the database""" connect() # Connect cursor.execute("SELECT * FROM users") # Select all users item = cursor.fetchall() users = [] for user in item: users.append(format_user(user)) # Format the users disconnect() return users
e294406af8abbd0fa813beeadcd8b01552e4d206
3,649,030
def get_decoder_self_attention_bias(length): """Calculate bias for decoder that maintains model's autoregressive property. Creates a tensor that masks out locations that correspond to illegal connections, so prediction at position i cannot draw information from future positions. Args: length: int length of sequences in batch. Returns: float tensor of shape [1, 1, length, length] """ with tf.name_scope("decoder_self_attention_bias"): valid_locs = tf.linalg.band_part(tf.ones([length, length]), -1, 0) valid_locs = tf.reshape(valid_locs, [1, 1, length, length]) decoder_bias = _NEG_INF * (1.0 - valid_locs) return decoder_bias
a5de0984715cbc07c16c0ab5a5dc24edb7ca7602
3,649,031
from typing import Union from typing import Tuple import torch import math from re import X def rollout_discrete( x_grid: Tensor, idx: Union[int, Tensor], model: Model, best_f: Union[float, Tensor], bounds: Tensor, quadrature: Union[str, Tuple] = "qmc", horizon: int = 4, num_y_samples: int = 10, ): """ continuous domain rollout, expectation estimated using (quasi) Monte Carlo or Gaussian-Hermite quadrature EI_rollout(x) = E_y[ max(y-y0,0) + EI_rollout(x'| x, y) ], where x'=argmax EI(x' | x, y) define f(y) = max(y-y0,0) + EI_rollout(x'|x,y) then EI_rollout(x) = \int w(y) f(y) dy where the weight function w(y) is a Gaussian density function N(mu, sigma^2) We can estimate this integral using quasi Monte Carlo samples from w(y) or use Gauss-Hermite quadrature, as in Lam et al. (2016): such a integration can be transformed into the standard Gaussian-Hermite quadrature formulation EI_rollout(x) = 1/sqrt(pi) \int exp(-t^2) f(sqrt(2)*sigma*t+mu) dt, where t = (y-mu)/sqrt(2)/sigma We first generate Gauss-Hermite quadrature sample locations t_i and weights w_i using numpy.polynomial.hermite.hermgauss then estimate the expectation by EI_rollout(x) \approx 1/sqrt(pi) \sum_i w_i f(sqrt(2)*sigma*t_i +mu) :param x: a single point :param model: the GP model :param best_f: current best observed value :param bounds: bounds of the domain, shape (2, d) :param base_acquisition: :param quadrature: Monte Carlo or Quasi Monte Carlo :param horizon: rollout horizon :param num_y_samples: number of (quasi) Monte Carlo samples for estimating the integral :return: """ if horizon == 1: acq_func = ExpectedImprovement(model=model, best_f=best_f) return acq_func(x).item() x = x_grid[idx] # compute posterior posterior = model.posterior(x) if isinstance(quadrature, str) and quadrature == "qmc": # quasi Monte Carlo with torch.no_grad(): sampler = SobolQMCNormalSampler(num_samples=num_y_samples) samples = sampler(posterior).squeeze().numpy() weights = torch.ones(num_y_samples) / num_y_samples elif isinstance(quadrature, Tuple): mu = posterior.mean.item() sigma = torch.sqrt(posterior.variance).item() samples, weights = np.polynomial.hermite.hermgauss(num_y_samples) samples = np.sqrt(2.0) * sigma * samples + mu weights /= np.sqrt(math.pi) improvement_of_samples = np.zeros(num_y_samples) for i in range(num_y_samples): y_sample = samples[i] one_step_improvement = max(y_sample - best_f, 0) fake_model: Model = deepcopy(model) x0 = model.train_inputs[0] y0 = model.train_targets train_x = torch.cat([x0, x.unsqueeze(0)], -2) train_y = torch.cat([y0, Tensor([y_sample])]) fake_model.reinitialize(train_X=train_x, train_Y=train_y) best_f_new = max(best_f, y_sample) # maximization problem acq_func = ExpectedImprovement(model=fake_model, best_f=best_f_new) ei_values = acq_func(X) idx = torch.argmax(ei_values) future_reward = rollout( x_grid, idx, model=fake_model, best_f=best_f_new, bounds=bounds, quadrature=quadrature, horizon=horizon - 1, num_y_samples=num_y_samples, ) improvement_of_samples[i] = one_step_improvement + future_reward return improvement_of_samples.dot(weights)
