content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def interface_details():
"""Get interface details, CLI view"""
if success_login_form is None:
return redirect(url_for('base_blueprint.login'))
else:
return render_template('more_int_detials.html',
details=GetDetails.more_int_details(device, username, password, ssh_port, request.form.get('details')))
|
f5643644583babb92a188d04c77a59582db69b52
| 29,951 |
def complement_sequence(sequence: str, reverse: bool = False) -> str:
"""Complement the given sequence, with optional reversing.
Args:
sequence: Input sequence
reverse: Whether or not to perform reverse complementation
Returns:
Complemented (and optionally reversed) string
"""
sequence = sequence.upper()
if reverse:
sequence = reversed(sequence)
return ''.join(NUCLEOTIDE_COMPLEMENT[c] for c in sequence)
|
74c85857f3abf669cfaa43d05d1f0190a448bb54
| 29,952 |
def calc_llr(tree_dict: StrDict) -> int:
"""
Calculate the longest linear route for a synthetic route
:param tree_dict: the route
"""
return calc_depth(tree_dict) // 2
|
18c4cf62e434ee1e7c5902871feb323c1b72a96d
| 29,953 |
def _GetArmVersion(arch):
"""Returns arm_version for the GN build with the given architecture."""
if arch == 'armeabi':
return 6
elif arch == 'armeabi-v7a':
return 7
elif arch in ['arm64-v8a', 'x86', 'x86_64']:
return None
else:
raise Exception('Unknown arch: ' + arch)
|
fbad0d1066fe4a7e81d2341291b436f5dd98fff0
| 29,954 |
def package_copy(r, id, type, revision_number=None, version_name=None):
"""
Copy package - create a duplicate of the Package, set author as current user
"""
revision = get_package_revision(id, type, revision_number, version_name)
""" it may be useful to copy your own package ...
if r.user.pk == revision.author.pk:
return HttpResponseForbidden('You are the author of this %s' % revision.package.get_type_name())
"""
try:
package = Package.objects.get(
full_name=revision.package.get_copied_full_name(),
author__username=r.user.username
)
return HttpResponseForbidden(
'You already have a %s with that name' % revision.package.get_type_name()
)
except:
package = revision.package.copy(r.user)
revision.save_new_revision(package)
return render_to_response("json/%s_copied.json" % package.get_type_name(),
{'revision': revision},
context_instance=RequestContext(r),
mimetype='application/json')
|
8f244a6e8b1309b8b129f316698047b6c78f0186
| 29,955 |
def contract(equation, *operands, **kwargs):
"""
Wrapper around :func:`opt_einsum.contract` that caches contraction paths.
:param bool cache_path: whether to cache the contraction path.
Defaults to True.
"""
backend = kwargs.pop('backend', 'numpy')
cache_path = kwargs.pop('cache_path', True)
if not cache_path:
return opt_einsum.contract(equation, *operands, backend=backend, **kwargs)
# memoize the contraction path
out = kwargs.pop('out', None)
kwargs_key = tuple(kwargs.items())
shapes = tuple(tuple(t.shape) for t in operands)
key = equation, shapes, kwargs_key
if key in _PATH_CACHE:
expr = _PATH_CACHE[key]
else:
expr = opt_einsum.contract_expression(equation, *shapes, **kwargs)
_PATH_CACHE[key] = expr
return expr(*operands, backend=backend, out=out)
|
c7ac17fcee8eef036181e0ee2a96d0b0d4a38593
| 29,956 |
import array
def _compute_jn_pcoa_avg_ranges(jn_flipped_matrices, method):
"""Computes PCoA average and ranges for jackknife plotting
returns 1) an array of jn_averages
2) an array of upper values of the ranges
3) an array of lower values for the ranges
method: the method by which to calculate the range
IQR: Interquartile Range
ideal fourths: Ideal fourths method as implemented in scipy
"""
x,y = shape(jn_flipped_matrices[0])
all_flat_matrices = [matrix.ravel() for matrix in jn_flipped_matrices]
summary_matrix = vstack(all_flat_matrices)
matrix_sum = numpy_sum(summary_matrix, axis=0)
matrix_average = matrix_sum / float(len(jn_flipped_matrices))
matrix_average = matrix_average.reshape(x,y)
if method == 'IQR':
result = matrix_IQR(summary_matrix)
matrix_low = result[0].reshape(x,y)
matrix_high = result[1].reshape(x,y)
elif method == 'ideal_fourths':
result = idealfourths(summary_matrix, axis=0)
matrix_low = result[0].reshape(x,y)
matrix_high = result[1].reshape(x,y)
elif method == "sdev":
# calculate std error for each sample in each dimension
sdevs = zeros(shape=[x,y])
for j in xrange(y):
for i in xrange(x):
vals = array([pcoa[i][j] for pcoa in jn_flipped_matrices])
sdevs[i,j] = vals.std(ddof=1)
matrix_low = -sdevs/2
matrix_high = sdevs/2
return matrix_average, matrix_low, matrix_high
|
bba0003df771b60a55b11b67a7df7cb36039d69f
| 29,957 |
from typing import List
def get_readmission_label_keys(time_windows: List[int]) -> List[str]:
"""Get label keys for readmission.
Args:
time_windows: list<int> of the considered time windows (in days) for
readmission.
Returns:
list<str> of labels for readmission within X days
"""
return [f"{READMISSION_LABEL_BASE}_{t}_days" for t in time_windows]
|
1ba53ef818aadb719832d23afb250fb817b1e087
| 29,958 |
def multiplication(image1, image2):
""" Multiply (pixel-wise) the two input images and return the result.
<gui>
<item name="image1" type="Image" label="Image 1"/>
<item name="image2" type="Image" label="Image 2"/>
<item name="result" type="Image" role="return"
initializer="output=True" label="Result"/>
</gui>
"""
return pixelwise_operation(image1, image2, itk.MultiplyImageFilter)
|
2813758eba743155960d617eb03aafa937a4cfc0
| 29,960 |
def ioat_scan_accel_engine(client, pci_whitelist):
"""Scan and enable IOAT accel engine.
Args:
pci_whitelist: Python list of PCI addresses in
domain:bus:device.function format or
domain.bus.device.function format
"""
params = {}
if pci_whitelist:
params['pci_whitelist'] = pci_whitelist
return client.call('ioat_scan_accel_engine', params)
|
714e40288b2ba141d113c0951bf2c171ebcc76d3
| 29,961 |
import zipfile
import csv
def load_test(tstfile):
"""Load a test from file.
This reads a test from a csv file.
Parameters
----------
tstfile : :class:`str`
Path to the file
"""
# default version string
version_string = "1.0.0"
try:
with zipfile.ZipFile(tstfile, "r") as zfile:
info = TxtIO(zfile.open("info.csv"))
data = csv.reader(info)
first_line = _nextr(data)
if first_line[0] == "wtp-version":
version_string = first_line[1]
header = _nextr(data)
else:
header = first_line
version = version_parse(version_string)
_check_version(version)
if header[0] != "Testtype":
raise ValueError(
f"load_test: expected 'Testtype' but got '{header[0]}'"
)
if header[1] == "PumpingTest":
routine = _load_pumping_test
else:
raise ValueError(f"load_test: unknown test type '{header[1]}'")
except Exception as exc:
raise LoadError(f"load_test: couldn't load test '{tstfile}'") from exc
return routine(tstfile)
|
c8b4e7f2dfc7e627afd1ae58a64723a4deed8248
| 29,962 |
def reorder_instruments(curr_instruments):
"""
Dialog to remove and add instruments at certain indexes.
:param curr_instruments: initial list of instruments
:return: The list of instruments in the new order
"""
while True:
instruments_with_indexes(curr_instruments)
tmp_instruments = [instrument for instrument in curr_instruments]
old_idx = prompt("Enter the index of the instrument to move or [enter] to finish: ",
validator=IndexValidator(len(tmp_instruments) - 1)) or None
if old_idx is None:
break
move_instrument = tmp_instruments.pop(int(old_idx))
instruments_with_indexes(tmp_instruments)
new_idx = prompt(f"Enter the index to insert {move_instrument.part_name()}: ",
validator=IndexValidator(len(tmp_instruments), allow_empty=False))
tmp_instruments.insert(int(new_idx), move_instrument)
print("New instrument order: ")
instruments_with_indexes(tmp_instruments)
correct = prompt("Is this correct? [Y/n] ", default='Y', validator=YNValidator())
if answered_yes(correct):
curr_instruments = [instrument for instrument in tmp_instruments]
return curr_instruments
|
03c042e086d99c9e5ab52c37a2272af82411c777
| 29,963 |
def compute_propeller_with_normal_position(arg_class, cabin_arr):
"""
compute propeller array and connected arm array
:param cabin_arr: numpy array of cabin
:param arg_class: argument class
:return: propeller_arr, arm_arr
"""
l1 = arg_class.l1
l2 = arg_class.l2
l3 = arg_class.l3
# fuselage length
l = l1 + l2 + l3
# propeller setting ratio
txs = arg_class.txs # the ratio of setting position corresponding to overall length
angles = arg_class.angles # angle of arm which is connected with a propeller
# outer line of the collection of propeller
radius = arg_class.radius
# the radius of each propeller
pr = arg_class.pr
# the arm length
lp = arg_class.lp
# setting shift
zdiffp = arg_class.zdiffp
# setting coefficient for arm on z axis
k = arg_class.k
# argm radius
arm_r = arg_class.arm_r
# propeller number(because of symmetric, get the half number of propellers)
half_propeller_number = len(txs)
# coords of joint point
joint_points = []
for idx in range(half_propeller_number):
point = [l * txs[idx], np.max(cabin_arr[:, 1]), idx * zdiffp]
joint_points.append(point)
# coords of propellers at left side
propeller_arr_l = []
# coords of propellers at right side
propeller_arr_r = []
for angle, joint_point in zip(angles, joint_points):
angle = 180 - angle
angle = angle * np.pi / 180.0
# get center coords
center = np.array([joint_point[0] + (radius + pr) * np.cos(angle),
joint_point[1] + (radius + pr) * np.sin(angle),
joint_point[2]])
# z range
z = np.linspace(-k * lp + joint_point[2], (1 - k) * lp + joint_point[2], 30)
for zi in z:
# x range(create circle)
x = np.linspace(center[0] - pr, center[0] + pr, 30)
for xi in x:
target = np.sqrt(pr ** 2 - (xi - center[0]) ** 2)
yui = center[1] + target
yli = center[1] - target
# left side
plu = [xi, yui, zi]
pll = [xi, yli, zi]
propeller_arr_l.append(plu)
propeller_arr_l.append(pll)
# right side
pru = [xi, -yui, zi]
prl = [xi, -yli, zi]
propeller_arr_r.append(pru)
propeller_arr_r.append(prl)
propeller_arr_r = np.array(propeller_arr_r)
propeller_arr_l = np.array(propeller_arr_l)
# put together propeller arr
propeller_arr = np.concatenate([propeller_arr_l, propeller_arr_r], axis=0)
# create arm
arm_arr = []
# right part
x = np.linspace(0, radius + pr, 30)
for xi in x:
y = np.linspace(-arm_r, arm_r, 30)
for yi in y:
target = np.sqrt(arm_r ** 2 - yi ** 2)
zui = target
zli = -target
pu = [xi, yi, zui]
pl = [xi, yi, zli]
for idx in range(half_propeller_number):
rep_j = joint_points[idx]
angle = angles[idx]
# turn over 3d on z axis against upper part
angle_u = -1 * (180 - angle) * np.pi / 180.0
t_arr_u = turnover_3d(angle_u, np.array([0, 0, 1]))
# turn over 3d on z axis against left part
angle_l = 180 * np.pi / 180.0
t_arr_l = turnover_3d(angle_l, np.array([0, 0, 1]))
puu = np.dot(t_arr_u.T, np.array(pu)) + np.array(rep_j)
pll = np.dot(t_arr_l.T, puu) + np.array([l, 0, -2 * zdiffp * idx + (half_propeller_number - 1) * zdiffp])
arm_arr.append(puu.tolist())
arm_arr.append(pll.tolist())
arm_arr = np.array(arm_arr)
return propeller_arr, arm_arr
|
c58aa5939f1b4fef05c9bfa09781310a9b64ab52
| 29,964 |
def get_dims_linear(weight_mat_layers, weight_dict):
"""
Returns a list of dimensions of layers of an mlp in decreasing order.
