code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def predict_proba(self, X):
"""Compute probabilities of possible outcomes for samples in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
avg : array-like of shape (n_samples, n_classes)
Weighted average probability for each class per sample.
"""
check_is_fitted(self)
avg = np.average(
self._collect_probas(X), axis=0, weights=self._weights_not_none
)
return avg
|
Compute probabilities of possible outcomes for samples in X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
avg : array-like of shape (n_samples, n_classes)
Weighted average probability for each class per sample.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def transform(self, X):
"""Return class labels or probabilities for X for each estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
probabilities_or_labels
If `voting='soft'` and `flatten_transform=True`:
returns ndarray of shape (n_samples, n_classifiers * n_classes),
being class probabilities calculated by each classifier.
If `voting='soft' and `flatten_transform=False`:
ndarray of shape (n_classifiers, n_samples, n_classes)
If `voting='hard'`:
ndarray of shape (n_samples, n_classifiers), being
class labels predicted by each classifier.
"""
check_is_fitted(self)
if self.voting == "soft":
probas = self._collect_probas(X)
if not self.flatten_transform:
return probas
return np.hstack(probas)
else:
return self._predict(X)
|
Return class labels or probabilities for X for each estimator.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
Returns
-------
probabilities_or_labels
If `voting='soft'` and `flatten_transform=True`:
returns ndarray of shape (n_samples, n_classifiers * n_classes),
being class probabilities calculated by each classifier.
If `voting='soft' and `flatten_transform=False`:
ndarray of shape (n_classifiers, n_samples, n_classes)
If `voting='hard'`:
ndarray of shape (n_samples, n_classifiers), being
class labels predicted by each classifier.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Not used, present here for API consistency by convention.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
check_is_fitted(self, "n_features_in_")
if self.voting == "soft" and not self.flatten_transform:
raise ValueError(
"get_feature_names_out is not supported when `voting='soft'` and "
"`flatten_transform=False`"
)
_check_feature_names_in(self, input_features, generate_names=False)
class_name = self.__class__.__name__.lower()
active_names = [name for name, est in self.estimators if est != "drop"]
if self.voting == "hard":
return np.asarray(
[f"{class_name}_{name}" for name in active_names], dtype=object
)
# voting == "soft"
n_classes = len(self.classes_)
names_out = [
f"{class_name}_{name}{i}" for name in active_names for i in range(n_classes)
]
return np.asarray(names_out, dtype=object)
|
Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Not used, present here for API consistency by convention.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
|
get_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def fit(self, X, y, **fit_params):
"""Fit the estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
**fit_params : dict
Parameters to pass to the underlying estimators.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Fitted estimator.
"""
_raise_for_params(fit_params, self, "fit", allow=["sample_weight"])
y = column_or_1d(y, warn=True)
return super().fit(X, y, **fit_params)
|
Fit the estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
**fit_params : dict
Parameters to pass to the underlying estimators.
.. versionadded:: 1.5
Only available if `enable_metadata_routing=True`,
which can be set by using
``sklearn.set_config(enable_metadata_routing=True)``.
See :ref:`Metadata Routing User Guide <metadata_routing>` for
more details.
Returns
-------
self : object
Fitted estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict regression target for X.
The predicted regression target of an input sample is computed as the
mean predicted regression targets of the estimators in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted values.
"""
check_is_fitted(self)
return np.average(self._predict(X), axis=1, weights=self._weights_not_none)
|
Predict regression target for X.
The predicted regression target of an input sample is computed as the
mean predicted regression targets of the estimators in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input samples.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted values.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Not used, present here for API consistency by convention.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
check_is_fitted(self, "n_features_in_")
_check_feature_names_in(self, input_features, generate_names=False)
class_name = self.__class__.__name__.lower()
return np.asarray(
[f"{class_name}_{name}" for name, est in self.estimators if est != "drop"],
dtype=object,
)
|
Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Not used, present here for API consistency by convention.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
|
get_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_voting.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Build a boosted classifier/regressor from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y : array-like of shape (n_samples,)
The target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, the sample weights are initialized to
1 / n_samples.
Returns
-------
self : object
Fitted estimator.
"""
_raise_for_unsupported_routing(self, "fit", sample_weight=sample_weight)
X, y = validate_data(
self,
X,
y,
accept_sparse=["csr", "csc"],
ensure_2d=True,
allow_nd=True,
dtype=None,
y_numeric=is_regressor(self),
)
sample_weight = _check_sample_weight(
sample_weight, X, dtype=np.float64, copy=True, ensure_non_negative=True
)
sample_weight /= sample_weight.sum()
# Check parameters
self._validate_estimator()
# Clear any previous fit results
self.estimators_ = []
self.estimator_weights_ = np.zeros(self.n_estimators, dtype=np.float64)
self.estimator_errors_ = np.ones(self.n_estimators, dtype=np.float64)
# Initialization of the random number instance that will be used to
# generate a seed at each iteration
random_state = check_random_state(self.random_state)
epsilon = np.finfo(sample_weight.dtype).eps
zero_weight_mask = sample_weight == 0.0
for iboost in range(self.n_estimators):
# avoid extremely small sample weight, for details see issue #20320
sample_weight = np.clip(sample_weight, a_min=epsilon, a_max=None)
# do not clip sample weights that were exactly zero originally
sample_weight[zero_weight_mask] = 0.0
# Boosting step
sample_weight, estimator_weight, estimator_error = self._boost(
iboost, X, y, sample_weight, random_state
)
# Early termination
if sample_weight is None:
break
self.estimator_weights_[iboost] = estimator_weight
self.estimator_errors_[iboost] = estimator_error
# Stop if error is zero
if estimator_error == 0:
break
sample_weight_sum = np.sum(sample_weight)
if not np.isfinite(sample_weight_sum):
warnings.warn(
(
"Sample weights have reached infinite values,"
f" at iteration {iboost}, causing overflow. "
"Iterations stopped. Try lowering the learning rate."
),
stacklevel=2,
)
break
# Stop if the sum of sample weights has become non-positive
if sample_weight_sum <= 0:
break
if iboost < self.n_estimators - 1:
# Normalize
sample_weight /= sample_weight_sum
return self
|
Build a boosted classifier/regressor from the training set (X, y).
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y : array-like of shape (n_samples,)
The target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If None, the sample weights are initialized to
1 / n_samples.
Returns
-------
self : object
Fitted estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def staged_score(self, X, y, sample_weight=None):
"""Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of
boosting and therefore allows monitoring, such as to determine the
score on a test set after each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y : array-like of shape (n_samples,)
Labels for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Yields
------
z : float
"""
X = self._check_X(X)
for y_pred in self.staged_predict(X):
if is_classifier(self):
yield accuracy_score(y, y_pred, sample_weight=sample_weight)
else:
yield r2_score(y, y_pred, sample_weight=sample_weight)
|
Return staged scores for X, y.
This generator method yields the ensemble score after each iteration of
boosting and therefore allows monitoring, such as to determine the
score on a test set after each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
y : array-like of shape (n_samples,)
Labels for X.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
Yields
------
z : float
|
staged_score
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def feature_importances_(self):
"""The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
Returns
-------
feature_importances_ : ndarray of shape (n_features,)
The feature importances.
"""
if self.estimators_ is None or len(self.estimators_) == 0:
raise ValueError(
"Estimator not fitted, call `fit` before `feature_importances_`."
)
try:
norm = self.estimator_weights_.sum()
return (
sum(
weight * clf.feature_importances_
for weight, clf in zip(self.estimator_weights_, self.estimators_)
)
/ norm
)
except AttributeError as e:
raise AttributeError(
"Unable to compute feature importances "
"since estimator does not have a "
"feature_importances_ attribute"
) from e
|
The impurity-based feature importances.
The higher, the more important the feature.
The importance of a feature is computed as the (normalized)
total reduction of the criterion brought by that feature. It is also
known as the Gini importance.
Warning: impurity-based feature importances can be misleading for
high cardinality features (many unique values). See
:func:`sklearn.inspection.permutation_importance` as an alternative.
Returns
-------
feature_importances_ : ndarray of shape (n_features,)
The feature importances.
|
feature_importances_
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def _samme_proba(estimator, n_classes, X):
"""Calculate algorithm 4, step 2, equation c) of Zhu et al [1].
References
----------
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
"""
proba = estimator.predict_proba(X)
# Displace zero probabilities so the log is defined.
# Also fix negative elements which may occur with
# negative sample weights.
np.clip(proba, np.finfo(proba.dtype).eps, None, out=proba)
log_proba = np.log(proba)
return (n_classes - 1) * (
log_proba - (1.0 / n_classes) * log_proba.sum(axis=1)[:, np.newaxis]
)
|
Calculate algorithm 4, step 2, equation c) of Zhu et al [1].
References
----------
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
|
_samme_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def _validate_estimator(self):
"""Check the estimator and set the estimator_ attribute."""
super()._validate_estimator(default=DecisionTreeClassifier(max_depth=1))
if self.algorithm != "deprecated":
warnings.warn(
"The parameter 'algorithm' is deprecated in 1.6 and has no effect. "
"It will be removed in version 1.8.",
FutureWarning,
)
if not has_fit_parameter(self.estimator_, "sample_weight"):
raise ValueError(
f"{self.estimator.__class__.__name__} doesn't support sample_weight."
)
|
Check the estimator and set the estimator_ attribute.
|
_validate_estimator
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def _boost(self, iboost, X, y, sample_weight, random_state):
"""Implement a single boost.
Perform a single boost according to the discrete SAMME algorithm and return the
updated sample weights.
Parameters
----------
iboost : int
The index of the current boost iteration.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values (class labels).
sample_weight : array-like of shape (n_samples,)
The current sample weights.
random_state : RandomState instance
The RandomState instance used if the base estimator accepts a
`random_state` attribute.
Returns
-------
sample_weight : array-like of shape (n_samples,) or None
The reweighted sample weights.
If None then boosting has terminated early.
estimator_weight : float
The weight for the current boost.
If None then boosting has terminated early.
estimator_error : float
The classification error for the current boost.
If None then boosting has terminated early.
"""
estimator = self._make_estimator(random_state=random_state)
estimator.fit(X, y, sample_weight=sample_weight)
y_predict = estimator.predict(X)
if iboost == 0:
self.classes_ = getattr(estimator, "classes_", None)
self.n_classes_ = len(self.classes_)
# Instances incorrectly classified
incorrect = y_predict != y
# Error fraction
estimator_error = np.mean(np.average(incorrect, weights=sample_weight, axis=0))
# Stop if classification is perfect
if estimator_error <= 0:
return sample_weight, 1.0, 0.0
n_classes = self.n_classes_
# Stop if the error is at least as bad as random guessing
if estimator_error >= 1.0 - (1.0 / n_classes):
self.estimators_.pop(-1)
if len(self.estimators_) == 0:
raise ValueError(
"BaseClassifier in AdaBoostClassifier "
"ensemble is worse than random, ensemble "
"can not be fit."
)
return None, None, None
# Boost weight using multi-class AdaBoost SAMME alg
estimator_weight = self.learning_rate * (
np.log((1.0 - estimator_error) / estimator_error) + np.log(n_classes - 1.0)
)
# Only boost the weights if it will fit again
if not iboost == self.n_estimators - 1:
# Only boost positive weights
sample_weight = np.exp(
np.log(sample_weight)
+ estimator_weight * incorrect * (sample_weight > 0)
)
return sample_weight, estimator_weight, estimator_error
|
Implement a single boost.
Perform a single boost according to the discrete SAMME algorithm and return the
updated sample weights.
Parameters
----------
iboost : int
The index of the current boost iteration.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values (class labels).
sample_weight : array-like of shape (n_samples,)
The current sample weights.
random_state : RandomState instance
The RandomState instance used if the base estimator accepts a
`random_state` attribute.
Returns
-------
sample_weight : array-like of shape (n_samples,) or None
The reweighted sample weights.
If None then boosting has terminated early.
estimator_weight : float
The weight for the current boost.
If None then boosting has terminated early.
estimator_error : float
The classification error for the current boost.
If None then boosting has terminated early.
|
_boost
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict classes for X.
The predicted class of an input sample is computed as the weighted mean
prediction of the classifiers in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted classes.
"""
pred = self.decision_function(X)
if self.n_classes_ == 2:
return self.classes_.take(pred > 0, axis=0)
return self.classes_.take(np.argmax(pred, axis=1), axis=0)
|
Predict classes for X.
The predicted class of an input sample is computed as the weighted mean
prediction of the classifiers in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted classes.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def staged_predict(self, X):
"""Return staged predictions for X.
The predicted class of an input sample is computed as the weighted mean
prediction of the classifiers in the ensemble.
This generator method yields the ensemble prediction after each
iteration of boosting and therefore allows monitoring, such as to
determine the prediction on a test set after each boost.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted classes.
"""
X = self._check_X(X)
n_classes = self.n_classes_
classes = self.classes_
if n_classes == 2:
for pred in self.staged_decision_function(X):
yield np.array(classes.take(pred > 0, axis=0))
else:
for pred in self.staged_decision_function(X):
yield np.array(classes.take(np.argmax(pred, axis=1), axis=0))
|
Return staged predictions for X.
The predicted class of an input sample is computed as the weighted mean
prediction of the classifiers in the ensemble.
