code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def expr_deserializer(
expr: str | pl.Expr | list[pl.Expr] | None,
) -> pl.Expr | list[pl.Expr] | None:
"""Deserialize a polars expression or list thereof from json.
This is applied both during deserialization and validation.
"""
if expr is None:
return None
elif isinstance(expr, pl.Expr):
return expr
elif isinstance(expr, list):
return expr
elif isinstance(expr, str):
if expr == "null":
return None
# can be either a list of expr or expr
elif expr[0] == "[":
return [
pl.Expr.deserialize(io.StringIO(e), format="json")
for e in json.loads(expr)
]
else:
return pl.Expr.deserialize(io.StringIO(expr), format="json")
else:
raise ValueError(f"{expr} can not be deserialized.")
|
Deserialize a polars expression or list thereof from json.
This is applied both during deserialization and validation.
|
expr_deserializer
|
python
|
JakobGM/patito
|
src/patito/_pydantic/column_info.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/column_info.py
|
MIT
|
def expr_or_col_name_deserializer(expr: str | pl.Expr | None) -> pl.Expr | str | None:
"""Deserialize a polars expression or column name from json.
This is applied both during deserialization and validation.
"""
if expr is None:
return None
elif isinstance(expr, pl.Expr):
return expr
elif isinstance(expr, list):
return expr
elif isinstance(expr, str):
# Default behaviour
if expr == "null":
return None
else:
try:
return pl.Expr.deserialize(io.StringIO(expr), format="json")
except ComputeError:
try:
# Column name is being deserialized
return json.loads(expr)
except json.JSONDecodeError:
# Column name has been passed literally
# to ColumnInfo(derived_from="foo")
return expr
else:
raise ValueError(f"{expr} can not be deserialized.")
|
Deserialize a polars expression or column name from json.
This is applied both during deserialization and validation.
|
expr_or_col_name_deserializer
|
python
|
JakobGM/patito
|
src/patito/_pydantic/column_info.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/column_info.py
|
MIT
|
def __repr__(self) -> str:
"""Print only Field attributes whose values are not default (mainly None)."""
not_default_field = {
field: getattr(self, field)
for field in self.model_fields
if getattr(self, field) is not self.model_fields[field].default
}
string = ""
for field, value in not_default_field.items():
string += f"{field}={value}, "
if string:
# remove trailing comma and space
string = string[:-2]
return f"ColumnInfo({string})"
|
Print only Field attributes whose values are not default (mainly None).
|
__repr__
|
python
|
JakobGM/patito
|
src/patito/_pydantic/column_info.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/column_info.py
|
MIT
|
def __repr_args__(self) -> "ReprArgs":
"""Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
"""
attrs = ((s, getattr(self, s)) for s in self.__slots__)
return [(a, v) for a, v in attrs if v is not None]
|
Returns the attributes to show in __str__, __repr__, and __pretty__ this is generally overridden.
Can either return:
* name - value pairs, e.g.: `[('foo_name', 'foo'), ('bar_name', ['b', 'a', 'r'])]`
* or, just values, e.g.: `[(None, 'foo'), (None, ['b', 'a', 'r'])]`
|
__repr_args__
|
python
|
JakobGM/patito
|
src/patito/_pydantic/repr.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/repr.py
|
MIT
|
def __pretty__(
self, fmt: Callable[[Any], Any], **kwargs: Any
) -> Generator[Any, None, None]:
"""Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects."""
yield self.__repr_name__() + "("
yield 1
for name, value in self.__repr_args__():
if name is not None:
yield name + "="
yield fmt(value)
yield ","
yield 0
yield -1
yield ")"
|
Used by devtools (https://python-devtools.helpmanual.io/) to provide a human readable representations of objects.
|
__pretty__
|
python
|
JakobGM/patito
|
src/patito/_pydantic/repr.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/repr.py
|
MIT
|
def display_as_type(obj: Any) -> str:
"""Pretty representation of a type, should be as close as possible to the original type definition string.
Takes some logic from `typing._type_repr`.
"""
if isinstance(obj, types.FunctionType):
return obj.__name__
elif obj is ...:
return "..."
elif isinstance(obj, Representation):
return repr(obj)
if not isinstance(obj, (typing_base, WithArgsTypes, type)):
obj = obj.__class__
if origin_is_union(get_origin(obj)):
args = ", ".join(map(display_as_type, get_args(obj)))
return f"Union[{args}]"
elif isinstance(obj, WithArgsTypes):
if get_origin(obj) == Literal:
args = ", ".join(map(repr, get_args(obj)))
else:
args = ", ".join(map(display_as_type, get_args(obj)))
return f"{obj.__qualname__}[{args}]"
elif isinstance(obj, type):
return obj.__qualname__
else:
return repr(obj).replace("typing.", "").replace("typing_extensions.", "")
|
Pretty representation of a type, should be as close as possible to the original type definition string.
Takes some logic from `typing._type_repr`.
|
display_as_type
|
python
|
JakobGM/patito
|
src/patito/_pydantic/repr.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/repr.py
|
MIT
|
def schema_for_model(cls: type[ModelType]) -> dict[str, dict[str, Any]]:
"""Return schema properties where definition references have been resolved.
Returns:
Field information as a dictionary where the keys are field names and the
values are dictionaries containing metadata information about the field
itself.
Raises:
TypeError: if a field is annotated with an enum where the values are of
different types.
"""
schema = cls.model_json_schema(by_alias=False, ref_template="{model}")
fields = {}
# first resolve definitions for nested models TODO checks for one-way references, if models are self-referencing this falls apart with recursion depth error
for f in cls.model_fields.values():
annotation = f.annotation
cls._update_dfn(annotation, schema)
for a in get_args(annotation):
cls._update_dfn(a, schema)
for field_name, field_info in schema["properties"].items():
fields[field_name] = _append_field_info_to_props(
field_info=field_info,
field_name=field_name,
required=field_name in schema.get("required", set()),
model_schema=schema,
)
schema["properties"] = fields
return schema
|
Return schema properties where definition references have been resolved.
Returns:
Field information as a dictionary where the keys are field names and the
values are dictionaries containing metadata information about the field
itself.
Raises:
TypeError: if a field is annotated with an enum where the values are of
different types.
|
schema_for_model
|
python
|
JakobGM/patito
|
src/patito/_pydantic/schema.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/schema.py
|
MIT
|
def validate_polars_dtype(
annotation: type[Any] | None,
dtype: DataType | DataTypeClass | None,
column: str | None = None,
) -> None:
"""Check that the polars dtype is valid for the given annotation. Raises ValueError if not.
Args:
annotation (type[Any] | None): python type annotation
dtype (DataType | DataTypeClass | None): polars dtype
column (Optional[str], optional): column name. Defaults to None.
"""
if (
dtype is None or annotation is None
): # no potential conflict between type annotation and chosen polars type
return
valid_dtypes = DtypeResolver(annotation).valid_polars_dtypes()
if dtype not in valid_dtypes:
if column:
column_msg = f" for column `{column}`"
else:
column_msg = ""
raise ValueError(
f"Invalid dtype {dtype}{column_msg}. Allowable polars dtypes for {display_as_type(annotation)} are: {', '.join([str(x) for x in valid_dtypes])}."
)
return
|
Check that the polars dtype is valid for the given annotation. Raises ValueError if not.
Args:
annotation (type[Any] | None): python type annotation
dtype (DataType | DataTypeClass | None): polars dtype
column (Optional[str], optional): column name. Defaults to None.
|
validate_polars_dtype
|
python
|
JakobGM/patito
|
src/patito/_pydantic/dtypes/dtypes.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/dtypes/dtypes.py
|
MIT
|
def validate_annotation(
annotation: type[Any] | Any | None, column: str | None = None
) -> None:
"""Check that the provided annotation has polars/patito support (we can resolve it to a default dtype). Raises ValueError if not.
Args:
annotation (type[Any] | None): python type annotation
column (Optional[str], optional): column name. Defaults to None.
"""
default_dtype = DtypeResolver(annotation).default_polars_dtype()
if default_dtype is None:
valid_polars_dtypes = DtypeResolver(annotation).valid_polars_dtypes()
if column:
column_msg = f" for column `{column}`"
else:
column_msg = ""
if len(valid_polars_dtypes) == 0:
raise ValueError(
f"Annotation {display_as_type(annotation)}{column_msg} is not compatible with any polars dtypes."
)
else:
raise ValueError(
f"Unable to determine default dtype for annotation {display_as_type(annotation)}{column_msg}. Please provide a valid default polars dtype via the `dtype` argument to `Field`. Valid dtypes are: {', '.join([str(x) for x in valid_polars_dtypes])}."
)
return
|
Check that the provided annotation has polars/patito support (we can resolve it to a default dtype). Raises ValueError if not.
Args:
annotation (type[Any] | None): python type annotation
column (Optional[str], optional): column name. Defaults to None.
|
validate_annotation
|
python
|
JakobGM/patito
|
src/patito/_pydantic/dtypes/dtypes.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/dtypes/dtypes.py
|
MIT
|
def is_optional(type_annotation: type[Any] | Any | None) -> bool:
"""Return True if the given type annotation is an Optional annotation.
Args:
type_annotation: The type annotation to be checked.
Returns:
True if the outermost type is Optional.
"""
return (get_origin(type_annotation) in UNION_TYPES) and (
type(None) in get_args(type_annotation)
)
|
Return True if the given type annotation is an Optional annotation.
Args:
type_annotation: The type annotation to be checked.
Returns:
True if the outermost type is Optional.
|
is_optional
|
python
|
JakobGM/patito
|
src/patito/_pydantic/dtypes/utils.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/dtypes/utils.py
|
MIT
|
def unwrap_optional(type_annotation: type[Any] | Any) -> type:
"""Return the inner, wrapped type of an Optional.
Is a no-op for non-Optional types.
Args:
type_annotation: The type annotation to be dewrapped.
Returns:
The input type, but with the outermost Optional removed.
"""
return (
next( # pragma: no cover
valid_type
for valid_type in get_args(type_annotation)
if valid_type is not type(None) # noqa: E721
)
if is_optional(type_annotation)
else type_annotation
)
|
Return the inner, wrapped type of an Optional.
Is a no-op for non-Optional types.
Args:
type_annotation: The type annotation to be dewrapped.
Returns:
The input type, but with the outermost Optional removed.
|
unwrap_optional
|
python
|
JakobGM/patito
|
src/patito/_pydantic/dtypes/utils.py
|
https://github.com/JakobGM/patito/blob/master/src/patito/_pydantic/dtypes/utils.py
|
MIT
|
def test_valids_basic_annotations() -> None:
"""Test type annotations match polars dtypes."""
