content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def collapse(board_u): """ takes a row/column of the board and collapses it to the left """ i = 1 limit = 0 while i < 4: if board_u[i]==0: i += 1 continue up_index = i-1 curr_index = i while up_index>=0 and board_u[up_index]==0: board_u[up_index] = board_u[curr_index] board_u[curr_index] = 0 up_index -= 1 curr_index -= 1 if up_index >= limit and board_u[up_index]==board_u[curr_index]: board_u[up_index] *= 2 board_u[curr_index] = 0 limit = curr_index i += 1 return board_u
a79a3c7b83355f95face09e0ab21ab0b15a81053
3,648,701
import re def find_match_in_file(search_term, file_location): """ This function is used to query a file search_term = Term to find file_location = Location of file to query. """ try: with open(file_location) as line: for search in line: result = re.match(search_term, search) if result: return result return except Exception as err: print(err)
d78776069c8f2b4da5f09bf0ce3e675e215ee584
3,648,702
def get_cost_function(cost_function_name: str): """ Given the name of a cost function, retrieve the corresponding function and its partial derivative wrt Y_circ :param cost_function_name: the name of the cost function :return: the corresponding cost function and its partial derivative wrt Y_circ """ try: return cost_functions[cost_function_name] except KeyError: raise UnknownCostFunctionName(cost_function_name)
4f6664d91878e482f1996faa9141c201e2d260d3
3,648,703
def create_C1(data_set): """ Create frequent candidate 1-itemset C1 by scaning data set. Args: data_set: A list of transactions. Each transaction contains several items. Returns: C1: A set which contains all frequent candidate 1-itemsets """ C1 = set() for t in data_set: for item in t: item_set = frozenset([item]) C1.add(item_set) return C1
9f3deb61c6c3b982976c61c4247102431794daa8
3,648,704
def timezone(name): """ Loads a Timezone instance by name. :param name: The name of the timezone. :type name: str or int :rtype: Timezone """ return Timezone.load(name)
c0d0250a30581c4414eb4bb293331127011ae2a3
3,648,705
def complexDivision(a, b): """ 复数除法 :param a: 负数a :param b: 负数b :return: 返回除法结果 """ res = np.zeros(a.shape, a.dtype) divisor = 1. / (b[:, :, 0] ** 2 + b[:, :, 1] ** 2) res[:, :, 0] = (a[:, :, 0] * b[:, :, 0] + a[:, :, 1] * b[:, :, 1]) * divisor res[:, :, 1] = (a[:, :, 1] * b[:, :, 0] + a[:, :, 0] * b[:, :, 1]) * divisor return res
b3758021f466d8b56af06698c83077875ff7fdb5
3,648,706
def dynamics_RK4(OdeFun, tspan, x, u, v): """ # RK4 integrator for a time-invariant dynamical system under a control, u, and disturbance, v. # See https://lpsa.swarthmore.edu/NumInt/NumIntFourth.html This impl adopted from unstable-zeros's learning CBFs example for two airplanes https://github.com/unstable-zeros/learning-cbfs/blob/master/airplane_example/learning_cbfs_airplane.ipynb This function must be called within a loop for a total of N steps of integration, Obviously, the smallet the value of T, the better Inp.ts: OdeFun: Right Hand Side of Ode function to be integrated tspan: A list [start, end] that specifies over what time horizon to integrate the dynamics x: State, must be a list, initial condition u: Control, must be a list v: Disturbance, must be a list Author: Lekan Molu, August 09, 2021 """ M = 4 # RK4 steps per interval h = 0.2 # time step if onp.any(tspan): hh = (tspan[1]-tspan[0])/10/M X = onp.array(x) U = onp.array(u) V = onp.array(v) for j in range(M): if onp.any(tspan): # integrate for this much time steps for h in np.arange(tspan[0], tspan[1], hh): k1 = OdeFun(X, U, V) k2 = OdeFun(X + h/2 * k1, U, V) k3 = OdeFun(X + h/2 * k2, U, V) k4 = OdeFun(X + h * k3, U, V) X = X+(h/6)*(k1 +2*k2 +2*k3 +k4) else: k1 = OdeFun(X, U, V) k2 = OdeFun(X + h/2 * k1, U, V) k3 = OdeFun(X + h/2 * k2, U, V) k4 = OdeFun(X + h * k3, U, V) X = X+(h/6)*(k1 +2*k2 +2*k3 +k4) return list(X)
cda0b30b9973e299be4c14e11660d6f2fd9bc0e9
3,648,707
def random_decay(num_actions=None, decay_type='polynomial_decay', start_decay_at=0, stop_decay_at=1e9, decay_rate=0., staircase=False, decay_steps=10000, min_exploration_rate=0): """Builds a random decaying exploration. Decay a random value based on number of states and the decay_type. Args: num_actions: `int` or None. If discrete num_action must be None. decay_type: A decay function name defined in `exploration_decay` possible Values: exponential_decay, inverse_time_decay, natural_exp_decay, piecewise_constant, polynomial_decay. start_decay_at: `int`. When to start the decay. stop_decay_at: `int`. When to stop the decay. decay_rate: A Python number. The decay rate. staircase: Whether to apply decay in a discrete staircase, as opposed to continuous, fashion. decay_steps: How often to apply decay. min_exploration_rate: `float`. Don't decay below this number. Returns: `function` the exploration logic operation. """ if num_actions is None: exploration_rate = partial(np.random.randn, 1) else: exploration_rate = partial(np.random.randn, num_actions) exploration_rate = _decay_fn(timestep=get_global_timestep(), exploration_rate=exploration_rate, decay_type=decay_type, start_decay_at=start_decay_at, stop_decay_at=stop_decay_at, decay_rate=decay_rate, staircase=staircase, decay_steps=decay_steps, min_exploration_rate=min_exploration_rate) track(exploration_rate, tf.GraphKeys.EXPLORATION_RATE) return exploration_rate
6cdcaac8e6fbdf609ed09dd686cebad0935017aa
3,648,708
def not_found_handler(not_found): """Basic not found request handler.""" return render_template('except.html', http_excep=not_found, message='Not resource found at this URL.', http_code=404, http_error="Not Found")
35e147ea123eba7df7e517279aaf3e0790656d95
3,648,709
def remove_minor_regions(labeled_img, biggest_reg_lab): """ Set all the minor regions to background and the biggest to 1. Returns: A numpy array with the new segmentation. """ f = np.vectorize(lambda x: 1 if x == biggest_reg_lab else 0) return f(labeled_img)
86f015d4bca9dab570fd8ea8684f466d86803b54
3,648,710
from bs4 import BeautifulSoup import re import json def get_right(html): """ 获取公共解析部分(右边页面,用户详细资料部分) """ soup = BeautifulSoup(html, "html.parser") scripts = soup.find_all('script') pattern = re.compile(r'FM.view\((.*)\)') cont = '' # 这里先确定右边的标识,企业用户可能会有两个r_id rids = [] for script in scripts: m = pattern.search(script.string) if m and 'WB_frame_c' in script.string: all_info = m.group(1) cont = json.loads(all_info).get('html', '') if not cont: return '' rsoup = BeautifulSoup(cont, 'html.parser') r_ids = rsoup.find(attrs={'class': 'WB_frame_c'}).find_all('div') for r in r_ids: rids.append(r['id']) for script in scripts: for r_id in rids: m = pattern.search(script.string) if m and r_id in script.string: all_info = m.group(1) cont += json.loads(all_info).get('html', '') return cont
c76ae4a70904145f34b6fe1a3c2d8d5ef563f342
3,648,711
def marginal_ln_likelihood_worker(task): """ Compute the marginal log-likelihood, i.e. the likelihood integrated over the linear parameters. This is meant to be ``map``ped using a processing pool` within the functions below and is not supposed to be in the public API. Parameters ---------- task : iterable An array containing the indices of samples to be operated on, the filename containing the prior samples, and the data. Returns ------- ll : `numpy.ndarray` Array of log-likelihood values. """ slice_or_idx, task_id, prior_samples_file, joker_helper = task # Read the batch of prior samples batch = read_batch(prior_samples_file, joker_helper.packed_order, slice_or_idx, units=joker_helper.internal_units) if batch.dtype != np.float64: batch = batch.astype(np.float64) # memoryview is returned ll = joker_helper.batch_marginal_ln_likelihood(batch) return np.array(ll)
fd46ef000994c981889fbb440d8ffeacdf0a8b41
3,648,712
def from_matvec(matrix, vector=None): """ Combine a matrix and vector into an homogeneous affine Combine a rotation / scaling / shearing matrix and translation vector into a transform in homogeneous coordinates. Parameters ---------- matrix : array-like An NxM array representing the the linear part of the transform. A transform from an M-dimensional space to an N-dimensional space. vector : None or array-like, optional None or an (N,) array representing the translation. None corresponds to an (N,) array of zeros. Returns ------- xform : array An (N+1, M+1) homogenous transform matrix. See Also -------- to_matvec Examples -------- >>> from_matvec(np.diag([2, 3, 4]), [9, 10, 11]) array([[ 2, 0, 0, 9], [ 0, 3, 0, 10], [ 0, 0, 4, 11], [ 0, 0, 0, 1]]) The `vector` argument is optional: >>> from_matvec(np.diag([2, 3, 4])) array([[2, 0, 0, 0], [0, 3, 0, 0], [0, 0, 4, 0], [0, 0, 0, 1]]) """ matrix = np.asarray(matrix) nin, nout = matrix.shape t = np.zeros((nin + 1, nout + 1), matrix.dtype) t[0:nin, 0:nout] = matrix t[nin, nout] = 1. if vector is not None: t[0:nin, nout] = vector return t
82aaf8fd72f076baa731163b335b5afd873f6f8c
3,648,713
def read_file(fp, limit=DEFAULT_FILE_READ_SIZE): """ Return output of fp.read() limited to `limit` bytes of output from the end of file. """ fp.seek(0, 2) # Go to EOF total = fp.tell() if total > limit: fp.seek(total - limit) else: fp.seek(0) return fp.read()
97fe4bc2b465cdcc562c931c6ffae68ceb616715
3,648,715
def sample_quaternions(shape=None): """ Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning, James J. Kuffner (2004) https://ri.cmu.edu/pub_files/pub4/kuffner_james_2004_1/kuffner_james_2004_1.pdf """ s = np.random.random(shape) sigma1 = np.sqrt(1 - s) sigma2 = np.sqrt(s) theta1 = np.random.uniform(0, 2 * np.pi, shape) theta2 = np.random.uniform(0, 2 * np.pi, shape) w = np.cos(theta2) * sigma2 x = np.sin(theta1) * sigma1 y = np.cos(theta1) * sigma1 z = np.sin(theta2) * sigma2 return np.stack([w, x, y, z], axis=-1)
b7484c857cea09ade1e15b46ffa102bdeb16aa34
3,648,716
