content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def cancel_job(request): # pylint: disable=unused-argument
"""Handler for `cancel_job/` request."""
if not job_ids:
print('No jobs are running, nothing to cancel!')
else:
job_id = job_ids.popleft()
print('CANCELING JOB:', job_id)
long_job.cancel(job_id)
return django.http.HttpResponse()
|
365b305b88329cf394f3b7d36c6cd3e02121b5a1
| 29,832 |
def LO_solver_multiprocessing(H,N,dis, args,pipe):
"""
Allows to solve the Hamiltonian using several CPUs.
Parameters
----------
H: arr
Discretized Lutchyn-Oreg Hamiltonian built with Lutchyn_builder.
N: int or arr
Number of sites. If it is an array, each element is the number of
sites in each direction.
dis: int or arr
Distance (in nm) between sites. If it is an array, each element is
the distance between sites in each direction.
arg: dictionary
Dictionary with the keywords arguments of Lutchyn_solver.
pipe: pipe
Pipe to the corresponding process.
"""
#Send work to a given process:
E,U=LO_solver(H,N,dis,1,n_CPU=1,
mu=args['mu'],B=args['B'],aR=args['aR'],d=args['d'],
BdG=args['BdG'],
space=args['space'],k_vec=args['k_vec'], m_eff=args['m_eff'],
sparse=args['sparse'],n_eig=args['n_eig'], near=args['near'],
section=args['section'],
method=args['method'],Nxp=args['Nxp'],n_orb=args['n_orb'])
#Recover output:
pipe.send((E,U))
#Close process:
pipe.close()
return True
|
b4738ababdd47a9dc633760dbc3ee7f29744e1e3
| 29,833 |
def _clip_grad(clip_type, clip_value, grad):
"""
Clip gradients.
Inputs:
clip_type(int): The way to clip, 0 for 'value', 1 for 'norm'.
clip_value(float): Specifies how much to clip.
grad (tuple[Tensor]): Gradients.
Outputs:
tuple[Tensor], clipped gradients.
"""
if clip_type not in (0, 1):
return grad
dt = ops.dtype(grad)
if clip_type == 0:
new_grad = ops.clip_by_value(grad, ops.cast(ops.tuple_to_array((-clip_value,)), dt),
ops.cast(ops.tuple_to_array((clip_value,)), dt))
else:
new_grad = nn.ClipByNorm()(grad, ops.cast(ops.tuple_to_array((clip_value,)), dt))
return new_grad
|
998003fa6ef24e917af55cdd831034cafceeed74
| 29,834 |
def lightness_correlate(A, A_w, c, z):
"""
Returns the *Lightness* correlate :math:`J`.
Parameters
----------
A : numeric or array_like
Achromatic response :math:`A` for the stimulus.
A_w : numeric or array_like
Achromatic response :math:`A_w` for the whitepoint.
c : numeric or array_like
Surround exponential non linearity :math:`c`.
z : numeric or array_like
Base exponential non linearity :math:`z`.
Returns
-------
numeric or ndarray
*Lightness* correlate :math:`J`.
Examples
--------
>>> A = 23.9394809667
>>> A_w = 46.1882087914
>>> c = 0.69
>>> z = 1.9272135955
>>> lightness_correlate(A, A_w, c, z) # doctest: +ELLIPSIS
41.7310911...
"""
A = as_float_array(A)
A_w = as_float_array(A_w)
c = as_float_array(c)
z = as_float_array(z)
J = 100 * spow(A / A_w, c * z)
return J
|
2692225728d9621ac427cedafcb18c9fe014d4ac
| 29,835 |
def fetch_file_from_guest(module, content, vm, username, password, src, dest):
""" Use VMWare's filemanager api to fetch a file over http """
result = {'failed': False}
tools_status = vm.guest.toolsStatus
if tools_status == 'toolsNotInstalled' or tools_status == 'toolsNotRunning':
result['failed'] = True
result['msg'] = "VMwareTools is not installed or is not running in the guest"
return result
# https://github.com/vmware/pyvmomi/blob/master/docs/vim/vm/guest/NamePasswordAuthentication.rst
creds = vim.vm.guest.NamePasswordAuthentication(
username=username, password=password
)
# https://github.com/vmware/pyvmomi/blob/master/docs/vim/vm/guest/FileManager/FileTransferInformation.rst
fti = content.guestOperationsManager.fileManager. \
InitiateFileTransferFromGuest(vm, creds, src)
result['size'] = fti.size
result['url'] = fti.url
# Use module_utils to fetch the remote url returned from the api
rsp, info = fetch_url(module, fti.url, use_proxy=False,
force=True, last_mod_time=None,
timeout=10, headers=None)
# save all of the transfer data
for k, v in iteritems(info):
result[k] = v
# exit early if xfer failed
if info['status'] != 200:
result['failed'] = True
return result
# attempt to read the content and write it
try:
with open(dest, 'wb') as f:
f.write(rsp.read())
except Exception as e:
result['failed'] = True
result['msg'] = str(e)
return result
|
6906573831b9889f82a7015c3a6ba9e82ca1cdea
| 29,837 |
def ReadFile(filename):
"""
description: Read program from file
param {*} filename
return {*} file
"""
input_file = open(filename, "r")
result = []
while True:
line = input_file.readline()
if not line:
break
result.append(line)
for line_index in range(len(result)):
result[line_index] = result[line_index][:-1] # delete the '\n' of every line
input_file.close()
return result
|
fd7d7faab401f335579719f6e015bf7b9d82c2e2
| 29,839 |
def item_url(item):
"""Return a Markdown URL for the WCAG item."""
fragment = item["id"].split(":")[1]
return url(item["handle"], f"https://www.w3.org/TR/WCAG21/#{fragment}")
|
d670da65ef794116ae5ccd650f3618e7c6a5dc45
| 29,840 |
def gen_nested_prop_getter(val_name, throws, klass):
"""
generates a nested property getter, it
actually returns an _Internal object
"""
def _internal(self):
try:
getattr(self, val_name)
except AttributeError:
setattr(self, val_name, klass())
return getattr(self, val_name)
return _internal
|
54f766ae1dfcbc0e491355a4c741ccbadff6d26f
| 29,841 |
import numpy
import scipy
def quad_genz_keister(order, dist, rule=24):
"""
Genz-Keister quadrature rule.
Examples:
>>> abscissas, weights = quad_genz_keister(
... order=1, dist=chaospy.Iid(chaospy.Uniform(0, 1), 2))
>>> abscissas.round(2)
array([[0.04, 0.04, 0.04, 0.5 , 0.5 , 0.5 , 0.96, 0.96, 0.96],
[0.04, 0.5 , 0.96, 0.04, 0.5 , 0.96, 0.04, 0.5 , 0.96]])
>>> weights.round(2)
array([0.03, 0.11, 0.03, 0.11, 0.44, 0.11, 0.03, 0.11, 0.03])
"""
assert isinstance(rule, int)
if len(dist) > 1:
if isinstance(order, int):
values = [quad_genz_keister(order, d, rule) for d in dist]
else:
values = [quad_genz_keister(order[i], dist[i], rule)
for i in range(len(dist))]
abscissas = [_[0][0] for _ in values]
abscissas = combine(abscissas).T
weights = [_[1] for _ in values]
weights = numpy.prod(combine(weights), -1)
return abscissas, weights
foo = GENS_KEISTER_FUNCTIONS[rule]
abscissas, weights = foo(order)
abscissas = dist.inv(scipy.special.ndtr(abscissas))
abscissas = abscissas.reshape(1, abscissas.size)
return abscissas, weights
|
f4d4590f2910ea82e5e824a47be196f82bdd5da3
| 29,842 |
def get_maf(variant):
"""
Gets the MAF (minor allele frequency) tag from the info field for the
variant.
Args:
variant (cyvcf2.Variant)
Returns:
maf (float): Minor allele frequency
"""
return variant.INFO.get("MAF")
|
1d25f577a3cec14b8d05095d320fad6584484718
| 29,843 |
import glob
def check_channels(file_path_address: str, image_type: str):
"""Manual verifier to determine which images to further clean or remove.
This checks to see if there is a consistent third dimension in each of the images.
Paramters:
---------
file_path_address: str
Address of where all jpgs are located.
image_type: str
image type as in .png or .jpg
Return:
---------
Array of name of jpgs to address.
"""
imgs = glob(f'{file_path_address}*.{image_type}')
arr_other = []
for i, j in enumerate(imgs):
print(f"Starting {i} for filename: {j}")
im = cv2.imread(j)
try:
if im.shape[2] != 3:
arr_other.append(j)
except Exception as e:
arr_other.append(j)
print(e)
return arr_other
|
6d7307dbc103fd74a21e6fbb5193c4aaebc1fd35
| 29,844 |
import heapq
def break_large_contigs(contigs, break_t, verbose=False):
"""Break large contigs in half until all contigs are under
the size threshold."""