# base types
assert DtypeResolver(str).valid_polars_dtypes() == STRING_DTYPES
assert DtypeResolver(int).valid_polars_dtypes() == DataTypeGroup(INTEGER_DTYPES)
assert DtypeResolver(float).valid_polars_dtypes() == FLOAT_DTYPES
assert DtypeResolver(bool).valid_polars_dtypes() == BOOLEAN_DTYPES
# temporals
assert DtypeResolver(datetime).valid_polars_dtypes() == DATETIME_DTYPES
assert DtypeResolver(date).valid_polars_dtypes() == DATE_DTYPES
assert DtypeResolver(time).valid_polars_dtypes() == TIME_DTYPES
assert DtypeResolver(timedelta).valid_polars_dtypes() == DURATION_DTYPES
# other
with pytest.raises(TypeError, match="must be strings"):
DtypeResolver(Literal[1, 2, 3]).valid_polars_dtypes() # pyright: ignore
with pytest.raises(TypeError, match="Mixed type enums not supported"):
DtypeResolver(Literal[1, 2, "3"]).valid_polars_dtypes() # pyright: ignore
assert DtypeResolver(Literal["a", "b", "c"]).valid_polars_dtypes() == { # pyright: ignore
pl.Enum(["a", "b", "c"]),
pl.String,
}
# combos
assert DtypeResolver(Optional[str]).valid_polars_dtypes() == STRING_DTYPES
if sys.version_info[1] >= 10:
assert (
DtypeResolver(str | None | None).valid_polars_dtypes() == STRING_DTYPES
) # superfluous None is ok
assert (
DtypeResolver(Union[int, float]).valid_polars_dtypes()
== FLOAT_DTYPES | INTEGER_DTYPES
)
assert (
DtypeResolver(Union[str, int]).valid_polars_dtypes()
== STRING_DTYPES | INTEGER_DTYPES
)
# invalids
assert DtypeResolver(object).valid_polars_dtypes() == frozenset()
|
Test type annotations match polars dtypes.
|
test_valids_basic_annotations
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_valids_nested_annotations() -> None:
"""Test type annotations match nested polars types like List."""
assert len(DtypeResolver(list).valid_polars_dtypes()) == 0 # needs inner annotation
assert (
DtypeResolver(tuple).valid_polars_dtypes()
== DtypeResolver(list).valid_polars_dtypes()
== DtypeResolver(Sequence).valid_polars_dtypes()
) # for now, these are the same
assert DtypeResolver(list[str]).valid_polars_dtypes() == {pl.List(pl.String)}
assert DtypeResolver(Optional[list[str]]).valid_polars_dtypes() == {
pl.List(pl.String)
}
assert len(DtypeResolver(list[int]).valid_polars_dtypes()) == len(
DataTypeGroup(INTEGER_DTYPES)
)
assert len(DtypeResolver(list[Union[int, float]]).valid_polars_dtypes()) == len(
INTEGER_DTYPES | FLOAT_DTYPES
)
assert len(DtypeResolver(list[Optional[int]]).valid_polars_dtypes()) == len(
DataTypeGroup(INTEGER_DTYPES)
)
assert DtypeResolver(list[list[str]]).valid_polars_dtypes() == {
pl.List(pl.List(pl.String))
} # recursion works as expected
assert (
DtypeResolver(dict).valid_polars_dtypes() == frozenset()
) # not currently supported
# support for nested models via struct
assert (
len(DtypeResolver(ManyTypes).valid_polars_dtypes()) == 1
) # only defaults are valid
assert (
DtypeResolver(ManyTypes).valid_polars_dtypes()
== DtypeResolver(Optional[ManyTypes]).valid_polars_dtypes()
)
|
Test type annotations match nested polars types like List.
|
test_valids_nested_annotations
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_dtype_validation() -> None:
"""Ensure python types match polars types."""
validate_polars_dtype(int, pl.Int16) # no issue
with pytest.raises(ValueError, match="Invalid dtype"):
validate_polars_dtype(int, pl.Float64)
with pytest.raises(ValueError, match="Invalid dtype"):
validate_polars_dtype(int, pl.String)
with pytest.raises(ValueError, match="Invalid dtype"):
validate_polars_dtype(list[str], pl.List(pl.Float64))
# some potential corner cases
validate_polars_dtype(AwareDatetime, dtype=pl.Datetime(time_zone="UTC"))
|
Ensure python types match polars types.
|
test_dtype_validation
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_defaults_basic_annotations() -> None:
"""Ensure python types resolve to largest polars type."""
# base types
assert DtypeResolver(str).default_polars_dtype() == pl.String
assert DtypeResolver(int).default_polars_dtype() == pl.Int64
assert DtypeResolver(float).default_polars_dtype() == pl.Float64
assert DtypeResolver(bool).default_polars_dtype() == pl.Boolean
# temporals
assert DtypeResolver(datetime).default_polars_dtype() == pl.Datetime
assert DtypeResolver(date).default_polars_dtype() == pl.Date
assert DtypeResolver(time).default_polars_dtype() == pl.Time
assert DtypeResolver(timedelta).default_polars_dtype() == pl.Duration
# combos
assert DtypeResolver(Optional[str]).default_polars_dtype() == pl.String
assert DtypeResolver(Union[int, float]).default_polars_dtype() is None
assert DtypeResolver(Union[str, int]).default_polars_dtype() is None
# other
literal = DtypeResolver(Literal["a", "b", "c"]).default_polars_dtype()
assert literal == pl.Enum(["a", "b", "c"])
assert set(literal.categories) == {"a", "b", "c"}
# invalids
assert DtypeResolver(object).default_polars_dtype() is None
|
Ensure python types resolve to largest polars type.
|
test_defaults_basic_annotations
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_defaults_nested_annotations() -> None:
"""Ensure python nested types fallback to largest nested polars type."""
assert DtypeResolver(list).default_polars_dtype() is None # needs inner annotation
assert DtypeResolver(list[str]).default_polars_dtype() == pl.List(pl.String)
assert DtypeResolver(Optional[list[str]]).default_polars_dtype() == pl.List(
pl.String
)
assert DtypeResolver(list[int]).default_polars_dtype() == pl.List(pl.Int64)
assert DtypeResolver(list[Optional[int]]).default_polars_dtype() == pl.List(
pl.Int64
)
assert DtypeResolver(list[Union[int, float]]).default_polars_dtype() is None
assert DtypeResolver(list[Union[str, int]]).default_polars_dtype() is None
assert DtypeResolver(list[list[str]]).default_polars_dtype() == pl.List(
pl.List(pl.String)
) # recursion works as expected
assert DtypeResolver(list[list[Optional[str]]]).default_polars_dtype() == pl.List(
pl.List(pl.String)
)
with pytest.raises(
NotImplementedError, match="dictionaries not currently supported"
):
DtypeResolver(dict).default_polars_dtype()
# support for nested models via struct
many_types = DtypeResolver(ManyTypes).default_polars_dtype()
assert many_types == pl.Struct
assert len(many_types.fields) == len(ManyTypes.columns)
assert DtypeResolver(Optional[ManyTypes]).default_polars_dtype() == many_types
|
Ensure python nested types fallback to largest nested polars type.
|
test_defaults_nested_annotations
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_annotation_validation() -> None:
"""Check that python types are resolveable."""
validate_annotation(int) # no issue
validate_annotation(Optional[int])
with pytest.raises(ValueError, match="Valid dtypes are:"):
validate_annotation(Union[int, float])
# Unions are unsupported as actual polars dtypes but are not supported by Patito IF a default dtype is provided
# TODO: Does it make sense for Patito to support union given that the underlying dataframe cannot?
with pytest.raises(
ValueError,
match="Unable to determine default dtype",
):
validate_annotation(Union[str, int])
validate_annotation(list[Optional[int]])
with pytest.raises(ValueError, match="Unable to determine default dtype"):
validate_annotation(list[Union[str, int]])
with pytest.raises(
ValueError,
match="Unable to determine default dtype",
):
validate_annotation(list[Union[int, float]])
|
Check that python types are resolveable.
|
test_annotation_validation
|
python
|
JakobGM/patito
|
tests/test_dtypes.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dtypes.py
|
MIT
|
def test_generation_of_unique_data() -> None:
"""Example data generators should be able to generate unique data."""
class UniqueModel(pt.Model):
bool_column: bool
string_column: str = pt.Field(unique=True)
int_column: int = pt.Field(unique=True)
float_column: int = pt.Field(unique=True)
date_column: date = pt.Field(unique=True)
datetime_column: datetime = pt.Field(unique=True)
example_df = UniqueModel.examples({"bool_column": [True, False]})
for column in UniqueModel.columns:
assert example_df[column].is_duplicated().sum() == 0
|
Example data generators should be able to generate unique data.
|
test_generation_of_unique_data
|
python
|
JakobGM/patito
|
tests/test_dummy_data.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dummy_data.py
|
MIT
|
def test_enum_field_example_values() -> None:
"""It should produce correct example values for enums."""
class DefaultEnumModel(pt.Model):
row_number: int
# Here the first value will be used as the example value
enum_field: Literal["a", "b", "c"]
# Here the default value will be used as the example value
default_enum_field: Literal["a", "b", "c"] = "b"
default_optional_enum_field: Optional[Literal["a", "b", "c"]] = "c"
# Here null will be used as the example value
none_default_optional_enum_field: Optional[Literal["a", "b", "c"]] = None
# Workaround for pola-rs/polars#4253
example_df = DefaultEnumModel.examples({"row_number": [1]}).with_columns(
pl.col("none_default_optional_enum_field").cast(pl.Enum(["a", "b", "c"]))
)
correct_example_df = pl.DataFrame(
[
pl.Series("row_number", [1], dtype=pl.Int64),
pl.Series("enum_field", ["a"], dtype=pl.Enum(["a", "b", "c"])),
pl.Series("default_enum_field", ["b"], dtype=pl.Enum(["a", "b", "c"])),
pl.Series(
"default_optional_enum_field", ["c"], dtype=pl.Enum(["a", "b", "c"])
),
pl.Series(
"none_default_optional_enum_field",
[None],
dtype=pl.Enum(["a", "b", "c"]),
),
]
)
# Workaround for pl.StringCache() not working here for some reason
assert correct_example_df.dtypes == example_df.dtypes
assert example_df.select(pl.all().cast(pl.String)).equals(
correct_example_df.select(pl.all().cast(pl.String))
)
example_model = DefaultEnumModel.example()
assert example_model.enum_field == "a"
assert example_model.default_enum_field == "b"
assert example_model.default_optional_enum_field == "c"
assert example_model.none_default_optional_enum_field is None
|
It should produce correct example values for enums.
|
test_enum_field_example_values
|
python
|
JakobGM/patito
|
tests/test_dummy_data.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dummy_data.py
|
MIT
|
def test_nested_models() -> None:
"""It should be possible to create nested models."""
class NestedModel(pt.Model):
nested_field: int
class ParentModel1(pt.Model):
parent_field: int
nested_model: NestedModel
example_model = ParentModel1.example()
example_df = ParentModel1.examples()
assert isinstance(example_model.nested_model, NestedModel)
assert example_model.nested_model.nested_field is not None
example_df = ParentModel1.examples()
assert isinstance(example_df, pl.DataFrame)
# inheritance also works
class ParentModel2(NestedModel):
parent_field: int
example_model = ParentModel2.example()
assert example_model.nested_field is not None
assert example_model.parent_field is not None
# and optional nested models are ok
class ParentModel3(pt.Model):
parent_field: int
nested_model: Optional[NestedModel] = None
example_model = ParentModel3.example()
assert example_model.nested_model is None
# sequences of nested models also work
class ParentModel(pt.Model):
parent_field: int
nested_models: Sequence[NestedModel]
example_model = ParentModel.example()
ParentModel.examples()
|
It should be possible to create nested models.
|
test_nested_models
|
python
|
JakobGM/patito
|
tests/test_dummy_data.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_dummy_data.py
|
MIT
|
def test_instantiating_model_from_row() -> None:
"""You should be able to instantiate models from rows."""
class Model(pt.Model):
a: int
polars_dataframe = pl.DataFrame({"a": [1]})
assert Model.from_row(polars_dataframe).a == 1
# Anything besides a dataframe / row should raise TypeError
with pytest.raises(
TypeError, match=r"Model.from_row not implemented for \<class 'NoneType'\>."
