content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import ast def apply_bin_op(left, right, op): """ Finds binary expression class suitable for combination of left and right expressions depending on whether their output is scalar or vector and creates instance of this expression with specified operation. """ exr_class = BIN_EXPR_CLASSES.get( (left.output_size > 1, right.output_size > 1)) if exr_class is None: # change the positions of left and right left, right = right, left exr_class = ast.BinVectorNumExpr return exr_class(left, right, op)
fb5e6c0434dfa209ab34c4253e71bba6cb74e901
27,740
def pre_filter(image): """Apply morphological filter""" return cv2.morphologyEx(image, cv2.MORPH_OPEN, np.ones((3, 3)))
a1af13d831d8462bc9c23443d2416efe66d3082b
27,742
def build_corpus(docs: DocumentSet, *, remove_words=None, min_word_length=3, min_docs=5, max_docs_ratio=0.75, max_tokens=5000, replace_words=None, custom_bigrams=None, ngram_threshold=None ) -> Corpus: """ Build a `Corpus` object. This function takes the words from the title/abstract of the given documents, preprocesses the tokens, and returns a corpus consisting of a word frequency vector for each document. This preprocessing stage is highly customizable, thus it is advised to experiment with the many parameters. :param remove_words: list of words that should be ignored while building the word frequency vectors. :param min_word_length: Words shorter than this are ignored. :param min_docs: Words that occur in fewer than this many documents are ignored. :param max_docs_ratio: Words that occur in more than this document are ignored. Should be ratio between 0 and 1. :param max_tokens: Only the top most common tokens are preserved. :param replace_words: Replace words by other words. Must be a `dict` containing *original word* to *replacement word* pairs. :param custom_bigrams: Add custom bigrams. Must be a `dict` where keys are `(first, second)` tuples and values are replacements. For example, the key can be `("Big", "Data")` and the value `"BigData"`. :param ngram_threshold: Threshold used for n-gram detection. Is passed to `gensim.models.phrases.Phrases` to detect common n-grams. :returns: a `Corpus object`. """ filters = [] if custom_bigrams: filters.append(lambda w: preprocess_merge_bigrams(w, custom_bigrams)) if remove_words: filters.append(lambda w: preprocess_remove_words(w, remove_words)) if replace_words: filters.append(lambda w: preprocess_replace_words(w, replace_words)) if min_word_length: filters.append(lambda w: preprocess_remove_short(w, min_length=min_word_length)) filters.append(preprocess_stopwords) if ngram_threshold is not None: filters.append(lambda w: preprocess_merge_ngrams(w, ngram_threshold)) filters.append(preprocess_smart_stemming) if min_docs > 1 or max_docs_ratio < 1.0: max_docs = int(len(docs) * max_docs_ratio) filters.append(lambda w: preprocess_outliers(w, min_docs, max_docs)) return Corpus(docs, filters, max_tokens)
746eaa78fa498cd32950b3a006bfa669431037d0
27,743
def _Data_to_bytes(data: Data) -> bytes: """ Cast websockets.typing.Data to bytes. Parameters ---------- data : str | bytes Returns ------- bytes Either casted string or original bytes. """ return data.encode() if isinstance(data, str) else data
0391dd9b9de0c8a978b16b6c89f9f3515f1a49de
27,744
import torch import time def run_pairs(genotype_df, variant_df, phenotype1_df, phenotype2_df, phenotype_pos_df, covariates1_df=None, covariates2_df=None, p1=1e-4, p2=1e-4, p12=1e-5, mode='beta', maf_threshold=0, window=1000000, batch_size=10000, logger=None, verbose=True): """Compute COLOC for all phenotype pairs""" assert np.all(phenotype1_df.index == phenotype2_df.index) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if logger is None: logger = SimpleLogger() logger.write('Computing COLOC for all pairs of phenotypes') logger.write(f' * {phenotype1_df.shape[0]} phenotypes') logger.write(f' * phenotype group 1: {phenotype1_df.shape[1]} samples') logger.write(f' * phenotype group 2: {phenotype2_df.shape[1]} samples') if covariates1_df is not None: assert np.all(phenotype1_df.columns == covariates1_df.index) logger.write(f' * phenotype group 1: {covariates1_df.shape[1]} covariates') residualizer1 = Residualizer(torch.tensor(covariates1_df.values, dtype=torch.float32).to(device)) else: residualizer1 = None if covariates2_df is not None: assert np.all(phenotype2_df.columns == covariates2_df.index) logger.write(f' * phenotype group 2: {covariates2_df.shape[1]} covariates') residualizer2 = Residualizer(torch.tensor(covariates2_df.values, dtype=torch.float32).to(device)) else: residualizer2 = None if maf_threshold > 0: logger.write(f' * applying in-sample {maf_threshold} MAF filter (in at least one cohort)') genotype1_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype1_df.columns]) genotype1_ix_t = torch.from_numpy(genotype1_ix).to(device) genotype2_ix = np.array([genotype_df.columns.tolist().index(i) for i in phenotype2_df.columns]) genotype2_ix_t = torch.from_numpy(genotype2_ix).to(device) igc = genotypeio.InputGeneratorCis(genotype_df, variant_df, phenotype1_df, phenotype_pos_df, window=window) coloc_df = [] start_time = time.time() logger.write(' * Computing pairwise colocalization') for phenotype1, genotypes, genotype_range, phenotype_id in igc.generate_data(verbose=verbose): phenotype2 = phenotype2_df.loc[phenotype_id] # copy to GPU phenotype1_t = torch.tensor(phenotype1, dtype=torch.float).to(device) phenotype2_t = torch.tensor(phenotype2, dtype=torch.float).to(device) genotypes_t = torch.tensor(genotypes, dtype=torch.float).to(device) genotypes1_t = genotypes_t[:,genotype1_ix_t] genotypes2_t = genotypes_t[:,genotype2_ix_t] del genotypes_t # filter monomorphic sites m = ((genotypes1_t==0).all(1) | (genotypes1_t==1).all(1) | (genotypes1_t==2).all(1) | (genotypes2_t==0).all(1) | (genotypes2_t==1).all(1) | (genotypes2_t==2).all(1)) genotypes1_t = genotypes1_t[~m] genotypes2_t = genotypes2_t[~m] impute_mean(genotypes1_t) impute_mean(genotypes2_t) if maf_threshold > 0: maf1_t = calculate_maf(genotypes1_t) maf2_t = calculate_maf(genotypes2_t) mask_t = (maf1_t >= maf_threshold) | (maf2_t >= maf_threshold) genotypes1_t = genotypes1_t[mask_t] genotypes2_t = genotypes2_t[mask_t] coloc_t = coloc(genotypes1_t, genotypes2_t, phenotype1_t, phenotype2_t, residualizer1=residualizer1, residualizer2=residualizer2, p1=p1, p2=p2, p12=p12, mode=mode) coloc_df.append(coloc_t.cpu().numpy()) logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) coloc_df = pd.DataFrame(coloc_df, columns=[f'pp_h{i}_abf' for i in range(5)], index=phenotype1_df.index) logger.write('done.') return coloc_df
3a38f2f38bd7351b93d3ede0f6c6d2e07427263d
27,745
def main(local_argv): """ local_argv is the argument list, progrom name is first arugment this function prints the fibonacci list calcuated by the command line argument n """ if len(local_argv) != 2: print("must add one and only one command argument, , exit ") return argument_n = int(local_argv[1]) #remember, this is the 2nd argument in command line if argument_n <= 0: print("please input an positive interger number, exit") return retList = [] h = gen_eratosthenes() [retList.append(next(h)) for _ in range (0,argument_n)] #generates 1 new prime per iteration #retList =eratosthenes(argument_n) print(retList) return retList
932c2b7a4f82ed03c62739e6e48350db057957da
27,746
def alternate(*iterables): """ [a[0], b[0], ... , a[1], b[1], ..., a[n], b[n] ...] >>> alternate([1,4], [2,5], [3,6]) [1, 2, 3, 4, 5, 6] """ items = [] for tup in zip(*iterables): items.extend([item for item in tup]) return items
ed3b0c8a32de8d88fc24b8bb08012a0900b37823
27,747
def softmax(x, axis=-1, t=-100.): """ Softmax operation Args: x (numpy.array): input X axis (int): axis for sum Return: **softmax** (numpy.array) - softmax(X) """ x = x - np.max(x) if np.min(x) < t: x = x/np.min(x)*t e_x = np.exp(x) return e_x / e_x.sum(axis, keepdims=True)
7979c7eeaf4be319f06532abc2a2cc3a23af134d
27,748
def format_params_in_str_format(format_string): """ Get the "parameter" indices/names of the format_string Args: format_string: A format string (i.e. a string with {...} to mark parameter placement and formatting Returns: A list of parameter indices used in the format string, in the order they appear, with repetition. Parameter indices could be integers, strings, or None (to denote "automatic field numbering". >>> format_string = '{0} (no 1) {2}, and {0} is a duplicate, {} is unnamed and {name} is string-named' >>> list(format_params_in_str_format(format_string)) [0, 2, 0, None, 'name'] """ return map(lambda x: int(x) if str.isnumeric(x) else x if x != '' else None, filter(_is_not_none, (x[1] for x in dflt_formatter.parse(format_string))))
a8b79cb6ee7a544b60c193dfbc2dbdc22d5d1f92
27,749
def AMO(df, M1=5, M2=10): """ 成交金额 :param M1: :param M2: :return: """ AMOUNT = df['amount'] AMOW = AMOUNT / 10000.0 AMO1 = MA(AMOW, M1) AMO2 = MA(AMOW, M2) return pd.DataFrame({ 'AMOW': AMOW, 'AMO1': AMO1, 'AMO2': AMO2 })
ef45e245e1abb5705760e55b99e2e0757c66667c
27,750
def tex_initial_states(data): """Initial states are texed.""" initial_state = [] initial_state = [''.join(["\lstick{\ket{", str(data['init'][row]),"}}"]) for row in range(len(data['init']))] return data, initial_state
cd1758b594ee854cfb7854ec742dc177a43b54b7
27,751
import csv def get_upgraded_dependencies_count(repo_path, django_dependency_sheet) -> tuple: """ Entry point to read, parse and calculate django dependencies @param repo_path: path for repo which we are calculating django deps @param django_dependency_sheet: csv which contains latest status of django deps @return: count for all + upgraded django deps in repo """ reader_instance = DjangoDependencyReader(repo_path) deps = reader_instance.read() django_deps = [] deps_support_django32 = [] upgraded_in_repo = [] csv_path = django_dependency_sheet with open(csv_path, encoding="utf8") as csv_file: csv_reader = csv.DictReader(csv_file, delimiter=',', quotechar='"') for line in csv_reader: package_name = line["Django Package Name"] if package_name in deps.keys(): # pylint: disable=consider-iterating-dictionary django_deps.append(package_name) if line["Django 3.2"] and line["Django 3.2"] != '-': deps_support_django32.append(package_name) if parse(deps[package_name]) >= parse(line["Django 3.2"]): upgraded_in_repo.append(package_name) django_deps = list(set(django_deps)) deps_support_django32 = list(set(deps_support_django32)) upgraded_in_repo = list(set(upgraded_in_repo)) return django_deps, deps_support_django32, upgraded_in_repo
1a793c57b69966c45f680fd39fec31a94d4d5616
27,752
def FanOut(num): """Layer construction function for a fan-out layer.""" init_fun = lambda rng, input_shape: ([input_shape] * num, ()) apply_fun = lambda params, inputs, **kwargs: [inputs] * num return init_fun, apply_fun
7e6d07319be600dabf650a4b87f661bf20832455
27,754
import urllib import logging def is_online(url="http://detectportal.firefox.com", expected=b"success\n"): """ Checks if the user is able to reach a selected hostname. :param hostname: The hostname to test against. Default is packages.linuxmint.com. :returns: True if able to connect or False otherwise. """ try: with urllib.request.urlopen(url) as response: response_data = response.read() if response_data == expected: return True logging.error( "Response from %s was not %s as expected. Received: %s", url, expected, response_data ) return False except urllib.error.URLError as url_err: logging.error( "Unable to connect to %s", url, exc_info=url_err ) return False return False
