content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
async def get_bot_queue( request: Request, state: enums.BotState = enums.BotState.pending, verifier: int = None, worker_session = Depends(worker_session) ): """Admin API to get the bot queue""" db = worker_session.postgres if verifier: bots = await db.fetch("SELECT bot_id, prefix, description FROM bots WHERE state = $1 AND verifier = $2 ORDER BY created_at ASC", state, verifier) bots = await db.fetch("SELECT bot_id, prefix, description FROM bots WHERE state = $1 ORDER BY created_at ASC", state) return {"bots": [{"user": await get_bot(bot["bot_id"]), "prefix": bot["prefix"], "invite": await invite_bot(bot["bot_id"], api = True), "description": bot["description"]} for bot in bots]}
bfbd51933b140bfd60cc7ec2a401d02048ffdeae
15,584
def ask_for_rating(): """Ask the user for a rating""" heading = '{} {}'.format(common.get_local_string(30019), common.get_local_string(30022)) try: return int(xbmcgui.Dialog().numeric(heading=heading, type=0, defaultt='')) except ValueError: return None
a7a854e02b11ac1313d69f508851d162a7748006
15,585
def isthai(text,check_all=False): """ สำหรับเช็คว่าเป็นตัวอักษรภาษาไทยหรือไม่ isthai(text,check_all=False) text คือ ข้อความหรือ list ตัวอักษร check_all สำหรับส่งคืนค่า True หรือ False เช็คทุกตัวอักษร การส่งคืนค่า {'thai':% อักษรภาษาไทย,'check_all':tuple โดยจะเป็น (ตัวอักษร,True หรือ False)} """ listext=list(text) i=0 num_isthai=0 if check_all==True: listthai=[] while i<len(listext): cVal = ord(listext[i]) if(cVal >= 3584 and cVal <= 3711): num_isthai+=1 if check_all==True: listthai.append(True) else: if check_all==True: listthai.append(False) i+=1 thai=(num_isthai/len(listext))*100 if check_all==True: dictthai=tuple(zip(listext,listthai)) data= {'thai':thai,'check_all':dictthai} else: data= {'thai':thai} return data
6a6bff64ba3b3939414e9f3aa83d169cd026e1c3
15,586
from typing import List from typing import Optional def _convert_object_array( content: List[Scalar], dtype: Optional[DtypeObj] = None ) -> List[Scalar]: """ Internal function ot convert object array. Parameters ---------- content: list of processed data records dtype: np.dtype, default is None Returns ------- arrays: casted content if not object dtype, otherwise return as is in list. """ # provide soft conversion of object dtypes def convert(arr): if dtype != np.dtype("O"): arr = lib.maybe_convert_objects(arr) arr = maybe_cast_to_datetime(arr, dtype) return arr arrays = [convert(arr) for arr in content] return arrays
7b093057b05afa93ced881289d22b1eda91018f0
15,587
def update_room_time(conn, room_name: str, req_time: int) -> int: """部屋のロックを取りタイムスタンプを更新する トランザクション開始後この関数を呼ぶ前にクエリを投げると、 そのトランザクション中の通常のSELECTクエリが返す結果がロック取得前の 状態になることに注意 (keyword: MVCC, repeatable read). """ cur = conn.cursor() # See page 13 and 17 in https://www.slideshare.net/ichirin2501/insert-51938787 cur.execute("INSERT INTO room_time(room_name, time) VALUES (%s, 0) ON DUPLICATE KEY UPDATE time = time", (room_name,)) cur.execute("SELECT time FROM room_time WHERE room_name = %s FOR UPDATE", (room_name,)) room_time = cur.fetchone()[0] current_time = get_current_time(conn) if room_time > current_time: raise RuntimeError(f"room_time is future: room_time={room_time}, req_time={req_time}") if req_time and req_time < current_time: raise RuntimeError(f"req_time is past: req_time={req_time}, current_time={current_time}") cur.execute("UPDATE room_time SET time = %s WHERE room_name = %s", (current_time, room_name)) return current_time
78066e9666ee28217f790fb8c26d2ade8c2ace7c
15,588
def get_layer_coverage(cat, store, store_obj): """Get correct layer coverage from a store.""" coverages = cat.mosaic_coverages(store_obj) # Find the correct coverage coverage = None for cov in coverages["coverages"]["coverage"]: if store == cov['name']: coverage = cov break if coverage is None: logger.warning("Layer '%s' not found", store) return coverage
498c4a8db1a82dafd8569314e4faf13517e75aba
15,589
import logging import time def retarget(songs, duration, music_labels=None, out_labels=None, out_penalty=None, volume=None, volume_breakpoints=None, springs=None, constraints=None, min_beats=None, max_beats=None, fade_in_len=3.0, fade_out_len=5.0, **kwargs): """Retarget a song to a duration given input and output labels on the music. Suppose you like one section of a song, say, the guitar solo, and you want to create a three minute long version of the solo. Suppose the guitar solo occurs from the 150 second mark to the 200 second mark in the original song. You can set the label the guitar solo with 'solo' and the rest of the song with 'other' by crafting the ``music_labels`` input function. And you can set the ``out_labels`` function to give you nothing but solo:: def labels(t): if 150 < t < 200: return 'solo' return 'other' def target(t): return 'solo' song = Song("sweet-rock-song.wav") composition, info = retarget(song, 180, music_labels=labels, out_labels=target) composition.export(filename="super-long-solo") You can achieve much more complicated retargetings by adjusting the ``music_labels``, `out_labels` and ``out_penalty`` functions, but this should give you a basic sense of how to use the ``retarget`` function. :param song: Song to retarget :type song: :py:class:`radiotool.composer.Song` :param duration: Duration of retargeted song (in seconds) :type duration: float :param music_labels: A function that takes a time (in seconds) and returns the label (str) of the input music at that time :type music_labels: function :param out_labels: A function that takes a time (in seconds) and returns the desired label (str) of the output music at that time :type out_labels: function :param out_penalty: A function that takes a time (in seconds) and returns the penalty for not matching the correct output label at that time (default is 1.0) :type out_penalty: function :returns: Composition of retargeted song, and dictionary of information about the retargeting :rtype: (:py:class:`radiotool.composer.Composition`, dict) """ # get song analysis if isinstance(songs, Track): songs = [songs] multi_songs = len(songs) > 1 analyses = [s.analysis for s in songs] # generate labels for every beat in the input and output beat_lengths = [a[BEAT_DUR_KEY] for a in analyses] beats = [a["beats"] for a in analyses] beat_length = np.mean(beat_lengths) logging.info("Beat lengths of songs: {} (mean: {})". format(beat_lengths, beat_length)) if out_labels is not None: target = [out_labels(i) for i in np.arange(0, duration, beat_length)] else: target = ["" for i in np.arange(0, duration, beat_length)] if music_labels is not None: if not multi_songs: music_labels = [music_labels] music_labels = [item for sublist in music_labels for item in sublist] if len(music_labels) != len(songs): raise ArgumentException("Did not specify {} sets of music labels". format(len(songs))) start = [[music_labels[i](j) for j in b] for i, b in enumerate(beats)] else: start = [["" for i in b] for b in beats] if out_penalty is not None: pen = np.array([out_penalty(i) for i in np.arange( 0, duration, beat_length)]) else: pen = np.array([1 for i in np.arange(0, duration, beat_length)]) # we're using a valence/arousal constraint, so we need these in_vas = kwargs.pop('music_va', None) if in_vas is not None: if not multi_songs: in_vas = [in_vas] in_vas = [item for sublist in in_vas for item in sublist] if len(in_vas) != len(songs): raise ArgumentException("Did not specify {} sets of v/a labels". format(len(songs))) for i, in_va in enumerate(in_vas): if callable(in_va): in_va = np.array([in_va(j) for j in beats[i]]) in_vas[i] = in_va target_va = kwargs.pop('out_va', None) if callable(target_va): target_va = np.array( [target_va(i) for i in np.arange(0, duration, beat_length)]) # set constraints if constraints is None: min_pause_len = 20. max_pause_len = 35. min_pause_beats = int(np.ceil(min_pause_len / beat_length)) max_pause_beats = int(np.floor(max_pause_len / beat_length)) constraints = [( rt_constraints.PauseConstraint( min_pause_beats, max_pause_beats, to_penalty=1.4, between_penalty=.05, unit="beats"), rt_constraints.PauseEntryVAChangeConstraint(target_va, .005), rt_constraints.PauseExitVAChangeConstraint(target_va, .005), rt_constraints.TimbrePitchConstraint( context=0, timbre_weight=1.5, chroma_weight=1.5), rt_constraints.EnergyConstraint(penalty=0.5), rt_constraints.MinimumLoopConstraint(8), rt_constraints.ValenceArousalConstraint( in_va, target_va, pen * .125), rt_constraints.NoveltyVAConstraint(in_va, target_va, pen), ) for in_va in in_vas] else: max_pause_beats = 0 if len(constraints) > 0: if isinstance(constraints[0], rt_constraints.Constraint): constraints = [constraints] pipelines = [rt_constraints.ConstraintPipeline(constraints=c_set) for c_set in constraints] trans_costs = [] penalties = [] all_beat_names = [] for i, song in enumerate(songs): (trans_cost, penalty, bn) = pipelines[i].apply(song, len(target)) trans_costs.append(trans_cost) penalties.append(penalty) all_beat_names.append(bn) logging.info("Combining tables") total_music_beats = int(np.sum([len(b) for b in beats])) total_beats = total_music_beats + max_pause_beats # combine transition cost tables trans_cost = np.ones((total_beats, total_beats)) * np.inf sizes = [len(b) for b in beats] idx = 0 for i, size in enumerate(sizes): trans_cost[idx:idx + size, idx:idx + size] =\ trans_costs[i][:size, :size] idx += size trans_cost[:total_music_beats, total_music_beats:] =\ np.vstack([tc[:len(beats[i]), len(beats[i]):] for i, tc in enumerate(trans_costs)]) trans_cost[total_music_beats:, :total_music_beats] =\ np.hstack([tc[len(beats[i]):, :len(beats[i])] for i, tc in enumerate(trans_costs)]) trans_cost[total_music_beats:, total_music_beats:] =\ trans_costs[0][len(beats[0]):, len(beats[0]):] # combine penalty tables penalty = np.empty((total_beats, penalties[0].shape[1])) penalty[:total_music_beats, :] =\ np.vstack([p[:len(beats[i]), :] for i, p in enumerate(penalties)]) penalty[total_music_beats:, :] = penalties[0][len(beats[0]):, :] logging.info("Building cost table") # compute the dynamic programming table (prev python method) # cost, prev_node = _build_table(analysis, duration, start, target, pen) # first_pause = 0 # if max_pause_beats > 0: first_pause = total_music_beats if min_beats is None: min_beats = 0 elif min_beats is 'default': min_beats = int(20. / beat_length) if max_beats is None: max_beats = -1 elif max_beats is 'default': max_beats = int(90. / beat_length) max_beats = min(max_beats, penalty.shape[1]) tc2 = np.nan_to_num(trans_cost) pen2 = np.nan_to_num(penalty) beat_names = [] for i, bn in enumerate(all_beat_names): for b in bn: if not