code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def open_atomic(filepath, *args, **kwargs):
""" Open temporary file object that atomically moves to destination upon
exiting.
Allows reading and writing to and from the same filename.
Parameters
----------
filepath : string
the file path to be opened
fsync : bool
whether to force write the file to disk
kwargs : mixed
Any valid keyword arguments for :code:`open`
"""
fsync = kwargs.pop('fsync', False)
with _tempfile(dir=os.path.dirname(filepath)) as tmppath:
with open(tmppath, *args, **kwargs) as f:
yield f
if fsync:
f.flush()
os.fsync(f.fileno())
os.rename(tmppath, filepath)
|
Open temporary file object that atomically moves to destination upon
exiting.
Allows reading and writing to and from the same filename.
Parameters
----------
filepath : string
the file path to be opened
fsync : bool
whether to force write the file to disk
kwargs : mixed
Any valid keyword arguments for :code:`open`
|
open_atomic
|
python
|
karpathy/arxiv-sanity-preserver
|
utils.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/utils.py
|
MIT
|
async def generate_report_plan(state: ReportState, config: RunnableConfig):
"""Generate the initial report plan with sections.
This node:
1. Gets configuration for the report structure and search parameters
2. Generates search queries to gather context for planning
3. Performs web searches using those queries
4. Uses an LLM to generate a structured plan with sections
Args:
state: Current graph state containing the report topic
config: Configuration for models, search APIs, etc.
Returns:
Dict containing the generated sections
"""
# Inputs
topic = state["topic"]
# Get list of feedback on the report plan
feedback_list = state.get("feedback_on_report_plan", [])
# Concatenate feedback on the report plan into a single string
feedback = " /// ".join(feedback_list) if feedback_list else ""
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
report_structure = configurable.report_structure
number_of_queries = configurable.number_of_queries
search_api = get_config_value(configurable.search_api)
search_api_config = configurable.search_api_config or {} # Get the config dict, default to empty
params_to_pass = get_search_params(search_api, search_api_config) # Filter parameters
# Convert JSON object to string if necessary
if isinstance(report_structure, dict):
report_structure = str(report_structure)
# Set writer model (model used for query writing)
writer_provider = get_config_value(configurable.writer_provider)
writer_model_name = get_config_value(configurable.writer_model)
writer_model_kwargs = get_config_value(configurable.writer_model_kwargs or {})
writer_model = init_chat_model(model=writer_model_name, model_provider=writer_provider, model_kwargs=writer_model_kwargs)
structured_llm = writer_model.with_structured_output(Queries)
# Format system instructions
system_instructions_query = report_planner_query_writer_instructions.format(
topic=topic,
report_organization=report_structure,
number_of_queries=number_of_queries,
today=get_today_str()
)
# Generate queries
results = await structured_llm.ainvoke([SystemMessage(content=system_instructions_query),
HumanMessage(content="Generate search queries that will help with planning the sections of the report.")])
# Web search
query_list = [query.search_query for query in results.queries]
# Search the web with parameters
source_str = await select_and_execute_search(search_api, query_list, params_to_pass)
# Format system instructions
system_instructions_sections = report_planner_instructions.format(topic=topic, report_organization=report_structure, context=source_str, feedback=feedback)
# Set the planner
planner_provider = get_config_value(configurable.planner_provider)
planner_model = get_config_value(configurable.planner_model)
planner_model_kwargs = get_config_value(configurable.planner_model_kwargs or {})
# Report planner instructions
planner_message = """Generate the sections of the report. Your response must include a 'sections' field containing a list of sections.
Each section must have: name, description, research, and content fields."""
# Run the planner
if planner_model == "claude-3-7-sonnet-latest":
# Allocate a thinking budget for claude-3-7-sonnet-latest as the planner model
planner_llm = init_chat_model(model=planner_model,
model_provider=planner_provider,
max_tokens=20_000,
thinking={"type": "enabled", "budget_tokens": 16_000})
else:
# With other models, thinking tokens are not specifically allocated
planner_llm = init_chat_model(model=planner_model,
model_provider=planner_provider,
model_kwargs=planner_model_kwargs)
# Generate the report sections
structured_llm = planner_llm.with_structured_output(Sections)
report_sections = await structured_llm.ainvoke([SystemMessage(content=system_instructions_sections),
HumanMessage(content=planner_message)])
# Get sections
sections = report_sections.sections
return {"sections": sections}
|
Generate the initial report plan with sections.
This node:
1. Gets configuration for the report structure and search parameters
2. Generates search queries to gather context for planning
3. Performs web searches using those queries
4. Uses an LLM to generate a structured plan with sections
Args:
state: Current graph state containing the report topic
config: Configuration for models, search APIs, etc.
Returns:
Dict containing the generated sections
|
generate_report_plan
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
def human_feedback(state: ReportState, config: RunnableConfig) -> Command[Literal["generate_report_plan","build_section_with_web_research"]]:
"""Get human feedback on the report plan and route to next steps.
This node:
1. Formats the current report plan for human review
2. Gets feedback via an interrupt
3. Routes to either:
- Section writing if plan is approved
- Plan regeneration if feedback is provided
Args:
state: Current graph state with sections to review
config: Configuration for the workflow
Returns:
Command to either regenerate plan or start section writing
"""
# Get sections
topic = state["topic"]
sections = state['sections']
sections_str = "\n\n".join(
f"Section: {section.name}\n"
f"Description: {section.description}\n"
f"Research needed: {'Yes' if section.research else 'No'}\n"
for section in sections
)
# Get feedback on the report plan from interrupt
interrupt_message = f"""Please provide feedback on the following report plan.
\n\n{sections_str}\n
\nDoes the report plan meet your needs?\nPass 'true' to approve the report plan.\nOr, provide feedback to regenerate the report plan:"""
feedback = interrupt(interrupt_message)
# If the user approves the report plan, kick off section writing
if isinstance(feedback, bool) and feedback is True:
# Treat this as approve and kick off section writing
return Command(goto=[
Send("build_section_with_web_research", {"topic": topic, "section": s, "search_iterations": 0})
for s in sections
if s.research
])
# If the user provides feedback, regenerate the report plan
elif isinstance(feedback, str):
# Treat this as feedback and append it to the existing list
return Command(goto="generate_report_plan",
update={"feedback_on_report_plan": [feedback]})
else:
raise TypeError(f"Interrupt value of type {type(feedback)} is not supported.")
|
Get human feedback on the report plan and route to next steps.
This node:
1. Formats the current report plan for human review
2. Gets feedback via an interrupt
3. Routes to either:
- Section writing if plan is approved
- Plan regeneration if feedback is provided
Args:
state: Current graph state with sections to review
config: Configuration for the workflow
Returns:
Command to either regenerate plan or start section writing
|
human_feedback
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
async def generate_queries(state: SectionState, config: RunnableConfig):
"""Generate search queries for researching a specific section.
This node uses an LLM to generate targeted search queries based on the
section topic and description.
Args:
state: Current state containing section details
config: Configuration including number of queries to generate
Returns:
Dict containing the generated search queries
"""
# Get state
topic = state["topic"]
section = state["section"]
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
number_of_queries = configurable.number_of_queries
# Generate queries
writer_provider = get_config_value(configurable.writer_provider)
writer_model_name = get_config_value(configurable.writer_model)
writer_model_kwargs = get_config_value(configurable.writer_model_kwargs or {})
writer_model = init_chat_model(model=writer_model_name, model_provider=writer_provider, model_kwargs=writer_model_kwargs)
structured_llm = writer_model.with_structured_output(Queries)
# Format system instructions
system_instructions = query_writer_instructions.format(topic=topic,
section_topic=section.description,
number_of_queries=number_of_queries,
today=get_today_str())
# Generate queries
queries = await structured_llm.ainvoke([SystemMessage(content=system_instructions),
HumanMessage(content="Generate search queries on the provided topic.")])
return {"search_queries": queries.queries}
|
Generate search queries for researching a specific section.
This node uses an LLM to generate targeted search queries based on the
section topic and description.
Args:
state: Current state containing section details
config: Configuration including number of queries to generate
Returns:
Dict containing the generated search queries
|
generate_queries
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
async def search_web(state: SectionState, config: RunnableConfig):
"""Execute web searches for the section queries.
This node:
1. Takes the generated queries
2. Executes searches using configured search API
3. Formats results into usable context
Args:
state: Current state with search queries
config: Search API configuration
Returns:
Dict with search results and updated iteration count
"""
# Get state
search_queries = state["search_queries"]
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
search_api = get_config_value(configurable.search_api)
search_api_config = configurable.search_api_config or {} # Get the config dict, default to empty
params_to_pass = get_search_params(search_api, search_api_config) # Filter parameters
# Web search
query_list = [query.search_query for query in search_queries]
# Search the web with parameters
source_str = await select_and_execute_search(search_api, query_list, params_to_pass)
return {"source_str": source_str, "search_iterations": state["search_iterations"] + 1}
|
Execute web searches for the section queries.
This node:
1. Takes the generated queries
2. Executes searches using configured search API
3. Formats results into usable context
Args:
state: Current state with search queries
config: Search API configuration
Returns:
Dict with search results and updated iteration count
|
search_web
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
async def write_section(state: SectionState, config: RunnableConfig) -> Command[Literal[END, "search_web"]]:
"""Write a section of the report and evaluate if more research is needed.
This node:
1. Writes section content using search results
2. Evaluates the quality of the section
3. Either:
- Completes the section if quality passes
- Triggers more research if quality fails
Args:
state: Current state with search results and section info
config: Configuration for writing and evaluation
Returns:
Command to either complete section or do more research
"""
# Get state
topic = state["topic"]
section = state["section"]
source_str = state["source_str"]
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
# Format system instructions
section_writer_inputs_formatted = section_writer_inputs.format(topic=topic,
section_name=section.name,
section_topic=section.description,
context=source_str,
section_content=section.content)
# Generate section
writer_provider = get_config_value(configurable.writer_provider)
writer_model_name = get_config_value(configurable.writer_model)
writer_model_kwargs = get_config_value(configurable.writer_model_kwargs or {})
writer_model = init_chat_model(model=writer_model_name, model_provider=writer_provider, model_kwargs=writer_model_kwargs)
section_content = await writer_model.ainvoke([SystemMessage(content=section_writer_instructions),
HumanMessage(content=section_writer_inputs_formatted)])
# Write content to the section object
section.content = section_content.content
# Grade prompt
section_grader_message = ("Grade the report and consider follow-up questions for missing information. "
"If the grade is 'pass', return empty strings for all follow-up queries. "
"If the grade is 'fail', provide specific search queries to gather missing information.")
section_grader_instructions_formatted = section_grader_instructions.format(topic=topic,
section_topic=section.description,
section=section.content,
number_of_follow_up_queries=configurable.number_of_queries)
# Use planner model for reflection
planner_provider = get_config_value(configurable.planner_provider)
planner_model = get_config_value(configurable.planner_model)
planner_model_kwargs = get_config_value(configurable.planner_model_kwargs or {})
if planner_model == "claude-3-7-sonnet-latest":
# Allocate a thinking budget for claude-3-7-sonnet-latest as the planner model
reflection_model = init_chat_model(model=planner_model,
model_provider=planner_provider,
max_tokens=20_000,
thinking={"type": "enabled", "budget_tokens": 16_000}).with_structured_output(Feedback)
else:
reflection_model = init_chat_model(model=planner_model,
model_provider=planner_provider, model_kwargs=planner_model_kwargs).with_structured_output(Feedback)
# Generate feedback
feedback = await reflection_model.ainvoke([SystemMessage(content=section_grader_instructions_formatted),
HumanMessage(content=section_grader_message)])
# If the section is passing or the max search depth is reached, publish the section to completed sections
if feedback.grade == "pass" or state["search_iterations"] >= configurable.max_search_depth:
# Publish the section to completed sections
update = {"completed_sections": [section]}
if configurable.include_source_str:
update["source_str"] = source_str
return Command(update=update, goto=END)
# Update the existing section with new content and update search queries
else:
return Command(
update={"search_queries": feedback.follow_up_queries, "section": section},
goto="search_web"
)
|
Write a section of the report and evaluate if more research is needed.
This node:
1. Writes section content using search results
2. Evaluates the quality of the section
3. Either:
- Completes the section if quality passes
- Triggers more research if quality fails
Args:
state: Current state with search results and section info
config: Configuration for writing and evaluation
Returns:
Command to either complete section or do more research
|
write_section
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
async def write_final_sections(state: SectionState, config: RunnableConfig):
"""Write sections that don't require research using completed sections as context.
This node handles sections like conclusions or summaries that build on
the researched sections rather than requiring direct research.
Args:
state: Current state with completed sections as context
config: Configuration for the writing model
Returns:
Dict containing the newly written section
"""
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
# Get state
topic = state["topic"]
section = state["section"]
completed_report_sections = state["report_sections_from_research"]
# Format system instructions
system_instructions = final_section_writer_instructions.format(topic=topic, section_name=section.name, section_topic=section.description, context=completed_report_sections)
# Generate section
writer_provider = get_config_value(configurable.writer_provider)
writer_model_name = get_config_value(configurable.writer_model)
writer_model_kwargs = get_config_value(configurable.writer_model_kwargs or {})
writer_model = init_chat_model(model=writer_model_name, model_provider=writer_provider, model_kwargs=writer_model_kwargs)
section_content = await writer_model.ainvoke([SystemMessage(content=system_instructions),
HumanMessage(content="Generate a report section based on the provided sources.")])
# Write content to section
section.content = section_content.content
# Write the updated section to completed sections
return {"completed_sections": [section]}
|
Write sections that don't require research using completed sections as context.
This node handles sections like conclusions or summaries that build on
the researched sections rather than requiring direct research.
Args:
state: Current state with completed sections as context
config: Configuration for the writing model
Returns:
Dict containing the newly written section
|
write_final_sections
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
def gather_completed_sections(state: ReportState):
"""Format completed sections as context for writing final sections.
This node takes all completed research sections and formats them into
a single context string for writing summary sections.
Args:
state: Current state with completed sections
Returns:
Dict with formatted sections as context
"""
# List of completed sections
completed_sections = state["completed_sections"]
# Format completed section to str to use as context for final sections
completed_report_sections = format_sections(completed_sections)
return {"report_sections_from_research": completed_report_sections}
|
Format completed sections as context for writing final sections.
This node takes all completed research sections and formats them into
a single context string for writing summary sections.
Args:
state: Current state with completed sections
Returns:
Dict with formatted sections as context
|
gather_completed_sections
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
def compile_final_report(state: ReportState, config: RunnableConfig):
"""Compile all sections into the final report.
This node:
1. Gets all completed sections
2. Orders them according to original plan
3. Combines them into the final report
Args:
state: Current state with all completed sections
Returns:
Dict containing the complete report
"""
# Get configuration
configurable = WorkflowConfiguration.from_runnable_config(config)
# Get sections
sections = state["sections"]
completed_sections = {s.name: s.content for s in state["completed_sections"]}
# Update sections with completed content while maintaining original order
for section in sections:
section.content = completed_sections[section.name]
# Compile final report
all_sections = "\n\n".join([s.content for s in sections])
if configurable.include_source_str:
return {"final_report": all_sections, "source_str": state["source_str"]}
else:
return {"final_report": all_sections}
|
Compile all sections into the final report.
This node:
1. Gets all completed sections
2. Orders them according to original plan
3. Combines them into the final report
Args:
state: Current state with all completed sections
Returns:
Dict containing the complete report
|
compile_final_report
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
def initiate_final_section_writing(state: ReportState):
"""Create parallel tasks for writing non-research sections.
This edge function identifies sections that don't need research and
creates parallel writing tasks for each one.
Args:
state: Current state with all sections and research context
Returns:
List of Send commands for parallel section writing
"""
# Kick off section writing in parallel via Send() API for any sections that do not require research
return [
Send("write_final_sections", {"topic": state["topic"], "section": s, "report_sections_from_research": state["report_sections_from_research"]})
for s in state["sections"]
if not s.research
]
|
Create parallel tasks for writing non-research sections.
This edge function identifies sections that don't need research and
creates parallel writing tasks for each one.
Args:
state: Current state with all sections and research context
Returns:
List of Send commands for parallel section writing
|
initiate_final_section_writing
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/graph.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/graph.py
|
MIT
|
def get_search_tool(config: RunnableConfig):
"""Get the appropriate search tool based on configuration"""
configurable = MultiAgentConfiguration.from_runnable_config(config)
search_api = get_config_value(configurable.search_api)
# Return None if no search tool is requested
if search_api.lower() == "none":
return None
# TODO: Configure other search functions as tools
if search_api.lower() == "tavily":
search_tool = tavily_search
elif search_api.lower() == "duckduckgo":
search_tool = duckduckgo_search
else:
raise NotImplementedError(
f"The search API '{search_api}' is not yet supported in the multi-agent implementation. "
f"Currently, only Tavily/DuckDuckGo/None is supported. Please use the graph-based implementation in "
f"src/open_deep_research/graph.py for other search APIs, or set search_api to 'tavily', 'duckduckgo', or 'none'."
