id
stringlengths 14
16
| text
stringlengths 31
3.14k
| source
stringlengths 58
124
|
---|---|---|
056f81721b80-4 | Document(page_content='an image of a man on skis in the snow [SEP]', metadata={'image_path': 'https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/2022-01-22_Men%27s_World_Cup_at_2021-22_St._Moritz%E2%80%93Celerina_Luge_World_Cup_and_European_Championships_by_Sandro_Halank%E2%80%93257.jpg/288px-2022-01-22_Men%27s_World_Cup_at_2021-22_St._Moritz%E2%80%93Celerina_Luge_World_Cup_and_European_Championships_by_Sandro_Halank%E2%80%93257.jpg'}),
Document(page_content='an image of a flower in the dark [SEP]', metadata={'image_path': 'https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiesen_Pippau_%28Crepis_biennis%29-20220624-RM-123950.jpg/224px-Wiesen_Pippau_%28Crepis_biennis%29-20220624-RM-123950.jpg'})]
from PIL import Image
import requests
Image.open(requests.get(list_image_urls[0], stream=True).raw).convert('RGB')
Create the index#
from langchain.indexes import VectorstoreIndexCreator
index = VectorstoreIndexCreator().from_loaders([loader]) | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image_captions.html |
056f81721b80-5 | /Users/saitosean/dev/langchain/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
/Users/saitosean/dev/langchain/.venv/lib/python3.10/site-packages/transformers/generation/utils.py:1313: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.
warnings.warn(
Using embedded DuckDB without persistence: data will be transient
Query#
query = "What's the painting about?"
index.query(query)
' The painting is about a battle scene.'
query = "What kind of images are there?"
index.query(query)
' There are images of a spiral galaxy, a painting of a battle scene, a flower in the dark, and a frog on a flower.'
previous
Images
next
IMSDb
Contents
Prepare a list of image urls from Wikimedia
Create the loader
Create the index
Query
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image_captions.html |
b5b79dcb1263-0 | .ipynb
.pdf
URL
Contents
URL
Selenium URL Loader
Setup
Playwright URL Loader
Setup
URL#
This covers how to load HTML documents from a list of URLs into a document format that we can use downstream.
from langchain.document_loaders import UnstructuredURLLoader
urls = [
"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-8-2023",
"https://www.understandingwar.org/backgrounder/russian-offensive-campaign-assessment-february-9-2023"
]
loader = UnstructuredURLLoader(urls=urls)
data = loader.load()
Selenium URL Loader#
This covers how to load HTML documents from a list of URLs using the SeleniumURLLoader.
Using selenium allows us to load pages that require JavaScript to render.
Setup#
To use the SeleniumURLLoader, you will need to install selenium and unstructured.
from langchain.document_loaders import SeleniumURLLoader
urls = [
"https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"https://goo.gl/maps/NDSHwePEyaHMFGwh8"
]
loader = SeleniumURLLoader(urls=urls)
data = loader.load()
Playwright URL Loader#
This covers how to load HTML documents from a list of URLs using the PlaywrightURLLoader.
As in the Selenium case, Playwright allows us to load pages that need JavaScript to render.
Setup# | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/url.html |
b5b79dcb1263-1 | Setup#
To use the PlaywrightURLLoader, you will need to install playwright and unstructured. Additionally, you will need to install the Playwright Chromium browser:
# Install playwright
!pip install "playwright"
!pip install "unstructured"
!playwright install
from langchain.document_loaders import PlaywrightURLLoader
urls = [
"https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"https://goo.gl/maps/NDSHwePEyaHMFGwh8"
]
loader = PlaywrightURLLoader(urls=urls, remove_selectors=["header", "footer"])
data = loader.load()
previous
Unstructured File Loader
next
Web Base
Contents
URL
Selenium URL Loader
Setup
Playwright URL Loader
Setup
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/url.html |
a6eafc41ab63-0 | .ipynb
.pdf
GCS File Storage
GCS File Storage#
This covers how to load document objects from an Google Cloud Storage (GCS) file object.
from langchain.document_loaders import GCSFileLoader
# !pip install google-cloud-storage
loader = GCSFileLoader(project_name="aist", bucket="testing-hwc", blob="fake.docx")
loader.load()
/Users/harrisonchase/workplace/langchain/.venv/lib/python3.10/site-packages/google/auth/_default.py:83: UserWarning: Your application has authenticated using end user credentials from Google Cloud SDK without a quota project. You might receive a "quota exceeded" or "API not enabled" error. We recommend you rerun `gcloud auth application-default login` and make sure a quota project is added. Or you can use service accounts instead. For more information about service accounts, see https://cloud.google.com/docs/authentication/
warnings.warn(_CLOUD_SDK_CREDENTIALS_WARNING)
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmp3srlf8n8/fake.docx'}, lookup_index=0)]
previous
GCS Directory
next
Git
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/gcs_file.html |
24b96315d140-0 | .ipynb
.pdf
College Confidential
College Confidential#
This covers how to load College Confidential webpages into a document format that we can use downstream.
from langchain.document_loaders import CollegeConfidentialLoader
loader = CollegeConfidentialLoader("https://www.collegeconfidential.com/colleges/brown-university/")
data = loader.load()
data | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-1 | [Document(page_content='\n\n\n\n\n\n\n\nA68FEB02-9D19-447C-B8BC-818149FD6EAF\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n Media (2)\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\nE45B8B13-33D4-450E-B7DB-F66EFE8F2097\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nAbout Brown\n\n\n\n\n\n\nBrown University Overview\nBrown University is a private, nonprofit school in the urban setting of Providence, Rhode Island. Brown was founded in 1764 and the school currently enrolls around 10,696 students a year, including 7,349 undergraduates. Brown provides on-campus housing for students. Most students live in off campus housing.\n📆 Mark your calendar! January 5, 2023 is the final deadline to submit an application for the Fall 2023 semester. \nThere are many ways for students to get involved at Brown! \nLove music or performing? Join a campus band, sing in a chorus, or perform with one of the school\'s theater groups.\nInterested | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-2 | or perform with one of the school\'s theater groups.\nInterested in journalism or communications? Brown students can write for the campus newspaper, host a radio show or be a producer for the student-run television channel.\nInterested in joining a fraternity or sorority? Brown has fraternities and sororities.\nPlanning to play sports? Brown has many options for athletes. See them all and learn more about life at Brown on the Student Life page.\n\n\n\n2022 Brown Facts At-A-Glance\n\n\n\n\n\nAcademic Calendar\nOther\n\n\nOverall Acceptance Rate\n6%\n\n\nEarly Decision Acceptance Rate\n16%\n\n\nEarly Action Acceptance Rate\nEA not offered\n\n\nApplicants Submitting SAT scores\n51%\n\n\nTuition\n$62,680\n\n\nPercent of Need Met\n100%\n\n\nAverage First-Year Financial Aid Package\n$59,749\n\n\n\n\nIs Brown a Good School?\n\nDifferent people have different ideas about what makes a "good" school. Some factors that can help you determine what a good school for you might be include admissions criteria, acceptance rate, tuition costs, and more.\nLet\'s take a look at these factors to get a clearer sense of what Brown offers and if it could be the right college for you.\nBrown Acceptance Rate 2022\nIt is extremely difficult to get into Brown. Around 6% of applicants get into Brown each | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-3 | is extremely difficult to get into Brown. Around 6% of applicants get into Brown each year. In 2022, just 2,568 out of the 46,568 students who applied were accepted.\nRetention and Graduation Rates at Brown\nRetention refers to the number of students that stay enrolled at a school over time. This is a way to get a sense of how satisfied students are with their school experience, and if they have the support necessary to succeed in college. \nApproximately 98% of first-year, full-time undergrads who start at Browncome back their sophomore year. 95% of Brown undergrads graduate within six years. The average six-year graduation rate for U.S. colleges and universities is 61% for public schools, and 67% for private, non-profit schools.\nJob Outcomes for Brown Grads\nJob placement stats are a good resource for understanding the value of a degree from Brown by providing a look on how job placement has gone for other grads. \nCheck with Brown directly, for information on any information on starting salaries for recent grads.\nBrown\'s Endowment\nAn endowment is the total value of a school\'s investments, donations, and assets. Endowment is not necessarily an indicator of the quality of a school, but it can give you a sense of how much money a college can afford to invest in expanding programs, improving facilities, and support students. \nAs of 2022, the total market value of Brown University\'s endowment was $4.7 billion. The average college endowment was $905 million in 2021. The school spends $34,086 for each full-time student enrolled. \nTuition and Financial Aid at | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-4 | each full-time student enrolled. \nTuition and Financial Aid at Brown\nTuition is another important factor when choose a college. Some colleges may have high tuition, but do a better job at meeting students\' financial need.\nBrown meets 100% of the demonstrated financial need for undergraduates. The average financial aid package for a full-time, first-year student is around $59,749 a year. \nThe average student debt for graduates in the class of 2022 was around $24,102 per student, not including those with no debt. For context, compare this number with the average national debt, which is around $36,000 per borrower. \nThe 2023-2024 FAFSA Opened on October 1st, 2022\nSome financial aid is awarded on a first-come, first-served basis, so fill out the FAFSA as soon as you can. Visit the FAFSA website to apply for student aid. Remember, the first F in FAFSA stands for FREE! You should never have to pay to submit the Free Application for Federal Student Aid (FAFSA), so be very wary of anyone asking you for money.\nLearn more about Tuition and Financial Aid at Brown.\nBased on this information, does Brown seem like a good fit? Remember, a school that is perfect for one person may be a terrible fit for someone else! So ask yourself: Is Brown a good school for you?