):
Model.from_row(None) # pyright: ignore
with pytest.raises(
TypeError,
match=r"Model._from_polars\(\) must be invoked with polars.DataFrame.*",
):
Model._from_polars(None) # pyright: ignore
|
You should be able to instantiate models from rows.
|
test_instantiating_model_from_row
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_instantiation_from_pandas_row() -> None:
"""You should be able to instantiate models from pandas rows."""
pytest.importorskip("pandas")
class Model(pt.Model):
a: int
polars_dataframe = pl.DataFrame({"a": [1]})
assert Model.from_row(polars_dataframe).a == 1
pandas_dataframe = polars_dataframe.to_pandas()
assert Model.from_row(pandas_dataframe).a == 1
assert Model.from_row(pandas_dataframe.loc[0]).a == 1 # type: ignore
|
You should be able to instantiate models from pandas rows.
|
test_instantiation_from_pandas_row
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_dataframe_class_creation() -> None:
"""Each model should get a custom DataFrame class."""
class CustomModel(pt.Model):
a: int
# The DataFrame class is a sub-class of patito.DataFrame
assert issubclass(CustomModel.DataFrame, pt.DataFrame)
# The LazyFrame class is a sub-class of patito.LazyFrame
assert issubclass(CustomModel.LazyFrame, pt.LazyFrame)
# And the model
assert CustomModel.DataFrame.model is CustomModel
assert CustomModel.LazyFrame.model is CustomModel
|
Each model should get a custom DataFrame class.
|
test_model_dataframe_class_creation
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_mapping_to_polars_dtypes() -> None:
"""Model fields should be mappable to polars dtypes."""
assert CompleteModel.dtypes == {
"str_column": pl.String(),
"int_column": pl.Int64(),
"float_column": pl.Float64(),
"bool_column": pl.Boolean(),
"date_column": pl.Date(),
"datetime_column": pl.Datetime(),
"datetime_column2": pl.Datetime(),
"aware_datetime_column": pl.Datetime(time_zone="UTC"),
"duration_column": pl.Duration(),
"time_column": pl.Time(),
"categorical_column": pl.Enum(["a", "b", "c"]),
"null_column": pl.Null(),
"pt_model_column": pl.Struct(
[
pl.Field("a", pl.Int64),
pl.Field("b", pl.String),
pl.Field("c", pl.Datetime(time_zone="UTC")),
pl.Field("d", pl.Datetime(time_zone="UTC")),
pl.Field("e", pl.Int8),
]
),
"list_int_column": pl.List(pl.Int64),
"list_str_column": pl.List(pl.String),
"list_opt_column": pl.List(pl.Int64),
}
assert CompleteModel.valid_dtypes == {
"str_column": {pl.String},
"int_column": DataTypeGroup(INTEGER_DTYPES),
"float_column": FLOAT_DTYPES,
"bool_column": {pl.Boolean},
"date_column": DATE_DTYPES,
"datetime_column": DATETIME_DTYPES,
"datetime_column2": {pl.Datetime()},
"aware_datetime_column": {pl.Datetime(time_zone="UTC")},
"duration_column": DURATION_DTYPES,
"time_column": TIME_DTYPES,
"categorical_column": {pl.Enum(["a", "b", "c"]), pl.String},
"null_column": {pl.Null},
"pt_model_column": DataTypeGroup(
[
pl.Struct(
[
pl.Field("a", pl.Int64),
pl.Field("b", pl.String),
pl.Field("c", pl.Datetime(time_zone="UTC")),
pl.Field("d", pl.Datetime(time_zone="UTC")),
pl.Field("e", pl.Int8),
]
)
]
),
"list_int_column": DataTypeGroup(
[pl.List(x) for x in DataTypeGroup(INTEGER_DTYPES)]
),
"list_str_column": DataTypeGroup([pl.List(pl.String)]),
"list_opt_column": DataTypeGroup(
[pl.List(x) for x in DataTypeGroup(INTEGER_DTYPES)]
),
}
CompleteModel.example(int_column=2)
CompleteModel.validate(CompleteModel.examples({"int_column": [1, 2, 3]}))
|
Model fields should be mappable to polars dtypes.
|
test_mapping_to_polars_dtypes
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_joins() -> None:
"""It should produce models compatible with join statements."""
class Left(pt.Model):
left: int = pt.Field(gt=20)
opt_left: Optional[int] = None
class Right(pt.Model):
right: int = pt.Field(gt=20)
opt_right: Optional[int] = None
def test_model_validator(model: type[pt.Model]) -> None:
"""Test if all field validators have been included correctly."""
with pytest.raises(ValidationError) as e:
model(left=1, opt_left=1, right=1, opt_right=1)
pattern = re.compile(r"Input should be greater than 20")
assert len(pattern.findall(str(e.value))) == 2
# An inner join should keep nullability information
InnerJoinModel = Left.join(Right, how="inner")
assert set(InnerJoinModel.columns) == {"left", "opt_left", "right", "opt_right"}
assert InnerJoinModel.nullable_columns == {"opt_left", "opt_right"}
assert InnerJoinModel.__name__ == "LeftInnerJoinRight"
test_model_validator(InnerJoinModel)
# Left joins should make all fields on left model nullable
LeftJoinModel = Left.join(Right, how="left")
assert set(LeftJoinModel.columns) == {"left", "opt_left", "right", "opt_right"}
assert LeftJoinModel.nullable_columns == {"opt_left", "right", "opt_right"}
assert LeftJoinModel.__name__ == "LeftLeftJoinRight"
test_model_validator(LeftJoinModel)
# Outer joins should make all columns nullable
OuterJoinModel = Left.join(Right, how="outer")
assert set(OuterJoinModel.columns) == {"left", "opt_left", "right", "opt_right"}
assert OuterJoinModel.nullable_columns == {"left", "opt_left", "right", "opt_right"}
assert OuterJoinModel.__name__ == "LeftOuterJoinRight"
test_model_validator(OuterJoinModel)
# Semi- and anti-joins do not change the schema at all
assert Left.join(Right, how="semi") is Left
assert Left.join(Right, how="anti") is Left
|
It should produce models compatible with join statements.
|
test_model_joins
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_validator(model: type[pt.Model]) -> None:
"""Test if all field validators have been included correctly."""
with pytest.raises(ValidationError) as e:
model(left=1, opt_left=1, right=1, opt_right=1)
pattern = re.compile(r"Input should be greater than 20")
assert len(pattern.findall(str(e.value))) == 2
|
Test if all field validators have been included correctly.
|
test_model_validator
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_selects() -> None:
"""It should produce models compatible with select statements."""
class MyModel(pt.Model):
a: Optional[int]
b: int = pt.Field(gt=10)
MySubModel = MyModel.select("b")
assert MySubModel.columns == ["b"]
MySubModel(b=11)
with pytest.raises(ValidationError, match="Input should be greater than 10"):
MySubModel(b=1)
MyTotalModel = MyModel.select(["a", "b"])
assert sorted(MyTotalModel.columns) == ["a", "b"]
MyTotalModel(a=1, b=11)
with pytest.raises(ValidationError, match="Input should be greater than 10"):
MyTotalModel(a=1, b=1)
assert MyTotalModel.nullable_columns == {"a"}
with pytest.raises(
ValueError, match="The following selected fields do not exist: {'c'}"
):
MyModel.select("c")
|
It should produce models compatible with select statements.
|
test_model_selects
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_prefix_and_suffix() -> None:
"""It should produce models where all fields have been prefixed/suffixed."""
class MyModel(pt.Model):
a: Optional[int]
b: str
NewModel = MyModel.prefix("pre_").suffix("_post")
assert sorted(NewModel.columns) == ["pre_a_post", "pre_b_post"]
assert NewModel.nullable_columns == {"pre_a_post"}
|
It should produce models where all fields have been prefixed/suffixed.
|
test_model_prefix_and_suffix
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_field_renaming() -> None:
"""It should be able to change its field names."""
class MyModel(pt.Model):
a: Optional[int]
b: str
NewModel = MyModel.rename({"b": "B"})
assert sorted(NewModel.columns) == ["B", "a"]
with pytest.raises(
ValueError,
match="The following fields do not exist for renaming: {'c'}",
):
MyModel.rename({"c": "C"})
|
It should be able to change its field names.
|
test_model_field_renaming
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_field_dropping() -> None:
"""Model should be able to drop a subset of its fields."""
class MyModel(pt.Model):
a: int
b: int
c: int
assert sorted(MyModel.drop("c").columns) == ["a", "b"]
assert MyModel.drop(["b", "c"]).columns == ["a"]
|
Model should be able to drop a subset of its fields.
|
test_model_field_dropping
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_with_fields() -> None:
"""It should allow whe user to add additional fields."""
class MyModel(pt.Model):
a: int
ExpandedModel = MyModel.with_fields(
b=(int, ...),
c=(int, None),
d=(int, pt.Field(gt=10)),
e=(Optional[int], None),
)
assert sorted(ExpandedModel.columns) == list("abcde")
assert ExpandedModel.nullable_columns == set("ce")
|
It should allow whe user to add additional fields.
|
test_with_fields
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_enum_annotated_field() -> None:
"""It should use values of enums to infer types."""
class ABCEnum(enum.Enum):
ONE = "a"
TWO = "b"
THREE = "c"
class EnumModel(pt.Model):
column: ABCEnum
assert EnumModel.dtypes["column"] == pl.Enum(["a", "b", "c"])
assert EnumModel.example_value(field="column") == "a"
assert EnumModel.example() == EnumModel(column="a")
EnumModel.DataFrame({"column": ["a"]}).cast()
class MultiTypedEnum(enum.Enum):
ONE = 1
TWO = "2"
with pytest.raises(TypeError, match="Mixed type enums not supported"):
class InvalidEnumModel(pt.Model):
column: MultiTypedEnum
InvalidEnumModel.validate_schema()
|
It should use values of enums to infer types.
|
test_enum_annotated_field
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_model_schema() -> None:
"""Ensure pt.Field properties are correctly applied to model."""
class Model(pt.Model):
a: int = pt.Field(ge=0, unique=True)
schema = Model.model_schema
def validate_model_schema(schema) -> None:
assert set(schema) == {"properties", "required", "type", "title"}
assert schema["title"] == "Model"
assert schema["type"] == "object"
assert "a" in schema["properties"]
assert schema["properties"]["a"]["type"] == "integer"
assert schema["properties"]["a"]["minimum"] == 0
validate_model_schema(schema)
# nested models
class ParentModel(pt.Model):
a: int
b: Model
c: Optional[float] = None
schema = ParentModel.model_schema
validate_model_schema(
schema["$defs"]["Model"]
) # ensure that nested model schema is recorded in definitions
validate_model_schema(
schema["properties"]["b"]
) # and all info is copied into field properties
assert set(schema["properties"]) == {"a", "b", "c"}
assert schema["properties"]["a"]["required"]
assert schema["properties"]["b"]["required"]
assert schema["properties"]["a"]["type"] == "integer"
assert not schema["properties"]["c"]["required"]
|
Ensure pt.Field properties are correctly applied to model.
|
test_model_schema
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_conflicting_type_dtype() -> None:
"""Ensure model annotation is compatible with Field dtype."""
with pytest.raises(ValueError, match="Invalid dtype String"):
class Test1(pt.Model):
foo: int = pt.Field(dtype=pl.String)
Test1.validate_schema()
with pytest.raises(ValueError, match="Invalid dtype Float32"):
class Test2(pt.Model):
foo: str = pt.Field(dtype=pl.Float32)
Test2.validate_schema()
with pytest.raises(ValueError, match="Invalid dtype UInt32"):
class Test3(pt.Model):
foo: Optional[str] = pt.Field(dtype=pl.UInt32)
Test3.validate_schema()
|
Ensure model annotation is compatible with Field dtype.
|
test_conflicting_type_dtype
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_polars_python_type_harmonization() -> None:
"""Ensure datetime types are correctly transformed to polars types."""
class Test(pt.Model):
date: datetime = pt.Field(dtype=pl.Datetime(time_unit="us"))
time: time
assert Test.valid_dtypes["date"] == {pl.Datetime(time_unit="us")}
assert Test.valid_dtypes["time"] == TIME_DTYPES
|
Ensure datetime types are correctly transformed to polars types.
|
test_polars_python_type_harmonization
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_column_infos() -> None:
"""Test that pt.Field and ColumnInfo properties match."""
class Model(pt.Model):
a: int
b: int = pt.Field(constraints=[(pl.col("b") < 10)])
c: int = pt.Field(derived_from=pl.col("a") + pl.col("b"))
d: int = pt.Field(dtype=pl.UInt8)
e: int = pt.Field(unique=True)
schema = Model.model_json_schema() # no serialization issues
props = schema[
"properties"
] # extra fields are stored in modified schema_properties
for col in ["b", "c", "d", "e"]:
assert "column_info" in props[col]
assert (
ColumnInfo.model_validate_json(props["b"]["column_info"]).constraints
is not None
)
assert (
ColumnInfo.model_validate_json(props["c"]["column_info"]).derived_from
is not None
)
assert ColumnInfo.model_validate_json(props["d"]["column_info"]).dtype is not None
assert ColumnInfo.model_validate_json(props["e"]["column_info"]).unique is not None
infos = Model.column_infos
assert infos["b"].constraints is not None
assert infos["c"].derived_from is not None
assert infos["d"].dtype is not None
assert infos["e"].unique is not None
|
Test that pt.Field and ColumnInfo properties match.
|
test_column_infos
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_validation_alias():
"""Test that validation alias works in pt.Field.