)
tool_metadata = {**(search_tool.metadata or {}), "type": "search"}
search_tool.metadata = tool_metadata
return search_tool
|
Get the appropriate search tool based on configuration
|
get_search_tool
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def get_supervisor_tools(config: RunnableConfig) -> list[BaseTool]:
"""Get supervisor tools based on configuration"""
configurable = MultiAgentConfiguration.from_runnable_config(config)
search_tool = get_search_tool(config)
tools = [tool(Sections), tool(Introduction), tool(Conclusion), tool(FinishReport)]
if configurable.ask_for_clarification:
tools.append(tool(Question))
if search_tool is not None:
tools.append(search_tool) # Add search tool, if available
existing_tool_names = {cast(BaseTool, tool).name for tool in tools}
mcp_tools = await _load_mcp_tools(config, existing_tool_names)
tools.extend(mcp_tools)
return tools
|
Get supervisor tools based on configuration
|
get_supervisor_tools
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def get_research_tools(config: RunnableConfig) -> list[BaseTool]:
"""Get research tools based on configuration"""
search_tool = get_search_tool(config)
tools = [tool(Section), tool(FinishResearch)]
if search_tool is not None:
tools.append(search_tool) # Add search tool, if available
existing_tool_names = {cast(BaseTool, tool).name for tool in tools}
mcp_tools = await _load_mcp_tools(config, existing_tool_names)
tools.extend(mcp_tools)
return tools
|
Get research tools based on configuration
|
get_research_tools
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def supervisor(state: ReportState, config: RunnableConfig):
"""LLM decides whether to call a tool or not"""
# Messages
messages = state["messages"]
# Get configuration
configurable = MultiAgentConfiguration.from_runnable_config(config)
supervisor_model = get_config_value(configurable.supervisor_model)
# Initialize the model
llm = init_chat_model(model=supervisor_model)
# If sections have been completed, but we don't yet have the final report, then we need to initiate writing the introduction and conclusion
if state.get("completed_sections") and not state.get("final_report"):
research_complete_message = {"role": "user", "content": "Research is complete. Now write the introduction and conclusion for the report. Here are the completed main body sections: \n\n" + "\n\n".join([s.content for s in state["completed_sections"]])}
messages = messages + [research_complete_message]
# Get tools based on configuration
supervisor_tool_list = await get_supervisor_tools(config)
llm_with_tools = (
llm
.bind_tools(
supervisor_tool_list,
parallel_tool_calls=False,
# force at least one tool call
tool_choice="any"
)
)
# Get system prompt
system_prompt = SUPERVISOR_INSTRUCTIONS.format(today=get_today_str())
if configurable.mcp_prompt:
system_prompt += f"\n\n{configurable.mcp_prompt}"
# Invoke
return {
"messages": [
await llm_with_tools.ainvoke(
[
{
"role": "system",
"content": system_prompt
}
]
+ messages
)
]
}
|
LLM decides whether to call a tool or not
|
supervisor
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def supervisor_tools(state: ReportState, config: RunnableConfig) -> Command[Literal["supervisor", "research_team", "__end__"]]:
"""Performs the tool call and sends to the research agent"""
configurable = MultiAgentConfiguration.from_runnable_config(config)
result = []
sections_list = []
intro_content = None
conclusion_content = None
source_str = ""
# Get tools based on configuration
supervisor_tool_list = await get_supervisor_tools(config)
supervisor_tools_by_name = {tool.name: tool for tool in supervisor_tool_list}
search_tool_names = {
tool.name
for tool in supervisor_tool_list
if tool.metadata is not None and tool.metadata.get("type") == "search"
}
# First process all tool calls to ensure we respond to each one (required for OpenAI)
for tool_call in state["messages"][-1].tool_calls:
# Get the tool
tool = supervisor_tools_by_name[tool_call["name"]]
# Perform the tool call - use ainvoke for async tools
try:
observation = await tool.ainvoke(tool_call["args"], config)
except NotImplementedError:
observation = tool.invoke(tool_call["args"], config)
# Append to messages
result.append({"role": "tool",
"content": observation,
"name": tool_call["name"],
"tool_call_id": tool_call["id"]})
# Store special tool results for processing after all tools have been called
if tool_call["name"] == "Question":
# Question tool was called - return to supervisor to ask the question
question_obj = cast(Question, observation)
result.append({"role": "assistant", "content": question_obj.question})
return Command(goto=END, update={"messages": result})
elif tool_call["name"] == "Sections":
sections_list = cast(Sections, observation).sections
elif tool_call["name"] == "Introduction":
# Format introduction with proper H1 heading if not already formatted
observation = cast(Introduction, observation)
if not observation.content.startswith("# "):
intro_content = f"# {observation.name}\n\n{observation.content}"
else:
intro_content = observation.content
elif tool_call["name"] == "Conclusion":
# Format conclusion with proper H2 heading if not already formatted
observation = cast(Conclusion, observation)
if not observation.content.startswith("## "):
conclusion_content = f"## {observation.name}\n\n{observation.content}"
else:
conclusion_content = observation.content
elif tool_call["name"] in search_tool_names and configurable.include_source_str:
source_str += cast(str, observation)
# After processing all tool calls, decide what to do next
if sections_list:
# Send the sections to the research agents
return Command(goto=[Send("research_team", {"section": s}) for s in sections_list], update={"messages": result})
elif intro_content:
# Store introduction while waiting for conclusion
# Append to messages to guide the LLM to write conclusion next
result.append({"role": "user", "content": "Introduction written. Now write a conclusion section."})
state_update = {
"final_report": intro_content,
"messages": result,
}
elif conclusion_content:
# Get all sections and combine in proper order: Introduction, Body Sections, Conclusion
intro = state.get("final_report", "")
body_sections = "\n\n".join([s.content for s in state["completed_sections"]])
# Assemble final report in correct order
complete_report = f"{intro}\n\n{body_sections}\n\n{conclusion_content}"
# Append to messages to indicate completion
result.append({"role": "user", "content": "Report is now complete with introduction, body sections, and conclusion."})
state_update = {
"final_report": complete_report,
"messages": result,
}
else:
# Default case (for search tools, etc.)
state_update = {"messages": result}
# Include source string for evaluation
if configurable.include_source_str and source_str:
state_update["source_str"] = source_str
return Command(goto="supervisor", update=state_update)
|
Performs the tool call and sends to the research agent
|
supervisor_tools
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def supervisor_should_continue(state: ReportState) -> str:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
# End because the supervisor asked a question or is finished
if not last_message.tool_calls or (len(last_message.tool_calls) == 1 and last_message.tool_calls[0]["name"] == "FinishReport"):
# Exit the graph
return END
# If the LLM makes a tool call, then perform an action
return "supervisor_tools"
|
Decide if we should continue the loop or stop based upon whether the LLM made a tool call
|
supervisor_should_continue
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def research_agent(state: SectionState, config: RunnableConfig):
"""LLM decides whether to call a tool or not"""
# Get configuration
configurable = MultiAgentConfiguration.from_runnable_config(config)
researcher_model = get_config_value(configurable.researcher_model)
# Initialize the model
llm = init_chat_model(model=researcher_model)
# Get tools based on configuration
research_tool_list = await get_research_tools(config)
system_prompt = RESEARCH_INSTRUCTIONS.format(
section_description=state["section"],
number_of_queries=configurable.number_of_queries,
today=get_today_str(),
)
if configurable.mcp_prompt:
system_prompt += f"\n\n{configurable.mcp_prompt}"
# Ensure we have at least one user message (required by Anthropic)
messages = state.get("messages", [])
if not messages:
messages = [{"role": "user", "content": f"Please research and write the section: {state['section']}"}]
return {
"messages": [
# Enforce tool calling to either perform more search or call the Section tool to write the section
await llm.bind_tools(research_tool_list,
parallel_tool_calls=False,
# force at least one tool call
tool_choice="any").ainvoke(
[
{
"role": "system",
"content": system_prompt
}
]
+ messages
)
]
}
|
LLM decides whether to call a tool or not
|
research_agent
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def research_agent_tools(state: SectionState, config: RunnableConfig):
"""Performs the tool call and route to supervisor or continue the research loop"""
configurable = MultiAgentConfiguration.from_runnable_config(config)
result = []
completed_section = None
source_str = ""
# Get tools based on configuration
research_tool_list = await get_research_tools(config)
research_tools_by_name = {tool.name: tool for tool in research_tool_list}
search_tool_names = {
tool.name
for tool in research_tool_list
if tool.metadata is not None and tool.metadata.get("type") == "search"
}
# Process all tool calls first (required for OpenAI)
for tool_call in state["messages"][-1].tool_calls:
# Get the tool
tool = research_tools_by_name[tool_call["name"]]
# Perform the tool call - use ainvoke for async tools
try:
observation = await tool.ainvoke(tool_call["args"], config)
except NotImplementedError:
observation = tool.invoke(tool_call["args"], config)
# Append to messages
result.append({"role": "tool",
"content": observation,
"name": tool_call["name"],
"tool_call_id": tool_call["id"]})
# Store the section observation if a Section tool was called
if tool_call["name"] == "Section":
completed_section = cast(Section, observation)
# Store the source string if a search tool was called
if tool_call["name"] in search_tool_names and configurable.include_source_str:
source_str += cast(str, observation)
# After processing all tools, decide what to do next
state_update = {"messages": result}
if completed_section:
# Write the completed section to state and return to the supervisor
state_update["completed_sections"] = [completed_section]
if configurable.include_source_str and source_str:
state_update["source_str"] = source_str
return state_update
|
Performs the tool call and route to supervisor or continue the research loop
|
research_agent_tools
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
async def research_agent_should_continue(state: SectionState) -> str:
"""Decide if we should continue the loop or stop based upon whether the LLM made a tool call"""
messages = state["messages"]
last_message = messages[-1]
if last_message.tool_calls[0]["name"] == "FinishResearch":
# Research is done - return to supervisor
return END
else:
return "research_agent_tools"
|
Decide if we should continue the loop or stop based upon whether the LLM made a tool call
|
research_agent_should_continue
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/multi_agent.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/multi_agent.py
|
MIT
|
def get_config_value(value):
"""
Helper function to handle string, dict, and enum cases of configuration values
"""
if isinstance(value, str):
return value
elif isinstance(value, dict):
return value
else:
return value.value
|
Helper function to handle string, dict, and enum cases of configuration values
|
get_config_value
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
def get_search_params(search_api: str, search_api_config: Optional[Dict[str, Any]]) -> Dict[str, Any]:
"""
Filters the search_api_config dictionary to include only parameters accepted by the specified search API.
Args:
search_api (str): The search API identifier (e.g., "exa", "tavily").
search_api_config (Optional[Dict[str, Any]]): The configuration dictionary for the search API.
Returns:
Dict[str, Any]: A dictionary of parameters to pass to the search function.
"""
# Define accepted parameters for each search API
SEARCH_API_PARAMS = {
"exa": ["max_characters", "num_results", "include_domains", "exclude_domains", "subpages"],
"tavily": ["max_results", "topic"],
"perplexity": [], # Perplexity accepts no additional parameters
"arxiv": ["load_max_docs", "get_full_documents", "load_all_available_meta"],
"pubmed": ["top_k_results", "email", "api_key", "doc_content_chars_max"],
"linkup": ["depth"],
"googlesearch": ["max_results"],
}
# Get the list of accepted parameters for the given search API
accepted_params = SEARCH_API_PARAMS.get(search_api, [])
# If no config provided, return an empty dict
if not search_api_config:
return {}
# Filter the config to only include accepted parameters
return {k: v for k, v in search_api_config.items() if k in accepted_params}
|
Filters the search_api_config dictionary to include only parameters accepted by the specified search API.
Args:
search_api (str): The search API identifier (e.g., "exa", "tavily").
search_api_config (Optional[Dict[str, Any]]): The configuration dictionary for the search API.
Returns:
Dict[str, Any]: A dictionary of parameters to pass to the search function.
|
get_search_params
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
def format_sections(sections: list[Section]) -> str:
""" Format a list of sections into a string """
formatted_str = ""
for idx, section in enumerate(sections, 1):
formatted_str += f"""
{'='*60}
Section {idx}: {section.name}
{'='*60}
Description:
{section.description}
Requires Research:
{section.research}
Content:
{section.content if section.content else '[Not yet written]'}
"""
return formatted_str
|
Format a list of sections into a string
|
format_sections
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def tavily_search_async(search_queries, max_results: int = 5, topic: Literal["general", "news", "finance"] = "general", include_raw_content: bool = True):
"""
Performs concurrent web searches with the Tavily API
Args:
search_queries (List[str]): List of search queries to process
max_results (int): Maximum number of results to return
topic (Literal["general", "news", "finance"]): Topic to filter results by
include_raw_content (bool): Whether to include raw content in the results
Returns:
List[dict]: List of search responses from Tavily API:
{
'query': str,
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the webpage
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full page content if available
},
...
]
}
"""
tavily_async_client = AsyncTavilyClient()
search_tasks = []
for query in search_queries:
search_tasks.append(
tavily_async_client.search(
query,
max_results=max_results,
include_raw_content=include_raw_content,
topic=topic
)
)
# Execute all searches concurrently
search_docs = await asyncio.gather(*search_tasks)
return search_docs
|
Performs concurrent web searches with the Tavily API
Args:
search_queries (List[str]): List of search queries to process
max_results (int): Maximum number of results to return
topic (Literal["general", "news", "finance"]): Topic to filter results by
include_raw_content (bool): Whether to include raw content in the results
Returns:
List[dict]: List of search responses from Tavily API:
{
'query': str,
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the webpage
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full page content if available
},
...
]
}
|
tavily_search_async
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def azureaisearch_search_async(search_queries: list[str], max_results: int = 5, topic: str = "general", include_raw_content: bool = True) -> list[dict]:
"""
Performs concurrent web searches using the Azure AI Search API.
Args:
search_queries (List[str]): list of search queries to process
max_results (int): maximum number of results to return for each query
topic (str): semantic topic filter for the search.
include_raw_content (bool)
Returns:
List[dict]: list of search responses from Azure AI Search API, one per query.
"""
# configure and create the Azure Search client
# ensure all environment variables are set
if not all(var in os.environ for var in ["AZURE_AI_SEARCH_ENDPOINT", "AZURE_AI_SEARCH_INDEX_NAME", "AZURE_AI_SEARCH_API_KEY"]):
raise ValueError("Missing required environment variables for Azure Search API which are: AZURE_AI_SEARCH_ENDPOINT, AZURE_AI_SEARCH_INDEX_NAME, AZURE_AI_SEARCH_API_KEY")
endpoint = os.getenv("AZURE_AI_SEARCH_ENDPOINT")
index_name = os.getenv("AZURE_AI_SEARCH_INDEX_NAME")
credential = AzureKeyCredential(os.getenv("AZURE_AI_SEARCH_API_KEY"))
reranker_key = '@search.reranker_score'
async with AsyncAzureAISearchClient(endpoint, index_name, credential) as client:
async def do_search(query: str) -> dict:
# search query
paged = await client.search(
search_text=query,
vector_queries=[{
"fields": "vector",
"kind": "text",
"text": query,
"exhaustive": True
}],
semantic_configuration_name="fraunhofer-rag-semantic-config",
query_type="semantic",
select=["url", "title", "chunk", "creationTime", "lastModifiedTime"],
top=max_results,
)
# async iterator to get all results
items = [doc async for doc in paged]
# Umwandlung in einfaches Dict-Format
results = [
{
"title": doc.get("title"),
"url": doc.get("url"),
"content": doc.get("chunk"),
"score": doc.get(reranker_key),
"raw_content": doc.get("chunk") if include_raw_content else None
}
for doc in items
]
return {"query": query, "results": results}
# parallelize the search queries
tasks = [do_search(q) for q in search_queries]
return await asyncio.gather(*tasks)
|
Performs concurrent web searches using the Azure AI Search API.
Args:
search_queries (List[str]): list of search queries to process
max_results (int): maximum number of results to return for each query
topic (str): semantic topic filter for the search.
include_raw_content (bool)
Returns:
List[dict]: list of search responses from Azure AI Search API, one per query.
|
azureaisearch_search_async
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
def perplexity_search(search_queries):
"""Search the web using the Perplexity API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
Returns:
List[dict]: List of search responses from Perplexity API, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full content or None for secondary citations
},
...
]
}
"""
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.getenv('PERPLEXITY_API_KEY')}"
}
search_docs = []
for query in search_queries:
payload = {
"model": "sonar-pro",
"messages": [
{
"role": "system",
"content": "Search the web and provide factual information with sources."
},
{
"role": "user",
"content": query
}
]
}
response = requests.post(
"https://api.perplexity.ai/chat/completions",
headers=headers,
json=payload
)
response.raise_for_status() # Raise exception for bad status codes
# Parse the response
data = response.json()
content = data["choices"][0]["message"]["content"]
citations = data.get("citations", ["https://perplexity.ai"])
# Create results list for this query
results = []
# First citation gets the full content
results.append({
"title": f"Perplexity Search, Source 1",
"url": citations[0],
"content": content,
"raw_content": content,
"score": 1.0 # Adding score to match Tavily format
})
# Add additional citations without duplicating content
for i, citation in enumerate(citations[1:], start=2):
results.append({
"title": f"Perplexity Search, Source {i}",
"url": citation,
"content": "See primary source for full content",
"raw_content": None,
"score": 0.5 # Lower score for secondary sources
})
# Format response to match Tavily structure
search_docs.append({
"query": query,
"follow_up_questions": None,
"answer": None,
"images": [],
"results": results
})
return search_docs
|
Search the web using the Perplexity API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
Returns:
List[dict]: List of search responses from Perplexity API, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full content or None for secondary citations
},
...
]
}
|
perplexity_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def exa_search(search_queries, max_characters: Optional[int] = None, num_results=5,
include_domains: Optional[List[str]] = None,
exclude_domains: Optional[List[str]] = None,
subpages: Optional[int] = None):
"""Search the web using the Exa API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
max_characters (int, optional): Maximum number of characters to retrieve for each result's raw content.
If None, the text parameter will be set to True instead of an object.
num_results (int): Number of search results per query. Defaults to 5.
include_domains (List[str], optional): List of domains to include in search results.
When specified, only results from these domains will be returned.
exclude_domains (List[str], optional): List of domains to exclude from search results.
Cannot be used together with include_domains.
subpages (int, optional): Number of subpages to retrieve per result. If None, subpages are not retrieved.
Returns:
List[dict]: List of search responses from Exa API, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full content or None for secondary citations
},
...
]
}
"""
# Check that include_domains and exclude_domains are not both specified
if include_domains and exclude_domains:
raise ValueError("Cannot specify both include_domains and exclude_domains")
# Initialize Exa client (API key should be configured in your .env file)
exa = Exa(api_key = f"{os.getenv('EXA_API_KEY')}")
# Define the function to process a single query
async def process_query(query):
# Use run_in_executor to make the synchronous exa call in a non-blocking way
loop = asyncio.get_event_loop()
# Define the function for the executor with all parameters
def exa_search_fn():
# Build parameters dictionary
kwargs = {
# Set text to True if max_characters is None, otherwise use an object with max_characters
"text": True if max_characters is None else {"max_characters": max_characters},
"summary": True, # This is an amazing feature by EXA. It provides an AI generated summary of the content based on the query
"num_results": num_results
}
# Add optional parameters only if they are provided
if subpages is not None:
kwargs["subpages"] = subpages
if include_domains:
kwargs["include_domains"] = include_domains
elif exclude_domains:
kwargs["exclude_domains"] = exclude_domains
return exa.search_and_contents(query, **kwargs)
response = await loop.run_in_executor(None, exa_search_fn)
# Format the response to match the expected output structure
formatted_results = []
seen_urls = set() # Track URLs to avoid duplicates
# Helper function to safely get value regardless of if item is dict or object
def get_value(item, key, default=None):
if isinstance(item, dict):
return item.get(key, default)
else:
return getattr(item, key, default) if hasattr(item, key) else default
# Access the results from the SearchResponse object
results_list = get_value(response, 'results', [])
# First process all main results
for result in results_list:
# Get the score with a default of 0.0 if it's None or not present
score = get_value(result, 'score', 0.0)
# Combine summary and text for content if both are available
text_content = get_value(result, 'text', '')
summary_content = get_value(result, 'summary', '')
content = text_content
if summary_content:
if content:
content = f"{summary_content}\n\n{content}"
else:
content = summary_content
title = get_value(result, 'title', '')
url = get_value(result, 'url', '')
# Skip if we've seen this URL before (removes duplicate entries)
if url in seen_urls:
continue
seen_urls.add(url)
# Main result entry
result_entry = {
"title": title,
"url": url,
"content": content,
"score": score,
"raw_content": text_content
}
# Add the main result to the formatted results
formatted_results.append(result_entry)
# Now process subpages only if the subpages parameter was provided
if subpages is not None:
for result in results_list:
subpages_list = get_value(result, 'subpages', [])
for subpage in subpages_list:
# Get subpage score
subpage_score = get_value(subpage, 'score', 0.0)
# Combine summary and text for subpage content
subpage_text = get_value(subpage, 'text', '')
subpage_summary = get_value(subpage, 'summary', '')
subpage_content = subpage_text
if subpage_summary:
if subpage_content:
subpage_content = f"{subpage_summary}\n\n{subpage_content}"
else:
subpage_content = subpage_summary
subpage_url = get_value(subpage, 'url', '')
# Skip if we've seen this URL before
if subpage_url in seen_urls:
continue
seen_urls.add(subpage_url)
formatted_results.append({
"title": get_value(subpage, 'title', ''),
"url": subpage_url,
"content": subpage_content,
"score": subpage_score,
"raw_content": subpage_text
})
# Collect images if available (only from main results to avoid duplication)
images = []
for result in results_list:
image = get_value(result, 'image')
if image and image not in images: # Avoid duplicate images
images.append(image)
return {
"query": query,
"follow_up_questions": None,
"answer": None,
"images": images,
"results": formatted_results
}
# Process all queries sequentially with delay to respect rate limit
search_docs = []
for i, query in enumerate(search_queries):
try:
# Add delay between requests (0.25s = 4 requests per second, well within the 5/s limit)
if i > 0: # Don't delay the first request
await asyncio.sleep(0.25)
result = await process_query(query)
search_docs.append(result)
except Exception as e:
# Handle exceptions gracefully
print(f"Error processing query '{query}': {str(e)}")
# Add a placeholder result for failed queries to maintain index alignment
search_docs.append({
"query": query,
"follow_up_questions": None,
"answer": None,
"images": [],
"results": [],
"error": str(e)
})
# Add additional delay if we hit a rate limit error
if "429" in str(e):
print("Rate limit exceeded. Adding additional delay...")
await asyncio.sleep(1.0) # Add a longer delay if we hit a rate limit
return search_docs
|
Search the web using the Exa API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
max_characters (int, optional): Maximum number of characters to retrieve for each result's raw content.
