content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import logging def part_work(NPCorpsList): """获取军团LP兑换物品及其信息 Args: NPCorpList: NPC军团id列表 Returns: NPCorpList: 可以兑换物品的NPC军团id列表 [123,124,125...244,245,246] NPCorps: 可以兑换物品的NPC军团信息字典,key为id [ '物品id': { 'info': { "ceo_id": 3004049, "corporation_description": "", "corporation_name": "CBD社团", "creator_id": 1, "member_count": 0, "tax_rate": 0, "ticker": "CBDC", "url": "None" }, 'lp_store': { "isk_cost": 2400000, "lp_cost": 2400, "offer_id": 3584, "quantity": 5000, "required_items": [ { "quantity": 5000, "type_id": 234 } ], "type_id": 23047 }, } ] names: 物品信息字典,key为id { "23047": { "category": "inventory_type", "id": 23047, "name": "加达里海军铅质轨道弹 L", "jita": { "all": { "max": 30000000, "min": 0.01, "volume": 8102161635 }, "buy": { "max": 14.86, "min": 0.01, "volume": 2893652791 }, "sell": { "max": 30000000, "min": 15.23, "volume": 5208508844 } } } } """ NPCorpsList, NPCorps, ids_list = getCorp(NPCorpsList) if 0 == len(ids_list) or 0 == len(NPCorpsList): return None, None, None try: Names = [] for i in range(0, len(ids_list), 255): Names += getCHName(ids_list[i: min(i + 255, len(ids_list))]) except Exception as E: logging.error(E) return None, None, None logging.info("get Chinese Name Successed!") names = {} for name in Names: try: name["jita"] = getValue(name["id"]) except Exception as E: logging.error(E) else: names["{}".format(name["id"])] = name logging.info("get Jita Market Successed!") return NPCorpsList, NPCorps, names
96e85555a5aa74c6f065c897938ffd4c6d970739
20,195
def read_metadata(image_dir_path): """Read image metadata from an image directory.""" return jsons.load_dataobject( ImageMetadata, _get_metadata_path(image_dir_path) )
132306a228550ebff155d83e3c3d5020aad0263a
20,196
def subtract(list_1, list_2): """Subtracts list_2 from list_1 even if they are different lengths. Length of the returned list will be the length of the shortest list supplied. Index 0 is treated as the oldest, and the older list items are truncated. Args: list_1 (list of float): List to be subtracted from list_2 (list of float): List to subtract Returns: list of float: result of list_1 - list_2 """ offset = len(list_1) - len(list_2) return list(np.array(list_1[offset:]) - np.array(list_2))
e41b02a6875ea971ffded30f82b1b51bcd33b9e8
20,197
def get_available_time_slots() -> list: """ An application is ready for scheduling when all the payment rules are satisfied plus: - the application has been paid - the window to schedule the review has not elapsed """ return [ {"try": middleware.create_correlation_id, "fail": []}, {"try": middleware.determine_current_datetime, "fail": []}, {"try": middleware.clean_prohibition_number, "fail": []}, {"try": middleware.validate_prohibition_number, "fail": []}, {"try": middleware.get_vips_status, "fail": []}, {"try": middleware.prohibition_exists_in_vips, "fail": []}, {"try": middleware.user_submitted_last_name_matches_vips, "fail": []}, {"try": middleware.application_has_been_saved_to_vips, "fail": []}, {"try": middleware.get_payment_status, "fail": []}, {"try": middleware.received_valid_payment_status, "fail": []}, {"try": middleware.paid_not_more_than_24hrs_ago, "fail": []}, {"try": middleware.application_has_been_paid, "fail": []}, {"try": middleware.review_has_not_been_scheduled, "fail": []}, {"try": middleware.get_application_details, "fail": []}, {"try": middleware.valid_application_received_from_vips, "fail": []}, {"try": middleware.get_invoice_details, "fail": []}, {"try": middleware.calculate_schedule_window, "fail": []}, {"try": middleware.query_review_times_available, "fail": []}, {"try": middleware.does_applicant_have_enough_review_options, "fail": [ {"try": middleware.query_for_additional_review_times, "fail": []}, {"try": middleware.does_applicant_have_enough_review_options, "fail": [ {"try": rsi_email.insufficient_reviews_available, "fail": []}, ]} ]}, ]
9e04168f908abd0a9c37c969769477fc04cbd805
20,198
def library_detail(request, lib_id): """ Display information about all the flowcells a library has been run on. """ lib = get_object_or_404(Library, id=lib_id) flowcell_list = [] flowcell_run_results = {} # aka flowcells we're looking at for lane in lib.lane_set.all(): fc = lane.flowcell flowcell_id, id = parse_flowcell_id(fc.flowcell_id) if flowcell_id not in flowcell_run_results: flowcell_run_results[flowcell_id] = get_flowcell_result_dict(flowcell_id) flowcell_list.append((fc.flowcell_id, lane.lane_number)) flowcell_list.sort() lane_summary_list = [] eland_results = [] for fc, lane_number in flowcell_list: lane_summary, err_list = _summary_stats(fc, lane_number, lib_id) lane_summary_list.extend(lane_summary) eland_results.extend(_make_eland_results(fc, lane_number, flowcell_run_results)) context = { 'page_name': 'Library Details', 'lib': lib, 'eland_results': eland_results, 'lane_summary_list': lane_summary_list, } context.update(SAMPLES_CONTEXT_DEFAULTS) return render(request, 'samples/library_detail.html', context)
493a0ababcb9da6bffd859044ac0a11e854b03d5
20,199
def create_effect( effect_id: CardEffect.EffectId = CardEffect.EffectId.DMG, target: CardLevelEffects.Target = CardLevelEffects.Target.OPPONENT, power: int = 10, range_: float = 5 ) -> Effect: """ Creates effect with given data, or creates default effect dealing dmg to opponent if no was data provided. :param effect_id: :param target: :param power: :param range_: :return: Created effect. """ effect_factory = EffectFactory.get_instance() card = CardFactory() effect_model = CardLevelEffectsFactory( card=card, card_effect=CardEffect.objects.get(pk=effect_id), target=target, power=power, range=range_ ) return effect_factory.create(effect_model)
9055250c4ab7db3700b2393c16f54cfef3566747
20,201
def part_two(stream: Stream, violation: int) -> int: """Find the sum of min & max in the sequence that sums to `violation`.""" for start in range(len(stream) - 1): for end in range(start + 2, len(stream) + 1): seq = stream[start:end] seq_sum = sum(seq) if seq_sum == violation: return min(seq) + max(seq) if seq_sum > violation: break # No point in going further, since the sum can only grow raise Exception("Solution not found!")
a1481af0183f1e42642a9137242d57fe75738770
20,202
def getDoubleArray(plug): """ Gets the float array from the supplied plug. :type plug: om.MPlug :rtype: om.MDoubleArray """ return om.MFnDoubleArrayData(plug.asMObject()).array()
6e93113d1968a56cb3b12c500be04c554f79c165
20,203
import numpy def get_fb(file_name): """#{{{ load feature file and transform to dict return: dict key_list_feat """ ff = open(file_name, 'r') fb = [] delta = [] fb_matrix = numpy.zeros([1, 24]) delta_matrix = numpy.zeros([1, 24]) fbanks = {} deltas = {} fb_keylist = [] while(1): line = ff.readline() if not line: # print 'end of file' break end_line = line.strip().split()[-1] if end_line == '[': key = line.strip().split()[0] elif end_line == ']': for i in range(24): fb.append(float(line.strip().split()[i])) for i in range(24, 48): delta.append(float(line.strip().split()[i])) fb_keylist.append(key) fb_matrix = numpy.vstack((fb_matrix, fb)) fbanks[key] = fb_matrix[1:, :] delta_matrix = numpy.vstack((delta_matrix, delta)) deltas[key] = delta_matrix[1:, :] fb = [] delta = [] fb_matrix = numpy.zeros([1, 24]) delta_matrix = numpy.zeros([1, 24]) else: for i in range(24): # value.append(line.strip().split()[i]) fb.append(float(line.strip().split()[i])) for i in range(24, 48): delta.append(float(line.strip().split()[i])) fb_matrix = numpy.vstack((fb_matrix, fb)) delta_matrix = numpy.vstack((delta_matrix, delta)) fb = [] delta = [] print('number of utterances in fbank: %d' % len(fbanks)) ff.close() return fbanks, deltas, fb_keylist
85589f74f47a58f0ba36a438b3340ff0858737e4
20,204
def make_train_input_fn( feature_spec, labels, file_pattern, batch_size, shuffle=True): """Makes an input_fn for training.""" return _make_train_or_eval_input_fn( feature_spec, labels, file_pattern, batch_size, tf.estimator.ModeKeys.TRAIN, shuffle)
1f8d481d5fff1913f392a4286c445af757f849bd
20,205
def _find(xs, predicate): """Locate an item in a list based on a predicate function. Args: xs (list) : List of data predicate (function) : Function taking a data item and returning bool Returns: (object|None) : The first list item that predicate returns True for or None """ for x in xs: if predicate(x): return x return None
94d8dd47e54e1887f67c5f5354d05dc0c294ae52
20,206
from typing import OrderedDict def remove_dataparallel_prefix(state_dict): """Removes dataparallel prefix of layer names in a checkpoint state dictionary.""" new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] if k[:7] == "module." else k new_state_dict[name] = v return new_state_dict
28fe85b262f8d4bdefa40d34839787ba1a8ef094
20,207
def user_upload_widget(node, on_complete=''): """Returns a Valum Uploader widget that uploads files based on the user's home directory. :param node: storage type (public or private) and path indicator, e.g. "public:foo/bar" to have the uploaded file go in MEDIA_ROOT/$USERNAME/foo/bar. :param on_complete: name of Javascript function to call when an upload has complete, will be called with signature: function(String id, String fileName, Object responseJSON) """ return _valum_widget('/yacon/browser/user_upload_file/', node, on_complete=on_complete)
77a797aaabaf7d3d0f9923e3931e938e568952e0
20,208