TODO: Not sure if this actually tests anything correctly.
"""
class AliasModel(pt.Model):
my_val_a: int = pt.Field(validation_alias="myValA")
my_val_b: int = pt.Field(validation_alias=AliasChoices("my_val_b", "myValB"))
# code from validators _find_errors showing that we need model_json_schema without aliases
for column_name, _column_properties in AliasModel._schema_properties().items():
assert AliasModel.column_infos[column_name] is not None
AliasModel.examples()
|
Test that validation alias works in pt.Field.
TODO: Not sure if this actually tests anything correctly.
|
test_validation_alias
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_json_schema_extra_is_extended_when_it_exists() -> None:
"""Ensure that the json_schema_extra property is extended with column_info when it is set from the model field."""
class Model(pt.Model):
a: int
b: int = pt.Field(
json_schema_extra={"client_column_metadata": {"group1": "x", "group2": "y"}}
)
c: int = pt.Field(
json_schema_extra={"client_column_metadata": {"group1": "xxx"}}
)
schema = Model.model_json_schema() # no serialization issues
props = schema[
"properties"
] # extra fields are stored in modified schema_properties
for col in ["b", "c"]:
assert "column_info" in props[col]
assert "client_column_metadata" in props[col]
assert "client_column_metadata" not in props["a"]
assert props["b"]["client_column_metadata"]["group1"] == "x"
assert props["b"]["client_column_metadata"]["group2"] == "y"
assert props["c"]["client_column_metadata"]["group1"] == "xxx"
|
Ensure that the json_schema_extra property is extended with column_info when it is set from the model field.
|
test_json_schema_extra_is_extended_when_it_exists
|
python
|
JakobGM/patito
|
tests/test_model.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_model.py
|
MIT
|
def test_dataframe_get_method() -> None:
"""You should be able to retrieve a single row and cast to model."""
class Product(pt.Model):
product_id: int = pt.Field(unique=True)
price: float
df = pt.DataFrame({"product_id": [1, 2], "price": [9.99, 19.99]})
# Validation does nothing, as no model is specified
with pytest.raises(TypeError):
df.validate()
# But if we specify the model, it makes sense
df.set_model(Product).validate()
untyped_product = df.get(pl.col("product_id") == 1)
assert untyped_product.price == 9.99
typed_product = df.set_model(Product).get(pl.col("product_id") == 1)
assert typed_product.price == 9.99
with pytest.raises(
pt.exceptions.MultipleRowsReturned,
match=re.escape(r"DataFrame.get() yielded 2 rows."),
):
df.get(pl.col("product_id") < 3)
with pytest.raises(
pt.exceptions.RowDoesNotExist,
match=re.escape(r"DataFrame.get() yielded 0 rows."),
):
df.get(pl.col("product_id") < 0)
df.filter(pl.col("product_id") == 1).get()
|
You should be able to retrieve a single row and cast to model.
|
test_dataframe_get_method
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_dataframe_set_model_method() -> None:
"""You should be able to set the associated model of a dataframe."""
class MyModel(pt.Model):
pass
modelled_df = pt.DataFrame().set_model(MyModel)
assert modelled_df.model is MyModel
assert MyModel.DataFrame.model is MyModel
|
You should be able to set the associated model of a dataframe.
|
test_dataframe_set_model_method
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_fill_nan_with_defaults() -> None:
"""You should be able to fill missing values with declared defaults."""
class DefaultModel(pt.Model):
foo: int = 2
bar: str = "default"
missing_df = pt.DataFrame({"foo": [1, None], "bar": [None, "provided"]})
filled_df = missing_df.set_model(DefaultModel).fill_null(strategy="defaults")
correct_filled_df = pt.DataFrame({"foo": [1, 2], "bar": ["default", "provided"]})
assert filled_df.equals(correct_filled_df)
|
You should be able to fill missing values with declared defaults.
|
test_fill_nan_with_defaults
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_create_missing_columns_with_defaults() -> None:
"""Columns that have default values should be created if they are missing."""
class NestedModel(pt.Model):
foo: int = 2
small_model: Optional[SmallModel] = None
class DefaultModel(pt.Model):
foo: int = 2
bar: Optional[str] = "default"
small_model: Optional[SmallModel] = None # works ok on polars==0.20.3
nested_model: Optional[NestedModel] = None # fails to convert on polars==0.20.3
missing_df = pt.DataFrame({"foo": [1, 2]})
filled_df = missing_df.set_model(DefaultModel).fill_null(strategy="defaults")
correct_filled_df = pl.DataFrame(
{
"foo": [1, 2],
"bar": ["default", "default"],
"small_model": [None, None],
"nested_model": [None, None],
},
schema=DefaultModel.dtypes,
)
assert filled_df.equals(correct_filled_df)
|
Columns that have default values should be created if they are missing.
|
test_create_missing_columns_with_defaults
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_create_missing_columns_with_dtype() -> None:
"""Ensure optional columns are created by model."""
class DefaultModel(pt.Model):
foo: int
bar: Optional[int] = None
missing_df = pt.DataFrame({"foo": [1, 2]})
filled_df = missing_df.set_model(DefaultModel).fill_null(strategy="defaults")
assert "bar" in filled_df.columns
assert filled_df["bar"].dtype == pl.Int64
|
Ensure optional columns are created by model.
|
test_create_missing_columns_with_dtype
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_preservation_of_model() -> None:
"""The model should be preserved on data frames after method invocations."""
class DummyModel(pt.Model):
a: int
class AnotherDummyModel(pt.Model):
a: int
df_with_model = pt.DataFrame().set_model(DummyModel)
# First many eagerly executed method calls
assert (
df_with_model.with_columns(pl.lit(1).alias("a"))
.filter(pl.lit(1) == 1)
.select(pl.col("a"))
.model
) is DummyModel
# A round-trip to lazy and back should also preserve the model
assert df_with_model.lazy().collect().model is DummyModel
# Since DataFrame.set_model does some trickery with self.__class__
# it is important to test that this does not leak between different
# sub-types of DataFrame
df_with_another_model = pt.DataFrame().set_model(AnotherDummyModel)
assert df_with_model.model is DummyModel
assert df_with_another_model.model is AnotherDummyModel
# The same goes for lazy round-trips
assert df_with_model.lazy().collect().model is DummyModel
assert df_with_another_model.lazy().collect().model is AnotherDummyModel
# Round-trips for DataFrames and LazyFrames should work without models as well
assert type(pt.DataFrame().lazy().collect()) is pt.DataFrame
|
The model should be preserved on data frames after method invocations.
|
test_preservation_of_model
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_dataframe_model_dtype_casting() -> None:
"""You should be able to cast columns according to model type annotations."""
class DTypeModel(pt.Model):
implicit_int: int
explicit_uint: int = pt.Field(dtype=pl.UInt64)
implicit_date: date
implicit_datetime: datetime
original_df = DTypeModel.DataFrame().with_columns(
[
# UInt32 is compatible with the "int" annotation, and since no explicit
# dtype is specified, it will not be casted to the default pl.Int64
pl.lit(1).cast(pl.UInt32).alias("implicit_int"),
# The integer will be casted to datetime 1970-01-01 00:00:00
pl.lit(0).cast(pl.Int64).alias("implicit_date"),
# The integer will be casted to date 1970-01-01
pl.lit(0).cast(pl.Int64).alias("implicit_datetime"),
# Columns not specified in the model should be left as-is
pl.lit(True),
]
)
casted_df = original_df.cast()
assert casted_df.dtypes == [
pl.UInt32,
pl.Date,
pl.Datetime,
pl.Boolean,
]
strictly_casted_df = original_df.cast(strict=True)
assert strictly_casted_df.dtypes == [
pl.Int64,
pl.Date,
pl.Datetime,
pl.Boolean,
]
some_columns_df = original_df.cast(
strict=True, columns=["implicit_int", "implicit_date"]
)
assert some_columns_df.dtypes == [
pl.Int64,
pl.Date,
pl.Int64, # not casted
pl.Boolean,
]
|
You should be able to cast columns according to model type annotations.
|
test_dataframe_model_dtype_casting
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_regular_inferred(tmp_path):
"""The `polars.read_csv` function should infer dtypes."""
csv_path = tmp_path / "foo.csv"
csv_path.write_text("1,2")
regular_df = pl.read_csv(csv_path, has_header=False)
assert regular_df.columns == ["column_1", "column_2"]
assert regular_df.dtypes == [pl.Int64, pl.Int64]
|
The `polars.read_csv` function should infer dtypes.
|
test_correct_columns_and_dtype_on_read_regular_inferred
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_model_dtypes(tmp_path):
"""A model DataFrame should read headerless CSVs with column names and dtypes."""
class Foo(pt.Model):
a: str = pt.Field()
b: int = pt.Field()
csv_path = tmp_path / "foo.csv"
csv_path.write_text("1,2")
model_df = Foo.DataFrame.read_csv(csv_path, has_header=False)
assert model_df.columns == ["a", "b"]
assert model_df.dtypes == [pl.String, pl.Int64]
|
A model DataFrame should read headerless CSVs with column names and dtypes.
|
test_correct_columns_and_dtype_on_read_model_dtypes
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_ordered(tmp_path):
"""A model DataFrame should read headered CSVs with column names and dtypes."""
class Foo(pt.Model):
a: str = pt.Field()
b: int = pt.Field()
csv_path = tmp_path / "foo.csv"
# in model field order
csv_path.write_text("a,b\n1,2")
column_specified_df_ab = Foo.DataFrame.read_csv(csv_path, has_header=True)
assert column_specified_df_ab.schema == {"a": pl.String, "b": pl.Int64}
assert column_specified_df_ab["a"].to_list() == ["1"]
assert column_specified_df_ab["b"].to_list() == [2]
# and out of order
csv_path.write_text("b,a\n1,2")
column_specified_df_ba = Foo.DataFrame.read_csv(csv_path, has_header=True)
assert column_specified_df_ba.schema == {
"a": pl.String,
"b": pl.Int64,
}
assert column_specified_df_ba["a"].to_list() == ["2"]
assert column_specified_df_ba["b"].to_list() == [1]
|
A model DataFrame should read headered CSVs with column names and dtypes.
|
test_correct_columns_and_dtype_on_read_ordered
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_ba_float_dtype_override(tmp_path):
"""A model DataFrame should aid CSV reading with column names and dtypes."""
