content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def open_sciobj_file_by_path(abs_path, write=False): """Open a SciObj file for read or write. If opened for write, create any missing directories. For a SciObj stored in the default SciObj store, the path includes the PID hash based directory levels. This is the only method in GMN that opens SciObj files, so can be modified to customize the SciObj storage locations and can be mocked for testing. Note that when a SciObj is created by a client via MNStorage.create(), Django streams the SciObj bytes to a temporary file or memory location as set by ``FILE_UPLOAD_TEMP_DIR`` and related settings. """ if write: d1_common.utils.filesystem.create_missing_directories_for_file(abs_path) return open(abs_path, "wb" if write else "rb")
8c5852de544be21c61636df03ddb681a6c084310
27,853
def mps_to_kmh(speed_in_mps): """Convert from kilometers per hour to meters per second Aguments: speed_in_mps: a speed to convert Returns: speed_in_kmh: a speed in m/s """ return speed_in_mps / 1000.0 * 3600.0
5a37cbca17f8262043b7e1cb2b193b4c9d146766
27,854
import logging def tokenize_and_remove_stopwords(txt,additional_stopwords): """ Runs tokenization and removes stop words on the specified text Parameters ----------- txt: text to process additional_stopwords: path to file containing possible additional stopwords on each line Returns ------- Processed list of words where each word is now stemmed """ logging.info("Removing stopwords") words_filter=load_stopwords(additional_stopwords) tokens=word_tokenize(txt) #make everything lowercase tokens=lowercase_words(tokens) tokens_without_sw=[] tokens_without_sw = [word for word in tokens if word not in words_filter] return tokens_without_sw
a118747bbd030e37ee0ed5f421f56390e1bd5b38
27,855
async def async_setup_entry(hass, config_entry, async_add_entities): """Add the Wiser System Switch entities.""" data = hass.data[DOMAIN][config_entry.entry_id][DATA] # Get Handler # Add Defined Switches wiser_switches = [] for switch in WISER_SWITCHES: if switch["type"] == "room": for room in [room for room in data.wiserhub.rooms.all if len(room.devices) > 0]: wiser_switches.append( WiserRoomSwitch(data, switch["name"], switch["key"], switch["icon"], room.id ) ) elif switch["type"] == "system": wiser_switches.append( WiserSystemSwitch(data, switch["name"], switch["key"], switch["icon"]) ) elif switch["type"] == "device": for device in [device for device in data.wiserhub.devices.all if hasattr(device, switch["key"])]: wiser_switches.append( WiserDeviceSwitch(data, switch["name"], switch["key"], switch["icon"], device.id ) ) async_add_entities(wiser_switches) # Add SmartPlugs (if any) wiser_smart_plugs = [ WiserSmartPlug(data, plug.id, "Wiser {}".format(plug.name)) for plug in data.wiserhub.devices.smartplugs.all ] async_add_entities(wiser_smart_plugs) return True
5a83f0888fadab08c573378dce4167f2d01478c1
27,856
def get_keep_dice_check(input_prompt): """ Enables returning a yes or no response to an input prompt. :param input_prompt: String yes no question. """ return pyip.inputYesNo(prompt=input_prompt)
c7b8a1392c3e17a1acba615079848245a1b6e167
27,857
import sh def get_pending_jobs(sort=True): """Obtains the list of currently pending (queued) jobs for the user.""" username = getusername() # see squeue man page for status code (%t specifier) listjob = sh.pipe_out(("squeue", "-u", username, "--noheader", "--format=%i %t"), split=True) rslt = [] # treat one of these statuses as "running" qstatus = ( 'PD', # pending 'S', # suspended ) for job1 in listjob: R = job1.split() if R[1] in qstatus: rslt.append(R[0]) if sort: rslt.sort() return rslt
5b03917885f8a09463c65a456c251cf753abdae2
27,858
def getOverlapRange(rangeA, rangeB): """ Calculate the overlapping range between rangeA and rangeB. Args: rangeA (list, tuple): List or tuple containing start and end value in float. rangeB (list, tuple): List or tuple containing start and end value in float. Returns: (list): List containing the overlapping range between rangeA and rangeB. """ assert isOverlap(rangeA, rangeB), f"There is no overlap between rangeA:{rangeA} and rangeB:{rangeB}" return [max(rangeA[0], rangeB[0]), min(rangeA[1], rangeB[1])]
5f3bd22f5ec317d2bde87c92b027f658a80431fb
27,859
def multiply_values(dictionary: dict, num: int) -> dict: """Multiplies each value in `dictionary` by `num` Args: dictionary (dict): subject dictionary num (int): multiplier Returns: dict: mapping of keys to values multiplied by multiplier """ return ( {key: value * num for key, value in dictionary.items()} if dictionary is not None else {} )
16eb87d60da64d648113858ba5cb4308137e0a14
27,860
def send_alarm(address, email_type, template_data={}): """ Send an email message to the given email address immediately, bypassing any queues or database system. :param address: The email address to send this message to. :param email_type: str defining this email template e.g EMAIL_WELCOME. Defined in email_types.json :param template_data: dict, values that will be merged into the template. """ email_message = EmailMessage.from_email_type(address, email_type, template_data) _DISPATCHER.send_email_alarm(email_message) return email_message
2564a3d5c27f092e3e940d907b2cc2bc986257c2
27,861
def serialize_curve_point(p: Point) -> bytes: """ Serialize an elliptic curve point ``p`` in compressed form as described in SEC1v2 (https://secg.org/sec1-v2.pdf) section 2.3.3. Corresponds directly to the "ser_P(P)" function in BIP32 (https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki#conventions). :param p: The elliptic curve point to be serialized. :return: A byte sequence containing the serialization of ``p``. """ x, y = p.x(), p.y() if y & 1: return b'\x03' + serialize_uint256(x) else: return b'\x02' + serialize_uint256(x)
9e002df4b18245cb4ce54f1aede5687279aae5bb
27,862
def gcom_so_config(revision=None): """ Create a shared object for linking. """ config = BuildConfig( project_label=f'gcom shared library {revision}', source_root=gcom_grab_config(revision=revision).source_root, steps=[ *common_build_steps(fpic=True), LinkSharedObject(linker='mpifort', output_fpath='$output/libgcom.so'), ] ) return config
ddcd625cd1393b38e1871f46a2f1b8738a904f1f
27,863
def func(command, description, link, params_string, returns="On success, the sent Message is returned.", return_type="Message"): """ Live template for pycharm: y = func(command="$cmd$", description="$desc$", link="$lnk$", params_string="$first_param$", returns="$returns$", return_type="$returntype$") """ description_with_tabs = "\t\t" + description.strip().replace("\n", "\n\t\t") param_list_args = [] param_list_kwargs = [] args = [] args2 = [] kwargs = [] kwargs2 = [] asserts = [] str_args = "" str_kwargs = "" param_strings = params_string.split("\n") for param in param_strings: assert_commands, assert_comments, param_name, param_type, table, non_buildin_type, param_name_input = parse_param_types(param) param_required = table[2].strip() param_needed = None if param_required == "Yes": param_needed = True elif param_required == "Optional": param_needed = False param_description = table[3].strip() if param_needed: param_list_args.append(Param(param_name, param_type, param_needed, param_description)) args.append(param_name) args2.append("{param_name}={param_name}".format(param_name=param_name)) str_args += '\t\t:param {key}: {descr}\n\t\t:type {key}: {type}\n\n'.format(key=param_name, descr=param_description, type=param_type) if assert_commands: asserts.append("assert({var} is not None)".format(var=param_name)) asserts.append("assert({ass})".format(ass=" or ".join(assert_commands)) + ((" # {comment}".format(comment=", ".join(assert_comments))) if assert_comments else "")) else: param_list_kwargs.append(Param(param_name, param_type, param_needed, param_description)) kwargs.append("{param_name}=None".format(param_name=param_name)) kwargs2.append("{param_name}={param_name}".format(param_name=param_name)) str_kwargs += '\t\t:keyword {key}: {descr}\n\t\t:type {key}: {type}\n\n'.format(key=param_name, descr=param_description, type=param_type) if assert_commands: asserts.append("assert({var} is None or {ass})".format(var=param_name, ass=" or ".join(assert_commands)) + ((" # {comment}".format(comment=", ".join(assert_comments))) if assert_comments else "")) args.extend(kwargs) args2.extend(kwargs2) asserts_string = "\n\t\t" + "\n\t\t".join(asserts) text = "" if len(str_args)>0: text += '\n\t\tParameters:\n\n' text += str_args if len(str_kwargs)>0: text += '\n\t\tOptional keyword parameters:\n\n' text += str_kwargs do_args = ['"%s"' % command] do_args.extend(args2) result = '\tdef {funcname}(self, {params}):\n\t\t"""\n{description_with_tabs}\n\n\t\t{link}\n\n' \ '{paramshit}\n' \ '\t\tReturns:\n\n\t\t:return: {returns}\n\t\t:rtype: {return_type}\n\t\t"""{asserts_with_tabs}\n\t\treturn self.do({do_args})\n\t# end def {funcname}'.format( funcname=convert_to_underscore(command), params=", ".join(args), description_with_tabs=description_with_tabs, link=link, returns=returns, return_type=return_type, command=command, do_args=", ".join(do_args), asserts_with_tabs=asserts_string, paramshit = text ) result = result.replace("\t", " ") return result
4c058afdb03b9d85a32e654f83beec95b72785ee
27,864
def get_basic_details(args, item): """ :param args: { "item_code": "", "warehouse": None, "doctype": "", "name": "", "project": "", warehouse: "", update_stock: "", project: "", qty: "", stock_qty: "" } :param item: `item_code` of Item object :return: frappe._dict """ if not item: item = frappe.get_doc("Item", args.get("item_code")) warehouse = item.default_warehouse or args.warehouse # material_request_type = '' # if args.get('doctype') == "Material Request": # material_request_type = frappe.db.get_value('Material Request', # args.get('name'), 'material_request_type') out = frappe._dict({ "item_code": item.name, "item_name": item.item_name, "description": cstr(item.description).strip(), "image": cstr(item.image).strip(), "warehouse": warehouse, # "min_order_qty": flt(item.min_order_qty) if args.doctype == "Material Request" else "", "qty": args.qty or 1.0, "stock_qty": args.qty or 1.0 }) for fieldname in ("item_name", "item_group"): out[fieldname] = item.get(fieldname) return out
