content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def q_fn(x): """ The Q-function assesses all possible actions that can be taken, given a state. Two layer feed forward neural network. All layers are fully connected, biases initialized with 0. The constants above define the layer sizes. :param x: Batch input tensor to the network. :return: Action softmax over three values. """ with tf.variable_scope('dense1') as scope: weights = tf.get_variable('weights', [INPUT_SIZE, DENSE1_UNITS], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=1.0 / DENSE1_UNITS)) biases = tf.get_variable('biases', shape=[DENSE1_UNITS], dtype=tf.float32, initializer=tf.constant_initializer(0.0, dtype=tf.float32)) pre_activation = tf.add(tf.matmul(x, weights), biases, name='pre_activation') dense1 = tf.sigmoid(pre_activation, name=scope.name) with tf.variable_scope('dense2') as scope: weights = tf.get_variable('weights', [DENSE1_UNITS, DENSE2_UNITS], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=1.0 / DENSE2_UNITS)) biases = tf.get_variable('biases', shape=[DENSE2_UNITS], dtype=tf.float32, initializer=tf.constant_initializer(0.0, dtype=tf.float32)) pre_activation = tf.add(tf.matmul(dense1, weights), biases, name='pre_activation') dense2 = tf.sigmoid(pre_activation, name=scope.name) with tf.variable_scope('actions') as scope: weights = tf.get_variable('weights', [DENSE2_UNITS, NUM_ACTIONS], dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=1.0 / NUM_ACTIONS)) biases = tf.get_variable('biases', shape=[NUM_ACTIONS], dtype=tf.float32, initializer=tf.constant_initializer(0.0, dtype=tf.float32)) action_q = tf.add(tf.matmul(dense2, weights), biases, name='action_q_value') return action_q
4c4fece48773d020c321fd433aa75caa7bc258ee
20,081
def getPlayer(env, name, decoder): """Get user's player data""" players = getPlayers(env, decoder) if name in players.keys(): return players[name] else: return False
fd98e481abab6e7f53bf66d0285f506d06f5e6ea
20,082
import re def get_config_errors(conf, filename="<no name>"): """ Validate a configuration object and return the list of errors found. """ rv = [] # Give a clearer error message than what jsonschema would give # Something like: None is not of type 'object' if not isinstance(conf, dict): msg = "config must be an object containing 'db_objects'" rv.append(located_message(None, filename, msg)) return rv errors = list(validator.iter_errors(conf)) for error in errors: loc = location_from_error(conf, error) rv.append(located_message(loc, filename, error.message)) for obj in conf.get("db_objects", ()): if isinstance(obj, dict): rv.extend(_get_rule_errors(obj, filename)) # sort by line number def lineno(s): m = re.search(r":(\d+)", s) return int(m.group(1)) if m is not None else 0 rv.sort(key=lineno) return rv
4020d5dd33f840dc6c0e3c24be77acf80a606d57
20,083
def process_vcf( info ): """ pass izip object of line object and other needed vars info[0] = list of vcf lines from VCF object iterator. info[1] = clf object info[2] = dataset dictionary info[3] = filter arg supplied by user info[4] = min classification frequency supplied by user (defaults to None) """ #sys.stderr.write("... running process VCF with job id %d \n" %(os.getpid() ) ) #parse the args to function line_list = info[0] #list of lines from VCF obj clf = info[1] #randomForest object dataset = info[2] #dataset with class names filter = info[3] #filter arg supplied by user minclassfreq = info[4] #iterate over lines in the chunked data return_list = [] for line in line_list: line = line.strip().split("\t") vdat = parse_vcf_data( line[7] ) #parse all of vcf appended data filter_bool = run_filters( vdat, filtering=filter ) #boolean of whether line info passes filters if filter_bool: _x = vdat[ 'AT' ].split(",") #create list from data in 'AT' field _x = _x[1:] #results = classify_data( _x, clf, dataset['target_names'] ) results = classify_data( _x, clf, dataset['target_names'], minclassfreq ) line[7] = line[7] + ";" + results #append data to correct vcf column #print "\t".join( line ) #print results to stdout print_line = "\t".join( line ) return_list.append( print_line ) else: return_list.append( None ) #return the full list of updated line data return( return_list )
389146cd88804935ee2aae85a9e5d84684f81b7e
20,084
def compute_task1_f1_score(truth, solutions): """ compute f1 score for task 1 :param truth: list of ground truth values for all problem-ids :param solutions: list of solutions for all problem-ids :return: f1 score """ task1_truth, task1_solution = extract_task_results(truth, solutions, 'multi-author') return f1_score(task1_truth, task1_solution, average='micro')
2e44603c547062d85023fb405d3ab511d3ca40d3
20,086
def multiply(t1,t2): """ Multiplies (expands) two binary expressions t1 and t2 based on the distributive rule Args: t1 (str): first binary expression t2 (str): second binary expression Returns: A string representing the expansion of the boolean algebraic expressions """ t1 = t1.split('+') t2 = t2.split('+') prod = '' for m in t1: temp = "" for n in t2: if t1.index(m) == len(t1)-1 and t2.index(n) == len(t2)-1: if m!=n: temp=(temp+m+n) else: temp += m else: if m!=n: temp=temp + m+n+'+' else: temp+=m+'+' prod+=temp return prod
0078ee94420722600be31edc74a86b1932c4d2f2
20,087
def source_remove_all(obj_type, obj_id, name, analyst=None): """ Remove a source from a top-level object. :param obj_type: The CRITs type of the top-level object. :type obj_type: str :param obj_id: The ObjectId to search for. :type obj_id: str :param name: The name of the source. :type name: str :param analyst: The user performing the removal. :type analyst: str :returns: dict with keys "success" (boolean) and "message" (str) """ obj = class_from_id(obj_type, obj_id) if not obj: return {'success': False, 'message': 'Unable to find object in database.'} try: result = obj.remove_source(source=name, remove_all=True) obj.save(username=analyst) return result except ValidationError, e: return {'success':False, 'message': e}
c9c7860f27b230ea9834c4a58324da70ebee9e30
20,088
def driver(dbname): """ Determine driver module :Parameters: `dbname` : ``str`` DB name (section token in db.conf) :Return: Driver module :Rtype: ``module`` :Exceptions: - `DBConfigurationError` : DB not configured - `KeyError` : DB name not found - `ImportError` : Driver not found """ return _connection.driver(dbname)
01a2b0e10975879f944bbaf51b44d8eef6b97996
20,089
from typing import Union def d1tile_x_d2(d1: Union[float, np.ndarray], d2: np.ndarray) -> np.ndarray: """ Create array of repeated values with dimensions that match those of energy array Useful to multiply frequency-dependent values to frequency-time matrices :param d1: 1D input vector, nominally frequency/scale multipliers :param d2: 2D array, first dimension should be that same as d1 :return: array with matching values """ shape_out = d2.shape if len(shape_out) == 1: d1_matrix = np.tile(d1, (shape_out[0])) elif len(shape_out) == 2: d1_matrix = np.tile(d1, (shape_out[1], 1)).T else: raise TypeError('Cannot handle an array of shape {}.'.format(str(d1.shape))) if d1_matrix.shape == d2.shape: d1_x_d2 = d1_matrix * d2 else: raise TypeError('Cannot handle an array of shape {}.'.format(str(d1.shape))) return d1_x_d2
68721f7f9ab1b60f77e8199ad917dd47b19aaa95
20,090
def get_all_gradients_for_Q4( theta, X, Y ): """ Do the same thing as Q(iv) but it is actually only for storing and observing the sample gradient and whole gradient for the Q(iv) step Output the sample grdient and whole grdient data """ # Get difference of uclidean distance def get_difference( old_theta, new_theta ): difference_mat = old_theta - new_theta difference_square = np.multiply( difference_mat, difference_mat ) difference = math.sqrt( np.sum( difference_square ) ) return difference # Contains all gradient_i grad_i_val_observe = [] grad_val_observe = [] # Set random seed random.seed( 1 ) # Get updated theta def get_new_theta( old_theta, eta ): # Code for using single sample gradient random_i = random.randint( 0, X.shape[0] - 1 ) grad_i_val = get_grad_f_i( old_theta, X, Y, random_i ) # Get the whole gradient to observe grad_val = get_grad_f( old_theta, X, Y ) # Scale by the size N (multiply by 10,000) grad_i_val = grad_i_val * X.shape[0] # Store grad_val to observe Q(v) grad_i_val_list = grad_i_val.tolist() grad_i_val_list = grad_i_val_list[0] grad_val_list = grad_val.tolist() grad_val_list = grad_val_list[0] grad_i_val_observe.append( grad_i_val_list ) grad_val_observe.append( grad_val_list ) new_theta = old_theta - ( eta * grad_i_val ) return new_theta ############################################################ precision = 0.01 # eta = 0.000000008 # ############################################################ old_theta = theta new_theta = get_new_theta( old_theta, eta ) difference = get_difference( old_theta, new_theta ) while difference > precision: old_theta = new_theta new_theta = get_new_theta( old_theta, eta ) # Get new difference difference = get_difference( old_theta, new_theta ) value = op_func( new_theta, X, Y ) # Showing information... print print "difference: " + str( difference ) print "theta: " print new_theta print "function value: " + str( value ) return grad_i_val_observe, grad_val_observe
d508b826f552d844cf95f9d5515c5eb1512dfbcb
20,091