class Foo(pt.Model):
a: str = pt.Field()
b: int = pt.Field()
csv_path = tmp_path / "foo.csv"
# in fkield order
csv_path.write_text("a,b\n1,2")
dtype_specified_df = Foo.DataFrame.read_csv(
csv_path, has_header=True, schema_overrides=[pl.Float64, pl.Float64]
)
assert dtype_specified_df.columns == ["a", "b"]
assert dtype_specified_df.dtypes == [pl.Float64, pl.Float64]
assert dtype_specified_df.schema == {"a": pl.Float64, "b": pl.Float64}
assert dtype_specified_df["a"].to_list() == [1.0]
assert dtype_specified_df["b"].to_list() == [2.0]
# and reverse order
csv_path.write_text("b,a\n1,2")
dtype_specified_df = Foo.DataFrame.read_csv(
csv_path, has_header=True, schema_overrides=[pl.Float64, pl.Float64]
)
assert dtype_specified_df.columns == ["a", "b"]
assert dtype_specified_df.dtypes == [pl.Float64, pl.Float64]
assert dtype_specified_df.schema == {"a": pl.Float64, "b": pl.Float64}
assert dtype_specified_df["a"].to_list() == [2.0]
assert dtype_specified_df["b"].to_list() == [1.0]
|
A model DataFrame should aid CSV reading with column names and dtypes.
|
test_correct_columns_and_dtype_on_read_ba_float_dtype_override
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_third_float_col(tmp_path):
"""A model DataFrame should aid CSV reading with column names and dtypes."""
class Foo(pt.Model):
a: str = pt.Field()
b: int = pt.Field()
csv_path = tmp_path / "foo.csv"
csv_path.write_text("1,2,3.1")
unspecified_column_df = Foo.DataFrame.read_csv(csv_path, has_header=False)
assert unspecified_column_df.columns == ["a", "b", "column_3"]
assert unspecified_column_df.dtypes == [pl.String, pl.Int64, pl.Float64]
|
A model DataFrame should aid CSV reading with column names and dtypes.
|
test_correct_columns_and_dtype_on_read_third_float_col
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_derived(tmp_path):
"""A model DataFrame should aid CSV reading with column names and dtypes."""
csv_path = tmp_path / "foo.csv"
csv_path.write_text("month,dollars\n1,2.99")
class DerivedModel(pt.Model):
month: int = pt.Field()
dollars: float = pt.Field()
cents: int = pt.Field(derived_from=100 * pl.col("dollars"))
derived_df = DerivedModel.DataFrame.read_csv(csv_path)
assert derived_df.columns == ["month", "dollars", "cents"]
assert derived_df.equals(
DerivedModel.DataFrame({"month": [1], "dollars": [2.99], "cents": [299]})
)
|
A model DataFrame should aid CSV reading with column names and dtypes.
|
test_correct_columns_and_dtype_on_read_derived
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_correct_columns_and_dtype_on_read_alias_gen(tmp_path):
"""A model DataFrame should apply aliases to CSV columns."""
csv_path = tmp_path / "foo.csv"
csv_path.write_text("a,b\n1,2")
class AliasedModel(pt.Model):
model_config = ConfigDict(
alias_generator=AliasGenerator(validation_alias=str.upper)
)
A: int = pt.Field()
B: int = pt.Field()
aliased_df = AliasedModel.DataFrame.read_csv(csv_path)
assert aliased_df.columns == ["A", "B"]
assert aliased_df.equals(AliasedModel.DataFrame({"A": [1], "B": [2]}))
|
A model DataFrame should apply aliases to CSV columns.
|
test_correct_columns_and_dtype_on_read_alias_gen
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_derive_functionality() -> None:
"""Test of Field(derived_from=...) and DataFrame.derive()."""
class DerivedModel(pt.Model):
underived: int
const_derived: int = pt.Field(derived_from=pl.lit(3))
column_derived: int = pt.Field(derived_from="underived")
expr_derived: int = pt.Field(derived_from=2 * pl.col("underived"))
second_order_derived: int = pt.Field(derived_from=2 * pl.col("expr_derived"))
assert DerivedModel.derived_columns == {
"const_derived",
"column_derived",
"expr_derived",
"second_order_derived",
}
df = DerivedModel.DataFrame({"underived": [1, 2]})
assert df.columns == ["underived"]
derived_df = df.derive()
correct_derived_df = DerivedModel.DataFrame(
{
"underived": [1, 2],
"const_derived": [3, 3],
"column_derived": [1, 2],
"expr_derived": [2, 4],
"second_order_derived": [4, 8],
}
)
assert derived_df.equals(correct_derived_df)
# Non-compatible derive_from arguments should raise TypeError
with pytest.raises(ValidationError):
class InvalidModel(pt.Model):
incompatible: int = pt.Field(derived_from=object)
|
Test of Field(derived_from=...) and DataFrame.derive().
|
test_derive_functionality
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_recursive_derive() -> None:
"""Data.Frame.derive() infers proper derivation order and executes it, then returns columns in the order given by the model."""
class DerivedModel(pt.Model):
underived: int
const_derived: int = pt.Field(derived_from=pl.lit(3))
second_order_derived: int = pt.Field(
derived_from=2 * pl.col("expr_derived")
) # requires expr_derived to be derived first
column_derived: int = pt.Field(derived_from="underived")
expr_derived: int = pt.Field(derived_from=2 * pl.col("underived"))
df = DerivedModel.DataFrame({"underived": [1, 2]})
assert df.columns == ["underived"]
derived_df = df.derive()
correct_derived_df = DerivedModel.DataFrame(
{
"underived": [1, 2],
"const_derived": [3, 3],
"second_order_derived": [4, 8],
"column_derived": [1, 2],
"expr_derived": [
2,
4,
], # derived before second_order_derived, but remains in last position in output df according to the model
}
)
assert derived_df.equals(correct_derived_df)
|
Data.Frame.derive() infers proper derivation order and executes it, then returns columns in the order given by the model.
|
test_recursive_derive
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_drop_method() -> None:
"""We should be able to drop columns not specified by the data frame model."""
class Model(pt.Model):
column_1: int
df = Model.DataFrame({"column_1": [1, 2], "column_2": [3, 4]})
# Originally we have all the columns
assert df.columns == ["column_1", "column_2"]
# If no argument is provided to drop, all columns not mentioned in the model are
# dropped.
assert df.drop().columns == ["column_1"]
# We can still specify a different subset
assert df.drop("column_1").columns == ["column_2"]
# Or a list of columns
assert df.drop(["column_1", "column_2"]).columns == []
|
We should be able to drop columns not specified by the data frame model.
|
test_drop_method
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_polars_conversion():
"""You should be able to convert a DataFrame to a polars DataFrame."""
class Model(pt.Model):
a: int
b: str
df = Model.DataFrame({"a": [1, 2], "b": ["foo", "bar"]})
polars_df = df.as_polars()
assert isinstance(polars_df, pl.DataFrame)
assert not isinstance(polars_df, pt.DataFrame)
assert polars_df.shape == (2, 2)
assert polars_df.columns == ["a", "b"]
assert polars_df.dtypes == [pl.Int64, pl.String]
|
You should be able to convert a DataFrame to a polars DataFrame.
|
test_polars_conversion
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_validation_alias() -> None:
"""Ensure validation_alias allows multiple column names to be parsed for one field."""
class AliasModel(pt.Model):
my_val_a: int = pt.Field(validation_alias="myValA")
my_val_b: int = pt.Field(
validation_alias=AliasChoices("my_val_b", "myValB", "myValB2")
)
my_val_c: int
first_name: str = pt.Field(validation_alias=AliasPath("names", 0))
last_name: str = pt.Field(
validation_alias=AliasChoices("lastName", AliasPath("names", 1))
)
examples = [
{"myValA": 1, "myValB": 1, "my_val_c": 1, "names": ["fname1", "lname1"]},
{"myValA": 2, "myValB": 2, "my_val_c": 2, "names": ["fname2", "lname2"]},
{
"my_val_a": 3,
"myValB2": 3,
"my_val_c": 3,
"names": ["fname3"],
"last_name": "lname3",
},
{
"my_val_a": 4,
"my_val_b": 4,
"my_val_c": 4,
"first_name": "fname4",
"last_name": "lname4",
},
]
# check record with all aliases
df = (
AliasModel.LazyFrame([examples[0]])
.unalias()
.cast(strict=True)
.collect()
.validate()
)
assert df.columns == AliasModel.columns
# check record with no aliases
df = (
AliasModel.LazyFrame([examples[3]])
.unalias()
.cast(strict=True)
.collect()
.validate()
)
assert df.columns == AliasModel.columns
# check records with mixed aliases
df = AliasModel.LazyFrame(examples).unalias().cast(strict=True).collect().validate()
assert df.columns == AliasModel.columns
|
Ensure validation_alias allows multiple column names to be parsed for one field.
|
test_validation_alias
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_alias_generator_read_csv() -> None:
"""Ensure validation alias is applied to read_csv."""
class AliasGeneratorModel(pt.Model):
model_config = ConfigDict(
alias_generator=AliasGenerator(validation_alias=str.title),
)
My_Val_A: int
My_Val_B: Optional[int] = None
csv_data = StringIO("my_val_a,my_val_b\n1,")
df = AliasGeneratorModel.DataFrame.read_csv(csv_data)
df.validate()
assert df.to_dicts() == [{"My_Val_A": 1, "My_Val_B": None}]
|
Ensure validation alias is applied to read_csv.
|
test_alias_generator_read_csv
|
python
|
JakobGM/patito
|
tests/test_polars.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_polars.py
|
MIT
|
def test_is_optional() -> None:
"""It should return True for optional types."""
assert is_optional(Optional[int])
assert is_optional(Union[int, None])
assert not is_optional(int)
|
It should return True for optional types.
|
test_is_optional
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_dewrap_optional() -> None:
"""It should return the inner type of Optional types."""
assert unwrap_optional(Optional[int]) is int
assert unwrap_optional(Union[int, None]) is int
assert unwrap_optional(int) is int
|
It should return the inner type of Optional types.
|
test_dewrap_optional
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validation_returns_df() -> None:
"""It should return a DataFrame with the validation results."""
class SimpleModel(pt.Model):
column_1: int
column_2: str
df = pl.DataFrame({"column_1": [1, 2, 3], "column_2": ["a", "b", "c"]})
result = validate(dataframe=df, schema=SimpleModel)
assert isinstance(result, pl.DataFrame)
assert result.shape == (3, 2)
|
It should return a DataFrame with the validation results.
|
test_validation_returns_df
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_allow_missing_nested_column_validation() -> None:
"""Validation should allow missing nested columns."""
class InnerModel(pt.Model):
column_1: int
column_2: str = pt.Field(allow_missing=True)
class OuterModel(pt.Model):
inner: InnerModel
other: str
df_missing_nested_column_2 = pl.DataFrame(
{"inner": [{"column_1": 1}, {"column_1": 2}], "other": ["a", "b"]}
)
validate(dataframe=df_missing_nested_column_2, schema=OuterModel)
OuterModel.validate(df_missing_nested_column_2)
class OuterModelWithOptionalInner(pt.Model):
inner: Optional[InnerModel]
other: str
df_missing_nested_column_2 = pl.DataFrame(
{"inner": [{"column_1": 1}, None], "other": ["a", "b"]}
)
validate(dataframe=df_missing_nested_column_2, schema=OuterModelWithOptionalInner)
OuterModelWithOptionalInner.validate(df_missing_nested_column_2)
class OuterModelWithListInner(pt.Model):
inner: list[InnerModel]
other: str
df_missing_nested_column_2 = pl.DataFrame(
{
"inner": [
[{"column_1": 1}, {"column_1": 2}],
[{"column_1": 3}, {"column_1": 4}],
],
"other": ["a", "b"],
}
)
validate(dataframe=df_missing_nested_column_2, schema=OuterModelWithListInner)
OuterModelWithListInner.validate(df_missing_nested_column_2)
class OuterModelWithOptionalListInner(pt.Model):
inner: Optional[list[InnerModel]]
other: str
df_missing_nested_column_2 = pl.DataFrame(
{"inner": [[{"column_1": 1}, {"column_1": 2}], None], "other": ["a", "b"]}
)
validate(
dataframe=df_missing_nested_column_2, schema=OuterModelWithOptionalListInner
)
OuterModelWithOptionalListInner.validate(df_missing_nested_column_2)
class OuterModelWithListOptionalInner(pt.Model):
inner: list[Optional[InnerModel]]
other: str
df_missing_nested_column_2 = pl.DataFrame(
{
"inner": [[{"column_1": 1}, None], [None, {"column_1": 2}, None]],
"other": ["a", "b"],
}
)
validate(
dataframe=df_missing_nested_column_2, schema=OuterModelWithListOptionalInner
)
OuterModelWithListOptionalInner.validate(df_missing_nested_column_2)
class OuterModelWithOptionalListOptionalInner(pt.Model):
inner: Optional[list[Optional[InnerModel]]]
other: str
df_missing_nested_column_2 = pl.DataFrame(
{
"inner": [[{"column_1": 1}, None], [None, {"column_1": 2}, None], None],
"other": ["a", "b", "c"],
}
)
validate(
dataframe=df_missing_nested_column_2,
schema=OuterModelWithOptionalListOptionalInner,
)
OuterModelWithOptionalListOptionalInner.validate(df_missing_nested_column_2)
|
Validation should allow missing nested columns.
