content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def sanitize_option(option): """ Format the given string by stripping the trailing parentheses eg. Auckland City (123) -> Auckland City :param option: String to be formatted :return: Substring without the trailing parentheses """ return ' '.join(option.split(' ')[:-1]).strip()
ece0a78599e428ae8826b82d7d00ffc39495d27f
21,577
def node_values_for_tests(): """Creates a list of possible node values for parameters Returns: List[Any]: possible node values """ return [1, 3, 5, 7, "hello"]
b919efc5e59a5827b3b27e4f0a4cd070ceb9a5a4
21,578
import torch def computeGramMatrix(A, B): """ Constructs a linear kernel matrix between A and B. We assume that each row in A and B represents a d-dimensional feature vector. Parameters: A: a (n_batch, n, d) Tensor. B: a (n_batch, m, d) Tensor. Returns: a (n_batch, n, m) Tensor. """ assert(A.dim() == 3) assert(B.dim() == 3) assert(A.size(0) == B.size(0) and A.size(2) == B.size(2)) return torch.bmm(A, B.transpose(1,2))
c9b221b3d6a8c7a16337178a1f148873b27ec04a
21,579
def parse_config(config): """Backwards compatible parsing. :param config: ConfigParser object initilized with nvp.ini. :returns: A tuple consisting of a control cluster object and a plugin_config variable. raises: In general, system exceptions are not caught but are propagated up to the user. Config parsing is still very lightweight. At some point, error handling needs to be significantly enhanced to provide user friendly error messages, clean program exists, rather than exceptions propagated to the user. """ # Extract plugin config parameters. try: failover_time = config.get('NVP', 'failover_time') except ConfigParser.NoOptionError, e: failover_time = str(DEFAULT_FAILOVER_TIME) try: concurrent_connections = config.get('NVP', 'concurrent_connections') except ConfigParser.NoOptionError, e: concurrent_connections = str(DEFAULT_CONCURRENT_CONNECTIONS) plugin_config = { 'failover_time': failover_time, 'concurrent_connections': concurrent_connections, } LOG.info('parse_config(): plugin_config == "%s"' % plugin_config) cluster = NVPCluster('cluster1') # Extract connection information. try: defined_connections = config.get('NVP', 'NVP_CONTROLLER_CONNECTIONS') for conn_key in defined_connections.split(): args = [config.get('NVP', 'DEFAULT_TZ_UUID')] args.extend(config.get('NVP', conn_key).split(':')) try: cluster.add_controller(*args) except Exception, e: LOG.fatal('Invalid connection parameters: %s' % str(e)) sys.exit(1) return cluster, plugin_config except Exception, e: LOG.info('No new style connections defined: %s' % e) # Old style controller specification. args = [config.get('NVP', k) for k in CONFIG_KEYS] try: cluster.add_controller(*args) except Exception, e: LOG.fatal('Invalid connection parameters.') sys.exit(1) return cluster, plugin_config
74689d11c1d610a9211dc5895ff42a8b8e2389ae
21,580
def deletable_proxy_user(request, onefs_client): """Get the name of an existing proxy user that it is ok to delete.""" return _deletable_proxy_user(request, onefs_client)
c7440099fe4435cf9b5b557253f7fb9563dc600c
21,581
import six def get_from_module(identifier, module_params, module_name, instantiate=False, kwargs=None): """The function is stolen from keras.utils.generic_utils. """ if isinstance(identifier, six.string_types): res = module_params.get(identifier) if not res: raise Exception('Invalid ' + str(module_name) + ': ' + str(identifier)) if instantiate and not kwargs: return res() elif instantiate and kwargs: return res(**kwargs) else: return res elif type(identifier) is dict: name = identifier.pop('name') res = module_params.get(name) if res: return res(**identifier) else: raise Exception('Invalid ' + str(module_name) + ': ' + str(identifier)) return identifier
406a1da5843feb8556bbd1802426b57e7a33b20d
21,582
def color_lerp(c1, c2, a): """Return the linear interpolation between two colors. ``a`` is the interpolation value, with 0 returing ``c1``, 1 returning ``c2``, and 0.5 returing a color halfway between both. Args: c1 (Union[Tuple[int, int, int], Sequence[int]]): The first color. At a=0. c2 (Union[Tuple[int, int, int], Sequence[int]]): The second color. At a=1. a (float): The interpolation value, Returns: Color: The interpolated Color. """ return Color._new_from_cdata(lib.TCOD_color_lerp(c1, c2, a))
96c950c447994a729c9eb4c18bdcc60976dbb675
21,583
def get_equations(points): """ Calculate affine equations of inputted points Input : 1 points : list of list ex : [[[x1, y1], [x2, y2]], [[xx1, yy1], [xx2, yy2]]] for 2 identified elements Contains coordinates of separation lines i.e. [[[start points x, y], [end points x, y]] [...], [...]] Output : 2 columns_a : list of list Contains all the a coefficients of an affine equation (y = ax + b) of all the calculated lines, in the same order as the input columns_b : list of list Contains all the b coefficients of an affine equation (y = ax + b) of the all the calculated lines, in the same order as the input""" columns_a, columns_b = [], [] # iterate throught points for k in points: # calculate the a coefficients of start and end separation lines of this element a1 = (k[0][1] - k[1][1])/(k[0][0] - k[1][0]) a2 = (k[2][1] - k[3][1])/(k[2][0] - k[3][0]) columns_a.append([a1, a2]) # then calculate the b coefficients of start and end separation lines # using the a coeff calculated before b1 = k[0][1] - a1*k[0][0] b2 = k[2][1] - a2*k[2][0] columns_b.append([b1, b2]) return (columns_a, columns_b)
4eea43aee8b5f9c63793daae0b28e3c8b4ce0929
21,584
def Temple_Loc(player, num): """temple location function""" player.coins -= num player.score += num player.donation += num # player = temple_bonus_check(player) for acheivements return (player)
dced7b9f23f63c0c51787291ab12701bd7021152
21,585
def indexGenomeFile(input, output): """Index STAR genome index file `input`: Input probes fasta file `output`: SAindex file to check the completion of STAR genome index """ #print input #print output base = splitext(input)[0] base = base + ".gtf" #print base gtfFile = base outputDir = proDir + "/result/Genome" print colored("Stage 4: Creating genome index file from the probe fasta file ....", "green") print input #print cpuNum result = tasks.index_db_file(input, outputDir, cpuNum, gtfFile) return result
2ebd981ebad97f68adb1043e9c06fd01dc270c10
21,586
import math def performance(origin_labels, predict_labels, deci_value, bi_or_multi=False, res=False): """evaluations used to evaluate the performance of the model. :param deci_value: decision values used for ROC and AUC. :param bi_or_multi: binary or multiple classification :param origin_labels: true values of the data set. :param predict_labels: predicted values of the data set. :param res: residue or not. """ if len(origin_labels) != len(predict_labels): raise ValueError("The number of the original labels must equal to that of the predicted labels.") if bi_or_multi is False: tp = 0.0 tn = 0.0 fp = 0.0 fn = 0.0 for i in range(len(origin_labels)): if res is True: if origin_labels[i] == 1 and predict_labels[i] == 1: tp += 1.0 elif origin_labels[i] == 1 and predict_labels[i] == 0: fn += 1.0 elif origin_labels[i] == 0 and predict_labels[i] == 1: fp += 1.0 elif origin_labels[i] == 0 and predict_labels[i] == 0: tn += 1.0 else: if origin_labels[i] == 1 and predict_labels[i] == 1: tp += 1.0 elif origin_labels[i] == 1 and predict_labels[i] == -1: fn += 1.0 elif origin_labels[i] == -1 and predict_labels[i] == 1: fp += 1.0 elif origin_labels[i] == -1 and predict_labels[i] == -1: tn += 1.0 try: sn = tp / (tp + fn) r = sn except ZeroDivisionError: sn, r = 0.0, 0.0 try: sp = tn / (fp + tn) except ZeroDivisionError: sp = 0.0 try: acc = (tp + tn) / (tp + tn + fp + fn) except ZeroDivisionError: acc = 0.0 try: mcc = (tp * tn - fp * fn) / math.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) except ZeroDivisionError: mcc = 0.0 try: auc = roc_auc_score(origin_labels, deci_value) except ValueError: # modify in 2020/9/13 auc = 0.0 try: p = tp / (tp + fp) except ZeroDivisionError: p = 0.0 try: f1 = 2 * p * r / (p + r) except ZeroDivisionError: f1 = 0.0 balance_acc = (sn + sp) / 2 return acc, mcc, auc, balance_acc, sn, sp, p, r, f1 else: correct_labels = 0.0 for elem in zip(origin_labels, predict_labels): if elem[0] == elem[1]: correct_labels += 1.0 acc = correct_labels / len(origin_labels) return acc
aac87e0bdc02b61ccb5136e04e1ac8b09e01ce65
21,587
def rotkehlchen_instance( uninitialized_rotkehlchen, database, blockchain, accountant, start_with_logged_in_user, start_with_valid_premium, function_scope_messages_aggregator, db_password, rotki_premium_credentials, accounting_data_dir, username, etherscan, ): """A partially mocked rotkehlchen instance""" initialize_mock_rotkehlchen_instance( rotki=uninitialized_rotkehlchen, start_with_logged_in_user=start_with_logged_in_user, start_with_valid_premium=start_with_valid_premium, msg_aggregator=function_scope_messages_aggregator, accountant=accountant, blockchain=blockchain, db_password=db_password, rotki_premium_credentials=rotki_premium_credentials, data_dir=accounting_data_dir, database=database, username=username, etherscan=etherscan, ) return uninitialized_rotkehlchen
144585d62c04f97aa7bcb7a355bd90f8ff001022
21,588
def store_inspection_outputs_df(backend, annotation_iterators, code_reference, return_value, operator_context): """ Stores the inspection annotations for the rows in the dataframe and the inspection annotations for the DAG operators in a map """ dag_node_identifier = DagNodeIdentifier(operator_context.operator, code_reference, backend.code_reference_to_description.get(code_reference)) annotations_df = build_annotation_df_from_iters(backend.inspections, annotation_iterators) annotations_df['mlinspect_index'] = range(1, len(annotations_df) + 1) inspection_outputs = {} for inspection in backend.inspections: inspection_outputs[inspection] = inspection.get_operator_annotation_after_visit() backend.dag_node_identifier_to_inspection_output[dag_node_identifier] = inspection_outputs return_value = MlinspectDataFrame(return_value) return_value.annotations = annotations_df return_value.backend = backend if "mlinspect_index" in return_value.columns: return_value = return_value.drop("mlinspect_index", axis=1) elif "mlinspect_index_x" in return_value.columns: return_value = return_value.drop(["mlinspect_index_x", "mlinspect_index_y"], axis=1) assert "mlinspect_index" not in return_value.columns assert isinstance(return_value, MlinspectDataFrame) return return_value