def findSubsetIndices(min_lat,max_lat,min_lon,max_lon,lats,lons): """Array to store the results returned from the function""" res=np.zeros((4),dtype=np.float64) minLon=min_lon; maxLon=max_lon distances1 = []; distances2 = [] indices=[]; index=1 for point in lats: s1 = max_lat-point # (vector subtract) s2 = min_lat-point # (vector subtract) distances1.append((np.dot(s1, s1), point, index)) distances2.append((np.dot(s2, s2), point, index-1)) index=index+1 distances1.sort() distances2.sort() indices.append(distances1[0]) indices.append(distances2[0]) distances1 = []; distances2 = []; index=1 for point in lons: s1 = maxLon-point # (vector subtract) s2 = minLon-point # (vector subtract) distances1.append((np.dot(s1, s1), point, index)) distances2.append((np.dot(s2, s2), point, index-1)) index=index+1 distances1.sort() distances2.sort() indices.append(distances1[0]) indices.append(distances2[0]) """ Save final product: max_lat_indices,min_lat_indices,max_lon_indices,min_lon_indices""" minJ=indices[1][2] maxJ=indices[0][2] minI=indices[3][2] maxI=indices[2][2] res[0]=minI; res[1]=maxI; res[2]=minJ; res[3]=maxJ; return res
7d41b33fd492fa8b5cd62c368210bcbea2c7bc89
20,092
def call(stoptime, seconds, method=None): """ Returns a dict with route, direction, stop, call time and source. Call time is in UTC. """ result = dict(stoptime._asdict(), call_time=toutc(seconds), source=method or "I") result["deviation"] = result["call_time"] - stoptime.datetime return result
bfa78ec89b60bf1140b8b24bc91fd1a2dd9c2a63
20,093
import re def sanitize_value(val): """Remove crap from val string and then convert it into float""" val = re.sub(u"(\xa0|\s)", '', val) val = val.replace(',', '.') # positive or negative multiplier mult = 1 if '-' in val and len(val) > 1: mult = -1 val = val.replace('-', '') elif '-' in val: val = '0' if val is not None: if '%' in val: val = float(val.replace('%', '')) return float(val) * mult
0fc67bf519674575451f4fc029bee658ea2bd2da
20,094
def getObjectInfo(fluiddb, about): """ Gets object info for an object with the given about tag. """ return fluiddb.about[about].get()
8614edaf44944fcc11882ac2fcaa31ba31d48d30
20,095
import warnings def __getattr__(name): """Get attribute.""" deprecated = __deprecated__.get(name) if deprecated: warnings.warn( "'{}' is deprecated. Use '{}' instead.".format(name, deprecated[0]), category=DeprecationWarning, stacklevel=(3 if PY37 else 4) ) return deprecated[1] raise AttributeError("module '{}' has no attribute '{}'".format(__name__, name))
c904f1221492e8f08786918dd496d3d6861fd35e
20,096
def get_model_and_assets(): """Returns a tuple containing the model XML string and a dict of assets.""" return common.read_model('finger.xml'), common.ASSETS
cacb53de08eef5695a5464fbb72a1706ff489276
20,097
async def process_logout(): """ Purge the login information from the users session/cookie data :return: Redirect to main body """ # Simply destroy the cookies in this session and get rid of the creds, redirect to landing response = RedirectResponse("/") # Process the destruction from main app/test result response.delete_cookie("user") response.delete_cookie("flow") return response
98d9c8c40e0a1fe224538b353a2a803fdd7fce76
20,098
from typing import Optional def _lex_label(label: str) -> _LexedLabel: """Splits the label into packages and target.""" match = _LABEL_LEXER.match(label) if match is None: raise ValueError(f'{label} is not an absolute Bazel label') groups = match.groupdict() packages: Optional[str] = groups['packages'] target: Optional[str] = groups['target'] if packages is None and target is None: raise ValueError(f'{label} cannot be empty') init = packages.split('/') if packages else [] last = target[1:] if target else init[-1] return init, last
f067d5e81b02a4242d8459b41d49c302459f416b
20,099
def generate_extra(candidate: tuple, expansion_set, murder_list=None, attempted=None) -> list: """ Special routine for graph based algorithm :param candidate: :param expansion_set: :param murder_list: :param attempted: :return: """ check = manufacture_lambda(attempted, murder_list) accepted_sets = list() for regular_constraint in expansion_set: val = list(candidate) val.append(regular_constraint) future_child = tuple(sorted(val)) if check(future_child): accepted_sets.append(future_child) return accepted_sets
e38d605df2a562b269189c8e7714ec97e89d8f36
20,100
from typing import Tuple from typing import Dict def extract_oe_stereochemistry( molecule: Molecule, oe_mol: "OEMol" ) -> Tuple[Dict[int, AtomStereochemistry], Dict[int, BondStereochemistry]]: """Extracts the CIP stereochemistry of each atom and bond in a OE molecule.""" atom_stereo = { oe_atom.GetIdx(): atom_cip_stereochemistry(oe_mol, oe_atom) for oe_atom in oe_mol.GetAtoms() } bond_stereo_tuples = { tuple( sorted([oe_bond.GetBgnIdx(), oe_bond.GetEndIdx()]) ): bond_cip_stereochemistry(oe_mol, oe_bond) for oe_bond in oe_mol.GetBonds() } bond_stereo = { i: bond_stereo_tuples[tuple(sorted([bond.atom1_index, bond.atom2_index]))] for i, bond in enumerate(molecule.bonds) } return atom_stereo, bond_stereo
0d051e847c94a81585a1478fc10bfac335d700a6
20,101
from dipy.denoise.nlmeans import nlmeans from scipy.ndimage.morphology import binary_erosion from scipy import ndimage def nlmeans_proxy(in_file, settings, snr=None, smask=None, nmask=None, out_file=None): """ Uses non-local means to denoise 4D datasets """ if out_file is None: fname, fext = op.splitext(op.basename(in_file)) if fext == '.gz': fname, fext2 = op.splitext(fname) fext = fext2 + fext out_file = op.abspath('./%s_denoise%s' % (fname, fext)) img = nb.load(in_file) hdr = img.header data = img.get_data() aff = img.affine if data.ndim < 4: data = data[..., np.newaxis] data = np.nan_to_num(data) if data.max() < 1.0e-4: raise RuntimeError('There is no signal in the image') df = 1.0 if data.max() < 1000.0: df = 1000. / data.max() data *= df b0 = data[..., 0] if smask is None: smask = np.zeros_like(b0) smask[b0 > np.percentile(b0, 85.)] = 1 smask = binary_erosion( smask.astype(np.uint8), iterations=2).astype(np.uint8) if nmask is None: nmask = np.ones_like(b0, dtype=np.uint8) bmask = settings['mask'] if bmask is None: bmask = np.zeros_like(b0) bmask[b0 > np.percentile(b0[b0 > 0], 10)] = 1 label_im, nb_labels = ndimage.label(bmask) sizes = ndimage.sum(bmask, label_im, range(nb_labels + 1)) maxidx = np.argmax(sizes) bmask = np.zeros_like(b0, dtype=np.uint8) bmask[label_im == maxidx] = 1 nmask[bmask > 0] = 0 else: nmask = np.squeeze(nmask) nmask[nmask > 0.0] = 1 nmask[nmask < 1] = 0 nmask = nmask.astype(bool) nmask = binary_erosion(nmask, iterations=1).astype(np.uint8) den = np.zeros_like(data) est_snr = True if snr is not None: snr = [snr] * data.shape[-1] est_snr = False else: snr = [] for i in range(data.shape[-1]): d = data[..., i] if est_snr: s = np.mean(d[smask > 0]) n = np.std(d[nmask > 0]) snr.append(s / n) den[..., i] = nlmeans(d, snr[i], **settings) den = np.squeeze(den) den /= df nb.Nifti1Image(den.astype(hdr.get_data_dtype()), aff, hdr).to_filename(out_file) return out_file, snr
69629ef536830ccecdee09e5acfadf02d892cc9d
20,102
def jointImgTo3D(sample): """ Normalize sample to metric 3D :param sample: joints in (x,y,z) with x,y in image coordinates and z in mm :return: normalized joints in mm """ ret = np.zeros((3,), np.float32) # convert to metric using f ret[0] = (sample[0]-centerX)*sample[2]/focalLengthX ret[1] = (sample[1]-centerY)*sample[2]/focalLengthY ret[2] = sample[2] return ret
43726ed712e268c9fd2434fa2734ff8aa0ee2d0a
20,104
def build_param_obj(key, val, delim=''): """Creates a Parameter object from key and value, surrounding key with delim Parameters ---------- key : str * key to use for parameter value : str * value to use for parameter delim : str * str to surround key with when adding to parameter object Returns ------- param_obj : :class:`taniumpy.object_types.parameter.Parameter` * Parameter object built from key and val """ # create a parameter object param_obj = taniumpy.Parameter() param_obj.key = '{0}{1}{0}'.format(delim, key) param_obj.value = val return param_obj
0fba11c4564ef57eab45ffd02bed887c42a14121
20,106
def copy_fixtures_to_matrixstore(cls): """ Decorator for TestCase classes which copies data from Postgres into an in-memory MatrixStore instance. This allows us to re-use database fixtures, and the tests designed to work with those fixtures, to test MatrixStore-powered code. """ # These methods have been decorated with `@classmethod` so we need to use # `__func__` to get a reference to the original, undecorated method decorated_setUpClass = cls.setUpClass.__func__ decorated_tearDownClass = cls.tearDownClass.__func__ def setUpClass(inner_cls): decorated_setUpClass(inner_cls) matrixstore = matrixstore_from_postgres() stop_patching = patch_global_matrixstore(matrixstore) # Have to wrap this in a staticmethod decorator otherwise Python thinks # we're trying to create a new class method inner_cls._stop_patching = staticmethod(stop_patching) new_settings = override_settings( CACHES={ "default": {"BACKEND": "django.core.cache.backends.dummy.DummyCache"} } ) new_settings.enable() inner_cls._new_settings = new_settings def tearDownClass(inner_cls): inner_cls._stop_patching() inner_cls._new_settings.disable() decorated_tearDownClass(inner_cls) cls.setUpClass = classmethod(setUpClass) cls.tearDownClass = classmethod(tearDownClass) return cls
b64ef9b23afc76b8f1b2cf1ae6b56635cd6e4f56
20,107
def intersect_description(first, second): """ Intersect two description objects. :param first: First object to intersect with. :param second: Other object to intersect with. :return: New object. """ # Check that none of the object is None before processing if first is None: return second if second is None: return first if first.description_type == second.description_type: # Same MIME types, can merge content value = let_user_choose(first.value, second.value) description_type = first.description_type else: # MIME types are different, set MIME type to text description_type = 'text/enriched' value = """ Original MIME-type for first description: '{0}'. {1} ---- Original MIME-type for second description: '{2}'. {3} """.format(first.description_type, first.value, second.description_type, second.value) return Description(value, description_type)
93d35314f8ab6ef0978de942ecfad3719c8f4971
20,108