00081e05fbb1cfaa81a03a487201af4c07b23fd2
27,755
def get_Data_temblor(): """Shows basic usage of the Sheets API. Creates a Sheets API service object and prints the names and majors of students in a sample spreadsheet: https://docs.google.com/spreadsheets/d/1BxiMVs0XRA5nFMdKvBdBZjgmUUqptlbs74OgvE2upms/edit """ credentials = get_credentials() http = credentials.authorize(httplib2.Http()) discoveryUrl = ('https://sheets.googleapis.com/$discovery/rest?' 'version=v4') service = discovery.build('sheets', 'v4', http=http, discoveryServiceUrl=discoveryUrl) # DAÑOS Y DERRUMBES VERIFICADOS # Para descargar otras páginas cambiar el onmbre en el campo range result = service.spreadsheets().values().get( spreadsheetId='1i__c44wIg760LmxZcM8oTjDR0cGFVdL9YrjbCcb9Op0', range='Form Responses 1!A1:AH10000').execute() values = result.get('values', []) if not values: print('No data found.') else: return values
1dca23ae977dc4400b31e323d1c2aac5e6e685a3
27,756
def triplet_loss(y_true, y_pred, alpha = 0.2): """ Implementation of the triplet loss as defined by formula (3) Arguments: y_true -- true labels, required when you define a loss in Keras, you don't need it in this function. y_pred -- python list containing three objects: anchor -- the encodings for the anchor images, of shape (None, 128) positive -- the encodings for the positive images, of shape (None, 128) negative -- the encodings for the negative images, of shape (None, 128) Returns: loss -- real number, value of the loss """ anchor, positive, negative = y_pred[0], y_pred[1], y_pred[2] # Compute the (encoding) distance between the anchor and the positive pos_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, positive)), axis=-1) # Compute the (encoding) distance between the anchor and the negative neg_dist = tf.reduce_sum(tf.square(tf.subtract(anchor, negative)), axis=-1) # subtract the two previous distances and add alpha. basic_loss = tf.add(tf.subtract(pos_dist, neg_dist), alpha) # Take the maximum of basic_loss and 0.0. Sum over the training examples. loss = tf.reduce_sum(tf.maximum(basic_loss, 0.0), axis=None) return loss
41257b626fdb4773769bf20d2aa11caaa8896259
27,757
import inspect def node_from_dict(node_dict): """Create a new node from its ``node_dict``. This is effectively a shorthand for choosing the correct node class and then calling its ``from_dict`` method. Args: node_dict (dict): dict-representation of the node. Returns: New schema node with the specified type and configuration. """ node_types = {name: cls for name, cls in globals().items() if inspect.isclass(cls) and issubclass(cls, SchemaNode)} if node_dict['node_type'] not in node_types: raise ValueError('Invalid node type specified.') node_type = node_types[node_dict['node_type']] return node_type.from_dict(node_dict)
299cc2e1f194338ff3bbc13f729284b61b884b1b
27,758
def _get_activation(upsample_activation): """get activation""" nonlinear = getattr(nn, upsample_activation) return nonlinear
4423edf977ccd6db6fa6fdb5de426ecbaaed7e55
27,759
import time def computeSensitivity(P, W): """ The function at hand computes the sensitivity of each point using a reduction from L_\infty to L1. :return: None """ P = np.hstack((P, np.arange(P.shape[0])[:, np.newaxis])) B, idxs = applyBiCriterea(P[:, :-1], W) # attain set of flats which gives 2^j approximation to the optimal solution sensitivity_additive_term = initializeSens(P, B, idxs) # initialize the sensitivities unique_cetner_idxs = np.unique(idxs) # get unique indices of clusters sensitivity = np.empty((P.shape[0], )) clusters = [np.where(idxs == idx)[0] for idx in unique_cetner_idxs] Qs = [[] for idx in range(len(clusters))] for idx in range(len(clusters)): # apply L_\infty conversion to L_1 on each cluster of points # Qs[idx] = np.hstack(((P[clusters[idx], :-1] - B[idx][1]).dot(B[idx][0].T.dot(B[idx][0])), P[clusters[idx], -1][:, np.newaxis])) Qs[idx] = np.hstack(((P[clusters[idx], :-1] - B[idx][1]).dot(B[idx][0].T), P[clusters[idx], -1][:, np.newaxis])) ts = time.time() # s = computeSensitivityPerCluster(Qs[0]) # print('max = {}, min = {}'.format(np.max(s[0,:]), np.min(s[0,:]))) # print('Time for one cluster took {} secs'.format(time.time() - ts)) # input() # pool = multiprocessing.Pool(3) # list_of_sensitivities = pool.map(computeSensitivityPerCluster, Qs) # print('Time for parallel took {} secs'.format(time.time() - ts)) for i in range(len(Qs)): s = computeSensitivityPerCluster(Qs[i]) sensitivity[s[:, -1].astype(np.int)] = s[:, 0] # print('Number of unique values = {}, max = {}, min = {}'.format(np.unique(sensitivity).shape[0], # np.max(sensitivity), np.min(sensitivity))) sensitivity += 2 ** Utils.J * sensitivity_additive_term # add the additive term for the sensitivity return sensitivity
089442a4c136ef473582db93b04575562ebecd96
27,760
def num_bytes_needed_for_data(rom_dict): """ Get the number of bytes to store the largest data in the rom. Args: rom_dict (dict(int:int)): Dictionary of address and data values Returns: (int): Number of bytes needed for largest piece of data """ largest_data = max(rom_dict.itervalues()) num_bytes = num_bytes_for_value(largest_data) return num_bytes
af039a39c86c17d0349d53b2e5020d8cf3560f5d
27,761
def run_simulation(model, **kwargs): """Runs the given model using KaSim and returns the parsed results. Parameters ---------- **kwargs : List of keyword arguments All keyword arguments specifying conditions for the simulation are passed to the function :py:func:`run_kasim` (see documentation associated with that function for more information). Returns ------- numpy.ndarray Returns the kasim simulation data as a Numpy ndarray. Data is accessed using the syntax:: results[index_name] The index 'time' gives the data for the time coordinates of the simulation. Data for the observables can be accessed by indexing the array with the names of the observables. """ outs = run_kasim(model, **kwargs) return parse_kasim_outfile(outs['out'])
26aba6818a567faf8a08df8d5a47c213bb717183
27,762
import importlib def _bot_exists(botname): """ Utility method to import a bot. """ module = None try: module = importlib.import_module('%s.%s' % (botname, botname)) except ImportError as e: quit('Unable to import bot "%s.%s": %s' % (botname, botname, str(e))) return module
c091be6d586faa8aacd48b30f4ce2f4fcc665e0b
27,763
def bootstrap_alert_message(msg, alert_type): """ Wrap Ajax error message for display :param msg: Message text :param alert_type: must be alert-danger, alert-success, alert-info, alert-warning :return: html formatted message """ if not msg: msg = _('An unknown error has occurred') if alert_type == 'error': alert_type = 'danger' if not alert_type or alert_type not in 'danger, success, info, warning': alert_type = 'warning' alert_label = alert_type if alert_label == 'danger': alert_label = 'error' f_msg = """ <div class="alert alert-{0} alert-dismissable fade show"> <button type="button" class="close" data-dismiss="alert">&times;</button> <strong>{1}:</strong> {2}. </div> """.format(alert_type, alert_label.title(), msg) return f_msg
cec9fa851272274a734dfbf6599ee67ed2c7c9f8
27,765
def get_message_dispatched(correlation_id, steps, primary=True): """ Sets a flag in cache to indicate that a message has been dispatched. :param correlation_id: a str guid for the fsm :param steps: an integer corresponding to the step in the fsm execution :return: True if cached and False otherwise """ if primary: source_arn = get_primary_cache_source() else: source_arn = get_secondary_cache_source() service = get_arn_from_arn_string(source_arn).service if not service: # pragma: no cover log_once(logger.warning, "No cache source for primary=%s" % primary) elif service == AWS.ELASTICACHE: engine, _ = _get_elasticache_engine_and_connection(source_arn) if engine == AWS_ELASTICACHE.ENGINE.MEMCACHED: return _get_message_dispatched_memcache(source_arn, correlation_id, steps) elif engine == AWS_ELASTICACHE.ENGINE.REDIS: return _get_message_dispatched_redis(source_arn, correlation_id, steps) elif service == AWS.DYNAMODB: return _get_message_dispatched_dynamodb(source_arn, correlation_id, steps)
cd9a373f6b104617dfae2d488fc2348ffae61c5b
27,766
def _format_exponent_notation(input_number, precision, num_exponent_digits): """ Format the exponent notation. Python's exponent notation doesn't allow for a user-defined number of exponent digits. Based on [Anurag Uniyal's answer][answer] to the StackOverflow question ['Python - number of digits in exponent'][question] [question]: http://stackoverflow.com/q/9910972/95592 [answer]: http://stackoverflow.com/a/9911741/95592 """ python_exponent_notation = '{number:.{precision}e}'.format( number=input_number, precision=precision) mantissa, exponent = python_exponent_notation.split('e') # Add 1 to the desired number of exponenent digits to account for the sign return '{mantissa}e{exponent:+0{exp_num}d}'.format( mantissa=mantissa, exponent=int(exponent), exp_num=num_exponent_digits+1)
59f61897c70ca1d9f95412b2892d5c9592e51561
27,767
import typing def unicode_blackboard_activity_stream( activity_stream: typing.List[blackboard.ActivityItem]=None, indent: int=0, show_title: bool=True ): """ Pretty print the blackboard stream to console. Args: activity_stream: the log of activity, if None, get the entire activity stream indent: the number of characters to indent the blackboard show_title: include the title in the output """ return _generate_text_activity( activity_stream=activity_stream, show_title=show_title, indent=indent, symbols=unicode_symbols if console.has_unicode() else ascii_symbols )
435c52b630d467aea2835644297e5099d1c69490
27,768
def normalize(vector): """Normalize a vector to unit length. Args: vector (list/tuple/numpy.ndarray): Array to be normalized Return: vector (numpy.ndarray): Normalized vector. """ length = np.sqrt(np.sum(np.asarray(vector) ** 2)) if length == 0: return np.asarray(vector) else: return np.asarray(vector) / length
5f51933a93fd6b3df0955024585105a8887f3fd2
27,770
def get_struc_qty(*args): """get_struc_qty() -> size_t""" return _idaapi.get_struc_qty(*args)
f370db3d60fdc0b5870baf8a9b616163d55860c6
27,771
from typing import Callable def evaluate0(gametree_: Callable[[Board], Node], static_eval_: Callable[[Board], int], prune_: Callable[[Node], Node]) -> Callable[[Board], int]: """Return a tree evaluation function""" def evaluate_(board: Board) -> int: return maximize0(maptree(static_eval_, prune_(gametree_(board)))) return evaluate_
eda97c4a6be5bac08ca0a73e0653b9c58321b539
27,772
import http def fortune(inp): """ .fortune -- returns one random card and it's fortune """ try: cards = http.get_json("https://tarot-api.com/draw/1") except HTTPError: return "The spirits are displeased." card = cards[0] return card["name"] + ": " + ", ".join(card["keywords"])
d167238880a63afdd0aee11c2d02354a672d7fb8
27,773