If None, the text parameter will be set to True instead of an object.
num_results (int): Number of search results per query. Defaults to 5.
include_domains (List[str], optional): List of domains to include in search results.
When specified, only results from these domains will be returned.
exclude_domains (List[str], optional): List of domains to exclude from search results.
Cannot be used together with include_domains.
subpages (int, optional): Number of subpages to retrieve per result. If None, subpages are not retrieved.
Returns:
List[dict]: List of search responses from Exa API, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': list,
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
'score': float, # Relevance score
'raw_content': str|None # Full content or None for secondary citations
},
...
]
}
|
exa_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def arxiv_search_async(search_queries, load_max_docs=5, get_full_documents=True, load_all_available_meta=True):
"""
Performs concurrent searches on arXiv using the ArxivRetriever.
Args:
search_queries (List[str]): List of search queries or article IDs
load_max_docs (int, optional): Maximum number of documents to return per query. Default is 5.
get_full_documents (bool, optional): Whether to fetch full text of documents. Default is True.
load_all_available_meta (bool, optional): Whether to load all available metadata. Default is True.
Returns:
List[dict]: List of search responses from arXiv, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': [],
'results': [ # List of search results
{
'title': str, # Title of the paper
'url': str, # URL (Entry ID) of the paper
'content': str, # Formatted summary with metadata
'score': float, # Relevance score (approximated)
'raw_content': str|None # Full paper content if available
},
...
]
}
"""
async def process_single_query(query):
try:
# Create retriever for each query
retriever = ArxivRetriever(
load_max_docs=load_max_docs,
get_full_documents=get_full_documents,
load_all_available_meta=load_all_available_meta
)
# Run the synchronous retriever in a thread pool
loop = asyncio.get_event_loop()
docs = await loop.run_in_executor(None, lambda: retriever.invoke(query))
results = []
# Assign decreasing scores based on the order
base_score = 1.0
score_decrement = 1.0 / (len(docs) + 1) if docs else 0
for i, doc in enumerate(docs):
# Extract metadata
metadata = doc.metadata
# Use entry_id as the URL (this is the actual arxiv link)
url = metadata.get('entry_id', '')
# Format content with all useful metadata
content_parts = []
# Primary information
if 'Summary' in metadata:
content_parts.append(f"Summary: {metadata['Summary']}")
if 'Authors' in metadata:
content_parts.append(f"Authors: {metadata['Authors']}")
# Add publication information
published = metadata.get('Published')
published_str = published.isoformat() if hasattr(published, 'isoformat') else str(published) if published else ''
if published_str:
content_parts.append(f"Published: {published_str}")
# Add additional metadata if available
if 'primary_category' in metadata:
content_parts.append(f"Primary Category: {metadata['primary_category']}")
if 'categories' in metadata and metadata['categories']:
content_parts.append(f"Categories: {', '.join(metadata['categories'])}")
if 'comment' in metadata and metadata['comment']:
content_parts.append(f"Comment: {metadata['comment']}")
if 'journal_ref' in metadata and metadata['journal_ref']:
content_parts.append(f"Journal Reference: {metadata['journal_ref']}")
if 'doi' in metadata and metadata['doi']:
content_parts.append(f"DOI: {metadata['doi']}")
# Get PDF link if available in the links
pdf_link = ""
if 'links' in metadata and metadata['links']:
for link in metadata['links']:
if 'pdf' in link:
pdf_link = link
content_parts.append(f"PDF: {pdf_link}")
break
# Join all content parts with newlines
content = "\n".join(content_parts)
result = {
'title': metadata.get('Title', ''),
'url': url, # Using entry_id as the URL
'content': content,
'score': base_score - (i * score_decrement),
'raw_content': doc.page_content if get_full_documents else None
}
results.append(result)
return {
'query': query,
'follow_up_questions': None,
'answer': None,
'images': [],
'results': results
}
except Exception as e:
# Handle exceptions gracefully
print(f"Error processing arXiv query '{query}': {str(e)}")
return {
'query': query,
'follow_up_questions': None,
'answer': None,
'images': [],
'results': [],
'error': str(e)
}
# Process queries sequentially with delay to respect arXiv rate limit (1 request per 3 seconds)
search_docs = []
for i, query in enumerate(search_queries):
try:
# Add delay between requests (3 seconds per ArXiv's rate limit)
if i > 0: # Don't delay the first request
await asyncio.sleep(3.0)
result = await process_single_query(query)
search_docs.append(result)
except Exception as e:
# Handle exceptions gracefully
print(f"Error processing arXiv query '{query}': {str(e)}")
search_docs.append({
'query': query,
'follow_up_questions': None,
'answer': None,
'images': [],
'results': [],
'error': str(e)
})
# Add additional delay if we hit a rate limit error
if "429" in str(e) or "Too Many Requests" in str(e):
print("ArXiv rate limit exceeded. Adding additional delay...")
await asyncio.sleep(5.0) # Add a longer delay if we hit a rate limit
return search_docs
|
Performs concurrent searches on arXiv using the ArxivRetriever.
Args:
search_queries (List[str]): List of search queries or article IDs
load_max_docs (int, optional): Maximum number of documents to return per query. Default is 5.
get_full_documents (bool, optional): Whether to fetch full text of documents. Default is True.
load_all_available_meta (bool, optional): Whether to load all available metadata. Default is True.
Returns:
List[dict]: List of search responses from arXiv, one per query. Each response has format:
{
'query': str, # The original search query
'follow_up_questions': None,
'answer': None,
'images': [],
'results': [ # List of search results
{
'title': str, # Title of the paper
'url': str, # URL (Entry ID) of the paper
'content': str, # Formatted summary with metadata
'score': float, # Relevance score (approximated)
'raw_content': str|None # Full paper content if available
},
...
]
}
|
arxiv_search_async
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def linkup_search(search_queries, depth: Optional[str] = "standard"):
"""
Performs concurrent web searches using the Linkup API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
depth (str, optional): "standard" (default) or "deep". More details here https://docs.linkup.so/pages/documentation/get-started/concepts
Returns:
List[dict]: List of search responses from Linkup API, one per query. Each response has format:
{
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
},
...
]
}
"""
client = LinkupClient()
search_tasks = []
for query in search_queries:
search_tasks.append(
client.async_search(
query,
depth,
output_type="searchResults",
)
)
search_results = []
for response in await asyncio.gather(*search_tasks):
search_results.append(
{
"results": [
{"title": result.name, "url": result.url, "content": result.content}
for result in response.results
],
}
)
return search_results
|
Performs concurrent web searches using the Linkup API.
Args:
search_queries (List[SearchQuery]): List of search queries to process
depth (str, optional): "standard" (default) or "deep". More details here https://docs.linkup.so/pages/documentation/get-started/concepts
Returns:
List[dict]: List of search responses from Linkup API, one per query. Each response has format:
{
'results': [ # List of search results
{
'title': str, # Title of the search result
'url': str, # URL of the result
'content': str, # Summary/snippet of content
},
...
]
}
|
linkup_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def google_search_async(search_queries: Union[str, List[str]], max_results: int = 5, include_raw_content: bool = True):
"""
Performs concurrent web searches using Google.
Uses Google Custom Search API if environment variables are set, otherwise falls back to web scraping.
Args:
search_queries (List[str]): List of search queries to process
max_results (int): Maximum number of results to return per query
include_raw_content (bool): Whether to fetch full page content
Returns:
List[dict]: List of search responses from Google, one per query
"""
# Check for API credentials from environment variables
api_key = os.environ.get("GOOGLE_API_KEY")
cx = os.environ.get("GOOGLE_CX")
use_api = bool(api_key and cx)
# Handle case where search_queries is a single string
if isinstance(search_queries, str):
search_queries = [search_queries]
# Define user agent generator
def get_useragent():
"""Generates a random user agent string."""
lynx_version = f"Lynx/{random.randint(2, 3)}.{random.randint(8, 9)}.{random.randint(0, 2)}"
libwww_version = f"libwww-FM/{random.randint(2, 3)}.{random.randint(13, 15)}"
ssl_mm_version = f"SSL-MM/{random.randint(1, 2)}.{random.randint(3, 5)}"
openssl_version = f"OpenSSL/{random.randint(1, 3)}.{random.randint(0, 4)}.{random.randint(0, 9)}"
return f"{lynx_version} {libwww_version} {ssl_mm_version} {openssl_version}"
# Create executor for running synchronous operations
executor = None if use_api else concurrent.futures.ThreadPoolExecutor(max_workers=5)
# Use a semaphore to limit concurrent requests
semaphore = asyncio.Semaphore(5 if use_api else 2)
async def search_single_query(query):
async with semaphore:
try:
results = []
# API-based search
if use_api:
# The API returns up to 10 results per request
for start_index in range(1, max_results + 1, 10):
# Calculate how many results to request in this batch
num = min(10, max_results - (start_index - 1))
# Make request to Google Custom Search API
params = {
'q': query,
'key': api_key,
'cx': cx,
'start': start_index,
'num': num
}
print(f"Requesting {num} results for '{query}' from Google API...")
async with aiohttp.ClientSession() as session:
async with session.get('https://www.googleapis.com/customsearch/v1', params=params) as response:
if response.status != 200:
error_text = await response.text()
print(f"API error: {response.status}, {error_text}")
break
data = await response.json()
# Process search results
for item in data.get('items', []):
result = {
"title": item.get('title', ''),
"url": item.get('link', ''),
"content": item.get('snippet', ''),
"score": None,
"raw_content": item.get('snippet', '')
}
results.append(result)
# Respect API quota with a small delay
await asyncio.sleep(0.2)
# If we didn't get a full page of results, no need to request more
if not data.get('items') or len(data.get('items', [])) < num:
break
# Web scraping based search
else:
# Add delay between requests
await asyncio.sleep(0.5 + random.random() * 1.5)
print(f"Scraping Google for '{query}'...")
# Define scraping function
def google_search(query, max_results):
try:
lang = "en"
safe = "active"
start = 0
fetched_results = 0
fetched_links = set()
search_results = []
while fetched_results < max_results:
# Send request to Google
resp = requests.get(
url="https://www.google.com/search",
headers={
"User-Agent": get_useragent(),
"Accept": "*/*"
},
params={
"q": query,
"num": max_results + 2,
"hl": lang,
"start": start,
"safe": safe,
},
cookies = {
'CONSENT': 'PENDING+987', # Bypasses the consent page
'SOCS': 'CAESHAgBEhIaAB',
}
)
resp.raise_for_status()
# Parse results
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", class_="ezO2md")
new_results = 0
for result in result_block:
link_tag = result.find("a", href=True)
title_tag = link_tag.find("span", class_="CVA68e") if link_tag else None
description_tag = result.find("span", class_="FrIlee")
if link_tag and title_tag and description_tag:
link = unquote(link_tag["href"].split("&")[0].replace("/url?q=", ""))
if link in fetched_links:
continue
fetched_links.add(link)
title = title_tag.text
description = description_tag.text
# Store result in the same format as the API results
search_results.append({
"title": title,
"url": link,
"content": description,
"score": None,
"raw_content": description
})
fetched_results += 1
new_results += 1
if fetched_results >= max_results:
break
if new_results == 0:
break
start += 10
time.sleep(1) # Delay between pages
return search_results
except Exception as e:
print(f"Error in Google search for '{query}': {str(e)}")
return []
# Execute search in thread pool
loop = asyncio.get_running_loop()
search_results = await loop.run_in_executor(
executor,
lambda: google_search(query, max_results)
)
# Process the results
results = search_results
# If requested, fetch full page content asynchronously (for both API and web scraping)
if include_raw_content and results:
content_semaphore = asyncio.Semaphore(3)
async with aiohttp.ClientSession() as session:
fetch_tasks = []
async def fetch_full_content(result):
async with content_semaphore:
url = result['url']
headers = {
'User-Agent': get_useragent(),
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'
}
try:
await asyncio.sleep(0.2 + random.random() * 0.6)
async with session.get(url, headers=headers, timeout=10) as response:
if response.status == 200:
# Check content type to handle binary files
content_type = response.headers.get('Content-Type', '').lower()
# Handle PDFs and other binary files
if 'application/pdf' in content_type or 'application/octet-stream' in content_type:
# For PDFs, indicate that content is binary and not parsed
result['raw_content'] = f"[Binary content: {content_type}. Content extraction not supported for this file type.]"
else:
try:
# Try to decode as UTF-8 with replacements for non-UTF8 characters
html = await response.text(errors='replace')
soup = BeautifulSoup(html, 'html.parser')
result['raw_content'] = soup.get_text()
except UnicodeDecodeError as ude:
# Fallback if we still have decoding issues
result['raw_content'] = f"[Could not decode content: {str(ude)}]"
except Exception as e:
print(f"Warning: Failed to fetch content for {url}: {str(e)}")
result['raw_content'] = f"[Error fetching content: {str(e)}]"
return result
for result in results:
fetch_tasks.append(fetch_full_content(result))
updated_results = await asyncio.gather(*fetch_tasks)
results = updated_results
print(f"Fetched full content for {len(results)} results")
return {
"query": query,
"follow_up_questions": None,
"answer": None,
"images": [],
"results": results
}
except Exception as e:
print(f"Error in Google search for query '{query}': {str(e)}")
return {
"query": query,
"follow_up_questions": None,
"answer": None,
"images": [],
"results": []
}
try:
# Create tasks for all search queries
search_tasks = [search_single_query(query) for query in search_queries]
# Execute all searches concurrently
search_results = await asyncio.gather(*search_tasks)
return search_results
finally:
# Only shut down executor if it was created
if executor:
executor.shutdown(wait=False)
|
Performs concurrent web searches using Google.
Uses Google Custom Search API if environment variables are set, otherwise falls back to web scraping.
Args:
search_queries (List[str]): List of search queries to process
max_results (int): Maximum number of results to return per query
include_raw_content (bool): Whether to fetch full page content
Returns:
List[dict]: List of search responses from Google, one per query
|
google_search_async
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def scrape_pages(titles: List[str], urls: List[str]) -> str:
"""
Scrapes content from a list of URLs and formats it into a readable markdown document.
This function:
1. Takes a list of page titles and URLs
2. Makes asynchronous HTTP requests to each URL
3. Converts HTML content to markdown
4. Formats all content with clear source attribution
Args:
titles (List[str]): A list of page titles corresponding to each URL
urls (List[str]): A list of URLs to scrape content from
Returns:
str: A formatted string containing the full content of each page in markdown format,
with clear section dividers and source attribution
"""
# Create an async HTTP client
async with httpx.AsyncClient(follow_redirects=True, timeout=30.0) as client:
pages = []
# Fetch each URL and convert to markdown
for url in urls:
try:
# Fetch the content
response = await client.get(url)
response.raise_for_status()
# Convert HTML to markdown if successful
if response.status_code == 200:
# Handle different content types
content_type = response.headers.get('Content-Type', '')
if 'text/html' in content_type:
# Convert HTML to markdown
markdown_content = markdownify(response.text)
pages.append(markdown_content)
else:
# For non-HTML content, just mention the content type
pages.append(f"Content type: {content_type} (not converted to markdown)")
else:
pages.append(f"Error: Received status code {response.status_code}")
except Exception as e:
# Handle any exceptions during fetch
pages.append(f"Error fetching URL: {str(e)}")
# Create formatted output
formatted_output = f"Search results: \n\n"
for i, (title, url, page) in enumerate(zip(titles, urls, pages)):
formatted_output += f"\n\n--- SOURCE {i+1}: {title} ---\n"
formatted_output += f"URL: {url}\n\n"
formatted_output += f"FULL CONTENT:\n {page}"
formatted_output += "\n\n" + "-" * 80 + "\n"
return formatted_output
|
Scrapes content from a list of URLs and formats it into a readable markdown document.
This function:
1. Takes a list of page titles and URLs
2. Makes asynchronous HTTP requests to each URL
3. Converts HTML content to markdown
4. Formats all content with clear source attribution
Args:
titles (List[str]): A list of page titles corresponding to each URL
urls (List[str]): A list of URLs to scrape content from
Returns:
str: A formatted string containing the full content of each page in markdown format,
with clear section dividers and source attribution
|
scrape_pages
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def tavily_search(
queries: List[str],
max_results: Annotated[int, InjectedToolArg] = 5,
topic: Annotated[Literal["general", "news", "finance"], InjectedToolArg] = "general",
config: RunnableConfig = None
) -> str:
"""
Fetches results from Tavily search API.
Args:
queries (List[str]): List of search queries
max_results (int): Maximum number of results to return
topic (Literal['general', 'news', 'finance']): Topic to filter results by
Returns:
str: A formatted string of search results
"""
# Use tavily_search_async with include_raw_content=True to get content directly
search_results = await tavily_search_async(
queries,
max_results=max_results,
topic=topic,
include_raw_content=True
)
# Format the search results directly using the raw_content already provided
formatted_output = f"Search results: \n\n"
# Deduplicate results by URL
unique_results = {}
for response in search_results:
for result in response['results']:
url = result['url']
if url not in unique_results:
unique_results[url] = {**result, "query": response['query']}
async def noop():
return None
configurable = Configuration.from_runnable_config(config)
max_char_to_include = 30_000
# TODO: share this behavior across all search implementations / tools
if configurable.process_search_results == "summarize":
if configurable.summarization_model_provider == "anthropic":
extra_kwargs = {"betas": ["extended-cache-ttl-2025-04-11"]}
else:
extra_kwargs = {}
summarization_model = init_chat_model(
model=configurable.summarization_model,
model_provider=configurable.summarization_model_provider,
**extra_kwargs
)
summarization_tasks = [
noop() if not result.get("raw_content") else summarize_webpage(summarization_model, result['raw_content'][:max_char_to_include])
for result in unique_results.values()
]
summaries = await asyncio.gather(*summarization_tasks)
unique_results = {
url: {'title': result['title'], 'content': result['content'] if summary is None else summary}
for url, result, summary in zip(unique_results.keys(), unique_results.values(), summaries)
}
elif configurable.process_search_results == "split_and_rerank":
embeddings = init_embeddings("openai:text-embedding-3-small")
results_by_query = itertools.groupby(unique_results.values(), key=lambda x: x['query'])
all_retrieved_docs = []
for query, query_results in results_by_query:
retrieved_docs = split_and_rerank_search_results(embeddings, query, query_results)
all_retrieved_docs.extend(retrieved_docs)
stitched_docs = stitch_documents_by_url(all_retrieved_docs)
unique_results = {
doc.metadata['url']: {'title': doc.metadata['title'], 'content': doc.page_content}
for doc in stitched_docs
}
# Format the unique results
for i, (url, result) in enumerate(unique_results.items()):
formatted_output += f"\n\n--- SOURCE {i+1}: {result['title']} ---\n"
formatted_output += f"URL: {url}\n\n"
formatted_output += f"SUMMARY:\n{result['content']}\n\n"
if result.get('raw_content'):
formatted_output += f"FULL CONTENT:\n{result['raw_content'][:max_char_to_include]}" # Limit content size
formatted_output += "\n\n" + "-" * 80 + "\n"
if unique_results:
return formatted_output
else:
return "No valid search results found. Please try different search queries or use a different search API."
|
Fetches results from Tavily search API.