def smooth_correlation_matrix(cor, sigma, exclude_diagonal=True): """Apply a simple gaussian filter on a correlation matrix. Parameters ---------- cor : numpy array Correlation matrix. sigma : int, optional Scale of the gaussian filter. exclude_diagonal : boolean, optional Whether to exclude the diagonal from the smoothing. That is what should be done generally because the diagonal is 1 by definition. Returns ------- cor_new : numpy array Smoothed correlation matrix. """ n_dim = len(np.diag(cor)) cor_new = np.copy(cor) if exclude_diagonal: cor_new[0, 0] = 0.5 * (cor[0, 1] + cor[1, 0]) cor_new[n_dim - 1, n_dim - 1] = 0.5 * (cor[n_dim - 1, n_dim - 2] + cor[n_dim - 2, n_dim - 1]) for i in range(1, n_dim - 1): cor_new[i, i] = 0.25 * (cor[i, i - 1] + cor[i, i + 1] + cor[i - 1, i] + cor[i + 1, i]) cor_new = gaussian_filter(cor_new, sigma, mode='nearest') if exclude_diagonal: for i in range(n_dim): cor_new[i, i] = cor[i, i] return cor_new
753337cc12578b5c2333392f01e028204ac2f0e0
20,109
def quantize_iir_filter(filter_dict, n_bits): """ Quantize the iir filter tuple for sos_filt funcitons Parameters: - filter_dict: dict, contains the quantized filter dictionary with the following keys: - coeff: np.array(size=(M, 6)), float representation of the coefficients - coeff_scale: np.array(size=(M, 2)), scale all coefficients, not used here - coeff_shift: np.array(size=(M, 2), dtype=int), amount to shift during computation - y_scale: float, scale factor of the output, unused here - y_shift: int, number of bits to shift the output for scaling - n_bits: int, number of bits to represent the filter coefficients Returns: tuple: - a: np.array(size=(M+1, 3), dtype=int), quantized nominators - a_shift: np.array(size=(M+1), dtype=int), amount to shift during computation - b: np.array(size=(M+1, 3), dtype=int), quantized denumerators - b_shift: np.array(size=(M+1), dtype=int), amount to shift during computation - y_shift: int, amount to shift the output """ quant_coeff = filter_dict["coeff"] scale_coeff = filter_dict["coeff_scale"] comp_shift = filter_dict["coeff_shift"] output_shift = filter_dict["y_shift"] M = quant_coeff.shape[0] assert quant_coeff.shape == (M, 6) assert scale_coeff.shape == (M, 2) assert comp_shift.shape == (M, 2) assert comp_shift.dtype == int assert np.all(comp_shift <= 0) # generate the coefficients a = np.ones((M + 1, 3), dtype=int) << (n_bits - 1) b = np.ones((M + 1, 3), dtype=int) << (n_bits - 1) a_shift = np.ones((M + 1, ), dtype=int) * (n_bits - 1) b_shift = np.ones((M + 1, ), dtype=int) * (n_bits - 1) for m in range(M): a[m + 1, :] = quantize_to_int(quant_coeff[m, 3:], scale_coeff[m, 1], n_bits) b[m + 1, :] = quantize_to_int(quant_coeff[m, :3], scale_coeff[m, 0], n_bits) a_shift[m + 1] = -comp_shift[m, 1] b_shift[m + 1] = -comp_shift[m, 0] return a, a_shift, b, b_shift, output_shift
a8e93302072733d77acb563cd758725f14c05420
20,110
import json import traceback def add_goods(request, openid, store_id, store_name, dsr, specification, brand, favorable_rate, pic_path, live_recording_screen_path, daily_price, commission_rate, pos_price, preferential_way, goods_url, hand_card, storage_condition, shelf_life, unsuitable_people, ability_to_deliver, shipping_cycle, shipping_addresses, delivery_company, not_shipping): """ :request method: POST 商铺信息 :param store_id: 店铺id(最长45位) :param store_name: 店铺id(最长45位) :param dsr: 店铺评分 商品信息 :param goods_name: 商品名称 :param specification: 规格 :param brand: 商品品牌 :param favorable_rate: 好评率 :param pic_path: 商品主图链接(列表) :param live_recording_screen_path: 知名主播带货视频链接 :param daily_price: 日常价格 :param live_price: 直播价格 :param commission_rate: 直播佣金比例 :param pos_price: 坑位费预算 :param preferential_way: 直播活动机制 :param goods_url: 商品链接 :param hand_card: 直播手卡 全网比价 :param tmall_price: 天猫价格 :param taobao_price: 淘宝价格 :param jd_price: 京东 :param pdd_price: 拼多多 :param offline_price: 线下商超 存储与运输 :param storage_condition: 存储条件 :param shelf_life: 保质期 :param unsuitable_people: 不适用人群 :param ability_to_deliver: 发货能力 :param shipping_cycle: 发货周期 :param shipping_addresses: 发货地址 :param delivery_company: 物流快递公司 :param not_shipping: 不发货区域 :param free_shipping: 包邮地区 其他 :param comment: 备注信息 :return: {'code': ResponsCode.FAILED, 'data': '', "msg": '添加商品失败'} {'code': ResponsCode.SUCCESS, 'data': {"goods_id": pk}, "msg": '添加商品成功'} {'code': ResponsCode.EXCEPTION, 'data': '', "msg": '添加商品异常'} """ rsp = {'code': ResponsCode.FAILED, 'data': '', "msg": '添加商品失败'} try: _, data = get_store_data_by_store_id(openid, store_id) if not data: is_success = insert_store_info(store_id, store_name, dsr, openid, ignore=True) if not is_success: raise InvalidParameter('店铺不存在,且新建失败') is_success, pk = insert_goods_data(openid, json.loads(request.body)) if is_success: rsp = {'code': ResponsCode.SUCCESS, 'data': {"goods_id": pk}, "msg": '添加商品成功'} except InvalidParameter as e: rsp = {'code': ResponsCode.FAILED, 'data': '', "msg": str(e)} except: logger.exception(traceback.format_exc()) rsp = {'code': ResponsCode.EXCEPTION, 'data': '', "msg": '添加商品异常'} finally: return rsp
e7a04a316e3fba3a803f20eb459dc8691ccc2642
20,111
def calcOneFeatureEa(dataSet: list, feature_idx: int): """ 获取一个特征的E(A)值 :param dataSet: 数据集 :param feature_idx: 指定的一个特征(这里是用下标0,1,2..表示) :return: """ attrs = getOneFeatureAttrs(dataSet, feature_idx) # 获取数据集的p, n值 p, n = getDatasetPN(dataSet) ea = 0.0 for attr in attrs: # 获取每个属性值对应的p, n值 attrP, attrN = getOneFeatureAttrPN(dataSet, feature_idx, attr) # 计算属性对应的ipn attrIPN = calcIpn(attrP, attrN) ea += (attrP+attrN)/(p+n) * attrIPN return ea
fc800b285bc24246ad9c40070d33ff429e395183
20,115
def translate_mapping(mapping: list, reference: SimpleNamespace, templ: bool=True, nontempl: bool=True, correctframe: bool=True, filterframe: bool=True, filternonsense: bool=True): """ creates a protein mapping from a dna mapping. :param mapping: a list/tuple of ops. :param reference: the reference object to which the mapping is relative. :param templ: include templated ops :param nontempl: include nontemplated ops :param correctframe: removes isolated ops that disrupt the frame :param filterframe: don't return a mapping if there are remaining frameshifts. :param filternonsense: don't return a mapping if contains a stop codon :return: """ # create a mapping with the appropriate SNPs base_mapping = [] if templ: base_mapping.extend(templated(mapping, reference)) if nontempl: base_mapping.extend(nontemplated(mapping, reference)) base_mapping.sort(key=lambda x: x[0]) # correct errors if correctframe: base_mapping = error_scrub(base_mapping) # filter for whether it is in frame or not. if filterframe and not len(transform(reference.seq, base_mapping)) % 3 == len(reference.seq) % 3: return [] protein = translate(transform(reference.seq, base_mapping), offset=reference.offset) if filternonsense and "_" in protein: return [] protein_alns = align_proteins(reference.protein, protein) return protein_alns
3a05ae38d9bccb8b855c91af850a92426c5031f3
20,116
from copy import copy from numpy import zeros, unique from itertools import product def trainModel(label,bestModel,obs,trainSet,testSet,modelgrid,cv,optMetric='auc'): """ Train a message classification model """ pred = zeros(len(obs)) fullpred = zeros((len(obs),len(unique(obs)))) model = copy(bestModel.model) #find the best model via tuning grid for tune in [dict(zip(modelgrid, v)) for v in product(*modelgrid.values())]: for k in tune.keys(): setattr(model,k,tune[k]) i = 0 for tr, vl in cv: model.fit(trainSet.ix[tr].values,obs[tr]) pred[vl] = model.predict_proba(trainSet.ix[vl].values)[:,1] fullpred[vl,:] = model.predict_proba(trainSet.ix[vl].values) i += 1 bestModel.updateModel(pred,fullpred,obs,model,trainSet.columns.values,tune,optMetric=optMetric) #re-train with all training data bestModel.model.fit(trainSet.values,obs) print bestModel return {label: {'pred': pred, 'test_pred':bestModel.model.predict_proba(testSet)[:,1]}}
8cea9f0044246972e80684fac584693a500198cc
20,117
def get_device_state(): """Return the device status.""" state_cmd = get_adb_command_line('get-state') return execute_command( state_cmd, timeout=RECOVERY_CMD_TIMEOUT, log_error=True)
e517e7df3f5a7a1bf3925a46ce6a780dbc862910
20,118
def character_state(combat, character): """ Get the combat status of a single character, as a tuple of current_hp, max_hp, total healing """ max_hp = Max_hp(character.base_hp) total_h = 0 for effect in StatusEffect.objects.filter(character=character, combat=combat, effect_typ__typ='MAX_HP'): max_hp.hp += effect.effect_val current_hp = Current_hp(max_hp.hp) for wound in Wound.objects.filter(character=character, combat=combat): current_hp.hp -= wound.amount for heal in Heal.objects.filter(character=character, combat=combat): current_hp.hp += heal.amount total_h += heal.amount return current_hp, max_hp, total_h
d80315934ac653d34dd73cc1a9861b9c6e2f2c9c
20,119
def load_textfile(path) : """Returns text file as a str object """ f=open(path, 'r') recs = f.read() # f.readlines() f.close() return recs
8e12a93bb4918cbae7d7e9aad6f09f562eca0c16
20,120
import scipy def interp1d_to_uniform(x, y, axis=None): """Resample array to uniformly sampled axis. Has some limitations due to use of scipy interp1d. Args: x (vector): independent variable y (array): dependent variable, must broadcast with x axis (int): axis along which to resample Returns: xu: uniformly spaced independent variable yu: dependent resampled at xu """ x = np.asarray(x) y = np.asarray(y) if axis is None: axis = mathx.vector_dim(x) num = x.shape[axis] mn = x.min(axis, keepdims=True) mx = x.max(axis, keepdims=True) # Limitation of scipy interp1d x = x.squeeze() mn = mn.squeeze() mx = mx.squeeze() assert x.ndim == 1 xu = np.arange(num)/(num - 1)*(mx - mn) + mn yu = scipy.interpolate.interp1d(x.squeeze(), y, axis=axis, bounds_error=False)(xu) return mathx.reshape_vec(xu, axis), yu
379071e0e0b718b4d4f8cc970a2b098cf3cab155
20,121
