code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def dtypes(self, *, device=None, kind=None): """ The array API data types supported by PyTorch. Note that this function only returns data types that are defined by the array API. Parameters ---------- device : Device, optional The device to get the data types for. Unused for PyTorch, as all devices use the same dtypes. kind : str or tuple of str, optional The kind of data types to return. If ``None``, all data types are returned. If a string, only data types of that kind are returned. If a tuple, a dictionary containing the union of the given kinds is returned. The following kinds are supported: - ``'bool'``: boolean data types (i.e., ``bool``). - ``'signed integer'``: signed integer data types (i.e., ``int8``, ``int16``, ``int32``, ``int64``). - ``'unsigned integer'``: unsigned integer data types (i.e., ``uint8``, ``uint16``, ``uint32``, ``uint64``). - ``'integral'``: integer data types. Shorthand for ``('signed integer', 'unsigned integer')``. - ``'real floating'``: real-valued floating-point data types (i.e., ``float32``, ``float64``). - ``'complex floating'``: complex floating-point data types (i.e., ``complex64``, ``complex128``). - ``'numeric'``: numeric data types. Shorthand for ``('integral', 'real floating', 'complex floating')``. Returns ------- dtypes : dict A dictionary mapping the names of data types to the corresponding PyTorch data types. See Also -------- __array_namespace_info__.capabilities, __array_namespace_info__.default_device, __array_namespace_info__.default_dtypes, __array_namespace_info__.devices Examples -------- >>> info = xp.__array_namespace_info__() >>> info.dtypes(kind='signed integer') {'int8': numpy.int8, 'int16': numpy.int16, 'int32': numpy.int32, 'int64': numpy.int64} """ res = self._dtypes(kind) for k, v in res.copy().items(): try: torch.empty((0,), dtype=v, device=device) except: del res[k] return res
The array API data types supported by PyTorch. Note that this function only returns data types that are defined by the array API. Parameters ---------- device : Device, optional The device to get the data types for. Unused for PyTorch, as all devices use the same dtypes. kind : str or tuple of str, optional The kind of data types to return. If ``None``, all data types are returned. If a string, only data types of that kind are returned. If a tuple, a dictionary containing the union of the given kinds is returned. The following kinds are supported: - ``'bool'``: boolean data types (i.e., ``bool``). - ``'signed integer'``: signed integer data types (i.e., ``int8``, ``int16``, ``int32``, ``int64``). - ``'unsigned integer'``: unsigned integer data types (i.e., ``uint8``, ``uint16``, ``uint32``, ``uint64``). - ``'integral'``: integer data types. Shorthand for ``('signed integer', 'unsigned integer')``. - ``'real floating'``: real-valued floating-point data types (i.e., ``float32``, ``float64``). - ``'complex floating'``: complex floating-point data types (i.e., ``complex64``, ``complex128``). - ``'numeric'``: numeric data types. Shorthand for ``('integral', 'real floating', 'complex floating')``. Returns ------- dtypes : dict A dictionary mapping the names of data types to the corresponding PyTorch data types. See Also -------- __array_namespace_info__.capabilities, __array_namespace_info__.default_device, __array_namespace_info__.default_dtypes, __array_namespace_info__.devices Examples -------- >>> info = xp.__array_namespace_info__() >>> info.dtypes(kind='signed integer') {'int8': numpy.int8, 'int16': numpy.int16, 'int32': numpy.int32, 'int64': numpy.int64}
dtypes
python
scikit-learn/scikit-learn
sklearn/externals/array_api_compat/torch/_info.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_compat/torch/_info.py
BSD-3-Clause
def devices(self): """ The devices supported by PyTorch. Returns ------- devices : list[Device] The devices supported by PyTorch. See Also -------- __array_namespace_info__.capabilities, __array_namespace_info__.default_device, __array_namespace_info__.default_dtypes, __array_namespace_info__.dtypes Examples -------- >>> info = xp.__array_namespace_info__() >>> info.devices() [device(type='cpu'), device(type='mps', index=0), device(type='meta')] """ # Torch doesn't have a straightforward way to get the list of all # currently supported devices. To do this, we first parse the error # message of torch.device to get the list of all possible types of # device: try: torch.device('notadevice') raise AssertionError("unreachable") # pragma: nocover except RuntimeError as e: # The error message is something like: # "Expected one of cpu, cuda, ipu, xpu, mkldnn, opengl, opencl, ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia, privateuseone device type at start of device string: notadevice" devices_names = e.args[0].split('Expected one of ')[1].split(' device type')[0].split(', ') # Next we need to check for different indices for different devices. # device(device_name, index=index) doesn't actually check if the # device name or index is valid. We have to try to create a tensor # with it (which is why this function is cached). devices = [] for device_name in devices_names: i = 0 while True: try: a = torch.empty((0,), device=torch.device(device_name, index=i)) if a.device in devices: break devices.append(a.device) except: break i += 1 return devices
The devices supported by PyTorch. Returns ------- devices : list[Device] The devices supported by PyTorch. See Also -------- __array_namespace_info__.capabilities, __array_namespace_info__.default_device, __array_namespace_info__.default_dtypes, __array_namespace_info__.dtypes Examples -------- >>> info = xp.__array_namespace_info__() >>> info.devices() [device(type='cpu'), device(type='mps', index=0), device(type='meta')]
devices
python
scikit-learn/scikit-learn
sklearn/externals/array_api_compat/torch/_info.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_compat/torch/_info.py
BSD-3-Clause
def lazy_xp_function( # type: ignore[explicit-any] func: Callable[..., Any], *, allow_dask_compute: int = 0, jax_jit: bool = True, static_argnums: int | Sequence[int] | None = None, static_argnames: str | Iterable[str] | None = None, ) -> None: # numpydoc ignore=GL07 """ Tag a function to be tested on lazy backends. Tag a function so that when any tests are executed with ``xp=jax.numpy`` the function is replaced with a jitted version of itself, and when it is executed with ``xp=dask.array`` the function will raise if it attempts to materialize the graph. This will be later expanded to provide test coverage for other lazy backends. In order for the tag to be effective, the test or a fixture must call :func:`patch_lazy_xp_functions`. Parameters ---------- func : callable Function to be tested. allow_dask_compute : int, optional Number of times `func` is allowed to internally materialize the Dask graph. This is typically triggered by ``bool()``, ``float()``, or ``np.asarray()``. Set to 1 if you are aware that `func` converts the input parameters to NumPy and want to let it do so at least for the time being, knowing that it is going to be extremely detrimental for performance. If a test needs values higher than 1 to pass, it is a canary that the conversion to NumPy/bool/float is happening multiple times, which translates to multiple computations of the whole graph. Short of making the function fully lazy, you should at least add explicit calls to ``np.asarray()`` early in the function. *Note:* the counter of `allow_dask_compute` resets after each call to `func`, so a test function that invokes `func` multiple times should still work with this parameter set to 1. Default: 0, meaning that `func` must be fully lazy and never materialize the graph. jax_jit : bool, optional Set to True to replace `func` with ``jax.jit(func)`` after calling the :func:`patch_lazy_xp_functions` test helper with ``xp=jax.numpy``. Set to False if `func` is only compatible with eager (non-jitted) JAX. Default: True. static_argnums : int | Sequence[int], optional Passed to jax.jit. Positional arguments to treat as static (compile-time constant). Default: infer from `static_argnames` using `inspect.signature(func)`. static_argnames : str | Iterable[str], optional Passed to jax.jit. Named arguments to treat as static (compile-time constant). Default: infer from `static_argnums` using `inspect.signature(func)`. See Also -------- patch_lazy_xp_functions : Companion function to call from the test or fixture. jax.jit : JAX function to compile a function for performance. Examples -------- In ``test_mymodule.py``:: from array_api_extra.testing import lazy_xp_function from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) # When xp=jax.numpy, this is the same as `b = jax.jit(myfunc)(a)` # When xp=dask.array, crash on compute() or persist() b = myfunc(a) Notes ----- In order for this tag to be effective, the test function must be imported into the test module globals without its namespace; alternatively its namespace must be declared in a ``lazy_xp_modules`` list in the test module globals. Example 1:: from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): x = myfunc(xp.asarray([1, 2])) Example 2:: import mymodule lazy_xp_modules = [mymodule] lazy_xp_function(mymodule.myfunc) def test_myfunc(xp): x = mymodule.myfunc(xp.asarray([1, 2])) A test function can circumvent this monkey-patching system by using a namespace outside of the two above patterns. You need to sanitize your code to make sure this only happens intentionally. Example 1:: import mymodule from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) b = myfunc(a) # This is wrapped when xp=jax.numpy or xp=dask.array c = mymodule.myfunc(a) # This is not Example 2:: import mymodule class naked: myfunc = mymodule.myfunc lazy_xp_modules = [mymodule] lazy_xp_function(mymodule.myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) b = mymodule.myfunc(a) # This is wrapped when xp=jax.numpy or xp=dask.array c = naked.myfunc(a) # This is not """ tags = { "allow_dask_compute": allow_dask_compute, "jax_jit": jax_jit, "static_argnums": static_argnums, "static_argnames": static_argnames, } try: func._lazy_xp_function = tags # type: ignore[attr-defined] # pylint: disable=protected-access # pyright: ignore[reportFunctionMemberAccess] except AttributeError: # @cython.vectorize _ufuncs_tags[func] = tags
Tag a function to be tested on lazy backends. Tag a function so that when any tests are executed with ``xp=jax.numpy`` the function is replaced with a jitted version of itself, and when it is executed with ``xp=dask.array`` the function will raise if it attempts to materialize the graph. This will be later expanded to provide test coverage for other lazy backends. In order for the tag to be effective, the test or a fixture must call :func:`patch_lazy_xp_functions`. Parameters ---------- func : callable Function to be tested. allow_dask_compute : int, optional Number of times `func` is allowed to internally materialize the Dask graph. This is typically triggered by ``bool()``, ``float()``, or ``np.asarray()``. Set to 1 if you are aware that `func` converts the input parameters to NumPy and want to let it do so at least for the time being, knowing that it is going to be extremely detrimental for performance. If a test needs values higher than 1 to pass, it is a canary that the conversion to NumPy/bool/float is happening multiple times, which translates to multiple computations of the whole graph. Short of making the function fully lazy, you should at least add explicit calls to ``np.asarray()`` early in the function. *Note:* the counter of `allow_dask_compute` resets after each call to `func`, so a test function that invokes `func` multiple times should still work with this parameter set to 1. Default: 0, meaning that `func` must be fully lazy and never materialize the graph. jax_jit : bool, optional Set to True to replace `func` with ``jax.jit(func)`` after calling the :func:`patch_lazy_xp_functions` test helper with ``xp=jax.numpy``. Set to False if `func` is only compatible with eager (non-jitted) JAX. Default: True. static_argnums : int | Sequence[int], optional Passed to jax.jit. Positional arguments to treat as static (compile-time constant). Default: infer from `static_argnames` using `inspect.signature(func)`. static_argnames : str | Iterable[str], optional Passed to jax.jit. Named arguments to treat as static (compile-time constant). Default: infer from `static_argnums` using `inspect.signature(func)`. See Also -------- patch_lazy_xp_functions : Companion function to call from the test or fixture. jax.jit : JAX function to compile a function for performance. Examples -------- In ``test_mymodule.py``:: from array_api_extra.testing import lazy_xp_function from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) # When xp=jax.numpy, this is the same as `b = jax.jit(myfunc)(a)` # When xp=dask.array, crash on compute() or persist() b = myfunc(a) Notes ----- In order for this tag to be effective, the test function must be imported into the test module globals without its namespace; alternatively its namespace must be declared in a ``lazy_xp_modules`` list in the test module globals. Example 1:: from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): x = myfunc(xp.asarray([1, 2])) Example 2:: import mymodule lazy_xp_modules = [mymodule] lazy_xp_function(mymodule.myfunc) def test_myfunc(xp): x = mymodule.myfunc(xp.asarray([1, 2])) A test function can circumvent this monkey-patching system by using a namespace outside of the two above patterns. You need to sanitize your code to make sure this only happens intentionally. Example 1:: import mymodule from mymodule import myfunc lazy_xp_function(myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) b = myfunc(a) # This is wrapped when xp=jax.numpy or xp=dask.array c = mymodule.myfunc(a) # This is not Example 2:: import mymodule class naked: myfunc = mymodule.myfunc lazy_xp_modules = [mymodule] lazy_xp_function(mymodule.myfunc) def test_myfunc(xp): a = xp.asarray([1, 2]) b = mymodule.myfunc(a) # This is wrapped when xp=jax.numpy or xp=dask.array c = naked.myfunc(a) # This is not
lazy_xp_function
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/testing.py
BSD-3-Clause
def patch_lazy_xp_functions( request: pytest.FixtureRequest, monkeypatch: pytest.MonkeyPatch, *, xp: ModuleType ) -> None: """ Test lazy execution of functions tagged with :func:`lazy_xp_function`. If ``xp==jax.numpy``, search for all functions which have been tagged with :func:`lazy_xp_function` in the globals of the module that defines the current test, as well as in the ``lazy_xp_modules`` list in the globals of the same module, and wrap them with :func:`jax.jit`. Unwrap them at the end of the test. If ``xp==dask.array``, wrap the functions with a decorator that disables ``compute()`` and ``persist()`` and ensures that exceptions and warnings are raised eagerly. This function should be typically called by your library's `xp` fixture that runs tests on multiple backends:: @pytest.fixture(params=[numpy, array_api_strict, jax.numpy, dask.array]) def xp(request, monkeypatch): patch_lazy_xp_functions(request, monkeypatch, xp=request.param) return request.param but it can be otherwise be called by the test itself too. Parameters ---------- request : pytest.FixtureRequest Pytest fixture, as acquired by the test itself or by one of its fixtures. monkeypatch : pytest.MonkeyPatch Pytest fixture, as acquired by the test itself or by one of its fixtures. xp : array_namespace Array namespace to be tested. See Also -------- lazy_xp_function : Tag a function to be tested on lazy backends. pytest.FixtureRequest : `request` test function parameter. """ mod = cast(ModuleType, request.module) mods = [mod, *cast(list[ModuleType], getattr(mod, "lazy_xp_modules", []))] def iter_tagged() -> ( # type: ignore[explicit-any] Iterator[tuple[ModuleType, str, Callable[..., Any], dict[str, Any]]] ): for mod in mods: for name, func in mod.__dict__.items(): tags: dict[str, Any] | None = None # type: ignore[explicit-any] with contextlib.suppress(AttributeError): tags = func._lazy_xp_function # pylint: disable=protected-access if tags is None: with contextlib.suppress(KeyError, TypeError): tags = _ufuncs_tags[func] if tags is not None: yield mod, name, func, tags if is_dask_namespace(xp): for mod, name, func, tags in iter_tagged(): n = tags["allow_dask_compute"] wrapped = _dask_wrap(func, n) monkeypatch.setattr(mod, name, wrapped) elif is_jax_namespace(xp): import jax for mod, name, func, tags in iter_tagged(): if tags["jax_jit"]: # suppress unused-ignore to run mypy in -e lint as well as -e dev wrapped = cast( # type: ignore[explicit-any] Callable[..., Any], jax.jit( func, static_argnums=tags["static_argnums"], static_argnames=tags["static_argnames"], ), ) monkeypatch.setattr(mod, name, wrapped)
Test lazy execution of functions tagged with :func:`lazy_xp_function`. If ``xp==jax.numpy``, search for all functions which have been tagged with :func:`lazy_xp_function` in the globals of the module that defines the current test, as well as in the ``lazy_xp_modules`` list in the globals of the same module, and wrap them with :func:`jax.jit`. Unwrap them at the end of the test. If ``xp==dask.array``, wrap the functions with a decorator that disables ``compute()`` and ``persist()`` and ensures that exceptions and warnings are raised eagerly. This function should be typically called by your library's `xp` fixture that runs tests on multiple backends:: @pytest.fixture(params=[numpy, array_api_strict, jax.numpy, dask.array]) def xp(request, monkeypatch): patch_lazy_xp_functions(request, monkeypatch, xp=request.param) return request.param but it can be otherwise be called by the test itself too. Parameters ---------- request : pytest.FixtureRequest Pytest fixture, as acquired by the test itself or by one of its fixtures. monkeypatch : pytest.MonkeyPatch Pytest fixture, as acquired by the test itself or by one of its fixtures. xp : array_namespace Array namespace to be tested. See Also -------- lazy_xp_function : Tag a function to be tested on lazy backends. pytest.FixtureRequest : `request` test function parameter.
patch_lazy_xp_functions
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/testing.py
BSD-3-Clause
def _dask_wrap( func: Callable[P, T], n: int ) -> Callable[P, T]: # numpydoc ignore=PR01,RT01 """ Wrap `func` to raise if it attempts to call `dask.compute` more than `n` times. After the function returns, materialize the graph in order to re-raise exceptions. """ import dask func_name = getattr(func, "__name__", str(func)) n_str = f"only up to {n}" if n else "no" msg = ( f"Called `dask.compute()` or `dask.persist()` {n + 1} times, " f"but {n_str} calls are allowed. Set " f"`lazy_xp_function({func_name}, allow_dask_compute={n + 1})` " "to allow for more (but note that this will harm performance). " ) @wraps(func) def wrapper(*args: P.args, **kwargs: P.kwargs) -> T: # numpydoc ignore=GL08 scheduler = CountingDaskScheduler(n, msg) with dask.config.set({"scheduler": scheduler}): # pyright: ignore[reportPrivateImportUsage] out = func(*args, **kwargs) # Block until the graph materializes and reraise exceptions. This allows # `pytest.raises` and `pytest.warns` to work as expected. Note that this would # not work on scheduler='distributed', as it would not block. return dask.persist(out, scheduler="threads")[0] # type: ignore[attr-defined,no-untyped-call,func-returns-value,index] # pyright: ignore[reportPrivateImportUsage] return wrapper
Wrap `func` to raise if it attempts to call `dask.compute` more than `n` times. After the function returns, materialize the graph in order to re-raise exceptions.
