content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def SplitRecursively(x, num_splits, axis=-1): """Splits Tensors in 'x' recursively. Args: x: a Tensor, or a list or NestMap containing Tensors to split. num_splits: number of splits per Tensor. axis: the split axis. Returns: A list of split values of length 'num_splits'. - If 'x' is a Tensor, a list of split Tensors. - If 'x' is a list, a list of lists, where each sublist has the same length as 'x' and the k'th element in each sublist corresponds to a split of the k'th element from 'x'. - If 'x' is a `.NestedMap`, a list of `.NestedMap`, where each field corresponds to a split from the same field of 'x'. """ if isinstance(x, tf.Tensor): return tf.split(x, num_splits, axis=axis) elif isinstance(x, list): splits = [SplitRecursively(element, num_splits, axis) for element in x] splits = list(zip(*splits)) return [list(t) for t in splits] elif isinstance(x, NestedMap): results = [NestedMap() for _ in range(num_splits)] for key, val in x.items(): val_splits = SplitRecursively(val, num_splits, axis) for i in range(num_splits): results[i][key] = val_splits[i] return results else: raise TypeError('Unexpected type for SplitRecursively: %s' % type(x))
75b7f1bae3af09dc27147b234a1a17ee8c6c988a
21,693
import time def generate_entry(request, properties, data, mtime=None): """ Takes a properties dict and a data string and generates a generic entry using the data you provided. :param request: the Request object :param properties: the dict of properties for the entry :param data: the data content for the entry :param mtime: the mtime tuple (as given by ``time.localtime()``). if you pass in None, then we'll use localtime. """ entry = EntryBase(request) entry.update(properties) entry.set_data(data) if mtime: entry.set_time(mtime) else: entry.set_time(time.localtime()) return entry
3fcbaa919a2abb3d35e5d096b65b8d3ddf020b51
21,694
def info(): """Refresh teh client session using the refresh token""" global client client = client.refresh_session(app_id, app_secret) return "Refreshed"
0bd7070d020a40af17a105663e8cfca6b7bbc800
21,695
def weight_point_in_circle( point: tuple, center: tuple, radius: int, corner_threshold: float = 1.5 ): """ Function to decide whether a certain grid coordinate should be a full, half or empty tile. Arguments: point (tuple): x, y of the point to be tested center (tuple): x, y of the origin (center) point radius (int): radius of certainly empty tiles, does not include half tiles corner_threshold (float): threshold that decides if the tile should be a half tile instead of empty Returns: int: the type of the tested tile 0 if empty tile 1 if full tile 2 if half tile """ diff_x, diff_y = map(lambda x, y: abs(x - y), center, point) # subtract point from center then abs for both x and y if (diff_y > radius) or (diff_x > radius): return 0 # eliminate any obviously out of bounds tiles # precalculate pythagoras distance squared dist_squared = (diff_x * diff_x) + (diff_y * diff_y) # precalculate radius sqaured radius_squared = radius * radius # precalculate rounded distance rounded_distance = round(dist_squared) if rounded_distance < radius_squared: # distance within radius return 1 # full tile elif rounded_distance < radius_squared * corner_threshold and diff_x < radius: # distance on edge return 2 # half tile # outside of any thresholds return 0
db0da5e101184975385fb07e7b22c5e8a6d4fd47
21,696
def encipher_shift(plaintext, plain_vocab, shift): """Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] cipher = ShiftEncryptionLayer(plain_vocab, shift) for _, sentence in enumerate(plaintext): cipher_sentence = [] for _, character in enumerate(sentence): encrypted_char = cipher.encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
4bdd9d00523aa546ca697e45f31db6739ad71723
21,697
def esmf_interp_points(ds_in, locs_lon, locs_lat, lon_field_name='lon', lat_field_name='lat'): """Use ESMF toolbox to interpolate grid at points.""" # generate grid object grid = esmf_create_grid(ds_in[lon_field_name].values.astype(np.float), ds_in[lat_field_name].values.astype(np.float)) # generate location stream object locstream = esmf_create_locstream_spherical(locs_lon.values.astype(np.float), locs_lat.values.astype(np.float)) # generate regridding object srcfield = ESMF.Field(grid, name='srcfield') dstfield = ESMF.Field(locstream, name='dstfield') regrid = ESMF.Regrid(srcfield, dstfield, regrid_method=ESMF.RegridMethod.BILINEAR, unmapped_action=ESMF.UnmappedAction.ERROR) # construct output dataset coords = {c: locs_lon[c] for c in locs_lon.coords} dims_loc = locs_lon.dims nlocs = len(locs_lon) ds_out = xr.Dataset(coords=coords, attrs=ds_in.attrs) for name, da_in in ds_in.data_vars.items(): # get the dimensions of the input dataset; check if it's spatial dims_in = da_in.dims if lon_field_name not in dims_in or lat_field_name not in dims_in: continue # get the dimension/shape of output non_lateral_dims = dims_in[:-2] dims_out = non_lateral_dims + dims_loc shape_out = da_in.shape[:-2] + (nlocs,) # create output dataset da_out = xr.DataArray((np.ones(shape_out)*np.nan).astype(da_in.dtype), name=name, dims=dims_out, attrs=da_in.attrs, coords={c: da_in.coords[c] for c in da_in.coords if c in non_lateral_dims}) dstfield.data[...] = np.nan if len(non_lateral_dims) > 0: da_in_stack = da_in.stack(non_lateral_dims=non_lateral_dims) da_out_stack = xr.full_like(da_out, fill_value=np.nan).stack(non_lateral_dims=non_lateral_dims) for i in range(da_in_stack.shape[-1]): srcfield.data[...] = da_in_stack.data[:, :, i].T dstfield = regrid(srcfield, dstfield, zero_region=ESMF.Region.SELECT) da_out_stack.data[:, i] = dstfield.data da_out.data = da_out_stack.unstack('non_lateral_dims').transpose(*dims_out).data else: srcfield.data[...] = da_in.data[:, :].T dstfield = regrid(srcfield, dstfield, zero_region=ESMF.Region.SELECT) da_out.data = dstfield.data ds_out[name] = da_out return ds_out
b90322b852c2523a3265c9e0877675dc59717ec9
21,698
def update_loan_record(id_: int, loan_record: LoanRecord) -> bool: """Update a loan record from the database Args: id_: loan record id which wants to be modified. loan_record: new information for updating.""" updated_data = {key: value for key, value in loan_record.items() if value is not None} # type: ignore with session_scope() as session: result = session.query(LoanRequest).filter(LoanRequest.id == id_).update(updated_data) session.commit() return bool(result)
933d6551cf7c719bc98a4c3b37392ceba3f9e3f4
21,699
def check_results(results): """Examines a list of individual check results and returns an overall result for all checks combined. """ if CheckResults.SCALE_UP in results: return CheckResults.SCALE_UP if all(r == CheckResults.SCALE_DOWN for r in results): return CheckResults.SCALE_DOWN return CheckResults.DONT_SCALE
a7a18caca42c9a6f555110418b96b5cc6b9d203c
21,700
def edit_route(link_id): """edit link""" link = dynamo.tables[TABLE_NAME].get_item(Key={'id': link_id})['Item'] form = LinkForm(link=link['link'], tags=','.join(link['tags'])) if form.validate_on_submit(): link, tags = form.parsed_data() dynamo.tables[TABLE_NAME].update_item( Key={'id': link_id}, UpdateExpression='set link = :link, tags = :tags', ExpressionAttributeValues={':link': link, ':tags': tags}, ReturnValues='UPDATED_NEW') return redirect(url_for('app.index_route')) return render_template('addedit.html', form=form)
b20f22345d3de2b474e04821bdfbee5391f1d493
21,702
def build_empty_pq(): """Build empty pq.""" return PriorityQ()
a18dc1ac16ceb2475f47e1f55e0617957c1e0cad
21,703
def add_flags(flags): """Add KZC flags""" def f(test, way): test.args += flags return f
58c6db2bb46c321ce3e3592ac8be2ee6d1feecb6
21,704
def public_jsonp_service(view): """ More explicitly named to call attention to the extra little p """ return _json_service_wrapper(JSONPResponse, view)
