content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def fslimage_to_qpdata(img, name=None, vol=None, region=None, roi=False): """ Convert fsl.data.Image to QpData """ if not name: name = img.name if vol is not None: data = img.data[..., vol] else: data = img.data if region is not None: data = (data == region).astype(np.int) return NumpyData(data, grid=DataGrid(img.shape[:3], img.voxToWorldMat), name=name, roi=roi)
1f383f17196a11f64ab6d95f5cf001dc41346372
15,696
import gc def xgb_cv( data_, test_, y_, max_depth,gamma, reg_lambda , reg_alpha,\ subsample, scale_pos_weight, min_child_weight, colsample_bytree, test_phase=False, stratify=False, ): """XGBoost cross validation. This function will instantiate a XGBoost classifier with parameters such as max_depth, subsample etc. Combined with data and targets this will in turn be used to perform cross validation. The result of cross validation is returned. Our goal is to find combinations of parameters that maximizes AUC. Returns: if test_phase (and new data for validators, just change the test_ param to the new data and make sure that the features are processed): sub_preds : models prediction to get the hold-out score else: validation AUC score Model Notes: XGBoost overfits in this dataset, params should be set accordingly. Parameter Notes gamma : Minimum loss reduction required to make a further partition on a leaf \ node of the tree. The larger gamma is, the more conservative the algorithm will be. min_child_weight : The larger min_child_weight is, the more conservative the algorithm will be. colsample_bytree : The subsample ratio of columns when constructing each tree. scale_pos_weight : A typical value to consider: sum(negative instances) / sum(positive instances) """ oof_preds = np.zeros(data_.shape[0]) sub_preds = np.zeros(test_.shape[0]) if test_phase: max_depth = int(np.round(max_depth)) feats = [f for f in data_.columns if f not in ['bookingid', 'label']] if stratify: folds_ = StratifiedKFold(n_splits=4, shuffle=True, random_state=610) splitted = folds_.split(data_, y_) else: splitted = folds_.split(data_) for n_fold, (trn_idx, val_idx) in enumerate(splitted): trn_x, trn_y = data_[feats].iloc[trn_idx], y_.iloc[trn_idx] val_x, val_y = data_[feats].iloc[val_idx], y_.iloc[val_idx] xg_train = xgb.DMatrix( trn_x.values, label=trn_y.values ) xg_valid = xgb.DMatrix( val_x.values, label=val_y.values ) watchlist = [(xg_train, 'train'),(xg_valid, 'eval')] num_round=10000 param = { 'gamma' : gamma, 'max_depth':max_depth, 'colsample_bytree':colsample_bytree, 'subsample':subsample, 'min_child_weight':min_child_weight, 'objective':'binary:logistic', 'random_state':1029, 'n_jobs':8, 'eval_metric':'auc', 'metric': 'auc', 'scale_pos_weight':scale_pos_weight, 'eta':0.05, 'silent':True } clf = xgb.train(param, xg_train, num_round, watchlist, verbose_eval=100, early_stopping_rounds = 100) oof_preds[val_idx] = clf.predict(xgb.DMatrix(data_[feats].iloc[val_idx].values), ntree_limit=clf.best_ntree_limit) if test_phase: sub_preds += clf.predict(xgb.DMatrix(test_[feats].values), ntree_limit=clf.best_ntree_limit) / folds_.n_splits print('Fold %2d AUC : %.6f' % (n_fold + 1, roc_auc_score(val_y, oof_preds[val_idx]))) del clf, trn_x, trn_y, val_x, val_y gc.collect() print('Full AUC score %.6f' % roc_auc_score(y_, oof_preds)) if test_phase: return sub_preds else: return roc_auc_score(y_, oof_preds)
2ad542c0a6f10835b352ea941a40dfb20b0f02f2
15,697
def _infer_elem_type(list_var): """ Returns types.tensor. None if failed to infer element type. Example: Given: main(%update: (2,fp32)) { block0() { %list: List[unknown] = tf_make_list(...) # unknown elem type %while_loop_0:0: (i32), %while_loop_0:1: List[(2,fp32)] = while_loop(loop_vars=(...)) while_loop_0_body(...) { %list_write_0: List[(2,fp32)] = list_write(index=..., ls=%list, value=%update) } -> (%add_0, %list_write_0) Result: main(%update: (2,fp32)) { block0() { %list: List[(2,fp32)] = tf_make_list(...) # Get the elem type from list_write %while_loop_0:0: (i32), %while_loop_0:1: List[(2,fp32)] = while_loop(loop_vars=(...)) while_loop_0_body(...) { %list_write_0: List[(2,fp32)] = list_write(index=..., ls=%list, value=%update) } -> (%add_0, %list_write_0) """ # Search for child op that have informative element types for o in list_var.child_ops: if o.op_type in ["list_write", "list_scatter"]: return o.outputs[0].elem_type if o.op_type == "while_loop": idx = list(o.loop_vars).index(list_var) block = o.blocks[0] # the corresponding Var in body block block_var = block.inputs[idx] elem_type = _infer_elem_type(block_var) if elem_type is not None: def _set_types_for_block_inputs(block): block_var = block.inputs[idx] new_block_var = ListVar(name=block_var.name, elem_type=elem_type, init_length=block_var.sym_type.T[1], dynamic_length=block_var.sym_type.T[2]) block._replace_var(block_var, new_block_var) _set_types_for_block_inputs(o.blocks[0]) # condition block _set_types_for_block_inputs(o.blocks[1]) # body block return elem_type # otherwise continue to other block_var (a list_var can be # passed into while_loop twice). return None
207d9ca4bd4f666d867d17756a7cd84110c47e76
15,698
def plot_hairy_mean_binstat_base( list_of_pred_true_weight_label_color, key, spec, is_rel = False, err = 'rms' ): """Plot binstats of means of relative energy resolution vs true energy.""" spec = spec.copy() if spec.title is None: spec.title = 'MEAN + E[ %s ]' % (err.upper()) else: spec.title = '(MEAN + E[ %s ]) ( %s )' % (err.upper(), spec.title) f, ax = plt.subplots() for pred,true,weights,label,color in list_of_pred_true_weight_label_color: x = true[key] y = (pred[key] - true[key]) if is_rel: y = y / x plot_hairy_mean_binstat_single( ax, x, y, weights, spec.bins_x, color, label, err ) ax.axhline(0, 0, 1, color = 'C2', linestyle = 'dashed') spec.decorate(ax) ax.legend() return f, ax
aebe7d7b4131618c4ca1ef4b78a79258b5f405b7
15,699
def parse_csv_file(file_contents): """ The helper function which converts the csv file into a dictionary where each item's key is the provided value 'id' and each item's value is another dictionary. """ list_of_contents = file_contents.split('\n') key, lines = (list_of_contents[0].split(','), list_of_contents[1:]) objects_dict = {} # Build a dictionary for index, line in enumerate(lines): if line.isspace() or line == u'': continue values = unicode_csv_reader([line]).next() line_dict = dict([(key[i], val) for i, val in enumerate(values)]) media_id = line_dict.get('id') or index objects_dict[media_id] = (line_dict) return objects_dict
32bec37d01a58ff374b28225e4619f3b9cb98480
15,700
def get_config(): """ Returns the current bot config. """ return BOT_CONFIG
bb9f3a8c5176d31bb32ea7ecd8e334dae2de1ebc
15,701
def SensorLocation_Meta(): """SensorLocation_Meta() -> MetaObject""" return _DataModel.SensorLocation_Meta()
f062916300ae9669fa8e22fd6449ec829371a7f4
15,702
from pathlib import Path def plot_sample_eval(images: list, sub_titles=None, main_title=None, vmin=None, vmax=None, label_str=None, pred_str=None, additional_info=None, show_plot=False, save_as=None): """ Plots one or multiple images in a row, including titles and additional information, if given. Recommended to use for visualising network input, prediction, label etc. of a data sample or time step Args: images (list[2D numpy.ndarray]): Images to display in the plot, e.g. sensor frames, flowfronts etc. sub_titles (list[str]): list of titles that will be displayed above the corresponding image. Length should match the number of images main_title (str): the main title displayed at the top vmin (list[float or int]): set the min value for each subplot manually (useful for time series plots). Length should match the number of images vmax (list[float or int]): set the max value for each subplot manually (useful for time series plots). Length should match the number of images label_str: Label as a string (useful if label is a class, not an image) pred_str: Prediction as a string (useful if prediction is a class, not an image) additional_info (list[str]): List of strings that will be displayed at the bottom of the plot. Each list entry is put in a new row. show_plot: if True, the plot will be shown in a window during runtime save_as (pathlib.Path or str): full path, including filename and type (e.g. '/cfs/example/output.png') """ assert bool(images) assert sub_titles is None or len(sub_titles) == len(images) assert vmin is None or len(vmin) == len(images) assert vmin is None or len(vmin) == len(images) plt.rcParams['figure.constrained_layout.use'] = True # set up figure size and basic structure ratio = images[0].shape[0] / images[0].shape[1] base_size = 4 text_space = 0.35 if main_title is not None else 0 text_space += 0.35 if label_str is not None else 0 text_space += 0.35 if pred_str is not None else 0 text_space += 0.35 * len(additional_info) if additional_info is not None else 0 figsize = (base_size * len(images), base_size * ratio + text_space) fig, axs = plt.subplots(1, len(images), figsize=figsize) if len(images) == 1: axs = [axs] if main_title is not None: fig.suptitle(main_title) for i, img in enumerate(images): axs[i].imshow(img, vmin=None if vmin is None else vmin[i], vmax=None if vmax is None else vmax[i]) axs[i].set(xticks=[], yticks=[], title=None if sub_titles is None else sub_titles[i]) text = "" color = 'black' if label_str is not None: text += f"{'Label: ':8}{label_str}" if label_str is not None and pred_str is not None: color = 'green' if label_str == pred_str else 'red' text += '\n' if pred_str is not None: text += f"{'Pred: ':8}{pred_str}" if additional_info is not None: for info in additional_info: text += f"\n{info}" plt.figtext(0.01, 0.01, text, c=color, ha='left') if show_plot: plt.show() if save_as is not None: Path(save_as).parent.mkdir(parents=True, exist_ok=True) plt.savefig(save_as) return fig
a71d2b84a0c5b236bcf17e82a44dcbaaecd98169
15,703
def predict(): """ Get data and do the same processing as when we prototyped, because we need to normalize based on training data summary stats :return: """ data = pd.read_csv('data.csv') df = data.drop("Unnamed: 32", axis=1) df = data.drop("id", axis=1) df.drop(columns=["Unnamed: 32"], inplace=True) X = df.drop(labels="diagnosis", axis=1) input_data = [] for col in cols: input_data.append(float(request.form[col])) df_norm = (input_data - X.mean()) / (X.max() - X.min()) pred = loaded_model.predict(df_norm) if pred == 1: return "Prediction : Benign Tumor Found" else: return "Prediction : Malignant Tumor Found"
7c0d21b38ce79cb9d2700b79ccb1c47bf27952de
15,704