_dask_wrap
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/testing.py
BSD-3-Clause
def isclose( a: Array | complex, b: Array | complex, *, rtol: float = 1e-05, atol: float = 1e-08, equal_nan: bool = False, xp: ModuleType | None = None, ) -> Array: """ Return a boolean array where two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference ``(rtol * abs(b))`` and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. NaNs are treated as equal if they are in the same place and if ``equal_nan=True``. Infs are treated as equal if they are in the same place and of the same sign in both arrays. Parameters ---------- a, b : Array | int | float | complex | bool Input objects to compare. At least one must be an array. rtol : array_like, optional The relative tolerance parameter (see Notes). atol : array_like, optional The absolute tolerance parameter (see Notes). equal_nan : bool, optional Whether to compare NaN's as equal. If True, NaN's in `a` will be considered equal to NaN's in `b` in the output array. xp : array_namespace, optional The standard-compatible namespace for `a` and `b`. Default: infer. Returns ------- Array A boolean array of shape broadcasted from `a` and `b`, containing ``True`` where `a` is close to `b`, and ``False`` otherwise. Warnings -------- The default `atol` is not appropriate for comparing numbers with magnitudes much smaller than one (see notes). See Also -------- math.isclose : Similar function in stdlib for Python scalars. Notes ----- For finite values, `isclose` uses the following equation to test whether two floating point values are equivalent:: absolute(a - b) <= (atol + rtol * absolute(b)) Unlike the built-in `math.isclose`, the above equation is not symmetric in `a` and `b`, so that ``isclose(a, b)`` might be different from ``isclose(b, a)`` in some rare cases. The default value of `atol` is not appropriate when the reference value `b` has magnitude smaller than one. For example, it is unlikely that ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet ``isclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure to select `atol` for the use case at hand, especially for defining the threshold below which a non-zero value in `a` will be considered "close" to a very small or zero value in `b`. The comparison of `a` and `b` uses standard broadcasting, which means that `a` and `b` need not have the same shape in order for ``isclose(a, b)`` to evaluate to ``True``. `isclose` is not defined for non-numeric data types. ``bool`` is considered a numeric data-type for this purpose. """ xp = array_namespace(a, b) if xp is None else xp if _delegate(xp, Backend.NUMPY, Backend.CUPY, Backend.DASK, Backend.JAX): return xp.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) if _delegate(xp, Backend.TORCH): a, b = asarrays(a, b, xp=xp) # Array API 2024.12 support return xp.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan) return _funcs.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan, xp=xp)
Return a boolean array where two arrays are element-wise equal within a tolerance. The tolerance values are positive, typically very small numbers. The relative difference ``(rtol * abs(b))`` and the absolute difference `atol` are added together to compare against the absolute difference between `a` and `b`. NaNs are treated as equal if they are in the same place and if ``equal_nan=True``. Infs are treated as equal if they are in the same place and of the same sign in both arrays. Parameters ---------- a, b : Array | int | float | complex | bool Input objects to compare. At least one must be an array. rtol : array_like, optional The relative tolerance parameter (see Notes). atol : array_like, optional The absolute tolerance parameter (see Notes). equal_nan : bool, optional Whether to compare NaN's as equal. If True, NaN's in `a` will be considered equal to NaN's in `b` in the output array. xp : array_namespace, optional The standard-compatible namespace for `a` and `b`. Default: infer. Returns ------- Array A boolean array of shape broadcasted from `a` and `b`, containing ``True`` where `a` is close to `b`, and ``False`` otherwise. Warnings -------- The default `atol` is not appropriate for comparing numbers with magnitudes much smaller than one (see notes). See Also -------- math.isclose : Similar function in stdlib for Python scalars. Notes ----- For finite values, `isclose` uses the following equation to test whether two floating point values are equivalent:: absolute(a - b) <= (atol + rtol * absolute(b)) Unlike the built-in `math.isclose`, the above equation is not symmetric in `a` and `b`, so that ``isclose(a, b)`` might be different from ``isclose(b, a)`` in some rare cases. The default value of `atol` is not appropriate when the reference value `b` has magnitude smaller than one. For example, it is unlikely that ``a = 1e-9`` and ``b = 2e-9`` should be considered "close", yet ``isclose(1e-9, 2e-9)`` is ``True`` with default settings. Be sure to select `atol` for the use case at hand, especially for defining the threshold below which a non-zero value in `a` will be considered "close" to a very small or zero value in `b`. The comparison of `a` and `b` uses standard broadcasting, which means that `a` and `b` need not have the same shape in order for ``isclose(a, b)`` to evaluate to ``True``. `isclose` is not defined for non-numeric data types. ``bool`` is considered a numeric data-type for this purpose.
isclose
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_delegation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_delegation.py
BSD-3-Clause
def pad( x: Array, pad_width: int | tuple[int, int] | Sequence[tuple[int, int]], mode: Literal["constant"] = "constant", *, constant_values: complex = 0, xp: ModuleType | None = None, ) -> Array: """ Pad the input array. Parameters ---------- x : array Input array. pad_width : int or tuple of ints or sequence of pairs of ints Pad the input array with this many elements from each side. If a sequence of tuples, ``[(before_0, after_0), ... (before_N, after_N)]``, each pair applies to the corresponding axis of ``x``. A single tuple, ``(before, after)``, is equivalent to a list of ``x.ndim`` copies of this tuple. mode : str, optional Only "constant" mode is currently supported, which pads with the value passed to `constant_values`. constant_values : python scalar, optional Use this value to pad the input. Default is zero. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array The input array, padded with ``pad_width`` elements equal to ``constant_values``. """ xp = array_namespace(x) if xp is None else xp if mode != "constant": msg = "Only `'constant'` mode is currently supported" raise NotImplementedError(msg) # https://github.com/pytorch/pytorch/blob/cf76c05b4dc629ac989d1fb8e789d4fac04a095a/torch/_numpy/_funcs_impl.py#L2045-L2056 if _delegate(xp, Backend.TORCH): pad_width = xp.asarray(pad_width) pad_width = xp.broadcast_to(pad_width, (x.ndim, 2)) pad_width = xp.flip(pad_width, axis=(0,)).flatten() return xp.nn.functional.pad(x, tuple(pad_width), value=constant_values) # type: ignore[arg-type] # pyright: ignore[reportArgumentType] if _delegate(xp, Backend.NUMPY, Backend.JAX, Backend.CUPY, Backend.SPARSE): return xp.pad(x, pad_width, mode, constant_values=constant_values) return _funcs.pad(x, pad_width, constant_values=constant_values, xp=xp)
Pad the input array. Parameters ---------- x : array Input array. pad_width : int or tuple of ints or sequence of pairs of ints Pad the input array with this many elements from each side. If a sequence of tuples, ``[(before_0, after_0), ... (before_N, after_N)]``, each pair applies to the corresponding axis of ``x``. A single tuple, ``(before, after)``, is equivalent to a list of ``x.ndim`` copies of this tuple. mode : str, optional Only "constant" mode is currently supported, which pads with the value passed to `constant_values`. constant_values : python scalar, optional Use this value to pad the input. Default is zero. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array The input array, padded with ``pad_width`` elements equal to ``constant_values``.
pad
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_delegation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_delegation.py
BSD-3-Clause
def __getitem__(self, idx: SetIndex, /) -> Self: # numpydoc ignore=PR01,RT01 """ Allow for the alternate syntax ``at(x)[start:stop:step]``. It looks prettier than ``at(x, slice(start, stop, step))`` and feels more intuitive coming from the JAX documentation. """ if self._idx is not _undef: msg = "Index has already been set" raise ValueError(msg) return type(self)(self._x, idx)
Allow for the alternate syntax ``at(x)[start:stop:step]``. It looks prettier than ``at(x, slice(start, stop, step))`` and feels more intuitive coming from the JAX documentation.
__getitem__
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def _op( self, at_op: _AtOp, in_place_op: Callable[[Array, Array | complex], Array] | None, out_of_place_op: Callable[[Array, Array], Array] | None, y: Array | complex, /, copy: bool | None, xp: ModuleType | None, ) -> Array: """ Implement all update operations. Parameters ---------- at_op : _AtOp Method of JAX's Array.at[]. in_place_op : Callable[[Array, Array | complex], Array] | None In-place operation to apply on mutable backends:: x[idx] = in_place_op(x[idx], y) If None:: x[idx] = y out_of_place_op : Callable[[Array, Array], Array] | None Out-of-place operation to apply when idx is a boolean mask and the backend doesn't support in-place updates:: x = xp.where(idx, out_of_place_op(x, y), x) If None:: x = xp.where(idx, y, x) y : array or complex Right-hand side of the operation. copy : bool or None Whether to copy the input array. See the class docstring for details. xp : array_namespace, optional The array namespace for the input array. Default: infer. Returns ------- Array Updated `x`. """ from ._funcs import apply_where # pylint: disable=cyclic-import x, idx = self._x, self._idx xp = array_namespace(x, y) if xp is None else xp if isinstance(idx, Undef): msg = ( "Index has not been set.\n" "Usage: either\n" " at(x, idx).set(value)\n" "or\n" " at(x)[idx].set(value)\n" "(same for all other methods)." ) raise ValueError(msg) if copy not in (True, False, None): msg = f"copy must be True, False, or None; got {copy!r}" raise ValueError(msg) writeable = None if copy else is_writeable_array(x) # JAX inside jax.jit doesn't support in-place updates with boolean # masks; Dask exclusively supports __setitem__ but not iops. # We can handle the common special case of 0-dimensional y # with where(idx, y, x) instead. if ( (is_dask_array(idx) or is_jax_array(idx)) and idx.dtype == xp.bool and idx.shape == x.shape ): y_xp = xp.asarray(y, dtype=x.dtype) if y_xp.ndim == 0: if out_of_place_op: # add(), subtract(), ... # suppress inf warnings on Dask out = apply_where( idx, (x, y_xp), out_of_place_op, fill_value=x, xp=xp ) # Undo int->float promotion on JAX after _AtOp.DIVIDE out = xp.astype(out, x.dtype, copy=False) else: # set() out = xp.where(idx, y_xp, x) if copy is False: x[()] = out return x return out # else: this will work on eager JAX and crash on jax.jit and Dask if copy or (copy is None and not writeable): if is_jax_array(x): # Use JAX's at[] func = cast( Callable[[Array | complex], Array], getattr(x.at[idx], at_op.value), # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue,reportUnknownArgumentType] ) out = func(y) # Undo int->float promotion on JAX after _AtOp.DIVIDE return xp.astype(out, x.dtype, copy=False) # Emulate at[] behaviour for non-JAX arrays # with a copy followed by an update x = xp.asarray(x, copy=True) # A copy of a read-only numpy array is writeable # Note: this assumes that a copy of a writeable array is writeable assert not writeable writeable = None if writeable is None: writeable = is_writeable_array(x) if not writeable: # sparse crashes here msg = f"Can't update read-only array {x}" raise ValueError(msg) if in_place_op: # add(), subtract(), ... x[idx] = in_place_op(x[idx], y) else: # set() x[idx] = y return x
Implement all update operations. Parameters ---------- at_op : _AtOp Method of JAX's Array.at[]. in_place_op : Callable[[Array, Array | complex], Array] | None In-place operation to apply on mutable backends:: x[idx] = in_place_op(x[idx], y) If None:: x[idx] = y out_of_place_op : Callable[[Array, Array], Array] | None Out-of-place operation to apply when idx is a boolean mask and the backend doesn't support in-place updates:: x = xp.where(idx, out_of_place_op(x, y), x) If None:: x = xp.where(idx, y, x) y : array or complex Right-hand side of the operation. copy : bool or None Whether to copy the input array. See the class docstring for details. xp : array_namespace, optional The array namespace for the input array. Default: infer. Returns ------- Array Updated `x`.
_op
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def set( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] = y`` and return the update array.""" return self._op(_AtOp.SET, None, None, y, copy=copy, xp=xp)
Apply ``x[idx] = y`` and return the update array.
set
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def add( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] += y`` and return the updated array.""" # Note for this and all other methods based on _iop: # operator.iadd and operator.add subtly differ in behaviour, as # only iadd will trigger exceptions when y has an incompatible dtype. return self._op(_AtOp.ADD, operator.iadd, operator.add, y, copy=copy, xp=xp)
Apply ``x[idx] += y`` and return the updated array.
add
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def subtract( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] -= y`` and return the updated array.""" return self._op( _AtOp.SUBTRACT, operator.isub, operator.sub, y, copy=copy, xp=xp )
Apply ``x[idx] -= y`` and return the updated array.
subtract
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def multiply( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] *= y`` and return the updated array.""" return self._op( _AtOp.MULTIPLY, operator.imul, operator.mul, y, copy=copy, xp=xp )
Apply ``x[idx] *= y`` and return the updated array.
multiply
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def divide( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] /= y`` and return the updated array.""" return self._op( _AtOp.DIVIDE, operator.itruediv, operator.truediv, y, copy=copy, xp=xp )
Apply ``x[idx] /= y`` and return the updated array.
divide
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def power( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] **= y`` and return the updated array.""" return self._op(_AtOp.POWER, operator.ipow, operator.pow, y, copy=copy, xp=xp)
Apply ``x[idx] **= y`` and return the updated array.
power
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def min( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] = minimum(x[idx], y)`` and return the updated array.""" # On Dask, this function runs on the chunks, so we need to determine the # namespace that Dask is wrapping. # Note that da.minimum _incidentally_ works on NumPy, CuPy, and sparse # thanks to all these meta-namespaces implementing the __array_ufunc__ # interface, but there's no guarantee that it will work for other # wrapped libraries in the future. xp = array_namespace(self._x) if xp is None else xp mxp = meta_namespace(self._x, xp=xp) y = xp.asarray(y) return self._op(_AtOp.MIN, mxp.minimum, mxp.minimum, y, copy=copy, xp=xp)
Apply ``x[idx] = minimum(x[idx], y)`` and return the updated array.
min
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def max( self, y: Array | complex, /, copy: bool | None = None, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """Apply ``x[idx] = maximum(x[idx], y)`` and return the updated array.""" # See note on min() xp = array_namespace(self._x) if xp is None else xp mxp = meta_namespace(self._x, xp=xp) y = xp.asarray(y) return self._op(_AtOp.MAX, mxp.maximum, mxp.maximum, y, copy=copy, xp=xp)
Apply ``x[idx] = maximum(x[idx], y)`` and return the updated array.