76588ade3d537a102dc6ca3bf540bc32da928e30
21,706
def manage_data(xls_file: str) -> list: """ 转换xls手动标注的数据为待处理的格式 :param xls_file: 目标文件路径 :return: 转换后的字典列表 """ f = pd.read_excel(xls_file, index=False) cnt = 0 result = [] while cnt < len(f) - 1: if f.text[cnt] == f.text[cnt + 1]: temp_dic = {'text': f.text[cnt], 'spo_list': []} while cnt < len(f) - 1 and f.text[cnt] == f.text[cnt + 1]: temp_dic['spo_list'].append(f.iloc[cnt, 1:].to_dict()) cnt += 1 temp_dic['spo_list'].append(f.iloc[cnt, 1:].to_dict()) cnt += 1 result.append(temp_dic) else: temp_dic = {'text': f.text[cnt], 'spo_list': [f.iloc[cnt, 1:].to_dict()]} result.append(temp_dic) cnt += 1 return result
3198013b713f50b650bc5b3542905d1e860a6871
21,707
def get_arrival_times(inter_times): """Convert interevent times to arrival times.""" return inter_times.cumsum()
7197fc6315d3eaca118ca419f23aed7c0d7cd064
21,708
def generate_custom_background(size, background_color, nb_blobs=3000, kernel_boundaries=(50, 100)): """ Generate a customized background to fill the shapes Parameters: background_color: average color of the background image nb_blobs: number of circles to draw kernel_boundaries: interval of the possible sizes of the kernel """ img = np.zeros(size, dtype=np.uint8) img = img + get_random_color(background_color) blobs = np.concatenate([random_state.randint(0, size[1], size=(nb_blobs, 1)), random_state.randint(0, size[0], size=(nb_blobs, 1))], axis=1) for i in range(nb_blobs): col = get_random_color(background_color) cv.circle(img, (blobs[i][0], blobs[i][1]), random_state.randint(20), col, -1) kernel_size = random_state.randint(kernel_boundaries[0], kernel_boundaries[1]) cv.blur(img, (kernel_size, kernel_size), img) return img
782883d29cf67dbb33662fbb22b457783320101d
21,709
def rotate_z(domain, nrot=4): """take BoxCollection and return equivalent CylinderCollection by rotating about the second axis. thus, transform coordinates of points like (x, z) --> (x, 0, z).""" return rotate(domain, d=1, nrot=nrot)
ca1b197d758a18b86675a14be952065055dea05f
21,710
def filter_roi(roi_data, nb_nonzero_thr): """Filter slices from dataset using ROI data. This function filters slices (roi_data) where the number of non-zero voxels within the ROI slice (e.g. centerline, SC segmentation) is inferior or equal to a given threshold (nb_nonzero_thr). Args: roi_data (nd.array): ROI slice. nb_nonzero_thr (int): Threshold. Returns: bool: True if the slice needs to be filtered, False otherwise. """ # Discard slices with less nonzero voxels than nb_nonzero_thr return not np.any(roi_data) or np.count_nonzero(roi_data) <= nb_nonzero_thr
9e325f77436e152377bee84d7e82d3f80424f288
21,711
def from_numpy(shape, dt): """ Upcast a (shape, dtype) tuple if possible. >>> from_numpy((5,5), dtype('int32')) dshape('5, 5, int32') """ dtype = np.dtype(dt) if dtype.kind == 'S': measure = String(dtype.itemsize, 'A') elif dtype.kind == 'U': measure = String(dtype.itemsize / 4, 'U8') elif dtype.fields: rec = [(a,CType.from_dtype(b[0])) for a,b in dtype.fields.items()] measure = Record(rec) else: measure = CType.from_dtype(dtype) if shape == (): return measure else: return DataShape(parameters=(map(Fixed, shape)+[measure]))
249701a885dc01d13fe356ce4117300e79d803a5
21,712
import optparse def ParseArgs(): """Parse the command line options.""" option_parser = optparse.OptionParser() option_parser.add_option( '--from', dest='sender', metavar='EMAIL', help='The sender\'s email address') option_parser.add_option( '--to', action='append', metavar='EMAIL', dest='recipients', default=[], help='The recipient\'s address (reapeatable)') option_parser.add_option( '--subject', metavar='TEXT|@FILE', help='The subject of the email') option_parser.add_option( '--message', metavar='TEXT|@FILE', help='The body of the message') option_parser.add_option( '--attach', metavar='FILE', action='append', dest='attachments', default=[], help='The path of a file to attach') option_parser.add_option( '--ignore-missing', action='store_true', default=False, help='No errors on attempts to attach non-existing files') option_parser.add_option('--server', help='The SMTP server to use') option_parser.add_option('--password', help='The password to use') options, _args = option_parser.parse_args() if not options.sender: option_parser.error('--from is required') if not options.recipients: option_parser.error('At least one --to is required') if not options.subject: option_parser.error('--subject is required') if not options.message: option_parser.error('--message is reuqired') if not options.server: option_parser.error('--server is required') options.subject = ResolveParameter(options.subject) options.message = ResolveParameter(options.message) return options
eb1ee1c5fb66f76882aef0787e2c4716146526f4
21,713
def pyramidnet110_a84_cifar100(classes=100, **kwargs): """ PyramidNet-110 (a=84) model for CIFAR-100 from 'Deep Pyramidal Residual Networks,' https://arxiv.org/abs/1610.02915. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ return get_pyramidnet_cifar( classes=classes, blocks=110, alpha=84, bottleneck=False, model_name="pyramidnet110_a84_cifar100", **kwargs)
f005c26e80e87536b5032685f27944560e5d8fc7
21,714
def contains_vendored_imports(python_path): """ Returns True if ``python_path`` seems to contain vendored imports from botocore. """ # We're using a very rough heuristic here: if the source code contains # strings that look like a vendored import, we'll flag. # # Because Python is dynamic, there are lots of ways you could be # importing the vendored modules that wouldn't be caught this way, but: # # 1. Doing it in a complete foolproof way is incredibly complicated, and # I don't care that much. # 2. If you're writing your Lambda code in a deliberately obfuscated way, # you have bigger problems than vendor deprecations. # # In practice, Python imports are usually near the top of the file, so we # read it line-by-line. This means if we find an import, we can skip # reading the rest of the file. # with open(python_path, "rb") as python_src: for line in python_src: if ( b"import botocore.vendored" in line or b"from botocore.vendored import " in line ): return True return False
90ed6939d7f43cac29eb66c3e27e911b9cc62532
21,715
def filter_uniq(item): """Web app, feed template, creates unique item id""" detail = item['item'] args = (item['code'], item['path'], str(detail['from']), str(detail['to'])) return ':'.join(args)
914fa4e3fcdf6bc7e6a30b46c8f33eecd08adcf1
21,716
import joblib import time import logging import warnings import pickle def load_pickle(filename, verbose=2, use_joblib=False): """ Note: joblib can be potentially VERY slow. """ with open(filename, 'rb') as file: if verbose >= 2: start = time.time() logging.info(f'Loading PICKLE from {filename}...') if use_joblib: warnings.warn('Joblib is slower in newer versions of Python.') obj = joblib.load(file) else: try: obj = pickle.load(file) except EOFError as e: logging.error(f'Load FAILED for {filename}.') raise e if verbose >= 2: logging.info(f'Load done in {np.round(time.time()-start, 4)} seconds.') return obj
680c4b72e47efeb58ec1bd93e4899a3ae6b99709
21,717
