Gresham429's picture
Update README.md
cad8bbb verified
|
raw
history blame
2.14 kB
metadata
task_categories:
  - question-answering
  - summarization
  - text-generation
language:
  - en
tags:
  - llm
  - kv_cache
pretty_name: LoopServe Multi-Turn Dialogue Benchmark
configs:
  - config_name: multi-turn_FS
    data_files: multi_turn/few_shot_learning/*.jsonl
  - config_name: multi-turn_NIH
    data_files: multi_turn/needle_in_haystack/*.jsonl
  - config_name: multi-turn_QA
    data_files: multi_turn/question_answering/*.jsonl
  - config_name: multi-turn_SUM
    data_files: multi_turn/summarization/*.jsonl
  - config_name: single-turn_FS
    data_files: single_turn/few_shot_learning/*.jsonl
  - config_name: single-turn_NIH
    data_files: single_turn/needle_in_haystack/*.jsonl
  - config_name: single-turn_QA
    data_files: single_turn/question_answering/*.jsonl
  - config_name: single-turn_SUM
    data_files: single_turn/summarization/*.jsonl

LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues

Arxiv: https://www.arxiv.org/abs/2507.13681

Huggingface: https://huggingface.co/papers/2507.13681

.
β”œβ”€β”€ README.md
β”œβ”€β”€ conversations.jsonl
β”œβ”€β”€ multi_turn
β”‚   β”œβ”€β”€ few_shot_learning
β”‚   β”œβ”€β”€ needle_in_haystack
β”‚   β”œβ”€β”€ question_answering
β”‚   └── summarization
└── single_turn
    β”œβ”€β”€ few_shot_learning
    β”œβ”€β”€ needle_in_haystack
    β”œβ”€β”€ question_answering
    └── summarization

Introduction

LoopServe Multi-Turn Dialogue Benchmark is a comprehensive evaluation dataset comprising multiple diverse datasets designed to assess large language model performance in realistic conversational scenarios. Unlike traditional benchmarks that place queries only at the end of input sequences, this benchmark features diverse query positions (beginning, middle, end) across multi-turn conversations, spanning Question Answering, Needle in a haystack, Summarization, and Few-shot Learning tasks. The benchmark captures the dynamic dependencies and unpredictable patterns characteristic of real-world multi-turn dialogues to provide more authentic LLM evaluation in practical conversational applications.

Dataset statistics