max
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_at.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_at.py
BSD-3-Clause
def apply_where( # type: ignore[explicit-any] # numpydoc ignore=PR01,PR02 cond: Array, args: Array | tuple[Array, ...], f1: Callable[..., Array], f2: Callable[..., Array] | None = None, /, *, fill_value: Array | complex | None = None, xp: ModuleType | None = None, ) -> Array: """ Run one of two elementwise functions depending on a condition. Equivalent to ``f1(*args) if cond else fill_value`` performed elementwise when `fill_value` is defined, otherwise to ``f1(*args) if cond else f2(*args)``. Parameters ---------- cond : array The condition, expressed as a boolean array. args : Array or tuple of Arrays Argument(s) to `f1` (and `f2`). Must be broadcastable with `cond`. f1 : callable Elementwise function of `args`, returning a single array. Where `cond` is True, output will be ``f1(arg0[cond], arg1[cond], ...)``. f2 : callable, optional Elementwise function of `args`, returning a single array. Where `cond` is False, output will be ``f2(arg0[cond], arg1[cond], ...)``. Mutually exclusive with `fill_value`. fill_value : Array or scalar, optional If provided, value with which to fill output array where `cond` is False. It does not need to be scalar; it needs however to be broadcastable with `cond` and `args`. Mutually exclusive with `f2`. You must provide one or the other. xp : array_namespace, optional The standard-compatible namespace for `cond` and `args`. Default: infer. Returns ------- Array An array with elements from the output of `f1` where `cond` is True and either the output of `f2` or `fill_value` where `cond` is False. The returned array has data type determined by type promotion rules between the output of `f1` and either `fill_value` or the output of `f2`. Notes ----- ``xp.where(cond, f1(*args), f2(*args))`` requires explicitly evaluating `f1` even when `cond` is False, and `f2` when cond is True. This function evaluates each function only for their matching condition, if the backend allows for it. On Dask, `f1` and `f2` are applied to the individual chunks and should use functions from the namespace of the chunks. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> a = xp.asarray([5, 4, 3]) >>> b = xp.asarray([0, 2, 2]) >>> def f(a, b): ... return a // b >>> xpx.apply_where(b != 0, (a, b), f, fill_value=xp.nan) array([ nan, 2., 1.]) """ # Parse and normalize arguments if (f2 is None) == (fill_value is None): msg = "Exactly one of `fill_value` or `f2` must be given." raise TypeError(msg) args_ = list(args) if isinstance(args, tuple) else [args] del args xp = array_namespace(cond, fill_value, *args_) if xp is None else xp if isinstance(fill_value, int | float | complex | NoneType): cond, *args_ = xp.broadcast_arrays(cond, *args_) else: cond, fill_value, *args_ = xp.broadcast_arrays(cond, fill_value, *args_) if is_dask_namespace(xp): meta_xp = meta_namespace(cond, fill_value, *args_, xp=xp) # map_blocks doesn't descend into tuples of Arrays return xp.map_blocks(_apply_where, cond, f1, f2, fill_value, *args_, xp=meta_xp) return _apply_where(cond, f1, f2, fill_value, *args_, xp=xp)
Run one of two elementwise functions depending on a condition. Equivalent to ``f1(*args) if cond else fill_value`` performed elementwise when `fill_value` is defined, otherwise to ``f1(*args) if cond else f2(*args)``. Parameters ---------- cond : array The condition, expressed as a boolean array. args : Array or tuple of Arrays Argument(s) to `f1` (and `f2`). Must be broadcastable with `cond`. f1 : callable Elementwise function of `args`, returning a single array. Where `cond` is True, output will be ``f1(arg0[cond], arg1[cond], ...)``. f2 : callable, optional Elementwise function of `args`, returning a single array. Where `cond` is False, output will be ``f2(arg0[cond], arg1[cond], ...)``. Mutually exclusive with `fill_value`. fill_value : Array or scalar, optional If provided, value with which to fill output array where `cond` is False. It does not need to be scalar; it needs however to be broadcastable with `cond` and `args`. Mutually exclusive with `f2`. You must provide one or the other. xp : array_namespace, optional The standard-compatible namespace for `cond` and `args`. Default: infer. Returns ------- Array An array with elements from the output of `f1` where `cond` is True and either the output of `f2` or `fill_value` where `cond` is False. The returned array has data type determined by type promotion rules between the output of `f1` and either `fill_value` or the output of `f2`. Notes ----- ``xp.where(cond, f1(*args), f2(*args))`` requires explicitly evaluating `f1` even when `cond` is False, and `f2` when cond is True. This function evaluates each function only for their matching condition, if the backend allows for it. On Dask, `f1` and `f2` are applied to the individual chunks and should use functions from the namespace of the chunks. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> a = xp.asarray([5, 4, 3]) >>> b = xp.asarray([0, 2, 2]) >>> def f(a, b): ... return a // b >>> xpx.apply_where(b != 0, (a, b), f, fill_value=xp.nan) array([ nan, 2., 1.])
apply_where
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def _apply_where( # type: ignore[explicit-any] # numpydoc ignore=PR01,RT01 cond: Array, f1: Callable[..., Array], f2: Callable[..., Array] | None, fill_value: Array | int | float | complex | bool | None, *args: Array, xp: ModuleType, ) -> Array: """Helper of `apply_where`. On Dask, this runs on a single chunk.""" if is_jax_namespace(xp): # jax.jit does not support assignment by boolean mask return xp.where(cond, f1(*args), f2(*args) if f2 is not None else fill_value) temp1 = f1(*(arr[cond] for arr in args)) if f2 is None: dtype = xp.result_type(temp1, fill_value) if isinstance(fill_value, int | float | complex): out = xp.full_like(cond, dtype=dtype, fill_value=fill_value) else: out = xp.astype(fill_value, dtype, copy=True) else: ncond = ~cond temp2 = f2(*(arr[ncond] for arr in args)) dtype = xp.result_type(temp1, temp2) out = xp.empty_like(cond, dtype=dtype) out = at(out, ncond).set(temp2) return at(out, cond).set(temp1)
Helper of `apply_where`. On Dask, this runs on a single chunk.
_apply_where
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def atleast_nd(x: Array, /, *, ndim: int, xp: ModuleType | None = None) -> Array: """ Recursively expand the dimension of an array to at least `ndim`. Parameters ---------- x : array Input array. ndim : int The minimum number of dimensions for the result. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array An array with ``res.ndim`` >= `ndim`. If ``x.ndim`` >= `ndim`, `x` is returned. If ``x.ndim`` < `ndim`, `x` is expanded by prepending new axes until ``res.ndim`` equals `ndim`. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([1]) >>> xpx.atleast_nd(x, ndim=3, xp=xp) Array([[[1]]], dtype=array_api_strict.int64) >>> x = xp.asarray([[[1, 2], ... [3, 4]]]) >>> xpx.atleast_nd(x, ndim=1, xp=xp) is x True """ if xp is None: xp = array_namespace(x) if x.ndim < ndim: x = xp.expand_dims(x, axis=0) x = atleast_nd(x, ndim=ndim, xp=xp) return x
Recursively expand the dimension of an array to at least `ndim`. Parameters ---------- x : array Input array. ndim : int The minimum number of dimensions for the result. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array An array with ``res.ndim`` >= `ndim`. If ``x.ndim`` >= `ndim`, `x` is returned. If ``x.ndim`` < `ndim`, `x` is expanded by prepending new axes until ``res.ndim`` equals `ndim`. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([1]) >>> xpx.atleast_nd(x, ndim=3, xp=xp) Array([[[1]]], dtype=array_api_strict.int64) >>> x = xp.asarray([[[1, 2], ... [3, 4]]]) >>> xpx.atleast_nd(x, ndim=1, xp=xp) is x True
atleast_nd
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def broadcast_shapes(*shapes: tuple[float | None, ...]) -> tuple[int | None, ...]: """ Compute the shape of the broadcasted arrays. Duplicates :func:`numpy.broadcast_shapes`, with additional support for None and NaN sizes. This is equivalent to ``xp.broadcast_arrays(arr1, arr2, ...)[0].shape`` without needing to worry about the backend potentially deep copying the arrays. Parameters ---------- *shapes : tuple[int | None, ...] Shapes of the arrays to broadcast. Returns ------- tuple[int | None, ...] The shape of the broadcasted arrays. See Also -------- numpy.broadcast_shapes : Equivalent NumPy function. array_api.broadcast_arrays : Function to broadcast actual arrays. Notes ----- This function accepts the Array API's ``None`` for unknown sizes, as well as Dask's non-standard ``math.nan``. Regardless of input, the output always contains ``None`` for unknown sizes. Examples -------- >>> import array_api_extra as xpx >>> xpx.broadcast_shapes((2, 3), (2, 1)) (2, 3) >>> xpx.broadcast_shapes((4, 2, 3), (2, 1), (1, 3)) (4, 2, 3) """ if not shapes: return () # Match NumPy output ndim = max(len(shape) for shape in shapes) out: list[int | None] = [] for axis in range(-ndim, 0): sizes = {shape[axis] for shape in shapes if axis >= -len(shape)} # Dask uses NaN for unknown shape, which predates the Array API spec for None none_size = None in sizes or math.nan in sizes sizes -= {1, None, math.nan} if len(sizes) > 1: msg = ( "shape mismatch: objects cannot be broadcast to a single shape: " f"{shapes}." ) raise ValueError(msg) out.append(None if none_size else cast(int, sizes.pop()) if sizes else 1) return tuple(out)
Compute the shape of the broadcasted arrays. Duplicates :func:`numpy.broadcast_shapes`, with additional support for None and NaN sizes. This is equivalent to ``xp.broadcast_arrays(arr1, arr2, ...)[0].shape`` without needing to worry about the backend potentially deep copying the arrays. Parameters ---------- *shapes : tuple[int | None, ...] Shapes of the arrays to broadcast. Returns ------- tuple[int | None, ...] The shape of the broadcasted arrays. See Also -------- numpy.broadcast_shapes : Equivalent NumPy function. array_api.broadcast_arrays : Function to broadcast actual arrays. Notes ----- This function accepts the Array API's ``None`` for unknown sizes, as well as Dask's non-standard ``math.nan``. Regardless of input, the output always contains ``None`` for unknown sizes. Examples -------- >>> import array_api_extra as xpx >>> xpx.broadcast_shapes((2, 3), (2, 1)) (2, 3) >>> xpx.broadcast_shapes((4, 2, 3), (2, 1), (1, 3)) (4, 2, 3)
broadcast_shapes
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def cov(m: Array, /, *, xp: ModuleType | None = None) -> Array: """ Estimate a covariance matrix. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. This provides a subset of the functionality of ``numpy.cov``. Parameters ---------- m : array A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. xp : array_namespace, optional The standard-compatible namespace for `m`. Default: infer. Returns ------- array The covariance matrix of the variables. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = xp.asarray([[0, 2], [1, 1], [2, 0]]).T >>> x Array([[0, 1, 2], [2, 1, 0]], dtype=array_api_strict.int64) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> xpx.cov(x, xp=xp) Array([[ 1., -1.], [-1., 1.]], dtype=array_api_strict.float64) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = xp.asarray([-2.1, -1, 4.3]) >>> y = xp.asarray([3, 1.1, 0.12]) >>> X = xp.stack((x, y), axis=0) >>> xpx.cov(X, xp=xp) Array([[11.71 , -4.286 ], [-4.286 , 2.14413333]], dtype=array_api_strict.float64) >>> xpx.cov(x, xp=xp) Array(11.71, dtype=array_api_strict.float64) >>> xpx.cov(y, xp=xp) Array(2.14413333, dtype=array_api_strict.float64) """ if xp is None: xp = array_namespace(m) m = xp.asarray(m, copy=True) dtype = ( xp.float64 if xp.isdtype(m.dtype, "integral") else xp.result_type(m, xp.float64) ) m = atleast_nd(m, ndim=2, xp=xp) m = xp.astype(m, dtype) avg = _helpers.mean(m, axis=1, xp=xp) m_shape = eager_shape(m) fact = m_shape[1] - 1 if fact <= 0: warnings.warn("Degrees of freedom <= 0 for slice", RuntimeWarning, stacklevel=2) fact = 0 m -= avg[:, None] m_transpose = m.T if xp.isdtype(m_transpose.dtype, "complex floating"): m_transpose = xp.conj(m_transpose) c = m @ m_transpose c /= fact axes = tuple(axis for axis, length in enumerate(c.shape) if length == 1) return xp.squeeze(c, axis=axes)
Estimate a covariance matrix. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. This provides a subset of the functionality of ``numpy.cov``. Parameters ---------- m : array A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. xp : array_namespace, optional The standard-compatible namespace for `m`. Default: infer. Returns ------- array The covariance matrix of the variables. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = xp.asarray([[0, 2], [1, 1], [2, 0]]).T >>> x Array([[0, 1, 2], [2, 1, 0]], dtype=array_api_strict.int64) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> xpx.cov(x, xp=xp) Array([[ 1., -1.], [-1., 1.]], dtype=array_api_strict.float64) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = xp.asarray([-2.1, -1, 4.3]) >>> y = xp.asarray([3, 1.1, 0.12]) >>> X = xp.stack((x, y), axis=0) >>> xpx.cov(X, xp=xp) Array([[11.71 , -4.286 ], [-4.286 , 2.14413333]], dtype=array_api_strict.float64) >>> xpx.cov(x, xp=xp) Array(11.71, dtype=array_api_strict.float64) >>> xpx.cov(y, xp=xp) Array(2.14413333, dtype=array_api_strict.float64)
cov
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def create_diagonal( x: Array, /, *, offset: int = 0, xp: ModuleType | None = None ) -> Array: """ Construct a diagonal array. Parameters ---------- x : array An array having shape ``(*batch_dims, k)``. offset : int, optional Offset from the leading diagonal (default is ``0``). Use positive ints for diagonals above the leading diagonal, and negative ints for diagonals below the leading diagonal. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array An array having shape ``(*batch_dims, k+abs(offset), k+abs(offset))`` with `x` on the diagonal (offset by `offset`). Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([2, 4, 8]) >>> xpx.create_diagonal(x, xp=xp) Array([[2, 0, 0], [0, 4, 0], [0, 0, 8]], dtype=array_api_strict.int64) >>> xpx.create_diagonal(x, offset=-2, xp=xp) Array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [2, 0, 0, 0, 0], [0, 4, 0, 0, 0], [0, 0, 8, 0, 0]], dtype=array_api_strict.int64) """ if xp is None: xp = array_namespace(x) if x.ndim == 0: err_msg = "`x` must be at least 1-dimensional." raise ValueError(err_msg) x_shape = eager_shape(x) batch_dims = x_shape[:-1] n = x_shape[-1] + abs(offset) diag = xp.zeros((*batch_dims, n**2), dtype=x.dtype, device=_compat.device(x)) target_slice = slice( offset if offset >= 0 else abs(offset) * n, min(n * (n - offset), diag.shape[-1]), n + 1, ) for index in ndindex(*batch_dims): diag = at(diag)[(*index, target_slice)].set(x[(*index, slice(None))]) return xp.reshape(diag, (*batch_dims, n, n))
Construct a diagonal array. Parameters ---------- x : array An array having shape ``(*batch_dims, k)``. offset : int, optional Offset from the leading diagonal (default is ``0``). Use positive ints for diagonals above the leading diagonal, and negative ints for diagonals below the leading diagonal. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array An array having shape ``(*batch_dims, k+abs(offset), k+abs(offset))`` with `x` on the diagonal (offset by `offset`). Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([2, 4, 8]) >>> xpx.create_diagonal(x, xp=xp) Array([[2, 0, 0], [0, 4, 0], [0, 0, 8]], dtype=array_api_strict.int64) >>> xpx.create_diagonal(x, offset=-2, xp=xp) Array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [2, 0, 0, 0, 0], [0, 4, 0, 0, 0], [0, 0, 8, 0, 0]], dtype=array_api_strict.int64)
create_diagonal