6ddd7f3249d55a073d57c466e8994c1ccf8b1aa7
27,865
def validate_standard_json(json_to_test: dict) -> bool: """ validate fixed json against schema """ valid_json_flag = False schema_to_use = get_standard_json_schema() valid_json_flag = validate_json(json_to_test, schema_to_use, True) return valid_json_flag
97004d7f5e4758dedeaa4ecaf0ee4a67955336c9
27,866
from typing import Any def desg_to_prefix(desg: str) -> Any: """Convert small body designation to file prefix.""" return (desg.replace('/', '').replace(' ', '') .replace('(', '_').replace(')', '_'))
badde1e3ec9c3f669c7cce8aa55646b15cc5f4c8
27,868
def get_logger(name=None, log=False, level=INFO, path=None): """ Returns the appropriate logger depending on the passed-in arguments. This is particularly useful in conjunction with command-line arguments when you won't know for sure what kind of logger the program will need. :param name: The name of the file to log into. :param log: Whether to actually commit information to a file. :param level: The verbosity level. Only events logged at or above this level will be displayed. :param path: The folder to put the log file into. """ # Are we writing the output to disk? Pick the type of logger based on that. if log: return FileLogger(name=name, level=level, path=path) else: return StreamLogger(name=name, level=level)
be321f4704e98db7a8f4d6033004194104bbee64
27,869
def stop_job(job_name: Text, execution_id: Text) -> JobInfo: """ Stop a job defined in the ai flow workflow. :param job_name: The job name which task defined in workflow. :param execution_id: The ai flow workflow execution identify. :return: The result of the action. """ return proto_to_job(get_ai_flow_client().stop_job(job_name, execution_id))
0e67a061cbb730ffb6ebe57b11d32a3c110566dc
27,871
def find_user(): """ Determines current user using the username value of the current session user and returns the current user as a dict. """ current_user = mongo.db.users.find_one({"username": session["user"]}) return current_user
249836f8f1a23ff34bc55f112db2f4670672a7a1
27,872
def field2nullable(field, **kwargs): """Return the dictionary of swagger field attributes for a nullable field. :param Field field: A marshmallow field. :rtype: dict """ attributes = {} if field.allow_none: omv = kwargs['openapi_major_version'] attributes['x-nullable' if omv < 3 else 'nullable'] = True return attributes
dd5d4cd63aeede4ef9356baa9fe9a48bd5f87841
27,873
def zero_expand3d(inputs, stride=1): """Expand the inputs by zeros explain the expand operation: given stride = 1 [[[1, 2] --> [[[1, 0, 2] [3, 4]] [0, 0, 0] [3, 0, 4]] [[5, 6] [7, 8]]] [[0, 0, 0] [0, 0, 0] [0, 0, 0]] [[5, 0, 6] [0, 0, 0] [7, 0, 8]]] Args: ----------------------------- inputs : tvm.te.tensor.Tensor shape [batch, channel, depth, height, width] stride: (optional:0) int or tuple expected: (d_stride, h_stride, w_stride) ----------------------------- Returns: ----------------------------- tvm.te.tensor.Tensor shape [batch, channel, (depth - 1) * d_stride + 1, (height - 1) * h_stride + 1, (width - 1) * w_stride + 1] ----------------------------- """ stride = (stride, stride, stride) if isinstance(stride, (int, tvm.tir.IntImm)) else stride assert_print(isinstance(stride, tuple), "type(stride)={}".format(type(stride))) assert_print(len(stride) == 3) expand_zero = tvm.tir.expr.const(0, inputs.dtype) batch_size, in_channel, depth, height, width = inputs.shape out_depth = (depth - 1) * stride[0] + 1 out_height = (height - 1) * stride[1] + 1 out_width = (width - 1) * stride[2] + 1 return tvm.te.compute( (batch_size, in_channel, out_depth, out_height, out_width), lambda b, c, d ,h, w: tvm.te.if_then_else( tvm.te.all( d % stride[0] == 0, h % stride[1] == 0, w % stride[2] == 0 ), inputs[b, c, d // stride[0], h // stride[1], w // stride[2]], expand_zero ) )
4944b3f5f42811955b76fa46082dc5617fb648b7
27,874
import json def _load_setup_cfg(): """Load the setup configuration from the 'setup.json' file.""" try: with open(ROOT / 'setup.json') as setup_json_file: return json.load(setup_json_file) except json.decoder.JSONDecodeError as error: # pylint: disable=no-member raise DependencySpecificationError("Error while parsing 'setup.json' file: {}".format(error)) except FileNotFoundError: raise DependencySpecificationError("The 'setup.json' file is missing!")
b3e26e25f18098a51210221299f3a1066c92e5db
27,875
import json def toJSON(obj, opt_pretty=False, for_cloud_api=True): """Serialize an object to a JSON string appropriate for API calls. Args: obj: The object to serialize. opt_pretty: True to pretty-print the object. for_cloud_api: Whether the encoding should be done for the Cloud API or the legacy API. Returns: A JSON string representing the input. """ serializer = Serializer(not opt_pretty, for_cloud_api=for_cloud_api) encoded = serializer._encode(obj) # pylint: disable=protected-access return json.dumps(encoded, indent=2 if opt_pretty else None)
3f3d79d0b3b200ed3a05b55ea671eccae99543ce
27,876
import urllib def load_config_file_koe(filename): """ Loads in a config file for KOE to run Args: filename: Filename (can be absolute or relative path, or a URL) to read config file from. Returns: dict: Configuration file as a dict object. """ config_values = {} # First try to open things locally. If that doesn't work try it as a URL try: config_lines = open(filename, "r").readlines() except FileNotFoundError: try: r = urllib.request.urlopen(filename) config_lines = [] for line in r: config_lines.append(line.decode("utf-8")) except: print("Failed to get any file") return None for line in config_lines: line = line.strip() if len(line) == 0 or line[0] == "#": continue splits = line.split("=") config_values[splits[0].strip()] = splits[1].strip() for n in config_values: value = config_values[n] if value.lower() == "true": config_values[n] = True continue elif value.lower() == "false": config_values[n] = False continue config_values["SIZE"] = int(config_values["SIZE"]) config_values["CORES"] = int(config_values["CORES"]) config_values["ZEROPOINT"] = int(config_values["ZEROPOINT"]) config_values["ARC_CONV"] = float(config_values["ARC_CONV"]) config_values["LINEAR_STEP"] = float(config_values["LINEAR_STEP"]) config_values["ALARM_TIME"] = int(config_values["ALARM_TIME"]) config_values["BOX_SIZE"] = int(config_values["BOX_SIZE"]) config_values["FILTER_SIZE"] = int(config_values["FILTER_SIZE"]) value_string = config_values["MASK_PARAMS"].split(",") config_values["MASK_PARAMS"] = [float(value_string[0]), float(value_string[1]), int(value_string[2])] return config_values
e04b162a396f5e3e4747855f7c69b9cad017bb39
27,877
def select_by_type(transcripts, log): """Filter transcripts depending on different type""" # Difference types: UTR5_number and UTR5_boundary candidates, dtype, dcrit = analyse_difference_type_utr5_number_or_boundary(transcripts, log) if candidates is not None: return candidates, dtype, dcrit # Difference type: UTR_ends candidates, dtype, dcrit = analyse_difference_type_UTR_ends(transcripts, log) if candidates is not None: return candidates, dtype, dcrit # Difference type: UTR3 return analyse_difference_type_UTR3(transcripts, log)
2b1b7311459e7a305a2cbc64d295114f5bca3fc3
27,878
def lorentzian_distance(x, y): """Calculates the Lorentzian Distance. Args: x (np.array): N-dimensional array. y (np.array): N-dimensional array. Returns: The Lorentzian Distance between x and y. """ dist = np.log(1 + np.fabs(x - y)) return np.sum(dist)
d11cc411aa22aab14b1b3ee2dd606d5a8efb6fe7
27,879
def check_database_status(database_name, env): """This function looks for a DatabaseCreate task and returns a http response or the Database itself depeding on the context. If the DatabaseCreate task is still running of failed, a http response is returned, otherwise this functions tries to retrieve the Database with the get_database function. Parameters: database_name (str): Name of the database env (str): It represents the database environment (prod or dev) Returns: Database or Response: Database or Rest Framework Response object """ database_create = last_database_create(database_name, env) LOG.info( "Task {}".format(getattr(database_create, 'task', 'No tasks found')) ) if database_create: if database_create.is_running: msg = "Database {} in env {} is beeing created.".format( database_name, env) return log_and_response( msg=msg, http_status=status.HTTP_412_PRECONDITION_FAILED) elif database_create.is_status_error: msg = ("A error ocurred creating database {} in env {}. Check " "error on task history in https://dbaas.globoi.com").format( database_name, env) return log_and_response( msg=msg, http_status=status.HTTP_500_INTERNAL_SERVER_ERROR) try: database = get_database(database_name, env) except IndexError as e: msg = "Database {} does not exist in env {}.".format( database_name, env) return log_and_response( msg=msg, e=e, http_status=status.HTTP_500_INTERNAL_SERVER_ERROR) except MultipleObjectsReturned as e: msg = "There are multiple databases called {} in {}.".format( database_name, env) return log_and_response( msg=msg, e=e, http_status=status.HTTP_500_INTERNAL_SERVER_ERROR) except Exception as e: msg = "Something ocurred on dbaas, please get in touch with your DBA." return log_and_response( msg=msg, e=e, http_status=status.HTTP_500_INTERNAL_SERVER_ERROR) if not(database and database.status): msg = "Database {} is not Alive.".format(database_name) return log_and_response( msg=msg, http_status=status.HTTP_500_INTERNAL_SERVER_ERROR) return database
