code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def write_jsonl(filename: str, data: Iterable[Dict], append: bool = False): """ Writes an iterable of dictionaries to jsonl """ if append: mode = 'ab' else: mode = 'wb' filename = os.path.expanduser(filename) if filename.endswith(".gz"): with open(filename, mode) as fp: with gzip.GzipFile(fileobj=fp, mode='wb') as gzfp: for x in data: gzfp.write((json.dumps(x) + "\n").encode('utf-8')) else: with open(filename, mode) as fp: for x in data: fp.write((json.dumps(x) + "\n").encode('utf-8'))
Writes an iterable of dictionaries to jsonl
write_jsonl
python
xjdr-alt/entropix
evals/human-eval/human_eval/data.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/data.py
Apache-2.0
def entry_point( sample_file: str, k: str = "1,10,100", n_workers: int = 4, timeout: float = 3.0, problem_file: str = HUMAN_EVAL, ): """ Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz" """ k = list(map(int, k.split(","))) results = evaluate_functional_correctness(sample_file, k, n_workers, timeout, problem_file) print(results)
Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz"
entry_point
python
xjdr-alt/entropix
evals/human-eval/human_eval/evaluate_functional_correctness.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/evaluate_functional_correctness.py
Apache-2.0
def estimate_pass_at_k( num_samples: Union[int, List[int], np.ndarray], num_correct: Union[List[int], np.ndarray], k: int ) -> np.ndarray: """ Estimates pass@k of each problem and returns them in an array. """ def estimator(n: int, c: int, k: int) -> float: """ Calculates 1 - comb(n - c, k) / comb(n, k). """ if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1)) if isinstance(num_samples, int): num_samples_it = itertools.repeat(num_samples, len(num_correct)) else: assert len(num_samples) == len(num_correct) num_samples_it = iter(num_samples) return np.array([estimator(int(n), int(c), k) for n, c in zip(num_samples_it, num_correct)])
Estimates pass@k of each problem and returns them in an array.
estimate_pass_at_k
python
xjdr-alt/entropix
evals/human-eval/human_eval/evaluation.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/evaluation.py
Apache-2.0
def evaluate_functional_correctness( sample_file: str, k: List[int] = [1, 10, 100], n_workers: int = 4, timeout: float = 3.0, problem_file: str = HUMAN_EVAL, ): """ Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz" """ problems = read_problems(problem_file) # Check the generated samples against test suites. with ThreadPoolExecutor(max_workers=n_workers) as executor: futures = [] completion_id = Counter() n_samples = 0 results = defaultdict(list) print("Reading samples...") for sample in tqdm.tqdm(stream_jsonl(sample_file)): task_id = sample["task_id"] completion = sample["completion"] args = (problems[task_id], completion, timeout, completion_id[task_id]) future = executor.submit(check_correctness, *args) futures.append(future) completion_id[task_id] += 1 n_samples += 1 assert len(completion_id) == len(problems), "Some problems are not attempted." print("Running test suites...") for future in tqdm.tqdm(as_completed(futures), total=len(futures)): result = future.result() results[result["task_id"]].append((result["completion_id"], result)) # Calculate pass@k. total, correct = [], [] for result in results.values(): result.sort() passed = [r[1]["passed"] for r in result] total.append(len(passed)) correct.append(sum(passed)) total = np.array(total) correct = np.array(correct) ks = k pass_at_k = {f"pass@{k}": estimate_pass_at_k(total, correct, k).mean() for k in ks if (total >= k).all()} # Finally, save the results in one file: def combine_results(): for sample in stream_jsonl(sample_file): task_id = sample["task_id"] result = results[task_id].pop(0) sample["result"] = result[1]["result"] sample["passed"] = result[1]["passed"] yield sample out_file = sample_file + "_results.jsonl" print(f"Writing results to {out_file}...") write_jsonl(out_file, tqdm.tqdm(combine_results(), total=n_samples)) return pass_at_k
Evaluates the functional correctness of generated samples, and writes results to f"{sample_file}_results.jsonl.gz"
evaluate_functional_correctness
python
xjdr-alt/entropix
evals/human-eval/human_eval/evaluation.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/evaluation.py
Apache-2.0