def declin_0(x, obl): """ declination of a point of ecliptic :param x: longitude of the point in degree :param obl: obliquity of the ecliptic in degree return declination in degree """ return DEG * m.asin(m.sin(x * RAD) * m.sin(obl * RAD))
5853ceb9d0424618a1b1406ee53ea87779f3b535
27,774
def network_data_structures(stream_names_tuple, agent_descriptor_dict): """Builds data structures for the network. These data structures are helpful for animating the network and for building networks of processes. Parameters ---------- Same as for make_network. Return Values ------------- (stream_to_agent_list_dict, agent_to_stream_dict, agent_to_agent_list_dict) stream_to_agent_list_dict key: stream_name value: list of agent_name. The stream with name stream_name (the key) is an input stream of each agent whose name is in the list (the value). For example if key is 's' and value is ['u', 'v', 'w'] then the stream with name 's' is an input stream of the agents with names 'u', 'v', and 'w'. agent_to_stream_dict key: stream_name value: str. A single agent_name. The stream with name stream_name (the key) is the unique output stream of the agent with name agent_name (the value). For example, if a key is 's' and the corresponding value is 'a', then the stream with name 's' is generated by the agent with name 'a'. agent_to_agent_list_dict key: agent_name value: list of agent names The agent with name agent_name (the key) has an output stream to each agent whose name is in value. agent_from_agent_list_dict key: agent_name value: list of agent names The agent with name agent_name (the key) has an input stream from each agent whose name is in value. """ stream_to_agent_list_dict = dict() for stream_name in stream_names_tuple: stream_to_agent_list_dict[stream_name] = list() agent_to_stream_dict = dict() # Construct stream_to_agent_list_dict and agent_to_stream_dict # from agent_descriptor_dict for agent_name, descriptor in agent_descriptor_dict.iteritems(): input_stream_list = descriptor[0] output_stream_list = descriptor[1] for stream_name in input_stream_list: stream_to_agent_list_dict[stream_name].append(agent_name) for stream_name in output_stream_list: if stream_name in agent_to_stream_dict: raise Exception( stream_name+'output by'+agent_to_stream_dict[stream_name]+'and'+agent_name) agent_to_stream_dict[stream_name] = agent_name # Construct agent_to_agent_list_dict from # agent_descriptor_dict, stream_to_agent_list_dict, and # agent_to_stream_dict. agent_to_agent_list_dict = dict() # Initialize agent_to_agent_list_dict for agent_name in agent_descriptor_dict.keys(): agent_to_agent_list_dict[agent_name] = list() # Compute agent_to_agent_list_dict # If a stream is output of agent x and input to agents y, z # then agent x outputs to [y,z] for stream_name, agent_name in agent_to_stream_dict.iteritems(): agent_to_agent_list_dict[agent_name].extend( stream_to_agent_list_dict[stream_name]) # Construct agent_from_agent_list_dict from # agent_descriptor_dict, stream_to_agent_list_dict, and # agent_to_stream_dict. agent_from_agent_list_dict = dict() # Initialize agent_from_agent_list_dict for agent_name in agent_descriptor_dict.keys(): agent_from_agent_list_dict[agent_name] = list() # Compute agent_from_agent_list_dict # If a stream is an input of agent x and is an output of agents y, z # then agents[y,z] output to agent x. for stream_name, agent_name_list in stream_to_agent_list_dict.iteritems(): for receiving_agent_name in agent_name_list: agent_from_agent_list_dict[receiving_agent_name].append( agent_to_stream_dict[stream_name]) return (stream_to_agent_list_dict, agent_to_stream_dict, agent_to_agent_list_dict, agent_from_agent_list_dict)
158484dd882eb14da1824408c35d7124282d47e1
27,775
import numpy from typing import OrderedDict def to_onnx(model, X=None, name=None, initial_types=None, target_opset=None, options=None, rewrite_ops=False, white_op=None, black_op=None, final_types=None): """ Converts a model using on :epkg:`sklearn-onnx`. @param model model to convert or a function wrapped into :epkg:`_PredictScorer` with function :epkg:`make_scorer` @param X training set (at least one row), can be None, it is used to infered the input types (*initial_types*) @param initial_types if *X* is None, then *initial_types* must be defined @param name name of the produced model @param target_opset to do it with a different target opset @param options additional parameters for the conversion @param rewrite_ops rewrites some existing converters, the changes are permanent @param white_op white list of ONNX nodes allowed while converting a pipeline, if empty, all are allowed @param black_op black list of ONNX nodes allowed while converting a pipeline, if empty, none are blacklisted @param final_types a python list. Works the same way as initial_types but not mandatory, it is used to overwrites the type (if type is not None) and the name of every output. @return converted model The function rewrites function *to_onnx* from :epkg:`sklearn-onnx` but may changes a few converters if *rewrite_ops* is True. For example, :epkg:`ONNX` only supports *TreeEnsembleRegressor* for float but not for double. It becomes available if ``rewrite_ops=True``. .. faqref:: :title: How to deal with a dataframe as input? Each column of the dataframe is considered as an named input. The first step is to make sure that every column type is correct. :epkg:`pandas` tends to select the least generic type to hold the content of one column. :epkg:`ONNX` does not automatically cast the data it receives. The data must have the same type with the model is converted and when the converted model receives the data to predict. .. runpython:: :showcode: from io import StringIO from textwrap import dedent import numpy import pandas from pyquickhelper.pycode import ExtTestCase from sklearn.preprocessing import OneHotEncoder from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from mlprodict.onnx_conv import to_onnx from mlprodict.onnxrt import OnnxInference text = dedent(''' __SCHEMA__ 7.4,0.7,0.0,1.9,0.076,11.0,34.0,0.9978,3.51,0.56,9.4,5,red 7.8,0.88,0.0,2.6,0.098,25.0,67.0,0.9968,3.2,0.68,9.8,5,red 7.8,0.76,0.04,2.3,0.092,15.0,54.0,0.997,3.26,0.65,9.8,5,red 11.2,0.28,0.56,1.9,0.075,17.0,60.0,0.998,3.16,0.58,9.8,6,red ''') text = text.replace( "__SCHEMA__", "fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides," "free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates," "alcohol,quality,color") X_train = pandas.read_csv(StringIO(text)) for c in X_train.columns: if c != 'color': X_train[c] = X_train[c].astype(numpy.float32) numeric_features = [c for c in X_train if c != 'color'] pipe = Pipeline([ ("prep", ColumnTransformer([ ("color", Pipeline([ ('one', OneHotEncoder()), ('select', ColumnTransformer( [('sel1', 'passthrough', [0])])) ]), ['color']), ("others", "passthrough", numeric_features) ])), ]) pipe.fit(X_train) pred = pipe.transform(X_train) print(pred) model_onnx = to_onnx(pipe, X_train, target_opset=12) oinf = OnnxInference(model_onnx) # The dataframe is converted into a dictionary, # each key is a column name, each value is a numpy array. inputs = {c: X_train[c].values for c in X_train.columns} inputs = {c: v.reshape((v.shape[0], 1)) for c, v in inputs.items()} onxp = oinf.run(inputs) print(onxp) """ if isinstance(model, OnnxOperatorMixin): if not hasattr(model, 'op_version'): raise RuntimeError( # pragma: no cover "Missing attribute 'op_version' for type '{}'.".format( type(model))) return model.to_onnx( X=X, name=name, options=options, black_op=black_op, white_op=white_op, final_types=final_types) if rewrite_ops: old_values = register_rewritten_operators() register_converters() else: old_values = None def _guess_type_(X, itype, dtype): initial_types = guess_initial_types(X, itype) if dtype is None: if hasattr(X, 'dtypes'): # DataFrame dtype = numpy.float32 elif hasattr(X, 'dtype'): dtype = X.dtype elif hasattr(X, 'type'): dtype = guess_numpy_type(X.type) elif initial_types is not None: dtype = guess_numpy_type(initial_types[0][1]) else: raise RuntimeError( # pragma: no cover "dtype cannot be guessed: {}".format( type(X))) if dtype != numpy.float64: dtype = numpy.float32 if dtype is None: raise RuntimeError("dtype cannot be None") # pragma: no cover if isinstance(dtype, FloatTensorType): dtype = numpy.float32 elif isinstance(dtype, DoubleTensorType): dtype = numpy.float64 new_dtype = dtype if isinstance(dtype, numpy.ndarray): new_dtype = dtype.dtype elif isinstance(dtype, DataType): new_dtype = numpy.float32 if new_dtype not in (numpy.float32, numpy.float64, numpy.int64, numpy.int32): raise NotImplementedError( # pragma: no cover "dtype should be real not {} ({})".format(new_dtype, dtype)) return initial_types, dtype, new_dtype if isinstance(model, _PredictScorer): if X is not None and not isinstance(X, OrderedDict): raise ValueError("For a scorer, parameter X should be a OrderedDict not {}." "".format(type(X))) if initial_types is None: dts = [] initial_types = [] for k, v in X.items(): if hasattr(v, 'dtype'): dtype = guess_numpy_type(v.dtype) else: dtype = v if dtype != numpy.float64: dtype = numpy.float32 it, _, ndt = _guess_type_(v, None, dtype) for i in range(len(it)): # pylint: disable=C0200 it[i] = (k, it[i][1]) # pylint: disable=C0200 initial_types.extend(it) dts.append(ndt) ndt = set(dts) if len(ndt) != 1: raise RuntimeError( # pragma: no cover "Multiple dtype is not efficient {}.".format(ndt)) res = convert_scorer(model, initial_types, name=name, target_opset=target_opset, options=options, black_op=black_op, white_op=white_op, final_types=final_types) else: if name is None: name = "mlprodict_ONNX(%s)" % model.__class__.__name__ initial_types, dtype, _ = _guess_type_(X, initial_types, None) res = convert_sklearn(model, initial_types=initial_types, name=name, target_opset=target_opset, options=options, black_op=black_op, white_op=white_op, final_types=final_types) if old_values is not None: register_rewritten_operators(old_values) return res
27a21d66d78e2432362718b89d8df830471d521c
27,776
def setRx(phi): """Rotation matrix around x axis""" Rx = np.zeros((phi.size,3,3)) Rx[:,0,0] = 1. Rx[:,1,1] = np.cos(phi) Rx[:,2,2] = Rx[:,0,0] Rx[:,1,2] = -np.sin(phi) Rx[:,2,1] = -Rx[:,0,2] return Rx
a70699ccc61b30d820fd9172b459680a1287e8e0
27,777
def discrete_resample(df, freq_code, agg_fun, remove_inter=False, **kwargs): """ Function to properly set up a resampling class for discrete data. This assumes a linear interpolation between data points. Parameters ---------- df: DataFrame or Series DataFrame or Series with a time index. freq_code: str Pandas frequency code. e.g. 'D'. agg_fun : str The aggregation function to be applied on the resampling object. **kwargs Any keyword args passed to Pandas resample. Returns ------- Pandas DataFrame or Series """ if isinstance(df, (pd.Series, pd.DataFrame)): if isinstance(df.index, pd.DatetimeIndex): reg1 = pd.date_range(df.index[0].ceil(freq_code), df.index[-1].floor(freq_code), freq=freq_code) reg2 = reg1[~reg1.isin(df.index)] if isinstance(df, pd.Series): s1 = pd.Series(np.nan, index=reg2) else: s1 = pd.DataFrame(np.nan, index=reg2, columns=df.columns) s2 = pd.concat([df, s1]).sort_index() s3 = s2.interpolate('time') s4 = (s3 + s3.shift(-1))/2 s5 = s4.resample(freq_code, **kwargs).agg(agg_fun).dropna() if remove_inter: index1 = df.index.floor(freq_code).unique() s6 = s5[s5.index.isin(index1)].copy() else: s6 = s5 else: raise ValueError('The index must be a datetimeindex') else: raise TypeError('The object must be either a DataFrame or a Series') return s6
