code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def filtrate_objects(self, obj_list): """ Discard objects which are not in self.classes (or its similar classes) :param obj_list: list :return: list """ type_whitelist = self.classes if self.mode == 'TRAIN' and cfg.INCLUDE_SIMILAR_TYPE: type_whitelist = list(self.classes) if 'Car' in self.classes: type_whitelist.append('Van') if 'Pedestrian' in self.classes: # or 'Cyclist' in self.classes: type_whitelist.append('Person_sitting') valid_obj_list = [] for obj in obj_list: if obj.cls_type not in type_whitelist: # rm Van, 20180928 continue if self.mode == 'TRAIN' and cfg.PC_REDUCE_BY_RANGE and (self.check_pc_range(obj.pos) is False): continue valid_obj_list.append(obj) return valid_obj_list
Discard objects which are not in self.classes (or its similar classes) :param obj_list: list :return: list
filtrate_objects
python
sshaoshuai/PointRCNN
lib/datasets/kitti_rcnn_dataset.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py
MIT
def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape): """ Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param pts_img: :param pts_rect_depth: :param img_shape: :return: """ val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1]) val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0]) val_flag_merge = np.logical_and(val_flag_1, val_flag_2) pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0) if cfg.PC_REDUCE_BY_RANGE: x_range, y_range, z_range = cfg.PC_AREA_SCOPE pts_x, pts_y, pts_z = pts_rect[:, 0], pts_rect[:, 1], pts_rect[:, 2] range_flag = (pts_x >= x_range[0]) & (pts_x <= x_range[1]) \ & (pts_y >= y_range[0]) & (pts_y <= y_range[1]) \ & (pts_z >= z_range[0]) & (pts_z <= z_range[1]) pts_valid_flag = pts_valid_flag & range_flag return pts_valid_flag
Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param pts_img: :param pts_rect_depth: :param img_shape: :return:
get_valid_flag
python
sshaoshuai/PointRCNN
lib/datasets/kitti_rcnn_dataset.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py
MIT
def aug_roi_by_noise(self, roi_info): """ add noise to original roi to get aug_box3d :param roi_info: :return: """ roi_box3d, gt_box3d = roi_info['roi_box3d'], roi_info['gt_box3d'] original_iou = roi_info['iou3d'] temp_iou = cnt = 0 pos_thresh = min(cfg.RCNN.REG_FG_THRESH, cfg.RCNN.CLS_FG_THRESH) gt_corners = kitti_utils.boxes3d_to_corners3d(gt_box3d.reshape(-1, 7)) aug_box3d = roi_box3d while temp_iou < pos_thresh and cnt < 10: if roi_info['type'] == 'gt': aug_box3d = self.random_aug_box3d(roi_box3d) # GT, must random else: if np.random.rand() < 0.2: aug_box3d = roi_box3d # p=0.2 to keep the original roi box else: aug_box3d = self.random_aug_box3d(roi_box3d) aug_corners = kitti_utils.boxes3d_to_corners3d(aug_box3d.reshape(-1, 7)) iou3d = kitti_utils.get_iou3d(aug_corners, gt_corners) temp_iou = iou3d[0][0] cnt += 1 if original_iou < pos_thresh: # original bg, break break return aug_box3d
add noise to original roi to get aug_box3d :param roi_info: :return:
aug_roi_by_noise
python
sshaoshuai/PointRCNN
lib/datasets/kitti_rcnn_dataset.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py
MIT
def random_aug_box3d(box3d): """ :param box3d: (7) [x, y, z, h, w, l, ry] random shift, scale, orientation """ if cfg.RCNN.REG_AUG_METHOD == 'single': pos_shift = (np.random.rand(3) - 0.5) # [-0.5 ~ 0.5] hwl_scale = (np.random.rand(3) - 0.5) / (0.5 / 0.15) + 1.0 # angle_rot = (np.random.rand(1) - 0.5) / (0.5 / (np.pi / 12)) # [-pi/12 ~ pi/12] aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot]) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'multiple': # pos_range, hwl_range, angle_range, mean_iou range_config = [[0.2, 0.1, np.pi / 12, 0.7], [0.3, 0.15, np.pi / 12, 0.6], [0.5, 0.15, np.pi / 9, 0.5], [0.8, 0.15, np.pi / 6, 0.3], [1.0, 0.15, np.pi / 3, 0.2]] idx = np.random.randint(len(range_config)) pos_shift = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][0] hwl_scale = ((np.random.rand(3) - 0.5) / 0.5) * range_config[idx][1] + 1.0 angle_rot = ((np.random.rand(1) - 0.5) / 0.5) * range_config[idx][2] aug_box3d = np.concatenate([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot]) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'normal': x_shift = np.random.normal(loc=0, scale=0.3) y_shift = np.random.normal(loc=0, scale=0.2) z_shift = np.random.normal(loc=0, scale=0.3) h_shift = np.random.normal(loc=0, scale=0.25) w_shift = np.random.normal(loc=0, scale=0.15) l_shift = np.random.normal(loc=0, scale=0.5) ry_shift = ((np.random.rand() - 0.5) / 0.5) * np.pi / 12 aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift, box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift]) return aug_box3d else: raise NotImplementedError
:param box3d: (7) [x, y, z, h, w, l, ry] random shift, scale, orientation
random_aug_box3d
python
sshaoshuai/PointRCNN
lib/datasets/kitti_rcnn_dataset.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/datasets/kitti_rcnn_dataset.py
MIT
def distance_based_proposal(self, scores, proposals, order): """ propose rois in two area based on the distance :param scores: (N) :param proposals: (N, 7) :param order: (N) """ nms_range_list = [0, 40.0, 80.0] pre_tot_top_n = cfg[self.mode].RPN_PRE_NMS_TOP_N pre_top_n_list = [0, int(pre_tot_top_n * 0.7), pre_tot_top_n - int(pre_tot_top_n * 0.7)] post_tot_top_n = cfg[self.mode].RPN_POST_NMS_TOP_N post_top_n_list = [0, int(post_tot_top_n * 0.7), post_tot_top_n - int(post_tot_top_n * 0.7)] scores_single_list, proposals_single_list = [], [] # sort by score scores_ordered = scores[order] proposals_ordered = proposals[order] dist = proposals_ordered[:, 2] first_mask = (dist > nms_range_list[0]) & (dist <= nms_range_list[1]) for i in range(1, len(nms_range_list)): # get proposal distance mask dist_mask = ((dist > nms_range_list[i - 1]) & (dist <= nms_range_list[i])) if dist_mask.sum() != 0: # this area has points # reduce by mask cur_scores = scores_ordered[dist_mask] cur_proposals = proposals_ordered[dist_mask] # fetch pre nms top K cur_scores = cur_scores[:pre_top_n_list[i]] cur_proposals = cur_proposals[:pre_top_n_list[i]] else: assert i == 2, '%d' % i # this area doesn't have any points, so use rois of first area cur_scores = scores_ordered[first_mask] cur_proposals = proposals_ordered[first_mask] # fetch top K of first area cur_scores = cur_scores[pre_top_n_list[i - 1]:][:pre_top_n_list[i]] cur_proposals = cur_proposals[pre_top_n_list[i - 1]:][:pre_top_n_list[i]] # oriented nms boxes_bev = kitti_utils.boxes3d_to_bev_torch(cur_proposals) if cfg.RPN.NMS_TYPE == 'rotate': keep_idx = iou3d_utils.nms_gpu(boxes_bev, cur_scores, cfg[self.mode].RPN_NMS_THRESH) elif cfg.RPN.NMS_TYPE == 'normal': keep_idx = iou3d_utils.nms_normal_gpu(boxes_bev, cur_scores, cfg[self.mode].RPN_NMS_THRESH) else: raise NotImplementedError # Fetch post nms top k keep_idx = keep_idx[:post_top_n_list[i]] scores_single_list.append(cur_scores[keep_idx]) proposals_single_list.append(cur_proposals[keep_idx]) scores_single = torch.cat(scores_single_list, dim=0) proposals_single = torch.cat(proposals_single_list, dim=0) return scores_single, proposals_single
propose rois in two area based on the distance :param scores: (N) :param proposals: (N, 7) :param order: (N)
distance_based_proposal
python
sshaoshuai/PointRCNN
lib/rpn/proposal_layer.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/rpn/proposal_layer.py
MIT
def score_based_proposal(self, scores, proposals, order): """ propose rois in two area based on the distance :param scores: (N) :param proposals: (N, 7) :param order: (N) """ # sort by score scores_ordered = scores[order] proposals_ordered = proposals[order] # pre nms top K cur_scores = scores_ordered[:cfg[self.mode].RPN_PRE_NMS_TOP_N] cur_proposals = proposals_ordered[:cfg[self.mode].RPN_PRE_NMS_TOP_N] boxes_bev = kitti_utils.boxes3d_to_bev_torch(cur_proposals) keep_idx = iou3d_utils.nms_gpu(boxes_bev, cur_scores, cfg[self.mode].RPN_NMS_THRESH) # Fetch post nms top k keep_idx = keep_idx[:cfg[self.mode].RPN_POST_NMS_TOP_N] return cur_scores[keep_idx], cur_proposals[keep_idx]
propose rois in two area based on the distance :param scores: (N) :param proposals: (N, 7) :param order: (N)
score_based_proposal
python
sshaoshuai/PointRCNN
lib/rpn/proposal_layer.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/rpn/proposal_layer.py
MIT
def random_aug_box3d(box3d): """ :param box3d: (7) [x, y, z, h, w, l, ry] random shift, scale, orientation """ if cfg.RCNN.REG_AUG_METHOD == 'single': pos_shift = (torch.rand(3, device=box3d.device) - 0.5) # [-0.5 ~ 0.5] hwl_scale = (torch.rand(3, device=box3d.device) - 0.5) / (0.5 / 0.15) + 1.0 # angle_rot = (torch.rand(1, device=box3d.device) - 0.5) / (0.5 / (np.pi / 12)) # [-pi/12 ~ pi/12] aug_box3d = torch.cat([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot], dim=0) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'multiple': # pos_range, hwl_range, angle_range, mean_iou range_config = [[0.2, 0.1, np.pi / 12, 0.7], [0.3, 0.15, np.pi / 12, 0.6], [0.5, 0.15, np.pi / 9, 0.5], [0.8, 0.15, np.pi / 6, 0.3], [1.0, 0.15, np.pi / 3, 0.2]] idx = torch.randint(low=0, high=len(range_config), size=(1,))[0].long() pos_shift = ((torch.rand(3, device=box3d.device) - 0.5) / 0.5) * range_config[idx][0] hwl_scale = ((torch.rand(3, device=box3d.device) - 0.5) / 0.5) * range_config[idx][1] + 1.0 angle_rot = ((torch.rand(1, device=box3d.device) - 0.5) / 0.5) * range_config[idx][2] aug_box3d = torch.cat([box3d[0:3] + pos_shift, box3d[3:6] * hwl_scale, box3d[6:7] + angle_rot], dim=0) return aug_box3d elif cfg.RCNN.REG_AUG_METHOD == 'normal': x_shift = np.random.normal(loc=0, scale=0.3) y_shift = np.random.normal(loc=0, scale=0.2) z_shift = np.random.normal(loc=0, scale=0.3) h_shift = np.random.normal(loc=0, scale=0.25) w_shift = np.random.normal(loc=0, scale=0.15) l_shift = np.random.normal(loc=0, scale=0.5) ry_shift = ((torch.rand() - 0.5) / 0.5) * np.pi / 12 aug_box3d = np.array([box3d[0] + x_shift, box3d[1] + y_shift, box3d[2] + z_shift, box3d[3] + h_shift, box3d[4] + w_shift, box3d[5] + l_shift, box3d[6] + ry_shift], dtype=np.float32) aug_box3d = torch.from_numpy(aug_box3d).type_as(box3d) return aug_box3d else: raise NotImplementedError
:param box3d: (7) [x, y, z, h, w, l, ry] random shift, scale, orientation
random_aug_box3d
python
sshaoshuai/PointRCNN
lib/rpn/proposal_target_layer.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/rpn/proposal_target_layer.py
MIT
def data_augmentation(self, pts, rois, gt_of_rois): """ :param pts: (B, M, 512, 3) :param rois: (B, M. 7) :param gt_of_rois: (B, M, 7) :return: """ batch_size, boxes_num = pts.shape[0], pts.shape[1] # rotation augmentation angles = (torch.rand((batch_size, boxes_num), device=pts.device) - 0.5 / 0.5) * (np.pi / cfg.AUG_ROT_RANGE) # calculate gt alpha from gt_of_rois temp_x, temp_z, temp_ry = gt_of_rois[:, :, 0], gt_of_rois[:, :, 2], gt_of_rois[:, :, 6] temp_beta = torch.atan2(temp_z, temp_x) gt_alpha = -torch.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry # (B, M) temp_x, temp_z, temp_ry = rois[:, :, 0], rois[:, :, 2], rois[:, :, 6] temp_beta = torch.atan2(temp_z, temp_x) roi_alpha = -torch.sign(temp_beta) * np.pi / 2 + temp_beta + temp_ry # (B, M) for k in range(batch_size): pts[k] = kitti_utils.rotate_pc_along_y_torch(pts[k], angles[k]) gt_of_rois[k] = kitti_utils.rotate_pc_along_y_torch(gt_of_rois[k].unsqueeze(dim=1), angles[k]).squeeze(dim=1) rois[k] = kitti_utils.rotate_pc_along_y_torch(rois[k].unsqueeze(dim=1), angles[k]).squeeze(dim=1) # calculate the ry after rotation temp_x, temp_z = gt_of_rois[:, :, 0], gt_of_rois[:, :, 2] temp_beta = torch.atan2(temp_z, temp_x) gt_of_rois[:, :, 6] = torch.sign(temp_beta) * np.pi / 2 + gt_alpha - temp_beta temp_x, temp_z = rois[:, :, 0], rois[:, :, 2] temp_beta = torch.atan2(temp_z, temp_x) rois[:, :, 6] = torch.sign(temp_beta) * np.pi / 2 + roi_alpha - temp_beta # scaling augmentation scales = 1 + ((torch.rand((batch_size, boxes_num), device=pts.device) - 0.5) / 0.5) * 0.05 pts = pts * scales.unsqueeze(dim=2).unsqueeze(dim=3) gt_of_rois[:, :, 0:6] = gt_of_rois[:, :, 0:6] * scales.unsqueeze(dim=2) rois[:, :, 0:6] = rois[:, :, 0:6] * scales.unsqueeze(dim=2) # flip augmentation flip_flag = torch.sign(torch.rand((batch_size, boxes_num), device=pts.device) - 0.5) pts[:, :, :, 0] = pts[:, :, :, 0] * flip_flag.unsqueeze(dim=2) gt_of_rois[:, :, 0] = gt_of_rois[:, :, 0] * flip_flag # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry src_ry = gt_of_rois[:, :, 6] ry = (flip_flag == 1).float() * src_ry + (flip_flag == -1).float() * (torch.sign(src_ry) * np.pi - src_ry) gt_of_rois[:, :, 6] = ry rois[:, :, 0] = rois[:, :, 0] * flip_flag # flip orientation: ry > 0: pi - ry, ry < 0: -pi - ry src_ry = rois[:, :, 6] ry = (flip_flag == 1).float() * src_ry + (flip_flag == -1).float() * (torch.sign(src_ry) * np.pi - src_ry) rois[:, :, 6] = ry return pts, rois, gt_of_rois