from typing import Dict def flatten_dict(d: Dict): """Recursively flatten dictionaries, ordered by keys in ascending order""" s = "" for k in sorted(d.keys()): if d[k] is not None: if isinstance(d[k], dict): s += f"{k}|{flatten_dict(d[k])}|" else: s += f"{k}|{d[k]}|" return s
26663b52ccda2a695aa2367cbaf324698a47d56a
20,123
def getPVvecs(fname): """ Generates an ensemble of day long PV activities, sampled 3 different days for each complete pv data set """ datmat = np.zeros((18,48)) df = dd.read_csv(fname) i = 0 for unique_value in df.Substation.unique(): ttemp, ptemp = PVgettimesandpower("2014-06", unique_value, fname) t, p = trimandshift(ttemp, ptemp) datmat[i,:] = np.array(p) i += 1 ttemp, ptemp = PVgettimesandpower("2014-07", unique_value, fname) t, p = trimandshift(ttemp, ptemp) datmat[i,:] = np.array(p) i += 1 ttemp, ptemp = PVgettimesandpower("2014-08", unique_value, fname) t, p = trimandshift(ttemp, ptemp) datmat[i,:] = np.array(p) i += 1 return datmat
322cf6d29d4104953678ec5e4dfbd5a82564ce1c
20,124
def vis9(n): # DONE """ O OO OOO OO OOO OOOO OOO OOOO OOOOO Number of Os: 6 9 12""" result = 'O' * (n - 1) + 'O\n' result += 'O' * (n - 1) + 'OO\n' result += 'O' * (n - 1) + 'OOO\n' return result
c06c9fdf5d71ef89ce83d5fc2136b9854f018988
20,125
def derivative_circ_dist(x, p): """ Derivative of circumferential distance and derivative function, w.r.t. p d/dp d(x, p) = d/dp min_{z in [-1, 0, 1]} (|z + p - x|) Args: x (float): first angle p (float): second angle Returns: float: d/dp d(x, p) """ # pylint: disable=chained-comparison,misplaced-comparison-constant t = p - x if t < -0.5 or (0 < t and t < 0.5): return -1 if t > 0.5 or (-0.5 < t and t < 0): return 1 return 0
36a4cc04cda32e8c6e5896d405f96068def8be41
20,126
def get_MB_compatible_list(OpClass, lhs, rhs): """ return a list of metablock instance implementing an operation of type OpClass and compatible with format descriptor @p lhs and @p rhs """ fct_map = { Addition: get_Addition_MB_compatible_list, Multiplication: get_Multiplication_MB_compatible_list } return fct_map[OpClass](lhs, rhs)
172ca13f218f52e5834592fd09abf9444369d60c
20,127
import torch import random def create_mock_target(number_of_nodes, number_of_classes): """ Creating a mock target vector. """ return torch.LongTensor([random.randint(0, number_of_classes-1) for node in range(number_of_nodes)])
1be4d86a0291d24f0be555d4eea7d29f0994db29
20,128
def is_iterable(obj): """ Return true if object has iterator but is not a string :param object obj: Any object :return: True if object is iterable but not a string. :rtype: bool """ return hasattr(obj, '__iter__') and not isinstance(obj, str)
c7a1353f7f62a567a65d0c4752976fefde6e1904
20,129
def get_operator_module(operator_string): """ Get module name """ # the module, for when the operator is not a local operator operator_path = ".".join(operator_string.split(".")[:-1]) assert len(operator_path) != 0, ( "Please specify a format like 'package.operator' to specify your operator. You passed in '%s'" % operator_string ) return operator_path
82b4ddc419b09b5874debbe64262b4a4f414cb8f
20,131
def is_fraction(obj): """Test whether the object is a valid fraction. """ return isinstance(obj, Fraction)
ab0a1b11274f837f479fb62648a144f0e689b499
20,132
def getExtrusion(matrix): """calculates DXF-Extrusion = Arbitrary Xaxis and Zaxis vectors """ AZaxis = matrix[2].copy().resize3D().normalize() # = ArbitraryZvector Extrusion = [AZaxis[0],AZaxis[1],AZaxis[2]] if AZaxis[2]==1.0: Extrusion = None AXaxis = matrix[0].copy().resize3D() # = ArbitraryXvector else: threshold = 1.0 / 64.0 if abs(AZaxis[0]) < threshold and abs(AZaxis[1]) < threshold: # AXaxis is the intersection WorldPlane and ExtrusionPlane AXaxis = M_CrossVecs(WORLDY,AZaxis) else: AXaxis = M_CrossVecs(WORLDZ,AZaxis) #print 'deb:\n' #------------- #print 'deb:getExtrusion() Extrusion=', Extrusion #--------- return Extrusion, AXaxis.normalize()
ec6133bddc9093310ffe1e807ae24882aa24edc3
20,133
def _build_class_include(env, class_name): """ If parentns::classname is included and fabric properties such as puppet_parentns__classname_prop = val1 are set, the class included in puppet will be something like class { 'parentns::classname': prop => 'val1', } """ include_def = "class { '%s': \n" % class_name property_prefix = _property_prefix(class_name) for name, value in env.iteritems(): if name.startswith(property_prefix): property_name = name[len(property_prefix):] if not property_name.startswith("_"): # else subclass property include_def += " %s => '%s',\n" % (property_name, value) include_def += "\n}" return include_def
f58633fefb3ca853ef292f554eea4f98126c3ecb
20,134
async def mention_html(user_id, name): """ The function is designed to output a link to a telegram. """ return f'<a href="tg://user?id={user_id}">{escape(name)}</a>'
eed9dd188f36e4d23bb16e274382372c6464f890
20,135
from plasma.flex.messaging.messages import small def blaze_loader(alias): """ Loader for BlazeDS framework compatibility classes, specifically implementing ISmallMessage. .. seealso:: `BlazeDS (external) <http://opensource.adobe.com/wiki/display/blazeds/BlazeDS>`_ :since: 0.1 """ if alias not in ['DSC', 'DSK', 'DSA']: return reload(small) return pyamf.get_class_alias(alias)
956acd6aa9c36c186081a43e271b6a3c61b7a53f
20,136
def get_user_pic(user_id, table): """[summary] Gets users profile picture Args: user_id ([int]): [User id] table ([string]): [Table target] Returns: [string]: [Filename] """ try: connection = database_cred() cursor = connection.cursor() cursor = connection.cursor(dictionary=True) if table == "admin": cursor.execute( 'SELECT admin_pic FROM admin WHERE admin_id=%s', (user_id,)) if table == "user": cursor.execute( 'SELECT user_pic FROM user WHERE user_id=%s', (user_id,)) records = cursor.fetchall() except Error as e: print("parameterized query failed {}".format(e)) finally: if connection.is_connected(): connection.close() cursor.close() return records
28ea65c793e88b967889fa39dc8588e4afd75e91
20,137
def convert_file_format(files,size): """ Takes filename queue and returns an example from it using the TF Reader structure """ filename_queue = tf.train.string_input_producer(files,shuffle=True) image_reader = tf.WholeFileReader() _,image_file = image_reader.read(filename_queue) image = tf.image.decode_jpeg(image_file) image = tf.image.resize_images(image, [size,size]) image.set_shape((size,size,3)) return image
0a889dbf8b851716f7a7788cee6cc1f7e7b4c0fc
20,138
def validate_access_rule(supported_access_types, supported_access_levels, access_rule, abort=False): """Validate an access rule. :param access_rule: Access rules to be validated. :param supported_access_types: List of access types that are regarded valid. :param supported_access_levels: List of access levels that are regarded valid. :param abort: a boolean value that indicates if an exception should be raised whether the rule is invalid. :return: Boolean. """ errmsg = _("Unsupported access rule of 'type' %(access_type)s, " "'level' %(access_level)s, 'to' %(access_to)s: " "%(field)s should be one of %(supported)s.") access_param = access_rule.to_dict() def validate(field, supported_tokens, excinfo): if access_rule['access_%s' % field] in supported_tokens: return True access_param['field'] = field access_param['supported'] = ', '.join( "'%s'" % x for x in supported_tokens) if abort: LOG.error(errmsg, access_param) raise excinfo['type']( **{excinfo['about']: excinfo['details'] % access_param}) else: LOG.warning(errmsg, access_param) return False valid = True valid &= validate( 'type', supported_access_types, {'type': exception.InvalidShareAccess, 'about': "reason", 'details': _( "%(access_type)s; only %(supported)s access type is allowed")}) valid &= validate( 'level', supported_access_levels, {'type': exception.InvalidShareAccessLevel, 'about': "level", 'details': "%(access_level)s"}) return valid
2ce7ba446ec583b5b46dbd6a8eceeafe6cc46a6e
20,139
def deduplicate(inp: SHAPE) -> SHAPE: """ Remove duplicates from any iterable while retaining the order of elements. :param inp: iterable to deduplicate :return: new, unique iterable of same type as input """ return type(inp)(dict.fromkeys(list(inp)))
d80ad3e00ce0bfa9a0625308267c5e25d8e3f3c9
20,141
def access_rules_synchronized(f): """Decorator for synchronizing share access rule modification methods.""" def wrapped_func(self, *args, **kwargs): # The first argument is always a share, which has an ID key = "share-access-%s" % args[0]['id'] @utils.synchronized(key) def source_func(self, *args, **kwargs): return f(self, *args, **kwargs) return source_func(self, *args, **kwargs) return wrapped_func
03fe6b1905d825de1f20ed2967eb003f96fb2cce
20,142
def import_python(path, package=None): """Get python module or object. Parameters ---------- path : str Fully-qualified python path, i.e. `package.module:object`. package : str or None Package name to use as an anchor if `path` is relative. """ parts = path.split(':') if len(parts) > 2: msg = f"Not a correct path ('{path}' has more than one object qualifier)" raise ValueError(msg) if len(parts) == 2: module_path, obj = parts else: module_path, obj = path, None module = import_module(module_path, package=package) if obj: return getattr(module, obj) return module
ff2755964c0c24c5366e3243a1b2997176b33a4c
20,143
from typing import Callable from typing import Awaitable async def feature_flags_scope_per_request( request: Request, call_next: Callable[[Request], Awaitable[Response]] ) -> Response: """Use new feature flags copy for each request.""" # Create new copy of the feature flags, as we'll be modifying them later # and do not want to change our system-wide feature flags. with ff_ctx as feature_flags: # FastAPI provides its own dependency injection mechanism, but just # in case you are using starlette directly or there any other pure # ASGI middlewares. request.scope["feature_flags"] = feature_flags return await call_next(request)