502a63b81c8cf027853e45f77e2c9b18c1beddb4
27,778
def reflect(data, width): """Ceflect a data word, means revert the bit order.""" reflected = data & 0x01 for _ in range(width - 1): data >>= 1 reflected = (reflected << 1) | (data & 0x01) return reflected
bd5a0b804419c52ebdc6777fa0256c6a2dd4475c
27,779
def snell_angle_2(angle_1, n_1, n_2): """Calculate the angle of refraction of a ray travelling between two mediums according to Snell's law. Args: angle_1 (array_like[float]): angle of incidence with respect to surface normal in radians. n_1 (float): index of refraction in first medium. n_2 (float): index of refraction in second medium. Returns: float: angle of refraction in radians. """ angle_2 = np.arcsin(n_1 / n_2 * np.sin(angle_1)) return angle_2
5917dfc412e002bdfe494b3648dfdb7ba63a3cd7
27,780
def npv(ico, nci, r, n): """ This capital budgeting function computes the net present value on a cash flow generating investment. ico = Initial Capital Outlay nci = net cash inflows per period r = discounted rate n = number of periods Example: npv(100000, 15000, .03, 10) """ pv_nci = 0 for x in range(n): pv_nci = pv_nci + (nci/((1 + r) ** (x + 1))) return pv_nci - ico
fa3128de0fe8a2f7b8bbe754f0e1b1e1a0eb222d
27,781
import time import functools import threading def instrument_endpoint(time_fn=time.time): """Decorator to instrument Cloud Endpoint methods.""" def decorator(fn): method_name = fn.__name__ assert method_name @functools.wraps(fn) def decorated(service, *args, **kwargs): service_name = service.__class__.__name__ endpoint_name = '/_ah/spi/%s.%s' % (service_name, method_name) start_time = time_fn() response_status = 0 interface.state.store.initialize_context() flush_thread = None time_now = time_fn() if need_to_flush_metrics(time_now): flush_thread = threading.Thread(target=_flush_metrics, args=(time_now,)) flush_thread.start() try: ret = fn(service, *args, **kwargs) response_status = 200 return ret except endpoints.ServiceException as e: response_status = e.http_status raise except Exception: response_status = 500 raise finally: if flush_thread: flush_thread.join() elapsed_ms = int((time_fn() - start_time) * 1000) http_metrics.update_http_server_metrics( endpoint_name, response_status, elapsed_ms) return decorated return decorator
cf2fdfff5aa8854cc6c02850d6a9787ca45b7c7e
27,782
def manhattan_distances(X, Y): """Compute pairwise Manhattan distance between the rows of two matrices X (shape MxK) and Y (shape NxK). The output of this function is a matrix of shape MxN containing the Manhattan distance between two rows. Arguments: X {np.ndarray} -- First matrix, containing M examples with K features each. Y {np.ndarray} -- Second matrix, containing N examples with K features each. Returns: D {np.ndarray}: MxN matrix with Manhattan distances between rows of X and rows of Y. """ all_distances = [] for exampleX in X: one_row = [] for exampleY in Y: one_row.append(manhattan_distance(exampleX, exampleY)) all_distances.append(one_row) return np.array(all_distances) # raise NotImplementedError()
0cbec7eae4cb33d0ed13947bbc7df7b4b6171807
27,783
def remove_access_group(request): """ Add access groups to the image. """ if request.method != "POST": messages.error(request, "Invalid request method.") return redirect('images') if 'id' not in request.POST or not request.POST.get('id').isdigit() or 'access_group' not in request.POST: messages.error(request, "Invalid POST request.") return redirect('images') group_id = request.POST.get('access_group') img_id = request.POST.get('id') client = get_httpclient_instance(request) params = {"access_groups": [group_id]} try: client.containers.images(img_id).remove_access_groups.post(params) messages.success(request, "Group successfully removed from image.") except Exception as e: messages.error(request, api_error_message(e, params)) return(redirect('image_manage', img_id)) return redirect('image_manage', img_id)
1e61b0a403a06154dce5b7f745a401e7ddf635d6
27,784
def replace_strings_in_file(i): """ Input: { file (file_out) - if !='', use this file for output, otherwise overwrite original one! replacement_json_file - replacement file with multiple strings to substitute } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 (updated) - if 'yes', files was updated } """ o=i.get('out','') fin=i['file'] rjf=i['replacement_json_file'] fout=i.get('file_out','') if fout=='': fout=fin rx=ck.load_text_file({'text_file':fin}) if rx['return']>0: return rx s=rx['string'] rx=ck.load_json_file({'json_file':rjf}) if rx['return']>0: return rx rep=rx['dict'] sx=s for k in rep: v=rep[k] sx=sx.replace(k,v) r={'return':0, 'updated':'no'} if s!=sx or fin!=fout: r=ck.save_text_file({'text_file':fout, 'string':sx}) r['updated']='yes' return r
b15d3058e1486d6f6171438bd62da05cb8d5732b
27,786
def fill_polygon(points, im_shape): """Fill the polygon defined by convex or contour points Parameters ---------- points: array Coordinates of the points that define the convex or contour of the mask im_shape: array Array shape of the mask Returns ------- im_cnt: array Filled contour or convex """ im_cnt = np.zeros((im_shape[0],im_shape[1],1), np.uint8) cv.fillPoly(im_cnt, [points], (255,255)) return im_cnt
abbe69180582c12233c8632ca2ca60485ce4d717
27,787
def load(section, option, archive=_ConfigFile): """ Load variable """ cfg = ConfigParser() try: cfg.readfp(file(archive)) except Exception, e: sys.stderr.write("%s, %s\n" % (archive, e.strerror)) return try: return cfg.get(section, option) except: sys.stderr.write("Incorrect value for %s or %s parameter\n" % \ (section, option)) return
3cf8bebb9ffdaf4a25ece950560680fabdf8c459
27,788
def merge_duplicates(model_name, keep_descriptors=False): """ Identifies repeated experimental values and returns mean values for those data along with their standard deviation. Only aggregates experimental values that have been acquired at the same temperature and pressure. Parameters ---------- model_name: dev_model the dev_model object to be interrogated keep_descriptors: boolean, default False if True descriptors will be included in the output DataFrame Returns ----------- out: dataframe pandas DataFrame of the original data where repeated measurements have been averaged and their variance stored in a separate column """ model_outputs = -6 + model_name.Data_summary.shape[0] devmodel = model_name cols = devmodel.Data.columns if (devmodel.Data.iloc[:, -(4 + model_outputs):-4].max() < 700).all(): for output_index in range(model_outputs): devmodel.Data.iloc[:, -(5 + output_index)] = \ devmodel.Data.iloc[:, -(5 + output_index)].apply( lambda x: exp(float(x))) output_val = pd.DataFrame() output_xtd = pd.DataFrame() for output_index in range(model_outputs): val = devmodel.Data.groupby(['smiles-cation', 'smiles-anion'] )[cols[-(5 + output_index)]].mean().\ reset_index() xtd = devmodel.Data.groupby(['smiles-cation', 'smiles-anion'] )[cols[-(5 + output_index)]].std().\ reset_index() if output_index == 0: output_val = val output_xtd = xtd else: output_val = pd.merge(output_val, val) output_xtd = pd.merge(output_xtd, xtd) size = devmodel.Data.groupby(['smiles-cation', 'smiles-anion'] )[cols[-(5 + output_index)]].count().\ reset_index() cations = devmodel.Data.groupby(['smiles-cation', 'smiles-anion'] )['name-cation'].first().reset_index() anions = devmodel.Data.groupby(['smiles-cation', 'smiles-anion'] )['name-anion'].first().reset_index() size.columns.values[2] = "count" salts = (devmodel.Data["smiles-cation"] + "." + devmodel. Data["smiles-anion"]).unique() print("Identified {} unique salts in {} datapoints". format(len(salts), devmodel.Data.shape[0])) out = pd.merge(output_val, output_xtd, on=['smiles-cation', 'smiles-anion'], suffixes=['_mean', '_std']) out = pd.merge(out, size) out = pd.merge(out, cations) out = pd.merge(out, anions) if keep_descriptors: cationDescriptors = load_data("cationDescriptors.csv") cationDescriptors.columns = [str(col) + '-cation' for col in cationDescriptors.columns] anionDescriptors = load_data("anionDescriptors.csv") anionDescriptors.columns = [str(col) + '-anion' for col in anionDescriptors.columns] new_df = pd.merge(cationDescriptors, out, on=["name-cation", "smiles-cation"], how="right") new_df = pd.merge(anionDescriptors, new_df, on=["name-anion", "smiles-anion"], how="right") out = new_df return out
a3baa232535f9c3bfd9496259f0cf3fd6142665b
27,789
def autoencoder_cost_and_grad_sparse(theta, visible_size, hidden_size, lambda_, rho_, beta_, data): """ Version of cost and grad that incorporates the hidden layer sparsity constraint rho_ : the target sparsity limit for each hidden node activation beta_ : controls the weight of the sparsity penalty term relative to other loss components The input theta is a 1-dimensional array because scipy.optimize.minimize expects the parameters being optimized to be a 1d array. First convert theta from a 1d array to the (W1, W2, b1, b2) matrix/vector format, so that this follows the notation convention of the lecture notes and tutorial. You must compute the: cost : scalar representing the overall cost J(theta) grad : array representing the corresponding gradient of each element of theta """ m = data.shape[1] len = visible_size * hidden_size w1 = theta[0 : len].reshape((hidden_size, visible_size)) # (h,v) w2 = theta[len : 2*len].reshape((visible_size, hidden_size)) # (v,h) b1 = theta[2*len : 2*len + hidden_size].flatten() # (h) b2 = theta[2*len + hidden_size: ].flatten() # (v) # FORWARD PROPAGATION (Lecture 24, Slides 11-13) # HW5 #4: Vectorized Implementation of Forward Propagation # Code moved to autoencoder_feedforward(theta, visible_size, hidden_size, data) tau = autoencoder_feedforward(theta, visible_size, hidden_size, data) z2 = tau[0 : hidden_size] # (h,m) a2 = tau[hidden_size : 2*hidden_size] # (h,m) z3 = tau[2*hidden_size : 2*hidden_size + visible_size] # (v,m) h = tau[2* hidden_size + visible_size:] # (v,m) # COST FUNCTION (Equation on Lecture 24, Slide 15) # # J(W,b) = Squared Error Term + Weight Decay Term (for regularization) # # = Sum{m=1...m} ||h_{W,b}(x^(i)) - y^(i)||^2 / (2m) + lambda/2 * \ # Sum{l=1...n_l-1} Sum{i=1...s_l} Sum{j=1...s_l+1} (W_{j,i}^(i))^2 # # where # m = # training pairs {(x^(1), y^(1)), ... , (x^(m), y^(,))} cost = np.linalg.norm(h - data)**2/2./m + lambda_/2. * (np.linalg.norm(w1)**2 + np.linalg.norm(w2)**2) #---------------------------# # SPARSITY PARAMETER # http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity # # rho-hat = Sum{i=1...m} [a_j^(2) * x^(i)] / m rhat = np.sum(a2, axis=1) / m # Kullback-Leibler (KL) Divergence # KL(rho || rho-hat) = rho * log(rho/rho_hat) + (1-rho) * log((1-rho)/(1-rho_hat)) # Penalty = Sum{j=1...s_2} KL(rho || rho-hat) kl = np.sum(rho_ * np.log(rho_/rhat) + (1-rho_) * np.log((1-rho_)/(1-rhat))) cost += beta_ * kl #---------------------------# # BACKPROPAGATION (Lecture 24, Slides 15-16) # Step 1: Perform feedforward pass, computing activations for layers L_{2...n}. # Completed above. # Step 2: Compute "error terms." (Slide 16) # Use original equation for delta3. # Use modified version for delta2. sparsity_der = beta_ * (-rho_/rhat + (1-rho_)/(1-rhat)) delta3 = -(data - h) * derivative(z3) delta2 = (w2.T.dot(delta3) + np.repeat(sparsity_der,m).reshape((sparsity_der.shape[0],m))) * derivative(z2) #---------------------------# # Step 3: Compute partial derivatives. (Slide 15) # partial J / partial W^(l) = a_j^(l) * delta_i^(l+1) # partial J / partial b_i^(l) = delta_i^(l+1) w1_grad = delta2.dot(data.T) / m + lambda_ * w1 w2_grad = delta3.dot(a2.T) / m + lambda_ * w2 b1_grad = np.sum(delta2, axis=1) / m b2_grad = np.sum(delta3, axis=1) / m grad = np.concatenate((w1_grad.flatten(), w2_grad.flatten(), b1_grad, b2_grad)) #print("\tgrad shape:", grad.shape) return cost, grad