This generator method yields the ensemble prediction after each
iteration of boosting and therefore allows monitoring, such as to
determine the prediction on a test set after each boost.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted classes.
|
staged_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def decision_function(self, X):
"""Compute the decision function of ``X``.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
score : ndarray of shape of (n_samples, k)
The decision function of the input samples. The order of
outputs is the same as that of the :term:`classes_` attribute.
Binary classification is a special cases with ``k == 1``,
otherwise ``k==n_classes``. For binary classification,
values closer to -1 or 1 mean more like the first or second
class in ``classes_``, respectively.
"""
check_is_fitted(self)
X = self._check_X(X)
n_classes = self.n_classes_
classes = self.classes_[:, np.newaxis]
if n_classes == 1:
return np.zeros_like(X, shape=(X.shape[0], 1))
pred = sum(
np.where(
(estimator.predict(X) == classes).T,
w,
-1 / (n_classes - 1) * w,
)
for estimator, w in zip(self.estimators_, self.estimator_weights_)
)
pred /= self.estimator_weights_.sum()
if n_classes == 2:
pred[:, 0] *= -1
return pred.sum(axis=1)
return pred
|
Compute the decision function of ``X``.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
score : ndarray of shape of (n_samples, k)
The decision function of the input samples. The order of
outputs is the same as that of the :term:`classes_` attribute.
Binary classification is a special cases with ``k == 1``,
otherwise ``k==n_classes``. For binary classification,
values closer to -1 or 1 mean more like the first or second
class in ``classes_``, respectively.
|
decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def staged_decision_function(self, X):
"""Compute decision function of ``X`` for each boosting iteration.
This method allows monitoring (i.e. determine error on testing set)
after each boosting iteration.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
score : generator of ndarray of shape (n_samples, k)
The decision function of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
Binary classification is a special cases with ``k == 1``,
otherwise ``k==n_classes``. For binary classification,
values closer to -1 or 1 mean more like the first or second
class in ``classes_``, respectively.
"""
check_is_fitted(self)
X = self._check_X(X)
n_classes = self.n_classes_
classes = self.classes_[:, np.newaxis]
pred = None
norm = 0.0
for weight, estimator in zip(self.estimator_weights_, self.estimators_):
norm += weight
current_pred = np.where(
(estimator.predict(X) == classes).T,
weight,
-1 / (n_classes - 1) * weight,
)
if pred is None:
pred = current_pred
else:
pred += current_pred
if n_classes == 2:
tmp_pred = np.copy(pred)
tmp_pred[:, 0] *= -1
yield (tmp_pred / norm).sum(axis=1)
else:
yield pred / norm
|
Compute decision function of ``X`` for each boosting iteration.
This method allows monitoring (i.e. determine error on testing set)
after each boosting iteration.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
score : generator of ndarray of shape (n_samples, k)
The decision function of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
Binary classification is a special cases with ``k == 1``,
otherwise ``k==n_classes``. For binary classification,
values closer to -1 or 1 mean more like the first or second
class in ``classes_``, respectively.
|
staged_decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def _compute_proba_from_decision(decision, n_classes):
"""Compute probabilities from the decision function.
This is based eq. (15) of [1] where:
p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X)))
= softmax((1 / K-1) * f(X))
References
----------
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost",
2009.
"""
if n_classes == 2:
decision = np.vstack([-decision, decision]).T / 2
else:
decision /= n_classes - 1
return softmax(decision, copy=False)
|
Compute probabilities from the decision function.
This is based eq. (15) of [1] where:
p(y=c|X) = exp((1 / K-1) f_c(X)) / sum_k(exp((1 / K-1) f_k(X)))
= softmax((1 / K-1) * f(X))
References
----------
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost",
2009.
|
_compute_proba_from_decision
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the weighted mean predicted class probabilities of the classifiers
in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
"""
check_is_fitted(self)
n_classes = self.n_classes_
if n_classes == 1:
return np.ones((_num_samples(X), 1))
decision = self.decision_function(X)
return self._compute_proba_from_decision(decision, n_classes)
|
Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the weighted mean predicted class probabilities of the classifiers
in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
p : ndarray of shape (n_samples, n_classes)
The class probabilities of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def staged_predict_proba(self, X):
"""Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the weighted mean predicted class probabilities of the classifiers
in the ensemble.
This generator method yields the ensemble predicted class probabilities
after each iteration of boosting and therefore allows monitoring, such
as to determine the predicted class probabilities on a test set after
each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
p : generator of ndarray of shape (n_samples,)
The class probabilities of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
"""
n_classes = self.n_classes_
for decision in self.staged_decision_function(X):
yield self._compute_proba_from_decision(decision, n_classes)
|
Predict class probabilities for X.
The predicted class probabilities of an input sample is computed as
the weighted mean predicted class probabilities of the classifiers
in the ensemble.
This generator method yields the ensemble predicted class probabilities
after each iteration of boosting and therefore allows monitoring, such
as to determine the predicted class probabilities on a test set after
each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Yields
------
p : generator of ndarray of shape (n_samples,)
The class probabilities of the input samples. The order of
outputs is the same of that of the :term:`classes_` attribute.
|
staged_predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def _boost(self, iboost, X, y, sample_weight, random_state):
"""Implement a single boost for regression
Perform a single boost according to the AdaBoost.R2 algorithm and
return the updated sample weights.
Parameters
----------
iboost : int
The index of the current boost iteration.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples,)
The current sample weights.
random_state : RandomState
The RandomState instance used if the base estimator accepts a
`random_state` attribute.
Controls also the bootstrap of the weights used to train the weak
learner.
Returns
-------
sample_weight : array-like of shape (n_samples,) or None
The reweighted sample weights.
If None then boosting has terminated early.
estimator_weight : float
The weight for the current boost.
If None then boosting has terminated early.
estimator_error : float
The regression error for the current boost.
If None then boosting has terminated early.
"""
estimator = self._make_estimator(random_state=random_state)
# Weighted sampling of the training set with replacement
bootstrap_idx = random_state.choice(
np.arange(_num_samples(X)),
size=_num_samples(X),
replace=True,
p=sample_weight,
)
# Fit on the bootstrapped sample and obtain a prediction
# for all samples in the training set
X_ = _safe_indexing(X, bootstrap_idx)
y_ = _safe_indexing(y, bootstrap_idx)
estimator.fit(X_, y_)
y_predict = estimator.predict(X)
error_vect = np.abs(y_predict - y)
sample_mask = sample_weight > 0
masked_sample_weight = sample_weight[sample_mask]
masked_error_vector = error_vect[sample_mask]
error_max = masked_error_vector.max()
if error_max != 0:
masked_error_vector /= error_max
if self.loss == "square":
masked_error_vector **= 2
elif self.loss == "exponential":
masked_error_vector = 1.0 - np.exp(-masked_error_vector)
# Calculate the average loss
estimator_error = (masked_sample_weight * masked_error_vector).sum()
if estimator_error <= 0:
# Stop if fit is perfect
return sample_weight, 1.0, 0.0
elif estimator_error >= 0.5:
# Discard current estimator only if it isn't the only one
if len(self.estimators_) > 1:
self.estimators_.pop(-1)
return None, None, None
beta = estimator_error / (1.0 - estimator_error)
# Boost weight using AdaBoost.R2 alg
estimator_weight = self.learning_rate * np.log(1.0 / beta)
if not iboost == self.n_estimators - 1:
sample_weight[sample_mask] *= np.power(
beta, (1.0 - masked_error_vector) * self.learning_rate
)
return sample_weight, estimator_weight, estimator_error
|
Implement a single boost for regression
Perform a single boost according to the AdaBoost.R2 algorithm and
return the updated sample weights.
Parameters
----------
iboost : int
The index of the current boost iteration.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples,)
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples,)
The current sample weights.
random_state : RandomState
The RandomState instance used if the base estimator accepts a
`random_state` attribute.
Controls also the bootstrap of the weights used to train the weak
learner.
Returns
-------
sample_weight : array-like of shape (n_samples,) or None
The reweighted sample weights.
If None then boosting has terminated early.
estimator_weight : float
The weight for the current boost.
If None then boosting has terminated early.
estimator_error : float
The regression error for the current boost.
If None then boosting has terminated early.
|
_boost
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict regression value for X.
The predicted regression value of an input sample is computed
as the weighted median prediction of the regressors in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted regression values.
"""
check_is_fitted(self)
X = self._check_X(X)
return self._get_median_predict(X, len(self.estimators_))
|
Predict regression value for X.
The predicted regression value of an input sample is computed
as the weighted median prediction of the regressors in the ensemble.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples. Sparse matrix can be CSC, CSR, COO,
DOK, or LIL. COO, DOK, and LIL are converted to CSR.
Returns
-------
y : ndarray of shape (n_samples,)
The predicted regression values.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def staged_predict(self, X):
"""Return staged predictions for X.
The predicted regression value of an input sample is computed
as the weighted median prediction of the regressors in the ensemble.
This generator method yields the ensemble prediction after each
iteration of boosting and therefore allows monitoring, such as to
determine the prediction on a test set after each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted regression values.
"""
check_is_fitted(self)
X = self._check_X(X)
for i, _ in enumerate(self.estimators_, 1):
yield self._get_median_predict(X, limit=i)
|
Return staged predictions for X.
The predicted regression value of an input sample is computed
as the weighted median prediction of the regressors in the ensemble.
This generator method yields the ensemble prediction after each
iteration of boosting and therefore allows monitoring, such as to
determine the prediction on a test set after each boost.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The training input samples.
Yields
------
y : generator of ndarray of shape (n_samples,)
The predicted regression values.
|
staged_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_weight_boosting.py
|
BSD-3-Clause
|
def test_metadata_routing_with_dynamic_method_selection(sub_estimator, caller, callee):
"""Test that metadata routing works in `BaggingClassifier` with dynamic selection of
the sub-estimator's methods. Here we test only specific test cases, where
sub-estimator methods are not present and are not tested with `ConsumingClassifier`
(which possesses all the methods) in
sklearn/tests/test_metaestimators_metadata_routing.py: `BaggingClassifier.predict()`
dynamically routes to `predict` if the sub-estimator doesn't have `predict_proba`
and `BaggingClassifier.predict_log_proba()` dynamically routes to `predict_proba` if
the sub-estimator doesn't have `predict_log_proba`, or to `predict`, if it doesn't
have it.
"""
X = np.array([[0, 2], [1, 4], [2, 6]])
y = [1, 2, 3]
sample_weight, metadata = [1], "a"
registry = _Registry()
estimator = sub_estimator(registry=registry)
set_callee_request = "set_" + callee + "_request"
getattr(estimator, set_callee_request)(sample_weight=True, metadata=True)
bagging = BaggingClassifier(estimator=estimator)
bagging.fit(X, y)
getattr(bagging, caller)(
X=np.array([[1, 1], [1, 3], [0, 2]]),
sample_weight=sample_weight,
metadata=metadata,
)
assert len(registry)
for estimator in registry:
check_recorded_metadata(
obj=estimator,
method=callee,
parent=caller,
sample_weight=sample_weight,
metadata=metadata,
)
|
Test that metadata routing works in `BaggingClassifier` with dynamic selection of
the sub-estimator's methods. Here we test only specific test cases, where
sub-estimator methods are not present and are not tested with `ConsumingClassifier`
(which possesses all the methods) in
sklearn/tests/test_metaestimators_metadata_routing.py: `BaggingClassifier.predict()`
dynamically routes to `predict` if the sub-estimator doesn't have `predict_proba`
and `BaggingClassifier.predict_log_proba()` dynamically routes to `predict_proba` if
the sub-estimator doesn't have `predict_log_proba`, or to `predict`, if it doesn't
have it.
|
test_metadata_routing_with_dynamic_method_selection
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_bagging.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_bagging.py
|
BSD-3-Clause
|
def test_poisson_vs_mse():
"""Test that random forest with poisson criterion performs better than
mse for a poisson target.
There is a similar test for DecisionTreeRegressor.
"""
rng = np.random.RandomState(42)
n_train, n_test, n_features = 500, 500, 10
X = datasets.make_low_rank_matrix(
n_samples=n_train + n_test, n_features=n_features, random_state=rng
)
# We create a log-linear Poisson model and downscale coef as it will get
# exponentiated.
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
y = rng.poisson(lam=np.exp(X @ coef))
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=n_test, random_state=rng
)
# We prevent some overfitting by setting min_samples_split=10.
forest_poi = RandomForestRegressor(
criterion="poisson", min_samples_leaf=10, max_features="sqrt", random_state=rng
)
forest_mse = RandomForestRegressor(
criterion="squared_error",
min_samples_leaf=10,
max_features="sqrt",
random_state=rng,
)
forest_poi.fit(X_train, y_train)
forest_mse.fit(X_train, y_train)
dummy = DummyRegressor(strategy="mean").fit(X_train, y_train)
for X, y, data_name in [(X_train, y_train, "train"), (X_test, y_test, "test")]:
metric_poi = mean_poisson_deviance(y, forest_poi.predict(X))
# squared_error forest might produce non-positive predictions => clip
# If y = 0 for those, the poisson deviance gets too good.
# If we drew more samples, we would eventually get y > 0 and the
# poisson deviance would explode, i.e. be undefined. Therefore, we do
# not clip to a tiny value like 1e-15, but to 1e-6. This acts like a
# small penalty to the non-positive predictions.
metric_mse = mean_poisson_deviance(
y, np.clip(forest_mse.predict(X), 1e-6, None)
)
metric_dummy = mean_poisson_deviance(y, dummy.predict(X))
# As squared_error might correctly predict 0 in train set, its train
# score can be better than Poisson. This is no longer the case for the
# test set. But keep the above comment for clipping in mind.
if data_name == "test":
assert metric_poi < metric_mse
assert metric_poi < 0.8 * metric_dummy
|
Test that random forest with poisson criterion performs better than
mse for a poisson target.
