File size: 2,142 Bytes
79bca0b
 
 
 
 
 
 
 
 
 
ba5c30b
da6daef
 
1b91002
b66507a
1b91002
 
 
b66507a
1b91002
 
 
b66507a
1b91002
 
 
b66507a
1b91002
 
ace8cdd
 
06014db
 
aeec18c
f7e3aec
aeec18c
 
ace8cdd
7785274
 
 
ace8cdd
 
7785274
ace8cdd
 
 
 
 
 
 
0ba2ee2
 
06014db
0ba2ee2
cad8bbb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
task_categories:
- question-answering
- summarization
- text-generation
language:
- en
tags:
- llm
- kv_cache
pretty_name: LoopServe Multi-Turn Dialogue Benchmark

configs:
- config_name: multi-turn_FS
  data_files: multi_turn/few_shot_learning/*.jsonl
- config_name: multi-turn_NIH
  data_files: multi_turn/needle_in_haystack/*.jsonl
- config_name: multi-turn_QA
  data_files: multi_turn/question_answering/*.jsonl
- config_name: multi-turn_SUM
  data_files: multi_turn/summarization/*.jsonl
- config_name: single-turn_FS
  data_files: single_turn/few_shot_learning/*.jsonl
- config_name: single-turn_NIH
  data_files: single_turn/needle_in_haystack/*.jsonl
- config_name: single-turn_QA
  data_files: single_turn/question_answering/*.jsonl
- config_name: single-turn_SUM
  data_files: single_turn/summarization/*.jsonl
---

# LoopServe: An Adaptive Dual-phase LLM Inference Acceleration System for Multi-Turn Dialogues

Arxiv: https://www.arxiv.org/abs/2507.13681

Huggingface: https://huggingface.co/papers/2507.13681

``` shell
.
β”œβ”€β”€ README.md
β”œβ”€β”€ conversations.jsonl
β”œβ”€β”€ multi_turn
β”‚   β”œβ”€β”€ few_shot_learning
β”‚   β”œβ”€β”€ needle_in_haystack
β”‚   β”œβ”€β”€ question_answering
β”‚   └── summarization
└── single_turn
    β”œβ”€β”€ few_shot_learning
    β”œβ”€β”€ needle_in_haystack
    β”œβ”€β”€ question_answering
    └── summarization
```

# Introduction

**LoopServe Multi-Turn Dialogue Benchmark** is a comprehensive evaluation dataset comprising multiple diverse datasets designed to assess large language model performance in realistic conversational scenarios. 
Unlike traditional benchmarks that place queries only at the end of input sequences, 
this benchmark features diverse query positions (beginning, middle, end) across multi-turn conversations, 
spanning Question Answering, Needle in a haystack, Summarization, and Few-shot Learning tasks. 
The benchmark captures the dynamic dependencies and unpredictable patterns characteristic of real-world multi-turn dialogues to provide more authentic LLM evaluation in practical conversational applications.

# Dataset statistics