def format_number(number, num_decimals=2): """ Format a number as a string including thousands separators. :param number: The number to format (a number like an :class:`int`, :class:`long` or :class:`float`). :param num_decimals: The number of decimals to render (2 by default). If no decimal places are required to represent the number they will be omitted regardless of this argument. :returns: The formatted number (a string). This function is intended to make it easier to recognize the order of size of the number being formatted. Here's an example: >>> from humanfriendly import format_number >>> print(format_number(6000000)) 6,000,000 > print(format_number(6000000000.42)) 6,000,000,000.42 > print(format_number(6000000000.42, num_decimals=0)) 6,000,000,000 """ integer_part, _, decimal_part = str(float(number)).partition('.') reversed_digits = ''.join(reversed(integer_part)) parts = [] while reversed_digits: parts.append(reversed_digits[:3]) reversed_digits = reversed_digits[3:] formatted_number = ''.join(reversed(','.join(parts))) decimals_to_add = decimal_part[:num_decimals].rstrip('0') if decimals_to_add: formatted_number += '.' + decimals_to_add return formatted_number
d898afd3254ee012c94653641ce177eb6e70a842
15,705
def query_rockets(): """ request all rockets """ query = ''' { rockets { id } } ''' return query
8bf6c912a21bc0250c9a74f7fc26347b50ba1fa8
15,706
def get_block_len(built_prims, prim_type): """ Calculates the maximum block length for a given primitive type """ retval = 0 for _, p in built_prims: if p.prim_type == prim_type: retval = max(retval, p.block_len) return retval
091d96a864abce6d782f3baf832ae508a018d083
15,708
import torch def _interpolate_gather(array, x): """ Like ``torch.gather(-1, array, x)`` but continuously indexes into the rightmost dim of an array, linearly interpolating between array values. """ with torch.no_grad(): x0 = x.floor().clamp(min=0, max=array.size(-1) - 2) x1 = x0 + 1 f0 = _gather(array, -1, x0.long()) f1 = _gather(array, -1, x1.long()) return f0 * (x1 - x) + f1 * (x - x0)
47025fbe25f2d1f5df9ee1423d63d5022b8d280d
15,709
def modify_column_cell_content(content, value_to_colors): """ Function to include colors in the cells containing values. Also removes the index that was used for bookkeeping. """ idx, value = content if type(value) == int or type(value) == float: color = value_to_colors[content] return ' '.join(['\cellcolor{{{}}}'.format(color), str(value)]) else: return value
efbac52eb49efa2054b7b346def96b8e7608bae7
15,710
def ReversePolishSolver(expression): """ Solves a given problem in reverse polish notation :param expression - tuple of strings """ # Create empty stack rp_calculator = Stack() for c in expression: # Check if next part of expression is an operator or a number operator = {'+', '-', '*', '/'} if c in operator: if rp_calculator.count < 2: print('Error: Not enough operands') else: # Pop two values right_operand = rp_calculator.pop() left_operand = rp_calculator.pop() # Evaluate and push result back to stack if c == '+': rp_calculator.push(left_operand + right_operand) elif c == '-': rp_calculator.push(left_operand - right_operand) elif c == '*': rp_calculator.push(left_operand * right_operand) elif c == '/': rp_calculator.push(left_operand / right_operand) elif c.isnumeric(): # Operand: add to stack rp_calculator.push(int(c)) else: print('Error: invalid character') if rp_calculator.count > 1: print('Error: too many operands') return rp_calculator.pop()
13f916be6a64f15f2d96642e178ef1842df77d24
15,711
import curses def _make_selection(stdscr, classes, message='(select one)'): """ This function was originally branched from https://stackoverflow.com/a/45577262/5009004 :return: option, classes index :rtype: (str, int) """ attributes = {} curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_BLACK) attributes['normal'] = curses.color_pair(1) curses.init_pair(2, curses.COLOR_BLACK, curses.COLOR_WHITE) attributes['highlighted'] = curses.color_pair(2) c = 0 # last character read option = 0 # the current option that is marked while c != 10: # Enter in ascii stdscr.erase() stdscr.addstr(f"{message}\n", curses.A_UNDERLINE) for i in range(len(classes)): if i == option: attr = attributes['highlighted'] else: attr = attributes['normal'] try: stdscr.addstr(f"{i + 1}. ") stdscr.addstr(classes[i] + '\n', attr) except curses.error as e: print(f"Curses error {classes[i]} {attr}") print(e) return None, None c = stdscr.getch() if c == curses.KEY_UP and option > 0: option -= 1 elif c == curses.KEY_DOWN and option < len(classes) - 1: option += 1 # stdscr.addstr("You chose {0}".format(classes[option])) # stdscr.getch() return classes[option], option
7b2d22e70c84138d4bcfae1d1bc5d6a11d4ce806
15,712
def _check_keys(keys, spec): """Check a list of ``keys`` equals ``spec``. Sorts both keys and spec before checking equality. Arguments: keys (``list``): The list of keys to compare to ``spec`` spec (``list``): The list of keys to compare to ``keys`` Returns: ``bool`` Raises: ``exceptions.InvalidListError``: Raised if ``keys`` is not equal to ``spec``. """ if not sorted(keys) == sorted(spec): raise exceptions.InvalidListError('{} does not equal {}'.format( keys, spec )) return True
83d7662b2e28bb4a5ad959ea04d0ede5ac15458b
15,713
def hangToJamo(hangul: str): """한글을 자소 단위(초, 중, 종성)로 분리하는 모듈입니다. @status `Accepted` \\ @params `"안녕하세요"` \\ @returns `"ㅇㅏㄴㄴㅕㅇㅎㅏ_ㅅㅔ_ㅇㅛ_"` """ result = [] for char in hangul: char_code = ord(char) if not 0xAC00 <= char_code <= 0xD7A3: result.append(char) continue initial_idx = int((((char_code - 0xAC00) / 28) / 21) % 19) midial_idx = int(((char_code - 0xAC00) / 28) % 21) final_idx = int((char_code - 0xAC00) % 28) initial = chosung[initial_idx] midial = jungsung[midial_idx] final = jongsung[final_idx] result.append(initial) result.append(midial) result.append(final) return ''.join(result)
680ff6f873eff03df36a619e221f62c38b69daec
15,715
import json def get_config(config_path): """ Open a Tiler config and return it as a dictonary """ with open(config_path) as config_json: config_dict = json.load(config_json) return config_dict
72a2133b44ffc553ad72d6c9515f1f218de6a08c
15,716
from typing import Iterable from re import T from typing import Tuple import itertools def groupby_index(iter: Iterable[T],n:int) -> Iterable[Iterable[T]]: """group list by index Args: iter (Iterable[T]): iterator to group by index n (int): The size of groups Returns: Iterable[Iterable[T]]: iterable object to group by index >>> [*map(lambda x:[*x],groupby_index([1,2,3,4],2))] [[1, 2], [3, 4]] """ def keyfunc(x: Tuple[int,T]) -> int: k, _ = x return (k // n) def mapper(x: Tuple[int, Tuple[int, T]]): _, v = x return map(lambda y: y[1],v) g = itertools.groupby(enumerate(iter), keyfunc) return map(mapper,g)
20172b8d52247228253790150225177a2d65caa3
15,717
def _build_message_classes(message_name): """ Create a new subclass instance of DIMSEMessage for the given DIMSE `message_name`. Parameters ---------- message_name : str The name/type of message class to construct, one of the following: * C-ECHO-RQ * C-ECHO-RSP * C-STORE-RQ * C-STORE-RSP * C-FIND-RQ * C-FIND-RSP * C-GET-RQ * C-GET-RSP * C-MOVE-RQ * C-MOVE-RSP * C-CANCEL-RQ * N-EVENT-REPORT-RQ * N-EVENT-REPORT-RSP * N-GET-RQ * N-GET-RSP * N-SET-RQ * N-SET-RSP * N-ACTION-RQ * N-ACTION-RSP * N-CREATE-RQ * N-CREATE-RSP * N-DELETE-RQ * N-DELETE-RSP """ def __init__(self): DIMSEMessage.__init__(self) # Create new subclass of DIMSE Message using the supplied name # but replace hyphens with underscores cls = type(message_name.replace('-', '_'), (DIMSEMessage,), {"__init__": __init__}) # Create a new Dataset object for the command_set attributes d = Dataset() for elem_tag in command_set_elem[message_name]: tag = Tag(elem_tag) vr = dcm_dict[elem_tag][0] # If the required command set elements are expanded this will need # to be checked to ensure it functions OK try: d.add_new(tag, vr, None) except: d.add_new(tag, vr, '') cls.command_set = d globals()[cls.__name__] = cls return cls
bee717a712acb3463811a64ca2e960823bb60cc5
15,718
def valid_string(s, min_len=None, max_len=None, allow_blank=False, auto_trim=True, pattern=None): """ @param s str/unicode 要校验的字符串 @param min_len None/int @param max_len None/int @param allow_blank boolean @param auto_trim boolean @:param pattern re.pattern @return boolean is_ok @return string/int value 若是ok,返回int值,否则返回错误信息 """ if s is None: return False, u'不能为None' if not isinstance(s, basestring): return False, u"参数类型需要是字符串" if auto_trim: s = s.strip() str_len = len(s) if not allow_blank and str_len < 1: return False, u"参数不允许为空" if max_len is not None and str_len > max_len: return False, u"参数长度需小于%d" % max_len if min_len is not None and str_len < min_len: return False, u"参数长度需大于 %d" % min_len if pattern is not None and s and not _match_pattern(pattern, s): return False, u'参数包含的字符: %s' % pattern return True, s
07bb43fd9fc3581330377e16b7e876d5ee051543
15,719
def update_visitor(visitor_key, session_key=None): """ update the visitor using the visitor key """ visitor = get_visitor(visitor_key) if visitor: visitor.mark_visit() if session_key: visitor.last_session_key = session_key visitor.save() return visitor
cc73997ff0fdb3b591f4f55f8a00b6d0ab02a8ea
15,720
def PNewUVTable (inUV, access, tabType, tabVer, err): """ Obsolete use PGetTable """ if ('myClass' in inUV.__dict__) and (inUV.myClass=='AIPSUVData'): raise TypeError("Function unavailable for "+inUV.myClass) return PGetTable (inUV, access, tabType, tabVer, err)
a7f9c156a9787839a55de10bf524f12a8086e1b0
15,721
import binascii def fmt_hex(bytes): """Format the bytes as a hex string, return upper-case version. """ # This is a separate function so as to not make the mistake of # using the '%X' format string with an ints, which will not # guarantee an even-length string. # # binascii works on all versions of Python, the hex encoding does not. hex = binascii.hexlify(bytes) hex = hex.decode() # Returns bytes, which makes no sense to me return hex.upper()
d25379ec333a653549c329932e304e61c57f173d
15,722
import requests def getTracksAudioFeatures(access_token, id_string): """ getTracksAudioFeatures() retrieves the track list audio features, this includes danceability, energy, loudness, etc.. """ # URL to pass a list of tracks to get their audio features audio_features_url = f"/audio-features" # Header parameter to allow the application to make requests to the Spotify Web API header = { "Authorization" : "Bearer " + access_token, } # Query parameters: # ids: string of song ids separated by a comma param = { "ids" : id_string, } # GET request to recieve track audio information response = requests.get(BASE_URL + audio_features_url, headers=header, params=param) return response