9810517cab7adc5ca71d46d602e347b301a392d4
27,790
def isnpixok(npix): """Return :const:`True` if npix is a valid value for healpix map size, :const:`False` otherwise. Parameters ---------- npix : int, scalar or array-like integer value to be tested Returns ------- ok : bool, scalar or array-like :const:`True` if given value is a valid number of pixel, :const:`False` otherwise Examples -------- >>> import healpy as hp >>> hp.isnpixok(12) True >>> hp.isnpixok(768) True >>> hp.isnpixok([12, 768, 1002]) array([ True, True, False], dtype=bool) """ nside = np.sqrt(np.asarray(npix) / 12.0) return nside == np.floor(nside)
9501ab6e3172761cba0ec2e3693e5442924162af
27,791
def get_team_metadata(convert_users_role_to_string=False): """Returns team metadata :param convert_users_role_to_string: convert integer team users' roles to human comprehensible strings :type convert_users_role_to_string: bool :return: team metadata :rtype: dict """ response = _api.send_request(req_type='GET', path=f'/team/{_api.team_id}') if not response.ok: raise SABaseException( response.status_code, "Couldn't get team metadata. " + response.text ) res = response.json() if convert_users_role_to_string: for user in res["users"]: user["user_role"] = user_role_int_to_str(user["user_role"]) return res
6b48cc6f30bd2304f54c1ff695be6faaab187a9f
27,794
def get_request_timestamp(req_type=None, timestamp=getCurrentMillis()): """ :param req_type: YTD, QTD, MTD, WTD, TODAY or None if None return first unix timestamp :return: unix timestamp """ @dataclass class YTD(object): pass bench_date = pd.to_datetime(getUTCBeginDay(timestamp), unit='ms') if req_type not in (YTD, QTD, MTD, WTD, TODAY): return DAY_OF_MILLISECONDS if req_type == YTD: date = bench_date + pd.tseries.offsets.DateOffset(months=1 - bench_date.month, days=1 - bench_date.day) if req_type == QTD: date = bench_date + pd.tseries.offsets.DateOffset(months=-((bench_date.month - 1) % 3), days=1 - bench_date.day) if req_type == MTD: date = bench_date + pd.tseries.offsets.DateOffset(days=1 - bench_date.day) if req_type == WTD: date = bench_date + pd.tseries.offsets.DateOffset(days=-bench_date.weekday()) if req_type == TODAY: date = bench_date return getMillisSeconds(date) - DAY_OF_MILLISECONDS
2e18c23167bca388b8f2ad4febfe6f3a39df1151
27,795
def to_nest_placeholder(nested_tensor_specs, default=None, name_scope="", outer_dims=()): """Converts a nest of TensorSpecs to a nest of matching placeholders. Args: nested_tensor_specs: A nest of tensor specs. default: Optional constant value to set as a default for the placeholder. name_scope: String name for the scope to create the placeholders in. outer_dims: Optional leading dimensions for the placeholder. Returns: A nest of placeholders matching the given tensor spec. Raises: ValueError: If a default is provided outside of the allowed types, or if default is a np.array that does not match the spec shape. """ if default is None: to_ph = lambda spec: to_placeholder(spec, outer_dims=outer_dims) else: if not isinstance(default, (int, float, np.ndarray)): raise ValueError("to_nest_placeholder default value must be an int, " "float, or np.ndarray") def to_ph(spec): shape = list(outer_dims) + spec.shape.as_list() if isinstance(default, np.ndarray) and list(default.shape) != shape: raise ValueError("Shape mismatch between default value and spec. " "Got {}, expected {}".format(default.shape, shape)) const = tf.constant(default, shape=shape, dtype=spec.dtype) return to_placeholder_with_default(const, spec, outer_dims=outer_dims) with tf.name_scope(name_scope): return tf.nest.map_structure(to_ph, nested_tensor_specs)
329bf5e76f5753a07f78394a8a065e3e44334929
27,796
import asyncio async def discover(): """Discover and return devices on local network.""" discovery = TuyaDiscovery() try: await discovery.start() await asyncio.sleep(DEFAULT_TIMEOUT) finally: discovery.close() return discovery.devices
fb3fed149011983520d884f139f9296973686459
27,797
def update_firewall_policy(module, oneandone_conn): """ Updates a firewall policy based on input arguments. Firewall rules and server ips can be added/removed to/from firewall policy. Firewall policy name and description can be updated as well. module : AnsibleModule object oneandone_conn: authenticated oneandone object """ try: firewall_policy_id = module.params.get('firewall_policy') name = module.params.get('name') description = module.params.get('description') add_server_ips = module.params.get('add_server_ips') remove_server_ips = module.params.get('remove_server_ips') add_rules = module.params.get('add_rules') remove_rules = module.params.get('remove_rules') changed = False firewall_policy = get_firewall_policy(oneandone_conn, firewall_policy_id, True) if firewall_policy is None: _check_mode(module, False) if name or description: _check_mode(module, True) firewall_policy = oneandone_conn.modify_firewall( firewall_id=firewall_policy['id'], name=name, description=description) changed = True if add_server_ips: if module.check_mode: _check_mode(module, _add_server_ips(module, oneandone_conn, firewall_policy['id'], add_server_ips)) firewall_policy = _add_server_ips(module, oneandone_conn, firewall_policy['id'], add_server_ips) changed = True if remove_server_ips: chk_changed = False for server_ip_id in remove_server_ips: if module.check_mode: chk_changed |= _remove_firewall_server(module, oneandone_conn, firewall_policy['id'], server_ip_id) _remove_firewall_server(module, oneandone_conn, firewall_policy['id'], server_ip_id) _check_mode(module, chk_changed) firewall_policy = get_firewall_policy(oneandone_conn, firewall_policy['id'], True) changed = True if add_rules: firewall_policy = _add_firewall_rules(module, oneandone_conn, firewall_policy['id'], add_rules) _check_mode(module, firewall_policy) changed = True if remove_rules: chk_changed = False for rule_id in remove_rules: if module.check_mode: chk_changed |= _remove_firewall_rule(module, oneandone_conn, firewall_policy['id'], rule_id) _remove_firewall_rule(module, oneandone_conn, firewall_policy['id'], rule_id) _check_mode(module, chk_changed) firewall_policy = get_firewall_policy(oneandone_conn, firewall_policy['id'], True) changed = True return (changed, firewall_policy) except Exception as e: module.fail_json(msg=str(e))
0d99fbee3a67e2c571bd9d9ad5ce698588ac0df4
27,798
import math def expanded_velocities_from_line_vortices( points, origins, terminations, strengths, ages=None, nu=0.0, ): """This function takes in a group of points, and the attributes of a group of line vortices. At every point, it finds the induced velocity due to each line vortex. Citation: The equations in this function are from "Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings" (Nguyen et al., 2016) Note: This function uses a modified version of the Bio-Savart law to create a smooth induced velocity decay based on a vortex's core radius. The radius is determined based on a vortex's age and kinematic viscosity. If the age of the vortex is 0.0 seconds, the radius is set to 0.0 meters. The age of a vortex in only relevant for vortices that have been shed into the wake. Note: This function's performance has been highly optimized for unsteady simulations via Numba. While using Numba dramatically increases unsteady simulation performance, it does cause a performance drop for the less intense steady simulations. :param points: 2D array of floats This variable is an array of shape (N x 3), where N is the number of points. Each row contains the x, y, and z float coordinates of that point's position in meters. :param origins: 2D array of floats This variable is an array of shape (M x 3), where M is the number of line vortices. Each row contains the x, y, and z float coordinates of that line vortex's origin's position in meters. :param terminations: 2D array of floats This variable is an array of shape (M x 3), where M is the number of line vortices. Each row contains the x, y, and z float coordinates of that line vortex's termination's position in meters. :param strengths: 1D array of floats This variable is an array of shape (, M), where M is the number of line vortices. Each position contains the strength of that line vortex in meters squared per second. :param ages: 1D array of floats, optional This variable is an array of shape (, M), where M is the number of line vortices. Each position contains the age of that line vortex in seconds. This is only relevant for vortices that have been shed into the wake. The default value is None. If the age of a specific vortex is 0.0 seconds, then the vortex core radius is set to 0.0 meters. :param nu: float, optional This variable is a float that represents the kinematic viscosity of the fluid in meters squared per second. The default value is 0.0 meters squared per second. :return velocities: 3D array of floats This is an array of shape (N x M x 3), where each row/column pair identifies the velocity induced at one point by one of the line vortices. The units are meters per second. """ num_vortices = origins.shape[0] num_points = points.shape[0] # Initialize an empty array, which we will fill with the induced velocities. velocities = np.empty((num_points, num_vortices, 3)) # If the user didn't specify any ages, set the age of each vortex to 0.0 seconds. if ages is None: ages = np.zeros(num_vortices) for vortex_id in range(num_vortices): origin = origins[vortex_id] termination = terminations[vortex_id] strength = strengths[vortex_id] age = ages[vortex_id] # Calculate the radius of the vortex's core. If the age is 0.0 seconds, # this will evaluate to be 0.0 meters. r_c = 2 * math.sqrt(lamb * (nu + squire * abs(strength)) * age) # The r_0 vector goes from the line vortex's origin to its termination. r_0_x = termination[0] - origin[0] r_0_y = termination[1] - origin[1] r_0_z = termination[2] - origin[2] # Find the r_0 vector's length. r_0 = math.sqrt(r_0_x ** 2 + r_0_y ** 2 + r_0_z ** 2) c_1 = strength / (4 * math.pi) c_2 = r_0 ** 2 * r_c ** 2 for point_id in range(num_points): point = points[point_id] # The r_1 vector goes from the point to the line vortex's origin. r_1_x = origin[0] - point[0] r_1_y = origin[1] - point[1] r_1_z = origin[2] - point[2] # The r_2 vector goes from the point to the line vortex's termination. r_2_x = termination[0] - point[0] r_2_y = termination[1] - point[1] r_2_z = termination[2] - point[2] # The r_3 vector is the cross product of the r_1 and r_2 vectors. r_3_x = r_1_y * r_2_z - r_1_z * r_2_y r_3_y = r_1_z * r_2_x - r_1_x * r_2_z r_3_z = r_1_x * r_2_y - r_1_y * r_2_x # Find the r_1, r_2, and r_3 vectors' lengths. r_1 = math.sqrt(r_1_x ** 2 + r_1_y ** 2 + r_1_z ** 2) r_2 = math.sqrt(r_2_x ** 2 + r_2_y ** 2 + r_2_z ** 2) r_3 = math.sqrt(r_3_x ** 2 + r_3_y ** 2 + r_3_z ** 2) c_3 = r_1_x * r_2_x + r_1_y * r_2_y + r_1_z * r_2_z # If part of the vortex is so close to the point that they are touching ( # within machine epsilon), there is a removable discontinuity. In this # case, set the velocity components to their true values, which are 0.0 # meters per second. if r_1 < eps or r_2 < eps or r_3 ** 2 < eps: velocities[point_id, vortex_id, 0] = 0.0 velocities[point_id, vortex_id, 1] = 0.0 velocities[point_id, vortex_id, 2] = 0.0 else: c_4 = ( c_1 * (r_1 + r_2) * (r_1 * r_2 - c_3) / (r_1 * r_2 * (r_3 ** 2 + c_2)) ) velocities[point_id, vortex_id, 0] = c_4 * r_3_x velocities[point_id, vortex_id, 1] = c_4 * r_3_y velocities[point_id, vortex_id, 2] = c_4 * r_3_z return velocities