from typing import Match async def make_match(*args, register=False, **kwargs) -> Match: """Create a Match object. There should be no need to call this directly; use matchutil.make_match instead, since this needs to interact with the database. Parameters ---------- racer_1_id: int The DB user ID of the first racer. racer_2_id: int The DB user ID of the second racer. max_races: int The maximum number of races this match can be. (If is_best_of is True, then the match is a best of max_races; otherwise, the match is just repeating max_races.) match_id: int The DB unique ID of this match. suggested_time: datetime.datetime The time the match is suggested for. If no tzinfo, UTC is assumed. r1_confirmed: bool Whether the first racer has confirmed the match time. r2_confirmed: bool Whether the second racer has confirmed the match time. r1_unconfirmed: bool Whether the first racer wishes to unconfirm the match time. r2_unconfirmed: bool Whether the second racer wishes to unconfirm the match time. match_info: MatchInfo The types of races to be run in this match. cawmentator_id: int The DB unique ID of the cawmentator for this match. sheet_id: int The sheetID of the worksheet the match was created from, if any. register: bool Whether to register the match in the database. Returns --------- Match The created match. """ if 'match_id' in kwargs and kwargs['match_id'] in match_library: return match_library[kwargs['match_id']] match = Match(*args, commit_fn=matchdb.write_match, **kwargs) await match.initialize() if register: await match.commit() match_library[match.match_id] = match return match
67346038696558f19b08a65cf45e88646b1186e4
21,718
def is_anonymous(context: TreeContext) -> bool: """Returns ``True`` if the current node is anonymous.""" # return context[-1].anonymous tn = context[-1].tag_name return not tn or tn[0] == ':'
0169a93cada0d371b3b4628ff3fabbbef6ef60f2
21,719
def expand_to_beam_size(tensor, beam_size): """Tiles a given tensor by beam_size.""" tensor = tf.expand_dims(tensor, axis=1) tile_dims = [1] * tensor.shape.ndims tile_dims[1] = beam_size return tf.tile(tensor, tile_dims)
e38adceceeecdab737f89f246125674ac87e4702
21,720
def delete_cluster(access_token, project_id, cluster_id): """删除集群""" url = f"{BCS_CC_API_PRE_URL}/projects/{project_id}/clusters/{cluster_id}/" params = {"access_token": access_token} return http_delete(url, params=params)
f48d7f8a6278e528792601938817d883751d7a41
21,722
def atoi(s, base=None): # real signature unknown; restored from __doc__ """ atoi(s [,base]) -> int Return the integer represented by the string s in the given base, which defaults to 10. The string s must consist of one or more digits, possibly preceded by a sign. If base is 0, it is chosen from the leading characters of s, 0 for octal, 0x or 0X for hexadecimal. If base is 16, a preceding 0x or 0X is accepted. """ return 0
420c9a68c1fe829a665eaba830df757114a81b47
21,724
def gzip_requested(accept_encoding_header): """ Check to see if the client can accept gzipped output, and whether or not it is even the preferred method. If `identity` is higher, then no gzipping should occur. """ encodings = parse_encoding_header(accept_encoding_header) # Do the actual comparisons if('gzip' in encodings): return encodings['gzip'] >= encodings['identity'] elif('*' in encodings): return encodings['*'] >= encodings['identity'] else: return False
a07ca3d77095467791fc97d1a525ee878715e929
21,725
def precip_units(units): """ Return a standardized name for precip units. """ kgm2s = ['kg/m2/s', '(kg/m^2)/s', 'kg/m^2/s', 'kg m^-2 s^-1', 'kg/(m^2 s)', 'kg m-2 s-1'] mmday = ['mm/day', 'mm day^-1'] if units.lower() in kgm2s: return 'kg m^-2 s^-1' elif units.lower() in mmday: return 'mm day^-1' else: raise ValueError('Unknown units ' + units)
e5f94c3dd41b68d2e7b6b7aa1905fd5508a12fab
21,727
from typing import Union from typing import List def enumerate_quantities( df: pd.DataFrame, cols: Union[List[str], None] = None, qty_col: str = "quantity" ) -> pd.DataFrame: """Creates new dataframe to convert x,count to x*count.""" if not cols: raise ValueError("parameter cols must be an iterable of strings") new_cols: List = [ sum(df.apply(lambda x: [x[col]] * x[qty_col], axis=1).tolist(), []) for col in cols ] new_df = pd.DataFrame(new_cols, index=cols).T return new_df
0defc1575ead9b70f658be5ed6795b22c3b39ac7
21,728
def calcul_acc(labels, preds): """ a private function for calculating accuracy Args: labels (Object): actual labels preds (Object): predict labels Returns: None """ return sum(1 for x, y in zip(labels, preds) if x == y) / len(labels)
3dc22c8707c181dda50e2a37f2cd822b2a31590d
21,729
def makeMolFromAtomsAndBonds(atoms, bonds, spin=None): """ Create a new Molecule object from a sequence of atoms and bonds. """ mol = Molecule(pybel.ob.OBMol()) OBMol = mol.OBMol for atomicnum in atoms: a = pybel.ob.OBAtom() a.SetAtomicNum(atomicnum) OBMol.AddAtom(a) for bond in bonds: if len(bond) != 3: raise Exception('Bond must be specified by two indices and a bond order') OBMol.AddBond(bond[0] + 1, bond[1] + 1, bond[2]) mol.assignSpinMultiplicity() if spin is not None: OBMol.SetTotalSpinMultiplicity(spin) OBMol.SetHydrogensAdded() return mol
570dafe641bbade0d070942ea8e708d7e454e011
21,730
def get_preprocessor(examples, tokenize_fn, pad_ids): """ Input: examples: [List[str]] input texts tokenize_fn: [function] encodes text into IDs Output: tf input features """ def generator(): for example in examples: tokens = tokenize_fn(example) yield pad_ids + tokens return generator
0b2fb2217e04183fee027faedd163a8f8a048e9a
21,732
def is_propositional_effect(eff: BaseEffect): """ An effect is propositional if it is either an add or a delete effect. """ return isinstance(eff, (AddEffect, DelEffect))
be440b2192dd6b89fcaff5756e774e7543f408cf
21,733
def read_user(msg): """Read user input. :param msg: A message to prompt :type msg: ``str`` :return: ``True`` if user gives 'y' otherwhise False. :rtype: ``bool`` """ user_input = input("{msg} y/n?: ".format(msg=msg)) return user_input == 'y'
662e95002130a6511e6e9a5d6ea85805f6b8f0f5
21,734
import scipy def frechet_distance(real, fake): """Frechet distance. Lower score is better. """ n = real.shape[0] mu1, sigma1 = np.mean(real, axis=0), np.cov(real.reshape(n, -1), rowvar=False) mu2, sigma2 = np.mean(fake, axis=0), np.cov(fake.reshape(n, -1), rowvar=False) diff = mu1 - mu2 covmean, _ = scipy.linalg.sqrtm(sigma1.dot(sigma2), disp=False) if not np.isfinite(covmean).all(): msg = ( "fid calculation produces singular product; " "adding %s to diagonal of cov estimates" ) % eps print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = scipy.linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError("Imaginary component {}".format(m)) covmean = covmean.real assert np.isfinite(covmean).all() and not np.iscomplexobj(covmean) tr_covmean = np.trace(covmean) frechet_dist = diff.dot(diff) frechet_dist += np.trace(sigma1) + np.trace(sigma2) frechet_dist -= 2 * tr_covmean return frechet_dist
55ed2a4f21b8987925083c925e7df6de7b305c06
21,735
import requests def get_tenants(zuul_url): """ Fetch list of tenant names """ is_witelabel = requests.get( "%s/info" % zuul_url).json().get('tenant', None) is not None if is_witelabel: raise RuntimeError("Need multitenant api") return [ tenant["name"] for tenant in requests.get("%s/tenants" % zuul_url).json() ]
97944d2de2a8dfc2dd50dbea46a135a184e7aa37
21,736
def ant(): """Configuration for MuJoCo's ant task.""" locals().update(default()) # Environment env = 'Ant-v2' max_length = 1000 steps = 2e7 # 20M return locals()
1b99dba9f38b735056055c564e1143c5eb77401a
21,737
def docker_run(task, image, pull_image=True, entrypoint=None, container_args=None, volumes=None, remove_container=True, **kwargs): """ This task runs a docker container. For details on how to use this task, see the :ref:`docker-run` guide. :param task: The bound task reference. :type task: :py:class:`girder_worker.task.Task` :param image: The docker image identifier. :type image: str :param pull_image: Whether to explicitly pull the image prior to running the container. :type pull_image: bool :param entrypoint: Alternative entrypoint to use when running the container. :type entrypoint: str :param container_args: Arguments to pass to the container. :type container_args: list :param volumes: Volumes to expose to the container. :type volumes: dict :param remove_container: Whether to delete the container after the task is done. :type remove_container: bool :return: Fulfilled result hooks. :rtype: list """ return _docker_run( task, image, pull_image, entrypoint, container_args, volumes, remove_container, **kwargs)