def run_lsa(model, lsa_options): """Implements local sensitivity analysis using LSI, RSI, and parameter subset reduction. Parameters ---------- model : Model Object of class Model holding run information. options : Options Object of class Options holding run settings. Returns ------- LsaResults Object of class LsaResults holding all run results. """ # LSA implements the following local sensitivity analysis methods on system specified by "model" object # 1) Jacobian # 2) Scaled Jacobian for Relative Sensitivity Index (RSI) # 3) Fisher Information matrix # Required Inputs: object of class "model" and object of class "options" # Outputs: Object of class lsa with Jacobian, RSI, and Fisher information matrix # Calculate Jacobian jac_raw=get_jacobian(model.eval_fcn, model.base_poi, lsa_options.x_delta,\ lsa_options.method, scale=False, y_base=model.base_qoi) # Calculate relative sensitivity index (RSI) jac_rsi=get_jacobian(model.eval_fcn, model.base_poi, lsa_options.x_delta,\ lsa_options.method, scale=True, y_base=model.base_qoi) # Calculate Fisher Information Matrix from jacobian fisher_mat=np.dot(np.transpose(jac_raw), jac_raw) #Active Subspace Analysis if lsa_options.run_param_subset: reduced_model, active_set, inactive_set = get_active_subset(model, lsa_options) #Collect Outputs and return as an lsa object return LsaResults(jacobian=jac_raw, rsi=jac_rsi, fisher=fisher_mat,\ reduced_model=reduced_model, active_set=active_set,\ inactive_set=inactive_set) else: return LsaResults(jacobian=jac_raw, rsi=jac_rsi, fisher=fisher_mat)
2a8376f3e287dbeefa8f13321804ef6052357bf5
20,209
def condense_simple_conv3x3(in_channels, out_channels, groups): """ 3x3 version of the CondenseNet specific simple convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. groups : int Number of groups. """ return CondenseSimpleConv( in_channels=in_channels, out_channels=out_channels, ksize=3, stride=1, pad=1, groups=groups)
061d0df67fdcf5f3c56f227ca7e53d0fef3e2db2
20,210
def read_data_from(file_: str) -> list: """Read bitmasks and values from file.""" return open(file_, "r").read().splitlines()
ec1bd526d46ee94452df23f92448e60af4d6865c
20,211
def version_for(plugin): # (Plugin) -> Optional[str] """Determine the version of a plugin by its module. :param plugin: The loaded plugin :type plugin: Plugin :returns: version string for the module :rtype: str """ module_name = plugin.plugin.__module__ try: module = __import__(module_name) except ImportError: return None return getattr(module, "__version__", None)
6d7c4ccc868d11d28c92d1264d52488e22d7f5e5
20,212
import json def choose_organization(): """Allow user to input organization id. Returns: str: Access target id """ target_id = None while not target_id: orgs = None return_code, out, err = utils.run_command([ 'gcloud', 'organizations', 'list', '--format=json']) if return_code: print(err) else: try: orgs = json.loads(out) except ValueError as verr: print(verr) if not orgs: print('\nYou don\'t have access to any organizations. ' 'Choose another option to enable Forseti access.') return None print('\nHere are the organizations you have access to:') valid_org_ids = set() for org in orgs: org_id = utils.id_from_name(org['name']) valid_org_ids.add(org_id) print('ID=%s (description="%s")' % (org_id, org['displayName'])) choice = raw_input('Enter the organization id where ' 'you want Forseti to crawl for data: ').strip() try: # make sure that the choice is a valid organization id if choice not in valid_org_ids: print('Invalid organization id %s, try again' % choice) return None target_id = str(int(choice)) except ValueError: print('Unable to parse organization id %s' % choice) return target_id
fa46edc07e45eaa53bb6a52a6f0e7992a836fad7
20,213
def get_subscriber_groups(publication_id, subscription_id='', full_uri=False): """This function identifies the subscriber groups for one or more subscriptions within a publication. .. versionchanged:: 3.1.0 Refactored the function to be more efficient. :param publication_id: The ID of the publication :type publication_id: int, str :param subscription_id: The specific subscription ID for which to return subscriber groups (Optional) :type subscription_id: int, str :param full_uri: Determines whether or not to return the full URI or just the Group ID (``False`` by default) :type full_uri: bool :returns: A dictionary mapping the subscription IDs to the respective subscriber groups :raises: :py:exc:`khorosjx.errors.exceptions.SubscriptionNotFoundError` """ # Verify that the core connection has been established verify_core_connection() # Capture the subscriber groups for each subscription subscriptions = get_subscription_data(publication_id) # Filter for a specific subscription if an ID is provided if subscription_id: subscriptions = filter_subscriptions_by_id(subscription_id, subscriptions) # Capture the subscriber groups subscriber_groups = {} for subscription in subscriptions: if full_uri: subscriber_groups[subscription['id']] = subscription.get('subscribers') else: subscribers = [] for subscriber in subscription.get('subscribers'): subscribers.append(subscriber.split('securityGroups/')[1]) subscriber_groups[subscription['id']] = subscribers return subscriber_groups
e7dd2a052992109a2673dcdbbac388ee0babf7ec
20,215
def get_salutation_from_title(title): """ Described here: https://github.com/VNG-Realisatie/Haal-Centraal-BRP-bevragen/blob/v1.0.0/features/aanhef.feature#L4-L38 """ if title in [BARON, HERTOG, JONKHEER, MARKIES, RIDDER]: return HOOGWELGEBOREN_HEER if title in [BARONES, HERTOGIN, JONKVROUW, MARKIEZIN]: return HOOGWELGEBOREN_VROUWE if title in [PRINS, PRINSES]: return HOOGHEID if title == GRAAF: return HOOGGEBOREN_HEER if title == GRAVIN: return HOOGGEBOREN_VROUWE
afbafcf7c2ec2a77b44d2e9aad5930f83d5cc10c
20,216
def hourOfDayNy(dateTime): """ Returns an int value of the hour of the day for a DBDateTime in the New York time zone. The hour is on a 24 hour clock (0 - 23). :param dateTime: (io.deephaven.db.tables.utils.DBDateTime) - The DBDateTime for which to find the hour of the day. :return: (int) A QueryConstants.NULL_INT if the input is null, otherwise, an int value of the hour of the day represented by the DBDateTime when interpreted in the New York time zone. """ return _java_type_.hourOfDayNy(dateTime)
eac5db0723bf44162d50a787c56244d5bcb094d9
20,217
def _extract_action_num_and_node_id(m): """Helper method: Extract *action_num* and *node_id* from the given regex match. Convert *action_num* to a 0-indexed integer.""" return dict( action_num=(int(m.group('action_num')) - 1), node_id=m.group('node_id'), )
f1e5f0b81d6d82856b7c00d67270048e0e4caf38
20,218
import re def get_uid_cidx(img_name): """ :param img_name: format output_path / f'{uid} cam{cidx} rgb.png' """ img_name = img_name.split("/")[-1] assert img_name[-8:] == " rgb.png" img_name = img_name[:-8] m = re.search(r'\d+$', img_name) assert not m is None cidx = int(m.group()) img_name = img_name[:-len(str(cidx))] assert img_name[-4:] == " cam" uid = img_name[0:-4] return uid, cidx
29363f4fc686fa972c2249e5e1db1a333625be36
20,219
def parse_color(hex_color): """Parse color values""" cval = int(hex_color, 16) x = lambda b: ((cval >> b) & 0xff) / 255.0 return {k: x(v) for k, v in dict(r=16, g=8, b=0).iteritems()}
70ca92f7696dd5193730326de141ad30c039f7c6
20,220
def apply_4x4(RT, XYZ): """ RT: B x 4 x 4 XYZ: B x N x 3 """ #RT = RT.to(XYZ.device) B, N, _ = list(XYZ.shape) ones = np.ones([B, N, 1]) XYZ1 = np.concatenate([XYZ, ones], 2) XYZ1_t = np.transpose(XYZ1, 1, 2) # this is B x 4 x N XYZ2_t = np.matmul(RT, XYZ1_t) XYZ2 = np.transpose(XYZ2_t, 1, 2) XYZ2 = XYZ2[:,:,:3] return XYZ2
b2b2e76a79dbbdf2bc0039fb073a0a6209c9f82d
20,221
def smoothmax(value1, value2, hardness): """ A smooth maximum between two functions. Also referred to as the logsumexp() function. Useful because it's differentiable and preserves convexity! Great writeup by John D Cook here: https://www.johndcook.com/soft_maximum.pdf :param value1: Value of function 1. :param value2: Value of function 2. :param hardness: Hardness parameter. Higher values make this closer to max(x1, x2). :return: Soft maximum of the two supplied values. """ value1 = value1 * hardness value2 = value2 * hardness max = np.fmax(value1, value2) min = np.fmin(value1, value2) out = max + np.log(1 + np.exp(min - max)) out /= hardness return out
60ef9d14b6867aaa205c186309d0c9f53e4edb21
20,222
def udf_con(udf_backend): """ Instance of Client, already connected to the db (if applies). """ return udf_backend.connection
7e95460b4e6808cc148406dfbdb8e952ebb4739a
20,224
from typing import Union from pathlib import Path from typing import Optional def resolve_config(*, config: Union[Path, str]) -> Optional[Path]: """Resolves a config to an absolute Path.""" path = config if isinstance(config, Path) else Path(config) # Is it absolute, or relative to the CWD? if path.exists(): return path # Is it relative to a configuration directory? for config_dir in get_config_dirs(): lpath = config_dir.joinpath(path) if lpath.exists(): return lpath for extension in EXTENSIONS: lpath = config_dir.joinpath(f"{str(path)}.{extension}") if lpath.exists(): return lpath return None
4290e46cda385fd60c164af712d28e5e7ad22c83
20,225
def get_default_config() -> DefaultConfig: """ Get the default config. Returns: A dict with the default config. """ images = assets.get_images() return { "static_url": "/static", "favicon_ico": images.favicon_ico.name, "favicon_png": images.favicon_png.name, "favicon_svg": images.favicon_svg.name, "preview_png": images.preview_png.name, "google_tag_manager": "GTM-*******", "language": "en", "territory": "US", "domain": "sample.com", "text_dir": "ltr", "title": "Sample", "description": "We do things", "subject": "Home Page", "main_color": "#ff0000", "background_color": "#ffffff", "author_name": info.AUTHOR, "author_email": info.EMAIL, "facebook_app_id": "123456", "twitter_username": "sample", "twitter_user_id": "123456", "itunes_app_id": "123456", "itunes_affiliate_data": "123456", }
72685f6bb2a45e03f42d96c82cd0436a826fed68
20,226
import string import re def normalize_elt(elt, alphanum=True): """ Normalize string by removing newlines, punctuation, spaces, and optionally filtering for alphanumeric chars Args: elt (string): string to normalize alphanum (bool, optional, default True): if True, only return elt if it contains at least one alphanumeric char, return None otherwise Returns: norm_elt (string): normalized string or None """ norm_elt = elt.replace('\n', '') # remove new lines translator = str.maketrans('', '', string.punctuation) norm_elt = norm_elt.lower().translate(translator) # lowercase then remove punctuation norm_elt = norm_elt.strip().replace(' ', '_') # replace spaces with underscores if alphanum: alphanum_check = re.search('[a-zA-Z0-9]', norm_elt) if alphanum_check: return norm_elt else: return None else: return norm_elt