def _select_free_device(existing): """ Given a list of allocated devices, return an available device name. According to http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html all AWS Linux instances have ``/dev/sd[a-z]`` available. However: - ``sda`` is reserved for the root device (technically only ``sda1``); - Amazon "strongly recommend that you don't" use instance store names (usually ``/dev/sd[b-e]``) "because the behavior can be unpredictable"; - some "custom kernels might have restrictions that limit use to ``/dev/sd[f-p]``". ``sd[f-p]`` only allows 11 devices, so to increase this, ignore the least stringent statement above, and allow ``sd[f-z]`` (21 devices). To reduce the risk of failing on custom AMIs, select from ``[f-p]`` first. Any further increase will need to start mining the ``hd[a-z][1-15]`` and ``xvd[b-c][a-z]`` namespaces, but which to use depends on whether the AMI uses paravirtualization or HVM. :param Sequence[bytes]: List of allocated device basenames (e.g. ``[b'sda']``). :return unicode file_name: available device name for attaching EBS volume. """ local_devices = frozenset(existing) sorted_devices = sorted(existing) IN_USE_DEVICES(devices=sorted_devices).write() for suffix in b"fghijklmonpqrstuvwxyz": next_local_device = b'xvd' + suffix next_local_sd_device = b'sd' + suffix file_name = u'/dev/sd' + unicode(suffix) possible_devices = [ next_local_device, next_local_sd_device ] if not local_devices.intersection(possible_devices): return file_name # Could not find any suitable device that is available # for attachment. Log to Eliot before giving up. NO_AVAILABLE_DEVICE(devices=sorted_devices).write() raise NoAvailableDevice()
93860df03c9df75c11f31c3017106fbed58bb48e
3,648,717
def create_target_delivery_request(get_offers_opts): """Converts dict representation of get_offers options to TargetDeliveryRequest object""" return TargetDeliveryRequest(request=create_delivery_request(get_offers_opts.get("request")), target_cookie=get_offers_opts.get("targetCookie"), target_location_hint=get_offers_opts.get("targetLocationHint"), consumer_id=get_offers_opts.get("consumerId"), customer_ids=get_offers_opts.get("customerIds"), session_id=get_offers_opts.get("sessionId"), visitor=get_offers_opts.get("visitor"))
cf470d56b32d6fd5eaeee3b549333425607dedbd
3,648,718
def wintype_to_cdata(wintype): """ Returns the underlying CFFI cdata object or ffi.NULL if wintype is None. Used internally in API wrappers to "convert" pywincffi's Python types to the required CFFI cdata objects when calling CFFI functions. Example: >>> from pywincffi.core import dist >>> from pywincffi.kernel32 import CreateEvent >>> from pywincffi.wintypes import wintype_to_cdata >>> ffi, lib = dist.load() >>> # Get an event HANDLE, using the wrapper: it's a Python HANDLE object. >>> hEvent = CreateEvent(bManualReset=False, bInitialState=False) >>> # Call ResetEvent directly without going through the wrapper: >>> hEvent_cdata = wintype_to_cdata(hEvent) >>> result = lib.ResetEvent(hEvent_cdata) :param wintype: A type derived from :class:`pywincffi.core.typesbase.CFFICDataWrapper` :return: The underlying CFFI <cdata> object, or ffi.NULL if wintype is None. """ ffi, _ = dist.load() if wintype is None: return ffi.NULL if isinstance(wintype, (SOCKET, HANDLE, WSAEVENT)): return wintype._cdata[0] return wintype._cdata
e85123a0dc790c9b53f7afb4199c45d573e14310
3,648,719
import json def rating_feedback_view(incident: Incident, channel_id: str): """Builds all blocks required to rate and provide feedback about an incident.""" modal_template = { "type": "modal", "title": {"type": "plain_text", "text": "Incident Feedback"}, "blocks": [ { "type": "context", "elements": [ { "type": "plain_text", "text": "Use this form to rate your experience and provide feedback about the incident.", } ], }, ], "close": {"type": "plain_text", "text": "Cancel"}, "submit": {"type": "plain_text", "text": "Submit"}, "callback_id": RatingFeedbackCallbackId.submit_form, "private_metadata": json.dumps({"incident_id": str(incident.id), "channel_id": channel_id}), } rating_picker_options = [] for rating in FeedbackRating: rating_picker_options.append( {"text": {"type": "plain_text", "text": rating}, "value": rating} ) rating_picker_block = { "type": "input", "block_id": RatingFeedbackBlockId.rating, "label": {"type": "plain_text", "text": "Rate your experience"}, "element": { "type": "static_select", "placeholder": {"type": "plain_text", "text": "Select a rating"}, "options": rating_picker_options, }, "optional": False, } modal_template["blocks"].append(rating_picker_block) feedback_block = { "type": "input", "block_id": RatingFeedbackBlockId.feedback, "label": {"type": "plain_text", "text": "Give us feedback"}, "element": { "type": "plain_text_input", "action_id": RatingFeedbackBlockId.feedback, "placeholder": { "type": "plain_text", "text": "How would you describe your experience?", }, "multiline": True, }, "optional": False, } modal_template["blocks"].append(feedback_block) anonymous_checkbox_block = { "type": "input", "block_id": RatingFeedbackBlockId.anonymous, "label": { "type": "plain_text", "text": "Check the box if you wish to provide your feedback anonymously", }, "element": { "type": "checkboxes", "action_id": RatingFeedbackBlockId.anonymous, "options": [ { "value": "anonymous", "text": {"type": "plain_text", "text": "Anonymize my feedback"}, }, ], }, "optional": True, } modal_template["blocks"].append(anonymous_checkbox_block) return modal_template
5698c87cc7530decbff083130c0150085ff7871c
3,648,721
def _GetTargetOS(): """Returns the target os specified in args.gn file. Returns an empty string is target_os is not specified. """ build_args = _GetBuildArgs() return build_args['target_os'] if 'target_os' in build_args else ''
930c56d18d55d12728f7aac594096f0697c03bb4
3,648,722
def generalise_sent_pos(s): """ generalise sentence pattern by POS tags only :param s: :return: """ rets = [] for token in s['sent']: e = token.idx + len(token.text) is_matched = False for ann in s['anns']: if token.idx >= ann['s'] and e <= ann['e']: rets.append((token.text, token.pos_, True, ann['signed_label'], ann['gt_label'])) is_matched = True break # print '%s-%s, %s: [%s]' % (token.idx, e, token.idx, token.text) if not is_matched: rets.append((token.text, token.pos_)) return {"sent": s['sent'].text, 'pattern': rets}
03092bd253f13739d918438839ff4234f5ef80af
3,648,723
def add_batting_metrics(df): """ Adds the following columns to a given DataFrame: PA 1B OBP BA SLG OPS ISO PA/HR K BB BABIP wOBA wRAA wRC Args: df (DataFrame): the DataFrame to append additional stats to Returns: DataFrame of stats with additional columns """ df.loc[:, 'PA'] = df.apply(_calculate_pa, axis=1) df = df.loc[df.PA > 0] try: df.loc[:, '1B'] = df.apply(_calculate_singles, axis=1) df.loc[:, 'OBP'] = round((df['H'] + df['BB'] + df['IBB'] + df['HBP']) \ /df['PA'], ROUND_TO) df.loc[:, 'BA'] = round(df['H'] / df['AB'], ROUND_TO) df.loc[:, 'SLG'] = round((1 *df['1B'] + 2 * df['2B']+ 3 * df['3B'] \ + 4 * df['HR']) /df['AB'], ROUND_TO) df.loc[:, 'OPS'] = round(df['OBP'] + df['SLG'], ROUND_TO) df.loc[:, 'ISO'] = round(df['SLG'] - df['BA'], ROUND_TO) df.loc[:, 'HR%'] = round(df['HR'] / df['PA'], ROUND_TO) df.loc[:, 'K%'] = round(df['K'] / df['PA'], ROUND_TO) # df.loc[:, 'K%'] = round(df['K'] / df['PA'], ROUND_TO)*100 df.loc[:, 'BB%'] = round(df['BB'] / df['PA'], ROUND_TO) # df.loc[:, 'BB%'] = round(df['BB'] / df['PA'], ROUND_TO)*100 df.loc[:, 'BABIP'] = round((df['H'] - df['HR']) \ / (df['AB'] - df['K'] - df['HR'] \ + df['SF']), ROUND_TO) df.loc[:, 'wOBA'] = df.apply(_calculate_woba, axis=1) df.loc[:, 'wRAA'] = df.apply(_calculate_wraa, axis=1) df.loc[:, 'wRC'] = df.apply(_calculate_wrc, axis=1) return df.sort_values(by='wOBA', ascending=False) except: print('no records found') return pd.DataFrame()
50a424696a1db32966b8b240823e326248f092aa
3,648,724
def line_break(text, line_len=79, indent=1): """ Split some text into an array of lines. Enter: text: the text to split. line_len: the maximum length of a line. indent: how much to indent all but the first line. Exit: lines: an array of lines. """ lines = [text.rstrip()] while len(lines[-1]) > line_len: pos = lines[-1].rfind(' ', 0, line_len) if pos < 0: pos = line_len lines[-1:] = [lines[-1][:pos].rstrip(), ' '*indent+lines[-1][ pos:].strip()] return lines
34b866109689796a4d428e7d3a68a34f7152250f
3,648,725
from nipype.pipeline import engine as pe from nibabies.workflows.anatomical.preproc import init_anat_average_wf from nibabies.workflows.anatomical.registration import init_coregistration_wf from nibabies.workflows.anatomical.brain_extraction import ( init_infant_brain_extraction_wf, ) from nibabies.workflows.anatomical.outputs import init_coreg_report_wf def init_workflow(bids_path, output_path, participant_label, workdir=None): """Create the preprocessing workflow.""" wf = pe.Workflow(name="nibabies_anat") for subid in participant_label: sub_wf = pe.Workflow(name=f"nibabies_anat_{subid}") t1w_files = list( (bids_path / f"sub-{subid}" / "anat").glob(f"sub-{subid}*_T1w.nii.gz") ) t2w_files = list( (bids_path / f"sub-{subid}" / "anat").glob(f"sub-{subid}*_T2w.nii.gz") ) t1w_ref = init_anat_average_wf( num_maps=len(t1w_files), name="t1w_ref", omp_nthreads=8 ) t2w_ref = init_anat_average_wf( num_maps=len(t2w_files), name="t2w_ref", omp_nthreads=8 ) t1w_ref.inputs.inputnode.in_files = [str(f) for f in t1w_files] t2w_ref.inputs.inputnode.in_files = [str(f) for f in t2w_files] be = init_infant_brain_extraction_wf(omp_nthreads=8, age_months=2) cr = init_coregistration_wf(omp_nthreads=8, sloppy=True) rpt = init_coreg_report_wf(output_dir=str(output_path.absolute())) rpt.inputs.inputnode.source_file = [str(f) for f in t1w_files] # fmt:off sub_wf.connect([ (t2w_ref, be, [("outputnode.out_file", "inputnode.in_t2w")]), (t1w_ref, cr, [("outputnode.out_file", "inputnode.in_t1w")]), (be, cr, [ ("outputnode.t2w_preproc", "inputnode.in_t2w_preproc"), ("outputnode.out_mask", "inputnode.in_mask"), ("outputnode.out_probmap", "inputnode.in_probmap"), ]), (cr, rpt, [ ("outputnode.t1w_preproc", "inputnode.t1w_preproc"), ("outputnode.t2w_preproc", "inputnode.t2w_preproc"), ("outputnode.t1w_mask", "inputnode.in_mask"), ]), ]) # fmt:on wf.add_nodes([sub_wf]) if workdir: wf.base_dir = workdir return wf