# initialize a heapq of contigs and lengths
contig_heapq = []
for ctg in contigs:
ctg_len = ctg.end - ctg.start
heapq.heappush(contig_heapq, (-ctg_len, ctg))
ctg_len = break_t + 1
while ctg_len > break_t:
# pop largest contig
ctg_nlen, ctg = heapq.heappop(contig_heapq)
ctg_len = -ctg_nlen
# if too large
if ctg_len > break_t:
if verbose:
print('Breaking %s:%d-%d (%d nt)' % (ctg.chr,ctg.start,ctg.end,ctg_len))
# break in two
ctg_mid = ctg.start + ctg_len//2
try:
ctg_left = Contig(ctg.genome, ctg.chr, ctg.start, ctg_mid)
ctg_right = Contig(ctg.genome, ctg.chr, ctg_mid, ctg.end)
except AttributeError:
ctg_left = Contig(ctg.chr, ctg.start, ctg_mid)
ctg_right = Contig(ctg.chr, ctg_mid, ctg.end)
# add left
ctg_left_len = ctg_left.end - ctg_left.start
heapq.heappush(contig_heapq, (-ctg_left_len, ctg_left))
# add right
ctg_right_len = ctg_right.end - ctg_right.start
heapq.heappush(contig_heapq, (-ctg_right_len, ctg_right))
# return to list
contigs = [len_ctg[1] for len_ctg in contig_heapq]
return contigs
|
82b039abd675303def8360acf9814426af50e503
| 29,845 |
def create_content(address, owner, content):
"""
Create a new page with some content.
Args:
address (str): the new page's absolute address.
owner (Account): the owner of the page to be created.
content (str): the Markdown content of the first revision.
Returns:
page (Page): the newly-created page.
"""
if address.startswith("/"):
address = address[1:]
return Page.objects.create_content(address, owner, content)
|
229df67cc230d39d7b6d0a129ee91d9a2f0246dd
| 29,846 |
def update_op_dims_mapping_by_default_dist_impl(op_dist_attr):
"""Each operator has a default distributed operator, only allowed to be sharded in batch dimension."""
changed = False
op_desc = op_dist_attr.get_owner_op().desc
# The following statement will be replaced by a more elegent way
if op_desc.type() == "shape" or op_desc.type() == "slice":
return False
output_names = op_desc.output_names()
xshape_arg_names = []
if "XShape" in output_names:
xshape_arg_names = op_desc.output("XShape")
batch_dim_mappings = []
for arg_name in op_desc.input_arg_names():
if op_dist_attr.is_parameter(arg_name):
continue
dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
if len(dims_mapping) > 1:
for idx, mapping in enumerate(dims_mapping[1:]):
assert mapping == -1, \
"{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
.format(op_desc.type(), idx, mapping)
batch_dim_mappings.append(dims_mapping[0])
for arg_name in op_desc.output_arg_names():
if op_dist_attr.is_parameter(arg_name):
continue
dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
if arg_name not in xshape_arg_names:
if len(dims_mapping) > 1:
for idx, mapping in enumerate(dims_mapping[1:]):
assert mapping == -1, \
"{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."\
.format(op_desc.type(), idx, mapping)
batch_dim_mappings.append(dims_mapping[0])
else:
assert dims_mapping[0] == -1, \
"{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part."\
.format(op_desc.type(), mapping)
if len(dims_mapping) > 2:
for idx, mapping in enumerate(dims_mapping[2:]):
assert mapping == -1, \
"{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part."\
.format(op_desc.type(), idx, mapping)
batch_dim_mappings.append(dims_mapping[1])
compatible_dim_mapping = compute_compatible_dim_mapping(batch_dim_mappings)
assert compatible_dim_mapping is not None, "There is no compatible dim mapping."
for arg_name in op_desc.input_arg_names():
if op_dist_attr.is_parameter(arg_name):
continue
dims_mapping = op_dist_attr.get_input_dims_mapping(arg_name)
if compatible_dim_mapping != dims_mapping[0]:
dims_mapping[0] = compatible_dim_mapping
changed = True
for arg_name in op_desc.output_arg_names():
if op_dist_attr.is_parameter(arg_name):
continue
dims_mapping = op_dist_attr.get_output_dims_mapping(arg_name)
if arg_name not in xshape_arg_names:
if compatible_dim_mapping != dims_mapping[0]:
dims_mapping[0] = compatible_dim_mapping
changed = True
else:
if compatible_dim_mapping != dims_mapping[1]:
dims_mapping[1] = compatible_dim_mapping
changed = True
return changed
|
75f226ff4902cd935abadd60b16874929d35883c
| 29,847 |
import random
import torch
def perturb_box(box, min_iou=0.5, sigma_factor=0.1):
""" Perturb the input box by adding gaussian noise to the co-ordinates
args:
box - input box
min_iou - minimum IoU overlap between input box and the perturbed box
sigma_factor - amount of perturbation, relative to the box size. Can be either a single element, or a list of
sigma_factors, in which case one of them will be uniformly sampled. Further, each of the
sigma_factor element can be either a float, or a tensor
of shape (4,) specifying the sigma_factor per co-ordinate
returns:
torch.Tensor - the perturbed box
"""
if isinstance(sigma_factor, list):
# If list, sample one sigma_factor as current sigma factor
c_sigma_factor = random.choice(sigma_factor)
else:
c_sigma_factor = sigma_factor
if not isinstance(c_sigma_factor, torch.Tensor):
c_sigma_factor = c_sigma_factor * torch.ones(4)
perturb_factor = torch.sqrt(box[2] * box[3]) * c_sigma_factor
# multiple tries to ensure that the perturbed box has iou > min_iou with the input box
for i_ in range(100):
c_x = box[0] + 0.5 * box[2]
c_y = box[1] + 0.5 * box[3]
c_x_per = random.gauss(c_x, perturb_factor[0])
c_y_per = random.gauss(c_y, perturb_factor[1])
w_per = random.gauss(box[2], perturb_factor[2])
h_per = random.gauss(box[3], perturb_factor[3])
if w_per <= 1:
w_per = box[2] * rand_uniform(0.15, 0.5)
if h_per <= 1:
h_per = box[3] * rand_uniform(0.15, 0.5)
box_per = torch.Tensor([c_x_per - 0.5 * w_per, c_y_per - 0.5 * h_per, w_per, h_per]).round()
if box_per[2] <= 1:
box_per[2] = box[2] * rand_uniform(0.15, 0.5)
if box_per[3] <= 1:
box_per[3] = box[3] * rand_uniform(0.15, 0.5)
box_iou = iou(box.view(1, 4), box_per.view(1, 4))
# if there is sufficient overlap, return
if box_iou > min_iou:
return box_per, box_iou
# else reduce the perturb factor
perturb_factor *= 0.9
return box_per, box_iou
|
1b1e7cb831d52be0b96b69d68817c678865447d2
| 29,848 |
import statistics
def coverageCalc(coverageList,minCov):
"""Function parsing coverageList for
:param coverageList: List of pacbam coverage information
:param minCov: Int of minimum passing coverage
:return:
covCount: Int of bases with coverage
minCovCount: Int of bases with minimum coverage
meanDepth: Int mean coverage stat
"""
covCount = 0
minCovCount = 0
meanDepth = statistics.mean(coverageList)
for i in coverageList:
if i != 0:
covCount +=1
if i >= minCov:
minCovCount +=1
return(covCount,minCovCount,round(meanDepth,2))
|
e20dc1e1f0b6f7e328501afe9921455a705f196a
| 29,849 |
def truncate_top_k_2(x, k):
"""Keep top_k highest values elements for each row of a numpy array
Args:
x (np.Array): numpy array
k (int): number of elements to keep for each row
Returns:
np.Array: processed array
"""
s = x.shape
# ind = np.argsort(x)[:, : s[1] - k]
ind = np.argpartition(x, -k, axis=1)[:, :-k]
rows = np.arange(s[0])[:, None]
x[rows, ind] = 0
return x
|
1e84987b01d4cbab9c97174886c87d88e541f380
| 29,850 |
def permute_dimensions(x, pattern):
"""Permutes axes in a tensor.
# Arguments
pattern: should be a tuple of
dimension indices, e.g. (0, 2, 1).
# Returns
A tensor.
"""
return KerasSymbol(mx.sym.transpose(x.symbol, axes=pattern))
|
3665221ec55a01dcf2eaa3f51d716d08f09eed60
| 29,852 |
import copy
def relaxStructure(s, operation):
"""
Performs a gulp relaxation (either relaxation of unit cell parameters only, or both unit cell and atomic positions.
s: structure_class
operation: string
Specifies the gulp calculation to execute.
Returns
-------
s : structure_class
The object containing the relaxed configuration.
{True or False}:
Relaxation succeed or failed.
result: string
The gulp output.