|
test_allow_missing_nested_column_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_drop_superfluous_columns() -> None:
"""Test whether irrelevant columns get filtered out before validation."""
class SingleColumnModel(pt.Model):
column_1: int
test_df = SingleColumnModel.examples().with_columns(
column_that_should_be_dropped=pl.Series([1])
)
result = validate(
test_df,
SingleColumnModel,
drop_superfluous_columns=True,
)
assert result.columns == ["column_1"]
|
Test whether irrelevant columns get filtered out before validation.
|
test_drop_superfluous_columns
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validate_non_nullable_columns() -> None:
"""Test for validation logic related to missing values."""
class SmallModel(pt.Model):
column_1: int
column_2: Optional[int] = None
# We insert nulls into a non-optional column, causing an exception
wrong_nulls_df = pl.DataFrame().with_columns(
[
pl.lit(None).cast(pl.Int64).alias("column_1"),
pl.lit(None).cast(pl.Int64).alias("column_2"),
]
)
with pytest.raises(DataFrameValidationError) as e_info:
validate(
dataframe=wrong_nulls_df,
schema=SmallModel,
)
errors = e_info.value.errors()
assert len(e_info.value.errors()) == 1
assert errors[0] == {
"loc": ("column_1",),
"msg": "1 missing value",
"type": "value_error.missingvalues",
}
|
Test for validation logic related to missing values.
|
test_validate_non_nullable_columns
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_uniqueness_validation() -> None:
"""It should be able to validate uniqueness."""
class MyModel(pt.Model):
column: int = pt.Field(unique=True)
non_duplicated_df = pt.DataFrame({"column": [1, 2, 3]})
MyModel.validate(non_duplicated_df)
empty_df = pt.DataFrame([pl.Series("column", [], dtype=pl.Int64)])
MyModel.validate(empty_df)
duplicated_df = pt.DataFrame({"column": [1, 1, 2]})
with pytest.raises(pt.exceptions.DataFrameValidationError):
MyModel.validate(duplicated_df)
|
It should be able to validate uniqueness.
|
test_uniqueness_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_datetime_validation() -> None:
"""Test for date(time) validation.
Both strings, dates, and datetimes are assigned type "string" in the OpenAPI JSON
schema spec, so this needs to be specifically tested for since the implementation
needs to check the "format" property on the field schema.
"""
string_df = pl.DataFrame().with_columns(
pl.lit("string", dtype=pl.String).alias("c")
)
date_df = pl.DataFrame().with_columns(
pl.lit(date.today(), dtype=pl.Date).alias("c")
)
datetime_df = pl.DataFrame().with_columns(
pl.lit(datetime.now(), dtype=pl.Datetime).alias("c")
)
class StringModel(pt.Model):
c: str
validate(dataframe=string_df, schema=StringModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=date_df, schema=StringModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=datetime_df, schema=StringModel)
class DateModel(pt.Model):
c: date
validate(dataframe=date_df, schema=DateModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=string_df, schema=DateModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=datetime_df, schema=DateModel)
class DateTimeModel(pt.Model):
c: datetime
validate(dataframe=datetime_df, schema=DateTimeModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=string_df, schema=DateTimeModel)
with pytest.raises(DataFrameValidationError):
validate(dataframe=date_df, schema=DateTimeModel)
|
Test for date(time) validation.
Both strings, dates, and datetimes are assigned type "string" in the OpenAPI JSON
schema spec, so this needs to be specifically tested for since the implementation
needs to check the "format" property on the field schema.
|
test_datetime_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_enum_validation() -> None:
"""Test validation of enum.Enum-typed fields."""
class ABCEnum(enum.Enum):
ONE = "a"
TWO = "b"
THREE = "c"
class EnumModel(pt.Model):
column: ABCEnum
valid_df = pl.DataFrame({"column": ["a", "b", "b", "c"]})
validate(dataframe=valid_df, schema=EnumModel)
invalid_df = pl.DataFrame({"column": ["d"]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=EnumModel)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == {
"loc": ("column",),
"msg": "Rows with invalid values: {'d'}.",
"type": "value_error.rowvalue",
}
|
Test validation of enum.Enum-typed fields.
|
test_enum_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_optional_enum_validation() -> None:
"""Test validation of optional enum.Enum-typed fields."""
class ABCEnum(enum.Enum):
ONE = "a"
TWO = "b"
THREE = "c"
class EnumModel(pt.Model):
column: Optional[ABCEnum]
valid_df = pl.DataFrame({"column": ["a", "b", "b", "c"]})
validate(dataframe=valid_df, schema=EnumModel)
invalid_df = pl.DataFrame({"column": ["d"]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=EnumModel)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == {
"loc": ("column",),
"msg": "Rows with invalid values: {'d'}.",
"type": "value_error.rowvalue",
}
|
Test validation of optional enum.Enum-typed fields.
|
test_optional_enum_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_literal_enum_validation() -> None:
"""Test validation of typing.Literal-typed fields."""
class EnumModel(pt.Model):
column: Literal["a", "b", "c"]
valid_df = pl.DataFrame({"column": ["a", "b", "b", "c"]})
validate(dataframe=valid_df, schema=EnumModel)
invalid_df = pl.DataFrame({"column": ["d"]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=EnumModel)
error_expected = {
"loc": ("column",),
"msg": "Rows with invalid values: {'d'}.",
"type": "value_error.rowvalue",
}
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == error_expected
class ListEnumModel(pt.Model):
column: list[Literal["a", "b", "c"]]
valid_df = pl.DataFrame({"column": [["a", "b"], ["b", "c"], ["a", "c"]]})
validate(dataframe=valid_df, schema=ListEnumModel)
invalid_df = pl.DataFrame({"column": [["a", "b"], ["b", "c"], ["a", "d"]]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=ListEnumModel)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == error_expected
|
Test validation of typing.Literal-typed fields.
|
test_literal_enum_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_optional_literal_enum_validation() -> None:
"""Test validation of optional typing.Literal-typed fields."""
class EnumModel(pt.Model):
column: Optional[Literal["a", "b", "c"]]
valid_df = pl.DataFrame({"column": ["a", "b", "b", "c"]})
validate(dataframe=valid_df, schema=EnumModel)
invalid_df = pl.DataFrame({"column": ["d"]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=EnumModel)
error_expected = {
"loc": ("column",),
"msg": "Rows with invalid values: {'d'}.",
"type": "value_error.rowvalue",
}
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == error_expected
class ListEnumModel(pt.Model):
column: list[Literal["a", "b", "c"]]
valid_df = pl.DataFrame({"column": [["a", "b"], ["b", "c"], ["a", "c"]]})
validate(dataframe=valid_df, schema=ListEnumModel)
invalid_df = pl.DataFrame({"column": [["a", "b"], ["b", "c"], ["a", "d"]]})
with pytest.raises(DataFrameValidationError) as e_info:
validate(dataframe=invalid_df, schema=ListEnumModel)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == error_expected
|
Test validation of optional typing.Literal-typed fields.
|
test_optional_literal_enum_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_simple_struct_validation() -> None:
"""Test validation of model with struct column."""
valid_df = pl.DataFrame({"positive_struct": [{"x": 1}, {"x": 2}, {"x": 3}]})
_PositiveStructModel.validate(valid_df)
bad_df = pl.DataFrame({"positive_struct": [{"x": -1}, {"x": 2}, {"x": 3}]})
with pytest.raises(DataFrameValidationError):
_PositiveStructModel.validate(bad_df)
|
Test validation of model with struct column.
|
test_simple_struct_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_nested_struct_validation() -> None:
"""Test validation of model with nested struct column."""
class NestedPositiveStructModel(pt.Model):
positive_struct_model: _PositiveStructModel
valid_df = pl.DataFrame(
{
"positive_struct_model": [
{"positive_struct": {"x": 1}},
{"positive_struct": {"x": 2}},
{"positive_struct": {"x": 3}},
]
}
)
NestedPositiveStructModel.validate(valid_df)
bad_df = pl.DataFrame(
{
"positive_struct_model": [
{"positive_struct": {"x": -1}},
{"positive_struct": {"x": 2}},
{"positive_struct": {"x": 3}},
]
}
)
with pytest.raises(DataFrameValidationError):
NestedPositiveStructModel.validate(bad_df)
|
Test validation of model with nested struct column.
|
test_nested_struct_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_empty_list_validation() -> None:
"""Test validation of model with empty lists."""
class TestModel(pt.Model):
list_field: list[str]
# validate presence of an empty list
df = pl.DataFrame({"list_field": [["a", "b"], []]})
TestModel.validate(df)
# validate when all lists are empty, so long as the schema is correct
df = pl.DataFrame(
{"list_field": [[], []]}, schema={"list_field": pl.List(pl.String)}
)
TestModel.validate(df)
class NestedTestModel(pt.Model):
nested_list_field: list[list[str]]
df = pl.DataFrame({"nested_list_field": [[["a", "b"], ["c"]], []]})
NestedTestModel.validate(df)
df = pl.DataFrame(
{"nested_list_field": [[], []]},
schema={"nested_list_field": pl.List(pl.List(pl.String))},
)
NestedTestModel.validate(df)
|
Test validation of model with empty lists.
|
test_empty_list_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_list_struct_validation() -> None:
"""Test validation of model with list of structs column."""
class ListPositiveStructModel(pt.Model):
list_positive_struct: list[_PositiveStruct]
valid_df = pl.DataFrame(
{"list_positive_struct": [[{"x": 1}, {"x": 2}], [{"x": 3}, {"x": 4}, {"x": 5}]]}
)
ListPositiveStructModel.validate(valid_df)
bad_df = pl.DataFrame(
{
"list_positive_struct": [
[{"x": 1}, {"x": 2}],
[{"x": 3}, {"x": -4}, {"x": 5}],
]
}
)
with pytest.raises(DataFrameValidationError):
ListPositiveStructModel.validate(bad_df)
|
Test validation of model with list of structs column.
|
test_list_struct_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_struct_validation_with_polars_constraint() -> None:
"""Test validation of models with constrained struct column."""
class Interval(pt.Model):
x_min: int
x_max: int = pt.Field(constraints=pt.col("x_min") <= pt.col("x_max"))
class IntervalModel(pt.Model):
interval: Interval
valid_df = pl.DataFrame(
{
"interval": [
{"x_min": 0, "x_max": 1},
{"x_min": 0, "x_max": 0},
{"x_min": -1, "x_max": 1},
]
}
)
IntervalModel.validate(valid_df)
bad_df = pl.DataFrame(
{
"interval": [
{"x_min": 0, "x_max": 1},
{"x_min": 1, "x_max": 0},
{"x_min": -1, "x_max": 1},
]
}
)
with pytest.raises(DataFrameValidationError):
IntervalModel.validate(bad_df)
|
Test validation of models with constrained struct column.