"""
dims = []
for ix, layer in enumerate(weight_mat_layers):
dim_out, dim_in = weight_dict[layer].shape
if ix == 0:
dims.extend([dim_in, dim_out])
else:
dims.append(dim_out)
return dims
|
eba82695a5c3bd1f850703b172e1f0a7b84fa010
| 29,965 |
def yices_distinct(n, arg):
"""Returns (distinct arg[0] ... arg[n-1])."""
return libyices.yices_distinct(n, arg)
|
7d37cf6a2193cb4bb0d1d46f4f9986afbe35ad50
| 29,966 |
def is_cog_contributor():
"""Check if whoever used the command is in the bots contributors."""
async def predicate(ctx):
if str(ctx.author.id) in ctx.bot.contributors:
return True
else:
raise NotAContributorError(f"Command {ctx.command.name} raised an error: {str(ctx.author)} is not a contributor.")
return commands.check(predicate)
|
d0a7d8096f03ce1bbeed2e6c6265c46d0ae1022a
| 29,967 |
def tuplify2d(x):
"""Convert ``x`` to a tuple of length two.
It performs the following conversion:
.. code-block:: python
x => x if isinstance(x, tuple) and len(x) == 2
x => (x, x) if not isinstance(x, tuple)
Args:
x (any): the object to be converted
Returns:
tuple:
"""
if isinstance(x, tuple):
assert len(x) == 2
return x
return (x, x)
|
64170b14dbe7eb8885d21f45acff6b43979f1219
| 29,968 |
def init_mako(app, **kw):
"""
Initializes the Mako TemplateLookup based on the application configuration
and updates the _request_ctx_stack before each request
"""
def get_first(dicts, keys, default=None):
# look in one or more dictionaries returning the first found value
for d in dicts:
found = filter(lambda x: x in d, keys)
if found:
return d[found[0]]
return default
dirs = get_first([kw, app.config],
map(lambda x: 'MAKO_%s' % x, ('DIRS', 'DIRECTORIES', 'DIR', 'DIRECTORY')),
default='.')
if type(dirs) == str:
dirs = dirs.split(' ')
get = app.config.get
kw['input_encoding'] = kw.pop('input_encoding', get('MAKO_INPUT_ENCODING', 'utf-8'))
kw['output_encoding'] = kw.pop('output_encoding', get('MAKO_OUTPUT_ENCODING', 'utf-8'))
kw['module_directory'] = kw.pop('module_directory', get('MAKO_CACHEDIR', None))
kw['collection_size'] = kw.pop('collection_size', get('MAKO_CACHESIZE', -1))
kw['imports'] = kw.pop('imports', get('MAKO_IMPORTS', None))
lookup = TemplateLookup(directories=dirs, **kw)
@app.before_request
def before_request():
_request_ctx_stack.top._mako_lookup = lookup
return app
|
60713b06cde3be9eca72207aea69a30d9061cffc
| 29,970 |
import time
def erase_devices():
"""Erase all the drives on this server.
This method performs sanitize erase on all the supported physical drives
in this server. This erase cannot be performed on logical drives.
:returns: a dictionary of controllers with drives and the erase status.
:raises exception.HPSSAException, if none of the drives support
sanitize erase.
"""
server = objects.Server()
for controller in server.controllers:
drives = [x for x in controller.unassigned_physical_drives
if (x.get_physical_drive_dict().get('erase_status', '')
== 'OK')]
if drives:
controller.erase_devices(drives)
while not has_erase_completed():
time.sleep(300)
server.refresh()
status = {}
for controller in server.controllers:
drive_status = {x.id: x.erase_status
for x in controller.unassigned_physical_drives}
sanitize_supported = controller.properties.get(
'Sanitize Erase Supported', 'False')
if sanitize_supported == 'False':
msg = ("Drives overwritten with zeros because sanitize erase "
"is not supported on the controller.")
else:
msg = ("Sanitize Erase performed on the disks attached to "
"the controller.")
drive_status.update({'Summary': msg})
status[controller.id] = drive_status
return status
|
5f9a7a2328b24cb0fb45ea560f570b596c0326d7
| 29,971 |
def earlyon(time,duration,*args):
"""
Some lights have a slight delay before they turn on (capacitors that need
to be charged up?). This takes the current time and subtracts that delay
so the code looks like they turn on at the right time, but we really send
the command a little bit early to give the illusion that they're all in
sync
"""
duration = int(duration,10)
cmd = '"'+('" "'.join(args))+'"'
if args[-1]=="on":
return [(time-duration,cmd)]
else:
return [(time,cmd)]
|
5671d46ffe42bd456689cffc3ce3e1f6731101c8
| 29,972 |
def downsample_seg_to_mip(seg, mip_start, mip_end):
"""
Downsample a segmentation to the desired mip level.
Args:
seg (3darray): A volume segmentation.
mip_start (int): The MIP level of seg.
mip_end (int): The desired MIP level.
Returns:
3darray: seg downsampled to :param: mip_end
"""
assert mip_end > mip_start
mip = mip_start
while mip < mip_end:
seg = downsample_seg(seg)
mip += 1
return seg
|
9245c6f1b0602f284a7d565758e322af083e6242
| 29,973 |
def example(name):
"""Renders a sample page with the name specified in the URL."""
return template('<b>Hello {{name}}</b>!', name=name)
|
df52c3ed0708698d7049223b5ea1b7d98f8c3eb7
| 29,974 |
def tri(N, M=None, k=0, dtype=float):
"""Creates an array with ones at and below the given diagonal.
Args:
N (int): Number of rows.
M (int): Number of columns. ``M == N`` by default.
k (int): The sub-diagonal at and below which the array is filled. Zero
is the main diagonal, a positive value is above it, and a negative
value is below.
dtype: Data type specifier.
Returns:
cupy.ndarray: An array with ones at and below the given diagonal.
.. seealso:: :func:`numpy.tri`
"""
if M is None:
M = N
out = cupy.empty((N, M), dtype=dtype)
return _tri_kernel(M, k, out)
|
e7de7d0bc41563450d7e98071a14ca3b85f250c5
| 29,975 |
def UpdateGClientBranch(webkit_rev, magic_gclient_branch):
"""Update the magic gclient branch to point at |webkit_rev|.
Returns: true if the branch didn't need changes."""
target = FindSVNRev(webkit_rev)
if not target:
print "r%s not available; fetching." % webkit_rev
subprocess.check_call(['git', 'fetch', GetRemote()],
shell=(os.name == 'nt'))
target = FindSVNRev(webkit_rev)
if not target:
print "ERROR: Couldn't map r%s to a git revision." % webkit_rev
sys.exit(1)
current = RunGit(['show-ref', '--hash', magic_gclient_branch])
if current == target:
return False # No change necessary.
subprocess.check_call(['git', 'update-ref', '-m', 'gclient sync',
magic_gclient_branch, target],
shell=(os.name == 'nt'))
return True
|
52de6ec5139052de914d29d44b926938227894db
| 29,976 |
def calculate_trajectories(particles, daughters, alpha=1.):
"""Calculates the trajectories of the particles.
Args:
particles: a dataframe with the particle information.
daughters: a dataframe where each line represents a daughter for the particles.
alpha: for how long should stable tracks should be propagated.
"""
particles_for_lines = particles.copy()
distances_to_primary_vertex = _distances_to_primary_vertex(particles_for_lines)
alpha = 1.1 * distances_to_primary_vertex.max()
particles_for_lines['NDaughters'] = daughters.groupby('Id').apply(len)
particles_for_lines['NDaughters'] = particles_for_lines['NDaughters'].fillna(0.).astype(int)
# Particles with daughters
lines_daughters = particles_for_lines.join(daughters, how='inner')
lines_daughters = lines_daughters.join(particles_for_lines[['Vx', 'Vy', 'Vz']], on='DaughterId', rsuffix='_decay')
# Particles WITHOUT daughters
lines_single = _add_line_continuation(particles_for_lines[particles_for_lines['NDaughters'] == 0], alpha, '_decay')
lines = pd.concat([lines_daughters, lines_single])
decay_length = _decay_length(lines)
return lines[decay_length > 0]
|
fb9422ac315dc1c2b6e6781cfef93e8235dd7f2d
| 29,978 |
def site_title(request, registry, settings):
"""Expose website name from ``tm.site_title`` config variable to templates.
This is the default ``<title>`` tag.
Example:
.. code-block:: html+jinja
<meta>
<title>My page - {{ site_title }}</title>
</meta>
"""
# Use .get() for BBB
return settings.get("tm.site_title", "")
|
fcc61acecabb163ef6e55ed2fde7d4d025a8082a
| 29,979 |
import typing
from pathlib import Path
import importlib
import inspect
import ast
def linkcode_resolve(repo_link: str, domain: str, info: dict[str, str]) -> typing.Optional[str]:
"""
Function called by linkcode to get the URL for a given resource.
See for more details:
https://www.sphinx-doc.org/en/master/usage/extensions/linkcode.html#confval-linkcode_resolve
"""
if domain != "py":
raise Exception("Unknown domain passed to linkcode function.")
symbol_name = info["fullname"]
build_root = get_build_root()
# Import the package to find files
origin = build_root / info["module"].replace(".", "/")
search_locations = []
if origin.is_dir():
search_locations.append(origin.absolute().as_posix())
origin = origin / "__init__.py"
else:
origin = Path(origin.absolute().as_posix() + ".py")
if not origin.exists():
raise Exception(f"Could not find `{info['module']}` as a package or file.")
# We can't use a normal import (importlib.import_module), because the module can conflict with another copy
# in multiversion builds. We load the module from the file location instead
spec = importlib.util.spec_from_file_location(info["module"], origin, submodule_search_locations=search_locations)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
symbol = [module]
for name in symbol_name.split("."):
symbol.append(getattr(symbol[-1], name))
symbol_name = name
try:
lines, start = inspect.getsourcelines(symbol[-1])
end = start + len(lines)
except TypeError:
# Find variables by parsing the ast
source = ast.parse(inspect.getsource(symbol[-2]))
while isinstance(source.body[0], ast.ClassDef):
source = source.body[0]
for ast_obj in source.body:
if isinstance(ast_obj, ast.Assign):
names = []
for target in ast_obj.targets:
if isinstance(target, ast.Tuple):
names.extend([name.id for name in target.elts])
else:
names.append(target.id)
if symbol_name in names:
start, end = ast_obj.lineno, ast_obj.end_lineno
break
else:
raise Exception(f"Could not find symbol `{symbol_name}` in {module.__name__}.")
_, offset = inspect.getsourcelines(symbol[-2])
if offset != 0:
offset -= 1
start += offset
end += offset
file = Path(inspect.getfile(module)).relative_to(build_root).as_posix()
try:
sha = git.Repo(build_root).commit().hexsha
except git.InvalidGitRepositoryError:
# We are building a historical version, no git data available
sha = build_root.name
url = f"{repo_link}/blob/{sha}/{file}#L{start}"
if end != start:
url += f"-L{end}"
return url
|
1fd4571b81f98c82c57dae43a2be957380dca91f
| 29,980 |
def deterministic_hash(items):
"""
Intermediary hashing function that allows deterministic hashing of a list of items.
:param items: List of items to hash
:return: Numeric, deterministic hash, returns 0 if item is none
"""
h = 0
for item in items:
if not item:
pass
elif not isinstance(item, (int, long)):
h ^= bytes2long(item)
else:
h ^= item
return h
|
da3950039762e2b499f522cbd891a87d98633bd9
| 29,982 |
def fetch_known_transcripts_with_gene_label(cursor, datasets):
""" Fetch known transcripts along with the gene they belong to """
datasets = format_for_IN(datasets)
query = """SELECT DISTINCT gene_ID,transcript_ID FROM observed
LEFT JOIN transcript_annotations AS ta ON ta.ID = observed.transcript_ID
WHERE (ta.attribute = 'transcript_status' AND ta.value = 'KNOWN')
AND observed.dataset IN """ + datasets
cursor.execute(query)
known_transcripts = [(x[0], x[1], "FSM_transcript") for x in cursor.fetchall()]
return known_transcripts
|
92dbd97ee79672ff0986c2caecf90ab95f05fa70
| 29,985 |
def change_data():
"""Редактирование профиля пользователя."""
form = ChangeDataForm()
if form.validate_on_submit():
current_user.age = form.age.data
current_user.country = form.country.data
current_user.city = form.city.data
current_user.telegram = form.telegram.data
current_user.git = form.git.data
db.session.commit()
flash('Профиль успешно изменен.', 'success')
return redirect(
url_for('user_profile', username=current_user.username))
elif request.method == 'GET':
form.age.data = current_user.age
form.country.data = current_user.country
form.city.data = current_user.city
form.telegram.data = current_user.telegram
current_user.git = form.git.data
return render_template(
'profile/change_data.html',
form=form,
)
|
6dc8299a07733fe7291d1c8b646848f6e1b60c60
| 29,986 |
from io import StringIO
def run_checks(root, parent, cmds, scmds, paths='', opts={}):
"""Run the checks given in 'cmds', expected to have well-known signatures,
and report results for any which fail.
