Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Tags:
Skill Extraction
License:
File size: 1,493 Bytes
5a043b6 ed83e50 5a043b6 aa3347c 5a043b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- Skill Extraction
pretty_name: Skill Extraction - TechWolf
size_categories:
- n<1K
---
# Skill Extraction with ESCO skills - TechWolf subset
## Dataset Description
- **Paper:** https://arxiv.org/abs/2307.10778
- **Point of Contact:** [email protected]
## Dataset Summary
The `TECHWOLF` subset, although smaller, represents a more generic distribution of job descriptions and skill spans. [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills are directly annotated on the full sentence level, thus omitting the intermediate span identification step. ESCO v1.1.0 is used.
This dataset is part of a three-part evaluation dataset for skill extraction:
1. [**skill-extraction-tech**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech)
2. [**skill-extraction-house**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house)
3. [**skill-extraction-techwolf**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf)
### Citation Information
If you use this dataset, please include the following reference:
```
@article{decorte2023extreme,
title={Extreme multi-label skill extraction training using large language models},
author={Decorte, Jens-Joris and Verlinden, Severine and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas},
journal={arXiv preprint arXiv:2307.10778},
year={2023}
}
``` |