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def expand_dims( a: Array, /, *, axis: int | tuple[int, ...] = (0,), xp: ModuleType | None = None ) -> Array: """ Expand the shape of an array. Insert (a) new axis/axes that will appear at the position(s) specified by `axis` in the expanded array shape. This is ``xp.expand_dims`` for `axis` an int *or a tuple of ints*. Roughly equivalent to ``numpy.expand_dims`` for NumPy arrays. Parameters ---------- a : array Array to have its shape expanded. axis : int or tuple of ints, optional Position(s) in the expanded axes where the new axis (or axes) is/are placed. If multiple positions are provided, they should be unique (note that a position given by a positive index could also be referred to by a negative index - that will also result in an error). Default: ``(0,)``. xp : array_namespace, optional The standard-compatible namespace for `a`. Default: infer. Returns ------- array `a` with an expanded shape. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([1, 2]) >>> x.shape (2,) The following is equivalent to ``x[xp.newaxis, :]`` or ``x[xp.newaxis]``: >>> y = xpx.expand_dims(x, axis=0, xp=xp) >>> y Array([[1, 2]], dtype=array_api_strict.int64) >>> y.shape (1, 2) The following is equivalent to ``x[:, xp.newaxis]``: >>> y = xpx.expand_dims(x, axis=1, xp=xp) >>> y Array([[1], [2]], dtype=array_api_strict.int64) >>> y.shape (2, 1) ``axis`` may also be a tuple: >>> y = xpx.expand_dims(x, axis=(0, 1), xp=xp) >>> y Array([[[1, 2]]], dtype=array_api_strict.int64) >>> y = xpx.expand_dims(x, axis=(2, 0), xp=xp) >>> y Array([[[1], [2]]], dtype=array_api_strict.int64) """ if xp is None: xp = array_namespace(a) if not isinstance(axis, tuple): axis = (axis,) ndim = a.ndim + len(axis) if axis != () and (min(axis) < -ndim or max(axis) >= ndim): err_msg = ( f"a provided axis position is out of bounds for array of dimension {a.ndim}" ) raise IndexError(err_msg) axis = tuple(dim % ndim for dim in axis) if len(set(axis)) != len(axis): err_msg = "Duplicate dimensions specified in `axis`." raise ValueError(err_msg) for i in sorted(axis): a = xp.expand_dims(a, axis=i) return a
Expand the shape of an array. Insert (a) new axis/axes that will appear at the position(s) specified by `axis` in the expanded array shape. This is ``xp.expand_dims`` for `axis` an int *or a tuple of ints*. Roughly equivalent to ``numpy.expand_dims`` for NumPy arrays. Parameters ---------- a : array Array to have its shape expanded. axis : int or tuple of ints, optional Position(s) in the expanded axes where the new axis (or axes) is/are placed. If multiple positions are provided, they should be unique (note that a position given by a positive index could also be referred to by a negative index - that will also result in an error). Default: ``(0,)``. xp : array_namespace, optional The standard-compatible namespace for `a`. Default: infer. Returns ------- array `a` with an expanded shape. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x = xp.asarray([1, 2]) >>> x.shape (2,) The following is equivalent to ``x[xp.newaxis, :]`` or ``x[xp.newaxis]``: >>> y = xpx.expand_dims(x, axis=0, xp=xp) >>> y Array([[1, 2]], dtype=array_api_strict.int64) >>> y.shape (1, 2) The following is equivalent to ``x[:, xp.newaxis]``: >>> y = xpx.expand_dims(x, axis=1, xp=xp) >>> y Array([[1], [2]], dtype=array_api_strict.int64) >>> y.shape (2, 1) ``axis`` may also be a tuple: >>> y = xpx.expand_dims(x, axis=(0, 1), xp=xp) >>> y Array([[[1, 2]]], dtype=array_api_strict.int64) >>> y = xpx.expand_dims(x, axis=(2, 0), xp=xp) >>> y Array([[[1], [2]]], dtype=array_api_strict.int64)
expand_dims
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def kron( a: Array | complex, b: Array | complex, /, *, xp: ModuleType | None = None, ) -> Array: """ Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Equivalent to ``numpy.kron`` for NumPy arrays. Parameters ---------- a, b : Array | int | float | complex Input arrays or scalars. At least one must be an array. xp : array_namespace, optional The standard-compatible namespace for `a` and `b`. Default: infer. Returns ------- array The Kronecker product of `a` and `b`. Notes ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``, the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> xpx.kron(xp.asarray([1, 10, 100]), xp.asarray([5, 6, 7]), xp=xp) Array([ 5, 6, 7, 50, 60, 70, 500, 600, 700], dtype=array_api_strict.int64) >>> xpx.kron(xp.asarray([5, 6, 7]), xp.asarray([1, 10, 100]), xp=xp) Array([ 5, 50, 500, 6, 60, 600, 7, 70, 700], dtype=array_api_strict.int64) >>> xpx.kron(xp.eye(2), xp.ones((2, 2)), xp=xp) Array([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.]], dtype=array_api_strict.float64) >>> a = xp.reshape(xp.arange(100), (2, 5, 2, 5)) >>> b = xp.reshape(xp.arange(24), (2, 3, 4)) >>> c = xpx.kron(a, b, xp=xp) >>> c.shape (2, 10, 6, 20) >>> I = (1, 3, 0, 2) >>> J = (0, 2, 1) >>> J1 = (0,) + J # extend to ndim=4 >>> S1 = (1,) + b.shape >>> K = tuple(xp.asarray(I) * xp.asarray(S1) + xp.asarray(J1)) >>> c[K] == a[I]*b[J] Array(True, dtype=array_api_strict.bool) """ if xp is None: xp = array_namespace(a, b) a, b = asarrays(a, b, xp=xp) singletons = (1,) * (b.ndim - a.ndim) a = cast(Array, xp.broadcast_to(a, singletons + a.shape)) nd_b, nd_a = b.ndim, a.ndim nd_max = max(nd_b, nd_a) if nd_a == 0 or nd_b == 0: return xp.multiply(a, b) a_shape = eager_shape(a) b_shape = eager_shape(b) # Equalise the shapes by prepending smaller one with 1s a_shape = (1,) * max(0, nd_b - nd_a) + a_shape b_shape = (1,) * max(0, nd_a - nd_b) + b_shape # Insert empty dimensions a_arr = expand_dims(a, axis=tuple(range(nd_b - nd_a)), xp=xp) b_arr = expand_dims(b, axis=tuple(range(nd_a - nd_b)), xp=xp) # Compute the product a_arr = expand_dims(a_arr, axis=tuple(range(1, nd_max * 2, 2)), xp=xp) b_arr = expand_dims(b_arr, axis=tuple(range(0, nd_max * 2, 2)), xp=xp) result = xp.multiply(a_arr, b_arr) # Reshape back and return res_shape = tuple(a_s * b_s for a_s, b_s in zip(a_shape, b_shape, strict=True)) return xp.reshape(result, res_shape)
Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Equivalent to ``numpy.kron`` for NumPy arrays. Parameters ---------- a, b : Array | int | float | complex Input arrays or scalars. At least one must be an array. xp : array_namespace, optional The standard-compatible namespace for `a` and `b`. Default: infer. Returns ------- array The Kronecker product of `a` and `b`. Notes ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``, the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> xpx.kron(xp.asarray([1, 10, 100]), xp.asarray([5, 6, 7]), xp=xp) Array([ 5, 6, 7, 50, 60, 70, 500, 600, 700], dtype=array_api_strict.int64) >>> xpx.kron(xp.asarray([5, 6, 7]), xp.asarray([1, 10, 100]), xp=xp) Array([ 5, 50, 500, 6, 60, 600, 7, 70, 700], dtype=array_api_strict.int64) >>> xpx.kron(xp.eye(2), xp.ones((2, 2)), xp=xp) Array([[1., 1., 0., 0.], [1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 1., 1.]], dtype=array_api_strict.float64) >>> a = xp.reshape(xp.arange(100), (2, 5, 2, 5)) >>> b = xp.reshape(xp.arange(24), (2, 3, 4)) >>> c = xpx.kron(a, b, xp=xp) >>> c.shape (2, 10, 6, 20) >>> I = (1, 3, 0, 2) >>> J = (0, 2, 1) >>> J1 = (0,) + J # extend to ndim=4 >>> S1 = (1,) + b.shape >>> K = tuple(xp.asarray(I) * xp.asarray(S1) + xp.asarray(J1)) >>> c[K] == a[I]*b[J] Array(True, dtype=array_api_strict.bool)
kron
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def nunique(x: Array, /, *, xp: ModuleType | None = None) -> Array: """ Count the number of unique elements in an array. Compatible with JAX and Dask, whose laziness would be otherwise problematic. Parameters ---------- x : Array Input array. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array: 0-dimensional integer array The number of unique elements in `x`. It can be lazy. """ if xp is None: xp = array_namespace(x) if is_jax_array(x): # size= is JAX-specific # https://github.com/data-apis/array-api/issues/883 _, counts = xp.unique_counts(x, size=_compat.size(x)) return xp.astype(counts, xp.bool).sum() _, counts = xp.unique_counts(x) n = _compat.size(counts) # FIXME https://github.com/data-apis/array-api-compat/pull/231 if n is None: # e.g. Dask, ndonnx return xp.astype(counts, xp.bool).sum() return xp.asarray(n, device=_compat.device(x))
Count the number of unique elements in an array. Compatible with JAX and Dask, whose laziness would be otherwise problematic. Parameters ---------- x : Array Input array. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- array: 0-dimensional integer array The number of unique elements in `x`. It can be lazy.
nunique
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def setdiff1d( x1: Array | complex, x2: Array | complex, /, *, assume_unique: bool = False, xp: ModuleType | None = None, ) -> Array: """ Find the set difference of two arrays. Return the unique values in `x1` that are not in `x2`. Parameters ---------- x1 : array | int | float | complex | bool Input array. x2 : array Input comparison array. assume_unique : bool If ``True``, the input arrays are both assumed to be unique, which can speed up the calculation. Default is ``False``. xp : array_namespace, optional The standard-compatible namespace for `x1` and `x2`. Default: infer. Returns ------- array 1D array of values in `x1` that are not in `x2`. The result is sorted when `assume_unique` is ``False``, but otherwise only sorted if the input is sorted. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x1 = xp.asarray([1, 2, 3, 2, 4, 1]) >>> x2 = xp.asarray([3, 4, 5, 6]) >>> xpx.setdiff1d(x1, x2, xp=xp) Array([1, 2], dtype=array_api_strict.int64) """ if xp is None: xp = array_namespace(x1, x2) # https://github.com/microsoft/pyright/issues/10103 x1_, x2_ = asarrays(x1, x2, xp=xp) if assume_unique: x1_ = xp.reshape(x1_, (-1,)) x2_ = xp.reshape(x2_, (-1,)) else: x1_ = xp.unique_values(x1_) x2_ = xp.unique_values(x2_) return x1_[_helpers.in1d(x1_, x2_, assume_unique=True, invert=True, xp=xp)]
Find the set difference of two arrays. Return the unique values in `x1` that are not in `x2`. Parameters ---------- x1 : array | int | float | complex | bool Input array. x2 : array Input comparison array. assume_unique : bool If ``True``, the input arrays are both assumed to be unique, which can speed up the calculation. Default is ``False``. xp : array_namespace, optional The standard-compatible namespace for `x1` and `x2`. Default: infer. Returns ------- array 1D array of values in `x1` that are not in `x2`. The result is sorted when `assume_unique` is ``False``, but otherwise only sorted if the input is sorted. Examples -------- >>> import array_api_strict as xp >>> import array_api_extra as xpx >>> x1 = xp.asarray([1, 2, 3, 2, 4, 1]) >>> x2 = xp.asarray([3, 4, 5, 6]) >>> xpx.setdiff1d(x1, x2, xp=xp) Array([1, 2], dtype=array_api_strict.int64)
setdiff1d
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_funcs.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_funcs.py
BSD-3-Clause
def _is_jax_jit_enabled(xp: ModuleType) -> bool: # numpydoc ignore=PR01,RT01 """Return True if this function is being called inside ``jax.jit``.""" import jax # pylint: disable=import-outside-toplevel x = xp.asarray(False) try: return bool(x) except jax.errors.TracerBoolConversionError: return True
Return True if this function is being called inside ``jax.jit``.
_is_jax_jit_enabled
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_lazy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_lazy.py
BSD-3-Clause
def _lazy_apply_wrapper( # type: ignore[explicit-any] # numpydoc ignore=PR01,RT01 func: Callable[..., Array | ArrayLike | Sequence[Array | ArrayLike]], as_numpy: bool, multi_output: bool, xp: ModuleType, ) -> Callable[..., tuple[Array, ...]]: """ Helper of `lazy_apply`. Given a function that accepts one or more arrays as positional arguments and returns a single array-like or a sequence of array-likes, return a function that accepts the same number of Array API arrays and always returns a tuple of Array API array. Any keyword arguments are passed through verbatim to the wrapped function. """ # On Dask, @wraps causes the graph key to contain the wrapped function's name @wraps(func) def wrapper( # type: ignore[decorated-any,explicit-any] *args: Array | complex | None, **kwargs: Any ) -> tuple[Array, ...]: # numpydoc ignore=GL08 args_list = [] device = None for arg in args: if arg is not None and not is_python_scalar(arg): if device is None: device = _compat.device(arg) if as_numpy: import numpy as np arg = cast(Array, np.asarray(arg)) # type: ignore[bad-cast] # noqa: PLW2901 args_list.append(arg) assert device is not None out = func(*args_list, **kwargs) if multi_output: assert isinstance(out, Sequence) return tuple(xp.asarray(o, device=device) for o in out) return (xp.asarray(out, device=device),) return wrapper
Helper of `lazy_apply`. Given a function that accepts one or more arrays as positional arguments and returns a single array-like or a sequence of array-likes, return a function that accepts the same number of Array API arrays and always returns a tuple of Array API array. Any keyword arguments are passed through verbatim to the wrapped function.
_lazy_apply_wrapper
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_lazy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_lazy.py
BSD-3-Clause
def _check_ns_shape_dtype( actual: Array, desired: Array ) -> ModuleType: # numpydoc ignore=RT03 """ Assert that namespace, shape and dtype of the two arrays match. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). Returns ------- Arrays namespace. """ actual_xp = array_namespace(actual) # Raises on scalars and lists desired_xp = array_namespace(desired) msg = f"namespaces do not match: {actual_xp} != f{desired_xp}" assert actual_xp == desired_xp, msg actual_shape = actual.shape desired_shape = desired.shape if is_dask_namespace(desired_xp): # Dask uses nan instead of None for unknown shapes if any(math.isnan(i) for i in cast(tuple[float, ...], actual_shape)): actual_shape = actual.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] if any(math.isnan(i) for i in cast(tuple[float, ...], desired_shape)): desired_shape = desired.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] msg = f"shapes do not match: {actual_shape} != f{desired_shape}" assert actual_shape == desired_shape, msg msg = f"dtypes do not match: {actual.dtype} != {desired.dtype}" assert actual.dtype == desired.dtype, msg return desired_xp
Assert that namespace, shape and dtype of the two arrays match. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). Returns ------- Arrays namespace.
_check_ns_shape_dtype
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_testing.py
BSD-3-Clause
def xp_assert_equal(actual: Array, desired: Array, err_msg: str = "") -> None: """ Array-API compatible version of `np.testing.assert_array_equal`. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). err_msg : str, optional Error message to display on failure. See Also -------- xp_assert_close : Similar function for inexact equality checks. numpy.testing.assert_array_equal : Similar function for NumPy arrays. """ xp = _check_ns_shape_dtype(actual, desired) if is_cupy_namespace(xp): xp.testing.assert_array_equal(actual, desired, err_msg=err_msg) elif is_torch_namespace(xp): # PyTorch recommends using `rtol=0, atol=0` like this # to test for exact equality xp.testing.assert_close( actual, desired, rtol=0, atol=0, equal_nan=True, check_dtype=False, msg=err_msg or None, ) else: import numpy as np # pylint: disable=import-outside-toplevel if is_pydata_sparse_namespace(xp): actual = actual.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] desired = desired.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] actual_np = None desired_np = None if is_array_api_strict_namespace(xp): # __array__ doesn't work on array-api-strict device arrays # We need to convert to the CPU device first actual_np = np.asarray(xp.asarray(actual, device=xp.Device("CPU_DEVICE"))) desired_np = np.asarray(xp.asarray(desired, device=xp.Device("CPU_DEVICE"))) # JAX/Dask arrays work with `np.testing` actual_np = actual if actual_np is None else actual_np desired_np = desired if desired_np is None else desired_np np.testing.assert_array_equal(actual_np, desired_np, err_msg=err_msg) # pyright: ignore[reportUnknownArgumentType]
Array-API compatible version of `np.testing.assert_array_equal`. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). err_msg : str, optional Error message to display on failure. See Also -------- xp_assert_close : Similar function for inexact equality checks. numpy.testing.assert_array_equal : Similar function for NumPy arrays.