Args:
queries (List[str]): List of search queries
max_results (int): Maximum number of results to return
topic (Literal['general', 'news', 'finance']): Topic to filter results by
Returns:
str: A formatted string of search results
|
tavily_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def azureaisearch_search(queries: List[str], max_results: int = 5, topic: str = "general") -> str:
"""
Fetches results from Azure AI Search API.
Args:
queries (List[str]): List of search queries
Returns:
str: A formatted string of search results
"""
# Use azureaisearch_search_async with include_raw_content=True to get content directly
search_results = await azureaisearch_search_async(
queries,
max_results=max_results,
topic=topic,
include_raw_content=True
)
# Format the search results directly using the raw_content already provided
formatted_output = f"Search results: \n\n"
# Deduplicate results by URL
unique_results = {}
for response in search_results:
for result in response['results']:
url = result['url']
if url not in unique_results:
unique_results[url] = result
# Format the unique results
for i, (url, result) in enumerate(unique_results.items()):
formatted_output += f"\n\n--- SOURCE {i+1}: {result['title']} ---\n"
formatted_output += f"URL: {url}\n\n"
formatted_output += f"SUMMARY:\n{result['content']}\n\n"
if result.get('raw_content'):
formatted_output += f"FULL CONTENT:\n{result['raw_content'][:30000]}" # Limit content size
formatted_output += "\n\n" + "-" * 80 + "\n"
if unique_results:
return formatted_output
else:
return "No valid search results found. Please try different search queries or use a different search API."
|
Fetches results from Azure AI Search API.
Args:
queries (List[str]): List of search queries
Returns:
str: A formatted string of search results
|
azureaisearch_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def select_and_execute_search(search_api: str, query_list: list[str], params_to_pass: dict) -> str:
"""Select and execute the appropriate search API.
Args:
search_api: Name of the search API to use
query_list: List of search queries to execute
params_to_pass: Parameters to pass to the search API
Returns:
Formatted string containing search results
Raises:
ValueError: If an unsupported search API is specified
"""
if search_api == "tavily":
# Tavily search tool used with both workflow and agent
# and returns a formatted source string
return await tavily_search.ainvoke({'queries': query_list, **params_to_pass})
elif search_api == "duckduckgo":
# DuckDuckGo search tool used with both workflow and agent
return await duckduckgo_search.ainvoke({'search_queries': query_list})
elif search_api == "perplexity":
search_results = perplexity_search(query_list, **params_to_pass)
elif search_api == "exa":
search_results = await exa_search(query_list, **params_to_pass)
elif search_api == "arxiv":
search_results = await arxiv_search_async(query_list, **params_to_pass)
elif search_api == "pubmed":
search_results = await pubmed_search_async(query_list, **params_to_pass)
elif search_api == "linkup":
search_results = await linkup_search(query_list, **params_to_pass)
elif search_api == "googlesearch":
search_results = await google_search_async(query_list, **params_to_pass)
elif search_api == "azureaisearch":
search_results = await azureaisearch_search_async(query_list, **params_to_pass)
else:
raise ValueError(f"Unsupported search API: {search_api}")
return deduplicate_and_format_sources(search_results, max_tokens_per_source=4000, deduplication_strategy="keep_first")
|
Select and execute the appropriate search API.
Args:
search_api: Name of the search API to use
query_list: List of search queries to execute
params_to_pass: Parameters to pass to the search API
Returns:
Formatted string containing search results
Raises:
ValueError: If an unsupported search API is specified
|
select_and_execute_search
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
async def load_mcp_server_config(path: str) -> dict:
"""Load MCP server configuration from a file."""
def _load():
with open(path, "r") as f:
config = json.load(f)
return config
config = await asyncio.to_thread(_load)
return config
|
Load MCP server configuration from a file.
|
load_mcp_server_config
|
python
|
langchain-ai/open_deep_research
|
src/open_deep_research/utils.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/src/open_deep_research/utils.py
|
MIT
|
def pytest_addoption(parser):
"""Add command-line options to pytest."""
parser.addoption("--research-agent", action="store", help="Agent type: multi_agent or graph")
parser.addoption("--search-api", action="store", help="Search API to use")
parser.addoption("--eval-model", action="store", help="Model for evaluation")
parser.addoption("--supervisor-model", action="store", help="Model for supervisor agent")
parser.addoption("--researcher-model", action="store", help="Model for researcher agent")
parser.addoption("--planner-provider", action="store", help="Provider for planner model")
parser.addoption("--planner-model", action="store", help="Model for planning")
parser.addoption("--writer-provider", action="store", help="Provider for writer model")
parser.addoption("--writer-model", action="store", help="Model for writing")
parser.addoption("--max-search-depth", action="store", help="Maximum search depth")
|
Add command-line options to pytest.
|
pytest_addoption
|
python
|
langchain-ai/open_deep_research
|
tests/conftest.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/conftest.py
|
MIT
|
def add_model_configs(cmd, args):
"""Add model configuration arguments to command."""
if args.supervisor_model:
cmd.append(f"--supervisor-model={args.supervisor_model}")
if args.researcher_model:
cmd.append(f"--researcher-model={args.researcher_model}")
if args.planner_provider:
cmd.append(f"--planner-provider={args.planner_provider}")
if args.planner_model:
cmd.append(f"--planner-model={args.planner_model}")
if args.writer_provider:
cmd.append(f"--writer-provider={args.writer_provider}")
if args.writer_model:
cmd.append(f"--writer-model={args.writer_model}")
if args.eval_model:
cmd.append(f"--eval-model={args.eval_model}")
if args.search_api:
cmd.append(f"--search-api={args.search_api}")
if args.max_search_depth:
cmd.append(f"--max-search-depth={args.max_search_depth}")
|
Add model configuration arguments to command.
|
add_model_configs
|
python
|
langchain-ai/open_deep_research
|
tests/run_test.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/run_test.py
|
MIT
|
def get_evaluation_llm(eval_model=None):
"""Create and return an evaluation LLM.
Args:
eval_model: Model identifier to use for evaluation
Format: "provider:model_name" (e.g., "anthropic:claude-3-7-sonnet-latest")
If None, it will use environment variable or default
Returns:
Structured LLM for generating evaluation grades
"""
# Use provided model, then environment variable, then default
model_to_use = eval_model or os.environ.get("EVAL_MODEL", "anthropic:claude-3-7-sonnet-latest")
criteria_eval_llm = init_chat_model(model_to_use)
return criteria_eval_llm.with_structured_output(CriteriaGrade)
|
Create and return an evaluation LLM.
Args:
eval_model: Model identifier to use for evaluation
Format: "provider:model_name" (e.g., "anthropic:claude-3-7-sonnet-latest")
If None, it will use environment variable or default
Returns:
Structured LLM for generating evaluation grades
|
get_evaluation_llm
|
python
|
langchain-ai/open_deep_research
|
tests/test_report_quality.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/test_report_quality.py
|
MIT
|
def models(request, research_agent):
"""Get model configurations based on agent type."""
if research_agent == "multi_agent":
return {
"supervisor_model": (
request.config.getoption("--supervisor-model") or
os.environ.get("SUPERVISOR_MODEL", "anthropic:claude-3-7-sonnet-latest")
),
"researcher_model": (
request.config.getoption("--researcher-model") or
os.environ.get("RESEARCHER_MODEL", "anthropic:claude-3-5-sonnet-latest")
),
}
else: # graph agent
return {
"planner_provider": (
request.config.getoption("--planner-provider") or
os.environ.get("PLANNER_PROVIDER", "anthropic")
),
"planner_model": (
request.config.getoption("--planner-model") or
os.environ.get("PLANNER_MODEL", "claude-3-7-sonnet-latest")
),
"writer_provider": (
request.config.getoption("--writer-provider") or
os.environ.get("WRITER_PROVIDER", "anthropic")
),
"writer_model": (
request.config.getoption("--writer-model") or
os.environ.get("WRITER_MODEL", "claude-3-5-sonnet-latest")
),
"max_search_depth": int(
request.config.getoption("--max-search-depth") or
os.environ.get("MAX_SEARCH_DEPTH", "2")
),
}
|
Get model configurations based on agent type.
|
models
|
python
|
langchain-ai/open_deep_research
|
tests/test_report_quality.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/test_report_quality.py
|
MIT
|
def test_response_criteria_evaluation(research_agent, search_api, models, eval_model):
"""Test if a report meets the specified quality criteria."""
console.print(Panel.fit(
f"[bold blue]Testing {research_agent} report generation with {search_api} search[/bold blue]",
title="Test Configuration"
))
# Create a table for model configuration
models_table = Table(title="Model Configuration")
models_table.add_column("Parameter", style="cyan")
models_table.add_column("Value", style="green")
for key, value in models.items():
models_table.add_row(key, str(value))
models_table.add_row("eval_model", eval_model)
console.print(models_table)
# Log inputs to LangSmith
t.log_inputs({
"agent_type": research_agent,
"search_api": search_api,
"models": models,
"eval_model": eval_model,
"test": "report_quality_evaluation",
"description": f"Testing report quality for {research_agent} with {search_api}"
})
# Run the appropriate agent based on the parameter
if research_agent == "multi_agent":
# Initial messages
initial_msg = [{"role": "user", "content": "Give me a high-level overview of MCP (model context protocol). Keep the report to 3 main body sections. One section on the origins of MPC, one section on interesting examples of MCP servers, and one section on the future roadmap for MCP. Report should be written for a developer audience."}]
# Checkpointer for the multi-agent approach
checkpointer = MemorySaver()
graph = supervisor_builder.compile(checkpointer=checkpointer)
# Create configuration with the provided parameters
config = {
"thread_id": str(uuid.uuid4()),
"search_api": search_api,
"supervisor_model": models.get("supervisor_model"),
"researcher_model": models.get("researcher_model"),
"ask_for_clarification": False, # Don't ask for clarification from the user and proceed to write the report
"process_search_results": "summarize", # Optionally summarize
}
thread_config = {"configurable": config}
# Run the workflow with asyncio
asyncio.run(graph.ainvoke({"messages": initial_msg}, config=thread_config))
# Get the final state once both invocations are complete
final_state = graph.get_state(thread_config)
report = final_state.values.get('final_report', "No report generated")
console.print(f"[bold green]Report generated with length: {len(report)} characters[/bold green]")
elif research_agent == "graph":
# Topic query
topic_query = "Give me a high-level overview of MCP (model context protocol). Keep the report to 3 main body sections. One section on the origins of MPC, one section on interesting examples of MCP servers, and one section on the future roadmap for MCP. Report should be written for a developer audience."
# Checkpointer for the graph approach
checkpointer = MemorySaver()
graph = builder.compile(checkpointer=checkpointer)
# Configuration for the graph agent with provided parameters
thread = {"configurable": {
"thread_id": str(uuid.uuid4()),
"search_api": search_api,
"planner_provider": models.get("planner_provider", "anthropic"),
"planner_model": models.get("planner_model", "claude-3-7-sonnet-latest"),
"writer_provider": models.get("writer_provider", "anthropic"),
"writer_model": models.get("writer_model", "claude-3-5-sonnet-latest"),
"max_search_depth": models.get("max_search_depth", 2),
}}
async def run_graph_agent(thread):
# Run the graph until the interruption
async for event in graph.astream({"topic":topic_query}, thread, stream_mode="updates"):
if '__interrupt__' in event:
interrupt_value = event['__interrupt__'][0].value
# Pass True to approve the report plan and proceed to write the report
async for event in graph.astream(Command(resume=True), thread, stream_mode="updates"):
# console.print(f"[dim]{event}[/dim]")
# console.print()
None
final_state = graph.get_state(thread)
report = final_state.values.get('final_report', "No report generated")
return report
report = asyncio.run(run_graph_agent(thread))
# Get evaluation LLM using the specified model
criteria_eval_structured_llm = get_evaluation_llm(eval_model)
# Evaluate the report against our quality criteria
eval_result = criteria_eval_structured_llm.invoke([
{"role": "system", "content": RESPONSE_CRITERIA_SYSTEM_PROMPT},
{"role": "user", "content": f"""\n\n Report: \n\n{report}\n\nEvaluate whether the report meets the criteria and provide detailed justification for your evaluation."""}
])
# Extract section headers for analysis
import re
section_headers = re.findall(r'##\s+([^\n]+)', report)
# Display the generated report
console.print(Panel(
Markdown(report),
title="Generated Report",
border_style="blue"
))
# Create evaluation results display
result_color = "green" if eval_result.grade else "red"
result_text = "PASSED" if eval_result.grade else "FAILED"
console.print(Panel.fit(
f"[bold {result_color}]{result_text}[/bold {result_color}]",
title="Evaluation Result"
))
# Create sections table
sections_table = Table(title="Report Structure Analysis")
sections_table.add_column("Section", style="cyan")
sections_table.add_column("Header", style="yellow")
for i, header in enumerate(section_headers, 1):
sections_table.add_row(f"Section {i}", header)
console.print(sections_table)
console.print(f"[bold]Total sections found: {len(section_headers)}[/bold]")
# Display justification in a panel
console.print(Panel(
eval_result.justification,
title="Evaluation Justification",
border_style="yellow"
))
# Log outputs to LangSmith
t.log_outputs({
"report": report,
"evaluation_result": eval_result.grade,
"justification": eval_result.justification,
"report_length": len(report),
"section_count": len(section_headers),
"section_headers": section_headers,
})
# Test passes if the evaluation criteria are met
assert eval_result.grade
|
Test if a report meets the specified quality criteria.
|
test_response_criteria_evaluation
|
python
|
langchain-ai/open_deep_research
|
tests/test_report_quality.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/test_report_quality.py
|
MIT
|
async def generate_report_multi_agent(
messages: list[MessageLikeRepresentation],
process_search_results: Literal["summarize", "split_and_rerank"] | None = None,
include_source: bool = True,
summarization_model: str = summarization_model,
summarization_model_provider: str = summarization_model_provider,
supervisor_model: str = supervisor_model,
researcher_model: str = researcher_model,
):
"""Generate a report using the open deep research multi-agent architecture"""
graph = supervisor_builder.compile()
config = {"configurable": {}}
if include_source:
config["configurable"]["include_source_str"] = True
if process_search_results:
config["configurable"]["process_search_results"] = process_search_results
config["configurable"]["summarization_model"] = summarization_model
config["configurable"]["summarization_model_provider"] = summarization_model_provider
config["configurable"]["supervisor_model"] = supervisor_model
config["configurable"]["researcher_model"] = researcher_model
final_state = await graph.ainvoke(
# this is a hack
# TODO: Find workaround at some point
{"messages": messages + [{"role": "user", "content": "Generate the report now and don't ask any more follow-up questions"}]},
config
)
return {
"messages": [
{"role": "assistant", "content": final_state["final_report"]}
]
}
|
Generate a report using the open deep research multi-agent architecture
|
generate_report_multi_agent
|
python
|
langchain-ai/open_deep_research
|
tests/evals/run_evaluate.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/evals/run_evaluate.py
|
MIT
|
async def generate_report_workflow(
query: str,
process_search_results: Literal["summarize", "split_and_rerank"] | None = None,
include_source: bool = True
):
"""Generate a report using the open deep research workflow"""
graph = builder.compile(checkpointer=MemorySaver())
config = {
"configurable": {
"thread_id": str(uuid.uuid4()),
}
}
if include_source:
config["configurable"]["include_source_str"] = True
if process_search_results:
config["configurable"]["process_search_results"] = process_search_results
# Run the graph until the interruption
await graph.ainvoke(
{"topic": query},
config
)
# Pass True to approve the report plan
final_state = await graph.ainvoke(Command(resume=True), config)
return final_state
|
Generate a report using the open deep research workflow
|
generate_report_workflow
|
python
|
langchain-ai/open_deep_research
|
tests/evals/target.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/evals/target.py
|
MIT
|
async def generate_report_multi_agent(
messages: list[MessageLikeRepresentation],
process_search_results: Literal["summarize", "split_and_rerank"] | None = None,
include_source: bool = True
):
"""Generate a report using the open deep research multi-agent architecture"""
graph = supervisor_builder.compile()
config = {"configurable": {}}
if include_source:
config["configurable"]["include_source_str"] = True
if process_search_results:
config["configurable"]["process_search_results"] = process_search_results
final_state = await graph.ainvoke(
# this is a hack
{"messages": messages + [{"role": "user", "content": "Generate the report now and don't ask any more follow-up questions"}]},
config
)
return final_state
|
Generate a report using the open deep research multi-agent architecture
|
generate_report_multi_agent
|
python
|
langchain-ai/open_deep_research
|
tests/evals/target.py
|
https://github.com/langchain-ai/open_deep_research/blob/master/tests/evals/target.py
|
MIT
|
def write_file_prefix(f: IO[Any], interpreter: str) -> None:
"""Write a shebang line.
:param f: An open file handle.
:param interpreter: A path to a python interpreter.
"""
# if the provided path is too long for a shebang we should error out
if len(interpreter) > BINPRM_BUF_SIZE:
sys.exit(BINPRM_ERROR)
f.write(b"#!" + interpreter.encode(sys.getfilesystemencoding()) + b"\n")
|
Write a shebang line.
:param f: An open file handle.
:param interpreter: A path to a python interpreter.
|
write_file_prefix
|
python
|
linkedin/shiv
|
src/shiv/builder.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/builder.py
|
BSD-2-Clause
|
def write_to_zipapp(
archive: zipfile.ZipFile,
arcname: str,
data: bytes,
date_time: Tuple[int, int, int, int, int, int],
compression: int,
stat: Optional[os.stat_result] = None,
) -> None:
"""Write a file or a bytestring to a ZipFile as a separate entry and update contents_hash as a side effect."""
zinfo = zipfile.ZipInfo(arcname, date_time=date_time)
zinfo.compress_type = compression
if stat:
zinfo.external_attr = (S_IMODE(stat.st_mode) | S_IFMT(stat.st_mode)) << 16
archive.writestr(zinfo, data)
|
Write a file or a bytestring to a ZipFile as a separate entry and update contents_hash as a side effect.
|
write_to_zipapp
|
python
|
linkedin/shiv
|
src/shiv/builder.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/builder.py
|
BSD-2-Clause
|
def rglob_follow_symlinks(path: Path, glob: str) -> Generator[Path, None, None]:
"""Path.rglob extended to follow symlinks, while we wait for Python 3.13."""
for p in path.rglob('*'):
if p.is_symlink() and p.is_dir():
yield from chain([p], rglob_follow_symlinks(p, glob))
else:
yield p
|
Path.rglob extended to follow symlinks, while we wait for Python 3.13.
|
rglob_follow_symlinks
|
python
|
linkedin/shiv
|
src/shiv/builder.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/builder.py
|
BSD-2-Clause
|
def create_archive(
sources: List[Path], target: Path, interpreter: str, main: str, env: Environment, compressed: bool = True
) -> None:
"""Create an application archive from SOURCE.