79aad0a7425270b8708598fe5429ecd7c46bffde
20,227
from typing import Tuple from typing import Optional def check_importability(code: str, func_name: str) -> Tuple[bool, Optional[Exception]]: """Very simple check just to see whether the code is at least importable""" try: import_func_from_code( code, func_name, raise_if_not_found=False, register_module=False, ) return True, None except Exception as e: # pylint: disable=broad-except return False, e
b7823344bf2ab7055882fb366b0903fcab1a5366
20,228
import torch def compute_q(u, v, omega, k_hat, m_hat, N=100, map_est=False): """ Inputs: u, v - (B,L*2) omega - (L,n) k_hat, m_hat - (B,J) """ B, L = u.size()[0], int(u.size()[1]/2) unique_omega, inverse_idx = torch.unique(omega, dim=0, return_inverse=True) # (J,n), (L) c, s = utils.circular_moment_numint_multi(k_hat, m_hat, unique_omega, unique_omega, N=N, map_est=map_est) # (B,J), (B,J) (0.0013s) c, s = c[:,inverse_idx], s[:,inverse_idx] # (B,L), (B,L) qc, qs = torch.empty(B,L*2,device=device), torch.empty(B,L*2,device=device) qc[:,::2], qc[:,1::2] = c.clone(), c.clone() qs[:,::2], qs[:,1::2] = s.clone(), s.clone() return qc, qs
d8ab2b71a9c149ed3c8e25daa86954c8d24ce79e
20,229
def stationarity(sequence): """ Compute the stationarity of a sequence. A stationary transition is one whose source and destination symbols are the same. The stationarity measures the percentage of transitions to the same location. Parameters ---------- sequence : list A list of symbols. Returns ------- float Percentage of the sequence that is stationary. """ if len(sequence) <= 1: return 100.0 if len(sequence) == len(set(sequence)): return .0 stationary_transitions = 0 for i in range(1, len(sequence)): if sequence[i - 1] == sequence[i]: stationary_transitions += 1 return round(stationary_transitions * 100 / (len(sequence) - 1), 2)
39f96d4a07a83ef2c46033dcac9cfaa343747b2f
20,230
def build_nmt_model(Vs, Vt, demb=128, h=128, drop_p=0.5, tied=True, mask=True, attn=True, l2_ratio=1e-4, training=None, rnn_fn='lstm'): """ Builds the target machine translation model. :param demb: Embedding dimension. :param h: Number of hidden units. :param drop_p: Dropout percentage. :param attn: Flag to include attention units. :param rnn_fn: Can be 'lstm' or 'gru'. """ if rnn_fn == 'lstm': rnn = LSTM elif rnn_fn == 'gru': rnn = LSTM else: raise ValueError(rnn_fn) # Build encoder encoder_input = Input((None,), dtype='float32', name='encoder_input') if mask: encoder_emb_layer = Embedding(Vs + 1, demb, mask_zero=True, embeddings_regularizer=l2(l2_ratio), name='encoder_emb') else: encoder_emb_layer = Embedding(Vs, demb, mask_zero=False, embeddings_regularizer=l2(l2_ratio), name='encoder_emb') encoder_emb = encoder_emb_layer(encoder_input) # Dropout for encoder if drop_p > 0.: encoder_emb = Dropout(drop_p)(encoder_emb, training=training) encoder_rnn = rnn(h, return_sequences=True, return_state=True, kernel_regularizer=l2(l2_ratio), name='encoder_rnn') encoder_rtn = encoder_rnn(encoder_emb) encoder_outputs = encoder_rtn[0] encoder_states = encoder_rtn[1:] # Build decoder decoder_input = Input((None,), dtype='float32', name='decoder_input') if mask: decoder_emb_layer = Embedding(Vt + 1, demb, mask_zero=True, embeddings_regularizer=l2(l2_ratio), name='decoder_emb') else: decoder_emb_layer = Embedding(Vt, demb, mask_zero=False, embeddings_regularizer=l2(l2_ratio), name='decoder_emb') decoder_emb = decoder_emb_layer(decoder_input) # Dropout for decoder if drop_p > 0.: decoder_emb = Dropout(drop_p)(decoder_emb, training=training) decoder_rnn = rnn(h, return_sequences=True, kernel_regularizer=l2(l2_ratio), name='decoder_rnn') decoder_outputs = decoder_rnn(decoder_emb, initial_state=encoder_states) if drop_p > 0.: decoder_outputs = Dropout(drop_p)(decoder_outputs, training=training) # Taken from https://arxiv.org/pdf/1805.01817.pdf for training with user annotations if tied: final_outputs = DenseTransposeTied(Vt, kernel_regularizer=l2(l2_ratio), name='outputs', tied_to=decoder_emb_layer, activation='linear')(decoder_outputs) else: final_outputs = Dense(Vt, activation='linear', kernel_regularizer=l2(l2_ratio), name='outputs')(decoder_outputs) # Add attention units if attn: contexts = Attention(units=h, kernel_regularizer=l2(l2_ratio), name='attention', use_bias=False)([encoder_outputs, decoder_outputs]) if drop_p > 0.: contexts = Dropout(drop_p)(contexts, training=training) contexts_outputs = Dense(Vt, activation='linear', use_bias=False, name='context_outputs', kernel_regularizer=l2(l2_ratio))(contexts) final_outputs = Add(name='final_outputs')([final_outputs, contexts_outputs]) model = Model(inputs=[encoder_input, decoder_input], outputs=[final_outputs]) return model
ff3991dab1b4d6e8e5556f064356e1cce1320e78
20,231
from typing import List import json import requests def get_available_tf_versions(include_prerelease: bool = False) -> List[str]: """Return available Terraform versions.""" tf_releases = json.loads( requests.get("https://releases.hashicorp.com/index.json").text )["terraform"] tf_versions = sorted( [k for k, _v in tf_releases["versions"].items()], # descending key=LooseVersion, reverse=True, ) if include_prerelease: return [i for i in tf_versions if i] return [i for i in tf_versions if i and "-" not in i]
4be8820bb7cc2b5e5a649b8690fdef3d376a80ed
20,232
def relay_tagged(c, x, tag): """Implementation of tagged for Relay.""" assert tag.is_constant(int) rtag = get_union_ctr(tag.value, None) return rtag(c.ref(x))
b9d97051b3bfe13194a4123ec044e79d53c7587f
20,233
def get_vf(Xf, Nf): """ compute the 1-spectrogram of the projection of a frequency band of the mix at 1 frequency on some directions :param Xf: T x I complex STFT of mix at a given f :param Nf: Mp x Md x I projection matrix :return: Vf: Mp x Ml x Nt magnitude spectrogram of projection """ Vf = np.tensordot(Nf, Xf, axes=(-1, 1)) Vf = np.abs(Vf) return Vf
921bebfb4129f9ae7b0b2d5878c20eb957328c6c
20,234
def gen_data_code(stream, bits=ic.core_opts.data_bits): # type: (ic.Stream, int) -> dict """ Create a similarity preserving ISCC Data-Code with the latest standard algorithm. :param Stream stream: Input data stream. :param int bits: Bit-length of ISCC Data-Code (default 64). :return: ISCC Data-Code :rtype: dict """ return gen_data_code_v0(stream, bits)
ede11d67f305b57a2734cc5898e22102c0db07bb
20,235
def model_fn_builder( bert_config, init_checkpoint, layer_indexes, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" model = modeling.BertModel( config= bert_config, is_training= False, input_ids= features['input_ids'], input_mask= features['input_mask'], token_type_ids= features['input_type_ids'], use_one_hot_embeddings= use_one_hot_embeddings) if mode != tf.estimator.ModeKeys.PREDICT: raise ValueError("Only PREDICT modes are supported: %s" % (mode)) tvars = tf.trainable_variables() scaffold_fn = None (assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint( tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) all_layers = model.get_all_encoder_layers() predictions = {"unique_id": features["unique_ids"]} for (i, layer_index) in enumerate(layer_indexes): predictions["layer_output_%d" % i] = all_layers[layer_index] output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode= mode, predictions= predictions, scaffold_fn= scaffold_fn) return output_spec return model_fn
7a57c1557f4643c738a22b0baf4dbdce0fa06a3a
20,237
def git2pep440(ver_str): """ Converts a git description to a PEP440 conforming string :param ver_str: git version description :return: PEP440 version description """ dash_count = ver_str.count('-') if dash_count == 0: return ver_str elif dash_count == 1: return ver_str.split('-')[0] + "+dirty" elif dash_count == 2: tag, commits, sha1 = ver_str.split('-') return "{}.post0.dev{}+{}".format(tag, commits, sha1) elif dash_count == 3: tag, commits, sha1, _ = ver_str.split('-') return "{}.post0.dev{}+{}.dirty".format(tag, commits, sha1) else: raise RuntimeError("Invalid version string")
7c4a5185305627c22118722b73b2facfa830875a
20,238
def rejoin(hyphenated, line): """Add hyphenated word part to line start, dehyphenating when required.""" first_part, hyphen = split_hyphen(hyphenated) second_part, rest = split_first_token(line) if is_same_vowel(first_part[-1], second_part[0]): # same vowel before and after hyphen keep_hyphen = True elif not (first_part[-1].isalpha() and second_part[0].isalpha()): # only join alphabetic with alphabetic char keep_hyphen = True elif not (is_regular_word(first_part) and is_regular_word(second_part)): # one or both are not "regular" words keep_hyphen = True elif is_proper_noun(second_part): # Keep hyphen for proper noun compounds. Don't check first # part as start-of-sentence capitalization may confound the # capitalization pattern. keep_hyphen = True else: keep_hyphen = False if keep_hyphen: rejoined = first_part + hyphen + second_part else: rejoined = first_part + second_part return rejoined + rest
ced2bd2b791660e45741997e17ba3bdc0adfad6f
20,239
from typing import Union import zmq def msg_bytes(msg: Union[bytes, bytearray, zmq.Frame]) -> Union[bytes, bytearray]: """Return message frame as bytes. """ return msg.bytes if isinstance(msg, zmq.Frame) else msg
166865f5d51526cf70c767fc90e3d7b474501fb0
20,240