6ddc61d47c7b78bf532195a8cddd37f3c730b675
21,738
def get_accuracy(pred, target): """gets accuracy either by single prediction against target or comparing their codes """ if len(pred.size()) > 1: pred = pred.max(1)[1] #pred, target = pred.flatten(), target.flatten() accuracy = round(float((pred == target).sum())/float(pred.numel()) * 100, 3) return accuracy
f30e57602e4a06b0a0e3cd131bf992cf8f9b514e
21,739
import numpy def ifourier_transform(F,dt,n): """ See Also ------- fourier_transform """ irfft = numpy.fft.irfft shift = numpy.fft.fftshift return (1.0/dt)*shift(irfft(F,n=n))
d068cdbbe95f58d4210d2e799dfaee878fb9bf98
21,740
def preprocess_labels(labels, encoder=None, categorical=True): """Encode labels with values among 0 and `n-classes-1`""" if not encoder: encoder = LabelEncoder() encoder.fit(labels) y = encoder.transform(labels).astype(np.int32) if categorical: y = np_utils.to_categorical(y) return y, encoder
3d92ce70f6ae7f713b27f5a31e92f0aab919584b
21,741
def import_minimal_log(path, parameters=None, variant=DEFAULT_VARIANT_LOG): """ Import a Parquet file (as a minimal log with only the essential columns) Parameters ------------- path Path of the file to import parameters Parameters of the algorithm, possible values: Parameters.COLUMNS -> columns to import from the Parquet file variant Variant of the algorithm, possible values: - Variants.PYARROW Returns ------------- df Pandas dataframe """ if parameters is None: parameters = {} parameters[COLUMNS] = [constants.CASE_CONCEPT_NAME, xes.DEFAULT_NAME_KEY, xes.DEFAULT_TIMESTAMP_KEY] return exec_utils.get_variant(variant).import_log(path, parameters=parameters)
530f60799318b90c90d08d427965041e4bda6dba
21,742
def get_input_assign(input_signal, input_value): """ Get input assignation statement """ input_assign = ReferenceAssign( input_signal, Constant(input_value, precision=input_signal.get_precision()) ) return input_assign
9b3e372423d323af3a718ab909c26f2ba42bfea6
21,743
def prune_repos(region: str=None, registry_prefix: str=None, repo: str=None, current_tag: str=None, all_tags: str=None): """ Pull the image from the registry if it doesn't exist locally :param region: :param registry_prefix: :param repo: :param current_tag: :param all_tags: :return: """ # Get the tags from the all_tags JSON all_tags_list = get_tags_from_all_tags(all_tags) # Add the current_tag to the recent (local) tags. Just to be safe recent_tags = all_tags_list + [current_tag] # Get the tags for the repo from ECR ecr_tags = get_tags_from_ecr(region, repo) # Get all the tags in the registry that are *not* the ones we want bad_tags = [tag for tag in ecr_tags if tag not in recent_tags] # Delete the obsolete images for tag in bad_tags: output = get_stdout('''{AWS} ecr batch-delete-image --region {region} --repository-name {repo} --image-ids imageTag={tag}''' .format(AWS=AWS, region=region, repo=repo, tag=tag)) return True
d5d21230f4440e4909a9ff0288a794471b5fb016
21,744
def convert_size_bytes_to_gb(size_in_bytes): """:rtype: float""" return float(size_in_bytes) / GB
7d3946dc431aa6a531fa11ef8e5391279f8b553a
21,745
def merge_swab(survey_df, swab_df): """ Process for matching and merging survey and swab result data. Should be executed after merge with blood test result data. """ survey_antibody_swab_df, none_record_df = execute_merge_specific_swabs( survey_df=survey_df, labs_df=swab_df, barcode_column_name="swab_sample_barcode", visit_date_column_name="visit_datetime", received_date_column_name="pcr_result_recorded_datetime", void_value="Void", ) survey_antibody_swab_df = survey_antibody_swab_df.drop( "abs_offset_diff_vs_visit_hr_swab", "count_barcode_swab", "count_barcode_voyager", "diff_vs_visit_hr_swab", "pcr_flag", "time_order_flag", "time_difference_flag", ) df_all_iqvia, df_lab_residuals, df_failed_records = merge_process_filtering( df=survey_antibody_swab_df, none_record_df=none_record_df, merge_type="swab", barcode_column_name="swab_sample_barcode", lab_columns_list=[column for column in swab_df.columns if column != "swab_sample_barcode"], ) return df_all_iqvia, df_lab_residuals, df_failed_records
38253b473c45a967dc1aeccdd61e94566014a347
21,746
def confirm_space(environ, start_response): """ Confirm a spaces exists. If it does, raise 204. If not, raise 404. """ store = environ['tiddlyweb.store'] space_name = environ['wsgiorg.routing_args'][1]['space_name'] try: space = Space(space_name) store.get(Recipe(space.public_recipe())) store.get(Recipe(space.private_recipe())) except NoRecipeError: raise HTTP404('%s does not exist' % space_name) start_response('204 No Content', []) return ['']
aff453f96bb85895115dff9796387bc223151c81
21,747
def find_ppp_device_status(address=None, username=None): """Find device status node based on address and/or username. This is currently only used by the web UI. For the web UI this is the best guess for identifying the device related to a forced web forward; which allows the web UI to default username for user login, for instance. """ def _f1(d): return (address is not None) and (d.getS(ns.pppAddress, rdf.IPv4Address) == address) def _f2(d): return (username is not None) and (d.getS(ns.username, rdf.String) == username) # There may be multiple matching devices in corner cases, e.g. two devices # in RDF with the same IP address. License monitor reconcile process should # eliminate these discrepancies eventually but here we may still encounter # them from time to time. # # If there are multiple matching entries, we take the newest one and assume # that is the desired one. If the entries have a different username, this # may match to the wrong user. This is not critical: the web UI does not # allow the user to make any user-related changes until the user has logged # in (providing his password). This function only provides the default value # for login username. # # So: return device with latest startTime (newest connection), or first in # list if no startTime is found. [filter_ppp_device_statuses_single does this.] return filter_ppp_device_statuses_single([_f1, _f2])
71d44185a5df8f72b1281102faef66ea4f8a1de1
21,748
def get_L_dash_prm_bath_OS_90(house_insulation_type, floor_bath_insulation): """主開口方向から時計回りに90°の方向の外気に面した浴室の土間床等の外周部の長さ (m) Args: house_insulation_type(str): 床断熱住戸'または'基礎断熱住戸' floor_bath_insulation(str): 床断熱住戸'または'基礎断熱住戸'または'浴室の床及び基礎が外気等に面していない' Returns: float: 主開口方向から時計回りに90°の方向の外気に面した浴室の土間床等の外周部の長さ (m) """ return get_table_3(38, house_insulation_type, floor_bath_insulation)
13362e5f035865b38ea6562aa7a836ce95298590
21,749
import json def generate_books(request, form): """ Returns a list of books. """ list_of_books = Book.generate_existing_books(form.cleaned_data['part']) return HttpResponse(json.dumps(list_of_books), content_type='application/json')
d75deab68c4cb4cdc9f14e4a313ffd060ab01004
21,751
def window_reverse_4d(windows, window_size, H_q, W_q, H_s, W_s): """ Args: windows: (num_windows*B, window_size, window_size, window_size, window_size, C) window_size (int): size of window H_q (int): Height of query image W_q (int): Width of query image H_s (int): Height of support image W_s (int): Width of support image Returns: x: (B, H_q, W_q, H_s, W_s, C) """ kwargs = { 'H_q': H_q // window_size, 'W_q': W_q // window_size, 'H_s': H_s // window_size, 'W_s': W_s // window_size } x = rearrange(windows, '(B H_q W_q H_s W_s) W_1 W_2 W_3 W_4 C -> B (H_q W_1) (W_q W_2) (H_s W_3) (W_s W_4) C', **kwargs) return x
8ef2743ec15c140807a9c269680f8bd3810703a3
21,752
def numeric(symbols, negative, value): """Implement the algorithm for `type: numeric`.""" if value == 0: return symbols[0] is_negative = value < 0 if is_negative: value = abs(value) prefix, suffix = negative reversed_parts = [suffix] else: reversed_parts = [] length = len(symbols) value = abs(value) while value != 0: reversed_parts.append(symbols[value % length]) value //= length if is_negative: reversed_parts.append(prefix) return ''.join(reversed(reversed_parts))