This function is a heavily modified version of stdlib's
`zipapp.create_archive <https://docs.python.org/3/library/zipapp.html#zipapp.create_archive>`_
"""
# Check that main has the right format.
mod, sep, fn = main.partition(":")
mod_ok = all(part.isidentifier() for part in mod.split("."))
fn_ok = all(part.isidentifier() for part in fn.split("."))
if not (sep == ":" and mod_ok and fn_ok):
raise zipapp.ZipAppError("Invalid entry point: " + main)
# Collect our timestamp data
main_py = MAIN_TEMPLATE.format(module=mod, fn=fn)
timestamp = datetime.strptime(env.built_at, BUILD_AT_TIMESTAMP_FORMAT).replace(tzinfo=timezone.utc).timestamp()
zipinfo_datetime: Tuple[int, int, int, int, int, int] = time.gmtime(int(timestamp))[0:6]
with target.open(mode="wb") as fd:
# Write shebang.
write_file_prefix(fd, interpreter)
# Determine compression.
compression = zipfile.ZIP_DEFLATED if compressed else zipfile.ZIP_STORED
# Pack zipapp with dependencies.
with zipfile.ZipFile(fd, "w", compression=compression) as archive:
site_packages = Path("site-packages")
contents_hash = hashlib.sha256()
for source in sources:
# Glob is known to return results in non-deterministic order.
# We need to sort them by in-archive paths to ensure
# that archive contents are reproducible.
#
# NOTE: https://github.com/linkedin/shiv/issues/236
# this special rglob function can be replaced with "rglob('*', follow_symlinks=True)"
# when Python 3.13 becomes the lowest supported version
for path in sorted(rglob_follow_symlinks(source, "*"), key=str):
# Skip compiled files and directories (as they are not required to be present in the zip).
if path.suffix == ".pyc" or path.is_dir():
continue
data = path.read_bytes()
# update the contents hash
contents_hash.update(data)
# take filenames into account as well - build_id should change if a file is moved or renamed
contents_hash.update(str(path.relative_to(source)).encode())
arcname = str(site_packages / path.relative_to(source))
write_to_zipapp(archive, arcname, data, zipinfo_datetime, compression, stat=path.stat())
if env.build_id is None:
# Now that we have a hash of all the source files, use it as our build id if the user did not
# specify a custom one.
env.build_id = contents_hash.hexdigest()
# now let's add the shiv bootstrap code.
bootstrap_target = Path("_bootstrap")
for path, name in iter_package_files(bootstrap):
data = path.read_bytes()
write_to_zipapp(
archive,
str(bootstrap_target / name),
data,
zipinfo_datetime,
compression,
stat=path.stat(),
)
# Write environment info in json file.
#
# The environment file contains build_id which is a SHA-256 checksum of all **site-packages** contents.
# the bootstrap code, environment.json and __main__.py are not used to calculate the checksum, is it's
# only used for local caching of site-packages and these files are always read from archive.
write_to_zipapp(archive, "environment.json", env.to_json().encode("utf-8"), zipinfo_datetime, compression)
# write __main__
write_to_zipapp(archive, "__main__.py", main_py.encode("utf-8"), zipinfo_datetime, compression)
# Make pyz executable (on windows this is no-op).
target.chmod(target.stat().st_mode | S_IXUSR | S_IXGRP | S_IXOTH)
|
Create an application archive from SOURCE.
This function is a heavily modified version of stdlib's
`zipapp.create_archive <https://docs.python.org/3/library/zipapp.html#zipapp.create_archive>`_
|
create_archive
|
python
|
linkedin/shiv
|
src/shiv/builder.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/builder.py
|
BSD-2-Clause
|
def find_entry_point(site_packages_dirs: List[Path], console_script: str) -> str:
"""Find a console_script in a site-packages directory.
Console script metadata is stored in entry_points.txt per setuptools
convention. This function searches all entry_points.txt files and
returns the import string for a given console_script argument.
:param site_packages_dirs: Paths to site-packages directories on disk.
:param console_script: A console_script string.
"""
config_parser = ConfigParser()
for site_packages in site_packages_dirs:
# noinspection PyTypeChecker
config_parser.read(site_packages.rglob("entry_points.txt"))
return config_parser["console_scripts"][console_script]
|
Find a console_script in a site-packages directory.
Console script metadata is stored in entry_points.txt per setuptools
convention. This function searches all entry_points.txt files and
returns the import string for a given console_script argument.
:param site_packages_dirs: Paths to site-packages directories on disk.
:param console_script: A console_script string.
|
find_entry_point
|
python
|
linkedin/shiv
|
src/shiv/cli.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/cli.py
|
BSD-2-Clause
|
def console_script_exists(site_packages_dirs: List[Path], console_script: str) -> bool:
"""Return true if the console script with provided name exists in one of the site-packages directories.
Console script is expected to be in the 'bin' directory of site packages.
:param site_packages_dirs: Paths to site-packages directories on disk.
:param console_script: A console script name.
"""
for site_packages in site_packages_dirs:
if (site_packages / "bin" / console_script).exists():
return True
return False
|
Return true if the console script with provided name exists in one of the site-packages directories.
Console script is expected to be in the 'bin' directory of site packages.
:param site_packages_dirs: Paths to site-packages directories on disk.
:param console_script: A console script name.
|
console_script_exists
|
python
|
linkedin/shiv
|
src/shiv/cli.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/cli.py
|
BSD-2-Clause
|
def copytree(src: Path, dst: Path) -> None:
"""A utility function for syncing directories.
This function is based on shutil.copytree. In Python versions that are
older than 3.8, shutil.copytree would raise FileExistsError if the "dst"
directory already existed.
"""
# Make our target (if it doesn't already exist).
dst.mkdir(parents=True, exist_ok=True)
for path in src.iterdir(): # type: Path
# If we encounter a subdirectory, recurse.
if path.is_dir():
copytree(path, dst / path.relative_to(src))
else:
shutil.copy2(str(path), str(dst / path.relative_to(src)))
|
A utility function for syncing directories.
This function is based on shutil.copytree. In Python versions that are
older than 3.8, shutil.copytree would raise FileExistsError if the "dst"
directory already existed.
|
copytree
|
python
|
linkedin/shiv
|
src/shiv/cli.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/cli.py
|
BSD-2-Clause
|
def main(
output_file: str,
entry_point: Optional[str],
console_script: Optional[str],
python: Optional[str],
site_packages: Optional[str],
build_id: Optional[str],
compressed: bool,
compile_pyc: bool,
extend_pythonpath: bool,
reproducible: bool,
no_modify: bool,
preamble: Optional[str],
root: Optional[str],
pip_args: List[str],
) -> None:
"""
Shiv is a command line utility for building fully self-contained Python zipapps
as outlined in PEP 441, but with all their dependencies included!
"""
if not pip_args and not site_packages:
sys.exit(NO_PIP_ARGS_OR_SITE_PACKAGES)
if output_file is None:
sys.exit(NO_OUTFILE)
# check for disallowed pip arguments
for disallowed in DISALLOWED_ARGS:
for supplied_arg in pip_args:
if supplied_arg in disallowed:
sys.exit(DISALLOWED_PIP_ARGS.format(arg=supplied_arg, reason=DISALLOWED_ARGS[disallowed]))
if build_id is not None:
click.secho(
"Warning! You have overridden the default build-id behavior, "
"executables created by shiv must have unique build IDs or unexpected behavior could occur.",
fg="yellow",
)
sources: List[Path] = []
with TemporaryDirectory() as tmp_site_packages:
# If both site_packages and pip_args are present, we need to copy the site_packages
# dir into our staging area (tmp_site_packages) as pip may modify the contents.
if site_packages:
if pip_args:
for sp in site_packages:
copytree(Path(sp), Path(tmp_site_packages))
else:
sources.extend([Path(p).expanduser() for p in site_packages])
if pip_args:
# Install dependencies into staged site-packages.
pip.install(["--target", tmp_site_packages] + list(pip_args))
if preamble:
bin_dir = Path(tmp_site_packages, "bin")
bin_dir.mkdir(exist_ok=True)
shutil.copy(Path(preamble).absolute(), bin_dir / Path(preamble).name)
sources.append(Path(tmp_site_packages).absolute())
if no_modify:
# if no_modify is specified, we need to build a map of source files and their
# sha256 hashes, to be checked at runtime:
hashes = {}
for source in sources:
for path in source.rglob("**/*.py"):
hashes[str(path.relative_to(source))] = hashlib.sha256(path.read_bytes()).hexdigest()
# if entry_point is a console script, get the callable and null out the console_script variable
# so that we avoid modifying sys.argv in bootstrap.py
if entry_point is None and console_script is not None:
try:
entry_point = find_entry_point(sources, console_script)
except KeyError:
if not console_script_exists(sources, console_script):
sys.exit(NO_ENTRY_POINT.format(entry_point=console_script))
else:
console_script = None
# Some projects need reproducible artifacts, so they can use SOURCE_DATE_EPOCH
# environment variable to specify the timestamps in the zipapp.
timestamp = int(
os.environ.get(SOURCE_DATE_EPOCH_ENV, SOURCE_DATE_EPOCH_DEFAULT if reproducible else time.time())
)
# create runtime environment metadata
env = Environment(
built_at=datetime.utcfromtimestamp(timestamp).strftime(BUILD_AT_TIMESTAMP_FORMAT),
build_id=build_id,
entry_point=entry_point,
script=console_script,
compile_pyc=compile_pyc,
extend_pythonpath=extend_pythonpath,
shiv_version=__version__,
no_modify=no_modify,
reproducible=reproducible,
preamble=Path(preamble).name if preamble else None,
root=root,
)
if no_modify:
env.hashes = hashes
# create the zip
builder.create_archive(
sources,
target=Path(output_file).expanduser(),
interpreter=python or DEFAULT_SHEBANG,
main="_bootstrap:bootstrap",
env=env,
compressed=compressed,
)
|
Shiv is a command line utility for building fully self-contained Python zipapps
as outlined in PEP 441, but with all their dependencies included!
|
main
|
python
|
linkedin/shiv
|
src/shiv/cli.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/cli.py
|
BSD-2-Clause
|
def main(print_as_json, pyz):
"""A simple utility to print debugging information about PYZ files created with ``shiv``"""
zip_file = zipfile.ZipFile(pyz)
data = json.loads(zip_file.read("environment.json"))
if print_as_json:
click.echo(json.dumps(data, indent=4, sort_keys=True))
else:
click.echo()
click.secho("pyz file: ", fg="green", bold=True, nl=False)
click.secho(pyz, fg="white")
click.echo()
for key, value in data.items():
click.secho(f"{key}: ", fg="blue", bold=True, nl=False)
if key == "hashes":
click.secho(json.dumps(value, sort_keys=True, indent=2))
else:
click.secho(f"{value}", fg="white")
click.echo()
|
A simple utility to print debugging information about PYZ files created with ``shiv``
|
main
|
python
|
linkedin/shiv
|
src/shiv/info.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/info.py
|
BSD-2-Clause
|
def clean_pip_env() -> Generator[None, None, None]:
"""A context manager for temporarily removing 'PIP_REQUIRE_VIRTUALENV' from the environment.
Since shiv installs via `--target`, we need to ignore venv requirements if they exist.
"""
require_venv = os.environ.pop(PIP_REQUIRE_VIRTUALENV, None)
try:
yield
finally:
if require_venv is not None:
os.environ[PIP_REQUIRE_VIRTUALENV] = require_venv
|
A context manager for temporarily removing 'PIP_REQUIRE_VIRTUALENV' from the environment.
Since shiv installs via `--target`, we need to ignore venv requirements if they exist.
|
clean_pip_env
|
python
|
linkedin/shiv
|
src/shiv/pip.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/pip.py
|
BSD-2-Clause
|
def install(args: List[str]) -> None:
"""`pip install` as a function.
Accepts a list of pip arguments.
.. code-block:: py
>>> install(['numpy', '--target', 'site-packages'])
Collecting numpy
Downloading numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl (16.9MB)
100% || 16.9MB 53kB/s
Installing collected packages: numpy
Successfully installed numpy-1.13.3
"""
with clean_pip_env():
# if being invoked as a pyz, we must ensure we have access to our own
# site-packages when subprocessing since there is no guarantee that pip
# will be available
subprocess_env = os.environ.copy()
sitedir_index = get_first_sitedir_index()
extend_python_path(subprocess_env, sys.path[sitedir_index:])
process = subprocess.Popen(
[sys.executable, "-m", "pip", "--disable-pip-version-check", "install", *args],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
env=subprocess_env,
universal_newlines=True,
)
for output in process.stdout: # type: ignore
if output:
click.echo(output.rstrip())
if process.wait() > 0:
sys.exit(PIP_INSTALL_ERROR)
|
`pip install` as a function.
Accepts a list of pip arguments.
.. code-block:: py
>>> install(['numpy', '--target', 'site-packages'])
Collecting numpy
Downloading numpy-1.13.3-cp35-cp35m-manylinux1_x86_64.whl (16.9MB)
100% || 16.9MB 53kB/s
Installing collected packages: numpy
Successfully installed numpy-1.13.3
|
install
|
python
|
linkedin/shiv
|
src/shiv/pip.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/pip.py
|
BSD-2-Clause
|
def acquire_nix(lock_file): # pragma: no cover
"""Acquire a lock file on linux or osx."""
fd = os.open(lock_file, OPEN_MODE)
try:
fcntl.flock(fd, fcntl.LOCK_EX | fcntl.LOCK_NB)
except (IOError, OSError):
os.close(fd)
else:
return fd
|
Acquire a lock file on linux or osx.
|
acquire_nix
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/filelock.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/filelock.py
|
BSD-2-Clause
|
def run(module): # pragma: no cover
"""Run a module in a scrubbed environment.
If a single pyz has multiple callers, we want to remove these vars as we no longer need them
and they can cause subprocesses to fail with a ModuleNotFoundError.
:param Callable module: The entry point to invoke the pyz with.
"""
with suppress(KeyError):
del os.environ[Environment.MODULE]
with suppress(KeyError):
del os.environ[Environment.ENTRY_POINT]
with suppress(KeyError):
del os.environ[Environment.CONSOLE_SCRIPT]
sys.exit(module())
|
Run a module in a scrubbed environment.
If a single pyz has multiple callers, we want to remove these vars as we no longer need them
and they can cause subprocesses to fail with a ModuleNotFoundError.
:param Callable module: The entry point to invoke the pyz with.
|
run
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def current_zipfile():
"""A function to vend the current zipfile, if any"""
if zipfile.is_zipfile(sys.argv[0]):
with zipfile.ZipFile(sys.argv[0]) as fd:
yield fd
else:
yield None
|
A function to vend the current zipfile, if any
|
current_zipfile
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def import_string(import_name):
"""Returns a callable for a given setuptools style import string
:param str import_name: A console_scripts style import string
"""
import_name = str(import_name).replace(":", ".")
try:
import_module(import_name)
except ImportError:
if "." not in import_name:
# this is a case like "import name", where continuing to the
# next style of import would not improve the situation, so
# we raise here.
raise
else:
return sys.modules[import_name]
# this is a case where the previous attempt may have failed due to
# not being importable. ("not a package", etc)
module_name, obj_name = import_name.rsplit(".", 1)
try:
module = __import__(module_name, None, None, [obj_name])
except ImportError:
# Recurse to support importing modules not yet set up by the parent module
# (or package for that matter)
module = import_string(module_name)
try:
return getattr(module, obj_name)
except AttributeError as e:
raise ImportError(e)
|
Returns a callable for a given setuptools style import string
:param str import_name: A console_scripts style import string
|
import_string
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def cache_path(archive, root_dir, build_id):
"""Returns a ~/.shiv cache directory for unzipping site-packages during bootstrap.
:param ZipFile archive: The zipfile object we are bootstrapping from.
:param str root_dir: Optional, either a path or environment variable pointing to a SHIV_ROOT.
:param str build_id: The build id generated at zip creation.
"""
if root_dir:
if root_dir.startswith("$"):
root_dir = os.environ.get(root_dir[1:], root_dir[1:])
root_dir = Path(root_dir).expanduser()
root = root_dir or Path("~/.shiv").expanduser()
name = Path(archive.filename).resolve().name
return root / f"{name}_{build_id}"
|
Returns a ~/.shiv cache directory for unzipping site-packages during bootstrap.
:param ZipFile archive: The zipfile object we are bootstrapping from.
:param str root_dir: Optional, either a path or environment variable pointing to a SHIV_ROOT.
:param str build_id: The build id generated at zip creation.
|
cache_path
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def extract_site_packages(archive, target_path, compile_pyc=False, compile_workers=0, force=False):
"""Extract everything in site-packages to a specified path.
:param ZipFile archive: The zipfile object we are bootstrapping from.
:param Path target_path: The path to extract our zip to.
:param bool compile_pyc: A boolean to dictate whether we pre-compile pyc.
:param int compile_workers: An int representing the number of pyc compiler workers.
:param bool force: A boolean to dictate whether or not we force extraction.
"""
parent = target_path.parent
target_path_tmp = Path(parent, target_path.name + ".tmp")
lock = Path(parent, f".{target_path.name}_lock")
# If this is the first time that a pyz is being extracted, we'll need to create the ~/.shiv dir
if not parent.exists():
parent.mkdir(parents=True, exist_ok=True)
with FileLock(lock):
# we acquired a lock, it's possible that prior invocation was holding the lock and has
# completed bootstrapping, so let's check (again) if we need to do any work
if not target_path.exists() or force:
# extract our site-packages
for fileinfo in archive.infolist():
if fileinfo.filename.startswith("site-packages"):
extracted = archive.extract(fileinfo.filename, target_path_tmp)
# restore original permissions
os.chmod(extracted, fileinfo.external_attr >> 16)
if compile_pyc:
compileall.compile_dir(target_path_tmp, quiet=2, workers=compile_workers)
# if using `force` we will need to delete our target path
if target_path.exists():
shutil.rmtree(str(target_path))
# atomic move
shutil.move(str(target_path_tmp), str(target_path))
|
Extract everything in site-packages to a specified path.
:param ZipFile archive: The zipfile object we are bootstrapping from.
:param Path target_path: The path to extract our zip to.
:param bool compile_pyc: A boolean to dictate whether we pre-compile pyc.
:param int compile_workers: An int representing the number of pyc compiler workers.
:param bool force: A boolean to dictate whether or not we force extraction.
|
extract_site_packages
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def extend_python_path(environ, additional_paths):
"""Create or extend a PYTHONPATH variable with the frozen environment we are bootstrapping with."""
