Datasets:

Modalities:
Text
Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 1,493 Bytes
5a043b6
ed83e50
5a043b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa3347c
 
 
5a043b6
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
license: cc-by-4.0
task_categories:
- text-classification
language:
- en
tags:
- Skill Extraction
pretty_name: Skill Extraction - TechWolf
size_categories:
- n<1K
---
# Skill Extraction with ESCO skills - TechWolf subset

## Dataset Description

- **Paper:** https://arxiv.org/abs/2307.10778
- **Point of Contact:** [email protected]

## Dataset Summary

The `TECHWOLF` subset, although smaller, represents a more generic distribution of job descriptions and skill spans. [ESCO](https://esco.ec.europa.eu/en/classification/skill_main) skills are directly annotated on the full sentence level, thus omitting the intermediate span identification step. ESCO v1.1.0 is used.

This dataset is part of a three-part evaluation dataset for skill extraction:
1. [**skill-extraction-tech**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-tech)
2. [**skill-extraction-house**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-house)
3. [**skill-extraction-techwolf**](https://huggingface.co/datasets/jensjorisdecorte/skill-extraction-techwolf)

### Citation Information

If you use this dataset, please include the following reference:

```
@article{decorte2023extreme,
  title={Extreme multi-label skill extraction training using large language models},
  author={Decorte, Jens-Joris and Verlinden, Severine and Van Hautte, Jeroen and Deleu, Johannes and Develder, Chris and Demeester, Thomas},
  journal={arXiv preprint arXiv:2307.10778},
  year={2023}
}
```