"""
s2 = copy.copy(s)
s.structure, s.energy, result, calc_time = gulp_calc.gulp_relaxation(copy.copy(s), operation, gulp_shells=[])
return (s, True, result) if result == "converged" else (s2, False, result)
|
ccc8a2fe75d11693030fea6771bb127e3fc9ebcd
| 29,853 |
import time
def dos_gaussian_shift(energies, dos_total, projections, nGridpoints, smearing):
"""
Produces a single gaussian function then shifts the gaussian around the grid
Advantages:
+ Very fast compared to other methods
Disadvantages:
- Produces an edge effect, energy range should be larger than required
- Very reliable, but not as accurate as addition method as mean needs to be on energy grid
- Due to edge effect, grids produced will vary in size
- Grids can be made consistent but edge effect will be shown in data
Parameters
-------------
energies : list
list of eigenvalues, floating point numbers
dos_total : list
Density of states weightings
nGridPoints : float
Number of grid points to perform this method on
smearing : float
Smearing value
Returns
--------------
list, list
A list of energies and smeared eigenvalues
"""
# Start time for function:
start = time.time()
nComponents = len(projections[0])
nColumns = nComponents + 1
# Create grid for energy values:
energyGrid = np.linspace(min_energy, max_energy, nGridpoints)
# Final dos using np:
final_dos = np.zeros( (nColumns, nGridpoints) )
# Define gaussian function:
func = gaus_func(energyGrid, 0, smearing)
# Find max index of gaussian:
maximum = func.argmax()
if components:
# Move gaussian around grid until mean of gaussian is nearest to the DOS value
for index, item in enumerate(energies):
maximum = func.argmax()
idx = (np.abs(energyGrid - item)).argmin()
rolled = np.roll(func, idx-maximum)
final_dos[0] += rolled*dos_total[index]
for index2, projection in enumerate(projections[index]):
final_dos[index2+1] += rolled*projection
else:
for index, item in enumerate(energies):
maximum = func.argmax()
idx = (np.abs(energyGrid - item)).argmin()
rolled = np.roll(func, idx-maximum)
final_dos[0] += rolled*dos_total[index]
# Remove 20% of grid due to edge effects:
n = int(0.2*func.size)
final_dos = final_dos[:, n:-n]
energyGrid = energyGrid[n:-n]
# finish timing:
end = time.time()
print(f"Time elapsed (s), shift method: {end-start:.5f}")
return energyGrid, final_dos
|
ff1ea14a96c217083eba01a5cde7deb668e1267d
| 29,854 |
def temp_h5_file(tmpdir_factory):
""" a fixture that fetches a temporary output dir/file for a test
file that we want to read or write (so it doesn't clutter up the test
directory when the automated tests are run)"""
return str(tmpdir_factory.mktemp('data').join('test.h5'))
|
23ca5e58aa7afadcd18394bfa7ea6aa3a48c412e
| 29,855 |
def get_day_name(date):
"""
returns the day name for a give date
@param date datatime
@return month name
.. faqref::
:tag: python
:title: Récupérer le nom du jour à partir d'une date
.. runpython::
:showcode:
import datetime
dt = datetime.datetime(2016, 1, 1)
print(dt.strftime("%A"))
"""
return date.strftime("%A")
|
1e6b67d5b853156d5e6a8624c9644a08ebb4ee20
| 29,856 |
def get_samples(n_samples, data, labels=None, use_random_transpose=False):
"""Return some random samples of the training data."""
indices = np.random.choice(len(data), n_samples, False)
if np.issubdtype(data.dtype, np.bool_):
sample_data = data[indices] * 2. - 1.
else:
sample_data = data[indices]
if use_random_transpose:
sample_data = np.array([random_transpose(x) for x in sample_data])
if labels is None:
return sample_data
return sample_data, labels[indices]
|
7a9fc5256b438619af8e366802fc54db196536d7
| 29,857 |
from typing import Union
import torch
import collections
from typing import Callable
def apply_to_tensor(
x: Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes], func: Callable
) -> Union[torch.Tensor, collections.Sequence, collections.Mapping, str, bytes]:
"""Apply a function on a tensor or mapping, or sequence of tensors.
Args:
x: input tensor or mapping, or sequence of tensors.
func: the function to apply on ``x``.
"""
return apply_to_type(x, torch.Tensor, func)
|
53f966bfbd6b68efa2bfeb72b8c34e38be008196
| 29,858 |
def status():
""" Returns a page showing the number of unprocessed certficate-requests. """
result = db.session.query(Request).filter(Request.generation_date == None).count()
return render_template('status.html', requests=result)
|
9e04e870a4d3d707da078e5681c145726ba563c2
| 29,859 |
def weak_connect(sender, signal, connector, attr, idle=False, after=False):
"""
Function to connect some GObject with weak callback
"""
wc = WeakCallback(connector, attr, idle)
if after:
wc.gobject_token = sender.connect_after(signal, wc)
else:
wc.gobject_token = sender.connect(signal, wc)
#print "Connected", sender, signal, connector, attr, idle, after
return wc.gobject_token
|
e18ba634c039cfb2d03649c76d1aad02f216c653
| 29,860 |
def load_user(id):
"""
Provides login_manager with a method to load a user
"""
return User.get_by_id(int(id))
|
3aca05c0bf6ad62401c442ba813a8a8a646dabe4
| 29,861 |
def _compute_min_dfc(fnrs, fprs, thresholds, p_target, c_miss, c_fa):
"""
Computes the minimum of the detection cost function. The comments refer to
equations in Section 3 of the NIST 2016 Speaker Recognition Evaluation Plan.
:param fnrs: the list of false negative rates
:param fprs: the list of false positive rates
:param thresholds: the list of decision thresholds
:param p_target: a priori probability of the specified target speaker
:param c_miss: cost of a missed detection
:param c_fa: cost of a spurious detection
:return: the minimum detection cost and accompanying threshold
"""
min_c_det = float("inf")
min_c_det_threshold = thresholds[0]
for i in range(0, len(fnrs)):
# See Equation (2). it is a weighted sum of false negative
# and false positive errors.
c_det = c_miss * fnrs[i] * p_target + c_fa * fprs[i] * (1 - p_target)
if c_det < min_c_det:
min_c_det = c_det
min_c_det_threshold = thresholds[i]
# See Equations (3) and (4). Now we normalize the cost.
c_def = min(c_miss * p_target, c_fa * (1 - p_target))
min_dcf = min_c_det / c_def
return min_dcf, min_c_det_threshold
|
23931070ad23f2dc8b1fdc63d0e4635f9fede535
| 29,862 |
def parse_rsync_url(location):
"""Parse a rsync-style URL."""
if ':' in location and '@' not in location:
# SSH with no user@, zero or one leading slash.
(host, path) = location.split(':', 1)
user = None
elif ':' in location:
# SSH with user@host:foo.
user_host, path = location.split(':', 1)
if '@' in user_host:
user, host = user_host.rsplit('@', 1)
else:
user = None
host = user_host
else:
raise ValueError('not a valid rsync-style URL')
return (user, host, path)
|
fc315c1a6b376cbb83b047246fee51ae936b68ef
| 29,863 |
import random
def generate_address_street():
"""Concatenate number, street, and street sufix."""
number = random.randint(1, 9999)
street = last_names[random.randint(0, len(last_names) - 1)]
suffix = address_street_suffix[random.randint(0, len(address_street_suffix) - 1)]
return "{0} {1} {2}".format(number, street, suffix)
|
a7dafb282d1d0abb25ad6cb44ba6f2e0a9e190dd
| 29,865 |
def try_all_eliza_transformations(doc):
"""
Try to do eliza transformation for all the functions and add the transformed string to the
responses list
"""
responses = []
question = ask_do_you_like_to(doc)
if question:
responses.append(question)
question = rephrase_question(doc)
if question:
responses.append(question)
question = ask_why(doc)
if question:
responses.append(question)
return responses
|
3a76b9a1fc422e8db1e02f41dd286ce385d09213
| 29,866 |
def get_jwt_subject():
"""Returns a the subject from a valid access tokekn"""
token = get_token_auth_header()
payload = verify_decode_jwt(token)
if "sub" not in payload:
abort(401)
return payload["sub"]
|
a7f8bf3989dbdc1a0894d63d6fdc58e5c07356f4
| 29,867 |
import functools
def api(function):
"""
Decorator of API functions that protects user code from
unknown exceptions raised by gRPC or internal API errors.
It will catch all exceptions and throw InternalError.
:param function: function to be decorated
:return: decorated function
"""
@functools.wraps(function)
def wrapper(*args, **kwargs):
try:
return function(*args, **kwargs)
except (SyntaxError, TypeError, InternalError):
raise
except _Rendezvous as e:
raise InternalError(str(e.code()), e.details())
except Exception as e:
raise InternalError(details=str(e)) from e
return wrapper
|
1e023eed5986224967c6057962576afc4c84adb2
| 29,868 |
def mock_signal_receiver(signal, wraps=None, **kwargs):
"""
Taken from mock_django as importing mock_django created issues with Django
1.9+
Temporarily attaches a receiver to the provided ``signal`` within the scope
of the context manager.
The mocked receiver is returned as the ``as`` target of the ``with``
statement.
To have the mocked receiver wrap a callable, pass the callable as the
``wraps`` keyword argument. All other keyword arguments provided are passed
through to the signal's ``connect`` method.