228a24a4d59162382b5a3ae7d8204e396b8c76dd
21,589
def switched (decorator): """decorator transform for switched decorations. adds start_fun and stop_fun methods to class to control fun""" @simple_decorator def new_decorator (fun): event = new_event() def inner_fun (self, *args): if args: event.wait() if threads_alive(): return fun(self, *args) def new_fun (self, *args): setattr(self, 'start_%s' % fun.__name__, event.set) setattr(self, 'stop_%s' % fun.__name__, event.clear) decorator(inner_fun)(self, *args) return new_fun return new_decorator
1996274fcaba2095b43f7d0da134abb59b2f7a56
21,590
def logistic_embedding0(k=1, dataset='epinions'): """using random embedding to train logistic Keyword Arguments: k {int} -- [folder] (default: {1}) dataset {str} -- [dataset] (default: {'epinions'}) Returns: [type] -- [pos_ratio, accuracy, f1_score0, f1_score1, f1_score2, auc_score] """ print('random embeddings') embeddings = np.random.rand(DATASET_NUM_DIC[dataset], EMBEDDING_SIZE) pos_ratio, accuracy, f1_score0, f1_score1, f1_score2, auc_score = common_logistic(dataset, k, embeddings, 'random') return pos_ratio, accuracy, f1_score0, f1_score1, f1_score2, auc_score
69b198c6a5f8a44681ccfee67b532b3d38d2ee44
21,591
def process_plus_glosses(word): """ Find all glosses with a plus inside. They correspond to one-phoneme affix sequences that are expressed by the same letter due to orthographic requirements. Replace the glosses and the morphemes. """ return rxPartsGloss.sub(process_plus_glosses_ana, word)
0678efc61d1af0ec75b8d0566866b305b6312448
21,592
from datetime import datetime def check_in_the_past(value: datetime) -> datetime: """ Validate that a timestamp is in the past. """ assert value.tzinfo == timezone.utc, "date must be an explicit UTC timestamp" assert value < datetime.now(timezone.utc), "date must be in the past" return value
a439295190bfa2b6d2d6de79c7dc074df562e9ed
21,593
from typing import Dict def character_count_helper(results: Dict) -> int: """ Helper Function that computes character count for ocr results on a single image Parameters ---------- results: Dict (OCR results from a clapperboard instance) Returns ------- Int Number of words computed from OCR results """ count = 0 for element in results: words_list = element["text"].split(" ") for word in words_list: count += len(word) return count
b5bcba9d39b7b09a1a123fec034ab1f27b31d1eb
21,595
import pickle def from_pickle(input_path): """Read from pickle file.""" with open(input_path, 'rb') as f: unpickler = pickle.Unpickler(f) return unpickler.load()
4e537fcde38e612e22004007122130c545246afb
21,596
def PromptForRegion(available_regions=constants.SUPPORTED_REGION): """Prompt for region from list of available regions. This method is referenced by the declaritive iam commands as a fallthrough for getting the region. Args: available_regions: list of the available regions to choose from Returns: The region specified by the user, str """ if console_io.CanPrompt(): all_regions = list(available_regions) idx = console_io.PromptChoice( all_regions, message='Please specify a region:\n', cancel_option=True) region = all_regions[idx] log.status.Print('To make this the default region, run ' '`gcloud config set ai/region {}`.\n'.format(region)) return region
2298fde743219f59b5a36844d85e14929d1e2a1e
21,597
def update(x, new_x): """Update the value of `x` to `new_x`. # Arguments x: A `Variable`. new_x: A tensor of same shape as `x`. # Returns The variable `x` updated. """ return tf.assign(x, new_x)
363cd3232a57d4c2c946813874a5a3c613f9a8c9
21,598
def r1r2_to_bp(r1,r2,pl=0.01, pu=0.25): """ Convert uniform samling of r1 and r2 to impact parameter b and and radius ratio p following Espinoza 2018, https://iopscience.iop.org/article/10.3847/2515-5172/aaef38/meta Paramters: ----------- r1, r2: float; uniform parameters in from u(0,1) pl, pu: float; lower and upper limits of the radius ratio Return: ------- b, p: tuple; impact parameter and radius ratio """ assert np.all(0<r1) and np.all(r1<=1) and np.all(0<r2) and np.all(r2<=1), f"r1 and r2 needs to be u(0,1) but r1={r1}, r2={r2}" Ar = (pu-pl)/(2+pu+pl) if np.all(r1 > Ar): b = (1+pl) * (1 + (r1-1)/(1-Ar) ) p = (1-r2)*pl + r2*pu elif np.all(r1 <= Ar): q1 = r1/Ar b = (1+pl) + q1**0.5 * r2*(pu-pl) p = pu + (pl-pu)* q1**0.5*(1-r2) return b, p
0c7f69f3f7960792e8d0ecd75fde028eda9feefa
21,599
from datetime import datetime def is_utc_today(utc): """ Returns true if the UTC is today :param utc: :return: """ current_time = datetime.datetime.utcnow() day_start = current_time - datetime.timedelta(hours=current_time.hour, minutes=current_time.minute, seconds=current_time.second) day_start_utc = unix_time(day_start) return (utc - day_start_utc) >= 0
f707b44ce9a741a4d126e1e55a33c7e78cb1159e
21,600
def test_run_completed(mock_job, mock_queue, mock_driver): """Test run function for a successful run.""" # Setup def mock_render(*args, **kwargs): return class MockStorage: def __init__(self): pass def load(self, *args, **kwargs): return 'blah' def save(self, *args, **kwargs): return True # Execute render.run( sleep=5, job_queue=mock_queue, job=mock_job, render=mock_render, storage=MockStorage(), driver=mock_driver, ) # Verify assert mock_job.status is StatusEnum.complete
bd4660738e952cf5da24dbd2bc22cd0876716b66
21,601
async def get_telegram_id(phone_number, user_mode=False): """ Tries to get a telegram ID for the passed in phone number. """ async with start_bot_client() as bot: if user_mode: # just leaving this code here in case it proves useful. # It only works if you use a user, not a bot. # more details: https://stackoverflow.com/a/51196276/8207 # https://tl.telethon.dev/methods/contacts/import_contacts.html#examples contact = InputPhoneContact(client_id=0, phone=phone_number, first_name="a", last_name="") result = await bot(ImportContactsRequest([contact])) print(result) else: # this only works if you have already messaged the contact, so only will allow looking # up "known" users. # more details: https://stackoverflow.com/a/41696457/8207 room_id = settings.MPACT_CONTACT_LOOKUP_ROOM_ID or GroupChat.objects.all()[0].id print('room id', room_id) receiver = await bot.get_entity(PeerChat(room_id)) msg_inst = await bot.send_file( receiver, InputMediaContact( phone_number=phone_number, first_name='Jane', last_name='Doe', vcard='', )) # "unknown" users return "0" instead of the actual ID return msg_inst.media.user_id if msg_inst.media.user_id != 0 else None
e0a0c8d4bcd305b23f831297880b0ead30eeb94a
21,602
def QuadRemesh(thisMesh, parameters, multiple=False): """ Quad remesh this mesh. """ url = "rhino/geometry/mesh/quadremesh-mesh_quadremeshparameters" if multiple: url += "?multiple=true" args = [thisMesh, parameters] if multiple: args = list(zip(thisMesh, parameters)) response = Util.ComputeFetch(url, args) response = Util.DecodeToCommonObject(response) return response
f3068768ea62b8960fe11b736a6fcaea722d105d
21,603
def part_2_helper(): """PART TWO This simply runs the script multiple times and multiplies the results together """ slope_1 = sled_down_hill(1, 1) slope_2 = sled_down_hill(1, 3) slope_3 = sled_down_hill(1, 5) slope_4 = sled_down_hill(1, 7) slope_5 = sled_down_hill(2, 1) return slope_1 * slope_2 * slope_3 * slope_4 * slope_5
2a62fa6acde73a8a5c1e59a0403cf6c067baf57a
21,604
def read_and_download_profile_information(id): """ linke: https://developer.apple.com/documentation/appstoreconnectapi/read_and_download_profile_information :param id: bundle_id :return: 请求结果 """ data = { "fields[certificates]": "certificateType", "fields[devices]": "platform", "fields[profiles]": "profileType", "include": "bundleId, certificates, devices", "fields[bundleIds]": "app, bundleIdCapabilities, identifier, name, platform, profiles, seedId", "limit[devices]": 50, "limit[certificates]": 50 } result = request_core.GET(api.Profiles_API + '/' + id, data) print(result.text) return result
01ba704a352df28d20d944baecf108fc0fb44ad1
21,605
def get_config(node): """Get the BIOS configuration. The BIOS settings look like:: {'EnumAttrib': {'name': 'EnumAttrib', 'current_value': 'Value', 'pending_value': 'New Value', # could also be None 'read_only': False, 'possible_values': ['Value', 'New Value', 'None']}, 'StringAttrib': {'name': 'StringAttrib', 'current_value': 'Information', 'pending_value': None, 'read_only': False, 'min_length': 0, 'max_length': 255, 'pcre_regex': '^[0-9A-Za-z]{0,255}$'}, 'IntegerAttrib': {'name': 'IntegerAttrib', 'current_value': 0, 'pending_value': None, 'read_only': True, 'lower_bound': 0, 'upper_bound': 65535}} :param node: an ironic node object. :raises: DracOperationError on an error from python-dracclient. :returns: a dictionary containing BIOS settings The above values are only examples, of course. BIOS attributes exposed via this API will always be either an enumerated attribute, a string attribute, or an integer attribute. All attributes have the following parameters: :param name: is the name of the BIOS attribute. :param current_value: is the current value of the attribute. It will always be either an integer or a string. :param pending_value: is the new value that we want the attribute to have. None means that there is no pending value. :param read_only: indicates whether this attribute can be changed. Trying to change a read-only value will result in an error. The read-only flag can change depending on other attributes. A future version of this call may expose the dependencies that indicate when that may happen. Enumerable attributes also have the following parameters: :param possible_values: is an array of values it is permissible to set the attribute to. String attributes also have the following parameters: :param min_length: is the minimum length of the string. :param max_length: is the maximum length of the string. :param pcre_regex: is a PCRE compatible regular expression that the string must match. It may be None if the string is read only or if the string does not have to match any particular regular expression. Integer attributes also have the following parameters: :param lower_bound: is the minimum value the attribute can have. :param upper_bound: is the maximum value the attribute can have. """ client = drac_common.get_drac_client(node) try: return client.list_bios_settings() except drac_exceptions.BaseClientException as exc: LOG.error('DRAC driver failed to get the BIOS settings for node ' '%(node_uuid)s. Reason: %(error)s.', {'node_uuid': node.uuid, 'error': exc}) raise exception.DracOperationError(error=exc)