:param pts: (B, M, 512, 3) :param rois: (B, M. 7) :param gt_of_rois: (B, M, 7) :return:
data_augmentation
python
sshaoshuai/PointRCNN
lib/rpn/proposal_target_layer.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/rpn/proposal_target_layer.py
MIT
def decode_bbox_target(roi_box3d, pred_reg, loc_scope, loc_bin_size, num_head_bin, anchor_size, get_xz_fine=True, get_y_by_bin=False, loc_y_scope=0.5, loc_y_bin_size=0.25, get_ry_fine=False): """ :param roi_box3d: (N, 7) :param pred_reg: (N, C) :param loc_scope: :param loc_bin_size: :param num_head_bin: :param anchor_size: :param get_xz_fine: :param get_y_by_bin: :param loc_y_scope: :param loc_y_bin_size: :param get_ry_fine: :return: """ anchor_size = anchor_size.to(roi_box3d.get_device()) per_loc_bin_num = int(loc_scope / loc_bin_size) * 2 loc_y_bin_num = int(loc_y_scope / loc_y_bin_size) * 2 # recover xz localization x_bin_l, x_bin_r = 0, per_loc_bin_num z_bin_l, z_bin_r = per_loc_bin_num, per_loc_bin_num * 2 start_offset = z_bin_r x_bin = torch.argmax(pred_reg[:, x_bin_l: x_bin_r], dim=1) z_bin = torch.argmax(pred_reg[:, z_bin_l: z_bin_r], dim=1) pos_x = x_bin.float() * loc_bin_size + loc_bin_size / 2 - loc_scope pos_z = z_bin.float() * loc_bin_size + loc_bin_size / 2 - loc_scope if get_xz_fine: x_res_l, x_res_r = per_loc_bin_num * 2, per_loc_bin_num * 3 z_res_l, z_res_r = per_loc_bin_num * 3, per_loc_bin_num * 4 start_offset = z_res_r x_res_norm = torch.gather(pred_reg[:, x_res_l: x_res_r], dim=1, index=x_bin.unsqueeze(dim=1)).squeeze(dim=1) z_res_norm = torch.gather(pred_reg[:, z_res_l: z_res_r], dim=1, index=z_bin.unsqueeze(dim=1)).squeeze(dim=1) x_res = x_res_norm * loc_bin_size z_res = z_res_norm * loc_bin_size pos_x += x_res pos_z += z_res # recover y localization if get_y_by_bin: y_bin_l, y_bin_r = start_offset, start_offset + loc_y_bin_num y_res_l, y_res_r = y_bin_r, y_bin_r + loc_y_bin_num start_offset = y_res_r y_bin = torch.argmax(pred_reg[:, y_bin_l: y_bin_r], dim=1) y_res_norm = torch.gather(pred_reg[:, y_res_l: y_res_r], dim=1, index=y_bin.unsqueeze(dim=1)).squeeze(dim=1) y_res = y_res_norm * loc_y_bin_size pos_y = y_bin.float() * loc_y_bin_size + loc_y_bin_size / 2 - loc_y_scope + y_res pos_y = pos_y + roi_box3d[:, 1] else: y_offset_l, y_offset_r = start_offset, start_offset + 1 start_offset = y_offset_r pos_y = roi_box3d[:, 1] + pred_reg[:, y_offset_l] # recover ry rotation ry_bin_l, ry_bin_r = start_offset, start_offset + num_head_bin ry_res_l, ry_res_r = ry_bin_r, ry_bin_r + num_head_bin ry_bin = torch.argmax(pred_reg[:, ry_bin_l: ry_bin_r], dim=1) ry_res_norm = torch.gather(pred_reg[:, ry_res_l: ry_res_r], dim=1, index=ry_bin.unsqueeze(dim=1)).squeeze(dim=1) if get_ry_fine: # divide pi/2 into several bins angle_per_class = (np.pi / 2) / num_head_bin ry_res = ry_res_norm * (angle_per_class / 2) ry = (ry_bin.float() * angle_per_class + angle_per_class / 2) + ry_res - np.pi / 4 else: angle_per_class = (2 * np.pi) / num_head_bin ry_res = ry_res_norm * (angle_per_class / 2) # bin_center is (0, 30, 60, 90, 120, ..., 270, 300, 330) ry = (ry_bin.float() * angle_per_class + ry_res) % (2 * np.pi) ry[ry > np.pi] -= 2 * np.pi # recover size size_res_l, size_res_r = ry_res_r, ry_res_r + 3 assert size_res_r == pred_reg.shape[1] size_res_norm = pred_reg[:, size_res_l: size_res_r] hwl = size_res_norm * anchor_size + anchor_size # shift to original coords roi_center = roi_box3d[:, 0:3] shift_ret_box3d = torch.cat((pos_x.view(-1, 1), pos_y.view(-1, 1), pos_z.view(-1, 1), hwl, ry.view(-1, 1)), dim=1) ret_box3d = shift_ret_box3d if roi_box3d.shape[1] == 7: roi_ry = roi_box3d[:, 6] ret_box3d = rotate_pc_along_y_torch(shift_ret_box3d, - roi_ry) ret_box3d[:, 6] += roi_ry ret_box3d[:, [0, 2]] += roi_center[:, [0, 2]] return ret_box3d
:param roi_box3d: (N, 7) :param pred_reg: (N, C) :param loc_scope: :param loc_bin_size: :param num_head_bin: :param anchor_size: :param get_xz_fine: :param get_y_by_bin: :param loc_y_scope: :param loc_y_bin_size: :param get_ry_fine: :return:
decode_bbox_target
python
sshaoshuai/PointRCNN
lib/utils/bbox_transform.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/bbox_transform.py
MIT
def corners3d_to_img_boxes(self, corners3d): """ :param corners3d: (N, 8, 3) corners in rect coordinate :return: boxes: (None, 4) [x1, y1, x2, y2] in rgb coordinate :return: boxes_corner: (None, 8) [xi, yi] in rgb coordinate """ sample_num = corners3d.shape[0] corners3d_hom = np.concatenate((corners3d, np.ones((sample_num, 8, 1))), axis=2) # (N, 8, 4) img_pts = np.matmul(corners3d_hom, self.P2.T) # (N, 8, 3) x, y = img_pts[:, :, 0] / img_pts[:, :, 2], img_pts[:, :, 1] / img_pts[:, :, 2] x1, y1 = np.min(x, axis=1), np.min(y, axis=1) x2, y2 = np.max(x, axis=1), np.max(y, axis=1) boxes = np.concatenate((x1.reshape(-1, 1), y1.reshape(-1, 1), x2.reshape(-1, 1), y2.reshape(-1, 1)), axis=1) boxes_corner = np.concatenate((x.reshape(-1, 8, 1), y.reshape(-1, 8, 1)), axis=2) return boxes, boxes_corner
:param corners3d: (N, 8, 3) corners in rect coordinate :return: boxes: (None, 4) [x1, y1, x2, y2] in rgb coordinate :return: boxes_corner: (None, 8) [xi, yi] in rgb coordinate
corners3d_to_img_boxes
python
sshaoshuai/PointRCNN
lib/utils/calibration.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/calibration.py
MIT
def camera_dis_to_rect(self, u, v, d): """ Can only process valid u, v, d, which means u, v can not beyond the image shape, reprojection error 0.02 :param u: (N) :param v: (N) :param d: (N), the distance between camera and 3d points, d^2 = x^2 + y^2 + z^2 :return: """ assert self.fu == self.fv, '%.8f != %.8f' % (self.fu, self.fv) fd = np.sqrt((u - self.cu)**2 + (v - self.cv)**2 + self.fu**2) x = ((u - self.cu) * d) / fd + self.tx y = ((v - self.cv) * d) / fd + self.ty z = np.sqrt(d**2 - x**2 - y**2) pts_rect = np.concatenate((x.reshape(-1, 1), y.reshape(-1, 1), z.reshape(-1, 1)), axis=1) return pts_rect
Can only process valid u, v, d, which means u, v can not beyond the image shape, reprojection error 0.02 :param u: (N) :param v: (N) :param d: (N), the distance between camera and 3d points, d^2 = x^2 + y^2 + z^2 :return:
camera_dis_to_rect
python
sshaoshuai/PointRCNN
lib/utils/calibration.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/calibration.py
MIT
def dist_to_plane(plane, points): """ Calculates the signed distance from a 3D plane to each point in a list of points :param plane: (a, b, c, d) :param points: (N, 3) :return: (N), signed distance of each point to the plane """ a, b, c, d = plane points = np.array(points) x = points[:, 0] y = points[:, 1] z = points[:, 2] return (a*x + b*y + c*z + d) / np.sqrt(a**2 + b**2 + c**2)
Calculates the signed distance from a 3D plane to each point in a list of points :param plane: (a, b, c, d) :param points: (N, 3) :return: (N), signed distance of each point to the plane
dist_to_plane
python
sshaoshuai/PointRCNN
lib/utils/kitti_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/kitti_utils.py
MIT
def rotate_pc_along_y(pc, rot_angle): """ params pc: (N, 3+C), (N, 3) is in the rectified camera coordinate params rot_angle: rad scalar Output pc: updated pc with XYZ rotated """ cosval = np.cos(rot_angle) sinval = np.sin(rot_angle) rotmat = np.array([[cosval, -sinval], [sinval, cosval]]) pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat)) return pc
params pc: (N, 3+C), (N, 3) is in the rectified camera coordinate params rot_angle: rad scalar Output pc: updated pc with XYZ rotated
rotate_pc_along_y
python
sshaoshuai/PointRCNN
lib/utils/kitti_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/kitti_utils.py
MIT
def rotate_pc_along_y_torch(pc, rot_angle): """ :param pc: (N, 512, 3 + C) :param rot_angle: (N) :return: TODO: merge with rotate_pc_along_y_torch in bbox_transform.py """ cosa = torch.cos(rot_angle).view(-1, 1) # (N, 1) sina = torch.sin(rot_angle).view(-1, 1) # (N, 1) raw_1 = torch.cat([cosa, -sina], dim=1) # (N, 2) raw_2 = torch.cat([sina, cosa], dim=1) # (N, 2) R = torch.cat((raw_1.unsqueeze(dim=1), raw_2.unsqueeze(dim=1)), dim=1) # (N, 2, 2) pc_temp = pc[:, :, [0, 2]] # (N, 512, 2) pc[:, :, [0, 2]] = torch.matmul(pc_temp, R.permute(0, 2, 1)) # (N, 512, 2) return pc
:param pc: (N, 512, 3 + C) :param rot_angle: (N) :return: TODO: merge with rotate_pc_along_y_torch in bbox_transform.py
rotate_pc_along_y_torch
python
sshaoshuai/PointRCNN
lib/utils/kitti_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/kitti_utils.py
MIT
def in_hull(p, hull): """ :param p: (N, K) test points :param hull: (M, K) M corners of a box :return (N) bool """ try: if not isinstance(hull, Delaunay): hull = Delaunay(hull) flag = hull.find_simplex(p) >= 0 except scipy.spatial.qhull.QhullError: print('Warning: not a hull %s' % str(hull)) flag = np.zeros(p.shape[0], dtype=np.bool) return flag
:param p: (N, K) test points :param hull: (M, K) M corners of a box :return (N) bool
in_hull
python
sshaoshuai/PointRCNN
lib/utils/kitti_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/kitti_utils.py
MIT
def get_iou3d(corners3d, query_corners3d, need_bev=False): """ :param corners3d: (N, 8, 3) in rect coords :param query_corners3d: (M, 8, 3) :return: """ from shapely.geometry import Polygon A, B = corners3d, query_corners3d N, M = A.shape[0], B.shape[0] iou3d = np.zeros((N, M), dtype=np.float32) iou_bev = np.zeros((N, M), dtype=np.float32) # for height overlap, since y face down, use the negative y min_h_a = -A[:, 0:4, 1].sum(axis=1) / 4.0 max_h_a = -A[:, 4:8, 1].sum(axis=1) / 4.0 min_h_b = -B[:, 0:4, 1].sum(axis=1) / 4.0 max_h_b = -B[:, 4:8, 1].sum(axis=1) / 4.0 for i in range(N): for j in range(M): max_of_min = np.max([min_h_a[i], min_h_b[j]]) min_of_max = np.min([max_h_a[i], max_h_b[j]]) h_overlap = np.max([0, min_of_max - max_of_min]) if h_overlap == 0: continue bottom_a, bottom_b = Polygon(A[i, 0:4, [0, 2]].T), Polygon(B[j, 0:4, [0, 2]].T) if bottom_a.is_valid and bottom_b.is_valid: # check is valid, A valid Polygon may not possess any overlapping exterior or interior rings. bottom_overlap = bottom_a.intersection(bottom_b).area else: bottom_overlap = 0. overlap3d = bottom_overlap * h_overlap union3d = bottom_a.area * (max_h_a[i] - min_h_a[i]) + bottom_b.area * (max_h_b[j] - min_h_b[j]) - overlap3d iou3d[i][j] = overlap3d / union3d iou_bev[i][j] = bottom_overlap / (bottom_a.area + bottom_b.area - bottom_overlap) if need_bev: return iou3d, iou_bev return iou3d
:param corners3d: (N, 8, 3) in rect coords :param query_corners3d: (M, 8, 3) :return:
get_iou3d
python
sshaoshuai/PointRCNN
lib/utils/kitti_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/kitti_utils.py
MIT
def forward(self, input, target): """ :param input: (N), logit :param target: (N), {0, 1} :return: """ input = torch.sigmoid(input.view(-1)) target = target.float().view(-1) mask = (target != self.ignore_target).float() return 1.0 - (torch.min(input, target) * mask).sum() / torch.clamp((torch.max(input, target) * mask).sum(), min=1.0)
:param input: (N), logit :param target: (N), {0, 1} :return:
forward
python
sshaoshuai/PointRCNN
lib/utils/loss_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/loss_utils.py
MIT
def __init__(self, gamma=2.0, alpha=0.25): """Constructor. Args: gamma: exponent of the modulating factor (1 - p_t) ^ gamma. alpha: optional alpha weighting factor to balance positives vs negatives. all_zero_negative: bool. if True, will treat all zero as background. else, will treat first label as background. only affect alpha. """ super().__init__() self._alpha = alpha self._gamma = gamma
Constructor. Args: gamma: exponent of the modulating factor (1 - p_t) ^ gamma. alpha: optional alpha weighting factor to balance positives vs negatives. all_zero_negative: bool. if True, will treat all zero as background. else, will treat first label as background. only affect alpha.