"""
if wraps is None:
def wraps(*args, **kwrags):
return None
receiver = mock.Mock(wraps=wraps)
signal.connect(receiver, **kwargs)
yield receiver
signal.disconnect(receiver)
|
d3f0a481609bf9491b159a7331e1fffc3a5bf92e
| 29,869 |
import urllib
def is_valid_cover(cover_metadata):
"""Fetch all sizes of cover from url and evaluate if they are valid."""
syndetics_urls = build_syndetic_cover_urls(cover_metadata)
if syndetics_urls is None:
return False
try:
for size in ["small", "medium", "large"]:
resp = urllib.request.urlopen(syndetics_urls[size])
has_error = resp.getcode() != 200
less_than_1_pixel = (
int(resp.getheader("Content-Length")) <= MIN_CONTENT_LENGTH
)
if has_error or less_than_1_pixel:
return False
except Exception:
return False
return True
|
b41aa1f558d1080fc1a3a2d03180417b38b92931
| 29,870 |
def setup_go_func(func, arg_types=None, res_type=None):
"""
Set up Go function, so it know what types it should take and return.
:param func: Specify Go function from library.
:param arg_types: List containing file types that function is taking. Default: None.
:param res_type: File type that function is returning. Default: None.
:return: Returns func arg back for cases when you want to setup function and assign it to variable in one line.
"""
if arg_types is not None:
func.argtypes = arg_types
if res_type is not None:
func.restype = res_type
return func
|
05f48f4dfecdf0133613f76f235b1e82f14bc5a9
| 29,871 |
import ctypes
def xonly_pubkey_tweak_add(
xonly_pubkey: Secp256k1XonlyPubkey, tweak32: bytes
) -> Secp256k1Pubkey:
"""
Tweak an x-only public key by adding the generator multiplied with tweak32
to it.
Note that the resulting point can not in general be represented by an x-only
pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
is a normal Secp256k1Pubkey.
:param xonly_pubkey: initialized xonly pubkey
:param tweak32: 32-byte tweak
:return: tweaked public key
:raises ValueError: if tweak32 is not of type bytes and length 32
:raises Libsecp256k1Exception: arguments are invalid or the resulting public
key would be invalid (only when the tweak is
the negation of the corresponding secret key)
"""
tweaked_pubkey = ctypes.create_string_buffer(INTERNAL_PUBKEY_LENGTH)
result = lib.secp256k1_xonly_pubkey_tweak_add(
secp256k1_context_verify, tweaked_pubkey, xonly_pubkey, tweak32
)
if result != 1:
assert_zero_return_code(result)
raise Libsecp256k1Exception(
"arguments are invalid or the resulting public key "
"would be invalid (only when the tweak is the negation "
"of the corresponding secret key)"
)
return tweaked_pubkey
|
727b84ec239bb19d83fa9fe4e72b08ea17972e31
| 29,873 |
from typing import Optional
def get_organisms_df(url: Optional[str] = None) -> pd.DataFrame:
"""Convert tab separated txt files to pandas Dataframe.
:param url: url from KEGG tab separated file
:return: dataframe of the file
:rtype: pandas.DataFrame
"""
df = pd.read_csv(
url or ensure_path(MODULE_NAME, KEGG_ORGANISM_URL, path='organisms.tsv'),
sep='\t',
header=None,
names=[
'kegg_id',
'kegg_code',
'name',
# fourth column is the taxonomy hierarchy
],
usecols=[0, 1, 2],
)
df['name'] = df['name'].map(lambda name: name.replace(')', '').split(' ('))
return df
|
4b28571848076a785ae773410c70102e5a83d096
| 29,874 |
import random
def split(dataset: Dataset, count: int, shuffle=False):
"""Datasetを指定個数に分割する。"""
dataset_size = len(dataset)
sub_size = dataset_size // count
assert sub_size > 0
indices = np.arange(dataset_size)
if shuffle:
random.shuffle(indices)
return [
dataset.slice(indices[o : o + sub_size])
for o in range(0, dataset_size, sub_size)
]
|
d4f50f617fb65499190c7c5e014178d548a7dccb
| 29,876 |
import pathlib
def load_fixture(filename):
"""Load a fixture."""
return (
pathlib.Path(__file__)
.parent.joinpath("fixtures", filename)
.read_text(encoding="utf8")
)
|
f1382161ad6226cd585a2ecbbe08dc486b3a5f2d
| 29,877 |
import re
def natural_sort(l):
"""
From
http://stackoverflow.com/a/4836734
"""
def convert(text):
return int(text) if text.isdigit() else text.lower()
def alphanum_key(key):
return [convert(c) for c in re.split('([0-9]+)', key)]
return sorted(l, key=alphanum_key)
|
c1cd34aa4c9ea2323cb311d9af6f141aa85abef2
| 29,878 |
import inspect
def is_verifier(cls):
"""Determine if a class is a Verifier that can be instantiated"""
return inspect.isclass(cls) and issubclass(cls, Verifier) and \
not inspect.isabstract(cls)
|
83cd18155f23631f2e1dac1ec1eac07a5017809d
| 29,879 |
def get_bleu_score(references, hypothesis):
"""
Args:
references: list(list(list(str)))
# examples: list(examples)
hypothesis: list(list(list(str)))
# hypotheses: list(list(str))
"""
hypothesis = [hyp[0][0] for hyp in hypothesis]
return 100.0 * bleu_score.corpus_bleu(list_of_references=references, hypotheses=hypothesis)
|
a2a17186555564a02acedf5540aedce0b1a14cd1
| 29,882 |
def load_json_link_index(out_dir, link):
"""check for an existing link archive in the given directory,
and load+merge it into the given link dict
"""
link = {
**parse_json_link_index(out_dir),
**link,
}
link.update({
'history': link.get('history') or {},
})
check_link_structure(link)
return link
|
58c034daa7305e06407af9cf226ff939544ee961
| 29,884 |
def relative_phase(input_phase: float, output_phase: float) -> float:
"""
Calculates the relative phase between two phases.
:param input_phase: the input phase.
:param output_phase: the output phase.
:return: the relative phase.
"""
phi = output_phase - input_phase
if phi < -np.pi:
return phi + 2 * np.pi
elif phi > np.pi:
return phi - 2 * np.pi
else:
return phi
|
d912754fe060582e5ffe9dc3aad0286b80ee945a
| 29,885 |
def jaccard_similarity(x, y):
""" Returns the Jaccard Similarity Coefficient (Jarccard Index) between two
lists.
From http://en.wikipedia.org/wiki/Jaccard_index: The Jaccard
coefficient measures similarity between finite sample sets, as is defined as
the size of the intersection divided by the size of the union of the sample
sets.
"""
intersection_cardinality = len(set.intersection(*[set(x), set(y)]))
union_cardinality = len(set.union(*[set(x), set(y)]))
return intersection_cardinality / float(union_cardinality)
|
81cf0c882ff4b06e79b102abb2d8f13755b68873
| 29,887 |
def align_address_to_size(address, align):
"""Align the address to the given size."""
return address + ((align - (address % align)) % align)
|
9496c969e257fb3c00ecddf8e941ddb0bd41155e
| 29,888 |
import shlex
def tokenizer_word(text_string, keep_phrases=False):
"""
Tokenizer that tokenizes a string of text on spaces and new lines (regardless of however many of each.)
:param text_string: Python string object to be tokenized.
:param keep_phrases: Booalean will not split "quoted" text
:return: Array of strings, each is a word
"""
text_string = str(text_string)
if keep_phrases:
tokens = shlex.split(text_string.replace('\n', ' ').replace('/', ' '))
else:
tokens = text_string.replace('\n', ' ').replace('/', ' ').split()
return tokens
|
940f716072e9b2ce522c9854b2394327fbd1e934
| 29,889 |
def getiso():
"""Get iso level of sensor.."""
global camera
maxtint = 4
iso = float(camera.analog_gain) # get current ambient brightness 0..8
iso = (iso * maxtint) # adjust buy max tint level
iso = (256 - (maxtint * 8)) + iso # clear - max tint + ISO tint
return int(iso)
|
45fa48897cd297232fde00cbe49d7717608466ed
| 29,890 |
from typing import Union
from typing import Sequence
from typing import List
from typing import Dict
def get_manual_comparisons(db: cosem_db.MongoCosemDB,
cropno: Union[None, str, int, Sequence[Union[str, int]]] = None,
mode: str = "across_setups") -> \
List[Union[Dict[str, str], Dict[str, Union[str, Sequence[str]]]]]:
"""
Read best configurations optimized manually from corresponding csv files and translate into dictionary that can be
used for queries to the database with automatic evaluations.
Args:
db: Database with crop information
cropno: Specific crop numbers or list of crop numbers that should be included in queries.
mode: "per_setup" for queries specifying the optimized manual iteration for each setup, "across_setups"
(default) for queries specifying the optimized manual iteration and setup for each label and "all" for both.
Returns: List of corresponding queries.
"""
if isinstance(cropno, int) or isinstance(cropno, str):
cropno = [cropno]
if mode == "across_setups":
all_queries = _get_setup_queries(cropno, db)
elif mode == "per_setup":
all_queries = _get_iteration_queries(cropno, db)
elif mode == "all":
all_queries = _get_iteration_queries(cropno, db) + _get_setup_queries(cropno, db)
else:
raise ValueError("Unknown mode {mode:}".format(mode=mode))
return all_queries
|
fc4a62d09f9df289b08a249d70875ce6ca19ed39
| 29,892 |
def draw_circle(center_x:float, center_y:float, radius:float = 0.3, segments:int = 360, fill:bool=False):
"""
Returns an Object2D class that draws a circle
Arguments:
center_x : float : The x cord for the center of the circle.
center_y : float : The y cord for the center of the circle.
radius : float : The radius of the circle.
segments : int : How many segments to make the circle from.
fill : bool : Should the shape be filled.