str(b).startswith('p'): beat_names.append((i, float(b))) beat_names.extend([('p', i) for i in xrange(max_pause_beats)]) result_labels = [] logging.info("Running optimization (full backtrace, memory efficient)") logging.info("\twith min_beats(%d) and max_beats(%d) and first_pause(%d)" % (min_beats, max_beats, first_pause)) song_starts = [0] for song in songs: song_starts.append(song_starts[-1] + len(song.analysis["beats"])) song_ends = np.array(song_starts[1:], dtype=np.int32) song_starts = np.array(song_starts[:-1], dtype=np.int32) t1 = time.clock() path_i, path_cost = build_table_full_backtrace( tc2, pen2, song_starts, song_ends, first_pause=first_pause, max_beats=max_beats, min_beats=min_beats) t2 = time.clock() logging.info("Built table (full backtrace) in {} seconds" .format(t2 - t1)) path = [] if max_beats == -1: max_beats = min_beats + 1 first_pause_full = max_beats * first_pause n_beats = first_pause for i in path_i: if i >= first_pause_full: path.append(('p', i - first_pause_full)) result_labels.append(None) # path.append('p' + str(i - first_pause_full)) else: path.append(beat_names[i % n_beats]) song_i = path[-1][0] beat_name = path[-1][1] result_labels.append( start[song_i][np.where(np.array(beats[song_i]) == beat_name)[0][0]]) # path.append(float(beat_names[i % n_beats])) # else: # print("Running optimization (fast, full table)") # # this won't work right now- needs to be updated # # with the multi-song approach # # fortran method # t1 = time.clock() # cost, prev_node = build_table(tc2, pen2) # t2 = time.clock() # print("Built table (fortran) in {} seconds".format(t2 - t1)) # res = cost[:, -1] # best_idx = N.argmin(res) # if N.isfinite(res[best_idx]): # path, path_cost, path_i = _reconstruct_path( # prev_node, cost, beat_names, best_idx, N.shape(cost)[1] - 1) # # path_i = [beat_names.index(x) for x in path] # else: # # throw an exception here? # return None # path = [] # result_labels = [] # if max_pause_beats == 0: # n_beats = total_music_beats # first_pause = n_beats # else: # n_beats = first_pause # for i in path_i: # if i >= first_pause: # path.append(('p', i - first_pause)) # result_labels.append(None) # else: # path.append(beat_names[i % n_beats]) # song_i = path[-1][0] # beat_name = path[-1][1] # result_labels.append( # start[song_i][N.where(N.array(beats[song_i]) == # beat_name)[0][0]]) # return a radiotool Composition logging.info("Generating audio") (comp, cf_locations, result_full_labels, cost_labels, contracted, result_volume) =\ _generate_audio( songs, beats, path, path_cost, start, volume=volume, volume_breakpoints=volume_breakpoints, springs=springs, fade_in_len=fade_in_len, fade_out_len=fade_out_len) info = { "beat_length": beat_length, "contracted": contracted, "cost": np.sum(path_cost) / len(path), "path": path, "path_i": path_i, "target_labels": target, "result_labels": result_labels, "result_full_labels": result_full_labels, "result_volume": result_volume, "transitions": [Label("crossfade", loc) for loc in cf_locations], "path_cost": cost_labels } return comp, info
8ed317392e74545916d1ef33e282bce5c6846009
15,590
def st_get_ipfs_cache_path(user_did): """ Get the root dir of the IPFS cache files. :param user_did: The user DID :return: Path: the path of the cache root. """ return _st_get_vault_path(user_did) / 'ipfs_cache'
4217b178025c395619d9def035d11cc96f2b139a
15,591
def create_img_caption_int_data(filepath): """ function to load captions from text file and convert them to integer format :return: dictionary with image ids and associated captions in int format """ print("\nLoading caption data : started") # load caption data img_caption_dict = load_img_caption_data(filepath) # merge caption text data text_data = " ".join([" ".join(txt) for txt in img_caption_dict.values()]) # create word to int mappings (word_to_int_map, int_to_word_map) = create_word_mappings(text_data) # convert caption data to int img_caption_int_dict = {} for key, value in img_caption_dict.items(): img_caption_int_dict[key] = [convert_text_to_int(txt, word_to_int_map) for txt in value] print("\nLoading caption data : completed") return img_caption_int_dict
6d1a449c1b5be7759c65740440865c72546514ef
15,592
def eigenvector_2d_symmetric(a, b, d, eig, eps=1e-8): """Returns normalized eigenvector corresponding to the provided eigenvalue. Note that this a special case of a 2x2 symmetric matrix where every element of the matrix is passed as an image. This allows the evaluation of eigenvalues to be vectorized over the entire image. This is much more efficient than calling the numpy function for computing the eigenvectors for each pixel of the image. This function solves: | a-lambda b | | b d-lambda | [x, y] = 0 Which means that: bx = (lambda - d) y or y = (lambda - a)/b x This solution is invalid for b == 0. Here we expect orthogonal vectors [1 0] and [0 1]. ax + by = l x bx + dy = l y so x = 1 iff b = 0 and l = a and y = 1 iff b = 0 and l = d """ ex = np.zeros(a.shape) ey = np.zeros(a.shape) ex[np.abs(a - eig) < eps] = 1 ey[np.abs(d - eig) < eps] = 1 mask = np.abs(b) > eps tx = b[mask] ty = eig[mask] - a[mask] length = np.sqrt(tx * tx + ty * ty) tx = tx / length ty = ty / length ex[mask] = tx ey[mask] = ty return ex, ey
88a97af77e3f3097b6742db340f8e9559fb8164a
15,593
from typing import Optional def get_protection_path_name(protection: Optional[RouteProtection]) -> str: """Get the protection's path name.""" if protection is None: return DEFAULT_PROTECTION_NAME return protection
f3abaf21c9ba3cfe6c0ae793afaf018fce20dec9
15,594
def _get_object_description(target): """Return a string describing the *target*""" if isinstance(target, list): data = "<list, length {}>".format(len(target)) elif isinstance(target, dict): data = "<dict, length {}>".format(len(target)) else: data = target return data
57ad3803a702a1199639b8fe950ef14b8278bec1
15,595
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None): """ A map of modules from TF to PyTorch. I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): if hasattr(model, "lm_loss"): # We will load also the output bias tf_to_pt_map["model/lm_loss/bias"] = model.lm_loss.bias if hasattr(model, "sequence_summary") and "model/sequnece_summary/summary/kernel" in tf_weights: # We will load also the sequence summary tf_to_pt_map["model/sequnece_summary/summary/kernel"] = model.sequence_summary.summary.weight tf_to_pt_map["model/sequnece_summary/summary/bias"] = model.sequence_summary.summary.bias if ( hasattr(model, "logits_proj") and config.finetuning_task is not None and "model/regression_{}/logit/kernel".format(config.finetuning_task) in tf_weights ): tf_to_pt_map["model/regression_{}/logit/kernel".format(config.finetuning_task)] = model.logits_proj.weight tf_to_pt_map["model/regression_{}/logit/bias".format(config.finetuning_task)] = model.logits_proj.bias # Now load the rest of the transformer model = model.transformer # Embeddings and output tf_to_pt_map.update( { "model/transformer/word_embedding/lookup_table": model.word_embedding.weight, "model/transformer/mask_emb/mask_emb": model.mask_emb, } ) # Transformer blocks for i, b in enumerate(model.layer): layer_str = "model/transformer/layer_%d/" % i tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.rel_attn.o, layer_str + "rel_attn/q/kernel": b.rel_attn.q, layer_str + "rel_attn/k/kernel": b.rel_attn.k, layer_str + "rel_attn/r/kernel": b.rel_attn.r, layer_str + "rel_attn/v/kernel": b.rel_attn.v, layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight, layer_str + "ff/layer_1/bias": b.ff.layer_1.bias, layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight, layer_str + "ff/layer_2/bias": b.ff.layer_2.bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] r_s_list = [] seg_embed_list = [] for b in model.layer: r_r_list.append(b.rel_attn.r_r_bias) r_w_list.append(b.rel_attn.r_w_bias) r_s_list.append(b.rel_attn.r_s_bias) seg_embed_list.append(b.rel_attn.seg_embed) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] r_s_list = [model.r_s_bias] seg_embed_list = [model.seg_embed] tf_to_pt_map.update( { "model/transformer/r_r_bias": r_r_list, "model/transformer/r_w_bias": r_w_list, "model/transformer/r_s_bias": r_s_list, "model/transformer/seg_embed": seg_embed_list, } ) return tf_to_pt_map
b822a5f5effcf1d925dec0e6c6b166ecb89b6627
15,596
def dynamicviewset(viewset): """ The activate route only makes sense if user activation is required, remove the route if activation is turned off """ if not settings['REQUIRE_ACTIVATION'] and hasattr(viewset, 'activate'): delattr(viewset, 'activate') return viewset
f31a191c7c4d51163f588fa4e728f92fb7d43816
15,597
import random def generate_arabic_place_name(min_length=0): """Return a randomly generated, potentially multi-word fake Arabic place name""" make_name = lambda n_words: ' '.join(random.sample(place_names, n_words)) n_words = 3 name = make_name(n_words) while len(name) < min_length: n_words += 1 name = make_name(n_words) return name
7efc760b8dcf5f8807e2d203542fa637908cbad2
15,598
def find_cutoffs(x,y,crdist,deltas): """function for identifying locations of cutoffs along a centerline and the indices of the segments that will become part of the oxbows from MeanderPy x,y - coordinates of centerline crdist - critical cutoff distance deltas - distance between neighboring points along the centerline""" diag_blank_width = int((crdist+20*deltas)/deltas) # distance matrix for centerline points: dist = distance.cdist(np.array([x,y]).T,np.array([x,y]).T) dist[dist>crdist] = np.NaN # set all values that are larger than the cutoff threshold to NaN # set matrix to NaN along the diagonal zone: for k in range(-diag_blank_width,diag_blank_width+1): rows, cols = kth_diag_indices(dist,k) dist[rows,cols] = np.NaN i1, i2 = np.where(~np.isnan(dist)) ind1 = i1[np.where(i1<i2)[0]] # get rid of unnecessary indices ind2 = i2[np.where(i1<i2)[0]] # get rid of unnecessary indices return ind1, ind2 # return indices of cutoff points and cutoff coordinates
82de02759c70ab746d2adcfafd04313cbb0a8c4e
15,599
def training_set_multiplication(training_set, mult_queue): """ Multiply the training set by all methods listed in mult_queue. Parameters ---------- training_set : set of all recordings that will be used for training mult_queue : list of all algorithms that will take one recording and generate more than one. Returns ------- mutliple recordings """ logger.info("Multiply data...") for algorithm in mult_queue: new_trning_set = [] for recording in training_set: samples = algorithm(recording["handwriting"]) for sample in samples: new_trning_set.append( { "id": recording["id"], "is_in_testset": 0, "formula_id": recording["formula_id"], "handwriting": sample, "formula_in_latex": recording["formula_in_latex"], } ) training_set = new_trning_set return new_trning_set