ca9467800fae3939f83e964c29d564cc306d4b1e
21,606
def get_only_metrics(results): """Turn dictionary of results into a list of metrics""" metrics_names = ["test/f1", "test/precision", "test/recall", "test/loss"] metrics = [results[name] for name in metrics_names] return metrics
1b0e5bb8771fdc44dcd22ff9cdb174f77205eadd
21,608
def max_sub_array(nums): """ Returns the max subarray of the given list of numbers. Returns 0 if nums is None or an empty list. Time Complexity: ? Space Complexity: ? """ if nums == None: return 0 if len(nums) == 0: return 0 pass
0575524e2e38a215867ce51c08828fd47a230e97
21,609
import re def find_tags_containing(project, commit): """Find all tags containing the given commit. Returns the full list and a condensed list (excluding tags 'after' other tags in the list).""" tags = run_list_command(['git', 'tag', '--contains', commit], project) # The packaging projects had a different format for older tags. if project in ['acs-packaging', 'acs-community-packaging']: # Remove the prefix 'acs-packaging-' if it's present. tags = list(map(lambda tag: tag.replace('{}-'.format(project), ''), tags)) # Exclude tags that aren't just chains of numbers with an optional suffix. tags = list(filter(lambda tag: re.match(version_filter, tag), tags)) # Filter out tags that are before other tags. reduced_tags = reduce_tags(tags) return tags, reduced_tags
792bfd8c6972e818d36343723345ee1152cb66ec
21,610
def setup_nupack_input(**kargs): """ Returns the list of tokens specifying the command to be run in the pipe, and the command-line input to be given to NUPACK. Note that individual functions below may modify args or cmd_input depending on their specific usage specification. """ # Set up terms of command-line executable call args = setup_args(**kargs) # Set up command-line input to NUPACK cmd_input = setup_cmd_input(kargs['multi'], kargs['sequences'], kargs['ordering'], kargs.get('structure', '')) return (args, cmd_input)
6dc26413bb2eab4b94c343770e6110ba2d012a41
21,611
from typing import List from typing import Union from typing import Literal def rebuild_current_distribution( fields: np.ndarray, ics: np.ndarray, jj_size: float, current_pattern: List[Union[Literal["f"], str]], sweep_invariants: List[Union[Literal["offset"], Literal["field_to_k"]]] = [ "offset", "field_to_k", ], precision: float = 100, n_points: int = 2 ** 10 + 1, ) -> dict: """Rebuild a current distribution from a Fraunhofer pattern. This assumes a uniform field focusing since allowing a non uniform focusing would lead to a much larger space to explore. Parameters ---------- fields : np.ndarray Out of plane field for which the critical current was measured. ics : np.ndarray Critical current of the junction. jj_size : float Size of the junction. current_pattern : List[Union[Literal["f"], str]] Describe in how many pieces to use to represent the junction. If the input arrays are more than 1D, "f" means that value is the same across all outer dimension, "v" means that the slice takes different value for all outer dimension (ie. one value per sweep). sweep_invariants : Tuple[Union[Literal["offset", "field_to_k"]]] Indicate what quantities are invariants across sweep for more the 1D inputs. precision : float, optional pass n_points : int, optional Returns ------- dict """ # Get the offset and estimated amplitude used in the prior # We do not use the estimated current and phase distribution to give the # more space to the algorithm. offsets, first_node_locs, _, _, _ = guess_current_distribution( field, fraunhofer, site_number, jj_size ) # Gives a Fraunhofer pattern at the first node for v[1] = 1 field_to_ks = 2 * np.pi / jj_size / np.abs(first_node_locs - offsets) # Determine the dimensionality of the problem based on the invariants and # the shape of the inputs. if len(sweep_invariants) > 2: raise ValueError("There are at most 2 invariants.") if any(k for k in sweep_invariants if k not in ("offset", "field_to_k")): raise ValueError( f"Invalid invariant specified {sweep_invariants}, " "valid values are 'offset', 'field_to_k'." ) shape = fields.shape[:-1] shape_product = prod(shape) if shape else 0 if shape_product == 0 and any(p.startswith("v") for p in current_pattern): raise ValueError( "Found variable current in the distribution but the measurements are 1D." ) dim = len(sweep_invariants) + current_pattern.count("f") dim += shape_product * (current_pattern.count("v") + 2 - len(sweep_invariants)) # Pre-compute slices to access elements in the prior and log-like offset_access = slice( 0, 1 if "offset" in sweep_invariants else (shape_product or 1) ) field_to_k_access = slice( offset_access.stop, offset_access.stop + 1 if "field_to_k" in sweep_invariants else (shape_product or 1), ) stop = field_to_k_access.stop current_density_accesses = [] for p in current_pattern: if p == "f": current_density_accesses.append(slice(stop, stop + 1)) stop += 1 elif p == "v": current_density_accesses.append(slice(stop, stop + (shape_product or 1))) stop += current_density_accesses[-1].stop else: raise ValueError( f"Valid values in current_pattern are 'f' and 'v', found '{p}'" ) def prior(u): """Map the sampled in 0-1 to the relevant values range. For all values we consider the values in the prior to be the log of the values we are looking for. """ v = np.empty_like(u) v[offset_access] = 4 * u[offset_access] - 2 v[field_to_k_access] = 4 * u[field_to_k_access] - 2 stop += step # For all the amplitude we map the value between 0 and -X since the # amplitude of a single segment cannot be larger than the total current # X is determined based on the number of segments ampl = -np.log10(len(current_pattern)) for sl in current_density_accesses: v[sl] = u[sl] * ampl return v def loglike(v): """Compute the distance to the data""" # We turn invariant input into their variant form (from 1 occurence in v # to n repetition in w) to ease a systematic writing of the loglike. stop = step = shape_product or 1 w = np.empty((2 + len(current_pattern)) * (shape_product or 1)) stop = step = shape_product or 1 w[0:stop] = w_offset = v[offset_access] w[stop : stop + step] = w_f2k = v[field_to_k_access] stop += step for sl in current_density_accesses: w[stop : stop + step] = v[sl] # Pack the current distribution so that each line corresponds to different # conditions c_density = w[stop + step :].reshape((len(current_pattern), -1)).T err = np.empty_like(ics) it = np.nditer((offsets, first_node_locs, field_to_ks), ["multi_index"]) for i, (off, fnloc, f2k) in enumerate(it): # Compute the offset f_off = off + np.sign(w_off[i]) * 10 ** -abs(w_off[i]) * fnloc # Compute the Fraunhofer pattern f = produce_fraunhofer_fast( (fields[it.multi_index] - f_off[i]), f2k * 10 ** w_f2k[i], jj_size, c_density[i], 2 ** 10 + 1, ) # Compute and store the error err[it.multi_index] = np.sum( (100 * (ics[it.multi_index] - f) / amplitude) ** 2 ) return -np.ravel(err) # XXX do that nasty part later sampler = NestedSampler(loglike, prior, dim) sampler.run_nested(dlogz=precision) res = sampler.results weights = np.exp(res.logwt - res.logz[-1]) mu, cov = utils.mean_and_cov(res["samples"], weights) res["fraunhofer_params"] = { "offset": offset + np.sign(mu[0]) * 10 ** -abs(mu[0]) * first_node_loc, "field_to_k": 2 * np.pi / jj_size / abs(first_node_loc - offset) * 10 ** mu[1], "amplitude": amplitude * 10 ** mu[2], "current_distribution": np.array( [1 - np.sum(mu[3 : 3 + site_number - 1])] + list(mu[3 : 3 + site_number - 1]) ), "phase_distribution": np.array( [0] + list(mu[3 + site_number - 1 : 3 + 2 * site_number - 2]) ), } return res
66e81639e3ff3995c4a6b6bbe2f361071a6b51b1
21,612
def get_LCA(index, item1, item2): """Get lowest commmon ancestor (including themselves)""" # get parent list from if item1 == item2: return item1 try: return LCA_CACHE[index][item1 + item2] except KeyError: pass parent1 = ATT_TREES[index][item1].parent[:] parent2 = ATT_TREES[index][item2].parent[:] parent1.insert(0, ATT_TREES[index][item1]) parent2.insert(0, ATT_TREES[index][item2]) min_len = min(len(parent1), len(parent2)) last_LCA = parent1[-1] # note here: when trying to access list reversely, take care of -0 for i in range(1, min_len + 1): if parent1[-i].value == parent2[-i].value: last_LCA = parent1[-i] else: break LCA_CACHE[index][item1 + item2] = last_LCA.value return last_LCA.value
22e65163cd1c32ac8bd20dadc3aa69c208adb540
21,613
def select_workspace_access(cursor, workspace_id): """ワークスペースアクセス情報取得 Args: cursor (mysql.connector.cursor): カーソル workspace_id (int): ワークスペースID Returns: dict: select結果 """ # select実行 cursor.execute('SELECT * FROM workspace_access WHERE workspace_id = %(workspace_id)s', { 'workspace_id' : workspace_id, } ) rows = cursor.fetchall() return rows
4cf1e0dd4a1232bd5a00d49d952e3bfb98e189c5
21,614
def pkcs7_unpad(data): """ Remove the padding bytes that were added at point of encryption. Implementation copied from pyaspora: https://github.com/mjnovice/pyaspora/blob/master/pyaspora/diaspora/protocol.py#L209 """ if isinstance(data, str): return data[0:-ord(data[-1])] else: return data[0:-data[-1]]
4b43b80220e195aa51c129b6cbe1f216a94360cd
21,615
def leveinshtein_distance(source,target): """ Implement leveintein distance algorithm as described in the reference """ #Step 1 s_len=len(source) t_len=len(target) cost=0 if(s_len==0): return t_len if(t_len==0): return s_len print("Dimensions:\n\tN:%d\n\tM:%d"%(s_len,t_len)) #Step 2 matrix=[[0 for _ in range(0,t_len+1)] for _ in range(0, s_len+1)] #Initialize first row 0..s_len for idx in range(0,s_len+1): matrix[idx][0]=idx #Initialize the first column 0..t_len for idx in range(0, t_len+1): matrix[0][idx]=idx print("===Original===") print_matrix(matrix,source,target) #Step 3 for i in range(1,s_len+1): ch=source[i-1] #print(ch) #Step 4 for j in range(1,t_len+1): #print(">%s"%target[j-1]) #Step 5 if ch==target[j-1]: cost=0 else: cost=1 #Step 6 #print("(i,j)=>(%d,%d)"%(i,j)) #print(matrix[i][j]) matrix[i][j]=minimum( matrix[i-1][j]+1, matrix[i][j-1]+1, matrix[i-1][j-1]+cost ) print("===Final Matrix===") print_matrix(matrix,source,target) return matrix[s_len-1][t_len-1]
cb8e35f491463469c68f5dbc3e3af4cff7e34441
21,616
def minus (s): """ заменить последний минус на равенство """ q = s.rsplit ('-', 1) return q[0] + '=' + q[1]
8d4ae538d866a930603b71ccdba0b18145af9988
21,617
def _chk_y_path(tile): """ Check to make sure tile is among left most possible tiles """ if tile[0] == 0: return True return False
cf733c778b647654652ae5c651c7586c8c3567b8
21,618