# we don't want to clobber any existing PYTHONPATH value, so check for it.
python_path = environ["PYTHONPATH"].split(os.pathsep) if "PYTHONPATH" in environ else []
python_path.extend(additional_paths)
# put it back into the environment so that PYTHONPATH contains the shiv-manipulated paths
# and any pre-existing PYTHONPATH values with no duplicates.
environ["PYTHONPATH"] = os.pathsep.join(sorted(set(python_path), key=python_path.index))
|
Create or extend a PYTHONPATH variable with the frozen environment we are bootstrapping with.
|
extend_python_path
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def ensure_no_modify(site_packages, hashes):
"""Compare the sha256 hash of the unpacked source files to the files when they were added to the pyz."""
for path in site_packages.rglob("**/*.py"):
if hashlib.sha256(path.read_bytes()).hexdigest() != hashes.get(str(path.relative_to(site_packages))):
raise RuntimeError(
"A Python source file has been modified! File: {}. "
"Try again with SHIV_FORCE_EXTRACT=1 to overwrite the modified source file(s).".format(str(path))
)
|
Compare the sha256 hash of the unpacked source files to the files when they were added to the pyz.
|
ensure_no_modify
|
python
|
linkedin/shiv
|
src/shiv/bootstrap/__init__.py
|
https://github.com/linkedin/shiv/blob/master/src/shiv/bootstrap/__init__.py
|
BSD-2-Clause
|
def test_extend_path_existing_pythonpath(self):
"""When PYTHONPATH exists, extending it preserves the existing values."""
env = {"PYTHONPATH": "hello"}
extend_python_path(env, ["test", ".pth"])
assert env["PYTHONPATH"] == os.pathsep.join(["hello", "test", ".pth"])
|
When PYTHONPATH exists, extending it preserves the existing values.
|
test_extend_path_existing_pythonpath
|
python
|
linkedin/shiv
|
test/test_bootstrap.py
|
https://github.com/linkedin/shiv/blob/master/test/test_bootstrap.py
|
BSD-2-Clause
|
def test_find_entry_point(self, tmpdir, package_location):
"""Test that we can find console_script metadata."""
install(["-t", str(tmpdir), str(package_location)])
assert find_entry_point([Path(tmpdir)], "hello") == "hello:main"
|
Test that we can find console_script metadata.
|
test_find_entry_point
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_find_entry_point_two_points(self, tmpdir, package_location):
"""Test that we can find console_script metadata."""
install(["-t", str(tmpdir), str(package_location)])
assert find_entry_point([Path(tmpdir)], "hello") == "hello:main"
|
Test that we can find console_script metadata.
|
test_find_entry_point_two_points
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_console_script_exists(self, tmp_path, package_location):
"""Test that we can check console_script presence."""
install_dir = tmp_path / "install"
install(["-t", str(install_dir), str(package_location)])
empty_dir = tmp_path / "empty"
empty_dir.mkdir()
assert console_script_exists([empty_dir, install_dir], "hello.exe" if os.name == "nt" else "hello")
|
Test that we can check console_script presence.
|
test_console_script_exists
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_no_args(self, runner):
"""This should fail with a warning about supplying pip arguments"""
result = runner([])
assert result.exit_code == 1
assert NO_PIP_ARGS_OR_SITE_PACKAGES in result.output
|
This should fail with a warning about supplying pip arguments
|
test_no_args
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_no_outfile(self, runner):
"""This should fail with a warning about not providing an outfile"""
result = runner(["-e", "test", "flask"])
assert result.exit_code == 1
assert NO_OUTFILE in result.output
|
This should fail with a warning about not providing an outfile
|
test_no_outfile
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_disallowed_args(self, runner, arg):
"""This method tests that all the potential disallowed arguments match their error messages."""
# run shiv with a disallowed argument
result = runner(["-o", "tmp", arg])
# get the 'reason' message:
reason = next(iter([DISALLOWED_ARGS[disallowed] for disallowed in DISALLOWED_ARGS if arg in disallowed]))
assert result.exit_code == 1
# assert we got the correct reason
assert DISALLOWED_PIP_ARGS.format(arg=arg, reason=reason) in result.output
|
This method tests that all the potential disallowed arguments match their error messages.
|
test_disallowed_args
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_preamble_no_pip(self, shiv_root, runner, package_location, tmp_path):
"""Test that the preamble script is created even with no pip installed packages."""
output_file = shiv_root / "test.pyz"
target = tmp_path / "target"
preamble = tmp_path / "preamble.py"
preamble.write_text("#!/usr/bin/env python3\nprint('hello from preamble')")
preamble.chmod(preamble.stat().st_mode | stat.S_IEXEC)
# first, by installing our test package into a target
install(["-t", str(target), str(package_location)])
result = runner(
["-e", "hello:main", "--preamble", str(preamble), "-o", str(output_file), "--site-packages", target]
)
# check that the command successfully completed
assert result.exit_code == 0
# ensure the created file actually exists
assert output_file.exists()
# now run the produced zipapp
proc = subprocess.run(
[str(output_file)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ,
)
assert proc.returncode == 0
assert proc.stdout.decode().splitlines() == ["hello from preamble", "hello world"]
|
Test that the preamble script is created even with no pip installed packages.
|
test_preamble_no_pip
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_alternate_root(self, runner, package_location, tmp_path):
"""Test that the --root argument properly sets the extraction root."""
output_file = tmp_path / "test.pyz"
shiv_root = tmp_path / "root"
result = runner(
["-e", "hello:main", "--root", str(shiv_root), "-o", str(output_file), str(package_location)]
)
# check that the command successfully completed
assert result.exit_code == 0
# ensure the created file actually exists
assert output_file.exists()
# now run the produced zipapp
proc = subprocess.run(
[str(output_file)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ,
)
assert proc.returncode == 0
assert "hello" in proc.stdout.decode()
assert shiv_root.exists()
|
Test that the --root argument properly sets the extraction root.
|
test_alternate_root
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def test_alternate_root_environment_variable(self, runner, package_location, tmp_path, env_var):
"""Test that the --root argument works with environment variables."""
output_file = tmp_path / "test.pyz"
shiv_root_var = "NEW_ROOT"
shiv_root_path = tmp_path / 'new_root'
result = runner(
["-e", "hello:main", "--root", "$" + shiv_root_var, "-o", str(output_file), str(package_location)]
)
with env_var(shiv_root_var, str(shiv_root_path)):
# check that the command successfully completed
assert result.exit_code == 0
# ensure the created file actually exists
assert output_file.exists()
# now run the produced zipapp
proc = subprocess.run(
[str(output_file)], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ,
)
assert proc.returncode == 0
assert "hello" in proc.stdout.decode()
assert shiv_root_path.exists()
|
Test that the --root argument works with environment variables.
|
test_alternate_root_environment_variable
|
python
|
linkedin/shiv
|
test/test_cli.py
|
https://github.com/linkedin/shiv/blob/master/test/test_cli.py
|
BSD-2-Clause
|
def forward(self, inputs, outputs, labels):
"""
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
"""
outputs_kd = None
if not isinstance(outputs, torch.Tensor):
# assume that the model outputs a tuple of [outputs, outputs_kd]
outputs, outputs_kd = outputs
base_loss = self.base_criterion(outputs, labels)
if self.distillation_type == 'none':
return base_loss
if outputs_kd is None:
raise ValueError("When knowledge distillation is enabled, the model is "
"expected to return a Tuple[Tensor, Tensor] with the output of the "
"class_token and the dist_token")
# don't backprop throught the teacher
with torch.no_grad():
teacher_outputs = self.teacher_model(inputs)
if self.distillation_type == 'soft':
T = self.tau
# taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
# with slight modifications
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / T, dim=1),
#We provide the teacher's targets in log probability because we use log_target=True
#(as recommended in pytorch https://github.com/pytorch/pytorch/blob/9324181d0ac7b4f7949a574dbc3e8be30abe7041/torch/nn/functional.py#L2719)
#but it is possible to give just the probabilities and set log_target=False. In our experiments we tried both.
F.log_softmax(teacher_outputs / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs_kd.numel()
#We divide by outputs_kd.numel() to have the legacy PyTorch behavior.
#But we also experiments output_kd.size(0)
#see issue 61(https://github.com/facebookresearch/deit/issues/61) for more details
elif self.distillation_type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss
|
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
|
forward
|
python
|
facebookresearch/deit
|
losses.py
|
https://github.com/facebookresearch/deit/blob/master/losses.py
|
Apache-2.0
|
def _load_checkpoint_for_ema(model_ema, checkpoint):
"""
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
"""
mem_file = io.BytesIO()
torch.save({'state_dict_ema':checkpoint}, mem_file)
mem_file.seek(0)
model_ema._load_checkpoint(mem_file)
|
Workaround for ModelEma._load_checkpoint to accept an already-loaded object
|
_load_checkpoint_for_ema
|
python
|
facebookresearch/deit
|
utils.py
|
https://github.com/facebookresearch/deit/blob/master/utils.py
|
Apache-2.0
|
def __init__(
self,
target: Target,
user: str,
dns: Optional[str] = None,
upn: Optional[str] = None,
sam: Optional[str] = None,
spns: Optional[str] = None,
passw: Optional[str] = None,
group: Optional[str] = None,
connection: Optional[LDAPConnection] = None,
timeout: int = 5,
**kwargs, # type: ignore
):
"""
Initialize account management with target and account options.
Args:
target: Target environment information (domain, credentials)
user: Username for the account to manage
dns: DNS hostname for the account
upn: UserPrincipalName to set
sam: sAMAccountName to set
spns: Service Principal Names to set (comma-separated)
passw: Password for the account
group: Distinguished name of the group to place the account in
scheme: LDAP connection scheme (ldap or ldaps)
connection: Existing LDAP connection to reuse
timeout: Connection timeout in seconds
**kwargs: Additional arguments
"""
self.target = target
self.user = user
self.dns = dns
self.upn = upn
self.sam = sam
self.spns = spns
self.password = passw
self.group = group
self._connection = connection
self.timeout = timeout
self.kwargs = kwargs
|
Initialize account management with target and account options.
Args:
target: Target environment information (domain, credentials)
user: Username for the account to manage
dns: DNS hostname for the account
upn: UserPrincipalName to set
sam: sAMAccountName to set
spns: Service Principal Names to set (comma-separated)
passw: Password for the account
group: Distinguished name of the group to place the account in
scheme: LDAP connection scheme (ldap or ldaps)
connection: Existing LDAP connection to reuse
timeout: Connection timeout in seconds
**kwargs: Additional arguments
|
__init__
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def connection(self) -> LDAPConnection:
"""
Get or establish an LDAP connection to the target.
Returns:
Active LDAP connection
"""
if self._connection is not None:
return self._connection
self._connection = LDAPConnection(self.target)
self._connection.connect()
return self._connection
|
Get or establish an LDAP connection to the target.
Returns:
Active LDAP connection
|
connection
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def create(self) -> bool:
"""
Create a new computer account in Active Directory.
This method creates a computer account with the specified properties,
or with reasonable defaults if not provided.
Returns:
True if account creation succeeded, False otherwise
"""
# Determine username (sAMAccountName)
username = self.user
if self.sam is not None:
logging.warning(
"The parameter -sam overrides the -user parameter for the create operation"
)
res = input("Do you want to continue? (Y/n): ")
if res.strip().lower() == "n":
return False
username = self.sam
# Check if user already exists
user = self.connection.get_user(username, silent=True)
if user is not None:
logging.error(
f"User {user.get('sAMAccountName')!r} already exists. "
f"If you want to update the user, specify the 'update' action"
)
return False
# Set container group for the account
group = self.group
if group is None:
group = f"CN=Computers,{self.connection.default_path}"
# Ensure computer account name ends with $
if username[-1] != "$":
username += "$"
# Generate random password if not provided
password = self.password
if password is None:
password = "".join(
random.choice(string.ascii_letters + string.digits) for _ in range(16)
)
self.password = password
# Set DNS hostname if not provided
dns = self.dns
if dns is None:
dns = f"{username.rstrip('$')}.{self.connection.domain}".lower()
# Create DN for the new account
hostname = username[:-1]
dn = f"CN={hostname},{group}"
# Set default SPNs if not provided
spns = self.spns
if spns is None:
base_name = username.rstrip("$")
spns = [
f"HOST/{base_name}",
f"RestrictedKrbHost/{base_name}",
]
else:
spns = [spn.strip() for spn in spns.split(",") if spn.strip()]
# Prepare account attributes
attributes: Dict[str, Any] = {
"sAMAccountName": username,
"unicodePwd": password, # Just for the pretty print
"userAccountControl": 0x1000, # WORKSTATION_TRUST_ACCOUNT
"servicePrincipalName": spns,
"dnsHostName": dns,
}
logging.info("Creating new account:")
pretty_print(attributes, indent=2)
# Convert password to proper format for LDAP
attributes["unicodePwd"] = ('"%s"' % password).encode("utf-16-le")
# Add the account via LDAP
result = self.connection.add(
dn,
["top", "person", "organizationalPerson", "user", "computer"],
attributes,
)
# Handle result
if result["result"] == 0:
logging.info(
f"Successfully created account {username!r} with password {password!r}"
)
return True
elif result["result"] == RESULT_INSUFFICIENT_ACCESS_RIGHTS:
logging.error(
f"User {self.target.username!r} doesn't have the right to create a machine account"
)
elif (
result["result"] == RESULT_UNWILLING_TO_PERFORM
and int(result["message"].split(":")[0].strip(), 16) == 0x216D
):
logging.error(
f"Machine account quota exceeded for {self.target.username!r}"
)
else:
logging.error(
f"Received error: ({result['description']}) {result['message']}"
)
return False
|
Create a new computer account in Active Directory.
This method creates a computer account with the specified properties,
or with reasonable defaults if not provided.
Returns:
True if account creation succeeded, False otherwise
|
create
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def read(self) -> bool:
"""
Read and display account attributes.
This method retrieves and displays key attributes of the specified account.
Returns:
True if account was found and attributes read, False otherwise
"""
# Get user object
user = self.connection.get_user(self.user)
if user is None:
return False
# Define attributes to display
attributes = [
"cn",
"distinguishedName",
"name",
"objectSid",
"sAMAccountName",
"dNSHostName",
"servicePrincipalName",
"userPrincipalName",
"userAccountControl",
"whenCreated",
"whenChanged",
]
# Collect attribute values
attribute_values = {}
logging.info(f"Reading attributes for {user.get('sAMAccountName')!r}:")
for attribute in attributes:
value = user.get(attribute)
if value is not None:
attribute_values[attribute] = value
# Display attributes
pretty_print(attribute_values, indent=2)
return True
|
Read and display account attributes.
This method retrieves and displays key attributes of the specified account.
Returns:
True if account was found and attributes read, False otherwise
|
read
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def update(self) -> bool:
"""
Update an existing account's attributes.
This method modifies specified attributes of an existing account.
Returns:
True if account was successfully updated, False otherwise
"""
# Get user object
user = self.connection.get_user(self.user)
if user is None:
return False
# Prepare attribute changes
changes: Dict[str, List[Tuple[Any, Any]]] = {}
changes_formatted: Dict[str, Any] = {}
# Define which attributes to update based on provided parameters
attribute_mapping = {
"unicodePwd": self.password,
"dNSHostName": self.dns,
"userPrincipalName": self.upn,
"sAMAccountName": self.sam,
"servicePrincipalName": (
[spn.strip() for spn in self.spns.split(",") if spn.strip()]
if self.spns is not None
else None
),
}
# Process each attribute that needs to be updated
for attribute, value in attribute_mapping.items():
if value is None:
continue
if value == "" or (isinstance(value, list) and len(value) == 0):
# Delete the attribute
changes[attribute] = [(ldap3.MODIFY_DELETE, [])]
changes_formatted[attribute] = "*DELETED*"
else:
# Replace the attribute with new value
if attribute == "unicodePwd":
# Special handling for password
encoded_value = ('"%s"' % value).encode("utf-16-le")
changes_formatted[attribute] = value # Show plaintext in output
else:
if isinstance(value, list):
encoded_value = value
else:
encoded_value = [value] # LDAP expects lists for attributes
changes_formatted[attribute] = value
changes[attribute] = [(ldap3.MODIFY_REPLACE, encoded_value)]
if not changes:
logging.warning(f"No changes specified for {user.get('sAMAccountName')!r}")
return False
logging.info(f"Updating user {user.get('sAMAccountName')!r}:")
pretty_print(changes_formatted, indent=2)
# Apply changes via LDAP
result = self.connection.modify(
user.get("distinguishedName"),
changes,
)
# Handle result
if result["result"] == 0:
logging.info(f"Successfully updated {user.get('sAMAccountName')!r}")
return True
elif result["result"] == RESULT_INSUFFICIENT_ACCESS_RIGHTS:
logging.error(
f"User {self.target.username!r} doesn't have permission to update "
f"these attributes on {user.get('sAMAccountName')!r}"
)
else:
logging.error(f"Received error: {result['message']}")
return False
|
Update an existing account's attributes.
This method modifies specified attributes of an existing account.
Returns:
True if account was successfully updated, False otherwise
|
update
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def delete(self) -> bool:
"""
Delete an account from Active Directory.
This method permanently removes the specified account.
Returns:
True if account was successfully deleted, False otherwise
"""
# Get user object
user = self.connection.get_user(self.user)
if user is None:
return False
# Confirm deletion
account_name = user.get("sAMAccountName")
logging.warning(f"You are about to delete {account_name!r}")
res = input("Are you sure? (y/N): ")
if res.strip().lower() != "y":
logging.info("Deletion canceled")
return False
# Delete account via LDAP
result = self.connection.delete(user.get("distinguishedName"))
# Handle result
if result["result"] == 0:
logging.info(f"Successfully deleted {account_name!r}")
return True
elif result["result"] == RESULT_INSUFFICIENT_ACCESS_RIGHTS:
logging.error(
f"User {self.target.username!r} doesn't have permission to delete {account_name!r}"
)
else:
logging.error(f"Received error: {result['message']}")
return False
|
Delete an account from Active Directory.
This method permanently removes the specified account.
Returns:
True if account was successfully deleted, False otherwise
|
delete
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def entry(options: argparse.Namespace) -> None:
"""
Entry point for the 'account' command.
This function creates the Account object and dispatches to the appropriate method
based on the specified action.
Args:
options: Command line options
"""
# Create target from command line options
target = Target.from_options(options, dc_as_target=True)
options.__delattr__("target")
# Create account manager
account = Account(target, **vars(options))
# Map actions to methods
actions = {
"create": account.create,
"read": account.read,
"update": account.update,
"delete": account.delete,
}
# Validate action
if options.account_action not in actions:
logging.error(f"Unknown action: {options.account_action}")
logging.info(f"Available actions: {', '.join(actions.keys())}")
return
# Execute the requested action
result = actions[options.account_action]()
# Set exit code based on result
if result is False:
import sys
sys.exit(1)
|
Entry point for the 'account' command.
This function creates the Account object and dispatches to the appropriate method
based on the specified action.
Args:
options: Command line options
|
entry
|
python
|
ly4k/Certipy
|
certipy/commands/account.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/account.py
|
MIT
|
def __init__(self, tcp_shell: Any, domain_dumper: Any, client: Any):
"""
Initialize the LDAP shell.
Args:
tcp_shell: Shell to use for I/O
domain_dumper: Domain information provider
client: LDAP client connection
"""
super().__init__(tcp_shell, domain_dumper, client)
self.use_rawinput = True
self.shell = tcp_shell
self.prompt = "\n# "
self.tid = None
self.intro = "Type help for list of commands"
self.loggedIn = True
self.last_output = None
self.completion = []
self.client = client
self.domain_dumper = domain_dumper
|
Initialize the LDAP shell.
Args:
tcp_shell: Shell to use for I/O
domain_dumper: Domain information provider
client: LDAP client connection
|
__init__
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def truncate_key(value: bytes, keysize: int) -> bytes:
"""
Truncate a key to the specified size using SHA1 hashing.
Args:
value: Input key material
keysize: Desired key size in bytes
Returns:
Truncated key of exactly keysize bytes
"""
output = b""
current_num = 0
while len(output) < keysize:
current_digest = hash_digest(bytes([current_num]) + value, hashes.SHA1)
if len(output) + len(current_digest) > keysize:
output += current_digest[: keysize - len(output)]
break
output += current_digest
current_num += 1
return output
|
Truncate a key to the specified size using SHA1 hashing.