|
test_struct_validation_with_polars_constraint
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validation_of_bounds_checks() -> None:
"""Check if value bounds are correctly validated."""
class BoundModel(pt.Model):
le_column: float = pt.Field(le=42.5)
lt_column: float = pt.Field(lt=42.5)
ge_column: float = pt.Field(ge=42.5)
gt_column: float = pt.Field(gt=42.5)
combined_column: float = pt.Field(gt=42.5, le=43)
multiple_column: float = pt.Field(multiple_of=0.5)
# const fields should now use Literal instead, but pyright
# complains about Literal of float values
const_column: Literal["3.1415"] = pt.Field(default="3.1415") # type: ignore
regex_column: str = pt.Field(pattern=r"value [A-Z]")
min_length_column: str = pt.Field(min_length=2)
max_length_column: str = pt.Field(max_length=2)
# The .example() method should produce the correct dtypes, except for
# the regex-validated string field which is not supported
BoundModel.validate(
BoundModel.examples({"regex_column": ["value A", "value B", "value C"]})
)
valid = [42.5, 42.4, 42.5, 42.6, 42.6, 19.5, "3.1415", "value X", "ab", "ab"]
valid_df = pl.DataFrame(data=[valid], schema=BoundModel.columns, orient="row")
BoundModel.validate(valid_df)
invalid = [42.6, 42.5, 42.4, 42.5, 43.1, 19.75, "3.2", "value x", "a", "abc"]
for column_index, column_name in enumerate(BoundModel.columns):
data = (
valid[:column_index]
+ invalid[column_index : column_index + 1]
+ valid[column_index + 1 :]
)
invalid_df = pl.DataFrame(data=[data], schema=BoundModel.columns, orient="row")
with pytest.raises(DataFrameValidationError) as e_info:
BoundModel.validate(invalid_df)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == {
"loc": (column_name,),
"msg": "1 row with out of bound values.",
"type": "value_error.rowvalue",
}
|
Check if value bounds are correctly validated.
|
test_validation_of_bounds_checks
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validation_of_dtype_specifiers() -> None:
"""Fields with specific dtype annotations should be validated."""
class DTypeModel(pt.Model):
int_column: int
int_explicit_dtype_column: int = pt.Field(dtype=pl.Int64)
smallint_column: int = pt.Field(dtype=pl.Int8)
unsigned_int_column: int = pt.Field(dtype=pl.UInt64)
unsigned_smallint_column: int = pt.Field(dtype=pl.UInt8)
assert DTypeModel.dtypes == {
"int_column": pl.Int64,
"int_explicit_dtype_column": pl.Int64,
"smallint_column": pl.Int8,
"unsigned_int_column": pl.UInt64,
"unsigned_smallint_column": pl.UInt8,
}
# The .example() method should produce the correct dtypes
DTypeModel.validate(DTypeModel.examples({"smallint_column": [1, 2, 3]}))
valid = [
pl.Series([-2]).cast(pl.Int64),
pl.Series([2**32]).cast(pl.Int64),
pl.Series([2]).cast(pl.Int8),
pl.Series([2]).cast(pl.UInt64),
pl.Series([2]).cast(pl.UInt8),
]
valid_df = pl.DataFrame(data=valid, schema=DTypeModel.columns)
DTypeModel.validate(valid_df)
invalid = [
pl.Series(["a"]).cast(pl.String),
pl.Series([2.5]).cast(pl.Float64),
pl.Series([2**32]).cast(pl.Int64),
pl.Series([-2]).cast(pl.Int64),
pl.Series([-2]).cast(pl.Int64),
]
for column_index, (column_name, dtype) in enumerate(
zip(
DTypeModel.columns,
[pl.String, pl.Float64, pl.Int64, pl.Int64, pl.Int64],
)
):
data = (
valid[:column_index]
+ invalid[column_index : column_index + 1]
+ valid[column_index + 1 :]
)
invalid_df = pl.DataFrame(data=data, schema=DTypeModel.columns)
with pytest.raises(DataFrameValidationError) as e_info:
DTypeModel.validate(invalid_df)
errors = e_info.value.errors()
assert len(errors) == 1
assert errors[0] == {
"loc": (column_name,),
"msg": f"Polars dtype {dtype} does not match model field type.",
"type": "type_error.columndtype",
}
|
Fields with specific dtype annotations should be validated.
|
test_validation_of_dtype_specifiers
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_custom_constraint_validation() -> None:
"""Users should be able to specify custom constraints."""
class CustomConstraintModel(pt.Model):
even_int: int = pt.Field(
constraints=[(pl.col("even_int") % 2 == 0).alias("even_constraint")]
)
odd_int: int = pt.Field(constraints=pl.col("odd_int") % 2 == 1)
df = CustomConstraintModel.DataFrame({"even_int": [2, 3], "odd_int": [1, 2]})
with pytest.raises(DataFrameValidationError) as e_info:
df.validate()
errors = e_info.value.errors()
assert len(errors) == 2
assert errors[0] == {
"loc": ("even_int",),
"msg": "1 row does not match custom constraints.",
"type": "value_error.rowvalue",
}
assert errors[1] == {
"loc": ("odd_int",),
"msg": "1 row does not match custom constraints.",
"type": "value_error.rowvalue",
}
df.limit(1).validate()
# We can also validate aggregation queries
class PizzaSlice(pt.Model):
fraction: float = pt.Field(constraints=pl.col("fraction").sum() == 1)
whole_pizza = pt.DataFrame({"fraction": [0.25, 0.75]})
PizzaSlice.validate(whole_pizza)
part_pizza = pt.DataFrame({"fraction": [0.25, 0.25]})
with pytest.raises(DataFrameValidationError):
PizzaSlice.validate(part_pizza)
# We can validate multiple AND constraints with a list of constraints
class DivisibleByTwoAndThree(pt.Model):
number: int = pt.Field(constraints=[pt.col("_") % 2 == 0, pt.col("_") % 3 == 0])
one_constraint_failing_df = pt.DataFrame({"number": [3]})
with pytest.raises(DataFrameValidationError):
DivisibleByTwoAndThree.validate(one_constraint_failing_df)
other_constraint_failing_df = pt.DataFrame({"number": [4]})
with pytest.raises(DataFrameValidationError):
DivisibleByTwoAndThree.validate(other_constraint_failing_df)
all_constraints_failing_df = pt.DataFrame({"number": [5]})
with pytest.raises(DataFrameValidationError):
DivisibleByTwoAndThree.validate(all_constraints_failing_df)
all_constraints_passing_df = pt.DataFrame({"number": [6]})
DivisibleByTwoAndThree.validate(all_constraints_passing_df)
|
Users should be able to specify custom constraints.
|
test_custom_constraint_validation
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_anonymous_column_constraints() -> None:
"""You should be able to refer to the field column with an anonymous column."""
class Pair(pt.Model):
# pl.col("_") refers to the given field column
odd_number: int = pt.Field(constraints=pl.col("_") % 2 == 1)
# pt.field is simply an alias for pl.col("_")
even_number: int = pt.Field(constraints=pt.field % 2 == 0)
pairs = pt.DataFrame({"odd_number": [1, 3, 5], "even_number": [2, 4, 6]})
Pair.validate(pairs)
with pytest.raises(DataFrameValidationError):
Pair.validate(
pairs.select(
[
pl.col("odd_number").alias("even_number"),
pl.col("even_number").alias("odd_number"),
]
)
)
|
You should be able to refer to the field column with an anonymous column.
|
test_anonymous_column_constraints
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_optional_enum() -> None:
"""It should handle optional enums correctly."""
class OptionalEnumModel(pt.Model):
# Old type annotation syntax
optional_enum: Optional[Literal["A", "B"]]
df = pl.DataFrame({"optional_enum": ["A", "B", None]})
OptionalEnumModel.validate(df)
|
It should handle optional enums correctly.
|
test_optional_enum
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_optional_pipe_operator() -> None:
"""Ensure that pipe operator works as expected."""
class OptionalEnumModel(pt.Model):
# Old type annotation syntax
optional_enum_1: Optional[Literal["A", "B"]]
# New type annotation syntax
optional_enum_2: Optional[Literal["A", "B"]]
df = pl.DataFrame(
{
"optional_enum_1": ["A", "B", None],
"optional_enum_2": ["A", "B", None],
}
)
OptionalEnumModel.validate(df)
|
Ensure that pipe operator works as expected.
|
test_optional_pipe_operator
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validation_of_list_dtypes() -> None:
"""It should be able to validate dtypes organized in lists."""
class ListModel(pt.Model):
int_list: list[int]
int_or_null_list: list[Optional[int]]
nullable_int_list: Optional[list[int]]
nullable_int_or_null_list: Optional[list[Optional[int]]]
valid_df = pl.DataFrame(
{
"int_list": [[1, 2], [3, 4]],
"int_or_null_list": [[1, 2], [3, None]],
"nullable_int_list": [[1, 2], None],
"nullable_int_or_null_list": [[1, None], None],
}
)
ListModel.validate(valid_df)
for old, new in [
# List items are not nullable
("int_or_null_list", "int_list"),
("int_or_null_list", "nullable_int_list"),
# List is not nullable
("nullable_int_list", "int_list"),
("nullable_int_list", "int_or_null_list"),
# Combination of both
("nullable_int_or_null_list", "int_list"),
("nullable_int_or_null_list", "int_or_null_list"),
("nullable_int_or_null_list", "nullable_int_list"),
]:
with pytest.raises(DataFrameValidationError):
ListModel.validate(valid_df.with_columns(pl.col(old).alias(new)))
|
It should be able to validate dtypes organized in lists.
|
test_validation_of_list_dtypes
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_optional_nested_list() -> None:
"""It should be able to validate optional structs organized in lists."""
class Inner(pt.Model):
name: str
reliability: bool
level: int
class Outer(pt.Model):
id: str
code: str
label: str
inner_types: Optional[list[Inner]]
good_df = pl.DataFrame(
{
"id": [1, 2, 3],
"code": ["A", "B", "C"],
"label": ["a", "b", "c"],
"inner_types": [
[{"name": "a", "reliability": True, "level": 1}],
[{"name": "b", "reliability": False, "level": 2}],
None,
],
}
)
df = Outer.DataFrame(good_df).cast().derive()
df.validate()
bad_df = pl.DataFrame(
{
"id": [1, 2, 3],
"code": ["A", "B", "C"],
"label": ["a", "b", "c"],
"inner_types": [
[{"name": "a", "level": 1}], # missing reliability
[{"name": "b", "reliability": False, "level": 2}],
None,
],
}
)
df = Outer.DataFrame(bad_df).cast().derive()
with pytest.raises(DataFrameValidationError):
df.validate()
|
It should be able to validate optional structs organized in lists.
|
test_optional_nested_list
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_nested_field_attrs() -> None:
"""Ensure that constraints are respected even when embedded inside 'anyOf'."""
class Test(pt.Model):
foo: Optional[int] = pt.Field(
dtype=pl.Int64, ge=0, le=100, constraints=pt.field.sum() == 100
)
test_df = Test.DataFrame(
{"foo": [110, -10]}
) # meets constraint, but violates bounds (embedded in 'anyOf' in properties)
with pytest.raises(DataFrameValidationError) as e:
Test.validate(test_df)
pattern = re.compile(r"2 rows with out of bound values")
assert len(pattern.findall(str(e.value))) == 1
null_test_df = Test.DataFrame({"foo": [100, None, None]})
Test.validate(null_test_df) # should not raise
|
Ensure that constraints are respected even when embedded inside 'anyOf'.