def json_project_activities(request): """docstring for json_project_activities""" timestamp = int(request.GET['dt']) pid = int(request.GET['id']) project = get_object_or_404(Project, id=pid) items = project.items(timestamp) objs = [] for item in items: # p.items()[0].tags.all().values() objs.append({ "username": item.username, "tags": [tag['name'] for tag in item.tags.values()], "type": item.type, "source": item.source, "title":item.title, "subtitle": item.subtitle, "dt": "just now", }) return HttpResponse(simplejson.dumps(objs), mimetype='application/javascript')
cde499b9279194cb42df66989849d8beb2de1376
21,619
from typing import List def to_complex_matrix(matrix: np.ndarray) -> List: """ Convert regular matrix to matrix of ComplexVals. :param matrix: any matrix. :return: Complex matrix. """ output: List[List] = matrix.tolist() for i in range(len(matrix)): for j in range(len(matrix[i])): if type(matrix[i, j]) == complex or type(matrix[i, j]) == np.complex128: output[i][j] = ComplexVal(matrix[i, j].real, matrix[i, j].imag) else: output[i][j] = ComplexVal(matrix[i, j]) return output
ea21f0993452b4d2b540de4b92f64579e9aeee00
21,620
def skipIfDarwin(func): """Decorate the item to skip tests that should be skipped on Darwin.""" return skipIfPlatform( lldbplatform.translate( lldbplatform.darwin_all))(func)
ddca10a60e9d12f7e556192f922bbeaee0bc3a85
21,621
from typing import Tuple from pathlib import Path def load_dataframe(csv_path: PathLike) -> Tuple[str, pd.DataFrame]: """Returns a tuple (name, data frame). Used to construct a data set by `load_dataframes_from_directory`. See: load_dataframes_from_directory Dataset """ return Path(csv_path).stem, pd.read_csv(csv_path)
dbbb5f36cb767d39f01bc9c57ea27e7edfb2fb35
21,622
def VerifyReleaseChannel(options): """Verify that release image channel is correct. ChromeOS has four channels: canary, dev, beta and stable. The last three channels support image auto-updates, checks that release image channel is one of them. """ return GetGooftool(options).VerifyReleaseChannel( options.enforced_release_channels)
2be7073c9aceb2eaef111b73204d4ef4c71cc6df
21,623
def make_start_script(cmd, repo, anaconda_path, env, install_pip=(), add_swap_file=False): """ My basic startup template formatter Parameters ---------- cmd : str The actual command to run. repo : str The repository anaconda_path : str The anaconda path on my AMI. env : str The anaconda environment. install_pip : list of str Some last-minute packages that are missing on my AMI. add_swap_file : bool, int Need a swapfile? No problem. Tell me your size. """ swapfile_cmd = '' if add_swap_file: swapfile_cmd = _base_swap_tmp.format(add_swap_file=add_swap_file) if len(install_pip) == 0: install_pip = '' else: install_pip = '\n'.join( ['{anaconda_path}/bin/pip install {package}'.format( anaconda_path=anaconda_path, package=package) for package in install_pip]) script = _base_cmd_tmp.format( anaconda_path=anaconda_path, install_pip=install_pip, swapfile_cmd=swapfile_cmd, repo=repo, env=env, cmd=cmd) return script
0749f257a511526bb220c3fc4c9f34bc00a0fa32
21,624
import healpy def radius_hpmap(glon, glat, R_truncation, Rmin, Npt_per_decade_integ, nside=2048, maplonlat=None): """ Compute a radius map in healpix Parameters ---------- - glon/glat (deg): galactic longitude and latitude in degrees - R_truncation (quantity): the truncation radius - Rmin (quantity): the minimum radius - nside (int): healpix Nside - Npt_per_decade_integ (int): the number of point per decade - maplonlat (2d tuple of np.array): healpix maps of galactic longitude and latitude which can be provided to save time in case of repeated computation Returns ------- - radius (array): the radius array from Rmin to R_truncation - dist_map (array): distance map from center - maplon/lat (array): longitude and latidute maps """ try: except: print("Healpy is not installed while it is requiered by get_*_hpmap") # Get a coord map if maplonlat is None: npix = healpy.nside2npix(nside) ipix = np.linspace(0, npix, npix, dtype=int) angle = healpy.pix2ang(nside, ipix, lonlat=False) maplon = angle[1] * 180.0/np.pi maplat = 90.0 - angle[0] * 180.0/np.pi else: maplon = maplonlat[0] maplat = maplonlat[1] # Get a cluster distance map (in deg) dist_map = map_tools.greatcircle(maplon, maplat, glon, glat) dist_map[np.isnan(dist_map)] = 180.0 # some pixels are NaN for dist = 180 # Define the radius used fo computing the profile radius = sampling_array(Rmin, R_truncation, NptPd=Npt_per_decade_integ, unit=True) return radius, dist_map, maplon, maplat
1daafe536ba673213a1ff3b05d0b38f8f6c48abb
21,625
def convert_grayscale_image_to_pil(image): """Converts a 2D grayscale image into a PIL image. Args: image (numpy.ndarray[uint8]): The image to convert. Returns: PIL.Image: The converted image. """ image = np.repeat(image[:, :, None], 3, 2) image_pil = Image.fromarray(image).convert('RGBA') return image_pil
01382037d7f08de0e66a47c2be7fbaf158443a00
21,626
def delete_group(group_id, tasks=False, cached=Conf.CACHED): """ Delete a group. :param str group_id: the group id :param bool tasks: If set to True this will also delete the group tasks. Otherwise just the group label is removed. :param bool cached: run this against the cache backend :return: """ if cached: return delete_group_cached(group_id) return Task.objects.delete_group(group_id, tasks)
6bad912ecb265b512fecb131d9a6f567f90edc52
21,627
import re def alphanum_key(string): """Return a comparable tuple with extracted number segments. Adapted from: http://stackoverflow.com/a/2669120/176978 """ convert = lambda text: int(text) if text.isdigit() else text return [convert(segment) for segment in re.split('([0-9]+)', string)]
0e5e3f1d6aa43d393e1fb970f64e5910e7dc53fc
21,628
def merge_data(attribute_column, geography, chloropleth, pickle_dir): """ Merges geometry geodataframe with chloropleth attribute data. Inputs: dataframe or csv file name for data desired to be choropleth Outputs: dataframe """ gdf = load_pickle(pickle_dir, geography) chloropleth = load_pickle(pickle_dir, chloropleth) chloropleth.columns = ['key', attribute_column] return gdf.merge(chloropleth, on='key', how='left')
70ce82667a974311bb3cda8785e0f6211a86dfd1
21,629
def get_ls8_image_collection(begin_date, end_date, aoi=None): """ Calls the GEE API to collect scenes from the Landsat 7 Tier 1 Surface Reflectance Libraries :param begin_date: Begin date for time period for scene selection :param end_date: End date for time period for scene selection :param aoi: Optional, only select scenes that cover this aoi :return: cloud masked GEE image collection """ if aoi is None: return (ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') .filterDate(begin_date, end_date) .select('B2', 'B3', 'B4', 'B5', 'B6', 'B10', 'B7', 'pixel_qa') .map(rename_ls_bands) .map(cloud_mask_ls8)) else: return (ee.ImageCollection('LANDSAT/LC08/C01/T1_SR') .select('B2', 'B3', 'B4', 'B5', 'B6', 'B10', 'B7', 'pixel_qa') .filterDate(begin_date, end_date).filterBounds(aoi) .map(rename_ls_bands) .map(cloud_mask_ls8))
d74370a85dedd102ebe99fa41da1a69fdbb313d2
21,630
def multi_halo(n_halo): """ This routine will repeat the halo generator as many times as the input number to get equivalent amount of haloes. """ r_halo = [] phi_halo = [] theta_halo = [] for i in range(n_halo): r, theta,phi = one_halo(100) r_halo.append(r) theta_halo.append(theta) phi_halo.append(phi) return r_halo, theta_halo, phi_halo
3b46e21f983dfaa44192b7977ca2f4858818ffc1
21,631
def allocation_proportion_of_shimenwpp(): """ Real Name: Allocation Proportion of ShiMenWPP Original Eqn: Allocation ShiMen WPP/Total WPP Allocation Units: m3/m3 Limits: (None, None) Type: component Subs: None """ return allocation_shimen_wpp() / total_wpp_allocation()
e476e9472132bb81feccceef7f56c7e2eaa4b6f2
21,632
import copy def update_cfg(base_cfg, update_cfg): """used for mmcv.Config or other dict-like configs.""" res_cfg = copy.deepcopy(base_cfg) res_cfg.update(update_cfg) return res_cfg
c03dcfa7ac6d2f5c6745f69028f7cdb2ebe35eec
21,633
import traceback def check(conn, command, exit=False, timeout=None, **kw): """ Execute a remote command with ``subprocess.Popen`` but report back the results in a tuple with three items: stdout, stderr, and exit status. This helper function *does not* provide any logging as it is the caller's responsibility to do so. """ command = conn.cmd(command) stop_on_error = kw.pop('stop_on_error', True) timeout = timeout or conn.global_timeout if not kw.get('env'): # get the remote environment's env so we can explicitly add # the path without wiping out everything kw = extend_env(conn, kw) conn.logger.info('Running command: %s' % ' '.join(admin_command(conn.sudo, command))) result = conn.execute(_remote_check, cmd=command, **kw) response = None try: response = result.receive(timeout) except Exception as err: # the things we need to do here :( # because execnet magic, we cannot catch this as # `except TimeoutError` if err.__class__.__name__ == 'TimeoutError': msg = 'No data was received after %s seconds, disconnecting...' % timeout conn.logger.warning(msg) # there is no stdout, stderr, or exit code but make the exit code # an error condition (non-zero) regardless return [], [], -1 else: remote_trace = traceback.format_exc() remote_error = RemoteError(remote_trace) if remote_error.exception_name == 'RuntimeError': conn.logger.error(remote_error.exception_line) else: for tb_line in remote_trace.split('\n'): conn.logger.error(tb_line) if stop_on_error: raise RuntimeError( 'Failed to execute command: %s' % ' '.join(command) ) if exit: conn.exit() return response
f3ada320c245d0660f5f820e08131fed010a9fd4
21,634
import functools def domains_configured(f): """Wraps API calls to lazy load domain configs after init. This is required since the assignment manager needs to be initialized before this manager, and yet this manager's init wants to be able to make assignment calls (to build the domain configs). So instead, we check if the domains have been initialized on entry to each call, and if requires load them, """ @functools.wraps(f) def wrapper(self, *args, **kwargs): if (not self.domain_configs.configured and CONF.identity.domain_specific_drivers_enabled): LOG.warning(_( 'Running an experimental and unsupported configuration ' '(domain_specific_drivers_enabled = True); ' 'this will result in known issues.')) self.domain_configs.setup_domain_drivers( self.driver, self.assignment_api) return f(self, *args, **kwargs) return wrapper