Args:
value: Input key material
keysize: Desired key size in bytes
Returns:
Truncated key of exactly keysize bytes
|
truncate_key
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def __init__(
self,
target: Target,
pfx: Optional[str] = None,
username: Optional[str] = None,
domain: Optional[str] = None,
password: Optional[str] = None,
cert: Optional[x509.Certificate] = None,
key: Optional[PrivateKeyTypes] = None,
no_save: bool = False,
no_hash: bool = False,
print: bool = False,
kirbi: bool = False,
ldap_shell: bool = False,
**kwargs, # type: ignore
):
"""
Initialize authentication parameters.
Args:
target: Target information (domain, DC IP, etc.)
pfx: Path to PFX/P12 certificate file
username: Username to authenticate as
domain: Domain to authenticate to
password: Password for PFX file
cert: Pre-loaded certificate object
key: Pre-loaded private key object
no_save: Don't save credential cache to disk
no_hash: Don't extract NT hash
print: Print ticket information
kirbi: Save credential cache in Kirbi format
ldap_shell: Launch interactive LDAP shell after authentication
ldap_port: LDAP port (default: 389 for ldap, 636 for ldaps)
ldap_scheme: LDAP scheme (ldap or ldaps)
ldap_user_dn: LDAP user distinguished name
user_dn: User distinguished name
**kwargs: Additional parameters
"""
self.target = target
self.username = username
self.domain = domain
self.pfx = pfx
self.password = password
self.cert = cert
self.key = key
self.no_save = no_save
self.no_hash = no_hash
self.print = print
self.kirbi = kirbi
self.ldap_shell = ldap_shell
self.kwargs = kwargs
# These will be populated during authentication
self.nt_hash: Optional[str] = None
self.lm_hash: Optional[str] = None
self.ccache_name: Optional[str] = None
# Load certificate and key from PFX if provided
if self.pfx is not None:
pfx_password = None
if self.password:
pfx_password = self.password.encode()
try:
with open(self.pfx, "rb") as f:
pfx_data = f.read()
self.key, self.cert = load_pfx(pfx_data, pfx_password)
except Exception as e:
logging.error(f"Failed to load PFX file: {e}")
raise
|
Initialize authentication parameters.
Args:
target: Target information (domain, DC IP, etc.)
pfx: Path to PFX/P12 certificate file
username: Username to authenticate as
domain: Domain to authenticate to
password: Password for PFX file
cert: Pre-loaded certificate object
key: Pre-loaded private key object
no_save: Don't save credential cache to disk
no_hash: Don't extract NT hash
print: Print ticket information
kirbi: Save credential cache in Kirbi format
ldap_shell: Launch interactive LDAP shell after authentication
ldap_port: LDAP port (default: 389 for ldap, 636 for ldaps)
ldap_scheme: LDAP scheme (ldap or ldaps)
ldap_user_dn: LDAP user distinguished name
user_dn: User distinguished name
**kwargs: Additional parameters
|
__init__
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def authenticate(
self,
username: Optional[str] = None,
domain: Optional[str] = None,
is_key_credential: bool = False,
) -> Union[str, bool, None]:
"""
Authenticate using a certificate.
This is the main entry point for authentication. It will determine
whether to use LDAP or Kerberos authentication based on configuration.
Args:
username: Username to authenticate as
domain: Domain to authenticate to
is_key_credential: Whether we're using a key credential
Returns:
NT hash if extracted, True if successful, False if failed, None if error
"""
if not self.cert:
raise ValueError("Certificate is not specified and no PFX was provided")
# Print authentication information present in the certificate
print_certificate_authentication_information(self.cert)
# Resolve username and domain from target if not provided
if not username:
username = self.username or self.target.username
if not domain:
domain = self.domain or self.target.domain
# Use LDAP authentication if requested
if self.ldap_shell:
return self.ldap_authentication(domain)
# Extract identity information from certificate if needed
id_type = None
identity = None
object_sid = None
cert_username = None
cert_domain = None
# Skip certificate parsing for key credentials
if not is_key_credential:
# Extract identity information from certificate
identities = get_identities_from_certificate(self.cert)
# Get the object SID from the certificate if available
object_sid = get_object_sid_from_certificate(self.cert)
# No identities found in the certificate
if not identities:
logging.warning("Could not find identity in the provided certificate")
# Single identity found - use it directly
elif len(identities) == 1:
id_type, identity = identities[0]
cert_username, cert_domain = cert_id_to_parts([(id_type, identity)])
# Multiple identities found - handle based on input parameters
else:
logging.info("Found multiple identities in certificate")
# Case 1: If username is provided, try to find a matching identity
if username:
matching_ids = []
for idx, (id_t, id_val) in enumerate(identities):
u, d = cert_id_to_parts([(id_t, id_val)])
if u and (
u.lower() == username.lower()
or u.lower() + "$" == username.lower()
):
matching_ids.append((idx, id_t, id_val, u, d))
# Found exactly one match for the username
if len(matching_ids) == 1:
idx, id_type, identity, cert_username, cert_domain = (
matching_ids[0]
)
logging.info(f"Using identity: {id_type}: {identity}")
# Found multiple matches - prompt user to select one
elif len(matching_ids) > 1:
logging.info(
f"Found multiple identities for username '{username}'"
)
logging.info("Please select one:")
for i, (idx, id_t, id_val, u, d) in enumerate(matching_ids):
print(f" [{i}] {id_t}: {id_val!r} ({u}@{d})")
while True:
try:
choice = int(input("> "))
if 0 <= choice < len(matching_ids):
(
idx,
id_type,
identity,
cert_username,
cert_domain,
) = matching_ids[choice]
break
logging.warning("Invalid index")
except ValueError:
logging.warning("Invalid input, enter a number")
# No matches found - prompt user to select from all identities
else:
logging.warning(f"No identities match username '{username}'")
logging.info("Please select an identity:")
for i, (id_t, id_val) in enumerate(identities):
u, d = cert_id_to_parts([(id_t, id_val)])
print(
f" [{i}] {id_t}: {id_val!r} ({u or 'unknown'}@{d or 'unknown'})"
)
while True:
try:
idx = int(input("> "))
if 0 <= idx < len(identities):
id_type, identity = identities[idx]
cert_username, cert_domain = cert_id_to_parts(
[(id_type, identity)]
)
break
logging.warning("Invalid index")
except ValueError:
logging.warning("Invalid input, enter a number")
# Case 2: No username provided - prompt user to select an identity
else:
logging.info("Please select an identity:")
for i, (id_t, id_val) in enumerate(identities):
u, d = cert_id_to_parts([(id_t, id_val)])
print(
f" [{i}] {id_t}: {id_val!r} ({u or 'unknown'}@{d or 'unknown'})"
)
while True:
try:
idx = int(input("> "))
if 0 <= idx < len(identities):
id_type, identity = identities[idx]
cert_username, cert_domain = cert_id_to_parts(
[(id_type, identity)]
)
break
logging.warning("Invalid index")
except ValueError:
logging.warning("Invalid input, enter a number")
# Resolve username and domain
if not username:
username = cert_username
if not domain:
domain = cert_domain
# Check for mismatches between certificate and provided identity
if (
self._check_identity_mismatches(
username, domain, cert_username, cert_domain
)
is False
):
return False
# Ensure we have both username and domain
if not all([username, domain]) and not is_key_credential:
logging.error(
"Username or domain is not specified, and identity "
"information was not found in the certificate"
)
return False
if not username or not domain:
logging.error(f"Username or domain is invalid: {username}@{domain}")
return False
# Normalize domain and username
domain = domain.lower()
username = username.lower()
upn = f"{username}@{domain}"
# Resolve target IP if needed
if self.target and self.target.resolver and self.target.target_ip is None:
self.target.target_ip = self.target.resolver.resolve(domain)
logging.info(f"Using principal: {upn!r}")
# Perform Kerberos authentication
return self.kerberos_authentication(
username,
domain,
is_key_credential,
id_type,
identity,
object_sid,
upn,
)
|
Authenticate using a certificate.
This is the main entry point for authentication. It will determine
whether to use LDAP or Kerberos authentication based on configuration.
Args:
username: Username to authenticate as
domain: Domain to authenticate to
is_key_credential: Whether we're using a key credential
Returns:
NT hash if extracted, True if successful, False if failed, None if error
|
authenticate
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def _check_identity_mismatches(
self,
username: Optional[str],
domain: Optional[str],
cert_username: Optional[str],
cert_domain: Optional[str],
) -> Optional[bool]:
"""
Check for mismatches between provided identity and certificate identity.
Args:
username: Provided username
domain: Provided domain
cert_username: Username from certificate
cert_domain: Domain from certificate
Returns:
None if checks passed, False if should abort
"""
# Check username mismatch (accounting for computer accounts with $)
if (
cert_username
and username
and cert_username.lower() != username.lower()
and cert_username.lower() + "$" != username.lower()
):
logging.warning(
f"The provided username does not match the identity "
f"found in the certificate: {username!r} - {cert_username!r}"
)
res = input("Do you want to continue? (Y/n): ")
if res.strip().lower() == "n":
return False
# Check domain mismatch (accounting for subdomains)
if (
cert_domain
and domain
and domain.lower() != cert_domain.lower()
and not cert_domain.lower().startswith(domain.lower().rstrip(".") + ".")
):
logging.warning(
f"The provided domain does not match the identity "
f"found in the certificate: {domain!r} - {cert_domain!r}"
)
res = input("Do you want to continue? (Y/n): ")
if res.strip().lower() == "n":
return False
return None
|
Check for mismatches between provided identity and certificate identity.
Args:
username: Provided username
domain: Provided domain
cert_username: Username from certificate
cert_domain: Domain from certificate
Returns:
None if checks passed, False if should abort
|
_check_identity_mismatches
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def ldap_authentication(self, domain: Optional[str] = None) -> bool:
"""
Authenticate to LDAP using a certificate.
Args:
domain: Domain to authenticate to
Returns:
True if successful, False otherwise
"""
if self.key is None:
raise ValueError("Private key is not specified and no PFX was provided")
if self.cert is None:
raise ValueError("Certificate is not specified and no PFX was provided")
ldap_conn = LDAPConnection(self.target, (self.cert, self.key))
try:
ldap_conn.schannel_connect()
except Exception as e:
logging.error(f"Failed to connect to LDAP server: {e}")
handle_error()
return False
if ldap_conn.default_path is None:
logging.error("Failed to retrieve default naming context")
return False
domain_dumper = DummyDomainDumper(ldap_conn.default_path)
ldap_shell = LdapShell(sys, domain_dumper, ldap_conn.ldap_conn)
try:
ldap_shell.cmdloop()
except KeyboardInterrupt:
print("Bye!\n")
return True
|
Authenticate to LDAP using a certificate.
Args:
domain: Domain to authenticate to
Returns:
True if successful, False otherwise
|
ldap_authentication
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def kerberos_authentication(
self,
username: str,
domain: str,
is_key_credential: bool = False,
id_type: Optional[str] = None,
identity: Optional[str] = None,
object_sid: Optional[str] = None,
upn: Optional[str] = None,
) -> Union[str, bool, None]:
"""
Authenticate to Kerberos using PKINIT with a certificate.
Args:
username: Username to authenticate as
domain: Domain to authenticate to
is_key_credential: Whether we're using a key credential
id_type: Type of identity in certificate
identity: identity value from certificate
object_sid: SID from certificate
upn: User Principal Name
Returns:
NT hash if extracted, True if successful, False otherwise
"""
if self.key is None:
raise ValueError("Private key is not specified and no PFX was provided")
if self.cert is None:
raise ValueError("Certificate is not specified and no PFX was provided")
if not isinstance(self.key, rsa.RSAPrivateKey):
raise ValueError(
"Currently only RSA private keys are supported. Try using -ldap-shell instead"
)
# Create AS-REQ for PKINIT
as_req, diffie = build_pkinit_as_req(username, domain, self.key, self.cert)
# Resolve target IP if needed
if self.target and self.target.resolver and self.target.target_ip is None:
self.target.target_ip = self.target.resolver.resolve(domain)
logging.info("Trying to get TGT...")
logging.debug(f"Sending AS-REQ to KDC {domain} ({self.target.target_ip})")
try:
# Send Kerberos AS-REQ
tgt = sendReceive(as_req, domain, self.target.target_ip)
except KerberosError as e:
# Handle Kerberos errors with helpful messages
if e.getErrorCode() not in KRB5_ERROR_MESSAGES:
logging.error(f"Got unknown Kerberos error: {e.getErrorCode():#x}")
return False
if "KDC_ERR_CLIENT_NAME_MISMATCH" in str(e) and not is_key_credential:
logging.error(
f"Name mismatch between certificate and user {username!r}"
)
if id_type is not None:
logging.error(
f"Verify that the username {username!r} matches the certificate {id_type}: {identity}"
)
elif "KDC_ERR_WRONG_REALM" in str(e) and not is_key_credential:
logging.error(f"Wrong domain name specified {domain!r}")
if id_type is not None:
logging.error(
f"Verify that the domain {domain!r} matches the certificate {id_type}: {identity}"
)
elif "KDC_ERR_CERTIFICATE_MISMATCH" in str(e) and not is_key_credential:
logging.error(
f"Object SID mismatch between certificate and user {username!r}"
)
if object_sid is not None:
logging.error(
f"Verify that user {username!r} has object SID {object_sid!r}"
)
elif "KDC_ERR_INCONSISTENT_KEY_PURPOSE" in str(e):
logging.error("Certificate is not valid for client authentication")
logging.error(
"Check the certificate template and ensure it has the correct EKU(s)"
)
logging.error(
"If you recently changed the certificate template, wait a few minutes for the change to propagate"
)
else:
logging.error(f"Got error while trying to request TGT: {e}")
handle_error()
logging.error("See the wiki for more information")
return False
logging.info("Got TGT")
# Process AS-REP
as_rep = decoder.decode(tgt, asn1Spec=AS_REP())[0]
# Extract PA-PK-AS-REP
for pa in as_rep["padata"]:
if pa["padata-type"] == 17: # PA-PK-AS-REP
pk_as_rep = PaPkAsRep.load(bytes(pa["padata-value"])).native
break
else:
logging.error("PA_PK_AS_REP was not found in AS_REP")
return False
# Process Diffie-Hellman key exchange data
ci = cms.ContentInfo.load(pk_as_rep["dhSignedData"]).native
sd = ci["content"]
key_info = sd["encap_content_info"]
if key_info["content_type"] != "1.3.6.1.5.2.3.2":
logging.error("Unexpected value for key info content type")
return False
# Get public key from KDC
auth_data = KDCDHKeyInfo.load(key_info["content"]).native
pub_key = int.from_bytes(
core.BitString(auth_data["subjectPublicKey"]).dump()[7:],
"big",
signed=False,
)
# Complete Diffie-Hellman exchange
shared_key = diffie.exchange(pub_key)
server_nonce = pk_as_rep["serverDHNonce"]
full_key = shared_key + diffie.dh_nonce + server_nonce
# Derive encryption key
etype = as_rep["enc-part"]["etype"]
cipher = _enctype_table[etype]
if etype == EncType.AES256:
t_key = truncate_key(full_key, 32)
elif etype == EncType.AES128:
t_key = truncate_key(full_key, 16)
else:
logging.error("Unexpected encryption type in AS_REP")
return False
# Decrypt AS-REP
key = Key(cipher.enctype, t_key)
enc_data = as_rep["enc-part"]["cipher"]
dec_data = cipher.decrypt(key, 3, enc_data)
enc_as_rep_part = decoder.decode(dec_data, asn1Spec=EncASRepPart())[0]
# Extract session key
cipher = _enctype_table[int(enc_as_rep_part["key"]["keytype"])]
session_key = Key(cipher.enctype, bytes(enc_as_rep_part["key"]["keyvalue"]))
# Create credential cache
ccache = CCache()
ccache.fromTGT(tgt, key, None)
krb_cred = ccache.toKRBCRED()
# Print ticket if requested
if self.print:
logging.info("Ticket:")
print(base64.b64encode(krb_cred).decode())
# Save ticket to file if requested
if not self.no_save:
if self.kirbi:
kirbi_name = f"{username.rstrip('$')}.kirbi"
logging.info(f"Saving Kirbi file to {kirbi_name!r}")
saved_path = try_to_save_file(ccache.toKRBCRED(), kirbi_name)
logging.info(f"Wrote Kirbi file to {saved_path!r}")
else:
self.ccache_name = f"{username.rstrip('$')}.ccache"
logging.info(f"Saving credential cache to {self.ccache_name!r}")
saved_path = try_to_save_file(ccache.getData(), self.ccache_name)
logging.info(f"Wrote credential cache to {saved_path!r}")
# Extract NT hash if requested
if not self.no_hash:
logging.info(f"Trying to retrieve NT hash for {username!r}")
try:
# Create AP-REQ for User-to-User (U2U) authentication
ap_req = AP_REQ()
ap_req["pvno"] = 5
ap_req["msg-type"] = e2i(constants.ApplicationTagNumbers.AP_REQ)
ap_req["ap-options"] = constants.encodeFlags([])
# Use received ticket
ticket = Ticket()
ticket = ticket.from_asn1(as_rep["ticket"])
seq_set(ap_req, "ticket", ticket.to_asn1)
# Create authenticator for AP-REQ
authenticator = Authenticator()
authenticator["authenticator-vno"] = 5
authenticator["crealm"] = bytes(as_rep["crealm"])
client_name = Principal()
client_name = client_name.from_asn1(as_rep, "crealm", "cname")
seq_set(authenticator, "cname", client_name.components_to_asn1)
# Set time in authenticator
now = datetime.datetime.now(datetime.timezone.utc)
authenticator["cusec"] = now.microsecond
authenticator["ctime"] = KerberosTime.to_asn1(now)
# Encrypt authenticator with session key
encoded_authenticator = encoder.encode(authenticator)
encrypted_encoded_authenticator = cipher.encrypt(
session_key, 7, encoded_authenticator, None
)
ap_req["authenticator"] = noValue
ap_req["authenticator"]["etype"] = cipher.enctype
ap_req["authenticator"]["cipher"] = encrypted_encoded_authenticator
encoded_ap_req = encoder.encode(ap_req)
# Create TGS-REQ with U2U flag
tgs_req = TGS_REQ()
tgs_req["pvno"] = 5
tgs_req["msg-type"] = e2i(constants.ApplicationTagNumbers.TGS_REQ)
# Add AP-REQ as PA data
tgs_req["padata"] = noValue
tgs_req["padata"][0] = noValue
tgs_req["padata"][0]["padata-type"] = e2i(
constants.PreAuthenticationDataTypes.PA_TGS_REQ
)
tgs_req["padata"][0]["padata-value"] = encoded_ap_req
req_body = seq_set(tgs_req, "req-body")
# Set KDC options for U2U
opts = [
e2i(constants.KDCOptions.forwardable),
e2i(constants.KDCOptions.renewable),
e2i(constants.KDCOptions.canonicalize),
e2i(constants.KDCOptions.enc_tkt_in_skey), # This enables U2U
e2i(constants.KDCOptions.forwardable),
e2i(constants.KDCOptions.renewable_ok),
]
req_body["kdc-options"] = constants.encodeFlags(opts)
# Request a ticket to self (U2U)
server_name = Principal(
username, type=e2i(constants.PrincipalNameType.NT_UNKNOWN)
)
seq_set(req_body, "sname", server_name.components_to_asn1)
req_body["realm"] = str(as_rep["crealm"])
# Set validity period
now = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(
days=1
)
req_body["till"] = KerberosTime.to_asn1(now)
req_body["nonce"] = getrandbits(31)
# Request supported encryption types
seq_set_iter(
req_body,
"etype",
(int(cipher.enctype), e2i(constants.EncryptionTypes.rc4_hmac)),
)
# Include our own ticket
ticket_asn1 = ticket.to_asn1(TicketAsn1())
seq_set_iter(req_body, "additional-tickets", (ticket_asn1,))
# Send TGS-REQ
message = encoder.encode(tgs_req)
tgs = sendReceive(message, domain, self.target.target_ip)
tgs = decoder.decode(tgs, asn1Spec=TGS_REP())[0]
# Decrypt ticket from TGS-REP
ciphertext = tgs["ticket"]["enc-part"]["cipher"]
new_cipher = _enctype_table[int(tgs["ticket"]["enc-part"]["etype"])]
plaintext = new_cipher.decrypt(session_key, 2, ciphertext)
# Create special key using the t_key
special_key = Key(18, t_key)
# Extract PAC from ticket
data = plaintext
enc_ticket_part = decoder.decode(data, asn1Spec=EncTicketPart())[0]
ad_if_relevant = decoder.decode(
enc_ticket_part["authorization-data"][0]["ad-data"],
asn1Spec=AD_IF_RELEVANT(),
)[0]
pac_type = PACTYPE(ad_if_relevant[0]["ad-data"].asOctets())
buff = pac_type["Buffers"]
# Default hash values
nt_hash = None
lm_hash = "aad3b435b51404eeaad3b435b51404ee"
# Look for credential info in PAC
for _ in range(pac_type["cBuffers"]):
info_buffer = PAC_INFO_BUFFER(buff)
data = pac_type["Buffers"][info_buffer["Offset"] - 8 :][
: info_buffer["cbBufferSize"]
]
# PAC_CREDENTIAL_INFO contains the hashes
if info_buffer["ulType"] == 2: # PAC_CREDENTIAL_INFO
cred_info = PAC_CREDENTIAL_INFO(data)
new_cipher = _enctype_table[cred_info["EncryptionType"]]
# Decrypt the credentials with the special key
out = new_cipher.decrypt(
special_key, 16, cred_info["SerializedData"]
)
# Parse credential data
type1 = TypeSerialization1(out)
new_data = out[len(type1) + 4 :]
pcc = PAC_CREDENTIAL_DATA(new_data)
# Extract NTLM hashes
for cred in pcc["Credentials"]:
cred_structs = NTLM_SUPPLEMENTAL_CREDENTIAL(
b"".join(cred["Credentials"])
)
if any(cred_structs["LmPassword"]):
lm_hash = cred_structs["LmPassword"].hex()
nt_hash = cred_structs["NtPassword"].hex()
break
break
# Move to next buffer
buff = buff[len(info_buffer) :]
else:
logging.error("Could not find credentials in PAC")
return False
# Store hashes in object
self.lm_hash = lm_hash
self.nt_hash = nt_hash
# Display hash information
if not is_key_credential:
logging.info(f"Got hash for {upn!r}: {lm_hash}:{nt_hash}")
# Return the NT hash
return nt_hash
except Exception as e:
logging.error(f"Failed to extract NT hash: {e}")
handle_error()
return False
# Authentication succeeded
return True
|
Authenticate to Kerberos using PKINIT with a certificate.