c0f627bf804065826e2e3e47edaba3077dbfad8f
15,724
def tan(x): """Element-wise `tangent`.""" return sin(x) / cos(x)
4854c102c02c0cc32af51eb5f5b47ab39f66f17e
15,726
def scalingImage(img, minVal, maxVal): """ Scale image given a range. Parameters: img, image to be scaled; minVal, lower value for range; maxVal, upper value for range. Returns: imgScaled, image scaled. """ imax = np.max(img) imin = np.min(img) std = (img - imin) / (imax - imin) imgScaled = std * (maxVal - minVal) + minVal return imgScaled
7e4edb22f464afdf5dbc12f2dd9ab99533a68d54
15,727
def forcestr(name): """ returns `name` as string, even if it wasn't before """ return name if isinstance(name, bytes) else name.encode(RAW_ENCODING, ENCODING_ERROR_HANDLING)
8b2dff5762ebab584b1e578f640d56d0c3af3e1a
15,728
def IsGitSVNDirty(directory): """ Checks whether our git-svn tree contains clean trunk or some branch. Errors are swallowed. """ # For git branches the last commit message is either # some local commit or a merge. return LookupGitSVNRevision(directory, 1) is None
903e3827fc3569a9ac67038a9112afe6e2db9842
15,729
def create_pyfunc_dataset(batch_size=32, repeat_size=1, num_parallel_workers=1, num_samples=None): """ Create Cifar10 dataset pipline with Map ops containing only Python functions and Python Multiprocessing enabled """ # Define dataset cifar10_ds = ds.Cifar10Dataset(DATA_DIR, num_samples=num_samples) cifar10_ds = cifar10_ds.map(operations=[py_vision.ToType(np.int32)], input_columns="label", num_parallel_workers=num_parallel_workers, python_multiprocessing=True) # Setup transforms list which include Python ops / Pyfuncs transforms_list = [ py_vision.ToPIL(), py_vision.RandomGrayscale(prob=0.2), np.array] # need to convert PIL image to a NumPy array to pass it to C++ operation compose_op = py_transforms.Compose(transforms_list) cifar10_ds = cifar10_ds.map(operations=compose_op, input_columns="image", num_parallel_workers=num_parallel_workers, python_multiprocessing=True) # Apply Dataset Ops buffer_size = 10000 cifar10_ds = cifar10_ds.shuffle(buffer_size=buffer_size) cifar10_ds = cifar10_ds.batch(batch_size, drop_remainder=True) cifar10_ds = cifar10_ds.repeat(repeat_size) return cifar10_ds
c03b730e58abe09560d073b2abe5ee43e782b5f5
15,731
from typing import Sequence from typing import Union from typing import Tuple from typing import List from typing import Type def _infer_structured_outs( op_config: LinalgStructuredOpConfig, in_arg_defs: Sequence[OperandDefConfig], ins: Sequence[Value], out_arg_defs: Sequence[OperandDefConfig], outs: Union[Sequence[Value], OpResultList]) -> Tuple[ValueList, List[Type]]: """Infers implicit outs and output types. Respects existing contents of outs if not empty. Returns: normalized outs, output types """ # If outs were explicitly provided, we accept them verbatim. if outs: return outs, [out.type for out in outs] raise NotImplementedError(f"Output tensor inference not yet supported for " "structured ops")
00efb063451c1a6b6d9f451043f162bb0ca91efc
15,732
import functools def event_source(method: t.Callable, name: t.Optional[str] = None): """A decorator which makes the function act as a source of before and after call events. You can later subscribe to these event with :py:func:`before` and :py:func`after` decorators. :param method: Target class method :param: Name of for the join point. If not given use the function name. """ # We must use function name instead of function pointer for the registry, because function object changes with unbound vs. bound Python class methods if not name: name = method.__name__ @functools.wraps(method) def _inner(*args, **kwargs): _self = args[0] fire_advisor_event(_self, name, AdvisorRole.before) retval = method(*args, **kwargs) fire_advisor_event(_self, name, AdvisorRole.after) return retval assert name not in _event_source_hooks, "There already exist event_source with same name" _event_source_hooks.append(name) method._event_source_name = name return _inner
136e25826d508259c95d2b6967b8c5f43a17e2e8
15,733
def lst_blocks(uvp, blocks=2, lst_range=(0., 2.*np.pi)): """ Split a UVPSpec object into multiple objects, each containing spectra within different contiguous LST ranges. There is no guarantee that each block will contain the same number of spectra or samples. N.B. This function uses the `lst_avg_array` property of an input UVPSpec object to split the LSTs (and not the LSTs of the individual visibilities that went into creating each delay spectrum). Parameters ---------- uvp : UVPSpec Object containing delay spectra. blocks : int, optional How many blocks to return. Default: 2. lst_range : tuple, optional Tuple containing the minimum and maximum LST to retain. This is the range that will be split up into blocks. Default: (0., 2*pi) Returns ------- uvp_list : list of UVPSpec List of UVPSpec objects, one for each LST range. Empty blocks will appear as None in the list. lst_bins : array_like Array of LST bin edges. This has dimension (blocks+1,). """ # Check validity of inputs if not isinstance(uvp, hp.UVPSpec): raise TypeError("uvp must be a single UVPSpec object.") if not (lst_range[0] >= 0. and lst_range[1] <= 2.*np.pi): raise ValueError("lst_range must be in the interval (0, 2*pi)") if not isinstance(blocks, (int, np.int, np.integer)): raise TypeError("'blocks' must be an integer") if not blocks > 0: raise ValueError("Must have blocks >= 1") # Get LSTs lsts = np.unique(uvp.lst_avg_array) # Define bin edges lst_bins = np.linspace(lst_range[0], lst_range[1], blocks+1) # Loop over bins and select() the LST ranges required uvp_list = [] for i in range(lst_bins.size - 1): idxs = np.where( np.logical_and(lsts >= lst_bins[i], lsts < lst_bins[i+1]) )[0] _uvp = None if idxs.size > 0: # Select LSTs in this range _uvp = uvp.select(lsts=lsts[idxs], inplace=False) uvp_list.append(_uvp) return uvp_list, lst_bins
4c2882f7d513dbb920c33aa6e829852ee22e74fb
15,734
def is_completed(book): """Determine if the book is completed. Args: book: Row instance representing a book. """ return True if book.status == BOOK_STATUS_ACTIVE \ and not book.complete_in_progress \ and book.release_date \ else False
002d3d5829218dc02a6e6bdc39d67bc9bdd6ca15
15,735
def compute_encryption_key_AESV3(password : 'str', encryption_dict : 'dict'): """ Derives the key to be used with encryption/decryption algorithms from a user-defined password. Parameters ---------- password : bytes Bytes representation of the password string. encryption_dict : dict The dictionary containing all the information about the encryption procedure. Returns ------- A bytes sequence representing the encryption key. """ U = encryption_dict["U"] U = U.value if isinstance(U, PDFLiteralString) else unhexlify(U.value) O = encryption_dict["O"] O = O.value if isinstance(O, PDFLiteralString) else unhexlify(O.value) prepped = sals_stringprep(password) truncated = prepped.encode("utf8")[:127] digest = sha256(truncated + O[32:32+8] + U).digest() if digest == O[:32]: intermediate = sha256(truncated + O[-8:] + U).digest() OE = encryption_dict["OE"] OE = OE.value if isinstance(OE, PDFLiteralString) else unhexlify(OE.value) file_encryption_key = cbc_decrypt(OE, intermediate, b'\x00'*16, padding = False) else: digest = sha256(truncated + U[32:32+8]).digest() if digest == U[:32]: intermediate = sha256(truncated + U[-8:]).digest() UE = encryption_dict["UE"] UE = UE.value if isinstance(UE, PDFLiteralString) else unhexlify(UE.value) file_encryption_key = cbc_decrypt(UE, intermediate, b'\x00'*16, padding = False) else: raise PDFWrongPasswordError() return file_encryption_key
c6d3ec657e43187f582b414824082f5483145f94
15,736
def list_group(group_name, recursive=True): """Returns all members, all globs and all nested groups in a group. The returned lists are unordered. Returns: GroupListing object. """ return get_request_cache().auth_db.list_group(group_name, recursive)
ebd0ddfc7494d2af18057b2adde51cdb0e0b3a76
15,737
def pi(): """Compute Pi to the current precision. >>> print(pi()) 3.141592653589793238462643383 """ getcontext().prec += 2 # extra digits for intermediate steps three = Decimal(3) # substitute "three=3.0" for regular floats lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24 while s != lasts: lasts = s n, na = n + na, na + 8 d, da = d + da, da + 32 t = (t * n) / d s += t getcontext().prec -= 2 return +s # unary plus applies the new precision
e9907ef4e437ddbeae34d869d48328ee32bd8d5c
15,738
def load_cifar_data(limit=None) -> np.ndarray: """ :param limit: :return: """ # cifar10 data (integrated in TensorFlow, downloaded on first use) cifar10_data = tf.keras.datasets.cifar10 # split into training and test data train_data, test_data = cifar10_data.load_data() # split dta into image and label (not yet desired format c.f. PreProc) x_train, label_train = train_data x_test, label_test = test_data if limit is not None: # optional limit to develop/test faster x_train = x_train[:limit, :, :, :] label_train = label_train[:limit] x_test = x_test[:limit, :, :, :] label_test = label_test[:limit] # provide some basic information about data print('Number of images in training set', len(x_train)) print('Number of images in testing set', len(x_test)) print('Input image size', x_train.shape[1], 'x', x_train.shape[2], 'in', x_train.shape[-1], 'channels') return x_train, label_train, x_test, label_test
48bbdc60d614b00fdddd7492f37c5ebb62d21caf
15,739