c400e0042a4ec236030d7e5d19615441b4cc0456
3,649,032
import itertools import torch def get_accumulative_accuracies(test_loaders, taskcla, result_file, network_cls='resnet32'): """ Confusion matrix with progressively more classes considered """ iter_model = iter_task_models(network_cls, taskcla, result_file) accuracies = np.zeros((len(taskcla), len(taskcla))) classes_so_far = 0. for task_model, model in enumerate(iter_model): for task_eval in range(0, task_model+1): full_test_loader = itertools.chain.from_iterable(test_loaders[:task_eval+1]) with torch.no_grad(): totals = 0. correct = 0. logits_mask = np.arange(sum([taskcla[i][1] for i in range(0, task_eval+1)])) for inputs, targets in full_test_loader: inputs = inputs.to(device) targets = targets.to(device) outputs = torch.cat(model(inputs), dim=1) outputs = outputs[:, logits_mask] preds = outputs.argmax(dim=1) correct += (preds == targets).double().sum() totals += len(targets) accuracies[task_model, task_eval] = correct/totals return accuracies
3b10f89b80318c3bb2776af3d336c2b87d2a623e
3,649,033
import copy def readout_oper(config): """get the layer to process the feature asnd the cls token """ class Drop(object): """drop class just drop the cls token """ def __init__(self, config): if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) def __call__(self, x): x = x[:, self.token_num:] x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x class Add(object): """add class add the cls token """ def __init__(self, config): if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) def __call__(self, x): token = x[:, :self.token_num] token = paddle.sum(token, axis=1).unsqueeze(1) x = x[:, self.token_num:] x = x + token x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x class Proj(nn.Layer): """porject class use a linear layer to confuse the feature and the cls token """ def __init__(self, config): super(Proj, self).__init__() if 'ViT' in config.MODEL.ENCODER.TYPE: self.token_num = 1 elif 'DeiT' in config.MODEL.ENCODER.TYPE: self.token_num = 2 self.feature_size = (config.DATA.CROP_SIZE[0] // config.MODEL.TRANS.PATCH_SIZE, config.DATA.CROP_SIZE[1] // config.MODEL.TRANS.PATCH_SIZE) self.proj = nn.Sequential( nn.Linear(2 * config.MODEL.TRANS.HIDDEN_SIZE, config.MODEL.TRANS.HIDDEN_SIZE), nn.GELU() ) def forward(self, x): token = x[:, :self.token_num] token = paddle.sum(token, axis=1).unsqueeze(1) x = x[:, self.token_num:] token = token.expand_as(x) x = paddle.concat([x, token], axis=-1) x = self.proj(x) x = x.transpose((0, 2, 1)) x = x.reshape((x.shape[0], x.shape[1], self.feature_size[0], self.feature_size[1])) return x if config.MODEL.DPT.READOUT_PROCESS == 'drop': return [copy.deepcopy(Drop(config)) for _ in range(4)] if config.MODEL.DPT.READOUT_PROCESS == 'add': return [copy.deepcopy(Add(config)) for _ in range(4)] if config.MODEL.DPT.READOUT_PROCESS =='project': return nn.LayerList([copy.deepcopy(Proj(config)) for _ in range(4)]) return None
36d682851e24535b7b000ae1b343bb90ca2077d6
3,649,034
import json def stream_n_messages(request, n): """Stream n JSON messages""" n = int(n) response = get_dict(request, 'url', 'args', 'headers', 'origin') n = min(n, 100) def generate_stream(): for i in range(n): response['id'] = i yield json.dumps(response, default=json_dumps_default) + '\n' return Response(generate_stream(), headers={ "Content-Type": "application/json", })