b336912d9abc80b2f3f5899be7fbf6ae384ae248
21,635
def add_modified_tags(original_db, scenarios): """ Add a `modified` label to any activity that is new Also add a `modified` label to any exchange that has been added or that has a different value than the source database. :return: """ # Class `Export` to which the original database is passed exp = Export(original_db) # Collect a dictionary of activities {row/col index in A matrix: code} rev_ind_A = rev_index(create_codes_index_of_A_matrix(original_db)) # Retrieve list of coordinates [activity, activity, value] coords_A = exp.create_A_matrix_coordinates() # Turn it into a dictionary {(code of receiving activity, code of supplying activity): value} original = {(rev_ind_A[x[0]], rev_ind_A[x[1]]): x[2] for x in coords_A} # Collect a dictionary with activities' names and correponding codes codes_names = create_codes_and_names_of_A_matrix(original_db) # Collect list of substances rev_ind_B = rev_index(create_codes_index_of_B_matrix()) # Retrieve list of coordinates of the B matrix [activity index, substance index, value] coords_B = exp.create_B_matrix_coordinates() # Turn it into a dictionary {(activity code, substance code): value} original.update({(rev_ind_A[x[0]], rev_ind_B[x[1]]): x[2] for x in coords_B}) for s, scenario in enumerate(scenarios): print(f"Looking for differences in database {s + 1} ...") rev_ind_A = rev_index(create_codes_index_of_A_matrix(scenario["database"])) exp = Export( scenario["database"], scenario["model"], scenario["pathway"], scenario["year"], "", ) coords_A = exp.create_A_matrix_coordinates() new = {(rev_ind_A[x[0]], rev_ind_A[x[1]]): x[2] for x in coords_A} rev_ind_B = rev_index(create_codes_index_of_B_matrix()) coords_B = exp.create_B_matrix_coordinates() new.update({(rev_ind_A[x[0]], rev_ind_B[x[1]]): x[2] for x in coords_B}) list_new = set(i[0] for i in original.keys()) ^ set(i[0] for i in new.keys()) ds = (d for d in scenario["database"] if d["code"] in list_new) # Tag new activities for d in ds: d["modified"] = True # List codes that belong to activities that contain modified exchanges list_modified = (i[0] for i in new if i in original and new[i] != original[i]) # # Filter for activities that have modified exchanges for ds in ws.get_many( scenario["database"], ws.either(*[ws.equals("code", c) for c in set(list_modified)]), ): # Loop through biosphere exchanges and check if # the exchange also exists in the original database # and if it has the same value # if any of these two conditions is False, we tag the exchange excs = (exc for exc in ds["exchanges"] if exc["type"] == "biosphere") for exc in excs: if (ds["code"], exc["input"][0]) not in original or new[ (ds["code"], exc["input"][0]) ] != original[(ds["code"], exc["input"][0])]: exc["modified"] = True # Same thing for technosphere exchanges, # except that we first need to look up the provider's code first excs = (exc for exc in ds["exchanges"] if exc["type"] == "technosphere") for exc in excs: if ( exc["name"], exc["product"], exc["unit"], exc["location"], ) in codes_names: exc_code = codes_names[ (exc["name"], exc["product"], exc["unit"], exc["location"]) ] if new[(ds["code"], exc_code)] != original[(ds["code"], exc_code)]: exc["modified"] = True else: exc["modified"] = True return scenarios
b1e18f8871e7d9430e5c4eaff41128c72359ce1c
21,636
def import_tep_sets(lagged_samples: int = 2) -> tuple: """ Imports the normal operation training set and 4 of the commonly used test sets [IDV(0), IDV(4), IDV(5), and IDV(10)] with only the first 22 measured variables and first 11 manipulated variables """ normal_operation = import_sets(0) testing_sets = import_sets([4, 5, 10], skip_training=True) X = normal_operation[0][1] T0 = normal_operation[0][2] T4 = testing_sets[0][1] T5 = testing_sets[1][1] T10 = testing_sets[2][1] ignored_var = list(range(22, 41)) X = np.delete(X, ignored_var, axis=0) T0 = np.delete(T0, ignored_var, axis=0) T4 = np.delete(T4, ignored_var, axis=0) T5 = np.delete(T5, ignored_var, axis=0) T10 = np.delete(T10, ignored_var, axis=0) # Add lagged samples X = add_lagged_samples(X, lagged_samples) T0 = add_lagged_samples(T0, lagged_samples) T4 = add_lagged_samples(T4, lagged_samples) T5 = add_lagged_samples(T5, lagged_samples) T10 = add_lagged_samples(T10, lagged_samples) return(X, T0, T4, T5, T10)
d9affb48e182f4bb79cdb86e70ca90dadd461d51
21,638
def to_fgdc(obj): """ This is the priamry function to call in the module. This function takes a UnifiedMetadata object and creates a serialized FGDC metadata record. Parameters ---------- obj : obj A amg.UnifiedMetadata class instance Returns ------- : str A string encoded FGDC compliant XML metadata file """ template = None for s in obj.sources: if isinstance(s, FGDCMetadata): template = s.data populate_projection_information(template, obj) populate_bounding_box(template, obj) populate_raster_info(template, obj) populate_digital_forms(template, obj) populate_accuracies(template, obj) populate_geodetic(template, obj) template.planar_distance_units = 'meters' template.online_linkages = obj.doi if hasattr(obj, 'title'): template.title = obj.title if hasattr(obj, 'processing_environment'): template.processing_environment = obj.processing_environment # Add the point of contact section to the template. template.validate() return template.serialize(use_template=False).decode()
762f77c45f2e40fd9135b3821e91b9c1c7a30bd9
21,639
def compute_iqms(settings, name='ComputeIQMs'): """ Workflow that actually computes the IQMs .. workflow:: from mriqc.workflows.functional import compute_iqms wf = compute_iqms(settings={'output_dir': 'out'}) """ workflow = pe.Workflow(name=name) inputnode = pe.Node(niu.IdentityInterface(fields=[ 'subject_id', 'session_id', 'task_id', 'acq_id', 'rec_id', 'run_id', 'orig', 'epi_mean', 'brainmask', 'hmc_epi', 'hmc_fd', 'in_tsnr', 'metadata']), name='inputnode') outputnode = pe.Node(niu.IdentityInterface( fields=['out_file', 'out_dvars', 'outliers', 'out_spikes', 'out_fft']), name='outputnode') deriv_dir = check_folder(op.abspath(op.join(settings['output_dir'], 'derivatives'))) # Compute DVARS dvnode = pe.Node(nac.ComputeDVARS(save_plot=False, save_all=True), name='ComputeDVARS') dvnode.interface.estimated_memory_gb = settings[ "biggest_file_size_gb"] * 3 # AFNI quality measures fwhm = pe.Node(afni.FWHMx(combine=True, detrend=True), name='smoothness') # fwhm.inputs.acf = True # add when AFNI >= 16 outliers = pe.Node(afni.OutlierCount(fraction=True, out_file='ouliers.out'), name='outliers') outliers.interface.estimated_memory_gb = settings[ "biggest_file_size_gb"] * 2.5 quality = pe.Node(afni.QualityIndex(automask=True), out_file='quality.out', name='quality') quality.interface.estimated_memory_gb = settings[ "biggest_file_size_gb"] * 3 measures = pe.Node(FunctionalQC(), name='measures') measures.interface.estimated_memory_gb = settings[ "biggest_file_size_gb"] * 3 workflow.connect([ (inputnode, dvnode, [('hmc_epi', 'in_file'), ('brainmask', 'in_mask')]), (inputnode, measures, [('epi_mean', 'in_epi'), ('brainmask', 'in_mask'), ('hmc_epi', 'in_hmc'), ('hmc_fd', 'in_fd'), ('in_tsnr', 'in_tsnr')]), (inputnode, fwhm, [('epi_mean', 'in_file'), ('brainmask', 'mask')]), (inputnode, quality, [('hmc_epi', 'in_file')]), (inputnode, outliers, [('hmc_epi', 'in_file'), ('brainmask', 'mask')]), (dvnode, measures, [('out_all', 'in_dvars')]), (dvnode, outputnode, [('out_all', 'out_dvars')]), (outliers, outputnode, [('out_file', 'outliers')]) ]) # Save to JSON file datasink = pe.Node(IQMFileSink( modality='bold', out_dir=deriv_dir), name='datasink') workflow.connect([ (inputnode, datasink, [('subject_id', 'subject_id'), ('session_id', 'session_id'), ('task_id', 'task_id'), ('acq_id', 'acq_id'), ('rec_id', 'rec_id'), ('run_id', 'run_id'), ('metadata', 'metadata')]), (outliers, datasink, [(('out_file', _parse_tout), 'aor')]), (quality, datasink, [(('out_file', _parse_tqual), 'aqi')]), (measures, datasink, [('out_qc', 'root')]), (fwhm, datasink, [(('fwhm', fwhm_dict), 'root0')]), (datasink, outputnode, [('out_file', 'out_file')]) ]) if settings.get('fft_spikes_detector', False): # FFT spikes finder spikes_fft = pe.Node(niu.Function( input_names=['in_file'], output_names=['n_spikes', 'out_spikes', 'out_fft'], function=slice_wise_fft), name='SpikesFinderFFT') workflow.connect([ (inputnode, spikes_fft, [('orig', 'in_file')]), (spikes_fft, outputnode, [('out_spikes', 'out_spikes'), ('out_fft', 'out_fft')]), (spikes_fft, datasink, [('n_spikes', 'spikes_num')]) ]) return workflow
90ce62cd50ed2818e01c55eabde437b84a10dc70
21,640
def GetDepthFromIndicesMapping(list_indices): """ GetDepthFromIndicesMapping ========================== Gives the depth of the nested list from the index mapping @param list_indices: a nested list representing the indexes of the nested lists by depth @return: depth """ return max([len(x[0]) for x in list_indices])+1
c2318b3c6a398289c2cbf012af4c562d3d8bc2da
21,642
import signal def lowpassIter(wp, ws, fs, f, atten=90, n_max=400): """Design a lowpass filter using f by iterating to minimize the number of taps needed. Args: wp: Passband frequency ws: Stopband frequency fs: Sample rate f: Function to design filter atten: desired attenuation (dB) n_max: Maximum semi-length of filter Returns: Filter taps. """ n = bellangerord(0.01, 0.01, fs, (ws-wp))//2 n_prev = 1 n_lo = 1 n_hi = None if n > n_max: n = n_max while n != n_prev: N = 2*n + 1 taps = f(N, wp, ws, fs) w, h = signal.freqz(taps, worN=8000) w = 0.5*fs*w/np.pi hdb = 20*np.log10(np.abs(h)) db = np.max(hdb[w >= ws]) n_prev = n if db > -atten: if n == n_max: break n_lo = n if n_hi: n = (n_lo + n_hi) // 2 else: n = 2*n else: n_hi = n n = (n_lo + n_hi) // 2 if n > n_max: n = n_max return taps
c9733a8d7c225dfbf76a4a11441ce75bd8f9042f
21,643
from typing import Union from typing import Dict import numpy def evaluate_themes( ref_measurement: Measurement, test_measurement: Measurement, themes: Union[FmaskThemes, ContiguityThemes, TerrainShadowThemes], ) -> Dict[str, float]: """ A generic tool for evaluating thematic datasets. """ values = [v.value for v in themes] n_values = len(values) minv = min(values) maxv = max(values) # read data and reshape to 1D ref_data = ref_measurement.read().ravel() test_data = test_measurement.read().ravel() ref_h = histogram(ref_data, minv=minv, maxv=maxv, reverse_indices="ri") ref_hist = ref_h["histogram"] ref_ri = ref_h["ri"] theme_changes = dict() for theme in themes: i = theme.value # check we have data for this category if ref_hist[i] == 0: # no changes as nothing exists in the reference data theme_changes[theme] = numpy.full((n_values,), numpy.nan) continue idx = ref_ri[ref_ri[i] : ref_ri[i + 1]] values = test_data[idx] h = histogram(values, minv=minv, maxv=maxv) hist = h["histogram"] pdf = hist / numpy.sum(hist) theme_changes[theme] = pdf * 100 # split outputs into separate records result = dict() for theme in themes: for theme2 in themes: key = f"{theme.name.lower()}_2_{theme2.name.lower()}" result[key] = theme_changes[theme][theme2.value] return result