There is a similar test for DecisionTreeRegressor.
|
test_poisson_vs_mse
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_balance_property_random_forest(criterion):
""" "Test that sum(y_pred)==sum(y_true) on the training set."""
rng = np.random.RandomState(42)
n_train, n_test, n_features = 500, 500, 10
X = datasets.make_low_rank_matrix(
n_samples=n_train + n_test, n_features=n_features, random_state=rng
)
coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0)
y = rng.poisson(lam=np.exp(X @ coef))
reg = RandomForestRegressor(
criterion=criterion, n_estimators=10, bootstrap=False, random_state=rng
)
reg.fit(X, y)
assert np.sum(reg.predict(X)) == pytest.approx(np.sum(y))
|
"Test that sum(y_pred)==sum(y_true) on the training set.
|
test_balance_property_random_forest
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_forest_classifier_oob(
ForestClassifier, X, y, X_type, lower_bound_accuracy, oob_score
):
"""Check that OOB score is close to score on a test set."""
X = _convert_container(X, constructor_name=X_type)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=0,
)
classifier = ForestClassifier(
n_estimators=40,
bootstrap=True,
oob_score=oob_score,
random_state=0,
)
assert not hasattr(classifier, "oob_score_")
assert not hasattr(classifier, "oob_decision_function_")
classifier.fit(X_train, y_train)
if callable(oob_score):
test_score = oob_score(y_test, classifier.predict(X_test))
else:
test_score = classifier.score(X_test, y_test)
assert classifier.oob_score_ >= lower_bound_accuracy
abs_diff = abs(test_score - classifier.oob_score_)
assert abs_diff <= 0.11, f"{abs_diff=} is greater than 0.11"
assert hasattr(classifier, "oob_score_")
assert not hasattr(classifier, "oob_prediction_")
assert hasattr(classifier, "oob_decision_function_")
if y.ndim == 1:
expected_shape = (X_train.shape[0], len(set(y)))
else:
expected_shape = (X_train.shape[0], len(set(y[:, 0])), y.shape[1])
assert classifier.oob_decision_function_.shape == expected_shape
|
Check that OOB score is close to score on a test set.
|
test_forest_classifier_oob
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_forest_regressor_oob(ForestRegressor, X, y, X_type, lower_bound_r2, oob_score):
"""Check that forest-based regressor provide an OOB score close to the
score on a test set."""
X = _convert_container(X, constructor_name=X_type)
X_train, X_test, y_train, y_test = train_test_split(
X,
y,
test_size=0.5,
random_state=0,
)
regressor = ForestRegressor(
n_estimators=50,
bootstrap=True,
oob_score=oob_score,
random_state=0,
)
assert not hasattr(regressor, "oob_score_")
assert not hasattr(regressor, "oob_prediction_")
regressor.fit(X_train, y_train)
if callable(oob_score):
test_score = oob_score(y_test, regressor.predict(X_test))
else:
test_score = regressor.score(X_test, y_test)
assert regressor.oob_score_ >= lower_bound_r2
assert abs(test_score - regressor.oob_score_) <= 0.1
assert hasattr(regressor, "oob_score_")
assert hasattr(regressor, "oob_prediction_")
assert not hasattr(regressor, "oob_decision_function_")
if y.ndim == 1:
expected_shape = (X_train.shape[0],)
else:
expected_shape = (X_train.shape[0], y.ndim)
assert regressor.oob_prediction_.shape == expected_shape
|
Check that forest-based regressor provide an OOB score close to the
score on a test set.
|
test_forest_regressor_oob
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_forest_oob_warning(ForestEstimator):
"""Check that a warning is raised when not enough estimator and the OOB
estimates will be inaccurate."""
estimator = ForestEstimator(
n_estimators=1,
oob_score=True,
bootstrap=True,
random_state=0,
)
with pytest.warns(UserWarning, match="Some inputs do not have OOB scores"):
estimator.fit(iris.data, iris.target)
|
Check that a warning is raised when not enough estimator and the OOB
estimates will be inaccurate.
|
test_forest_oob_warning
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_forest_oob_score_requires_bootstrap(ForestEstimator):
"""Check that we raise an error if OOB score is requested without
activating bootstrapping.
"""
X = iris.data
y = iris.target
err_msg = "Out of bag estimation only available if bootstrap=True"
estimator = ForestEstimator(oob_score=True, bootstrap=False)
with pytest.raises(ValueError, match=err_msg):
estimator.fit(X, y)
|
Check that we raise an error if OOB score is requested without
activating bootstrapping.
|
test_forest_oob_score_requires_bootstrap
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_classifier_error_oob_score_multiclass_multioutput(ForestClassifier):
"""Check that we raise an error with when requesting OOB score with
multiclass-multioutput classification target.
"""
rng = np.random.RandomState(42)
X = iris.data
y = rng.randint(low=0, high=5, size=(iris.data.shape[0], 2))
y_type = type_of_target(y)
assert y_type == "multiclass-multioutput"
estimator = ForestClassifier(oob_score=True, bootstrap=True)
err_msg = "The type of target cannot be used to compute OOB estimates"
with pytest.raises(ValueError, match=err_msg):
estimator.fit(X, y)
|
Check that we raise an error with when requesting OOB score with
multiclass-multioutput classification target.
|
test_classifier_error_oob_score_multiclass_multioutput
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_forest_multioutput_integral_regression_target(ForestRegressor):
"""Check that multioutput regression with integral values is not interpreted
as a multiclass-multioutput target and OOB score can be computed.
"""
rng = np.random.RandomState(42)
X = iris.data
y = rng.randint(low=0, high=10, size=(iris.data.shape[0], 2))
estimator = ForestRegressor(
n_estimators=30, oob_score=True, bootstrap=True, random_state=0
)
estimator.fit(X, y)
n_samples_bootstrap = _get_n_samples_bootstrap(len(X), estimator.max_samples)
n_samples_test = X.shape[0] // 4
oob_pred = np.zeros([n_samples_test, 2])
for sample_idx, sample in enumerate(X[:n_samples_test]):
n_samples_oob = 0
oob_pred_sample = np.zeros(2)
for tree in estimator.estimators_:
oob_unsampled_indices = _generate_unsampled_indices(
tree.random_state, len(X), n_samples_bootstrap
)
if sample_idx in oob_unsampled_indices:
n_samples_oob += 1
oob_pred_sample += tree.predict(sample.reshape(1, -1)).squeeze()
oob_pred[sample_idx] = oob_pred_sample / n_samples_oob
assert_allclose(oob_pred, estimator.oob_prediction_[:n_samples_test])
|
Check that multioutput regression with integral values is not interpreted
as a multiclass-multioutput target and OOB score can be computed.
|
test_forest_multioutput_integral_regression_target
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_random_trees_embedding_feature_names_out():
"""Check feature names out for Random Trees Embedding."""
random_state = np.random.RandomState(0)
X = np.abs(random_state.randn(100, 4))
hasher = RandomTreesEmbedding(
n_estimators=2, max_depth=2, sparse_output=False, random_state=0
).fit(X)
names = hasher.get_feature_names_out()
expected_names = [
f"randomtreesembedding_{tree}_{leaf}"
# Note: nodes with indices 0, 1 and 4 are internal split nodes and
# therefore do not appear in the expected output feature names.
for tree, leaf in [
(0, 2),
(0, 3),
(0, 5),
(0, 6),
(1, 2),
(1, 3),
(1, 5),
(1, 6),
]
]
assert_array_equal(expected_names, names)
|
Check feature names out for Random Trees Embedding.
|
test_random_trees_embedding_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_read_only_buffer(csr_container, monkeypatch):
"""RandomForestClassifier must work on readonly sparse data.
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/25333
"""
monkeypatch.setattr(
sklearn.ensemble._forest,
"Parallel",
partial(Parallel, max_nbytes=100),
)
rng = np.random.RandomState(seed=0)
X, y = make_classification(n_samples=100, n_features=200, random_state=rng)
X = csr_container(X, copy=True)
clf = RandomForestClassifier(n_jobs=2, random_state=rng)
cross_val_score(clf, X, y, cv=2)
|
RandomForestClassifier must work on readonly sparse data.
Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/25333
|
test_read_only_buffer
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_round_samples_to_one_when_samples_too_low(class_weight):
"""Check low max_samples works and is rounded to one.
Non-regression test for gh-24037.
"""
X, y = datasets.load_wine(return_X_y=True)
forest = RandomForestClassifier(
n_estimators=10, max_samples=1e-4, class_weight=class_weight, random_state=0
)
forest.fit(X, y)
|
Check low max_samples works and is rounded to one.
Non-regression test for gh-24037.
|
test_round_samples_to_one_when_samples_too_low
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_estimators_samples(ForestClass, bootstrap, seed):
"""Estimators_samples_ property should be consistent.
Tests consistency across fits and whether or not the seed for the random generator
is set.
"""
X, y = make_hastie_10_2(n_samples=200, random_state=1)
if bootstrap:
max_samples = 0.5
else:
max_samples = None
est = ForestClass(
n_estimators=10,
max_samples=max_samples,
max_features=0.5,
random_state=seed,
bootstrap=bootstrap,
)
est.fit(X, y)
estimators_samples = est.estimators_samples_.copy()
# Test repeated calls result in same set of indices
assert_array_equal(estimators_samples, est.estimators_samples_)
estimators = est.estimators_
assert isinstance(estimators_samples, list)
assert len(estimators_samples) == len(estimators)
assert estimators_samples[0].dtype == np.int32
for i in range(len(estimators)):
if bootstrap:
assert len(estimators_samples[i]) == len(X) // 2
# the bootstrap should be a resampling with replacement
assert len(np.unique(estimators_samples[i])) < len(estimators_samples[i])
else:
assert len(set(estimators_samples[i])) == len(X)
estimator_index = 0
estimator_samples = estimators_samples[estimator_index]
estimator = estimators[estimator_index]
X_train = X[estimator_samples]
y_train = y[estimator_samples]
orig_tree_values = estimator.tree_.value
estimator = clone(estimator)
estimator.fit(X_train, y_train)
new_tree_values = estimator.tree_.value
assert_allclose(orig_tree_values, new_tree_values)
|
Estimators_samples_ property should be consistent.
Tests consistency across fits and whether or not the seed for the random generator
is set.
|
test_estimators_samples
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_missing_values_is_resilient(make_data, Forest):
"""Check that forest can deal with missing values and has decent performance."""
rng = np.random.RandomState(0)
n_samples, n_features = 1000, 10
X, y = make_data(n_samples=n_samples, n_features=n_features, random_state=rng)
# Create dataset with missing values
X_missing = X.copy()
X_missing[rng.choice([False, True], size=X.shape, p=[0.95, 0.05])] = np.nan
assert np.isnan(X_missing).any()
X_missing_train, X_missing_test, y_train, y_test = train_test_split(
X_missing, y, random_state=0
)
# Train forest with missing values
forest_with_missing = Forest(random_state=rng, n_estimators=50)
forest_with_missing.fit(X_missing_train, y_train)
score_with_missing = forest_with_missing.score(X_missing_test, y_test)
# Train forest without missing values
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
forest = Forest(random_state=rng, n_estimators=50)
forest.fit(X_train, y_train)
score_without_missing = forest.score(X_test, y_test)
# Score is still 80 percent of the forest's score that had no missing values
assert score_with_missing >= 0.80 * score_without_missing
|
Check that forest can deal with missing values and has decent performance.
|
test_missing_values_is_resilient
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_missing_value_is_predictive(Forest):
"""Check that the forest learns when missing values are only present for
a predictive feature."""
rng = np.random.RandomState(0)
n_samples = 300
expected_score = 0.75
X_non_predictive = rng.standard_normal(size=(n_samples, 10))
y = rng.randint(0, high=2, size=n_samples)
# Create a predictive feature using `y` and with some noise
X_random_mask = rng.choice([False, True], size=n_samples, p=[0.95, 0.05])
y_mask = y.astype(bool)
y_mask[X_random_mask] = ~y_mask[X_random_mask]
predictive_feature = rng.standard_normal(size=n_samples)
predictive_feature[y_mask] = np.nan
assert np.isnan(predictive_feature).any()
X_predictive = X_non_predictive.copy()
X_predictive[:, 5] = predictive_feature
(
X_predictive_train,
X_predictive_test,
X_non_predictive_train,
X_non_predictive_test,
y_train,
y_test,
) = train_test_split(X_predictive, X_non_predictive, y, random_state=0)
forest_predictive = Forest(random_state=0).fit(X_predictive_train, y_train)
forest_non_predictive = Forest(random_state=0).fit(X_non_predictive_train, y_train)
predictive_test_score = forest_predictive.score(X_predictive_test, y_test)
assert predictive_test_score >= expected_score
assert predictive_test_score >= forest_non_predictive.score(
X_non_predictive_test, y_test
)
|
Check that the forest learns when missing values are only present for
a predictive feature.
|
test_missing_value_is_predictive
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_non_supported_criterion_raises_error_with_missing_values(Forest):
"""Raise error for unsupported criterion when there are missing values."""