__init__
python
sshaoshuai/PointRCNN
lib/utils/loss_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/loss_utils.py
MIT
def forward(self, prediction_tensor, target_tensor, weights): """Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function. """ per_entry_cross_ent = (_sigmoid_cross_entropy_with_logits( labels=target_tensor, logits=prediction_tensor)) prediction_probabilities = torch.sigmoid(prediction_tensor) p_t = ((target_tensor * prediction_probabilities) + ((1 - target_tensor) * (1 - prediction_probabilities))) modulating_factor = 1.0 if self._gamma: modulating_factor = torch.pow(1.0 - p_t, self._gamma) alpha_weight_factor = 1.0 if self._alpha is not None: alpha_weight_factor = (target_tensor * self._alpha + (1 - target_tensor) * (1 - self._alpha)) focal_cross_entropy_loss = (modulating_factor * alpha_weight_factor * per_entry_cross_ent) return focal_cross_entropy_loss * weights
Compute loss function. Args: prediction_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing the predicted logits for each class target_tensor: A float tensor of shape [batch_size, num_anchors, num_classes] representing one-hot encoded classification targets weights: a float tensor of shape [batch_size, num_anchors] class_indices: (Optional) A 1-D integer tensor of class indices. If provided, computes loss only for the specified class indices. Returns: loss: a float tensor of shape [batch_size, num_anchors, num_classes] representing the value of the loss function.
forward
python
sshaoshuai/PointRCNN
lib/utils/loss_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/loss_utils.py
MIT
def get_reg_loss(pred_reg, reg_label, loc_scope, loc_bin_size, num_head_bin, anchor_size, get_xz_fine=True, get_y_by_bin=False, loc_y_scope=0.5, loc_y_bin_size=0.25, get_ry_fine=False): """ Bin-based 3D bounding boxes regression loss. See https://arxiv.org/abs/1812.04244 for more details. :param pred_reg: (N, C) :param reg_label: (N, 7) [dx, dy, dz, h, w, l, ry] :param loc_scope: constant :param loc_bin_size: constant :param num_head_bin: constant :param anchor_size: (N, 3) or (3) :param get_xz_fine: :param get_y_by_bin: :param loc_y_scope: :param loc_y_bin_size: :param get_ry_fine: :return: """ per_loc_bin_num = int(loc_scope / loc_bin_size) * 2 loc_y_bin_num = int(loc_y_scope / loc_y_bin_size) * 2 reg_loss_dict = {} loc_loss = 0 # xz localization loss x_offset_label, y_offset_label, z_offset_label = reg_label[:, 0], reg_label[:, 1], reg_label[:, 2] x_shift = torch.clamp(x_offset_label + loc_scope, 0, loc_scope * 2 - 1e-3) z_shift = torch.clamp(z_offset_label + loc_scope, 0, loc_scope * 2 - 1e-3) x_bin_label = (x_shift / loc_bin_size).floor().long() z_bin_label = (z_shift / loc_bin_size).floor().long() x_bin_l, x_bin_r = 0, per_loc_bin_num z_bin_l, z_bin_r = per_loc_bin_num, per_loc_bin_num * 2 start_offset = z_bin_r loss_x_bin = F.cross_entropy(pred_reg[:, x_bin_l: x_bin_r], x_bin_label) loss_z_bin = F.cross_entropy(pred_reg[:, z_bin_l: z_bin_r], z_bin_label) reg_loss_dict['loss_x_bin'] = loss_x_bin.item() reg_loss_dict['loss_z_bin'] = loss_z_bin.item() loc_loss += loss_x_bin + loss_z_bin if get_xz_fine: x_res_l, x_res_r = per_loc_bin_num * 2, per_loc_bin_num * 3 z_res_l, z_res_r = per_loc_bin_num * 3, per_loc_bin_num * 4 start_offset = z_res_r x_res_label = x_shift - (x_bin_label.float() * loc_bin_size + loc_bin_size / 2) z_res_label = z_shift - (z_bin_label.float() * loc_bin_size + loc_bin_size / 2) x_res_norm_label = x_res_label / loc_bin_size z_res_norm_label = z_res_label / loc_bin_size x_bin_onehot = torch.cuda.FloatTensor(x_bin_label.size(0), per_loc_bin_num).zero_() x_bin_onehot.scatter_(1, x_bin_label.view(-1, 1).long(), 1) z_bin_onehot = torch.cuda.FloatTensor(z_bin_label.size(0), per_loc_bin_num).zero_() z_bin_onehot.scatter_(1, z_bin_label.view(-1, 1).long(), 1) loss_x_res = F.smooth_l1_loss((pred_reg[:, x_res_l: x_res_r] * x_bin_onehot).sum(dim=1), x_res_norm_label) loss_z_res = F.smooth_l1_loss((pred_reg[:, z_res_l: z_res_r] * z_bin_onehot).sum(dim=1), z_res_norm_label) reg_loss_dict['loss_x_res'] = loss_x_res.item() reg_loss_dict['loss_z_res'] = loss_z_res.item() loc_loss += loss_x_res + loss_z_res # y localization loss if get_y_by_bin: y_bin_l, y_bin_r = start_offset, start_offset + loc_y_bin_num y_res_l, y_res_r = y_bin_r, y_bin_r + loc_y_bin_num start_offset = y_res_r y_shift = torch.clamp(y_offset_label + loc_y_scope, 0, loc_y_scope * 2 - 1e-3) y_bin_label = (y_shift / loc_y_bin_size).floor().long() y_res_label = y_shift - (y_bin_label.float() * loc_y_bin_size + loc_y_bin_size / 2) y_res_norm_label = y_res_label / loc_y_bin_size y_bin_onehot = torch.cuda.FloatTensor(y_bin_label.size(0), loc_y_bin_num).zero_() y_bin_onehot.scatter_(1, y_bin_label.view(-1, 1).long(), 1) loss_y_bin = F.cross_entropy(pred_reg[:, y_bin_l: y_bin_r], y_bin_label) loss_y_res = F.smooth_l1_loss((pred_reg[:, y_res_l: y_res_r] * y_bin_onehot).sum(dim=1), y_res_norm_label) reg_loss_dict['loss_y_bin'] = loss_y_bin.item() reg_loss_dict['loss_y_res'] = loss_y_res.item() loc_loss += loss_y_bin + loss_y_res else: y_offset_l, y_offset_r = start_offset, start_offset + 1 start_offset = y_offset_r loss_y_offset = F.smooth_l1_loss(pred_reg[:, y_offset_l: y_offset_r].sum(dim=1), y_offset_label) reg_loss_dict['loss_y_offset'] = loss_y_offset.item() loc_loss += loss_y_offset # angle loss ry_bin_l, ry_bin_r = start_offset, start_offset + num_head_bin ry_res_l, ry_res_r = ry_bin_r, ry_bin_r + num_head_bin ry_label = reg_label[:, 6] if get_ry_fine: # divide pi/2 into several bins angle_per_class = (np.pi / 2) / num_head_bin ry_label = ry_label % (2 * np.pi) # 0 ~ 2pi opposite_flag = (ry_label > np.pi * 0.5) & (ry_label < np.pi * 1.5) ry_label[opposite_flag] = (ry_label[opposite_flag] + np.pi) % (2 * np.pi) # (0 ~ pi/2, 3pi/2 ~ 2pi) shift_angle = (ry_label + np.pi * 0.5) % (2 * np.pi) # (0 ~ pi) shift_angle = torch.clamp(shift_angle - np.pi * 0.25, min=1e-3, max=np.pi * 0.5 - 1e-3) # (0, pi/2) # bin center is (5, 10, 15, ..., 85) ry_bin_label = (shift_angle / angle_per_class).floor().long() ry_res_label = shift_angle - (ry_bin_label.float() * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) else: # divide 2pi into several bins angle_per_class = (2 * np.pi) / num_head_bin heading_angle = ry_label % (2 * np.pi) # 0 ~ 2pi shift_angle = (heading_angle + angle_per_class / 2) % (2 * np.pi) ry_bin_label = (shift_angle / angle_per_class).floor().long() ry_res_label = shift_angle - (ry_bin_label.float() * angle_per_class + angle_per_class / 2) ry_res_norm_label = ry_res_label / (angle_per_class / 2) ry_bin_onehot = torch.cuda.FloatTensor(ry_bin_label.size(0), num_head_bin).zero_() ry_bin_onehot.scatter_(1, ry_bin_label.view(-1, 1).long(), 1) loss_ry_bin = F.cross_entropy(pred_reg[:, ry_bin_l:ry_bin_r], ry_bin_label) loss_ry_res = F.smooth_l1_loss((pred_reg[:, ry_res_l: ry_res_r] * ry_bin_onehot).sum(dim=1), ry_res_norm_label) reg_loss_dict['loss_ry_bin'] = loss_ry_bin.item() reg_loss_dict['loss_ry_res'] = loss_ry_res.item() angle_loss = loss_ry_bin + loss_ry_res # size loss size_res_l, size_res_r = ry_res_r, ry_res_r + 3 assert pred_reg.shape[1] == size_res_r, '%d vs %d' % (pred_reg.shape[1], size_res_r) size_res_norm_label = (reg_label[:, 3:6] - anchor_size) / anchor_size size_res_norm = pred_reg[:, size_res_l:size_res_r] size_loss = F.smooth_l1_loss(size_res_norm, size_res_norm_label) # Total regression loss reg_loss_dict['loss_loc'] = loc_loss reg_loss_dict['loss_angle'] = angle_loss reg_loss_dict['loss_size'] = size_loss return loc_loss, angle_loss, size_loss, reg_loss_dict
Bin-based 3D bounding boxes regression loss. See https://arxiv.org/abs/1812.04244 for more details. :param pred_reg: (N, C) :param reg_label: (N, 7) [dx, dy, dz, h, w, l, ry] :param loc_scope: constant :param loc_bin_size: constant :param num_head_bin: constant :param anchor_size: (N, 3) or (3) :param get_xz_fine: :param get_y_by_bin: :param loc_y_scope: :param loc_y_bin_size: :param get_ry_fine: :return:
get_reg_loss
python
sshaoshuai/PointRCNN
lib/utils/loss_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/loss_utils.py
MIT
def generate_corners3d(self): """ generate corners3d representation for this object :return corners_3d: (8, 3) corners of box3d in camera coord """ l, h, w = self.l, self.h, self.w x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [0, 0, 0, 0, -h, -h, -h, -h] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] R = np.array([[np.cos(self.ry), 0, np.sin(self.ry)], [0, 1, 0], [-np.sin(self.ry), 0, np.cos(self.ry)]]) corners3d = np.vstack([x_corners, y_corners, z_corners]) # (3, 8) corners3d = np.dot(R, corners3d).T corners3d = corners3d + self.pos return corners3d
generate corners3d representation for this object :return corners_3d: (8, 3) corners of box3d in camera coord
generate_corners3d
python
sshaoshuai/PointRCNN
lib/utils/object3d.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/object3d.py
MIT
def to_bev_box2d(self, oblique=True, voxel_size=0.1): """ :param bev_shape: (2) for bev shape (h, w), => (y_max, x_max) in image :param voxel_size: float, 0.1m :param oblique: :return: box2d (4, 2)/ (4) in image coordinate """ if oblique: corners3d = self.generate_corners3d() xz_corners = corners3d[0:4, [0, 2]] box2d = np.zeros((4, 2), dtype=np.int32) box2d[:, 0] = ((xz_corners[:, 0] - Object3d.MIN_XZ[0]) / voxel_size).astype(np.int32) box2d[:, 1] = Object3d.BEV_SHAPE[0] - 1 - ((xz_corners[:, 1] - Object3d.MIN_XZ[1]) / voxel_size).astype(np.int32) box2d[:, 0] = np.clip(box2d[:, 0], 0, Object3d.BEV_SHAPE[1]) box2d[:, 1] = np.clip(box2d[:, 1], 0, Object3d.BEV_SHAPE[0]) else: box2d = np.zeros(4, dtype=np.int32) # discrete_center = np.floor((self.pos / voxel_size)).astype(np.int32) cu = np.floor((self.pos[0] - Object3d.MIN_XZ[0]) / voxel_size).astype(np.int32) cv = Object3d.BEV_SHAPE[0] - 1 - ((self.pos[2] - Object3d.MIN_XZ[1]) / voxel_size).astype(np.int32) half_l, half_w = int(self.l / voxel_size / 2), int(self.w / voxel_size / 2) box2d[0], box2d[1] = cu - half_l, cv - half_w box2d[2], box2d[3] = cu + half_l, cv + half_w return box2d
:param bev_shape: (2) for bev shape (h, w), => (y_max, x_max) in image :param voxel_size: float, 0.1m :param oblique: :return: box2d (4, 2)/ (4) in image coordinate
to_bev_box2d
python
sshaoshuai/PointRCNN
lib/utils/object3d.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/object3d.py
MIT
def nms_gpu(boxes, scores, thresh): """ :param boxes: (N, 5) [x1, y1, x2, y2, ry] :param scores: (N) :param thresh: :return: """ # areas = (x2 - x1) * (y2 - y1) order = scores.sort(0, descending=True)[1] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_cuda.nms_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous()
:param boxes: (N, 5) [x1, y1, x2, y2, ry] :param scores: (N) :param thresh: :return:
nms_gpu
python
sshaoshuai/PointRCNN
lib/utils/iou3d/iou3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/iou3d/iou3d_utils.py
MIT
def nms_normal_gpu(boxes, scores, thresh): """ :param boxes: (N, 5) [x1, y1, x2, y2, ry] :param scores: (N) :param thresh: :return: """ # areas = (x2 - x1) * (y2 - y1) order = scores.sort(0, descending=True)[1] boxes = boxes[order].contiguous() keep = torch.LongTensor(boxes.size(0)) num_out = iou3d_cuda.nms_normal_gpu(boxes, keep, thresh) return order[keep[:num_out].cuda()].contiguous()
:param boxes: (N, 5) [x1, y1, x2, y2, ry] :param scores: (N) :param thresh: :return:
nms_normal_gpu
python
sshaoshuai/PointRCNN
lib/utils/iou3d/iou3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/iou3d/iou3d_utils.py
MIT
def roipool3d_gpu(pts, pts_feature, boxes3d, pool_extra_width, sampled_pt_num=512): """ :param pts: (B, N, 3) :param pts_feature: (B, N, C) :param boxes3d: (B, M, 7) :param pool_extra_width: float :param sampled_pt_num: int :return: pooled_features: (B, M, 512, 3 + C) pooled_empty_flag: (B, M) """ batch_size, boxes_num, feature_len = pts.shape[0], boxes3d.shape[1], pts_feature.shape[2] pooled_boxes3d = kitti_utils.enlarge_box3d(boxes3d.view(-1, 7), pool_extra_width).view(batch_size, -1, 7) pooled_features = torch.cuda.FloatTensor(torch.Size((batch_size, boxes_num, sampled_pt_num, 3 + feature_len))).zero_() pooled_empty_flag = torch.cuda.IntTensor(torch.Size((batch_size, boxes_num))).zero_() roipool3d_cuda.forward(pts.contiguous(), pooled_boxes3d.contiguous(), pts_feature.contiguous(), pooled_features, pooled_empty_flag) return pooled_features, pooled_empty_flag
:param pts: (B, N, 3) :param pts_feature: (B, N, C) :param boxes3d: (B, M, 7) :param pool_extra_width: float :param sampled_pt_num: int :return: pooled_features: (B, M, 512, 3 + C) pooled_empty_flag: (B, M)
roipool3d_gpu
python
sshaoshuai/PointRCNN
lib/utils/roipool3d/roipool3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/roipool3d/roipool3d_utils.py
MIT
def pts_in_boxes3d_cpu(pts, boxes3d): """ :param pts: (N, 3) in rect-camera coords :param boxes3d: (M, 7) :return: boxes_pts_mask_list: (M), list with [(N), (N), ..] """ if not pts.is_cuda: pts = pts.float().contiguous() boxes3d = boxes3d.float().contiguous() pts_flag = torch.LongTensor(torch.Size((boxes3d.size(0), pts.size(0)))) # (M, N) roipool3d_cuda.pts_in_boxes3d_cpu(pts_flag, pts, boxes3d) boxes_pts_mask_list = [] for k in range(0, boxes3d.shape[0]): cur_mask = pts_flag[k] > 0 boxes_pts_mask_list.append(cur_mask) return boxes_pts_mask_list else: raise NotImplementedError
:param pts: (N, 3) in rect-camera coords :param boxes3d: (M, 7) :return: boxes_pts_mask_list: (M), list with [(N), (N), ..]