db7105d64ba760ba88088363547795fff833cce6
15,601
def addDictionaryFromWeb(url, params=None, **kwargs): """ 指定した URL にあるページに含まれる辞書メタデータ(JSON-LD)を取得し、 メタデータに記載されている URL から地名解析辞書(CSVファイル)を取得し、 データベースに登録します。 既に同じ identifier を持つ辞書データがデータベースに登録されている場合、 削除してから新しい辞書データを登録します。 登録した辞書を利用可能にするには、 ``setActivateDictionaries()`` または ``activateDictionaires()`` で有効化する必要があります。 Parameters ---------- url : str 辞書メタデータを含むウェブページの URL。 params : dict, optional requests.get に渡す params パラメータ。 **kwargs : dict, optional requests.get に渡す kwargs パラメータ。 Returns ------- bool 常に True。登録に失敗した場合は例外が発生します。 Examples -------- >>> import pygeonlp.api as api >>> api.init() >>> api.addDictionaryFromWeb('https://geonlp.ex.nii.ac.jp/dictionary/geoshape-city/') True >>> api.updateIndex() >>> api.activateDictionaries(pattern=r'geoshape-city') ['geonlp:geoshape-city'] >>> geowords = api.searchWord('千代田区') >>> len(geowords) 1 >>> next(iter(geowords.values()))['dictionary_identifier'] 'geonlp:geoshape-city' """ _check_initialized() return _default_service.addDictionaryFromWeb(url, params, **kwargs)
52ea0c105dd5b5725859cd440f10a1fe163d36be
15,602
from re import T def test_nested_blocks(pprint): """ Expected result: procedure test(x, y: Integer); begin x:=1; y:=200; for z:= 1 to 100 do begin x := x + z; end; y:=x; end; """ def brk(offset=0): "force a new line and indent by given offset" return T.BREAK(blankSpace=9999, offset=offset) text = [ T.BEGIN(breakType=BreakType.consistent, offset=0), T.STRING('procedure test(x, y: Integer);'), brk(), T.STRING("begin"), brk(2), T.STRING("x:=1;"), brk(2), T.STRING("y:=200;"), # indented for loop brk(2), T.BEGIN(breakType=BreakType.consistent, offset=0), T.STRING("for z:= 1 to 100 do"), brk(), T.STRING("begin"), brk(2), T.STRING("x := x + z;"), brk(), T.STRING("end;"), T.END(), brk(2), T.STRING("y:=x;"), brk(), T.STRING("end;"), T.END(), T.EOF()] result = pprint(text) assert result == ( 'procedure test(x, y: Integer);\n' 'begin\n' ' x:=1;\n' ' y:=200;\n' ' for z:= 1 to 100 do\n' ' begin\n' ' x := x + z;\n' ' end;\n' ' y:=x;\n' 'end;' )
7ef533d66f57483fac98bc249fd121e7c47f3d9a
15,603
from typing import Sequence import asyncio async def read( sensors: Sequence[Sensor], msg: str = "", retry_single: bool = False ) -> bool: """Read from the Modbus interface.""" global READ_ERRORS # pylint:disable=global-statement try: try: await SUNSYNK.read(sensors) READ_ERRORS = 0 return True except asyncio.TimeoutError: _LOGGER.error("Read error%s: Timeout", msg) except ModbusIOException: # TCP: try to reconnect since it got a fairly serious error await asyncio.sleep(1) await SUNSYNK.connect() except Exception as err: # pylint:disable=broad-except _LOGGER.error("Read Error%s: %s", msg, err) READ_ERRORS += 1 if READ_ERRORS > 3: raise Exception(f"Multiple Modbus read errors: {err}") from err if retry_single: _LOGGER.info("Retrying individual sensors: %s", [s.name for s in SENSORS]) for sen in sensors: await asyncio.sleep(0.02) await read([sen], msg=sen.name, retry_single=False) return False
7e871984d3b86207a2e9c9909b5f83d3ef9c3c4a
15,604
def boxlist_iou_guide_nms(boxlist, nms_thresh, max_proposals=-1, score_field="scores"): """ Performs non-maximum suppression on a boxlist, with scores specified in a boxlist field via score_field. Arguments: boxlist(BoxList) nms_thresh (float) max_proposals (int): if > 0, then only the top max_proposals are kept after non-maximum suppression score_field (str) """ if nms_thresh <= 0: return boxlist mode = boxlist.mode boxlist = boxlist.convert("xyxy") boxes = boxlist.bbox scores = boxlist.get_field(score_field) ious = boxlist.get_field('ious') keep, scores_new = iou_guide_nms(boxes, scores, ious, nms_thresh) if max_proposals > 0: keep = keep[: max_proposals] scores_new = scores_new[:, max_proposals] boxlist = boxlist[keep] boxlist.add_field("scores", scores_new) return boxlist.convert(mode)
1824575d4768b2145730caa0f9f9809dd784260d
15,605
def get_payload_bin(payload, seconds): """ Since we can't run the ysoserial.exe file in ubuntu (at least not easily with mono) we build the different payloads in windows and save them to the PAYLOADS map above. :param payload: The payload name :param seconds: The seconds to wait :return: The payload """ return SAVED_PAYLOADS[payload][seconds]
eec033969157ec2a67b2f9edbba5b355d25f55bc
15,607
def srange(start, step, length, dtype=None): """ Like np.arange() but you give the start, the step, and the number of steps. Saves having to compute the end point yourself. """ stop = start + (step * length) return np.arange(start, stop, step, dtype)
ba71777c720063cbf5429085d8d249d83634b4f7
15,608
def get_tool_by_id(tool_id): """ returns the tool given the id """ tool = ToolType.objects.get(pk=tool_id) return tool
7cee1d4a484028db94049227f9a968541974cd1e
15,609
import http def domainr(text): """<domain> - uses domain.nr's API to search for a domain, and similar domains :type text: str """ try: data = http.get_json('http://domai.nr/api/json/search?q=' + text) except (http.URLError, http.HTTPError): return "Unable to get data for some reason. Try again later." if data['query'] == "": return "An error occurred: {status} - {message}".format(**data['error']) domains = [format_domain(domain) for domain in data["results"]] return "Domains: {}".format(", ".join(domains))
d44e49c25256a10f242cb8515b1e970cf509676d
15,610
def manage_blog(): """ 博文管理页面路由 """ if 'adminname' in session: if request.method == 'POST': del_result = manage_del_blog(db, Post, Comment, request.form.get('edit_id')) return del_result else: blog_list = Post.query.order_by(Post.post_time.desc()).all() return render_template('admin_blog.html', page_in='blog', blog_list=blog_list) else: return redirect(url_for('login'))
be73948d29e96413bff987447c5b9baa87177ccf
15,611
def split(nodes, index, axis=0): """ Split a array of nodes into two separate, non-overlapping arrays. Parameters ---------- nodes : numpy.ndarray An N x M array of individual node coordinates (i.e., the x-coords or the y-coords only) index : int The leading edge of where the split should occur. axis : int, optional The axis along which ``nodes`` will be split. Use `axis = 0` to split along rows and `axis = 1` for columns. Raises ------ ValueError Trying to split ``nodes`` at the edge (i.e., resulting in the original array and an empty array) will raise an error. Returns ------- n1, n2 : numpy.ndarrays The two non-overlapping sides of the original array. """ if index + 1 >= nodes.shape[axis] or index == 0: raise ValueError("cannot split grid at or beyond its edges") if axis == 0: n1, n2 = nodes[:index, :], nodes[index:, :] elif axis == 1: n1, n2 = nodes[:, :index], nodes[:, index:] return n1, n2
4ba4a078e35c7a4164675eab2fe36c943264bb28
15,612
def smart_oracle(oracle, text, code, block_len, max_rand): """Call oracle normally, or repeatedly call oracle in case of random prefix. Returns "clean" oracle ouptut regardless of whether the oracle adds a random prefix. """ if not max_rand: return oracle(text, code) if code else oracle(text) # append arbitrary bytes unlikely to occur in attacker-controlled plaintext text_mod = bytearray([7] * block_len * 2) + text success = False while not success: encrypted = oracle(text_mod, code) if code else oracle(text_mod) text_start = blocks_aligned(encrypted, block_len, max_rand) if text_start is not None: success = True return encrypted[text_start:]
fb20586236509838333b2723b24ead9fba9f2887
15,613
def inference_video_feed(request, project_id): """inference_video_feed """ return Response({ "status": "ok", "url": "http://" + inference_module_url() + "/video_feed?inference=1", })
7751737093b0f1cd72301e3dcd07c9ab929c9931
15,615
from datetime import datetime def extract_start_timestamp() -> datetime: """Define extraction start timestamp. Returns: Extraction start timestamp used for testing. """ timestamp = datetime(2019, 8, 6, tzinfo=timezone.utc) return timestamp
f03668c5b19a05c623040b8be1ff6fca23765437
15,616
def phi_pdf(X, corr=None): """ Standard normal PDF/Multivariate pdf. **Input:** * **X** (`float`) Argument. * **corr** (`ndarray`) Correlation matrix. **Output** Standard normal PDF of X. """ norm_pdf = None if isinstance(X, int) or isinstance(X, float): norm_pdf = norm.pdf(X, loc=0, scale=1) else: if np.trace(corr) != len(X): shape_error(' X or corr ') else: norm_pdf = multivariate_normal.pdf(X, cov=corr) return norm_pdf
31566a5e0c50eaae7be367f7ccfd5dc0c1bfcd94
15,617
def computeStatistic( benchmarks, field, func ): """ Return the result of func applied to the values of field in benchmarks. Arguments: benchmarks: The list of benchmarks to gather data from. field: The field to gather from the benchmarks. func: The function to apply to the data, must accept a list and return a single value. """ results = [] for benchmark in benchmarks: results.append( benchmark[ field ] ) return func( results )
7eced912d319a3261170f8274c4562db5e28c34c
15,618
import re def bus_update_request(payload): """Parser for `bus_update_request` tracepoint""" try: match = re.match(bus_update_request_pattern, payload) if match: match_group_dict = match.groupdict() return BusUpdateRequest(**match_group_dict) except Exception as e: raise ParserError(e.message)
ea5d95eaef4964b900b5201a8878886529f8c132
15,619
def update_employee(request,id): """ Updating the employee profile. """ try: obj = User.objects.get(id=id) total_cl = obj.no_of_cl total_sl = obj.no_of_sl total_wh = obj.no_of_wh attendance_cl = Attendance.objects.filter(id=id,leave_type='cl',approved_or_not=True).count() attendance_sl = Attendance.objects.filter(id=id,leave_type='sl',approved_or_not=True).count() attendance_wh = Attendance.objects.filter(id=id,leave_type='wl',approved_or_not=True).count() taken_cl = (total_cl-attendance_cl) taken_sl = (total_sl-attendance_sl) taken_wh = (total_wh-attendance_wh) if request.method == "GET": form = EmployeeCreationForm(instance=obj,initial={'email':obj.email}) context = { 'form':form, 'obj':obj, 'attendance_cl':attendance_cl, 'attendance_sl':attendance_sl, 'attendance_wh':attendance_wh, 'taken_cl':taken_cl, 'taken_sl':taken_sl, 'taken_wh':taken_wh } return render (request,'Employees/edit_employee.html', context) elif request.method == "POST": form = EmployeeCreationForm(request.POST,request.FILES,instance=obj) if form.is_valid(): form_save = form.save(commit=False) form_save.email = form.cleaned_data['email'] form_save.img = form.cleaned_data['img'] form_save.save() return render(request,'Employees/edit_employee.html',{'form':form}) else: return render(request,'Employees/edit_employee.html',{'form':form}) else: return HttpResponseRedirect('/forbidden/') except Exception, e: return HttpResponseRedirect('/error/')