X = np.array([[0, 1, 2], [np.nan, 0, 2.0]])
y = [0.5, 1.0]
forest = Forest(criterion="absolute_error")
msg = ".*does not accept missing values"
with pytest.raises(ValueError, match=msg):
forest.fit(X, y)
|
Raise error for unsupported criterion when there are missing values.
|
test_non_supported_criterion_raises_error_with_missing_values
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_forest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_forest.py
|
BSD-3-Clause
|
def test_raise_if_init_has_no_predict_proba():
"""Test raise if init_ has no predict_proba method."""
clf = GradientBoostingClassifier(init=GradientBoostingRegressor)
msg = (
"The 'init' parameter of GradientBoostingClassifier must be a str among "
"{'zero'}, None or an object implementing 'fit' and 'predict_proba'."
)
with pytest.raises(ValueError, match=msg):
clf.fit(X, y)
|
Test raise if init_ has no predict_proba method.
|
test_raise_if_init_has_no_predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_feature_importance_regression(
fetch_california_housing_fxt, global_random_seed
):
"""Test that Gini importance is calculated correctly.
This test follows the example from [1]_ (pg. 373).
.. [1] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements
of statistical learning. New York: Springer series in statistics.
"""
california = fetch_california_housing_fxt()
X, y = california.data, california.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=global_random_seed
)
reg = GradientBoostingRegressor(
loss="huber",
learning_rate=0.1,
max_leaf_nodes=6,
n_estimators=100,
random_state=global_random_seed,
)
reg.fit(X_train, y_train)
sorted_idx = np.argsort(reg.feature_importances_)[::-1]
sorted_features = [california.feature_names[s] for s in sorted_idx]
# The most important feature is the median income by far.
assert sorted_features[0] == "MedInc"
# The three subsequent features are the following. Their relative ordering
# might change a bit depending on the randomness of the trees and the
# train / test split.
assert set(sorted_features[1:4]) == {"Longitude", "AveOccup", "Latitude"}
|
Test that Gini importance is calculated correctly.
This test follows the example from [1]_ (pg. 373).
.. [1] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements
of statistical learning. New York: Springer series in statistics.
|
test_feature_importance_regression
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_oob_attributes_error(GradientBoostingEstimator, oob_attribute):
"""
Check that we raise an AttributeError when the OOB statistics were not computed.
"""
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
estimator = GradientBoostingEstimator(
n_estimators=100,
random_state=1,
subsample=1.0,
)
estimator.fit(X, y)
with pytest.raises(AttributeError):
estimator.oob_attribute
|
Check that we raise an AttributeError when the OOB statistics were not computed.
|
test_oob_attributes_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_warm_start_state_oob_scores(GradientBoosting):
"""
Check that the states of the OOB scores are cleared when used with `warm_start`.
"""
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
n_estimators = 100
estimator = GradientBoosting(
n_estimators=n_estimators,
max_depth=1,
subsample=0.5,
warm_start=True,
random_state=1,
)
estimator.fit(X, y)
oob_scores, oob_score = estimator.oob_scores_, estimator.oob_score_
assert len(oob_scores) == n_estimators
assert oob_scores[-1] == pytest.approx(oob_score)
n_more_estimators = 200
estimator.set_params(n_estimators=n_more_estimators).fit(X, y)
assert len(estimator.oob_scores_) == n_more_estimators
assert_allclose(estimator.oob_scores_[:n_estimators], oob_scores)
estimator.set_params(n_estimators=n_estimators, warm_start=False).fit(X, y)
assert estimator.oob_scores_ is not oob_scores
assert estimator.oob_score_ is not oob_score
assert_allclose(estimator.oob_scores_, oob_scores)
assert estimator.oob_score_ == pytest.approx(oob_score)
assert oob_scores[-1] == pytest.approx(oob_score)
|
Check that the states of the OOB scores are cleared when used with `warm_start`.
|
test_warm_start_state_oob_scores
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_huber_vs_mean_and_median():
"""Check that huber lies between absolute and squared error."""
n_rep = 100
n_samples = 10
y = np.tile(np.arange(n_samples), n_rep)
x1 = np.minimum(y, n_samples / 2)
x2 = np.minimum(-y, -n_samples / 2)
X = np.c_[x1, x2]
rng = np.random.RandomState(42)
# We want an asymmetric distribution.
y = y + rng.exponential(scale=1, size=y.shape)
gbt_absolute_error = GradientBoostingRegressor(loss="absolute_error").fit(X, y)
gbt_huber = GradientBoostingRegressor(loss="huber").fit(X, y)
gbt_squared_error = GradientBoostingRegressor().fit(X, y)
gbt_huber_predictions = gbt_huber.predict(X)
assert np.all(gbt_absolute_error.predict(X) <= gbt_huber_predictions)
assert np.all(gbt_huber_predictions <= gbt_squared_error.predict(X))
|
Check that huber lies between absolute and squared error.
|
test_huber_vs_mean_and_median
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_safe_divide():
"""Test that _safe_divide handles division by zero."""
with warnings.catch_warnings():
warnings.simplefilter("error")
assert _safe_divide(np.float64(1e300), 0) == 0
assert _safe_divide(np.float64(0.0), np.float64(0.0)) == 0
with pytest.warns(RuntimeWarning, match="overflow"):
# np.finfo(float).max = 1.7976931348623157e+308
_safe_divide(np.float64(1e300), 1e-10)
|
Test that _safe_divide handles division by zero.
|
test_safe_divide
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_squared_error_exact_backward_compat():
"""Test squared error GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
"""
n_samples = 10
y = np.arange(n_samples)
x1 = np.minimum(y, n_samples / 2)
x2 = np.minimum(-y, -n_samples / 2)
X = np.c_[x1, x2]
gbt = GradientBoostingRegressor(loss="squared_error", n_estimators=100).fit(X, y)
pred_result = np.array(
[
1.39245726e-04,
1.00010468e00,
2.00007043e00,
3.00004051e00,
4.00000802e00,
4.99998972e00,
5.99996312e00,
6.99993395e00,
7.99989372e00,
8.99985660e00,
]
)
assert_allclose(gbt.predict(X), pred_result, rtol=1e-8)
train_score = np.array(
[
4.87246390e-08,
3.95590036e-08,
3.21267865e-08,
2.60970300e-08,
2.11820178e-08,
1.71995782e-08,
1.39695549e-08,
1.13391770e-08,
9.19931587e-09,
7.47000575e-09,
]
)
assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-8)
# Same but with sample_weights
sample_weights = np.tile([1, 10], n_samples // 2)
gbt = GradientBoostingRegressor(loss="squared_error", n_estimators=100).fit(
X, y, sample_weight=sample_weights
)
pred_result = np.array(
[
1.52391462e-04,
1.00011168e00,
2.00007724e00,
3.00004638e00,
4.00001302e00,
4.99999873e00,
5.99997093e00,
6.99994329e00,
7.99991290e00,
8.99988727e00,
]
)
assert_allclose(gbt.predict(X), pred_result, rtol=1e-6, atol=1e-5)
train_score = np.array(
[
4.12445296e-08,
3.34418322e-08,
2.71151383e-08,
2.19782469e-08,
1.78173649e-08,
1.44461976e-08,
1.17120123e-08,
9.49485678e-09,
7.69772505e-09,
6.24155316e-09,
]
)
assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-3, atol=1e-11)
|
Test squared error GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
|
test_squared_error_exact_backward_compat
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_huber_exact_backward_compat():
"""Test huber GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
"""
n_samples = 10
y = np.arange(n_samples)
x1 = np.minimum(y, n_samples / 2)
x2 = np.minimum(-y, -n_samples / 2)
X = np.c_[x1, x2]
gbt = GradientBoostingRegressor(loss="huber", n_estimators=100, alpha=0.8).fit(X, y)
assert_allclose(gbt._loss.closs.delta, 0.0001655688041282133)
pred_result = np.array(
[
1.48120765e-04,
9.99949174e-01,
2.00116957e00,
2.99986716e00,
4.00012064e00,
5.00002462e00,
5.99998898e00,
6.99692549e00,
8.00006356e00,
8.99985099e00,
]
)
assert_allclose(gbt.predict(X), pred_result, rtol=1e-8)
train_score = np.array(
[
2.59484709e-07,
2.19165900e-07,
1.89644782e-07,
1.64556454e-07,
1.38705110e-07,
1.20373736e-07,
1.04746082e-07,
9.13835687e-08,
8.20245756e-08,
7.17122188e-08,
]
)
assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-8)
|
Test huber GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
|
test_huber_exact_backward_compat
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_binomial_error_exact_backward_compat():
"""Test binary log_loss GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
"""
n_samples = 10
y = np.arange(n_samples) % 2
x1 = np.minimum(y, n_samples / 2)
x2 = np.minimum(-y, -n_samples / 2)
X = np.c_[x1, x2]
gbt = GradientBoostingClassifier(loss="log_loss", n_estimators=100).fit(X, y)
pred_result = np.array(
[
[9.99978098e-01, 2.19017313e-05],
[2.19017313e-05, 9.99978098e-01],
[9.99978098e-01, 2.19017313e-05],
[2.19017313e-05, 9.99978098e-01],
[9.99978098e-01, 2.19017313e-05],
[2.19017313e-05, 9.99978098e-01],
[9.99978098e-01, 2.19017313e-05],
[2.19017313e-05, 9.99978098e-01],
[9.99978098e-01, 2.19017313e-05],
[2.19017313e-05, 9.99978098e-01],
]
)
assert_allclose(gbt.predict_proba(X), pred_result, rtol=1e-8)
train_score = np.array(
[
1.07742210e-04,
9.74889078e-05,
8.82113863e-05,
7.98167784e-05,
7.22210566e-05,
6.53481907e-05,
5.91293869e-05,
5.35023988e-05,
4.84109045e-05,
4.38039423e-05,
]
)
assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-8)
|
Test binary log_loss GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
|
test_binomial_error_exact_backward_compat
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_multinomial_error_exact_backward_compat():
"""Test multiclass log_loss GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
"""
n_samples = 10
y = np.arange(n_samples) % 4
x1 = np.minimum(y, n_samples / 2)
x2 = np.minimum(-y, -n_samples / 2)
X = np.c_[x1, x2]
gbt = GradientBoostingClassifier(loss="log_loss", n_estimators=100).fit(X, y)
pred_result = np.array(
[
[9.99999727e-01, 1.11956255e-07, 8.04921671e-08, 8.04921668e-08],
[1.11956254e-07, 9.99999727e-01, 8.04921671e-08, 8.04921668e-08],
[1.19417637e-07, 1.19417637e-07, 9.99999675e-01, 8.60526098e-08],
[1.19417637e-07, 1.19417637e-07, 8.60526088e-08, 9.99999675e-01],
[9.99999727e-01, 1.11956255e-07, 8.04921671e-08, 8.04921668e-08],
[1.11956254e-07, 9.99999727e-01, 8.04921671e-08, 8.04921668e-08],
[1.19417637e-07, 1.19417637e-07, 9.99999675e-01, 8.60526098e-08],
[1.19417637e-07, 1.19417637e-07, 8.60526088e-08, 9.99999675e-01],
[9.99999727e-01, 1.11956255e-07, 8.04921671e-08, 8.04921668e-08],
[1.11956254e-07, 9.99999727e-01, 8.04921671e-08, 8.04921668e-08],
]
)
assert_allclose(gbt.predict_proba(X), pred_result, rtol=1e-8)
train_score = np.array(
[
1.13300150e-06,
9.75183397e-07,
8.39348103e-07,
7.22433588e-07,
6.21804338e-07,
5.35191943e-07,
4.60643966e-07,
3.96479930e-07,
3.41253434e-07,
2.93719550e-07,
]
)
assert_allclose(gbt.train_score_[-10:], train_score, rtol=1e-8)
|
Test multiclass log_loss GBT backward compat on a simple dataset.
The results to compare against are taken from scikit-learn v1.2.0.
|
test_multinomial_error_exact_backward_compat
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_gb_denominator_zero(global_random_seed):
"""Test _update_terminal_regions denominator is not zero.
For instance for log loss based binary classification, the line search step might
become nan/inf as denominator = hessian = prob * (1 - prob) and prob = 0 or 1 can
happen.
Here, we create a situation were this happens (at least with roughly 80%) based
on the random seed.
"""
X, y = datasets.make_hastie_10_2(n_samples=100, random_state=20)
params = {
"learning_rate": 1.0,
"subsample": 0.5,
"n_estimators": 100,
"max_leaf_nodes": 4,
"max_depth": None,
"random_state": global_random_seed,
"min_samples_leaf": 2,
}
clf = GradientBoostingClassifier(**params)
# _safe_devide would raise a RuntimeWarning
with warnings.catch_warnings():
warnings.simplefilter("error")
clf.fit(X, y)
|
Test _update_terminal_regions denominator is not zero.
For instance for log loss based binary classification, the line search step might
become nan/inf as denominator = hessian = prob * (1 - prob) and prob = 0 or 1 can
happen.
Here, we create a situation were this happens (at least with roughly 80%) based
on the random seed.
|
test_gb_denominator_zero
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_gradient_boosting.py
|
BSD-3-Clause
|
def test_iforest(global_random_seed):
"""Check Isolation Forest for various parameter settings."""