pts_in_boxes3d_cpu
python
sshaoshuai/PointRCNN
lib/utils/roipool3d/roipool3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/roipool3d/roipool3d_utils.py
MIT
def roipool_pc_cpu(pts, pts_feature, boxes3d, sampled_pt_num): """ :param pts: (N, 3) :param pts_feature: (N, C) :param boxes3d: (M, 7) :param sampled_pt_num: int :return: """ pts = pts.cpu().float().contiguous() pts_feature = pts_feature.cpu().float().contiguous() boxes3d = boxes3d.cpu().float().contiguous() assert pts.shape[0] == pts_feature.shape[0] and pts.shape[1] == 3, '%s %s' % (pts.shape, pts_feature.shape) assert pts.is_cuda is False pooled_pts = torch.FloatTensor(torch.Size((boxes3d.shape[0], sampled_pt_num, 3))).zero_() pooled_features = torch.FloatTensor(torch.Size((boxes3d.shape[0], sampled_pt_num, pts_feature.shape[1]))).zero_() pooled_empty_flag = torch.LongTensor(boxes3d.shape[0]).zero_() roipool3d_cuda.roipool3d_cpu(pts, boxes3d, pts_feature, pooled_pts, pooled_features, pooled_empty_flag) return pooled_pts, pooled_features, pooled_empty_flag
:param pts: (N, 3) :param pts_feature: (N, C) :param boxes3d: (M, 7) :param sampled_pt_num: int :return:
roipool_pc_cpu
python
sshaoshuai/PointRCNN
lib/utils/roipool3d/roipool3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/roipool3d/roipool3d_utils.py
MIT
def roipool3d_cpu(boxes3d, pts, pts_feature, pts_extra_input, pool_extra_width, sampled_pt_num=512, canonical_transform=True): """ :param boxes3d: (N, 7) :param pts: (N, 3) :param pts_feature: (N, C) :param pts_extra_input: (N, C2) :param pool_extra_width: constant :param sampled_pt_num: constant :return: """ pooled_boxes3d = kitti_utils.enlarge_box3d(boxes3d, pool_extra_width) pts_feature_all = np.concatenate((pts_extra_input, pts_feature), axis=1) # Note: if pooled_empty_flag[i] > 0, the pooled_pts[i], pooled_features[i] will be zero pooled_pts, pooled_features, pooled_empty_flag = \ roipool_pc_cpu(torch.from_numpy(pts), torch.from_numpy(pts_feature_all), torch.from_numpy(pooled_boxes3d), sampled_pt_num) extra_input_len = pts_extra_input.shape[1] sampled_pts_input = torch.cat((pooled_pts, pooled_features[:, :, 0:extra_input_len]), dim=2).numpy() sampled_pts_feature = pooled_features[:, :, extra_input_len:].numpy() if canonical_transform: # Translate to the roi coordinates roi_ry = boxes3d[:, 6] % (2 * np.pi) # 0~2pi roi_center = boxes3d[:, 0:3] # shift to center sampled_pts_input[:, :, 0:3] = sampled_pts_input[:, :, 0:3] - roi_center[:, np.newaxis, :] for k in range(sampled_pts_input.shape[0]): sampled_pts_input[k] = kitti_utils.rotate_pc_along_y(sampled_pts_input[k], roi_ry[k]) return sampled_pts_input, sampled_pts_feature return sampled_pts_input, sampled_pts_feature, pooled_empty_flag.numpy()
:param boxes3d: (N, 7) :param pts: (N, 3) :param pts_feature: (N, C) :param pts_extra_input: (N, C2) :param pool_extra_width: constant :param sampled_pt_num: constant :return:
roipool3d_cpu
python
sshaoshuai/PointRCNN
lib/utils/roipool3d/roipool3d_utils.py
https://github.com/sshaoshuai/PointRCNN/blob/master/lib/utils/roipool3d/roipool3d_utils.py
MIT
def get_valid_flag(pts_rect, pts_img, pts_rect_depth, img_shape): """ Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param pts_img: :param pts_rect_depth: :param img_shape: :return: """ val_flag_1 = np.logical_and(pts_img[:, 0] >= 0, pts_img[:, 0] < img_shape[1]) val_flag_2 = np.logical_and(pts_img[:, 1] >= 0, pts_img[:, 1] < img_shape[0]) val_flag_merge = np.logical_and(val_flag_1, val_flag_2) pts_valid_flag = np.logical_and(val_flag_merge, pts_rect_depth >= 0) if PC_REDUCE_BY_RANGE: x_range, y_range, z_range = PC_AREA_SCOPE pts_x, pts_y, pts_z = pts_rect[:, 0], pts_rect[:, 1], pts_rect[:, 2] range_flag = (pts_x >= x_range[0]) & (pts_x <= x_range[1]) \ & (pts_y >= y_range[0]) & (pts_y <= y_range[1]) \ & (pts_z >= z_range[0]) & (pts_z <= z_range[1]) pts_valid_flag = pts_valid_flag & range_flag return pts_valid_flag
Valid point should be in the image (and in the PC_AREA_SCOPE) :param pts_rect: :param pts_img: :param pts_rect_depth: :param img_shape: :return:
get_valid_flag
python
sshaoshuai/PointRCNN
tools/generate_aug_scene.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/generate_aug_scene.py
MIT
def calculate_iou_partly(gt_annos, dt_annos, metric, num_parts=50): """fast iou algorithm. this function can be used independently to do result analysis. Must be used in CAMERA coordinate system. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py metric: eval type. 0: bbox, 1: bev, 2: 3d num_parts: int. a parameter for fast calculate algorithm """ assert len(gt_annos) == len(dt_annos) total_dt_num = np.stack([len(a["name"]) for a in dt_annos], 0) total_gt_num = np.stack([len(a["name"]) for a in gt_annos], 0) num_examples = len(gt_annos) split_parts = get_split_parts(num_examples, num_parts) parted_overlaps = [] example_idx = 0 for num_part in split_parts: gt_annos_part = gt_annos[example_idx:example_idx + num_part] dt_annos_part = dt_annos[example_idx:example_idx + num_part] if metric == 0: gt_boxes = np.concatenate([a["bbox"] for a in gt_annos_part], 0) dt_boxes = np.concatenate([a["bbox"] for a in dt_annos_part], 0) overlap_part = image_box_overlap(gt_boxes, dt_boxes) elif metric == 1: loc = np.concatenate( [a["location"][:, [0, 2]] for a in gt_annos_part], 0) dims = np.concatenate( [a["dimensions"][:, [0, 2]] for a in gt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0) gt_boxes = np.concatenate( [loc, dims, rots[..., np.newaxis]], axis=1) loc = np.concatenate( [a["location"][:, [0, 2]] for a in dt_annos_part], 0) dims = np.concatenate( [a["dimensions"][:, [0, 2]] for a in dt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0) dt_boxes = np.concatenate( [loc, dims, rots[..., np.newaxis]], axis=1) overlap_part = bev_box_overlap(gt_boxes, dt_boxes).astype( np.float64) elif metric == 2: loc = np.concatenate([a["location"] for a in gt_annos_part], 0) dims = np.concatenate([a["dimensions"] for a in gt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in gt_annos_part], 0) gt_boxes = np.concatenate( [loc, dims, rots[..., np.newaxis]], axis=1) loc = np.concatenate([a["location"] for a in dt_annos_part], 0) dims = np.concatenate([a["dimensions"] for a in dt_annos_part], 0) rots = np.concatenate([a["rotation_y"] for a in dt_annos_part], 0) dt_boxes = np.concatenate( [loc, dims, rots[..., np.newaxis]], axis=1) overlap_part = d3_box_overlap(gt_boxes, dt_boxes).astype( np.float64) else: raise ValueError("unknown metric") parted_overlaps.append(overlap_part) example_idx += num_part overlaps = [] example_idx = 0 for j, num_part in enumerate(split_parts): gt_annos_part = gt_annos[example_idx:example_idx + num_part] dt_annos_part = dt_annos[example_idx:example_idx + num_part] gt_num_idx, dt_num_idx = 0, 0 for i in range(num_part): gt_box_num = total_gt_num[example_idx + i] dt_box_num = total_dt_num[example_idx + i] overlaps.append( parted_overlaps[j][gt_num_idx:gt_num_idx + gt_box_num, dt_num_idx:dt_num_idx + dt_box_num]) gt_num_idx += gt_box_num dt_num_idx += dt_box_num example_idx += num_part return overlaps, parted_overlaps, total_gt_num, total_dt_num
fast iou algorithm. this function can be used independently to do result analysis. Must be used in CAMERA coordinate system. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py metric: eval type. 0: bbox, 1: bev, 2: 3d num_parts: int. a parameter for fast calculate algorithm
calculate_iou_partly
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/eval.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/eval.py
MIT
def eval_class(gt_annos, dt_annos, current_classes, difficultys, metric, min_overlaps, compute_aos=False, num_parts=50): """Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py current_classes: list of int, 0: car, 1: pedestrian, 2: cyclist difficultys: list of int. eval difficulty, 0: easy, 1: normal, 2: hard metric: eval type. 0: bbox, 1: bev, 2: 3d min_overlaps: float, min overlap. format: [num_overlap, metric, class]. num_parts: int. a parameter for fast calculate algorithm Returns: dict of recall, precision and aos """ assert len(gt_annos) == len(dt_annos) num_examples = len(gt_annos) split_parts = get_split_parts(num_examples, num_parts) rets = calculate_iou_partly(dt_annos, gt_annos, metric, num_parts) overlaps, parted_overlaps, total_dt_num, total_gt_num = rets N_SAMPLE_PTS = 41 num_minoverlap = len(min_overlaps) num_class = len(current_classes) num_difficulty = len(difficultys) precision = np.zeros( [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) recall = np.zeros( [num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) aos = np.zeros([num_class, num_difficulty, num_minoverlap, N_SAMPLE_PTS]) for m, current_class in enumerate(current_classes): for l, difficulty in enumerate(difficultys): rets = _prepare_data(gt_annos, dt_annos, current_class, difficulty) (gt_datas_list, dt_datas_list, ignored_gts, ignored_dets, dontcares, total_dc_num, total_num_valid_gt) = rets for k, min_overlap in enumerate(min_overlaps[:, metric, m]): thresholdss = [] for i in range(len(gt_annos)): rets = compute_statistics_jit( overlaps[i], gt_datas_list[i], dt_datas_list[i], ignored_gts[i], ignored_dets[i], dontcares[i], metric, min_overlap=min_overlap, thresh=0.0, compute_fp=False) tp, fp, fn, similarity, thresholds = rets thresholdss += thresholds.tolist() thresholdss = np.array(thresholdss) thresholds = get_thresholds(thresholdss, total_num_valid_gt) thresholds = np.array(thresholds) pr = np.zeros([len(thresholds), 4]) idx = 0 for j, num_part in enumerate(split_parts): gt_datas_part = np.concatenate( gt_datas_list[idx:idx + num_part], 0) dt_datas_part = np.concatenate( dt_datas_list[idx:idx + num_part], 0) dc_datas_part = np.concatenate( dontcares[idx:idx + num_part], 0) ignored_dets_part = np.concatenate( ignored_dets[idx:idx + num_part], 0) ignored_gts_part = np.concatenate( ignored_gts[idx:idx + num_part], 0) fused_compute_statistics( parted_overlaps[j], pr, total_gt_num[idx:idx + num_part], total_dt_num[idx:idx + num_part], total_dc_num[idx:idx + num_part], gt_datas_part, dt_datas_part, dc_datas_part, ignored_gts_part, ignored_dets_part, metric, min_overlap=min_overlap, thresholds=thresholds, compute_aos=compute_aos) idx += num_part for i in range(len(thresholds)): recall[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 2]) precision[m, l, k, i] = pr[i, 0] / (pr[i, 0] + pr[i, 1]) if compute_aos: aos[m, l, k, i] = pr[i, 3] / (pr[i, 0] + pr[i, 1]) for i in range(len(thresholds)): precision[m, l, k, i] = np.max( precision[m, l, k, i:], axis=-1) recall[m, l, k, i] = np.max(recall[m, l, k, i:], axis=-1) if compute_aos: aos[m, l, k, i] = np.max(aos[m, l, k, i:], axis=-1) ret_dict = { "recall": recall, "precision": precision, "orientation": aos, } return ret_dict
Kitti eval. support 2d/bev/3d/aos eval. support 0.5:0.05:0.95 coco AP. Args: gt_annos: dict, must from get_label_annos() in kitti_common.py dt_annos: dict, must from get_label_annos() in kitti_common.py current_classes: list of int, 0: car, 1: pedestrian, 2: cyclist difficultys: list of int. eval difficulty, 0: easy, 1: normal, 2: hard metric: eval type. 0: bbox, 1: bev, 2: 3d min_overlaps: float, min overlap. format: [num_overlap, metric, class]. num_parts: int. a parameter for fast calculate algorithm Returns: dict of recall, precision and aos
eval_class
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/eval.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/eval.py
MIT
def area(boxes, add1=False): """Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas """ if add1: return (boxes[:, 2] - boxes[:, 0] + 1.0) * ( boxes[:, 3] - boxes[:, 1] + 1.0) else: return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
Computes area of boxes. Args: boxes: Numpy array with shape [N, 4] holding N boxes Returns: a numpy array with shape [N*1] representing box areas
area
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/kitti_common.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/kitti_common.py
MIT
def intersection(boxes1, boxes2, add1=False): """Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area """ [y_min1, x_min1, y_max1, x_max1] = np.split(boxes1, 4, axis=1) [y_min2, x_min2, y_max2, x_max2] = np.split(boxes2, 4, axis=1) all_pairs_min_ymax = np.minimum(y_max1, np.transpose(y_max2)) all_pairs_max_ymin = np.maximum(y_min1, np.transpose(y_min2)) if add1: all_pairs_min_ymax += 1.0 intersect_heights = np.maximum( np.zeros(all_pairs_max_ymin.shape), all_pairs_min_ymax - all_pairs_max_ymin) all_pairs_min_xmax = np.minimum(x_max1, np.transpose(x_max2)) all_pairs_max_xmin = np.maximum(x_min1, np.transpose(x_min2)) if add1: all_pairs_min_xmax += 1.0 intersect_widths = np.maximum( np.zeros(all_pairs_max_xmin.shape), all_pairs_min_xmax - all_pairs_max_xmin) return intersect_heights * intersect_widths
Compute pairwise intersection areas between boxes. Args: boxes1: a numpy array with shape [N, 4] holding N boxes boxes2: a numpy array with shape [M, 4] holding M boxes Returns: a numpy array with shape [N*M] representing pairwise intersection area
intersection
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/kitti_common.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/kitti_common.py
MIT
def iou(boxes1, boxes2, add1=False): """Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores. """ intersect = intersection(boxes1, boxes2, add1) area1 = area(boxes1, add1) area2 = area(boxes2, add1) union = np.expand_dims( area1, axis=1) + np.expand_dims( area2, axis=0) - intersect return intersect / union
Computes pairwise intersection-over-union between box collections. Args: boxes1: a numpy array with shape [N, 4] holding N boxes. boxes2: a numpy array with shape [M, 4] holding N boxes. Returns: a numpy array with shape [N, M] representing pairwise iou scores.