d6f56d54e19b35d6ab3d716d7a231fb27bc3db9a
21,644
def test_global_averaging(): """Test that `T==N` and `F==pow2(N_frs_max)` doesn't error, and outputs close to `T==N-1` and `F==pow2(N_frs_max)-1` """ if skip_all: return None if run_without_pytest else pytest.skip() np.random.seed(0) N = 512 params = dict(shape=N, J=9, Q=4, J_fr=5, Q_fr=2, average=True, average_fr=True, out_type='dict:array', pad_mode='reflect', pad_mode_fr='conj-reflect-zero', max_pad_factor=None, max_pad_factor_fr=None, frontend=default_backend, sampling_filters_fr=('resample', 'resample')) x = echirp(N) x += np.random.randn(N) outs = {} metas = {} Ts, Fs = (N - 1, N), (2**6 - 1, 2**6) for T in Ts: # N_frs_max ~= Q*max(p2['j'] for p2 in psi2_f); found 29 at runtime for F in Fs: jtfs = TimeFrequencyScattering1D(**params, T=T, F=F) assert (jtfs.average_fr_global if F == Fs[-1] else not jtfs.average_fr_global) assert (jtfs.average_global if T == Ts[-1] else not jtfs.average_global) out = jtfs(x) out = jtfs_to_numpy(out) outs[ (T, F)] = out metas[(T, F)] = jtfs.meta() T0F0 = coeff_energy(outs[(Ts[0], Fs[0])], metas[(Ts[0], Fs[0])]) T0F1 = coeff_energy(outs[(Ts[0], Fs[1])], metas[(Ts[0], Fs[1])]) T1F0 = coeff_energy(outs[(Ts[1], Fs[0])], metas[(Ts[1], Fs[0])]) T1F1 = coeff_energy(outs[(Ts[1], Fs[1])], metas[(Ts[1], Fs[1])]) if metric_verbose: print("\nGlobal averaging reldiffs:") th = .15 for pair in T0F0: ref = T0F0[pair] reldiff01 = abs(T0F1[pair] - ref) / ref reldiff10 = abs(T1F0[pair] - ref) / ref reldiff11 = abs(T1F1[pair] - ref) / ref assert reldiff01 < th, "%s > %s | %s" % (reldiff01, th, pair) assert reldiff10 < th, "%s > %s | %s" % (reldiff10, th, pair) assert reldiff11 < th, "%s > %s | %s" % (reldiff11, th, pair) if metric_verbose: print("(01, 10, 11) = ({:.2e}, {:.2e}, {:.2e}) | {}".format( reldiff01, reldiff10, reldiff11, pair))
d8a7c08754c403a2a3450be6ee5856a57f686003
21,645
def poly_coefficients(df: np.ndarray,z: np.ndarray,cov: np.ndarray) -> np.ndarray: """ Calculate the coefficients in the free energy polynomial Parameters ---------- df : [2,iphase] Difference between next and current integration points z: np.ndarray [2,iphase] Conjugate varibales (z1,z2) of currrent point (f1,f2) for both I and II phases cov: np.ndarray [3,iphase] Covariances [cov(z1,Z1),cov(z2,Z2),cov(z1,Z2)] of current point for both I and II phases Returns ------- df : [6,2] Coefficients in the free energy polynomial """ coef = np.zeros((6,2)) coef[0,:] = z[0,:]*df[0,:] coef[1,:] = z[1,:]*df[1,:] coef[2,:] = cov[0,:]*df[0,:]**2 coef[3,:] = cov[1,:]*df[1,:]**2 coef[4,:] = cov[2,:]*df[0,:]*df[1,:] coef[5,:] = cov[2,:]*df[0,:] return coef
67270bbb03a8f9d006e4d22d22f114ec6deab057
21,646
def NoneInSet(s): """Inverse of CharSet (parse as long as character is not in set). Result is string.""" return ConcatenateResults(Repeat(NoneOf(s), -1))
00bb27c434b630926eb8d2012ebed6bb1bf368d4
21,647
import re def _read_part(f, verbose): """Reads the part name and creates a mesh with that name. :param f: The file from where to read the nodes from. :type f: file object at the nodes :param verbose: Determines what level of print out to the console. :type verbose: 0, 1 or 2 :return: Nothing, but has the side effect of setting the pointer in the file object f to the line with the next keyword. """ re_part = re.compile("\*Part, name=(.*)") line = f.readline() match = re_part.match(line) if not match: raise ReadInpFileError("Error parsing file. Expected '*Part, " "name=XXX', read '" + line + "'.") part_name = match.group(1) if verbose == 1 or verbose == 2: print("Read part with name " + str(part_name)) # Initiate a mesh class with the same name as the part return Mesh(part_name)
d6546e39dc0998e979c3cb03b60f149e2a474518
21,648
async def get_prefix(bot, message): """Checks if the bot has a configuration tag for the prefix. Otherwise, gets the default.""" default_prefix = await get_default_prefix(bot) if isinstance(message.channel, discord.DMChannel): return default_prefix my_roles = [role.name for role in message.guild.me.roles] for role_name in my_roles: if role_name[:11] == "fox_prefix:": return role_name[11:] return default_prefix
15d44e0a976858b5217b68740485dddd4b4bf0ef
21,649
def HA19(request): """ Returns the render for the sdg graph """ data = dataFrameHA() figure = px.bar(data, x = "Faculty", y = "HA 19", labels = {"Faculty":"Faculties", "HA19":"Number of Modules Corresponding to HA 19"}) figure.write_image("core/static/HA19.png") return render(request, 'HA19.html')
6cdeb6589fffd910b981c583213e268e2ae0f1e2
21,651
def beta(data, market, periods, normalize = False): """ .. Beta Parameters ---------- data : `ndarray` An array containing values. market : `ndarray` An array containing market values to be used as the comparison when calculating beta. periods : `int` Number of periods to be used. normalize : `bool`, optional Specify whether to normalize the standard deviation calculation within the beta calculation with n - 1 instead of n. Defaults to False. Returns ------- `ndarray` An array containing beta values. Examples -------- >>> import qufilab as ql >>> import numpy as np ... >>> # Load sample dataframe. >>> df = ql.load_sample('MSFT') >>> df_market = ql.load_sample('DJI') >>> beta = ql.beta(df['close'], df_market['close'], periods = 10) >>> print(beta) [nan nan nan ... 0.67027616 0.45641977 0.3169785] """ return beta_calc(data, market, periods, normalize)
23071387d52d9a715dcb286cc74779d83438d453
21,653
import math def heading_from_to(p1: Vector, p2: Vector) -> float: """ Returns the heading in degrees from point 1 to point 2 """ x1 = p1[0] y1 = p1[1] x2 = p2[0] y2 = p2[1] angle = math.atan2(y2 - y1, x2 - x1) * (180 / math.pi) angle = (-angle) % 360 return abs(angle)
a9fe4fe79fdff0c390e5870fb05d4e9f0c371185
21,654
import math def selSPEA2Diverse(individuals, k): """Apply SPEA-II selection operator on the *individuals*. Usually, the size of *individuals* will be larger than *n* because any individual present in *individuals* will appear in the returned list at most once. Having the size of *individuals* equals to *n* will have no effect other than sorting the population according to a strength Pareto scheme. The list returned contains references to the input *individuals*. For more details on the SPEA-II operator see [Zitzler2001]_. :param individuals: A list of individuals to select from. :param k: The number of individuals to select. :returns: A list of selected individuals. .. [Zitzler2001] Zitzler, Laumanns and Thiele, "SPEA 2: Improving the strength Pareto evolutionary algorithm", 2001. """ N = len(individuals) nGenes= len(individuals[0]) L = len(individuals[0].fitness.values) K = math.sqrt(N) strength_fits = [0] * N fits = [0] * N dominating_inds = [list() for i in range(N)] for i, ind_i in enumerate(individuals): for j, ind_j in enumerate(individuals[i+1:], i+1): if ind_i.fitness.dominates(ind_j.fitness): strength_fits[i] += 1 dominating_inds[j].append(i) elif ind_j.fitness.dominates(ind_i.fitness): strength_fits[j] += 1 dominating_inds[i].append(j) for i in range(N): for j in dominating_inds[i]: fits[i] += strength_fits[j] # Choose all non-dominated individuals chosen_indices = [i for i in range(N) if fits[i] < 1] if len(chosen_indices) < k: # The archive is too small print('>>>>>> TOO SMALL', len(chosen_indices),k) distances = populationChromosomeDistances(individuals) distances=distances/np.max(distances) #[print('Chosen',chosen_indices) #[print('Ind',i) for i in range(N): print(distances[i,:]) kth_dist = _randomizedSelect(distances[i,:], 0, N - 1, K) density = 1.0 / (kth_dist + 2.0) fits[i] += density next_indices = [(fits[i], i) for i in range(N) if not i in chosen_indices] next_indices.sort() #print next_indices chosen_indices += [i for _, i in next_indices[:k - len(chosen_indices)]] elif len(chosen_indices) > k: # The archive is too large print('>>>>>> TOO BIG') N = len(chosen_indices) distances = [[0.0] * N for i in range(N)] sorted_indices = [[0] * N for i in range(N)] for i in range(N): for j in range(i + 1, N): dist = 0.0 for l in range(L): val = individuals[chosen_indices[i]].fitness.values[l] - \ individuals[chosen_indices[j]].fitness.values[l] dist += val * val distances[i][j] = dist distances[j][i] = dist distances[i][i] = -1 # Insert sort is faster than quick sort for short arrays for i in range(N): for j in range(1, N): l = j while l > 0 and distances[i][j] < distances[i][sorted_indices[i][l - 1]]: sorted_indices[i][l] = sorted_indices[i][l - 1] l -= 1 sorted_indices[i][l] = j size = N to_remove = [] while size > k: # Search for minimal distance min_pos = 0 for i in range(1, N): for j in range(1, size): dist_i_sorted_j = distances[i][sorted_indices[i][j]] dist_min_sorted_j = distances[min_pos][sorted_indices[min_pos][j]] if dist_i_sorted_j < dist_min_sorted_j: min_pos = i break elif dist_i_sorted_j > dist_min_sorted_j: break # Remove minimal distance from sorted_indices for i in range(N): distances[i][min_pos] = float("inf") distances[min_pos][i] = float("inf") for j in range(1, size - 1): if sorted_indices[i][j] == min_pos: sorted_indices[i][j] = sorted_indices[i][j + 1] sorted_indices[i][j + 1] = min_pos # Remove corresponding individual from chosen_indices to_remove.append(min_pos) size -= 1 for index in reversed(sorted(to_remove)): del chosen_indices[index] print(chosen_indices) Sel=[individuals[i] for i in chosen_indices] print(len(chosen_indices),k) SelU=[] for i in chosen_indices: if individuals[i] not in SelU: SelU.append(individuals[i]) print('Selected') print(len(Sel),k) #jjprint(Sel) print('Unique ones') print(len(SelU),k) #print(SelU) if len(SelU)<k: print('>>>>>> NEED FOR MORE') #import pdb #pdb.set_trace() return Sel
d5b651844c3dc8ad96e04f9a93e264d368b066a3
21,655