\nIf Brown University seems like a school you want to apply to, click the heart button to save it to your college list.\n\nStill Exploring Schools?\nChoose one of the options below to learn more about Brown:\nAdmissions\nStudent Life\nAcademics\nTuition & | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-5 | Life\nAcademics\nTuition & Aid\nBrown Community Forums\nThen use the college admissions predictor to take a data science look at your chances of getting into some of the best colleges and universities in the U.S.\nWhere is Brown?\nBrown is located in the urban setting of Providence, Rhode Island, less than an hour from Boston. \nIf you would like to see Brown for yourself, plan a visit. The best way to reach campus is to take Interstate 95 to Providence, or book a flight to the nearest airport, T.F. Green.\nYou can also take a virtual campus tour to get a sense of what Brown and Providence are like without leaving home.\nConsidering Going to School in Rhode Island?\nSee a full list of colleges in Rhode Island and save your favorites to your college list.\n\n\n\nCollege Info\n\n\n\n\n\n\n\n\n\n Providence, RI 02912\n \n\n\n\n Campus Setting: Urban\n \n\n\n\n\n\n\n\n (401) 863-2378\n \n\n Website\n \n\n Virtual Tour\n \n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nBrown Application Deadline\n\n\n\nFirst-Year Applications are Due\n\nJan 5\n\nTransfer Applications are Due\n\nMar 1\n\n\n\n \n The deadline for Fall first-year applications to Brown | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-6 | \n The deadline for Fall first-year applications to Brown is \n Jan 5. \n \n \n \n\n \n The deadline for Fall transfer applications to Brown is \n Mar 1. \n \n \n \n\n \n Check the school website \n for more information about deadlines for specific programs or special admissions programs\n \n \n\n\n\n\n\n\nBrown ACT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nACT Range\n\n\n \n 33 - 35\n \n \n\n\n\nEstimated Chance of Acceptance by ACT Score\n\n\nACT Score\nEstimated Chance\n\n\n35 and Above\nGood\n\n\n33 to 35\nAvg\n\n\n33 and Less\nLow\n\n\n\n\n\n\nStand out on your college application\n\n• Qualify for scholarships\n• Most students who retest improve their score\n\nSponsored by ACT\n\n\n Take the Next ACT Test\n \n\n\n\n\n\nBrown SAT Scores\n\n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nComposite SAT Range\n\n\n \n 720 - 770\n \n | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-7 | SAT Range\n\n\n \n 720 - 770\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nMath SAT Range\n\n\n \n Not available\n \n \n\n\n\nic_reflect\n\n\n\n\n\n\n\n\nReading SAT Range\n\n\n \n 740 - 800\n \n \n\n\n\n\n\n\n Brown Tuition & Fees\n \n\n\n\nTuition & Fees\n\n\n\n $82,286\n \nIn State\n\n\n\n\n $82,286\n \nOut-of-State\n\n\n\n\n\n\n\nCost Breakdown\n\n\nIn State\n\n\nOut-of-State\n\n\n\n\nState Tuition\n\n\n\n $62,680\n \n\n\n\n $62,680\n \n\n\n\n\nFees\n\n\n\n $2,466\n \n\n\n\n $2,466\n \n\n\n\n\nHousing\n\n\n\n $15,840\n \n\n\n\n $15,840\n \n\n\n\n\nBooks\n\n\n\n $1,300\n | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-8 | $1,300\n \n\n\n\n $1,300\n \n\n\n\n\n\n Total (Before Financial Aid):\n \n\n\n\n $82,286\n \n\n\n\n $82,286\n \n\n\n\n\n\n\n\n\n\n\n\nStudent Life\n\n Wondering what life at Brown is like? There are approximately \n 10,696 students enrolled at \n Brown, \n including 7,349 undergraduate students and \n 3,347 graduate students.\n 96% percent of students attend school \n full-time, \n 6% percent are from RI and \n 94% percent of students are from other states.\n \n\n\n\n\n\n None\n \n\n\n\n\nUndergraduate Enrollment\n\n\n\n 96%\n \nFull Time\n\n\n\n\n 4%\n \nPart Time\n\n\n\n\n\n\n\n 94%\n \n\n\n\n\nResidency\n\n\n\n 6%\n \nIn State\n\n\n\n\n 94%\n \nOut-of-State\n\n\n\n\n\n\n\n Data Source: IPEDs and Peterson\'s Databases © 2022 Peterson\'s LLC All rights reserved\n \n', lookup_str='', metadata={'source': | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-9 | \n', lookup_str='', metadata={'source': 'https://www.collegeconfidential.com/colleges/brown-university/'}, lookup_index=0)] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
24b96315d140-10 | previous
ChatGPT Data Loader
next
Confluence
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/college_confidential.html |
a676c0beeb81-0 | .ipynb
.pdf
WhatsApp Chat
WhatsApp Chat#
This notebook covers how to load data from the WhatsApp Chats into a format that can be ingested into LangChain.
from langchain.document_loaders import WhatsAppChatLoader
loader = WhatsAppChatLoader("example_data/whatsapp_chat.txt")
loader.load()
previous
Web Base
next
Word Documents
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/whatsapp_chat.html |
462dd74204d0-0 | .ipynb
.pdf
BigQuery Loader
Contents
Basic Usage
Specifying Which Columns are Content vs Metadata
Adding Source to Metadata
BigQuery Loader#
Load a BigQuery query with one document per row.
from langchain.document_loaders import BigQueryLoader
BASE_QUERY = '''
SELECT
id,
dna_sequence,
organism
FROM (
SELECT
ARRAY (
SELECT
AS STRUCT 1 AS id, "ATTCGA" AS dna_sequence, "Lokiarchaeum sp. (strain GC14_75)." AS organism
UNION ALL
SELECT
AS STRUCT 2 AS id, "AGGCGA" AS dna_sequence, "Heimdallarchaeota archaeon (strain LC_2)." AS organism
UNION ALL
SELECT
AS STRUCT 3 AS id, "TCCGGA" AS dna_sequence, "Acidianus hospitalis (strain W1)." AS organism) AS new_array),
UNNEST(new_array)
'''
Basic Usage#
loader = BigQueryLoader(BASE_QUERY)
data = loader.load()
print(data) | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/bigquery.html |
462dd74204d0-1 | data = loader.load()
print(data)
[Document(page_content='id: 1\ndna_sequence: ATTCGA\norganism: Lokiarchaeum sp. (strain GC14_75).', lookup_str='', metadata={}, lookup_index=0), Document(page_content='id: 2\ndna_sequence: AGGCGA\norganism: Heimdallarchaeota archaeon (strain LC_2).', lookup_str='', metadata={}, lookup_index=0), Document(page_content='id: 3\ndna_sequence: TCCGGA\norganism: Acidianus hospitalis (strain W1).', lookup_str='', metadata={}, lookup_index=0)]
Specifying Which Columns are Content vs Metadata#
loader = BigQueryLoader(BASE_QUERY, page_content_columns=["dna_sequence", "organism"], metadata_columns=["id"])
data = loader.load()
print(data) | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/bigquery.html |
462dd74204d0-2 | data = loader.load()
print(data)
[Document(page_content='dna_sequence: ATTCGA\norganism: Lokiarchaeum sp. (strain GC14_75).', lookup_str='', metadata={'id': 1}, lookup_index=0), Document(page_content='dna_sequence: AGGCGA\norganism: Heimdallarchaeota archaeon (strain LC_2).', lookup_str='', metadata={'id': 2}, lookup_index=0), Document(page_content='dna_sequence: TCCGGA\norganism: Acidianus hospitalis (strain W1).', lookup_str='', metadata={'id': 3}, lookup_index=0)]
Adding Source to Metadata#
# Note that the `id` column is being returned twice, with one instance aliased as `source`
ALIASED_QUERY = '''
SELECT
id,
dna_sequence,
organism,
id as source
FROM (
SELECT
ARRAY (
SELECT
AS STRUCT 1 AS id, "ATTCGA" AS dna_sequence, "Lokiarchaeum sp. (strain GC14_75)." AS organism
UNION ALL
SELECT
AS STRUCT 2 AS id, "AGGCGA" AS dna_sequence, "Heimdallarchaeota archaeon (strain LC_2)." AS organism
UNION ALL
SELECT
AS STRUCT 3 AS id, "TCCGGA" AS dna_sequence, "Acidianus hospitalis (strain W1)." AS organism) AS new_array), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/bigquery.html |
462dd74204d0-3 | UNNEST(new_array)
'''
loader = BigQueryLoader(ALIASED_QUERY, metadata_columns=["source"])
data = loader.load()
print(data)
[Document(page_content='id: 1\ndna_sequence: ATTCGA\norganism: Lokiarchaeum sp. (strain GC14_75).\nsource: 1', lookup_str='', metadata={'source': 1}, lookup_index=0), Document(page_content='id: 2\ndna_sequence: AGGCGA\norganism: Heimdallarchaeota archaeon (strain LC_2).\nsource: 2', lookup_str='', metadata={'source': 2}, lookup_index=0), Document(page_content='id: 3\ndna_sequence: TCCGGA\norganism: Acidianus hospitalis (strain W1).\nsource: 3', lookup_str='', metadata={'source': 3}, lookup_index=0)]
previous
Azure Blob Storage File
next
Bilibili
Contents
Basic Usage
Specifying Which Columns are Content vs Metadata
Adding Source to Metadata
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/bigquery.html |
29467bea6fa7-0 | .ipynb
.pdf
Notebook
Notebook#
This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.
from langchain.document_loaders import NotebookLoader
loader = NotebookLoader("example_data/notebook.ipynb", include_outputs=True, max_output_length=20, remove_newline=True)
NotebookLoader.load() loads the .ipynb notebook file into a Document object.
Parameters:
include_outputs (bool): whether to include cell outputs in the resulting document (default is False).
max_output_length (int): the maximum number of characters to include from each cell output (default is 10).
remove_newline (bool): whether to remove newline characters from the cell sources and outputs (default is False).
traceback (bool): whether to include full traceback (default is False).
loader.load() | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notebook.html |
29467bea6fa7-1 | [Document(page_content='\'markdown\' cell: \'[\'# Notebook\', \'\', \'This notebook covers how to load data from an .ipynb notebook into a format suitable by LangChain.\']\'\n\n \'code\' cell: \'[\'from langchain.document_loaders import NotebookLoader\']\'\n\n \'code\' cell: \'[\'loader = NotebookLoader("example_data/notebook.ipynb")\']\'\n\n \'markdown\' cell: \'[\'`NotebookLoader.load()` loads the `.ipynb` notebook file into a `Document` object.\', \'\', \'**Parameters**:\', \'\', \'* `include_outputs` (bool): whether to include cell outputs in the resulting document (default is False).\', \'* `max_output_length` (int): the maximum number of characters to include from each cell output (default is 10).\', \'* `remove_newline` (bool): whether to remove newline characters from the cell sources and outputs (default is False).\', \'* `traceback` (bool): whether to include full traceback (default is False).\']\'\n\n \'code\' cell: \'[\'loader.load(include_outputs=True, max_output_length=20, | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notebook.html |
29467bea6fa7-2 | max_output_length=20, remove_newline=True)\']\'\n\n', lookup_str='', metadata={'source': 'example_data/notebook.ipynb'}, lookup_index=0)] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notebook.html |
29467bea6fa7-3 | previous
Markdown
next
Notion
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notebook.html |
f09a2289f095-0 | .ipynb
.pdf
Apify Dataset
Contents
Prerequisites
An example with question answering
Apify Dataset#
This notebook shows how to load Apify datasets to LangChain.