228f7aa527dd1e9386bdc76da7c6e3c58698e58c
27,800
def normcase(path): """Normalize the case of a pathname. On Unix and Mac OS X, this returns the path unchanged; on case-insensitive filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.""" return 0
d52dca00cc9db607d4ba22c12ba38f512a05107b
27,801
def typeof(obj, t): """Check if a specific type instance is a subclass of the type. Args: obj: Concrete type instance t: Base type class """ try: return issubclass(obj, t) except TypeError: return False
67fbcf8b1506f44dba8360a4d23705a2e8a69b47
27,802
def get_all_clusters(cluster_type, client_id): """Get a list of (cluster_name, cluster_config) for the available kafka clusters in the ecosystem at Yelp. :param cluster_type: kafka cluster type (ex.'scribe' or 'standard'). :type cluster_type: string :param client_id: name of the client making the request. Usually the same client id used to create the Kafka connection. :type client_id: string :returns: list of py:class:`yelp_kafka.config.ClusterConfig` """ client = get_kafka_discovery_client(client_id) try: cluster_names = client.v1.getClustersAll(cluster_type).result() except HTTPError as e: log.exception( "Failure while fetching clusters for cluster type:{clustertype}" .format(clustertype=cluster_type), ) raise InvalidClusterType(e.response.text) return [ get_kafka_cluster(cluster_type, client_id, cluster_name) for cluster_name in cluster_names ]
8860435edfde332fd78e3bf01789a2831d884165
27,803
from .. import getPlottingEngine def plot(x, y, show=True, **kwargs): """ Create a 2D scatter plot. :param x: A numpy array describing the X datapoints. Should have the same number of rows as y. :param y: A numpy array describing the Y datapoints. Should have the same number of rows as x. :param color: The color to use. :param tag: A tag so that all traces of the same type are plotted using same color/label (for e.g. multiple stochastic traces). :param tags: Like tag, but for multiple traces. :param name: The name of the trace. :param name: Like name, but for multiple traces. :param alpha: Floating point representing the opacity ranging from 0 (transparent) to 1 (opaque). :param mode: Either 'lines' or 'markers' (defaults to 'lines'). """ # global _plot_index return getPlottingEngine().plot(x, y, show=show, **kwargs)
0b43a2b1e442ae19feaf0fb3a64550cad01b3602
27,804
def get_transform_ids(workprogress_id, request_id=None, workload_id=None, transform_id=None, session=None): """ Get transform ids or raise a NoObject exception. :param workprogress_id: Workprogress id. :param session: The database session in use. :raises NoObject: If no transform is founded. :returns: list of transform ids. """ return orm_transforms.get_transform_ids(workprogress_id=workprogress_id, request_id=request_id, workload_id=workload_id, transform_id=transform_id, session=session)
08fbd67eb932c7c48b04528dd0863e67669e526e
27,805
from typing import Optional def get_link(hub_name: Optional[str] = None, link_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetLinkResult: """ The link resource format. Latest API Version: 2017-04-26. :param str hub_name: The name of the hub. :param str link_name: The name of the link. :param str resource_group_name: The name of the resource group. """ pulumi.log.warn("""get_link is deprecated: The 'latest' version is deprecated. Please migrate to the function in the top-level module: 'azure-native:customerinsights:getLink'.""") __args__ = dict() __args__['hubName'] = hub_name __args__['linkName'] = link_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:customerinsights/latest:getLink', __args__, opts=opts, typ=GetLinkResult).value return AwaitableGetLinkResult( description=__ret__.description, display_name=__ret__.display_name, id=__ret__.id, link_name=__ret__.link_name, mappings=__ret__.mappings, name=__ret__.name, operation_type=__ret__.operation_type, participant_property_references=__ret__.participant_property_references, provisioning_state=__ret__.provisioning_state, reference_only=__ret__.reference_only, source_entity_type=__ret__.source_entity_type, source_entity_type_name=__ret__.source_entity_type_name, target_entity_type=__ret__.target_entity_type, target_entity_type_name=__ret__.target_entity_type_name, tenant_id=__ret__.tenant_id, type=__ret__.type)
b94a7d2ed3977afbff0699e861da67e1267581b4
27,806
import random def selection_elites_random(individuals : list, n : int = 4, island=None) -> list: """ Completely random selection. Args: individuals (list): A list of Individuals. n (int): Number to select (default = 4). island (Island): The Island calling the method (default = None). Returns: list: Random n Individuals. """ return random.choice(individuals, size=n).tolist()
2f7df4e8a347bcd9a770d0d15d91b52956dbd26c
27,808
import ctypes def ekssum(handle, segno): """ Return summary information for a specified segment in a specified EK. http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/cspice/ekssum_c.html :param handle: Handle of EK. :type handle: int :param segno: Number of segment to be summarized. :type segno: int :return: EK segment summary. :rtype: spicepy.utils.support_types.SpiceEKSegSum """ handle = ctypes.c_int(handle) segno = ctypes.c_int(segno) segsum = stypes.SpiceEKSegSum() libspice.ekssum_c(handle, segno, ctypes.byref(segsum)) return segsum
9c9920d29ed1c1c85524a511119f37322143888c
27,809
def compare_prices_for_same_urls( source_df: pd.DataFrame, target_df: pd.DataFrame, tagged_fields: TaggedFields ): """For each pair of items that have the same `product_url_field` tagged field, compare `product_price_field` field Returns: A result containing pairs of items with same `product_url_field` from `source_df` and `target_df` which `product_price_field` differ, missing and new `product_url_field` tagged fields. """ result = Result("Compare Prices For Same Urls") url_field = tagged_fields.get("product_url_field") if not url_field: result.add_info(Outcome.SKIPPED) return result url_field = url_field[0] source_df = source_df.dropna(subset=[url_field]) target_df = target_df.dropna(subset=[url_field]) same_urls = source_df[(source_df[url_field].isin(target_df[url_field].values))][ url_field ] new_urls = source_df[~(source_df[url_field].isin(target_df[url_field].values))][ url_field ] missing_urls = target_df[(~target_df[url_field].isin(source_df[url_field].values))][ url_field ] errors = {} for url, group in missing_urls.groupby(missing_urls): errors[f"Missing {url}"] = set(group.index) if not missing_urls.empty: result.add_info( f"{len(missing_urls)} urls missing from the tested job", errors=errors ) if not new_urls.empty: result.add_info(f"{len(new_urls)} new urls in the tested job") result.add_info(f"{len(same_urls)} same urls in both jobs") diff_prices_count = 0 price_field = tagged_fields.get("product_price_field") if not price_field: result.add_info("product_price_field tag is not set") else: price_field = price_field[0] detailed_messages = [] for url in same_urls: if url.strip() != "nan": source_price = source_df[source_df[url_field] == url][price_field].iloc[ 0 ] target_price = target_df[target_df[url_field] == url][price_field].iloc[ 0 ] if ( is_number(source_price) and is_number(target_price) and ratio_diff(source_price, target_price) > 0.1 ): diff_prices_count += 1 source_key = source_df[source_df[url_field] == url].index[0] target_key = target_df[target_df[url_field] == url].index[0] msg = ( f"different prices for url: {url}\nsource price is {source_price} " f"for {source_key}\ntarget price is {target_price} for {target_key}" ) detailed_messages.append(msg) res = f"{len(same_urls)} checked, {diff_prices_count} errors" if detailed_messages: result.add_error(res, detailed="\n".join(detailed_messages)) else: result.add_info(res) return result
dc23577169bf6788ecd17eb2fc6c959e367b5000
27,810
def _check_param(dict_): """ check dictionary elements and reformat if need be :return: dictionary reformat """ # default empty dictionary _ = {} if "google_users" in dict_: _["google_users"] = _check_param_google_users(dict_["google_users"]) else: _logger.exception(f"No key 'google_users' in yaml file {setupcfg.extraParam}") raise KeyError if "dataset_ids" in dict_: _["dataset_ids"] = _check_param_dataset_ids(dict_["dataset_ids"]) else: _logger.exception(f"No key 'dataset_ids' in yaml file {setupcfg.extraParam}") raise KeyError return _
17ccc017fb4a34f3d68ef7150165185e62c7a8dc
27,811
def fetch_dataset_insistently(url: str, link_text_prefix: str, user_agent: str) -> dict: """Fetch the approved routes dataset.""" proxies = get_proxies_geonode() + get_proxies() print(f'{len(proxies)} proxies found.') for i, proxy in enumerate(proxies): print(f'Fetching dataset, try with proxy [{i + 1}] {proxy}.') req_proxy = { 'http': f'http://{proxy["ip"]}:{proxy["port"]}' } try: download_info = fetch_dataset(url, link_text_prefix, user_agent, req_proxy) return download_info except FetchException as e: raise except Exception as e: print(f'Fetching dataset try {proxy} failed with error: {e}') pass
c98985becc3989980782c4886e18fe7fa56f8d06
27,812
import numpy def _dense_to_one_hot(labels_dense): """Convert class labels from scalars to one-hot vectors.""" num_classes = len(set(labels_dense)) num_labels = labels_dense.shape[0] labels_to_numbers = {label: i for i, label in enumerate(list(set(labels_dense)))} labels_as_numbers = numpy.asarray([labels_to_numbers[label] for label in labels_dense]) index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_as_numbers.ravel()] = 1 return labels_one_hot, labels_to_numbers
49cc3ab6bc5f4ec81323321a9fe13d4da030fb4a
27,813
def swish(x): """Swish activation function. For more info: https://arxiv.org/abs/1710.05941""" return tf.multiply(x, tf.nn.sigmoid(x))
40766f934d2e691dc28d5dcd3a44c37cef601896
27,814
def fatorial(n=1): """ -> Calcúla o fatorial de um número e o retorna :param n: número """ f = 1 for i in range(1, n + 1): f *= i return f
5c64b8ccf4a62a1b4294e576b49fbf69e85972ec
27,815
def retrieve_context_nw_topology_service_name_name_by_id(value_name): # noqa: E501 """Retrieve name by ID Retrieve operation of resource: name # noqa: E501 :param value_name: ID of value_name :type value_name: str :rtype: NameAndValue """ return 'do some magic!'