import math def iucr_string(values): """Convert a central value (average) and its s.u. into an IUCr compliant number representation. :param values: pair of central value (average) and s.u. :type values: tuple((float, float)) :return: IUCr compliant representation :rtype: str """ if values[1] == 0 or values[1] is None: # No or zero s.u. given return str(values[0]) sig_pos = math.floor(math.log10(abs(values[1]))) # position of first significant digit sig_3 = math.trunc(abs(values[1]) * 10 ** (2 - sig_pos)) / 10 ** (2 - sig_pos) # 1st three significant s.u. digits sig_3 *= 10 ** -(sig_pos + 1) # s.u. moved directly behind decimal separator (final range: 0.100-0.999) if sig_3 < 0.195: # round to two digits (final s.u. range: 0.10-0.19) su = round(abs(values[1]), 1 - sig_pos) avg = round(values[0], 1 - sig_pos) sig_len = 2 elif sig_3 < 0.950: # round to one digit (final s.u. range: 0.2-0.9) su = round(abs(values[1]), -sig_pos) avg = round(values[0], -sig_pos) sig_len = 1 else: # round to two digits and move forward (final s.u.: 0.10) sig_pos += 1 su = round(abs(values[1]), 1 - sig_pos) avg = round(values[0], 1 - sig_pos) sig_len = 2 if sig_pos > 0: # only integral part for s.u. >= 1.95 sign_shift = -1 if values[0] < 0 else 0 avg_str = ('{:' + str(sig_pos + sign_shift) + '.0f}').format(avg).strip() su_str = ('{:' + str(sig_pos) + '.0f}').format(su) else: # fractional and possibly integral part for s.u. < 1.95 avg_str = ('{:.' + str(-sig_pos + sig_len - 1) + 'f}').format(avg) su_str = '{:.0f}'.format(abs(su / 10 ** (sig_pos - sig_len + 1))) return '{:s}({:s})'.format(avg_str, su_str)
c6c6602aa0ba481ed5467ed62df59a16f26a8091
20,241
def augment_signals(ds, augment_configs): """ Apply all augmentation methods specified in 'augment_config' and return a dataset where all elements are drawn randomly from the augmented and unaugmented datasets. """ augmented_datasets = [] for conf in augment_configs: aug_kwargs = {k: v for k, v in conf.items() if k not in {"type", "split"}} if conf["type"] == "random_resampling": augmented_datasets.append(augment_by_random_resampling(ds, **aug_kwargs)) elif conf["type"] == "additive_noise": augmented_datasets.append(augment_by_additive_noise(ds, **aug_kwargs)) else: logger.warning("Unknown signal augmentation type '%s', skipping", conf["type"]) # Sample randomly from the unaugmented dataset and all augmented datasets return tf.data.experimental.sample_from_datasets([ds] + augmented_datasets)
5c07fcaefc277a4190336995440d1380f4263409
20,242
def sse_pack(d): """For sending sse to client. Formats a dictionary into correct form for SSE""" buf = '' for k in ['retry','id','event','data']: if k in d.keys(): buf += '{}: {}\n'.format(k, d[k]) return buf + '\n'
a497c7ab919115d59d49f25abfdb9d88b0963af3
20,243
def proj_beta_model(r2d_kpc, n0, r_c, beta): """ Compute a projected beta model: P(R) = \int n_e dl at given R Parameters ---------- - r2d_kpc: array of projected radius at which to compute integration - n0 : normalization - r_c : core radius parameter - beta : slope of the profile Outputs -------- - The projected profile in units of kpc times original profile """ return np.sqrt(np.pi) * n0 * r_c * gamma(1.5*beta - 0.5) / gamma(1.5*beta) * (1 + (r2d_kpc/r_c)**2)**(0.5-1.5*beta)
1d581d73da98833ca0df33df9de19b7cd71d7164
20,244
def read_raw_datafile(filename): """ Read and format the weather data from one csv file downloaded from the climate.weather.gc.ca website. """ dataset = pd.read_csv(filename, dtype='str') valid_columns = [ 'Date/Time', 'Year', 'Month', 'Day', 'Max Temp (°C)', 'Min Temp (°C)', 'Mean Temp (°C)', 'Total Precip (mm)'] dataset['Date/Time'] = pd.to_datetime( dataset['Date/Time'], format="%Y-%m-%d") dataset = ( dataset .drop(labels=[c for c in dataset.columns if c not in valid_columns], axis=1) .set_index('Date/Time', drop=True) ) return dataset
08d56daa375e3a05d0bca9041c8e973ec80ebe11
20,245
def zeros(shape, backend=TensorFunctions): """ Produce a zero tensor of size `shape`. Args: shape (tuple): shape of tensor backend (:class:`Backend`): tensor backend Returns: :class:`Tensor` : new tensor """ return Tensor.make([0] * int(operators.prod(shape)), shape, backend=backend)
1c3115613850819ece6f5a86142e7feb532930e7
20,246
def formatLabels(labels, total_time, time): """Format labels into vector where each value represents a window of time seconds""" time_threshold = 1 num_windows = total_time // time Y = np.zeros(num_windows) for label in labels: start = label['start'] duration = label['duration'] end = start + duration start_window = int(round(start / time)) end_window = int(round(end / time)) if end_window > start_window: window_limit = (start_window + 1) * 30 if window_limit - start <= time_threshold: start_window += 1 if end - window_limit <= time_threshold: end_window -= 1 Y[start_window:end_window + 1] = 1 print("{} arousals".format(len(labels))) return Y
714bfda3c8a997abb9389f74261bcc9aa2fb768b
20,247
import re def line(line_def, **kwargs): """Highlights a character in the line""" def replace(s): return "(%s)" % ansi.aformat(s.group()[1:], attrs=["bold", ]) return ansi.aformat( re.sub('@.?', replace, line_def), **kwargs)
755dee2147f606e57825314642dd35cc713cb9ff
20,248
from datetime import datetime def ceil_datetime_at_minute_interval(timestamp, minute): """ From http://stackoverflow.com/questions/13071384/python-ceil-a-datetime-to-next-quarter-of-an-hour :param timestamp: :type timestamp: datetime.datetime :param minute: :type minute: int :return: :rtype: datetime.datetime """ # how many secs have passed this hour nsecs = timestamp.minute * 60 + timestamp.second + timestamp.microsecond * 1e-6 # number of seconds to next minute mark seconds = minute * 60 delta = (nsecs // seconds) * seconds + seconds - nsecs if delta < seconds: return timestamp + datetime.timedelta(seconds=delta) else: return timestamp
7e9522ac8eebdab531d13d842a5018f3813ab86c
20,249
import requests import json def make_response( activated=True, expires_in=0, auto_activation_supported=True, oauth_server=None, DATA=None, ): """ Helper for making ActivationRequirementsResponses with known fields """ DATA = DATA or [] data = { "activated": activated, "expires_in": expires_in, "oauth_server": oauth_server, "DATA": DATA, "auto_activation_supported": auto_activation_supported, } response = requests.Response() response.headers["Content-Type"] = "application/json" response._content = json.dumps(data).encode("utf-8") return ActivationRequirementsResponse( GlobusHTTPResponse(response, client=mock.Mock()) )
eaf971695752dfd3d0e4b414d3085c3d60349534
20,250
def post_create_manager_config( api_client, id, log_files=None, configuration_files=None, ports=None, process_manager=None, executables=None, **kwargs ): # noqa: E501 """post_create_manager_config # noqa: E501 Create a new plugin manager configuration. If no params are provided, a vanilla example configuration will be created. See docs for param specs: https://docs.cohesive.net/docs/network-edge-plugins/plugin-manager/ # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> response = await api.post_create_manager_config(client, id, async_req=True) :param int id: ID for Plugin instance (running container) (required) :param log_files list: List of Log File objects :param configuration_files list: List of Configuration File objects :param ports list: List of Port objects :param process_manager Dict: Process Manager object :param executables list: List of Executable objects :param _return_http_data_only: response data without head status code and headers :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: APIResponse or awaitable if async """ local_var_params = locals() request_params = [ "log_files", "configuration_files", "ports", "process_manager", "executables", ] collection_formats = {} path_params = {"id": id} query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = {} for param in [p for p in request_params if local_var_params.get(p) is not None]: body_params[param] = local_var_params[param] # HTTP header `Accept` header_params["Accept"] = api_client.select_header_accept( ["application/json"] ) # noqa: E501 # HTTP header `Content-Type` header_params["Content-Type"] = api_client.select_header_content_type( # noqa: E501 ["application/json"] ) # noqa: E501 # Authentication setting auth_settings = ["ApiTokenAuth", "basicAuth"] # noqa: E501 return api_client.call_api( "/plugin-instances/{id}/manager", "POST", path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type="object", # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get("async_req"), _return_http_data_only=local_var_params.get( "_return_http_data_only" ), # noqa: E501 _preload_content=local_var_params.get("_preload_content", True), _request_timeout=local_var_params.get("_request_timeout"), collection_formats=collection_formats, )
c3f27767a6b94604390b683b4169d7ecc54e945f
20,251
def get_current_user(): """Load current user or use anon user.""" return auth.User( uuid=None, login='anon', password='', name='anon', visiblity=None, language=None, last_seen=None, )
2074b73d970e0549726b887e67b9c7b36db6e463
20,253
def validate(number, alphabet='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ*'): """Check whether the check digit is valid.""" try: valid = checksum(number, alphabet) == 1 except Exception: # noqa: B902 raise InvalidFormat() if not valid: raise InvalidChecksum() return number
1d521eaa369c6436d8c8cfc93889d769ca15c193
20,254
from typing import Union def pct_chg(x: Union[np.ndarray, pd.Series]) -> np.ndarray: """Percentage change between the current and a prior element. Args: x: A numpy.ndarray or pandas.Series object Returns: A numpy.ndarray with the results """ x = x.astype("float64") if isinstance(x, pd.DataFrame): pc = x.pct_change().values.reshape(-1, 1) else: x = np.reshape(x, (-1,)) x_df = pd.Series(x, name="x") pc = x_df.pct_change().values.reshape(-1, 1) return pc
253a8223c58fa9d89d50c554f54051724961c3bb
20,255