def set_goal_orientation(delta, current_orientation, orientation_limit=None, set_ori=None): """ Calculates and returns the desired goal orientation, clipping the result accordingly to @orientation_limits. @delta and @current_orientation must be specified if a relative goal is requested, else @set_ori must be specified to define a global orientation position """ # directly set orientation if set_ori is not None: goal_orientation = set_ori # otherwise use delta to set goal orientation else: rotation_mat_error = trans.euler2mat(-delta) goal_orientation = np.dot(rotation_mat_error.T, current_orientation) #check for orientation limits if np.array(orientation_limit).any(): if orientation_limit.shape != (2,3): raise ValueError("Orientation limit should be shaped (2,3) " "but is instead: {}".format(orientation_limit.shape)) # Convert to euler angles for clipping euler = trans.mat2euler(goal_orientation) # Clip euler angles according to specified limits limited = False for idx in range(3): if orientation_limit[0][idx] < orientation_limit[1][idx]: # Normal angle sector meaning if orientation_limit[0][idx] < euler[idx] < orientation_limit[1][idx]: continue else: limited = True dist_to_lower = euler[idx] - orientation_limit[0][idx] if dist_to_lower > np.pi: dist_to_lower -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_lower += 2 * np.pi dist_to_higher = euler[idx] - orientation_limit[1][idx] if dist_to_lower > np.pi: dist_to_higher -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_higher += 2 * np.pi if dist_to_lower < dist_to_higher: euler[idx] = orientation_limit[0][idx] else: euler[idx] = orientation_limit[1][idx] else: # Inverted angle sector meaning if (orientation_limit[0][idx] < euler[idx] or euler[idx] < orientation_limit[1][idx]): continue else: limited = True dist_to_lower = euler[idx] - orientation_limit[0][idx] if dist_to_lower > np.pi: dist_to_lower -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_lower += 2 * np.pi dist_to_higher = euler[idx] - orientation_limit[1][idx] if dist_to_lower > np.pi: dist_to_higher -= 2 * np.pi elif dist_to_lower < -np.pi: dist_to_higher += 2 * np.pi if dist_to_lower < dist_to_higher: euler[idx] = orientation_limit[0][idx] else: euler[idx] = orientation_limit[1][idx] if limited: goal_orientation = trans.euler2mat(np.array([euler[1], euler[0], euler[2]])) return goal_orientation
48475c0428f8fa4c179ece5c3d13f5db701256e8
15,740
def get_fixed_income_index(): """获取固定收益及中债总财富指数对比走势""" return get_stg_index('fixed_income', '037.CS')
b04c8a84e0f65c7a88e5e48f2460cd70e57fd394
15,741
def get_jobid(db): """ Ask MongoDB for the a valid jobid. All processing jobs should have a call to this function at the beginning of the job script. It simply queries MongoDB for the largest current value of the key "jobid" in the history collection. If the history collection is empty it returns 1 under a bias that a jobid of 0 is illogical. :param db: database handle :type db: top level database handle returned by a call to MongoClient.database """ hiscol=db.history hist_size=hiscol.find().count() if(hist_size<=0): return 1 else: maxcur=hiscol.find().sort([('jobid',pymongo.DESCENDING)]).limit(1) maxcur.rewind() # may not be necessary but near zero cost maxdoc=maxcur[0] return maxdoc['jobid']+1
c21976961c8465b387cdc0d8298a7887563d8233
15,742
def isA(token, tt=None, tv=None): """ function to check if a token meets certain criteria """ # Row and column info may be useful? for error messages try: tokTT, tokTV, _row, _col = token except: return False if tt is None and tv is None: return True elif tv is None: return tt == tokTT elif tt is None: return tv == tokTV else: return tv == tokTV and tt == tokTT
d16eb9c963addcdc5eb416dc627c18ee98ddd28c
15,744
from typing import Tuple from typing import Dict def authenticate( *, token: str, key: str, ) -> Tuple[bool, Dict]: """Authenticate user by token""" try: token_header = jwt.get_unverified_header(token) decoded_token = jwt.decode(token, key, algorithms=token_header.get("alg")) except JWTError: return False, {} else: return True, decoded_token
1bb326b4d958ab6e4b8dc11a67f658dae0e8c753
15,745
def backup(source, destination, *, return_wrappers=False): """ Backup the selected source(s) into the destination(s) provided. Source and destination will be converted into ``Source`` and ``Destination`` respectively. If this conversion fails, an exception will be raised. :param return_wrappers: If True, the Source and Destination objects will be returned. :param source: The source(s) to backup. :param destination: The destination(s) of backup. """ boa = Boa() _source = get_any_source(source) _destination = get_any_destination(destination) boa.backup(_source, _destination) if return_wrappers: return _source, _destination
9ee19caa86a398abbfce2bbe28d0995ebe1e842f
15,746
def _prepare_data(cfg, imgs): """Inference image(s) with the detector. Args: model (nn.Module): The loaded detector. imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]): Either image files or loaded images. Returns: result (dict): Predicted results. """ if isinstance(imgs, (list, tuple)): if not isinstance(imgs[0], (np.ndarray, str)): raise AssertionError('imgs must be strings or numpy arrays') elif isinstance(imgs, (np.ndarray, str)): imgs = [imgs] else: raise AssertionError('imgs must be strings or numpy arrays') is_ndarray = isinstance(imgs[0], np.ndarray) if is_ndarray: cfg = cfg.copy() # set loading pipeline type cfg.data.test.pipeline[0].type = 'LoadImageFromNdarray' cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline) test_pipeline = Compose(cfg.data.test.pipeline) datas = [] for img in imgs: # prepare data if is_ndarray: # directly add img data = dict(img=img) else: # add information into dict data = dict(img_info=dict(filename=img), img_prefix=None) # build the data pipeline data = test_pipeline(data) # get tensor from list to stack for batch mode (text detection) datas.append(data) if isinstance(datas[0]['img'], list) and len(datas) > 1: raise Exception('aug test does not support ' f'inference with batch size ' f'{len(datas)}') data = collate(datas, samples_per_gpu=len(imgs)) # process img_metas if isinstance(data['img_metas'], list): data['img_metas'] = [ img_metas.data[0] for img_metas in data['img_metas'] ] else: data['img_metas'] = data['img_metas'].data if isinstance(data['img'], list): data['img'] = [img.data for img in data['img']] if isinstance(data['img'][0], list): data['img'] = [img[0] for img in data['img']] else: data['img'] = data['img'].data return data
993074d9f789469a38a0050c0ed970b3c86227b8
15,747
import json import six def _HandleJsonList(response, service, method, errors): """Extracts data from one *List response page as JSON and stores in dicts. Args: response: str, The *List response in JSON service: The service which responded to *List request method: str, Method used to list resources. One of 'List' or 'AggregatedList'. errors: list, Errors from response will be appended to this list. Returns: Pair of: - List of items returned in response as dicts - Next page token (if present, otherwise None). """ items = [] response = json.loads(response) # If the request is a list call, then yield the items directly. if method == 'List': items = response.get('items', []) # If the request is an aggregatedList call, then do all the # magic necessary to get the actual resources because the # aggregatedList responses are very complicated data # structures... elif method == 'AggregatedList': items_field_name = service.GetMethodConfig( 'AggregatedList').relative_path.split('/')[-1] for scope_result in six.itervalues(response['items']): # If the given scope is unreachable, record the warning # message in the errors list. warning = scope_result.get('warning', None) if warning and warning['code'] == 'UNREACHABLE': errors.append((None, warning['message'])) items.extend(scope_result.get(items_field_name, [])) return items, response.get('nextPageToken', None)
db87c9ed87df1268e1187f74c193b5f96f9e10f7
15,748
def gray_arrays_to_rgb_sequence_array(arrays, start_rgb, end_rgb, normalise_input=False, normalise_output=True): """Returns an RGB array that is mean of grayscale arrays mapped to linearly spaced RGB colors in a range. :param list arrays: list of numpy.ndarrays of shape (N, M) :param tuple start_rgb: (R, G, B) mapping of first array in `arrays` :param tuple end_rgb: (R, G, B) mapping of last array in `arrays` :param bool normalise_input: if True, input arrays are normalised concurrently to max value of 1. Default is False. :param bool normalise_output: if True (default), output is normalised to range between 0 and 1. :return: rgb_sequence_array shape (N, M, 3) :rtype: numpy.ndarray """ if normalise_input: max_gray_value = max([np.max(array) for array in arrays]) arrays = [array / max_gray_value for array in arrays] colors = np.array([np.linspace(start, end, len(arrays)) for start, end in zip(start_rgb, end_rgb)]).T color_arrays = [color[np.newaxis, np.newaxis, :] * array[:, :, np.newaxis] for color, array in zip(colors, arrays)] rgb_sequence_array = np.mean(np.stack(color_arrays, axis=3), axis=3) if normalise_output: rgb_sequence_array = rgb_sequence_array / np.nanmax(rgb_sequence_array) return rgb_sequence_array
2b20c524529e195f49348cc56bf2aa2c46a7ab4e
15,749
def normalize_inputs(df, metrics): """Normalize all inputs around mean and standard deviation. """ for m in metrics: mean = np.mean(df[m]) stdev = np.std(df[m]) def std_normalize(x): return (x - mean) / stdev #df[m] = df[m].map(std_normalize) xmin = min(df[m]) xmax = max(df[m]) def minmax_normalize(x): return (x - xmin) / (xmax - xmin) df[m] = df[m].map(minmax_normalize) return df
6e861050d4cec7d5d75c3597412df91b175a821f
15,750
def calc_z_rot_from_right(right): """ Calculates z rotation of an object based on its right vector, relative to the positive x axis, which represents a z rotation euler angle of 0. This is used for objects that need to rotate with the HMD (eg. VrBody), but which need to be robust to changes in orientation in the HMD. """ # Project right vector onto xy plane r = np.array([right[0], right[1], 0]) z_zero_vec = np.array([1, 0, 0]) # Get angle in radians z = np.arccos(np.dot(r, z_zero_vec)) # Flip sign if on the right side of the xy plane if r[1] < 0: z *= -1 # Add pi/2 to get forward direction, but need to deal with jumping # over quadrant boundaries if 0 <= z and z <= np.pi / 2: return z + np.pi / 2 elif np.pi / 2 < z and z <= np.pi: angle_from_ax = np.pi / 2 - (np.pi - z) return -np.pi + angle_from_ax elif -np.pi <= z and z <= -np.pi / 2: return z + np.pi / 2 else: return np.pi / 2 + z
32ee873fe96d5460ac9bfe6d0a3361b9f7e88cc7
15,751
def poisson_interval(data, alpha=0.32): """Calculates the confidence interval for the mean of a Poisson distribution. Parameters ---------- data: array_like Data giving the mean of the Poisson distributions. alpha: float Significance level of interval. Defaults to one sigma (0.32). Returns ------- low, high: array_like Lower and higher limits for the interval.""" a = alpha low, high = (chi2.ppf(a / 2, 2 * data) / 2, chi2.ppf(1 - a / 2, 2 * data + 2) / 2) low = np.nan_to_num(low) return low, high
bf5d9071df9cea065af63205c6557d1a9334c236
15,752
def sales_administrative_expense(ticker, frequency): """ :param ticker: e.g., 'AAPL' or MULTIPLE SECURITIES :param frequency: 'A' or 'Q' for annual or quarterly, respectively :return: obvious.. """ df = financials_download(ticker, 'is', frequency) return (df.loc["Sales, General and administrative"])
30f5c4a1a1b28ec2c581671964b35c4009c5dffe
15,753
def clip(x, min_, max_): """Clip value `x` by [min_, max_].""" return min_ if x < min_ else (max_ if x > max_ else x)
3ad7625fa3dc5a0c06bb86dc16698f6129ee9034