4eb41904f1ead6e6f8f6d6a5a7855d917a0029b7
21,754
from typing import Dict def scale_value_dict(dct: Dict[str, float], problem: InnerProblem): """Scale a value dictionary.""" scaled_dct = {} for key, val in dct.items(): x = problem.get_for_id(key) scaled_dct[key] = scale_value(val, x.scale) return scaled_dct
f7ad0cf51129d7abfb85fdba8d64f1c69bba2bad
21,755
def green(string: str) -> str: """Add green colour codes to string Args: string (str): Input string Returns: str: Green string """ return "\033[92m" + string + "\033[0m"
b6bdefe3e467e88c044b9289ea26a59ccf564f1a
21,757
def from_6x6_to_21x1(T): """Convert symmetric second order tensor to first order tensor.""" C2 = np.sqrt(2) V = np.array([[T[0, 0], T[1, 1], T[2, 2], C2 * T[1, 2], C2 * T[0, 2], C2 * T[0, 1], C2 * T[0, 3], C2 * T[0, 4], C2 * T[0, 5], C2 * T[1, 3], C2 * T[1, 4], C2 * T[1, 5], C2 * T[2, 3], C2 * T[2, 4], C2 * T[2, 5], T[3, 3], T[4, 4], T[5, 5], C2 * T[3, 4], C2 * T[4, 5], C2 * T[5, 3]]]).T return V
177d766ee251dfb52396f88b4e77d101956afe79
21,758
def post_add_skit_reply(): """ removes a skit if authored by the current user """ email = is_authed(request) if email and csrf_check(request): # same as args, form data is also immutable request.form = dict(request.form) request.form['email'] = email p_resp = proxy(RUBY, request) return create_response(p_resp) return BADUSER
17b64bba949bb2df57cbdf796c0b895387672018
21,759
from datetime import datetime def register(request): """Register new account.""" token_int = int(datetime.datetime.strftime( datetime.datetime.now(), '%Y%m%d%H%M%S%f')) token = short_url.encode_url(token_int) if (not request.playstore_url and not request.appstore_url and not request.winstore_url and not request.default_url): return False, 'Insufficient information to register.', None account = models.Accounts( playstore_url=request.playstore_url, appstore_url=request.appstore_url, winstore_url=request.winstore_url, default_url=request.default_url, title=request.title, banner=request.banner, description=request.description, token=token ) account.put() return True, None, token
649c413011ec76bdb2244bbbfe7f4810230d3202
21,760
def stringify_parsed_email(parsed): """ Convert a parsed email tuple into a single email string """ if len(parsed) == 2: return f"{parsed[0]} <{parsed[1]}>" return parsed[0]
6552987fe6a06fdbb6bd49e5d17d5aadaae3c832
21,761
import math def standard_simplex_vol(sz: int): """Returns the volume of the sz-dimensional standard simplex""" result = cm_matrix_det_ns(np.identity(sz, dtype=DTYPE)) if result == math.inf: raise ValueError(f'Cannot compute volume of standard {sz}-simplex') return result
1b0d806312ee722f3251e1099e604a18d4e762a7
21,762
def all_saveable_objects(scope=None): """ Copied private function in TF source. This is what tf.train.Saver saves if var_list=None is passed. """ return (tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope) + tf.get_collection(tf.GraphKeys.SAVEABLE_OBJECTS, scope))
4c0b8ec0dd65160a113d4e6151a1a5b6d8454926
21,763
def base_to_str( base ): """Converts 0,1,2,3 to A,C,G,T""" if 0 == base: return 'A' if 1 == base: return 'C' if 2 == base: return 'G' if 3 == base: return 'T' raise RuntimeError( 'Bad base: %d' % base )
f1c98b7c24fae91c1f809abe47929d724c886168
21,764
def attr(accessing_obj, accessed_obj, *args, **kwargs): """ Usage: attr(attrname) attr(attrname, value) attr(attrname, value, compare=type) where compare's type is one of (eq,gt,lt,ge,le,ne) and signifies how the value should be compared with one on accessing_obj (so compare=gt means the accessing_obj must have a value greater than the one given). Searches attributes *and* properties stored on the checking object. The first form works like a flag - if the attribute/property exists on the object, the value is checked for True/False. The second form also requires that the value of the attribute/property matches. Note that all retrieved values will be converted to strings before doing the comparison. """ # deal with arguments if not args: return False attrname = args[0].strip() value = None if len(args) > 1: value = args[1].strip() compare = 'eq' if kwargs: compare = kwargs.get('compare', 'eq') def valcompare(val1, val2, typ='eq'): "compare based on type" try: return CF_MAPPING.get(typ, 'default')(val1, val2) except Exception: # this might happen if we try to compare two things that cannot be compared return False # first, look for normal properties on the object trying to gain access if hasattr(accessing_obj, attrname): if value: return valcompare(str(getattr(accessing_obj, attrname)), value, compare) return bool(getattr(accessing_obj, attrname)) # will return Fail on False value etc # check attributes, if they exist if (hasattr(accessing_obj, 'has_attribute') and accessing_obj.has_attribute(attrname)): if value: return (hasattr(accessing_obj, 'get_attribute') and valcompare(accessing_obj.get_attribute(attrname), value, compare)) return bool(accessing_obj.get_attribute(attrname)) # fails on False/None values return False
8b3944ee8ef64938314766cc21e893ccbf48d9e1
21,766
def group_connected(polygon_map, mask=None): """Group all connected nodes.""" # Wrap :c:`group_connected()` from ``polygon_map.c``. polygon_map = mask_polygon_map(polygon_map, mask) queue = Queue(len(polygon_map) + 1) group_ids = np.full(len(polygon_map), -1, np.intp, order="C") groups_count: int groups_count = slug.dll.group_connected(ptr(polygon_map), ptr(polygon_map.ctypes.shape), ptr(group_ids), queue._raw._ptr) return group_ids, groups_count
2239feab1ef914156e01ab430f0c561609de0b18
21,767
def dictmask(data, mask, missing_keep=False): """dictmask masks dictionary data based on mask""" if not isinstance(data, dict): raise ValueError("First argument with data should be dictionary") if not isinstance(mask, dict): raise ValueError("Second argument with mask should be dictionary") if not isinstance(missing_keep, bool): raise ValueError("Argument missing_keep should be bool type") res = {} for k, v in data.items(): if k not in mask: if missing_keep is True: res[k] = v continue if mask[k] is None or mask[k] is False: continue if mask[k] is True or data[k] is None: res[k] = v continue if isinstance(data[k], dict) and isinstance(mask[k], dict): res[k] = dictmask(data[k], mask[k]) continue if isinstance(data[k], list) and isinstance(mask[k], list): if len(mask[k]) != 1: raise ValueError("Mask inside list should have only one item") res2 = [] for i in range(len(data[k])): res2.append(dictmask(data[k][i], mask[k][0], missing_keep)) res[k] = res2 else: raise ValueError( f"Cannot proceed key {k} with values of different types:" f"{type(data[k])}, {type(mask[k])}" ) return res
d18f6effb4367628ba85095024189d0f6694dd52
21,768
def _prepare_policy_input( observations, vocab_size, observation_space, action_space ): """Prepares policy input based on a sequence of observations.""" if vocab_size is not None: (batch_size, n_timesteps) = observations.shape[:2] serialization_kwargs = init_serialization( vocab_size, observation_space, action_space, n_timesteps ) actions = np.zeros( (batch_size, n_timesteps - 1) + action_space.shape, dtype=action_space.dtype, ) reward_mask = np.ones((batch_size, n_timesteps - 1), dtype=np.int32) (policy_input, _) = serialization_utils.serialize_observations_and_actions( observations=observations, actions=actions, mask=reward_mask, **serialization_kwargs ) return policy_input else: return observations
9799357e00453a1259551c3af1b5bf5b58603186
21,771
def RGB2raw(R, G, B): """Convert RGB channels to Raw image.""" h, w = R.shape raw = np.empty(shape=(2*h, 2*w), dtype=R.dtype) raw[::2, ::2] = R raw[1::2, 1::2] = B raw[1::2, 0::2] = G raw[0::2, 1::2] = G return raw