4dcc0b25c6fd76bf94e14d63cb9731946b97b06a
27,816
def conv1x1(in_planes, out_planes, wib, stride=1): """1x1 convolution""" # resnet_wib = False resnet_wib = True resnet_alpha = 1E-3 if not wib: return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) else: return WibConv2d(alpha=resnet_alpha, in_channels=in_planes, out_channels=out_planes, kernel_size=1, stride=stride, bias=False)
0ce1d9d47ff98dc7ce607afafb4ea506c850afc3
27,817
def get_rules(fault_block, zone): """Get rules for fault block and zone names. In this model the rules depend only on the zone; they do NOT vary from fault block to fault block for a given zone. Args: fault_block (str) Name of fault block. zone (str) Zone name. Returns: Function (rule) that computes elastic properties (density, Vp, Vs, Qp, and Qs) from x, y, depth. """ RULES = { "Mantle": { "default": rules_aagaard_etal_2010.upper_mantle, }, "Lower Crust": { "default": rules_aagaard_etal_2010.mafic_great_valley_ophiolite, }, "Great_Valley_Ophiolite": { "default": rules_aagaard_etal_2010.mafic_great_valley_ophiolite, }, "San Leandro G": { "default": rules_aagaard_etal_2010.mafic_great_valley_ophiolite, }, "Logan G": { "default": rules_aagaard_etal_2010.mafic_great_valley_ophiolite, }, "Kjf_Berkeley": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kjf_Chabot": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kjf_Foothills": { "default": rules_aagaard_etal_2010.franciscan_foothills, }, "Kjf_Merced": { "default": rules_aagaard_etal_2010.franciscan_napa_sonoma, }, "Kjf_Sur": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kjf_Napa_Somoma": { "default": rules_aagaard_etal_2010.franciscan_napa_sonoma, "Napa": rules_hirakawa_aagaard_2021.franciscan_napa, "Sonoma": rules_aagaard_etal_2010.franciscan_napa_sonoma, }, "Kjf_Bay Block": { "default": rules_aagaard_etal_2010.franciscan_napa_sonoma, }, "Kjf_Evergreen": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kjf_E_Diablo": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kjf_W_Diablo": { "default": rules_aagaard_etal_2010.franciscan_berkeley, }, "Kgr_Gab": { "default": rules_aagaard_etal_2010.salinian_granitic, }, "Kgr_Halfmoon": { "default": rules_aagaard_etal_2010.salinian_granitic, }, "Kgr_SCoast": { "default": rules_aagaard_etal_2010.salinian_granitic, }, "Kgr_NShelf": { "default": rules_aagaard_etal_2010.salinian_granitic, }, "Valley Sequence": { "default": rules_aagaard_etal_2010.great_valley_sequence_sedimentary, "San Leandro": rules_hirakawa_aagaard_2021.valley_sequence_sanleandro, "Sunol": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, }, "Great Valley Seq": { "default": rules_aagaard_etal_2010.great_valley_sequence_sedimentary, "Berkeley": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, "Chabot": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, "W Diablo Range": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, }, "Cenozoic": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, "Napa": rules_hirakawa_aagaard_2021.cenozoic_napa, "Sonoma": rules_hirakawa_aagaard_2021.cenozoic_sonoma, "Alexander": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, "W Diablo Range": rules_hirakawa_aagaard_2021.quaternary_livermore, }, "Cenozoic_Great Valley": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, }, "Cenozoic_Halfmoon": { "default": rules_aagaard_etal_2010.cenozoic_sedimentary_halfmoonbay, }, "Cenozoic_Ever": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, }, "T_SouthBay": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, }, "T_La Honda": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_lahondabasin, }, "T_Pilarcitos": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, }, "T_Bay_Block_Santa_Rosa": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, "Santa Rosa": rules_hirakawa_aagaard_2021.brocher2005_older_cenozoic_sedimentary, }, "T_Berkeley": { "default": rules_aagaard_etal_2010.tertiary_sedimentary_southbay, "Berkeley": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, "Chabot": rules_hirakawa_aagaard_2021.brocher2008_great_valley_sequence, }, "QT_Bay_Block_Santa Rosa": { "default": rules_aagaard_etal_2010.quaternary_tertiary_sedimentary, }, "QT_Merced_Pilarcitos": { "default": rules_aagaard_etal_2010.quaternary_tertiary_sedimentary, }, "QT_South_Bay": { "default": rules_aagaard_etal_2010.quaternary_tertiary_sedimentary, }, "water": { "default": rules_aagaard_etal_2010.seawater, }, "<null>": { "default": rules_aagaard_etal_2010.outside_model, }, "": { "default": rules_aagaard_etal_2010.outside_model, }, } return RULES[zone].get(fault_block, RULES[zone]["default"])
12b19cd795ecf618995a2f67f3844792b372d09d
27,818
from operator import concat def conv_cond_concat(x, y): """Concatenate conditioning vector on feature map axis.""" x_shapes = tf.shape(x) y_shapes = tf.shape(y) return concat([ x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3)
583ed5df67245b483531f8e3129ba88b9ec811ef
27,819
def get_clusters(cloud_filtered): """ Get clusters from the cloud. Parameters: ----------- cloud: pcl.PointCloud() Returns: ----------- clusters: pcl.PointCloud() array N """ clusters = [] tree = cloud_filtered.make_kdtree() ec = cloud_filtered.make_EuclideanClusterExtraction() ec.set_ClusterTolerance (0.02) ec.set_MinClusterSize (5) ec.set_MaxClusterSize (100) ec.set_SearchMethod (tree) cluster_indices = ec.Extract() cloud_cluster = pcl.PointCloud() for j, indices in enumerate(cluster_indices): #print('indices = ' + str(len(indices))) points = np.zeros((len(indices), 3), dtype=np.float32) for i, indice in enumerate(indices): points[i][0] = cloud_filtered[indice][0] points[i][1] = cloud_filtered[indice][1] points[i][2] = cloud_filtered[indice][2] cloud_cluster.from_array(points) clusters.append(cloud_cluster) return clusters
b4b7fa0ff8b7f362783bc94727253a2eb41f6f7e
27,820
import json def errorResult(request, response, error, errorMsg, httpStatus = 500, result = None, controller = None): """ set and return the error result @param controller: pylon controller handling the request, where cal context is injected and later retrieved by trackable """ response.status_int = httpStatus response.content_type = 'application/json' res = {'error':error, 'errorMsg':errorMsg} if (result != None): res['result'] = result title = __getreqstr(request) msg = 'Error Result - (%s, %s)' % (str(error), errorMsg) __injectcontext(controller, title, CRITICAL, msg) LOG.warning(msg) return json.dumps(res)
df386f939751ea268907c016120db7219c3e93bc
27,821
from typing import Dict import logging def parse_main(text: str = "") -> Dict: """ A loop for processing each parsing recipe. Returns a dict of parsed values. """ if text == "": logging.warning("Empty string provided for parsing") parsed_data = {} for recipe in parser_recipe: field = recipe["field"] parsed_data[field] = parser(text, **recipe) return parsed_data
4574b3e9dce321f169f31031e46e572fac14fce3
27,822
def main(): """ Returns the answer. """ return 42
f6800af5efb0b65f7c7afdd5ea0ede896fd740f8
27,823
def collect_accuracy(path): """ Collects accuracy values in log file. """ r1 = None r5 = None mAP = None r1_content = 'Rank-1 ' r5_content = 'Rank-5 ' map_content = 'mAP:' with open(path) as input_stream: for line in input_stream: candidate = line.strip() if r1_content in candidate: r1 = float(candidate.split(':')[-1].replace('%', '')) elif r5_content in candidate: r5 = float(candidate.split(':')[-1].replace('%', '')) elif map_content in candidate: mAP = float(candidate.split(':')[-1].replace('%', '')) return r1, r5, mAP
fa94724f16a332fe18d13df3cc0fbcdd060fe897
27,825
from typing import Type from typing import Mapping def recursively_get_annotations(ty: Type) -> Mapping[str, Type]: """Given a type, recursively gather annotations for its subclasses as well. We only gather annotations if its subclasses are themselves subclasses of Deserializable, and not Deserializable itself. This is bad evil code that uses internal Python details that may break in 3.8 or later.""" # Get initial annotations annotations: Mapping[str, Type] = getattr(ty, "__annotations__", {}) # Recursively gather annotations for base classes for base in getattr(ty, "__bases__", {}): if issubclass(base, Deserializable) and (base != Deserializable): annotations = dict(annotations, **recursively_get_annotations(base)) return annotations
ba531eeba8006aa9393fa2487c056d6309df43d4
27,826
def sector_model(): """SectorModel requiring precipitation and cost, providing water """ model = EmptySectorModel('water_supply') model.add_input( Spec.from_dict({ 'name': 'precipitation', 'dims': ['LSOA'], 'coords': {'LSOA': [1, 2, 3]}, 'dtype': 'float', 'unit': 'ml' }) ) model.add_input( Spec.from_dict({ 'name': 'reservoir_level', 'dims': ['LSOA'], 'coords': {'LSOA': [1, 2, 3]}, 'dtype': 'float', 'unit': 'ml' }) ) model.add_input( Spec.from_dict({ 'name': 'rGVA', 'dims': ['LSOA'], 'coords': {'LSOA': [1, 2, 3]}, 'dtype': 'float', 'unit': 'million GBP' }) ) model.add_output( Spec.from_dict({ 'name': 'water', 'dims': ['LSOA'], 'coords': {'LSOA': [1, 2, 3]}, 'dtype': 'float', 'unit': 'Ml' }) ) model.add_output( Spec.from_dict({ 'name': 'reservoir_level', 'dims': ['LSOA'], 'coords': {'LSOA': [1, 2, 3]}, 'dtype': 'float', 'unit': 'ml' }) ) model.add_parameter( Spec.from_dict({ 'name': 'test_parameter', 'description': 'a dummy parameter to test narratives', 'dims': ['national'], 'coords': {'national': ['GB']}, 'abs_range': (0.5, 2), 'exp_range': (0.5, 2), 'dtype': 'float', 'default': [[1.]], 'unit': '%' }) ) return model
528548e24052913a315804a782cb74cef53b0f08
27,827
def maybe_flip_x_across_antimeridian(x: float) -> float: """Flips a longitude across the antimeridian if needed.""" if x > 90: return (-180 * 2) + x else: return x
50fac7a92d0ebfcd003fb478183b05668b9c909c
27,828
def contour_check(check_points, random_walk): """check_points have dim (n, ndim) random_walk has 3 elements. [0] is boundary unit vectors (can be in any space), [1] is boundary ls (relative to origin) [2] is origin returns: indexer of [True,..... etc.] of which points are in or not operates by finding which direction we are closest too and then comparing our l to that l """ boundary_unit_vectors = random_walk[0] boundary_ls = random_walk[1] origin = random_walk[2] points = check_points - origin #holds the projections of the points onto each of the unitvectors of the boundary projections = np.dot(points, boundary_unit_vectors) #npoints x nunitvecs maxprojs = np.argmax(projections, axis = 1) #argmax (of the unitvec) projection for each point #this tells us which len to compare against compare_distance_to = np.array([boundary_ls[i] for i in maxprojs]) distances = np.sqrt(points[:,0]**2 + points[:,1]**2) whichinside = distances<=compare_distance_to return whichinside
fa973c943c4827bd180eb95a3bbc3e0a7d2beb2a
27,829
def _get_erroneous_call(report_text: str) -> str: """.""" erroneous_line = [ line for line in report_text.splitlines() if line.startswith('> ') and RAISES_OUTPUT_SIGNAL_IN_CONTEXT in line ][0] erroneous_assertion = erroneous_line.lstrip('> ') erroneous_assertion = string_remove_from_start(erroneous_assertion, 'assert ') erroneous_assertion = string_remove_after(erroneous_assertion, ' ==') erroneous_assertion = erroneous_assertion.rstrip('= ') return erroneous_assertion
125267db8fb978285fc44ec078364b214c022ca9
27,830
def write_output(features, forecast_hours, poly, line, point): """ writes output to OUTDATA dict depending on query type :param features: output from clipping function :param forecast_hours: list of all queried forecast hours :param poly: boolean to identify a polygon query :param line: boolean to identify a line query :param point: boolean to identify a point query :returns: dict with all queried forecast hours and clipping results """ i = 0 if line and not poly and not point: OUTDATA = {"type": "FeatureCollection", "features": { "type": "Feature", "geometry": { "type": "LineString", "coordinates": features[0][0][0][4], }, "properties": { "Forecast Hours": [] } } } temp_line = [] dir_line = [] speed_line = [] for hour in forecast_hours: OUTDATA["features"]['properties']["Forecast Hours"].append({ "Forecast Hour": hour, }) for i in features[0]: if 'Temperature Data' in features[0][i][3]: for x in features[0][0]: temp_line.append([[x[0], x[1]], x[2]]) (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Temperature"]) = { "Observations Along Line": temp_line } if 'Wind Direction Data' in features[0][i][3]: for x in features[0][1]: dir_line.append([[x[0], x[1]], x[2]]) (OUTDATA["features"]['properties']["Forecast Hours"][ int(i/3)]["Wind Direction"]) = { "Observations Along Line": dir_line } if 'Wind Speed Data' in features[0][i][3]: for x in features[0][2]: speed_line.append([[x[0], x[1]], x[2]]) (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Wind Speed"]) = { "Observations Along Line": speed_line } return OUTDATA if poly: OUTDATA = {"type": "FeatureCollection", "features": { "type": "Feature", "geometry": { "type": "Polygon", "coordinates": features[0][0][4], }, "properties": { "Forecast Hours": [] } } } for hour in forecast_hours: OUTDATA["features"]['properties']["Forecast Hours"].append({ "Forecast Hour": hour, }) for i in features[0]: if 'Temperature Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Temperature"]) = { "Min Temperature": features[0][i][0], "Max Temperature": features[0][i][1], "Mean Temperature": features[0][i][2] } if 'Wind Direction Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Wind Direction"]) = { "Min Wind Direction": features[0][i][0], "Max Wind Direction": features[0][i][1], "Mean Wind Direction": features[0][i][2] } if 'Wind Speed Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Wind Speed"]) = { "Min Wind Speed": features[0][i][0], "Max Wind Speed": features[0][i][1], "Mean Wind Speed": features[0][i][2] } return OUTDATA if point: OUTDATA = {"type": "FeatureCollection", "features": { "type": "Feature", "geometry": { "type": "Point", "coordinates": [features[0][0][0], features[0][0][1]], }, "properties": { "Forecast Hours": [] } } } for hour in forecast_hours: OUTDATA["features"]['properties']["Forecast Hours"].append({ "Forecast Hour": hour, }) for i in features[0]: if 'Temperature Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Temperature"]) = { "Temperature": features[0][i][2], } if 'Wind Direction Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Wind Direction"]) = { "Wind Direction": features[0][i][2], } if 'Wind Speed Data' in features[0][i][3]: (OUTDATA["features"]['properties']["Forecast Hours"] [int(i/3)]["Wind Speed"]) = { "Wind Speed": features[0][i][2], } return OUTDATA