xp_assert_equal
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_testing.py
BSD-3-Clause
def xp_assert_close( actual: Array, desired: Array, *, rtol: float | None = None, atol: float = 0, err_msg: str = "", ) -> None: """ Array-API compatible version of `np.testing.assert_allclose`. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). rtol : float, optional Relative tolerance. Default: dtype-dependent. atol : float, optional Absolute tolerance. Default: 0. err_msg : str, optional Error message to display on failure. See Also -------- xp_assert_equal : Similar function for exact equality checks. isclose : Public function for checking closeness. numpy.testing.assert_allclose : Similar function for NumPy arrays. Notes ----- The default `atol` and `rtol` differ from `xp.all(xpx.isclose(a, b))`. """ xp = _check_ns_shape_dtype(actual, desired) floating = xp.isdtype(actual.dtype, ("real floating", "complex floating")) if rtol is None and floating: # multiplier of 4 is used as for `np.float64` this puts the default `rtol` # roughly half way between sqrt(eps) and the default for # `numpy.testing.assert_allclose`, 1e-7 rtol = xp.finfo(actual.dtype).eps ** 0.5 * 4 elif rtol is None: rtol = 1e-7 if is_cupy_namespace(xp): xp.testing.assert_allclose( actual, desired, rtol=rtol, atol=atol, err_msg=err_msg ) elif is_torch_namespace(xp): xp.testing.assert_close( actual, desired, rtol=rtol, atol=atol, equal_nan=True, msg=err_msg or None ) else: import numpy as np # pylint: disable=import-outside-toplevel if is_pydata_sparse_namespace(xp): actual = actual.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] desired = desired.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] actual_np = None desired_np = None if is_array_api_strict_namespace(xp): # __array__ doesn't work on array-api-strict device arrays # We need to convert to the CPU device first actual_np = np.asarray(xp.asarray(actual, device=xp.Device("CPU_DEVICE"))) desired_np = np.asarray(xp.asarray(desired, device=xp.Device("CPU_DEVICE"))) # JAX/Dask arrays work with `np.testing` actual_np = actual if actual_np is None else actual_np desired_np = desired if desired_np is None else desired_np assert isinstance(rtol, float) np.testing.assert_allclose( # pyright: ignore[reportCallIssue] actual_np, # type: ignore[arg-type] # pyright: ignore[reportArgumentType] desired_np, # type: ignore[arg-type] # pyright: ignore[reportArgumentType] rtol=rtol, atol=atol, err_msg=err_msg, )
Array-API compatible version of `np.testing.assert_allclose`. Parameters ---------- actual : Array The array produced by the tested function. desired : Array The expected array (typically hardcoded). rtol : float, optional Relative tolerance. Default: dtype-dependent. atol : float, optional Absolute tolerance. Default: 0. err_msg : str, optional Error message to display on failure. See Also -------- xp_assert_equal : Similar function for exact equality checks. isclose : Public function for checking closeness. numpy.testing.assert_allclose : Similar function for NumPy arrays. Notes ----- The default `atol` and `rtol` differ from `xp.all(xpx.isclose(a, b))`.
xp_assert_close
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_testing.py
BSD-3-Clause
def in1d( x1: Array, x2: Array, /, *, assume_unique: bool = False, invert: bool = False, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """ Check whether each element of an array is also present in a second array. Returns a boolean array the same length as `x1` that is True where an element of `x1` is in `x2` and False otherwise. This function has been adapted using the original implementation present in numpy: https://github.com/numpy/numpy/blob/v1.26.0/numpy/lib/arraysetops.py#L524-L758 """ if xp is None: xp = array_namespace(x1, x2) x1_shape = eager_shape(x1) x2_shape = eager_shape(x2) # This code is run to make the code significantly faster if x2_shape[0] < 10 * x1_shape[0] ** 0.145 and isinstance(x2, Iterable): if invert: mask = xp.ones(x1_shape[0], dtype=xp.bool, device=_compat.device(x1)) for a in x2: mask &= x1 != a else: mask = xp.zeros(x1_shape[0], dtype=xp.bool, device=_compat.device(x1)) for a in x2: mask |= x1 == a return mask rev_idx = xp.empty(0) # placeholder if not assume_unique: x1, rev_idx = xp.unique_inverse(x1) x2 = xp.unique_values(x2) ar = xp.concat((x1, x2)) device_ = _compat.device(ar) # We need this to be a stable sort. order = xp.argsort(ar, stable=True) reverse_order = xp.argsort(order, stable=True) sar = xp.take(ar, order, axis=0) ar_size = _compat.size(sar) assert ar_size is not None, "xp.unique*() on lazy backends raises" if ar_size >= 1: bool_ar = sar[1:] != sar[:-1] if invert else sar[1:] == sar[:-1] else: bool_ar = xp.asarray([False]) if invert else xp.asarray([True]) flag = xp.concat((bool_ar, xp.asarray([invert], device=device_))) ret = xp.take(flag, reverse_order, axis=0) if assume_unique: return ret[: x1.shape[0]] return xp.take(ret, rev_idx, axis=0)
Check whether each element of an array is also present in a second array. Returns a boolean array the same length as `x1` that is True where an element of `x1` is in `x2` and False otherwise. This function has been adapted using the original implementation present in numpy: https://github.com/numpy/numpy/blob/v1.26.0/numpy/lib/arraysetops.py#L524-L758
in1d
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def mean( x: Array, /, *, axis: int | tuple[int, ...] | None = None, keepdims: bool = False, xp: ModuleType | None = None, ) -> Array: # numpydoc ignore=PR01,RT01 """ Complex mean, https://github.com/data-apis/array-api/issues/846. """ if xp is None: xp = array_namespace(x) if xp.isdtype(x.dtype, "complex floating"): x_real = xp.real(x) x_imag = xp.imag(x) mean_real = xp.mean(x_real, axis=axis, keepdims=keepdims) mean_imag = xp.mean(x_imag, axis=axis, keepdims=keepdims) return mean_real + (mean_imag * xp.asarray(1j)) return xp.mean(x, axis=axis, keepdims=keepdims)
Complex mean, https://github.com/data-apis/array-api/issues/846.
mean
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def is_python_scalar(x: object) -> TypeIs[complex]: # numpydoc ignore=PR01,RT01 """Return True if `x` is a Python scalar, False otherwise.""" # isinstance(x, float) returns True for np.float64 # isinstance(x, complex) returns True for np.complex128 # bool is a subclass of int return isinstance(x, int | float | complex) and not is_numpy_array(x)
Return True if `x` is a Python scalar, False otherwise.
is_python_scalar
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def asarrays( a: Array | complex, b: Array | complex, xp: ModuleType, ) -> tuple[Array, Array]: """ Ensure both `a` and `b` are arrays. If `b` is a python scalar, it is converted to the same dtype as `a`, and vice versa. Behavior is not specified when mixing a Python ``float`` and an array with an integer data type; this may give ``float32``, ``float64``, or raise an exception. Behavior is implementation-specific. Similarly, behavior is not specified when mixing a Python ``complex`` and an array with a real-valued data type; this may give ``complex64``, ``complex128``, or raise an exception. Behavior is implementation-specific. Parameters ---------- a, b : Array | int | float | complex | bool Input arrays or scalars. At least one must be an array. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- Array, Array The input arrays, possibly converted to arrays if they were scalars. See Also -------- mixing-arrays-with-python-scalars : Array API specification for the behavior. """ a_scalar = is_python_scalar(a) b_scalar = is_python_scalar(b) if not a_scalar and not b_scalar: # This includes misc. malformed input e.g. str return a, b # type: ignore[return-value] swap = False if a_scalar: swap = True b, a = a, b if is_array_api_obj(a): # a is an Array API object # b is a int | float | complex | bool xa = a # https://data-apis.org/array-api/draft/API_specification/type_promotion.html#mixing-arrays-with-python-scalars same_dtype = { bool: "bool", int: ("integral", "real floating", "complex floating"), float: ("real floating", "complex floating"), complex: "complex floating", } kind = same_dtype[type(cast(complex, b))] # type: ignore[index] if xp.isdtype(a.dtype, kind): xb = xp.asarray(b, dtype=a.dtype) else: # Undefined behaviour. Let the function deal with it, if it can. xb = xp.asarray(b) else: # Neither a nor b are Array API objects. # Note: we can only reach this point when one explicitly passes # xp=xp to the calling function; otherwise we fail earlier on # array_namespace(a, b). xa, xb = xp.asarray(a), xp.asarray(b) return (xb, xa) if swap else (xa, xb)
Ensure both `a` and `b` are arrays. If `b` is a python scalar, it is converted to the same dtype as `a`, and vice versa. Behavior is not specified when mixing a Python ``float`` and an array with an integer data type; this may give ``float32``, ``float64``, or raise an exception. Behavior is implementation-specific. Similarly, behavior is not specified when mixing a Python ``complex`` and an array with a real-valued data type; this may give ``complex64``, ``complex128``, or raise an exception. Behavior is implementation-specific. Parameters ---------- a, b : Array | int | float | complex | bool Input arrays or scalars. At least one must be an array. xp : array_namespace, optional The standard-compatible namespace for `x`. Default: infer. Returns ------- Array, Array The input arrays, possibly converted to arrays if they were scalars. See Also -------- mixing-arrays-with-python-scalars : Array API specification for the behavior.
asarrays
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def ndindex(*x: int) -> Generator[tuple[int, ...]]: """ Generate all N-dimensional indices for a given array shape. Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned, the last dimension is iterated over first. This has an identical API to numpy.ndindex. Parameters ---------- *x : int The shape of the array. """ if not x: yield () return for i in ndindex(*x[:-1]): for j in range(x[-1]): yield *i, j
Generate all N-dimensional indices for a given array shape. Given the shape of an array, an ndindex instance iterates over the N-dimensional index of the array. At each iteration a tuple of indices is returned, the last dimension is iterated over first. This has an identical API to numpy.ndindex. Parameters ---------- *x : int The shape of the array.
ndindex
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def eager_shape(x: Array, /) -> tuple[int, ...]: """ Return shape of an array. Raise if shape is not fully defined. Parameters ---------- x : Array Input array. Returns ------- tuple[int, ...] Shape of the array. """ shape = x.shape # Dask arrays uses non-standard NaN instead of None if any(s is None or math.isnan(s) for s in shape): msg = "Unsupported lazy shape" raise TypeError(msg) return cast(tuple[int, ...], shape)
Return shape of an array. Raise if shape is not fully defined. Parameters ---------- x : Array Input array. Returns ------- tuple[int, ...] Shape of the array.
eager_shape
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def meta_namespace( *arrays: Array | complex | None, xp: ModuleType | None = None ) -> ModuleType: """ Get the namespace of Dask chunks. On all other backends, just return the namespace of the arrays. Parameters ---------- *arrays : Array | int | float | complex | bool | None Input arrays. xp : array_namespace, optional The standard-compatible namespace for the input arrays. Default: infer. Returns ------- array_namespace If xp is Dask, the namespace of the Dask chunks; otherwise, the namespace of the arrays. """ xp = array_namespace(*arrays) if xp is None else xp if not is_dask_namespace(xp): return xp # Quietly skip scalars and None's metas = [cast(Array | None, getattr(a, "_meta", None)) for a in arrays] return array_namespace(*metas)
Get the namespace of Dask chunks. On all other backends, just return the namespace of the arrays. Parameters ---------- *arrays : Array | int | float | complex | bool | None Input arrays. xp : array_namespace, optional The standard-compatible namespace for the input arrays. Default: infer. Returns ------- array_namespace If xp is Dask, the namespace of the Dask chunks; otherwise, the namespace of the arrays.
meta_namespace
python
scikit-learn/scikit-learn
sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/array_api_extra/_lib/_utils/_helpers.py
BSD-3-Clause
def parse(version: str) -> Union["LegacyVersion", "Version"]: """Parse the given version from a string to an appropriate class. Parameters ---------- version : str Version in a string format, eg. "0.9.1" or "1.2.dev0". Returns ------- version : :class:`Version` object or a :class:`LegacyVersion` object Returned class depends on the given version: if is a valid PEP 440 version or a legacy version. """ try: return Version(version) except InvalidVersion: return LegacyVersion(version)
Parse the given version from a string to an appropriate class. Parameters ---------- version : str Version in a string format, eg. "0.9.1" or "1.2.dev0". Returns ------- version : :class:`Version` object or a :class:`LegacyVersion` object Returned class depends on the given version: if is a valid PEP 440 version or a legacy version.
parse
python
scikit-learn/scikit-learn
sklearn/externals/_packaging/version.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/_packaging/version.py
BSD-3-Clause
def _parse_local_version(local: str) -> Optional[LocalType]: """ Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve"). """ if local is not None: return tuple( part.lower() if not part.isdigit() else int(part) for part in _local_version_separators.split(local) ) return None
Takes a string like abc.1.twelve and turns it into ("abc", 1, "twelve").
_parse_local_version
python
scikit-learn/scikit-learn
sklearn/externals/_packaging/version.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/externals/_packaging/version.py
BSD-3-Clause
def _make_edges_3d(n_x, n_y, n_z=1): """Returns a list of edges for a 3D image. Parameters ---------- n_x : int The size of the grid in the x direction. n_y : int The size of the grid in the y direction. n_z : integer, default=1 The size of the grid in the z direction, defaults to 1 """ vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z)) edges_deep = np.vstack((vertices[:, :, :-1].ravel(), vertices[:, :, 1:].ravel())) edges_right = np.vstack((vertices[:, :-1].ravel(), vertices[:, 1:].ravel())) edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel())) edges = np.hstack((edges_deep, edges_right, edges_down)) return edges
Returns a list of edges for a 3D image. Parameters ---------- n_x : int The size of the grid in the x direction. n_y : int The size of the grid in the y direction. n_z : integer, default=1 The size of the grid in the z direction, defaults to 1
_make_edges_3d
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def _mask_edges_weights(mask, edges, weights=None): """Apply a mask to edges (weighted or not)""" inds = np.arange(mask.size) inds = inds[mask.ravel()] ind_mask = np.logical_and(np.isin(edges[0], inds), np.isin(edges[1], inds)) edges = edges[:, ind_mask] if weights is not None: weights = weights[ind_mask] if len(edges.ravel()): maxval = edges.max() else: maxval = 0 order = np.searchsorted(np.flatnonzero(mask), np.arange(maxval + 1)) edges = order[edges] if weights is None: return edges else: return edges, weights
Apply a mask to edges (weighted or not)
_mask_edges_weights
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def img_to_graph(img, *, mask=None, return_as=sparse.coo_matrix, dtype=None): """Graph of the pixel-to-pixel gradient connections. Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : array-like of shape (height, width) or (height, width, channel) 2D or 3D image. mask : ndarray of shape (height, width) or \ (height, width, channel), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, \ default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=None The data of the returned sparse matrix. By default it is the dtype of img. Returns ------- graph : ndarray or a sparse matrix class The computed adjacency matrix. Examples -------- >>> import numpy as np >>> from sklearn.feature_extraction.image import img_to_graph >>> img = np.array([[0, 0], [0, 1]]) >>> img_to_graph(img, return_as=np.ndarray) array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 1, 1]]) """ img = np.atleast_3d(img) n_x, n_y, n_z = img.shape return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype)
Graph of the pixel-to-pixel gradient connections. Edges are weighted with the gradient values. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- img : array-like of shape (height, width) or (height, width, channel) 2D or 3D image. mask : ndarray of shape (height, width) or (height, width, channel), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=None The data of the returned sparse matrix. By default it is the dtype of img. Returns ------- graph : ndarray or a sparse matrix class The computed adjacency matrix. Examples -------- >>> import numpy as np >>> from sklearn.feature_extraction.image import img_to_graph >>> img = np.array([[0, 0], [0, 1]]) >>> img_to_graph(img, return_as=np.ndarray) array([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 1], [0, 1, 1, 1]])
img_to_graph
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def grid_to_graph( n_x, n_y, n_z=1, *, mask=None, return_as=sparse.coo_matrix, dtype=int ): """Graph of the pixel-to-pixel connections. Edges exist if 2 voxels are connected. Read more in the :ref:`User Guide <connectivity_graph_image>`. Parameters ---------- n_x : int Dimension in x axis. n_y : int Dimension in y axis. n_z : int, default=1 Dimension in z axis. mask : ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, \ default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=int The data of the returned sparse matrix. By default it is int. Returns ------- graph : np.ndarray or a sparse matrix class The computed adjacency matrix. Examples -------- >>> import numpy as np >>> from sklearn.feature_extraction.image import grid_to_graph >>> shape_img = (4, 4, 1) >>> mask = np.zeros(shape=shape_img, dtype=bool) >>> mask[[1, 2], [1, 2], :] = True >>> graph = grid_to_graph(*shape_img, mask=mask) >>> print(graph) <COOrdinate sparse matrix of dtype 'int64' with 2 stored elements and shape (2, 2)> Coords Values (0, 0) 1 (1, 1) 1 """ return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as, dtype=dtype)
Graph of the pixel-to-pixel connections. Edges exist if 2 voxels are connected. Read more in the :ref:`User Guide <connectivity_graph_image>`. Parameters ---------- n_x : int Dimension in x axis. n_y : int Dimension in y axis. n_z : int, default=1 Dimension in z axis. mask : ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=int The data of the returned sparse matrix. By default it is int. Returns ------- graph : np.ndarray or a sparse matrix class The computed adjacency matrix. Examples -------- >>> import numpy as np >>> from sklearn.feature_extraction.image import grid_to_graph >>> shape_img = (4, 4, 1) >>> mask = np.zeros(shape=shape_img, dtype=bool) >>> mask[[1, 2], [1, 2], :] = True >>> graph = grid_to_graph(*shape_img, mask=mask) >>> print(graph) <COOrdinate sparse matrix of dtype 'int64' with 2 stored elements and shape (2, 2)> Coords Values (0, 0) 1 (1, 1) 1
grid_to_graph
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None): """Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : int or float, default=None The maximum number of patches to extract. If `max_patches` is a float between 0 and 1, it is taken to be a proportion of the total number of patches. If `max_patches` is None, all possible patches are extracted. """ n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 all_patches = n_h * n_w if max_patches: if isinstance(max_patches, (Integral)) and max_patches < all_patches: return max_patches elif isinstance(max_patches, (Integral)) and max_patches >= all_patches: return all_patches elif isinstance(max_patches, (Real)) and 0 < max_patches < 1: return int(max_patches * all_patches) else: raise ValueError("Invalid value for max_patches: %r" % max_patches) else: return all_patches
Compute the number of patches that will be extracted in an image. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- i_h : int The image height i_w : int The image with p_h : int The height of a patch p_w : int The width of a patch max_patches : int or float, default=None The maximum number of patches to extract. If `max_patches` is a float between 0 and 1, it is taken to be a proportion of the total number of patches. If `max_patches` is None, all possible patches are extracted.