71bc9d3d0d11ebd93f608a66e115110272b23c67
3,648,726
def visualize_spectrum(y): """Effect that maps the Mel filterbank frequencies onto the LED strip""" global _prev_spectrum y = np.copy(interpolate(y, config.N_PIXELS // 2)) common_mode.update(y) diff = y - _prev_spectrum _prev_spectrum = np.copy(y) # Color channel mappings r = r_filt.update(y - common_mode.value) g = np.abs(diff) b = b_filt.update(np.copy(y)) # Mirror the color channels for symmetric output r = np.concatenate((r[::-1], r)) g = np.concatenate((g[::-1], g)) b = np.concatenate((b[::-1], b)) output = np.array([r, g,b]) * 255 return output
ca20151f268f5124d7cf909a64ff1c668740a858
3,648,727
def testDuplicateContours(glyph): """ Contours shouldn't be duplicated on each other. """ contours = {} for index, contour in enumerate(glyph): contour = contour.copy() contour.autoStartSegment() pen = DigestPointPen() contour.drawPoints(pen) digest = pen.getDigest() if digest not in contours: contours[digest] = [] contours[digest].append(index) duplicateContours = [] for digest, indexes in contours.items(): if len(indexes) > 1: duplicateContours.append(indexes[0]) return duplicateContours
ed3f5499dfbf36192f025a0551b252bd2623216f
3,648,728
import re def expand_strength(row): """Extracts information from Strength column and cleans remaining strengths. Gets Additional Info and Final Volume Quantity columns from Strength. Reformats any malformed strengths and removes commas from within numbers. """ strengths = row['Strength'] # search for additional info marked by double asterisks if '*' in strengths: additional_info = '' for tag in ADDITIONAL_INFO_TAGS: if tag in strengths: additional_info = additional_info + tag + '. ' strengths = strengths.replace(tag, '') row['AdditionalInfo'] = additional_info # search for final final Reconstituted Solution Volume quantity if re.match(r"(.*)?\(\d*[.,]?\d+\s*ML\)", strengths): paren = re.search(r"\(\d*[.,]?\d+\s*ML\)", strengths) strengths = re.sub(r"\(\d*[.,]?\d+\s*ML\)", '', strengths).strip() row['FinalVolQty'] = get_qty_format(paren[0].strip('()')) # replace malformed strings for better formatting for bad_format, improved_format in ILL_FORMATTED_STRENGTHS.items(): strengths = strengths.replace(bad_format, improved_format) # determine if there is a semi colon anywhere between two parentheses paren = re.findall(r'[\(][^)]*;.*?[\)]', strengths) if paren: strengths = reformat_paren_with_semi(strengths) # remove comma from numbers strengths = re.sub(r'(\d),(\d)', r'\1\2', strengths) row['CleanStrength'] = strengths.strip() return row
e6520fa26a4f8a75954db4e957a4ed7f3e52f8a2
3,648,729
def dem_autoload(geometries, demType, vrt=None, buffer=None, username=None, password=None, product='dem', nodata=None, hide_nodata=False): """ obtain all relevant DEM tiles for selected geometries Parameters ---------- geometries: list[spatialist.vector.Vector] a list of :class:`spatialist.vector.Vector` geometries to obtain DEM data for; CRS must be WGS84 LatLon (EPSG 4326) demType: str the type of DEM to be used; current options: - 'AW3D30' (ALOS Global Digital Surface Model "ALOS World 3D - 30m") * info: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm * url: ftp://ftp.eorc.jaxa.jp/pub/ALOS/ext1/AW3D30/release_v1804 * height reference: EGM96 - 'Copernicus 10m EEA DEM' (Copernicus 10 m DEM available over EEA-39 countries) * registration: https://spacedata.copernicus.eu/web/cscda/data-access/registration * url: ftps://cdsdata.copernicus.eu/DEM-datasets/COP-DEM_EEA-10-DGED/2021_1 * height reference: EGM2008 - 'Copernicus 30m Global DEM' * info: https://copernicus-dem-30m.s3.amazonaws.com/readme.html * url: https://copernicus-dem-30m.s3.eu-central-1.amazonaws.com/ * height reference: EGM2008 - 'Copernicus 30m Global DEM II' * registration: https://spacedata.copernicus.eu/web/cscda/data-access/registration * url: ftps://cdsdata.copernicus.eu/DEM-datasets/COP-DEM_GLO-30-DGED/2021_1 * height reference: EGM2008 - 'Copernicus 90m Global DEM' * info: https://copernicus-dem-90m.s3.amazonaws.com/readme.html * url: https://copernicus-dem-90m.s3.eu-central-1.amazonaws.com/ * height reference: EGM2008 - 'Copernicus 90m Global DEM II' * registration: https://spacedata.copernicus.eu/web/cscda/data-access/registration * url: ftps://cdsdata.copernicus.eu/DEM-datasets/COP-DEM_GLO-90-DGED/2021_1 * height reference: EGM2008 - 'GETASSE30' * info: https://seadas.gsfc.nasa.gov/help-8.1.0/desktop/GETASSE30ElevationModel.html * url: https://step.esa.int/auxdata/dem/GETASSE30 * height reference: WGS84 - 'SRTM 1Sec HGT' * url: https://step.esa.int/auxdata/dem/SRTMGL1 * height reference: EGM96 - 'SRTM 3Sec' * url: https://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/TIFF * height reference: EGM96 - 'TDX90m' * registration: https://geoservice.dlr.de/web/dataguide/tdm90 * url: ftpes://tandemx-90m.dlr.de * height reference: WGS84 vrt: str or None an optional GDAL VRT file created from the obtained DEM tiles buffer: int, float, None a buffer in degrees to add around the individual geometries username: str or None (optional) the user name for services requiring registration password: str or None (optional) the password for the registration account product: str the sub-product to extract from the DEM product. The following options are available for the respective DEM types: - 'AW3D30' * 'dem': the actual Digital Elevation Model * 'msk': mask information for each pixel (Cloud/Snow Mask, Land water and low correlation mask, Sea mask, Information of elevation dataset used for the void-filling processing) * 'stk': number of DSM-scene files which were used to produce the 5 m resolution DSM - 'Copernicus 10m EEA DEM' * 'dem': the actual Digital Elevation Model * 'edm': editing mask * 'flm': filling mask * 'hem': height error mask * 'wbm': water body mask - 'Copernicus 30m Global DEM' * 'dem': the actual Digital Elevation Model - 'Copernicus 30m Global DEM II' * 'dem': the actual Digital Elevation Model * 'edm': editing mask * 'flm': filling mask * 'hem': height error mask * 'wbm': water body mask - 'Copernicus 90m Global DEM' * 'dem': the actual Digital Elevation Model - 'Copernicus 90m Global DEM II' * 'dem': the actual Digital Elevation Model * 'edm': editing mask * 'flm': filling mask * 'hem': height error mask * 'wbm': water body mask - 'GETASSE30' * 'dem': the actual Digital Elevation Model - 'SRTM 1Sec HGT' * 'dem': the actual Digital Elevation Model - 'SRTM 3Sec' * 'dem': the actual Digital Elevation Model - 'TDX90m' * 'dem': the actual Digital Elevation Model * 'am2': Amplitude Mosaic representing the minimum value * 'amp': Amplitude Mosaic representing the mean value * 'com': Consistency Mask * 'cov': Coverage Map * 'hem': Height Error Map * 'lsm': Layover and Shadow Mask, based on SRTM C-band and Globe DEM data * 'wam': Water Indication Mask Returns ------- list or None the names of the obtained files or None if a VRT file was defined Examples -------- download all SRTM 1 arcsec DEMs overlapping with a Sentinel-1 scene and mosaic them to a single GeoTIFF file .. code-block:: python from pyroSAR import identify from pyroSAR.auxdata import dem_autoload from spatialist import gdalwarp # identify the SAR scene filename = 'S1A_IW_SLC__1SDV_20150330T170734_20150330T170801_005264_006A6C_DA69.zip' scene = identify(filename) # extract the bounding box as spatialist.Vector object bbox = scene.bbox() # download the tiles and virtually combine them in an in-memory # VRT file subsetted to the extent of the SAR scene plus a buffer of 0.01 degrees vrt = '/vsimem/srtm1.vrt' dem_autoload(geometries=[bbox], demType='SRTM 1Sec HGT', vrt=vrt, buffer=0.01) # write the final GeoTIFF file outname = scene.outname_base() + 'srtm1.tif' gdalwarp(src=vrt, dst=outname, options={'format': 'GTiff'}) # alternatively use function dem_create and warp the DEM to UTM # including conversion from geoid to ellipsoid heights from pyroSAR.auxdata import dem_create outname = scene.outname_base() + 'srtm1_ellp.tif' dem_create(src=vrt, dst=outname, t_srs=32632, tr=(30, 30), geoid_convert=True, geoid='EGM96') """ with DEMHandler(geometries) as handler: return handler.load(demType=demType, username=username, password=password, vrt=vrt, buffer=buffer, product=product, nodata=nodata, hide_nodata=hide_nodata)
8b95d2ae3a518cd8181c21d138f7754146e9acd1
3,648,730
import string import random def randomString(stringLength=6): """Generate a random string of fixed length """ letters = string.ascii_uppercase return ''.join(random.choice(letters) for i in range(stringLength))
8652f4039d7b3ea024001e965e81d4b742b6c2e8
3,648,731
def create_new_record(account,userName,password): """ Function that creates new records for a given user account """ new_record = Records(account,userName,password) return new_record
7e87347dbb1526168cdb7ebee1268a67381682e0
3,648,732
def is_bow(vec): """ Checks if a vector is in the sparse Gensim BoW format """ return matutils.isbow(vec)
0e180f1cd0319a366492c692b73459302407a9da
3,648,733
import asyncio def timeout(seconds, loop=None): """ Returns a channel that closes itself after `seconds`. :param seconds: time before the channel is closed :param loop: you can optionally specify the loop on which the returned channel is intended to be used. :return: the timeout channel """ c = Chan(loop=loop or asyncio.get_event_loop()) c.loop.call_later(seconds, c.close) return c
c2cc8c362123a5dd9c8b867a78b23cb32c0f4330
3,648,734