17d9f616d20638c4624e5b35a042d9265ccf625f
27,880
def get_flat_schema(schema_name=None): """Flatten the specified data model schema, defaulting to the core schema, useful for retrieving FITS keywords or valid value lists. """ return _schema_to_flat(_load_schema(schema_name))
6f43a095015c25bdace05cf473f252ac699b33f9
27,881
def repeat3(img): """ Repeat an array 3 times along its last axis :param img: A numpy.ndarray :return: A numpy.ndarray with a shape of: img.shape + (3,) """ return np.repeat(img[..., np.newaxis], 3, axis=-1)
eddd3469d8d02457b87ef00c13ef7213d3a5568b
27,882
import time import tqdm def encode_strategies(strategies, batch_size=stg.JOBLIB_BATCH_SIZE, parallel=True): """ Encode strategies Parameters ---------- strategies : Strategies array Array of strategies to be encoded. Returns ------- numpy array Encodings for each strategy in strategies. Strategies array Array of unique strategies. """ stg.logger.info("Encoding strategies") N = len(strategies) stg.logger.info("Getting unique set of strategies") start_time = time() unique = unique_strategies(strategies) end_time = time() stg.logger.info("Extraction time %.3f sec" % (end_time - start_time)) n_unique_strategies = len(unique) stg.logger.info("Found %d unique strategies" % n_unique_strategies) # Map strategies to number n_jobs = u.get_n_processes() if parallel else 1 stg.logger.info("Assign samples to unique strategies (n_jobs = %d)" % n_jobs) results = Parallel(n_jobs=n_jobs, batch_size=batch_size)(delayed(assign_to_unique_strategy)(s, unique) for s in tqdm(strategies)) y = np.array(results) return y, unique
c77fcd28c69b447e43fc9eef359b32426771d6bd
27,883
def generate_authenticator(data, authenticator_key): """ This function will generate an authenticator for the data (provides authentication and integrity). :param data: The data over which to generate the authenticator. :type data: :class:`str` :param authenticator_key: The secret key to be used by the function, in byte string. You can use :func:`~securitylib.crypto.generate_authenticator_key` to generate it. :type authenticator_key: :class:`str` :returns: :class:`str` -- The generated authenticator in byte string. """ validate_authenticator_key(authenticator_key) return advanced_crypto.generate_authenticator(data, authenticator_key)
8203c9f487d2acf6a8a0bbd907bc1f8cc9dc026c
27,884
def multi_recall(pred_y, true_y, labels): """ Calculate the recall of multi classification :param pred_y: predict result :param true_y: true result :param labels: label list :return: """ if isinstance(pred_y[0], list): pred_y = [item[0] for item in pred_y] recalls = [binary_recall(pred_y, true_y, label) for label in labels] rec = mean(recalls) return rec
a11984b6c509b9b95d65ad148ca712099ff91a66
27,886
def is_safe_range(expression): """ Return true if an expression is safe range. This function receives an expression in safe range normal form and returns true if all its free variables are range restricted. """ try: return extract_logic_free_variables( expression ) == range_restricted_variables(expression) except NeuroLangException: return False
e6a23b250f936cc78918ad15eb1122a419a8b872
27,887
def star_marker_level(prev, curr): """Allow markers to be on the same level as a preceding star""" return (prev.is_stars() and not curr.is_stars() and prev.depth == curr.depth)
3311c452c8f138cd8fa75b67109e75a9bf30902c
27,888
from typing import Optional from typing import Sequence def get_mail_addresses(ids: Optional[Sequence[str]] = None, key_word: Optional[str] = None, output_file: Optional[str] = None, sendtype: Optional[str] = None, status: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetMailAddressesResult: """ This data source provides the Direct Mail Mail Addresses of the current Alibaba Cloud user. > **NOTE:** Available in v1.134.0+. ## Example Usage Basic Usage ```python import pulumi import pulumi_alicloud as alicloud ids = alicloud.directmail.get_mail_addresses(ids=["example_id"]) pulumi.export("directMailMailAddressId1", ids.addresses[0].id) ``` :param Sequence[str] ids: A list of Mail Address IDs. :param str key_word: The key word about account email address. :param str sendtype: Account type. :param str status: Account Status. Valid values: `0`, `1`. Freeze: 1, normal: 0. """ __args__ = dict() __args__['ids'] = ids __args__['keyWord'] = key_word __args__['outputFile'] = output_file __args__['sendtype'] = sendtype __args__['status'] = status if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('alicloud:directmail/getMailAddresses:getMailAddresses', __args__, opts=opts, typ=GetMailAddressesResult).value return AwaitableGetMailAddressesResult( addresses=__ret__.addresses, id=__ret__.id, ids=__ret__.ids, key_word=__ret__.key_word, output_file=__ret__.output_file, sendtype=__ret__.sendtype, status=__ret__.status)
52590cc1c12788e47aa81adc1e9f51bbd9092f31
27,889
import torch def load_checkpoint( file, model: torch.nn.Module, optimizer: torch.optim.Optimizer = None, lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None, strict: bool = True, ): """Loads training states from a checkpoint file. Args: file: a file-like object (has to implement read(), readline(), tell(), and seek()), or a string or os.PathLike object containing a file name. model (:class:`torch.nn.Module`): Model to load saved weights and buffers. optimizer (Union[:class:`torch.optim.Optimizer`, :class:`colossalai.nn.optimizer`]): Optimizer to recuperate. lr_scheduler (:class:`torch.optim.lr_scheduler._LRScheduler`, optional): lr_scheduler to recuperate, defaults to None. strict (bool, optional): Whether to strictly enforce that the keys in :attr:`state_dict` of the checkpoint match the names of parameters and buffers in model, defaults to True. Returns: int: The saved epoch number. Raises: RuntimeError: Raise error if the model/optimizer cannot successfully be recuperated """ state_dict = ( torch.load(file, map_location=torch.device("cpu")) if gpc.get_local_rank(ParallelMode.MODEL) == 0 else None ) # model states model_state = state_dict.pop("model") if state_dict is not None else dict() # pipeline if is_using_pp(): model_state = partition_pipeline_parallel_state_dict(model, model_state) try: model.load_state_dict(model_state, strict=strict) except RuntimeError as e: error_msgs = str(e) if error_msgs.startswith("Error(s) in loading state_dict for "): error_msgs = error_msgs.split("\n\t")[1:] dst_rank = gpc.get_ranks_in_group(ParallelMode.MODEL)[0] all_error_msgs = [None for _ in range(gpc.get_world_size(ParallelMode.MODEL))] dist.gather_object(error_msgs, all_error_msgs, dst=dst_rank, group=gpc.get_cpu_group(ParallelMode.MODEL)) if gpc.get_global_rank() == 0: all_error_msgs = list(chain.from_iterable(all_error_msgs)) raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(all_error_msgs) ) ) else: raise e # broadcast the rest states state_dict = broadcast_state_dict(state_dict, ParallelMode.MODEL) # # optimizer states # if optimizer is not None and 'optimizer' in state_dict: # optimizer.load_state_dict(state_dict['optimizer']) # # lr scheduler states # if lr_scheduler is not None and 'lr_scheduler' in state_dict: # lr_scheduler.load_state_dict(state_dict['lr_scheduler']) # last epoch last_epoch = state_dict.pop("epoch", -1) return last_epoch
f4eb59a303a5bf13ff1bdb9f37ca577a4d9e0419
27,890
def num_or_str(x): """The argument is a string; convert to a number if possible, or strip it. Ex: num_or_str('42') ==> 42; num_or_str(' 42x ') ==> '42x' """ try: return int(x) except ValueError: try: return float(x) except ValueError: return str(x).strip()
6709cfc772ecc79993563f43c2d8ea4526f222c6
27,891
def mac_timezone(): """Determine system timezone""" output = cmdmod['cmd.run']("/usr/sbin/systemsetup -gettimezone") return {'mac_timezone': output[11:]}
e5e8e45fdbd54d1741dd80a76a47f26f43640293
27,892
def lookup_loc_carriers(model_run): """ loc_carriers, used in system_wide balance, are linked to loc_tech_carriers e.g. `X1::power` will be linked to `X1::chp::power` and `X1::battery::power` in a comma delimited string, e.g. `X1::chp::power,X1::battery::power` """ # get the technologies associated with a certain loc_carrier lookup_loc_carriers_dict = dict(dims=["loc_carriers"]) data = [] for loc_carrier in model_run.sets["loc_carriers"]: loc_tech_carrier = list( set( i for i in model_run.sets["loc_tech_carriers_prod"] + model_run.sets["loc_tech_carriers_con"] if loc_carrier == "{0}::{2}".format(*i.split("::")) ) ) data.append(",".join(loc_tech_carrier)) lookup_loc_carriers_dict["data"] = data return lookup_loc_carriers_dict
85c20bd789e0250405dded9e0e4a56777047ef5a
27,895
def filldown(table, *fields, **kwargs): """ Replace missing values with non-missing values from the row above. E.g.:: >>> from petl import filldown, look >>> look(table1) +-------+-------+-------+ | 'foo' | 'bar' | 'baz' | +=======+=======+=======+ | 1 | 'a' | None | +-------+-------+-------+ | 1 | None | 0.23 | +-------+-------+-------+ | 1 | 'b' | None | +-------+-------+-------+ | 2 | None | None | +-------+-------+-------+ | 2 | None | 0.56 | +-------+-------+-------+ | 2 | 'c' | None | +-------+-------+-------+ | None | 'c' | 0.72 | +-------+-------+-------+ >>> table2 = filldown(table1) >>> look(table2) +-------+-------+-------+ | 'foo' | 'bar' | 'baz' | +=======+=======+=======+ | 1 | 'a' | None | +-------+-------+-------+ | 1 | 'a' | 0.23 | +-------+-------+-------+ | 1 | 'b' | 0.23 | +-------+-------+-------+ | 2 | 'b' | 0.23 | +-------+-------+-------+ | 2 | 'b' | 0.56 | +-------+-------+-------+ | 2 | 'c' | 0.56 | +-------+-------+-------+ | 2 | 'c' | 0.72 | +-------+-------+-------+ >>> table3 = filldown(table1, 'bar') >>> look(table3) +-------+-------+-------+ | 'foo' | 'bar' | 'baz' | +=======+=======+=======+ | 1 | 'a' | None | +-------+-------+-------+ | 1 | 'a' | 0.23 | +-------+-------+-------+ | 1 | 'b' | None | +-------+-------+-------+ | 2 | 'b' | None | +-------+-------+-------+ | 2 | 'b' | 0.56 | +-------+-------+-------+ | 2 | 'c' | None | +-------+-------+-------+ | None | 'c' | 0.72 | +-------+-------+-------+ >>> table4 = filldown(table1, 'bar', 'baz') >>> look(table4) +-------+-------+-------+ | 'foo' | 'bar' | 'baz' | +=======+=======+=======+ | 1 | 'a' | None | +-------+-------+-------+ | 1 | 'a' | 0.23 | +-------+-------+-------+ | 1 | 'b' | 0.23 | +-------+-------+-------+ | 2 | 'b' | 0.23 | +-------+-------+-------+ | 2 | 'b' | 0.56 | +-------+-------+-------+ | 2 | 'c' | 0.56 | +-------+-------+-------+ | None | 'c' | 0.72 | +-------+-------+-------+ .. versionadded:: 0.11 """ return FillDownView(table, fields, **kwargs)