"""
edges = []
cords = []
for i in range(segments):
theta = (2 * pi * i)/segments # Get the current angle
x = radius * cos(theta) + center_x # Get the x cord
y = radius * sin(theta) + center_y # Get the y cord
cords.append([x, y])
if fill:
cords.insert(0, [center_x, center_y])
for i in range(len(cords)-2):
edges.append([0, i+1, i+2])
edges.append([0, segments, 1]) # Fixes a little glitch
return Object2D(cords, edges, draw_type='triangles')
else:
for i in range(len(cords)-1):
edges.append([i, i+1])
edges.append([segments-1,0]) # Fixes a little glitch
return Object2D(cords, edges, draw_type='lines')
|
78caa0cbb25df7c947053a10d54f7ae3fd2fc8b2
| 29,893 |
def weighted_mean(values, weights):
"""Calculate the weighted mean.
:param values: Array of values
:type values: numpy.ndarray
:param weights: Array of weights
:type weights: numpy.ndarray
:rtype: float
"""
weighted_mean = (values * weights).sum() / weights.sum()
return weighted_mean
|
886d7cff1555c40b448cda03e08620a0e2d69ede
| 29,894 |
def shared_cluster():
"""Create a shared cluster"""
global _shared_cluster
if _shared_cluster is None:
cluster = PseudoHdfs4()
atexit.register(cluster.stop)
try:
cluster.start()
except Exception, ex:
LOG.exception("Failed to fully bring up test cluster: %s" % (ex,))
# Fix config to reflect the cluster setup.
webhdfs_url = "http://localhost:%s/webhdfs/v1" % (cluster.dfs_http_port,)
closers = [
hadoop.conf.HDFS_CLUSTERS['default'].FS_DEFAULTFS.set_for_testing(cluster.fs_default_name),
hadoop.conf.HDFS_CLUSTERS['default'].WEBHDFS_URL.set_for_testing(webhdfs_url),
hadoop.conf.MR_CLUSTERS['default'].HOST.set_for_testing('localhost'),
hadoop.conf.MR_CLUSTERS['default'].PORT.set_for_testing(cluster._jt_port),
hadoop.conf.MR_CLUSTERS['default'].JT_THRIFT_PORT.set_for_testing(cluster.jt_thrift_port),
]
old = hadoop.cluster.clear_caches()
def restore_config():
hadoop.cluster.restore_caches(old)
for x in closers:
x()
cluster.shutdown_hook = restore_config
_shared_cluster = cluster
return _shared_cluster
|
fd51186f8d46ae236b3f4220750ab0f412354669
| 29,895 |
import reprlib
def _format_args(args):
"""Format function arguments.
Special case for a single parameter: ('hello',) is formatted as ('hello').
"""
# use reprlib to limit the length of the output
args_repr = reprlib.repr(args)
if len(args) == 1 and args_repr.endswith(',)'):
args_repr = args_repr[:-2] + ')'
return args_repr
|
a54f06358b629340c1f16ecc86eff15b8fca3bd3
| 29,896 |
import requests
import logging
import json
def request(config, url_params={}):
"""Wrapper for sending GET to Facebook.
Args:
config: YAML object of config file.
url_params: Dictionary of parameters to add to GET.
Returns:
HTTP response or error.
"""
host = HOST + f"/{config['user_id']}/"
params = {"fields": "id,name",
"access_token": config['user_token']}
params.update(url_params)
try:
response = requests.get(host, params=params)
logging.info(f"Sending to Facebook: {response.status_code}")
response.encoding = "utf-8"
return json.dumps(response.text, indent=4)
except HTTPError as e:
return e
|
e4ef9315170ab7d1c7e39645bde46b6cbb9f9de9
| 29,897 |
import miniupnpc
def setup(hass, config):
"""Register a port mapping for Home Assistant via UPnP."""
upnp = miniupnpc.UPnP()
hass.data[DATA_UPNP] = upnp
upnp.discoverdelay = 200
upnp.discover()
try:
upnp.selectigd()
except Exception:
_LOGGER.exception("Error when attempting to discover an UPnP IGD")
return False
unit = config[DOMAIN].get(CONF_UNITS)
discovery.load_platform(hass, 'sensor', DOMAIN, {'unit': unit}, config)
port_mapping = config[DOMAIN].get(CONF_ENABLE_PORT_MAPPING)
if not port_mapping:
return True
base_url = urlsplit(hass.config.api.base_url)
host = base_url.hostname
external_port = internal_port = base_url.port
upnp.addportmapping(
external_port, 'TCP', host, internal_port, 'Home Assistant', '')
def deregister_port(event):
"""De-register the UPnP port mapping."""
upnp.deleteportmapping(hass.config.api.port, 'TCP')
hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, deregister_port)
return True
|
ca5d7d90efb849412e2256dab3516deca1531539
| 29,898 |
def load_formatted_objects_json(fp):
"""A function to load formatted object data data. The function assumes
the input json is of the form:
[
{
id: <number>,
regions :
[
{
x: <number>,
y : <number>,
height : <number>,
width : <number>,
id : <number>,
phrase: "somthing cool",
image : <image id>,
}
]
}
}
]
Will return a dictionary using the image name (id + .jpg) and bounding box
information
Parameters
-----------
fp : string
path to a json file
Returns
--------
dictionary
"""
parsed = json_load(fp)
out = {}
for item in parsed:
# the formatted input only holds a number that is later turned into a
# filename within densecap code
src_img = "{0}.jpg".format(item['id'])
regions = item['regions']
out_regions = []
for region in regions:
formatted = dict(x=region['x'], y=region['y'], h=region['height'],
w=region['width'], names=[region['phrase']])
out_regions.append(formatted)
out[src_img] = out_regions
return out
|
2647f2c2cfc7530998361b19693ea6e187bf64f1
| 29,899 |
from datetime import datetime
def _event_last_observed(event: EventsV1Event) -> datetime.datetime:
"""
Returns the last time an event was observed
"""
if event.series:
series_data: EventsV1EventSeries = event.series
return series_data.last_observed_time
if event.event_time:
return event.event_time
# Fall back to event creation
return event.metadata.creation_timestamp
|
c8a26c067df0375923b3aa57afaa48f5c5fc0cf8
| 29,900 |
import numpy
def bytes(length):
"""Returns random bytes.
.. seealso:: :func:`numpy.random.bytes`
"""
return numpy.bytes(length)
|
44055f168dbd9e6b2e2481f8d57b9edef0110430
| 29,901 |
def init_json():
"""
This function init the JSON dict.
Return : Dictionnary
"""
data_json = {}
data_json['login'] = ""
data_json['hash'] = ""
data_json['duration'] = 0
data_json['nbFiles'] = 0
data_json['nbVirus'] = 0
data_json['nbErrors'] = 0
data_json['uuidUsb'] = ""
data_json['viruses'] = []
return data_json
|
9411f3a525df9e68f53fba94da679bd8d5b34013
| 29,902 |
def django_popup_view_field_javascript():
"""
Return HTML for django_popup_view_field JavaScript.
Adjust url in settings.
**Tag name**::
django_popup_view_field_javascript
**Usage**::
{% django_popup_view_field_javascript %}
"""
temp = loader.get_template('django_popup_view_field/scripts_include.html')
return temp.render({})
|
f2cf0631139ade2044aa577f906b4b8568b33713
| 29,903 |
def apply_filters(row):
"""Applies filters to the input data and returns transformed row."""
return {k: COLUMN_FILTERS.get(k, lambda x: x)(v) for k,v in row.items()}
|
2f31dda70bedc35f8b1b66e5906c38c5d3202e2b
| 29,905 |
def save_convergence_statistics(
inputs, results, dmf=None, display=True, json_path=None, report_path=None
):
""" """
s = Stats(inputs, results)
if display:
s.report()
if report_path:
with open(report_path, "w") as f:
s.report(f)
if json_path is not None:
with open(json_path, "w") as f:
s.to_json(f)
if dmf is not None:
s.to_dmf(dmf)
return s
|
e06891c917abc3678e8fbcf0ff81cae46ac2e04a
| 29,906 |
def max_size(resize_info):
"""
リサイズ情報から結合先として必要な画像サイズを計算して返す
:param resize_info: リサイズ情報
:return: width, height
"""
max_w, max_h = 0, 0
for name, info in resize_info.items():
pos = info['pos']
size = info['size']
max_w = max(max_w, pos[0] + size[0])
max_h = max(max_h, pos[1] + size[1])
return max_w, max_h
|
1e28f993b3b0fac077f234b6388a2d9042396f6b
| 29,908 |
def get_thru(path, specs=range(10), cameras='brz'):
"""Calculate the throughput in each camera for a single exposure.
See https://github.com/desihub/desispec/blob/master/bin/desi_average_flux_calibration
and DESI-6043.
The result includes the instrument throughput as well as the fiber acceptance
loss and atmospheric extinction.