9169a2f66f7fa60066695cfef5a320eedd566145
20,144
def get_scenes_need_processing(config_file, sensors): """ A function which finds all the processing steps for all the scenes which haven't yet been undertaken. This is per scene processing rather than per step processing in the functions above. Steps include: * Download * ARD Production * Generating Tile Cache * Generating Quicklook images :param config_file: The EODataDown configuration file path. :param sensors: list of sensor string names to be processed. :returns: a list of lists where each scn has [config_file, scn_sensor, scn_id] """ sys_main_obj = eodatadown.eodatadownsystemmain.EODataDownSystemMain() sys_main_obj.parse_config(config_file) tasks = [] for sensor in sensors: sensor_obj = sys_main_obj.get_sensor_obj(sensor) scn_ids = [] if sensor_obj.calc_scn_usr_analysis(): scns = sensor_obj.get_scnlist_usr_analysis() for scn in scns: if scn not in scn_ids: tasks.append([config_file, sensor, scn]) scn_ids.append(scn) if sensor_obj.calc_scn_tilecache(): scns = sensor_obj.get_scnlist_quicklook() for scn in scns: if scn not in scn_ids: tasks.append([config_file, sensor, scn]) scn_ids.append(scn) if sensor_obj.calc_scn_quicklook(): scns = sensor_obj.get_scnlist_tilecache() for scn in scns: if scn not in scn_ids: tasks.append([config_file, sensor, scn]) scn_ids.append(scn) scns = sensor_obj.get_scnlist_con2ard() for scn in scns: if scn not in scn_ids: tasks.append([config_file, sensor, scn]) scn_ids.append(scn) scns = sensor_obj.get_scnlist_download() for scn in scns: if scn not in scn_ids: tasks.append([config_file, sensor, scn]) scn_ids.append(scn) return tasks
a600cd352980184ebe8382a5cabf9d8b09d9f688
20,146
def startingStateDistribution(env, N=100000): """ This function samples initial states for the environment and computes an empirical estimator for the starting distribution mu_0 """ rdInit = [] sample = {} # Computing the starting state distribution mu_0 = np.zeros((env.n_states,1)) for i in range(N): rdInit.append(env.reset()) for i in range(0, env.n_states): sample[i] = rdInit.count(i) mu_0[i] = sample[i]/N return mu_0
2685ebe6315a085ffdabbb82786499191c33d957
20,147
def get_changepoint_values_from_config( changepoints_dict, time_features_df, time_col=cst.TIME_COL): """Applies the changepoint method specified in `changepoints_dict` to return the changepoint values :param changepoints_dict: Optional[Dict[str, any]] Specifies the changepoint configuration. "method": str The method to locate changepoints. Valid options: "uniform". Places n_changepoints evenly spaced changepoints to allow growth to change. "custom". Places changepoints at the specified dates. Additional keys to provide parameters for each particular method are described below. "continuous_time_col": Optional[str] Column to apply `growth_func` to, to generate changepoint features Typically, this should match the growth term in the model "growth_func": Optional[func] Growth function (scalar -> scalar). Changepoint features are created by applying `growth_func` to "continuous_time_col" with offsets. If None, uses identity function to use `continuous_time_col` directly as growth term If changepoints_dict["method"] == "uniform", this other key is required: "n_changepoints": int number of changepoints to evenly space across training period If changepoints_dict["method"] == "custom", this other key is required: "dates": Iterable[Union[int, float, str, datetime]] Changepoint dates. Must be parsable by pd.to_datetime. Changepoints are set at the closest time on or after these dates in the dataset. :param time_features_df: pd.Dataframe training dataset. contains column "continuous_time_col" :param time_col: str The column name in `time_features_df` representing time for the time series data The time column can be anything that can be parsed by pandas DatetimeIndex Used only in the "custom" method. :return: np.array values of df[continuous_time_col] at the changepoints """ changepoint_values = None if changepoints_dict is not None: valid_changepoint_methods = ["uniform", "custom"] changepoint_method = changepoints_dict.get("method") continuous_time_col = changepoints_dict.get("continuous_time_col") if changepoint_method is None: raise Exception("changepoint method must be specified") if changepoint_method not in valid_changepoint_methods: raise NotImplementedError( f"changepoint method {changepoint_method} not recognized. " f"Must be one of {valid_changepoint_methods}") if changepoint_method == "uniform": if changepoints_dict["n_changepoints"] > 0: params = {"continuous_time_col": continuous_time_col} if continuous_time_col is not None else {} changepoint_values = get_evenly_spaced_changepoints_values( df=time_features_df, n_changepoints=changepoints_dict["n_changepoints"], **params) elif changepoint_method == "custom": params = {} if time_col is not None: params["time_col"] = time_col if continuous_time_col is not None: params["continuous_time_col"] = continuous_time_col changepoint_values = get_custom_changepoints_values( df=time_features_df, changepoint_dates=changepoints_dict["dates"], **params) return changepoint_values
0c38283e5744f180fbd326a549a4ee37b461c213
20,149
def jitChol(A, maxTries=10, warning=True): """Do a Cholesky decomposition with jitter. Description: U, jitter = jitChol(A, maxTries, warning) attempts a Cholesky decomposition on the given matrix, if matrix isn't positive definite the function adds 'jitter' and tries again. Thereafter the amount of jitter is multiplied by 10 each time it is added again. This is continued for a maximum of 10 times. The amount of jitter added is returned. Returns: U - the Cholesky decomposition for the matrix. jitter - the amount of jitter that was added to the matrix. Arguments: A - the matrix for which the Cholesky decomposition is required. maxTries - the maximum number of times that jitter is added before giving up (default 10). warning - whether to give a warning for adding jitter (default is True) See also CHOL, PDINV, LOGDET Copyright (c) 2005, 2006 Neil D. Lawrence """ jitter = 0 i = 0 while(True): try: # Try --- need to check A is positive definite if jitter == 0: jitter = abs(SP.trace(A))/A.shape[0]*1e-6 LC = linalg.cholesky(A, lower=True) return LC.T, 0.0 else: if warning: # pdb.set_trace() # plt.figure() # plt.imshow(A, interpolation="nearest") # plt.colorbar() # plt.show() logging.error("Adding jitter of %f in jitChol()." % jitter) LC = linalg.cholesky(A+jitter*SP.eye(A.shape[0]), lower=True) return LC.T, jitter except linalg.LinAlgError: # Seems to have been non-positive definite. if i<maxTries: jitter = jitter*10 else: raise linalg.LinAlgError, "Matrix non positive definite, jitter of " + str(jitter) + " added but failed after " + str(i) + " trials." i += 1 return LC
ac2cbc35a3a0c33208456765512893554d91f75c
20,150
import requests def stock_individual_info_em(symbol: str = "603777") -> pd.DataFrame: """ 东方财富-个股-股票信息 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :return: 股票信息 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() url = "http://push2.eastmoney.com/api/qt/stock/get" params = { 'ut': 'fa5fd1943c7b386f172d6893dbfba10b', 'fltt': '2', 'invt': '2', 'fields': 'f120,f121,f122,f174,f175,f59,f163,f43,f57,f58,f169,f170,f46,f44,f51,f168,f47,f164,f116,f60,f45,f52,f50,f48,f167,f117,f71,f161,f49,f530,f135,f136,f137,f138,f139,f141,f142,f144,f145,f147,f148,f140,f143,f146,f149,f55,f62,f162,f92,f173,f104,f105,f84,f85,f183,f184,f185,f186,f187,f188,f189,f190,f191,f192,f107,f111,f86,f177,f78,f110,f262,f263,f264,f267,f268,f255,f256,f257,f258,f127,f199,f128,f198,f259,f260,f261,f171,f277,f278,f279,f288,f152,f250,f251,f252,f253,f254,f269,f270,f271,f272,f273,f274,f275,f276,f265,f266,f289,f290,f286,f285,f292,f293,f294,f295', "secid": f"{code_id_dict[symbol]}.{symbol}", '_': '1640157544804', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.reset_index(inplace=True) del temp_df['rc'] del temp_df['rt'] del temp_df['svr'] del temp_df['lt'] del temp_df['full'] code_name_map = { 'f57': '股票代码', 'f58': '股票简称', 'f84': '总股本', 'f85': '流通股', 'f127': '行业', 'f116': '总市值', 'f117': '流通市值', 'f189': '上市时间', } temp_df['index'] = temp_df['index'].map(code_name_map) temp_df = temp_df[pd.notna(temp_df['index'])] if 'dlmkts' in temp_df.columns: del temp_df['dlmkts'] temp_df.columns = [ 'item', 'value', ] temp_df.reset_index(inplace=True, drop=True) return temp_df
6d04941cb1aeaed49450eff61e957aab26bbf21a
20,151
def InverseDynamicsTool_safeDownCast(obj): """ InverseDynamicsTool_safeDownCast(OpenSimObject obj) -> InverseDynamicsTool Parameters ---------- obj: OpenSim::Object * """ return _tools.InverseDynamicsTool_safeDownCast(obj)
3060244716c54e10953df5aa8db1c55076a040a2
20,152
def build_decoder(encoding_dim,sparse): """"build and return the decoder linked with the encoder""" input_img = Input(shape=(28*28,)) encoder = build_encoder(encoding_dim,sparse) input_encoded = encoder(input_img) decoded = Dense(64, activation='relu')(input_encoded) decoded = Dense(128, activation='relu')(decoded) decoded = Dense(28*28,activation='relu')(decoded) decoder = Model(input_img,decoded) return decoder
207535e38fd45e7ea6e0143c34607213747328ba
20,154
def find_usable_exits(room, stuff): """ Given a room, and the player's stuff, find a list of exits that they can use right now. That means the exits must not be hidden, and if they require a key, the player has it. RETURNS - a list of exits that are visible (not hidden) and don't require a key! """ usable = [] missing_key = [] for exit in room['exits']: if exit.get("hidden", False): continue if "required_key" in exit: if exit["required_key"] in stuff: usable.append(exit) continue else: missing_key.append(exit) usable.append(exit) continue continue usable.append(exit) return usable, missing_key