def utilization_to_states(state_config, utilization): """ Get the state history corresponding to the utilization history. Adds the 0 state to the beginning to simulate the first transition. (map (partial utilization-to-state state-config) utilization)) :param state_config: The state configuration. :type state_config: list(float) :param utilization: The history of the host's CPU utilization. :type utilization: list(float) :return: The state history. :rtype: list(int) """ return [utilization_to_state(state_config, x) for x in utilization]
1eaaff399dfd6981feb8de56eb5dc4b4baa8fd3f
21,656
from typing import Dict def generate_person(results: Dict): """ Create a dictionary from sql that queried a person :param results: :return: """ person = None if len(results) > 0: person = { "id": results[0], "name": results[1].decode("utf-8"), "img_url": results[2].decode("utf-8"), "location": results[3].decode("utf-8"), "colors": (results[4].decode("utf-8")).split(",") } return person
21c2f2c8fa43c43eabf06785203556ccae708d45
21,658
def paliindrome_sentence(sentence: str) -> bool: """ `int` """ string = '' for char in sentence: if char.isalnum(): string += char return string[::-1].casefold() == string.casefold()
4559f9f823f748f137bbe1eb96070dba8e7d867d
21,659
def get_default_pool_set(): """Return the names of supported pooling operators Returns: a tuple of pooling operator names """ output = ['sum', 'correlation1', 'correlation2', 'maximum'] return output
32d28fdb80ecdacab8494251edd87b566128fd79
21,660
def virtual_networks_list_all(**kwargs): """ .. versionadded:: 2019.2.0 List all virtual networks within a subscription. CLI Example: .. code-block:: bash salt-call azurearm_network.virtual_networks_list_all """ result = {} netconn = __utils__["azurearm.get_client"]("network", **kwargs) try: vnets = __utils__["azurearm.paged_object_to_list"]( netconn.virtual_networks.list_all() ) for vnet in vnets: result[vnet["name"]] = vnet except CloudError as exc: __utils__["azurearm.log_cloud_error"]("network", str(exc), **kwargs) result = {"error": str(exc)} return result
52b9d655a2459d1b2f2904fc216b5ccc8ad12b04
21,661
def generate_state_matrix(Hprime, gamma): """Full combinatorics of Hprime-dim binary vectors with at most gamma ones. :param Hprime: Vector length :type Hprime: int :param gamma: Maximum number of ones :param gamma: int """ sl = [] for g in range(2,gamma+1): for s in combinations(list(range(Hprime)), g): sl.append( np.array(s, dtype=np.int8) ) state_list = sl no_states = len(sl) no_states = no_states sm = np.zeros((no_states, Hprime), dtype=np.uint8) for i in range(no_states): s = sl[i] sm[i, s] = 1 state_matrix = sm state_abs = sm.sum(axis=1) #print("state matrix updated") return state_list, no_states, state_matrix, state_abs
165a6bfe742569780939783dc7f1b086245c747e
21,662
def playfair_decipher(message, keyword, padding_letter='x', padding_replaces_repeat=False, letters_to_merge=None, wrap_alphabet=KeywordWrapAlphabet.from_a): """Decipher a message using the Playfair cipher.""" column_order = list(range(5)) row_order = list(range(5)) if letters_to_merge is None: letters_to_merge = {'j': 'i'} grid = polybius_grid(keyword, column_order, row_order, letters_to_merge=letters_to_merge, wrap_alphabet=wrap_alphabet) message_bigrams = playfair_bigrams( sanitise(message), padding_letter=padding_letter, padding_replaces_repeat=padding_replaces_repeat) plaintext_bigrams = [playfair_decipher_bigram(b, grid, padding_letter=padding_letter) for b in message_bigrams] return cat(plaintext_bigrams)
d66afe1447be6b5453a5271f80e678d5e1664c95
21,664
import json def create_role(role_name): """Create a role.""" role_dict = { "Version" : "2012-10-17", "Statement" : [ { "Effect" : "Allow", "Principal" : { "Service" : "lambda.amazonaws.com" }, "Action" : "sts:AssumeRole" } ] } cli_input = json.dumps(role_dict) cmd = [ "aws", "iam", "create-role", "--role-name", role_name, "--assume-role-policy-document", cli_input ] output = execute_command(cmd) output_json = json.loads(output.decode("utf-8")) return output_json["Role"]["Arn"]
743a88c5e071d1ed2e968f7ec3a7421eaab4d69e
21,665
def evaluate_field(record, field_spec): """ Evaluate a field of a record using the type of the field_spec as a guide. """ if type(field_spec) is int: return str(record[field_spec]) elif type(field_spec) is str: return str(getattr(record, field_spec)) else: return str(field_spec(record))
66fdc96aa774a27c225fb273040acdbbf4ff9979
21,666
def project_points(X, K, R, T, distortion_params=None): """ Project points from 3d world coordinates to 2d image coordinates """ x_2d = np.dot(K, (np.dot(R, X) + T)) x_2d = x_2d[:-1, :] / x_2d[-1, :] if distortion_params is not None: x_2d_norm = np.concatenate((x_2d, np.ones((1, x_2d.shape[1]))), 0) x_3d_norm = np.dot(np.linalg.pinv(K), x_2d_norm) x_2d_post = x_3d_norm[:-1, :] / x_3d_norm[-1, :] r = np.sqrt(x_2d_post[0, :]**2 + x_2d_post[1, :]**2) correction = (1 + distortion_params[0] * r**2 + distortion_params[1] * r**4 + distortion_params[4] * r**6) x_2d_corr = x_2d_post * correction x_3d_corr = np.concatenate(( x_2d_corr, np.ones((1, x_2d_corr.shape[1]))), 0) x_2d = np.dot(K, x_3d_corr) x_2d = x_2d[:-1, :] / x_2d[-1, :] return x_2d
e7f2c3f864e7beb798194eca3425cd9342b2c881
21,667
import numpy as np def rate_multipressure(qD, delta_p, B, mu, perm, h): """Calculate Rate as Sum of Constant Flowing Pressures""" return ((.007082 * perm * h) / (B * mu)) * (np.sum(qD * delta_p))
a8621613abb63bb6f15c71ab3ba02d65ab160e6b
21,669
def osculating_elements_of(position, reference_frame=None, gm_km3_s2=None): """Produce the osculating orbital elements for a position. `position` is an instance of :class:`~skyfield.positionlib.ICRF`. These are commonly returned by the ``at()`` method of any Solar System body. ``reference_frame`` is an optional argument and is a 3x3 numpy array. The reference frame by default is the ICRF. Commonly used reference frames are found in skyfield.data.spice.inertial_frames. ``gm_km3_s2`` is an optional float argument representing the gravitational parameter (G*M) in units of km^3/s^2, which is the sum of the masses of the orbiting object and the object being orbited. If not specified, this is calculated for you. This function returns an instance of :class:`~skyfield.elementslib.OsculatingElements` """ if gm_km3_s2 is None: if not isinstance(position.center, int): raise ValueError('Skyfield is unable to calculate a value for GM. You' ' should specify one using the `gm_km3_s2` keyword argument') gm_km3_s2 = GM_dict.get(position.center, 0.0) orbits_barycenter = 0 <= position.center <= 9 if not orbits_barycenter: gm_km3_s2 += GM_dict.get(position.target, 0.0) if gm_km3_s2 == 0: raise ValueError('Skyfield is unable to calculate a value for GM. You' ' should specify one using the `gm_km3_s2` keyword argument') if reference_frame is not None: position_vec = Distance(reference_frame.dot(position.position.au)) velocity_vec = Velocity(reference_frame.dot(position.velocity.au_per_d)) else: position_vec = position.position velocity_vec = position.velocity return OsculatingElements(position_vec, velocity_vec, position.t, gm_km3_s2)
cf6096ed0eeaeccaa013e052ad1a2fe7e63940f5
21,670
import copy def rename_actions(P: NestedDicts, policy: DetPolicy) -> NestedDicts: """ Renames actions in P so that the policy action is always 0.""" out: NestedDicts = {} for start_state, actions in P.items(): new_actions = copy.copy(actions) policy_action = policy(start_state) new_actions[0], new_actions[policy_action] = actions[policy_action], actions[0] out[start_state] = new_actions return out
433433ded44f118ec05ddbf9fde17825b0fd4e62
21,671
import csv from datetime import datetime async def get_category(category): """ Retrieves the data for the provided category. The data is cached for 1 hour. :returns: The data for category. :rtype: dict """ # Adhere to category naming standard. category = category.lower() # URL to request data from. url = BASE_URL + "time_series_covid19_%s_global.csv" % category # Request the data async with httputils.CLIENT_SESSION.get(url) as response: text = await response.text() # Parse the CSV. data = list(csv.DictReader(text.splitlines())) # The normalized locations. locations = [] for item in data: # Filter out all the dates. dates = dict(filter(lambda element: date_util.is_date(element[0]), item.items())) # Make location history from dates. history = {date: int(amount or 0) for date, amount in dates.items()} # Country for this location. country = item["Country/Region"] # Latest data insert value. latest = list(history.values())[-1] # Normalize the item and append to locations. locations.append( { # General info. "country": country, "country_code": countries.country_code(country), "province": item["Province/State"], # Coordinates. "coordinates": {"lat": item["Lat"], "long": item["Long"],}, # History. "history": history, # Latest statistic. "latest": int(latest or 0), } ) # Latest total. latest = sum(map(lambda location: location["latest"], locations)) # Return the final data. return { "locations": locations, "latest": latest, "last_updated": datetime.utcnow().isoformat() + "Z", "source": "https://github.com/ExpDev07/coronavirus-tracker-api", }
a40ba9ec753b8d7a0b2a464675a1bb541be193f0
21,672
def plot_ellipses_area( params, depth="None", imin=0, imax=398, jmin=0, jmax=898, figsize=(10, 10) ): """Plot ellipses on a map in the Salish Sea. :arg params: a array containing the parameters (possibly at different depths and or locations). :type param: np.array :arg depth: The depth at which you want to see the ellipse. If the param array has no depth dimensions put 'None'. Default 'None'. :arg depth: int :arg imin: Minimum horizontal index that will be plotted. :type imin: int :arg imax: Maximum horizontal index that will be plotted. :type imax: int :arg jmin: Minimum vertical index that will be plotted. :type jmin: int :arg jmax: Maximum vertical index that will be plotted. :type jmax: int """ phi = 0 fig, ax = plt.subplots(1, 1, figsize=figsize) k = np.zeros((898, 398)) m = np.zeros((898, 398)) scale = 10 for q in np.arange(jmin, jmax): for l in np.arange(imin, imax): k[q, l] = q * np.cos(phi * np.pi / 180.0) + l * np.sin(phi * np.pi / 180.0) m[q, l] = -q * np.sin(phi * np.pi / 180.0) + l * np.cos(phi * np.pi / 180.0) if depth == "None": for x in np.arange(imin, imax): for y in np.arange(jmin, jmax): if params[y, x, 1] > 0: thec = "b" else: thec = "r" ellsc = Ellipse( xy=(m[y, x], k[y, x]), width=scale * params[y, x, 0], height=scale * params[y, x, 1], angle=params[y, x, 2] - 29, color=thec, ) ax.add_artist(ellsc) else: for x in np.arange(imin, imax): for y in np.arange(jmin, jmax): if params[y, x, depth, 2] > 0: thec = "b" else: thec = "r" ellsc = Ellipse( xy=(m[y, x], k[y, x]), width=scale * params[y, x, depth, 1], height=scale * params[y, x, depth, 2], angle=params[y, x, depth, 3] - 29, color=thec, ) ax.add_artist(ellsc) grid_B = nc.Dataset( "/data/dlatorne/MEOPAR/NEMO-forcing/grid/bathy_meter_SalishSea2.nc" ) bathy = grid_B.variables["Bathymetry"][:, :] contour_interval = [-0.01, 0.01] ax.contourf( m[jmin:jmax, imin:imax], k[jmin:jmax, imin:imax], bathy.data[jmin:jmax, imin:imax], contour_interval, colors="black", ) ax.contour( m[jmin:jmax, imin:imax], k[jmin:jmax, imin:imax], bathy.data[jmin:jmax, imin:imax], [5], colors="black", ) ax.set_title("Tidal ellipse", fontsize=20) ax.set_xlabel("x index", fontsize=16) ax.set_ylabel("y index", fontsize=16) print("red is clockwise") return fig