def analyse_df(df, options): """ Analyses a dataframe, creating a metadata object based on the passed options. Metadata objects can be used to apply dataset preparations across multiple platforms. """ _validate_options(options) metadata = _create_metadata(options) for proc in options["procs"]: if proc == "FillMissing": _analyse_fill_missing(df, options, metadata) elif proc == "Normalize": _analyse_standardization(df, options, metadata) elif proc == "Categorify": _analyse_categorization(df, options, metadata) else: raise ValueError("Unsupported proc type in options " + proc) metadata["columns"][options["dep_var"]] = {"type": COL_TYPES.DEPVAR.value} return metadata
8ccefe92dabca1da71b32bc941ab320f04e1b437
3,648,735
def base_route(): """ Base route to any page. Currently, aboutme. """ return redirect(url_for("pages.links"))
e01efc921ac2d55c8de3f8b2b20fa68b10f0d834
3,648,736
def blend_normal(source, source_mask, target): """Blend source on top of target image using weighted alpha blending. Args: source (np.ndarray): Array of shape (H, W, C) which contains the source image (dtype np.uint8). source_mask (np.ndarray): Array of shape (H, W) which contains the source foreground mask (dtype np.uint8). Background pixels should be assigned 0 and foreground 255. Values inbetween are used to interpolate between source and target. target (np.ndarray): Array of shape (H, W, C) which contains the target image. Returns: output (np.ndarray): Array of the same shape as target containing the blended image. """ return paste_to(source, source_mask, target, (0, 0))
af6b4206eafc019aa2075772541cb6cb195f2ad1
3,648,737
def load_dataset(name): """ Load a dataset. """ try: func = loaders[name] except KeyError: print(f"Dataset '{name}' is not in available list: {list_datasets()}") else: return func()
fd57b34625590a8c0680c6b46d35980245ec6e5c
3,648,738
import tokenize def split_symbols_implicit_precedence(tokens, local_dict, global_dict): # pragma: no cover """Replace the sympy builtin split_symbols with a version respecting implicit multiplcation. By replacing this we can better cope with expressions like 1/xyz being equivalent to 1/(x*y*z) rather than (y*z)/x as is the default. However it cannot address issues like 1/2x becoming (1/2)*x rather than 1/(2*x), because Python's tokeniser does not respect whitespace and so cannot distinguish between '1/2 x' and '1/2x'. This transformation is unlikely to be used, but is provided as proof of concept. """ result = [] split = False split_previous = False for tok in tokens: if split_previous: # throw out closing parenthesis of Symbol that was split split_previous = False continue split_previous = False if tok[0] == tokenize.NAME and tok[1] == 'Symbol': split = True elif split and tok[0] == tokenize.NAME: symbol = tok[1][1:-1] if sympy_parser._token_splittable(symbol): # If we're splitting this symbol, wrap it in brackets by adding # them before the call to Symbol: result = result[:-2] + [(tokenize.OP, '(')] + result[-2:] for char in symbol: if char in local_dict or char in global_dict: # Get rid of the call to Symbol del result[-2:] result.extend([(tokenize.NAME, "{}".format(char)), (tokenize.NAME, 'Symbol'), (tokenize.OP, '(')]) else: result.extend([(tokenize.NAME, "'{}'".format(char)), (tokenize.OP, ')'), (tokenize.NAME, 'Symbol'), (tokenize.OP, '(')]) # Delete the last two tokens: get rid of the extraneous # Symbol( we just added # Also, set split_previous=True so will skip # the closing parenthesis of the original Symbol del result[-2:] split = False split_previous = True # Then close the extra brackets we added: result.append((tokenize.OP, ')')) continue else: split = False result.append(tok) return result
a26adc14eec622b04e454b0a426ee37ac26e9bef
3,648,739
def altsumma(f, k, p): """Return the sum of f(i) from i=k, k+1, ... till p(i) holds true or 0. This is an implementation of the Summation formula from Kahan, see Theorem 8 in Goldberg, David 'What Every Computer Scientist Should Know About Floating-Point Arithmetic', ACM Computer Survey, Vol. 23, No. 1, March 1991.""" if not p(k): return 0 else: S = f(k) C = 0 j = k + 1 while p(j): Y = f(j) - C T = S + Y C = (T - S) - Y S = T j += 1 return S
952e77fcedfbe01658342126d95b79175c082976
3,648,740
from re import T import functools from datetime import datetime from typing import cast def action_logging(f: T) -> T: """ Decorates function to execute function at the same time submitting action_logging but in CLI context. It will call action logger callbacks twice, one for pre-execution and the other one for post-execution. Action logger will be called with below keyword parameters: sub_command : name of sub-command start_datetime : start datetime instance by utc end_datetime : end datetime instance by utc full_command : full command line arguments user : current user log : airflow.models.log.Log ORM instance dag_id : dag id (optional) task_id : task_id (optional) execution_date : execution date (optional) error : exception instance if there's an exception :param f: function instance :return: wrapped function """ @functools.wraps(f) def wrapper(*args, **kwargs): """ An wrapper for cli functions. It assumes to have Namespace instance at 1st positional argument :param args: Positional argument. It assumes to have Namespace instance at 1st positional argument :param kwargs: A passthrough keyword argument """ if not args: raise ValueError("Args should be set") if not isinstance(args[0], Namespace): raise ValueError("1st positional argument should be argparse.Namespace instance," f"but is {type(args[0])}") metrics = _build_metrics(f.__name__, args[0]) cli_action_loggers.on_pre_execution(**metrics) try: return f(*args, **kwargs) except Exception as e: metrics['error'] = e raise finally: metrics['end_datetime'] = datetime.utcnow() cli_action_loggers.on_post_execution(**metrics) return cast(T, wrapper)
4a524549b6c3c19928e70be460482061b71d2197
3,648,741
def decode_public_id(str_id): """ make numeric ID from 4-letter ID Args: str_id (str): ID consisting of a number and 3 alphabets Return: num_id (int): numeric ID """ def alpha2num(c): return encoder.find(c) def num2num(c): return 5 if c == '9' else int(c) - 3 alphas = [alpha2num(c) for c in str_id[1:]] alphas.insert(0, num2num(str_id[0])) return sum(alphas[i] * 18**(3-i) for i in range(4))
8425ffe2d0fd7161507734a3b452d48d78e97246
3,648,742
def get_sentence_idcs_in_split(datasplit: DataFrame, split_id: int): """Given a dataset split is (1 for train, 2 for test, 3 for dev), returns the set of corresponding sentence indices in sentences_df.""" return set(datasplit[datasplit["splitset_label"] == split_id]["sentence_index"])
b10d05dec6c70fae6a31eb017afe4d110a6bc23a
3,648,743
def valid_scope_list(): """List all the oscilloscope types.""" s = "\nValid types are:\n" s += ", ".join(DS1000C_scopes) + "\n" s += ", ".join(DS1000E_scopes) + "\n" s += ", ".join(DS1000Z_scopes) + "\n" s += ", ".join(DS4000_scopes) + "\n" s += ", ".join(DS6000_scopes) + "\n" return s
2d6dfb7ae6ea5c62ebe674fa1018202aa5f9f0ac
3,648,744
def load(): """Returns an instance of the plugin""" return SyslogOutOutputPlugin
072c827e96e85b04e1109a1788e92502729de09d
3,648,746
def word_sorter(x): """ Function to sort the word frequency pairs after frequency Lowest frequency collocates first - highest frerquency collocates last """ # getting length of list of word/frequency pairs lst = len(x) # sort by frequency for i in range(0, lst): for j in range(0, lst-i-1): if (x[j][1] > x[j + 1][1]): temp = x[j] x[j]= x[j + 1] x[j + 1] = temp return(x)
571570bb03d6473b9c6839aa6fdc0b1ba8efbe3c
3,648,747
def le_assinatura(): """[A funcao le os valores dos tracos linguisticos do modelo e devolve uma assinatura a ser comparada com os textos fornecidos] Returns: [list] -- [description] """ print("Bem-vindo ao detector automático de COH-PIAH.") print("Informe a assinatura típica de um aluno infectado:") wal = float(input("Entre o tamanho médio de palavra:")) ttr = float(input("Entre a relação Type-Token:")) hlr = float(input("Entre a Razão Hapax Legomana:")) sal = float(input("Entre o tamanho médio de sentença:")) sac = float(input("Entre a complexidade média da sentença:")) pal = float(input("Entre o tamanho medio de frase:")) return [wal, ttr, hlr, sal, sac, pal]
b6a0bacb02f3f878a88a6681d87d11408c292fe2
3,648,748
def category_task_delete(request, structure_slug, category_slug, task_id, structure): """ Deletes task from a category :type structure_slug: String :type category_slug: String :type task_id: String :type structure: OrganizationalStructure (from @is_manager) :param structure_slug: structure slug :param category_slug: category slug :param task_id: task code :param structure: structure object (from @is_manager) :return: render """ category = get_object_or_404(TicketCategory, organizational_structure=structure, slug=category_slug) task = get_object_or_404(TicketCategoryTask, code=task_id, category=category) messages.add_message(request, messages.SUCCESS, _("Attività {} eliminata correttamente").format(task)) # log action logger.info('[{}] manager of structure {}' ' {} deleted a task' ' for category {}'.format(timezone.localtime(), structure, request.user, category)) delete_directory(task.get_folder()) task.delete() return redirect('uni_ticket:manager_category_detail', structure_slug=structure_slug, category_slug=category_slug)
3329c2342f6b115ab33df334df27a26ab8f3fc79
3,648,749
def lnposterior_selection(lnprobability, sig_fact=3., quantile=75, quantile_walker=50, verbose=1): """Return selected walker based on the acceptance fraction. :param np.array lnprobability: Values of the lnprobability taken by each walker at each iteration :param float sig_fact: acceptance fraction below quantile - sig_fact * sigma will be rejected :param float quantile: Quantile to use as reference lnprobability value. :param float quantile_walker: Quantile used to assert the lnprobability for each walker. 50 is the meadian, 100 is the highest lnprobability. :param int verbose: if 1 speaks otherwise not :return list_of_int l_selected_walker: list of selected walker :return int nb_rejected: number of rejected walker """ walkers_percentile_lnposterior = percentile( lnprobability, quantile_walker, axis=1) percentile_lnposterior = percentile( walkers_percentile_lnposterior, quantile) mad_lnposterior = mad(walkers_percentile_lnposterior) if verbose == 1: logger.info("lnposterior of the walkers: {}\nquantile {}%: {}, MAD:{}" "".format(walkers_percentile_lnposterior, quantile, percentile_lnposterior, mad_lnposterior)) l_selected_walker = where(walkers_percentile_lnposterior > ( percentile_lnposterior - (sig_fact * mad_lnposterior)))[0] nb_rejected = lnprobability.shape[0] - len(l_selected_walker) if verbose == 1: logger.info( "Number of rejected walkers: {}/{}".format(nb_rejected, lnprobability.shape[0])) return l_selected_walker, nb_rejected