529bacbf33b5680774b291782fdcefe650cafeca
20,155
def get_normal_map(x, area_weighted=False): """ x: [bs, h, w, 3] (x,y,z) -> (nx,ny,nz) """ nn = 6 p11 = x p = tf.pad(x, tf.constant([[0,0], [1,1], [1,1], [0,0]])) p11 = p[:, 1:-1, 1:-1, :] p10 = p[:, 1:-1, 0:-2, :] p01 = p[:, 0:-2, 1:-1, :] p02 = p[:, 0:-2, 2:, :] p12 = p[:, 1:-1, 2:, :] p20 = p[:, 2:, 0:-2, :] p21 = p[:, 2:, 1:-1, :] pos = [p10, p01, p02, p12, p21, p20] for i in range(nn): pos[i] = tf.subtract(pos[i], p11) normals = [] for i in range(1, nn): normals.append(tf.cross(pos[i%nn], pos[(i-1+nn)%nn])) normal = tf.reduce_sum(tf.stack(normals), axis=0) if not area_weighted: normal = tf.nn.l2_normalize(normal, 3) normal = tf.where(tf.is_nan(normal), tf.zeros_like(normal), normal) return normal
1b087113d6bc68a24195459ece006c7a74848a63
20,156
def _ros_group_rank(df, dl_idx, censorship): """ Ranks each observation within the data groups. In this case, the groups are defined by the record's detection limit index and censorship status. Parameters ---------- df : pandas.DataFrame dl_idx : str Name of the column in the dataframe the index of the observations' corresponding detection limit in the `cohn` dataframe. censorship : str Name of the column in the dataframe that indicates that a observation is left-censored. (i.e., True -> censored, False -> uncensored) Returns ------- ranks : numpy.array Array of ranks for the dataset. """ # (editted for pandas 0.14 compatibility; see commit 63f162e # when `pipe` and `assign` are available) ranks = df.copy() ranks.loc[:, 'rank'] = 1 ranks = ( ranks.groupby(by=[dl_idx, censorship])['rank'] .transform(lambda g: g.cumsum()) ) return ranks
f4495eb57d158745603899086e59643edec1e489
20,157
def f_all(predicate, iterable): """Return whether predicate(i) is True for all i in iterable >>> is_odd = lambda num: (num % 2 == 1) >>> f_all(is_odd, []) True >>> f_all(is_odd, [1, 3, 5, 7, 9]) True >>> f_all(is_odd, [2, 1, 3, 5, 7, 9]) False """ return all(predicate(i) for i in iterable)
c0a0e52587a7afc9da143ac936aab87ad531b455
20,158
from typing import List from typing import Tuple from typing import Set from typing import Dict def _recursive_replace(data): """Searches data structure and replaces 'nan' and 'inf' with respective float values""" if isinstance(data, str): if data == "nan": return float("nan") if data == "inf": return float("inf") if isinstance(data, List): return [_recursive_replace(v) for v in data] if isinstance(data, Tuple): return tuple([_recursive_replace(v) for v in data]) if isinstance(data, Set): return set([_recursive_replace(v) for v in data]) if isinstance(data, Dict): return {k: _recursive_replace(v) for k, v in data.items()} return data
b5c21d806b462070b2d1eec7d91a5dc700f6b0ed
20,159
def trans_text_ch_to_vector(txt_file, word_num_map, txt_label=None): """ Trans chinese chars to vector :param txt_file: :param word_num_map: :param txt_label: :return: """ words_size = len(word_num_map) to_num = lambda word: word_num_map.get(word.encode('utf-8'), words_size) if txt_file != None: txt_label = get_ch_lable(txt_file) labels_vector = list(map(to_num, txt_label)) return labels_vector
83370ca18303e1286b099d646362db14cd4b5dbd
20,160
def adjust_bag(request, item_id): """ Adjust the quantity of a product to the specified amount""" quantity = int('0'+request.POST.get('quantity')) bag = request.session.get('bag', {}) if quantity > 0: bag[item_id] = quantity else: messages.error(request, 'Value must greather than or equal to 1.\ If you do not need this product, click on the Remove button.') request.session['bag'] = bag return redirect(reverse('view_bag'))
a2814adcffbc04ee02b18bd14fc7daf0dbe58677
20,161
def _condexpr_value(e): """Evaluate the value of the input expression. """ assert type(e) == tuple assert len(e) in [2, 3] if len(e) == 3: if e[0] in ARITH_SET: return _expr_value(e) left = _condexpr_value(e[1]) right = _condexpr_value(e[2]) if type(left) != type(right): # Boolean result expected return False elif e[0] == 'and': return left and right elif e[0] == 'or': return left or right elif e[0] == '=': return left == right elif e[0] == '!=': return left != right elif e[0] == '>': return left > right elif e[0] == '>=': return left >= right elif e[0] == '<': return left < right elif e[0] == '<=': return left <= right elif e[0] == 'not': return not _condexpr_value(e[1]) elif e[0] in ['string', 'number', 'boolean']: return e[1] elif e[0] == 'identifier': return get_config(e[1])['value'] raise Exception("Unexpected depend list: " + str(e))
3973a22b5c5553c2c1b70b94f97be4d54f224766
20,163
import socket def in6_isincluded(addr, prefix, plen): """ Returns True when 'addr' belongs to prefix/plen. False otherwise. """ temp = inet_pton(socket.AF_INET6, addr) pref = in6_cidr2mask(plen) zero = inet_pton(socket.AF_INET6, prefix) return zero == in6_and(temp, pref)
4003d9b61ddb8f37207a2d332a31e4ee3a97cad7
20,164
def vis_channel(model, layer, channel_n): """ This function creates a visualization for a single channel in a layer :param model: model we are visualizing :type model: lucid.modelzoo :param layer: the name of the layer we are visualizing :type layer: string :param channel_n: The channel number in the layer we are optimizing for :type channel_n: int :return: array of pixel values for the visualization """ print('Getting vis for ' + layer + ', channel ' + str(channel_n)) l_name = dla_lucid.LAYERS[layer][0] obj = objectives.channel(l_name, channel_n) imgs = render.render_vis(model, obj, dla_lucid.PARAM_1D, thresholds=dla_lucid.THRESH_1D, transforms=dla_lucid.TFORMS_1D, verbose=False) imgs_array = np.array(imgs) imgs_reshaped = imgs_array.reshape(400) return imgs_reshaped
b6f1b72be81fa317fc59b3582b9f43afb640a4d6
20,165
from typing import Tuple import time def processing(log: EventLog, causal: Tuple[str, str], follows: Tuple[str, str]): """ Applying the Alpha Miner with the new relations Parameters ------------- log Filtered log causal Pairs that have a causal relation (->) follows Pairs that have a follow relation (>) Returns ------------- net Petri net im Initial marking fm Final marking """ # create list of all events labels = set() start_activities = set() end_activities = set() for trace in log: start_activities.add(trace.__getitem__(0)) end_activities.add(trace.__getitem__(len(trace) - 1)) for events in trace: labels.add(events) labels = list(labels) pairs = [] for key, element in causal.items(): for item in element: if get_sharp_relation(follows, key, key): if get_sharp_relation(follows, item, item): pairs.append(({key}, {item})) # combining pairs for i in range(0, len(pairs)): t1 = pairs[i] for j in range(i, len(pairs)): t2 = pairs[j] if t1 != t2: if t1[0].issubset(t2[0]) or t1[1].issubset(t2[1]): if get_sharp_relations_for_sets(follows, t1[0], t2[0]) and get_sharp_relations_for_sets(follows, t1[1], t2[1]): new_alpha_pair = (t1[0] | t2[0], t1[1] | t2[1]) if new_alpha_pair not in pairs: pairs.append((t1[0] | t2[0], t1[1] | t2[1])) # maximize pairs cleaned_pairs = list(filter(lambda p: __pair_maximizer(pairs, p), pairs)) # create transitions net = PetriNet('alpha_plus_net_' + str(time.time())) label_transition_dict = {} for label in labels: if label != 'artificial_start' and label != 'artificial_end': label_transition_dict[label] = PetriNet.Transition(label, label) net.transitions.add(label_transition_dict[label]) else: label_transition_dict[label] = PetriNet.Transition(label, None) net.transitions.add(label_transition_dict[label]) # and source and sink src = add_source(net, start_activities, label_transition_dict) sink = add_sink(net, end_activities, label_transition_dict) # create places for pair in cleaned_pairs: place = PetriNet.Place(str(pair)) net.places.add(place) for in_arc in pair[0]: add_arc_from_to(label_transition_dict[in_arc], place, net) for out_arc in pair[1]: add_arc_from_to(place, label_transition_dict[out_arc], net) return net, Marking({src: 1}), Marking({sink: 1}), cleaned_pairs
5841c82462432edddddf1b0dfd965b1043bc7277
20,166
from typing import List import re def word_tokenize(string: str, language: str = "english") -> List[str]: """tokenizes a given string into a list of substrings. :param string: String to tokenize. :param language: Language. Either one of ``english'' or ``german''. """ if language not in ["english", "german"]: raise ValueError("language argument has to be either ``english'' or ``german''") # excessive whitespaces string = re.sub(r"\s+", " ", string) # some unicode characters string = string.replace("’", "'") string = string.replace("”", '"') string = string.replace("“", '"') # floating point (e.g., 1.3 => 1.3) string = re.sub(r"(\d+)\.(\d+)", r"\g<1>._\g<2>", string) # percentage (e.g., below.500 => below .500) string = re.sub(r"(\w+)\.(\d+)", r"\g<1> ._\g<2>", string) # end of quote string = string.replace(".``", ". ``") # number with apostrophe (e.g. '90) string = re.sub(r"\s'(\d+)", r"' \g<1>", string) # names with Initials (e.g. C. J. Miles) string = re.sub(r"(^|\s)(\w)\. (\w)\.", r"\g<1>\g<2>._ \g<3>._", string) # some dots string = string.replace("..", " ..") # names with apostrophe => expands temporarily string = re.sub(r"\w+'(?!d|s|ll|t|re|ve|\s)", r"\g<0>_", string) # win-loss scores (German notation seems to be XX:YY, but this is also the time format, # and the times are not tokenized in the original RotoWire. So we manually handle XX:YY # expression. string = re.sub(r"(\d+)-(\d+)", r"\g<1> - \g<2>", string) string = re.sub(r"(\d+)-of-(\d+)", r"\g<1> - of - \g<2>", string) # actual tokenization tokenized = nltk.word_tokenize(string, language=language) joined = " ".join(tokenized) # shrink expanded name-with-apostrophe expressions joined = joined.replace("'_", "'") # shrink expanded name-with-initial expressions joined = joined.replace("._", ".") tokenized = joined.split(" ") return tokenized