|
test_nested_field_attrs
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validation_column_subset() -> None:
"""Ensure that columns are only validated if they are in the subset."""
class Test(pt.Model):
a: int
b: int = pt.Field(dtype=pl.Int64, ge=0, le=100)
Test.validate(pl.DataFrame({"a": [1, 2, 3], "b": [1, 2, 3]})) # should pass
with pytest.raises(DataFrameValidationError):
Test.validate(pl.DataFrame({"a": [1, 2, 3], "b": [101, 102, 103]}))
# should pass without validating b
Test.validate(pl.DataFrame({"a": [1, 2, 3], "b": [101, 102, 103]}), columns=["a"])
with pytest.raises(DataFrameValidationError):
Test.validate(
pl.DataFrame({"a": [1, 2, 3], "b": [101, 102, 103]}), columns=["b"]
)
# test asking for superfluous column
with pytest.raises(DataFrameValidationError):
Test.validate(pl.DataFrame({"a": [1, 2, 3], "b": [1, 2, 3]}), columns=["c"])
|
Ensure that columns are only validated if they are in the subset.
|
test_validation_column_subset
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_alias_generator() -> None:
"""Allow column name transformations through AliasGenerator."""
df = pl.DataFrame({"my_val_a": [0]})
class NoAliasGeneratorModel(pt.Model):
My_Val_A: int
with pytest.raises(DataFrameValidationError):
NoAliasGeneratorModel.validate(df)
class AliasGeneratorModel(pt.Model):
model_config = ConfigDict(
alias_generator=AliasGenerator(validation_alias=str.title),
)
My_Val_A: int
AliasGeneratorModel.validate(df)
df = pl.DataFrame({"my_incorrect_val_a": [0]})
with pytest.raises(DataFrameValidationError):
AliasGeneratorModel.validate(df)
|
Allow column name transformations through AliasGenerator.
|
test_alias_generator
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_validate_should_not_mutate_the_original_polars_df_when_aliasing(
df: pd.DataFrame | pl.DataFrame, expected: pd.DataFrame | pl.DataFrame
) -> None:
"""Ensure that the original DataFrame is not mutated by the validation process."""
class AliasGeneratorModel(pt.Model):
model_config = ConfigDict(
alias_generator=AliasGenerator(validation_alias=str.title),
)
My_Val_A: int
AliasGeneratorModel.validate(df)
if isinstance(df, pd.DataFrame):
assert isinstance(df, pd.DataFrame)
pd_assert_frame_equal(
df, expected, check_index_type=True, check_column_type=True
)
else:
assert isinstance(df, pl.DataFrame)
pl_assert_frame_equal(
df, expected, check_row_order=True, check_column_order=True
)
|
Ensure that the original DataFrame is not mutated by the validation process.
|
test_validate_should_not_mutate_the_original_polars_df_when_aliasing
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_alias_generator_func() -> None:
"""Allow column name transformations through a string function."""
df = pl.DataFrame({"my_val_a": [0]})
class NoAliasGeneratorModel(pt.Model):
My_Val_A: int
with pytest.raises(DataFrameValidationError):
NoAliasGeneratorModel.validate(df)
class AliasGeneratorModel(pt.Model):
model_config = ConfigDict(
alias_generator=str.title,
)
My_Val_A: int
AliasGeneratorModel.validate(df)
df = pl.DataFrame({"my_incorrect_val_a": [0]})
with pytest.raises(DataFrameValidationError):
AliasGeneratorModel.validate(df)
|
Allow column name transformations through a string function.
|
test_alias_generator_func
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_derived_from_ser_deser():
"""Test whether derived_from can be successfully serialized and deserialized."""
for expr in [None, "foo", pl.col("foo"), pl.col("foo") * 2]:
ci = ColumnInfo(derived_from=expr)
# use str for equality check of expressions
# since expr == expr is an expression itself
assert str(ci.derived_from) == str(expr)
ci_ser_deser = ColumnInfo.model_validate_json(ci.model_dump_json())
assert str(ci_ser_deser.derived_from) == str(expr)
|
Test whether derived_from can be successfully serialized and deserialized.
|
test_derived_from_ser_deser
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_constraint_ser_deser():
"""Test whether constraints can be successfully serialized and deserialized."""
for expr in [pl.col("foo") == 2, pl.col("foo") * 2 == 2]:
ci = ColumnInfo(constraints=expr)
# use str for equality check of expressions
# since expr == expr is an expression itself
assert str(ci.constraints) == str(expr)
ci_ser_deser = ColumnInfo.model_validate_json(ci.model_dump_json())
assert str(ci_ser_deser.constraints) == str(expr)
|
Test whether constraints can be successfully serialized and deserialized.
|
test_constraint_ser_deser
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def test_dtype_ser_deser():
"""Test whether dtypes can be successfully serialized and deserialized."""
for expr in [
pl.Float32,
pl.String,
pl.String(),
pl.Datetime(time_zone="Europe/Oslo"),
pl.Struct({"foo": pl.Int16, "bar": pl.Datetime(time_zone="Europe/Oslo")}),
pl.List(
pl.Struct({"foo": pl.Int16, "bar": pl.Datetime(time_zone="Europe/Oslo")})
),
pl.Enum(["Foo", "Bar"]),
]:
ci = ColumnInfo(dtype=expr)
# use str for equality check of expressions
# since expr == expr is an expression itself
assert ci.dtype == expr
ci_ser_deser = ColumnInfo.model_validate_json(ci.model_dump_json())
assert ci_ser_deser.dtype == expr
|
Test whether dtypes can be successfully serialized and deserialized.
|
test_dtype_ser_deser
|
python
|
JakobGM/patito
|
tests/test_validators.py
|
https://github.com/JakobGM/patito/blob/master/tests/test_validators.py
|
MIT
|
def query_db(query, args=(), one=False):
"""Queries the database and returns a list of dictionaries."""
cur = sqldb.execute(query, args)
rv = cur.fetchall()
return (rv[0] if rv else None) if one else rv
|
Queries the database and returns a list of dictionaries.
|
query_db
|
python
|
karpathy/arxiv-sanity-preserver
|
buildsvm.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/buildsvm.py
|
MIT
|
def encode_feedparser_dict(d):
"""
helper function to get rid of feedparser bs with a deep copy.
I hate when libs wrap simple things in their own classes.
"""
if isinstance(d, feedparser.FeedParserDict) or isinstance(d, dict):
j = {}
for k in d.keys():
j[k] = encode_feedparser_dict(d[k])
return j
elif isinstance(d, list):
l = []
for k in d:
l.append(encode_feedparser_dict(k))
return l
else:
return d
|
helper function to get rid of feedparser bs with a deep copy.
I hate when libs wrap simple things in their own classes.
|
encode_feedparser_dict
|
python
|
karpathy/arxiv-sanity-preserver
|
fetch_papers.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/fetch_papers.py
|
MIT
|
def parse_arxiv_url(url):
"""
examples is http://arxiv.org/abs/1512.08756v2
we want to extract the raw id and the version
"""
ix = url.rfind('/')
idversion = url[ix+1:] # extract just the id (and the version)
parts = idversion.split('v')
assert len(parts) == 2, 'error parsing url ' + url
return parts[0], int(parts[1])
|
examples is http://arxiv.org/abs/1512.08756v2
we want to extract the raw id and the version
|
parse_arxiv_url
|
python
|
karpathy/arxiv-sanity-preserver
|
fetch_papers.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/fetch_papers.py
|
MIT
|
def query_db(query, args=(), one=False):
"""Queries the database and returns a list of dictionaries."""
cur = g.db.execute(query, args)
rv = cur.fetchall()
return (rv[0] if rv else None) if one else rv
|
Queries the database and returns a list of dictionaries.
|
query_db
|
python
|
karpathy/arxiv-sanity-preserver
|
serve.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/serve.py
|
MIT
|
def get_user_id(username):
"""Convenience method to look up the id for a username."""
rv = query_db('select user_id from user where username = ?',
[username], one=True)
return rv[0] if rv else None
|
Convenience method to look up the id for a username.
|
get_user_id
|
python
|
karpathy/arxiv-sanity-preserver
|
serve.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/serve.py
|
MIT
|
def get_username(user_id):
"""Convenience method to look up the username for a user."""
rv = query_db('select username from user where user_id = ?',
[user_id], one=True)
return rv[0] if rv else None
|
Convenience method to look up the username for a user.
|
get_username
|
python
|
karpathy/arxiv-sanity-preserver
|
serve.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/serve.py
|
MIT
|
def review():
""" user wants to toggle a paper in his library """
# make sure user is logged in
if not g.user:
return 'NO' # fail... (not logged in). JS should prevent from us getting here.
idvv = request.form['pid'] # includes version
if not isvalidid(idvv):
return 'NO' # fail, malformed id. weird.
pid = strip_version(idvv)
if not pid in db:
return 'NO' # we don't know this paper. wat
uid = session['user_id'] # id of logged in user
# check this user already has this paper in library
record = query_db('''select * from library where
user_id = ? and paper_id = ?''', [uid, pid], one=True)
print(record)
ret = 'NO'
if record:
# record exists, erase it.
g.db.execute('''delete from library where user_id = ? and paper_id = ?''', [uid, pid])
g.db.commit()
#print('removed %s for %s' % (pid, uid))
ret = 'OFF'
else:
# record does not exist, add it.
rawpid = strip_version(pid)
g.db.execute('''insert into library (paper_id, user_id, update_time) values (?, ?, ?)''',
[rawpid, uid, int(time.time())])
g.db.commit()
#print('added %s for %s' % (pid, uid))
ret = 'ON'
return ret
|
user wants to toggle a paper in his library
|
review
|
python
|
karpathy/arxiv-sanity-preserver
|
serve.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/serve.py
|
MIT
|
def login():
""" logs in the user. if the username doesn't exist creates the account """
if not request.form['username']:
flash('You have to enter a username')
elif not request.form['password']:
flash('You have to enter a password')
elif get_user_id(request.form['username']) is not None:
# username already exists, fetch all of its attributes
user = query_db('''select * from user where
username = ?''', [request.form['username']], one=True)
if check_password_hash(user['pw_hash'], request.form['password']):
# password is correct, log in the user
session['user_id'] = get_user_id(request.form['username'])
flash('User ' + request.form['username'] + ' logged in.')
else:
# incorrect password
flash('User ' + request.form['username'] + ' already exists, wrong password.')
else:
# create account and log in
creation_time = int(time.time())
g.db.execute('''insert into user (username, pw_hash, creation_time) values (?, ?, ?)''',
[request.form['username'],
generate_password_hash(request.form['password']),
creation_time])
user_id = g.db.execute('select last_insert_rowid()').fetchall()[0][0]
g.db.commit()
session['user_id'] = user_id
flash('New account %s created' % (request.form['username'], ))
return redirect(url_for('intmain'))
|
logs in the user. if the username doesn't exist creates the account
|
login
|
python
|
karpathy/arxiv-sanity-preserver
|
serve.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/serve.py
|
MIT
|
def _tempfile(*args, **kws):
""" Context for temporary file.
Will find a free temporary filename upon entering
and will try to delete the file on leaving
Parameters
----------
suffix : string
optional file suffix
"""
fd, name = tempfile.mkstemp(*args, **kws)
os.close(fd)
try:
yield name
finally:
try:
os.remove(name)
except OSError as e:
if e.errno == 2:
pass
else:
raise e
|
Context for temporary file.
Will find a free temporary filename upon entering
and will try to delete the file on leaving
Parameters
----------
suffix : string
optional file suffix
|
_tempfile
|
python
|
karpathy/arxiv-sanity-preserver
|
utils.py
|
https://github.com/karpathy/arxiv-sanity-preserver/blob/master/utils.py
|
MIT
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.