iou
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/kitti_common.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/kitti_common.py
MIT
def rotate_iou_gpu_eval(boxes, query_boxes, criterion=-1, device_id=0): """rotated box iou running in gpu. 500x faster than cpu version (take 5ms in one example with numba.cuda code). convert from [this project]( https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation). Args: boxes (float tensor: [N, 5]): rbboxes. format: centers, dims, angles(clockwise when positive) query_boxes (float tensor: [K, 5]): [description] device_id (int, optional): Defaults to 0. [description] Returns: [type]: [description] """ box_dtype = boxes.dtype boxes = boxes.astype(np.float32) query_boxes = query_boxes.astype(np.float32) N = boxes.shape[0] K = query_boxes.shape[0] iou = np.zeros((N, K), dtype=np.float32) if N == 0 or K == 0: return iou threadsPerBlock = 8 * 8 cuda.select_device(device_id) blockspergrid = (div_up(N, threadsPerBlock), div_up(K, threadsPerBlock)) stream = cuda.stream() with stream.auto_synchronize(): boxes_dev = cuda.to_device(boxes.reshape([-1]), stream) query_boxes_dev = cuda.to_device(query_boxes.reshape([-1]), stream) iou_dev = cuda.to_device(iou.reshape([-1]), stream) rotate_iou_kernel_eval[blockspergrid, threadsPerBlock, stream]( N, K, boxes_dev, query_boxes_dev, iou_dev, criterion) iou_dev.copy_to_host(iou.reshape([-1]), stream=stream) return iou.astype(boxes.dtype)
rotated box iou running in gpu. 500x faster than cpu version (take 5ms in one example with numba.cuda code). convert from [this project]( https://github.com/hongzhenwang/RRPN-revise/tree/master/lib/rotation). Args: boxes (float tensor: [N, 5]): rbboxes. format: centers, dims, angles(clockwise when positive) query_boxes (float tensor: [K, 5]): [description] device_id (int, optional): Defaults to 0. [description] Returns: [type]: [description]
rotate_iou_gpu_eval
python
sshaoshuai/PointRCNN
tools/kitti_object_eval_python/rotate_iou.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/kitti_object_eval_python/rotate_iou.py
MIT
def split_bn_bias(layer_groups): "Split the layers in `layer_groups` into batchnorm (`bn_types`) and non-batchnorm groups." split_groups = [] for l in layer_groups: l1, l2 = [], [] for c in l.children(): if isinstance(c, bn_types): l2.append(c) else: l1.append(c) split_groups += [nn.Sequential(*l1), nn.Sequential(*l2)] return split_groups
Split the layers in `layer_groups` into batchnorm (`bn_types`) and non-batchnorm groups.
split_bn_bias
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def get_master(layer_groups, flat_master: bool = False): "Return two lists, one for the model parameters in FP16 and one for the master parameters in FP32." split_groups = split_bn_bias(layer_groups) model_params = [[param for param in lg.parameters() if param.requires_grad] for lg in split_groups] if flat_master: master_params = [] for lg in model_params: if len(lg) != 0: mp = parameters_to_vector([param.data.float() for param in lg]) mp = torch.nn.Parameter(mp, requires_grad=True) if mp.grad is None: mp.grad = mp.new(*mp.size()) master_params.append([mp]) else: master_params.append([]) return model_params, master_params else: master_params = [[param.clone().float().detach() for param in lg] for lg in model_params] for mp in master_params: for param in mp: param.requires_grad = True return model_params, master_params
Return two lists, one for the model parameters in FP16 and one for the master parameters in FP32.
get_master
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def model_g2master_g(model_params, master_params, flat_master: bool = False) -> None: "Copy the `model_params` gradients to `master_params` for the optimizer step." if flat_master: for model_group, master_group in zip(model_params, master_params): if len(master_group) != 0: master_group[0].grad.data.copy_(parameters_to_vector([p.grad.data.float() for p in model_group])) else: for model_group, master_group in zip(model_params, master_params): for model, master in zip(model_group, master_group): if model.grad is not None: if master.grad is None: master.grad = master.data.new(*master.data.size()) master.grad.data.copy_(model.grad.data) else: master.grad = None
Copy the `model_params` gradients to `master_params` for the optimizer step.
model_g2master_g
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def listify(p=None, q=None): "Make `p` listy and the same length as `q`." if p is None: p = [] elif isinstance(p, str): p = [p] elif not isinstance(p, Iterable): p = [p] n = q if type(q) == int else len(p) if q is None else len(q) if len(p) == 1: p = p * n assert len(p) == n, f'List len mismatch ({len(p)} vs {n})' return list(p)
Make `p` listy and the same length as `q`.
listify
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def trainable_params(m: nn.Module): "Return list of trainable params in `m`." res = filter(lambda p: p.requires_grad, m.parameters()) return res
Return list of trainable params in `m`.
trainable_params
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def create(cls, opt_func, lr, layer_groups, **kwargs): "Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`." split_groups = split_bn_bias(layer_groups) opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) opt = cls(opt, **kwargs) opt.lr, opt.opt_func = listify(lr, layer_groups), opt_func return opt
Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`.
create
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def new(self, layer_groups): "Create a new `OptimWrapper` from `self` with another `layer_groups` but the same hyper-parameters." opt_func = getattr(self, 'opt_func', self.opt.__class__) split_groups = split_bn_bias(layer_groups) opt = opt_func([{'params': trainable_params(l), 'lr': 0} for l in split_groups]) return self.create(opt_func, self.lr, layer_groups, wd=self.wd, true_wd=self.true_wd, bn_wd=self.bn_wd)
Create a new `OptimWrapper` from `self` with another `layer_groups` but the same hyper-parameters.
new
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def step(self) -> None: "Set weight decay and step optimizer." # weight decay outside of optimizer step (AdamW) if self.true_wd: for lr, wd, pg1, pg2 in zip(self._lr, self._wd, self.opt.param_groups[::2], self.opt.param_groups[1::2]): for p in pg1['params']: # When some parameters are fixed: Shaoshuai Shi if p.requires_grad is False: continue p.data.mul_(1 - wd * lr) if self.bn_wd: for p in pg2['params']: # When some parameters are fixed: Shaoshuai Shi if p.requires_grad is False: continue p.data.mul_(1 - wd * lr) self.set_val('weight_decay', listify(0, self._wd)) self.opt.step()
Set weight decay and step optimizer.
step
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def clear(self): "Reset the state of the inner optimizer." sd = self.state_dict() sd['state'] = {} self.load_state_dict(sd)
Reset the state of the inner optimizer.
clear
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def beta(self, val: float) -> None: "Set beta (or alpha as makes sense for given optimizer)." if val is None: return if 'betas' in self.opt_keys: self.set_val('betas', (self._mom, listify(val, self._beta))) elif 'alpha' in self.opt_keys: self.set_val('alpha', listify(val, self._beta)) self._beta = listify(val, self._beta)
Set beta (or alpha as makes sense for given optimizer).
beta
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def read_defaults(self) -> None: "Read the values inside the optimizer for the hyper-parameters." self._beta = None if 'lr' in self.opt_keys: self._lr = self.read_val('lr') if 'momentum' in self.opt_keys: self._mom = self.read_val('momentum') if 'alpha' in self.opt_keys: self._beta = self.read_val('alpha') if 'betas' in self.opt_keys: self._mom, self._beta = self.read_val('betas') if 'weight_decay' in self.opt_keys: self._wd = self.read_val('weight_decay')
Read the values inside the optimizer for the hyper-parameters.
read_defaults
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def set_val(self, key: str, val, bn_groups: bool = True): "Set `val` inside the optimizer dictionary at `key`." if is_tuple(val): val = [(v1, v2) for v1, v2 in zip(*val)] for v, pg1, pg2 in zip(val, self.opt.param_groups[::2], self.opt.param_groups[1::2]): pg1[key] = v if bn_groups: pg2[key] = v return val
Set `val` inside the optimizer dictionary at `key`.
set_val
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def read_val(self, key: str): "Read a hyperparameter `key` in the optimizer dictionary." val = [pg[key] for pg in self.opt.param_groups[::2]] if is_tuple(val[0]): val = [o[0] for o in val], [o[1] for o in val] return val
Read a hyperparameter `key` in the optimizer dictionary.
read_val
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def create(cls, opt_func, lr, layer_groups, model, flat_master=False, loss_scale=512.0, **kwargs): "Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`." opt = OptimWrapper.create(opt_func, lr, layer_groups, **kwargs) opt.model_params, opt.master_params = get_master(layer_groups, flat_master) opt.flat_master = flat_master opt.loss_scale = loss_scale opt.model = model # Changes the optimizer so that the optimization step is done in FP32. # opt = self.learn.opt mom, wd, beta = opt.mom, opt.wd, opt.beta lrs = [lr for lr in opt._lr for _ in range(2)] opt_params = [{'params': mp, 'lr': lr} for mp, lr in zip(opt.master_params, lrs)] opt.opt = opt_func(opt_params) opt.mom, opt.wd, opt.beta = mom, wd, beta return opt
Create an `optim.Optimizer` from `opt_func` with `lr`. Set lr on `layer_groups`.
create
python
sshaoshuai/PointRCNN
tools/train_utils/fastai_optim.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/fastai_optim.py
MIT
def annealing_cos(start, end, pct): # print(pct, start, end) "Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0." cos_out = np.cos(np.pi * pct) + 1 return end + (start - end) / 2 * cos_out
Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0.
annealing_cos
python
sshaoshuai/PointRCNN
tools/train_utils/learning_schedules_fastai.py
https://github.com/sshaoshuai/PointRCNN/blob/master/tools/train_utils/learning_schedules_fastai.py
MIT
def extend_body_states( self, extend_body_pos: torch.Tensor, extend_body_parent_ids: list[int], ): """ This function is for appending the link states to the robot state. For example, the H1 robot doesn't have hands and a head in its robot state. However, we are still interested in computing its error and considering these as important key points. Thus, we will use this function to add the head and hand states to the robot state. Args: extend_body_pos (torch.Tensor): Positions of the extended bodies relative to their parent bodies. Shape is (num_envs, num_extended_bodies, 3). extend_body_parent_ids (list[int]): List of parent body indices for each extended body. Raises: ValueError: If the number of extended bodies does not match the length of extend_body_parent_ids. """ if extend_body_pos.shape[1] != len(extend_body_parent_ids): print("[INFO]: extend_body_pos shape:", extend_body_pos.shape) print("[INFO]: extend_body_parent_ids lengths:", len(extend_body_parent_ids)) raise ValueError( "Dimension mismatch: number of extended bodies does not match the length of its parent ID list." ) num_envs = self.body_pos.shape[0] # Compute extended body positions extend_curr_pos = ( torch_utils.my_quat_rotate( math_utils.convert_quat(self.body_rot[:, extend_body_parent_ids].reshape(-1, 4), to="xyzw"), extend_body_pos[:,].reshape(-1, 3), ).view(num_envs, -1, 3) + self.body_pos[:, extend_body_parent_ids] ) self.body_pos_extend = torch.cat([self.body_pos, extend_curr_pos], dim=1) # Compute extended body orientations extend_curr_rot = self.body_rot[:, extend_body_parent_ids].clone() self.body_rot_extend = torch.cat([self.body_rot, extend_curr_rot], dim=1) # Compute extended body linear velocities self.body_lin_vel_extend = torch.cat( [self.body_lin_vel, self.body_lin_vel[:, extend_body_parent_ids].clone()], dim=1 ) # Compute extended body angular velocities self.body_ang_vel_extend = torch.cat( [self.body_ang_vel, self.body_ang_vel[:, extend_body_parent_ids].clone()], dim=1 )
This function is for appending the link states to the robot state. For example, the H1 robot doesn't have hands and a head in its robot state. However, we are still interested in computing its error and considering these as important key points. Thus, we will use this function to add the head and hand states to the robot state. Args: extend_body_pos (torch.Tensor): Positions of the extended bodies relative to their parent bodies. Shape is (num_envs, num_extended_bodies, 3). extend_body_parent_ids (list[int]): List of parent body indices for each extended body. Raises: ValueError: If the number of extended bodies does not match the length of extend_body_parent_ids.
extend_body_states
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/body_state.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/body_state.py
Apache-2.0
def get_observations(self) -> torch.Tensor: """Gets policy observations for each environment based on the mode.""" if self._mode.is_distill_mode(): return self.get_student_observations() return self.get_teacher_observations()
Gets policy observations for each environment based on the mode.
get_observations
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/environment_wrapper.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/environment_wrapper.py
Apache-2.0
def _init_empty_frames(self, frame: Frame): """Initialize empty frame buffers to store trajectory data for all environments. Creates zero-filled tensors/arrays sized to hold the maximum possible number of frames and environments, matching the data types and shapes of the input frame. """ max_possible_frames = max(self.max_frames_per_env).item() max_possible_envs = len(self.max_frames_per_env) for attr in vars(frame): frame_data = getattr(frame, attr) data_shape = frame_data.shape if isinstance(frame_data, torch.Tensor): self._frames[attr] = torch.zeros( (max_possible_frames, max_possible_envs, *data_shape[1:]), device=frame_data.device )
Initialize empty frame buffers to store trajectory data for all environments. Creates zero-filled tensors/arrays sized to hold the maximum possible number of frames and environments, matching the data types and shapes of the input frame.