Return failure if any of them did.
NB: the function name of the commands passed in is used to name the NOT
file which excepts files from them."""
ret = 0
for cmd in cmds:
s = StringIO()
exclude = not_check(root, cmd.__name__)
result = cmd(root, parent, gen_files(root, parent, paths, exclude),
output=s)
ret |= result
if result != 0:
print(s.getvalue())
for cmd in scmds:
s = StringIO()
exclude = not_check(root, cmd.__name__)
result = cmd(root, parent, gen_links(root, parent, paths, exclude),
output=s)
ret |= result
if result != 0:
print(s.getvalue())
return ret
|
bde53f0f0fca0b6d12f6cf58b631cc841a0d567f
| 29,988 |
def numpy_to_rdkit(adj, nf, ef, sanitize=False):
"""
Converts a molecule from numpy to RDKit format.
:param adj: binary numpy array of shape (N, N)
:param nf: numpy array of shape (N, F)
:param ef: numpy array of shape (N, N, S)
:param sanitize: whether to sanitize the molecule after conversion
:return: an RDKit molecule
"""
if rdc is None:
raise ImportError('`numpy_to_rdkit` requires RDKit.')
mol = rdc.RWMol()
for nf_ in nf:
atomic_num = int(nf_)
if atomic_num > 0:
mol.AddAtom(rdc.Atom(atomic_num))
for i, j in zip(*np.triu_indices(adj.shape[-1])):
if i != j and adj[i, j] == adj[j, i] == 1 and not mol.GetBondBetweenAtoms(int(i), int(j)):
bond_type_1 = BOND_MAP[int(ef[i, j, 0])]
bond_type_2 = BOND_MAP[int(ef[j, i, 0])]
if bond_type_1 == bond_type_2:
mol.AddBond(int(i), int(j), bond_type_1)
mol = mol.GetMol()
if sanitize:
rdc.SanitizeMol(mol)
return mol
|
93295c556037ffa3e84373b73ca1308a9a1d53b7
| 29,989 |
from typing import Dict
from typing import Any
from pathlib import Path
def get_path(key: str, **kwargs: Dict[str, Any]) -> Path:
"""Get a file path string system variable as a pathlib.Path instance.
See signature of get() for parameter details."""
return Path(get(key, **kwargs))
|
9fe34573ced90c266ef7b73a430cc95ba4d09bc5
| 29,990 |
def get_reduced_tree(tree, reduce_by):
"""
Given a tree decomposition in tree and a required
size of reduction, produces a new tree decomposition
with treewidth reduced by the requested size and a list
of eliminated nodes.
We use a greedy algorithm to find nodes to eliminate.
This algorithm deletes variable subtrees from the maximal
node. The variables corresponding to larger subtrees are
deleted first. If the length of subtrees are equal then
subtrees passing through more nodes are removed first
Parameters
----------
tree : networkx.Graph
tree decomposition we need to reduce
reduce_by : int
reduce treewidth by this amount
Returns
-------
new_tree : networkx.Graph()
reduced tree decomposition
eliminated_nodes : list
list of eliminated nodes
"""
max_clique = find_max_cliques(tree)[0]
treewidth = len(max_clique) - 1
current_treewidth = treewidth
if reduce_by < 0 or reduce_by > treewidth - 1:
raise ValueError(
'Requested reduce_by: {}, allowed range: [0, {}]'.format(
reduce_by, treewidth-1))
eliminated_nodes = []
new_tree = tree
while current_treewidth > treewidth - reduce_by:
nodes_by_subwidth = get_subtree_by_length_width(
tree, list(max_clique))
# get (node, path length, total node's subtree width)
nodes_in_rmorder = [(node, len(nodes_by_subwidth[node]),
sum(nodes_by_subwidth[node]))
for node in nodes_by_subwidth]
# sort by path length, then by total width of subtree
nodes_in_rmorder = sorted(
nodes_in_rmorder,
key=lambda x: (x[1], x[2]))
rmnode = nodes_in_rmorder[-1][0]
new_tree = rm_element_in_tree(new_tree, rmnode)
eliminated_nodes.append(rmnode)
max_clique = find_max_cliques(new_tree)[0]
current_treewidth = len(max_clique) - 1
assert len(list(new_tree.selfloop_edges())) == 0
return new_tree, eliminated_nodes
|
a644ae326ef86e9b53bb3c3c510e46740038c8d3
| 29,992 |
from pathlib import Path
def temp_path(suffix=""):
"""Return the path of a temporary directory."""
directory = mkdtemp(suffix=suffix)
return Path(directory)
|
2cd196a2a1974816d49d75fd10a0d43b03c12612
| 29,993 |
def maybe_utf8(value):
"""Encode to utf-8, only if the value is Unicode."""
if isinstance(value, unicode):
return value.encode("utf-8")
return value
|
82e15ef35527e064a2b5bf3934c135985d60e1fe
| 29,994 |
def parse_id_as_interval(id_string, regex):
""" The fasta ids contain the locus information. """
match = regex.match(id_string)
genome = match.group("genome")
seqid = match.group("seqid")
start_tmp = int(match.group("start"))
end_tmp = int(match.group("end"))
start = min([start_tmp, end_tmp])
end = max([start_tmp, end_tmp])
del start_tmp
del end_tmp
return (genome, seqid, start, end)
|
7d35bdd7b4418d1edcd433cd39b9defc9050c6f6
| 29,995 |
def map_sentences_to_indices_of_vectors(sentences, word_to_index_glove, unknown_token):
""" map senteces to integers that represent the index of each word in the glove vocabulary """
# the list to be returned
mapped_sentences = []
# get the index of the unknown token
unknown_token_index = word_to_index_glove[unknown_token]
# iterate for each sentence
for sentence in sentences:
# get the split sentence
split_sentence = sentence.split()
# map it to the corresponding indices
mapped_sentence = [word_to_index_glove.get(word, unknown_token_index) for word in split_sentence]
# append it to the list
mapped_sentences.append(mapped_sentence)
# return the list
return mapped_sentences
|
04a27bd4ccd5ac9d0366218107ee36b61d4a7655
| 29,996 |
import numpy
def jordan_wigner_dual_basis_jellium(grid, spinless=False,
include_constant=False):
"""Return the jellium Hamiltonian as QubitOperator in the dual basis.
Args:
grid (Grid): The discretization to use.
spinless (bool): Whether to use the spinless model or not.
include_constant (bool): Whether to include the Madelung constant.
Returns:
hamiltonian (QubitOperator)
"""
# Initialize.
n_orbitals = grid.num_points()
volume = grid.volume_scale()
if spinless:
n_qubits = n_orbitals
else:
n_qubits = 2 * n_orbitals
hamiltonian = QubitOperator()
# Compute vectors.
momentum_vectors = {}
momenta_squared_dict = {}
for indices in grid.all_points_indices():
momenta = momentum_vector(indices, grid)
momentum_vectors[indices] = momenta
momenta_squared_dict[indices] = momenta.dot(momenta)
# Compute the identity coefficient and the coefficient of local Z terms.
identity_coefficient = 0.
z_coefficient = 0.
for k_indices in grid.all_points_indices():
momenta = momentum_vectors[k_indices]
if momenta.any():
momenta_squared = momenta.dot(momenta)
identity_coefficient += momenta_squared / 2.
identity_coefficient -= (numpy.pi * float(n_orbitals) /
(momenta_squared * volume))
z_coefficient += numpy.pi / (momenta_squared * volume)
z_coefficient -= momenta_squared / (4. * float(n_orbitals))
if spinless:
identity_coefficient /= 2.
# Add identity term.
identity_term = QubitOperator((), identity_coefficient)
hamiltonian += identity_term
# Add local Z terms.
for qubit in range(n_qubits):
qubit_term = QubitOperator(((qubit, 'Z'),), z_coefficient)
hamiltonian += qubit_term
# Add ZZ terms and XZX + YZY terms.
zz_prefactor = numpy.pi / volume
xzx_yzy_prefactor = .25 / float(n_orbitals)
for p in range(n_qubits):
index_p = grid_indices(p, grid, spinless)
position_p = position_vector(index_p, grid)
for q in range(p + 1, n_qubits):
index_q = grid_indices(q, grid, spinless)
position_q = position_vector(index_q, grid)
difference = position_p - position_q
skip_xzx_yzy = not spinless and (p + q) % 2
# Loop through momenta.
zpzq_coefficient = 0.
term_coefficient = 0.
for k_indices in grid.all_points_indices():
momenta = momentum_vectors[k_indices]
momenta_squared = momenta_squared_dict[k_indices]
if momenta_squared == 0:
continue
cos_difference = numpy.cos(momenta.dot(difference))
zpzq_coefficient += (zz_prefactor * cos_difference /
momenta_squared)
if skip_xzx_yzy:
continue
term_coefficient += (xzx_yzy_prefactor * cos_difference *
momenta_squared)
# Add ZZ term.
qubit_term = QubitOperator(((p, 'Z'), (q, 'Z')), zpzq_coefficient)
hamiltonian += qubit_term
# Add XZX + YZY term.
if skip_xzx_yzy:
continue
z_string = tuple((i, 'Z') for i in range(p + 1, q))
xzx_operators = ((p, 'X'),) + z_string + ((q, 'X'),)
yzy_operators = ((p, 'Y'),) + z_string + ((q, 'Y'),)
hamiltonian += QubitOperator(xzx_operators, term_coefficient)
hamiltonian += QubitOperator(yzy_operators, term_coefficient)
# Include the Madelung constant if requested.
if include_constant:
hamiltonian += QubitOperator((),) * (2.8372 / grid.scale)
# Return Hamiltonian.
return hamiltonian
|
d52a5a102297213de830f58c8190337589d0d9ca
| 29,998 |
def boxcar_decay(tbins, t0, area_box, height_box, area_decay):
"""
Compute the lightcurve from one or more boxcar-decay functions.
Parameters
----------
tbins : array
edges of the time bins used for the lightcurve
t0 : float or array
start times of the boxcar-decays
area_box : float or array
areas of the boxcar portion of the boxcar-decays
height_box : float or array
heights of the boxcar-decays
area_decay : float or array
areas of the decay portions of the boxcar-decays
Returns
-------
y : array
lightcurve values
Notes
-----
This function is a bottleneck when creating a lightcurve from a long
series of flares. If this code is to be adapted for quick simulation
of years-long series of flares, this is where the speedup needs to
happen.
"""
# politely let user know that, in this instance, astropy Quantities are not wanted
if any(isinstance(x, u.Quantity) for x in [tbins, t0, area_box, height_box, area_decay]):
raise ValueError('No astropy Quantity input for this function, please.')