Apify Dataset is a scaleable append-only storage with sequential access built for storing structured web scraping results, such as a list of products or Google SERPs, and then export them to various formats like JSON, CSV, or Excel. Datasets are mainly used to save results of Apify Actors—serverless cloud programs for varius web scraping, crawling, and data extraction use cases.
Prerequisites#
You need to have an existing dataset on the Apify platform. If you don’t have one, please first check out this notebook on how to use Apify to extract content from documentation, knowledge bases, help centers, or blogs.
First, import ApifyDatasetLoader into your source code:
from langchain.document_loaders import ApifyDatasetLoader
from langchain.document_loaders.base import Document
Then provide a function that maps Apify dataset record fields to LangChain Document format.
For example, if your dataset items are structured like this:
{
"url": "https://apify.com",
"text": "Apify is the best web scraping and automation platform."
}
The mapping function in the code below will convert them to LangChain Document format, so that you can use them further with any LLM model (e.g. for question answering).
loader = ApifyDatasetLoader(
dataset_id="your-dataset-id",
dataset_mapping_function=lambda dataset_item: Document( | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html |
f09a2289f095-1 | dataset_mapping_function=lambda dataset_item: Document(
page_content=dataset_item["text"], metadata={"source": dataset_item["url"]}
),
)
data = loader.load()
An example with question answering#
In this example, we use data from a dataset to answer a question.
from langchain.docstore.document import Document
from langchain.document_loaders import ApifyDatasetLoader
from langchain.indexes import VectorstoreIndexCreator
loader = ApifyDatasetLoader(
dataset_id="your-dataset-id",
dataset_mapping_function=lambda item: Document(
page_content=item["text"] or "", metadata={"source": item["url"]}
),
)
index = VectorstoreIndexCreator().from_loaders([loader])
query = "What is Apify?"
result = index.query_with_sources(query)
print(result["answer"])
print(result["sources"])
Apify is a platform for developing, running, and sharing serverless cloud programs. It enables users to create web scraping and automation tools and publish them on the Apify platform.
https://docs.apify.com/platform/actors, https://docs.apify.com/platform/actors/running/actors-in-store, https://docs.apify.com/platform/security, https://docs.apify.com/platform/actors/examples
previous
Airbyte JSON
next
AZLyrics
Contents
Prerequisites
An example with question answering
By Harrison Chase | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html |
f09a2289f095-2 | AZLyrics
Contents
Prerequisites
An example with question answering
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/apify_dataset.html |
43a519c0c443-0 | .ipynb
.pdf
Airbyte JSON
Airbyte JSON#
This covers how to load any source from Airbyte into a local JSON file that can be read in as a document
Prereqs:
Have docker desktop installed
Steps:
Clone Airbyte from GitHub - git clone https://github.com/airbytehq/airbyte.git
Switch into Airbyte directory - cd airbyte
Start Airbyte - docker compose up
In your browser, just visit http://localhost:8000. You will be asked for a username and password. By default, that’s username airbyte and password password.
Setup any source you wish.
Set destination as Local JSON, with specified destination path - lets say /json_data. Set up manual sync.
Run the connection!
To see what files are create, you can navigate to: file:///tmp/airbyte_local
Find your data and copy path. That path should be saved in the file variable below. It should start with /tmp/airbyte_local
from langchain.document_loaders import AirbyteJSONLoader
!ls /tmp/airbyte_local/json_data/
_airbyte_raw_pokemon.jsonl
loader = AirbyteJSONLoader('/tmp/airbyte_local/json_data/_airbyte_raw_pokemon.jsonl')
data = loader.load()
print(data[0].page_content[:500])
abilities:
ability:
name: blaze
url: https://pokeapi.co/api/v2/ability/66/
is_hidden: False
slot: 1
ability:
name: solar-power
url: https://pokeapi.co/api/v2/ability/94/ | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/airbyte_json.html |
43a519c0c443-1 | url: https://pokeapi.co/api/v2/ability/94/
is_hidden: True
slot: 3
base_experience: 267
forms:
name: charizard
url: https://pokeapi.co/api/v2/pokemon-form/6/
game_indices:
game_index: 180
version:
name: red
url: https://pokeapi.co/api/v2/version/1/
game_index: 180
version:
name: blue
url: https://pokeapi.co/api/v2/version/2/
game_index: 180
version:
n
previous
CoNLL-U
next
Apify Dataset
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/airbyte_json.html |
70ddc445f2c0-0 | .ipynb
.pdf
Email
Contents
Using Unstructured
Retain Elements
Using OutlookMessageLoader
Email#
This notebook shows how to load email (.eml) and Microsoft Outlook (.msg) files.
Using Unstructured#
from langchain.document_loaders import UnstructuredEmailLoader
loader = UnstructuredEmailLoader('example_data/fake-email.eml')
data = loader.load()
data
[Document(page_content='This is a test email to use for unit tests.\n\nImportant points:\n\nRoses are red\n\nViolets are blue', lookup_str='', metadata={'source': 'example_data/fake-email.eml'}, lookup_index=0)]
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredEmailLoader('example_data/fake-email.eml', mode="elements")
data = loader.load()
data[0]
Document(page_content='This is a test email to use for unit tests.', lookup_str='', metadata={'source': 'example_data/fake-email.eml'}, lookup_index=0)
Using OutlookMessageLoader#
from langchain.document_loaders import OutlookMessageLoader
loader = OutlookMessageLoader('example_data/fake-email.msg') | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/email.html |
70ddc445f2c0-1 | data = loader.load()
data[0]
Document(page_content='This is a test email to experiment with the MS Outlook MSG Extractor\r\n\r\n\r\n-- \r\n\r\n\r\nKind regards\r\n\r\n\r\n\r\n\r\nBrian Zhou\r\n\r\n', metadata={'subject': 'Test for TIF files', 'sender': 'Brian Zhou <[email protected]>', 'date': 'Mon, 18 Nov 2013 16:26:24 +0800'})
previous
DuckDB Loader
next
EPubs
Contents
Using Unstructured
Retain Elements
Using OutlookMessageLoader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/email.html |
f5b0c2fc6828-0 | .ipynb
.pdf
Subtitle Files
Subtitle Files#
How to load data from subtitle (.srt) files
from langchain.document_loaders import SRTLoader
loader = SRTLoader("example_data/Star_Wars_The_Clone_Wars_S06E07_Crisis_at_the_Heart.srt")
docs = loader.load()
docs[0].page_content[:100]
'<i>Corruption discovered\nat the core of the Banking Clan!</i> <i>Reunited, Rush Clovis\nand Senator A'
previous
Slack (Local Exported Zipfile)
next
Telegram
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/srt.html |
004e104e80f8-0 | .ipynb
.pdf
EPubs
Contents
Retain Elements
EPubs#
This covers how to load .epub documents into a document format that we can use downstream. You’ll need to install the pandocs package for this loader to work.
from langchain.document_loaders import UnstructuredEPubLoader
loader = UnstructuredEPubLoader("winter-sports.epub")
data = loader.load()
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredEPubLoader("winter-sports.epub", mode="elements")
data = loader.load()
data[0]
Document(page_content='The Project Gutenberg eBook of Winter Sports in\nSwitzerland, by E. F. Benson', lookup_str='', metadata={'source': 'winter-sports.epub', 'page_number': 1, 'category': 'Title'}, lookup_index=0)
previous
Email
next
EverNote
Contents
Retain Elements
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/epub.html |
10a1a51c55a1-0 | .ipynb
.pdf
HuggingFace dataset loader
Contents
Example
HuggingFace dataset loader#
This notebook shows how to load Hugging Face Hub datasets to LangChain.
The Hugging Face Hub hosts a large number of community-curated datasets for a diverse range of tasks such as translation, automatic speech recognition, and image classification.