_init_empty_frames
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def add_frame(self, frame: Frame): """Add a frame to each trajectory in the episode. Args: frame (Frame): Frame containing trajectory data for all environments at this timestep """ # Initialize frame buffers if this is the first frame being added if len(self._frames) == 0: self._init_empty_frames(frame) # Store each frame attribute (body positions, joint angles etc) in the corresponding buffer for attr in vars(frame): # Get the data for this attribute from the frame frame_data = getattr(frame, attr) # Only store tensor data, skip other attributes if isinstance(frame_data, torch.Tensor): # Add the frame data at the current timestep index self._frames[attr][self._num_frames_added] = frame_data # Increment counter tracking number of frames added self._num_frames_added += 1
Add a frame to each trajectory in the episode. Args: frame (Frame): Frame containing trajectory data for all environments at this timestep
add_frame
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def complete(self): """Aggregate frames into episode data more efficiently. Instead of splitting data environment by environment, we can use tensor operations to split all environments at once, significantly reducing loop overhead. """ num_envs = self.max_frames_per_env.shape[0] for key, data in self._frames.items(): if isinstance(data, torch.Tensor): setattr(self, key, [data[:, i] for i in range(num_envs)])
Aggregate frames into episode data more efficiently. Instead of splitting data environment by environment, we can use tensor operations to split all environments at once, significantly reducing loop overhead.
complete
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def filter(self, ids: list[int]) -> Episode: """Filter episode data to only include specified environment indices.""" # Create new empty episode to store filtered data filtered = Episode(self.max_frames_per_env) # Iterate through all attributes of this episode for attr, data in vars(self).items(): # Only process attributes that are lists if isinstance(data, list): # For each attribute, keep only the trajectories at the specified indices setattr(filtered, attr, [data[i] for i in ids]) return filtered
Filter episode data to only include specified environment indices.
filter
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def trim(self, terminated_frame: torch.Tensor, end_id: int): """Helper method to cut data based on terminated frame. This function creates a new Episode object with truncated data. For each environment, it keeps only the frames up to the termination point specified in terminated_frame. It then further filters to keep only environments up to end_id. Args: terminated_frame: Tensor containing the frame index where each env terminated end_id: Only keep environments up to this index Returns: A new Episode object with the trimmed data """ trimmed = Episode(self.max_frames_per_env) for attr, data in vars(self).items(): if isinstance(data, list): setattr(trimmed, attr, [data[i][: terminated_frame[i]] for i in range(len(data))][:end_id]) return trimmed
Helper method to cut data based on terminated frame. This function creates a new Episode object with truncated data. For each environment, it keeps only the frames up to the termination point specified in terminated_frame. It then further filters to keep only environments up to end_id. Args: terminated_frame: Tensor containing the frame index where each env terminated end_id: Only keep environments up to this index Returns: A new Episode object with the trimmed data
trim
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def update( self, episode: Episode, episode_gt: Episode, success_ids: list, ): """Update and compute metrics for trajectories from all simulation instances in one episode.""" self.num_motions += episode.num_envs # First, compute metrics on trajectories from all instances. self._compute_metrics(episode, episode_gt, self._all_metrics_by_episode, self._all_metrics_masked_by_episode) if len(success_ids) == 0: return # Then, collect the trajectory from successful instances and compute metrics. success_episodes = episode.filter(success_ids) success_episodes_gt = episode_gt.filter(success_ids) self._compute_metrics( success_episodes, success_episodes_gt, self._success_metrics_by_episode, self._success_metrics_masked_by_episode, )
Update and compute metrics for trajectories from all simulation instances in one episode.
update
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _compute_link_metrics( self, body_pos: list[torch.Tensor], body_pos_gt: list[torch.Tensor], storage: dict[str, dict[str, list[float]]], ): """Compute metrics of trajectories and save them by their means and number of elements (as weights).""" # compute_metrics_lite expects list of numpy arrays body_pos_np = [body_pos_i.numpy() for body_pos_i in body_pos] body_pos_gt_np = [body_pos_gt_i.numpy() for body_pos_gt_i in body_pos_gt] metrics = compute_metrics_lite(body_pos_np, body_pos_gt_np) for key, value in metrics.items(): self._record_metrics(key, np.mean(value).item(), value.size, storage)
Compute metrics of trajectories and save them by their means and number of elements (as weights).
_compute_link_metrics
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _compute_joint_metrics( self, episode: Episode, episode_gt: Episode, frame_weights: torch.Tensor, storage: dict[str, dict[str, list[float]]], ): """Compute metrics of trajectories and save them by their means and number of elements (as weights).""" self._compute_joint_tracking_error( episode.upper_body_joint_pos, episode_gt.upper_body_joint_pos, frame_weights, episode.num_envs, storage, "upper_body_joints_dist", ) self._compute_joint_tracking_error( episode.lower_body_joint_pos, episode_gt.lower_body_joint_pos, frame_weights, episode.num_envs, storage, "lower_body_joints_dist", )
Compute metrics of trajectories and save them by their means and number of elements (as weights).
_compute_joint_metrics
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def compute_joint_tracking_error( joint_pos: torch.Tensor, joint_pos_gt: torch.Tensor, frame_weights: torch.Tensor, num_envs: int ) -> float: """Compute weighted mean absolute joint position error across environments. For each environment: 1. Take absolute difference between predicted and ground truth joint positions 2. Weight the differences by frame_weights to normalize across varying trajectory lengths 3. Take mean across joints Finally, sum across environments and divide by num_envs for mean error. """ return torch.sum(torch.mean(torch.abs(joint_pos - joint_pos_gt), dim=1) * frame_weights).item() / num_envs
Compute weighted mean absolute joint position error across environments. For each environment: 1. Take absolute difference between predicted and ground truth joint positions 2. Weight the differences by frame_weights to normalize across varying trajectory lengths 3. Take mean across joints Finally, sum across environments and divide by num_envs for mean error.
compute_joint_tracking_error
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def compute_height_error( root_pos: torch.Tensor, root_pos_gt: torch.Tensor, frame_weights: torch.Tensor, num_envs: int ) -> float: """Compute weighted mean absolute height error across environments. For each environment: 1. Takes absolute difference between predicted and ground truth root z-coordinates 2. Weights the differences by frame_weights to normalize across varying trajectory lengths 3. Takes mean across frames Finally, sum across environments and divide by num_envs for mean error. """ return torch.sum(torch.abs(root_pos[:, 2] - root_pos_gt[:, 2]) * frame_weights).item() / num_envs
Compute weighted mean absolute height error across environments. For each environment: 1. Takes absolute difference between predicted and ground truth root z-coordinates 2. Weights the differences by frame_weights to normalize across varying trajectory lengths 3. Takes mean across frames Finally, sum across environments and divide by num_envs for mean error.
compute_height_error
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def compute_vel_error( vel: torch.Tensor, rot: torch.Tensor, vel_gt: torch.Tensor, rot_gt: torch.Tensor, frame_weights: torch.Tensor, num_envs: int, ) -> float: """Compute weighted mean velocity tracking error across environments. For each environment: 1. Convert velocities to local frame using inverse rotation 2. Take L2 norm of difference between predicted and ground truth local velocities 3. Weight by frame_weights and average across frames Finally, sum across environments and divide by num_envs for mean error. """ local_vel_gt = math_utils.quat_rotate_inverse(rot_gt, vel_gt) local_vel = math_utils.quat_rotate_inverse(rot, vel) return torch.sum(torch.linalg.norm(local_vel - local_vel_gt, dim=-1) * frame_weights).item() / num_envs
Compute weighted mean velocity tracking error across environments. For each environment: 1. Convert velocities to local frame using inverse rotation 2. Take L2 norm of difference between predicted and ground truth local velocities 3. Weight by frame_weights and average across frames Finally, sum across environments and divide by num_envs for mean error.
compute_vel_error
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _compute_root_rot_tracking_error( self, root_rot: torch.Tensor, root_rot_gt: torch.Tensor, frame_weights: torch.Tensor, num_envs: int, storage: dict[str, dict[str, list[float]]], ): """Compute root rotation tracking error. Args: root_rot: Root rotation quaternions root_rot_gt: Ground truth root rotation quaternions Returns: dict: Dictionary containing roll, pitch, yaw errors """ @torch.jit.script def compute_rot_tracking_error( quat1: torch.Tensor, quat2: torch.Tensor, frame_weights: torch.Tensor, num_envs: int ) -> tuple[float, float, float]: """Compute weighted mean rotation tracking error across environments. For each environment: 1. Compute quaternion difference between predicted and ground truth rotations 2. Convert difference quaternion to Euler angles (roll, pitch, yaw) 3. Take absolute value of angles and weight by frame_weights 4. Average across frames Finally, sum across environments and divide by num_envs for mean error. Returns: tuple[float, float, float]: Mean roll, pitch and yaw errors in radians """ quat_diff = math_utils.quat_mul(quat1, math_utils.quat_conjugate(quat2)) roll, pitch, yaw = math_utils.euler_xyz_from_quat(quat_diff) roll_error = torch.sum(torch.abs(roll) * frame_weights).item() / num_envs pitch_error = torch.sum(torch.abs(pitch) * frame_weights).item() / num_envs yaw_error = torch.sum(torch.abs(yaw) * frame_weights).item() / num_envs return roll_error, pitch_error, yaw_error roll_error, pitch_error, yaw_error = compute_rot_tracking_error(root_rot, root_rot_gt, frame_weights, num_envs) self._record_metrics("root_r_error", roll_error, num_envs, storage) self._record_metrics("root_p_error", pitch_error, num_envs, storage) self._record_metrics("root_y_error", yaw_error, num_envs, storage)
Compute root rotation tracking error. Args: root_rot: Root rotation quaternions root_rot_gt: Ground truth root rotation quaternions Returns: dict: Dictionary containing roll, pitch, yaw errors
_compute_root_rot_tracking_error
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def compute_rot_tracking_error( quat1: torch.Tensor, quat2: torch.Tensor, frame_weights: torch.Tensor, num_envs: int ) -> tuple[float, float, float]: """Compute weighted mean rotation tracking error across environments. For each environment: 1. Compute quaternion difference between predicted and ground truth rotations 2. Convert difference quaternion to Euler angles (roll, pitch, yaw) 3. Take absolute value of angles and weight by frame_weights 4. Average across frames Finally, sum across environments and divide by num_envs for mean error. Returns: tuple[float, float, float]: Mean roll, pitch and yaw errors in radians """ quat_diff = math_utils.quat_mul(quat1, math_utils.quat_conjugate(quat2)) roll, pitch, yaw = math_utils.euler_xyz_from_quat(quat_diff) roll_error = torch.sum(torch.abs(roll) * frame_weights).item() / num_envs pitch_error = torch.sum(torch.abs(pitch) * frame_weights).item() / num_envs yaw_error = torch.sum(torch.abs(yaw) * frame_weights).item() / num_envs return roll_error, pitch_error, yaw_error
Compute weighted mean rotation tracking error across environments. For each environment: 1. Compute quaternion difference between predicted and ground truth rotations 2. Convert difference quaternion to Euler angles (roll, pitch, yaw) 3. Take absolute value of angles and weight by frame_weights 4. Average across frames Finally, sum across environments and divide by num_envs for mean error. Returns: tuple[float, float, float]: Mean roll, pitch and yaw errors in radians
compute_rot_tracking_error
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _record_metrics(self, name: str, mean: float, weight: int, storage: dict[str, dict[str, list[float]]]): """Record metrics by their means and number of elements (as weights).""" if name not in storage: storage[name] = {"means": [], "weights": []} storage[name]["means"].append(mean) storage[name]["weights"].append(weight)
Record metrics by their means and number of elements (as weights).
_record_metrics
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def conclude(self): """At the end of the evaluation, computes the metrics over all tasks.""" self.all_metrics = { key: np.average(value["means"], weights=value["weights"]) for key, value in self._all_metrics_by_episode.items() } self.success_metrics = { key: np.average(value["means"], weights=value["weights"]) for key, value in self._success_metrics_by_episode.items() } self.all_metrics_masked = { key: np.average(value["means"], weights=value["weights"]) for key, value in self._all_metrics_masked_by_episode.items() } self.success_metrics_masked = { key: np.average(value["means"], weights=value["weights"]) for key, value in self._success_metrics_masked_by_episode.items() }
At the end of the evaluation, computes the metrics over all tasks.
conclude
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def save(self, directory: str): """Saves metrics to a time-stamped json file in ``directory``. Args: directory (str): Directory to stored the file to. """ file_dir = Path(directory) file_dir.mkdir(parents=True, exist_ok=True) timestamp = time.strftime("%Y%m%d-%H%M%S") file_name = f"{timestamp}.json" file_dir.joinpath(file_name) content = { "num_motions": self.num_motions, "success_rate": self.success_rate, "all": self.all_metrics, "success": self.success_metrics, "all_masked": self.all_metrics_masked, "success_masked": self.success_metrics_masked, } with open(file_dir.joinpath(file_name), "w") as fh: json.dump(content, fh)
Saves metrics to a time-stamped json file in ``directory``. Args: directory (str): Directory to stored the file to.
save
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def __init__( self, env_wrapper: EnvironmentWrapper, metrics_path: str | None = None, ): """Initializes the evaluator. Args: env_wrapper (EnvironmentWrapper): The environment that the evaluation is taking place. metrics_path (str | None, optional): The directory that the metrics will be saved to. Defaults to None. """ self._num_envs = env_wrapper.num_envs self._device = env_wrapper.device self._ref_motion_mgr = env_wrapper.reference_motion_manager self._ref_motion_start_id = 0 self._num_unique_ref_motions = self._ref_motion_mgr.num_unique_motions self._ref_motion_frames = self._ref_motion_mgr.get_motion_num_steps() self._metrics = MotionTrackingMetrics() self._metrics_path = metrics_path # Episode data self._terminated = torch.zeros(self._num_envs, dtype=torch.bool, device=self._device) self._terminated_frame = self._ref_motion_frames.detach().clone() self._failed = torch.zeros((self._num_unique_ref_motions), dtype=torch.bool, device=self._device) self._episode = Episode(max_frames_per_env=self._ref_motion_frames) self._episode_gt = Episode(max_frames_per_env=self._ref_motion_frames) # Status self._pbar = tqdm(range(self._num_unique_ref_motions // self._num_envs), position=0, leave=True) self._curr_steps = 0 self._num_episodes = 0
Initializes the evaluator. Args: env_wrapper (EnvironmentWrapper): The environment that the evaluation is taking place. metrics_path (str | None, optional): The directory that the metrics will be saved to. Defaults to None.
__init__
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def collect(self, dones: torch.Tensor, info: dict) -> bool: """Collects data from a step and updates internal states. Args: dones (torch.Tensor): environments that are terminated (failed) or truncated (timed out). info (dict): Extra information collected from a step. Returns: bool: Whether all current reference motions are evaluated and that all environments need a reset. """ self._curr_steps += 1 # Get the environments that terminated at the most recent step newly_terminated = torch.logical_and(~self._terminated, dones) self._collect_step_data(newly_terminated, info=info) self._terminated_frame[newly_terminated] = self._curr_steps self._terminated = torch.logical_or(self._terminated, dones) update_str = self._update_status_bar() if self._terminated.sum() == self._num_envs: self._aggregate_data() self._num_episodes += self._num_envs print(update_str) return True return False
Collects data from a step and updates internal states. Args: dones (torch.Tensor): environments that are terminated (failed) or truncated (timed out). info (dict): Extra information collected from a step. Returns: bool: Whether all current reference motions are evaluated and that all environments need a reset.
collect
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _collect_step_data(self, newly_terminated: torch.Tensor, info: dict): """Collects data after each step. Args: newly_terminated(torch.Tensor(bool)): Newly terminated env info (dict): Extra information collected from a step. """ state_data = info["data"]["state"] ground_truth_data = info["data"]["ground_truth"] body_pos = state_data["body_pos"] num_envs, num_bodies, _ = body_pos.shape mask = info["data"]["mask"] body_mask = mask[:, :num_bodies] body_mask = body_mask.unsqueeze(-1) body_mask_expanded = body_mask.expand(num_envs, num_bodies, 3) upper_body_joint_ids = info["data"]["upper_joint_ids"] lower_body_joint_ids = info["data"]["lower_joint_ids"] frame = self._build_frame(state_data, body_mask_expanded, num_envs, upper_body_joint_ids, lower_body_joint_ids) frame_gt = self._build_frame( ground_truth_data, body_mask_expanded, num_envs, upper_body_joint_ids, lower_body_joint_ids ) self._update_failure_metrics(newly_terminated, info) self._episode.add_frame(frame) self._episode_gt.add_frame(frame_gt)
Collects data after each step. Args: newly_terminated(torch.Tensor(bool)): Newly terminated env info (dict): Extra information collected from a step.