bcbfd2183ad6ea835b8e6fc4d6818b0bd31ea051
15,620
def func(TI, S0, alpha, T1): """ exponential function for T1-fitting. Args ---- x (numpy.ndarray): Inversion times (TI) in the T1-mapping sequence as input for the signal model fit. Returns ------- a, b, T1 (numpy.ndarray): signal model fitted parameters. """ mz = 1 - alpha * np.exp(-TI*(alpha-1)/T1) return np.abs(S0 * mz)
605393be1aaf9f70f7f65c56dc5a31d4a38390e7
15,621
def make_random_coordinate(): """ Make a random coordinate dictionary""" return make_coordinate(randint(0, 100), randint(0, 100))
7719714d19e94a5be2ae3f93fc5290514bfe4b5e
15,623
def inv_qft_core(qubits): """ Generates a quil programm that performs inverse quantum fourier transform on given qubits without swaping qubits at the end. :param qubits: A list of qubit indexes. :return: A Quil program to compute the invese QFT of the given qubits without swapping. """ qft_quil = Program.inst(qft_core(qubits, coef=-1)) inv_qft_quil = Program() while(len(qft_quil) > 0): inst = qft_quil.pop() inv_qft_quil.inst(inst) return inv_qft_quil
3c7982cdb44398e1730a3aaaeee2c323694fae96
15,624
def analysis_precheck(_id, feature_table, rep_seqs, taxonomy, metadata): """ Do prechecks as to decrease the chance of job failing. Input: - feature_table: QIIME2 artifact of type FeatureTable[Frequency] - rep_seqs: QIIME2 artifact of type FeatureData[Sequence] """ feature_table_path = save_uploaded_file(_id, feature_table) rep_seqs_path = save_uploaded_file(_id, rep_seqs) taxonomy_path = save_uploaded_file(_id, taxonomy) metadata_path = save_uploaded_file(_id, metadata) def validate_analysis_input(feature_table, rep_seqs, taxonomy): """ Precheck input files prior to running denoise step Input: - feature_table: Path to QIIME2 artifact of type FeatureTable[Frequency] - rep_seqs: Path to QIIME2 artifact of type FeatureData[Sequence] """ # Check Artifact type try: feature_table_artifact = Artifact.load(feature_table) rep_seqs_artifact = Artifact.load(rep_seqs) if(str(feature_table_artifact.type) != "FeatureTable[Frequency]"): msg = "Input Feature Table is not of type 'FeatureTable[Frequency]'!" raise ValueError(msg) if(str(rep_seqs_artifact.type) != "FeatureData[Sequence]"): msg = "Input Representative Sequences is not of type 'FeatureData[Sequence]'!" raise ValueError(msg) except ValueError as err: message = str(err) return 400, message return 200, "Imported data good!" responseIfError(validate_analysis_input, feature_table=feature_table_path, rep_seqs=rep_seqs_path, taxonomy=taxonomy_path) return feature_table_path, rep_seqs_path, taxonomy_path, metadata_path
65dde12b312926d185722a09779c8d11705d71dc
15,625
import socket async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up Deluge from a config entry.""" host = entry.data[CONF_HOST] port = entry.data[CONF_PORT] username = entry.data[CONF_USERNAME] password = entry.data[CONF_PASSWORD] api = await hass.async_add_executor_job( DelugeRPCClient, host, port, username, password ) api.web_port = entry.data[CONF_WEB_PORT] try: await hass.async_add_executor_job(api.connect) except ( ConnectionRefusedError, socket.timeout, SSLError, ) as ex: raise ConfigEntryNotReady("Connection to Deluge Daemon failed") from ex except Exception as ex: # pylint:disable=broad-except if type(ex).__name__ == "BadLoginError": raise ConfigEntryAuthFailed( "Credentials for Deluge client are not valid" ) from ex _LOGGER.error("Unknown error connecting to Deluge: %s", ex) coordinator = DelugeDataUpdateCoordinator(hass, api, entry) await coordinator.async_config_entry_first_refresh() hass.data.setdefault(DOMAIN, {})[entry.entry_id] = coordinator hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True
70ab1c52569274eb7125e56f38028db3eb792259
15,626
import cmath def powerFactor(n): """Function to compute power factor given a complex power value Will this work if we're exporting power? I think so... """ # Real divided by apparent pf = n.real.__abs__() / n.__abs__() # Determine lagging vs leading (negative). # NOTE: cmath.phase returns counter-clockwise angle on interval [-pi, pi], # so checking sign should be reliable for determining lead vs. lag p = cmath.phase(n) if p < 0: return (pf, 'lead') else: return (pf, 'lag')
1a507818f9c9906d27a1374cc9b757766b3038c1
15,627
import requests import html def send_request(url, raise_errors): """ Sends a request to a URL and parses the response with lxml. """ try: response = requests.get(url, headers={'Accept-Language': '*'}, verify=_PEM_PATH) response.raise_for_status() doc = html.fromstring(response.text) return doc except requests.exceptions.RequestException: if raise_errors: raise return None
ddf8dc7c899b97cebdc45727bd43ca1acf015ecb
15,628
def _static_idx(idx, size): """Helper function to compute the static slice start/limit/stride values.""" assert isinstance(idx, slice) start, stop, step = idx.indices(size) if (step < 0 and stop >= start) or (step > 0 and start >= stop): return 0, 0, 1, False # sliced to size zero if step > 0: return start, stop, step, False else: k = (start - stop - 1) % (-step) return stop + k + 1, start + 1, -step, True
8c586375f018be36c0e7688549a551d17d4e2bc8
15,629
def crop_array(input_array, ylength, xlength=None, orgn=(0,0)): """Crops an image in numpy array format. Pads crops outside of input image with zeros if necessary. If no y dimension is specified, outputs a square image. """ if xlength == None: xlength = ylength ylength = int(ylength) xlength = int(xlength) orgn = (int(orgn[0]), int(orgn[1])) target = np.zeros((ylength, xlength)) #slice ranges ymin = max(orgn[0], 0) xmin = max(orgn[1], 0) ymax = min(orgn[0] + ylength, input_array.shape[0]) xmax = min(orgn[1] + xlength, input_array.shape[1]) yslice = slice(ymin, ymax) xslice = slice(xmin, xmax) #top, left, bottom, right pads tp = max(-orgn[0], 0) lp = max(-orgn[1], 0) bp = max((ylength + orgn[0] - tp - input_array.shape[0]), 0) rp = max((xlength + orgn[1] - lp - input_array.shape[1]), 0) #insert slice into the right spot. target[tp:(ylength-bp),lp:(xlength-rp)] = input_array[yslice, xslice] return target
4daeb126a8424fc038a5a42448d17eada9d12ee3
15,630
def get_service_defaults(servicename, version, **_): """ Load the default configuration for a given service version Variables: servicename => Name of the service to get the info version => Version of the service to get Data Block: None Result example: {'accepts': '(archive|executable|java|android)/.*', 'category': 'Extraction', 'classpath': 'al_services.alsvc_extract.Extract', 'config': {'DEFAULT_PW_LIST': ['password', 'infected']}, 'cpu_cores': 0.1, 'description': "Extracts some stuff" 'enabled': True, 'name': 'Extract', 'ram_mb': 256, 'rejects': 'empty|metadata/.*', 'stage': 'EXTRACT', 'submission_params': [{'default': u'', 'name': 'password', 'type': 'str', 'value': u''}, {'default': False, 'name': 'extract_pe_sections', 'type': 'bool', 'value': False}, {'default': False, 'name': 'continue_after_extract', 'type': 'bool', 'value': False}], 'timeout': 60} """ service = STORAGE.service.get(f"{servicename}_{version}", as_obj=False) if service: return make_api_response(service) else: return make_api_response("", err=f"{servicename} service does not exist", status_code=404)
2ba13382e2d5a668f1653f90fed5efe01200d6e2
15,631
def read_nnet3_model(model_path: str) -> nnet3.Nnet: """Read in a nnet3 model in raw format. Actually if this model is not a raw format it will still work, but this is not an official feature; it was due to some kaldi internal code. Args: model_path: Path to a raw nnet3 model, e.g., "data/final.raw" Returns: nnet: A neural network AM. """ nnet = nnet3.Nnet() with xopen(model_path) as istream: nnet.read(istream.stream(), istream.binary) return nnet
b5dbadeb0f2072dfeccd1f4fdc77990680d12068
15,632
def flat_list_of_lists(l): """flatten a list of lists [[1,2], [3,4]] to [1,2,3,4]""" return [item for sublist in l for item in sublist]
c121dff7d7d9a4da55dfb8aa1337ceeea191fc30
15,633
def cancel(api, order_ids=None): """ DELETE all orders by api["symbol"] (or) by symbol and order_id: """ if DETAIL: print(cancel.__doc__, "symbol", api['symbol'], "order_ids", order_ids) if order_ids is None: order_ids = [] # must be a list # format remote procedure call to exchange api standards symbol = symbol_syntax(api["exchange"], api['symbol']) if not order_ids: print("Cancel All") else: print("Cancel Order Ids:", order_ids) # Coinbase and Poloniex offer both Cancel All and Cancel One if api["exchange"] in ["coinbase", "poloniex"]: if order_ids: # Cancel a list of orders ret = [] for order_id in order_ids: print("Cancel Order", order_id) if api["exchange"] == "coinbase": api["endpoint"] = "/orders/" + str(order_id) api["params"] = {} api["method"] = "DELETE" elif api["exchange"] == "poloniex": api["endpoint"] = "/tradingApi" api["params"] = {"command": "cancelOrder", "orderNumber": int(order_id)} api["method"] = "POST" response = process_request(api) ret.append({"order_id": order_id, "response": response}) else: # Cancel All if api["exchange"] == "coinbase": api["endpoint"] = "/orders" api["params"] = {"product_id": symbol} api["method"] = "DELETE" elif api["exchange"] == "poloniex": api["endpoint"] = "/tradingApi" api["params"] = {"command": "cancelAllOrders", "currencyPair": symbol} api["method"] = "POST" ret = process_request(api) # Handle cases where "Cancel All" in one market is not supported elif api["exchange"] in ["kraken", "binance", "bittrex", "Bitfinex"]: if (api["exchange"] == "bitfinex") and not api["symbol"]: print("WARN: Cancel All in ALL MARKETS") api["endpoint"] = "/v2/auth/w/order/cancel/multi" api["params"] = {} api["method"] = "POST" ret = process_request(api) else: # If we have an order_ids list we'll use it, else make one if not order_ids: print("Open Orders call to suppport Cancel All") orders = get_orders(api) order_ids = [] for order in orders["asks"]: order_ids.append(order["order_id"]) for order in orders["bids"]: order_ids.append(order["order_id"]) ret = [] for order_id in order_ids: print("Cancel Order", order_id) if api['exchange'] == "bitfinex": api["endpoint"] = "/v2/auth/w/order/cancel" api["params"] = {"id": order_id} api["method"] = "" elif api["exchange"] == "binance": api["endpoint"] = "/api/v3/order" api["params"] = {"symbol": symbol, "orderId": order_id} api["method"] = "DELETE" elif api["exchange"] == "bittrex": api["endpoint"] = "/api/v1.1/market/cancel" api["params"] = {"uuid": order_id} api["method"] = "GET" elif api["exchange"] == "kraken": api["endpoint"] = "/0/private/CancelOrder" api["params"] = {"txid": order_id} api["method"] = "POST" response = process_request(api) ret.append(response) return ret