15,754
import random def generate_code(): """Generate a URL-compatible short code.""" return ''.join(random.choice(ALPHABET) for _ in range(10))
35c8674f39dd1ad6e8f4a238c01fbf5e020513e8
15,755
def prox_pos(v, t = 1, *args, **kwargs): """Proximal operator of :math:`tf(ax-b) + c^Tx + d\\|x\\|_2^2`, where :math:`f(x) = \\max(x,0)` applied elementwise for scalar t > 0, and the optional arguments are a = scale, b = offset, c = lin_term, and d = quad_term. We must have t > 0, a = non-zero, and d >= 0. By default, t = 1, a = 1, b = 0, c = 0, and d = 0. """ return prox_scale(prox_pos_base, *args, **kwargs)(v, t)
18136db3b35ef20a03dfe2502930dad648bbc96e
15,756
def delete_mapping(module, sdk, cloud, mapping): """ Attempt to delete a Mapping returns: the "Changed" state """ if mapping is None: return False if module.check_mode: return True try: cloud.identity.delete_mapping(mapping) except sdk.exceptions.OpenStackCloudException as ex: module.fail_json(msg='Failed to delete mapping: {0}'.format(str(ex))) return True
2b9a0606775949ed1361010b2ca8ef1257d9db25
15,757
def insert_target(x, segment_size): """ Creates segments of surrounding words for each word in x. Inserts a zero token halfway the segment to mark the end of the intended token. Parameters ---------- x: list(int) A list of integers representing the whole data as one long encoded sentence. Each integer is an encoded subword. segment_size: int The size of the output samples. Returns ------- np.array: A numpy matrix representing window of `segment_size` moving over the input sample `x`. """ X = [] #pad the start & end of x x_pad = x[-((segment_size-1)//2-1):] + x + x[:segment_size//2] for i in range(len(x_pad)-segment_size+2): segment = x_pad[i:i+segment_size-1] #zero at the middle to mark the end of intended token segment.insert((segment_size-1)//2, 0) X.append(segment) return np.array(X)
7874e26deb13e7872992741dc232ffbdcdaf7d00
15,758
import functools def find_nearest_network(ipa, nets): """ :param ipa: An ip address string :param nets: A of str gives and ip address with prefix, e.g. 10.0.1.0/24 >>> net1 = "192.168.122.0/24" >>> net2 = "192.168.0.0/16" >>> net3 = "192.168.1.0/24" >>> net4 = "192.168.254.0/24" >>> net5 = "0.0.0.0/32" >>> find_nearest_network(net1, [net1, net5]) '192.168.122.0/24' >>> find_nearest_network(net2, [net1, net5]) '192.168.122.0/24' >>> find_nearest_network(net1, [net2, net3]) '192.168.0.0/16' >>> find_nearest_network(net3, [net1, net4]) '192.168.122.0/24' """ return sorted(nets, key=functools.partial(distance, ipa))[0]
43001fb2236a3654ff769e0e7a7eaad37bc74100
15,759
def set_action_translation( language_id: int, action_id: int, name: str, description: str = '', short_description: str = '', ) -> ActionTranslation: """ Create or update an action translation. :param language_id: the ID of an existing language :param action_id: the ID of an existing action :param name: the name of the action :param description: a (possibly empty) description for the action :param short_description: the new (possibly empty) short description :return: the created action translation :raise errors.LanguageDoesNotExistError: if no language with the given ID exists :raise errors.ActionDoesNotExistError: if no action with the given ID exists """ action_translation = models.ActionTranslation.query.filter_by( language_id=language_id, action_id=action_id ).first() if action_translation is None: actions.get_action(action_id) languages.get_language(language_id) action_translation = models.ActionTranslation( language_id=language_id, action_id=action_id, name=name, description=description, short_description=short_description, ) else: action_translation.name = name action_translation.description = description action_translation.short_description = short_description db.session.add(action_translation) db.session.commit() return ActionTranslation.from_database(action_translation)
b0fe43b8e0fdee7a6604a4de4a8546763f152498
15,761
def partialSVD(batch, S, VT, ratio = 1, solver = 'full', tol = None, max_iter = 'auto'): """ Fits a partial SVD after given old singular values S and old components VT. Note that VT will be used as the number of old components, so when calling truncated or randomized, will output a specific number of eigenvectors and singular values. Checks if new batch's size matches that of the old VT. Note that PartialSVD has different solvers. Either choose: 1. full Solves full SVD on the data. This is the most stable and will guarantee the most robust results. You can select the number of components to keep within the model later. 2. truncated This keeps the top K right eigenvectors and top k right singular values, as determined by n_components. Note full SVD is not called for the truncated case, but rather ARPACK is called. 3. randomized Same as truncated, but instead of using ARPACK, uses randomized SVD. Notice how Batch = U @ S @ VT. However, partialSVD returns S, VT, and not U. In order to get U, you might consider using the relation that X = U @ S @ VT, and approximating U by: X = U @ S @ VT X @ V = U @ S (X @ V)/S = U So, U = (X @ V)/S, so you can output U from (X @ V)/S You can also get U partially and slowly using reverseU. """ data, k, __ = _utilSVD(batch, S, VT, eig = False) if solver == 'full': U, S, VT = svd(data) elif solver == 'truncated': U, S, VT = truncatedSVD(data, n_components = k, tol = tol) else: U, S, VT = randomizedSVD(data, n_components = k, max_iter = max_iter) return U[k:,:k], S[:k], VT[:k]
9b50e7f60ea187e7e6553ee1406322dd920e26a3
15,762
def can_move_in_direction(node: Node, direction: Direction, factory: Factory): """If an agent has a neighbour in the specified direction, add a 1, else 0 to the observation space. If that neighbour is free, add 1, else 0 (a non-existing neighbour counts as occupied). """ has_direction = node.has_neighbour(direction) is_free = False if has_direction: neighbour: Node = node.get_neighbour(direction) if neighbour.is_rail: neighbour_rail = factory.get_rail(neighbour) is_free = neighbour_rail.is_free() or node in neighbour_rail.nodes else: is_free = not neighbour.has_table() return is_free
7e747b8ba2c5b385b484b16c0c108aafd3c11351
15,763
def Usable(entity_type,entity_ids_arr): """Only for Linux modules""" filNam = entity_ids_arr[0] return filNam.endswith(".ko.xz")
d64aebf033fad9d81350b9221368c2208d9a003f
15,765
import torch def detection_collate(batch): """Custom collate fn for dealing with batches of images that have a different number of associated object annotations (bounding boxes). Arguments: batch: (tuple) A tuple of tensor images and lists of annotations Return: A tuple containing: 1) (tensor) batch of images stacked on their 0 dim 2) (list of tensors) annotations for a given image are stacked on 0 dim """ targets = [] imgs = [] for _, sample in enumerate(batch): for _, tup in enumerate(sample): if torch.is_tensor(tup): imgs.append(tup) elif isinstance(tup, type(np.empty(0))): annos = torch.from_numpy(tup).float() targets.append(annos) return (torch.stack(imgs, 0), targets)
ec2217eb0fcd1c348d3d6f65f07ea20ac33b55ea
15,766
import scipy def _apply_fft_high_pass_filter(data, fmin, fs=None, workers=None, detrend=True, time_name=None): """Apply high-pass filter to FFT of given data. Parameters ---------- data : xarray.DataArray Data to filter. fmin : float Lowest frequency in pass band. fs : float Sampling frequency. workers : int Number of parallel jobs to use in computing FFT. detrend : bool If True, remove linear trend from data before computing FFT. time_name : str Name of the time coordinate. Returns ------- filtered : xarray.DataArray Array containing the high-pass filtered data. """ data = rdu.ensure_data_array(data) time_name = time_name if time_name is not None else rdu.get_time_name(data) feature_dims = [d for d in data.dims if d != time_name] # Handle case in which data is simply a time-series if not feature_dims: original_shape = None else: original_shape = [data.sizes[d] for d in feature_dims] time_dim_pos = data.get_axis_num(time_name) if time_dim_pos != 0: data = data.transpose(*([time_name] + feature_dims)) # Convert to 2D array n_samples = data.sizes[time_name] if feature_dims: n_features = np.product(original_shape) else: n_features = 1 flat_data = data.values.reshape((n_samples, n_features)) rdu.check_fixed_missing_values(flat_data, axis=0) valid_data, missing_features = rdu.remove_missing_features(flat_data) valid_features = [d for d in range(n_features) if d not in missing_features] valid_data = valid_data.swapaxes(0, 1) if detrend: valid_data = scipy.signal.detrend( valid_data, axis=-1, type='linear') # Compute spectrum and apply high-pass filter spectrum = rfft(valid_data, axis=-1, workers=workers) fft_freqs = rfftfreq(n_samples, d=(1.0 / fs)) filter_mask = fft_freqs < fmin spectrum[..., filter_mask] = 0.0 filtered_valid_data = irfft( spectrum, n=n_samples, axis=-1, workers=workers).swapaxes(0, 1) if rdu.is_dask_array(flat_data): filtered_cols = [None] * n_features pos = 0 for j in range(n_features): if j in valid_features: filtered_cols[j] = filtered_valid_data[:, pos].reshape( (n_samples, 1)) pos += 1 else: filtered_cols[j] = da.full((n_samples, 1), np.NaN) filtered_data = da.hstack(filtered_cols) else: filtered_data = np.full((n_samples, n_features), np.NaN) filtered_data[:, valid_features] = filtered_valid_data if original_shape: filtered_data = filtered_data.reshape([n_samples] + original_shape) filtered_dims = [time_name] + feature_dims else: filtered_data = filtered_data.ravel() filtered_dims = [time_name] filtered_coords = deepcopy(data.coords) result = xr.DataArray( filtered_data, coords=filtered_coords, dims=filtered_dims) if time_dim_pos != 0: result = result.transpose(*data.dims) return result
a1e345b19c6f39b7c667a03b2a95f824f3c15aa8
15,768
def truncate(array:np.ndarray, intensity_profile:np.ndarray, seedpos:int, iso_split_level:float)->np.ndarray: """Function to truncate an intensity profile around its seedposition. Args: array (np.ndarray): Input array. intensity_profile (np.ndarray): Intensities for the input array. seedpos (int): Seedposition. iso_split_level (float): Split level. Returns: np.ndarray: Truncated array. """ minima = int_list_to_array(get_minpos(intensity_profile, iso_split_level)) if len(minima) > 0: left_minima = minima[minima < seedpos] right_minima = minima[minima > seedpos] # If the minimum is smaller than the seed if len(left_minima) > 0: minpos = left_minima[-1] else: minpos = 0 if len(right_minima) > 0: maxpos = right_minima[0] else: maxpos = len(array) array = array[minpos:maxpos+1] return array