1f14d9e3aba6791ab9d512c647053ad41fcfab59
27,896
def realworld_bring_peg(fully_observable=True, time_limit=_TIME_LIMIT, random=None, log_output=None, environment_kwargs=None, safety_spec=None, delay_spec=None, noise_spec=None, perturb_spec=None, dimensionality_spec=None, multiobj_spec=None, combined_challenge=None): """Returns manipulator bring task with the peg prop.""" use_peg = True insert = False return gen_task(use_peg, insert, fully_observable, time_limit, random, log_output, environment_kwargs, safety_spec, delay_spec, noise_spec, perturb_spec, dimensionality_spec, multiobj_spec, combined_challenge)
496c7e31fee93d87d10cbee7bb6369c417956b23
27,897
def schedule_gemm(cfg, s, A, B, C, batched=False, schedule_transforms=True): """Schedule GEMM, single and batched Parameters ---------- cfg : Config Schedule configuration s : tvm.te.schedule.Schedule Operator schedule A : tvm.te.Tensor 2D/3D Tensor, shape [n, k]/[b, n, k] B : tvm.te.Tensor 2D/3D Tensor, shape [k, m]/[b, k, m] C : tvm.te.Tensor 2D/3D Tensor, shape [n, m]/[b, n, m] batched : bool Whether the GEMM is batched Returns ------- """ block_size_x = 4 block_size_y = 4 warp_size_x = 2 warp_size_y = 2 work_group_x = cfg["work_group_x"].val work_group_y = cfg["work_group_y"].val k_unroll = cfg["unroll_k_factor"].val if not batched: y_index, x_index = (0, 1) else: y_index, x_index = (1, 2) trans_inter, A_transposed_interleaved = transpose_interleave( s, A, cfg["A_interleave"].val, y_index, x_index, [C], batched=batched ) inter_trans, B_interleaved_transposed = interleave_transpose( s, B, cfg["B_interleave"].val, y_index, x_index, [C], batched=batched ) if schedule_transforms: # Schedule A y, x = s[trans_inter].op.axis y, x, yi, xi = s[trans_inter].tile(y, x, 1, 8) s[trans_inter].unroll(yi) s[trans_inter].unroll(xi) tile_and_bind(s, trans_inter, y, x, 1, 4) # Schedule B y, x = s[inter_trans].op.axis xo, xi = s[inter_trans].split(x, 4) s[inter_trans].vectorize(xi) tile_and_bind(s, inter_trans, y, xo, 4, 4) # Schedule C CR_A = s.cache_read(A_transposed_interleaved, "local", [C]) CR_B = s.cache_read(B_interleaved_transposed, "local", [C]) CW_C = s.cache_write(C, "local") if not batched: y, x = s[C].op.axis else: z, y, x = s[C].op.axis y, x, yt, xt = s[C].tile(y, x, block_size_y, block_size_x) s[C].unroll(yt) s[C].vectorize(xt) # Tile the global work space to generate 'square' warps -> 2x2 for warp size of 4 y, x, wy, wx = s[C].tile(y, x, warp_size_y, warp_size_x) x = s[C].fuse(x, wy, wx) if not batched: yo, xo, yi, xi = tile_and_bind(s, C, y, x, work_group_y, work_group_x) else: # For batched GEMM bind batch to z axis zo, yo, xo, zi, yi, xi = tile_and_bind3d(s, C, z, y, x, 1, work_group_y, work_group_x) s[CW_C].compute_at(s[C], xi) if not batched: y, x = s[CW_C].op.axis else: _, y, x = s[CW_C].op.axis y, x, yt, xt = s[CW_C].tile(y, x, block_size_y, block_size_x) k = s[CW_C].op.reduce_axis[0] s[CW_C].reorder(k, yt, xt) ko, ki = s[CW_C].split(k, k_unroll) s[CW_C].unroll(ki) s[CW_C].unroll(yt) s[CW_C].unroll(xt) if not batched: i, j = s[CR_A].op.axis else: _, i, j = s[CR_A].op.axis s[CR_A].reorder(j, i) s[CR_A].compute_at(s[CW_C], ki) s[CR_A].unroll(j) s[CR_A].vectorize(i) if not batched: i, j = s[CR_B].op.axis else: _, i, j = s[CR_B].op.axis s[CR_B].compute_at(s[CW_C], ki) s[CR_B].unroll(i) s[CR_B].vectorize(j) return trans_inter, inter_trans
2a99a20f4e9634bdaa06d114a9eafb7406736bc3
27,898
import math def distance(x1: float, y1: float, x2: float, y2: float) -> float: """Возвращает расстояние между двумя точками на плоскости""" return math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
2113cb5926492ba89820ebb7f42de6993e46e3cb
27,899
import logging def GitPush(git_repo, refspec, push_to, force=False, dry_run=False, capture_output=True, skip=False, **kwargs): """Wrapper for pushing to a branch. Args: git_repo: Git repository to act on. refspec: The local ref to push to the remote. push_to: A RemoteRef object representing the remote ref to push to. force: Whether to bypass non-fastforward checks. dry_run: If True, do everything except actually push the remote ref. capture_output: Whether to capture output for this command. skip: Log the git command that would have been run, but don't run it; this avoids e.g. remote access checks that still apply to |dry_run|. """ cmd = ['push', push_to.remote, '%s:%s' % (refspec, push_to.ref)] if force: cmd.append('--force') if dry_run: cmd.append('--dry-run') if skip: logging.info('Would have run "%s"', cmd) return return RunGit(git_repo, cmd, capture_output=capture_output, **kwargs)
3af43d0a819c297735995a9d8c7e39b49937b7a3
27,900
def boxes_to_array(bound_boxes): """ # Args boxes : list of BoundBox instances # Returns centroid_boxes : (N, 4) probs : (N, nb_classes) """ temp_list = [] for box in bound_boxes: temp_list.append([np.argmax(box.classes), np.asarray([box.x, box.y, box.w, box.h]), np.max(box.classes)]) return np.array(temp_list)
e01b908e675b84928d1134d8eec4627f36b8af4a
27,901
from typing import Tuple def _scope_prepare(scope: str) -> Tuple[object, str]: """ Parse a scope string a return a tuple consisting of context manager for the assignation of the tf's scope and a string representing the summary name. The scope is of the form "<ident1>.<ident2>. ... .<ident3>", the righmost identifier is used as summary name whereas the prefix is used as scope name. :param scope: A string containing a qualified name. :return: """ splits = scope.rsplit('.', 1) if any(map(lambda v: len(v) == 0, splits)): raise ValueError(f'Invalid scope name: {scope}') if len(splits) == 1: return nullcontext(), splits[0] return tf.name_scope(splits[0]), splits[1]
01bcd08d87e23621f3476055379d9c7403fd4b75
27,903
async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload a config entry.""" if unload_ok := await hass.config_entries.async_unload_platforms(entry, PLATFORMS): aftv = hass.data[DOMAIN][entry.entry_id][ANDROID_DEV] await aftv.adb_close() hass.data[DOMAIN].pop(entry.entry_id) return unload_ok
77376bcdf98c9b4c2ac6020e44d704fbe59d9143
27,904
from typing import Tuple def render_wrapped_text(text: str, font: pygame.freetype.Font, color: Color, centered: bool, offset_y: int, max_width: int) -> Tuple[pygame.Surface, pygame.Rect]: """Return a surface & rectangle with text rendered over several lines. Parameter offset_y defines the distance between lines.""" words = text.split() lines = [] lines_h = 0 line_w, line_h = 0, 0 # Separate text into lines, storing each line size while words: line_words = [] while words: _, _, l_w, l_h = font.get_rect( ' '.join(line_words + words[:1])) if l_w > max_width: break line_w, line_h = l_w, l_h line_words.append(words.pop(0)) if line_words: lines_h += line_h lines.append((' '.join(line_words), (line_w, line_h))) else: # Split word in half if it is too long long_word = words.pop(0) words.insert(0, long_word[:len(long_word)//2]) words.insert(1, long_word[len(long_word)//2:]) # Create transparent surface and rectangle to be returned final_height = lines_h + (len(lines) - 1) * offset_y if lines else lines_h final_surf = pygame.Surface((max_width, final_height), pygame.SRCALPHA, 32) final_surf.convert() final_rect = final_surf.get_rect() # Render lines on the surface pos_y = 0 for line in lines: if centered: pos_x = int(max_width/2 - line[1][0]/2) else: pos_x = 0 font.render_to(final_surf, (pos_x, pos_y), line[0], color) pos_y += line[1][1] + offset_y return final_surf, final_rect
73be30318fd3afe5bf5138b8c21c46caf05022bc
27,905
def comp4(a1,a2,b1,b2): """两个区间交集,a1<a2; b1<b2""" if a2<b1 or b2<a1:#'空集' gtii = [] else: lst1 = sorted([a1,a2,b1,b2]) gtii = [lst1[1], lst1[2]] return gtii
ba4357b16ee09f78b6c09f422d27a42cd91e298e
27,906
from typing import Callable from typing import Optional from typing import Union from typing import Tuple from typing import List def fixed_step_solver_template( take_step: Callable, rhs_func: Callable, t_span: Array, y0: Array, max_dt: float, t_eval: Optional[Union[Tuple, List, Array]] = None, ): """Helper function for implementing fixed-step solvers supporting both ``t_span`` and ``max_dt`` arguments. ``take_step`` is assumed to be a function implementing a single step of size h of a fixed-step method. The signature of ``take_step`` is assumed to be: - rhs_func: Either a generator :math:`G(t)` or RHS function :math:`f(t,y)`. - t0: The current time. - y0: The current state. - h: The size of the step to take. It returns: - y: The state of the DE at time t0 + h. ``take_step`` is used to integrate the DE specified by ``rhs_func`` through all points in ``t_eval``, taking steps no larger than ``max_dt``. Each interval in ``t_eval`` is divided into the least number of sub-intervals of equal length so that the sub-intervals are smaller than ``max_dt``. Args: take_step: Callable for fixed step integration. rhs_func: Callable, either a generator or rhs function. t_span: Interval to solve over. y0: Initial state. max_dt: Maximum step size. t_eval: Optional list of time points at which to return the solution. Returns: OdeResult: Results object. """ # ensure the output of rhs_func is a raw array def wrapped_rhs_func(*args): return Array(rhs_func(*args)).data y0 = Array(y0).data t_list, h_list, n_steps_list = get_fixed_step_sizes(t_span, t_eval, max_dt) ys = [y0] for current_t, h, n_steps in zip(t_list, h_list, n_steps_list): y = ys[-1] inner_t = current_t for _ in range(n_steps): y = take_step(wrapped_rhs_func, inner_t, y, h) inner_t = inner_t + h ys.append(y) ys = Array(ys) results = OdeResult(t=t_list, y=ys) return trim_t_results(results, t_span, t_eval)