4c489ee8b3edaca5baad033101236e4165f37041
3,648,750
def space_check(board, position): """Returns boolean value whether the cell is free or not.""" return board[position] not in PLAYERS_MARKS
d335a2dd441e7b761e6f9680905e993b12b3e8f7
3,648,751
import functools def validate_params(serializer_cls): """利用Serializer对请求参数进行校验""" def decorator(func): @functools.wraps(func) def wrapper(request: Request): data = request.query_params if request.method == "GET" else request.data serializer = serializer_cls(data=data) serializer.is_valid(raise_exception=True) setattr(request, "validated_data", serializer.validated_data) return func(request) return wrapper return decorator
c2573c131a01ede9862efac3bf3b280b2f426214
3,648,753
from typing import Optional import gc def get_pairs_observations(kdata: kapture.Kapture, kdata_query: Optional[kapture.Kapture], keypoints_type: str, max_number_of_threads: Optional[int], iou: bool, topk: int): """ get observations pairs as list """ if iou: individual_observations = get_observation_images(keypoints_type, kdata, kdata_query, max_number_of_threads) gc.collect() else: individual_observations = None all_pairs = get_observation_image_pairs(keypoints_type, kdata, kdata_query, max_number_of_threads) if iou: assert individual_observations is not None final_pairs = {} for img1 in all_pairs.keys(): for img2 in all_pairs[img1].keys(): if img1 not in final_pairs: final_pairs[img1] = {} union = individual_observations[img1] + individual_observations[img2] - all_pairs[img1][img2] if union == 0: final_pairs[img1][img2] = 0 else: final_pairs[img1][img2] = all_pairs[img1][img2] / union all_pairs = final_pairs getLogger().info('ranking co-observation pairs...') assert kdata.records_camera is not None image_pairs = get_topk_observation_pairs(all_pairs, kdata.records_camera, topk) return image_pairs
cb9b04c88d2dec30c1d782be602c8ab615ddb65f
3,648,754
def col2im_conv(col, input, layer, h_out, w_out): """Convert image to columns Args: col: shape = (k*k, c, h_out*w_out) input: a dictionary contains input data and shape information layer: one cnn layer, defined in testLeNet.py h_out: output height w_out: output width Returns: im: shape = (h_in, w_in, c) """ h_in = input['height'] w_in = input['width'] c = input['channel'] k = layer['k'] stride = layer['stride'] im = np.zeros((h_in, w_in, c)) col = np.reshape(col, (k*k*c, h_out*w_out)) for h in range(h_out): for w in range(w_out): im[h*stride: h*stride+k, w*stride: w*stride+k, :] = \ im[h*stride: h*stride+k, w*stride: w*stride+k, :] + \ np.reshape(col[:, h*w_out + w], (k, k, c)) return im
408b1ea43eac3c25cc32909a4f32e8380e2ff0d4
3,648,755
def fix_missing_period(line): """Adds a period to a line that is missing a period""" if line == "": return line if line[-1] in END_TOKENS: return line return line + " ."
c886384b634ed9e88e37c539b541c3037029c056
3,648,758
async def main() -> int: """main async portion of command-line runner. returns status code 0-255""" try: await tome.database.connect() return await migrations.main( whither=args.whither, conn=tome.database.connection(), dry_run=args.dry_run ) except KeyboardInterrupt: logger.critical("keyboard interrupt") try: await tome.database.disconnect() except Exception as e: logger.error("failed to cleanly disconnect database", exc_info=e) logger.info("rolled back") return 130 except Exception as e: logger.critical("a fatal error occurred!", exc_info=e) await tome.database.disconnect() logger.info("rolled back") return 3 finally: await tome.database.disconnect()
d72a0e30aac405cc87a39bda8d31e53119162c0f
3,648,759
def getTaskStatus( task_id ) : """Get tuple of Instance status and corresponding status string. 'task_id' is the DB record ID.""" _inst = Instance.objects.get( id = task_id ) return ( _inst.status , STATUS2TEXT[_inst.status] )
48fc342d16bd6d9f1f1b912f1fef00a4ae9ed932
3,648,760
def fit_affine_matrix(p1, p2): """ Fit affine matrix such that p2 * H = p1 Hint: You can use np.linalg.lstsq function to solve the problem. Args: p1: an array of shape (M, P) p2: an array of shape (M, P) Return: H: a matrix of shape (P, P) that transform p2 to p1. """ assert (p1.shape[0] == p2.shape[0]),\ 'Different number of points in p1 and p2' p1 = pad(p1) p2 = pad(p2) ### YOUR CODE HERE H = np.linalg.lstsq(p2, p1, rcond=None)[0] ### END YOUR CODE # Sometimes numerical issues cause least-squares to produce the last # column which is not exactly [0, 0, 1] H[:,2] = np.array([0, 0, 1]) return H
302d7a30bfe11f343016de7f42708b71b6df3f3b
3,648,761
def cnn_lstm_nd(pfac, max_features=NUM_WORDS, maxlen=SEQUENCE_LENGTH, lstm_cell_size=CNNLSTM_CELL_SIZE, embedding_size=EMBEDDING_SIZE): """CNN-LSTM model, modified from Keras example.""" # From github.com/keras-team/keras/blob/master/examples/imdb_cnn_lstm.py filters = 64 kernel_size = 5 pool_size = 4 model = Sequential() model.add(pfac(Embedding(max_features, embedding_size, input_length=maxlen, name='embedding'))) model.add(pfac(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1, name='conv'))) model.add(MaxPooling1D(pool_size=pool_size)) model.add(pfac(LSTM(lstm_cell_size, name='lstm'))) model.add(pfac(Dense(2, name='dense'))) return model
cf5573dc6b9f02549cb40505d0d224c90ddccf90
3,648,762
def updateUserPassword(userName, newPassword): """ update the user password """ cursor = conn('open') if cursor: try: cursor.execute("UPDATE user SET u_Pass= %s where u_name= %s ", (generate_password_hash(newPassword), userName)) conn("commit") conn('close') except Exception as e: return False else: conn('close') return False return True
9aac85b6393e60121b3ec4aad943b87613173298
3,648,763
def mit_b1(**kwargs): """ Constructs a mit_b1 model. Arguments: """ model = MixVisionTransformer(embed_dims=64, num_layers=[2, 2, 2, 2], num_heads=[1, 2, 5, 8], **kwargs) return model
a38e4d09646a29f0648379ba02a42bb079da9917
3,648,764
def GenerateConfig(_): """Returns empty string.""" return ''
ed42eb1c320ca1df25603a53d4abf4a1b14215f3
3,648,765
def calc_procrustes(points1, points2, return_tform=False): """ Align the predicted entity in some optimality sense with the ground truth. Does NOT align scale https://github.com/shreyashampali/ho3d/blob/master/eval.py """ t1 = points1.mean(0) # Find centroid t2 = points2.mean(0) points1_t = points1 - t1 # Zero mean points2_t = points2 - t2 R, s = orthogonal_procrustes(points1_t, points2_t) # Run procrustes alignment, returns rotation matrix and scale points2_t = np.dot(points2_t, R.T) # Apply tform to second pointcloud points2_t = points2_t + t1 if return_tform: return R, t1 - t2 else: return points2_t
01f3957624a764f3d6853a402a9d0d9c8b933766
3,648,766
from pathlib import Path import torch def read_image_pillow(input_filename: Path) -> torch.Tensor: """ Read an image file with pillow and return a torch.Tensor. :param input_filename: Source image file path. :return: torch.Tensor of shape (C, H, W). """ pil_image = Image.open(input_filename) torch_tensor = TF.to_tensor(pil_image) return torch_tensor
dec3cdfddaec4e6f50a6c5fc1ba384d217c0637b
3,648,767
def compute_solar_angle(balloon_state: balloon.BalloonState) -> float: """Computes the solar angle relative to the balloon's position. Args: balloon_state: current state of the balloon. Returns: Solar angle at the balloon's position. """ el_degree, _, _ = solar.solar_calculator( balloon_state.latlng, balloon_state.date_time) return el_degree
f11f91b282ee4897e444591d8eb14377c8001fa9
3,648,768
from typing import Optional from typing import Tuple from typing import List def parse_links(source_file: str, root_url: Optional[str]=None) -> Tuple[List[Link], str]: """parse a list of URLs with their metadata from an RSS feed, bookmarks export, or text file """ check_url_parsing_invariants() timer = TimedProgress(TIMEOUT * 4) with open(source_file, 'r', encoding='utf-8') as file: links, parser = run_parser_functions(file, timer, root_url=root_url) timer.end() if parser is None: return [], 'Failed to parse' return links, parser
d13207d1415b02d9f39b15d6b1f2435b8304500b
3,648,769
from typing import Iterable from typing import Any from typing import cast def executemany(c: CursorType, sql: str, args: Iterable[Iterable[Any]]) -> OtherResult: """ Call c.executemany, with the given sqlstatement and argumens, and return c. The mysql-type-plugin for mysql will special type this function such that the number and types of args matches the what is expected for the query by analyzing the mysql-schema.sql file in the project root. """ c.executemany(sql, args) return cast(OtherResult, c)
25f93840189a99e2c90bf5d63cd49558f497e38f
3,648,770
import click import struct def validate_host(): """Ensure that the script is being run on a supported platform.""" supported_opsys = ["darwin", "linux"] supported_machine = ["amd64"] opsys, machine = get_platform() if opsys not in supported_opsys: click.secho( f"this application is currently not known to support {opsys}", fg="red", ) raise SystemExit(2) if machine not in supported_machine: click.secho( f"this application is currently not known to support running on {machine} machines", fg="red", ) if struct.calcsize("P") * 8 != 64: click.secho( "this application can only be run on 64 bit hosts, in 64 bit mode", fg="red" ) raise SystemExit(2) return True
e0346ebd8d80062a2be7666d1d89d40803dd069f
3,648,772