81d3cd02d9e784bfbdaf5c77041ba1192c72b2dc
15,769
import warnings def fitting_process_parent(scouseobject, SAA, key, spec, parent_model): """ Pyspeckit fitting of an individual spectrum using the parent SAA model Parameters ---------- scouseobject : Instance of the scousepy class SAA : Instance of the saa class scousepy spectral averaging area key : number index of the individual spectrum spec : pyspeckit spectrum the spectrum to fit parent_model : instance of the fit class best-fitting model solution to the parent SAA """ # Check the model happy = False initfit = True fit_dud = False while not happy: if np.all(np.isfinite(np.array(spec.flux))): if initfit: guesses = np.asarray(parent_model.params) if np.sum(guesses) != 0.0: with warnings.catch_warnings(): warnings.simplefilter('ignore') old_log = log.level log.setLevel('ERROR') spec.specfit(interactive=False, \ clear_all_connections=True,\ xmin=scouseobject.ppv_vol[0], \ xmax=scouseobject.ppv_vol[1], \ fittype = scouseobject.fittype, \ guesses = guesses,\ verbose=False,\ use_lmfit=True) log.setLevel(old_log) modparnames = spec.specfit.fitter.parnames modncomps = spec.specfit.npeaks modparams = spec.specfit.modelpars moderrors = spec.specfit.modelerrs modrms = spec.error[0] _inputs = [modparnames, [modncomps], modparams, moderrors, [modrms]] happy, guesses = check_spec(scouseobject, parent_model, _inputs, happy) initfit = False else: # If no satisfactory model can be found - fit a dud! fit_dud=True happy = True else: # If no satisfactory model can be found - fit a dud! fit_dud = True happy = True if fit_dud: bf = fitting_process_duds(scouseobject, SAA, key, spec) else: bf = fit(spec, idx=key, scouse=scouseobject) return bf
763ac6bca7db2813c0b2d9dc67baa541b9596546
15,770
def _load_grammar(grammar_path): """Lee una gramática libre de contexto almacenada en un archivo .cfg y la retorna luego de realizar algunas validaciones. Args: grammar_path (str): Ruta a un archivo .cfg conteniendo una gramática libre de contexto en el formato utilizado por NLTK. Raises: InvalidGrammarException: en caso de que la gramática no sea válida. Returns: nltk.CFG: Gramática libre de contexto leída del archivo. """ grammar = nltk.data.load('file:{}'.format(grammar_path)) if grammar.start().symbol() != _START_PRODUCTION: raise InvalidGrammarException('Start rule must be "{}"'.format( _START_PRODUCTION)) if not grammar.is_nonempty(): raise InvalidGrammarException('Empty productions are not allowed') nonterminals = set() terminals = {token_name for token_name, _ in _TOKEN_TYPES} for production in grammar.productions(): nonterminals.add(production.lhs().symbol()) for production in grammar.productions(): for element in production.rhs(): symbol = str(element) if nltk.grammar.is_nonterminal(element): if symbol not in nonterminals: raise InvalidGrammarException( 'Invalid nonterminal: {}'.format(symbol)) elif symbol not in terminals: raise InvalidGrammarException( 'Invalid terminal: {}'.format(symbol)) return grammar
a7432ca9ef4a19b2ec07dcf2434e1dfd140333b9
15,771
from datetime import datetime def time_span(ts): """计算时间差""" delta = datetime.now() - ts.replace(tzinfo=None) if delta.days >= 365: return '%d年前' % (delta.days / 365) elif delta.days >= 30: return '%d个月前' % (delta.days / 30) elif delta.days > 0: return '%d天前' % delta.days elif delta.seconds < 60: return "%d秒前" % delta.seconds elif delta.seconds < 60 * 60: return "%d分钟前" % (delta.seconds / 60) else: return "%d小时前" % (delta.seconds / 60 / 60)
b93100a0ac3d7b7f45ea7f26b03a0f0149cce1a3
15,772
def check_point(point_a, point_b, alpha, mask): """ Test the point "alpha" of the way from P1 to P2 See if it is on a face of the cube Consider only faces in "mask" """ plane_point_x = lerp(alpha, point_a[0], point_b[0]) plane_point_y = lerp(alpha, point_a[1], point_b[1]) plane_point_z = lerp(alpha, point_a[2], point_b[2]) plane_point = (plane_point_x, plane_point_y, plane_point_z) return face_plane(plane_point) & mask
a3848840edd7ab2408197463a7c688954e456a66
15,773
def gIndex(df, query_txt, coluna_citacoes:str): """Calcula índice g""" df = df.query(query_txt).sort_values(by=[coluna_citacoes],ascending=False) df = df.reset_index(drop=True) df.index+= 1 df['g^2'] = df.index**2 df['citações acumuladas'] = df[coluna_citacoes].cumsum() df['corte'] = abs(df['g^2'] - df['citações acumuladas']) posicao_g = df['corte'].idxmin() return df.loc[posicao_g]['g^2']
2ef7343026ddf214a5fea7771c1a67887a87f320
15,774
from typing import List def dockerize_cli_args(arg_str: str, container_volume_root="/home/local") -> str: """Return a string with all host paths converted to their container equivalents. Parameters ---------- arg_str : str The cli arg string to convert container_volume_root : str, optional The container directory which is mapped to local working directory, by default "/home/local" Returns ------- str A string with host paths converted to container paths. """ args = arg_str.split(" ") newargs: List[str] = [] for arg in args: if uio.file_exists(arg): newargs.append(_dockerize_path(arg, container_volume_root)) elif "=" in arg: left, right = arg.split("=")[0], "=".join(arg.split("=")[1:]) if uio.file_exists(right): newargs.append( f"{left}={_dockerize_path(right, container_volume_root)}" ) else: newargs.append(arg) return " ".join(newargs)
de4ce13700459089489a8e0d3d10795931d5ba51
15,775
def _invert_monoms(p1): """ Compute ``x**n * p1(1/x)`` for a univariate polynomial ``p1`` in ``x``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> from sympy.polys.ring_series import _invert_monoms >>> R, x = ring('x', ZZ) >>> p = x**2 + 2*x + 3 >>> _invert_monoms(p) 3*x**2 + 2*x + 1 See Also ======== sympy.polys.densebasic.dup_reverse """ terms = list(p1.items()) terms.sort() deg = p1.degree() R = p1.ring p = R.zero cv = p1.listcoeffs() mv = p1.listmonoms() for i in range(len(mv)): p[(deg - mv[i][0],)] = cv[i] return p
790e308f4ec5b689f1bb89d33f5ecf6aaa858334
15,776
from typing import Dict def cleaned_picker_data(date: dt.date) -> Dict: """Retrieve and process data about Podcast Picker visits from Webtrekk API for a specific date. Args: date (dt.date): Date to request data for. Returns: Dict: Reply from API. """ config = AnalysisConfig( [ AnalysisObject("Seiten"), ], metrics=[ Metric( "Visits", sort_order="desc", ), Metric( "Visits", metric_filter=Filter( filter_rules=[ FilterRule("Werbemittel", "=", "*"), ] ), ), Metric( "Ausstiege", ), ], analysis_filter=Filter( filter_rules=[ FilterRule("Seiten", "=", "*Podcast-Picker*"), ], ), start_time=date, stop_time=date, row_limit=10000, ) webtrekk = Webtrekk() with webtrekk.session(): analysis = webtrekk.get_analysis_data(dict(config)) data = analysis["analysisData"] date_start = analysis["timeStart"] date_end = analysis["timeStop"] logger.info("Start scraping Webtrekk Data between {} and {}.", date_start, date_end) data_dict = {} for element in data[:-1]: name = normalize_name(element[0].split("_")[-1]) item = dict( visits=int(element[1]), visits_campaign=int(element[2]), exits=int(element[3]), ) if name in data_dict: data_dict[name]["visits"] += item["visits"] data_dict[name]["visits_campaign"] += item["visits_campaign"] data_dict[name]["exits"] += item["exits"] else: data_dict[name] = item return data_dict
7b12183ea54a05e20c72a2826bb4adb6e2b6a6ac
15,777
import math def create_model(args, vocab_size, num_labels, mode='train'): """create lac model""" # model's input data words = fluid.data(name='words', shape=[-1, 1], dtype='int64', lod_level=1) targets = fluid.data( name='targets', shape=[-1, 1], dtype='int64', lod_level=1) if mode == "train": print("create model mode: ", mode) teacher_crf_decode = fluid.data( name='teacher_crf_decode', shape=[-1, 1], dtype='float32', lod_level=1) else: print("create model mode: ", mode) teacher_crf_decode = None feed_list = [words, targets] if teacher_crf_decode: feed_list.append(teacher_crf_decode) pyreader = fluid.io.DataLoader.from_generator( feed_list=feed_list, capacity=200, use_double_buffer=True, iterable=False) # for test or train process avg_cost, crf_avg_cost, teacher_cost, crf_decode= nets.lex_net( words, args, vocab_size, num_labels, teacher_crf_decode,for_infer=False, target=targets) (precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks) = fluid.layers.chunk_eval( input=crf_decode, label=targets, chunk_scheme="IOB", num_chunk_types=int(math.ceil((num_labels - 1) / 2.0))) chunk_evaluator = fluid.metrics.ChunkEvaluator() chunk_evaluator.reset() ret = { "pyreader": pyreader, "words": words, "targets": targets, "avg_cost": avg_cost, "crf_avg_cost": crf_avg_cost, "teacher_cost": teacher_cost, "crf_decode": crf_decode, "precision": precision, "recall": recall, "f1_score": f1_score, "chunk_evaluator": chunk_evaluator, "num_infer_chunks": num_infer_chunks, "num_label_chunks": num_label_chunks, "num_correct_chunks": num_correct_chunks } return ret
0996c0a9f8d97463816946b50af112f3738676df
15,778
def escape_string(value): """escape_string escapes *value* but not surround it with quotes. """ value = value.replace('\\', '\\\\') value = value.replace('\0', '\\0') value = value.replace('\n', '\\n') value = value.replace('\r', '\\r') value = value.replace('\032', '\\Z') value = value.replace("'", "\\'") value = value.replace('"', '\\"') return value
1373ea81d22d246c0c0429d6588995e719bd61fb
15,779
