Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Tags:
Skill Extraction
License:
license: cc-by-4.0 | |
task_categories: | |
- text-classification | |
language: | |
- en | |
tags: | |
- Skill Extraction | |
pretty_name: Skill Extraction - TechWolf | |
size_categories: | |
- n<1K | |
# Skill Extraction with ESCO skills - TechWolf subset | |
## Dataset Description | |
- **Paper:** https://arxiv.org/abs/2307.10778 | |
- **Point of Contact:** [email protected] | |
## Dataset Summary | |
The `TECHWOLF` subset, although smaller, represents a more generic distribution of job descriptions and skill spans. [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills are directly annotated on the full sentence level, thus omitting the intermediate span identification step. ESCO v1.1.0 is used. | |
This dataset is part of a three-part evaluation dataset for skill extraction: | |
1. [**skill-extraction-tech**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech) | |
2. [**skill-extraction-house**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house) | |
3. [**skill-extraction-techwolf**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf) | |
### Citation Information | |
If you use this dataset, please include the following reference: | |
``` | |
@article{decorte2023extreme, | |
title={Extreme multi-label skill extraction training using large language models}, | |
author={Decorte, Jens-Joris and Verlinden, Severine and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas}, | |
journal={arXiv preprint arXiv:2307.10778}, | |
year={2023} | |
} | |
``` |