def EAD_asset(x,RPs,curves,positions): """ Calculates the expected annual damage for one road segment (i.e. a row of the DataFrame containing the results) based on the damage per return period and the flood protection level. WARNING: THIS FUNCTION PROBABLY REALLY SLOWS DOWN THE OVERALL POST-PROCESSING SCRIPT (COMPARE ITS PERFORMANCE WITH THE CLIMATE CHANGE SCRIPT) Most likely, the cause is the use of a loop and an if-statement for the manipulation; this is not smart for a function that is applied on a DataFrame!!! Arguments: *x* (Geopandas Series) - A row of the GeoPandas DataFrame containing all road segments, should have dam cols, rps, flood protection level *RPs* (List) - return periods of the damage data, in descending order e.g. [500,200,100,50,20,10] *curves* (List) - short names of damage curves for which to calculate the EAD e.g. ["C1","C2","C3","C4","C5","C6","HZ"] *positions* (List) - tuple positions of available max damage estimates e.g. [0,1,2,3,4] Returns: *x* (Geopandas Series) - with added the new columns containing EADs """ PL = x["Jongman_FP"] RPs_copy = [y for y in RPs] #make a new list, or it will be altered in the function and mess up everything!!! for curve in curves: damcols = ["dam_{}_rp{}".format(curve,rp) for rp in RPs] #this was RPs; but somehow this did not work EAD = [0,0,0,0,0] #initialize empty lists for pos in positions: #iterate over all the max damage estimates dam = list(x[damcols].apply(lambda y: pick_tuple(y,pos)).values) #creates a numpy array with the damage values of the desired max_dam EAD[pos] = risk_FP(dam,RPs_copy,PL) if not curve == "HZ": #save results to the series, which will be returned as a row in the df x["EAD_{}".format(curve)] = tuple(EAD) else: x["EAD_HZ"] = EAD[0] return x
f2cae0626ff55f81277314d9f45dadcba480c7fd
3,648,773
def procrustes_alignment(data, reference=None, n_iter=10, tol=1e-5, return_reference=False, verbose=False): """Iterative alignment using generalized procrustes analysis. Parameters ---------- data : list of ndarrays, shape = (n_samples, n_feat) List of datasets to align. reference : ndarray, shape = (n_samples, n_feat), optional Dataset to use as reference in the first iteration. If None, the first dataset in `data` is used as reference. Default is None. n_iter : int, optional Number of iterations. Default is 10. tol : float, optional Tolerance for stopping criteria. Default is 1e-5. return_reference : bool, optional Whether to return the reference dataset built in the last iteration. Default is False. verbose : bool, optional Verbosity. Default is False. Returns ------- aligned : list of ndarray, shape = (n_samples, n_feat) Aligned datsets. mean_dataset : ndarray, shape = (n_samples, n_feat) Reference dataset built in the last iteration. Only if ``return_reference == True``. """ if n_iter <= 0: raise ValueError('A positive number of iterations is required.') if reference is None: # Use the first item to build the initial reference aligned = [data[0]] + [procrustes(d, data[0]) for d in data[1:]] reference = np.mean(aligned, axis=0) else: aligned = [None] * len(data) reference = reference.copy() dist = np.inf for i in range(n_iter): # Align to reference aligned = [procrustes(d, reference) for d in data] # Compute new mean new_reference = np.mean(aligned, axis=0) # Compute distance reference -= new_reference reference **= 2 new_dist = reference.sum() # Update reference reference = new_reference if verbose: print('Iteration {0:>3}: {1:.6f}'.format(i, new_dist)) if dist != np.inf and np.abs(new_dist - dist) < tol: break dist = new_dist return aligned, reference if return_reference else aligned
1452c124d88cf00f9c0d45bf7ba0e1db449657d3
3,648,774
def get_paramsets(args, nuisance_paramset): """Make the paramsets for generating the Asmimov MC sample and also running the MCMC. """ asimov_paramset = [] llh_paramset = [] gf_nuisance = [x for x in nuisance_paramset.from_tag(ParamTag.NUISANCE)] llh_paramset.extend( [x for x in nuisance_paramset.from_tag(ParamTag.SM_ANGLES)] ) llh_paramset.extend(gf_nuisance) for parm in llh_paramset: parm.value = args.__getattribute__(parm.name) boundaries = fr_utils.SCALE_BOUNDARIES[args.dimension] tag = ParamTag.SCALE llh_paramset.append( Param( name='logLam', value=np.mean(boundaries), ranges=boundaries, std=3, tex=r'{\rm log}_{10}\left (\Lambda^{-1}' + \ misc_utils.get_units(args.dimension)+r'\right )', tag=tag ) ) llh_paramset = ParamSet(llh_paramset) tag = ParamTag.BESTFIT if args.data is not DataType.REAL: flavor_angles = fr_utils.fr_to_angles(args.injected_ratio) else: flavor_angles = fr_utils.fr_to_angles([1, 1, 1]) asimov_paramset.extend(gf_nuisance) asimov_paramset.extend([ Param(name='astroFlavorAngle1', value=flavor_angles[0], ranges=[ 0., 1.], std=0.2, tag=tag), Param(name='astroFlavorAngle2', value=flavor_angles[1], ranges=[-1., 1.], std=0.2, tag=tag), ]) asimov_paramset = ParamSet(asimov_paramset) return asimov_paramset, llh_paramset
d49d2d757a041f1087508810239eac21260ac4b7
3,648,775
def indgen(*shape): """ Create a (multi-dimensional) range of integer values. Notes ----- **porting to python** If ``shape`` is of one dimension only, you can use ``np.arange(n)``. IDL accepts floats as dimension parameters, but applies ``int()`` before using them. While ``np.arange()`` also accepts floats, be careful, as the number of elements do not match any more! .. code-block:: IDL INDGEN(5.2) -> [0,1,2,3,4] INDGEN(5) -> [0,1,2,3,4] np.arange(5.2) -> [0,1,2,3,4,5] ; !! np.arange(int(5.2)) -> [0,1,2,3,4] np.arange(5) -> [0,1,2,3,4] """ return findgen(*shape, dtype=int)
68f703ae0c7863bd8ed3866755d50df97d1c9de9
3,648,776
def get_bins(values): """ Automatically compute the number of bins for discrete variables. Parameters ---------- values = numpy array values Returns ------- array with the bins Notes ----- Computes the width of the bins by taking the maximun of the Sturges and the Freedman-Diaconis estimators. Acording to numpy `np.histogram` this provides good all around performance. The Sturges is a very simplistic estimator based on the assumption of normality of the data. This estimator has poor performance for non-normal data, which becomes especially obvious for large data sets. The estimate depends only on size of the data. The Freedman-Diaconis rule uses interquartile range (IQR) to estimate the binwidth. It is considered a robusts version of the Scott rule as the IQR is less affected by outliers than the standard deviation. However, the IQR depends on fewer points than the standard deviation, so it is less accurate, especially for long tailed distributions. """ x_min = values.min().astype(int) x_max = values.max().astype(int) # Sturges histogram bin estimator bins_sturges = (x_max - x_min) / (np.log2(values.size) + 1) # The Freedman-Diaconis histogram bin estimator. iqr = np.subtract(*np.percentile(values, [75, 25])) # pylint: disable=assignment-from-no-return bins_fd = 2 * iqr * values.size ** (-1 / 3) width = np.round(np.max([1, bins_sturges, bins_fd])).astype(int) return np.arange(x_min, x_max + width + 1, width)
638c07fe6263391ff42d7a96b2d482c4b6dd7c9a
3,648,778
def destination_name(data): """ Fonction qui permet de récupérer le nom du terminus en fonction de data passé en paramètre Nom fonction : destination_name Paramètre : data, un flux xml Return : un string qui a comme valeur le libellé de la destination final""" tree = ET.ElementTree(ET.fromstring(data)) root = tree.getroot() for tag in root.findall("."): if tag.tag == "PlannedPatternDelivery": if tag.find("PlannedPattern") is None: return "Error, 'PlannedPattern' tag not exists" else: if tag.find("PlannedPattern/DestinationName") is None: return "Error, 'DestinationName' tag not exists" else: for elem in root.findall("./PlannedPattern/DestinationName"): if elem.text is None: return "Error, 'DestinationName' tag is empty" else: return elem.text
ee5065523e1ae26104687a97ef0bd41e70670ef2
3,648,779
def prim_NumToTensor(mapper, graph, node): """ 构造转为Tensor的PaddleLayer。 TorchScript示例: %other.2 : Tensor = prim::NumToTensor(%1736) 参数含义: %other.2 (Tensor): 输出。 %1736 (-): 输入。 """ scope_name = mapper.normalize_scope_name(node) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [output_name] layer_inputs = {} layer_attrs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%86 mapper._check_input(graph, inputs_node[0], inputs_name[0], current_outputs, scope_name) inputs_inputs_name, inputs_inputs_node = mapper._get_inputs_name(inputs_node[0]) if inputs_node[0].kind() == "aten::size" and len(inputs_inputs_name) > 1: layer_inputs["input"] = inputs_name[0] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) graph.add_layer( "prim_equal", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name) else: layer_inputs["fill_value"] = inputs_name[0] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) input_type = list(node.inputs())[0].type() layer_attrs["dtype"] = input_type layer_attrs["shape"] = [1] graph.add_layer( "paddle.full", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs) return current_inputs, current_outputs
0fd8881513dc4ee95e7c187b790e8d95d5996ec7
3,648,780
def import_taskdict(modname): """Import user module and return its name and TASKDICT""" try: mod = import_module(modname) except (ImportError, ModuleNotFoundError): LOGGER.critical('Module %s not found. ' 'Check it is along PYTHONPATH', modname) raise try: modtd = getattr(mod, 'TASKDICT') except AttributeError: LOGGER.critical('Module %s has no TASKDICT; ' 'Please, remove it from input, to continue.', mod.__name__) raise return mod.__name__, modtd
b351389ab92650a5dcc317953e6fe500b324a09d
3,648,781
def nlp_stem(string): """ Generates a list of the stem for each word in the original string and returns the joined list of stems as a single string. """ ps = nltk.porter.PorterStemmer() stems = [ps.stem(word) for word in string.split()] return " ".join(stems)
a0e44b709eb8b53500f9208634b059ff50660710
3,648,782