from langchain.document_loaders import HuggingFaceDatasetLoader
dataset_name="imdb"
page_content_column="text"
loader=HuggingFaceDatasetLoader(dataset_name,page_content_column)
data = loader.load()
data[:15] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-1 | [Document(page_content='I rented I AM CURIOUS-YELLOW from my video store because of all the controversy that surrounded it when it was first released in 1967. I also heard that at first it was seized by U.S. customs if it ever tried to enter this country, therefore being a fan of films considered "controversial" I really had to see this for myself.<br /><br />The plot is centered around a young Swedish drama student named Lena who wants to learn everything she can about life. In particular she wants to focus her attentions to making some sort of documentary on what the average Swede thought about certain political issues such as the Vietnam War and race issues in the United States. In between asking politicians and ordinary denizens of Stockholm about their opinions on politics, she has sex with her drama teacher, classmates, and married men.<br /><br />What kills me about I AM CURIOUS-YELLOW is that 40 years ago, this was considered pornographic. Really, the sex and nudity scenes are few and far between, even then it\'s not shot like some cheaply made porno. While my countrymen mind find it shocking, in reality sex and nudity are a major staple in Swedish cinema. Even Ingmar Bergman, arguably their answer to good old boy John Ford, had sex scenes in his films.<br /><br />I do commend the filmmakers for the fact that any sex shown in the film is shown for artistic purposes rather than just to shock people and make money to be shown in pornographic theaters in America. I AM CURIOUS-YELLOW is a good film for anyone wanting to study the meat and potatoes (no pun intended) of Swedish cinema. But really, this film doesn\'t have | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-2 | (no pun intended) of Swedish cinema. But really, this film doesn\'t have much of a plot.', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-3 | Document(page_content='"I Am Curious: Yellow" is a risible and pretentious steaming pile. It doesn\'t matter what one\'s political views are because this film can hardly be taken seriously on any level. As for the claim that frontal male nudity is an automatic NC-17, that isn\'t true. I\'ve seen R-rated films with male nudity. Granted, they only offer some fleeting views, but where are the R-rated films with gaping vulvas and flapping labia? Nowhere, because they don\'t exist. The same goes for those crappy cable shows: schlongs swinging in the breeze but not a clitoris in sight. And those pretentious indie movies like The Brown Bunny, in which we\'re treated to the site of Vincent Gallo\'s throbbing johnson, but not a trace of pink visible on Chloe Sevigny. Before crying (or implying) "double-standard" in matters of nudity, the mentally obtuse should take into account one unavoidably obvious anatomical difference between men and women: there are no genitals on display when actresses appears nude, and the same cannot be said for a man. In fact, you generally won\'t see female genitals in an American film in anything short of porn or explicit erotica. This alleged double-standard is less a double standard than an admittedly depressing ability to come to terms culturally with the insides of women\'s bodies.', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-4 | Document(page_content="If only to avoid making this type of film in the future. This film is interesting as an experiment but tells no cogent story.<br /><br />One might feel virtuous for sitting thru it because it touches on so many IMPORTANT issues but it does so without any discernable motive. The viewer comes away with no new perspectives (unless one comes up with one while one's mind wanders, as it will invariably do during this pointless film).<br /><br />One might better spend one's time staring out a window at a tree growing.<br /><br />", metadata={'label': 0}),
Document(page_content="This film was probably inspired by Godard's Masculin, féminin and I urge you to see that film instead.<br /><br />The film has two strong elements and those are, (1) the realistic acting (2) the impressive, undeservedly good, photo. Apart from that, what strikes me most is the endless stream of silliness. Lena Nyman has to be most annoying actress in the world. She acts so stupid and with all the nudity in this film,...it's unattractive. Comparing to Godard's film, intellectuality has been replaced with stupidity. Without going too far on this subject, I would say that follows from the difference in ideals between the French and the Swedish society.<br /><br />A movie of its time, and place. 2/10.", metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-5 | Document(page_content='Oh, brother...after hearing about this ridiculous film for umpteen years all I can think of is that old Peggy Lee song..<br /><br />"Is that all there is??" ...I was just an early teen when this smoked fish hit the U.S. I was too young to get in the theater (although I did manage to sneak into "Goodbye Columbus"). Then a screening at a local film museum beckoned - Finally I could see this film, except now I was as old as my parents were when they schlepped to see it!!<br /><br />The ONLY reason this film was not condemned to the anonymous sands of time was because of the obscenity case sparked by its U.S. release. MILLIONS of people flocked to this stinker, thinking they were going to see a sex film...Instead, they got lots of closeups of gnarly, repulsive Swedes, on-street interviews in bland shopping malls, asinie political pretension...and feeble who-cares simulated sex scenes with saggy, pale actors.<br /><br />Cultural icon, holy grail, historic artifact..whatever this thing was, shred it, burn it, then stuff the ashes in a lead box!<br /><br />Elite esthetes still scrape to find value in its boring pseudo revolutionary political spewings..But if it weren\'t for the censorship scandal, it would have been ignored, then forgotten.<br /><br />Instead, the "I Am Blank, Blank" rhythymed title was repeated endlessly for years as a titilation for porno films (I am Curious, Lavender - for | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-6 | for years as a titilation for porno films (I am Curious, Lavender - for gay films, I Am Curious, Black - for blaxploitation films, etc..) and every ten years or so the thing rises from the dead, to be viewed by a new generation of suckers who want to see that "naughty sex film" that "revolutionized the film industry"...<br /><br />Yeesh, avoid like the plague..Or if you MUST see it - rent the video and fast forward to the "dirty" parts, just to get it over with.<br /><br />', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-7 | Document(page_content="I would put this at the top of my list of films in the category of unwatchable trash! There are films that are bad, but the worst kind are the ones that are unwatchable but you are suppose to like them because they are supposed to be good for you! The sex sequences, so shocking in its day, couldn't even arouse a rabbit. The so called controversial politics is strictly high school sophomore amateur night Marxism. The film is self-consciously arty in the worst sense of the term. The photography is in a harsh grainy black and white. Some scenes are out of focus or taken from the wrong angle. Even the sound is bad! And some people call this art?<br /><br />", metadata={'label': 0}),
Document(page_content="Whoever wrote the screenplay for this movie obviously never consulted any books about Lucille Ball, especially her autobiography. I've never seen so many mistakes in a biopic, ranging from her early years in Celoron and Jamestown to her later years with Desi. I could write a whole list of factual errors, but it would go on for pages. In all, I believe that Lucille Ball is one of those inimitable people who simply cannot be portrayed by anyone other than themselves. If I were Lucie Arnaz and Desi, Jr., I would be irate at how many mistakes were made in this film. The filmmakers tried hard, but the movie seems awfully sloppy to me.", metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-8 | Document(page_content='When I first saw a glimpse of this movie, I quickly noticed the actress who was playing the role of Lucille Ball. Rachel York\'s portrayal of Lucy is absolutely awful. Lucille Ball was an astounding comedian with incredible talent. To think about a legend like Lucille Ball being portrayed the way she was in the movie is horrendous. I cannot believe out of all the actresses in the world who could play a much better Lucy, the producers decided to get Rachel York. She might be a good actress in other roles but to play the role of Lucille Ball is tough. It is pretty hard to find someone who could resemble Lucille Ball, but they could at least find someone a bit similar in looks and talent. If you noticed York\'s portrayal of Lucy in episodes of I Love Lucy like the chocolate factory or vitavetavegamin, nothing is similar in any way-her expression, voice, or movement.<br /><br />To top it all off, Danny Pino playing Desi Arnaz is horrible. Pino does not qualify to play as Ricky. He\'s small and skinny, his accent is unreal, and once again, his acting is unbelievable. Although Fred and Ethel were not similar either, they were not as bad as the characters of Lucy and Ricky.<br /><br />Overall, extremely horrible casting and the story is badly told. If people want to understand the real life situation of Lucille Ball, I suggest watching A&E Biography of Lucy and Desi, read the book from Lucille Ball herself, or PBS\' American Masters: Finding Lucy. If you want to see a docudrama, "Before the Laughter" would be a better choice. The casting of Lucille Ball and Desi Arnaz | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-9 | Laughter" would be a better choice. The casting of Lucille Ball and Desi Arnaz in "Before the Laughter" is much better compared to this. At least, a similar aspect is shown rather than nothing.', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-10 | Document(page_content='Who are these "They"- the actors? the filmmakers? Certainly couldn\'t be the audience- this is among the most air-puffed productions in existence. It\'s the kind of movie that looks like it was a lot of fun to shoot\x97 TOO much fun, nobody is getting any actual work done, and that almost always makes for a movie that\'s no fun to watch.<br /><br />Ritter dons glasses so as to hammer home his character\'s status as a sort of doppleganger of the bespectacled Bogdanovich; the scenes with the breezy Ms. Stratten are sweet, but have an embarrassing, look-guys-I\'m-dating-the-prom-queen feel to them. Ben Gazzara sports his usual cat\'s-got-canary grin in a futile attempt to elevate the meager plot, which requires him to pursue Audrey Hepburn with all the interest of a narcoleptic at an insomnia clinic. In the meantime, the budding couple\'s respective children (nepotism alert: Bogdanovich\'s daughters) spew cute and pick up some fairly disturbing pointers on \'love\' while observing their parents. (Ms. Hepburn, drawing on her dignity, manages to rise above the proceedings- but she has the monumental challenge of playing herself, ostensibly.) Everybody looks great, but so what? It\'s a movie and we can expect that much, if that\'s what you\'re looking for you\'d be better off picking up a copy of Vogue.<br /><br />Oh- and it has to be mentioned that Colleen Camp | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-11 | Vogue.<br /><br />Oh- and it has to be mentioned that Colleen Camp thoroughly annoys, even apart from her singing, which, while competent, is wholly unconvincing... the country and western numbers are woefully mismatched with the standards on the soundtrack. Surely this is NOT what Gershwin (who wrote the song from which the movie\'s title is derived) had in mind; his stage musicals of the 20\'s may have been slight, but at least they were long on charm. "They All Laughed" tries to coast on its good intentions, but nobody- least of all Peter Bogdanovich - has the good sense to put on the brakes.<br /><br />Due in no small part to the tragic death of Dorothy Stratten, this movie has a special place in the heart of Mr. Bogdanovich- he even bought it back from its producers, then distributed it on his own and went bankrupt when it didn\'t prove popular. His rise and fall is among the more sympathetic and tragic of Hollywood stories, so there\'s no joy in criticizing the film... there _is_ real emotional investment in Ms. Stratten\'s scenes. But "Laughed" is a faint echo of "The Last Picture Show", "Paper Moon" or "What\'s Up, Doc"- following "Daisy Miller" and "At Long Last Love", it was a thundering confirmation of the phase from which P.B. has never emerged.