def _supports_masking(remask_kernel: bool): """Returns a decorator that turns layers into layers supporting masking. Specifically: 1) `init_fn` is left unchanged. 2) `apply_fn` is turned from a function that accepts a `mask=None` keyword argument (which indicates `inputs[mask]` must be masked), into a function that accepts a `mask_constant=None` keyword argument (which indicates `inputs[inputs == mask_constant]` must be masked). 3) `kernel_fn` is modified to 3.a) propagate the `kernel.mask1` and `kernel.mask2` through intermediary layers, and, 3.b) if `remask_kernel == True`, zeroes-out covariances between entries of which at least one is masked. 4) If the decorated layers has a `mask_fn`, it is used to propagate masks forward through the layer, in both `apply_fn` and `kernel_fn`. If not, it is assumed the mask remains unchanged. Must be applied before the `layer` decorator. Args: remask_kernel: `True` to zero-out kernel covariance entries between masked inputs after applying `kernel_fn`. Some layers don't need this and setting `remask_kernel=False` can save compute. Returns: A decorator that turns functions returning `(init_fn, apply_fn, kernel_fn[, mask_fn])` into functions returning `(init_fn, apply_fn_with_masking, kernel_fn_with_masking)`. """ def supports_masking(layer): @utils.wraps(layer) def layer_with_masking(*args, **kwargs): layer_fns = layer(*args, **kwargs) init_fn, apply_fn, kernel_fn = layer_fns[:3] if len(layer_fns) == 3: # No mask propagation function supplied - use identity. _mask_fn = lambda mask, input_shape: mask elif len(layer_fns) == 4: # Custom mask propagation function supplied. _mask_fn = layer_fns[3] else: raise ValueError(f'Expected 3 (`init_fn`, `apply_fn`, `kernel_fn`) or 4' f' (..., `mask_fn`) layer functions, ' f'got {len(layer_fns)}.') @utils.wraps(_mask_fn) def mask_fn(mask, input_shape): if mask is None: return None return _mask_fn(mask, input_shape) def apply_fn_with_masking(params, inputs, *, mask_constant=None, **kwargs): inputs = utils.get_masked_array(inputs, mask_constant) inputs, mask = inputs.masked_value, inputs.mask outputs = apply_fn(params, inputs, mask=mask, **kwargs) outputs_mask = mask_fn(mask, inputs.shape if isinstance(inputs, np.ndarray) else [i.shape for i in inputs]) if outputs_mask is None: return outputs return utils.MaskedArray(outputs, outputs_mask) def kernel_fn_with_masking(k: Kernels, **user_reqs): if isinstance(k, Kernel): mask1 = mask_fn(k.mask1, k.shape1) mask2 = mask_fn(k.mask2, k.shape2) elif isinstance(k, list): mask1 = mask_fn([k.mask1 for k in k], [k.shape1 for k in k]) mask2 = mask_fn([k.mask2 for k in k], [k.shape2 for k in k]) else: raise TypeError(type(Kernel), Kernel) k = kernel_fn(k, **user_reqs) # type: Kernel if remask_kernel: k = k.mask(mask1, mask2) else: k = k.replace(mask1=mask1, mask2=mask2) return k if hasattr(kernel_fn, _INPUT_REQ): setattr(kernel_fn_with_masking, _INPUT_REQ, getattr(kernel_fn, _INPUT_REQ)) return init_fn, apply_fn_with_masking, kernel_fn_with_masking return layer_with_masking return supports_masking
0fd189ee791edb394fe5fb0efd1f7dd6d944c689
15,781
def warnings(request: HttpRequest): """Adiciona alguns avisos no content""" warning = list() if hasattr(request, 'user'): user: User = request.user if not user.is_anonymous: # Testa email if user.email is None or user.email == "": warning.append({ 'message': 'Você não possui um e-mail registrado, por favor registre um', 'link_page_name': 'escola:self-email-change' }) else: logger.info("Não há atributo user") return {'warnings': warning}
990c45c03235eca90b1074d8cc1b6a27b8c5c014
15,782
def _get_raw_key(args, key_field_name): """Searches for key values in flags, falling back to a file if necessary. Args: args: An object containing flag values from the command surface. key_field_name (str): Corresponds to a flag name or field name in the key file. Returns: The flag value associated with key_field_name, or the value contained in the key file. """ flag_key = getattr(args, key_field_name, None) if flag_key is not None: return flag_key return _read_key_store_file().get(key_field_name)
4af0b0c680b4b0642f40f3a08718239da6de552d
15,783
def get_images(headers, name, handler_registry=None, handler_override=None): """ This function is deprecated. Use Header.data instead. Load images from a detector for given Header(s). Parameters ---------- fs: RegistryRO headers : Header or list of Headers name : string field name (data key) of a detector handler_registry : dict, optional mapping spec names (strings) to handlers (callable classes) handler_override : callable class, optional overrides registered handlers Example ------- >>> header = DataBroker[-1] >>> images = Images(header, 'my_detector_lightfield') >>> for image in images: # do something """ res = DataBroker.get_images(headers=headers, name=name, handler_registry=handler_registry, handler_override=handler_override) return res
fcbf887d1a5c71ab4f6c5dcc91df0743497ccefb
15,784
from typing import Union from typing import Sequence from typing import Any from typing import Tuple def shape_is_ok(sequence: Union[Sequence[Any], Any], expected_shape: Tuple[int, ...]) -> bool: """ Check the number of items the array has and compare it with the shape product """ try: sequence_len = len(flatten(sequence)) except Exception as err: logger.info(f"Error when trying to compare shapes. {err}") return False return prod(expected_shape) == sequence_len
f23c0cec12e9038b693e345ccc6909cc2d25c8b1
15,785
def ChannelSE(reduction=16, **kwargs): """ Squeeze and Excitation block, reimplementation inspired by https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py Args: reduction: channels squeeze factor """ channels_axis = 3 if backend.image_data_format() == 'channels_last' else 1 def layer(input_tensor): # get number of channels/filters channels = backend.int_shape(input_tensor)[channels_axis] x = input_tensor # squeeze and excitation block in PyTorch style with x = layers.GlobalAveragePooling2D()(x) x = layers.Lambda(expand_dims, arguments={'channels_axis': channels_axis})(x) x = layers.Conv2D(channels // reduction, (1, 1), kernel_initializer='he_uniform')(x) x = layers.Activation('relu')(x) x = layers.Conv2D(channels, (1, 1), kernel_initializer='he_uniform')(x) x = layers.Activation('sigmoid')(x) # apply attention x = layers.Multiply()([input_tensor, x]) return x return layer
791089f5729c39d4397afae3a18bd76205ab3185
15,786
def add_trainingset_flag(cam_parquet, trainingset_pkl_path, cam=None): """ Add to a single-cam parquet the information flags (adding columns) indicating if a given cam view was used in a training set for melting, hydro classif or riming degree Input cam_parquet: parquet file to add the columns to trainingset_pkl_path: path where the pickles of the trainingset flags are locally stored cam = 'cam0', 'cam1' or 'cam2' """ print('CAM: '+cam) # Read the parquet file table = pd.read_parquet(cam_parquet) flake_uid = table.datetime.apply(lambda x: x.strftime('%Y.%m.%d_%H.%M.%S'))+'_flake_'+table.flake_number_tmp.apply(str) # 1 Add hydro columns add = pd.read_pickle(trainingset_pkl_path+'hydro_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.class_id.iloc[ind2] table['hl_snowflake'] = is_in table['hl_snowflake_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for hydro' ) # 2 Add melting columns add = pd.read_pickle(trainingset_pkl_path+'melting_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.melting.iloc[ind2] table['hl_melting'] = is_in table['hl_melting_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for melting' ) # 3 Add riming columns add = pd.read_pickle(trainingset_pkl_path+'riming_trainingset_'+cam+'.pkl') is_in = np.asarray([0] * len(table)) value_in = np.asarray([np.nan] * len(table)) # Intersect intersect = np.intersect1d(flake_uid,add.flake_id,return_indices=True) ind1=intersect[1] ind2=intersect[2] # Fill is_in[ind1] = 1 value_in[ind1] = add.riming_id.iloc[ind2] table['hl_riming'] = is_in table['hl_riming_class_id'] = value_in print('Found: '+str(len(ind1))+' in training, for riming' ) # Overwrite table = pa.Table.from_pandas(table) pq.write_table(table, cam_parquet) return(None)
be6cfd10ab6e9fb7a71b55c13f343caabafa62da
15,787
def pw_wavy(n_samples=200, n_bkps=3, noise_std=None, seed=None): """Return a 1D piecewise wavy signal and the associated changepoints. Args: n_samples (int, optional): signal length n_bkps (int, optional): number of changepoints noise_std (float, optional): noise std. If None, no noise is added seed (int): random seed Returns: tuple: signal of shape (n_samples, 1), list of breakpoints """ # breakpoints bkps = draw_bkps(n_samples, n_bkps, seed=seed) # we create the signal f1 = np.array([0.075, 0.1]) f2 = np.array([0.1, 0.125]) freqs = np.zeros((n_samples, 2)) for sub, val in zip(np.split(freqs, bkps[:-1]), cycle([f1, f2])): sub += val tt = np.arange(n_samples) # DeprecationWarning: Calling np.sum(generator) is deprecated # Use np.sum(np.from_iter(generator)) or the python sum builtin instead. signal = np.sum([np.sin(2 * np.pi * tt * f) for f in freqs.T], axis=0) if noise_std is not None: rng = np.random.default_rng(seed=seed) noise = rng.normal(scale=noise_std, size=signal.shape) signal += noise return signal, bkps
94a9a681b763a4db36d2186a93e3c5bd0cbd2389
15,788
def date(): """ ____this is data type for date column____ """ return Column(Date)
3953cd155ed03a8cafcc09ee45efcab00c557611
15,789
import logging def get_people_urls(gedcom_data, apid_full_map): """ Read in all the person URLs for later reference """ people = {} found = False logging.info("Extracting person specific URL information") for line in gedcom_data.split("\n"): if len(line) > 5: tag = line.split(" ")[1] if "@P" in tag: person = tag found = False continue if tag == "_APID" and not found: apid = line.split(" ")[2] if apid in apid_full_map: if "person_url" in apid_full_map[apid]: if apid_full_map[apid]["person_url"] != "": people.update({person: apid_full_map[apid]["person_url"]}) found = True logging.info("Person URL extraction completed") return people
2495a39c988d726cf8b4f63a34a963d6a442dc32
15,792
import torch def permute_masks(old_masks): """ Function to randomly permute the mask in a global manner. Arguments --------- old_masks: List containing all the layer wise mask of the neural network, mandatory. No default. seed: Integer containing the random seed to use for reproducibility. Default is 0 Returns ------- new_masks: List containing all the masks permuted globally """ layer_wise_flatten = [] # maintain the layerwise flattened tensor for i in range(len(old_masks)): layer_wise_flatten.append(old_masks[i].flatten()) global_flatten = [] for i in range(len(layer_wise_flatten)): if len(global_flatten) == 0: global_flatten.append(layer_wise_flatten[i].cpu()) else: global_flatten[-1] = np.append(global_flatten[-1], layer_wise_flatten[i].cpu()) permuted_mask = np.random.permutation(global_flatten[-1]) new_masks = [] idx1 = 0 idx2 = 0 for i in range(len(old_masks)): till_idx = old_masks[i].numel() idx2 = idx2 + till_idx new_masks.append(permuted_mask[idx1:idx2].reshape(old_masks[i].shape)) idx1 = idx2 # Convert to tensor for i in range(len(new_masks)): new_masks[i] = torch.tensor(new_masks[i]) return new_masks
55a45f0e6c651bb4df0a5b8d58f1f50f992cdfb8
15,793
import asyncio async def file_clang_formatted_correctly(filename, semaphore, verbose=False): """ Checks if a file is formatted correctly and returns True if so. """ ok = True # -style=file picks up the closest .clang-format cmd = "{} -style=file {}".format(CLANG_FORMAT_PATH, filename) async with semaphore: proc = await asyncio.create_subprocess_shell(cmd, stdout=asyncio.subprocess.PIPE) # Read back the formatted file. stdout, _ = await proc.communicate() formatted_contents = stdout.decode() # Compare the formatted file to the original file. with open(filename) as orig: orig_contents = orig.read() if formatted_contents != orig_contents: ok = False if verbose: print("{} is not formatted correctly".format(filename)) return ok