6e989b1f6d92ddeb4d5f18e9eb110667f28b6a33
27,907
def set_reference_ene(rxn_lst, spc_dct, pes_model_dct_i, spc_model_dct_i, run_prefix, save_prefix, ref_idx=0): """ Sets the reference species for the PES for which all energies are scaled relative to. """ # Set the index for the reference species, right now defualt to 1st spc ref_rxn = rxn_lst[ref_idx] _, (ref_rgts, _) = ref_rxn ioprinter.info_message( 'Determining the reference energy for PES...', newline=1) ioprinter.info_message( ' - Reference species assumed to be the', ' first set of reactants on PES: {}'.format('+'.join(ref_rgts))) # Get the model for the first reference species ref_scheme = pes_model_dct_i['therm_fit']['ref_scheme'] ref_enes = pes_model_dct_i['therm_fit']['ref_enes'] ref_ene_level = spc_model_dct_i['ene']['lvl1'][0] ioprinter.info_message( ' - Energy Level for Reference Species: {}'.format(ref_ene_level)) # Get the elec+zpe energy for the reference species ioprinter.info_message('') hf0k = 0.0 for rgt in ref_rgts: ioprinter.info_message(' - Calculating energy for {}...'.format(rgt)) basis_dct, uniref_dct = thermfit.prepare_refs( ref_scheme, spc_dct, (rgt,)) spc_basis, coeff_basis = basis_dct[rgt] # Build filesystem ene_spc, ene_basis = thmroutines.basis.basis_energy( rgt, spc_basis, uniref_dct, spc_dct, spc_model_dct_i, run_prefix, save_prefix) # Calcualte the total energy hf0k += thermfit.heatform.calc_hform_0k( ene_spc, ene_basis, spc_basis, coeff_basis, ref_set=ref_enes) return hf0k
52c915060a869f41ee5262190dd7ffac79b1684b
27,908
import torch def get_laf_center(LAF: torch.Tensor) -> torch.Tensor: """Returns a center (keypoint) of the LAFs. Args: LAF: tensor [BxNx2x3]. Returns: tensor BxNx2. Shape: - Input: :math: `(B, N, 2, 3)` - Output: :math: `(B, N, 2)` Example: >>> input = torch.ones(1, 5, 2, 3) # BxNx2x3 >>> output = get_laf_center(input) # BxNx2 """ raise_error_if_laf_is_not_valid(LAF) out: torch.Tensor = LAF[..., 2] return out
c172defe938c35e7f41616b48d9d6d3da21eb9d1
27,909
def get_all_vlan_bindings_by_logical_switch(context, record_dict): """Get Vlan bindings that match the supplied logical switch.""" query = context.session.query(models.VlanBindings) return query.filter_by( logical_switch_uuid=record_dict['logical_switch_id'], ovsdb_identifier=record_dict['ovsdb_identifier']).all()
df88a52325e1bee59fae3b489a29ce8ee343d1fb
27,910
def conv_input_length(output_length, filter_size, padding, stride): """Determines input length of a convolution given output length. Args: output_length: integer. filter_size: integer. padding: one of "same", "valid", "full". stride: integer. Returns: The input length (integer). """ if output_length is None: return None assert padding in {'same', 'valid', 'full'} if padding == 'same': pad = filter_size // 2 elif padding == 'valid': pad = 0 elif padding == 'full': pad = filter_size - 1 return (output_length - 1) * stride - 2 * pad + filter_size
88c80a77d3aee4050625aa080db5d9b246f9e920
27,911
def convert_data_to_int(x, y): """ Convert the provided data to integers, given a set of data with fully populated values. """ # Create the new version of X x_classes = [] for i in xrange(x.shape[1]): x_classes.append({item:j for j, item in enumerate(set(x[:,i]))}) new_x = np.zeros(x.shape, dtype='i') for i, xi in enumerate(x): for j, xii in enumerate(xi): new_x[i,j] = x_classes[j][xii] # Create the new version of y y_classes = {item:i for i, item in enumerate(set(y))} new_y = np.zeros(y.shape, dtype='i') for i, yi in enumerate(y): new_y[i] = y_classes[yi] return new_x, new_y
c8b3f017a34b68edf4f1740f8a3dd2130664ddae
27,912
def send_report(report_text, svc_info, now_str): """ Publish report to AWS SNS endpoint Note: publish takes a max of 256KB. """ overage = len(report_text) - MAX_SNS_MESSAGE if overage > 0: report_text = report_text[:-overage - 20] + '\n<message truncated/>' resp = SNS_C.publish(TopicArn=svc_info['CowReportARN'], Message=report_text, Subject='CowCatcher Report for ' + now_str) return resp
9c48c3d7ba12e11cf3df944942803f36f6c23f52
27,913
def credential(): """Return credential.""" return Credential('[email protected]', 'test_password')
1da4e56abb87c9c5a0d0996d3a2911a23349321b
27,914
def get_ez_from_contacts(xlsx_file, contacts_file, label_volume_file): """Return list of indices of EZ regions given by the EZ contacts in the patient spreadsheet""" CONTACTS_IND = 6 EZ_IND = 7 df = pd.read_excel(xlsx_file, sheet_name="EZ hypothesis and EI", header=1) ez_contacts = [] contacts_col = df.iloc[:, CONTACTS_IND] mask = contacts_col.notnull() contacts_names = contacts_col[mask] ez_mask = df.iloc[:, EZ_IND][mask] == 'YES' ez_contacts.extend(contacts_names[ez_mask]) contacts = Contacts(contacts_file) label_vol = nib.load(label_volume_file) ez_inds = [] for contact in ez_contacts: coords = contacts.get_coords(contact) region_ind = nifti.point_to_brain_region( coords, label_vol, tol=3.0) - 1 # Minus one to account for the shift if region_ind != -1: ez_inds.append(region_ind) return ez_inds
b3e4bfda0d0e9830b34012b7995082e90c9932a8
27,915
def mapfmt_str(fmt: str, size: int) -> str: """Same as mapfmt, but works on strings instead of bytes.""" if size == 4: return fmt return fmt.replace('i', 'q').replace('f', 'd')
af51b6ac65c80eef1721b64dcd8ee6a8bb5cbc97
27,916
def RandomImageDetection(rows=None, cols=None): """Return a uniform random color `vipy.image.ImageDetection` of size (rows, cols) with a random bounding box""" rows = np.random.randint(128, 1024) if rows is None else rows cols = np.random.randint(128, 1024) if cols is None else cols return ImageDetection(array=np.uint8(255 * np.random.rand(rows, cols, 3)), colorspace='rgb', category='RandomImageDetection', xmin=np.random.randint(0,cols - 16), ymin=np.random.randint(0,rows - 16), bbwidth=np.random.randint(16,cols), bbheight=np.random.randint(16,rows))
e7f06b32b771f3eb3c10d09e39bc4be4577d4233
27,918
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False): """ Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. """ if stride == 1: return x if separate_cls: cls = x[:, :1] x = x[:, 1:] output = tf.repeat(x, repeats=stride, axis=1) if separate_cls: if truncate_seq: output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]]) output = output[:, : target_len - 1] output = tf.concat([cls, output], axis=1) else: output = output[:, :target_len] return output
716c94cb365144e65a6182e58c39284375c8f700
27,919
import numpy def torsional_scan_linspaces(zma, tors_names, increment=0.5, frm_bnd_key=None, brk_bnd_key=None): """ scan grids for torsional dihedrals """ sym_nums = torsional_symmetry_numbers( zma, tors_names, frm_bnd_key=frm_bnd_key, brk_bnd_key=brk_bnd_key) intervals = tuple(2*numpy.pi/sym_num - increment for sym_num in sym_nums) npoints_lst = tuple( (int(interval / increment)+1) for interval in intervals) return tuple((0, interval, npoints) for interval, npoints in zip(intervals, npoints_lst))
a2dcd4ec57ae598a42c25102db89af331e6f8a40
27,920
import ctypes def get_output_to_console(p_state): """Returns a bool indicating whether the Log is output to the console.""" return bool(_Get_Output_To_Console(ctypes.c_void_p(p_state)))
71599b5a2e4b2708d6e8d5fa003acc89cd0d030c
27,921
def check_valid_column(observation): """ Validates that our observation only has valid columns Returns: - assertion value: True if all provided columns are valid, False otherwise - error message: empty if all provided columns are valid, False otherwise """ valid_columns = { "observation_id", "Type", "Date", "Part of a policing operation", "Latitude", "Longitude", "Gender", "Age range", "Officer-defined ethnicity", "Legislation", "Object of search", "station" } keys = set(observation.keys()) if len(valid_columns - keys) > 0: missing = valid_columns - keys error = "Missing columns: {}".format(missing) return False, error if len(keys - valid_columns) > 0: extra = keys - valid_columns error = "Unrecognized columns provided: {}".format(extra) return False, error return True, ""
104fc6646a5e4d978b2a0cec4322c6f275b82f42
27,922
def w_getopt(args, options): """A getopt for Windows. Options may start with either '-' or '/', the option names may have more than one letter (/tlb or -RegServer), and option names are case insensitive. Returns two elements, just as getopt.getopt. The first is a list of (option, value) pairs in the same way getopt.getopt does, but there is no '-' or '/' prefix to the option name, and the option name is always lower case. The second is the list of arguments which do not belong to an option. Different from getopt.getopt, a single argument not belonging to an option does not terminate parsing. """ opts = [] arguments = [] while args: if args[0][:1] in "/-": arg = args[0][1:] # strip the '-' or '/' arg = arg.lower() if arg + ':' in options: try: opts.append((arg, args[1])) except IndexError: raise GetoptError("option '%s' requires an argument" % args[0]) args = args[1:] elif arg in options: opts.append((arg, '')) else: raise GetoptError("invalid option '%s'" % args[0]) args = args[1:] else: arguments.append(args[0]) args = args[1:] return opts, arguments
34095675fa95cbc1c8474a7253b4d49a2e947dc0
27,924