24688256b20d3fdcc40eebb393ab98a963037d96
15,634
def decrypt(mess, key): """Decrypt the cypher text using AES decrypt""" if len(key) % 16 != 0: a = 16 - len(key) % 16 key = key.ljust(len(key) + a) cipher = AES.new(key) plain_txt = cipher.decrypt(mess) return plain_txt
eb587960d63539e1e57158f84174af5b5dae3fb5
15,636
def multiVecMat( vector, matrix ): """ Pronásobí matici vektorem zprava. Parametry: ---------- vector: list Vektor matrix: list Pronásobená matice. Její dimenze se musí shodovat s dimenzí vektoru. Vrací: list Pole velikosti vektoru. """ # Vytvoří pole o velikosti vektoru result = [0] * len( matrix[0] ) # Projde matici po řádcích for r, row in enumerate( matrix ): # Pokud nesedí rozměry, končíme if len(row) != len(vector): return None # Projde každý prvek v řádku for i, elem in enumerate( row ): # K poli s výsledkem přičte na index aktuálního řádku výsledek # násobení aktuálního prvku v řádku a jemu odpovídajícího # prvku z vektoru. result[r] += elem * vector[i] return result
8a10241173ab981d6007d8ff939199f9e86806e5
15,637
def verify_state( state_prec_gdf, state_abbreviation, source, year, county_level_results_df, office, d_col=None, r_col=None, path=None, ): """ returns a complete (StateReport) object and a ((CountyReport) list) for the state. :state_prec_gdf: (GeoDataFrame) containing precinct geometries and election results :state_abbreviation: (str) e.g. 'MA' for Massachusetts :source: (str) person or organization that made the 'state_prec_gdf' e.g 'VEST' :year: (str) 'YYYY' indicating the year the election took place e.g. '2016' :county_level_results_df: (DataFrame) containing official county-level election results :office: (str) office to be evaluated in vote validation e.g. 'U.S. Senate' :d_col: (str) denotes the column for democratic vote counts in each precinct :r_col: (str) denotes the column for republican vote counts in each precinct :path: (str) filepath to which the report should be saved (if None it won't be saved) d_col, r_col are optional - if they are not provided, `get_party_cols` will be used to guess based on comparing each column in state_prec_gdf to the expected results. """ print("Starting verification process for: ", state_abbreviation, source, year) state_prec_gdf = state_prec_gdf.reset_index() county_level_results_df = county_level_results_df.reset_index() # enforce expected schema assert "geometry" in state_prec_gdf.columns assert {"county", "GEOID", "party", "votes"}.issubset( set(county_level_results_df.columns) ) # assign d_col and r_col if not d_col or not r_col: print("Candidate vote count columns are being assigned automatically") d_col, r_col = get_party_cols(state_prec_gdf, state_abbreviation) else: print("Candidate vote count columns are being assigned manually") print("Choose d_col as: ", d_col) print("Choose r_col as: ", r_col) state_prec_gdf = state_prec_gdf.rename(columns={d_col: "d_col", r_col: "r_col"}) # remove unecessary columns cols_to_keep = ["d_col", "r_col", "geometry"] if "GEOID" in state_prec_gdf.columns: cols_to_keep.append("GEOID") state_prec_gdf = state_prec_gdf[cols_to_keep] print("Verification will now begin with this GeoDataFrame: \n") print(state_prec_gdf.head()) # initialize state report print("Starting Vote Verification") state_report = StateReport( county_level_results_df, state_prec_gdf, state_abbreviation, year, source, office, ) # poplulate the report print("Starting Topology Verification") state_report = verify_topology(state_prec_gdf, state_report) print("Starting County Verification") # assign GEOID if "GEOID" not in state_prec_gdf.columns: try: print("Missing GEOID Column - attempting automatic assignment") state_prec_gdf = assign_GEOID(state_prec_gdf, state_report.fips) print("GEOID assignment successful") except: pass else: print("Using the GEOID Column in the original shapefile.") assert "GEOID" in state_prec_gdf.columns state_report, county_reports = verify_counties( state_prec_gdf, county_level_results_df, state_report ) if path: make_report(path, state_report, county_reports) print("All done!\n") return state_report, county_reports
245baf26d1fad646abcee493bfa31935f2d1db59
15,638
import requests def remove_profile(serial, profile_id): """hubcli doesn't remove profiles so we have to do this server-side.""" r = requests.post( url=f"https://{ AIRWATCH_DOMAIN }/API/mdm/profiles/{ profile_id }/remove", json={"SerialNumber": serial}, headers={ "aw-tenant-code": AIRWATCH_KEY, "Content-Type": "application/json", "Accept": "application/json", }, auth=HTTPBasicAuth(AIRWATCH_USER, AIRWATCH_PASSWORD), ) r.raise_for_status() return r
8a47cd5c6588c3140d9e44aac94b59916517345a
15,639
def KELCH(df, n): """ Keltner Channel """ temp = (df['High'] + df['Low'] + df['Close']) / 3 KelChM = pd.Series(temp.rolling(n).mean(), name='KelChM_' + str(n)) temp = (4 * df['High'] - 2 * df['Low'] + df['Close']) / 3 KelChU = pd.Series(temp.rolling(n).mean(), name='KelChU_' + str(n)) temp = (-2 * df['High'] + 4 * df['Low'] + df['Close']) / 3 KelChD = pd.Series(temp.rolling(n).mean(), name='KelChD_' + str(n)) result = pd.DataFrame([KelChM, KelChU, KelChD]).transpose() return out(SETTINGS, df, result)
3335fd45ce073eec33d65b7a6d23c07b6a71a662
15,641
def wait_until_complete(jobs): """wait jobs finish""" return [j.get() for j in jobs]
530c3af30ca40025891980191c1f121d8f026a53
15,643
import io def torquery(url): """ Uses pycurl to fetch a site using the proxy on the SOCKS_PORT. """ output = io.BytesIO() query = pycurl.Curl() query.setopt(pycurl.URL, url) query.setopt(pycurl.PROXY, 'localhost') query.setopt(pycurl.PROXYPORT, SOCKS_PORT) query.setopt(pycurl.PROXYTYPE, pycurl.PROXYTYPE_SOCKS5_HOSTNAME) query.setopt(pycurl.WRITEFUNCTION, output.write) try: query.perform() return output.getvalue() except pycurl.error as exc: return "Unable to reach %s (%s)" % (url, exc)
7ae660a9a5c3af7be0fbf8789cc96d481863a2c4
15,644
def check_for_negative_residual(vel, data, errors, best_fit_list, dct, signal_ranges=None, signal_mask=None, force_accept=False, get_count=False, get_idx=False, noise_spike_mask=None): """Check for negative residual features and try to refit them. We define negative residual features as negative peaks in the residual that were introduced by the fit. These negative peaks have to have a minimum negative signal-to-noise ratio of dct['snr_negative']. In case of a negative residual feature, we try to replace the Gaussian fit component that is causing the feature with two narrower components. We only accept this solution if it yields a better fit as determined by the AICc value. Parameters ---------- vel : numpy.ndarray Velocity channels (unitless). data : numpy.ndarray Original data of spectrum. errors : numpy.ndarray Root-mean-square noise values. best_fit_list : list List containing parameters of the current best fit for the spectrum. It is of the form [{0} params_fit, {1} params_errs, {2} ncomps_fit, {3} best_fit, {4} residual, {5} rchi2, {6} aicc, {7} new_fit, {8} params_min, {9} params_max, {10} pvalue] dct : dict Dictionary containing parameter settings for the improved fitting. signal_ranges : list Nested list containing info about ranges of the spectrum that were estimated to contain signal. The goodness-of-fit calculations are only performed for the spectral channels within these ranges. signal_mask : numpy.ndarray Boolean array containing the information of signal_ranges. force_accept : bool Experimental feature. Default is 'False'. If set to 'True', the new fit will be forced to become the best fit. get_count : bool Default is 'False'. If set to 'True', only the number of occurring negative residual features will be returned. get_idx : bool Default is 'False'. If set to 'True', the index of the Gaussian fit component causing the negative residual feature is returned. In case of multiple negative residual features, only the index of one of them is returned. Returns ------- best_fit_list : list List containing parameters of the chosen best fit for the spectrum. It is of the form [{0} params_fit, {1} params_errs, {2} ncomps_fit, {3} best_fit, {4} residual, {5} rchi2, {6} aicc, {7} new_fit, {8} params_min, {9} params_max, {10} pvalue] """ params_fit = best_fit_list[0] ncomps_fit = best_fit_list[2] # in case a single rms value is given instead of an array if not isinstance(errors, np.ndarray): errors = np.ones(len(data)) * errors if ncomps_fit == 0: if get_count: return 0 return best_fit_list residual = best_fit_list[4] amps_fit, fwhms_fit, offsets_fit = split_params(params_fit, ncomps_fit) amp_guesses, fwhm_guesses, offset_guesses = get_initial_guesses( residual, errors[0], dct['snr_negative'], dct['significance'], peak='negative') # check if negative residual feature was already present in the data remove_indices = [] for i, offset in enumerate(offset_guesses): if residual[offset] > (data[offset] - dct['snr']*errors[0]): remove_indices.append(i) if len(remove_indices) > 0: amp_guesses, fwhm_guesses, offset_guesses = remove_components_from_sublists( [amp_guesses, fwhm_guesses, offset_guesses], remove_indices) if get_count: return (len(amp_guesses)) if len(amp_guesses) == 0: return best_fit_list # in case of multiple negative residual features, sort them in order of increasing amplitude values sort = np.argsort(amp_guesses) amp_guesses = np.array(amp_guesses)[sort] fwhm_guesses = np.array(fwhm_guesses)[sort] offset_guesses = np.array(offset_guesses)[sort] for amp, fwhm, offset in zip(amp_guesses, fwhm_guesses, offset_guesses): idx_low = max(0, int(offset - fwhm)) idx_upp = int(offset + fwhm) + 2 exclude_idx = check_which_gaussian_contains_feature( idx_low, idx_upp, fwhms_fit, offsets_fit) if get_idx: return exclude_idx if exclude_idx is None: continue params_fit = replace_gaussian_with_two_new_ones( data, vel, errors[0], dct['snr'], dct['significance'], params_fit, exclude_idx, offset) best_fit_list = get_best_fit( vel, data, errors, params_fit, dct, first=False, best_fit_list=best_fit_list, signal_ranges=signal_ranges, signal_mask=signal_mask, force_accept=force_accept, noise_spike_mask=noise_spike_mask) params_fit = best_fit_list[0] ncomps_fit = best_fit_list[2] amps_fit, fwhms_fit, offsets_fit = split_params(params_fit, ncomps_fit) return best_fit_list
3901af224a080e99aa0cfdef22a27b8951ee4c3c
15,645
import requests import shutil def download(url, filename, proxies=None): """ Telechargement de l'URL dans le fichier destination :param url: URL a telecharger :param filename: fichier de destination """ error = '' try: req = requests.get(url, proxies=proxies, stream=True) with open(filename, "wb") as f: shutil.copyfileobj(req.raw, f) except FileNotFoundError as fnf: error = f"Error while downloading {url} - I/O Problem with {filename} : FileNotFound -> check path" except Exception as ex: error = f"Error while downloading {url}. {str(ex)}" return len(error) == 0, error, filename