def calc_gram_matrix(input_mat): """ Paper directly mentions about calculating Gram matrix: G_{ij}^l = \sum_k F_{ij}^l F_{jk}^l i and j stand for filter position and k stands for position in each filters. If matrix A is composed of vectors, a1, a2, a3, etc, e.g. A = [a1, a2, a3, ...] note that a1, a2, a3 are column vecdtors then Gram matrix G can be calculated as $G = A^T cdot A$ inputs: It takes input shape of [1, height, width, channel] returns: [1, channel, channel, 1] """ channel_size = input_mat.shape[-1] # From [1, height, width, channel] to [1, height * width, channel] vectorized_input = tf.reshape(input_mat, [1, -1, channel_size]) # Transform it to shape of [channel, height * width] mat_2d = vectorized_input[0, :, :] F = tf.transpose(mat_2d) # Calculate gram matrix gram_mat = tf.linalg.matmul(F, mat_2d) # this produce the shape of [channel, channel] feature_map_size = input_mat.shape[1] * input_mat.shape[2] return gram_mat / feature_map_size
386db7deec87127f8c2872e091283fb555611f04
20,256
def parse_annotations_with_food_part_template(annotations, premise): """ """ annotations_aggregated = [] annotations_reported = [] rows_grouped_by_premises = annotations[annotations["premise"] == premise] for hypothesis in rows_grouped_by_premises["hypothesis"].unique(): rows_grouped_by_hypotheses = rows_grouped_by_premises[ rows_grouped_by_premises["hypothesis"] == hypothesis ] ners = rows_grouped_by_hypotheses[f"correct_ner"] n_entail = len(ners[ners == "Entails"]) n_non_entail = len(ners[ners == "Not Entails/Error"]) # Report to the annotator if annotation results are highly # non consensus. if n_entail == n_non_entail: annotations_reported.append( [rows_grouped_by_hypotheses.iloc[0]["id"], premise, hypothesis] ) continue correct_ner = "Entails" if n_entail > n_non_entail else "Not Entails" if rows_grouped_by_hypotheses["premise"].values[0][:3] == "<s>": premise_filtered = rows_grouped_by_hypotheses["premise"].values[0][ 3: ] else: premise_filtered = rows_grouped_by_hypotheses["premise"].values[0] id_ = rows_grouped_by_hypotheses.iloc[0]["id"] food = rows_grouped_by_hypotheses.iloc[0]["hypothesis_food"] food_id = rows_grouped_by_hypotheses.iloc[0]["hypothesis_food_id"] food_part = rows_grouped_by_hypotheses.iloc[0]["hypothesis_food_part"] food_part_id = None chemical = rows_grouped_by_hypotheses.iloc[0]["hypothesis_chemical"] chemical_id = rows_grouped_by_hypotheses.iloc[0][ "hypothesis_chemical_id" ] conc_value = None conc_value_id = None conc_unit = None conc_unit_id = None annotations_aggregated.append( [ id_, premise_filtered, hypothesis.replace("(whole plant)", ""), correct_ner, n_entail, n_non_entail, food, food_id, food_part, food_part_id, chemical, chemical_id, conc_value, conc_value_id, conc_unit, conc_unit_id, ] ) return annotations_aggregated, annotations_reported
1bf17aa605b9ec581ec1379ed0ae7f7340461a19
20,257
def filter_dictionary(dictionary, filter_func): """ returns the first element of `dictionary` where the element's key pass the filter_func. filter_func can be either a callable or a value. - if callable filtering is checked with `test(element_value)` - if value filtering is checked with `element_value == filter_func` :param dictionary: :param test: :return: >>> filter_dictionary({'arg': 'test'}, 'test') 'arg' >>> filter_dictionary({}, 'test') >>> def is_test(value): ... return value == 'test' >>> filter_dictionary({'arg': 'test'}, is_test) 'arg' """ if not callable(filter_func): test_func = lambda x: x == filter_func else: test_func = filter_func for key, value in dictionary.iteritems(): if test_func(value): return key
f5fa77a51241323845eb9a59adc9df7f662f287b
20,258
def restart_workflow(workflow_id, clear_data=False, delete_files=False): """Restart a workflow with the latest spec. Clear data allows user to restart the workflow without previous data.""" workflow_model: WorkflowModel = session.query(WorkflowModel).filter_by(id=workflow_id).first() WorkflowProcessor.reset(workflow_model, clear_data=clear_data, delete_files=delete_files) return get_workflow(workflow_model.id)
70c5df4b31559830c94d01cfb86e9a68070f63b1
20,259
def spike_lmax(S, Q): """Maximum spike given a perturbation""" S2 = S * S return ((1.0 / Q) + S2) * (1 + (1.0 / S2))
ba845e3255e4d3eb5116d279a209f4424062603b
20,260
def get_engine(): """Returns the db engine.""" if not hasattr(g, 'sqlite_engine'): g.sqlite_engine = create_engine('sqlite:///' + app.config['DATABASE'], echo=True) return g.sqlite_engine
579d7110cd27787095c6ede2f25841cbac5e8ca0
20,261
def is_on_curve(point): """Returns True if the given point lies on the elliptic curve.""" if point is None: # None represents the point at infinity. return True x, y = point return (y * y - x * x * x - curve.a * x - curve.b) % curve.p == 0
563d567c7dadc9d23bf6467c4fe30c697b0fd9fa
20,262
from typing import Dict from typing import List from typing import Tuple def find_closest_point( odlc: Dict[str, float], boundary_points: List[Dict[str, float]], obstacles: List[Dict[str, float]], ) -> Tuple[Dict[str, float], List[float]]: """Finds the closest safe point to the ODLC while staying within the flight boundary Parameters ---------- odlc : Dict[str, float] Point data for the ODLC object boundary_points : List[Dict[str, float]] Point data which makes up the flight boundary obstacles : List[Dict[str, float]] Point data for the obstacles Returns ------- Tuple[Dict[str, float], List[float]] Closest safe point, and the shrunken boundary (for plotting) """ poly_points = [(point["utm_x"], point["utm_y"]) for point in boundary_points] boundary_shape = Polygon(poly_points) odlc_shape = Point(odlc["utm_x"], odlc["utm_y"]) for obstacle in obstacles: # create obstacle as shapely shape circle = Point(obstacle["utm_x"], obstacle["utm_y"]).buffer(obstacle["radius"]).boundary obstacle_shape = Polygon(circle) # remove obstacle area from boundary polygon boundary_shape = boundary_shape.difference(obstacle_shape) # scale down boundary by 1% to add a safety margin boundary_shape = scale_polygon(boundary_shape, 0.01) p_1, _ = nearest_points( boundary_shape, odlc_shape ) # point returned in same order as input shapes closest_point = p_1 zone_number = odlc["utm_zone_number"] zone_letter = odlc["utm_zone_letter"] return ( { "utm_x": closest_point.x, "utm_y": closest_point.y, "utm_zone_number": zone_number, "utm_zone_letter": zone_letter, "latitude": utm.to_latlon(closest_point.x, closest_point.y, zone_number, zone_letter)[ 0 ], "longitude": utm.to_latlon(closest_point.x, closest_point.y, zone_number, zone_letter)[ 1 ], }, list(zip(*boundary_shape.exterior.coords.xy)), # pylint: disable=maybe-no-member )
c07f2a1922f5083d9155da12a7273208ae440cf5
20,263
from typing import Tuple from typing import Dict from typing import List def _get_band_edge_indices( band_structure: BandStructure, tol: float = 0.005, ) -> Tuple[Dict[Spin, List[int]], Dict[Spin, List[int]]]: """ Get indices of degenerate band edge states, within a tolerance. Parameters ---------- band_structure : BandStructure A band structure. tol : float Degeneracy tolerance in meV. """ vbm_energy = band_structure.get_vbm()["energy"] cbm_energy = band_structure.get_cbm()["energy"] vbm_band_indices = {} cbm_band_indices = {} for spin, spin_energies in band_structure.bands.items(): vb_idxs = np.where( np.any( (spin_energies > vbm_energy - tol) & (spin_energies < band_structure.efermi), axis=1, ) )[0] cb_idxs = np.where( np.any( (spin_energies < cbm_energy + tol) & (spin_energies > band_structure.efermi), axis=1, ) )[0] vbm_band_indices[spin] = vb_idxs.tolist() cbm_band_indices[spin] = cb_idxs.tolist() return vbm_band_indices, cbm_band_indices
bd0ed67b879c627c77e35c519dbfcf86890523e1
20,264
def _get_urls(): """Stores the URLs for histology file downloads. Returns ------- dict Dictionary with template names as keys and urls to the files as values. """ return { "fsaverage": "https://box.bic.mni.mcgill.ca/s/znBp7Emls0mMW1a/download", "fsaverage5": "https://box.bic.mni.mcgill.ca/s/N8zstvuRb4sNcSe/download", "fs_LR_64k": "https://box.bic.mni.mcgill.ca/s/6zKHcg9xXu5inPR/download", }
697cf29b3caaeda079014fd342fbe7ad4c650d30
20,266
import struct def guid_bytes_to_string(stream): """ Read a byte stream to parse as GUID :ivar bytes stream: GUID in raw mode :returns: GUID as a string :rtype: str """ Data1 = struct.unpack("<I", stream[0:4])[0] Data2 = struct.unpack("<H", stream[4:6])[0] Data3 = struct.unpack("<H", stream[6:8])[0] Data4 = stream[8:16] return "%08x-%04x-%04x-%s-%s" % (Data1, Data2, Data3, "".join("%02x" % x for x in Data4[0:2]), "".join("%02x" % x for x in Data4[2:]))
23f013b48806d1d2d4b4bec4ab4a5fcf6fc2e6b0
20,267
def thaiword_to_time(text: str, padding: bool = True) -> str: """ Convert Thai time in words into time (H:M). :param str text: Thai time in words :param bool padding: Zero padding the hour if True :return: time string :rtype: str :Example: thaiword_to_time"บ่ายโมงครึ่ง") # output: # 13:30 """ keys_dict = list(_DICT_THAI_TIME.keys()) text = text.replace("กว่า", "").replace("ๆ", "").replace(" ", "") _i = ["ตีหนึ่ง", "ตีสอง", "ตีสาม", "ตีสี่", "ตีห้า"] _time = "" for affix in _THAI_TIME_AFFIX: if affix in text and affix != "ตี": _time = text.replace(affix, affix + "|") break elif affix in text and affix == "ตี": for j in _i: if j in text: _time = text.replace(j, j + "|") break else: pass if "|" not in _time: raise ValueError("Cannot find any Thai word for time affix.") _LIST_THAI_TIME = _time.split("|") del _time hour = _THAI_TIME_CUT.word_tokenize(_LIST_THAI_TIME[0]) minute = _LIST_THAI_TIME[1] if len(minute) > 1: minute = _THAI_TIME_CUT.word_tokenize(minute) else: minute = 0 text = "" # determine hour if hour[-1] == "นาฬิกา" and hour[0] in keys_dict and hour[:-1]: text += str(thaiword_to_num("".join(hour[:-1]))) elif hour[0] == "ตี" and hour[1] in keys_dict: text += str(_DICT_THAI_TIME[hour[1]]) elif hour[-1] == "โมงเช้า" and hour[0] in keys_dict: if _DICT_THAI_TIME[hour[0]] < 6: text += str(_DICT_THAI_TIME[hour[0]] + 6) else: text += str(_DICT_THAI_TIME[hour[0]]) elif (hour[-1] == "โมงเย็น" or hour[-1] == "โมง") and hour[0] == "บ่าย": text += str(_DICT_THAI_TIME[hour[1]] + 12) elif (hour[-1] == "โมงเย็น" or hour[-1] == "โมง") and hour[0] in keys_dict: text += str(_DICT_THAI_TIME[hour[0]] + 12) elif hour[-1] == "เที่ยงคืน": text += "0" elif hour[-1] == "เที่ยงวัน" or hour[-1] == "เที่ยง": text += "12" elif hour[0] == "บ่ายโมง": text += "13" elif hour[-1] == "ทุ่ม": if len(hour) == 1: text += "19" else: text += str(_DICT_THAI_TIME[hour[0]] + 18) if not text: raise ValueError("Cannot find any Thai word for hour.") if padding and len(text) == 1: text = "0" + text text += ":" # determine minute if minute: n = 0 for affix in minute: if affix in keys_dict: if affix != "สิบ": n += _DICT_THAI_TIME[affix] elif affix == "สิบ" and n != 0: n *= 10 elif affix == "สิบ" and n == 0: n += 10 if n != 0 and n > 9: text += str(n) else: text += "0" + str(n) else: text += "00" return text