X_train = np.array([[0, 1], [1, 2]])
X_test = np.array([[2, 1], [1, 1]])
grid = ParameterGrid(
{"n_estimators": [3], "max_samples": [0.5, 1.0, 3], "bootstrap": [True, False]}
)
with ignore_warnings():
for params in grid:
IsolationForest(random_state=global_random_seed, **params).fit(
X_train
).predict(X_test)
|
Check Isolation Forest for various parameter settings.
|
test_iforest
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_sparse(global_random_seed, sparse_container):
"""Check IForest for various parameter settings on sparse input."""
rng = check_random_state(global_random_seed)
X_train, X_test = train_test_split(diabetes.data[:50], random_state=rng)
grid = ParameterGrid({"max_samples": [0.5, 1.0], "bootstrap": [True, False]})
X_train_sparse = sparse_container(X_train)
X_test_sparse = sparse_container(X_test)
for params in grid:
# Trained on sparse format
sparse_classifier = IsolationForest(
n_estimators=10, random_state=global_random_seed, **params
).fit(X_train_sparse)
sparse_results = sparse_classifier.predict(X_test_sparse)
# Trained on dense format
dense_classifier = IsolationForest(
n_estimators=10, random_state=global_random_seed, **params
).fit(X_train)
dense_results = dense_classifier.predict(X_test)
assert_array_equal(sparse_results, dense_results)
|
Check IForest for various parameter settings on sparse input.
|
test_iforest_sparse
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_error():
"""Test that it gives proper exception on deficient input."""
X = iris.data
# The dataset has less than 256 samples, explicitly setting
# max_samples > n_samples should result in a warning. If not set
# explicitly there should be no warning
warn_msg = "max_samples will be set to n_samples for estimation"
with pytest.warns(UserWarning, match=warn_msg):
IsolationForest(max_samples=1000).fit(X)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
IsolationForest(max_samples="auto").fit(X)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
IsolationForest(max_samples=np.int64(2)).fit(X)
# test X_test n_features match X_train one:
with pytest.raises(ValueError):
IsolationForest().fit(X).predict(X[:, 1:])
|
Test that it gives proper exception on deficient input.
|
test_iforest_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_recalculate_max_depth():
"""Check max_depth recalculation when max_samples is reset to n_samples"""
X = iris.data
clf = IsolationForest().fit(X)
for est in clf.estimators_:
assert est.max_depth == int(np.ceil(np.log2(X.shape[0])))
|
Check max_depth recalculation when max_samples is reset to n_samples
|
test_recalculate_max_depth
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_warm_start():
"""Test iterative addition of iTrees to an iForest"""
rng = check_random_state(0)
X = rng.randn(20, 2)
# fit first 10 trees
clf = IsolationForest(
n_estimators=10, max_samples=20, random_state=rng, warm_start=True
)
clf.fit(X)
# remember the 1st tree
tree_1 = clf.estimators_[0]
# fit another 10 trees
clf.set_params(n_estimators=20)
clf.fit(X)
# expecting 20 fitted trees and no overwritten trees
assert len(clf.estimators_) == 20
assert clf.estimators_[0] is tree_1
|
Test iterative addition of iTrees to an iForest
|
test_iforest_warm_start
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_with_uniform_data():
"""Test whether iforest predicts inliers when using uniform data"""
# 2-d array of all 1s
X = np.ones((100, 10))
iforest = IsolationForest()
iforest.fit(X)
rng = np.random.RandomState(0)
assert all(iforest.predict(X) == 1)
assert all(iforest.predict(rng.randn(100, 10)) == 1)
assert all(iforest.predict(X + 1) == 1)
assert all(iforest.predict(X - 1) == 1)
# 2-d array where columns contain the same value across rows
X = np.repeat(rng.randn(1, 10), 100, 0)
iforest = IsolationForest()
iforest.fit(X)
assert all(iforest.predict(X) == 1)
assert all(iforest.predict(rng.randn(100, 10)) == 1)
assert all(iforest.predict(np.ones((100, 10))) == 1)
# Single row
X = rng.randn(1, 10)
iforest = IsolationForest()
iforest.fit(X)
assert all(iforest.predict(X) == 1)
assert all(iforest.predict(rng.randn(100, 10)) == 1)
assert all(iforest.predict(np.ones((100, 10))) == 1)
|
Test whether iforest predicts inliers when using uniform data
|
test_iforest_with_uniform_data
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_with_n_jobs_does_not_segfault(csc_container):
"""Check that Isolation Forest does not segfault with n_jobs=2
Non-regression test for #23252
"""
X, _ = make_classification(n_samples=85_000, n_features=100, random_state=0)
X = csc_container(X)
IsolationForest(n_estimators=10, max_samples=256, n_jobs=2).fit(X)
|
Check that Isolation Forest does not segfault with n_jobs=2
Non-regression test for #23252
|
test_iforest_with_n_jobs_does_not_segfault
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_preserve_feature_names():
"""Check that feature names are preserved when contamination is not "auto".
Feature names are required for consistency checks during scoring.
Non-regression test for Issue #25844
"""
pd = pytest.importorskip("pandas")
rng = np.random.RandomState(0)
X = pd.DataFrame(data=rng.randn(4), columns=["a"])
model = IsolationForest(random_state=0, contamination=0.05)
with warnings.catch_warnings():
warnings.simplefilter("error", UserWarning)
model.fit(X)
|
Check that feature names are preserved when contamination is not "auto".
Feature names are required for consistency checks during scoring.
Non-regression test for Issue #25844
|
test_iforest_preserve_feature_names
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_sparse_input_float_contamination(sparse_container):
"""Check that `IsolationForest` accepts sparse matrix input and float value for
contamination.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27626
"""
X, _ = make_classification(n_samples=50, n_features=4, random_state=0)
X = sparse_container(X)
X.sort_indices()
contamination = 0.1
iforest = IsolationForest(
n_estimators=5, contamination=contamination, random_state=0
).fit(X)
X_decision = iforest.decision_function(X)
assert (X_decision < 0).sum() / X.shape[0] == pytest.approx(contamination)
|
Check that `IsolationForest` accepts sparse matrix input and float value for
contamination.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/27626
|
test_iforest_sparse_input_float_contamination
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_iforest_predict_parallel(global_random_seed, contamination, n_jobs):
"""Check that `IsolationForest.predict` is parallelized."""
# toy sample (the last two samples are outliers)
X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [7, 4], [-5, 9]]
# Test IsolationForest
clf = IsolationForest(
random_state=global_random_seed, contamination=contamination, n_jobs=None
)
clf.fit(X)
decision_func = -clf.decision_function(X)
pred = clf.predict(X)
# assert detect outliers:
assert np.min(decision_func[-2:]) > np.max(decision_func[:-2])
assert_array_equal(pred, 6 * [1] + 2 * [-1])
clf_parallel = IsolationForest(
random_state=global_random_seed, contamination=contamination, n_jobs=-1
)
clf_parallel.fit(X)
with parallel_backend("threading", n_jobs=n_jobs):
pred_paralell = clf_parallel.predict(X)
# assert the same results as non-parallel
assert_array_equal(pred, pred_paralell)
|
Check that `IsolationForest.predict` is parallelized.
|
test_iforest_predict_parallel
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_iforest.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_iforest.py
|
BSD-3-Clause
|
def test_stacking_prefit(Stacker, Estimator, stack_method, final_estimator, X, y):
"""Check the behaviour of stacking when `cv='prefit'`"""
X_train1, X_train2, y_train1, y_train2 = train_test_split(
X, y, random_state=42, test_size=0.5
)
estimators = [
("d0", Estimator().fit(X_train1, y_train1)),
("d1", Estimator().fit(X_train1, y_train1)),
]
# mock out fit and stack_method to be asserted later
for _, estimator in estimators:
estimator.fit = Mock(name="fit")
stack_func = getattr(estimator, stack_method)
predict_method_mocked = Mock(side_effect=stack_func)
# Mocking a method will not provide a `__name__` while Python methods
# do and we are using it in `_get_response_method`.
predict_method_mocked.__name__ = stack_method
setattr(estimator, stack_method, predict_method_mocked)
stacker = Stacker(
estimators=estimators, cv="prefit", final_estimator=final_estimator
)
stacker.fit(X_train2, y_train2)
assert stacker.estimators_ == [estimator for _, estimator in estimators]
# fit was not called again
assert all(estimator.fit.call_count == 0 for estimator in stacker.estimators_)
# stack method is called with the proper inputs
for estimator in stacker.estimators_:
stack_func_mock = getattr(estimator, stack_method)
stack_func_mock.assert_called_with(X_train2)
|
Check the behaviour of stacking when `cv='prefit'`
|
test_stacking_prefit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_stacking_classifier_multilabel_predict_proba(estimator):
"""Check the behaviour for the multilabel classification case and the
`predict_proba` stacking method.
Estimators are not consistent with the output arrays and we need to ensure that
we handle all cases.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
n_outputs = 3
estimators = [("est", estimator)]
stacker = StackingClassifier(
estimators=estimators,
final_estimator=KNeighborsClassifier(),
stack_method="predict_proba",
).fit(X_train, y_train)
X_trans = stacker.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_outputs)
# we should not have any collinear classes and thus nothing should sum to 1
assert not any(np.isclose(X_trans.sum(axis=1), 1.0))
y_pred = stacker.predict(X_test)
assert y_pred.shape == y_test.shape
|
Check the behaviour for the multilabel classification case and the
`predict_proba` stacking method.
Estimators are not consistent with the output arrays and we need to ensure that
we handle all cases.
|
test_stacking_classifier_multilabel_predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_stacking_classifier_multilabel_decision_function():
"""Check the behaviour for the multilabel classification case and the
`decision_function` stacking method. Only `RidgeClassifier` supports this
case.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
n_outputs = 3
estimators = [("est", RidgeClassifier())]
stacker = StackingClassifier(
estimators=estimators,
final_estimator=KNeighborsClassifier(),
stack_method="decision_function",
).fit(X_train, y_train)
X_trans = stacker.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_outputs)
y_pred = stacker.predict(X_test)
assert y_pred.shape == y_test.shape
|
Check the behaviour for the multilabel classification case and the
`decision_function` stacking method. Only `RidgeClassifier` supports this
case.
|
test_stacking_classifier_multilabel_decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_stacking_classifier_multilabel_auto_predict(stack_method, passthrough):
"""Check the behaviour for the multilabel classification case for stack methods
supported for all estimators or automatically picked up.
"""
X_train, X_test, y_train, y_test = train_test_split(
X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42
)
y_train_before_fit = y_train.copy()
n_outputs = 3
estimators = [
("mlp", MLPClassifier(random_state=42)),
("rf", RandomForestClassifier(random_state=42)),
("ridge", RidgeClassifier()),
]
final_estimator = KNeighborsClassifier()
clf = StackingClassifier(
estimators=estimators,
final_estimator=final_estimator,
passthrough=passthrough,
stack_method=stack_method,
).fit(X_train, y_train)
# make sure we don't change `y_train` inplace
assert_array_equal(y_train_before_fit, y_train)
y_pred = clf.predict(X_test)
assert y_pred.shape == y_test.shape
if stack_method == "auto":
expected_stack_methods = ["predict_proba", "predict_proba", "decision_function"]
else:
expected_stack_methods = ["predict"] * len(estimators)
assert clf.stack_method_ == expected_stack_methods
n_features_X_trans = n_outputs * len(estimators)
if passthrough:
n_features_X_trans += X_train.shape[1]
X_trans = clf.transform(X_test)
assert X_trans.shape == (X_test.shape[0], n_features_X_trans)
assert_array_equal(clf.classes_, [np.array([0, 1])] * n_outputs)
|
Check the behaviour for the multilabel classification case for stack methods
supported for all estimators or automatically picked up.
|
test_stacking_classifier_multilabel_auto_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_stacking_classifier_base_regressor():
"""Check that a regressor can be used as the first layer in `StackingClassifier`."""