da097b46aef574623ac975aa8d5e9506ff191d53
15,647
import json async def validate_devinfo(hass, data): """检验配置是否缺项。无问题返回[[],[]],有缺项返回缺项。""" # print(result) devtype = data['devtype'] ret = [[],[]] requirements = VALIDATE.get(devtype) if not requirements: return ret else: for item in requirements[0]: if item not in json.loads(data[CONF_MAPPING]): ret[0].append(item) for item in requirements[1]: if item not in json.loads(data[CONF_CONTROL_PARAMS]): ret[1].append(item) return ret
7e0822ae36617f209447221dc49f0485e88759e9
15,648
from datetime import datetime def worldbank_date_to_datetime(date): """Convert given world bank date string to datetime.date object.""" if "Q" in date: year, quarter = date.split("Q") return datetime.date(int(year), (int(quarter) * 3) - 2, 1) if "M" in date: year, month = date.split("M") return datetime.date(int(year), int(month), 1) return datetime.date(int(date), 1, 1)
f36fb2c763da59ae58a08f446e4cbd566d6e87e0
15,650
from typing import Sequence def select( key: bytes, seq: Sequence[BucketType], *, seed: bytes = DEFAULT_SEED ) -> BucketType: """ Select one of the elements in seq based on the hash of ``key``. Example partitioning of input on ``stdin`` into buckets:: bucketed_lines = {} # type: Dict[int, str] for line in sys.stdin: buckets[choice(b, [0, 1, 2, 3, 4, 5])] = line :param key: The bytes to hash. :param seq: The sequence from which to select an element. Must be non-empty. :param seed: Seed to hash prior to hashing b. :raise ValueError: If ``seq`` is empty. :return: One of the elements in ``seq``. """ if not seq: raise ValueError("non-empty sequence required") return seq[range(key, len(seq), seed=seed)]
d9f3a2f3aa759f252965478e0f065a555b23a24d
15,651
def unescape(s): """ unescape html """ html_codes = ( ("'", '&#39;'), ('"', '&quot;'), ('>', '&gt;'), ('<', '&lt;'), ('&', '&amp;') ) for code in html_codes: s = s.replace(code[1], code[0]) return s
c1434498694d90b219c962c0ce75b6c8978533bb
15,652
def ua_mnem(*args): """ua_mnem(ea_t ea, char buf) -> char""" return _idaapi.ua_mnem(*args)
23322dd3780c9184ebed9f6006a0fad37000f29a
15,653
import time def tic(*names): """ Start timer, use `toc` to get elapsed time in seconds. Parameters ---------- names : str, str, ... Names of timers Returns ------- out : float Current timestamp Examples -------- .. code-block:: python :linenos: :emphasize-lines: 10,11,12 import plazy def foo(): total = 0 for _ in range(100000): total += 1 return total if __name__ == "__main__": plazy.tic() # T1 plazy.tic("B") # T2 plazy.tic("C", "D", "E") # T3 foo() dt1 = plazy.toc() # elapsed time since T1 dt2 = plazy.toc("B") # elapsed time since T2 dt3 = plazy.toc("C", "D") # elapsed time since T3 foo() dt4 = plazy.toc("E") # elapsed time since T3 dt5 = plazy.toc("B") # elapsed time since T2 print(dt1) # 0.009924173355102539 print(dt2) # 0.009925603866577148 print(dt3) # [0.00992727279663086, 0.00992727279663086] print(dt4) # 0.020497798919677734 print(dt5) # 0.020506620407104492 See also -------- toc """ now_ts = time.time() name_arr = list(names) + ( [ g_time_store.default_name, ] if len(names) == 0 else [] ) for n in name_arr: g_time_store.set_time(name=n, value=now_ts) return now_ts
af9d93a092bed7849150cb3256a8fac6cc20f7d9
15,654
def retrieve_database(): """Return the contents of MongoDB as a dataframe.""" return pd.DataFrame(list(restaurant_collection.find({})))
20d53dff1cc3164cedef303f8c4e38f7774e9f5e
15,657
from typing import List def readAbstractMethodsFromFile(file: str) -> List[AbstractMethod]: """ Returns a list of `AbstractMethods` read from the given `file`. The file should have one `AbstractMethod` per line with tokens separated by spaces. """ abstractMethods = [] with open(file, "r") as f: for line in f: abstractMethods.append(AbstractMethod(line.strip())) return abstractMethods
44a1fb346bfbb0eb71882b623887744dbbfb5143
15,658
from typing import Callable def recursive_descent(data: np.ndarray, function: Callable): """ **Recursivly process an `np.ndarray` until the last dimension.** This function applies a callable to the very last dimension of a numpy multidimensional array. It is foreseen for time series processing expecially in combination with the function `ts_gaf_transform`. + param **data**: multidimensional data, type `np.ndarray`. + param **function**: callable, type `Callable`. + return **function(data)**: all kind of processed data. """ if len(data.shape) == 1: return function(data) for i in range(0, data.shape[0]): return ts_recursive_descent(data[i], function)
c5955f5c3968aae53ae222cc4c0288320c3fb1c6
15,660
def watt_spectrum(a, b): """ Samples an energy from the Watt energy-dependent fission spectrum. Parameters ---------- a : float Spectrum parameter a b : float Spectrum parameter b Returns ------- float Sampled outgoing energy """ return _dll.watt_spectrum(a, b)
0682a8791cb1b1cce93b4449bebfa2ac098fde20
15,661
def get_definition_from_stellarbeat_quorum_set(quorum_set: QuorumSet) -> Definition: """Turn a stellarbeat quorum set into a quorum slice definition""" return { 'threshold': quorum_set['threshold'], 'nodes': set(quorum_set['validators']) if 'validators' in quorum_set else set(), 'children_definitions': [ get_definition_from_stellarbeat_quorum_set(inner_quorum_set) for inner_quorum_set in quorum_set['innerQuorumSets'] ] if 'innerQuorumSets' in quorum_set else set() }
6259c820c4b920672f8b2333826f9996de3cd405
15,662
def values(names): """ Method decorator that allows inject return values into method parameters. It tries to find desired value going deep. For convinience injects list with only one value as value. :param names: dict of "value-name": "method-parameter-name" """ def wrapper(func): @wraps(func) def wrapped_func(*args, **kwargs): if len(args)>1: instance=args[1] else: instance = kwargs['instance'] def findReturnValues(rvalues): for k, v in rvalues.iteritems(): if isinstance(v, dict): findReturnValues(v) #go deep, to find desired name if k in names.keys(): if isinstance(v,list) and len(v)==1: kwargs.update({names[k]: v[0]}) else: kwargs.update({names[k]: v}) findReturnValues(instance.returnValues) #ensure all names was set missing_params = [k for k, v in names.items() if v not in kwargs] if missing_params: raise AttributeError("Parameters {0} for '{1}' were not found".format(missing_params, func.__name__), missing_params) func(*args, **kwargs) return wrapped_func return wrapper
72e958692a14254b26e7ff1241103aa0a1063a33
15,663
from operator import or_ def select_user(with_dlslots=True): """ Select one random user, if can_download is true then user must have download slots available :returns User """ with session_scope() as db: try: query = db.query(User).filter(User.enabled.is_(True)) if with_dlslots: query = query.filter(or_( User.downloads_limit > User.downloads_today, User.downloads_limit.is_(None) )) user = query.order_by(func.random()).limit(1).one() except NoResultFound: raise OperationInterruptedException('No suitable users found') else: db.expunge(user) return user
2ba3e6c8b0f5488aa770fa982d3206c2dde5d0e1
15,664
def silero_number_detector(onnx=False): """Silero Number Detector Returns a model with a set of utils Please see https://github.com/snakers4/silero-vad for usage examples """ if onnx: url = 'https://models.silero.ai/vad_models/number_detector.onnx' else: url = 'https://models.silero.ai/vad_models/number_detector.jit' model = Validator(url) utils = (get_number_ts, save_audio, read_audio, collect_chunks, drop_chunks) return model, utils
46fa5a33b9e33cfebdc081e062f98711e3e8be61
15,665
def etaCalc(T, Tr = 296.15, S = 110.4, nr = 1.83245*10**-5): """ Calculates dynamic gas viscosity in kg*m-1*s-1 Parameters ---------- T : float Temperature (K) Tr : float Reference Temperature (K) S : float Sutherland constant (K) nr : float Reference dynamic viscosity Returns ------- eta : float Dynamic gas viscosity in kg*m-1*s-1 """ eta = nr * ( (Tr + S) / (T+S) )*(T/Tr)**(3/2) return eta
3f8182ea29fd558e86280477f2e435247d09798e
15,666
def refine_markers_harris(patch, offset): """ Heuristically uses the max Harris response for control point center. """ harris = cv2.cornerHarris(patch, 2, 5, 0.07) edges = np.where(harris < 0, np.abs(harris), 0) point = np.array(np.where(harris == harris.max())).flatten() point += offset return np.float64(point)
afa080a8292c210f04483cddf8d81e297b5f2aec
15,667
def get_realtime_price(symbol): """ 获取实时股价 :param symbol: :return: """ try: df = get_real_price_dataframe() df_s = df[df['code'] == symbol] if len(df_s['trade'].get_values()): return df_s['trade'].get_values()[0] else: return -1 except: return -1
af81787ab00283309829a6af2ef04155f73f360c
15,668
def create_employee(db_session: Session, employee: schemas.EmployeeRequest): """ Create new employee """ new_employee = Employee( idir=employee.idir, status=employee.status, location=employee.location, phone=employee.phone) db_session.add(new_employee) db_session.commit() db_session.refresh(new_employee) return db_session.query(Employee).filter(Employee.idir == employee.idir).first()
1f858412e0e2c94ca40414054c28d67639b620aa
15,669
def sim_categorical(var_dist_params, size): """ Function to simulate data for a categorical/Discrete variable. """ values = var_dist_params[0] freq = var_dist_params[1] data_sim = np.random.choice(a=values, p=freq, size=size) return data_sim
1b81eac17f041a9200b8c96b9c86310d6d3b003f
15,670
def validSolution(board: list) -> bool: """ A function validSolution/ValidateSolution/valid_solution() that accepts a 2D array representing a Sudoku board, and returns true if it is a valid solution, or false otherwise :param board: :return: """ return all([test_horizontally(board), test_vertically(board), test_sub_grids(board)])
023741cac4106372e8b4c9b8b7c7e60fb9837a7b
15,671
async def test_create_saves_data(manager): """Test creating a config entry.""" @manager.mock_reg_handler("test") class TestFlow(data_entry_flow.FlowHandler): VERSION = 5 async def async_step_init(self, user_input=None): return self.async_create_entry(title="Test Title", data="Test Data") await manager.async_init("test") assert len(manager.async_progress()) == 0 assert len(manager.mock_created_entries) == 1 entry = manager.mock_created_entries[0] assert entry["version"] == 5 assert entry["handler"] == "test" assert entry["title"] == "Test Title" assert entry["data"] == "Test Data" assert entry["source"] is None
66905b55dcbf3d04b9a1d7d6cbdf843c8694eafb
15,672