<br /><br />All in all, though, the movie is harmless, only a waste of rental. I want to watch people having a good time, I\'ll go to the park on a sunny day. For filmic | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-12 | good time, I\'ll go to the park on a sunny day. For filmic expressions of joy and love, I\'ll stick to Ernest Lubitsch and Jaques Demy...', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-13 | Document(page_content="This is said to be a personal film for Peter Bogdonavitch. He based it on his life but changed things around to fit the characters, who are detectives. These detectives date beautiful models and have no problem getting them. Sounds more like a millionaire playboy filmmaker than a detective, doesn't it? This entire movie was written by Peter, and it shows how out of touch with real people he was. You're supposed to write what you know, and he did that, indeed. And leaves the audience bored and confused, and jealous, for that matter. This is a curio for people who want to see Dorothy Stratten, who was murdered right after filming. But Patti Hanson, who would, in real life, marry Keith Richards, was also a model, like Stratten, but is a lot better and has a more ample part. In fact, Stratten's part seemed forced; added. She doesn't have a lot to do with the story, which is pretty convoluted to begin with. All in all, every character in this film is somebody that very few people can relate with, unless you're millionaire from Manhattan with beautiful supermodels at your beckon call. For the rest of us, it's an irritating snore fest. That's what happens when you're out of touch. You entertain your few friends with inside jokes, and bore all the rest.", metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-14 | Document(page_content='It was great to see some of my favorite stars of 30 years ago including John Ritter, Ben Gazarra and Audrey Hepburn. They looked quite wonderful. But that was it. They were not given any characters or good lines to work with. I neither understood or cared what the characters were doing.<br /><br />Some of the smaller female roles were fine, Patty Henson and Colleen Camp were quite competent and confident in their small sidekick parts. They showed some talent and it is sad they didn\'t go on to star in more and better films. Sadly, I didn\'t think Dorothy Stratten got a chance to act in this her only important film role.<br /><br />The film appears to have some fans, and I was very open-minded when I started watching it. I am a big Peter Bogdanovich fan and I enjoyed his last movie, "Cat\'s Meow" and all his early ones from "Targets" to "Nickleodeon". So, it really surprised me that I was barely able to keep awake watching this one.<br /><br />It is ironic that this movie is about a detective agency where the detectives and clients get romantically involved with each other. Five years later, Bogdanovich\'s ex-girlfriend, Cybil Shepherd had a hit television series called "Moonlighting" stealing the story idea from Bogdanovich. Of course, there was a great difference in that the series relied on tons of witty dialogue, while this tries to make do with slapstick and a few screwball lines.<br /><br />Bottom line: It ain\'t no "Paper Moon" and only a very pale version of "What\'s Up, Doc".', | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-15 | Moon" and only a very pale version of "What\'s Up, Doc".', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-16 | Document(page_content="I can't believe that those praising this movie herein aren't thinking of some other film. I was prepared for the possibility that this would be awful, but the script (or lack thereof) makes for a film that's also pointless. On the plus side, the general level of craft on the part of the actors and technical crew is quite competent, but when you've got a sow's ear to work with you can't make a silk purse. Ben G fans should stick with just about any other movie he's been in. Dorothy S fans should stick to Galaxina. Peter B fans should stick to Last Picture Show and Target. Fans of cheap laughs at the expense of those who seem to be asking for it should stick to Peter B's amazingly awful book, Killing of the Unicorn.", metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-17 | Document(page_content='Never cast models and Playboy bunnies in your films! Bob Fosse\'s "Star 80" about Dorothy Stratten, of whom Bogdanovich was obsessed enough to have married her SISTER after her murder at the hands of her low-life husband, is a zillion times more interesting than Dorothy herself on the silver screen. Patty Hansen is no actress either..I expected to see some sort of lost masterpiece a la Orson Welles but instead got Audrey Hepburn cavorting in jeans and a god-awful "poodlesque" hair-do....Very disappointing...."Paper Moon" and "The Last Picture Show" I could watch again and again. This clunker I could barely sit through once. This movie was reputedly not released because of the brouhaha surrounding Ms. Stratten\'s tawdry death; I think the real reason was because it was so bad!', metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-18 | Document(page_content="Its not the cast. A finer group of actors, you could not find. Its not the setting. The director is in love with New York City, and by the end of the film, so are we all! Woody Allen could not improve upon what Bogdonovich has done here. If you are going to fall in love, or find love, Manhattan is the place to go. No, the problem with the movie is the script. There is none. The actors fall in love at first sight, words are unnecessary. In the director's own experience in Hollywood that is what happens when they go to work on the set. It is reality to him, and his peers, but it is a fantasy to most of us in the real world. So, in the end, the movie is hollow, and shallow, and message-less.", metadata={'label': 0}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-19 | Document(page_content='Today I found "They All Laughed" on VHS on sale in a rental. It was a really old and very used VHS, I had no information about this movie, but I liked the references listed on its cover: the names of Peter Bogdanovich, Audrey Hepburn, John Ritter and specially Dorothy Stratten attracted me, the price was very low and I decided to risk and buy it. I searched IMDb, and the User Rating of 6.0 was an excellent reference. I looked in "Mick Martin & Marsha Porter Video & DVD Guide 2003" and \x96 wow \x96 four stars! So, I decided that I could not waste more time and immediately see it. Indeed, I have just finished watching "They All Laughed" and I found it a very boring overrated movie. The characters are badly developed, and I spent lots of minutes to understand their roles in the story. The plot is supposed to be funny (private eyes who fall in love for the women they are chasing), but I have not laughed along the whole story. The coincidences, in a huge city like New York, are ridiculous. Ben Gazarra as an attractive and very seductive man, with the women falling for him as if her were a Brad Pitt, Antonio Banderas or George Clooney, is quite ridiculous. In the end, the greater attractions certainly are the presence of the Playboy centerfold and playmate of the year Dorothy Stratten, murdered by her husband pretty after the release of this movie, and whose life was showed in "Star 80" and "Death of a Centerfold: The Dorothy Stratten Story"; the amazing beauty of the sexy Patti Hansen, the future Mrs. Keith Richards; the always wonderful, even being | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-20 | the sexy Patti Hansen, the future Mrs. Keith Richards; the always wonderful, even being fifty-two years old, Audrey Hepburn; and the song "Amigo", from Roberto Carlos. Although I do not like him, Roberto Carlos has been the most popular Brazilian singer since the end of the 60\'s and is called by his fans as "The King". I will keep this movie in my collection only because of these attractions (manly Dorothy Stratten). My vote is four.<br /><br />Title (Brazil): "Muito Riso e Muita Alegria" ("Many Laughs and Lots of Happiness")', metadata={'label': 0})] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
10a1a51c55a1-21 | Example#
In this example, we use data from a dataset to answer a question
from langchain.indexes import VectorstoreIndexCreator
from langchain.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
dataset_name="tweet_eval"
page_content_column="text"
name="stance_climate"
loader=HuggingFaceDatasetLoader(dataset_name,page_content_column,name)
index = VectorstoreIndexCreator().from_loaders([loader])
Found cached dataset tweet_eval
Using embedded DuckDB without persistence: data will be transient
query = "What are the most used hashtag?"
result = index.query(query)
result
' The most used hashtags in this context are #UKClimate2015, #Sustainability, #TakeDownTheFlag, #LoveWins, #CSOTA, #ClimateSummitoftheAmericas, #SM, and #SocialMedia.'
previous
HTML
next
iFixit
Contents
Example
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/hugging_face_dataset.html |
1f3698edfe7f-0 | .ipynb
.pdf
Bilibili
Bilibili#
This loader utilizes the bilibili-api to fetch the text transcript from Bilibili, one of the most beloved long-form video sites in China.
With this BiliBiliLoader, users can easily obtain the transcript of their desired video content on the platform.
from langchain.document_loaders.bilibili import BiliBiliLoader
#!pip install bilibili-api
loader = BiliBiliLoader(
["https://www.bilibili.com/video/BV1xt411o7Xu/"]
)
loader.load()
previous
BigQuery Loader
next
Blackboard
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/bilibili.html |
789f24728403-0 | .ipynb
.pdf
ReadTheDocs Documentation
ReadTheDocs Documentation#
This notebook covers how to load content from html that was generated as part of a Read-The-Docs build.
For an example of this in the wild, see here.
This assumes that the html has already been scraped into a folder. This can be done by uncommenting and running the following command
#!wget -r -A.html -P rtdocs https://langchain.readthedocs.io/en/latest/
from langchain.document_loaders import ReadTheDocsLoader
loader = ReadTheDocsLoader("rtdocs", features='html.parser')
docs = loader.load()
previous
PowerPoint
next
Roam
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/readthedocs_documentation.html |
7c65be76b555-0 | .ipynb
.pdf
Blackboard
Blackboard#
This covers how to load data from a Blackboard Learn instance.
from langchain.document_loaders import BlackboardLoader
loader = BlackboardLoader(
blackboard_course_url="https://blackboard.example.com/webapps/blackboard/execute/announcement?method=search&context=course_entry&course_id=_123456_1",
bbrouter="expires:12345...",
load_all_recursively=True,
)
documents = loader.load()
previous
Bilibili
next
Blockchain Document Loader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blackboard.html |
63a338214ea8-0 | .ipynb
.pdf
Git
Contents
Load existing repository from disk
Clone repository from url
Filtering files to load
Git#
This notebook shows how to load text files from Git repository.
Load existing repository from disk#
from git import Repo
repo = Repo.clone_from(
"https://github.com/hwchase17/langchain", to_path="./example_data/test_repo1"
)
branch = repo.head.reference
from langchain.document_loaders import GitLoader
loader = GitLoader(repo_path="./example_data/test_repo1/", branch=branch)
data = loader.load()
len(data)
print(data[0])
page_content='.venv\n.github\n.git\n.mypy_cache\n.pytest_cache\nDockerfile' metadata={'file_path': '.dockerignore', 'file_name': '.dockerignore', 'file_type': ''}
Clone repository from url#
from langchain.document_loaders import GitLoader
loader = GitLoader(
clone_url="https://github.com/hwchase17/langchain",
repo_path="./example_data/test_repo2/",
branch="master",
)
data = loader.load()
len(data)
1074
Filtering files to load#
from langchain.document_loaders import GitLoader
# eg. loading only python files | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/git.html |
63a338214ea8-1 | # eg. loading only python files
loader = GitLoader(repo_path="./example_data/test_repo1/", file_filter=lambda file_path: file_path.endswith(".py"))
previous
GCS File Storage
next
GitBook
Contents
Load existing repository from disk
Clone repository from url
Filtering files to load
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/git.html |
07aaa59c86da-0 | .ipynb
.pdf
Blockchain Document Loader
Contents
Overview
Setup
Create a Blockchain Document Loader
Option 1: Ethereum Mainnet (default BlockchainType)
Option 2: Polygon Mainnet
(Optional) Using the Blockchain Document Loader
Setup Splitter and Index
Setup Models and Chains
Retrieval Chain
Blockchain Document Loader#
Overview#
The intention of this notebook is to provide a means of testing functionality in the Langchain Document Loader for Blockchain.
Initially this Loader supports:
Ethereum Maninnet, Ethereum Testnet, Polgyon Mainnet, Polygon Testnet (default is eth-mainnet)
Alchemy’s getNFTsForCollection API
It can be extended if the community finds value in this loader. Specifically:
Additional APIs can be added (e.g. Tranction-related APIs)
To run this notebook, the user will need:
An OpenAI key (for OpenAI models)
A free Alchemy API Key
Setup#
%pip install langchain -q
Note: you may need to restart the kernel to use updated packages.