_collect_step_data
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _build_frame( self, data: dict, mask: torch.Tensor, num_envs: int, upper_joint_ids: list, lower_joint_ids: list ) -> Frame: """Builds a frame from the data and mask. Args: data (dict): Dictionary containing trajectory data including body positions, joint positions, etc. mask (torch.Tensor): Boolean mask array indicating which bodies to include in masked data. num_envs (int): Number of environments. upper_joint_ids (list): List of indices for upper body joints. lower_joint_ids (list): List of indices for lower body joints. Returns: Frame: A Frame object containing the processed trajectory data. """ if torch.any(mask): data["body_pos_masked"] = data["body_pos"][mask].reshape(num_envs, -1, 3) else: data["body_pos_masked"] = None joint_pos = data.pop("joint_pos") data["upper_body_joint_pos"] = joint_pos[:, upper_joint_ids] data["lower_body_joint_pos"] = joint_pos[:, lower_joint_ids] return Frame.from_dict(data)
Builds a frame from the data and mask. Args: data (dict): Dictionary containing trajectory data including body positions, joint positions, etc. mask (torch.Tensor): Boolean mask array indicating which bodies to include in masked data. num_envs (int): Number of environments. upper_joint_ids (list): List of indices for upper body joints. lower_joint_ids (list): List of indices for lower body joints. Returns: Frame: A Frame object containing the processed trajectory data.
_build_frame
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _update_failure_metrics(self, newly_terminated: torch.Tensor, info: dict): """Updates failure metrics based on termination conditions.""" start_id = self._ref_motion_start_id end_id = min(self._ref_motion_start_id + self._num_envs, self._num_unique_ref_motions) counted_envs = end_id - start_id # Get failure conditions excluding reference motion length failed_conditions = torch.stack( [ v[:counted_envs].flatten() for k, v in info["termination_conditions"].items() if k != "reference_motion_length" ] ) # Update failed environments self._failed[start_id:end_id] |= torch.logical_and( newly_terminated[:counted_envs], torch.any(failed_conditions, dim=0) ) self._metrics.success_rate = 1 - torch.sum(self._failed).item() / end_id
Updates failure metrics based on termination conditions.
_update_failure_metrics
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _reset_data_buffer(self): """Resets data buffer for new episodes.""" self._terminated[:] = False self._pbar.update(1) self._pbar.refresh() self._ref_motion_frames = self._ref_motion_mgr.get_motion_num_steps() self._episode = Episode(max_frames_per_env=self._ref_motion_frames) self._episode_gt = Episode(max_frames_per_env=self._ref_motion_frames) self._terminated_frame = self._ref_motion_frames.detach().clone() self._curr_steps = 0
Resets data buffer for new episodes.
_reset_data_buffer
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def _update_status_bar(self): """Updates status bar in the console to display current progress and selected metrics.""" update_str = ( f"Terminated: {self._terminated.sum().item()} | max frames: {self._ref_motion_frames.max()} | steps" f" {self._curr_steps} | Start: {self._ref_motion_start_id} | Succ rate: {self._metrics.success_rate:.3f} |" f" Total failures: {self._failed.sum().item()} " ) self._pbar.set_description(update_str) return update_str
Updates status bar in the console to display current progress and selected metrics.
_update_status_bar
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def conclude(self): """Concludes evaluation by computing, printing and optionally saving metrics.""" self._pbar.close() self._metrics.conclude() self._metrics.print() if self._metrics_path: self._metrics.save(self._metrics_path)
Concludes evaluation by computing, printing and optionally saving metrics.
conclude
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def forward_motion_samples(self): """Steps forward in the list of reference motions. All simulated environments must be reset following this function call. """ self._ref_motion_start_id += self._num_envs self._ref_motion_mgr.load_motions(random_sample=False, start_idx=self._ref_motion_start_id) self._reset_data_buffer()
Steps forward in the list of reference motions. All simulated environments must be reset following this function call.
forward_motion_samples
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/evaluator.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/evaluator.py
Apache-2.0
def create_mask_element_names(body_names: list[str], joint_names: list[str]): """Get a name for each element of the mask.""" body_names = [name + "_local_pos_" for name in body_names] joint_names = [name + "_joint_pos" for name in joint_names] root_reference_names = [ "root_linear_velocity_x", "root_linear_velocity_y", "root_linear_velocity_z", "root_orientation_roll", "root_orientation_pitch", "root_orientation_yaw_delta", "root_height", ] return body_names + joint_names + root_reference_names
Get a name for each element of the mask.
create_mask_element_names
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/mask.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/mask.py
Apache-2.0
def create_mask( num_envs: int, mask_element_names: list[str], mask_modes: dict[str, dict[str, list[str]]], enable_sparsity_randomization: bool, device: torch.device, ) -> torch.Tensor: """ Create a mask where all enabled states are set to 1. This mask can be used directly or multiplied with 0.5 and then be used as the probability of a state being enabled. Args: mask_element_names: The name corresponding to every element in the mask. mask_modes: A nested dictionary configuring which mask elements are enabled in which mode. The nested dictionary takes the form `{mode_name: {body_region: [element_names]}}` The `mode_name` and `body_region` can be chosen freely, they are just for documentary value. The `element_names` may also use regex patterns. An example configuration is: "exbody": { "upper_body": [".*torso_joint.*", ".*shoulder.*joint.*", ".*elbow.*joint.*"], "lower_body": ["root.*"], }, For every `mode_name`, all elements of all body regions in that mode will be enabled. Most likely you want the elements specified in one body region to not overlap with other body regions (the code will still work if they do overlap, but the resulting trained policy may not work when the overlapping elements are disabled at test time). enable_sparsity_randomization: If enabled random elements of the mask will be disabled with probability 0.5. The current randomization strategy aligns with the paper, but can be improved to avoid motion ambiguity. For example, one viable strategy is to only enable the mask dropout on a small portion of elements of the same body region. Returns: torch.Tensor: A tensor of shape (len(goal_state_names),) containing the mask. """ # First we do the mode masking. mask_length = len(mask_element_names) mask = torch.zeros((num_envs, mask_length), dtype=torch.bool, device=device) modes = list(mask_modes.keys()) # Pre-compute indices for all modes and patterns mode_to_indices = {} for mode in modes: all_indices = [] for _, goal_state_patterns in mask_modes[mode].items(): indices = get_matching_indices(goal_state_patterns, mask_element_names) all_indices.extend(indices) mode_to_indices[mode] = torch.tensor(sorted(set(all_indices)), dtype=torch.long, device=device) # Random select mode for each environment # Shape:1 x num_envs selected_mode_indices = torch.randint(0, len(modes), (num_envs,), device=device) for mode_idx, mode in enumerate(modes): # Using tensor operations for boolean selection mode_env_indices = (selected_mode_indices == mode_idx).nonzero(as_tuple=True)[0] if mode_env_indices.numel() > 0: indices = mode_to_indices[mode] mask[mode_env_indices.unsqueeze(1), indices] = True # Last we do the sparsity masking. if enable_sparsity_randomization: # Multiply by 0.5 to make it a probability. mask = torch.bernoulli(mask * 0.5).bool() return mask
Create a mask where all enabled states are set to 1. This mask can be used directly or multiplied with 0.5 and then be used as the probability of a state being enabled. Args: mask_element_names: The name corresponding to every element in the mask. mask_modes: A nested dictionary configuring which mask elements are enabled in which mode. The nested dictionary takes the form `{mode_name: {body_region: [element_names]}}` The `mode_name` and `body_region` can be chosen freely, they are just for documentary value. The `element_names` may also use regex patterns. An example configuration is: "exbody": { "upper_body": [".*torso_joint.*", ".*shoulder.*joint.*", ".*elbow.*joint.*"], "lower_body": ["root.*"], }, For every `mode_name`, all elements of all body regions in that mode will be enabled. Most likely you want the elements specified in one body region to not overlap with other body regions (the code will still work if they do overlap, but the resulting trained policy may not work when the overlapping elements are disabled at test time). enable_sparsity_randomization: If enabled random elements of the mask will be disabled with probability 0.5. The current randomization strategy aligns with the paper, but can be improved to avoid motion ambiguity. For example, one viable strategy is to only enable the mask dropout on a small portion of elements of the same body region. Returns: torch.Tensor: A tensor of shape (len(goal_state_names),) containing the mask.
create_mask
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/mask.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/mask.py
Apache-2.0
def scale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """Normalizes a given input tensor to a range of [-1, 1]. .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: Normalized transform of the tensor. Shape is (N, dims). """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return 2 * (x - offset) / (upper - lower)
Normalizes a given input tensor to a range of [-1, 1]. .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: Normalized transform of the tensor. Shape is (N, dims).
scale_transform
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def unscale_transform(x: torch.Tensor, lower: torch.Tensor, upper: torch.Tensor) -> torch.Tensor: """De-normalizes a given input tensor from range of [-1, 1] to (lower, upper). .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: De-normalized transform of the tensor. Shape is (N, dims). """ # default value of center offset = (lower + upper) * 0.5 # return normalized tensor return x * (upper - lower) * 0.5 + offset
De-normalizes a given input tensor from range of [-1, 1] to (lower, upper). .. note:: It uses pytorch broadcasting functionality to deal with batched input. Args: x: Input tensor of shape (N, dims). lower: The minimum value of the tensor. Shape is (N, dims) or (dims,). upper: The maximum value of the tensor. Shape is (N, dims) or (dims,). Returns: De-normalized transform of the tensor. Shape is (N, dims).
unscale_transform
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def wrap_to_pi(angles: torch.Tensor) -> torch.Tensor: r"""Wraps input angles (in radians) to the range :math:`[-\pi, \pi]`. This function wraps angles in radians to the range :math:`[-\pi, \pi]`, such that :math:`\pi` maps to :math:`\pi`, and :math:`-\pi` maps to :math:`-\pi`. In general, odd positive multiples of :math:`\pi` are mapped to :math:`\pi`, and odd negative multiples of :math:`\pi` are mapped to :math:`-\pi`. The function behaves similar to MATLAB's `wrapToPi <https://www.mathworks.com/help/map/ref/wraptopi.html>`_ function. Args: angles: Input angles of any shape. Returns: Angles in the range :math:`[-\pi, \pi]`. """ # wrap to [0, 2*pi) wrapped_angle = (angles + torch.pi) % (2 * torch.pi) # map to [-pi, pi] # we check for zero in wrapped angle to make it go to pi when input angle is odd multiple of pi return torch.where((wrapped_angle == 0) & (angles > 0), torch.pi, wrapped_angle - torch.pi)
Wraps input angles (in radians) to the range :math:`[-\pi, \pi]`. This function wraps angles in radians to the range :math:`[-\pi, \pi]`, such that :math:`\pi` maps to :math:`\pi`, and :math:`-\pi` maps to :math:`-\pi`. In general, odd positive multiples of :math:`\pi` are mapped to :math:`\pi`, and odd negative multiples of :math:`\pi` are mapped to :math:`-\pi`. The function behaves similar to MATLAB's `wrapToPi <https://www.mathworks.com/help/map/ref/wraptopi.html>`_ function. Args: angles: Input angles of any shape. Returns: Angles in the range :math:`[-\pi, \pi]`.
wrap_to_pi
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def copysign(mag: float, other: torch.Tensor) -> torch.Tensor: """Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag: The magnitude scalar. other: The tensor containing values whose signbits are applied to magnitude. Returns: The output tensor. """ mag_torch = torch.tensor(mag, device=other.device, dtype=torch.float).repeat(other.shape[0]) return torch.abs(mag_torch) * torch.sign(other)
Create a new floating-point tensor with the magnitude of input and the sign of other, element-wise. Note: The implementation follows from `torch.copysign`. The function allows a scalar magnitude. Args: mag: The magnitude scalar. other: The tensor containing values whose signbits are applied to magnitude. Returns: The output tensor.
copysign
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def matrix_from_quat(quaternions: torch.Tensor) -> torch.Tensor: """Convert rotations given as quaternions to rotation matrices. Args: quaternions: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: Rotation matrices. The shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70 """ r, i, j, k = torch.unbind(quaternions, -1) # pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. two_s = 2.0 / (quaternions * quaternions).sum(-1) o = torch.stack( ( 1 - two_s * (j * j + k * k), two_s * (i * j - k * r), two_s * (i * k + j * r), two_s * (i * j + k * r), 1 - two_s * (i * i + k * k), two_s * (j * k - i * r), two_s * (i * k - j * r), two_s * (j * k + i * r), 1 - two_s * (i * i + j * j), ), -1, ) return o.reshape(quaternions.shape[:-1] + (3, 3))
Convert rotations given as quaternions to rotation matrices. Args: quaternions: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: Rotation matrices. The shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L41-L70
matrix_from_quat
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def convert_quat(quat: torch.Tensor | np.ndarray, to: Literal["xyzw", "wxyz"] = "xyzw") -> torch.Tensor | np.ndarray: """Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat: The quaternion of shape (..., 4). to: Convention to convert quaternion to.. Defaults to "xyzw". Returns: The converted quaternion in specified convention. Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,). """ # check input is correct if quat.shape[-1] != 4: msg = f"Expected input quaternion shape mismatch: {quat.shape} != (..., 4)." raise ValueError(msg) if to not in ["xyzw", "wxyz"]: msg = f"Expected input argument `to` to be 'xyzw' or 'wxyz'. Received: {to}." raise ValueError(msg) # check if input is numpy array (we support this backend since some classes use numpy) if isinstance(quat, np.ndarray): # use numpy functions if to == "xyzw": # wxyz -> xyzw return np.roll(quat, -1, axis=-1) else: # xyzw -> wxyz return np.roll(quat, 1, axis=-1) else: # convert to torch (sanity check) if not isinstance(quat, torch.Tensor): quat = torch.tensor(quat, dtype=float) # convert to specified quaternion type if to == "xyzw": # wxyz -> xyzw return quat.roll(-1, dims=-1) else: # xyzw -> wxyz return quat.roll(1, dims=-1)
Converts quaternion from one convention to another. The convention to convert TO is specified as an optional argument. If to == 'xyzw', then the input is in 'wxyz' format, and vice-versa. Args: quat: The quaternion of shape (..., 4). to: Convention to convert quaternion to.. Defaults to "xyzw". Returns: The converted quaternion in specified convention. Raises: ValueError: Invalid input argument `to`, i.e. not "xyzw" or "wxyz". ValueError: Invalid shape of input `quat`, i.e. not (..., 4,).