235874bf252908eeba96f17b2ccc4d7ab32b90ce
20,268
import random def get_grains(ng,gdmin,angrange0,angrange1,two_dim): """ Get specified number of grains with conditions of minimum distance and angle range. """ dang = (angrange1-angrange0) /180.0 *np.pi /ng grains= [] ig = 0 dmin = 1e+30 while True: if ig >= ng: break pi= np.zeros((3,)) ai= np.zeros((3,)) pi[0]= random() pi[1]= random() if two_dim: too_close = False dminl = 1e+30 for i,gi in enumerate(grains): dlt = pi - gi.point dlt = dlt - np.round(dlt) d = np.sqrt( dlt[0]**2+dlt[1]**2 ) dminl = min(d,dminl) if d < gdmin: too_close = True break if too_close: continue dmin = min(dminl,dmin) pi[2]= 0.0 ai[0]= 0.0 ai[1]= 0.0 ai[2]= angrange0 +dang*ig +random()*dang else: pi[2]= random() too_close = False for gi in grains: dlt = pi - gi.point dlt = dlt - np.round(dlt) d = np.sqrt( dlt[0]**2+dlt[1]**2+dlt[2]**2 ) if d < gdmin: too_close break if too_close: continue ai[0]= random()*np.pi*2 -np.pi ai[1]= random()*np.pi/2 -np.pi/2 ai[2]= random()*np.pi*2 -np.pi print(' point,angle =',pi,ai) gi= Grain(pi,ai) grains.append(gi) ig += 1 print(' Minimum distance between grains and limit = ',dmin,gdmin) return grains
591858e16353d5363767c7816d59f64b890929f8
20,270
from typing import List def two_loops(N: List[int]) -> List[int]: """Semi-dynamic programming approach using O(2n): - Calculate the product of all items before item i - Calculate the product of all items after item i - For each item i, multiply the products for before and after i L[i] = N[i-1] * L[i-1] if i != 0 else 1 R[j] = N[j+1] * R[j+1] if j != (len(N) - 1) else 1 A[i] = L[i] * R[i] N[0] = 3 N[1] = 7 N[2] = 1 N[3] = 4 N[4] = 8 N[5] = 9 L[0] = 1 = 1 L[1] = (1) * 3 = 3 L[2] = (3) * 7 = 21 L[3] = (21) * 1 = 21 L[4] = (21) * 4 = 84 L[5] = (84) * 8 = 672 R[5] = 1 = 1 R[4] = (1) * 9 = 9 R[3] = (9) * 8 = 72 R[2] = (72) * 4 = 288 R[1] = (288) * 1 = 288 R[0] = (288) * 7 = 2016 A = [L[0]*R[0], L[1]*R[1], L[2]*R[2], L[3]*R[3], L[4]*R[4], L[5]*R[5]] A = [2016, 864, 6048, 1512, 756, 672] """ items_len = len(N) of_left = [1 for _ in range(items_len)] of_right = [1 for _ in range(items_len)] for i in range(items_len): j = (items_len - 1) - i # Invert i; start counting from len(N) to 0. of_left[i] = N[i-1] * of_left[i-1] if i != 0 else 1 of_right[j] = N[j+1] * of_right[j+1] if i != 0 else 1 return list(map(lambda p: p[0] * p[1], zip(of_left, of_right)))
3620aa19833b2e967b2c295fa53ba39bf3b6b70d
20,271
from typing import Union from pathlib import Path from typing import Optional import re def read_renku_version_from_dockerfile(path: Union[Path, str]) -> Optional[str]: """Read RENKU_VERSION from the content of path if a valid version is available.""" path = Path(path) if not path.exists(): return docker_content = path.read_text() m = re.search(r"^\s*ARG RENKU_VERSION=(.+)$", docker_content, flags=re.MULTILINE) if not m: return try: return str(Version(m.group(1))) except ValueError: return
9b9c343db6ca0604e04c90cb6a51be9bba3e0b1c
20,273
def zero_mean(framed): """Calculate zero-mean of frames""" mean = np.mean(framed, axis=1) framed = framed - mean[np.newaxis, :].T return framed
f970522327b019cfddc42a5764f9854eaf681378
20,274
def now(): """ 返回当前时间 """ return timezone.now()
86dee41549eeef546f5447ed657eb849c36239cc
20,275
def rgb_to_hex(r, g, b): """Turn an RGB float tuple into a hex code. Args: r (float): R value g (float): G value b (float): B value Returns: str: A hex code (no #) """ r_int = round((r + 1.0) / 2 * 255) g_int = round((g + 1.0) / 2 * 255) b_int = round((b + 1.0) / 2 * 255) r_txt = "%02x" % r_int b_txt = "%02x" % b_int g_txt = "%02x" % g_int return r_txt + g_txt + b_txt
a5181c475c798bbd03020d81da10d8fbf86cc396
20,277
def calc_R(x,y, xc, yc): """ calculate the distance of each 2D points from the center (xc, yc) """ return np.sqrt((x-xc)**2 + (y-yc)**2)
7a10251f3048a3d7c07f6fd886225b841e19a1a2
20,278
def get_followers_list(user_url, driver, followers=True): """ Returns a list of users who follow or are followed by a user. Parameters ---------- user_url: string driver: selenium.webdriver followers: bool If True, gets users who are followers of this user. If False, gets users who this user follows. """ if followers: url = user_url + '/followers/' else: url = user_url + '/following/' process = lambda soup: [ str(item.find_all('a', {'class': 'userWrapper'})[0].get('href')) for item in soup.select('div.item') ] followers = process_whole_page(driver, url, process) return followers
fbb592c29b66b41b51d67a938659177ead9a13c6
20,279
from typing import Optional def policy_to_dict(player_policy, game, all_states=None, state_to_information_state=None, player_id: Optional = None): """Converts a Policy instance into a tabular policy represented as a dict. This is compatible with the C++ TabularExploitability code (i.e. pyspiel.exploitability, pyspiel.TabularBestResponse, etc.). While you do not have to pass the all_states and state_to_information_state arguments, creating them outside of this funciton will speed your code up dramatically. Args: player_policy: The policy you want to convert to a dict. game: The game the policy is for. all_states: The result of calling get_all_states.get_all_states. Can be cached for improved performance. state_to_information_state: A dict mapping str(state) to state.information_state for every state in the game. Can be cached for improved performance. Returns: A dictionary version of player_policy that can be passed to the C++ TabularBestResponse, Exploitability, and BestResponse functions/classes. """ if all_states is None: all_states = get_all_states.get_all_states( game, depth_limit=-1, include_terminals=False, include_chance_states=False) state_to_information_state = { state: str( np.asarray(all_states[state].information_state_tensor(), dtype=np.float32).tolist()) for state in all_states } tabular_policy = dict() for state in all_states: if player_id is not None and all_states[state].current_player() != player_id: continue information_state = state_to_information_state[state] tabular_policy[information_state] = list( player_policy.action_probabilities(all_states[state]).items()) return tabular_policy
c5e048d7886dac6b36197c0ee1593f8602972fa5
20,280
import time def compressed_gw(Dist1,Dist2,p1,p2,node_subset1,node_subset2, verbose = False, return_dense = True): """ In: Dist1, Dist2 --- distance matrices of size nxn and mxm p1,p2 --- probability vectors of length n and m node_subset1, node_subset2 --- subsets of point indices. This version of the qGW code specifically uses Voronoi partitions from fixed subsets (usually these are chosen randomly). Other partitioning schems are possible, but not currently implemented here. verbose --- print status and compute times return_dense --- some parts of the algorithm use sparse matrices. If 'False' a sparse matrix is returned. Out: full_coup --- coupling matrix of size nxm giving a probabilistic correspondence between metric spaces. """ # Compress Graphs start = time.time() if verbose: print('Compressing Graphs...') coup1, p_compressed1 = compress_graph_from_subset(Dist1,p1,node_subset1) coup2, p_compressed2 = compress_graph_from_subset(Dist2,p2,node_subset2) Dist_new1, p_new1 = compress_graph(Dist1,p_compressed1) Dist_new2, p_new2 = compress_graph(Dist2,p_compressed2) if verbose: print('Time for Compressing:', time.time() - start) # Match compressed graphs start = time.time() if verbose: print('Matching Compressed Graphs...') coup_compressed, log = gwa.gromov_wasserstein(Dist_new1, Dist_new2, p_new1, p_new2) if verbose: print('Time for Matching Compressed:', time.time() - start) # Find submatchings and create full coupling if verbose: print('Matching Subgraphs and Constructing Coupling...') supp1 = find_support(p_compressed1) supp2 = find_support(p_compressed2) full_coup = coo_matrix((Dist1.shape[0], Dist2.shape[0])) matching_time = 0 matching_and_expanding_time = 0 num_local_matches = 0 for (i_enum, i) in enumerate(supp1): subgraph_i = find_support(coup1[:,i]) for (j_enum, j) in enumerate(supp2): start = time.time() w_ij = coup_compressed[i_enum,j_enum] if w_ij > 1e-10: num_local_matches += 1 subgraph_j = find_support(coup2[:,j]) # Compute submatching coup_sub_ij = find_submatching_locally_linear(Dist1,Dist2,coup1,coup2,i,j) matching_time += time.time()-start # Expand to correct size idx = np.argwhere(coup_sub_ij > 1e-10) idx_i = idx.T[0] idx_j = idx.T[1] row = np.array(subgraph_i)[idx_i] col = np.array(subgraph_j)[idx_j] data = w_ij*np.array([coup_sub_ij[p[0],p[1]] for p in list(idx)]) expanded_coup_sub_ij = coo_matrix((data, (row,col)), shape=(full_coup.shape[0], full_coup.shape[1])) # Update full coupling full_coup += expanded_coup_sub_ij matching_and_expanding_time += time.time()-start if verbose: print('Total Time for',num_local_matches,'local matches:') print('Local matching:', matching_time) print('Local Matching Plus Expansion:', matching_and_expanding_time) if return_dense: return full_coup.toarray() else: return full_coup
7008e62138e2f98238fdba6bf698559690c83972
20,281