# this is going to have to be ugly for it to be fast, I think
# standardize t0, area_box, height_box, and area_decay for array input
t0, area_box, height_box, area_decay = [np.reshape(a, [-1]) for a in [t0, area_box, height_box, area_decay]]
# compute end of box, start of decay
t1 = t0 + area_box/height_box
# correct for portions hanging over ends of tbins
t0 = np.copy(t0)
t0[t0 < tbins[0]] = tbins[0]
t1[t1 > tbins[-1]] = tbins[-1]
# initialize y array
y = np.zeros((len(t0), len(tbins)-1))
i_rows = np.arange(y.shape[0])
# add starting portion of box to first bin that is only partially covered by it
i0 = np.searchsorted(tbins, t0, side='right')
frac = (tbins[i0] - t0)/(tbins[i0] - tbins[i0-1])
y[i_rows, i0-1] += frac*height_box
# add box to bins fully covered by it
inbox = (tbins[None, :-1] > t0[:, None]) & (tbins[None, 1:] < t1[:, None])
y += height_box[:,None]*inbox
# add ending fraction of box to last bin that is partially covered by it
i1 = np.searchsorted(tbins, t1, side='left')
frac = (t1 - tbins[i1-1])/(tbins[i1] - tbins[i1-1])
y[i_rows, i1-1] += frac*height_box
# deal with any cases where the box was entirely within a bin
j = i0 == i1
y[i_rows[j], i0[j]-1] = area_box[j]/(tbins[i0][j] - tbins[i0-1][j])
# add decay
# compute cumulative decay integral at all time points
amp_decay = height_box
tau_decay = area_decay / amp_decay
with np.errstate(over='ignore', invalid='ignore'):
Idecay = -amp_decay[:,None]*tau_decay[:,None]*np.exp(-(tbins[None,:] - t1[:,None])/tau_decay[:,None])
ydecay = np.diff(Idecay, 1)/np.diff(tbins)
keep = tbins[:-1] > t1[:, None]
y[keep] += ydecay[keep]
# add fractional piece of exponential
i1 = np.searchsorted(tbins, t1, side='right')
inrange = i1 < len(tbins)
i_rows, i1 = i_rows[inrange], i1[inrange]
Idecay1 = -amp_decay*tau_decay
ydecay1 = (Idecay[i_rows, i1] - Idecay1[i_rows])/(tbins[i1] - tbins[i1-1])
y[i_rows, i1-1] += ydecay1
return np.sum(y, 0)
|
31beb8d6cab940bd75a814121833535819c17e69
| 29,999 |
def updateShaderState(self):
"""Updates all shader program variables. """
if not self.ready():
return
opts = self.opts
self.shader.load()
voxValXform = self.imageTexture.voxValXform
voxValXform = [voxValXform[0, 0], voxValXform[0, 3], 0, 0]
invNumLabels = 1.0 / (opts.lut.max() + 1)
self.shader.setFragParam('voxValXform', voxValXform)
self.shader.setFragParam('invNumLabels', [invNumLabels, 0, 0, 0])
self.shader.unload()
return True
|
611b093ce51e99e5c7c1e3da5dcc7cd1a8c07b01
| 30,000 |
import _winreg
from cake.registry import queryString
def _getMinGWInstallDir():
"""Returns the MinGW install directory.
Typically: 'C:\MinGW'.
@return: The path to the MinGW install directory.
@rtype: string
@raise WindowsError: If MinGW is not installed.
"""
possibleSubKeys = [
r"SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\MinGW",
r"SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{AC2C1BDB-1E91-4F94-B99C-E716FE2E9C75}_is1",
]
# Try all known registry locations.
for subKey in possibleSubKeys:
try:
return queryString(_winreg.HKEY_LOCAL_MACHINE, subKey, "InstallLocation")
except WindowsError:
# If this is the last possibility, re-raise the exception.
if subKey is possibleSubKeys[-1]:
raise
|
262f65aaf413fe718b753ffa706c97c80b73f349
| 30,001 |
import urllib
def nextbus(a, r, c="vehicleLocations", e=0):
"""Returns the most recent latitude and
longitude of the selected bus line using
the NextBus API (nbapi)
Arguments: a=agency, r=route, c=command,
e=epoch timestamp for start date of track,
0 = the last 15 minutes
"""
nbapi = "http://webservices.nextbus.com"
nbapi += "/service/publicXMLFeed?"
nbapi += "command={}&a={}&r={}&t={}".format(c, a, r, e)
xml = minidom.parse(urllib.request.urlopen(nbapi))
# If more than one vehicle, just get the first
bus = xml.getElementsByTagName("vehicle")[0]
if bus:
at = bus.attributes
return(at["lat"].value, at["lon"].value)
else:
return (False, False)
|
08ce12f3a1d96572014dc528de255f89e5b0ee46
| 30,002 |
def latest_blog_posts(context, num):
"""
Displays the most recent blog posts. It takes an argument, num
and displays so many posts depending on the value.
"""
latest_blog_posts = Post.objects.all()[:num].select_related()
return {
'latest_blog_posts': latest_blog_posts
}
|
74ee23753e674e1dd1f8fa8af92002c739a28ee3
| 30,003 |
from typing import List
from typing import Dict
import copy
def _expand_array_paths_to_preserve(paths: List[DetailedPath]) -> Dict[str, List[int]]:
"""
Used by "filter_element_match" - Returns a dictionary of string paths mapped to array indices that we want
to preserve.
:param paths: A list of lists of detailed paths (containing strings and array indices) to elements that matched query criteria
:return: A dict where the keys are a dot-separated path to an array, and the values are a list of indices
in that array that we want to keep. If there are no indices in the original path, that path will be ignored.
Some paths may be expanded into multiple paths where there are multiple levels of indices (arrays of arrays).
:Example:
_expand_array_paths_to_preserve([["F", 1, 2], ["F", 1, 3], ["G", "H"], ["L", 1, "M"]])
{'F': [1], 'F.1': [2, 3], 'L': [1]}
This data will be used to remove all elements from row["F"][1] that are not at index 2, and 3.
We'll then remove all elements from "F" that are not at index [1], and all elements from "L" that are not at index 1.
"""
# Break path into multiple paths if array elements in path
expanded: List[DetailedPath] = []
for path in paths:
while path != [] and not isinstance(path[-1], int):
path.pop()
new_path: DetailedPath = []
for elem in path:
new_path.append(elem)
if isinstance(elem, int) and new_path not in expanded:
expanded.append(copy.deepcopy(new_path))
# Combine paths where the key is a dot-separated path to the array, and the value are the indices
# of the array we want to preserve
merge_paths: Dict[str, List[int]] = defaultdict(list)
for path in expanded:
merge_paths[join_detailed_path(path[0:-1])].append(path[-1]) # type: ignore
return merge_paths
|
7f44a717285bc30c3162d39dcf18a1cdc3920bed
| 30,004 |
def get_request_fixture_names(request):
"""Get list of fixture names for the given FixtureRequest.
Get the internal and mutable list of fixture names in the enclosing scope of
the given request object.
Compatibility with pytest 3.0.
"""
return request._pyfuncitem._fixtureinfo.names_closure
|
665fff4538f3817b6eb882f9a873683d69003bfd
| 30,005 |
def _unique(values, *, return_inverse=False):
"""Helper function to find unique values with support for python objects.
Uses pure python method for object dtype, and numpy method for
all other dtypes.
Parameters
----------
values : ndarray
Values to check for unknowns.
return_inverse : bool, default=False
If True, also return the indices of the unique values.
Returns
-------
unique : ndarray
The sorted unique values.
unique_inverse : ndarray
The indices to reconstruct the original array from the unique array.
Only provided if `return_inverse` is True.
"""
if values.dtype == object:
return _unique_python(values, return_inverse=return_inverse)
# numerical
out = np.unique(values, return_inverse=return_inverse)
if return_inverse:
uniques, inverse = out
else:
uniques = out
# np.unique will have duplicate missing values at the end of `uniques`
# here we clip the nans and remove it from uniques
if uniques.size and is_scalar_nan(uniques[-1]):
nan_idx = np.searchsorted(uniques, np.nan)
uniques = uniques[:nan_idx + 1]
if return_inverse:
inverse[inverse > nan_idx] = nan_idx
if return_inverse:
return uniques, inverse
return uniques
|
4768b0e055cfd9a42b5332f7a47aa608aa7b90c0
| 30,006 |
def _create_range_tool(
data,
min_time,
max_time,
plot_range,
width,
height,
time_column: str = None,
y: str = "y_index",
):
"""Create plot bar to act as as range selector."""
ext_min = min_time - ((max_time - min_time) * 0.15)
ext_max = max_time + ((max_time - min_time) * 0.15)
plot_height = max(120, int(height * 0.20))
rng_select = figure(
x_range=(ext_min, ext_max),
title="Range Selector",
plot_height=plot_height,
plot_width=width,
x_axis_type="datetime",
y_axis_type=None,
tools="",
toolbar_location=None,
)
help_str = (
"Drag the middle or edges of the selection box to change "
+ "the range in the main chart"
)
rng_select.add_layout(
Title(text=help_str, align="right", text_font_size="10px"), "below"
)
rng_select.xaxis[0].formatter = _get_tick_formatter()
if isinstance(data, dict):
for _, series_def in data.items():
rng_select.circle(
x=series_def["time_column"],
y=y,
color=series_def["color"],
source=series_def["source"],
)
elif isinstance(data, pd.DataFrame):
rng_select.circle(
x=time_column, y=y, color="blue", source=ColumnDataSource(data)
)
range_tool = RangeTool(x_range=plot_range)
range_tool.overlay.fill_color = "navy"
range_tool.overlay.fill_alpha = 0.2
rng_select.ygrid.grid_line_color = None
rng_select.add_tools(range_tool)
rng_select.toolbar.active_multi = range_tool
return rng_select
|
42cf2d4f5986dd454a9aa968ce4db4136b5acd1f
| 30,007 |
def pivot(df, index, column, value):
"""
Pivot a dataframe. Reverse operation of melting. Useful for configuring evolution
See pandas' pivot_table documentation for more details
Args:
- index (list): indexes argument of pd.pivot_table
- column (str): column name to pivot on
- value (str): column name containing the value to fill the pivoted df
"""
if df.dtypes[value].type == np.object_:
df = pd.pivot_table(df, index=index,
columns=column,
values=value,
aggfunc=lambda x: ' '.join(x))
else:
df = pd.pivot_table(df, index=index,
columns=column,
values=value)
df = df.reset_index()
return df
|
b9a8c63d5ce320f4a156c8f42b92173dd1d86ca0
| 30,008 |
def split_pdf_image_into_row_image_block(pdf_image):
"""
split the whole pdf image into row image block
:param pdf_image: the whole color pdf image
:return:
"""
gray_image = cv2.cvtColor(pdf_image, cv2.COLOR_BGR2GRAY)
binarized_image = cv2.adaptiveThreshold(
src=gray_image,
maxValue=255,
adaptiveMethod=cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
thresholdType=cv2.THRESH_BINARY,
blockSize=11,
C=2
)
# sum along the row axis
row_sum = np.sum(binarized_image, axis=1)
idx_row_sum = np.argwhere(row_sum < row_sum.max())[:, 0]
split_idx = []
start_idx = idx_row_sum[0]
for index, idx in enumerate(idx_row_sum[:-1]):
if idx_row_sum[index + 1] - idx > 5:
end_idx = idx
split_idx.append((start_idx, end_idx))
start_idx = idx_row_sum[index + 1]
split_idx.append((start_idx, idx_row_sum[-1]))
pdf_image_splits = []
for index in range(len(split_idx)):
idx = split_idx[index]
pdf_image_split = pdf_image[idx[0]:idx[1], :, :]
pdf_image_splits.append(pdf_image_split)
return pdf_image_splits
|
9a304f54167c4fbb7739c7022b12c5b574240861
| 30,009 |
def get_tokens():
""" Get all the active tokens in the datbase."""
return query_db('select token from token')
|
960c613147d3d55a3e56dcef06fc974a4c553929
| 30,010 |
def get_stats(beta0, n, sigma, lam, pen, ntrials=100, maxiter=100):
"""
run ntrials regression problems
return mean of the mse, and 95% confidence interval
"""
if pen is None:
mses = run_trials_ols(beta0, n, sigma, ntrials=ntrials)
else:
mses = run_trials(beta0, n, sigma, lam, pen, ntrials=ntrials, maxiter=maxiter)
mmean = np.mean(mses)
qs = np.quantile(mses, [0.025, 0.875])
return mmean, qs
|
e6357f64b40eb424e295088920f5f8dcba558896
| 30,012 |
def squeeze_output_dim_0(initial_ndims, point_types):
"""Determine if the output needs to squeeze a singular dimension 0.
The dimension 0 is squeezed iff all input parameters:
- contain one sample,
- have the corresponding dimension 0 squeezed,
i.e. if all input parameters have ndim strictly less than the ndim
corresponding to their vectorized shape.