from langchain.document_loaders import BlockchainDocumentLoader
from langchain.document_loaders.blockchain import BlockchainType
import os
alchemyApiKey = "get your own key from https://www.alchemy.com/"
os.environ["ALCHEMY_API_KEY"] = alchemyApiKey
Create a Blockchain Document Loader#
Option 1: Ethereum Mainnet (default BlockchainType)#
contractAddress = "0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d" # Bored Ape Yacht Club contract address
blockchainType = BlockchainType.ETH_MAINNET #default value, optional parameter | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-1 | blockchainType = BlockchainType.ETH_MAINNET #default value, optional parameter
blockchainLoader = BlockchainDocumentLoader(contractAddress)
nfts = blockchainLoader.load()
nfts[:2] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-2 | [Document(page_content="{'contract': {'address': '0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d'}, 'id': {'tokenId': '0x0000000000000000000000000000000000000000000000000000000000000000', 'tokenMetadata': {'tokenType': 'ERC721'}}, 'title': '', 'description': '', 'tokenUri': {'gateway': 'https://alchemy.mypinata.cloud/ipfs/QmeSjSinHpPnmXmspMjwiXyN6zS4E9zccariGR3jxcaWtq/0', 'raw': 'ipfs://QmeSjSinHpPnmXmspMjwiXyN6zS4E9zccariGR3jxcaWtq/0'}, 'media': [{'gateway': 'https://nft-cdn.alchemy.com/eth-mainnet/415d618f5fef7bfe683e02d4653c4289', 'thumbnail': 'https://res.cloudinary.com/alchemyapi/image/upload/thumbnailv2/eth-mainnet/415d618f5fef7bfe683e02d4653c4289', 'raw': 'ipfs://QmRRPWG96cmgTn2qSzjwr2qvfNEuhunv6FNeMFGa9bx6mQ', 'format': 'png', 'bytes': | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-3 | 'format': 'png', 'bytes': 133270}], 'metadata': {'image': 'ipfs://QmRRPWG96cmgTn2qSzjwr2qvfNEuhunv6FNeMFGa9bx6mQ', 'attributes': [{'value': 'Silver Hoop', 'trait_type': 'Earring'}, {'value': 'Orange', 'trait_type': 'Background'}, {'value': 'Robot', 'trait_type': 'Fur'}, {'value': 'Striped Tee', 'trait_type': 'Clothes'}, {'value': 'Discomfort', 'trait_type': 'Mouth'}, {'value': 'X Eyes', 'trait_type': 'Eyes'}]}, 'timeLastUpdated': '2023-04-18T04:05:27.817Z', 'contractMetadata': {'name': 'BoredApeYachtClub', 'symbol': 'BAYC', 'totalSupply': '10000', 'tokenType': 'ERC721', 'contractDeployer': '0xaba7161a7fb69c88e16ed9f455ce62b791ee4d03', 'deployedBlockNumber': 12287507, 'openSea': {'floorPrice': 68.16, 'collectionName': 'Bored Ape Yacht Club', 'safelistRequestStatus': | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-4 | 'Bored Ape Yacht Club', 'safelistRequestStatus': 'verified', 'imageUrl': 'https://i.seadn.io/gae/Ju9CkWtV-1Okvf45wo8UctR-M9He2PjILP0oOvxE89AyiPPGtrR3gysu1Zgy0hjd2xKIgjJJtWIc0ybj4Vd7wv8t3pxDGHoJBzDB?w=500&auto=format', 'description': 'The Bored Ape Yacht Club is a collection of 10,000 unique Bored Ape NFTs— unique digital collectibles living on the Ethereum blockchain. Your Bored Ape doubles as your Yacht Club membership card, and grants access to members-only benefits, the first of which is access to THE BATHROOM, a collaborative graffiti board. Future areas and perks can be unlocked by the community through roadmap activation. Visit www.BoredApeYachtClub.com for more details.', 'externalUrl': 'http://www.boredapeyachtclub.com/', 'twitterUsername': 'BoredApeYC', 'discordUrl': 'https://discord.gg/3P5K3dzgdB', 'lastIngestedAt': '2023-03-21T03:54:33.000Z'}}}", metadata={'tokenId': '0x0000000000000000000000000000000000000000000000000000000000000000'}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-5 | Document(page_content="{'contract': {'address': '0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d'}, 'id': {'tokenId': '0x0000000000000000000000000000000000000000000000000000000000000001', 'tokenMetadata': {'tokenType': 'ERC721'}}, 'title': '', 'description': '', 'tokenUri': {'gateway': 'https://alchemy.mypinata.cloud/ipfs/QmeSjSinHpPnmXmspMjwiXyN6zS4E9zccariGR3jxcaWtq/1', 'raw': 'ipfs://QmeSjSinHpPnmXmspMjwiXyN6zS4E9zccariGR3jxcaWtq/1'}, 'media': [{'gateway': 'https://nft-cdn.alchemy.com/eth-mainnet/65558a4d0c5b0c56fbc50bf03f55e3fa', 'thumbnail': 'https://res.cloudinary.com/alchemyapi/image/upload/thumbnailv2/eth-mainnet/65558a4d0c5b0c56fbc50bf03f55e3fa', 'raw': 'ipfs://QmPbxeGcXhYQQNgsC6a36dDyYUcHgMLnGKnF8pVFmGsvqi', 'format': | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-6 | 'format': 'png', 'bytes': 171425}], 'metadata': {'image': 'ipfs://QmPbxeGcXhYQQNgsC6a36dDyYUcHgMLnGKnF8pVFmGsvqi', 'attributes': [{'value': 'Grin', 'trait_type': 'Mouth'}, {'value': 'Vietnam Jacket', 'trait_type': 'Clothes'}, {'value': 'Orange', 'trait_type': 'Background'}, {'value': 'Blue Beams', 'trait_type': 'Eyes'}, {'value': 'Robot', 'trait_type': 'Fur'}]}, 'timeLastUpdated': '2023-04-24T04:37:37.738Z', 'contractMetadata': {'name': 'BoredApeYachtClub', 'symbol': 'BAYC', 'totalSupply': '10000', 'tokenType': 'ERC721', 'contractDeployer': '0xaba7161a7fb69c88e16ed9f455ce62b791ee4d03', 'deployedBlockNumber': 12287507, 'openSea': {'floorPrice': 68.16, 'collectionName': 'Bored Ape Yacht Club', 'safelistRequestStatus': 'verified', 'imageUrl': | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-7 | 'safelistRequestStatus': 'verified', 'imageUrl': 'https://i.seadn.io/gae/Ju9CkWtV-1Okvf45wo8UctR-M9He2PjILP0oOvxE89AyiPPGtrR3gysu1Zgy0hjd2xKIgjJJtWIc0ybj4Vd7wv8t3pxDGHoJBzDB?w=500&auto=format', 'description': 'The Bored Ape Yacht Club is a collection of 10,000 unique Bored Ape NFTs— unique digital collectibles living on the Ethereum blockchain. Your Bored Ape doubles as your Yacht Club membership card, and grants access to members-only benefits, the first of which is access to THE BATHROOM, a collaborative graffiti board. Future areas and perks can be unlocked by the community through roadmap activation. Visit www.BoredApeYachtClub.com for more details.', 'externalUrl': 'http://www.boredapeyachtclub.com/', 'twitterUsername': 'BoredApeYC', 'discordUrl': 'https://discord.gg/3P5K3dzgdB', 'lastIngestedAt': '2023-03-21T03:54:33.000Z'}}}", metadata={'tokenId': '0x0000000000000000000000000000000000000000000000000000000000000001'})] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-8 | Option 2: Polygon Mainnet#
contractAddress = "0x448676ffCd0aDf2D85C1f0565e8dde6924A9A7D9" # Polygon Mainnet contract address
blockchainType = BlockchainType.POLYGON_MAINNET
blockchainLoader = BlockchainDocumentLoader(contractAddress, blockchainType)
nfts = blockchainLoader.load()
nfts[:2] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-9 | [Document(page_content="{'contract': {'address': '0x448676ffcd0adf2d85c1f0565e8dde6924a9a7d9'}, 'id': {'tokenId': '0x01', 'tokenMetadata': {'tokenType': 'ERC1155'}}, 'title': 'Wyatt Horton #0001', 'description': 'A sleepy capybara', 'tokenUri': {'gateway': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/metadata/1.json', 'raw': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/metadata/1.json'}, 'media': [{'gateway': 'https://nft-cdn.alchemy.com/matic-mainnet/9085e06ff9f6c9074de91801d1c72d26', 'thumbnail': 'https://res.cloudinary.com/alchemyapi/image/upload/thumbnailv2/matic-mainnet/9085e06ff9f6c9074de91801d1c72d26', 'raw': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/images/1.png', 'format': 'png', 'bytes': 769622}], 'metadata': {'name': 'Wyatt Horton #0001', | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-10 | 'metadata': {'name': 'Wyatt Horton #0001', 'description': 'A sleepy capybara', 'image': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/images/1.png', 'attributes': [{'value': 'Avatar', 'trait_type': 'Type'}, {'value': 'Animal', 'trait_type': 'Category'}, {'value': 'Capybara', 'trait_type': 'Class'}, {'value': 'Fall 2022', 'trait_type': 'Collection'}, {'value': 'Furry', 'trait_type': 'Feature'}]}, 'timeLastUpdated': '2023-04-20T14:38:24.947Z', 'contractMetadata': {'name': 'Smoothstack - Avatars', 'symbol': 'SMTH', 'tokenType': 'ERC1155', 'contractDeployer': '0x23075b2523c6563b06920a302a8be4f90ef6e974', 'deployedBlockNumber': 34752389, 'openSea': {'lastIngestedAt': '2023-04-17T20:59:42.000Z'}}}", metadata={'tokenId': '0x01'}), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-11 | Document(page_content="{'contract': {'address': '0x448676ffcd0adf2d85c1f0565e8dde6924a9a7d9'}, 'id': {'tokenId': '0x02', 'tokenMetadata': {'tokenType': 'ERC1155'}}, 'title': 'Dylan Leisler #0002', 'description': 'A chipper cat with a big, red bowtie', 'tokenUri': {'gateway': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/metadata/2.json', 'raw': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/metadata/2.json'}, 'media': [{'gateway': 'https://nft-cdn.alchemy.com/matic-mainnet/67c3c7ccef44b32bf2ce758e8e73dbcd', 'thumbnail': 'https://res.cloudinary.com/alchemyapi/image/upload/thumbnailv2/matic-mainnet/67c3c7ccef44b32bf2ce758e8e73dbcd', 'raw': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/images/2.png', 'format': 'png', 'bytes': 1187749}], 'metadata': {'name': 'Dylan Leisler | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-12 | 'metadata': {'name': 'Dylan Leisler #0002', 'description': 'A chipper cat with a big, red bowtie', 'image': 'https://storage.googleapis.com/minted-nfts/smoothstack/avatars/images/2.png', 'attributes': [{'value': 'Avatar', 'trait_type': 'Type'}, {'value': 'Animal', 'trait_type': 'Category'}, {'value': 'Cat', 'trait_type': 'Class'}, {'value': 'Fall 2022', 'trait_type': 'Collection'}, {'value': 'Red Bowtie', 'trait_type': 'Feature'}]}, 'timeLastUpdated': '2023-04-23T13:38:29.316Z', 'contractMetadata': {'name': 'Smoothstack - Avatars', 'symbol': 'SMTH', 'tokenType': 'ERC1155', 'contractDeployer': '0x23075b2523c6563b06920a302a8be4f90ef6e974', 'deployedBlockNumber': 34752389, 'openSea': {'lastIngestedAt': '2023-04-17T20:59:42.000Z'}}}", metadata={'tokenId': '0x02'})] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-13 | (Optional) Using the Blockchain Document Loader#
Setup Splitter and Index#
%pip install sentence_transformers chromadb openai tiktoken -q
Note: you may need to restart the kernel to use updated packages.
from langchain.indexes import VectorstoreIndexCreator
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=0)
docs = text_splitter.split_documents(nfts)
print("NUMBER OF DOCUMENTS: ", len(docs))
NUMBER OF DOCUMENTS: 424
index = VectorstoreIndexCreator(
embedding=HuggingFaceEmbeddings(),
text_splitter=text_splitter).from_loaders([blockchainLoader])
Using embedded DuckDB without persistence: data will be transient
Setup Models and Chains#
openAiKey = "put OpenAI key here"
os.environ["OPENAI_API_KEY"] = openAiKey
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
Retrieval Chain#
llmOpenAI = OpenAI()
chainQA = RetrievalQA.from_chain_type(llm=llmOpenAI,
chain_type="map_reduce",
retriever=index.vectorstore.as_retriever(),
verbose=True,
input_key="question")
chainQA.run("What are some of the popular attributes?") | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
07aaa59c86da-14 | chainQA.run("What are some of the popular attributes?")