from typing import Dict from typing import Tuple from typing import List def load_test_dataset(cfg: Dict) -> Tuple[Tuple[List]]: """Read config and load test dataset Args: cfg (Dict): config from config.json Returns: Tuple[Tuple[List]]: Test dataset """ X_test, y_test, test_prompt_ids = read_dataset( cfg.preprocess_data_args["test_path"], cfg.preprocess_data_args["prompt_id"], cfg.preprocess_data_args["maxlen"], cfg.preprocess_data_args["to_lower"], cfg.preprocess_data_args["score_index"], ) return (X_test, y_test, test_prompt_ids)
b4306f48a927ab0036b5815c5b119480ea4452ba
20,284
import shutil def clear_caches() -> None: """ Clear all Caches created by instagramy in current dir """ return shutil.rmtree(cache_dir, ignore_errors=True)
262cb8117d5987b2b2c7bef6c1f9444061f527a2
20,285
import numpy import warnings def SingleCameraCalibration_from_xml(elem, helper=None): """ loads a camera calibration from an Elementree XML node """ assert ET.iselement(elem) assert elem.tag == "single_camera_calibration" cam_id = elem.find("cam_id").text pmat = numpy.array(numpy.mat(elem.find("calibration_matrix").text)) res = numpy.array(numpy.mat(elem.find("resolution").text))[0,:] scale_elem = elem.find("scale_factor") if NO_BACKWARDS_COMPAT: assert scale_elem is None, 'XML file has outdated <scale_factor>' else: if scale_elem is not None: # backwards compatibility scale = float( scale_elem.text ) if scale != 1.0: warnings.warn('converting old scaled calibration') scale_array = numpy.ones((3,4)) scale_array[:,3] = scale # mulitply last column by scale pmat = scale_array*pmat # element-wise multiplication if not helper: helper_elem = elem.find("non_linear_parameters") if helper_elem is not None: helper = reconstruct_utils.ReconstructHelper_from_xml(helper_elem) else: # make with no non-linear stuff (i.e. make linear) helper = reconstruct_utils.ReconstructHelper(1,1, # focal length 0,0, # image center 0,0, # radial distortion 0,0) # tangential distortion return SingleCameraCalibration(cam_id=cam_id, Pmat=pmat, res=res, helper=helper)
ad9f8d36b82dc3dbf4b3189166e48c0b5304a389
20,286
def contrast_augm_cv2(images,fmin,fmax): """ this function is equivalent to the numpy version, but 2.8x faster """ images = np.copy(images) contr_rnd = rand_state.uniform(low=fmin,high=fmax,size=images.shape[0]) for i in range(images.shape[0]): fac = contr_rnd[i] images[i] = np.atleast_3d(cv2.addWeighted(images[i], fac , 0, 0, 128-fac*128)) return images
7bd56e2b053e0ede33bdd62c269e66858745c642
20,287
def load_preprocess(): """ Load the Preprocessed Training data and return them in batches of <batch_size> or less """ return pickle_load('preprocess.p')
80bf8a509c972291767ade03a64e74aed11b8298
20,288
def detection_layer(config, rois, mrcnn_class, mrcnn_bbox, image_meta): """Takes classified proposal boxes and their bounding box deltas and returns the final detection boxes. Returns: [batch, num_detections, (y1, x1, y2, x2, class_score)] in pixels """ # Currently only supports batchsize 1 rois = rois.squeeze(0) _, _, window, _ = parse_image_meta(image_meta) window = window[0] detections = refine_detections(rois, mrcnn_class, mrcnn_bbox, window, config) return detections
7770241c44dc050c0fb20f18b729eba388a47721
20,289
def connectedSocketDiscover(): """ Try to discover the internal address by using a connected UDP socket. @return: a L{Deferred} called with the internal address. """ def cb(address): protocol = DatagramProtocol() listeningPort = reactor.listenUDP(0, protocol) protocol.transport.connect(address, 7) internal = protocol.transport.getHost().host listeningPort.stopListening() return internal return reactor.resolve('A.ROOT-SERVERS.NET').addCallback(cb)
a443ef9774774fe4a31cb3f76462d35255380caa
20,290
from typing import Dict from typing import Tuple from typing import List from typing import Optional def construct_source_plate_not_recognised_message( params: Dict[str, str] ) -> Tuple[List[str], Optional[Message]]: """Constructs a message representing a source plate not recognised event; otherwise returns appropriate errors. Arguments: params {Dict[str, str]} -- All parameters of the plate event message request. Returns: {[str]} -- Any errors attempting to construct the message, otherwise an empty array. {Message} -- The constructed message; otherwise None if there are any errors. """ try: user_id = params.get("user_id", "") robot_serial_number = params.get("robot", "") if len(user_id) == 0 or len(robot_serial_number) == 0: return [ "'user_id' and 'robot' are required to construct a " f"{PLATE_EVENT_SOURCE_NOT_RECOGNISED} event message" ], None robot_uuid = __get_robot_uuid(robot_serial_number) if robot_uuid is None: return [f"Unable to determine a uuid for robot '{robot_serial_number}'"], None message_content = { "event": { "uuid": str(uuid4()), "event_type": PLATE_EVENT_SOURCE_NOT_RECOGNISED, "occured_at": __get_current_datetime(), "user_identifier": user_id, "subjects": [__construct_robot_message_subject(robot_serial_number, robot_uuid)], "metadata": {}, }, "lims": app.config["RMQ_LIMS_ID"], } return [], Message(message_content) except Exception as e: logger.error(f"Failed to construct a {PLATE_EVENT_SOURCE_NOT_RECOGNISED} message") logger.exception(e) return [ "An unexpected error occurred attempting to construct the " f"{PLATE_EVENT_SOURCE_NOT_RECOGNISED} event message" ], None
73c34f090dcdd802e0161d0f808deb03aef2c660
20,291
def odd(x): """True if x is odd.""" return (x & 1)
9cd383ea01e0fed56f6df42648306cf2415f89e9
20,292
def sparse_transformer_local(): """Set of hyperparameters for a sparse model using only local.""" hparams = common_hparams.basic_params1() hparams.max_length = 4096 hparams.batch_size = 4096 hparams.add_hparam("max_target_length", 4096) hparams.add_hparam("add_timing_signal", False) hparams.add_hparam("local_num_heads", 8) hparams.add_hparam("sparsity_cluster_num_heads", 0) hparams.add_hparam("sparsity_strided_num_heads", 0) hparams.add_hparam("sparsity_cluster_strided_num_heads", 0) hparams.add_hparam("sparsity_skip_first", 0) hparams.add_hparam("ema", True) hparams.add_hparam("query_shape", (512,)) hparams.add_hparam("memory_query_shape", (512,)) hparams.add_hparam("memory_flange", (512,)) hparams.add_hparam("sparsity_cluster_size", 0) hparams.add_hparam("sparsity_cluster_attention_window", 0) hparams.add_hparam("num_encoder_layers", 0) hparams.add_hparam("num_decoder_layers", 24) hparams.add_hparam("attention_key_channels", 0) # Uses hidden_size hparams.add_hparam("attention_value_channels", 0) # Uses hidden_size hparams.add_hparam("attention_dropout", 0.0) hparams.add_hparam("ffn_layer", "conv_hidden_relu") hparams.add_hparam("filter_size", 2048) # Used in ffn_layer hparams.add_hparam("relu_dropout", 0.0) # Used in ffn_layer hparams.add_hparam("input_dropout", 0.0) # dropout on input sequences hparams.add_hparam("target_dropout", 0.0) # dropout on target sequences hparams.add_hparam("use_tpu", True) hparams.tpu_enable_host_call = True # Enable summaries on TPU hparams.pad_batch = True hparams.bottom = { "targets": target_bottom, } # Optimizer hparams.dropout = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer = "adafactor" hparams.optimizer_adafactor_beta1 = 0.0 hparams.optimizer_adafactor_beta2 = 0.999 hparams.optimizer_adafactor_clipping_threshold = 1.0 hparams.optimizer_adafactor_decay_type = "pow" hparams.optimizer_adafactor_memory_exponent = 0.8 hparams.optimizer_adafactor_multiply_by_parameter_scale = True hparams.learning_rate_schedule = "constant*rsqrt_normalized_decay" hparams.learning_rate_warmup_steps = 10000 hparams.learning_rate_constant = 0.01 hparams.initializer_gain = 0.2 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.label_smoothing = 0.0 hparams.summarize_vars = True hparams.hidden_size = 512 # Memory saving measures hparams.add_hparam("cache_padding_bias", False) hparams.add_hparam("embedding_dims", 512) hparams.add_hparam("share_qk", True) hparams.shared_embedding = True hparams.shared_embedding_and_softmax_weights = True # relative attention hparams.max_relative_position = 1024 hparams.add_hparam("local_relative", True) hparams.add_hparam("sparsity_cluster_relative", True) hparams.add_hparam("sparsity_cluster_strided_relative", True) hparams.add_hparam("sparsity_strided_relative", False) # Decoding hparams.add_hparam("nucleus_sampling", 0.9) hparams.add_hparam("num_decode_cores", 8) hparams.add_hparam("fast_decode", False) # Clustering hparams hparams.add_hparam("beta", 1e-4) hparams.add_hparam("decay", 0.999) # LSH attention as in Reformer hparams.add_hparam("hash_items", False) hparams.add_hparam("token_bias_wt_trainable", False) return hparams
29c4ce03eabc311cc6526d381ff1b09e33cd9667
20,293
import scipy def make_aperture_mask(self, snr_threshold=5, margin=4): """Returns an aperture photometry mask. Parameters ---------- snr_threshold : float Background detection threshold. """ # Find the pixels that are above the threshold in the median flux image median = np.nanmedian(self.flux, axis=0) mad = median_absolute_deviation(median[np.isfinite(median)]) # 1.4826 turns MAD into STDEV for a Gaussian mad_cut = 1.4826 * mad * snr_threshold region = np.where(median > mad_cut, 1, 0) # Label all contiguous regions above the threshold labels = scipy.ndimage.label(region)[0] # Central pixel coordinate centralpix = [1 + median.shape[0] // 2, 1 + median.shape[1] // 2] # find brightest pix within margin of central pix central_img = median[centralpix[0] - margin: centralpix[0] + margin, centralpix[1] - margin: centralpix[1] + margin] # unravel_index converts indices into a tuple of coordinate arrays brightestpix = np.unravel_index(central_img.argmax(), central_img.shape) bpixy, bpixx = brightestpix # Which label corresponds to the brightest pixel? regnum = labels[centralpix[0] - margin + bpixy, centralpix[1] - margin + bpixx] return labels == regnum
26e176f68155f2d7c8756eb794083e71cd1a920c
20,294
def verify_password(username, password): """Verify the password.""" if username in users: return check_password_hash(users.get(username), password) return False
a41664c6121f9f88522d69d5f2720da94fddc299