_compute_n_patches
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def _extract_patches(arr, patch_shape=8, extraction_step=1): """Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : int or tuple of length arr.ndim.default=8 Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : int or tuple of length arr.ndim, default=1 Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape)) """ arr_ndim = arr.ndim if isinstance(patch_shape, Number): patch_shape = tuple([patch_shape] * arr_ndim) if isinstance(extraction_step, Number): extraction_step = tuple([extraction_step] * arr_ndim) patch_strides = arr.strides slices = tuple(slice(None, None, st) for st in extraction_step) indexing_strides = arr[slices].strides patch_indices_shape = ( (np.array(arr.shape) - np.array(patch_shape)) // np.array(extraction_step) ) + 1 shape = tuple(list(patch_indices_shape) + list(patch_shape)) strides = tuple(list(indexing_strides) + list(patch_strides)) patches = as_strided(arr, shape=shape, strides=strides) return patches
Extracts patches of any n-dimensional array in place using strides. Given an n-dimensional array it will return a 2n-dimensional array with the first n dimensions indexing patch position and the last n indexing the patch content. This operation is immediate (O(1)). A reshape performed on the first n dimensions will cause numpy to copy data, leading to a list of extracted patches. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- arr : ndarray n-dimensional array of which patches are to be extracted patch_shape : int or tuple of length arr.ndim.default=8 Indicates the shape of the patches to be extracted. If an integer is given, the shape will be a hypercube of sidelength given by its value. extraction_step : int or tuple of length arr.ndim, default=1 Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions. Returns ------- patches : strided ndarray 2n-dimensional array indexing patches on first n dimensions and containing patches on the last n dimensions. These dimensions are fake, but this way no data is copied. A simple reshape invokes a copying operation to obtain a list of patches: result.reshape([-1] + list(patch_shape))
_extract_patches
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None): """Reshape a 2D image into a collection of patches. The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : ndarray of shape (image_height, image_width) or \ (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of int (patch_height, patch_width) The dimensions of one patch. max_patches : int or float, default=None The maximum number of patches to extract. If `max_patches` is a float between 0 and 1, it is taken to be a proportion of the total number of patches. If `max_patches` is None it corresponds to the total number of patches that can be extracted. random_state : int, RandomState instance, default=None Determines the random number generator used for random sampling when `max_patches` is not None. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> # Use the array data from the first image in this dataset: >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print('Patches shape: {}'.format(patches.shape)) Patches shape: (272214, 2, 2, 3) >>> # Here are just two of these patches: >>> print(patches[1]) [[[174 201 231] [174 201 231]] [[173 200 230] [173 200 230]]] >>> print(patches[800]) [[[187 214 243] [188 215 244]] [[187 214 243] [188 215 244]]] """ i_h, i_w = image.shape[:2] p_h, p_w = patch_size if p_h > i_h: raise ValueError( "Height of the patch should be less than the height of the image." ) if p_w > i_w: raise ValueError( "Width of the patch should be less than the width of the image." ) image = check_array(image, allow_nd=True) image = image.reshape((i_h, i_w, -1)) n_colors = image.shape[-1] extracted_patches = _extract_patches( image, patch_shape=(p_h, p_w, n_colors), extraction_step=1 ) n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches) if max_patches: rng = check_random_state(random_state) i_s = rng.randint(i_h - p_h + 1, size=n_patches) j_s = rng.randint(i_w - p_w + 1, size=n_patches) patches = extracted_patches[i_s, j_s, 0] else: patches = extracted_patches patches = patches.reshape(-1, p_h, p_w, n_colors) # remove the color dimension if useless if patches.shape[-1] == 1: return patches.reshape((n_patches, p_h, p_w)) else: return patches
Reshape a 2D image into a collection of patches. The resulting patches are allocated in a dedicated array. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- image : ndarray of shape (image_height, image_width) or (image_height, image_width, n_channels) The original image data. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. patch_size : tuple of int (patch_height, patch_width) The dimensions of one patch. max_patches : int or float, default=None The maximum number of patches to extract. If `max_patches` is a float between 0 and 1, it is taken to be a proportion of the total number of patches. If `max_patches` is None it corresponds to the total number of patches that can be extracted. random_state : int, RandomState instance, default=None Determines the random number generator used for random sampling when `max_patches` is not None. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the image, where `n_patches` is either `max_patches` or the total number of patches that can be extracted. Examples -------- >>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> # Use the array data from the first image in this dataset: >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print('Patches shape: {}'.format(patches.shape)) Patches shape: (272214, 2, 2, 3) >>> # Here are just two of these patches: >>> print(patches[1]) [[[174 201 231] [174 201 231]] [[173 200 230] [173 200 230]]] >>> print(patches[800]) [[[187 214 243] [188 215 244]] [[187 214 243] [188 215 244]]]
extract_patches_2d
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def reconstruct_from_patches_2d(patches, image_size): """Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : ndarray of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of int (image_height, image_width) or \ (image_height, image_width, n_channels) The size of the image that will be reconstructed. Returns ------- image : ndarray of shape image_size The reconstructed image. Examples -------- >>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> image_patches = image.extract_patches_2d(image=one_image, patch_size=(10, 10)) >>> print('Patches shape: {}'.format(image_patches.shape)) Patches shape: (263758, 10, 10, 3) >>> image_reconstructed = image.reconstruct_from_patches_2d( ... patches=image_patches, ... image_size=one_image.shape ... ) >>> print(f"Reconstructed shape: {image_reconstructed.shape}") Reconstructed shape: (427, 640, 3) """ i_h, i_w = image_size[:2] p_h, p_w = patches.shape[1:3] img = np.zeros(image_size) # compute the dimensions of the patches array n_h = i_h - p_h + 1 n_w = i_w - p_w + 1 for p, (i, j) in zip(patches, product(range(n_h), range(n_w))): img[i : i + p_h, j : j + p_w] += p for i in range(i_h): for j in range(i_w): # divide by the amount of overlap # XXX: is this the most efficient way? memory-wise yes, cpu wise? img[i, j] /= float(min(i + 1, p_h, i_h - i) * min(j + 1, p_w, i_w - j)) return img
Reconstruct the image from all of its patches. Patches are assumed to overlap and the image is constructed by filling in the patches from left to right, top to bottom, averaging the overlapping regions. Read more in the :ref:`User Guide <image_feature_extraction>`. Parameters ---------- patches : ndarray of shape (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The complete set of patches. If the patches contain colour information, channels are indexed along the last dimension: RGB patches would have `n_channels=3`. image_size : tuple of int (image_height, image_width) or (image_height, image_width, n_channels) The size of the image that will be reconstructed. Returns ------- image : ndarray of shape image_size The reconstructed image. Examples -------- >>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> image_patches = image.extract_patches_2d(image=one_image, patch_size=(10, 10)) >>> print('Patches shape: {}'.format(image_patches.shape)) Patches shape: (263758, 10, 10, 3) >>> image_reconstructed = image.reconstruct_from_patches_2d( ... patches=image_patches, ... image_size=one_image.shape ... ) >>> print(f"Reconstructed shape: {image_reconstructed.shape}") Reconstructed shape: (427, 640, 3)
reconstruct_from_patches_2d
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def transform(self, X): """Transform the image samples in `X` into a matrix of patch data. Parameters ---------- X : ndarray of shape (n_samples, image_height, image_width) or \ (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or \ (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted. """ X = validate_data( self, X=X, ensure_2d=False, allow_nd=True, ensure_min_samples=1, ensure_min_features=1, reset=False, ) random_state = check_random_state(self.random_state) n_imgs, img_height, img_width = X.shape[:3] if self.patch_size is None: patch_size = img_height // 10, img_width // 10 else: if len(self.patch_size) != 2: raise ValueError( "patch_size must be a tuple of two integers. Got" f" {self.patch_size} instead." ) patch_size = self.patch_size n_imgs, img_height, img_width = X.shape[:3] X = np.reshape(X, (n_imgs, img_height, img_width, -1)) n_channels = X.shape[-1] # compute the dimensions of the patches array patch_height, patch_width = patch_size n_patches = _compute_n_patches( img_height, img_width, patch_height, patch_width, self.max_patches ) patches_shape = (n_imgs * n_patches,) + patch_size if n_channels > 1: patches_shape += (n_channels,) # extract the patches patches = np.empty(patches_shape) for ii, image in enumerate(X): patches[ii * n_patches : (ii + 1) * n_patches] = extract_patches_2d( image, patch_size, max_patches=self.max_patches, random_state=random_state, ) return patches
Transform the image samples in `X` into a matrix of patch data. Parameters ---------- X : ndarray of shape (n_samples, image_height, image_width) or (n_samples, image_height, image_width, n_channels) Array of images from which to extract patches. For color images, the last dimension specifies the channel: a RGB image would have `n_channels=3`. Returns ------- patches : array of shape (n_patches, patch_height, patch_width) or (n_patches, patch_height, patch_width, n_channels) The collection of patches extracted from the images, where `n_patches` is either `n_samples * max_patches` or the total number of patches that can be extracted.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/image.py
BSD-3-Clause
def _preprocess(doc, accent_function=None, lower=False): """Chain together an optional series of text preprocessing steps to apply to a document. Parameters ---------- doc: str The string to preprocess accent_function: callable, default=None Function for handling accented characters. Common strategies include normalizing and removing. lower: bool, default=False Whether to use str.lower to lowercase all of the text Returns ------- doc: str preprocessed string """ if lower: doc = doc.lower() if accent_function is not None: doc = accent_function(doc) return doc
Chain together an optional series of text preprocessing steps to apply to a document. Parameters ---------- doc: str The string to preprocess accent_function: callable, default=None Function for handling accented characters. Common strategies include normalizing and removing. lower: bool, default=False Whether to use str.lower to lowercase all of the text Returns ------- doc: str preprocessed string
_preprocess
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _analyze( doc, analyzer=None, tokenizer=None, ngrams=None, preprocessor=None, decoder=None, stop_words=None, ): """Chain together an optional series of text processing steps to go from a single document to ngrams, with or without tokenizing or preprocessing. If analyzer is used, only the decoder argument is used, as the analyzer is intended to replace the preprocessor, tokenizer, and ngrams steps. Parameters ---------- analyzer: callable, default=None tokenizer: callable, default=None ngrams: callable, default=None preprocessor: callable, default=None decoder: callable, default=None stop_words: list, default=None Returns ------- ngrams: list A sequence of tokens, possibly with pairs, triples, etc. """ if decoder is not None: doc = decoder(doc) if analyzer is not None: doc = analyzer(doc) else: if preprocessor is not None: doc = preprocessor(doc) if tokenizer is not None: doc = tokenizer(doc) if ngrams is not None: if stop_words is not None: doc = ngrams(doc, stop_words) else: doc = ngrams(doc) return doc
Chain together an optional series of text processing steps to go from a single document to ngrams, with or without tokenizing or preprocessing. If analyzer is used, only the decoder argument is used, as the analyzer is intended to replace the preprocessor, tokenizer, and ngrams steps. Parameters ---------- analyzer: callable, default=None tokenizer: callable, default=None ngrams: callable, default=None preprocessor: callable, default=None decoder: callable, default=None stop_words: list, default=None Returns ------- ngrams: list A sequence of tokens, possibly with pairs, triples, etc.
_analyze
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def strip_accents_unicode(s): """Transform accentuated unicode symbols into their simple counterpart. Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. Parameters ---------- s : str The string to strip. Returns ------- s : str The stripped string. See Also -------- strip_accents_ascii : Remove accentuated char for any unicode symbol that has a direct ASCII equivalent. """ try: # If `s` is ASCII-compatible, then it does not contain any accented # characters and we can avoid an expensive list comprehension s.encode("ASCII", errors="strict") return s except UnicodeEncodeError: normalized = unicodedata.normalize("NFKD", s) return "".join([c for c in normalized if not unicodedata.combining(c)])
Transform accentuated unicode symbols into their simple counterpart. Warning: the python-level loop and join operations make this implementation 20 times slower than the strip_accents_ascii basic normalization. Parameters ---------- s : str The string to strip. Returns ------- s : str The stripped string. See Also -------- strip_accents_ascii : Remove accentuated char for any unicode symbol that has a direct ASCII equivalent.
strip_accents_unicode
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def strip_accents_ascii(s): """Transform accentuated unicode symbols into ascii or nothing. Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. Parameters ---------- s : str The string to strip. Returns ------- s : str The stripped string. See Also -------- strip_accents_unicode : Remove accentuated char for any unicode symbol. """ nkfd_form = unicodedata.normalize("NFKD", s) return nkfd_form.encode("ASCII", "ignore").decode("ASCII")
Transform accentuated unicode symbols into ascii or nothing. Warning: this solution is only suited for languages that have a direct transliteration to ASCII symbols. Parameters ---------- s : str The string to strip. Returns ------- s : str The stripped string. See Also -------- strip_accents_unicode : Remove accentuated char for any unicode symbol.
strip_accents_ascii
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def decode(self, doc): """Decode the input into a string of unicode symbols. The decoding strategy depends on the vectorizer parameters. Parameters ---------- doc : bytes or str The string to decode. Returns ------- doc: str A string of unicode symbols. """ if self.input == "filename": with open(doc, "rb") as fh: doc = fh.read() elif self.input == "file": doc = doc.read() if isinstance(doc, bytes): doc = doc.decode(self.encoding, self.decode_error) if doc is np.nan: raise ValueError( "np.nan is an invalid document, expected byte or unicode string." ) return doc
Decode the input into a string of unicode symbols. The decoding strategy depends on the vectorizer parameters. Parameters ---------- doc : bytes or str The string to decode. Returns ------- doc: str A string of unicode symbols.
decode
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _word_ngrams(self, tokens, stop_words=None): """Turn tokens into a sequence of n-grams after stop words filtering""" # handle stop words if stop_words is not None: tokens = [w for w in tokens if w not in stop_words] # handle token n-grams min_n, max_n = self.ngram_range if max_n != 1: original_tokens = tokens if min_n == 1: # no need to do any slicing for unigrams # just iterate through the original tokens tokens = list(original_tokens) min_n += 1 else: tokens = [] n_original_tokens = len(original_tokens) # bind method outside of loop to reduce overhead tokens_append = tokens.append space_join = " ".join for n in range(min_n, min(max_n + 1, n_original_tokens + 1)): for i in range(n_original_tokens - n + 1): tokens_append(space_join(original_tokens[i : i + n])) return tokens
Turn tokens into a sequence of n-grams after stop words filtering
_word_ngrams
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _char_ngrams(self, text_document): """Tokenize text_document into a sequence of character n-grams""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) text_len = len(text_document) min_n, max_n = self.ngram_range if min_n == 1: # no need to do any slicing for unigrams # iterate through the string ngrams = list(text_document) min_n += 1 else: ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for n in range(min_n, min(max_n + 1, text_len + 1)): for i in range(text_len - n + 1): ngrams_append(text_document[i : i + n]) return ngrams
Tokenize text_document into a sequence of character n-grams
_char_ngrams
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _char_wb_ngrams(self, text_document): """Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams operating only inside word boundaries. n-grams at the edges of words are padded with space.""" # normalize white spaces text_document = self._white_spaces.sub(" ", text_document) min_n, max_n = self.ngram_range ngrams = [] # bind method outside of loop to reduce overhead ngrams_append = ngrams.append for w in text_document.split(): w = " " + w + " " w_len = len(w) for n in range(min_n, max_n + 1): offset = 0 ngrams_append(w[offset : offset + n]) while offset + n < w_len: offset += 1 ngrams_append(w[offset : offset + n]) if offset == 0: # count a short word (w_len < n) only once break return ngrams
Whitespace sensitive char-n-gram tokenization. Tokenize text_document into a sequence of character n-grams operating only inside word boundaries. n-grams at the edges of words are padded with space.