convert_quat
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_conjugate(q: torch.Tensor) -> torch.Tensor: """Computes the conjugate of a quaternion. Args: q: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: The conjugate quaternion in (w, x, y, z). Shape is (..., 4). """ shape = q.shape q = q.reshape(-1, 4) return torch.cat((q[:, 0:1], -q[:, 1:]), dim=-1).view(shape)
Computes the conjugate of a quaternion. Args: q: The quaternion orientation in (w, x, y, z). Shape is (..., 4). Returns: The conjugate quaternion in (w, x, y, z). Shape is (..., 4).
quat_conjugate
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_from_euler_xyz(roll: torch.Tensor, pitch: torch.Tensor, yaw: torch.Tensor) -> torch.Tensor: """Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape is (N,). pitch: Rotation around y-axis (in radians). Shape is (N,). yaw: Rotation around z-axis (in radians). Shape is (N,). Returns: The quaternion in (w, x, y, z). Shape is (N, 4). """ cy = torch.cos(yaw * 0.5) sy = torch.sin(yaw * 0.5) cr = torch.cos(roll * 0.5) sr = torch.sin(roll * 0.5) cp = torch.cos(pitch * 0.5) sp = torch.sin(pitch * 0.5) # compute quaternion qw = cy * cr * cp + sy * sr * sp qx = cy * sr * cp - sy * cr * sp qy = cy * cr * sp + sy * sr * cp qz = sy * cr * cp - cy * sr * sp return torch.stack([qw, qx, qy, qz], dim=-1)
Convert rotations given as Euler angles in radians to Quaternions. Note: The euler angles are assumed in XYZ convention. Args: roll: Rotation around x-axis (in radians). Shape is (N,). pitch: Rotation around y-axis (in radians). Shape is (N,). yaw: Rotation around z-axis (in radians). Shape is (N,). Returns: The quaternion in (w, x, y, z). Shape is (N, 4).
quat_from_euler_xyz
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: """Returns torch.sqrt(torch.max(0, x)) but with a zero sub-gradient where x is 0. Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L91-L99 """ ret = torch.zeros_like(x) positive_mask = x > 0 ret[positive_mask] = torch.sqrt(x[positive_mask]) return ret
Returns torch.sqrt(torch.max(0, x)) but with a zero sub-gradient where x is 0. Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L91-L99
_sqrt_positive_part
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_from_matrix(matrix: torch.Tensor) -> torch.Tensor: """Convert rotations given as rotation matrices to quaternions. Args: matrix: The rotation matrices. Shape is (..., 3, 3). Returns: The quaternion in (w, x, y, z). Shape is (..., 4). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L102-L161 """ if matrix.size(-1) != 3 or matrix.size(-2) != 3: raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") batch_dim = matrix.shape[:-2] m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(matrix.reshape(batch_dim + (9,)), dim=-1) q_abs = _sqrt_positive_part( torch.stack( [ 1.0 + m00 + m11 + m22, 1.0 + m00 - m11 - m22, 1.0 - m00 + m11 - m22, 1.0 - m00 - m11 + m22, ], dim=-1, ) ) # we produce the desired quaternion multiplied by each of r, i, j, k quat_by_rijk = torch.stack( [ # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), # pyre-fixme[58]: `**` is not supported for operand types `Tensor` and `int`. torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), ], dim=-2, ) # We floor here at 0.1 but the exact level is not important; if q_abs is small, # the candidate won't be picked. flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) # if not for numerical problems, quat_candidates[i] should be same (up to a sign), # forall i; we pick the best-conditioned one (with the largest denominator) return quat_candidates[torch.nn.functional.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :].reshape( batch_dim + (4,) )
Convert rotations given as rotation matrices to quaternions. Args: matrix: The rotation matrices. Shape is (..., 3, 3). Returns: The quaternion in (w, x, y, z). Shape is (..., 4). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L102-L161
quat_from_matrix
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def _axis_angle_rotation(axis: Literal["X", "Y", "Z"], angle: torch.Tensor) -> torch.Tensor: """Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: Euler angles in radians of any shape. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L164-L191 """ cos = torch.cos(angle) sin = torch.sin(angle) one = torch.ones_like(angle) zero = torch.zeros_like(angle) if axis == "X": R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) elif axis == "Y": R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) elif axis == "Z": R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) else: raise ValueError("letter must be either X, Y or Z.") return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
Return the rotation matrices for one of the rotations about an axis of which Euler angles describe, for each value of the angle given. Args: axis: Axis label "X" or "Y or "Z". angle: Euler angles in radians of any shape. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L164-L191
_axis_angle_rotation
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def matrix_from_euler(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: """ Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians. Shape is (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. For example, "XYZ" means that the rotations should be applied first about x, then y, then z. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L194-L220 """ if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: raise ValueError("Invalid input euler angles.") if len(convention) != 3: raise ValueError("Convention must have 3 letters.") if convention[1] in (convention[0], convention[2]): raise ValueError(f"Invalid convention {convention}.") for letter in convention: if letter not in ("X", "Y", "Z"): raise ValueError(f"Invalid letter {letter} in convention string.") matrices = [_axis_angle_rotation(c, e) for c, e in zip(convention, torch.unbind(euler_angles, -1))] # return functools.reduce(torch.matmul, matrices) return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
Convert rotations given as Euler angles in radians to rotation matrices. Args: euler_angles: Euler angles in radians. Shape is (..., 3). convention: Convention string of three uppercase letters from {"X", "Y", and "Z"}. For example, "XYZ" means that the rotations should be applied first about x, then y, then z. Returns: Rotation matrices. Shape is (..., 3, 3). Reference: https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/rotation_conversions.py#L194-L220
matrix_from_euler
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def euler_xyz_from_quat(quat: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Args: quat: The quaternion orientation in (w, x, y, z). Shape is (N, 4). Returns: A tuple containing roll-pitch-yaw. Each element is a tensor of shape (N,). Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles """ q_w, q_x, q_y, q_z = quat[:, 0], quat[:, 1], quat[:, 2], quat[:, 3] # roll (x-axis rotation) sin_roll = 2.0 * (q_w * q_x + q_y * q_z) cos_roll = 1 - 2 * (q_x * q_x + q_y * q_y) roll = torch.atan2(sin_roll, cos_roll) # pitch (y-axis rotation) sin_pitch = 2.0 * (q_w * q_y - q_z * q_x) pitch = torch.where(torch.abs(sin_pitch) >= 1, copysign(torch.pi / 2.0, sin_pitch), torch.asin(sin_pitch)) # yaw (z-axis rotation) sin_yaw = 2.0 * (q_w * q_z + q_x * q_y) cos_yaw = 1 - 2 * (q_y * q_y + q_z * q_z) yaw = torch.atan2(sin_yaw, cos_yaw) return wrap_to_pi(roll), wrap_to_pi(pitch), wrap_to_pi(yaw)
Convert rotations given as quaternions to Euler angles in radians. Note: The euler angles are assumed in XYZ convention. Args: quat: The quaternion orientation in (w, x, y, z). Shape is (N, 4). Returns: A tuple containing roll-pitch-yaw. Each element is a tensor of shape (N,). Reference: https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
euler_xyz_from_quat
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_mul(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """Multiply two quaternions together. Args: q1: The first quaternion in (w, x, y, z). Shape is (..., 4). q2: The second quaternion in (w, x, y, z). Shape is (..., 4). Returns: The product of the two quaternions in (w, x, y, z). Shape is (..., 4). Raises: ValueError: Input shapes of ``q1`` and ``q2`` are not matching. """ # check input is correct if q1.shape != q2.shape: msg = f"Expected input quaternion shape mismatch: {q1.shape} != {q2.shape}." raise ValueError(msg) # reshape to (N, 4) for multiplication shape = q1.shape q1 = q1.reshape(-1, 4) q2 = q2.reshape(-1, 4) # extract components from quaternions w1, x1, y1, z1 = q1[:, 0], q1[:, 1], q1[:, 2], q1[:, 3] w2, x2, y2, z2 = q2[:, 0], q2[:, 1], q2[:, 2], q2[:, 3] # perform multiplication ww = (z1 + x1) * (x2 + y2) yy = (w1 - y1) * (w2 + z2) zz = (w1 + y1) * (w2 - z2) xx = ww + yy + zz qq = 0.5 * (xx + (z1 - x1) * (x2 - y2)) w = qq - ww + (z1 - y1) * (y2 - z2) x = qq - xx + (x1 + w1) * (x2 + w2) y = qq - yy + (w1 - x1) * (y2 + z2) z = qq - zz + (z1 + y1) * (w2 - x2) return torch.stack([w, x, y, z], dim=-1).view(shape)
Multiply two quaternions together. Args: q1: The first quaternion in (w, x, y, z). Shape is (..., 4). q2: The second quaternion in (w, x, y, z). Shape is (..., 4). Returns: The product of the two quaternions in (w, x, y, z). Shape is (..., 4). Raises: ValueError: Input shapes of ``q1`` and ``q2`` are not matching.
quat_mul
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_box_minus(q1: torch.Tensor, q2: torch.Tensor) -> torch.Tensor: """The box-minus operator (quaternion difference) between two quaternions. Args: q1: The first quaternion in (w, x, y, z). Shape is (N, 4). q2: The second quaternion in (w, x, y, z). Shape is (N, 4). Returns: The difference between the two quaternions. Shape is (N, 3). """ quat_diff = quat_mul(q1, quat_conjugate(q2)) # q1 * q2^-1 re = quat_diff[:, 0] # real part, q = [w, x, y, z] = [re, im] im = quat_diff[:, 1:] # imaginary part norm_im = torch.norm(im, dim=1) scale = 2.0 * torch.where(norm_im > 1.0e-7, torch.atan2(norm_im, re) / norm_im, torch.sign(re)) return scale.unsqueeze(-1) * im
The box-minus operator (quaternion difference) between two quaternions. Args: q1: The first quaternion in (w, x, y, z). Shape is (N, 4). q2: The second quaternion in (w, x, y, z). Shape is (N, 4). Returns: The difference between the two quaternions. Shape is (N, 3).
quat_box_minus
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def yaw_quat(quat: torch.Tensor) -> torch.Tensor: """Extract the yaw component of a quaternion. Args: quat: The orientation in (w, x, y, z). Shape is (..., 4) Returns: A quaternion with only yaw component. """ shape = quat.shape quat_yaw = quat.clone().view(-1, 4) qw = quat_yaw[:, 0] qx = quat_yaw[:, 1] qy = quat_yaw[:, 2] qz = quat_yaw[:, 3] yaw = torch.atan2(2 * (qw * qz + qx * qy), 1 - 2 * (qy * qy + qz * qz)) quat_yaw[:] = 0.0 quat_yaw[:, 3] = torch.sin(yaw / 2) quat_yaw[:, 0] = torch.cos(yaw / 2) quat_yaw = normalize(quat_yaw) return quat_yaw.view(shape)
Extract the yaw component of a quaternion. Args: quat: The orientation in (w, x, y, z). Shape is (..., 4) Returns: A quaternion with only yaw component.
yaw_quat
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_apply(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Apply a quaternion rotation to a vector. Args: quat: The quaternion in (w, x, y, z). Shape is (..., 4). vec: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3). """ # store shape shape = vec.shape # reshape to (N, 3) for multiplication quat = quat.reshape(-1, 4) vec = vec.reshape(-1, 3) # extract components from quaternions xyz = quat[:, 1:] t = xyz.cross(vec, dim=-1) * 2 return (vec + quat[:, 0:1] * t + xyz.cross(t, dim=-1)).view(shape)
Apply a quaternion rotation to a vector. Args: quat: The quaternion in (w, x, y, z). Shape is (..., 4). vec: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3).
quat_apply
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_apply_yaw(quat: torch.Tensor, vec: torch.Tensor) -> torch.Tensor: """Rotate a vector only around the yaw-direction. Args: quat: The orientation in (w, x, y, z). Shape is (N, 4). vec: The vector in (x, y, z). Shape is (N, 3). Returns: The rotated vector in (x, y, z). Shape is (N, 3). """ quat_yaw = yaw_quat(quat) return quat_apply(quat_yaw, vec)
Rotate a vector only around the yaw-direction. Args: quat: The orientation in (w, x, y, z). Shape is (N, 4). vec: The vector in (x, y, z). Shape is (N, 3). Returns: The rotated vector in (x, y, z). Shape is (N, 3).
quat_apply_yaw
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_rotate(q: torch.Tensor, v: torch.Tensor) -> torch.Tensor: """Rotate a vector by a quaternion along the last dimension of q and v. Args: q: The quaternion in (w, x, y, z). Shape is (..., 4). v: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3). """ q_w = q[..., 0] q_vec = q[..., 1:] a = v * (2.0 * q_w**2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 # for two-dimensional tensors, bmm is faster than einsum if q_vec.dim() == 2: c = q_vec * torch.bmm(q_vec.view(q.shape[0], 1, 3), v.view(q.shape[0], 3, 1)).squeeze(-1) * 2.0 else: c = q_vec * torch.einsum("...i,...i->...", q_vec, v).unsqueeze(-1) * 2.0 return a + b + c
Rotate a vector by a quaternion along the last dimension of q and v. Args: q: The quaternion in (w, x, y, z). Shape is (..., 4). v: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3).
quat_rotate
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_rotate_inverse(q: torch.Tensor, v: torch.Tensor) -> torch.Tensor: """Rotate a vector by the inverse of a quaternion along the last dimension of q and v. Args: q: The quaternion in (w, x, y, z). Shape is (..., 4). v: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3). """ q_w = q[..., 0] q_vec = q[..., 1:] a = v * (2.0 * q_w**2 - 1.0).unsqueeze(-1) b = torch.cross(q_vec, v, dim=-1) * q_w.unsqueeze(-1) * 2.0 # for two-dimensional tensors, bmm is faster than einsum if q_vec.dim() == 2: c = q_vec * torch.bmm(q_vec.view(q.shape[0], 1, 3), v.view(q.shape[0], 3, 1)).squeeze(-1) * 2.0 else: c = q_vec * torch.einsum("...i,...i->...", q_vec, v).unsqueeze(-1) * 2.0 return a - b + c
Rotate a vector by the inverse of a quaternion along the last dimension of q and v. Args: q: The quaternion in (w, x, y, z). Shape is (..., 4). v: The vector in (x, y, z). Shape is (..., 3). Returns: The rotated vector in (x, y, z). Shape is (..., 3).
quat_rotate_inverse
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0
def quat_from_angle_axis(angle: torch.Tensor, axis: torch.Tensor) -> torch.Tensor: """Convert rotations given as angle-axis to quaternions. Args: angle: The angle turned anti-clockwise in radians around the vector's direction. Shape is (N,). axis: The axis of rotation. Shape is (N, 3). Returns: The quaternion in (w, x, y, z). Shape is (N, 4). """ theta = (angle / 2).unsqueeze(-1) xyz = normalize(axis) * theta.sin() w = theta.cos() return normalize(torch.cat([w, xyz], dim=-1))
Convert rotations given as angle-axis to quaternions. Args: angle: The angle turned anti-clockwise in radians around the vector's direction. Shape is (N,). axis: The axis of rotation. Shape is (N, 3). Returns: The quaternion in (w, x, y, z). Shape is (N, 4).
quat_from_angle_axis
python
NVlabs/HOVER
neural_wbc/core/neural_wbc/core/math_utils.py
https://github.com/NVlabs/HOVER/blob/master/neural_wbc/core/neural_wbc/core/math_utils.py
Apache-2.0