00cb30031fc5a9e7ddbfcffeae9fad031f463cb3
20,167
import torch def modify_scaffolds_with_coords(scaffolds, coords): """ Gets scaffolds and fills in the right data. Inputs: * scaffolds: dict. as returned by `build_scaffolds_from_scn_angles` * coords: (L, 14, 3). sidechainnet tensor. same device as scaffolds Outputs: corrected scaffolds """ # calculate distances and update: # N, CA, C scaffolds["bond_mask"][1:, 0] = torch.norm(coords[1:, 0] - coords[:-1, 2], dim=-1) # N scaffolds["bond_mask"][ :, 1] = torch.norm(coords[ :, 1] - coords[: , 0], dim=-1) # CA scaffolds["bond_mask"][ :, 2] = torch.norm(coords[ :, 2] - coords[: , 1], dim=-1) # C # O, CB, side chain selector = np.arange(len(coords)) for i in range(3, 14): # get indexes idx_a, idx_b, idx_c = scaffolds["point_ref_mask"][:, :, i-3] # (3, L, 11) -> 3 * (L, 11) # correct distances scaffolds["bond_mask"][:, i] = torch.norm(coords[:, i] - coords[selector, idx_c], dim=-1) # get angles scaffolds["angles_mask"][0, :, i] = get_angle(coords[selector, idx_b], coords[selector, idx_c], coords[:, i]) # handle C-beta, where the C requested is from the previous aa if i == 4: # for 1st residue, use position of the second residue's N first_next_n = coords[1, :1] # 1, 3 # the c requested is from the previous residue main_c_prev_idxs = coords[selector[:-1], idx_a[1:]]# (L-1), 3 # concat coords_a = torch.cat([first_next_n, main_c_prev_idxs]) else: coords_a = coords[selector, idx_a] # get dihedrals scaffolds["angles_mask"][1, :, i] = get_dihedral(coords_a, coords[selector, idx_b], coords[selector, idx_c], coords[:, i]) # correct angles and dihedrals for backbone scaffolds["angles_mask"][0, :-1, 0] = get_angle(coords[:-1, 1], coords[:-1, 2], coords[1: , 0]) # ca_c_n scaffolds["angles_mask"][0, 1:, 1] = get_angle(coords[:-1, 2], coords[1:, 0], coords[1: , 1]) # c_n_ca scaffolds["angles_mask"][0, :, 2] = get_angle(coords[:, 0], coords[ :, 1], coords[ : , 2]) # n_ca_c # N determined by previous psi = f(n, ca, c, n+1) scaffolds["angles_mask"][1, :-1, 0] = get_dihedral(coords[:-1, 0], coords[:-1, 1], coords[:-1, 2], coords[1:, 0]) # CA determined by omega = f(ca, c, n+1, ca+1) scaffolds["angles_mask"][1, 1:, 1] = get_dihedral(coords[:-1, 1], coords[:-1, 2], coords[1:, 0], coords[1:, 1]) # C determined by phi = f(c-1, n, ca, c) scaffolds["angles_mask"][1, 1:, 2] = get_dihedral(coords[:-1, 2], coords[1:, 0], coords[1:, 1], coords[1:, 2]) return scaffolds
6d0853c3749fbf251cb3147109dab8951603c99c
20,169
import pickle from .stem import _classification_textcleaning_stemmer def multinomial(**kwargs): """ Load multinomial toxicity model. Parameters ---------- validate: bool, optional (default=True) if True, malaya will check model availability and download if not available. Returns ------- BAYES : malaya._models._sklearn_model.MULTILABEL_BAYES class """ check_file( PATH_TOXIC['multinomial'], S3_PATH_TOXIC['multinomial'], **kwargs ) try: with open(PATH_TOXIC['multinomial']['model'], 'rb') as fopen: multinomial = pickle.load(fopen) with open(PATH_TOXIC['multinomial']['vector'], 'rb') as fopen: vectorize = pickle.load(fopen) except: raise Exception( "model corrupted due to some reasons, please run malaya.clear_cache('toxic/multinomial') and try again" ) return MULTILABEL_BAYES( models = multinomial, vectors = vectorize, cleaning = _classification_textcleaning_stemmer, )
78bb3ceffefd6b38c304758eda8c0bafe36462ab
20,170
import logging def create_bucket(bucket_name, region="us-west-2"): """Create an S3 bucket in a specified region :param bucket_name: Bucket to create :param region: String region to create bucket in, e.g., 'us-west-2' :return: True if bucket created, else False """ # Create bucket try: # get list of existing buckets s3_client = boto3.client('s3', region_name=region) list_buckets = s3_client.list_buckets() for bucket in list_buckets['Buckets']: if bucket["Name"] == bucket_name: print("------- Bucket already exists") return s3_client location = {'LocationConstraint': region} s3_client.create_bucket(Bucket=bucket_name, CreateBucketConfiguration=location) return s3_client except ClientError as e: logging.error(e) return
c2d655982563c233a027dc94f9b73e8899aeddb7
20,171
def create_client(): """Return a client socket that may be connected to a remote address.""" return _new_sock()
5d0515c731d4c087c7b118923aa579d4bcd1e881
20,172
import warnings import copy def derivative_surface(obj): """ Computes the hodograph (first derivative) surface of the input surface. This function constructs the hodograph (first derivative) surface from the input surface by computing the degrees, knot vectors and the control points of the derivative surface. The return value of this function is a tuple containing the following derivative surfaces in the given order: * U-derivative surface (derivative taken only on the u-direction) * V-derivative surface (derivative taken only on the v-direction) * UV-derivative surface (derivative taken on both the u- and the v-direction) :param obj: input surface :type obj: abstract.Surface :return: derivative surfaces w.r.t. u, v and both u-v :rtype: tuple """ if not isinstance(obj, abstract.Surface): raise TypeError("Input shape must be an instance of abstract.Surface class") if obj.rational: warnings.warn("Cannot compute hodograph surface for a rational surface") return obj # Find the control points of the derivative surface d = 2 # 0 <= k + l <= d, see pg. 114 of The NURBS Book, 2nd Ed. pkl = evaluators.SurfaceEvaluator2.derivatives_ctrlpts(r1=0, r2=obj.ctrlpts_size_u - 1, s1=0, s2=obj.ctrlpts_size_v - 1, degree_u=obj.degree_u, degree_v=obj.degree_v, ctrlpts_size_u=obj.ctrlpts_size_u, ctrlpts_size_v=obj.ctrlpts_size_v, knotvector_u=obj.knotvector_u, knotvector_v=obj.knotvector_v, ctrlpts=obj.ctrlpts2d, dimension=obj.dimension, deriv_order=d) ctrlpts2d_u = [] for i in range(0, len(pkl[1][0]) - 1): ctrlpts2d_u.append(pkl[1][0][i]) surf_u = copy.deepcopy(obj) surf_u.degree_u = obj.degree_u - 1 surf_u.ctrlpts2d = ctrlpts2d_u surf_u.knotvector_u = obj.knotvector_u[1:-1] surf_u.delta = obj.delta ctrlpts2d_v = [] for i in range(0, len(pkl[0][1])): ctrlpts2d_v.append(pkl[0][1][i][0:-1]) surf_v = copy.deepcopy(obj) surf_v.degree_v = obj.degree_v - 1 surf_v.ctrlpts2d = ctrlpts2d_v surf_v.knotvector_v = obj.knotvector_v[1:-1] surf_v.delta = obj.delta ctrlpts2d_uv = [] for i in range(0, len(pkl[1][1]) - 1): ctrlpts2d_uv.append(pkl[1][1][i][0:-1]) # Generate the derivative curve surf_uv = obj.__class__() surf_uv.degree_u = obj.degree_u - 1 surf_uv.degree_v = obj.degree_v - 1 surf_uv.ctrlpts2d = ctrlpts2d_uv surf_uv.knotvector_u = obj.knotvector_u[1:-1] surf_uv.knotvector_v = obj.knotvector_v[1:-1] surf_uv.delta = obj.delta return surf_u, surf_v, surf_uv
f9b846c0b2b17e315ae4b98138719361675df557
20,173
def configure(config): """ | [bing ] | example | purpose | | -------- | ------- | ------- | | api_key | VBsdaiY23sdcxuNG1gP+YBsCwJxzjfHgdsXJG5 | Bing Primary Account Key | """ chunk = '' if config.option('Configuring bing search module', False): config.interactive_add('bing', 'api_key', 'Bing Primary Account Key', '') return chunk
87ccd4694cfbf34d24e6e31f2b485aaa465ba68b
20,174
def CVRMSE(ip1,ip2): """ The normalized RMSE (= Root Mean Square Error) is defined as CVRMSE(X,Y) = sqrt[ sum_i(Yi-Xi)^2 / N ] / mean(Yi) ) """ stats = ip1.getStatistics() return RMSE(ip1,ip2) / stats.mean
0981637da92d2a60c6281f216587fa5bc798d554
20,175
def get_verified_aid_pairs(ibs): """ Example: >>> # DISABLE_DOCTEST >>> from wbia_cnn._plugin import * # NOQA >>> import wbia >>> ibs = wbia.opendb('NNP_Master3', allow_newdir=True) >>> verified_aid1_list, verified_aid2_list = get_verified_aid_pairs(ibs) """ # Grab marked hard cases am_rowids = ibs._get_all_annotmatch_rowids() remove_photobombs = True if remove_photobombs: flags = ibs.get_annotmatch_is_photobomb(am_rowids) am_rowids = ut.filterfalse_items(am_rowids, flags) verified_aid1_list = ibs.get_annotmatch_aid1(am_rowids) verified_aid2_list = ibs.get_annotmatch_aid2(am_rowids) return verified_aid1_list, verified_aid2_list
91eb788a6b1f781e5796b03f56292a807aaee60d
20,176
def audio_sort_key(ex): """Sort using duration time of the sound spectrogram.""" return ex.src.size(1)
ec940df6bf2b74962f221b84717f51beba5c4f5f
20,177
from pathlib import Path def _filename_to_title(filename, split_char="_"): """Convert a file path into a more readable title.""" filename = Path(filename).with_suffix("").name filename_parts = filename.split(split_char) try: # If first part of the filename is a number for ordering, remove it int(filename_parts[0]) if len(filename_parts) > 1: filename_parts = filename_parts[1:] except Exception: pass title = " ".join(ii.capitalize() for ii in filename_parts) return title
f62ae56901f0a58e53e84e63423bcb9f2ccf4c5a
20,178
def basis_function_contributions(universe, mo, mocoefs='coef', tol=0.01, ao=None, frame=0): """ Provided a universe with momatrix and basis_set_order attributes, return the major basis function contributions of a particular molecular orbital. .. code-block:: python # display the 16th orbital coefficients > abs(0.15) basis_function_contributions(uni, 15, tol=0.15) # 0-based indexing! Args: universe (class:`exatomic.core.universe.Universe`): a universe mo (int): molecular orbital index mocoefs (str): column of interest in universe.momatrix tol (float): minimum value of coefficient by which to filter frame (int): frame of the universe (default is zero) Returns: joined (pd.DataFrame): a join of momatrix and basis_set_order """ small = universe.momatrix.contributions(mo, tol=tol, mocoefs=mocoefs, frame=frame) chis = small['chi'].values coefs = small[mocoefs] coefs.index = chis joined = pd.concat([universe.basis_set_order.ix[chis], coefs], axis=1) if ao is None: return joined else: raise NotImplementedError("not clever enough for that.")