b1f96ae602b6e4b1db725ac4efd2be193c23c29c
21,673
from typing import Dict def populate_workflow_request_body(manifest_data: Dict): """ Populate workflow request body with the passed data according API specification :param data: item data from manifest files :return: populated request :rtype: dict """ request = { "runId": "", "executionContext": { "acl": { "owners": [], "viewers": [] }, "legal": { "legaltags": [], "otherRelevantDataCountries": [], "compliant": "compliant" }, "Payload": { "AppKey": "test-app", "data-partition-id": "opendes" }, "manifest": "" } } request["runId"] = generate_id() request["executionContext"]["acl"]["owners"].append(config.get("REQUEST", "acl_owner")) request["executionContext"]["acl"]["viewers"].append(config.get("REQUEST", "acl_viewer")) request["executionContext"]["legal"]["legaltags"].append(config.get("REQUEST", "legal_tag")) request["executionContext"]["legal"]["otherRelevantDataCountries"].append( config.get("REQUEST", "other_relevant_data_countries")) request["executionContext"]["manifest"] = manifest_data return request
f0ec863d835907402a9a5fa3ce3c61ea1e9a4b69
21,676
def is_leap_year(year): """ Is the current year a leap year? Args: y (int): The year you wish to check. Returns: bool: Whether the year is a leap year (True) or not (False). """ if year % 4 == 0 and (year % 100 > 0 or year % 400 == 0): return True return False
16e4c83adc9d42dae2396186f980755b33af9188
21,678
def blank_dog(): """Set up (16, 3) array of dog with initial joint positions""" length = 0.5 width = 0.2 ankle_length = 0.1 ankle_to_knee = 0.2 knee_to_shoulder = 0.05 O = Vector(0,0,0) # origin out = [] for lengthwise in [-1, +1]: for widthwise in [+1, -1]: foot = O + length * Vector(lengthwise/2,0,0) + width * Vector(0, widthwise/2, 0) ankle = foot + ankle_length * Vector(-0.3, 0, 1).unit() knee = ankle + ankle_to_knee * Vector(-0.1, 0, 1).unit() shoulder = knee + knee_to_shoulder * Vector(0.05,0,1).unit() if n_joints == 16: out += [foot, ankle, knee, shoulder] elif n_joints == 8: out += [foot, shoulder] return np.array(out)
af53bd94e273b79b44ff25fff32245ea0dcae280
21,680
def random_majority_link_clf(): """ for link classification we do not select labels from a fixed distribution but instead we set labels to the number of possible segments in a sample. I.e. we only predict a random link out of all the possible link paths in a sample. """ def clf(labels, k:int): ##only to self #return np.arange(k) # only one forward #return [min(i+1, k-1) for i in range(k)] # only one back return [max(0, i-1) for i in range(k)] ## link to the segment behind or the one ahead. ## If i == k-1, we take i or i-1. if i == 0, we take i or i+1 #return [random.choice([max(0, i-1), i, min(i+1, k-1)]) for i in range(k)] return clf
f53f2fee85914e25d5e407808dcfbee623b0782a
21,682
def db_to_df(db_table): """Reads in a table from the board games database as pandas DataFrame""" query = f"SELECT * FROM {db_table};" pd_table = pd.read_sql(query, DB) return pd_table
d20f876c7a7e8da891dc949e85eb35932c6ae5fa
21,683
def player_input_choice() -> int: """Function that takes the player input as the position for his|her marker""" marker_position = 0 while marker_position not in range(1, 10) or not tic_tac_toe.check_the_cell(marker_position): marker_position = int(input("Choose the position for your marker from 1 to 9: ")) return marker_position
b717068f4e1aa36251b1ee1503034a3f60b193c7
21,685
def increment_datetime_by_string(mydate, increment, mult=1): """Return a new datetime object incremented with the provided relative dates specified as string. Additional a multiplier can be specified to multiply the increment before adding to the provided datetime object. Usage: .. code-block:: python >>> dt = datetime(2001, 9, 1, 0, 0, 0) >>> string = "60 seconds, 4 minutes, 12 hours, 10 days, 1 weeks, 5 months, 1 years" >>> increment_datetime_by_string(dt, string) datetime.datetime(2003, 2, 18, 12, 5) >>> dt = datetime(2001, 11, 1, 0, 0, 0) >>> string = "1 months" >>> increment_datetime_by_string(dt, string) datetime.datetime(2001, 12, 1, 0, 0) >>> dt = datetime(2001, 11, 1, 0, 0, 0) >>> string = "13 months" >>> increment_datetime_by_string(dt, string) datetime.datetime(2002, 12, 1, 0, 0) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "72 months" >>> increment_datetime_by_string(dt, string) datetime.datetime(2007, 1, 1, 0, 0) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "72 months" >>> increment_datetime_by_string(dt, string) datetime.datetime(2007, 1, 1, 0, 0) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "5 minutes" >>> increment_datetime_by_string(dt, string) datetime.datetime(2001, 1, 1, 0, 5) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "49 hours" >>> increment_datetime_by_string(dt, string) datetime.datetime(2001, 1, 3, 1, 0) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "3600 seconds" >>> increment_datetime_by_string(dt, string) datetime.datetime(2001, 1, 1, 1, 0) >>> dt = datetime(2001, 1, 1, 0, 0, 0) >>> string = "30 days" >>> increment_datetime_by_string(dt, string) datetime.datetime(2001, 1, 31, 0, 0) :param mydate: A datetime object to incremented :param increment: A string providing increment information: The string may include comma separated values of type seconds, minutes, hours, days, weeks, months and years Example: Increment the datetime 2001-01-01 00:00:00 with "60 seconds, 4 minutes, 12 hours, 10 days, 1 weeks, 5 months, 1 years" will result in the datetime 2003-02-18 12:05:00 :param mult: A multiplier, default is 1 :return: The new datetime object or none in case of an error """ return modify_datetime_by_string(mydate, increment, mult, sign=int(1))
7651ccb9c4b5b881c5d1389dcdfd015dfabb0a3b
21,686
def get_regularization_loss(scope=None, name="total_regularization_loss"): """Gets the total regularization loss. Args: scope: An optional scope name for filtering the losses to return. name: The name of the returned tensor. Returns: A scalar regularization loss. """ losses = get_regularization_losses(scope) if losses: return math_ops.add_n(losses, name=name) else: return constant_op.constant(0.0)
dd65e13111b0927c197b38e4500d5194a7bd5453
21,687
def storage_backend_get_all(context, inactive=False, filters=None): """Get all storage backends""" return IMPL.storage_backend_get_all(context, inactive, filters)
9f67dab8e6576ee30185a36e59cfb8e0d45569cb
21,689
from datetime import datetime import requests def get_date_opm_status_response(intent, session): """ Gets the current status of opm for the day """ card_title = "OPM Status Result" session_attributes = {} speech_output = "I'm not sure which o. p. m. status you requested. " \ "Please try again." reprompt_text = "I'm not sure which o. p. m. status you requested. " \ "Try asking if the government is open today." should_end_session = True if "date" in intent["slots"]: dt_value = intent["slots"]["date"]["value"] try: fmt_dt_value = datetime.datetime.strptime(dt_value, "%Y-%m-%d").strftime("%m/%d/%Y") # call the operating status endpoint and convert the response to json r = requests.get(API_BASE + "?date=" + fmt_dt_value) if r.status_code == 200: data = r.json() status = data['StatusType'].lower() if status != 'undefined': speech_output = "Federal agencies in the Washington, DC, area were " \ + status + " on " + dt_value + "." reprompt_text = "" else: speech_output = "I seem to be having trouble answering your question. " \ "Please ask me for the o. p. m. status by saying, " \ "Is the government open today?" reprompt_text = "Please ask me for bus times by saying, " \ "Is the government open today?" should_end_session = False except ValueError: speech_output = "Sorry, I did not understand that date. Please ask your question " \ "again with a valid date." reprompt_text = "Sorry, I did not understand that date. Please ask your question " \ "again with a valid date." should_end_session = False return build_response(session_attributes, build_speechlet_response( card_title, speech_output, reprompt_text, should_end_session))
29d1517f87495751a604c209768d6750a0ab960e
21,690
def oauth_api_request(method, url, **kwargs): """ when network error, fallback to use rss proxy """ options = _proxy_helper.get_proxy_options() client = RSSProxyClient(**options, proxy_strategy=_proxy_strategy) return client.request(method, url, **kwargs)
07438100ea75ae144567001832986f03cd72c3a8
21,691
def validate_cached(cached_calcs): """ Check that the calculations with created with caching are indeed cached. """ valid = True for calc in cached_calcs: if not calc.is_finished_ok: print('Cached calculation<{}> not finished ok: process_state<{}> exit_status<{}>' .format(calc.pk, calc.process_state, calc.exit_status)) print_report(calc.pk) valid = False if '_aiida_cached_from' not in calc.extras or calc.get_hash() != calc.get_extra('_aiida_hash'): print('Cached calculation<{}> has invalid hash'.format(calc.pk)) print_report(calc.pk) valid = False if isinstance(calc, CalcJobNode): original_calc = load_node(calc.get_extra('_aiida_cached_from')) files_original = original_calc.list_object_names() files_cached = calc.list_object_names() if not files_cached: print("Cached calculation <{}> does not have any raw inputs files".format(calc.pk)) print_report(calc.pk) valid = False if not files_original: print("Original calculation <{}> does not have any raw inputs files after being cached from." .format(original_calc.pk)) valid = False if set(files_original) != set(files_cached): print("different raw input files [{}] vs [{}] for original<{}> and cached<{}> calculation".format( set(files_original), set(files_cached), original_calc.pk, calc.pk)) valid = False return valid
3406c584dada7d24a46cbb565d0cdbab98a1d303
21,692