abc92e597e4d8a409f7c4d0e0b224a76b4a6cd63
27,831
def index(): """ Index set as main route """ return render_template('index.html', title='Home')
bacc433a4523a9b390bdde636ead91d72303cf01
27,832
def plus_one(digits): """ Given a non-empty array of digits representing a non-negative integer, plus one to the integer. :param digits: list of digits of a non-negative integer, :type digits: list[int] :return: digits of operated integer :rtype: list[int] """ result = [] carry = 1 for i in range(len(digits) - 1, -1, -1): result.append((digits[i] + carry) % 10) carry = (digits[i] + carry) // 10 if carry: result.append(1) return list(reversed(result))
a11668a1b2b9adb9165152f25bd1528d0cc2bd71
27,833
def run_experiment(input_frame, n_samples=1, temperature=1, npartitions=1): """ Runs experiment given inputs. Takes `n_samples` samples from the VAE Returns a list of size `n_samples` of results for each input """ encoder_data = a.get_encoder() decoder_data = a.get_decoder() vae = a.get_vae( encoder_data["model"], decoder_data["model"], encoder_data["tokenizer"], decoder_data["tokenizer"], beta=0, ) # partially apply function for evaluator # series here represents a row (we call with axis=1) def evaluator(series): return a.eval_analogy( vae, encoder_data["tokenizer"], decoder_data["tokenizer"], series[0], series[1], series[2], temperature=temperature, )[0] new_columns = ["pred_{}".format(i) for i in range(n_samples)] output_frame = pd.DataFrame() parallelize = npartitions > 1 for col in new_columns: if parallelize: output_frame[col] = input_frame.map_partitions( lambda df: df.apply(evaluator, axis=1) ).compute() else: output_frame[col] = input_frame.apply(evaluator, axis=1) return output_frame
2729a977b14235bf5a0e020fbe8a528a5906f212
27,834
def to_angle(s, sexagesimal_unit=u.deg): """Construct an `Angle` with default units. This creates an :class:`~astropy.coordinates.Angle` with the following default units: - A number is in radians. - A decimal string ('123.4') is in degrees. - A sexagesimal string ('12:34:56.7') or tuple has `sexagesimal_unit`. In addition, bytes are decoded to ASCII strings to normalize user inputs. Parameters ---------- s : :class:`~astropy.coordinates.Angle` or equivalent, string, float, tuple Anything accepted by `Angle` and also unitless strings, numbers, tuples sexagesimal_unit : :class:`~astropy.units.UnitBase` or str, optional The unit applied to sexagesimal strings and tuples Returns ------- angle : :class:`~astropy.coordinates.Angle` Astropy `Angle` """ try: return Angle(s) except u.UnitsError: # Bytes is a sequence of ints that will inadvertently end up as radians, so crash instead if isinstance(s, bytes): raise TypeError(f'Raw bytes {s} not supported: ' 'first decode to string (or add unit)') from None # We now have a number, string or tuple without a unit if isinstance(s, str) and ':' in s or isinstance(s, tuple): return Angle(s, unit=sexagesimal_unit) elif isinstance(s, str): return Angle(s, unit=u.deg) else: # XXX Maybe deprecate this in future and only deal with strings here return Angle(s, unit=u.rad)
106a5be01c3f9150862c1e02f5cd77292b029cf6
27,835
def simpleBlocking(rec_dict, blk_attr_list): """Build the blocking index data structure (dictionary) to store blocking key values (BKV) as keys and the corresponding list of record identifiers. A blocking is implemented that simply concatenates attribute values. Parameter Description: rec_dict : Dictionary that holds the record identifiers as keys and corresponding list of record values blk_attr_list : List of blocking key attributes to use This method returns a dictionary with blocking key values as its keys and list of record identifiers as its values (one list for each block). Examples: If the blocking is based on 'postcode' then: block_dict = {'2000': [rec1_id, rec2_id, rec3_id, ...], '2600': [rec4_id, rec5_id, ...], ... } while if the blocking is based on 'postcode' and 'gender' then: block_dict = {'2000f': [rec1_id, rec3_id, ...], '2000m': [rec2_id, ...], '2600f': [rec5_id, ...], '2600m': [rec4_id, ...], ... } """ block_dict = {} # The dictionary with blocks to be generated and returned print('Run simple blocking:') print(' List of blocking key attributes: '+str(blk_attr_list)) print(' Number of records to be blocked: '+str(len(rec_dict))) print('') for (rec_id, rec_values) in rec_dict.items(): rec_bkv = '' # Initialise the blocking key value for this record # Process selected blocking attributes # for attr in blk_attr_list: attr_val = rec_values[attr] rec_bkv += attr_val # Insert the blocking key value and record into blocking dictionary # if (rec_bkv in block_dict): # Block key value in block index # Only need to add the record # rec_id_list = block_dict[rec_bkv] rec_id_list.append(rec_id) else: # Block key value not in block index # Create a new block and add the record identifier # rec_id_list = [rec_id] block_dict[rec_bkv] = rec_id_list # Store the new block return block_dict
5bf9b85ad84ffa3dc11a39a876cbcfefe09a5b2c
27,836
def get_marker_obj(plugin, context, resource, limit, marker): """Retrieve a resource marker object. This function is used to invoke plugin._get_<resource>(context, marker) and is used for pagination. :param plugin: The plugin processing the request. :param context: The request context. :param resource: The resource name. :param limit: Indicates if pagination is in effect. :param marker: The id of the marker object. :returns: The marker object associated with the plugin if limit and marker are given. """ if limit and marker: return getattr(plugin, '_get_%s' % resource)(context, marker)
5e66ca50382c6e8a611983252ce44bf50019177b
27,837
def generative(max_value: int = FIBONACCI_MAX) -> int: """ This is the fully generative method for the Fibonacci sequence. The full sequence list is generated, the even ones are sought out, and summed --> benchmark: 8588 ns/run :param max_value: The ceiling value of Fibonacci numbers to be added :return: The summation in question """ i = 2 fibonacci_list = [*FIBONACCI_SEED] # generate the logger while (fibonacci_list[i-1] + fibonacci_list[i-2]) < max_value: fibonacci_list.append(fibonacci_list[i-1] + fibonacci_list[i-2]) i += 1 summation = 0 for number in fibonacci_list: if not number % 2: # if not odd summation += number return summation
086076d2599297fd23eaa5577985bd64df10cc81
27,839
def enc_net(num_classes, pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = Net(num_classes, **kwargs) # if pretrained: # model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model
ff8429e6b0e5ef522f6f2a3b0b10a76951a95db8
27,841
def get_bytes(data): """ Helper method to get the no. of bytes in the hex""" data = str(data) return int(len(sanatize_hex(data)) / 2)
014715aa301370ba2d3598c02b66c5b88741b218
27,842
import collections def _group_by(input_list, key_fn): """Group a list according to a key function (with a hashable range).""" result = collections.defaultdict(list) for x in input_list: result[key_fn(x)].append(x) return result
288c108588f9e4ea60c4dac6ff656c8c8ffde580
27,843
import json def set_parameters_in_cookie(response: Response) -> Response: """Set request parameters in the cookie, to use as future defaults.""" if response.status_code == HTTPStatus.OK: data = { param: request.args[param] for param in PARAMS_TO_PERSIST if param in request.args } response.set_cookie(PARAMS_COOKIE_NAME, json.dumps(data)) return response
bc5f4e225bdef907ee794e3f8f95ac3d78677046
27,844
from _pytest.logging import LogCaptureFixture import json from typing import Any import logging def test_wild_dlq_error(mock_handler: MagicMock, mock_rsmq: MagicMock, caplog: LogCaptureFixture) -> None: """test error level logs when message fails to successfully reach DLQ""" mock_handler.return_value = False, False mock_rsmq.return_value.sendMessage.return_value.execute = lambda: False m = {"uuid": str(uuid4())} rsmq_msg = { "id": "rsmq_id", "message": json.dumps(m), } mock_rsmq.return_value.receiveMessage.return_value.exceptions.return_value.execute = lambda: rsmq_msg cfg = { "comp_1": {"value": "random_val", "profile": "rsmq"}, "dlq": {"profile": "rsmq-dlq", "value": "my_dlq"}, } eng = Engine(input_queue="comp_1", dead_letter_queue="dlq", queue_config=cfg, metrics_port=None) @eng.stream_app def fun(msg: Any) -> bool: # pylint: disable=W0613 return True with caplog.at_level(logging.ERROR): fun() assert "failed producing message to dlq" in caplog.text eng.shutdown()
d00c32e27833975d819b333c723734d24b3ead65
27,845
from typing import VT from typing import Optional def teleport_reduce(g: BaseGraph[VT,ET], quiet:bool=True, stats:Optional[Stats]=None) -> BaseGraph[VT,ET]: """This simplification procedure runs :func:`full_reduce` in a way that does not change the graph structure of the resulting diagram. The only thing that is different in the output graph are the location and value of the phases.""" s = Simplifier(g) s.full_reduce(quiet=quiet, stats=stats) return s.mastergraph
38474e11094a21e581a18591b7649fdbdd977d72
27,846
def map_coords_to_scaled(coords, orig_size, new_size): """ maps coordinate indices relative to the original 3-D image to indices corresponding to the re-scaled 3-D image, given the coordinate indices and the shapes of the original and "new" scaled images. Returns integer indices of the voxel that contains the center of the transformed coordinate location. """ return tuple( [int(i) for i in map_coords_to_scaled_float(coords, orig_size, new_size)] )
74236074a0c6c5afbb56bd5ec75caaf517730040
27,847
def _PromptToUpdate(path_update, completion_update): """Prompt the user to update path or command completion if unspecified. Args: path_update: bool, Value of the --update-path arg. completion_update: bool, Value of the --command-completion arg. Returns: (path_update, completion_update) (bool, bool) Whether to update path and enable completion, respectively, after prompting the user. """ # If both were specified, no need to prompt. if path_update is not None and completion_update is not None: return path_update, completion_update # Ask the user only one question to see if they want to do any unspecified # updates. actions = [] if path_update is None: actions.append(_PATH_PROMPT) if completion_update is None: actions.append(_COMPLETION_PROMPT) prompt = '\nModify profile to {}?'.format(' and '.join(actions)) response = console_io.PromptContinue(prompt) # Update unspecified values to equal user response. path_update = response if path_update is None else path_update completion_update = (response if completion_update is None else completion_update) return path_update, completion_update
2759e9c42c702a69fa617fc3302cb3c850afc54a
27,848
def _get_static_covariate_df(trajectories): """The (static) covariate matrix.""" raw_v_df = ( trajectories.static_covariates.reset_coords(drop=True).transpose( 'location', 'static_covariate').to_pandas()) # This can then be used with, e.g. patsy. # expanded_v_df = patsy(raw_v_df, ...patsy details...) # Optionally it can be converted back to xa using. # expanded_v_xa = xarray.DataArray(expanded_v_df) # for now... v_df = raw_v_df return v_df
15c8f367452fc5007ad93fd86e04cfea07e96982
27,850
import json def answer_cells_of_nb(a_ipynb): """ get the contents of all answer cells (having grade_id) in an a_ipynb file """ cells = {} with open(a_ipynb) as ipynb_fp: content = json.load(ipynb_fp) for cell in content["cells"]: meta = cell["metadata"] nbg = meta.get("nbgrader") if nbg is None or not nbg["solution"]: continue assert("grade_id" in nbg), (a_ipynb, cell) prob_name = nbg["grade_id"] # like a1-1-1 source = cell["source"] outputs = cell.get("outputs", []) assert(prob_name not in cells), prob_name cells[prob_name] = source, outputs return cells
3b011d48a8ccfa13d462cccf1b0a58440231a1ce
27,851
def _transpose_augment(img_arr): """ 对称扩增 """ img = Image.fromarray(img_arr, "L") return [np.asarray(img.transpose(Image.FLIP_LEFT_RIGHT))]
096c8db4c008c78a5f22bffeea8bb64fb0a4de09
27,852