"""
calibs = {c:CoAdd(c) for c in cameras}
exptime = None
primary_area = 8.659e4 # cm2
for (FCAL,), camera, spec in iterspecs(path, 'fluxcalib'):
if exptime is None:
hdr = FCAL[0].read_header()
exptime = hdr['EXPTIME']
else:
if FCAL[0].read_header()['EXPTIME'] != exptime:
raise RuntimeError(f'EXPTIME mismatch for fluxcalib in {path}')
fluxcalib, ivar = FCAL['FLUXCALIB'].read(), FCAL['IVAR'].read()
calibs[camera] += Spectrum(camera, np.median(fluxcalib, axis=0), np.median(ivar, axis=0))
for camera in cameras:
# Convert from (1e17 elec cm2 s / erg) to (elec/phot)
calibs[camera] /= (M1_area * exptime) / (1e17 * erg_per_photon[cslice[camera]])
return calibs
|
ec123a4f8843fcd5eb4aef87bf77b936687c544d
| 29,909 |
def quicksort(lyst):
"""This is a quicksort
"""
def partition_helper(lyst, first, last):
pivot = lyst[first]
left = (first + 1)
right = last
done = False
while not done:
while left <= right and lyst[left] <= pivot:
left += 1
while right >= left and lyst[right] >= pivot:
right -= 1
if right < left:
done = True
else:
lyst[left], lyst[right] = lyst[right], lyst[left]
lyst[first], lyst[right] = lyst[right], lyst[first]
return right
def quicksort_helper(lyst, first, last):
if first < last:
splitpoint = partition_helper(lyst, first, last)
quicksort_helper(lyst, first, (splitpoint-1))
quicksort_helper(lyst, (splitpoint+1), last)
return lyst
quicksort_helper(lyst, 0, (len(lyst)-1))
return lyst
|
33385c01b877a86a2970f33dc4d0bd9d456dc983
| 29,910 |
def status_parameter_error():
"""Returns the value returned by the function calls to the library in case of parameter error. """
r = call_c_function(petlink32_c.status_parameter_error, [{'name': 'return_value', 'type': 'int', 'value': None}])
return r.return_value
|
fbbdcd85fde27f200c1c749e03234baa8d725f1d
| 29,911 |
def df_to_dict(df: DataFrame) -> list[dict]:
"""DataFrame 转 dict"""
# 拿到表头,转换为字典结构
head_list = list(df.columns)
list_dic = []
for i in df.values:
a_line = dict(zip(head_list, i))
list_dic.append(a_line)
return list_dic
|
c52e628a78e2bd863a4a9926e739bff53195910a
| 29,912 |
def parse_describeprocess(html_response):
"""Parse WPS DescribeProcess response.
Parameters
----------
html_response : string
xml document from a DescribeProcess WPS request.
Returns
-------
out : list of dict
'identifier' : ProcessDescription -> ows:Identifier
'inputs' : ProcessDescription -> DataInputs -> Input -> ows:Identifier
'ouputs' : ProcessDescription -> ProcessOutputs -> Output ->
ows:Identifier
"""
# XML structure:
# wps:ProcessDescriptions
# ProcessDescription (list)
# ows:Identifier (text)
# ows:Title (text)
# DataInputs (optional)
# Input (list)
# ows:Identifier (text)
# ows:Title (text)
# LiteralData (xor)
# ows:DataType
# [...]
# ProcessOutputs
# Output (list)
# ows:Identifier (text)
# ows:Title (text)
# LiteralOutput (xor)
# ows:DataType
# [...]
processes = []
process_descriptions = xml_children_as_dict(
etree.fromstring(html_response))
for process_description_el in process_descriptions['ProcessDescription']:
d = {'inputs': [], 'outputs': []}
process_description = xml_children_as_dict(process_description_el)
d['identifier'] = process_description['ows:Identifier'][0].text
if 'DataInputs' in process_description:
data_inputs = xml_children_as_dict(
process_description['DataInputs'][0])
for input_element in data_inputs['Input']:
input1 = xml_children_as_dict(input_element)
d['inputs'].append(input1['ows:Identifier'][0].text)
process_outputs = xml_children_as_dict(
process_description['ProcessOutputs'][0])
for output_element in process_outputs['Output']:
output1 = xml_children_as_dict(output_element)
d['outputs'].append(output1['ows:Identifier'][0].text)
processes.append(d)
return processes
|
80f7e866424ffa8cbdae2a94d31f6044722648c6
| 29,913 |
def variational_implicit_step(system, dt, p, x, z, t):
"""
For Lagrangian functions of the form
L(j) = 1/(2h^2) (x_{j+1} - x_j)^2 - 1/2 (V(x_j) + V(x_{j+1})) - 1/2 (F(z_j) + F(z_{j+1}))
"""
tnew = t + dt
xnew = (
x + (dt - 0.5 * dt ** 2 * system.Fz(z, t)) * p - 0.5 * dt ** 2 * system.Vq(x, t)
)
(znew,) = fsolve(
lambda znew: z
- znew
+ 0.5 * dt * np.linalg.norm((xnew - x) / dt) ** 2
- 0.5
* dt
* (
system.V(x, t)
+ system.V(xnew, tnew)
+ system.F(z, t)
+ system.F(znew, tnew)
),
[z],
)
pnew = (
(1.0 - 0.5 * dt * system.Fz(z, t)) * p
- 0.5 * dt * (system.Vq(x, t) + system.Vq(xnew, tnew))
) / (1.0 + 0.5 * dt * system.Fz(znew, tnew))
return pnew, xnew, znew, tnew
|
c32e13ae37873983a3a88b91e7f0bfdf7ba9d043
| 29,914 |
def _validate_time_mode(mode, **kwargs):
"""Validate time mode."""
return mode
|
e30fd9071bde102b4986fe9ef846a812f7c08ff7
| 29,916 |
def flatten() -> GraphBuilder:
"""
dl.flatten layer builder
"""
def graph_builder(prev_layer: Metadata) -> Metadata:
metadata = {}
init_regularized_nodes(metadata, prev_layer)
graph = prev_layer['graph']
metadata['units'] = (np.prod(prev_layer['units']),)
metadata['graph'] = rc.flatten(graph)
return metadata
return graph_builder
|
bf00faa00f5059c33887acafb0665ae37dc970e8
| 29,917 |
def _important() -> str:
"""Returns a query term matching messages that are important."""
return 'is:important'
|
dced06645f5311b321d42cd3892627df5b30faec
| 29,918 |
async def root():
""" Dependency is "static". Value of Depends doesn't get passed into function
we still get redirected half the time though """
return {"message": "Hello World"}
|
6d3b634444240275f56d30aa0c1fe3b3bb84ce24
| 29,919 |
from typing import Hashable
import encodings
def line_width(et: pd.DataFrame, lw_by: Hashable):
"""Default edge line width function."""
if lw_by is not None:
return encodings.data_linewidth(et[lw_by], et[lw_by])
return pd.Series([1] * len(et), name="lw")
|
064f90d4974f64d9be99090c77cf24d30a34a9f0
| 29,920 |
def run_state_machine(ctx, callback):
"""Run the libmongocrypt state machine until completion.
:Parameters:
- `ctx`: A :class:`MongoCryptContext`.
- `callback`: A :class:`MongoCryptCallback`.
:Returns:
The completed libmongocrypt operation.
"""
while True:
state = ctx.state
# Check for terminal states first.
if state == lib.MONGOCRYPT_CTX_ERROR:
ctx._raise_from_status()
elif state == lib.MONGOCRYPT_CTX_READY:
return ctx.finish()
elif state == lib.MONGOCRYPT_CTX_DONE:
return None
if state == lib.MONGOCRYPT_CTX_NEED_MONGO_COLLINFO:
list_colls_filter = ctx.mongo_operation()
coll_info = callback.collection_info(
ctx.database, list_colls_filter)
if coll_info:
ctx.add_mongo_operation_result(coll_info)
ctx.complete_mongo_operation()
elif state == lib.MONGOCRYPT_CTX_NEED_MONGO_MARKINGS:
mongocryptd_cmd = ctx.mongo_operation()
result = callback.mark_command(ctx.database, mongocryptd_cmd)
ctx.add_mongo_operation_result(result)
ctx.complete_mongo_operation()
elif state == lib.MONGOCRYPT_CTX_NEED_MONGO_KEYS:
key_filter = ctx.mongo_operation()
for key in callback.fetch_keys(key_filter):
ctx.add_mongo_operation_result(key)
ctx.complete_mongo_operation()
elif state == lib.MONGOCRYPT_CTX_NEED_KMS:
for kms_ctx in ctx.kms_contexts():
with kms_ctx:
callback.kms_request(kms_ctx)
ctx.complete_kms()
else:
raise MongoCryptError('unknown state: %r' % (state,))
|
37da937db46bea8e7952e72753ab27543215f8fe
| 29,921 |
def remove_na_arraylike(arr):
"""
Return array-like containing only true/non-NaN values, possibly empty.
"""
if is_extension_array_dtype(arr):
return arr[notna(arr)]
else:
return arr[notna(lib.values_from_object(arr))]
|
e89d3218d053852ddbc553223d035c71615f7c21
| 29,922 |
def conv_nested(image, kernel):
"""A naive implementation of convolution filter.