def get_alt_for_density(density: float, density_units: str='slug/ft^3', alt_units: str='ft', nmax: int=20, tol: float=5.) -> float: """ Gets the altitude associated with a given air density. Parameters ---------- density : float the air density in slug/ft^3 density_units : str; default='slug/ft^3' the density units; slug/ft^3, slinch/in^3, kg/m^3 alt_units : str; default='ft' sets the units for the output altitude; ft, m, kft nmax : int; default=20 max number of iterations for convergence tol : float; default=5. tolerance in alt_units Returns ------- alt : float the altitude in feet """ tol = convert_altitude(tol, alt_units, 'ft') dalt = 500. # ft alt_old = 0. alt_final = 5000. n = 0 #density_scale = _density_factor(density_units, "slug/ft^3") # Newton's method while abs(alt_final - alt_old) > tol and n < nmax: alt_old = alt_final alt1 = alt_old alt2 = alt_old + dalt rho1 = atm_density(alt1, density_units=density_units) rho2 = atm_density(alt2, density_units=density_units) m = dalt / (rho2 - rho1) alt_final = m * (density - rho1) + alt1 n += 1 if abs(alt_final - alt_old) > tol: raise RuntimeError('Did not converge; Check your units; n=nmax=%s\n' 'target alt=%s alt_current=%s' % (nmax, alt_final, alt1)) alt_out = convert_altitude(alt_final, 'ft', alt_units) return alt_out
68243ec75bbe8989e7a9fd63fe6a1635da222cae
27,925
from datetime import datetime def parse_date_string(date: str) -> datetime: """Converts date as string (e.g. "2004-05-25T02:19:28Z") to UNIX timestamp (uses UTC, always) """ # https://docs.python.org/3.6/library/datetime.html#strftime-strptime-behavior # http://strftime.org/ parsed = datetime.strptime(date, '%Y-%m-%dT%H:%M:%SZ') # string parse time # now apply UTC timezone return parsed.replace(tzinfo=timezone.utc)
624e92ceab996d7cfded7c7989e716fbba7abd5e
27,926
def levenshtein_distance(s, t, ratio_calc = False): """ levenshtein_distance: Calculates levenshtein distance between two strings. If ratio_calc = True, the function computes the levenshtein distance ratio of similarity between two strings For all i and j, distance[i,j] will contain the Levenshtein distance between the first i characters of s and the first j characters of t """ # Initialize matrix of zeros rows = len(s) + 1 cols = len(t) + 1 distance = np.zeros((rows,cols), dtype = int) # Populate matrix of zeros with the indeces of each character of both strings for i in range(1, rows): for k in range(1,cols): distance[i][0] = i distance[0][k] = k # Iterate over the matrix to compute the cost of deletions,insertions and/or substitutions for col in range(1, cols): for row in range(1, rows): if s[row - 1] == t[col - 1]: cost = 0 # If the characters are the same in the two strings in a given position [i,j] then the cost is 0 else: # In order to align the results with those of the Python Levenshtein package, if we choose to calculate the ratio # the cost of a substitution is 2. If we calculate just distance, then the cost of a substitution is 1. if ratio_calc: cost = 2 else: cost = 1 distance[row][col] = min(distance[row-1][col] + 1, # Cost of deletions distance[row][col-1] + 1, # Cost of insertions distance[row-1][col-1] + cost) # Cost of substitutions if ratio_calc: # Computation of the Levenshtein Distance Ratio ratio = ((len(s)+len(t)) - distance[row][col]) / (len(s)+len(t)) return ratio else: # print(distance) # Uncomment if you want to see the matrix showing how the algorithm computes the cost of deletions, # insertions and/or substitutions # This is the minimum number of edits needed to convert string a to string b return distance[row][col]
670196344e33bd4c474c0b24b306c9fe3d7e093b
27,927
def no_warnings(func): """ Decorator to run R functions without warning. """ def run_withoutwarnings(*args, **kwargs): warn_i = _options().do_slot('names').index('warn') oldwarn = _options()[warn_i][0] _options(warn=-1) try: res = func(*args, **kwargs) except Exception as e: # restore the old warn setting before propagating # the exception up _options(warn=oldwarn) raise e _options(warn=oldwarn) return res return run_withoutwarnings
52831940551c324b6e9624af0df28cc2442bac2b
27,928
def ParseKindsAndSizes(kinds): """Parses kind|size list and returns template parameters. Args: kinds: list of kinds to process. Returns: sizes_known: whether or not all kind objects have known sizes. size_total: total size of objects with known sizes. len(kinds) - 2: for template rendering of greater than 3 kinds. """ sizes_known = True size_total = 0 kinds_and_sizes = RetrieveCachedStats() if kinds_and_sizes: for kind in kinds: if kind in kinds_and_sizes: size_total += kinds_and_sizes[kind] else: sizes_known = False else: sizes_known = False if size_total: size_total = GetPrettyBytes(size_total) return sizes_known, size_total, len(kinds) - 2
7f94fd099ea2f28070fe499288f62d1c0b57cce9
27,929
def load_3D(path, n_sampling=10000, voxelize=True, voxel_mode="binary", target_size=(30, 30, 30)): """Load 3D data into numpy array, optionally voxelizing it. Parameters ---------- path : srt Path to 3D file. n_sampling : int Number of points to be sampled in case the read 3D data contains a mesh. voxelize : bool, optional (Default True) Indicates whether the 3D data will be converted into voxelgrid or not. voxel_mode : {"binary", "density", "TDF"}, optional (Default "binary") The type of feature vector that will be generated from the voxelgrid. binary 0 for empty voxels, 1 for occupied. density number of points inside voxel / total number of points. TDF Truncated Distance Function. Value between 0 and 1 indicating the distance between the voxel's center and the closest point. 1 on the surface, 0 on voxels further than 2 * voxel side. target_size : [int, int, int], optional (Default [30, 30, 30]) Dimensions of voxelgrid in case voxelize is True. Returns ------- feature_vector : ndarray (target_size[0], target_size[1], target_size[2]) Raises ------ ValueError: if 3D format is not valid. """ point_cloud = PyntCloud.from_file(path) if point_cloud.mesh is not None: point_cloud = PyntCloud(point_cloud.get_sample( "mesh_random", n=n_sampling)) if voxelize: vgrid_id = point_cloud.add_structure("voxelgrid", x_y_z=target_size) voxelgrid = point_cloud.structures[vgrid_id] if voxel_mode == "binary": feature_vector = voxelgrid.get_feature_vector(mode="binary") elif voxel_mode == "density": feature_vector = voxelgrid.get_feature_vector(mode="density") elif voxel_mode == "TDF": feature_vector = voxelgrid.get_feature_vector(mode="TDF") else: raise ValueError("Invalid mode; available modes are: {}".format( {"binary", "density", "TDF"})) # add fake channel return feature_vector[None, ...] else: return point_cloud
eec6614b2675faa61d9a09b8ff3a491580302a91
27,930
import array def create_vector2d(vec): """Returns a vector as a numpy array.""" return array([vec[0],vec[1]])
0b3cdc81f3744c54dea8aab0ee28743134ff1d42
27,931
def get_chrom_start_end_from_string(s): """Get chrom name, int(start), int(end) from a string '{chrom}__substr__{start}_{end}' ...doctest: >>> get_chrom_start_end_from_string('chr01__substr__11838_13838') ('chr01', 11838, 13838) """ try: chrom, s_e = s.split('__substr__') start, end = s_e.split('_') return chrom, int(start), int(end) except Exception: raise ValueError("String %s must be of format '{chrom}__substr__{start}_{end}'" % s)
5dbce8eb33188c7f06665cf92de455e1c705f38b
27,932
def Remove_Invalid_Tokens(tokenized_sentence, invalidating_symbols): """ Returns a tokenized sentence without tokens that include invalidating_symbols """ valid_tokens_sentence = [] + tokenized_sentence # forcing a copy, avoid pass by reference for token in tokenized_sentence: for invalid_symbol in invalidating_symbols.split(): if invalid_symbol in token: valid_tokens_sentence.remove(token) return valid_tokens_sentence
931858685c6c405de5e0b4755ec0a26a672be3b0
27,933
def _get_protocol(url): """ Get the port of a url. Default port is 80. A specified port will come after the first ':' and before the next '/' """ if url.find('http://') == 0: return 'http' elif url.find('https://') == 0: return 'https' else: return 'http'
42b2750148829154f17e34a2cebccf4387f07f25
27,934
def row_to_str(row): """Convert a df row to a string for insert into SQL database.""" return str(list(row)).replace("[", "(").replace("]", ")")
fb2b0d598604a124b948f884a6839a40af1203fc
27,936
def interpolate_affines(affines): """ """ # get block grid block_grid = affines.shape[:3] # construct an all identities matrix for comparison all_identities = np.empty_like(affines) for i in range(np.prod(block_grid)): idx = np.unravel_index(i, block_grid) all_identities[idx] = np.eye(4) # if affines are all identity, just return if np.all(affines == all_identities): return affines # process continues until there are no identity matrices left new_affines = np.copy(affines) identities = True while identities: identities = False # loop over all affine matrices for i in range(np.prod(block_grid)): idx = np.unravel_index(i, block_grid) # if an identity matrix is found if np.all(new_affines[idx] == np.eye(4)): identities = True trans, denom = np.array([0, 0, 0]), 0 # average translations from 6 connected neighborhood for ax in range(3): if idx[ax] > 0: neighbor = tuple( x-1 if j == ax else x for j, x in enumerate(idx) ) neighbor_trans = new_affines[neighbor][:3, -1] if not np.all(neighbor_trans == 0): trans = trans + neighbor_trans denom += 1 if idx[ax] < block_grid[ax]-1: neighbor = tuple( x+1 if j == ax else x for j, x in enumerate(idx) ) neighbor_trans = new_affines[neighbor][:3, -1] if not np.all(neighbor_trans == 0): trans = trans + neighbor_trans denom += 1 # normalize then update matrix if denom > 0: trans /= denom new_affines[idx][:3, -1] = trans return new_affines
880ea993634a6c4725d02365d75e79705175c2e5
27,937