_char_wb_ngrams
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def build_preprocessor(self): """Return a function to preprocess the text before tokenization. Returns ------- preprocessor: callable A function to preprocess the text before tokenization. """ if self.preprocessor is not None: return self.preprocessor # accent stripping if not self.strip_accents: strip_accents = None elif callable(self.strip_accents): strip_accents = self.strip_accents elif self.strip_accents == "ascii": strip_accents = strip_accents_ascii elif self.strip_accents == "unicode": strip_accents = strip_accents_unicode else: raise ValueError( 'Invalid value for "strip_accents": %s' % self.strip_accents ) return partial(_preprocess, accent_function=strip_accents, lower=self.lowercase)
Return a function to preprocess the text before tokenization. Returns ------- preprocessor: callable A function to preprocess the text before tokenization.
build_preprocessor
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def build_tokenizer(self): """Return a function that splits a string into a sequence of tokens. Returns ------- tokenizer: callable A function to split a string into a sequence of tokens. """ if self.tokenizer is not None: return self.tokenizer token_pattern = re.compile(self.token_pattern) if token_pattern.groups > 1: raise ValueError( "More than 1 capturing group in token pattern. Only a single " "group should be captured." ) return token_pattern.findall
Return a function that splits a string into a sequence of tokens. Returns ------- tokenizer: callable A function to split a string into a sequence of tokens.
build_tokenizer
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _check_stop_words_consistency(self, stop_words, preprocess, tokenize): """Check if stop words are consistent Returns ------- is_consistent : True if stop words are consistent with the preprocessor and tokenizer, False if they are not, None if the check was previously performed, "error" if it could not be performed (e.g. because of the use of a custom preprocessor / tokenizer) """ if id(self.stop_words) == getattr(self, "_stop_words_id", None): # Stop words are were previously validated return None # NB: stop_words is validated, unlike self.stop_words try: inconsistent = set() for w in stop_words or (): tokens = list(tokenize(preprocess(w))) for token in tokens: if token not in stop_words: inconsistent.add(token) self._stop_words_id = id(self.stop_words) if inconsistent: warnings.warn( "Your stop_words may be inconsistent with " "your preprocessing. Tokenizing the stop " "words generated tokens %r not in " "stop_words." % sorted(inconsistent) ) return not inconsistent except Exception: # Failed to check stop words consistency (e.g. because a custom # preprocessor or tokenizer was used) self._stop_words_id = id(self.stop_words) return "error"
Check if stop words are consistent Returns ------- is_consistent : True if stop words are consistent with the preprocessor and tokenizer, False if they are not, None if the check was previously performed, "error" if it could not be performed (e.g. because of the use of a custom preprocessor / tokenizer)
_check_stop_words_consistency
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def build_analyzer(self): """Return a callable to process input data. The callable handles preprocessing, tokenization, and n-grams generation. Returns ------- analyzer: callable A function to handle preprocessing, tokenization and n-grams generation. """ if callable(self.analyzer): return partial(_analyze, analyzer=self.analyzer, decoder=self.decode) preprocess = self.build_preprocessor() if self.analyzer == "char": return partial( _analyze, ngrams=self._char_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "char_wb": return partial( _analyze, ngrams=self._char_wb_ngrams, preprocessor=preprocess, decoder=self.decode, ) elif self.analyzer == "word": stop_words = self.get_stop_words() tokenize = self.build_tokenizer() self._check_stop_words_consistency(stop_words, preprocess, tokenize) return partial( _analyze, ngrams=self._word_ngrams, tokenizer=tokenize, preprocessor=preprocess, decoder=self.decode, stop_words=stop_words, ) else: raise ValueError( "%s is not a valid tokenization scheme/analyzer" % self.analyzer )
Return a callable to process input data. The callable handles preprocessing, tokenization, and n-grams generation. Returns ------- analyzer: callable A function to handle preprocessing, tokenization and n-grams generation.
build_analyzer
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _check_vocabulary(self): """Check if vocabulary is empty or missing (not fitted)""" if not hasattr(self, "vocabulary_"): self._validate_vocabulary() if not self.fixed_vocabulary_: raise NotFittedError("Vocabulary not fitted or provided") if len(self.vocabulary_) == 0: raise ValueError("Vocabulary is empty")
Check if vocabulary is empty or missing (not fitted)
_check_vocabulary
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def fit(self, X, y=None): """Only validates estimator's parameters. This method allows to: (i) validate the estimator's parameters and (ii) be consistent with the scikit-learn transformer API. Parameters ---------- X : ndarray of shape [n_samples, n_features] Training data. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object HashingVectorizer instance. """ # triggers a parameter validation if isinstance(X, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) self._warn_for_unused_params() self._validate_ngram_range() self._get_hasher().fit(X, y=y) return self
Only validates estimator's parameters. This method allows to: (i) validate the estimator's parameters and (ii) be consistent with the scikit-learn transformer API. Parameters ---------- X : ndarray of shape [n_samples, n_features] Training data. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object HashingVectorizer instance.
fit
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def transform(self, X): """Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. Returns ------- X : sparse matrix of shape (n_samples, n_features) Document-term matrix. """ if isinstance(X, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) self._validate_ngram_range() analyzer = self.build_analyzer() X = self._get_hasher().transform(analyzer(doc) for doc in X) if self.binary: X.data.fill(1) if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X
Transform a sequence of documents to a document-term matrix. Parameters ---------- X : iterable over raw text documents, length = n_samples Samples. Each sample must be a text document (either bytes or unicode strings, file name or file object depending on the constructor argument) which will be tokenized and hashed. Returns ------- X : sparse matrix of shape (n_samples, n_features) Document-term matrix.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _document_frequency(X): """Count the number of non-zero values for each feature in sparse X.""" if sp.issparse(X) and X.format == "csr": return np.bincount(X.indices, minlength=X.shape[1]) else: return np.diff(X.indptr)
Count the number of non-zero values for each feature in sparse X.
_document_frequency
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _sort_features(self, X, vocabulary): """Sort features by name Returns a reordered matrix and modifies the vocabulary in place """ sorted_features = sorted(vocabulary.items()) map_index = np.empty(len(sorted_features), dtype=X.indices.dtype) for new_val, (term, old_val) in enumerate(sorted_features): vocabulary[term] = new_val map_index[old_val] = new_val X.indices = map_index.take(X.indices, mode="clip") return X
Sort features by name Returns a reordered matrix and modifies the vocabulary in place
_sort_features
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _count_vocab(self, raw_documents, fixed_vocab): """Create sparse feature matrix, and vocabulary where fixed_vocab=False""" if fixed_vocab: vocabulary = self.vocabulary_ else: # Add a new value when a new vocabulary item is seen vocabulary = defaultdict() vocabulary.default_factory = vocabulary.__len__ analyze = self.build_analyzer() j_indices = [] indptr = [] values = _make_int_array() indptr.append(0) for doc in raw_documents: feature_counter = {} for feature in analyze(doc): try: feature_idx = vocabulary[feature] if feature_idx not in feature_counter: feature_counter[feature_idx] = 1 else: feature_counter[feature_idx] += 1 except KeyError: # Ignore out-of-vocabulary items for fixed_vocab=True continue j_indices.extend(feature_counter.keys()) values.extend(feature_counter.values()) indptr.append(len(j_indices)) if not fixed_vocab: # disable defaultdict behaviour vocabulary = dict(vocabulary) if not vocabulary: raise ValueError( "empty vocabulary; perhaps the documents only contain stop words" ) if indptr[-1] > np.iinfo(np.int32).max: # = 2**31 - 1 if _IS_32BIT: raise ValueError( ( "sparse CSR array has {} non-zero " "elements and requires 64 bit indexing, " "which is unsupported with 32 bit Python." ).format(indptr[-1]) ) indices_dtype = np.int64 else: indices_dtype = np.int32 j_indices = np.asarray(j_indices, dtype=indices_dtype) indptr = np.asarray(indptr, dtype=indices_dtype) values = np.frombuffer(values, dtype=np.intc) X = sp.csr_matrix( (values, j_indices, indptr), shape=(len(indptr) - 1, len(vocabulary)), dtype=self.dtype, ) X.sort_indices() return vocabulary, X
Create sparse feature matrix, and vocabulary where fixed_vocab=False
_count_vocab
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def fit_transform(self, raw_documents, y=None): """Learn the vocabulary dictionary and return document-term matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is ignored. Returns ------- X : array of shape (n_samples, n_features) Document-term matrix. """ # We intentionally don't call the transform method to make # fit_transform overridable without unwanted side effects in # TfidfVectorizer. if isinstance(raw_documents, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) self._validate_ngram_range() self._warn_for_unused_params() self._validate_vocabulary() max_df = self.max_df min_df = self.min_df max_features = self.max_features if self.fixed_vocabulary_ and self.lowercase: for term in self.vocabulary: if any(map(str.isupper, term)): warnings.warn( "Upper case characters found in" " vocabulary while 'lowercase'" " is True. These entries will not" " be matched with any documents" ) break vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_) if self.binary: X.data.fill(1) if not self.fixed_vocabulary_: n_doc = X.shape[0] max_doc_count = max_df if isinstance(max_df, Integral) else max_df * n_doc min_doc_count = min_df if isinstance(min_df, Integral) else min_df * n_doc if max_doc_count < min_doc_count: raise ValueError("max_df corresponds to < documents than min_df") if max_features is not None: X = self._sort_features(X, vocabulary) X = self._limit_features( X, vocabulary, max_doc_count, min_doc_count, max_features ) if max_features is None: X = self._sort_features(X, vocabulary) self.vocabulary_ = vocabulary return X
Learn the vocabulary dictionary and return document-term matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is ignored. Returns ------- X : array of shape (n_samples, n_features) Document-term matrix.
fit_transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def transform(self, raw_documents): """Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. Returns ------- X : sparse matrix of shape (n_samples, n_features) Document-term matrix. """ if isinstance(raw_documents, str): raise ValueError( "Iterable over raw text documents expected, string object received." ) self._check_vocabulary() # use the same matrix-building strategy as fit_transform _, X = self._count_vocab(raw_documents, fixed_vocab=True) if self.binary: X.data.fill(1) return X
Transform documents to document-term matrix. Extract token counts out of raw text documents using the vocabulary fitted with fit or the one provided to the constructor. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. Returns ------- X : sparse matrix of shape (n_samples, n_features) Document-term matrix.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def inverse_transform(self, X): """Return terms per document with nonzero entries in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Document-term matrix. Returns ------- X_original : list of arrays of shape (n_samples,) List of arrays of terms. """ self._check_vocabulary() # We need CSR format for fast row manipulations. X = check_array(X, accept_sparse="csr") n_samples = X.shape[0] terms = np.array(list(self.vocabulary_.keys())) indices = np.array(list(self.vocabulary_.values())) inverse_vocabulary = terms[np.argsort(indices)] if sp.issparse(X): return [ inverse_vocabulary[X[i, :].nonzero()[1]].ravel() for i in range(n_samples) ] else: return [ inverse_vocabulary[np.flatnonzero(X[i, :])].ravel() for i in range(n_samples) ]
Return terms per document with nonzero entries in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Document-term matrix. Returns ------- X_original : list of arrays of shape (n_samples,) List of arrays of terms.
inverse_transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ self._check_vocabulary() return np.asarray( [t for t, i in sorted(self.vocabulary_.items(), key=itemgetter(1))], dtype=object, )
Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names.
get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def fit(self, X, y=None): """Learn the idf vector (global term weights). Parameters ---------- X : sparse matrix of shape (n_samples, n_features) A matrix of term/token counts. y : None This parameter is not needed to compute tf-idf. Returns ------- self : object Fitted transformer. """ # large sparse data is not supported for 32bit platforms because # _document_frequency uses np.bincount which works on arrays of # dtype NPY_INTP which is int32 for 32bit platforms. See #20923 X = validate_data( self, X, accept_sparse=("csr", "csc"), accept_large_sparse=not _IS_32BIT ) if not sp.issparse(X): X = sp.csr_matrix(X) dtype = X.dtype if X.dtype in (np.float64, np.float32) else np.float64 if self.use_idf: n_samples, _ = X.shape df = _document_frequency(X) df = df.astype(dtype, copy=False) # perform idf smoothing if required df += float(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. # Force the dtype of `idf_` to be the same as `df`. In NumPy < 2, the dtype # was depending on the value of `n_samples`. self.idf_ = np.full_like(df, fill_value=n_samples, dtype=dtype) self.idf_ /= df # `np.log` preserves the dtype of `df` and thus `dtype`. np.log(self.idf_, out=self.idf_) self.idf_ += 1.0 return self
Learn the idf vector (global term weights). Parameters ---------- X : sparse matrix of shape (n_samples, n_features) A matrix of term/token counts. y : None This parameter is not needed to compute tf-idf. Returns ------- self : object Fitted transformer.
fit
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def transform(self, X, copy=True): """Transform a count matrix to a tf or tf-idf representation. Parameters ---------- X : sparse matrix of (n_samples, n_features) A matrix of term/token counts. copy : bool, default=True Whether to copy X and operate on the copy or perform in-place operations. `copy=False` will only be effective with CSR sparse matrix. Returns ------- vectors : sparse matrix of shape (n_samples, n_features) Tf-idf-weighted document-term matrix. """ check_is_fitted(self) X = validate_data( self, X, accept_sparse="csr", dtype=[np.float64, np.float32], copy=copy, reset=False, ) if not sp.issparse(X): X = sp.csr_matrix(X, dtype=X.dtype) if self.sublinear_tf: np.log(X.data, X.data) X.data += 1.0 if hasattr(self, "idf_"): # the columns of X (CSR matrix) can be accessed with `X.indices `and # multiplied with the corresponding `idf` value X.data *= self.idf_[X.indices] if self.norm is not None: X = normalize(X, norm=self.norm, copy=False) return X
Transform a count matrix to a tf or tf-idf representation. Parameters ---------- X : sparse matrix of (n_samples, n_features) A matrix of term/token counts. copy : bool, default=True Whether to copy X and operate on the copy or perform in-place operations. `copy=False` will only be effective with CSR sparse matrix. Returns ------- vectors : sparse matrix of shape (n_samples, n_features) Tf-idf-weighted document-term matrix.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def idf_(self): """Inverse document frequency vector, only defined if `use_idf=True`. Returns ------- ndarray of shape (n_features,) """ if not hasattr(self, "_tfidf"): raise NotFittedError( f"{self.__class__.__name__} is not fitted yet. Call 'fit' with " "appropriate arguments before using this attribute." ) return self._tfidf.idf_
Inverse document frequency vector, only defined if `use_idf=True`. Returns ------- ndarray of shape (n_features,)
idf_
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def fit(self, raw_documents, y=None): """Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is not needed to compute tfidf. Returns ------- self : object Fitted vectorizer. """ self._check_params() self._warn_for_unused_params() self._tfidf = TfidfTransformer( norm=self.norm, use_idf=self.use_idf, smooth_idf=self.smooth_idf, sublinear_tf=self.sublinear_tf, ) X = super().fit_transform(raw_documents) self._tfidf.fit(X) return self
Learn vocabulary and idf from training set. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is not needed to compute tfidf. Returns ------- self : object Fitted vectorizer.
fit
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def fit_transform(self, raw_documents, y=None): """Learn vocabulary and idf, return document-term matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is ignored. Returns ------- X : sparse matrix of (n_samples, n_features) Tf-idf-weighted document-term matrix. """ self._check_params() self._tfidf = TfidfTransformer( norm=self.norm, use_idf=self.use_idf, smooth_idf=self.smooth_idf, sublinear_tf=self.sublinear_tf, ) X = super().fit_transform(raw_documents) self._tfidf.fit(X) # X is already a transformed view of raw_documents so # we set copy to False return self._tfidf.transform(X, copy=False)
Learn vocabulary and idf, return document-term matrix. This is equivalent to fit followed by transform, but more efficiently implemented. Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. y : None This parameter is ignored. Returns ------- X : sparse matrix of (n_samples, n_features) Tf-idf-weighted document-term matrix.