def _CreateHostConfigEntityFromHostInventory(lab_name, host): """Creates HostConfig from HostInventory. Args: lab_name: the lab name. host: the ansible inventory Host object. Returns: the HostConfig entity. """ return datastore_entities.HostConfig( id=host.name, lab_name=lab_name, hostname=host.name, inventory_groups=sorted(set([g.name for g in host.groups])))
e3de12526f380baa5b6e0cfd7b0cb6ce14236633
3,648,783
import PIL import time def visualize_object_detection_custom( image, post_processed, config, prev_state, start_time, duration): """Draw object detection result boxes to image. Args: image (np.ndarray): A inference input RGB image to be draw. post_processed (np.ndarray): A one batch output of model be already applied post process. Format is defined at https://github.com/blue-oil/blueoil/blob/master/docs/specification/output_data.md config (EasyDict): Inference config. prev_state (string): A previous state, "NORMAL" or "WARNING" or "CLEAR" start_time (float): UNIX time when state was changed to current state duration (float): Duration(sec) for waiting to change status displayed Returns: PIL.Image.Image: drawn image object. String: A current state ("NORMAL" or "WARNING" or "CLEAR") Float: UNIX time when state was changed to current state Bool: A flag of which "WARNING" is displayed or not """ colorWarning = (255, 0, 0) colorClear = (0, 255, 0) box_font = PIL.ImageFont.truetype(FONT, 10) state_font = PIL.ImageFont.truetype(FONT, 20) classes = config.CLASSES ng_class_id = classes.index("face") if "face" in classes else 0 start_time = start_time or time.time() center_width = image.shape[1] // 2 predict_boxes = _scale_boxes( post_processed, image.shape, config.IMAGE_SIZE ) # Gather and remove duplicate box in different classes uniq_boxes = _gather_prediction(predict_boxes) states = [_get_state(box, center_width) for box in uniq_boxes] total_state = _get_total_state(states, ng_class_id) image = PIL.Image.fromarray(_mask_image(image)) draw = PIL.ImageDraw.Draw(image) for uniq_box, state in zip(uniq_boxes, states): box = uniq_box["box"] class_id = uniq_box["class_id"] xy = [box[0], box[1], box[0] + box[2], box[1] + box[3]] color = colorWarning if class_id == ng_class_id else colorClear prefix = "[OK]" if state[0] or (state[1] != ng_class_id) else "[NG]" txt = "{:s} {:s}: {:.3f}".format( prefix, classes[class_id], float(uniq_box["score"]) ) draw.rectangle(xy, outline=color) draw.text([box[0], box[1]], txt, fill=color, font=box_font) if prev_state != total_state: start_time = time.time() elapsed_time = float(time.time() - start_time) right_corner = [center_width + 60, 0] displayed_waring = False if total_state == STATE_WARNING and elapsed_time >= duration: draw.text(right_corner, "WARNING", fill=colorWarning, font=state_font) displayed_waring = True elif total_state == STATE_CLEAR and elapsed_time >= duration: draw.text(right_corner, " CLEAR", fill=colorClear, font=state_font) return image, total_state, start_time, displayed_waring
7a325b782ea0dba6bc573d27661545804d68614b
3,648,784
def all_files(directory="..\\raw_data\\"): """ Return flat list of all csv files in the given directory. Args: directory [string] full path to directory with csv files. Default project layout is used if it is not provided Returns: Flat list of csv files as absolute names. """ files = list_files(directory) result = [] for year in files.keys(): result += files[year] return result
179e40756b02c7a25f01fb4e0b8b863326256a3a
3,648,785
def connected_user(**params): """Returns the connected user.""" if g.context.person: return g.context.person == request.view_args.get('person_id')
713f52c8aa090cf8756d49279df72f4f470b4b5c
3,648,786
def remove_plugin(plugin, directory=None): """Removes the specified plugin.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins', expect_type=dict) if plugin not in plugins: return False del plugins[plugin] set_value(repo, 'plugins', plugins) return True
d631d0906411782e681cb2deb76cc1e347f856e4
3,648,787
def command_arg(name, value_type=None, help=''): # noqa; pylint: disable=redefined-builtin """ Decorator wrapping functions to add command line arguments to the sub command to be invoked :param name: Name of the argument :param value_type: Type of the argument :param help: Help string for the argument """ @_ensure_command def wrapper(f): f.command.add_argument(name, value_type=value_type, help=help, # noqa; pylint: disable=redefined-builtin wrapped=f) return f return wrapper
6d8490e5afaa3345ff9af7d905c67f4bc53e4325
3,648,788
def ioc_arg_parser(*, desc, default_prefix, argv=None, macros=None, supported_async_libs=None): """ A reusable ArgumentParser for basic example IOCs. Parameters ---------- description : string Human-friendly description of what that IOC does default_prefix : string args : list, optional Defaults to sys.argv macros : dict, optional Maps macro names to default value (string) or None (indicating that this macro parameter is required). supported_async_libs : list, optional "White list" of supported server implementations. The first one will be the default. If None specified, the parser will accept all of the (hard-coded) choices. Returns ------- ioc_options : dict kwargs to be handed into the IOC init. run_options : dict kwargs to be handed to run """ parser, split_args = template_arg_parser(desc=desc, default_prefix=default_prefix, argv=argv, macros=macros, supported_async_libs=supported_async_libs) return split_args(parser.parse_args())
7b4638afdc04284d5e69bfb48d476a557bc8bcd3
3,648,789
def count_model_param_and_flops(model): """ Return the number of params and the number of flops of (only) 2DConvolutional Layers and Dense Layers for both the model. :return: """ param_by_layer = dict() flop_by_layer = dict() nb_param_model, nb_flop_model = 0, 0 for layer in model.layers: if isinstance(layer, Conv2D): nb_param_layer, nb_param_layer_bias = count_nb_param_layer(layer) nb_flop_layer = count_nb_flop_conv_layer(layer, nb_param_layer, nb_param_layer_bias) elif isinstance(layer, Dense): nb_param_layer, nb_param_layer_bias = count_nb_param_layer(layer) nb_flop_layer = count_nb_flop_dense_layer(layer, nb_param_layer, nb_param_layer_bias) else: # if you have over layers you want to compute flops in: put other conditions here and write the necessary functions nb_param_layer, nb_param_layer_bias, nb_flop_layer = 0, 0, 0 param_by_layer[layer.name] = nb_param_layer + nb_param_layer_bias flop_by_layer[layer.name] = nb_flop_layer nb_param_model += nb_param_layer nb_flop_model += nb_flop_layer total_nb_param_model = nb_param_model total_nb_flop_model = nb_flop_model return total_nb_param_model, total_nb_flop_model
5fff62167db1d369eb02aae07ef7a23bbd5d7a16
3,648,790
import OpenSSL def catch_conn_reset(f): """ A decorator to handle connection reset errors even ones from pyOpenSSL until https://github.com/edsu/twarc/issues/72 is resolved It also handles ChunkedEncodingError which has been observed in the wild. """ try: ConnectionError = OpenSSL.SSL.SysCallError except: ConnectionError = None @wraps(f) def new_f(self, *args, **kwargs): # Only handle if pyOpenSSL is installed. if ConnectionError: try: return f(self, *args, **kwargs) except (ConnectionError, ChunkedEncodingError) as e: log.warning("caught connection reset error: %s", e) self.connect() return f(self, *args, **kwargs) else: return f(self, *args, **kwargs) return new_f
a5b3b7d78a03b81b0eb768e816f5bf3d95ea50cc
3,648,792
def prepared(name): """Prepare the given volume. Args: name (str): Volume name Returns: dict: state return value """ ret = {'name': name, 'changes': {}, 'result': False, 'comment': ''} # Idempotence. if __salt__['metalk8s_volumes.is_prepared'](name): ret['result'] = True ret['comment'] = 'Volume {} already prepared.'.format(name) return ret # Dry-run. if __opts__['test']: ret['changes'][name] = 'Prepared' ret['result'] = None ret['comment'] = 'Volume {} is going to be prepared.'.format(name) return ret # Let's go for real. try: __salt__['metalk8s_volumes.prepare'](name) except Exception as exn: ret['result'] = False ret['comment'] = 'Failed to prepare volume {}: {}.'.format(name, exn) else: ret['changes'][name] = 'Prepared' ret['result'] = True ret['comment'] = 'Volume {} prepared.'.format(name) return ret
443ea25a3bd5797744f2f095b54d40172c57f5ee
3,648,793
def if_statement(env, node): """ 'If' statement def for AST. interpret - runtime function for Evaluator (true of false statement depending on condition). """ condition_value = node.condition.interpret(env) if condition_value: node.true_stmt.interpret(env) else: if node.alternatives_stmt: for alternative_stmt in node.alternatives_stmt: alternative_condition_value = alternative_stmt.interpret(env) if alternative_condition_value: return True if node.false_stmt: node.false_stmt.interpret(env) return condition_value
96522698c42d7649d3951f5fd2ffe3bbd992c985
3,648,794
def volCyl(radius:float, height: float) -> float: """Finds volume of a cylinder""" volume: float = pi * radius * radius * height return volume
2d4320bb0a2d802e4308d22593e8c2f1d797ad87
3,648,795
from s3 import S3DateFilter, \ from s3db.req import req_status_opts def req_filter_widgets(): """ Filter widgets for requests @returns: list of filter widgets """ T = current.T S3LocationFilter, \ S3OptionsFilter, \ S3TextFilter, \ s3_get_filter_opts req_status_opts = OrderedDict(sorted(req_status_opts().items(), key = lambda i: i[0], )) filter_widgets = [ S3TextFilter(["req_ref"], label = T("Order No."), ), S3DateFilter("date"), S3OptionsFilter("transit_status", cols = 3, options = req_status_opts, sort = False, ), S3OptionsFilter("fulfil_status", cols = 3, hidden = True, options = req_status_opts, sort = False, ), S3OptionsFilter("req_item.item_id", hidden = True, options = lambda: s3_get_filter_opts("supply_item"), ), ] if current.auth.s3_has_role("SUPPLY_COORDINATOR"): coordinator_filters = [ S3LocationFilter("site_id$location_id", levels = ["L3", "L4"], ), S3TextFilter("site_id$location_id$addr_postcode", label = T("Postcode"), ), S3OptionsFilter("site_id", hidden = True ), S3OptionsFilter("site_id$organisation_id$delivery.value", label = T("Delivery##supplying"), options = delivery_tag_opts(), ), ] filter_widgets[2:2] = coordinator_filters return filter_widgets