import tqdm def getLineMeasures(file_list, orders, names, err_cut=0): """ Find line center (in pixels) to match order/mode lines """ # Load in x values to match order/mode lines x_values = np.empty((len(file_list),len(orders))) x_values[:] = np.nan # want default empty to be nan x_errors = np.empty((len(file_list),len(orders))) x_errors[:] = np.nan pd_keys = pd.DataFrame({'orders':orders.copy().astype(int), 'names':names.copy().astype(str)}) for file_num in tqdm(range(len(file_list))): # Load in line fit information file_name = file_list[file_num] try: x,m,w,e = readFile(file_name) m = m.astype(int) if err_cut > 0: mask = e < err_cut x = x[mask] m = m[mask] w = w[mask] e = e[mask] except ValueError: continue # Identify which lines this exposure has for nord in np.unique(m): I = m==nord # Mask for an order # Get identifying names: "(nord, wavelength string)" n = ["{0:09.3f}".format(wave) for wave in w[I]] xvl_dict = dict(zip(n,x[I])) err_dict = dict(zip(n,e[I])) ord_xval = np.array(pd_keys[pd_keys.orders==nord].names.map(xvl_dict)) ord_errs = np.array(pd_keys[pd_keys.orders==nord].names.map(err_dict)) x_values[file_num,pd_keys.orders==nord] = ord_xval x_errors[file_num,pd_keys.orders==nord] = ord_errs return x_values, x_errors
b13fe9f46457f7d289d09ffba3b769fe4e1c700e
27,938
def signature_exempt(view_func): """Mark a view function as being exempt from signature and apikey check.""" def wrapped_view(*args, **kwargs): return view_func(*args, **kwargs) wrapped_view.signature_exempt = True return wraps(view_func)(wrapped_view)
f564ad0ce20e6e2b7ae760c5f50a297f587006d4
27,940
def setup(args): """ Create configs and perform basic setups. """ cfg = get_cfg() add_tridentnet_config(cfg) cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) # if args.eval_only: # cfg.MODEL.WEIGHTS = "/root/detectron2/projects/TridentNet/log_80_20/model_0029999.pth" cfg.freeze() default_setup(cfg, args) return cfg
13d30557537c7e7d18811e016c0eaf43602f1ef2
27,941
def get_intersections(line, potential_lines, nodes, precision): """ Get the intersection points between the lines defined by two planes and the lines defined by the cost area (x=0, y=0, y=-x+1) and the lines defined by the possible combinations of predictors """ slope, intercept = line # Intersection with y axis when x=0 point = get_intersection_point_yaxis(intercept) if point: nodes[point].update({line, 'y_axis'}) # Intersection with x axis when y=0 point = get_intersection_point_xaxis(slope, intercept, precision) if point: nodes[point].update({line, 'x_axis'}) # Intersection with y=-x+1 line point = get_intersection_point(slope, intercept, -1, 1, precision) if point: nodes[point].update({line, 'hypotenuse'}) # Intersection with other lines nodes = get_intersection_with_lines(slope, intercept, potential_lines, nodes, precision) return nodes
3e9811bee159f6c550dea5784754e08bc65624d7
27,942
def subtract_loss_from_gain(gain_load, loss_load): """Create a single DataCollection from gains and losses.""" total_loads = [] for gain, loss in zip(gain_load, loss_load): total_load = gain - loss total_load.header.metadata['type'] = \ total_load.header.metadata['type'].replace('Gain ', '') total_loads.append(total_load) return total_loads
b53044b802a8ea13befdde850a478c435b0370ef
27,943
def zero_out_noisy_epochs(psg, sample_rate, period_length_sec, max_times_global_iqr=20): """ Sets all values in a epoch of 'period_length_sec' seconds of signal to zero (channel-wise) if any (absolute) value within that period exceeds 'max_times_global_iqr' times the IQR of all data in the channel across time Args: psg: A ndarray of shape [N, C] of PSG data sample_rate: The sample rate of data in the PSG period_length_sec: The length of one epoch/period/segment in seconds max_times_global_iqr: Extreme value threshold; number of times a value in a channel must exceed the global IQR for that channel for it to be termed an outlier. Returns: PSG, ndarray of shape [N, C] A list of lists, one sub-list for each channel, each storing indices of all epochs that were set to zero. """ n_channels = psg.shape[-1] chan_inds = [] for chan in range(n_channels): chan_psg = psg[..., chan] # Compute global IQR iqr = np.subtract(*np.percentile(chan_psg, [75, 25])) threshold = iqr * max_times_global_iqr # Reshape PSG to periods on 0th axis n_periods = int(chan_psg.shape[0]/(sample_rate*period_length_sec)) chan_psg = chan_psg.reshape(n_periods, -1) # Compute IQR for all epochs inds = np.unique(np.where(np.abs(chan_psg) > threshold)[0]) # Zero out noisy epochs in the particular channel chan_psg[inds] = 0. psg[:, chan] = np.reshape(chan_psg, [-1]) chan_inds.append(inds) return psg, chan_inds
427e2652a2e595bd0b25c3a30d35e088a9b0562b
27,944
from typing import Tuple from typing import List def start_training(channel: Channel) -> Tuple[List[ndarray], int, int]: """Start a training initiation exchange with a coordinator. The decoded contents of the response from the coordinator are returned. Args: channel (~grpc.Channel): A gRPC channel to the coordinator. Returns: ~typing.List[~numpy.ndarray]: The weights of a global model to train on. int: The number of epochs to train. int: The epoch base of the global model. """ coordinator: CoordinatorStub = CoordinatorStub(channel=channel) # send request to start training reply: StartTrainingReply = coordinator.StartTraining( request=StartTrainingRequest() ) logger.info("Participant received reply", reply=type(reply)) weights: List[ndarray] = [proto_to_ndarray(weight) for weight in reply.weights] epochs: int = reply.epochs epoch_base: int = reply.epoch_base return weights, epochs, epoch_base
70ac5b32b58df84cd386cc820f18a8fe2667d620
27,946
import re def has_forbidden(mylist) -> bool: """ Does the string contain one of the forbidden substrings "ab" "cd" "pq" "xy"? """ return bool(re.search(FORBIDDEN, mylist))
848fb1270ba99f40ef1ff0e23296f76895a5484d
27,947
from main import PAGLuxembourg def classFactory(iface): # pylint: disable=invalid-name """Load PagLuxembourg class from file PagLuxembourg. :param iface: A QGIS interface instance. :type iface: QgsInterface """ # return PAGLuxembourg(iface)
9ff71fbc9f915435da660861ee9023026dfb2e48
27,948
def is_official_target(target_name, version): """ Returns True, None if a target is part of the official release for the given version. Return False, 'reason' if a target is not part of the official release for the given version. target_name: Name if the target (ex. 'K64F') version: The release version string. Should be a string contained within RELEASE_VERSIONS """ result = True reason = None target = TARGET_MAP[target_name] if hasattr(target, 'release_versions') and version in target.release_versions: if version == '2': # For version 2, either ARM or uARM toolchain support is required required_toolchains = set(['ARM', 'uARM']) if not len(required_toolchains.intersection(set(target.supported_toolchains))) > 0: result = False reason = ("Target '%s' must support " % target.name) + \ ("one of the folowing toolchains to be included in the mbed 2.0 ") + \ (("official release: %s" + linesep) % ", ".join(required_toolchains)) + \ ("Currently it is only configured to support the ") + \ ("following toolchains: %s" % ", ".join(target.supported_toolchains)) elif version == '5': # For version 5, ARM, GCC_ARM, and IAR toolchain support is required required_toolchains = set(['ARM', 'GCC_ARM', 'IAR']) required_toolchains_sorted = list(required_toolchains) required_toolchains_sorted.sort() supported_toolchains = set(target.supported_toolchains) supported_toolchains_sorted = list(supported_toolchains) supported_toolchains_sorted.sort() if not required_toolchains.issubset(supported_toolchains): result = False reason = ("Target '%s' must support " % target.name) + \ ("ALL of the folowing toolchains to be included in the mbed OS 5.0 ") + \ (("official release: %s" + linesep) % ", ".join(required_toolchains_sorted)) + \ ("Currently it is only configured to support the ") + \ ("following toolchains: %s" % ", ".join(supported_toolchains_sorted)) elif not target.default_build == 'standard': result = False reason = ("Target '%s' must set the 'default_build' " % target.name) + \ ("to 'standard' to be included in the mbed OS 5.0 ") + \ ("official release." + linesep) + \ ("Currently it is set to '%s'" % target.default_build) else: result = False reason = ("Target '%s' has set an invalid release version of '%s'" % version) + \ ("Please choose from the following release versions: %s" + ', '.join(RELEASE_VERSIONS)) else: result = False if not hasattr(target, 'release_versions'): reason = "Target '%s' does not have the 'release_versions' key set" % target.name elif not version in target.release_versions: reason = "Target '%s' does not contain the version '%s' in its 'release_versions' key" % (target.name, version) return result, reason
4cd8a2e3735aa91cd66204568c70e645e6f2f8ed
27,949
from typing import Dict from typing import Union from typing import Any def _convert_to_dict_or_str(elements_map: Dict[str, Element]) -> Dict[str, Union[str, Dict[Any, Any]]]: """Combines a dictionary of xml elements into a dictionary of dicts or str""" return { key: XmlDictElement(value) if value or value.items() else value.text for key, value in elements_map.items() }
a68d1043abb995a632209528a52416a8a4661b58
27,950
def vsi_tecaji(): """ Funkcija vrne vse tečaje PGD Hrušica. """ poizvedba = """ SELECT id, naziv FROM tecaji """ tecaji = conn.execute(poizvedba).fetchall() return tecaji
c4e9e9a9422920b38d4dce51a27d4db142c50f90
27,951
def cosine(u, v, dim=-1): """cosine similarity""" return (u * v).sum(dim=dim) / (u.norm(dim=dim, p=2) * v.norm(dim=dim, p=2))
2d2a5a02ce20f6ae37dbefa3c8f9399aef2da8ad
27,952
from datetime import datetime def retrive_cache_data(format: str, query: str) -> dict[int, Book]: """ Retrive the cached data for the query. """ date_now = datetime.now() # save the search results in the cache if not already there or if the cache is expired if format not in book_cache: book_cache[format] = {} if query not in book_cache[format] or book_cache[format][query]["expires"] < date_now: book_cache[format][query] = {} book_cache[format][query]["expires"] = date_now + timedelta(hours=1) book_cache[format][query]["data"] = { k + 1: {"book": v, "download_url": None, "cover_url": None} for k, v in enumerate( Libgen.search_title(query, {"extension": format} if format != "all" else {}) ) } return book_cache[format][query].get("data")