afe695d15d3aa43baae0ce7e0dcf2fb84f53c699
20,179
from re import S def bspline_basis(d, knots, n, x, close=True): """The `n`-th B-spline at `x` of degree `d` with knots. B-Splines are piecewise polynomials of degree `d` [1]_. They are defined on a set of knots, which is a sequence of integers or floats. The 0th degree splines have a value of one on a single interval: >>> from sympy import bspline_basis >>> from sympy.abc import x >>> d = 0 >>> knots = range(5) >>> bspline_basis(d, knots, 0, x) Piecewise((1, And(x <= 1, x >= 0)), (0, True)) For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines defined, that are indexed by ``n`` (starting at 0). Here is an example of a cubic B-spline: >>> bspline_basis(3, range(5), 0, x) Piecewise((x**3/6, And(x < 1, x >= 0)), (-x**3/2 + 2*x**2 - 2*x + 2/3, And(x < 2, x >= 1)), (x**3/2 - 4*x**2 + 10*x - 22/3, And(x < 3, x >= 2)), (-x**3/6 + 2*x**2 - 8*x + 32/3, And(x <= 4, x >= 3)), (0, True)) By repeating knot points, you can introduce discontinuities in the B-splines and their derivatives: >>> d = 1 >>> knots = [0,0,2,3,4] >>> bspline_basis(d, knots, 0, x) Piecewise((-x/2 + 1, And(x <= 2, x >= 0)), (0, True)) It is quite time consuming to construct and evaluate B-splines. If you need to evaluate a B-splines many times, it is best to lambdify them first: >>> from sympy import lambdify >>> d = 3 >>> knots = range(10) >>> b0 = bspline_basis(d, knots, 0, x) >>> f = lambdify(x, b0) >>> y = f(0.5) See Also ======== bsplines_basis_set References ========== .. [1] http://en.wikipedia.org/wiki/B-spline """ knots = [sympify(k) for k in knots] d = int(d) n = int(n) n_knots = len(knots) n_intervals = n_knots - 1 if n + d + 1 > n_intervals: raise ValueError('n + d + 1 must not exceed len(knots) - 1') if d == 0: result = Piecewise( (S.One, Interval(knots[n], knots[n + 1], False, not close).contains(x)), (0, True) ) elif d > 0: denom = knots[n + d + 1] - knots[n + 1] if denom != S.Zero: B = (knots[n + d + 1] - x)/denom b2 = bspline_basis(d - 1, knots, n + 1, x, close) else: b2 = B = S.Zero denom = knots[n + d] - knots[n] if denom != S.Zero: A = (x - knots[n])/denom b1 = bspline_basis( d - 1, knots, n, x, close and (B == S.Zero or b2 == S.Zero)) else: b1 = A = S.Zero result = _add_splines(A, b1, B, b2) else: raise ValueError('degree must be non-negative: %r' % n) return result
266a8ef3176e11cc598015ebb963c13ddcee9e31
20,180
def is_versioned(obj): """ Check if a given object is versioned by inspecting some of its attributes. """ # before any heuristic, newer versions of RGW will tell if an obj is # versioned so try that first if hasattr(obj, 'versioned'): return obj.versioned if not hasattr(obj, 'VersionedEpoch'): # overly paranoid here, an object that is not versioned should *never* # have a `VersionedEpoch` attribute if getattr(obj, 'version_id', None): if obj.version_id is None: return False return True # probably will never get here return False return True
7f5ad90ffce6a8efde50dba47cdc63673ec79f60
20,181
def preprocess_and_suggest_hyperparams( task, X, y, estimator_or_predictor, location=None, ): """Preprocess the data and suggest hyperparameters. Example: ```python hyperparams, estimator_class, X, y, feature_transformer, label_transformer = \ preprocess_and_suggest_hyperparams("classification", X_train, y_train, "xgb_limitdepth") model = estimator_class(**hyperparams) # estimator_class is XGBClassifier model.fit(X, y) X_test = feature_transformer.transform(X_test) y_pred = label_transformer.inverse_transform(pd.Series(model.predict(X_test).astype(int))) ``` Args: task: A string of the task type, e.g., 'classification', 'regression', 'ts_forecast', 'rank', 'seq-classification', 'seq-regression'. X: A dataframe of training data in shape n*m. For 'ts_forecast' task, the first column of X_train must be the timestamp column (datetime type). Other columns in the dataframe are assumed to be exogenous variables (categorical or numeric). y: A series of labels in shape n*1. estimator_or_predictor: A str of the learner name or a dict of the learned config predictor. "choose_xgb" means choosing between xgb_limitdepth and xgboost. If a dict, it contains: - "version": a str of the version number. - "preprocessing": a dictionary containing: * "center": a list of meta feature value offsets for normalization. * "scale": a list of meta feature scales to normalize each dimension. - "neighbors": a list of dictionaries. Each dictionary contains: * "features": a list of the normalized meta features for a neighbor. * "choice": a integer of the configuration id in the portfolio. - "portfolio": a list of dictionaries, each corresponding to a configuration: * "class": a str of the learner name. * "hyperparameters": a dict of the config. They key "FLAML_sample_size" will be ignored. location: (Optional) A str of the location containing mined portfolio file. Only valid when the portfolio is a str, by default the location is flaml/default. Returns: hyperparams: A dict of the hyperparameter configurations. estiamtor_class: A class of the underlying estimator, e.g., lightgbm.LGBMClassifier. X: the preprocessed X. y: the preprocessed y. feature_transformer: a data transformer that can be applied to X_test. label_transformer: a label transformer that can be applied to y_test. """ dt = DataTransformer() X, y = dt.fit_transform(X, y, task) if "choose_xgb" == estimator_or_predictor: # choose between xgb_limitdepth and xgboost estimator_or_predictor = suggest_learner( task, X, y, estimator_list=["xgb_limitdepth", "xgboost"], location=location, ) config = suggest_config(task, X, y, estimator_or_predictor, location=location, k=1)[ 0 ] estimator = config["class"] model_class = get_estimator_class(task, estimator) hyperparams = config["hyperparameters"] model = model_class(task=task, **hyperparams) if model.estimator_class is None: return hyperparams, model_class, X, y, None, None else: estimator_class = model.estimator_class X = model._preprocess(X) hyperparams = hyperparams and model.params class AutoMLTransformer: def transform(self, X): return model._preprocess(dt.transform(X)) transformer = AutoMLTransformer() return hyperparams, estimator_class, X, y, transformer, dt.label_transformer
cd388bea6c9bfbb5d38001c549f2fe92d16aff41
20,182
def passphrase_from_private_key(private_key): """Return passphrase from provided private key.""" return mnemonic.from_private_key(private_key)
aed1c465795d22fd80680c0484d377fa6cabf0c8
20,183
def merge_on_empty_fields(base, tomerge): """Utility to quickly fill empty or falsy field of $base with fields of $tomerge """ has_merged_anything = False for key in tomerge: if not base.get(key): base[key] = tomerge.get(key) has_merged_anything = True return has_merged_anything
f8cb14047d2e17e2155beb1ab86eab7cdf531af0
20,184
def clear_rows(grid, locked): """Deletes the row, if that row is filled.""" increment = 0 for i in range(len(grid) - 1, -1, -1): row = grid[i] if (0, 0, 0) not in row: increment += 1 index = i for j in range(len(row)): try: del locked[(j, i)] except: continue if increment > 0: for key in sorted(list(locked), key=lambda x: x[1])[::-1]: x, y = key if y < index: newKey = (x, y + increment) locked[newKey] = locked.pop(key) return increment * 1.5
5974a129ac0bb756ee1038f61c9eeaf625ccbb72
20,185
import shlex def call(cmd_args, suppress_output=False): """ Call an arbitary command and return the exit value, stdout, and stderr as a tuple Command can be passed in as either a string or iterable >>> result = call('hatchery', suppress_output=True) >>> result.exitval 0 >>> result = call(['hatchery', 'notreal']) >>> result.exitval 1 """ if not funcy.is_list(cmd_args) and not funcy.is_tuple(cmd_args): cmd_args = shlex.split(cmd_args) logger.info('executing `{}`'.format(' '.join(cmd_args))) call_request = CallRequest(cmd_args, suppress_output=suppress_output) call_result = call_request.run() if call_result.exitval: logger.error('`{}` returned error code {}'.format(' '.join(cmd_args), call_result.exitval)) return call_result
1556d52de9d620e74c8a4b946c3120cf3579dede
20,186
def provides(interface): """ A validator that raises a :exc:`TypeError` if the initializer is called with an object that does not provide the requested *interface* (checks are performed using ``interface.providedBy(value)`` (see `zope.interface <http://docs.zope.org/zope.interface/>`_). :param interface: The interface to check for. :type interface: zope.interface.Interface The :exc:`TypeError` is raised with a human readable error message, the attribute (of type :class:`attr.Attribute`), the expected interface, and the value it got. """ return _ProvidesValidator(interface)
9b6e29aa8c3e0a1757daa1c0f3eb455ec66fa594
20,187
def v_t(r): """ Mean thermal velocity """ return (8/np.pi)**0.5*c(r)
af475d1376a549abe501b7b47e5f9fa35d8258c1
20,188
from typing import Callable from typing import cast def _state_stateful_alarm_controller( select_state: Callable[[str], OverkizStateType] ) -> str: """Return the state of the device.""" if state := cast(str, select_state(OverkizState.CORE_ACTIVE_ZONES)): # The Stateful Alarm Controller has 3 zones with the following options: # (A, B, C, A,B, B,C, A,C, A,B,C). Since it is not possible to map this to AlarmControlPanel entity, # only the most important zones are mapped, other zones can only be disarmed. if state in MAP_CORE_ACTIVE_ZONES: return MAP_CORE_ACTIVE_ZONES[state] return STATE_ALARM_ARMED_CUSTOM_BYPASS return STATE_ALARM_DISARMED
3663d8dda26586dae416ce6d5dbe55fafdb821c8
20,189
def _connect_new_volume(module, array, answer=False): """Connect volume to host""" api_version = array._list_available_rest_versions() if AC_REQUIRED_API_VERSION in api_version and module.params['lun']: try: array.connect_host(module.params['host'], module.params['volume'], lun=module.params['lun']) answer = True except Exception: module.fail_json(msg='LUN ID {0} invalid. Check for duplicate LUN IDs.'.format(module.params['lun'])) else: array.connect_host(module.params['host'], module.params['volume']) answer = True return answer
f6b5dea4e78f832b536fdc269dfe1b9c040cb9b7
20,190
def is_mongo_configured(accessor): """ works out if mongodb is configured to run with trackerdash i.e. first time running """ return accessor.verify_essential_collections_present()
c0487f6d899e6cee4f6bbb31bffbd17890812c30
20,191
from cms.api import add_plugin def create_default_children_plugins(request, placeholder, lang, parent_plugin, children_conf): """ Create all default children plugins in the given ``placeholder``. If a child have children, this function recurse. Return all children and grandchildren (etc.) created """ children = list() grandchildren = list() for conf in children_conf: if not permissions.has_plugin_permission(request.user, conf['plugin_type'], "add"): continue plugin = add_plugin(placeholder, conf['plugin_type'], lang, **conf['values']) plugin.parent = parent_plugin plugin.save() if 'children' in conf: grandchildren+= create_default_children_plugins(request, placeholder, lang, plugin, conf['children']) plugin.notify_on_autoadd(request, conf) children.append(plugin) parent_plugin.notify_on_autoadd_children(request, conf, children) return children + grandchildren
121106100c50d7ebdace254b711e6d31611dbf3d
20,192
import sympy import math def _split_value_equally(delta, count): """Splits an integer or rational into roughly equal parts.""" numer = sympy.numer(delta) denom = sympy.denom(delta) return [int(math.floor((numer + i) / count)) / denom for i in range(count)]
e241444100b2e0f3c1a589d87c41aa8710fe5b8e
20,193
import ast def maybe_get_docstring(node: ast.AST): """Get docstring from a constant expression, or return None.""" if ( isinstance(node, ast.Expr) and isinstance(node.value, ast.Constant) and isinstance(node.value.value, str) ): return node.value.value elif ( isinstance(node, ast.Expr) and isinstance(node.value, ast.Str) ): return node.value.s
23171c739f3c9ae6d62ecf3307ac7c3409852d6b
20,194