This is a naive implementation of convolution using 4 nested for-loops.
This function computes convolution of an image with a kernel and outputs
the result that has the same shape as the input image.
Args:
image: numpy array of shape (Hi, Wi).
kernel: numpy array of shape (Hk, Wk).
Returns:
out: numpy array of shape (Hi, Wi).
"""
Hi, Wi = image.shape
Hk, Wk = kernel.shape
out = np.zeros((Hi, Wi))
### YOUR CODE HERE
x_h = int(Hk / 2)
y_h = int(Wk / 2)
for hi in range(Hi):
for wi in range(Wi):
for x in range(Hk):
for y in range(Wk):
v_h = hi - x_h + x
v_w = wi - y_h + y
if v_h >= 0 and v_h < Hi and v_w >= 0 and v_w < Wi:
out[hi, wi] = out[hi, wi] + image[v_h, v_w] * kernel[Hk - x - 1, Wk - y -1]
### END YOUR CODE
return out
|
acfa5f275bc15a39357390ac356f7ee681dbf31a
| 29,923 |
def getLatest(df):
"""
This get the data of the last day from the dataframe and append it to the details
"""
df_info = df.iloc[:,0:5]
df_last = df.iloc[:,-1]
df_info['latest'] = df_last
return df_info
|
f42cae0552a4ac791d3499fa2ca1417a80a970ac
| 29,924 |
import time
def setup_camera(is_fullscreen = True):
"""
Setup the PiCam to default PSVD settings, and return the camera as
an object.
Keyword Arguments:
is_fullscreen -- Boolean value. True for fullscreen, false for window.
"""
# ensure that camera is correctly installed and set it up to output to a
# window and turn off AWB and exposure modes. If camera does not exist
# print error message and quit program.
camera = picamera.PiCamera()
camera.resolution = s.PICTURE_RESOLUTION
camera.preview_fullscreen = is_fullscreen
camera.awb_mode = "off"
#camera.exposure_mode = "off"
if not is_fullscreen: camera.preview_window = s.CAMERA_WINDOW_SIZE
time.sleep(s.WAKEUP_DELAY) # camera wake-up time: 2 s
return camera
|
301d046541c0463e8e3ab58fe429a3c47cbd960e
| 29,925 |
def CalculateGearyAutoMutability(ProteinSequence):
"""
####################################################################################
Calculte the GearyAuto Autocorrelation descriptors based on
Mutability.
Usage:
result=CalculateGearyAutoMutability(protein)
Input: protein is a pure protein sequence.
Output: result is a dict form containing 30 Geary Autocorrelation
descriptors based on Mutability.
####################################################################################
"""
result=CalculateEachGearyAuto(ProteinSequence,_Mutability,'_Mutability')
return result
|
a9a7f92d742736f7a66c8bdc06980f393922ea4a
| 29,926 |
def hamming_distance(a, b):
"""
Returns the hamming distance between sequence a and b. Sequences must be 1D and have the same length.
"""
return np.count_nonzero(a != b)
|
fe895c87867999159c57f23f96eab9d7b41edb8e
| 29,928 |
def generate_url(mbid, level):
"""Generates AcousticBrainz end point url for given MBID.
"""
return ACOUSTIC_BASE + mbid + level
|
96fe05dc3274730196dbc764c3e8f58f32b81a5f
| 29,930 |
from typing import Sequence
from typing import List
def averaged_knots_unconstrained(n: int, p: int, t: Sequence[float]) -> List[
float]:
"""
Returns an averaged knot vector from parametrization vector `t` for an unconstrained B-spline.
Args:
n: count of control points - 1
p: degree
t: parametrization vector, normalized [0..1]
"""
assert t[0] == 0.0
assert t[-1] == 1.0
knots = [0.0] * (p + 1)
knots.extend(sum(t[j: j + p]) / p for j in range(1, n - p + 1))
if knots[-1] > 1.0:
raise ValueError('Normalized [0..1] values required')
knots.extend([1.0] * (p + 1))
return knots
|
6da79c699a3420270efc938a6f0de659d4886060
| 29,931 |
def converge_launch_stack(desired_state, stacks):
"""
Create steps that indicate how to transition from the state provided
by the given parameters to the :obj:`DesiredStackGroupState` described by
``desired_state``.
See note [Converging stacks] for more information.
:param DesiredStackGroupState desired_state: The desired group state.
:param set stacks: a set of :obj:`HeatStack` instances.
This must only contain stacks that are being managed for the specified
group.
:rtype: :obj:`pbag` of `IStep`
"""
config = desired_state.stack_config
by_state = groupby(lambda stack: stack.get_state(), stacks)
stacks_complete = by_state.get(StackState.CREATE_UPDATE_COMPLETE, [])
stacks_failed = by_state.get(StackState.CREATE_UPDATE_FAILED, [])
stacks_check_complete = by_state.get(StackState.CHECK_COMPLETE, [])
stacks_check_failed = by_state.get(StackState.CHECK_FAILED, [])
stacks_in_progress = by_state.get(StackState.IN_PROGRESS, [])
stacks_delete_in_progress = by_state.get(StackState.DELETE_IN_PROGRESS, [])
stacks_delete_failed = by_state.get(StackState.DELETE_FAILED, [])
stacks_good = stacks_complete + stacks_check_complete
stacks_amiss = (stacks_failed +
stacks_check_failed +
stacks_in_progress +
stacks_delete_in_progress)
if stacks_delete_failed:
reasons = [ErrorReason.String("Stacks in DELETE_FAILED found.")]
return pbag([FailConvergence(reasons)])
# If there are no stacks in CHECK_* or other work to be done, we assume
# we're at the beginning of a convergence cycle and need to perform stack
# checks.
if stacks_complete and not (stacks_check_complete or stacks_amiss):
return pbag([CheckStack(stack) for stack in stacks_complete])
# Otherwise, if all stacks are in a good state and we have the right number
# of stacks, we call update on the stacks in CHECK_COMPLETE and return
# SUCCESS without waiting for it to finish (calling update on a stack in
# CREATE_COMPLETE is essentially a no-op) so that there will be no stacks
# in CREATE_* the next time otter tries to converge this group. This will
# cause all of the stacks to be checked at that time and let otter know
# if there are any stacks that have fallen into an error state.
elif not stacks_amiss and len(stacks_good) == desired_state.capacity:
return pbag([UpdateStack(stack=stack, stack_config=config, retry=False)
for stack in stacks_check_complete])
def get_create_steps():
create_stack = CreateStack(stack_config=config)
good_or_fixable_stack_count = (len(stacks_good) +
len(stacks_in_progress) +
len(stacks_check_failed))
return [create_stack] * (desired_state.capacity -
good_or_fixable_stack_count)
def get_scale_down_steps():
stacks_in_preferred_order = (
stacks_good + stacks_in_progress + stacks_check_failed)
unneeded_stacks = stacks_in_preferred_order[desired_state.capacity:]
return map(DeleteStack, unneeded_stacks)
def get_fix_steps(scale_down_steps):
num_stacks_to_update = len(stacks_check_failed) - len(scale_down_steps)
stacks_to_update = (stacks_check_failed[:num_stacks_to_update]
if num_stacks_to_update > 0 else [])
return [UpdateStack(stack=s, stack_config=config)
for s in stacks_to_update]
create_steps = get_create_steps()
scale_down_steps = get_scale_down_steps()
fix_steps = get_fix_steps(scale_down_steps)
delete_stacks_failed_steps = map(DeleteStack, stacks_failed)
converge_later = (
[ConvergeLater([ErrorReason.String("Waiting for stacks to finish.")])]
if stacks_delete_in_progress or stacks_in_progress
else [])
return pbag(create_steps +
fix_steps +
scale_down_steps +
delete_stacks_failed_steps +
converge_later)
|
3f615b38d3e303a63873f3dc8ed2d3699460f3b8
| 29,932 |
def strip_long_text(text, max_len, append=u'…'):
"""Returns text which len is less or equal max_len.
If text is stripped, then `append` is added,
but resulting text will have `max_len` length anyway.