"""
for ndim, point_type in zip(initial_ndims, point_types):
vect_ndim = POINT_TYPES_TO_NDIMS[point_type]
assert ndim <= vect_ndim
if ndim == vect_ndim:
return False
return True
|
448291f75d758867e65c1693de6c40ab80a7b642
| 30,013 |
import math
def quaternion_from_matrix(matrix, isprecise=False):
"""Return quaternion from rotation matrix.
If isprecise is True, the input matrix is assumed to be a precise rotation
matrix and a faster algorithm is used.
"""
M = np.array(matrix, dtype=np.float64, copy=False)[:4, :4]
if isprecise:
q = np.empty((4,))
t = np.trace(M)
if t > M[3, 3]:
q[0] = t
q[3] = M[1, 0] - M[0, 1]
q[2] = M[0, 2] - M[2, 0]
q[1] = M[2, 1] - M[1, 2]
else:
i, j, k = 0, 1, 2
if M[1, 1] > M[0, 0]:
i, j, k = 1, 2, 0
if M[2, 2] > M[i, i]:
i, j, k = 2, 0, 1
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
q[i] = t
q[j] = M[i, j] + M[j, i]
q[k] = M[k, i] + M[i, k]
q[3] = M[k, j] - M[j, k]
q = q[[3, 0, 1, 2]]
q *= 0.5 / math.sqrt(t * M[3, 3])
else:
m00 = M[0, 0]
m01 = M[0, 1]
m02 = M[0, 2]
m10 = M[1, 0]
m11 = M[1, 1]
m12 = M[1, 2]
m20 = M[2, 0]
m21 = M[2, 1]
m22 = M[2, 2]
# symmetric matrix K
K = np.array([[m00 - m11 - m22, 0.0, 0.0, 0.0],
[m01 + m10, m11 - m00 - m22, 0.0, 0.0],
[m02 + m20, m12 + m21, m22 - m00 - m11, 0.0],
[m21 - m12, m02 - m20, m10 - m01, m00 + m11 + m22]])
K /= 3.0
# quaternion is eigenvector of K that corresponds to largest eigenvalue
w, V = np.linalg.eigh(K)
q = V[[3, 0, 1, 2], np.argmax(w)]
if q[0] < 0.0:
np.negative(q, q)
return q
|
dcc4ee7e6b2493a96a78b7da45b6f6edb12be550
| 30,014 |
def check_version(stdout):
"""Check version of Ensembl-VEP.
Example of the first part of an output from the command `vep --help`:
#----------------------------------#
# ENSEMBL VARIANT EFFECT PREDICTOR #
#----------------------------------#
Versions:
ensembl : 104.1af1dce
ensembl-funcgen : 104.59ae779
ensembl-io : 104.1d3bb6e
ensembl-variation : 104.6154f8b
ensembl-vep : 104.3
Help: [email protected] , [email protected]
Twitter: @ensembl
"""
vep_version = int(
float(
next(
(line for line in stdout.split("\n") if "ensembl-vep" in line)
).split()[2]
)
)
return vep_version
|
5c3b716db7016f1b612f764fb54e3b25d970b0f2
| 30,015 |
def tf_config():
""" Default tensorflow config. """
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return config
|
fdc28c9968457af92afb18f8315e07c04890ff50
| 30,016 |
def customize_response_cros(data):
"""定制跨域响应体"""
response = make_response(jsonify(data))
# 设置响应请求头
response.headers["Access-Control-Allow-Origin"] = '*' # 允许使用响应数据的域。也可以利用请求header中的host字段做一个过滤器。
response.headers["Access-Control-Allow-Methods"] = 'POST' # 允许的请求方法
response.headers["Access-Control-Allow-Headers"] = "x-requested-with,content-type" # 允许的请求header
return response
|
c702644bc9faae45057263a207e42e110d125165
| 30,019 |
def shortdateformat(value, default_value=None):
"""
Example value: datetime.strptime("2018-07-25 10:15:00", "%Y-%m-%d %H:%M:%S")
Example output: '25 July'
"shortdateformat" was designed for use in summary tables where space is tight and dates are shown on their own line.
The original intended use was in conjunction with "timeformat" in admin app summary tables.
It is now (Jan 2018) also used in briefs-frontend on the "Publish your requirements" page only.
** USE OUR STANDARD dateformat RATHER THAN THIS UNLESS THERE IS A GOOD REASON NOT TO **
"""
return _format_date(value, default_value, DISPLAY_SHORT_DATE_FORMAT, localize=False)
|
31ce7fa824df3d746d5e81e960864fabb1329307
| 30,020 |
def build_suffix_array(text):
"""
Build suffix array of the string text and
return a list result of the same length as the text
such that the value result[i] is the index (0-based)
in text where the i-th lexicographically smallest
suffix of text starts.
"""
order = sort_characters(text)
classes = compute_char_classes(text, order)
shiftlen = 1
while shiftlen < len(text):
order = sort_doubled(text, shiftlen, order, classes)
classes = update_classes(order, classes, shiftlen)
shiftlen *= 2
return order
|
05eb036cb749e030d84bb2d494a447faa7f93e6c
| 30,021 |
from mne.utils import _time_mask
def compute_auc(dip, tmin=-np.inf, tmax=np.inf):
"""Compute the AUC values for a DipoleFixed object."""
if not isinstance(dip, DipoleFixed):
raise TypeError('dip must be a DipoleFixed, got "%s"' % (type(dip),))
pick = pick_types(dip.info, meg=False, dipole=True)
if len(pick) != 1:
raise RuntimeError('Could not find dipole data')
time_mask = _time_mask(dip.times, tmin, tmax, dip.info['sfreq'])
data = dip.data[pick[0], time_mask]
return np.sum(np.abs(data)) * len(data) * (1. / dip.info['sfreq'])
|
cedfeb7934ee86e6c1ae702ba0cbecceb83c90db
| 30,023 |
def left_join(ht1, ht2):
"""
:param ht1: left hash table
:param ht2: right hash table
:return: list of joined values from both hash tables
"""
results = []
for item in ht1.table:
while item is not None:
key = item.val[0]
joined = [key, ht1.get(key), ht2.get(key)]
results.append(joined)
item = item.next
return results
|
8f34e03d055a32ea337b27cd800eeb393d136dfa
| 30,024 |
from typing import Tuple
import torch
import re
def load_pretrained_cifar10_model(
path: str, resnet_size: int = 32,
) -> Tuple[nn.Module, DifferentiableNormalize]:
"""
Loads a pretrained CIFAR-10 ResNet from the given path along with its
associated normalizer.
"""
model: nn.Module = getattr(cifar_resnets, f'resnet{resnet_size}')()
model_state = torch.load(path, map_location=torch.device('cpu'))
model.load_state_dict({re.sub(r'^module\.', '', k): v for k, v in
model_state['state_dict'].items()})
normalizer = DifferentiableNormalize(
mean=config.CIFAR10_MEANS,
std=config.CIFAR10_STDS,
)
return model, normalizer
|
2d1a907b2d90459661bdd0e578828ac0949d68e3
| 30,025 |
import logging
def create_project(**kwargs): # noqa: E501
"""Creates a project with an original network file.
Creates a project with an original network file. # noqa: E501
:param designation:
:type designation: str
:param description:
:type description: str
:param network_designation:
:type network_designation: str
:param network_directed:
:type network_directed: bool
:param network_multigraph:
:type network_multigraph: bool
:param network_file: Binary object which contains the network file with a standard network format.
:type network_file: str
:param additional_network_file: Binary object which contains an additional network file with a standard network format (especailly used for CSV imports).
:type additional_network_file: str
:param file_format:
:type file_format: str
:rtype: Project
"""
body = dict(kwargs.items()).get('body')
file = dict(kwargs.items()).get('network_file')
additional_file = dict(kwargs.items()).get('additional_network_file')
# Try to process and safe the file before accessing the Database
try:
file_format = body.get('file_format')
network_file = NetworkFile(file_format, file, additional_file)
node_list = network_file.parse_nodes()
except Exception:
logging.exception("Exception while handling the input file")
e = http_exceptions.InternalServerError(
description='Something went wrong! Please check if your network file is correct.')
raise e
try:
db = DatabaseConnector.get_db_instance()
project_id = db.add_project(
designation=body.get('designation'),
description=body.get('description')
)
original_network_id = db.add_original_network_to_project(
designation=body.get('network_designation'),
directed=body.get('network_directed'),
multigraph=body.get('network_multigraph'),
project_id=project_id
)
predicted_network_id = db.add_predicted_network_to_project(
designation=body.get('network_designation'),
project_id=project_id
)
nodes = db.add_nodes(node_list, original_network_id, predicted_network_id)
edge_list = network_file.parse_edges(nodes)
db.add_edges_to_original_network(edge_list, original_network_id)
for node in nodes:
attribute_list = network_file.parse_attributes(node[0])
if attribute_list:
db.add_node_attributes(attribute_list, node[1])
graph = build_original_graph('project_id', project_id)
save_predicted_graph_to_db(graph.copy(), predicted_network_id)
default_evaluation_setup = {
"random_seed": 42,
"with_validation": False,
"train_sampling_ratio": 0.8,
"test_sampling_ratio": 0.9,
"ml_preprocessing": False
}
db.add_or_update_evaluation_result(project_id, default_evaluation_setup)
return Project(
id=project_id,
designation=body.get('designation'),
description=body.get('description'),
original_network_id=original_network_id,
predicted_network_id=predicted_network_id
)
except Exception:
logging.exception("Exception occured while inserting data in the database")
e = http_exceptions.InternalServerError(
description='Something went wrong! The input file seems to be wrong and the data could not be loaded into the database.')
raise e
|
c57951358383b18f35fdf9c6ca899f09979565ae
| 30,027 |
def _get_boto_client(cluster, access_key, secret_key):
"""
Returns a boto client object that can be used to communicate with the Object
Storage cluster.
"""
client = boto.connect_s3(aws_access_key_id=access_key,
aws_secret_access_key=secret_key,
host=BASE_URL_TEMPLATE.format(cluster),
calling_format=OrdinaryCallingFormat())
# set this for later use
client.obj_cluster = cluster
return client
|
4351e74610948c17c8c35ae86a5fa1ca15f4158f
| 30,028 |
def triangleArea(a: Vec3, b: Vec3, c: Vec3) -> float:
"""
Calculate area of triangle
:return: area
"""
return cross3(b - a, c - a).length() / 2.0
|
ad5c73e07421c01f3db3a9d4592ec218307c8a80
| 30,029 |
async def read_object_name(app, device_id, addr):
"""
Execute a single request using `ReadPropertyRequest`.
This will read the `objectName` property of a remote device.
:param app: An app instance
:param device_id: BACnet device id (integer number)
:param addr: The network address of the remote device
:return: The object name value
"""
return await app.execute_request(
ReadPropertyRequest(
objectIdentifier=('device', device_id),
propertyIdentifier='objectName',
destination=Address(addr)
)
)
|
3e9e023be615911ca0f43ff2a0aec62cec695d25
| 30,030 |
import requests
from bs4 import BeautifulSoup
def jws_omex_dict():
""" Returns dictionary of available JWS combine archives.
:return: { id: download_url } dict
"""
jws_omex = {}
num_omex = 0
for page_iter in range(NUM_PAGES):
url = URL.format(page_iter+1) # 1 based counting
page = requests.get(url)
if page.status_code == 200:
soup = BeautifulSoup(page.content, 'html.parser')
# select all <a> in <td>
items = soup.select('td a')
# only interested in the download links
links = [a.get("href") for a in items if "combinearchive?download=1" in a.get('href')]
print("N(page={}) = {}".format(page_iter+1, len(links)))
num_omex += len(links)
for url in links:
tokens = url.split('/')
name = tokens[3]
jws_omex[name] = "http://jjj.mib.ac.uk" + url
# pprint.pprint(jws_omex)
print('---------')
print(num_omex)
return jws_omex
|
21e378038bbce07a166d315a183a08ce69f9a544
| 30,031 |
def ztrsv(A,
x,
Uplo=CblasLower,
TransA=CblasNoTrans,
Diag=CblasNonUnit):
"""
returns x'
This function computes inv(op(A)) x for x, where op(A) = A, A^T, A^H
for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is
CblasUpper then the upper triangle of A is used, and when Uplo is
CblasLower then the lower triangle of A is used. If Diag is
CblasNonUnit then the diagonal of the matrix is used, but if Diag
is CblasUnit then the diagonal elements of the matrix A are taken
as unity and are not referenced.