def drawingpad(where=None, x=0, y=0, image=None, color=0xffffff, fillingColor=0x000000, thickness=3): """Create a drawing pad. Args: where (np.ndarray) : image/frame where the component should be rendered. x (int) : Position X where the component should be placed. y (int) : Position Y where the component should be placed. image (np.ndarray) : Image to be rendered in the specified destination. color (uint) : Color of the line in the format ``0xRRGGBB``, e.g. ``0xff0000`` for red. fillingColor (uint) : Color of filling in the format `0xAARRGGBB`, e.g. `0x00ff0000` for red, `0xff000000` for transparent filling. thickness (int) : Thickness of the lines used to draw a line. Returns: np.ndarray : The current ``image`` . Examples: >>> import cv2 >>> import numpy as np >>> from pycharmers.opencv import cvui ... >>> WINDOW_NAME = 'Drawing Pad' >>> frame = np.zeros(shape=(400, 650, 3), dtype=np.uint8) >>> image = np.full(shape=(250,250,3), fill_value=255, dtype=np.uint8) >>> bgr = [128, 128, 128] >>> fillingColors = ["White", "Black"] >>> fillingStates = [True, False] >>> thickness = [3] >>> cvui.init(WINDOW_NAME) >>> cv2.moveWindow(winname=WINDOW_NAME, x=0, y=0) ... >>> while (True): ... # Fill the frame with a nice color ... frame[:] = (49, 52, 49) ... cvui.text(where=frame, x=320, y=10, text="Thickness") ... cvui.text(where=frame, x=320, y=100, text="Filling Color") ... thick = cvui.trackbar(where=frame, x=320, y=30, width=300, value=thickness, min=1, max=10, options=cvui.TRACKBAR_DISCRETE, discreteStep=1) ... idx = cvui.radiobox(where=frame, x=350, y=120, labels=fillingColors, states=fillingStates) ... bgr = cvui.colorpalette(where=frame, x=320, y=180, bgr=bgr, width=300, height=50) ... image = cvui.drawingpad(where=frame, x=30, y=50, image=image, color=bgr, fillingColor=[0xffffff, 0x000000][idx], thickness=thick) ... cvui.update() ... # Show everything on the screen ... cv2.imshow(WINDOW_NAME, frame) ... # Check if ESC key was pressed ... if cv2.waitKey(20) == cvui.ESCAPE: ... break >>> cv2.destroyWindow(WINDOW_NAME) >>> # You can draw a picture as follows by executing the following program while running the above program. >>> def drawing(path, dsize=(250,250), thresh=127, sleep=3, drawing_val=0, offset=(30,125)): ... \"\"\" ... Args: ... path (str) : Path to binary image. ... dsize (tuple) : The size of drawing pad. ( ``width`` , ``height`` ) ... thresh (int) : If you prepare the binary (bgr) image, you can use ``cv2.threshold`` to convert it to binary image. (See :meth:`cvPencilSketch <pycharmers.cli.cvPencilSketch.cvPencilSketch>` for more details.) ... sleep (int) : Delay execution for a given number of seconds. (You have to click the OpenCV window before before entering the for-loop.) ... drawing_val (int) : At what value to draw. ... offset (tuple) : Offset from top left ( ``cv2.moveWindow(winname=WINDOW_NAME, x=0, y=0)`` ) to drawing pad. ... \"\"\" ... import cv2 ... import time ... import pyautogui as pgui # Use for controling the mouse. (https://pyautogui.readthedocs.io/en/latest/mouse.html) ... img = cv2.resize(src=cv2.imread(path, 0), dsize=dsize) ... img = cv2.threshold(src=img, thresh=thresh, maxval=255, type=cv2.THRESH_BINARY)[1] ... WINDOW_NAME = "Apotheosis" ... cv2.imshow(winname=v, mat=img) ... width,height = dsize ... x_offset, y_offset = offset ... time.sleep(sleep) ... for i in range(height): ... pgui.moveTo(x_offset, y_offset+i) ... prev_val, prev_pos = (0, 0) ... for j in range(width+1): ... if j<width: ... val = img[i,j] ... else: ... val = -1 # Must be different from ``prev_val`` ... if prev_val != val: ... # Drawing. ... if prev_val == drawing_val: ... pgui.mouseDown() ... pgui.dragRel(xOffset=j-prev_pos, yOffset=0, button="left", duration=0.0, mouseDownUp=True) ... pgui.mouseUp() ... else: ... pgui.moveRel(xOffset=j-prev_pos, yOffset=0, duration=0.0) ... prev_pos = j ... prev_val = val ... key = cv2.waitKey(1) ... if key == 27: break ... if key == 27: break ... cv2.destroyWindow(WINDOW_NAME) +--------------------------------------------------------+-------------------------------------------------------+ | Example | +========================================================+=======================================================+ | .. image:: _images/opencv.cvui.drawingpad-konotaro.gif | .. image:: _images/opencv.cvui.drawingpad-tanziro.gif | +--------------------------------------------------------+-------------------------------------------------------+ """ handleTypeError(types=[np.ndarray, NoneType], where=where) if isinstance(where, np.ndarray): __internal.screen.where = where block = __internal.screen else: block = __internal.topBlock() x += block.anchor.x y += block.anchor.y return __internal.drawingpad(block, x, y, image, color, fillingColor, thickness)
25d16ee18b25965dd9d8ecbabb46353950c53297
15,673
def json_request(url, **kwargs): """ Request JSON data by HTTP :param url: requested URL :return: the dictionary """ if 'auth_creds' in kwargs and 'authentication_enabled' in kwargs['auth_creds']: if 'sessionToken' in kwargs: url += "&sessionToken=%s" % kwargs['auth_creds']['sessionToken'] else: url += "&ignite.login=%s&ignite.password=%s" % (kwargs['auth_creds']['auth_login'], kwargs['auth_creds']['auth_password']) req = Request(url) decoded = {} try: r = urlopen(req) reply = r.read().decode('UTF-8') decoded = loads(reply) except HTTPError: print('') print("HTTPError %s" % url) except URLError: print('') print("URLError %s" % url) return decoded
d0a496b36905a0a505d3eab721c8e23ab0eb0e21
15,674
import io import json def list(): """ List all added path """ try: with io.open(FILE_NAME, 'r', encoding='utf-8') as f: data = json.load(f) except: data = {} return data
98d426ece920648d1789c4b2e09ee62eb1cb990d
15,675
import pickle def load(filename): """ Load an EigenM object """ with open(filename, 'rb') as f: return pickle.load(f)
2653cbbe6a1323725c8ba0f771778e1c738daf12
15,676
def resize_image_bboxes_with_crop_or_pad(image, bboxes, xs, ys, target_height, target_width, mask_image=None): """Crops and/or pads an image to a target width and height. Resizes an image to a target width and height by either centrally cropping the image or padding it evenly with zeros. If `width` or `height` is greater than the specified `target_width` or `target_height` respectively, this op centrally crops along that dimension. If `width` or `height` is smaller than the specified `target_width` or `target_height` respectively, this op centrally pads with 0 along that dimension. Args: image: 3-D tensor of shape `[height, width, channels]` target_height: Target height. target_width: Target width. Raises: ValueError: if `target_height` or `target_width` are zero or negative. Returns: Cropped and/or padded image of shape `[target_height, target_width, channels]` """ with tf.name_scope('resize_with_crop_or_pad'): image = ops.convert_to_tensor(image, name='image') if mask_image is not None: print('Image: ', image) print('MaskImage: ', mask_image) mask_image = ops.convert_to_tensor(mask_image, name='image') assert_ops = [] assert_ops += _Check3DImage(image, require_static=False) assert_ops += _assert(target_width > 0, ValueError, 'target_width must be > 0.') assert_ops += _assert(target_height > 0, ValueError, 'target_height must be > 0.') image = control_flow_ops.with_dependencies(assert_ops, image) # `crop_to_bounding_box` and `pad_to_bounding_box` have their own checks. # Make sure our checks come first, so that error messages are clearer. if _is_tensor(target_height): target_height = control_flow_ops.with_dependencies( assert_ops, target_height) if _is_tensor(target_width): target_width = control_flow_ops.with_dependencies(assert_ops, target_width) def max_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.maximum(x, y) else: return max(x, y) def min_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.minimum(x, y) else: return min(x, y) def equal_(x, y): if _is_tensor(x) or _is_tensor(y): return math_ops.equal(x, y) else: return x == y height, width, _ = _ImageDimensions(image) width_diff = target_width - width offset_crop_width = max_(-width_diff // 2, 0) offset_pad_width = max_(width_diff // 2, 0) height_diff = target_height - height offset_crop_height = max_(-height_diff // 2, 0) offset_pad_height = max_(height_diff // 2, 0) # Maybe crop if needed. height_crop = min_(target_height, height) width_crop = min_(target_width, width) cropped = tf.image.crop_to_bounding_box(image, offset_crop_height, offset_crop_width, height_crop, width_crop) if mask_image is not None: cropped_mask_image = tf.image.crop_to_bounding_box(mask_image, offset_crop_height, offset_crop_width, height_crop, width_crop) bboxes, xs, ys = bboxes_crop_or_pad(bboxes, xs, ys, height, width, -offset_crop_height, -offset_crop_width, height_crop, width_crop) # Maybe pad if needed. resized = tf.image.pad_to_bounding_box(cropped, offset_pad_height, offset_pad_width, target_height, target_width) if mask_image is not None: resized_mask_image = tf.image.pad_to_bounding_box(cropped_mask_image, offset_pad_height, offset_pad_width, target_height, target_width) bboxes, xs, ys = bboxes_crop_or_pad(bboxes, xs, ys, height_crop, width_crop, offset_pad_height, offset_pad_width, target_height, target_width) # In theory all the checks below are redundant. if resized.get_shape().ndims is None: raise ValueError('resized contains no shape.') resized_height, resized_width, _ = _ImageDimensions(resized) assert_ops = [] assert_ops += _assert(equal_(resized_height, target_height), ValueError, 'resized height is not correct.') assert_ops += _assert(equal_(resized_width, target_width), ValueError, 'resized width is not correct.') resized = control_flow_ops.with_dependencies(assert_ops, resized) if mask_image is None: return resized, None, bboxes, xs, ys else: return resized, resized_mask_image, bboxes, xs, ys
80c215d0cb750ce55d4d38ef2748f9b89789519c
15,677
def sharpe_ratio(R_p, sigma_p, R_f=0.04): """ :param R_p: 策略年化收益率 :param R_f: 无风险利率(默认0.04) :param sigma_p: 策略收益波动率 :return: sharpe_ratio """ sharpe_ratio = 1.0 * (R_p - R_f) / sigma_p return sharpe_ratio
d197df7aa3b92f3a32cc8f11eb675012ffe8af57
15,678
def xr_vol_int_regional(xa, AREA, DZ, MASK): """ volumen integral with regional MASK input: xa, AREA, DZ .. same as in 'xr_vol_int' MASK .. 2D xr DataArray of booleans with the same dimensions as xa output: integral, int_levels .. same as in 'xr_vol_int' """ assert type(xa)==xr.core.dataarray.DataArray assert type(AREA)==xr.core.dataarray.DataArray assert type(DZ)==xr.core.dataarray.DataArray assert np.shape(AREA)==np.shape(xa)[-2:] assert np.shape(DZ)==np.shape(xa)[-3:] assert np.dtype(MASK)==np.dtype('bool') # determine min/max i/j of masked region (imin, imax, jmin, jmax) = find_regional_coord_extent(MASK) xa_reg = xa.where(MASK)[:,jmin:jmax+1,imin:imax+1] AREA_reg = AREA.where(MASK)[jmin:jmax+1,imin:imax+1] DZ_reg = DZ.where(MASK)[:,jmin:jmax+1,imin:imax+1] integral, int_levels = xr_vol_int(xa_reg, AREA_reg, DZ_reg) return integral, int_levels