"""
if len(text) < max_len - 1:
return text
return text[:max_len - len(append)] + append
|
02ce128f1de1dbeb2a2dcef5bc2b6eb8745322d3
| 29,934 |
import typing
import numpy
def function_rescale(data_and_metadata_in: _DataAndMetadataLike,
data_range: typing.Optional[DataRangeType] = None,
in_range: typing.Optional[DataRangeType] = None) -> DataAndMetadata.DataAndMetadata:
"""Rescale data and update intensity calibration.
rescale(a, (0.0, 1.0))
"""
data_and_metadata = DataAndMetadata.promote_ndarray(data_and_metadata_in)
if not Image.is_data_valid(data_and_metadata.data):
raise ValueError("Rescale: invalid data")
used_data_range = data_range if data_range is not None else (0.0, 1.0)
def calculate_data() -> _ImageDataType:
data = data_and_metadata.data
assert data is not None
data_ptp = numpy.ptp(data) if in_range is None else in_range[1] - in_range[0]
data_ptp_i = 1.0 / data_ptp if data_ptp != 0.0 else 1.0
if in_range is not None:
data_min = in_range[0]
else:
data_min = numpy.amin(data)
data_span = used_data_range[1] - used_data_range[0]
if data_span == 1.0 and used_data_range[0] == 0.0:
return typing.cast(_ImageDataType, (data - data_min) * data_ptp_i)
else:
m = data_span * data_ptp_i
return typing.cast(_ImageDataType, (data - data_min) * m + used_data_range[0])
intensity_calibration = Calibration.Calibration()
return DataAndMetadata.new_data_and_metadata(calculate_data(), intensity_calibration=intensity_calibration, dimensional_calibrations=data_and_metadata.dimensional_calibrations)
|
e312ee866c142b6d2166c450831ce5308d263aaa
| 29,935 |
def svn_diff_parse_next_patch(*args):
"""
svn_diff_parse_next_patch(svn_patch_file_t patch_file, svn_boolean_t reverse,
svn_boolean_t ignore_whitespace, apr_pool_t result_pool,
apr_pool_t scratch_pool) -> svn_error_t
"""
return _diff.svn_diff_parse_next_patch(*args)
|
49c2797c2798a0870cbc68e6ffe917d353cf41bb
| 29,936 |
def Sub(inputs, **kwargs):
"""Calculate A - B.
Parameters
----------
inputs : list of Tensor
The inputs, represent A and B respectively.
Returns
-------
Tensor
The output tensor.
"""
CheckInputs(inputs, 2)
arguments = ParseArguments(locals())
output = Tensor.CreateOperator(nout=1, op_type='Add', **arguments)
if inputs[0].shape is not None:
output.shape = inputs[0].shape[:]
return output
|
9da04c8898bb58db0db49eb46bb69b3591f6c99d
| 29,937 |
def psf_1d(x, *p):
"""[summary]
Arguments:
x {[type]} -- [description]
Returns:
[type] -- [description]
"""
A, x0, alpha, C = p
r = (x - x0) * alpha
y = np.zeros(r.shape)
y[r!=0] = A * (2 * special.j1(r[r!=0]) / r[r!=0])**2
y[r==0] = A
return y + C
|
06b5d6a56db19ebc7d43b1d4a95805559e549273
| 29,938 |
from datetime import datetime
import time
def arrow_format(jinja_ctx, context, *args, **kw):
"""Format datetime using Arrow formatter string.
Context must be a time/datetime object.
:term:`Arrow` is a Python helper library for parsing and formatting datetimes.
Example:
.. code-block:: html+jinja
<li>
Offer created at {{ offer.created_at|arrow_format('YYYYMMDDHHMMss') }}
</li>
`See Arrow formatting <http://crsmithdev.com/arrow/>`__.
"""
assert len(args) == 1, "We take exactly one formatter argument, got {}".format(args)
assert isinstance(context, (datetime.datetime, datetime.time)), "Got context {}".format(context)
return time.arrow_format(dt=context, dt_format=args[0])
|
739a1b97499a614dfabe9321ccd18126d1ebcad9
| 29,941 |
def jsonify_query_result(conn, query):
"""deprecated"""
res = query.all()
#res = conn.execute(query)
#return [dict(r) for r in res]
return [r._asdict() for r in res]
|
ca11226c6f6fc731089f1d257db02a6cb83bd145
| 29,942 |
def _postfix_queue(token_expr):
"""
Form postfix queue from tokenized expression using shunting-yard algorithm.
If expression have function, then presence of arguments for that function
added before function token.
If function have few arguments then RPN algorithm will pop them from stack
until comma will be top token on stack
:return: queue of tokens ready for reverse polish calculation
"""
stack = deque()
queue = deque()
have_args = deque()
for token in token_expr:
if token.type in {'FLOAT', 'INTEGER', 'CONST', 'COMPLEX'}:
queue.append(token)
elif token.type == 'FUNC':
stack.append(token)
# If function have no arguments we append False before FUNC
if token_expr[token.index + 1].type == 'RPARENT':
have_args.append(False)
else:
have_args.append(True)
elif not stack:
stack.append(token)
elif token.type == 'COMMA':
while stack[-1].type != 'FUNC':
queue.append(stack.pop())
queue.append(token)
elif token.type == 'LPARENT':
stack.append(token)
elif token.type == 'RPARENT':
while stack[-1].type not in {'LPARENT', 'FUNC'}:
queue.append(stack.pop())
if not stack:
raise ArithmeticError("Parentheses error")
if stack[-1].type == 'FUNC':
queue.append(_Token('', 'ARGS', have_args.pop()))
queue.append(stack.pop())
else:
stack.pop()
elif token.type in {'UMINUS', 'UPLUS'} and stack[-1].type == 'POWER':
# From Python docs: The power operator binds more tightly
# than unary operators on its left;
# it binds less tightly than unary operators on its right.
stack.append(token)
elif token.precedence == stack[-1].precedence and \
token.type in {'POWER', 'UMINUS', 'UPLUS'}:
# Right-to-Left association operations
stack.append(token)
elif token.precedence <= stack[-1].precedence:
while stack:
if token.precedence <= stack[-1].precedence:
queue.append(stack.pop())
continue
else:
break
stack.append(token)
else:
stack.append(token)
while stack:
queue.append(stack.pop())
return queue
|
777c87bf1c4ac123f65e4061c1e5e72f5abe90d9
| 29,943 |
def get_from_list_to_examples(task_proc):
"""
Return a function that converts 2d list (from csv) into example list
This can be different between DataProcessors
"""
if isinstance(task_proc, DefaultProcessor):
return lambda l: task_proc._create_examples(l, "test")
else:
raise NotImplementedError('from_list_to_examples for %s is required '%(type(FLAGS.task_proc)))
|
e42d050074b9f83127cca95261d5b1300a5b453a
| 29,944 |
from pathlib import Path
import yaml
def read_rules(rule_file=None):
"""Read rule from rule yaml file.
Args:
rule_file (str, optional): The path of rule yaml file. Defaults to None.
Returns:
dict: dict object read from yaml file
"""
default_rule_file = Path(__file__).parent / 'rule/default_rule.yaml'
p = Path(rule_file) if rule_file else default_rule_file
if not p.is_file():
logger.error('DataDiagnosis: invalid rule file path - {}'.format(str(p.resolve())))
return None
baseline = None
with p.open() as f:
baseline = yaml.load(f, Loader=yaml.SafeLoader)
return baseline
|
24def1cb09f1ecc464d38b866397d9821ac24293
| 29,945 |
from pymatgen.core.structure import Structure
def localized_rattle(
structure: Structure,
defect_coords: np.array,
stdev: float = 0.25,
):
"""
Given a pymnatgen structure, it applies a random distortion to the coordinates of the atoms in a radius 5 A from defect atom.
Random distortion chosen from a gaussian with a standard deviation of stdev.
Args:
structure :
Structure
defect_coords (np.array):
cartesian coordinates of defect
stdev (float):
standard dev of the gaussian used for rattle (in A)
(default: 0.25)
Returns:
rattled structure"""
aaa = AseAtomsAdaptor()
structure_copy = structure.copy()
# Classify sites in 2 lists: inside or outside 5 A sphere
sites_inside_cutoff, sites_outside_cutoff = [], []
for site in structure_copy:
distance, image = site.distance_and_image_from_frac_coords(defect_coords)[:2]
if distance < 5:
sites_inside_cutoff.append(site)
else:
sites_outside_cutoff.append(site)
# Apply rattle to sites within 5 A sphere
structure_inside_cutoff = structure_copy.from_sites(sites_inside_cutoff)
ase_struct = aaa.get_atoms(structure_inside_cutoff)
ase_struct.rattle(stdev=stdev)
rattled_structure = aaa.get_structure(ase_struct)
# Add the sites outside the 5 A sphere to the rattled structure
[ rattled_structure.append(site_outside_cutoff.specie, site_outside_cutoff.frac_coords) for site_outside_cutoff in sites_outside_cutoff ]
return rattled_structure
|
35be05f136c5f1050394a0ac335ad281c0e855c3
| 29,946 |
def calculate_jaccard(set_1, set_2) -> float:
"""Calculate the jaccard similarity between two sets.
:param set set_1: set 1
:param set set_2: set 2
"""
intersection = len(set_1.intersection(set_2))
smaller_set = min(len(set_1), len(set_2))
return intersection / smaller_set
|
eddb25b2fdc0dd5b5d2505fc52cb1353ce74f89d
| 29,947 |
def bad_request(e) -> 'template':
"""Displays a custom 400 error handler page."""
return render_template('error_handler.html', code = 400, message = "Bad request", url = url_for('main.profile_page'), back_to = 'Profile Page'), 400
|
e9f302cea41e6a3b51044be28850b948153170e7
| 29,948 |
def quarter_of_year(datetimes):
"""Return the quarter of the year of given dates."""
return ((_month_of_year(datetimes) - 1) // 3 + 1).astype(int)
|
49f3d8d63f9cc5c73b2c0c6cf9859c8be53e567e
| 29,949 |
def runner_entrypoint(args):
""" Run bonobo using the python command entrypoint directly (bonobo.commands.entrypoint). """
return entrypoint(args)
|
f1eda845fa442d831f12b501a45dff3c91297f2a
| 29,950 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.