"""
xn = array_typed_copy(x)
_gslwrap.gsl_blas_ztrsv(Uplo, TransA, Diag, A, xn)
return xn
|
11b3420e09718fabc907b484142b67ce4f828c4f
| 30,032 |
def get_trainable_vars(name=None):
"""Return the trainable variables.
Parameters
----------
name : str
the scope
Returns
-------
list of tf.Variable
trainable variables
"""
return tf.compat.v1.get_collection(
tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES, scope=name)
|
3c5b005613a7a6f0cd0420e60337ed7bf88bf92f
| 30,033 |
def player_to_string(game: reversi.ReversiGame, player_colour: str, player: ai_players.Player) \
-> str:
""" Returns the string representation of the type of the player.
Preconditions:
- player_colour in {'white', 'black'}
"""
if game.get_human_player() == 1 and player_colour == 'black':
return 'Human'
elif game.get_human_player() == -1 and player_colour == 'white':
return 'Human'
else:
# the player is one of the AI players
if isinstance(player, ai_players.RandomPlayer):
return 'Random Moves'
elif (isinstance(player, ai_players.MinimaxPlayer)
or isinstance(player, ai_players.MinimaxABPlayer)):
return 'Minimax ' + str(player.depth)
|
a1e6dfe184d471616fac7a1ab1bbb2d959c5457c
| 30,034 |
from typing import Any
def encode_pd_timestamp(v: pd.Timestamp) -> Any:
"""
Specializes :func:`encode` for invocations where ``v`` is an instance of
the :class:`~pandas.Timestamp` class.
"""
return {
"__kind__": kind_inst,
"class": "pandas.Timestamp",
"args": encode([str(v)]),
"kwargs": {"freq": v.freqstr if v.freq else None},
}
|
fec08229d2a9b8f7115986e4c97677b401200adf
| 30,035 |
async def getWebUserAmount(cls:"WebIndex", where:str="1=1", values:tuple=()) -> int:
""" simply gives a number of all matched user """
res:list = cls.Web.BASE.PhaazeDB.selectQuery(f"SELECT COUNT(*) AS `I` FROM `user` WHERE {where}", values)
return res[0]['I']
|
a019a8de0644a7295cfafdce80a544ae31bcb225
| 30,036 |
def randomise_spikes(spiketrain, n_surrogates=1, decimals=None):
"""
Generates surrogates of a spike train by spike time randomization.
The surrogates are obtained by keeping the spike count of the original
`spiketrain`, but placing the spikes randomly in the interval
`[spiketrain.t_start, spiketrain.t_stop]`. The generated independent
`neo.SpikeTrain` objects follow Poisson statistics (exponentially
distributed inter-spike intervals).
Parameters
----------
spiketrain : neo.SpikeTrain
The spike train from which to generate the surrogates.
n_surrogates : int, optional
Number of surrogates to be generated.
Default: 1
decimals : int or None, optional
Number of decimal points for every spike time in the surrogates.
If None, machine precision is used.
Default: None
Returns
-------
list of neo.SpikeTrain
Each surrogate spike train obtained independently from `spiketrain` by
randomly distributing its spikes in the interval
`[spiketrain.t_start, spiketrain.t_stop]`.
Examples
--------
>>> import quantities as pq
>>> import neo
...
>>> st = neo.SpikeTrain([100, 250, 600, 800] * pq.ms, t_stop=1 * pq.s)
>>> print(randomise_spikes(st)) # doctest: +SKIP
[<SpikeTrain(array([ 131.23574603, 262.05062963, 549.84371387,
940.80503832]) * ms, [0.0 ms, 1000.0 ms])>]
>>> print(randomise_spikes(st, n_surrogates=2)) # doctest: +SKIP
[<SpikeTrain(array([ 84.53274955, 431.54011743, 733.09605806,
852.32426583]) * ms, [0.0 ms, 1000.0 ms])>,
<SpikeTrain(array([ 197.74596726, 528.93517359, 567.44599968,
775.97843799]) * ms, [0.0 ms, 1000.0 ms])>]
>>> print(randomise_spikes(st, decimals=0)) # doctest: +SKIP
[<SpikeTrain(array([ 29., 667., 720., 774.]) * ms,
[0.0 ms, 1000.0 ms])>]
"""
# Create surrogate spike trains as rows of a Quantity array
sts = ((spiketrain.t_stop - spiketrain.t_start) *
np.random.random(size=(n_surrogates, len(spiketrain))) +
spiketrain.t_start).rescale(spiketrain.units)
# Round the surrogate data to decimal position, if requested
if decimals is not None:
sts = sts.round(decimals)
# Convert the Quantity array to a list of SpikeTrains, and return them
return [neo.SpikeTrain(np.sort(st), t_start=spiketrain.t_start,
t_stop=spiketrain.t_stop,
sampling_rate=spiketrain.sampling_rate)
for st in sts]
|
cf8d911f73a3a62b9586ea41c4683ba84a91b8a1
| 30,037 |
def interface_PSO(theta, args):
"""
Function to interface the PSO with the ANFIS. Each particle has its own
ANFIS instance.
theta (nPop, n_var)
learners (nPop, )
J (nPop, )
"""
args_PSO = (args[0], args[1])
learners = args[2]
nPop = theta.shape[0]
J = np.zeros(nPop)
for i in range(nPop):
J[i] = learners[i].create_model(theta[i, :], args_PSO)
return J
|
a725db597ccf4a5928c305ad1493bcd0c99b94a5
| 30,038 |
def corr2d(X, K):
"""计算二维互相关运算。"""
h, w = K.shape
Y = mnp.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
return Y
|
dcbd523879df0f2529a0e68b6c65d829addbc786
| 30,039 |
from src.praxxis.sqlite import sqlite_scene
from src.praxxis.sqlite import sqlite_notebook
from src.praxxis.display import display_scene
def history(history_db, library_db, current_scene_db):
"""displays the notebook history of the sceen"""
curr_scene = sqlite_scene.get_current_scene(history_db)
notebook_history = sqlite_scene.get_notebook_history(current_scene_db)
display_scene.display_history(curr_scene, notebook_history)
# get paths and format for writing into notebook list
notebooks = []
for notebook_info in notebook_history:
# pass the library_db, notebook name, notebook library
notebook_data = sqlite_notebook.get_notebook(library_db, notebook_info[1])[0]
notebooks.insert(0, (notebook_data))
sqlite_notebook.write_list(current_scene_db, notebooks)
return notebooks
|
c6ac411488f69b61678fb298639a8dfa0a103901
| 30,040 |
def get_optimal_parameters_from_dict(selected_dict, num_features):
""" Find optimal parameters from dictionary of selected features
Arguments
---------
selected_dict: dictionary
keys = parameters
values = dictionary
keys = task index
values = list of list of selected features (for each subsample)
num_features: int
Total number of features
Returns
-------
opt_params: string
Optimal parameters, leading to highest consistency index mean
of features selected for each subsample for each task
=> params leading to the best ci mean.
"""
opt_params = ''
opt_ci_mean = -1 # set to -1 because it is the worst case ci value
for (params, selected_dict_p) in selected_dict.iteritems():
ci_list = [] #list of ci, one per task, computed with current params
for (task_idx, sel_list) in selected_dict_p.iteritems():
ci_of_current_task = consistency_index_k(sel_list, num_features)
ci_list.append(ci_of_current_task)
ci_mean = np.mean(ci_list)
if ci_mean >= opt_ci_mean:
opt_ci_mean = ci_mean
opt_params = params
return opt_params
|
d473f963c482bcdd8a2eebd65f2e9ae50fe46a32
| 30,041 |
async def _get_input_dialog(self: 'TelegramClient', dialog):
"""
Returns a :tl:`InputDialogPeer`. This is a bit tricky because
it may or not need access to the client to convert what's given
into an input entity.
"""
try:
if dialog.SUBCLASS_OF_ID == 0xa21c9795: # crc32(b'InputDialogPeer')
dialog.peer = await self.get_input_entity(dialog.peer)
return dialog
elif dialog.SUBCLASS_OF_ID == 0xc91c90b6: # crc32(b'InputPeer')
return _tl.InputDialogPeer(dialog)
except AttributeError:
pass
return _tl.InputDialogPeer(await self.get_input_entity(dialog))
|
a58570d5192713e3813cd3cfc6d1295916684a96
| 30,042 |
from datetime import datetime
def kep_to_sat(kep,epoch,bstar=0.21109E-4,whichconst=wgs72,afspc_mode=False):
"""kep_to_sat(kep,epoch,bstar=0.21109E-4,whichconst=wgs72,afspc_mode=False)
Converts a set of keplerian elements into a Satellite object.
Args:
kep(1x6 numpy array): the osculating keplerian elements at epoch
epoch(float): the epoch
bstar(float): bstar drag coefficient
whichconst(float): gravity model. refer pypi sgp4 documentation
afspc_mode(boolean): refer pypi sgp4 documentation
Returns:
Satellite object: an sgp4 satellite object encapsulating the arguments
"""
deg2rad = np.pi / 180.0; # 0.0174532925199433
xpdotp = 1440.0 / (2.0 * np.pi); # 229.1831180523293
tumin = whichconst.tumin
satrec = Satellite()
satrec.error = 0;
satrec.whichconst = whichconst # Python extension: remembers its consts
satrec.satnum = 0
dt_obj = datetime.utcfromtimestamp(epoch)
t_obj = dt_obj.timetuple()
satrec.epochdays = (t_obj.tm_yday +
t_obj.tm_hour/24 +
t_obj.tm_min/1440 +
t_obj.tm_sec/86400)
satrec.ndot = 0
satrec.nddot = 0
satrec.bstar = bstar
satrec.inclo = kep[2]
satrec.nodeo = kep[4]
satrec.ecco = kep[1]
satrec.argpo = kep[3]
satrec.mo = __true_to_mean(kep[5],kep[1])
satrec.no = 86400/(2*np.pi*(kep[0]**3/398600.4405)**0.5)
satrec.no = satrec.no / xpdotp; # rad/min
satrec.a = pow( satrec.no*tumin , (-2.0/3.0) );
# ---- find standard orbital elements ----
satrec.inclo = satrec.inclo * deg2rad;
satrec.nodeo = satrec.nodeo * deg2rad;
satrec.argpo = satrec.argpo * deg2rad;
satrec.mo = satrec.mo * deg2rad;
satrec.alta = satrec.a*(1.0 + satrec.ecco) - 1.0;
satrec.altp = satrec.a*(1.0 - satrec.ecco) - 1.0;
satrec.epochyr = dt_obj.year
satrec.jdsatepoch = epoch/86400.0 + 2440587.5
satrec.epoch = dt_obj
# ---------------- initialize the orbit at sgp4epoch -------------------
sgp4init(whichconst, afspc_mode, satrec.satnum, satrec.jdsatepoch-2433281.5, satrec.bstar,
satrec.ecco, satrec.argpo, satrec.inclo, satrec.mo, satrec.no,
satrec.nodeo, satrec)
return satrec
|
9f5a9f3d487d9ea924ea1c8858c8b0796e543bf2
| 30,043 |
def enumerate ():
""" Returns an iterator to the features map.
"""
return __all_features.iteritems ()
|
fda0a96102add04c4282a61f99d9a664e76f2bd6
| 30,044 |
def _create_forward(out_node):
"""Create a user-friendly forward function.
Ensures that a single value instead of a tuple is returned if the user asked
for the gradient with respect to only one input.
Args:
out_node: The function definition AST.
Returns:
The function definition with potentially changed return statement.
"""
retval = out_node.body[0].body[-1]
if len(retval.value.elts) == 1:
retval.value = retval.value.elts[0]
return out_node
|
80cdd1814d62b282c1cde37c783d97a067264e51
| 30,045 |
def _get_trip_from_id(trip_obj_list, trip_id):
""" Get a trip from a list, based on a trip id """
found_trip_obj = None
for trip_obj in trip_obj_list:
if trip_obj.id == trip_id:
found_trip_obj = trip_obj
break
return found_trip_obj
|
f2bbacfccda1e4ff778ba793ad238f744400f020
| 30,047 |
def density_plot(df, y_column, models, model_names=(), columns_to_exclude=()):
"""This function creates the density plot of predicted positive class probability on actual positive and negative
data by each model in models in the same plot. It also computes the difference between the distributions on
positive and negative data using Bhattacharyya distance, KL distance, and cross entropy (a.k.a. log-loss).