7adb2ccef65c85c7e5d1ac223f397ef2f90dd9d3
21,772
def get_algs_from_ciphersuite_name(ciphersuite_name): """ Return the 3-tuple made of the Key Exchange Algorithm class, the Cipher class and the HMAC class, through the parsing of the ciphersuite name. """ tls1_3 = False if ciphersuite_name.startswith("TLS"): s = ciphersuite_name[4:] if s.endswith("CCM") or s.endswith("CCM_8"): kx_name, s = s.split("_WITH_") kx_alg = _tls_kx_algs.get(kx_name) hash_alg = _tls_hash_algs.get("SHA256") cipher_alg = _tls_cipher_algs.get(s) hmac_alg = None else: if "WITH" in s: kx_name, s = s.split("_WITH_") kx_alg = _tls_kx_algs.get(kx_name) else: tls1_3 = True kx_alg = _tls_kx_algs.get("TLS13") hash_name = s.split('_')[-1] hash_alg = _tls_hash_algs.get(hash_name) cipher_name = s[:-(len(hash_name) + 1)] if tls1_3: cipher_name += "_TLS13" cipher_alg = _tls_cipher_algs.get(cipher_name) hmac_alg = None if cipher_alg is not None and cipher_alg.type != "aead": hmac_name = "HMAC-%s" % hash_name hmac_alg = _tls_hmac_algs.get(hmac_name) elif ciphersuite_name.startswith("SSL"): s = ciphersuite_name[7:] kx_alg = _tls_kx_algs.get("SSLv2") cipher_name, hash_name = s.split("_WITH_") cipher_alg = _tls_cipher_algs.get(cipher_name.rstrip("_EXPORT40")) kx_alg.export = cipher_name.endswith("_EXPORT40") hmac_alg = _tls_hmac_algs.get("HMAC-NULL") hash_alg = _tls_hash_algs.get(hash_name) return kx_alg, cipher_alg, hmac_alg, hash_alg, tls1_3
cc2ab3fcae87feeb7877bad091446fb2d20be6b0
21,773
def centroid(window): """Centroid interpolation for sub pixel shift""" ip = lambda x : (x[2] - x[0])/(x[0] + x[1] + x[2]) return ip(window[:, 1]), ip(window[1])
e1cf0398261637f682c74340f99566d19e342b66
21,774
def _format_warning(message, category, filename, lineno, line=None): """ Replacement for warnings.formatwarning that disables the echoing of the 'line' parameter. """ return "{}:{}: {}: {}\n".format(filename, lineno, category.__name__, message)
8267150c5890759d2f2190ccf4b7436ea8f55204
21,775
from typing import List def precision_at_k(predictions: List[int], targets: List[int], k: int = 10) -> float: """Computes `Precision@k` from the given predictions and targets sets.""" predictions_set = set(predictions[:k]) targets_set = set(targets) result = len(targets_set & predictions_set) / float(len(predictions_set)) return result
4c6e566db7c488416139545f5f845ff80b7af434
21,776
def wordify_open(p, word_chars): """Prepend the word start markers.""" return r"(?<![{0}]){1}".format(word_chars, p)
8b267aaca897d6435a84f22064f644727ca6e83c
21,777
def Mt_times_M(M): """Compute M^t @ M Args: M : (batched) matrix M Returns: tf.Tensor: solution of M^t @ M """ if isinstance(M, tf.Tensor): linop = tf.linalg.LinearOperatorFullMatrix(M) return linop.matmul(M, adjoint=True) elif isinstance(M, (tf.linalg.LinearOperatorFullMatrix, tf.linalg.LinearOperatorLowerTriangular)): return M.matmul(M.to_dense(), adjoint=True) elif is_diagonal_linop(M): return diagonal_M_times_Mt(M) else: raise TypeError("cannot compute M_times_Mt, invalid type")
cfb8023711186821faf0ff8bfa1277d6585d40de
21,778
import typing def make_values(ints: typing.Iterable[int]): """Make datasets. """ return [ ('int', ints), ('namedtuple', [IntNamedTuple(i) for i in ints]), ('class', [IntObject(i) for i in ints]), ]
700bbd4a43bff38a0154bbc595c1cd10cc2ec9d9
21,779
import collections def attach_trans_dict(model, objs): """Put all translations from all non-deferred translated fields from objs into a translations dict on each instance.""" # Get the ids of all the translations we need to fetch. try: deferred_fields = objs[0].get_deferred_fields() except IndexError: return fields = [ field for field in model._meta.translated_fields if field.attname not in deferred_fields ] ids = [ getattr(obj, field.attname) for field in fields for obj in objs if getattr(obj, field.attname, None) is not None ] if ids: # Get translations in a dict, ids will be the keys. It's important to # consume the result of sorted_groupby, which is an iterator. qs = Translation.objects.filter(id__in=ids, localized_string__isnull=False) else: qs = [] all_translations = { field_id: sorted(list(translations), key=lambda t: t.locale) for field_id, translations in sorted_groupby(qs, lambda t: t.id) } def get_locale_and_string(translation, new_class): """Convert the translation to new_class (making PurifiedTranslations and LinkifiedTranslations work) and return locale / string tuple.""" converted_translation = new_class() converted_translation.__dict__ = translation.__dict__ return (converted_translation.locale.lower(), str(converted_translation)) # Build and attach translations for each field on each object. for obj in objs: if not obj: continue obj.translations = collections.defaultdict(list) for field in fields: t_id = getattr(obj, field.attname, None) field_translations = all_translations.get(t_id, None) if not t_id or field_translations is None: continue obj.translations[t_id] = [ get_locale_and_string(t, field.remote_field.model) for t in field_translations ]
933e87b050eac0dfbead141c0c3c56a2add9751f
21,780
def list_known_protobufs(): """ Returns the list of known protobuf model IDs """ return [k for k in proto_data_structure]
a4b80f948792a4d2a965eac507a118719fa106f5
21,781
def hash_value(*args): """ hash_value(NodeConstHandle t) -> std::size_t hash_value(BufferConstHandle t) -> std::size_t hash_value(FileConstHandle t) -> std::size_t """ return _RMF.hash_value(*args)
c85277fec7f329eeba26d053a43205bf1eda0662
21,782
import re def read_examples(input_file): """Read a list of `InputExample`s from an input file.""" examples = [] unique_id = 0 # with tf.gfile.GFile(input_file, "r") as reader: with open(input_file, "r") as reader: while True: line = tokenization.convert_to_unicode(reader.readline()) if not line: break line = line.strip() text_a = None text_b = None m = re.match(r"^(.*) \|\|\| (.*)$", line) if m is None: text_a = line else: text_a = m.group(1) text_b = m.group(2) examples.append( InputExample(unique_id=unique_id, text_a=text_a, text_b=text_b)) unique_id += 1 return examples
82380f9409bd91e16fc4324fc345d335fa9e96dc
21,783
from datasets import load_dataset def get_finance_sentiment_dataset(split: str='sentences_allagree') -> list: """ Load financial dataset from HF: https://huggingface.co/datasets/financial_phrasebank Note that there's no train/validation/test split: the dataset is available in four possible configurations depending on the percentage of agreement of annotators. By default, load just sentences for which all annotators agree. """ dataset = load_dataset("financial_phrasebank", split) return dataset['train']
9f83d4c501ed16e5e617c32090787d1377ec70fd
21,784
def list_databases(): """ List tick databases and associated aggregate databases. Returns ------- dict dict of {tick_db: [agg_dbs]} """ response = houston.get("/realtime/databases") houston.raise_for_status_with_json(response) return response.json()
d2ba438a0496f5863ad1c16cb8e694b54276d01e
21,785
def nice_range(bounds): """ Given a range, return an enclosing range accurate to two digits. """ step = bounds[1] - bounds[0] if step > 0: d = 10 ** (floor(log10(step)) - 1) return floor(bounds[0]/d)*d, ceil(bounds[1]/d)*d else: return bounds
66f538649b8f1c55d301b2a0e293a4968b3665d9
21,786
def connect_to_portal(config): """ The portal/metadata schema is completely optional. """ if config.portal_schema: return aws.connect_to_db(**config.rds_config, schema=config.portal_schema)
2aa76ae2ad8d9ea16ea7ba227627f02d3c044d70
21,787
import json def get_words_for_source(): """ Gets JSON to populate words for source """ source_label = request.args.get("source") source = create_self_summary_words(source_label) return json.dumps(source)
2a2fc02a6f77cd109f3e0fded026676109ae014c
21,788