4840d66ec6164d16df56f9efeebf9d242bc60613
15,679
from typing import List def test( coverage: bool = typer.Option( # noqa: B008 default=False, help='Generate coverage information.' ), html: bool = typer.Option( # noqa: B008 default=False, help='Generate an html coverage report.' ), ) -> List[Result]: """Run tests.""" coverage_flag = [f'--cov={PACKAGE_NAME}'] if coverage else [] return [ execute(['pytest', *coverage_flag, 'tests'], raise_error=False), *(coverage_html() if coverage and html else ()), ]
0b9fe2d265fd604ae32df29bcde71041a1f5dfcf
15,680
import winreg as _winreg import _winreg def _get_win_folder_from_registry(csidl_name: Any) -> Any: """This is a fallback technique at best. I'm not sure if using the registry for this guarantees us the correct answer for all CSIDL_* names.""" if PY3: else: shell_folder_name = { "CSIDL_APPDATA": "AppData", "CSIDL_COMMON_APPDATA": "Common AppData", "CSIDL_LOCAL_APPDATA": "Local AppData", }[csidl_name] key = _winreg.OpenKey( _winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders", ) dir, type = _winreg.QueryValueEx(key, shell_folder_name) return dir
76dda1c71ea7184a327c0d32a35ecbf45579dd7c
15,681
def transitions2kernelreward(transitions, num_states, num_actions): """Transform a dictionary of transitions to kernel, reward matrices.""" kernel = np.zeros((num_states, num_actions, num_states)) reward = np.zeros((num_states, num_actions)) for (state, action), transition in transitions.items(): for data in transition: kernel[state, action, data["next_state"]] += data["probability"] reward[state, action] += data["reward"] * data["probability"] return kernel, reward
72165577890342cf1e3f01dbe853cd0024a0324e
15,682
def _inline_svg(svg: str) -> str: """Encode SVG to be used inline as part of a data URI. Replacements are not complete, but sufficient for this case. See https://codepen.io/tigt/post/optimizing-svgs-in-data-uris for details. """ replaced = ( svg .replace('\n', '%0A') .replace('#', '%23') .replace('<', '%3C') .replace('>', '%3E') .replace('"', '\'') ) return 'data:image/svg+xml,' + replaced
4e3c25f5d91dd7691f42f9b9ace4d64a297eb32f
15,683
def contact_infectivity_asymptomatic_00x40(): """ Real Name: b'contact infectivity asymptomatic 00x40' Original Eqn: b'contacts per person normal 00x40*infectivity per contact' Units: b'1/Day' Limits: (None, None) Type: component b'' """ return contacts_per_person_normal_00x40() * infectivity_per_contact()
2c71d8955078186636de0d0b369b37a71dcec3fc
15,684
import click def implemented_verified_documented(function): """ Common story options """ options = [ click.option( '--implemented', is_flag=True, help='Implemented stories only.'), click.option( '--unimplemented', is_flag=True, help='Unimplemented stories only.'), click.option( '--verified', is_flag=True, help='Stories verified by tests.'), click.option( '--unverified', is_flag=True, help='Stories not verified by tests.'), click.option( '--documented', is_flag=True, help='Documented stories only.'), click.option( '--undocumented', is_flag=True, help='Undocumented stories only.'), click.option( '--covered', is_flag=True, help='Covered stories only.'), click.option( '--uncovered', is_flag=True, help='Uncovered stories only.'), ] for option in reversed(options): function = option(function) return function
8c1dd5aaa0b962d96e9e90336183a29e2cf360db
15,685
import requests def create_collection(self, name, url, sourceType, **options): """Creates a new collection from a web or S3 url. Automatically kick off default indexes""" (endpoint, method) = self.endpoints['create_collection'] try: headers = {'Authorization': self.token.authorization_header()} data = { 'name': name, 'url': url, 'sourceType': sourceType, 'indexWithDefault': 'true' if options.get('indexWithDefault') else 'false' } return requests.request(method, endpoint, **{'headers': headers, 'data': data}) except Exception as e: raise error.APIConnectionError(message=e)
37f7128526b5b7b1a22a9f946774f934827aa555
15,686
from typing import Union def rmse(estimated: np.ndarray, true: np.ndarray) -> Union[np.ndarray, None]: """ Calculate the root-mean-squared error between two arrays. :param estimated: estimated solution :param true: 'true' solution :return: root-mean-squared error """ return np.sqrt(((estimated - true) ** 2).mean(axis=1))
10eb4974f5d95ca20b5336e2e9637eb6426802ae
15,687
def energy_com(data): """ Calculate the energy center of mass for each day, and use this quantity as an estimate for solar noon. Function infers time stamps from the length of the first axis of the 2-D data array. :param data: PV power matrix as generated by `make_2d` from `solardatatools.data_transforms` :return: A 1-D array, containing the solar noon estimate for each day in the data set """ data = np.copy(data) data[np.isnan(data)] = 0 num_meas_per_hour = data.shape[0] / 24 x = np.arange(0, 24, 1. / num_meas_per_hour) div1 = np.dot(x, data) div2 = np.sum(data, axis=0) com = np.empty_like(div1) com[:] = np.nan msk = div2 != 0 com[msk] = np.divide(div1[msk], div2[msk]) return com
1b276b003f8527672fb95ad03b69536043a7ba17
15,688
import random def cifar_noniid(dataset, no_participants, alpha=0.9): """ Input: Number of participants and alpha (param for distribution) Output: A list of indices denoting data in CIFAR training set. Requires: cifar_classes, a preprocessed class-indice dictionary. Sample Method: take a uniformly sampled 10-dimension vector as parameters for dirichlet distribution to sample number of images in each class. """ np.random.seed(666) random.seed(666) cifar_classes = {} for ind, x in enumerate(dataset): _, label = x if label in cifar_classes: cifar_classes[label].append(ind) else: cifar_classes[label] = [ind] per_participant_list = defaultdict(list) no_classes = len(cifar_classes.keys()) class_size = len(cifar_classes[0]) datasize = {} for n in range(no_classes): random.shuffle(cifar_classes[n]) sampled_probabilities = class_size * np.random.dirichlet( np.array(no_participants * [alpha])) for user in range(no_participants): no_imgs = int(round(sampled_probabilities[user])) datasize[user, n] = no_imgs sampled_list = cifar_classes[n][:min(len(cifar_classes[n]), no_imgs)] per_participant_list[user].extend(sampled_list) cifar_classes[n] = cifar_classes[n][min(len(cifar_classes[n]), no_imgs):] train_img_size = np.zeros(no_participants) for i in range(no_participants): train_img_size[i] = sum([datasize[i,j] for j in range(10)]) clas_weight = np.zeros((no_participants,10)) for i in range(no_participants): for j in range(10): clas_weight[i,j] = float(datasize[i,j])/float((train_img_size[i])) return per_participant_list, clas_weight
8ecbb6df113d04b5ff737bb065bc4e578d06c69b
15,689
from typing import Dict def example_metadata( request, l1_ls5_tarball_md_expected: Dict, l1_ls7_tarball_md_expected: Dict, l1_ls8_folder_md_expected: Dict, ): """ Test against arbitrary valid eo3 documents. """ which = request.param if which == "ls5": return l1_ls5_tarball_md_expected elif which == "ls7": return l1_ls7_tarball_md_expected elif which == "ls8": return l1_ls8_folder_md_expected raise AssertionError
fd67c395aa7d773bc5757ca5649fed60b023e14f
15,690
def register_middleware(app: FastAPI): """ 请求响应拦截 hook https://fastapi.tiangolo.com/tutorial/middleware/ :param app: :return: """ @app.middleware("http") async def logger_request(request: Request, call_next): # https://stackoverflow.com/questions/60098005/fastapi-starlette-get-client-real-ip logger.info(f"request:{request.method} url:{request.url}\nheaders:{request.headers.get('user-agent')}" f"\nIP:{request.client.host}") response = await call_next(request) return response
3455c7d406c405ae0df681d90bfcf57facddaa03
15,691
def asfarray(a, dtype=_nx.float_): """ Return an array converted to float type. Parameters ---------- a : array_like Input array. dtype : string or dtype object, optional Float type code to coerce input array `a`. If one of the 'int' dtype, it is replaced with float64. Returns ------- out : ndarray, float Input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a,dtype=dtype)
8d26529602853e36dd8dc619d6210c475dcb7cd0
15,692
def read_geotransform_s2(path, fname='MTD_TL.xml', resolution=10): """ Parameters ---------- path : string location where the meta data is situated fname : string file name of the meta-data file resolution : {float,integer}, unit=meters, default=10 resolution of the grid Returns ------- geoTransform : tuple, size=(1,6) affine transformation coefficients Notes ----- The metadata is scattered over the file structure of Sentinel-2, L1C .. code-block:: text * S2X_MSIL1C_20XX... ├ AUX_DATA ├ DATASTRIP │ └ DS_XXX_XXXX... │ └ QI_DATA │ └ MTD_DS.xml <- metadata about the data-strip ├ GRANULE │ └ L1C_TXXXX_XXXX... │ ├ AUX_DATA │ ├ IMG_DATA │ ├ QI_DATA │ └ MTD_TL.xml <- metadata about the tile ├ HTML ├ rep_info ├ manifest.safe ├ INSPIRE.xml └ MTD_MSIL1C.xml <- metadata about the product The following acronyms are used: - DS : datastrip - TL : tile - QI : quality information - AUX : auxiliary - MTD : metadata - MSI : multi spectral instrument - L1C : product specification,i.e.: level 1, processing step C """ root = get_root_of_table(path, fname) # image dimensions for meta in root.iter('Geoposition'): res = float(meta.get('resolution')) if res == resolution: ul_X,ul_Y= float(meta[0].text), float(meta[1].text) d_X, d_Y = float(meta[2].text), float(meta[3].text) geoTransform = (ul_X, d_X, 0., ul_Y, 0., d_Y) return geoTransform
322a5bb149f0cc28dc813adebb3dad861e3a3218
15,693
def embed_into_hbox_layout(w, margin=5): """Embed a widget into a layout to give it a frame""" result = QWidget() layout = QHBoxLayout(result) layout.setContentsMargins(margin, margin, margin, margin) layout.addWidget(w) return result
a7a5182ac6e555f3adcbe7a9b11a6826517d08f4
15,694
def make_word_ds(grids, trfiles, bad_words=DEFAULT_BAD_WORDS): """Creates DataSequence objects containing the words from each grid, with any words appearing in the [bad_words] set removed. """ ds = dict() stories = grids.keys() for st in stories: grtranscript = grids[st].tiers[1].make_simple_transcript() ## Filter out bad words goodtranscript = [x for x in grtranscript if x[2].lower().strip("{}").strip() not in bad_words] d = DataSequence.from_grid(goodtranscript, trfiles[st][0]) ds[st] = d return ds
43f405605d461dd6972f131c1474dad6b8acf35c
15,695