0372fe5da05c3ede36db0bc35d228adde6c0aaa9
15,794
import json def service_builder(client: Client, is_for_update: bool, endpoint_tag: str, name: str, service_type: str, protocol: str = None, source_port: int = None, destination_port: int = None, protocol_name: str = None, icmp_type: str = None, icmp_code: str = None, icmp_v6_type: str = None, icmp_v6_code: str = None) -> dict: """Builder for the service object - build the body of the request Args: client (Client): Sophos XG Firewall Client is_for_update (bool): True if the object should be updated endpoint_tag (str): The endpoint_tag of the object we want to get data from name (str): The name of the object we want to add/update service_type (str, optional): Service Type information of the service protocol (str, optional): Protocol information of the service source_port (str, optional): Source Port information of the service destination_port (str, optional): Destination Port information of the service protocol_name (str, optional): Protocol Name information of the service icmp_type (str, optional): ICMP Type information of the service icmp_code (str, optional): ICMP Code information of the service icmp_v6_type (str, optional): ICMP V6 Type information of the service icmp_v6_code (str, optional): ICMP V6 Code information of the service Raises: Exception: Missing protocol, source port and destination port Exception: Missing protocol name Exception: Missing icmp_type and icmp_code Exception: Missing icmp_v6_type and icmp_v6_code Returns: dict: returned dictionary """ previous_service_details = [] # if the object need to be updated, merge between old and new information will happen if is_for_update: previous_object = client.get_item_by_name(endpoint_tag, name) previous_object = json.loads(xml2json(previous_object.text)) check_error_on_response(previous_object) service_type = retrieve_dict_item_recursively(previous_object, 'Type') previous_service_details = retrieve_dict_item_recursively(previous_object, 'ServiceDetail') if not previous_service_details: previous_service_details = [] elif not isinstance(previous_service_details, list): previous_service_details = [previous_service_details] json_data = { 'Name': name, 'Type': service_type, } if service_type == 'TCPorUDP': if not (protocol and source_port and destination_port): raise Exception('Please provide protocol, source_port and destination_port') service_details = { 'Protocol': protocol, 'SourcePort': source_port, 'DestinationPort': destination_port } elif service_type == 'IP': if not protocol_name: raise Exception('Please provide protocol_name') service_details = { 'ProtocolName': protocol_name } elif service_type == 'ICMP': if not (icmp_type and icmp_code): raise Exception('Please provide icmp_type and icmp_code') service_details = { 'ICMPType': icmp_type, 'ICMPCode': icmp_code } else: # type == 'ICMPv6' if not (icmp_v6_type and icmp_v6_code): raise Exception('Please provide icmp_v6_type and icmp_v6_code') service_details = { 'ICMPv6Type': icmp_v6_type, 'ICMPv6Code': icmp_v6_code } previous_service_details.append(service_details) json_data.update({ 'ServiceDetails': { 'ServiceDetail': previous_service_details } }) return remove_empty_elements(json_data)
ef51eeff73d7f32f92185ebe6607af525816d13c
15,795
def fkl( angles ): """ Convert joint angles and bone lenghts into the 3d points of a person. Based on expmap2xyz.m, available at https://github.com/asheshjain399/RNNexp/blob/7fc5a53292dc0f232867beb66c3a9ef845d705cb/structural_rnn/CRFProblems/H3.6m/mhmublv/Motion/exp2xyz.m Args angles: 99-long vector with 3d position and 3d joint angles in expmap format parent: 32-long vector with parent-child relationships in the kinematic tree offset: 96-long vector with bone lenghts rotInd: 32-long list with indices into angles expmapInd: 32-long list with indices into expmap angles Returns xyz: 32x3 3d points that represent a person in 3d space """ parent, offset, posInd, expmapInd = _some_variables() assert len(angles) == 117 # Structure that indicates parents for each joint njoints = 38 xyzStruct = [dict() for x in range(njoints)] for i in np.arange( njoints ): # try: # if not rotInd[i] : # If the list is empty # xangle, yangle, zangle = 0, 0, 0 # else: # xangle = angles[ rotInd[i][2]-1 ] # yangle = angles[ rotInd[i][1]-1 ] # zangle = angles[ rotInd[i][0]-1 ] # except: # print (i) try: if not posInd[i] : # If the list is empty xangle, yangle, zangle = 0, 0, 0 else: xangle = angles[ posInd[i][2]-1 ] yangle = angles[ posInd[i][1]-1 ] zangle = angles[ posInd[i][0]-1 ] except: print (i) r = angles[ expmapInd[i] ] thisRotation = expmap2rotmat(r) thisPosition = np.array([zangle, yangle, xangle]) if parent[i] == -1: # Root node xyzStruct[i]['rotation'] = thisRotation xyzStruct[i]['xyz'] = np.reshape(offset[i,:], (1,3)) + thisPosition else: xyzStruct[i]['xyz'] = (offset[i,:] + thisPosition).dot( xyzStruct[ parent[i] ]['rotation'] ) + xyzStruct[ parent[i] ]['xyz'] xyzStruct[i]['rotation'] = thisRotation.dot( xyzStruct[ parent[i] ]['rotation'] ) xyz = [xyzStruct[i]['xyz'] for i in range(njoints)] xyz = np.array( xyz ).squeeze() xyz = xyz[:,[0,2,1]] return np.reshape( xyz, [-1] )
667f1356bf2d56ec5adad7bd723167d4c741faae
15,796
import builtins def no_matplotlib(monkeypatch): """ Mock an import error for matplotlib""" import_orig = builtins.__import__ def mocked_import(name, globals, locals, fromlist, level): """ """ if name == 'matplotlib.pyplot': raise ImportError("This is a mocked import error") return import_orig(name, globals, locals, fromlist, level) monkeypatch.setattr(builtins, '__import__', mocked_import)
90182d9dbbde52779109d4d6cf43ae4fbac140d6
15,797
from typing import Callable from typing import Any from typing import Optional def profile(func: Callable[..., Any]) -> Callable[..., Any]: """ Create a decorator for wrapping a provided function in a LineProfiler context. Parameters ---------- func : callable The function that is to be wrapped inside the LineProfiler context. Returns ------- wrapper : callable The context containing the wrapped function. """ @wraps(func) def wrapper(*args: Optional[Any], **kwargs: Optional[Any]) -> LineProfiler: prof = LineProfiler() try: return prof(func)(*args, **kwargs) finally: prof.print_stats() return wrapper
13db0f994f472b95535a27ab8bb58c01491eb092
15,798
import torch def phase_comp(psi_comp, uwrap=False, dens=None): """Compute the phase (angle) of a single complex wavefunction component. Parameters ---------- psi_comp : NumPy :obj:`array` or PyTorch :obj:`Tensor` A single wavefunction component. Returns ------- angle : NumPy :obj:`array` or PyTorch :obj:`Tensor` The phase (angle) of the component's wavefunction. """ if isinstance(psi_comp, np.ndarray): ang = np.angle(psi_comp) if uwrap: ang = rest.unwrap_phase(ang) elif isinstance(psi_comp, torch.Tensor): ang = torch.angle(psi_comp) if uwrap: raise NotImplementedError("Unwrapping the complex phase is not " "implemented for PyTorch tensors.") if dens is not None: ang[dens < (dens.max() * 1e-6)] = 0 return ang
3a27564b2e4ad323bb9d6c5c4d344027219ccd3d
15,799
def EG(d1,d2,P): """ Méthode permettant de calculer l'esperance de gain du joueur 1 s'il lance d1 dés et que le joueur 2 lance d2 dés ---------------------------------------------------- Args: - d1 : nombre de dés lancés par le joueur 1 - d2 : nombre de dés lancés par le joueur 2 - P : matrice de probabilités """ s = 0 L = np.arange(1,6*d2+1) for k in range(1,6*d1+1): s += np.sum(P[d1,k]*P[d2,L[L<k]]) - np.sum(P[d1,k]*P[d2,L[L>k]]) return s
7032bbff4bcf721727c2cb86d6e6f480aa520ee2
15,800
def roi_max_counts(images_sets, label_array): """ Return the brightest pixel in any ROI in any image in the image set. Parameters ---------- images_sets : array iterable of 4D arrays shapes is: (len(images_sets), ) label_array : array labeled array; 0 is background. Each ROI is represented by a distinct label (i.e., integer). Returns ------- max_counts : int maximum pixel counts """ max_cts = 0 for img_set in images_sets: for img in img_set: max_cts = max(max_cts, ndim.maximum(img, label_array)) return max_cts
2a8993ddb417ac9852ac8a85a4b021cd3db46b66
15,802
import unicodedata def normalize_full_width(text): """ a function to normalize full width characters """ return unicodedata.normalize('NFKC', text)
f8b443089e7083e11f6539f4103ce05f616170c4
15,803
import random def make_definitions(acronym, words_by_letter, limit=1): """Find definitions an acronym given groupings of words by letters""" definitions = [] for _ in range(limit): definition = [] for letter in acronym.lower(): opts = words_by_letter.get(letter.lower(), []) definition.append(random.choice(opts).title() if opts else "?") definitions.append(" ".join(definition)) return definitions
bc0af7b4e81a443c0afe62c2d77ace15bd1ab306
15,804
def plot_effective_area_from_file(file, all_cuts=False, ax=None, **kwargs): """ """ ax = plt.gca() if ax is None else ax if all_cuts: names = ["", "_NO_CUTS", "_ONLY_GH", "_ONLY_THETA"] else: names = tuple([""]) label_basename = kwargs["label"] if "label" in kwargs else "" kwargs.setdefault("ls", "") for name in names: area = QTable.read(file, hdu="EFFECTIVE_AREA" + name)[0] kwargs["label"] = label_basename + name.replace("_", " ") ax.errorbar( 0.5 * (area["ENERG_LO"] + area["ENERG_HI"]).to_value(u.TeV)[1:-1], area["EFFAREA"].to_value(u.m ** 2).T[1:-1, 0], xerr=0.5 * (area["ENERG_LO"] - area["ENERG_HI"]).to_value(u.TeV)[1:-1], **kwargs, ) # Style settings ax.set_xscale("log") ax.set_yscale("log") ax.set_xlabel("True energy / TeV") ax.set_ylabel("Effective collection area / m²") ax.grid(which="both") ax.legend() ax.grid(True, which="both") return ax
b2627c767dfe8abf64eba1b8b1c1f14a4bf52d87
15,805
def get_spreading_coefficient(dist): """Calculate the spreading coefficient. Args: dist: A Distribution from a direct (GC) spreading simulation. Returns: The dimensionless spreading coefficient (beta*s*A). """ potential = -dist.log_probs valley = np.amin(potential) split = int(0.5 * len(potential)) plateau = np.mean(potential[split:]) return valley - plateau
549a0052400466f64f707588e313a9e88829a4d7
15,806
from pathlib import Path def get_config_path() -> Path: """Returns path to the root of the project""" return Path(__file__).parent / "config"
b66ece2bc77717b59e88ac65746a2e3b3e8576a2
15,807
def round(x): """ Return ``x`` rounded to an ``Integer``. """ return create_RealNumber(x).round()
403f5f0b4316ef2f06f45885d21fe352f003e193
15,808