def raster(event_times_list): """ Creates a raster plot Parameters ---------- event_times_list : iterable a list of event time iterables color : string color of vlines Returns ------- ax : an axis containing the raster plot """ color='k' ax = plt.gca() for ith, trial in enumerate(event_times_list): plt.vlines(trial, ith + .5, ith + 1.5, color=color) plt.ylim(.5, len(event_times_list) + .5) return ax
3c5b485bdc3992602a7c7bb227329b2e74c611d9
21,789
def FindOneDocument(queryDocument, database='NLP', collection="Annotations", host='localhost', port='27017'): """ This method returns the first document in the backing store that matches the criteria specified in queryDocument. :param queryDocument: [dict] A pymongo document used to query the MongoDB instance. :param database: [string] The name of the MongoDB database instance that holds "collection". Defaults to NLP. :param collection: [string] The name of the collection that stores the document instances. Defaults to "Annotations". :param host: [string] The host IP address, defaults to localhost. :param port: [string] The port on which the MongoDB server is listening. Defaults to 27017. :return: [object | None] A single Document object if the query matches any documents, otherwise None. """ client = MongoClient('mongodb://%s:%s/' % (host, port)) collection = client[database][collection] mongoDoc = collection.find_one(queryDocument) client.close() return constructAnnotationDocument(mongoDoc)
fb5f683f4451144ae3cbe374162bef36918130ba
21,790
def user_info(context, **kwargs): """ Отображает информацию о текущем авторизованом пользователе, либо ссылки на авторизацию и регистрацию Пример использования:: {% user_info %} :param context: контекст :param kwargs: html атрибуты оборачивающего тега :return: """ request = context['request'] return {'user': request.user, 'data': kwargs}
20321056fd5fdf8f51e79fb66d335272e85ada0d
21,791
def to_bytes(val): """Takes a text message and return a tuple """ if val is NoResponse: return val val = val.replace('\\r', '\r').replace('\\n', '\n') return val.encode()
9f5a45d9c69a18eec22c85c6691f8b3d46742af4
21,793
def _create_fake_data_fn(train_length=_DATA_LENGTH, valid_length=50000, num_batches=40): """ Creates fake dataset Data is returned in NCHW since this tends to be faster on GPUs """ logger = _get_logger() logger.info("Creating fake data") data_array = _create_data(_BATCHSIZE, num_batches, (_HEIGHT, _WIDTH), _CHANNELS) labels_array = _create_labels(_BATCHSIZE, num_batches, 1000) def fake_data_generator(): for i in range(num_batches): yield data_array[i * _BATCHSIZE : (i + 1) * _BATCHSIZE], labels_array[ i * _BATCHSIZE : (i + 1) * _BATCHSIZE ] train_data = tf.data.Dataset().from_generator( fake_data_generator, output_types=(tf.float32, tf.int32), output_shapes=( tf.TensorShape([None, _CHANNELS, _HEIGHT, _WIDTH]), tf.TensorShape([None]), ), ) train_data = train_data.shuffle(40 * _BATCHSIZE).repeat().prefetch(_BUFFER) validation_data = tf.data.Dataset().from_generator( fake_data_generator, output_types=(tf.float32, tf.int32), output_shapes=( tf.TensorShape([None, _CHANNELS, _HEIGHT, _WIDTH]), tf.TensorShape([None]), ), ) validation_data = validation_data.prefetch(_BUFFER) def _train_input_fn(): return train_data.make_one_shot_iterator().get_next() def _validation_input_fn(): return validation_data.make_one_shot_iterator().get_next() _train_input_fn.length = train_length _validation_input_fn.length = valid_length _train_input_fn.classes = 1000 _validation_input_fn.classes = 1000 return _train_input_fn, _validation_input_fn
33533cc4b1d43aaeba48db8470c93cbc058ad3dc
21,794
def watershed(src): """ Performs a marker-based image segmentation using the watershed algorithm. :param src: 8-bit 1-channel image. :return: 32-bit single-channel image (map) of markers. """ # cv2.imwrite('{}.png'.format(np.random.randint(1000)), src) gray = src.copy() img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) # h, w = gray.shape[:2] # block_size = (min(h, w) // 4 + 1) * 2 + 1 # thresh = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, block_size, 0) _ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # noise removal kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=2) # sure background area sure_bg = cv2.dilate(opening, kernel, iterations=3) # Finding sure foreground area dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5) # dist_transform = opening & gray # cv2.imshow('dist_transform', dist_transform) # _ret, sure_bg = cv2.threshold(dist_transform, 0.2 * dist_transform.max(), 255, cv2.THRESH_BINARY_INV) _ret, sure_fg = cv2.threshold(dist_transform, 0.2 * dist_transform.max(), 255, cv2.THRESH_BINARY) # Finding unknown region # sure_bg = np.uint8(sure_bg) sure_fg = np.uint8(sure_fg) # cv2.imshow('sure_fg', sure_fg) unknown = cv2.subtract(sure_bg, sure_fg) # Marker label lingret, marker_map = cv2.connectedComponents(sure_fg) # Add one to all labels so that sure background is not 0, but 1 marker_map = marker_map + 1 # Now, mark the region of unknown with zero marker_map[unknown == 255] = 0 marker_map = cv2.watershed(img, marker_map) return marker_map
6915b6a924e64d12340e02b28085290685dddc9b
21,795
def sub(x, y): """Returns the difference of compositions. Parameters ---------- x : NumPy array, shape (n,) or (k,n) The composition that will be subtracted from. y : NumPy array, shape (n,) or (k,n) The composition to be subtracted. Returns ------- z : NumPy array, shape (n,) or (k,n) The result of y subtracted from x. """ z = perturbation(x, power(y, -1.0)) # 1.0 and not 1 forces coercion return z
c9e1fb31abb22a6efb9903c6e9f7cdc06cc110d0
21,796
def _broadcast_concatenate(arrays, axis): """Concatenate arrays along an axis with broadcasting.""" arrays = _broadcast_arrays(arrays, axis) res = np.concatenate(arrays, axis=axis) return res
5032ec0a90dde25d74906dbf661248086c785485
21,797
def get_final_bmi(data_dic, agex_low, agex_high, mrnsForFilter=[], filter=True): """ Function to get the distinct bmi percentile readings for predictions. Returns outcome percentiles and labels #### PARAMETERS #### data_dic: dictionary of patient data agex_low: low age range for outcome prediction agex_high: high age range for outcome prediction mrnsForFilter: list of mrns to get outcomes for filter: default==True; if True returns mrn filtered data only, otherwise returns all data with either a 0 or '' """ outcome = np.zeros(len(data_dic.keys()), dtype=float) outcome_pct = np.zeros(len(data_dic.keys()), dtype=float) outcome_labels = [''] * len(data_dic.keys()) indices = np.zeros(len(data_dic.keys())) for (ix, k) in enumerate(data_dic): if (len(mrnsForFilter) > 0) & (str(data_dic[k]['mrn']) not in mrnsForFilter): continue bmi, pct, label = get_final_bmi_single(data_dic[k], agex_low, agex_high) if pct == 0 and label == '': continue outcome[ix] = bmi outcome_pct[ix] = pct outcome_labels[ix] = label indices[ix] = 1 if filter: indices = (indices == 1) return outcome[indices], outcome_pct[indices], np.array(outcome_labels)[indices] else: return outcome, outcome_pct, np.array(outcome_labels)
e9793adf7470a695bd730f66817b735451df71a2
21,798
import sqlite3 def add_group_sub(uid:int, group_id:int) -> bool: #添加订阅信息 """ 向已存在的表中插入群记录, 如果群已经存在则什么都不做 :param uid: 唯一标识用户的数字uid :param group_id: 监听该用户的群id """ connection = sqlite3.connect(DB_PATH) cursor = connection.cursor() success = True group_exist = cursor.execute( f'select count(*) from _{uid} where group_id={group_id};').fetchone()[0] if not group_exist: cursor.execute(f'insert into _{uid} values({group_id}, 1);') # 默认开启翻译 connection.commit() else: success = False logger.warning(f'群{group_id} 已存在表_{uid}中') cursor.close() connection.close() return success
de71f03aa56bf4ae963877281e7e70876f5e72ff
21,799