Args:
username: Username to authenticate as
domain: Domain to authenticate to
is_key_credential: Whether we're using a key credential
id_type: Type of identity in certificate
identity: identity value from certificate
object_sid: SID from certificate
upn: User Principal Name
Returns:
NT hash if extracted, True if successful, False otherwise
|
kerberos_authentication
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def entry(options: argparse.Namespace) -> None:
"""
Entry point for the 'auth' command.
Args:
options: Command-line arguments
"""
# Ensure we don't try to use password authentication
options.no_pass = True
# Create target from options
target = Target.from_options(options, dc_as_target=True, require_username=False)
# Create authenticator and perform authentication
try:
authenticate = Authenticate(target=target, **vars(options))
result = authenticate.authenticate()
if result is False:
sys.exit(1)
except Exception as e:
logging.error(f"Authentication failed: {e}")
handle_error()
sys.exit(1)
|
Entry point for the 'auth' command.
Args:
options: Command-line arguments
|
entry
|
python
|
ly4k/Certipy
|
certipy/commands/auth.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/auth.py
|
MIT
|
def request(self, req: Any, *args, **kwargs): # type: ignore
"""
Send a request to the CA service.
Args:
req: Request object
*args: Additional arguments
**kwargs: Additional keyword arguments
Returns:
Response from the CA service
Raises:
DCERPCException: If the RPC call fails
"""
req["ORPCthis"] = self.get_cinstance().get_ORPCthis() # type: ignore
req["ORPCthis"]["flags"] = 0
self.connect(self._iid)
dce = self.get_dce_rpc()
try:
resp = dce.request(req, self.get_iPid(), *args, **kwargs)
except Exception as e:
if str(e).find("RPC_E_DISCONNECTED") >= 0:
msg = str(e) + "\n"
msg += (
"DCOM keep-alive pinging it might not be working as expected. You "
"can't be idle for more than 14 minutes!\n"
)
msg += "You should exit the app and start again\n"
raise DCERPCException(msg)
else:
raise
return resp
|
Send a request to the CA service.
Args:
req: Request object
*args: Additional arguments
**kwargs: Additional keyword arguments
Returns:
Response from the CA service
Raises:
DCERPCException: If the RPC call fails
|
request
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def __init__(
self,
target: Target,
ca: Optional[str] = None,
template: Optional[str] = None,
officer: Optional[str] = None,
request_id: Optional[int] = None,
connection: Optional[LDAPConnection] = None,
scheme: str = "ldaps",
dynamic: bool = False,
config: Optional[str] = None,
timeout: int = 5,
**kwargs, # type: ignore
):
"""
Initialize CA management object.
Args:
target: Target information (hostname, credentials, etc.)
ca: CA name
template: Certificate template name
officer: Officer username
request_id: Certificate request ID
connection: Existing LDAP connection to reuse
scheme: LDAP scheme (ldap or ldaps)
dc_host: Domain controller hostname
dynamic: Use dynamic port allocation
config: CA configuration string
timeout: Connection timeout in seconds
**kwargs: Additional arguments
"""
self.target = target
self.request_id = request_id
self.ca = ca
self.officer = officer
self.template = template
self.scheme = scheme
self.dynamic = dynamic
self.config = config
self.timeout = timeout
self.kwargs = kwargs
# Initialize connection objects
self._connection: Optional[LDAPConnection] = connection
self._cert_admin: Optional[ICertAdminD] = None
self._cert_admin2: Optional[ICertAdminD2] = None
self._cert_request2: Optional[ICertRequestD2] = None
self._rrp_dce = None
|
Initialize CA management object.
Args:
target: Target information (hostname, credentials, etc.)
ca: CA name
template: Certificate template name
officer: Officer username
request_id: Certificate request ID
connection: Existing LDAP connection to reuse
scheme: LDAP scheme (ldap or ldaps)
dc_host: Domain controller hostname
dynamic: Use dynamic port allocation
config: CA configuration string
timeout: Connection timeout in seconds
**kwargs: Additional arguments
|
__init__
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def connection(self) -> LDAPConnection:
"""
Get or create an LDAP connection to the domain.
Returns:
Active LDAP connection
Raises:
ValueError: If target resolution fails
"""
if self._connection:
return self._connection
target = copy.copy(self.target)
if target.do_kerberos:
if self.target.dc_host is None:
raise Exception(
"Kerberos auth requires DNS name of the target DC. Use -dc-host."
)
target.remote_name = self.target.dc_host
target.target_ip = target.dc_ip
self._connection = LDAPConnection(target)
self._connection.connect()
return self._connection
|
Get or create an LDAP connection to the domain.
Returns:
Active LDAP connection
Raises:
ValueError: If target resolution fails
|
connection
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def cert_admin(self) -> ICertAdminD:
"""
Get or create an ICertAdminD interface.
Returns:
ICertAdminD interface
"""
if self._cert_admin is not None:
return self._cert_admin
dcom = get_dcom_connection(self.target)
interface = dcom.CoCreateInstanceEx(CLSID_ICertAdminD, IID_ICertAdminD)
interface.get_cinstance().set_auth_level(RPC_C_AUTHN_LEVEL_PKT_PRIVACY) # type: ignore
self._cert_admin = ICertAdminD(interface)
return self._cert_admin
|
Get or create an ICertAdminD interface.
Returns:
ICertAdminD interface
|
cert_admin
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def cert_admin2(self) -> ICertAdminD2:
"""
Get or create an ICertAdminD2 interface.
Returns:
ICertAdminD2 interface
"""
if self._cert_admin2 is not None:
return self._cert_admin2
dcom = get_dcom_connection(self.target)
interface = dcom.CoCreateInstanceEx(CLSID_ICertAdminD, IID_ICertAdminD2)
interface.get_cinstance().set_auth_level(RPC_C_AUTHN_LEVEL_PKT_PRIVACY) # type: ignore
self._cert_admin2 = ICertAdminD2(interface)
return self._cert_admin2
|
Get or create an ICertAdminD2 interface.
Returns:
ICertAdminD2 interface
|
cert_admin2
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def cert_request2(self) -> ICertRequestD2:
"""
Get or create an ICertRequestD2 interface.
Returns:
ICertRequestD2 interface
"""
if self._cert_request2 is not None:
return self._cert_request2
dcom = get_dcom_connection(self.target)
interface = dcom.CoCreateInstanceEx(CLSID_CCertRequestD, IID_ICertRequestD2)
interface.get_cinstance().set_auth_level(RPC_C_AUTHN_LEVEL_PKT_PRIVACY) # type: ignore
self._cert_request2 = ICertRequestD2(interface)
return self._cert_request2
|
Get or create an ICertRequestD2 interface.
Returns:
ICertRequestD2 interface
|
cert_request2
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def rrp_dce(self):
"""
Get or create a connection to the remote registry service.
Returns:
RRP DCE/RPC connection or None if connection fails
"""
if self._rrp_dce is not None:
return self._rrp_dce
dce = get_dce_rpc_from_string_binding(
"ncacn_np:445[\\pipe\\winreg]", self.target, timeout=self.target.timeout
)
# Try to connect up to 3 times (registry service might need to start)
for _ in range(3):
try:
dce.connect()
_ = dce.bind(rrp.MSRPC_UUID_RRP)
logging.debug(
f"Connected to remote registry at {self.target.remote_name!r} ({self.target.target_ip!r})"
)
break
except Exception as e:
if "STATUS_PIPE_NOT_AVAILABLE" in str(e):
logging.warning(
"Failed to connect to remote registry. Service should be starting now. Trying again..."
)
time.sleep(1)
else:
logging.error(f"Failed to connect to remote registry: {e}")
handle_error()
return None
else:
logging.warning("Failed to connect to remote registry after 3 attempts")
return None
self._rrp_dce = dce
return self._rrp_dce
|
Get or create a connection to the remote registry service.
Returns:
RRP DCE/RPC connection or None if connection fails
|
rrp_dce
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def get_exchange_certificate(self) -> x509.Certificate:
"""
Get the CA exchange certificate.
Returns:
CA exchange certificate
Raises:
Exception: If the certificate retrieval fails
"""
request = ICertRequestD2GetCAProperty()
request["pwszAuthority"] = checkNullString(self.ca)
request["PropId"] = 0x0000000F # Exchange certificate property ID
request["PropIndex"] = 0
request["PropType"] = 0x00000003 # Binary data type
resp = self.cert_request2.request(request)
# Convert the certificate blob to an x509 certificate
exchange_cert = der_to_cert(b"".join(resp["pctbPropertyValue"]["pb"]))
return exchange_cert
|
Get the CA exchange certificate.
Returns:
CA exchange certificate
Raises:
Exception: If the certificate retrieval fails
|
get_exchange_certificate
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def get_config_rrp(self) -> "CAConfiguration":
"""
Get CA configuration via the Remote Registry Protocol.
Used as a fallback when CSRA fails.
This method navigates the Windows registry structure to extract CA configuration
settings including policy modules, edit flags, request disposition,
disabled extensions, interface flags, and security descriptors.
Returns:
CAConfiguration object containing CA configuration settings
Raises:
ValueError: If critical registry values have unexpected types
"""
# Open local machine registry hive
hklm = rrp.hOpenLocalMachine(self.rrp_dce)
h_root_key = hklm["phKey"]
# First retrieve active policy module information
policy_key_path = (
f"SYSTEM\\CurrentControlSet\\Services\\CertSvc\\Configuration\\{self.ca}\\"
"PolicyModules"
)
policy_key = rrp.hBaseRegOpenKey(self.rrp_dce, h_root_key, policy_key_path)
# Get active policy module name
_, active_policy = rrp.hBaseRegQueryValue(
self.rrp_dce, policy_key["phkResult"], "Active"
)
if not isinstance(active_policy, str):
logging.warning(
f"Expected a string for active policy, got {type(active_policy)!r}"
)
logging.warning("Falling back to default policy")
active_policy = "CertificateAuthority_MicrosoftDefault.Policy"
active_policy = active_policy.strip("\x00")
# Open policy module configuration
policy_key_path = (
f"SYSTEM\\CurrentControlSet\\Services\\CertSvc\\Configuration\\{self.ca}\\"
f"PolicyModules\\{active_policy}"
)
policy_key = rrp.hBaseRegOpenKey(self.rrp_dce, h_root_key, policy_key_path)
# Retrieve edit flags (controls certificate request behavior)
_, edit_flags = rrp.hBaseRegQueryValue(
self.rrp_dce, policy_key["phkResult"], "EditFlags"
)
if not isinstance(edit_flags, int):
logging.warning(f"Expected an int for edit flags, got {type(edit_flags)!r}")
logging.warning("Falling back to default edit flags")
edit_flags = 0x00000000
# Retrieve request disposition (auto-enrollment settings)
_, request_disposition = rrp.hBaseRegQueryValue(
self.rrp_dce, policy_key["phkResult"], "RequestDisposition"
)
if not isinstance(request_disposition, int):
logging.warning(
f"Expected an int for request disposition, got {type(request_disposition)!r}"
)
logging.warning("Falling back to default request disposition")
request_disposition = 0x00000000
# Retrieve disabled extensions
_, disable_extension_list = rrp.hBaseRegQueryValue(
self.rrp_dce, policy_key["phkResult"], "DisableExtensionList"
)
if not isinstance(disable_extension_list, str):
logging.warning(
f"Expected a string for disable extension list, got {type(disable_extension_list)!r}"
)
logging.warning("Falling back to default disable extension list")
disable_extension_list = ""
# Process null-terminated string list into Python list
disable_extension_list = [
item for item in disable_extension_list.strip("\x00").split("\x00") if item
]
# Now get general CA configuration settings
configuration_key_path = (
f"SYSTEM\\CurrentControlSet\\Services\\CertSvc\\Configuration\\{self.ca}"
)
configuration_key = rrp.hBaseRegOpenKey(
self.rrp_dce, h_root_key, configuration_key_path
)
# Retrieve interface flags (controls CA interface behavior)
_, interface_flags = rrp.hBaseRegQueryValue(
self.rrp_dce, configuration_key["phkResult"], "InterfaceFlags"
)
if not isinstance(interface_flags, int):
logging.warning(
f"Expected an int for interface flags, got {type(interface_flags)!r}"
)
logging.warning("Falling back to default interface flags")
interface_flags = 0x00000000
# Retrieve security descriptor (controls access permissions)
_, security_descriptor = rrp.hBaseRegQueryValue(
self.rrp_dce, configuration_key["phkResult"], "Security"
)
if not isinstance(security_descriptor, bytes):
raise ValueError(
f"Expected a bytes object for security descriptor, got {type(security_descriptor)!r}"
)
# Parse the binary security descriptor
security_descriptor = CASecurity(security_descriptor)
# Return a complete configuration object
return CAConfiguration(
active_policy,
edit_flags,
disable_extension_list,
request_disposition,
interface_flags,
security_descriptor,
)
|
Get CA configuration via the Remote Registry Protocol.
Used as a fallback when CSRA fails.
This method navigates the Windows registry structure to extract CA configuration
settings including policy modules, edit flags, request disposition,
disabled extensions, interface flags, and security descriptors.
Returns:
CAConfiguration object containing CA configuration settings
Raises:
ValueError: If critical registry values have unexpected types
|
get_config_rrp
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def get_config(self) -> Optional["CAConfiguration"]:
"""
Get CA configuration using the Remote Registry Protocol (RRP).
This method attempts to retrieve the CA configuration using RRP
and handles any exceptions that might occur during the process.
Returns:
CAConfiguration object containing configuration settings or None if retrieval fails
"""
try:
logging.info(f"Retrieving CA configuration for {self.ca!r} via RRP")
result = self.get_config_rrp()
logging.info(f"Successfully retrieved CA configuration for {self.ca!r}")
return result
except Exception as e:
logging.warning(
f"Failed to get CA configuration for {self.ca!r} via RRP: {e}"
)
handle_error(True)
logging.warning(f"Could not retrieve configuration for {self.ca!r}")
return None
|
Get CA configuration using the Remote Registry Protocol (RRP).
This method attempts to retrieve the CA configuration using RRP
and handles any exceptions that might occur during the process.
Returns:
CAConfiguration object containing configuration settings or None if retrieval fails
|
get_config
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def issue(self) -> bool:
"""
Issue (approve) a pending certificate request.
Returns:
True if successful, False otherwise
"""
if self.request_id is None:
logging.error(
"A request ID (-request-id) is required in order to issue a pending or failed certificate request"
)
return False
request = ICertAdminDResubmitRequest()
request["pwszAuthority"] = checkNullString(self.ca)
request["pdwRequestId"] = int(self.request_id)
request["pwszExtensionName"] = checkNullString("\x00") # No extension
try:
resp = self.cert_admin.request(request)
except DCERPCSessionError as e:
if "E_ACCESSDENIED" in str(e):
logging.error(
"Access denied: Insufficient permissions to issue certificate"
)
return False
logging.error(
f"Failed to issue certificate request ID {self.request_id}: {e}"
)
handle_error()
return False
error_code = resp["pdwDisposition"]
if error_code == 3: # Success
logging.info(
f"Successfully issued certificate request ID {self.request_id}"
)
return True
else:
error_msg = translate_error_code(error_code)
logging.error(f"Failed to issue certificate: {error_msg}")
return False
|
Issue (approve) a pending certificate request.
Returns:
True if successful, False otherwise
|
issue
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
def deny(self) -> bool:
"""
Deny a pending certificate request.
Returns:
True if successful, False otherwise
"""
if self.request_id is None:
logging.error(
"A request ID (-request-id) is required in order to deny a pending certificate request"
)
return False
request = ICertAdminDDenyRequest()
request["pwszAuthority"] = checkNullString(self.ca)
request["pdwRequestId"] = int(self.request_id)
try:
resp = self.cert_admin.request(request)
except DCERPCSessionError as e:
if "E_ACCESSDENIED" in str(e):
logging.error(
"Access denied: Insufficient permissions to deny certificate request"
)
return False
logging.error(
f"Failed to deny certificate request ID {self.request_id}: {e}"
)
handle_error()
return False
error_code = resp["ErrorCode"]
if error_code == 0: # Success
logging.info(
f"Successfully denied certificate request ID {self.request_id}"
)
return True
else:
error_msg = translate_error_code(error_code)
logging.error(f"Failed to deny certificate request: {error_msg}")
return False
|
Deny a pending certificate request.
Returns:
True if successful, False otherwise
|
deny
|
python
|
ly4k/Certipy
|
certipy/commands/ca.py
|
https://github.com/ly4k/Certipy/blob/master/certipy/commands/ca.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.