20,295
def data_mnist(one_hot=True): """ Preprocess MNIST dataset """ # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(X_train.shape[0], FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS) X_test = X_test.reshape(X_test.shape[0], FLAGS.IMAGE_ROWS, FLAGS.IMAGE_COLS, FLAGS.NUM_CHANNELS) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') print "Loaded MNIST test data." if one_hot: # convert class vectors to binary class matrices y_train = np_utils.to_categorical(y_train, FLAGS.NUM_CLASSES).astype(np.float32) y_test = np_utils.to_categorical(y_test, FLAGS.NUM_CLASSES).astype(np.float32) return X_train, y_train, X_test, y_test
d160d9033acc0e84255cf43faf094d7ecd83e99c
20,296
def pval_two(n, m, N, Z_all, tau_obs): """ Calculate the p-value of a two sided test. Given a tau_obs value use absolute value to find values more extreme than the observed tau. Parameters ---------- n : int the sum of all subjects in the sample group m : int number of subjects who are 1 if control group N : array an array of all subjects in all groups Z_all: matrix the output from the function nchoosem tau_obs: float the observed value of tau Returns -------- pd : float the pval of the test statistic """ assert m <= n, "# of subjects who are 1 must be <= to sum of all subjects" n_Z_all = Z_all.shape[0] dat = np.zeros((n, 2)) N = [int(x) for x in N] if N[0] > 0: dat[0:N[0], :] = 1 if N[1] > 0: dat[(N[0]): (N[0] + N[1]), 0] = 1 dat[(N[0]): (N[0] + N[1]), 1] = 0 if N[2] > 0: dat[(N[0]+N[1]):(N[0]+N[1]+N[2]), 0] = 0 dat[(N[0]+N[1]):(N[0]+N[1]+N[2]), 1] = 1 if N[3] > 0: dat[(N[0]+N[1]+N[2]):(N[0]+N[1]+N[2]+N[3]), ] = 0 tau_hat = np.matmul(Z_all, dat[:, 0]) / (m) - \ np.matmul((1 - Z_all), dat[:, 1]) / (n-m) tau_N = (N[1]-N[2]) / n pd = sum(np.round(np.abs(tau_hat-tau_N), 15) >= np.round(np.abs(tau_obs-tau_N), 15))/n_Z_all return pd
efc1f602d72d71a0270ef2f4c2c2ed8610832d62
20,298
def make_where_tests(options): """Make a set of tests to do where.""" test_parameters = [ { "input_dtype": [tf.float32, tf.int32], "input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 4]),], "use_where_v2": [False, True], }, { "input_dtype": [tf.float32, tf.int32], "input_shape_set": [([1, 2, 3, 4], [1, 2, 3, 1]),], "use_where_v2": [True], }, ] def build_graph(parameters): """Build the where op testing graph.""" input_value1 = tf.placeholder( dtype=parameters["input_dtype"], name="input2", shape=parameters["input_shape_set"][0]) input_value2 = tf.placeholder( dtype=parameters["input_dtype"], name="input3", shape=parameters["input_shape_set"][1]) less = tf.less(input_value1, input_value2) where = tf.where_v2 if parameters["use_where_v2"] else tf.where out = where(less, input_value1, input_value2) return [input_value1, input_value2], [out] def build_inputs(parameters, sess, inputs, outputs): input_value1 = create_tensor_data(parameters["input_dtype"], parameters["input_shape_set"][0]) input_value2 = create_tensor_data(parameters["input_dtype"], parameters["input_shape_set"][1]) return [input_value1, input_value2], sess.run( outputs, feed_dict=dict(zip(inputs, [input_value1, input_value2]))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
fa10458af3e9043ea5779ff05cb679ef4b798d1b
20,299
def invite_accepted_candidates(): """Invites accepted candidates to create an account and set their own password.""" form = InviteAcceptedCandidatesForm() if form.validate_on_submit(): selected = [ Candidate.query.filter_by(id=c).first() for c in form.selected_candidates.data.split(',') ] user_role = Role.query.filter_by(name='User').first() # for each selected candidate create a new user account for candidate in selected: user = User.query.filter_by(email=candidate.email).first() if user is None: user = User( role=user_role, first_name=candidate.first_name, last_name=candidate.last_name, email=candidate.email, candidate=candidate) db.session.add(user) db.session.commit() token = user.generate_confirmation_token() invite_link = url_for( 'account.join_from_invite', user_id=user.id, token=token, _external=True) get_queue().enqueue( send_email, recipient=user.email, subject='You Are Invited To Join', template='account/email/invite', user=user, invite_link=invite_link) str = '' for c in selected: str += c.first_name + ' ' + c.last_name + ', ' str = str[:-2] flash('Candidates {} successfully invited'.format(str), 'form-success') return render_template('admin/invite_accepted_candidates.html', form=form, all_terms=Term.query.order_by(Term.end_date.desc()).all(), accepted_candidates=Candidate.query.filter_by(status=Status.ASSIGNED).all())
7e4165f774f4594afa52cc97420c8b212175c6c9
20,301
def ramp_overlap(x0, y0, w0, h0, angle0, x1, y1, w1, h1, angle1): """Calculates the overlap area between two ramps.""" # Check if bounding spheres do not intersect. dw0 = _rect_diagonal(w0, h0) dw1 = _rect_diagonal(w1, h1) if not bounding_circles_overlap(x0, y0, dw0, x1, y1, dw1): return 0. # Check if bounging boxes do not intersect. x0_begin, x0_end, y0_begin, y0_end = rect_bounding_frame( x0, y0, w0, h0, angle0) x1_begin, x1_end, y1_begin, y1_end = rect_bounding_frame( x1, y1, w1, h1, angle1) if not bounding_box_overlap(x0_begin, x0_end, y0_begin, y0_end, x1_begin, x1_end, y1_begin, y1_end): return 0. # Otherwise, calculate proper intersection. rect_1 = _build_shapely_ramp(x0, y0, w0, h0, angle0) rect_2 = _build_shapely_ramp(x1, y1, w1, h1, angle1) return rect_1.intersection(rect_2).area
78b261bacc4d90d40e2fc80e9f665d80de6b7574
20,302
def url_external(path, query): """Generate external URLs with HTTPS (if configured).""" try: api_url = request.url_root if settings.URL_SCHEME is not None: parsed = urlparse(api_url) parsed = parsed._replace(scheme=settings.URL_SCHEME) api_url = parsed.geturl() if query is not None: path = path + query_string(query) return urljoin(api_url, path) except RuntimeError: return None
27e73834e47a08b4e22fe89587974da386826627
20,303
def get_bucket_metadata(bucket, user_settings=None, access=ServiceAccount.STORAGE): """ Retrieves metadata about the given bucket. :param str bucket: name of the Google cloud storage bucket :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :param access: must be 'storage'. Other values are for internal use only :return: Returns the response obtained from the API by uploading the object """ if access == ServiceAccount.STORAGE: service = CredentialManager.get_client_storage_service(user_settings) elif access == ServiceAccount.EARTH_ENGINE: service = CredentialManager.get_earth_engine(user_settings) else: service = CredentialManager.get_server_storage_service(user_settings) # Make a request to buckets.get to retrieve a list of objects in the # specified bucket. req = service.buckets().get(bucket=bucket) return req.execute(num_retries=3)
9a587cf4ebba94499d21b7b734586dfd9228aa23
20,304
import re def remove_conjunction(conjunction: str, utterance: str) -> str: """Remove the specified conjunction from the utterance. For example, remove the " and" left behind from extracting "1 hour" and "30 minutes" from "for 1 hour and 30 minutes". Leaving it behind can confuse other intent parsing logic. Args: conjunction: translated conjunction (like the word "and") to be removed from utterance utterance: Full request, e.g. "set a 30 second timer" Returns: The same utterance with any dashes replaced by spaces. """ pattern = r"\s\s{}".format(conjunction) remaining_utterance = re.sub(pattern, "", utterance, flags=re.IGNORECASE) return remaining_utterance
67313565c7da2eadc4411854d6ee6cb467ee7159
20,305
def othertitles(hit): """Split a hit.Hit_def that contains multiple titles up, splitting out the hit ids from the titles.""" id_titles = hit.Hit_def.text.split('>') titles = [] for t in id_titles[1:]: fullid, title = t.split(' ', 1) hitid, id = fullid.split('|', 2)[1:3] titles.append(dict(id = id, hitid = hitid, fullid = fullid, title = title)) return titles
fa5bbb47d26adbc61817e78e950e81cc05eca4a6
20,306
from ..preprocessing.windowers import _check_windowing_arguments def create_from_mne_epochs(list_of_epochs, window_size_samples, window_stride_samples, drop_last_window): """Create WindowsDatasets from mne.Epochs Parameters ---------- list_of_epochs: array-like list of mne.Epochs window_size_samples: int window size window_stride_samples: int stride between windows drop_last_window: bool whether or not have a last overlapping window, when windows do not equally divide the continuous signal Returns ------- windows_datasets: BaseConcatDataset X and y transformed to a dataset format that is compativle with skorch and braindecode """ # Prevent circular import _check_windowing_arguments(0, 0, window_size_samples, window_stride_samples) list_of_windows_ds = [] for epochs in list_of_epochs: event_descriptions = epochs.events[:, 2] original_trial_starts = epochs.events[:, 0] stop = len(epochs.times) - window_size_samples # already includes last incomplete window start starts = np.arange(0, stop + 1, window_stride_samples) if not drop_last_window and starts[-1] < stop: # if last window does not end at trial stop, make it stop there starts = np.append(starts, stop) fake_events = [[start, window_size_samples, -1] for start in starts] for trial_i, trial in enumerate(epochs): metadata = pd.DataFrame({ 'i_window_in_trial': np.arange(len(fake_events)), 'i_start_in_trial': starts + original_trial_starts[trial_i], 'i_stop_in_trial': starts + original_trial_starts[ trial_i] + window_size_samples, 'target': len(fake_events) * [event_descriptions[trial_i]] }) # window size - 1, since tmax is inclusive mne_epochs = mne.Epochs( mne.io.RawArray(trial, epochs.info), fake_events, baseline=None, tmin=0, tmax=(window_size_samples - 1) / epochs.info["sfreq"], metadata=metadata) mne_epochs.drop_bad(reject=None, flat=None) windows_ds = WindowsDataset(mne_epochs) list_of_windows_ds.append(windows_ds) return BaseConcatDataset(list_of_windows_ds)
42c7671f7b353db165a41403b760362c0ca15d74
20,308