X_train, X_test, y_train, y_test = train_test_split(
scale(X_iris), y_iris, stratify=y_iris, random_state=42
)
clf = StackingClassifier(estimators=[("ridge", Ridge())])
clf.fit(X_train, y_train)
clf.predict(X_test)
clf.predict_proba(X_test)
assert clf.score(X_test, y_test) > 0.8
|
Check that a regressor can be used as the first layer in `StackingClassifier`.
|
test_stacking_classifier_base_regressor
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_stacking_final_estimator_attribute_error():
"""Check that we raise the proper AttributeError when the final estimator
does not implement the `decision_function` method, which is decorated with
`available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
"""
X, y = make_classification(random_state=42)
estimators = [
("lr", LogisticRegression()),
("rf", RandomForestClassifier(n_estimators=2, random_state=42)),
]
# RandomForestClassifier does not implement 'decision_function' and should raise
# an AttributeError
final_estimator = RandomForestClassifier(n_estimators=2, random_state=42)
clf = StackingClassifier(
estimators=estimators, final_estimator=final_estimator, cv=3
)
outer_msg = "This 'StackingClassifier' has no attribute 'decision_function'"
inner_msg = "'RandomForestClassifier' object has no attribute 'decision_function'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
clf.fit(X, y).decision_function(X)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
|
Check that we raise the proper AttributeError when the final estimator
does not implement the `decision_function` method, which is decorated with
`available_if`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28108
|
test_stacking_final_estimator_attribute_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_routing_passed_metadata_not_supported(Estimator, Child):
"""Test that the right error message is raised when metadata is passed while
not supported when `enable_metadata_routing=False`."""
with pytest.raises(
ValueError, match="is only supported if enable_metadata_routing=True"
):
Estimator(["clf", Child()]).fit(
X_iris, y_iris, sample_weight=[1, 1, 1, 1, 1], metadata="a"
)
|
Test that the right error message is raised when metadata is passed while
not supported when `enable_metadata_routing=False`.
|
test_routing_passed_metadata_not_supported
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_metadata_routing_for_stacking_estimators(Estimator, Child, prop, prop_value):
"""Test that metadata is routed correctly for Stacking*."""
est = Estimator(
[
(
"sub_est1",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
(
"sub_est2",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
],
final_estimator=Child(registry=_Registry()).set_predict_request(**{prop: True}),
)
est.fit(X_iris, y_iris, **{prop: prop_value})
est.fit_transform(X_iris, y_iris, **{prop: prop_value})
est.predict(X_iris, **{prop: prop_value})
for estimator in est.estimators:
# access sub-estimator in (name, est) with estimator[1]:
registry = estimator[1].registry
assert len(registry)
for sub_est in registry:
check_recorded_metadata(
obj=sub_est,
method="fit",
parent="fit",
split_params=(prop),
**{prop: prop_value},
)
# access final_estimator:
registry = est.final_estimator_.registry
assert len(registry)
check_recorded_metadata(
obj=registry[-1],
method="predict",
parent="predict",
split_params=(prop),
**{prop: prop_value},
)
|
Test that metadata is routed correctly for Stacking*.
|
test_metadata_routing_for_stacking_estimators
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_metadata_routing_error_for_stacking_estimators(Estimator, Child):
"""Test that the right error is raised when metadata is not requested."""
sample_weight, metadata = np.ones(X_iris.shape[0]), "a"
est = Estimator([("sub_est", Child())])
error_message = (
"[sample_weight, metadata] are passed but are not explicitly set as requested"
f" or not requested for {Child.__name__}.fit"
)
with pytest.raises(ValueError, match=re.escape(error_message)):
est.fit(X_iris, y_iris, sample_weight=sample_weight, metadata=metadata)
|
Test that the right error is raised when metadata is not requested.
|
test_metadata_routing_error_for_stacking_estimators
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_stacking.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_stacking.py
|
BSD-3-Clause
|
def test_majority_label_iris(global_random_seed):
"""Check classification by majority label on dataset iris."""
clf1 = LogisticRegression(random_state=global_random_seed)
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed)
clf3 = GaussianNB()
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard"
)
scores = cross_val_score(eclf, X, y, scoring="accuracy")
assert scores.mean() >= 0.9
|
Check classification by majority label on dataset iris.
|
test_majority_label_iris
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_tie_situation():
"""Check voting classifier selects smaller class label in tie situation."""
clf1 = LogisticRegression(random_state=123)
clf2 = RandomForestClassifier(random_state=123)
eclf = VotingClassifier(estimators=[("lr", clf1), ("rf", clf2)], voting="hard")
assert clf1.fit(X, y).predict(X)[52] == 2
assert clf2.fit(X, y).predict(X)[52] == 1
assert eclf.fit(X, y).predict(X)[52] == 1
|
Check voting classifier selects smaller class label in tie situation.
|
test_tie_situation
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_weights_iris(global_random_seed):
"""Check classification by average probabilities on dataset iris."""
clf1 = LogisticRegression(random_state=global_random_seed)
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed)
clf3 = GaussianNB()
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
weights=[1, 2, 10],
)
scores = cross_val_score(eclf, X_scaled, y, scoring="accuracy")
assert scores.mean() >= 0.9
|
Check classification by average probabilities on dataset iris.
|
test_weights_iris
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_weights_regressor():
"""Check weighted average regression prediction on diabetes dataset."""
reg1 = DummyRegressor(strategy="mean")
reg2 = DummyRegressor(strategy="median")
reg3 = DummyRegressor(strategy="quantile", quantile=0.2)
ereg = VotingRegressor(
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 2, 10]
)
X_r_train, X_r_test, y_r_train, y_r_test = train_test_split(
X_r, y_r, test_size=0.25
)
reg1_pred = reg1.fit(X_r_train, y_r_train).predict(X_r_test)
reg2_pred = reg2.fit(X_r_train, y_r_train).predict(X_r_test)
reg3_pred = reg3.fit(X_r_train, y_r_train).predict(X_r_test)
ereg_pred = ereg.fit(X_r_train, y_r_train).predict(X_r_test)
avg = np.average(
np.asarray([reg1_pred, reg2_pred, reg3_pred]), axis=0, weights=[1, 2, 10]
)
assert_almost_equal(ereg_pred, avg, decimal=2)
ereg_weights_none = VotingRegressor(
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=None
)
ereg_weights_equal = VotingRegressor(
[("mean", reg1), ("median", reg2), ("quantile", reg3)], weights=[1, 1, 1]
)
ereg_weights_none.fit(X_r_train, y_r_train)
ereg_weights_equal.fit(X_r_train, y_r_train)
ereg_none_pred = ereg_weights_none.predict(X_r_test)
ereg_equal_pred = ereg_weights_equal.predict(X_r_test)
assert_almost_equal(ereg_none_pred, ereg_equal_pred, decimal=2)
|
Check weighted average regression prediction on diabetes dataset.
|
test_weights_regressor
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_predict_on_toy_problem(global_random_seed):
"""Manually check predicted class labels for toy dataset."""
clf1 = LogisticRegression(random_state=global_random_seed)
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed)
clf3 = GaussianNB()
X = np.array(
[[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2], [2.1, 1.4], [3.1, 2.3]]
)
y = np.array([1, 1, 1, 2, 2, 2])
assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="hard",
weights=[1, 1, 1],
)
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
weights=[1, 1, 1],
)
assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
|
Manually check predicted class labels for toy dataset.
|
test_predict_on_toy_problem
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_predict_proba_on_toy_problem():
"""Calculate predicted probabilities on toy dataset."""
clf1 = LogisticRegression(random_state=123)
clf2 = RandomForestClassifier(random_state=123)
clf3 = GaussianNB()
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])
clf1_res = np.array(
[
[0.59790391, 0.40209609],
[0.57622162, 0.42377838],
[0.50728456, 0.49271544],
[0.40241774, 0.59758226],
]
)
clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]])
clf3_res = np.array(
[[0.9985082, 0.0014918], [0.99845843, 0.00154157], [0.0, 1.0], [0.0, 1.0]]
)
t00 = (2 * clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4
t11 = (2 * clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4
t21 = (2 * clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4
t31 = (2 * clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
weights=[2, 1, 1],
)
eclf_res = eclf.fit(X, y).predict_proba(X)
assert_almost_equal(t00, eclf_res[0][0], decimal=1)
assert_almost_equal(t11, eclf_res[1][1], decimal=1)
assert_almost_equal(t21, eclf_res[2][1], decimal=1)
assert_almost_equal(t31, eclf_res[3][1], decimal=1)
inner_msg = "predict_proba is not available when voting='hard'"
outer_msg = "'VotingClassifier' has no attribute 'predict_proba'"
with pytest.raises(AttributeError, match=outer_msg) as exec_info:
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="hard"
)
eclf.fit(X, y).predict_proba(X)
assert isinstance(exec_info.value.__cause__, AttributeError)
assert inner_msg in str(exec_info.value.__cause__)
|
Calculate predicted probabilities on toy dataset.
|
test_predict_proba_on_toy_problem
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_multilabel():
"""Check if error is raised for multilabel classification."""
X, y = make_multilabel_classification(
n_classes=2, n_labels=1, allow_unlabeled=False, random_state=123
)
clf = OneVsRestClassifier(SVC(kernel="linear"))
eclf = VotingClassifier(estimators=[("ovr", clf)], voting="hard")
try:
eclf.fit(X, y)
except NotImplementedError:
return
|
Check if error is raised for multilabel classification.
|
test_multilabel
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_parallel_fit(global_random_seed):
"""Check parallel backend of VotingClassifier on toy dataset."""
clf1 = LogisticRegression(random_state=global_random_seed)
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed)
clf3 = GaussianNB()
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])
eclf1 = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=1
).fit(X, y)
eclf2 = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft", n_jobs=2
).fit(X, y)
assert_array_equal(eclf1.predict(X), eclf2.predict(X))
assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
|
Check parallel backend of VotingClassifier on toy dataset.
|
test_parallel_fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_sample_weight_kwargs():
"""Check that VotingClassifier passes sample_weight as kwargs"""
class MockClassifier(ClassifierMixin, BaseEstimator):
"""Mock Classifier to check that sample_weight is received as kwargs"""
def fit(self, X, y, *args, **sample_weight):
assert "sample_weight" in sample_weight
clf = MockClassifier()
eclf = VotingClassifier(estimators=[("mock", clf)], voting="soft")
# Should not raise an error.
eclf.fit(X, y, sample_weight=np.ones((len(y),)))
|
Check that VotingClassifier passes sample_weight as kwargs
|
test_sample_weight_kwargs
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_transform(global_random_seed):
"""Check transform method of VotingClassifier on toy dataset."""
clf1 = LogisticRegression(random_state=global_random_seed)
clf2 = RandomForestClassifier(n_estimators=10, random_state=global_random_seed)
clf3 = GaussianNB()
X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])
eclf1 = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)], voting="soft"
).fit(X, y)
eclf2 = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
flatten_transform=True,
).fit(X, y)
eclf3 = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
flatten_transform=False,
).fit(X, y)
assert_array_equal(eclf1.transform(X).shape, (4, 6))
assert_array_equal(eclf2.transform(X).shape, (4, 6))
assert_array_equal(eclf3.transform(X).shape, (3, 4, 2))
assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X))
assert_array_almost_equal(
eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X)
)
|
Check transform method of VotingClassifier on toy dataset.
|
test_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_get_features_names_out_classifier(kwargs, expected_names):
"""Check get_feature_names_out for classifier for different settings."""
X = [[1, 2], [3, 4], [5, 6], [1, 1.2]]
y = [0, 1, 2, 0]
voting = VotingClassifier(
estimators=[
("lr", LogisticRegression(random_state=0)),
("tree", DecisionTreeClassifier(random_state=0)),
],
**kwargs,
)
voting.fit(X, y)
X_trans = voting.transform(X)
names_out = voting.get_feature_names_out()
assert X_trans.shape[1] == len(expected_names)
assert_array_equal(names_out, expected_names)
|
Check get_feature_names_out for classifier for different settings.
|
test_get_features_names_out_classifier
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_get_features_names_out_classifier_error():
"""Check that error is raised when voting="soft" and flatten_transform=False."""
X = [[1, 2], [3, 4], [5, 6]]
y = [0, 1, 2]
voting = VotingClassifier(
estimators=[
("lr", LogisticRegression(random_state=0)),
("tree", DecisionTreeClassifier(random_state=0)),
],
voting="soft",
flatten_transform=False,
)
voting.fit(X, y)
msg = (
"get_feature_names_out is not supported when `voting='soft'` and "
"`flatten_transform=False`"
)
with pytest.raises(ValueError, match=msg):
voting.get_feature_names_out()
|
Check that error is raised when voting="soft" and flatten_transform=False.
|
test_get_features_names_out_classifier_error
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_routing_passed_metadata_not_supported(Estimator, Child):
"""Test that the right error message is raised when metadata is passed while
not supported when `enable_metadata_routing=False`."""
X = np.array([[0, 1], [2, 2], [4, 6]])
y = [1, 2, 3]
with pytest.raises(
ValueError, match="is only supported if enable_metadata_routing=True"
):
Estimator(["clf", Child()]).fit(X, y, sample_weight=[1, 1, 1], metadata="a")
|
Test that the right error message is raised when metadata is passed while
not supported when `enable_metadata_routing=False`.
|
test_routing_passed_metadata_not_supported
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_metadata_routing_for_voting_estimators(Estimator, Child, prop):
"""Test that metadata is routed correctly for Voting*."""
X = np.array([[0, 1], [2, 2], [4, 6]])
y = [1, 2, 3]
sample_weight, metadata = [1, 1, 1], "a"
est = Estimator(
[
(
"sub_est1",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
(
"sub_est2",
Child(registry=_Registry()).set_fit_request(**{prop: True}),
),
]
)
est.fit(X, y, **{prop: sample_weight if prop == "sample_weight" else metadata})
for estimator in est.estimators:
if prop == "sample_weight":
kwargs = {prop: sample_weight}
else:
kwargs = {prop: metadata}
# access sub-estimator in (name, est) with estimator[1]
registry = estimator[1].registry
assert len(registry)
for sub_est in registry:
check_recorded_metadata(obj=sub_est, method="fit", parent="fit", **kwargs)
|
Test that metadata is routed correctly for Voting*.
|
test_metadata_routing_for_voting_estimators
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def test_metadata_routing_error_for_voting_estimators(Estimator, Child):
"""Test that the right error is raised when metadata is not requested."""
X = np.array([[0, 1], [2, 2], [4, 6]])
y = [1, 2, 3]
sample_weight, metadata = [1, 1, 1], "a"
est = Estimator([("sub_est", Child())])
error_message = (
"[sample_weight, metadata] are passed but are not explicitly set as requested"
f" or not requested for {Child.__name__}.fit"
)
with pytest.raises(ValueError, match=re.escape(error_message)):
est.fit(X, y, sample_weight=sample_weight, metadata=metadata)
|
Test that the right error is raised when metadata is not requested.
|
test_metadata_routing_error_for_voting_estimators
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_voting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_voting.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Modification on fit caries data type for later verification."""
super().fit(X, y, sample_weight=sample_weight)
self.data_type_ = type(X)
return self
|
Modification on fit caries data type for later verification.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Modification on fit caries data type for later verification."""
super().fit(X, y, sample_weight=sample_weight)
self.data_type_ = type(X)
return self
|
Modification on fit caries data type for later verification.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def test_sample_weight_adaboost_regressor():
"""
AdaBoostRegressor should work without sample_weights in the base estimator
The random weighted sampling is done internally in the _boost method in
AdaBoostRegressor.