Parameters
----------
df : DataFrame
Data to be plotted
y_column : str
Label of the class column
models : array-like
The model objects to be evaluated
model_names : array-like
The name of the models to be shown in the legends
columns_to_exclude : tuple, optional (default=())
Labels of unwanted columns
Returns
-------
plot_wrapper : pytalite.plotwrapper.PlotWrapper
The PlotWrapper object that contains the information and data of the plot
Raises
------
ValueError
If models is empty or models and model_names does not have the same length
"""
# Get X, y array representation of data snd predict probability
X, y = df_to_arrays(df, y_column, columns_to_exclude)
pos_idx = y == 1
neg_idx = y == 0
n_models = len(models)
if n_models == 0:
raise ValueError("no models to evaluate")
if len(model_names) == 0:
model_names = ["model %d" % (i + 1) for i in range(n_models)]
if len(model_names) != n_models:
raise ValueError("models and model_names must have the same length")
# List and array to store data
pos_data = np.empty((0, 1000))
neg_data = np.empty((0, 1000))
bds = []
kls = []
ces = []
with plt.style.context(style_path):
fig = plt.figure(figsize=(12, 9))
grid = GridSpec(2, 1, height_ratios=[3.5, 3.5], hspace=0)
ax1 = fig.add_subplot(grid[0])
ax2 = fig.add_subplot(grid[1])
scores = []
# Compute density curve for all models
for model, model_name in zip(models, model_names):
y_prob = model.predict_proba(X)[:, 1]
# Fit gaussian kernels on the data
kernel_pos = st.gaussian_kde(y_prob[pos_idx])
kernel_neg = st.gaussian_kde(y_prob[neg_idx])
xs = np.arange(1000) / 1000
pos_y = kernel_pos(xs)
neg_y = kernel_neg(xs)
# Normalize the curve
pos_norm = (pos_y / pos_y.sum())[np.newaxis, :]
neg_norm = (neg_y / neg_y.sum())[np.newaxis, :]
# Compute all three scores
bd = _bhattacharyya_distance(pos_norm, neg_norm, normalize=True)
kl = st.entropy(pos_norm[0], neg_norm[0])
ce = _cross_entropy(pos_norm, neg_norm, normalize=True)
# Plot using the kernels
line_plot(ax1, xs, pos_y, legend=model_name, line_color=None, line_label=False)
line_plot(ax2, xs, neg_y, line_color=None, line_label=False)
scores.append("%s: Bhattacharyya Distance: %.4f, KL Distance: %.4f, Cross-Entropy: %.4f"
% (model_name, bd, kl, ce))
# Add data
pos_data = np.vstack((pos_data, pos_y))
neg_data = np.vstack((neg_data, neg_y))
bds.append(bd)
kls.append(kl)
ces.append(ce)
ylim_max = max(pos_data.max(), neg_data.max()) * 1.1
ylim_min = round(-ylim_max * 0.05, 1)
# Add scores to plot as text
# ax3.text(0.5, 0.5, "\n".join(scores), va="center", ha="center")
config_axes(ax1, xticks=[], ylabel="Positive Density", ylim=(ylim_min, ylim_max))
config_axes(ax2, y_invert=True, xlabel="Probability\n" + "\n".join(scores), ylabel="Negative Density",
ylim=(ylim_min, ylim_max))
plt.show()
return PlotWrapper(fig, (ax1, ax2), {"probability": xs, "pos_density": pos_data, "neg_density": neg_data,
"Bhattacharyya": np.array(bds), "KL": np.array(kls),
"cross_entropy": np.array(ces)})
|
e3120e3b5fc0b07e12e5fa41fe0f288a9d98495c
| 30,048 |
def clip_chk(x, lb, ub, allow_nan=False):
"""Clip all element of `x` to be between `lb` and `ub` like :func:`numpy:numpy.clip`, but also check
:func:`numpy:numpy.isclose`.
Shapes of all input variables must be broadcast compatible.
Parameters
----------
x : :class:`numpy:numpy.ndarray`
Array containing elements to clip.
lb : :class:`numpy:numpy.ndarray`
Lower limit in clip.
ub : :class:`numpy:numpy.ndarray`
Upper limit in clip.
allow_nan : bool
If true, we allow ``nan`` to be present in `x` without out raising an error.
Returns
-------
x : :class:`numpy:numpy.ndarray`
An array with the elements of `x`, but where values < `lb` are replaced with `lb`, and those > `ub` with `ub`.
"""
assert np.all(lb <= ub) # np.clip does not do this check
x = np.asarray(x)
# These are asserts not exceptions since clip_chk most used internally.
if allow_nan:
assert np.all(isclose_lte(lb, x) | np.isnan(x))
assert np.all(isclose_lte(x, ub) | np.isnan(x))
else:
assert np.all(isclose_lte(lb, x))
assert np.all(isclose_lte(x, ub))
x = np.clip(x, lb, ub)
return x
|
e799e00adb4152a7d2ca2faf95eb82744149e59d
| 30,049 |
def grid_arc_seconds_1d_to_grid_pixel_indexes_1d(grid_arc_seconds_1d, shape, pixel_scales, origin=(0.0, 0.0)):
""" Convert a grid of (y,x) arc second coordinates to a grid of (y,x) pixel 1D indexes. Pixel coordinates are \
returned as integers such that they are the pixel from the top-left of the 2D grid going rights and then \
downwards.
For example:
The pixel at the top-left, whose 2D index is [0,0], corresponds to 1D index 0.
The fifth pixel on the top row, whose 2D index is [0,5], corresponds to 1D index 4.
The first pixel on the second row, whose 2D index is [0,1], has 1D index 10 if a row has 10 pixels.
The arc-second coordinate grid is defined by the class attribute origin, and coordinates are shifted to this \
origin before computing their 1D grid pixel indexes.
The input and output grids are both of shape (total_pixels, 2).
Parameters
----------
grid_arc_seconds_1d: ndarray
The grid of (y,x) coordinates in arc seconds which is converted to 1D pixel indexes.
shape : (int, int)
The (y,x) shape of the original 2D array the arc-second coordinates were computed on.
pixel_scales : (float, float)
The (y,x) arc-second to pixel scales of the original 2D array.
origin : (float, flloat)
The (y,x) origin of the grid, which the arc-second grid is shifted.
Returns
--------
ndarray
A grid of 1d pixel indexes with dimensions (total_pixels, 2).
Examples
--------
grid_arc_seconds_1d = np.array([[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
grid_pixels_1d = grid_arc_seconds_1d_to_grid_pixel_indexes_1d(grid_arc_seconds_1d=grid_arc_seconds_1d, shape=(2,2),
pixel_scales=(0.5, 0.5), origin=(0.0, 0.0))
"""
grid_pixels = grid_arc_seconds_1d_to_grid_pixel_centres_1d(grid_arc_seconds_1d=grid_arc_seconds_1d, shape=shape,
pixel_scales=pixel_scales, origin=origin)
grid_pixel_indexes = np.zeros(grid_pixels.shape[0])
for i in range(grid_pixels.shape[0]):
grid_pixel_indexes[i] = int(grid_pixels[i,0] * shape[1] + grid_pixels[i,1])
return grid_pixel_indexes
|
966133fe0a979c913b704a448d02124005a9946d
| 30,050 |
import fnmatch
def make_test_run_filter(
complete: bool = False, failed: bool = False, incomplete: bool = False,
name: str = None,
newer_than: dt.datetime = None, older_than: dt.datetime = None,
passed: bool = False, result_error: bool = False,
show_skipped: bool = False, sys_name: str = None, user: str = None):
"""Generate a filter function for use by dir_db.select and similar
functions. This operates on TestAttribute objects, so make sure to
pass the TestAttribute class as the transform to dir_db functions.
:param complete: Only accept complete tests
:param failed: Only accept failed tests
:param incomplete: Only accept incomplete tests
:param name: Only accept names that match this glob.
:param newer_than: Only accept tests that are more recent than this date.
:param older_than: Only accept tests older than this date.
:param passed: Only accept passed tests
:param result_error: Only accept tests with a result error.
:param show_skipped: Accept skipped tests.
:param sys_name: Only accept tests with a matching sys_name.
:param user: Only accept tests started by this user.
:return:
"""
if sys_name == LOCAL_SYS_NAME:
sys_vars = system_variables.get_vars(defer=True)
sys_name = sys_vars['sys_name']
# select once so we only make one filter.
def filter_test_run(test_attrs: TestAttributes) -> bool:
"""Determine whether the test run at the given path should be
included in the set."""
if show_skipped == 'no' and test_attrs.skipped:
return False
elif show_skipped == 'only' and not test_attrs.skipped:
return False
if complete and not test_attrs.complete:
return False
if incomplete and test_attrs.complete:
return False
if user and test_attrs.user != user:
return False
if sys_name and sys_name != test_attrs.sys_name:
return False
if passed and test_attrs.result != TestRun.PASS:
return False
if failed and test_attrs.result != TestRun.FAIL:
return False
if result_error and test_attrs.result != TestRun.ERROR:
return False
if older_than is not None and test_attrs.created > older_than:
return False
if newer_than is not None and test_attrs.created < newer_than:
return False
if name and not fnmatch.fnmatch(test_attrs.name, name):
return False
return True
return filter_test_run
|
57f20287ac957b394b8ac25946da3da42deec8ec
| 30,051 |
def get_runnable_tasks(graph):
"""Parse a graph and return all runnable tasks."""
tasks = []
to_remove = []
# tasks that follow task that raises an error
following_err = dict()
for tsk in graph.sorted_nodes:
if tsk not in graph.sorted_nodes:
continue
# since the list is sorted (breadth-first) we can stop
# when we find a task that depends on any task that is already in tasks
if set(graph.predecessors[tsk.name]).intersection(set(tasks)):
break
_is_runnable = is_runnable(graph, tsk)
if _is_runnable is True:
tasks.append(tsk)
to_remove.append(tsk)
elif _is_runnable is False:
continue
else: # a previous task had an error
errored_task = _is_runnable
# removing all successors of the errored task
for task_err in errored_task:
task_to_remove = graph.remove_successors_nodes(task_err)
for tsk in task_to_remove:
# adding tasks that were removed from the graph
# due to the error in the errored_task
following_err.setdefault(tsk, [])
following_err[tsk].append(task_err.name)
# removing tasks that are ready to run from the graph
for nd in to_remove:
graph.remove_nodes(nd)
return tasks, following_err
|
155206f67986e65b74148e173d6641d994dd08bd
| 30,052 |
def get_defaults(lang):
"""Get the language-specific defaults, if available in spaCy. This allows
using lexical attribute getters that depend on static language data, e.g.
Token.like_num, Token.is_stop, Doc.noun_chunks etc.
lang (unicode): ISO 639-1 language code.
RETURNS (Language.Defaults): The language defaults.
"""
try:
lang_cls = get_lang_class(lang)
return lang_cls.Defaults
except ImportError:
return Language.Defaults
|
3ef08b4bd410407ad8519d1c4f84c6c279aa8257
| 30,053 |
def h2(*text, **kwargs):
"""Return a header 2"""
return tydoc().h2(*text, **kwargs)
|
7b5b465282222c31d84121e6f890da964cb63fd5
| 30,054 |
def update_comment(comment_id, data):
"""
update comment using its id.
"""
comment = Comment.query.get(comment_id)
for attribute in data:
setattr(comment, attribute, data[attribute])
db.session.commit()
return comment_schema.dump(comment).data
|
aaeb88479bf82ea3ac09a56d17e09c4ba05eda47
| 30,055 |
def RMSE(A, A_tilde):
"""
Root mean square error. Gives the standard deviation of the residuals
(prediction errors).
Parameters
----------
A : ndarray
Forecast.
A_tilde : ndarray
Observation.
Returns
-------
float
Root mean square error.