def is_array_of(obj, classinfo): """ Check if obj is a list of classinfo or a tuple of classinfo or a set of classinfo :param obj: an object :param classinfo: type of class (or subclass). See isinstance() build in function for more info :return: flag: True or False """ flag = False if isinstance(obj, classinfo): pass elif all(isinstance(item, classinfo) for item in obj): flag = True return flag
5fecce974b5424cff7d5e6a4a9f9bd1482e10e85
21,801
from atom.models import MODELS def create_acronym(fullname): """Create an acronym for an estimator. The acronym consists of the capital letters in the name if there are at least two. If not, the entire name is used. Parameters ---------- fullname: str Estimator's __name__. Returns ------- str Created acronym. """ acronym = "".join([c for c in fullname if c.isupper()]) if len(acronym) < 2 or acronym.lower() in MODELS: return fullname else: return acronym
8343fc670080634b1b9b556122cddb509ee36e72
21,802
import uuid def transact_update_path(path): """input transact update to DynamoDB""" # transact_write_itemsはclientAPIなので注意 def update_path(path): """input put learning path to DynamoDB""" input = defaultdict( dict, TableName="primary_table", Key={"PK": {"S": path.PK}, "SK": {"S": path.PK}}, UpdateExpression="SET updatedAt=:date, updatedUser=:user", ExpressionAttributeValues={ ":date": {"S": timestamp_jst()}, ":user": {"S": path.user}, }, ) if path.name is not None: input["UpdateExpression"] += ", #name=:name" # name is reserved input["ExpressionAttributeNames"]["#name"] = "name" input["ExpressionAttributeValues"][":name"] = {"S": path.name} if path.description is not None: input["UpdateExpression"] += ", description=:description" input["ExpressionAttributeValues"][":description"] = {"S": path.description} if path.note is not None: input["UpdateExpression"] += ", note=:note" input["ExpressionAttributeValues"][":note"] = {"S": path.note} if path.invalid is not None: input["UpdateExpression"] += ", invalid=:invalid" input["ExpressionAttributeValues"][":invalid"] = {"BOOL": path.invalid} return {"Update": input} def update_path_to_video(appended, path_id, user): """input put video path to DynamoDB""" def get_videos(appended): for uri in appended: video_id = uri.split("/")[2] video = get_video_from_db(video_id) yield video def generate_input(video, path_id, user): path_ids = video.get("learningPathIds", []) # escape empty # なぜか集合のケースがあるので明示的にリストにする path_ids = list(path_ids) if not path_ids[0]: path_ids.remove("") path_ids.append(path_id) input = dict( TableName="primary_table", Key={"PK": {"S": video["PK"]}, "SK": {"S": video["PK"]}}, UpdateExpression="SET updatedAt=:date, updatedUser=:user" + ", learningPathIds=:paths", ExpressionAttributeValues={ ":date": {"S": timestamp_jst()}, ":user": {"S": user}, ":paths": {"SS": path_ids}, }, ) return {"Update": input} it_videos = get_videos(appended) it_inputs = (generate_input(video, path_id, user) for video in it_videos) return it_inputs def remove_path_from_video(removed, path_id, user): """input remove video path from DynamoDB""" def get_videos(removed): for uri in removed: video_id = uri.split("/")[2] video = get_video_from_db(video_id) yield video def generate_input(video, path_id, user): path_ids = video.get("learningPathIds", []) path_ids = list(path_ids) if path_id in path_ids: path_ids.remove(path_id) # escape empty if len(path_ids) <= 0: path_ids = [""] input = dict( TableName="primary_table", Key={"PK": {"S": video["PK"]}, "SK": {"S": video["PK"]}}, UpdateExpression="SET updatedAt=:date, updatedUser=:user" + ", learningPathIds=:paths", ExpressionAttributeValues={ ":date": {"S": timestamp_jst()}, ":user": {"S": user}, ":paths": {"SS": path_ids}, }, ) return {"Update": input} it_videos = get_videos(removed) it_inputs = (generate_input(video, path_id, user) for video in it_videos) return it_inputs def update_video_order(orders, path_id): """input append or update video orders""" def get_orders(orders, path_id): for order in orders: req_order = {"PK": path_id, "uri": order.uri} current_order = get_order(req_order=ReqOrder(**req_order)) if current_order: yield True, order else: yield False, order def generate_input(order_with_update_or_append, path_id): is_update, order = order_with_update_or_append if is_update: input = dict( TableName="primary_table", Key={"PK": {"S": path_id}, "SK": {"S": order.uri}}, UpdateExpression="SET #order=:order", # order is reserved ExpressionAttributeNames={"#order": "order"}, ExpressionAttributeValues={":order": {"N": str(order.order)}}, ) return {"Update": input} else: input = dict( PK={"S": path_id}, SK={"S": order.uri}, indexKey={"S": "Video"}, createdAt={"S": str(uuid.uuid1())[:8]}, order={"N": str(order.order)}, ) item = {"TableName": "primary_table", "Item": input} return {"Put": item} it_orders = get_orders(orders, path_id) it_inputs = (generate_input(order, path_id) for order in it_orders) return it_inputs def remove_video_order(removed, path_id): """input remove video orders""" inputs = [ dict( TableName="primary_table", Key={"PK": {"S": path_id}, "SK": {"S": uri}} ) for uri in removed ] orders = [{"Delete": input} for input in inputs] return orders transact_items = [] # 再生リストのメタ情報を更新する transact_items.append(update_path(path)) # 再生リストに動画が追加された場合、動画のメタデータに再生リストIDを追加する transact_items.extend( update_path_to_video(appended=path.appended, path_id=path.PK, user=path.user) ) # 再生リストから動画が削除された場合、動画のメタデータから再生リストIDを削除する transact_items.extend( remove_path_from_video(removed=path.removed, path_id=path.PK, user=path.user) ) # 再生リストから削除された動画の再生順を削除する transact_items.extend(remove_video_order(removed=path.removed, path_id=path.PK)) # 再生リストの更新順を更新する transact_items.extend(update_video_order(orders=path.orders, path_id=path.PK)) return transact_items
5cecf9ffe8ad4acf83b4ec353abaaa3c964fdb0b
21,803
from typing import Counter def codon_usage(seq, aminoacid): """Provides the frequency of each codon encoding a given aminoacid in a DNA sequence""" tmpList = [] for i in range(0, len(seq) - 2, 3): if DNA_Codons[seq[i:i + 3]] == aminoacid: tmpList.append(seq[i:i + 3]) freqDict = dict(Counter(tmpList)) totalWight = sum(freqDict.values()) for seq in freqDict: freqDict[seq] = round(freqDict[seq] / totalWight, 2) return freqDict
9e271e9c68ebd1860f3897d5a63919bf5bd5f0bf
21,804
from textwrap import dedent def make_check_stderr_message(stderr, line, reason): """ Create an exception message to use inside check_stderr(). """ return dedent("""\ {reason}: Caused by line: {line!r} Complete stderr: {stderr} """).format(stderr=stderr, line=line, reason=reason)
a6510e8036ab27e6386e6bc8e6c33727849282c0
21,805
import numpy def diffusion_step(matrix, row_damping=0, column_damping=0): """ Return the diffusion adjacency matrix produced by the input matrix with the specified row and column normalization exponents. Note: the row normalization is performed second, so if a value of row_damping=1 is used, the output will be a row-stochastic matrix regardless of choice of column normalization. Matrix will not be modified in place. Parameters ========== matrix : numpy.ndarray adjacency matrix for a given metaedge, where the source nodes are rows and the target nodes are columns row_damping : int or float exponent to use in scaling each node's row by its in-degree column_damping : int or float exponent to use in scaling each node's column by its column-sum Returns ======= numpy.ndarray Normalized matrix with dtype.float64. """ # returns a newly allocated array matrix = copy_array(matrix) # Perform column normalization if column_damping != 0: column_sums = numpy.array(matrix.sum(axis=0)).flatten() matrix = normalize(matrix, column_sums, 'columns', column_damping) # Perform row normalization if row_damping != 0: row_sums = numpy.array(matrix.sum(axis=1)).flatten() matrix = normalize(matrix, row_sums, 'rows', row_damping) return matrix
f6636b0e4557ffad0253284d914f4d662695055e
21,806