"""
class DummyEstimator(BaseEstimator):
def fit(self, X, y):
pass
def predict(self, X):
return np.zeros(X.shape[0])
boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3)
boost.fit(X, y_regr)
assert len(boost.estimator_weights_) == len(boost.estimator_errors_)
|
AdaBoostRegressor should work without sample_weights in the base estimator
The random weighted sampling is done internally in the _boost method in
AdaBoostRegressor.
|
test_sample_weight_adaboost_regressor
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def test_multidimensional_X():
"""
Check that the AdaBoost estimators can work with n-dimensional
data matrix
"""
rng = np.random.RandomState(0)
X = rng.randn(51, 3, 3)
yc = rng.choice([0, 1], 51)
yr = rng.randn(51)
boost = AdaBoostClassifier(DummyClassifier(strategy="most_frequent"))
boost.fit(X, yc)
boost.predict(X)
boost.predict_proba(X)
boost = AdaBoostRegressor(DummyRegressor())
boost.fit(X, yr)
boost.predict(X)
|
Check that the AdaBoost estimators can work with n-dimensional
data matrix
|
test_multidimensional_X
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def test_adaboost_numerically_stable_feature_importance_with_small_weights():
"""Check that we don't create NaN feature importance with numerically
instable inputs.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20320
"""
rng = np.random.RandomState(42)
X = rng.normal(size=(1000, 10))
y = rng.choice([0, 1], size=1000)
sample_weight = np.ones_like(y) * 1e-263
tree = DecisionTreeClassifier(max_depth=10, random_state=12)
ada_model = AdaBoostClassifier(estimator=tree, n_estimators=20, random_state=12)
ada_model.fit(X, y, sample_weight=sample_weight)
assert np.isnan(ada_model.feature_importances_).sum() == 0
|
Check that we don't create NaN feature importance with numerically
instable inputs.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/20320
|
test_adaboost_numerically_stable_feature_importance_with_small_weights
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def test_adaboost_decision_function(global_random_seed):
"""Check that the decision function respects the symmetric constraint for weak
learners.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/26520
"""
n_classes = 3
X, y = datasets.make_classification(
n_classes=n_classes, n_clusters_per_class=1, random_state=global_random_seed
)
clf = AdaBoostClassifier(n_estimators=1, random_state=global_random_seed).fit(X, y)
y_score = clf.decision_function(X)
assert_allclose(y_score.sum(axis=1), 0, atol=1e-8)
# With a single learner, we expect to have a decision function in
# {1, - 1 / (n_classes - 1)}.
assert set(np.unique(y_score)) == {1, -1 / (n_classes - 1)}
# We can assert the same for staged_decision_function since we have a single learner
for y_score in clf.staged_decision_function(X):
assert_allclose(y_score.sum(axis=1), 0, atol=1e-8)
# With a single learner, we expect to have a decision function in
# {1, - 1 / (n_classes - 1)}.
assert set(np.unique(y_score)) == {1, -1 / (n_classes - 1)}
clf.set_params(n_estimators=5).fit(X, y)
y_score = clf.decision_function(X)
assert_allclose(y_score.sum(axis=1), 0, atol=1e-8)
for y_score in clf.staged_decision_function(X):
assert_allclose(y_score.sum(axis=1), 0, atol=1e-8)
|
Check that the decision function respects the symmetric constraint for weak
learners.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/26520
|
test_adaboost_decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/tests/test_weight_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/tests/test_weight_boosting.py
|
BSD-3-Clause
|
def _find_binning_thresholds(col_data, max_bins):
"""Extract quantiles from a continuous feature.
Missing values are ignored for finding the thresholds.
Parameters
----------
col_data : array-like, shape (n_samples,)
The continuous feature to bin.
max_bins: int
The maximum number of bins to use for non-missing values. If for a
given feature the number of unique values is less than ``max_bins``,
then those unique values will be used to compute the bin thresholds,
instead of the quantiles
Return
------
binning_thresholds : ndarray of shape(min(max_bins, n_unique_values) - 1,)
The increasing numeric values that can be used to separate the bins.
A given value x will be mapped into bin value i iff
bining_thresholds[i - 1] < x <= binning_thresholds[i]
"""
# ignore missing values when computing bin thresholds
missing_mask = np.isnan(col_data)
if missing_mask.any():
col_data = col_data[~missing_mask]
# The data will be sorted anyway in np.unique and again in percentile, so we do it
# here. Sorting also returns a contiguous array.
col_data = np.sort(col_data)
distinct_values = np.unique(col_data).astype(X_DTYPE)
if len(distinct_values) <= max_bins:
midpoints = distinct_values[:-1] + distinct_values[1:]
midpoints *= 0.5
else:
# We could compute approximate midpoint percentiles using the output of
# np.unique(col_data, return_counts) instead but this is more
# work and the performance benefit will be limited because we
# work on a fixed-size subsample of the full data.
percentiles = np.linspace(0, 100, num=max_bins + 1)
percentiles = percentiles[1:-1]
midpoints = np.percentile(col_data, percentiles, method="midpoint").astype(
X_DTYPE
)
assert midpoints.shape[0] == max_bins - 1
# We avoid having +inf thresholds: +inf thresholds are only allowed in
# a "split on nan" situation.
np.clip(midpoints, a_min=None, a_max=ALMOST_INF, out=midpoints)
return midpoints
|
Extract quantiles from a continuous feature.
Missing values are ignored for finding the thresholds.
Parameters
----------
col_data : array-like, shape (n_samples,)
The continuous feature to bin.
max_bins: int
The maximum number of bins to use for non-missing values. If for a
given feature the number of unique values is less than ``max_bins``,
then those unique values will be used to compute the bin thresholds,
instead of the quantiles
Return
------
binning_thresholds : ndarray of shape(min(max_bins, n_unique_values) - 1,)
The increasing numeric values that can be used to separate the bins.
A given value x will be mapped into bin value i iff
bining_thresholds[i - 1] < x <= binning_thresholds[i]
|
_find_binning_thresholds
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/binning.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/binning.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Fit data X by computing the binning thresholds.
The last bin is reserved for missing values, whether missing values
are present in the data or not.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to bin.
y: None
Ignored.
Returns
-------
self : object
"""
if not (3 <= self.n_bins <= 256):
# min is 3: at least 2 distinct bins and a missing values bin
raise ValueError(
"n_bins={} should be no smaller than 3 and no larger than 256.".format(
self.n_bins
)
)
X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)
max_bins = self.n_bins - 1
rng = check_random_state(self.random_state)
if self.subsample is not None and X.shape[0] > self.subsample:
subset = rng.choice(X.shape[0], self.subsample, replace=False)
X = X.take(subset, axis=0)
if self.is_categorical is None:
self.is_categorical_ = np.zeros(X.shape[1], dtype=np.uint8)
else:
self.is_categorical_ = np.asarray(self.is_categorical, dtype=np.uint8)
n_features = X.shape[1]
known_categories = self.known_categories
if known_categories is None:
known_categories = [None] * n_features
# validate is_categorical and known_categories parameters
for f_idx in range(n_features):
is_categorical = self.is_categorical_[f_idx]
known_cats = known_categories[f_idx]
if is_categorical and known_cats is None:
raise ValueError(
f"Known categories for feature {f_idx} must be provided."
)
if not is_categorical and known_cats is not None:
raise ValueError(
f"Feature {f_idx} isn't marked as a categorical feature, "
"but categories were passed."
)
self.missing_values_bin_idx_ = self.n_bins - 1
self.bin_thresholds_ = [None] * n_features
n_bins_non_missing = [None] * n_features
non_cat_thresholds = Parallel(n_jobs=self.n_threads, backend="threading")(
delayed(_find_binning_thresholds)(X[:, f_idx], max_bins)
for f_idx in range(n_features)
if not self.is_categorical_[f_idx]
)
non_cat_idx = 0
for f_idx in range(n_features):
if self.is_categorical_[f_idx]:
# Since categories are assumed to be encoded in
# [0, n_cats] and since n_cats <= max_bins,
# the thresholds *are* the unique categorical values. This will
# lead to the correct mapping in transform()
thresholds = known_categories[f_idx]
n_bins_non_missing[f_idx] = thresholds.shape[0]
self.bin_thresholds_[f_idx] = thresholds
else:
self.bin_thresholds_[f_idx] = non_cat_thresholds[non_cat_idx]
n_bins_non_missing[f_idx] = self.bin_thresholds_[f_idx].shape[0] + 1
non_cat_idx += 1
self.n_bins_non_missing_ = np.array(n_bins_non_missing, dtype=np.uint32)
return self
|
Fit data X by computing the binning thresholds.
The last bin is reserved for missing values, whether missing values
are present in the data or not.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to bin.
y: None
Ignored.
Returns
-------
self : object
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/binning.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/binning.py
|
BSD-3-Clause
|
def transform(self, X):
"""Bin data X.
Missing values will be mapped to the last bin.
For categorical features, the mapping will be incorrect for unknown
categories. Since the BinMapper is given known_categories of the
entire training data (i.e. before the call to train_test_split() in
case of early-stopping), this never happens.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to bin.
Returns
-------
X_binned : array-like of shape (n_samples, n_features)
The binned data (fortran-aligned).
"""
X = check_array(X, dtype=[X_DTYPE], ensure_all_finite=False)
check_is_fitted(self)
if X.shape[1] != self.n_bins_non_missing_.shape[0]:
raise ValueError(
"This estimator was fitted with {} features but {} got passed "
"to transform()".format(self.n_bins_non_missing_.shape[0], X.shape[1])
)
n_threads = _openmp_effective_n_threads(self.n_threads)
binned = np.zeros_like(X, dtype=X_BINNED_DTYPE, order="F")
_map_to_bins(
X,
self.bin_thresholds_,
self.is_categorical_,
self.missing_values_bin_idx_,
n_threads,
binned,
)
return binned
|
Bin data X.
Missing values will be mapped to the last bin.
For categorical features, the mapping will be incorrect for unknown
categories. Since the BinMapper is given known_categories of the
entire training data (i.e. before the call to train_test_split() in
case of early-stopping), this never happens.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data to bin.
Returns
-------
X_binned : array-like of shape (n_samples, n_features)
The binned data (fortran-aligned).
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/binning.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/binning.py
|
BSD-3-Clause
|
def make_known_categories_bitsets(self):
"""Create bitsets of known categories.
Returns
-------
- known_cat_bitsets : ndarray of shape (n_categorical_features, 8)
Array of bitsets of known categories, for each categorical feature.
- f_idx_map : ndarray of shape (n_features,)
Map from original feature index to the corresponding index in the
known_cat_bitsets array.
"""
categorical_features_indices = np.flatnonzero(self.is_categorical_)
n_features = self.is_categorical_.size
n_categorical_features = categorical_features_indices.size
f_idx_map = np.zeros(n_features, dtype=np.uint32)
f_idx_map[categorical_features_indices] = np.arange(
n_categorical_features, dtype=np.uint32
)
known_categories = self.bin_thresholds_
known_cat_bitsets = np.zeros(
(n_categorical_features, 8), dtype=X_BITSET_INNER_DTYPE
)
# TODO: complexity is O(n_categorical_features * 255). Maybe this is
# worth cythonizing
for mapped_f_idx, f_idx in enumerate(categorical_features_indices):
for raw_cat_val in known_categories[f_idx]:
set_bitset_memoryview(known_cat_bitsets[mapped_f_idx], raw_cat_val)
return known_cat_bitsets, f_idx_map
|
Create bitsets of known categories.
Returns
-------
- known_cat_bitsets : ndarray of shape (n_categorical_features, 8)
Array of bitsets of known categories, for each categorical feature.
- f_idx_map : ndarray of shape (n_features,)
Map from original feature index to the corresponding index in the
known_cat_bitsets array.
|
make_known_categories_bitsets
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/binning.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/binning.py
|
BSD-3-Clause
|
def _update_leaves_values(loss, grower, y_true, raw_prediction, sample_weight):
"""Update the leaf values to be predicted by the tree.
Update equals:
loss.fit_intercept_only(y_true - raw_prediction)
This is only applied if loss.differentiable is False.
Note: It only works, if the loss is a function of the residual, as is the
case for AbsoluteError and PinballLoss. Otherwise, one would need to get
the minimum of loss(y_true, raw_prediction + x) in x. A few examples:
- AbsoluteError: median(y_true - raw_prediction).
- PinballLoss: quantile(y_true - raw_prediction).
More background:
For the standard gradient descent method according to "Greedy Function
Approximation: A Gradient Boosting Machine" by Friedman, all loss functions but the
squared loss need a line search step. BaseHistGradientBoosting, however, implements
a so called Newton boosting where the trees are fitted to a 2nd order
approximations of the loss in terms of gradients and hessians. In this case, the
line search step is only necessary if the loss is not smooth, i.e. not
differentiable, which renders the 2nd order approximation invalid. In fact,
non-smooth losses arbitrarily set hessians to 1 and effectively use the standard
gradient descent method with line search.