"""
return np.sqrt((abs(A_tilde - A)**2).mean())
|
58a5b833725497be224804a71855819afa9fc33f
| 30,057 |
def remove_punct(tokens):
"""
Remove punctuation marks from lists of tokens
Parameters
----------
tokens: list
a nested list containing lists of tokens or a list of spacy docs
Returns
-------
filtered_comments: list
nested lists of tokens
"""
filtered_comments = [[token for token in comment if nlp.vocab[token.text].is_punct == False] for comment in tokens]
return filtered_comments
|
c6d7b70a6bf3efe7be3dd144f10ac0f8f5b11e72
| 30,058 |
def to_camel_case(string: str) -> str:
"""
Converts a ``snake_case`` string to ``camelCase``.
:param string: A ``snake_case`` string.
:return: A ``camelCase`` version of the input.
"""
components = string.split("_")
return components[0] + "".join(x.capitalize() for x in components[1:])
|
ae0d82efd9a5a65ef16cc401a0fe302b4f04d524
| 30,059 |
import requests
def reconnect(user_data):
"""
Attempt to perform a login to the Unistudium website, saving the cookies in user_data.
Returns:
"OK" if the login was performed correctly, else a description with the error that can be used to inform the users.
"""
# Check if user's session exists
if 'session' not in user_data:
user_data['session'] = requests.Session()
# Getting credentials if available
try:
payload = {
"username": user_data['credentials']['username'],
"password": user_data['credentials']['password']
}
except KeyError:
return "Non hai effettuato ancora il login, effettualo tramite il comando /login."
# Check if server is alive
status_code = requests.head(LOGIN_URL).status_code
if status_code != 200:
print(Fore.RED + "[CONNECTION] Server irraggiungibile. Status code: " + str(status_code))
return "Non riesco a contattare il server (CODE: %d), riprova più tardi..." % status_code
# Check if the login is still valid (without performing a login)
if user_data['session'].head(MAIN_URL).status_code == 200:
return "OK"
# Perform the login
if user_data['session'].post(LOGIN_URL, data=payload).url != MAIN_URL:
return "Le credenziali fornite non sono valide. Riprova."
return "OK"
|
e05096d69605300680b29bc12784faa3734f40b2
| 30,060 |
from typing import Optional
from typing import Collection
from typing import List
from typing import Tuple
from typing import Set
from typing import Dict
import operator
def yake(
doc: Doc,
*,
normalize: Optional[str] = "lemma",
ngrams: int | Collection[int] = (1, 2, 3),
include_pos: Optional[str | Collection[str]] = ("NOUN", "PROPN", "ADJ"),
window_size: int = 2,
topn: int | float = 10,
) -> List[Tuple[str, float]]:
"""
Extract key terms from a document using the YAKE algorithm.
Args:
doc: spaCy ``Doc`` from which to extract keyterms.
Must be sentence-segmented; optionally POS-tagged.
normalize: If "lemma", lemmatize terms; if "lower", lowercase terms;
if None, use the form of terms as they appeared in ``doc``.
.. note:: Unlike the other keyterm extraction functions, this one
doesn't accept a callable for ``normalize``.
ngrams: n of which n-grams to consider as keyterm candidates.
For example, `(1, 2, 3)`` includes all unigrams, bigrams, and trigrams,
while ``2`` includes bigrams only.
include_pos: One or more POS tags with which to filter for good candidate keyterms.
If None, include tokens of all POS tags
(which also allows keyterm extraction from docs without POS-tagging.)
window_size: Number of words to the right and left of a given word
to use as context when computing the "relatedness to context"
component of its score. Note that the resulting sliding window's
full width is ``1 + (2 * window_size)``.
topn: Number of top-ranked terms to return as key terms.
If an integer, represents the absolute number; if a float, value
must be in the interval (0.0, 1.0], which is converted to an int by
``int(round(len(candidates) * topn))``
Returns:
Sorted list of top ``topn`` key terms and their corresponding YAKE scores.
References:
Campos, Mangaravite, Pasquali, Jorge, Nunes, and Jatowt. (2018).
A Text Feature Based Automatic Keyword Extraction Method for Single Documents.
Advances in Information Retrieval. ECIR 2018.
Lecture Notes in Computer Science, vol 10772, pp. 684-691.
"""
# validate / transform args
ngrams = utils.to_collection(ngrams, int, tuple)
include_pos = utils.to_collection(include_pos, str, set)
if isinstance(topn, float):
if not 0.0 < topn <= 1.0:
raise ValueError(
f"topn = {topn} is invalid; "
"must be an int, or a float between 0.0 and 1.0"
)
# bail out on empty docs
if not doc:
return []
stop_words: Set[str] = set()
seen_candidates: Set[str] = set()
# compute key values on a per-word basis
word_occ_vals = _get_per_word_occurrence_values(
doc, normalize, stop_words, window_size
)
# doc doesn't have any words...
if not word_occ_vals:
return []
word_freqs = {w_id: len(vals["is_uc"]) for w_id, vals in word_occ_vals.items()}
word_scores = _compute_word_scores(doc, word_occ_vals, word_freqs, stop_words)
# compute scores for candidate terms based on scores of constituent words
term_scores: Dict[str, float] = {}
# do single-word candidates separately; it's faster and simpler
if 1 in ngrams:
candidates = _get_unigram_candidates(doc, include_pos)
_score_unigram_candidates(
candidates,
word_freqs,
word_scores,
term_scores,
stop_words,
seen_candidates,
normalize,
)
# now compute combined scores for higher-n ngram and candidates
candidates = list(
ext_utils.get_ngram_candidates(
doc, [n for n in ngrams if n > 1], include_pos=include_pos,
)
)
attr_name = _get_attr_name(normalize, True)
ngram_freqs = itertoolz.frequencies(
" ".join(getattr(word, attr_name) for word in ngram) for ngram in candidates
)
_score_ngram_candidates(
candidates, ngram_freqs, word_scores, term_scores, seen_candidates, normalize,
)
# build up a list of key terms in order of increasing score
if isinstance(topn, float):
topn = int(round(len(seen_candidates) * topn))
sorted_term_scores = sorted(
term_scores.items(), key=operator.itemgetter(1), reverse=False,
)
return ext_utils.get_filtered_topn_terms(
sorted_term_scores, topn, match_threshold=0.8
)
|
b467f0598c70dbf1cec70dafec12ac4259720f91
| 30,061 |
def parse_qsub_defaults(parsed):
"""Unpack QSUB_DEFAULTS."""
d = parsed.split() if type(parsed) == str else parsed
options={}
for arg in d:
if "=" in arg:
k,v = arg.split("=")
options[k.strip("-")] = v.strip()
else:
options[arg.strip("-")] = ""
return options
|
a5c50aef405d88bcb018af48904a384b090d22a2
| 30,062 |
import torch
def load_embeddings(word_map=None, binary=True):
"""
Creates an embedding tensor for the specified word map, for loading into the model.
:param word_emb_file: file containing embeddings (stored in GloVe format)
:param word_map: word map. If None, it will be comprised from the embeddings vocabulary
:return: embeddings in the same order as the words in the word map, dimension of embeddings, a wordmap in case
it wasn't supplied.
"""
print("Loading embeddings...")
wv = KeyedVectors.load_word2vec_format(PATH_WORD2VEC, binary=binary)
ev = KeyedVectors.load_word2vec_format(PATH_EMOJI2VEC, binary=binary)
# Find embedding dimension
emb_dim = wv.vector_size
if word_map == None:
word_map = {k: v + 1 for emb in [wv.key_to_index.keys(), ev.key_to_index.keys()] for v, k in enumerate(emb)}
word_map['<unk>'] = len(word_map) + 1
word_map['<start>'] = len(word_map) + 1
word_map['<end>'] = len(word_map) + 1
word_map['<pad>'] = 0
vocab = set(word_map.keys())
# Create tensor to hold embeddings, initialize
embeddings = torch.FloatTensor(len(vocab), emb_dim)
_init_embedding(embeddings)
# Iterate through the vector pairs
for emb_word in vocab:
if emb_word in wv.key_to_index:
embeddings[word_map[emb_word]] = torch.FloatTensor(wv.get_vector(emb_word).copy())
elif emb_word in ev.key_to_index:
embeddings[word_map[emb_word]] = torch.FloatTensor(ev.get_vector(emb_word).copy())
return word_map, embeddings, emb_dim
|
9c43d00411dd6036297c21569a232d52bd71acac
| 30,063 |
from typing import Dict
import json
import requests
def update_business_profile(business: Business, profile_info: Dict) -> Dict:
"""Set the legal type of the business."""
if not business or not profile_info:
return {'error': babel('Business and profile_info required.')}
# contact phone is optional
phone = profile_info.get('phone', '')
error = {'error': 'Unknown handling'}
if email := profile_info.get('email'):
# assume the JSONSchema ensures it is a valid email format
token = AccountService.get_bearer_token()
account_svc_entity_url = current_app.config['ACCOUNT_SVC_ENTITY_URL']
# Create an entity record
data = json.dumps(
{'email': email,
'phone': phone,
'phoneExtension': ''
}
)
url = ''.join([account_svc_entity_url, '/', business.identifier, '/contacts'])
rv = requests.post(
url=url,
headers={**AccountService.CONTENT_TYPE_JSON,
'Authorization': AccountService.BEARER + token},
data=data,
timeout=AccountService.timeout
)
if rv.status_code in (HTTPStatus.OK, HTTPStatus.CREATED):
error = None
if rv.status_code == HTTPStatus.NOT_FOUND:
error = {'error': 'No business profile found.'}
if rv.status_code == HTTPStatus.METHOD_NOT_ALLOWED:
error = {'error': 'Service account missing privileges to update business profiles'}
if rv.status_code == HTTPStatus.BAD_REQUEST and \
'DATA_ALREADY_EXISTS' in rv.text:
put = requests.put(
url=''.join([account_svc_entity_url, '/', business.identifier]),
headers={**AccountService.CONTENT_TYPE_JSON,
'Authorization': AccountService.BEARER + token},
data=data,
timeout=AccountService.timeout
)
if put.status_code in (HTTPStatus.OK, HTTPStatus.CREATED):
error = None
else:
error = {'error': 'Unable to update existing business profile.'}
return error
|
68c0ce0d9d205d34b02f7933ca3bc0e7179c7a12
| 30,064 |
def nextpow2(i):
""" Find the next power of 2 for number i """
n = 1
while n < i:
n *= 2
return n
|
5dbe396b222ccf79d3cd2017b32174f9e894a5f2
| 30,065 |
from typing import Sequence
from typing import Dict
from typing import List
from typing import Set
from typing import Tuple
def _extra_topo_sort(bad_ordering: Sequence[DiscoveredExtension]) -> Sequence[DiscoveredExtension]:
"""
Simple depth-first search version of a topological sort, but without
recursion.
:param bad_ordering:
:return:
"""
lookup: Dict[str, DiscoveredExtension] = {}
for node in bad_ordering:
lookup[node.name] = node
ret: List[DiscoveredExtension] = []
visiting: Set[str] = set()
visited: Set[str] = set()
remaining: List[Tuple[str, int]] = [(node.name, 0) for node in bad_ordering]
# This isn't really necessary, but makes things dependable for testing
# and gives a reliable, consistent load order.
remaining.sort(key=lambda t: t[0])
log(TRACE, _extra_topo_sort, 'Performing topo sort of {0}', bad_ordering)
while remaining:
node_name, state = remaining.pop()
log(TRACE, _extra_topo_sort, 'Inspecting {0}, {1}', node_name, state)
node = lookup[node_name]
if state == 0:
if node_name in visited:
continue
if node_name in visiting:
# Better exception? This should not happen, based on the previous
# searching.
raise ValueError('Not a DAG')
log(TRACE, _extra_topo_sort, ' - Visiting')
visiting.add(node_name)
remaining.append((node_name, 1))
for child in node.depends_on:
log(TRACE, _extra_topo_sort, ' -- depends on {0}', child.name)
remaining.append((child.name, 0))
for child in node.implements:
log(TRACE, _extra_topo_sort, ' -- implements {0}', child.name)
remaining.append((child.name, 0))
log(TRACE, _extra_topo_sort, 'Remaining to search: {0}', remaining)
elif state == 1:
log(TRACE, _extra_topo_sort, ' - Finished visit')
visiting.remove(node_name)
visited.add(node_name)
ret.append(node)
log(TRACE, _extra_topo_sort, 'Order: {0}', ret)
return tuple(ret)
|
cdaf0229dda2460e68ee24afb987ca9f7e029d4d
| 30,066 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.