ea8ec1dd939cc43baa3367696f44956b2aafa780
3,649,035
def read_covid(): """Read parsed covid table""" return pd.read_csv(_COVID_FILE, parse_dates=["date"])
fd99256808be1772106260b1da47850de0584adb
3,649,036
def define_network(*addr): """gives all network related data or host addresses if requested addr = tuple of arguments netaddr/mask[nb of requested hosts] """ if len(addr) == 2: # provides list of host-addresses for this subnet # we do this by calling the generator host_g host_g = addr[0].hosts() return [next(host_g).exploded for i in range(addr[1])] else: netdef = [(' Network Address:', addr[0].network_address.exploded), (' Broadcast Address:', addr[0].broadcast_address.exploded), (' Valid Hosts:', 2 ** (32 - addr[0].prefixlen)-2), (' Wildcard Mask:', addr[0].hostmask.exploded), (' Mask bits:', addr[0].prefixlen), ] return [(' '+addr[0].network_address.exploded+'/32', '')] \ if addr[0].prefixlen == 32 else netdef
905cf702fda005645c608b9dadb84f3659d991c1
3,649,038
from typing import List def init_anim() -> List: """Initialize the animation.""" return []
121fff8b4102c2961449d970307e762bd983bdbe
3,649,039
def keep_digits(txt: str) -> str: """Discard from ``txt`` all non-numeric characters.""" return "".join(filter(str.isdigit, txt))
34387003ea03651dd2582b3c49f1095c5589167b
3,649,040
import re def camel_case_split(identifier): """Split camelCase function names to tokens. Args: identifier (str): Identifier to split Returns: (list): lower case split tokens. ex: ['camel', 'case'] """ matches = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)', identifier) return [m.group(0) for m in matches]
f212bbe5cc33cb31bea023f726abf60a1491b7df
3,649,041
from typing import Any def _ensure_meadowrun_sqs_access_policy(iam_client: Any) -> str: """ Creates a policy that gives permission to read/write SQS queues for use with grid_task_queue.py """ # https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/iam.html#IAM.Client.create_policy ignore_boto3_error_code( lambda: iam_client.create_policy( PolicyName=_MEADOWRUN_SQS_ACCESS_POLICY_NAME, PolicyDocument=_MEADOWRUN_SQS_ACCESS_POLICY_DOCUMENT, ), "EntityAlreadyExists", ) return ( f"arn:aws:iam::{_get_account_number()}:policy/" f"{_MEADOWRUN_SQS_ACCESS_POLICY_NAME}" )
6bafad83dcf0ed82eac626ad36b9d73416757f37
3,649,042
def get_subset(dframe, strata, subsetno): """This function extracts a subset of the data""" df_subset = pd.DataFrame(columns=list(dframe)) #initialize df_real = dframe.dropna() #get rid of nans edges = np.linspace(0, 1, strata+1) #edges of data strata for i in range(0, strata): df_temp = df_real[(df_real['gender diversity score'] > edges[i]) & (df_real['gender diversity score'] < edges[i+1])] temp_ind = np.round(np.linspace(0, len(df_temp)-1, subsetno/strata)) df_subset = pd.concat([df_subset, df_temp.sort_values(by=['gender diversity score']). iloc[temp_ind, :].reset_index(drop=True)], ignore_index=True) return df_subset
c1657cbce23bb222f68bc5b7efe3fe54dfcc26bd
3,649,043
import logging def create_logger(name: str) -> logging.Logger: """Create logger, adding the common handler.""" if name is None: raise TypeError("name is None") logger = logging.getLogger(name) # Should be unique logger.addHandler(_LOGGING_HANDLER) return logger
c4c888345586718f8b476368ef118656d9650469
3,649,044
def say_hello(): """ Say hello """ return utils.jsonify_success({ 'message': 'Hello {}! You are logged in.'.format(current_user.email) })
52c0f572c0bd521a3ab12f1781d39c37130a78d3
3,649,045