13720abfd491609e2d6ac9e4ab702ef744041b61
3,648,796
from typing import List def is_minimally_connected(graph: List[List[int]], num_vertices: int) -> bool: """ 1. Has no cycle. 2. All nodes are connected """ visited = set() has_cycle = is_cyclic(graph, 0, -1, visited) if has_cycle or len(visited) < num_vertices: # if num_vertices > len(visited), it means there is a disconnect in the graph. return False return True
8b836f34b6e0c3c5f5651f8c31a4448a8af09d13
3,648,797
def to_keep(path): """ :param path: :return: True if heigh and width >= 512 """ img = Image.open(path) h, w = img.size return h >= 512 and w >= 512
0a24fe38f52c6441fc9955e2e4890962b7c35fb6
3,648,798
from typing import Hashable from typing import Callable def __register(key, *additional_keys, default_handler_info, registry=None, registering_for_name="", overwrite=False): """ Internal decorator to register the non-default handlers for multimethod registry and key_fn_name are keyword arguments with defaults to make it easy to apply functools.partial on them """ if registry is None: registry = {} all_keys = [key] + list(additional_keys) def decorator(handler): if not isinstance(key, Hashable): raise TypeError( f"Cannot register handler for function {registering_for_name} with key {repr(key)} that is not Hashable" ) if not isinstance(handler, Callable): raise TypeError(f"handler function {handler} of type {type(handler)} must be Callable") for _key in all_keys: if _key in registry and not overwrite: raise KeyError( f"Duplicate registration for key {repr(_key)} for function {registering_for_name}" ) if __get_default_params(handler): raise ValueError( f"Found default params while registering keys {repr(all_keys)} for function {registering_for_name}. " "Default params are only allowed in the default handler" ) for _key in all_keys: registry[_key] = __HandlerInfo( handler=handler, default_params={ **default_handler_info.default_params, **__get_default_params(handler) # default params of explicit registration takes precedence } ) @wraps(handler) def wrapper(*args, **kwargs): handler(*args, **kwargs) return wrapper return decorator
769184841dd2eb87813533bb19bde0bf747ac26f
3,648,799
def download_from_url_if_not_in_cache(cloud_path: str, cache_dir: str = None): """ :param cloud_path: e.g., https://public-aristo-processes.s3-us-west-2.amazonaws.com/wiqa-model.tar.gz :param to_dir: will be regarded as a cache. :return: the path of file to which the file is downloaded. """ return cached_path(url_or_filename=cloud_path, cache_dir=cache_dir)
f0549e14b4219303ce48f992d684330338958370
3,648,800
from mne.viz.backends.renderer import _get_renderer from mne_connectivity.base import BaseConnectivity def plot_sensors_connectivity(info, con, picks=None, cbar_label='Connectivity'): """Visualize the sensor connectivity in 3D. Parameters ---------- info : dict | None The measurement info. con : array, shape (n_channels, n_channels) | Connectivity The computed connectivity measure(s). %(picks_good_data)s Indices of selected channels. cbar_label : str Label for the colorbar. Returns ------- fig : instance of Renderer The 3D figure. """ _validate_type(info, "info") if isinstance(con, BaseConnectivity): con = con.get_data() renderer = _get_renderer(size=(600, 600), bgcolor=(0.5, 0.5, 0.5)) picks = _picks_to_idx(info, picks) if len(picks) != len(con): raise ValueError('The number of channels picked (%s) does not ' 'correspond to the size of the connectivity data ' '(%s)' % (len(picks), len(con))) # Plot the sensor locations sens_loc = [info['chs'][k]['loc'][:3] for k in picks] sens_loc = np.array(sens_loc) renderer.sphere(np.c_[sens_loc[:, 0], sens_loc[:, 1], sens_loc[:, 2]], color=(1, 1, 1), opacity=1, scale=0.005) # Get the strongest connections n_con = 20 # show up to 20 connections min_dist = 0.05 # exclude sensors that are less than 5cm apart threshold = np.sort(con, axis=None)[-n_con] ii, jj = np.where(con >= threshold) # Remove close connections con_nodes = list() con_val = list() for i, j in zip(ii, jj): if np.linalg.norm(sens_loc[i] - sens_loc[j]) > min_dist: con_nodes.append((i, j)) con_val.append(con[i, j]) con_val = np.array(con_val) # Show the connections as tubes between sensors vmax = np.max(con_val) vmin = np.min(con_val) for val, nodes in zip(con_val, con_nodes): x1, y1, z1 = sens_loc[nodes[0]] x2, y2, z2 = sens_loc[nodes[1]] tube = renderer.tube(origin=np.c_[x1, y1, z1], destination=np.c_[x2, y2, z2], scalars=np.c_[val, val], vmin=vmin, vmax=vmax, reverse_lut=True) renderer.scalarbar(source=tube, title=cbar_label) # Add the sensor names for the connections shown nodes_shown = list(set([n[0] for n in con_nodes] + [n[1] for n in con_nodes])) for node in nodes_shown: x, y, z = sens_loc[node] renderer.text3d(x, y, z, text=info['ch_names'][picks[node]], scale=0.005, color=(0, 0, 0)) renderer.set_camera(azimuth=-88.7, elevation=40.8, distance=0.76, focalpoint=np.array([-3.9e-4, -8.5e-3, -1e-2])) renderer.show() return renderer.scene()
3d236d8e8802f65c6388eeeafa327a252f9a75be
3,648,801
import re import json def str_to_list_1(string): """ Parameters ---------- string : str The str of first line in each sample of sample.txt Returns --------- final_list: lst """ final_list = [] li = re.findall(r'\[.*?\]', string) for ele in li: final_list.append(json.loads(ele)) return final_list
92b4b11a339d2101a0af5408caee58cc9b9668a1
3,648,802
def one_mini_batch(data, batch_indices): """ 产生每一次的小的batch :param data: :param batch_indices: :return: """ batch_data = { "raw_data": [data[i] for i in batch_indices], "word_id_list": [], "label_vector": [] } for data in batch_data["raw_data"]: batch_data["word_id_list"].append(data["word_id_list"]) batch_data["label_vector"].append(data["label_vector"]) return batch_data
2bbbd62a00422431bb3322ebfce26d7fe95edc09
3,648,804
def reset_password(reset_key): """Checks the reset key. If successful, displays the password reset prompt.""" username = auth_utils.check_reset_key(reset_key) if username is None: flask.flash( 'Invalid request. If your link has expired, then you will need to generate a new one. ' 'If you continue to encounter problems, please contact [email protected].' ) return flask.redirect(flask.url_for('auth.forgot_password')) return flask.render_template( 'reset_password.html', username=username, reset_key=reset_key)
4f8e30a1669837c31b3dc2f77df441c50c6439dd
3,648,805
import scipy def williams_diff_test(corr_func: SummaryCorrFunc, X: np.ndarray, Y: np.ndarray, Z: np.ndarray, two_tailed: bool) -> float: """ Calculates the p-value for the difference in correlations using Williams' Test. """ # In the math, Z is metric 1. We take the absolute value of the correlations because # it does not matter whether they are positively or negatively correlated with each other. The WMT scripts # do the same before calling r.test r12 = abs(corr_func(X, Z)) r13 = abs(corr_func(Y, Z)) r23 = abs(corr_func(X, Y)) n = _get_n(corr_func, X) # Implementation based on https://github.com/cran/psych/blob/master/R/r.test.R diff = r12 - r13 det = 1 - (r12 ** 2) - (r23 ** 2) - (r13 ** 2) + (2 * r12 * r23 * r13) av = (r12 + r13) / 2 cube = (1 - r23) ** 3 t2 = diff * np.sqrt((n - 1) * (1 + r23) / (((2 * (n - 1) / (n - 3)) * det + av ** 2 * cube))) # r.test implicitly assumes that r12 > r13 because it takes the absolute value of the t statistic. Since we don't, # we have to have special handling for one-tailed tests so we don't map a negative t statistic to a positive one. if two_tailed: pvalue = scipy.stats.t.sf(abs(t2), n - 3) * 2 else: pvalue = scipy.stats.t.sf(t2, n - 3) return pvalue
afda90296b544233ba34f3abdd87d72b360de832
3,648,806
from typing import Tuple from typing import List import sqlite3 def load_students(max_meeting_seconds: int) -> Tuple[List[str], int]: """Loads student names and wait times from the database.""" try: with sqlite3.connect("students.db") as conn: cursor = conn.cursor() try: cursor.execute("SELECT name FROM students") student_names = [row[0] for row in cursor.fetchall()] cursor.execute("SELECT seconds FROM students") individual_seconds = cursor.fetchall()[0][0] return student_names, individual_seconds except IndexError: pass except sqlite3.OperationalError: create_students_table() return [], max_meeting_seconds
b5b2a003216507df413cba7bea1171cd4667ee1f
3,648,807
def get_associated_genes(variants_list: list) -> pd.DataFrame: """ Get variant gene information from BioMart. More information on BioMart here: https://www.ensembl.org/info/data/biomart/index.html :param variants_list: the list with variant ids. :return: dataframe with variant and gene information """ snp_dataset = Dataset(name='hsapiens_snp', host='http://www.ensembl.org') variant_gene_df = snp_dataset.query(attributes=['refsnp_id', 'ensembl_gene_stable_id'], filters={'snp_filter': variants_list}) gene_dataset = Dataset(name='hsapiens_gene_ensembl', host='http://www.ensembl.org') gene_df = gene_dataset.query(attributes=['ensembl_gene_id', 'external_gene_name'], only_unique=False, filters={'link_ensembl_gene_id': list(variant_gene_df['Gene stable ID'])}) merged_df = pd.merge(variant_gene_df, gene_df, on='Gene stable ID') interaction = ['association' for ind, row in merged_df.iterrows()] merged_df['interaction'] = interaction return merged_df
e267afb387496a99701872db94b46543e8c7406a
3,648,809
def crc16(data) : """Compute CRC16 for bytes/bytearray/memoryview data""" crc = _CRC16_START for b in data : crc = ((crc << 8) & 0xFFFF) ^ _CRC16_TABLE[(crc >> 8) ^ b] return crc
ac7dc27ebc47d1bc444050b9adba81d0ac26167a
3,648,810
def sigma(j: int, N: int = 1) -> np.ndarray: """ """ s = [s0, s1, s2, s3] dims = [4] * N idx = np.unravel_index(j, dims) return tensor(s[x] for x in idx)
c312222f5a037723f9b7920a971d93e36e3b3e4b
3,648,811