> Entering new RetrievalQA chain...
> Finished chain.
' Popular attributes include "Avatar" (Type), "Character" (Category), and "Human" or "Wizard" (Class).'
chainQA.run("How many NFTs are there?")
> Entering new RetrievalQA chain...
> Finished chain.
' There are 10,000 unique Bored Ape NFTs.'
previous
Blackboard
next
ChatGPT Data Loader
Contents
Overview
Setup
Create a Blockchain Document Loader
Option 1: Ethereum Mainnet (default BlockchainType)
Option 2: Polygon Mainnet
(Optional) Using the Blockchain Document Loader
Setup Splitter and Index
Setup Models and Chains
Retrieval Chain
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/blockchain.html |
454db5f613e8-0 | .ipynb
.pdf
Facebook Chat
Facebook Chat#
This notebook covers how to load data from the Facebook Chats into a format that can be ingested into LangChain.
from langchain.document_loaders import FacebookChatLoader
loader = FacebookChatLoader("example_data/facebook_chat.json")
loader.load()
[Document(page_content='User 2 on 2023-02-05 12:46:11: Bye!\n\nUser 1 on 2023-02-05 12:43:55: Oh no worries! Bye\n\nUser 2 on 2023-02-05 12:24:37: No Im sorry it was my mistake, the blue one is not for sale\n\nUser 1 on 2023-02-05 12:05:40: I thought you were selling the blue one!\n\nUser 1 on 2023-02-05 12:05:09: Im not interested in this bag. Im interested in the blue one!\n\nUser 2 on 2023-02-05 12:04:28: Here is $129\n\nUser 2 on 2023-02-05 12:04:05: Online is at least $100\n\nUser 1 on 2023-02-05 11:59:59: How much do you want?\n\nUser 2 on 2023-02-05 07:17:56: Goodmorning! $50 is too low.\n\nUser 1 on 2023-02-04 23:17:02: Hi! Im interested in your bag. Im offering $50. Let me know if you are interested. Thanks!\n\n', lookup_str='', metadata={'source': 'docs/modules/document_loaders/examples/example_data/facebook_chat.json'}, lookup_index=0)]
previous
EverNote
next
Figma
By Harrison Chase | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/facebook_chat.html |
454db5f613e8-1 | previous
EverNote
next
Figma
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/facebook_chat.html |
914928f18f02-0 | .ipynb
.pdf
Diffbot
Diffbot#
This covers how to extract HTML documents from a list of URLs using the Diffbot extract API, into a document format that we can use downstream.
urls = [
"https://python.langchain.com/en/latest/index.html",
]
The Diffbot Extract API Requires an API token. Once you have it, you can extract the data from the previous URLs
import os
from langchain.document_loaders import DiffbotLoader
loader = DiffbotLoader(urls=urls, api_token=os.environ.get("DIFFBOT_API_TOKEN"))
With the .load() method, you can see the documents loaded
loader.load() | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
914928f18f02-1 | [Document(page_content='LangChain is a framework for developing applications powered by language models. We believe that the most powerful and differentiated applications will not only call out to a language model via an API, but will also:\nBe data-aware: connect a language model to other sources of data\nBe agentic: allow a language model to interact with its environment\nThe LangChain framework is designed with the above principles in mind.\nThis is the Python specific portion of the documentation. For a purely conceptual guide to LangChain, see here. For the JavaScript documentation, see here.\nGetting Started\nCheckout the below guide for a walkthrough of how to get started using LangChain to create an Language Model application.\nGetting Started Documentation\nModules\nThere are several main modules that LangChain provides support for. For each module we provide some examples to get started, how-to guides, reference docs, and conceptual guides. These modules are, in increasing order of complexity:\nModels: The various model types and model integrations LangChain supports.\nPrompts: This includes prompt management, prompt optimization, and prompt serialization.\nMemory: Memory is the concept of persisting state between calls of a chain/agent. LangChain provides a standard interface for memory, a collection of memory implementations, and examples of chains/agents that use memory.\nIndexes: Language models are often more powerful when combined with your own text data - this module covers best practices for doing exactly that.\nChains: Chains go beyond just a single LLM call, and are sequences of calls (whether to an LLM or a different utility). LangChain | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
914928f18f02-2 | of calls (whether to an LLM or a different utility). LangChain provides a standard interface for chains, lots of integrations with other tools, and end-to-end chains for common applications.\nAgents: Agents involve an LLM making decisions about which Actions to take, taking that Action, seeing an Observation, and repeating that until done. LangChain provides a standard interface for agents, a selection of agents to choose from, and examples of end to end agents.\nUse Cases\nThe above modules can be used in a variety of ways. LangChain also provides guidance and assistance in this. Below are some of the common use cases LangChain supports.\nPersonal Assistants: The main LangChain use case. Personal assistants need to take actions, remember interactions, and have knowledge about your data.\nQuestion Answering: The second big LangChain use case. Answering questions over specific documents, only utilizing the information in those documents to construct an answer.\nChatbots: Since language models are good at producing text, that makes them ideal for creating chatbots.\nQuerying Tabular Data: If you want to understand how to use LLMs to query data that is stored in a tabular format (csvs, SQL, dataframes, etc) you should read this page.\nInteracting with APIs: Enabling LLMs to interact with APIs is extremely powerful in order to give them more up-to-date information and allow them to take actions.\nExtraction: Extract structured information from text.\nSummarization: Summarizing longer documents into shorter, more condensed chunks of information. A type of Data Augmented Generation.\nEvaluation: | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
914928f18f02-3 | chunks of information. A type of Data Augmented Generation.\nEvaluation: Generative models are notoriously hard to evaluate with traditional metrics. One new way of evaluating them is using language models themselves to do the evaluation. LangChain provides some prompts/chains for assisting in this.\nReference Docs\nAll of LangChain’s reference documentation, in one place. Full documentation on all methods, classes, installation methods, and integration setups for LangChain.\nReference Documentation\nLangChain Ecosystem\nGuides for how other companies/products can be used with LangChain\nLangChain Ecosystem\nAdditional Resources\nAdditional collection of resources we think may be useful as you develop your application!\nLangChainHub: The LangChainHub is a place to share and explore other prompts, chains, and agents.\nGlossary: A glossary of all related terms, papers, methods, etc. Whether implemented in LangChain or not!\nGallery: A collection of our favorite projects that use LangChain. Useful for finding inspiration or seeing how things were done in other applications.\nDeployments: A collection of instructions, code snippets, and template repositories for deploying LangChain apps.\nTracing: A guide on using tracing in LangChain to visualize the execution of chains and agents.\nModel Laboratory: Experimenting with different prompts, models, and chains is a big part of developing the best possible application. The ModelLaboratory makes it easy to do so.\nDiscord: Join us on our Discord to discuss all things LangChain!\nProduction Support: | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
914928f18f02-4 | Join us on our Discord to discuss all things LangChain!\nProduction Support: As you move your LangChains into production, we’d love to offer more comprehensive support. Please fill out this form and we’ll set up a dedicated support Slack channel.', metadata={'source': 'https://python.langchain.com/en/latest/index.html'})] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
914928f18f02-5 | previous
DataFrame Loader
next
Directory Loader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/diffbot.html |
9a2be0bc8dc7-0 | .ipynb
.pdf
Images
Contents
Using Unstructured
Retain Elements
Images#
This covers how to load images such as JPGs PNGs into a document format that we can use downstream.
Using Unstructured#
from langchain.document_loaders.image import UnstructuredImageLoader
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg")
data = loader.load()
data[0] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image.html |
9a2be0bc8dc7-1 | Document(page_content="LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\n\n\n‘Zxjiang Shen' (F3}, Ruochen Zhang”, Melissa Dell*, Benjamin Charles Germain\nLeet, Jacob Carlson, and Weining LiF\n\n\nsugehen\n\nshangthrows, et\n\n“Abstract. Recent advanocs in document image analysis (DIA) have been\n‘pimarliy driven bythe application of neural networks dell roar\n{uteomer could be aly deployed in production and extended fo farther\n[nvetigtion. However, various factory ke lcely organize codebanee\nsnd sophisticated modal cnigurations compat the ey ree of\n‘erin! innovation by wide sence, Though there have been sng\n‘Hors to improve reuablty and simplify deep lees (DL) mode\n‘aon, sone of them ae optimized for challenge inthe demain of DIA,\nThis roprscte a major gap in the extng fol, sw DIA i eal to\nscademic research acon wie range of dpi in the social ssencee\n[rary for streamlining the sage of DL in DIA research and appicn\n‘tons The core LayoutFaraer brary comes with a sch of simple and\nIntative interfaee or applying and eutomiing DI. odel fr Inyo de\npltfom for sharing both protrined modes an fal document dist\n{ation pipeline We demonutate that LayootPareer | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image.html |
9a2be0bc8dc7-2 | fal document dist\n{ation pipeline We demonutate that LayootPareer shea fr both\nlightweight and lrgeseledgtieation pipelines in eal-word uae ces\nThe leary pblely smal at Btspe://layost-pareergsthab So\n\n\n\n‘Keywords: Document Image Analysis» Deep Learning Layout Analysis\n‘Character Renguition - Open Serres dary « Tol\n\n\nIntroduction\n\n\n‘Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of\ndoctiment image analysis (DIA) tea including document image clasiffeation [I]\n", lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg'}, lookup_index=0) | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image.html |
9a2be0bc8dc7-3 | Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredImageLoader("layout-parser-paper-fast.jpg", mode="elements")
data = loader.load()
data[0]
Document(page_content='LayoutParser: A Unified Toolkit for Deep\nLearning Based Document Image Analysis\n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.jpg', 'filename': 'layout-parser-paper-fast.jpg', 'page_number': 1, 'category': 'Title'}, lookup_index=0)
previous
iFixit
next
Image captions
Contents
Using Unstructured
Retain Elements
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/image.html |
c33cd1cf311e-0 | .ipynb
.pdf
Notion
Contents
🧑 Instructions for ingesting your own dataset
Notion#
This notebook covers how to load documents from a Notion database dump.