fit_transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def transform(self, raw_documents): """Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. Returns ------- X : sparse matrix of (n_samples, n_features) Tf-idf-weighted document-term matrix. """ check_is_fitted(self, msg="The TF-IDF vectorizer is not fitted") X = super().transform(raw_documents) return self._tfidf.transform(X, copy=False)
Transform documents to document-term matrix. Uses the vocabulary and document frequencies (df) learned by fit (or fit_transform). Parameters ---------- raw_documents : iterable An iterable which generates either str, unicode or file objects. Returns ------- X : sparse matrix of (n_samples, n_features) Tf-idf-weighted document-term matrix.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py
BSD-3-Clause
def _add_iterable_element( self, f, v, feature_names, vocab, *, fitting=True, transforming=False, indices=None, values=None, ): """Add feature names for iterable of strings""" for vv in v: if isinstance(vv, str): feature_name = "%s%s%s" % (f, self.separator, vv) vv = 1 else: raise TypeError( f"Unsupported type {type(vv)} in iterable " "value. Only iterables of string are " "supported." ) if fitting and feature_name not in vocab: vocab[feature_name] = len(feature_names) feature_names.append(feature_name) if transforming and feature_name in vocab: indices.append(vocab[feature_name]) values.append(self.dtype(vv))
Add feature names for iterable of strings
_add_iterable_element
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def fit(self, X, y=None): """Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). .. versionchanged:: 0.24 Accepts multiple string values for one categorical feature. y : (ignored) Ignored parameter. Returns ------- self : object DictVectorizer class instance. """ feature_names = [] vocab = {} for x in X: for f, v in x.items(): if isinstance(v, str): feature_name = "%s%s%s" % (f, self.separator, v) elif isinstance(v, Number) or (v is None): feature_name = f elif isinstance(v, Mapping): raise TypeError( f"Unsupported value type {type(v)} " f"for {f}: {v}.\n" "Mapping objects are not supported." ) elif isinstance(v, Iterable): feature_name = None self._add_iterable_element(f, v, feature_names, vocab) if feature_name is not None: if feature_name not in vocab: vocab[feature_name] = len(feature_names) feature_names.append(feature_name) if self.sort: feature_names.sort() vocab = {f: i for i, f in enumerate(feature_names)} self.feature_names_ = feature_names self.vocabulary_ = vocab return self
Learn a list of feature name -> indices mappings. Parameters ---------- X : Mapping or iterable over Mappings Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). .. versionchanged:: 0.24 Accepts multiple string values for one categorical feature. y : (ignored) Ignored parameter. Returns ------- self : object DictVectorizer class instance.
fit
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def inverse_transform(self, X, dict_type=dict): """Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Sample matrix. dict_type : type, default=dict Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- X_original : list of dict_type objects of shape (n_samples,) Feature mappings for the samples in X. """ check_is_fitted(self, "feature_names_") # COO matrix is not subscriptable X = check_array(X, accept_sparse=["csr", "csc"]) n_samples = X.shape[0] names = self.feature_names_ dicts = [dict_type() for _ in range(n_samples)] if sp.issparse(X): for i, j in zip(*X.nonzero()): dicts[i][names[j]] = X[i, j] else: for i, d in enumerate(dicts): for j, v in enumerate(X[i, :]): if v != 0: d[names[j]] = X[i, j] return dicts
Transform array or sparse matrix X back to feature mappings. X must have been produced by this DictVectorizer's transform or fit_transform method; it may only have passed through transformers that preserve the number of features and their order. In the case of one-hot/one-of-K coding, the constructed feature names and values are returned rather than the original ones. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Sample matrix. dict_type : type, default=dict Constructor for feature mappings. Must conform to the collections.Mapping API. Returns ------- X_original : list of dict_type objects of shape (n_samples,) Feature mappings for the samples in X.
inverse_transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def transform(self, X): """Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings of shape (n_samples,) Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d. """ check_is_fitted(self, ["feature_names_", "vocabulary_"]) return self._transform(X, fitting=False)
Transform feature->value dicts to array or sparse matrix. Named features not encountered during fit or fit_transform will be silently ignored. Parameters ---------- X : Mapping or iterable over Mappings of shape (n_samples,) Dict(s) or Mapping(s) from feature names (arbitrary Python objects) to feature values (strings or convertible to dtype). Returns ------- Xa : {array, sparse matrix} Feature vectors; always 2-d.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ check_is_fitted(self, "feature_names_") if any(not isinstance(name, str) for name in self.feature_names_): feature_names = [str(name) for name in self.feature_names_] else: feature_names = self.feature_names_ return np.asarray(feature_names, dtype=object)
Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names.
get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def restrict(self, support, indices=False): """Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : bool, default=False Whether support is a list of indices. Returns ------- self : object DictVectorizer class instance. Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names_out() array(['bar', 'baz', 'foo'], ...) >>> v.restrict(support.get_support()) DictVectorizer() >>> v.get_feature_names_out() array(['bar', 'foo'], ...) """ check_is_fitted(self, "feature_names_") if not indices: support = np.where(support)[0] names = self.feature_names_ new_vocab = {} for i in support: new_vocab[names[i]] = len(new_vocab) self.vocabulary_ = new_vocab self.feature_names_ = [ f for f, i in sorted(new_vocab.items(), key=itemgetter(1)) ] return self
Restrict the features to those in support using feature selection. This function modifies the estimator in-place. Parameters ---------- support : array-like Boolean mask or list of indices (as returned by the get_support member of feature selectors). indices : bool, default=False Whether support is a list of indices. Returns ------- self : object DictVectorizer class instance. Examples -------- >>> from sklearn.feature_extraction import DictVectorizer >>> from sklearn.feature_selection import SelectKBest, chi2 >>> v = DictVectorizer() >>> D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}] >>> X = v.fit_transform(D) >>> support = SelectKBest(chi2, k=2).fit(X, [0, 1]) >>> v.get_feature_names_out() array(['bar', 'baz', 'foo'], ...) >>> v.restrict(support.get_support()) DictVectorizer() >>> v.get_feature_names_out() array(['bar', 'foo'], ...)
restrict
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_dict_vectorizer.py
BSD-3-Clause
def transform(self, raw_X): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. Returns ------- X : sparse matrix of shape (n_samples, n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": first_raw_X = next(raw_X) if isinstance(first_raw_X, str): raise ValueError( "Samples can not be a single string. The input must be an iterable" " over iterables of strings." ) raw_X_ = chain([first_raw_X], raw_X) raw_X = (((f, 1) for f in x) for x in raw_X_) indices, indptr, values = _hashing_transform( raw_X, self.n_features, self.dtype, self.alternate_sign, seed=0 ) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix( (values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features), ) X.sum_duplicates() # also sorts the indices return X
Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. Returns ------- X : sparse matrix of shape (n_samples, n_features) Feature matrix, for use with estimators or further transformers.
transform
python
scikit-learn/scikit-learn
sklearn/feature_extraction/_hash.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/_hash.py
BSD-3-Clause
def test_dictvectorizer_dense_sparse_equivalence(): """Check the equivalence between between sparse and dense DictVectorizer. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19978 """ movie_entry_fit = [ {"category": ["thriller", "drama"], "year": 2003}, {"category": ["animation", "family"], "year": 2011}, {"year": 1974}, ] movie_entry_transform = [{"category": ["thriller"], "unseen_feature": "3"}] dense_vectorizer = DictVectorizer(sparse=False) sparse_vectorizer = DictVectorizer(sparse=True) dense_vector_fit = dense_vectorizer.fit_transform(movie_entry_fit) sparse_vector_fit = sparse_vectorizer.fit_transform(movie_entry_fit) assert not sp.issparse(dense_vector_fit) assert sp.issparse(sparse_vector_fit) assert_allclose(dense_vector_fit, sparse_vector_fit.toarray()) dense_vector_transform = dense_vectorizer.transform(movie_entry_transform) sparse_vector_transform = sparse_vectorizer.transform(movie_entry_transform) assert not sp.issparse(dense_vector_transform) assert sp.issparse(sparse_vector_transform) assert_allclose(dense_vector_transform, sparse_vector_transform.toarray()) dense_inverse_transform = dense_vectorizer.inverse_transform(dense_vector_transform) sparse_inverse_transform = sparse_vectorizer.inverse_transform( sparse_vector_transform ) expected_inverse = [{"category=thriller": 1.0}] assert dense_inverse_transform == expected_inverse assert sparse_inverse_transform == expected_inverse
Check the equivalence between between sparse and dense DictVectorizer. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19978
test_dictvectorizer_dense_sparse_equivalence
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_dict_vectorizer.py
BSD-3-Clause
def test_dict_vectorizer_unsupported_value_type(): """Check that we raise an error when the value associated to a feature is not supported. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19489 """ class A: pass vectorizer = DictVectorizer(sparse=True) X = [{"foo": A()}] err_msg = "Unsupported value Type" with pytest.raises(TypeError, match=err_msg): vectorizer.fit_transform(X)
Check that we raise an error when the value associated to a feature is not supported. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/19489
test_dict_vectorizer_unsupported_value_type
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_dict_vectorizer.py
BSD-3-Clause
def test_dict_vectorizer_get_feature_names_out(): """Check that integer feature names are converted to strings in feature_names_out.""" X = [{1: 2, 3: 4}, {2: 4}] dv = DictVectorizer(sparse=False).fit(X) feature_names = dv.get_feature_names_out() assert isinstance(feature_names, np.ndarray) assert feature_names.dtype == object assert_array_equal(feature_names, ["1", "2", "3"])
Check that integer feature names are converted to strings in feature_names_out.
test_dict_vectorizer_get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_dict_vectorizer.py
BSD-3-Clause
def test_dict_vectorizer_not_fitted_error(method, input): """Check that unfitted DictVectorizer instance raises NotFittedError. This should be part of the common test but currently they test estimator accepting text input. """ dv = DictVectorizer(sparse=False) with pytest.raises(NotFittedError): getattr(dv, method)(input)
Check that unfitted DictVectorizer instance raises NotFittedError. This should be part of the common test but currently they test estimator accepting text input.
test_dict_vectorizer_not_fitted_error
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_dict_vectorizer.py
BSD-3-Clause
def test_feature_hasher_single_string(raw_X): """FeatureHasher raises error when a sample is a single string. Non-regression test for gh-13199. """ msg = "Samples can not be a single string" feature_hasher = FeatureHasher(n_features=10, input_type="string") with pytest.raises(ValueError, match=msg): feature_hasher.transform(raw_X)
FeatureHasher raises error when a sample is a single string. Non-regression test for gh-13199.
test_feature_hasher_single_string
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_feature_hasher.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_feature_hasher.py
BSD-3-Clause
def test_patch_extractor_wrong_input(orange_face): """Check that an informative error is raised if the patch_size is not valid.""" faces = _make_images(orange_face) err_msg = "patch_size must be a tuple of two integers" extractor = PatchExtractor(patch_size=(8, 8, 8)) with pytest.raises(ValueError, match=err_msg): extractor.transform(faces)
Check that an informative error is raised if the patch_size is not valid.
test_patch_extractor_wrong_input
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_image.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_image.py
BSD-3-Clause
def test_countvectorizer_custom_token_pattern(): """Check `get_feature_names_out()` when a custom token pattern is passed. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971 """ corpus = [ "This is the 1st document in my corpus.", "This document is the 2nd sample.", "And this is the 3rd one.", "Is this the 4th document?", ] token_pattern = r"[0-9]{1,3}(?:st|nd|rd|th)\s\b(\w{2,})\b" vectorizer = CountVectorizer(token_pattern=token_pattern) vectorizer.fit_transform(corpus) expected = ["document", "one", "sample"] feature_names_out = vectorizer.get_feature_names_out() assert_array_equal(feature_names_out, expected)
Check `get_feature_names_out()` when a custom token pattern is passed. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971
test_countvectorizer_custom_token_pattern
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def test_countvectorizer_custom_token_pattern_with_several_group(): """Check that we raise an error if token pattern capture several groups. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971 """ corpus = [ "This is the 1st document in my corpus.", "This document is the 2nd sample.", "And this is the 3rd one.", "Is this the 4th document?", ] token_pattern = r"([0-9]{1,3}(?:st|nd|rd|th))\s\b(\w{2,})\b" err_msg = "More than 1 capturing group in token pattern" vectorizer = CountVectorizer(token_pattern=token_pattern) with pytest.raises(ValueError, match=err_msg): vectorizer.fit(corpus)
Check that we raise an error if token pattern capture several groups. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971
test_countvectorizer_custom_token_pattern_with_several_group
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def test_countvectorizer_sort_features_64bit_sparse_indices(csr_container): """ Check that CountVectorizer._sort_features preserves the dtype of its sparse feature matrix. This test is skipped on 32bit platforms, see: https://github.com/scikit-learn/scikit-learn/pull/11295 for more details. """ X = csr_container((5, 5), dtype=np.int64) # force indices and indptr to int64. INDICES_DTYPE = np.int64 X.indices = X.indices.astype(INDICES_DTYPE) X.indptr = X.indptr.astype(INDICES_DTYPE) vocabulary = {"scikit-learn": 0, "is": 1, "great!": 2} Xs = CountVectorizer()._sort_features(X, vocabulary) assert INDICES_DTYPE == Xs.indices.dtype
Check that CountVectorizer._sort_features preserves the dtype of its sparse feature matrix. This test is skipped on 32bit platforms, see: https://github.com/scikit-learn/scikit-learn/pull/11295 for more details.
test_countvectorizer_sort_features_64bit_sparse_indices
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def test_vectorizers_do_not_have_set_output(Estimator): """Check that vectorizers do not define set_output.""" est = Estimator() assert not hasattr(est, "set_output")
Check that vectorizers do not define set_output.
test_vectorizers_do_not_have_set_output
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def test_tfidf_transformer_copy(csr_container): """Check the behaviour of TfidfTransformer.transform with the copy parameter.""" X = sparse.rand(10, 20000, dtype=np.float64, random_state=42) X_csr = csr_container(X) # keep a copy of the original matrix for later comparison X_csr_original = X_csr.copy() transformer = TfidfTransformer().fit(X_csr) X_transform = transformer.transform(X_csr, copy=True) assert_allclose_dense_sparse(X_csr, X_csr_original) assert X_transform is not X_csr X_transform = transformer.transform(X_csr, copy=False) assert X_transform is X_csr with pytest.raises(AssertionError): assert_allclose_dense_sparse(X_csr, X_csr_original)
Check the behaviour of TfidfTransformer.transform with the copy parameter.
test_tfidf_transformer_copy
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def test_tfidf_vectorizer_perserve_dtype_idf(dtype): """Check that `idf_` has the same dtype as the input data. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/30016 """ X = [str(uuid.uuid4()) for i in range(100_000)] vectorizer = TfidfVectorizer(dtype=dtype).fit(X) assert vectorizer.idf_.dtype == dtype
Check that `idf_` has the same dtype as the input data. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/30016
test_tfidf_vectorizer_perserve_dtype_idf
python
scikit-learn/scikit-learn
sklearn/feature_extraction/tests/test_text.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/tests/test_text.py
BSD-3-Clause
def get_support(self, indices=False): """ Get a mask, or integer index, of the features selected. Parameters ---------- indices : bool, default=False If True, the return value will be an array of integers, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector. """ mask = self._get_support_mask() return mask if not indices else np.nonzero(mask)[0]
Get a mask, or integer index, of the features selected. Parameters ---------- indices : bool, default=False If True, the return value will be an array of integers, rather than a boolean mask. Returns ------- support : array An index that selects the retained features from a feature vector. If `indices` is False, this is a boolean array of shape [# input features], in which an element is True iff its corresponding feature is selected for retention. If `indices` is True, this is an integer array of shape [# output features] whose values are indices into the input feature vector.
get_support
python
scikit-learn/scikit-learn
sklearn/feature_selection/_base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_selection/_base.py
BSD-3-Clause
def _get_support_mask(self): """ Get the boolean mask indicating which features are selected Returns ------- support : boolean array of shape [# input features] An element is True iff its corresponding feature is selected for retention. """
Get the boolean mask indicating which features are selected Returns ------- support : boolean array of shape [# input features] An element is True iff its corresponding feature is selected for retention.
_get_support_mask
python
scikit-learn/scikit-learn
sklearn/feature_selection/_base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_selection/_base.py
BSD-3-Clause
def transform(self, X): """Reduce X to the selected features. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- X_r : array of shape [n_samples, n_selected_features] The input samples with only the selected features. """ # Preserve X when X is a dataframe and the output is configured to # be pandas. output_config_dense = _get_output_config("transform", estimator=self)["dense"] preserve_X = output_config_dense != "default" and _is_pandas_df(X) # note: we use get_tags instead of __sklearn_tags__ because this is a # public Mixin. X = validate_data( self, X, dtype=None, accept_sparse="csr", ensure_all_finite=not get_tags(self).input_tags.allow_nan, skip_check_array=preserve_X, reset=False, ) return self._transform(X)
Reduce X to the selected features. Parameters ---------- X : array of shape [n_samples, n_features] The input samples. Returns ------- X_r : array of shape [n_samples, n_selected_features] The input samples with only the selected features.
transform
python
scikit-learn/scikit-learn
sklearn/feature_selection/_base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_selection/_base.py
BSD-3-Clause