"""
# TODO: Ideally this should be computed in parallel over the leaves using something
# similar to _update_raw_predictions(), but this requires a cython version of
# median().
for leaf in grower.finalized_leaves:
indices = leaf.sample_indices
if sample_weight is None:
sw = None
else:
sw = sample_weight[indices]
update = loss.fit_intercept_only(
y_true=y_true[indices] - raw_prediction[indices],
sample_weight=sw,
)
leaf.value = grower.shrinkage * update
# Note that the regularization is ignored here
|
Update the leaf values to be predicted by the tree.
Update equals:
loss.fit_intercept_only(y_true - raw_prediction)
This is only applied if loss.differentiable is False.
Note: It only works, if the loss is a function of the residual, as is the
case for AbsoluteError and PinballLoss. Otherwise, one would need to get
the minimum of loss(y_true, raw_prediction + x) in x. A few examples:
- AbsoluteError: median(y_true - raw_prediction).
- PinballLoss: quantile(y_true - raw_prediction).
More background:
For the standard gradient descent method according to "Greedy Function
Approximation: A Gradient Boosting Machine" by Friedman, all loss functions but the
squared loss need a line search step. BaseHistGradientBoosting, however, implements
a so called Newton boosting where the trees are fitted to a 2nd order
approximations of the loss in terms of gradients and hessians. In this case, the
line search step is only necessary if the loss is not smooth, i.e. not
differentiable, which renders the 2nd order approximation invalid. In fact,
non-smooth losses arbitrarily set hessians to 1 and effectively use the standard
gradient descent method with line search.
|
_update_leaves_values
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _patch_raw_predict(estimator, raw_predictions):
"""Context manager that patches _raw_predict to return raw_predictions.
`raw_predictions` is typically a precomputed array to avoid redundant
state-wise computations fitting with early stopping enabled: in this case
`raw_predictions` is incrementally updated whenever we add a tree to the
boosted ensemble.
Note: this makes fitting HistGradientBoosting* models inherently non thread
safe at fit time. However thread-safety at fit time was never guaranteed nor
enforced for scikit-learn estimators in general.
Thread-safety at prediction/transform time is another matter as those
operations are typically side-effect free and therefore often thread-safe by
default for most scikit-learn models and would like to keep it that way.
Therefore this context manager should only be used at fit time.
TODO: in the future, we could explore the possibility to extend the scorer
public API to expose a way to compute vales from raw predictions. That would
probably require also making the scorer aware of the inverse link function
used by the estimator which is typically private API for now, hence the need
for this patching mechanism.
"""
orig_raw_predict = estimator._raw_predict
def _patched_raw_predicts(*args, **kwargs):
return raw_predictions
estimator._raw_predict = _patched_raw_predicts
yield estimator
estimator._raw_predict = orig_raw_predict
|
Context manager that patches _raw_predict to return raw_predictions.
`raw_predictions` is typically a precomputed array to avoid redundant
state-wise computations fitting with early stopping enabled: in this case
`raw_predictions` is incrementally updated whenever we add a tree to the
boosted ensemble.
Note: this makes fitting HistGradientBoosting* models inherently non thread
safe at fit time. However thread-safety at fit time was never guaranteed nor
enforced for scikit-learn estimators in general.
Thread-safety at prediction/transform time is another matter as those
operations are typically side-effect free and therefore often thread-safe by
default for most scikit-learn models and would like to keep it that way.
Therefore this context manager should only be used at fit time.
TODO: in the future, we could explore the possibility to extend the scorer
public API to expose a way to compute vales from raw predictions. That would
probably require also making the scorer aware of the inverse link function
used by the estimator which is typically private API for now, hence the need
for this patching mechanism.
|
_patch_raw_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _validate_parameters(self):
"""Validate parameters passed to __init__.
The parameters that are directly passed to the grower are checked in
TreeGrower."""
if self.monotonic_cst is not None and self.n_trees_per_iteration_ != 1:
raise ValueError(
"monotonic constraints are not supported for multiclass classification."
)
|
Validate parameters passed to __init__.
The parameters that are directly passed to the grower are checked in
TreeGrower.
|
_validate_parameters
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _preprocess_X(self, X, *, reset):
"""Preprocess and validate X.
Parameters
----------
X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
Input data.
reset : bool
Whether to reset the `n_features_in_` and `feature_names_in_ attributes.
Returns
-------
X : ndarray of shape (n_samples, n_features)
Validated input data.
known_categories : list of ndarray of shape (n_categories,)
List of known categories for each categorical feature.
"""
# If there is a preprocessor, we let the preprocessor handle the validation.
# Otherwise, we validate the data ourselves.
check_X_kwargs = dict(dtype=[X_DTYPE], ensure_all_finite=False)
if not reset:
if self._preprocessor is None:
return validate_data(self, X, reset=False, **check_X_kwargs)
return self._preprocessor.transform(X)
# At this point, reset is False, which runs during `fit`.
self.is_categorical_ = self._check_categorical_features(X)
if self.is_categorical_ is None:
self._preprocessor = None
self._is_categorical_remapped = None
X = validate_data(self, X, **check_X_kwargs)
return X, None
n_features = X.shape[1]
ordinal_encoder = OrdinalEncoder(
categories="auto",
handle_unknown="use_encoded_value",
unknown_value=np.nan,
encoded_missing_value=np.nan,
dtype=X_DTYPE,
)
check_X = partial(check_array, **check_X_kwargs)
numerical_preprocessor = FunctionTransformer(check_X)
self._preprocessor = ColumnTransformer(
[
("encoder", ordinal_encoder, self.is_categorical_),
("numerical", numerical_preprocessor, ~self.is_categorical_),
]
)
self._preprocessor.set_output(transform="default")
X = self._preprocessor.fit_transform(X)
# check categories found by the OrdinalEncoder and get their encoded values
known_categories = self._check_categories()
self.n_features_in_ = self._preprocessor.n_features_in_
with suppress(AttributeError):
self.feature_names_in_ = self._preprocessor.feature_names_in_
# The ColumnTransformer's output places the categorical features at the
# beginning
categorical_remapped = np.zeros(n_features, dtype=bool)
categorical_remapped[self._preprocessor.output_indices_["encoder"]] = True
self._is_categorical_remapped = categorical_remapped
return X, known_categories
|
Preprocess and validate X.
Parameters
----------
X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
Input data.
reset : bool
Whether to reset the `n_features_in_` and `feature_names_in_ attributes.
Returns
-------
X : ndarray of shape (n_samples, n_features)
Validated input data.
known_categories : list of ndarray of shape (n_categories,)
List of known categories for each categorical feature.
|
_preprocess_X
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _check_categories(self):
"""Check categories found by the preprocessor and return their encoded values.
Returns a list of length ``self.n_features_in_``, with one entry per
input feature.
For non-categorical features, the corresponding entry is ``None``.
For categorical features, the corresponding entry is an array
containing the categories as encoded by the preprocessor (an
``OrdinalEncoder``), excluding missing values. The entry is therefore
``np.arange(n_categories)`` where ``n_categories`` is the number of
unique values in the considered feature column, after removing missing
values.
If ``n_categories > self.max_bins`` for any feature, a ``ValueError``
is raised.
"""
encoder = self._preprocessor.named_transformers_["encoder"]
known_categories = [None] * self._preprocessor.n_features_in_
categorical_column_indices = np.arange(self._preprocessor.n_features_in_)[
self._preprocessor.output_indices_["encoder"]
]
for feature_idx, categories in zip(
categorical_column_indices, encoder.categories_
):
# OrdinalEncoder always puts np.nan as the last category if the
# training data has missing values. Here we remove it because it is
# already added by the _BinMapper.
if len(categories) and is_scalar_nan(categories[-1]):
categories = categories[:-1]
if categories.size > self.max_bins:
try:
feature_name = repr(encoder.feature_names_in_[feature_idx])
except AttributeError:
feature_name = f"at index {feature_idx}"
raise ValueError(
f"Categorical feature {feature_name} is expected to "
f"have a cardinality <= {self.max_bins} but actually "
f"has a cardinality of {categories.size}."
)
known_categories[feature_idx] = np.arange(len(categories), dtype=X_DTYPE)
return known_categories
|
Check categories found by the preprocessor and return their encoded values.
Returns a list of length ``self.n_features_in_``, with one entry per
input feature.
For non-categorical features, the corresponding entry is ``None``.
For categorical features, the corresponding entry is an array
containing the categories as encoded by the preprocessor (an
``OrdinalEncoder``), excluding missing values. The entry is therefore
``np.arange(n_categories)`` where ``n_categories`` is the number of
unique values in the considered feature column, after removing missing
values.
If ``n_categories > self.max_bins`` for any feature, a ``ValueError``
is raised.
|
_check_categories
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _check_categorical_features(self, X):
"""Check and validate categorical features in X
Parameters
----------
X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
Input data.
Return
------
is_categorical : ndarray of shape (n_features,) or None, dtype=bool
Indicates whether a feature is categorical. If no feature is
categorical, this is None.
"""
# Special code for pandas because of a bug in recent pandas, which is
# fixed in main and maybe included in 2.2.1, see
# https://github.com/pandas-dev/pandas/pull/57173.
# Also pandas versions < 1.5.1 do not support the dataframe interchange
if _is_pandas_df(X):
X_is_dataframe = True
categorical_columns_mask = np.asarray(X.dtypes == "category")
elif hasattr(X, "__dataframe__"):
X_is_dataframe = True
categorical_columns_mask = np.asarray(
[
c.dtype[0].name == "CATEGORICAL"
for c in X.__dataframe__().get_columns()
]
)
else:
X_is_dataframe = False
categorical_columns_mask = None
categorical_features = self.categorical_features
categorical_by_dtype = (
isinstance(categorical_features, str)
and categorical_features == "from_dtype"
)
no_categorical_dtype = categorical_features is None or (
categorical_by_dtype and not X_is_dataframe
)
if no_categorical_dtype:
return None
use_pandas_categorical = categorical_by_dtype and X_is_dataframe
if use_pandas_categorical:
categorical_features = categorical_columns_mask
else:
categorical_features = np.asarray(categorical_features)
if categorical_features.size == 0:
return None
if categorical_features.dtype.kind not in ("i", "b", "U", "O"):
raise ValueError(
"categorical_features must be an array-like of bool, int or "
f"str, got: {categorical_features.dtype.name}."
)
if categorical_features.dtype.kind == "O":
types = set(type(f) for f in categorical_features)
if types != {str}:
raise ValueError(
"categorical_features must be an array-like of bool, int or "
f"str, got: {', '.join(sorted(t.__name__ for t in types))}."
)
n_features = X.shape[1]
# At this point `validate_data` was not called yet because we use the original
# dtypes to discover the categorical features. Thus `feature_names_in_`
# is not defined yet.
feature_names_in_ = getattr(X, "columns", None)
if categorical_features.dtype.kind in ("U", "O"):
# check for feature names
if feature_names_in_ is None:
raise ValueError(
"categorical_features should be passed as an array of "
"integers or as a boolean mask when the model is fitted "
"on data without feature names."
)
is_categorical = np.zeros(n_features, dtype=bool)
feature_names = list(feature_names_in_)
for feature_name in categorical_features:
try:
is_categorical[feature_names.index(feature_name)] = True
except ValueError as e:
raise ValueError(
f"categorical_features has a item value '{feature_name}' "
"which is not a valid feature name of the training "
f"data. Observed feature names: {feature_names}"
) from e
elif categorical_features.dtype.kind == "i":
# check for categorical features as indices
if (
np.max(categorical_features) >= n_features
or np.min(categorical_features) < 0
):
raise ValueError(
"categorical_features set as integer "
"indices must be in [0, n_features - 1]"
)
is_categorical = np.zeros(n_features, dtype=bool)
is_categorical[categorical_features] = True
else:
if categorical_features.shape[0] != n_features:
raise ValueError(
"categorical_features set as a boolean mask "
"must have shape (n_features,), got: "
f"{categorical_features.shape}"
)
is_categorical = categorical_features
if not np.any(is_categorical):
return None
return is_categorical
|
Check and validate categorical features in X
Parameters
----------
X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
Input data.
Return
------
is_categorical : ndarray of shape (n_features,) or None, dtype=bool
Indicates whether a feature is categorical. If no feature is
categorical, this is None.
|
_check_categorical_features
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
def _check_interaction_cst(self, n_features):
"""Check and validation for interaction constraints."""
if self.interaction_cst is None:
return None
if self.interaction_cst == "no_interactions":
interaction_cst = [[i] for i in range(n_features)]
elif self.interaction_cst == "pairwise":
interaction_cst = itertools.combinations(range(n_features), 2)
else:
interaction_cst = self.interaction_cst
try:
constraints = [set(group) for group in interaction_cst]
except TypeError:
raise ValueError(
"Interaction constraints must be a sequence of tuples or lists, got:"
f" {self.interaction_cst!r}."
)
for group in constraints:
for x in group:
if not (isinstance(x, Integral) and 0 <= x < n_features):
raise ValueError(
"Interaction constraints must consist of integer indices in"
f" [0, n_features - 1] = [0, {n_features - 1}], specifying the"
" position of features, got invalid indices:"
f" {group!r}"
)
# Add all not listed features as own group by default.
rest = set(range(n_features)) - set().union(*constraints)
if len(rest) > 0:
constraints.append(rest)
return constraints
|
Check and validation for interaction constraints.
|
_check_interaction_cst
|
python
|
scikit-learn/scikit-learn
|
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.