In order to get this notion dump, follow these instructions:
🧑 Instructions for ingesting your own dataset#
Export your dataset from Notion. You can do this by clicking on the three dots in the upper right hand corner and then clicking Export.
When exporting, make sure to select the Markdown & CSV format option.
This will produce a .zip file in your Downloads folder. Move the .zip file into this repository.
Run the following command to unzip the zip file (replace the Export... with your own file name as needed).
unzip Export-d3adfe0f-3131-4bf3-8987-a52017fc1bae.zip -d Notion_DB
Run the following command to ingest the data.
from langchain.document_loaders import NotionDirectoryLoader
loader = NotionDirectoryLoader("Notion_DB")
docs = loader.load()
previous
Notebook
next
Notion DB Loader
Contents
🧑 Instructions for ingesting your own dataset
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/notion.html |
5966a575cff6-0 | .ipynb
.pdf
Unstructured File Loader
Contents
Retain Elements
Define a Partitioning Strategy
PDF Example
Unstructured File Loader#
This notebook covers how to use Unstructured to load files of many types. Unstructured currently supports loading of text files, powerpoints, html, pdfs, images, and more.
# # Install package
!pip install "unstructured[local-inference]"
!pip install "detectron2@git+https://github.com/facebookresearch/[email protected]#egg=detectron2"
!pip install layoutparser[layoutmodels,tesseract]
# # Install other dependencies
# # https://github.com/Unstructured-IO/unstructured/blob/main/docs/source/installing.rst
# !brew install libmagic
# !brew install poppler
# !brew install tesseract
# # If parsing xml / html documents:
# !brew install libxml2
# !brew install libxslt
# import nltk
# nltk.download('punkt')
from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("./example_data/state_of_the_union.txt")
docs = loader.load()
docs[0].page_content[:400] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
5966a575cff6-1 | docs[0].page_content[:400]
'Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.\n\nLast year COVID-19 kept us apart. This year we are finally together again.\n\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.\n\nWith a duty to one another to the American people to the Constit'
Retain Elements#
Under the hood, Unstructured creates different “elements” for different chunks of text. By default we combine those together, but you can easily keep that separation by specifying mode="elements".
loader = UnstructuredFileLoader("./example_data/state_of_the_union.txt", mode="elements")
docs = loader.load()
docs[:5]
[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),
Document(page_content='Last year COVID-19 kept us apart. This year we are finally together again.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
5966a575cff6-2 | Document(page_content='Tonight, we meet as Democrats Republicans and Independents. But most importantly as Americans.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),
Document(page_content='With a duty to one another to the American people to the Constitution.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0),
Document(page_content='And with an unwavering resolve that freedom will always triumph over tyranny.', lookup_str='', metadata={'source': '../../state_of_the_union.txt'}, lookup_index=0)]
Define a Partitioning Strategy#
Unstructured document loader allow users to pass in a strategy parameter that lets unstructured know how to partition the document. Currently supported strategies are "hi_res" (the default) and "fast". Hi res partitioning strategies are more accurate, but take longer to process. Fast strategies partition the document more quickly, but trade-off accuracy. Not all document types have separate hi res and fast partitioning strategies. For those document types, the strategy kwarg is ignored. In some cases, the high res strategy will fallback to fast if there is a dependency missing (i.e. a model for document partitioning). You can see how to apply a strategy to an UnstructuredFileLoader below.
from langchain.document_loaders import UnstructuredFileLoader | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
5966a575cff6-3 | from langchain.document_loaders import UnstructuredFileLoader
loader = UnstructuredFileLoader("layout-parser-paper-fast.pdf", strategy="fast", mode="elements")
docs = loader.load()
docs[:5]
[Document(page_content='1', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),
Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),
Document(page_content='0', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
5966a575cff6-4 | Document(page_content='2', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'UncategorizedText'}, lookup_index=0),
Document(page_content='n', lookup_str='', metadata={'source': 'layout-parser-paper-fast.pdf', 'filename': 'layout-parser-paper-fast.pdf', 'page_number': 1, 'category': 'Title'}, lookup_index=0)]
PDF Example#
Processing PDF documents works exactly the same way. Unstructured detects the file type and extracts the same types of elements.
!wget https://raw.githubusercontent.com/Unstructured-IO/unstructured/main/example-docs/layout-parser-paper.pdf -P "../../"
loader = UnstructuredFileLoader("./example_data/layout-parser-paper.pdf", mode="elements")
docs = loader.load()
docs[:5]
[Document(page_content='LayoutParser : A Unified Toolkit for Deep Learning Based Document Image Analysis', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0), | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
5966a575cff6-5 | Document(page_content='Zejiang Shen 1 ( (ea)\n ), Ruochen Zhang 2 , Melissa Dell 3 , Benjamin Charles Germain Lee 4 , Jacob Carlson 3 , and Weining Li 5', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),
Document(page_content='Allen Institute for AI [email protected]', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),
Document(page_content='Brown University ruochen [email protected]', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0),
Document(page_content='Harvard University { melissadell,jacob carlson } @fas.harvard.edu', lookup_str='', metadata={'source': '../../layout-parser-paper.pdf'}, lookup_index=0)]
previous
Twitter
next
URL
Contents
Retain Elements
Define a Partitioning Strategy
PDF Example
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/unstructured_file.html |
bd2369e780fe-0 | .ipynb
.pdf
Obsidian
Obsidian#
This notebook covers how to load documents from an Obsidian database.
Since Obsidian is just stored on disk as a folder of Markdown files, the loader just takes a path to this directory.
Obsidian files also sometimes contain metadata which is a YAML block at the top of the file. These values will be added to the document’s metadata. (ObsidianLoader can also be passed a collect_metadata=False argument to disable this behavior.)
from langchain.document_loaders import ObsidianLoader
loader = ObsidianLoader("<path-to-obsidian>")
docs = loader.load()
previous
Notion DB Loader
next
PDF
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/obsidian.html |
a0369b010890-0 | .ipynb
.pdf
Azure Blob Storage File
Azure Blob Storage File#
This covers how to load document objects from a Azure Blob Storage file.
from langchain.document_loaders import AzureBlobStorageFileLoader
#!pip install azure-storage-blob
loader = AzureBlobStorageFileLoader(conn_str='<connection string>', container='<container name>', blob_name='<blob name>')
loader.load()
[Document(page_content='Lorem ipsum dolor sit amet.', lookup_str='', metadata={'source': '/var/folders/y6/8_bzdg295ld6s1_97_12m4lr0000gn/T/tmpxvave6wl/fake.docx'}, lookup_index=0)]
previous
Azure Blob Storage Container
next
BigQuery Loader
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on Apr 26, 2023. | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/azure_blob_storage_file.html |
146c8962c704-0 | .ipynb
.pdf
Twitter
Twitter#
This loader fetches the text from the Tweets of a list of Twitter users, using the tweepy Python package.
You must initialize the loader with your Twitter API token, and you need to pass in the Twitter username you want to extract.
from langchain.document_loaders import TwitterTweetLoader
#!pip install tweepy
loader = TwitterTweetLoader.from_bearer_token(
oauth2_bearer_token="YOUR BEARER TOKEN",
twitter_users=['elonmusk'],
number_tweets=50, # Default value is 100
)
# Or load from access token and consumer keys
# loader = TwitterTweetLoader.from_secrets(
# access_token='YOUR ACCESS TOKEN',
# access_token_secret='YOUR ACCESS TOKEN SECRET',
# consumer_key='YOUR CONSUMER KEY',
# consumer_secret='YOUR CONSUMER SECRET',
# twitter_users=['elonmusk'],
# number_tweets=50,
# )
documents = loader.load()
documents[:5] | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/twitter.html |
146c8962c704-1 | [Document(page_content='@MrAndyNgo @REI One store after another shutting down', metadata={'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'user_info': {'id': 44196397, 'id_str': '44196397', 'name': 'Elon Musk', 'screen_name': 'elonmusk', 'location': 'A Shortfall of Gravitas', 'profile_location': None, 'description': 'nothing', 'url': None, 'entities': {'description': {'urls': []}}, 'protected': False, 'followers_count': 135528327, 'friends_count': 220, 'listed_count': 120478, 'created_at': 'Tue Jun 02 20:12:29 +0000 2009', 'favourites_count': 21285, 'utc_offset': None, 'time_zone': None, 'geo_enabled': False, 'verified': False, 'statuses_count': 24795, 'lang': None, 'status': {'created_at': 'Tue Apr 18 03:45:50 +0000 2023', 'id': 1648170947541704705, 'id_str': '1648170947541704705', 'text': '@MrAndyNgo @REI One store after another shutting down', 'truncated': False, 'entities': {'hashtags': [], 'symbols': [], | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/twitter.html |
146c8962c704-2 | {'hashtags': [], 'symbols': [], 'user_mentions': [{'screen_name': 'MrAndyNgo', 'name': 'Andy Ngô 🏳️\u200d🌈', 'id': 2835451658, 'id_str': '2835451658', 'indices': [0, 10]}, {'screen_name': 'REI', 'name': 'REI', 'id': 16583846, 'id_str': '16583846', 'indices': [11, 15]}], 'urls': []}, 'source': '<a href="http://twitter.com/download/iphone" rel="nofollow">Twitter for iPhone</a>', 'in_reply_to_status_id': 1648134341678051328, 'in_reply_to_status_id_str': '1648134341678051328', 'in_reply_to_user_id': 2835451658, 'in_reply_to_user_id_str': '2835451658', 'in_reply_to_screen_name': 'MrAndyNgo', 'geo': None, 'coordinates': None, 'place': None, 'contributors': None, 'is_quote_status': False, 'retweet_count': 118, 'favorite_count': 1286, 'favorited': False, 'retweeted': False, 'lang': 'en'}, | /content/https://python.langchain.com/en/latest/modules/indexes/document_loaders/examples/twitter.html |
Subsets and Splits