885532f94f1e4b28350d3854ada867f42d386d5f
27,953
def get_orders_loadings_palette_number(client_orders, value): """ Searches OrdersLoadingPlaces objects linked with client orders and that contain value :param client_orders: orders of profile :param value: value of palettes number for which OrdersLoadingPlaces objects are searching :return: List with OrdersLoadingPlaces objects or empty list """ orders_loadings = list() for client_order in client_orders: orders_loading_temp = OrdersLoadingPlaces.objects.filter(order=client_order) for order_loading in orders_loading_temp: if order_loading.loading_place.palette_number and order_loading.loading_place.palette_number.pallets_number == value: orders_loadings.append(order_loading) return orders_loadings
c145997418722e84da5d7420fbba6a8167737f96
27,954
import math def rotmat(x=0,y=0,z=0): """Rotation Matrix function This function creates and returns a rotation matrix. Parameters ---------- x,y,z : float, optional Angle, which will be converted to radians, in each respective axis to describe the rotations. The default is 0 for each unspecified angle. Returns ------- Rxyz : list The product of the matrix multiplication. Examples -------- >>> import numpy as np >>> from .pyCGM import rotmat >>> x = 0.5 >>> y = 0.3 >>> z = 0.8 >>> np.around(rotmat(x,y,z),8) array([[ 0.99988882, -0.01396199, 0.00523596], [ 0.01400734, 0.99986381, -0.00872642], [-0.00511341, 0.00879879, 0.99994822]]) >>> x = 0.5 >>> np.around(rotmat(x),8) array([[ 1. , 0. , 0. ], [ 0. , 0.99996192, -0.00872654], [ 0. , 0.00872654, 0.99996192]]) >>> x = 1 >>> y = 1 >>> np.around(rotmat(x,y),8) array([[ 9.9984770e-01, 0.0000000e+00, 1.7452410e-02], [ 3.0459000e-04, 9.9984770e-01, -1.7449750e-02], [-1.7449750e-02, 1.7452410e-02, 9.9969541e-01]]) """ x = math.radians(x) y = math.radians(y) z = math.radians(z) Rx = [ [1,0,0],[0,math.cos(x),math.sin(x)*-1],[0,math.sin(x),math.cos(x)] ] Ry = [ [math.cos(y),0,math.sin(y)],[0,1,0],[math.sin(y)*-1,0,math.cos(y)] ] Rz = [ [math.cos(z),math.sin(z)*-1,0],[math.sin(z),math.cos(z),0],[0,0,1] ] Rxy = matrixmult(Rx,Ry) Rxyz = matrixmult(Rxy,Rz) Ryx = matrixmult(Ry,Rx) Ryxz = matrixmult(Ryx,Rz) return Rxyz
f1b31916abb78f3f47c324c3341d06338f6e4787
27,955
def add_model_components(m, d, scenario_directory, subproblem, stage): """ :param m: :param d: :return: """ m.Horizon_Energy_Target_Shortage_MWh = Var( m.ENERGY_TARGET_ZONE_BLN_TYPE_HRZS_WITH_ENERGY_TARGET, within=NonNegativeReals ) def violation_expression_rule(mod, z, bt, h): return mod.Horizon_Energy_Target_Shortage_MWh[z, bt, h] \ * mod.energy_target_allow_violation[z] m.Horizon_Energy_Target_Shortage_MWh_Expression = Expression( m.ENERGY_TARGET_ZONE_BLN_TYPE_HRZS_WITH_ENERGY_TARGET, rule=violation_expression_rule ) def energy_target_rule(mod, z, bt, h): """ Total delivered energy-target-eligible energy must exceed target :param mod: :param z: :param bt: :param h: :return: """ return mod.Total_Delivered_Horizon_Energy_Target_Energy_MWh[z, bt, h] \ + mod.Horizon_Energy_Target_Shortage_MWh_Expression[z, bt, h] \ >= mod.Horizon_Energy_Target[z, bt, h] m.Horizon_Energy_Target_Constraint = Constraint( m.ENERGY_TARGET_ZONE_BLN_TYPE_HRZS_WITH_ENERGY_TARGET, rule=energy_target_rule )
e6fe56e72fb7cd5906f0f30da2e7166a09eeb3f1
27,956
def grow_rate(n, k, nu_c, nu_d, sigma, g, dp, rho_c, rho_d, K): """ Compute the instability growth rate on a gas bubble Write instability growth rate equation in Grace et al. as a root problem for n = f(k) Returns ------- res : float The residual of the growth-rate equation expressed as a root-finding problem. Notes ----- This function is used by the `grace()` function for maximum stable particle size. It should not be called directly. """ # Compute more derived variables m_c = np.sqrt(k**2 + n / nu_c) m_d = np.sqrt(k**2 + n / nu_d) mu_c = nu_c / rho_c # Compute the residual of the root function res = (sigma * k**3 - g * k * dp + n**2 * (rho_c + rho_d)) * \ (k + m_c + K * (k + m_d)) + 4 * n * k * mu_c * (k + K * m_d) * \ (K * k + m_c) # Return the residual return res
79e277ca7941b80fd52667b4157ffbfd97f9a87e
27,957
def cg_semirelaxed_fused_gromov_wasserstein(C1:th.Tensor, A1:th.Tensor, p:th.Tensor, C2:th.Tensor, A2:th.Tensor, alpha:float, symmetry:bool=True, init_mode:str='product', T_init:th.Tensor=None, use_log:bool=False, eps:float=10**(-5), max_iter:int=1000, seed:int=0, verbose:bool=False, device:str='cpu', dtype:type=th.float32): """ Conditional gradient algorithm for semi-relaxed fused gromov-wasserstein: \min_{T} \alpha * <L(C_1, C_2) \otimes T, T> + (1-\alpha) * <D, T> The implementation uses the generalization of the Frank-Wolfe algorithm detailed in Algorithm 1. Section 3.2 of the main paper. This general form is discussed in Algorithm 3. of section 7.3.1 in the supplementary material. It comes down to consider: - linear_cost = (1-\alpha) * D - alpha = \alpha """ N1 = A1.shape[0] N2 = A2.shape[0] d = A1.shape[1] # Compute matrix of euclidean distances between features FS2 = (A1**2) @ th.ones((d, N2), dtype=dtype, device=device) FT2 = th.ones((N1, d), dtype=dtype, device=device) @ (A2**2).T D = FS2 + FT2 - 2 * A1 @ A2.T return cg_semirelaxed(C1, p, C2, alpha, (1 - alpha) * D, init_mode, T_init, symmetry, use_log, eps, max_iter, seed, verbose, device, dtype)
5a21edf35423b46826a9b88af62ddd27678538c2
27,958
def Vinv_terminal_time_series(m_t,Vdc_t): """Function to generate time series inverter terminal voltage.""" try: assert len(m_t) == len(Vdc_t) != None return m_t*(Vdc_t/2) except: LogUtil.exception_handler()
cbbcc7475c30694f3960e1b78b4be64bde283a2b
27,959
def render(ob, ns): """Calls the object, possibly a document template, or just returns it if not callable. (From DT_Util.py) """ if hasattr(ob, '__render_with_namespace__'): ob = ZRPythonExpr.call_with_ns(ob.__render_with_namespace__, ns) else: # items might be acquisition wrapped base = aq_base(ob) # item might be proxied (e.g. modules might have a deprecation # proxy) base = removeAllProxies(base) if callable(base): try: if getattr(base, 'isDocTemp', 0): ob = ZRPythonExpr.call_with_ns(ob, ns, 2) else: ob = ob() except NotImplementedError: pass return ob
fba552131df5fe760c124e90e58f845f06fbbf44
27,960
def GetFlakeInformation(flake, max_occurrence_count, with_occurrences=True): """Gets information for a detected flakes. Gets occurrences of the flake and the attached monorail issue. Args: flake(Flake): Flake object for a flaky test. max_occurrence_count(int): Maximum number of occurrences to fetch. with_occurrences(bool): If the flake must be with occurrences or not. For flakes reported by Flake detection, there should always be occurrences, but it's not always true for flakes reported by Flake Analyzer, ignore those flakes for now. Returns: flake_dict(dict): A dict of information for the test. Including data from its Flake entity, its flake issue information and information of all its flake occurrences. """ occurrences = [] for flake_type in [ FlakeType.CQ_FALSE_REJECTION, FlakeType.RETRY_WITH_PATCH, FlakeType.CI_FAILED_STEP, FlakeType.CQ_HIDDEN_FLAKE ]: typed_occurrences = _FetchFlakeOccurrences(flake, flake_type, max_occurrence_count) occurrences.extend(typed_occurrences) if max_occurrence_count: max_occurrence_count = max_occurrence_count - len(typed_occurrences) if max_occurrence_count == 0: # Bails out if the number of occurrences with higher impact has hit the # cap. break if not occurrences and with_occurrences: # Flake must be with occurrences, but there is no occurrence, bail out. return None # Makes sure occurrences are sorted by time_happened in descending order, # regardless of types. occurrences.sort(key=lambda x: x.time_happened, reverse=True) flake_dict = flake.to_dict() flake_dict['occurrences'] = _GetGroupedOccurrencesByBuilder(occurrences) flake_dict['flake_counts_last_week'] = _GetFlakeCountsList( flake.flake_counts_last_week) flake_issue = GetFlakeIssue(flake) if flake_issue and flake_issue.status and flake_issue.status in OPEN_STATUSES: flake_dict['flake_issue'] = flake_issue.to_dict() flake_dict['flake_issue']['issue_link'] = FlakeIssue.GetLinkForIssue( flake_issue.monorail_project, flake_issue.issue_id) flake_dict['flake_issue'][ 'last_updated_time_in_monorail'] = _GetLastUpdatedTimeDelta(flake_issue) flake_dict['culprits'], flake_dict['sample_analysis'] = ( _GetFlakeAnalysesResults(flake_issue.issue_id)) return flake_dict
596573749599e7a1b49e8047b68d67a09e4e00e9
27,961
def get_prop_cycle(): """Get the prop cycle.""" prop_cycler = rcParams['axes.prop_cycle'] if prop_cycler is None and 'axes.color_cycle' in rcParams: clist = rcParams['axes.color_cycle'] prop_cycler = cycler('color', clist) return prop_cycler
9b571b16cddf187e9bbfdacd598f280910de130a
27,962
def binary_crossentropy(target, output, from_logits=False): """Binary crossentropy between an output tensor and a target tensor. Arguments: target: A tensor with the same shape as `output`. output: A tensor. from_logits: Whether `output` is expected to be a logits tensor. By default, we consider that `output` encodes a probability distribution. Returns: A tensor. """ # Note: nn.sigmoid_cross_entropy_with_logits # expects logits, Keras expects probabilities. if not from_logits: # transform back to logits epsilon_ = _to_tensor(epsilon(), output.dtype.base_dtype) output = clip_ops.clip_by_value(output, epsilon_, 1 - epsilon_) output = math_ops.log(output / (1 - output)) return sigmoid_cross_entropy_with_logits(labels=target, logits=output)
eb388c3bb3454eec6e26797313534cf089d06a6d
27,963