def check_correctness(problem: Dict, completion: str, timeout: float, completion_id: Optional[int] = None) -> Dict: """ Evaluates the functional correctness of a completion by running the test suite provided in the problem. :param completion_id: an optional completion ID so we can match the results later even if execution finishes asynchronously. """ def unsafe_execute(): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil rmtree = shutil.rmtree rmdir = os.rmdir chdir = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Construct the check program and run it. check_program = ( problem["prompt"] + completion + "\n" + problem["test"] + "\n" + f"check({problem['entry_point']})" ) try: exec_globals = {} with swallow_io(): with time_limit(timeout): exec(check_program, exec_globals) result.append("passed") except TimeoutException: result.append("timed out") except BaseException as e: result.append(f"failed: {e}") # Needed for cleaning up. shutil.rmtree = rmtree os.rmdir = rmdir os.chdir = chdir manager = multiprocessing.Manager() result = manager.list() p = multiprocessing.Process(target=unsafe_execute) p.start() p.join(timeout=timeout + 1) if p.is_alive(): p.kill() if not result: result.append("timed out") return dict( task_id=problem["task_id"], passed=result[0] == "passed", result=result[0], completion_id=completion_id, )
Evaluates the functional correctness of a completion by running the test suite provided in the problem. :param completion_id: an optional completion ID so we can match the results later even if execution finishes asynchronously.
check_correctness
python
xjdr-alt/entropix
evals/human-eval/human_eval/execution.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/execution.py
Apache-2.0
def reliability_guard(maximum_memory_bytes: Optional[int] = None): """ This disables various destructive functions and prevents the generated code from interfering with the test (e.g. fork bomb, killing other processes, removing filesystem files, etc.) WARNING This function is NOT a security sandbox. Untrusted code, including, model- generated code, should not be blindly executed outside of one. See the Codex paper for more information about OpenAI's code sandbox, and proceed with caution. """ if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes)) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes)) if not platform.uname().system == 'Darwin': resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes)) faulthandler.disable() import builtins builtins.exit = None builtins.quit = None import os os.environ['OMP_NUM_THREADS'] = '1' os.kill = None os.system = None os.putenv = None os.remove = None os.removedirs = None os.rmdir = None os.fchdir = None os.setuid = None os.fork = None os.forkpty = None os.killpg = None os.rename = None os.renames = None os.truncate = None os.replace = None os.unlink = None os.fchmod = None os.fchown = None os.chmod = None os.chown = None os.chroot = None os.fchdir = None os.lchflags = None os.lchmod = None os.lchown = None os.getcwd = None os.chdir = None import shutil shutil.rmtree = None shutil.move = None shutil.chown = None import subprocess subprocess.Popen = None # type: ignore __builtins__['help'] = None import sys sys.modules['ipdb'] = None sys.modules['joblib'] = None sys.modules['resource'] = None sys.modules['psutil'] = None sys.modules['tkinter'] = None
This disables various destructive functions and prevents the generated code from interfering with the test (e.g. fork bomb, killing other processes, removing filesystem files, etc.) WARNING This function is NOT a security sandbox. Untrusted code, including, model- generated code, should not be blindly executed outside of one. See the Codex paper for more information about OpenAI's code sandbox, and proceed with caution.
reliability_guard
python
xjdr-alt/entropix
evals/human-eval/human_eval/execution.py
https://github.com/xjdr-alt/entropix/blob/master/evals/human-eval/human_eval/execution.py
Apache-2.0
def setup_logger( level: int = logging.ERROR, rich_tracebacks: bool = True, log_format: str | None = None, propagate: bool = False, **kwargs: Any, ) -> None: """Configure the any_agent logger with the specified settings. Args: level: The logging level to use (default: logging.INFO) rich_tracebacks: Whether to enable rich tracebacks (default: True) log_format: Optional custom log format string propagate: Whether to propagate logs to parent loggers (default: False) **kwargs: Additional keyword arguments to pass to RichHandler """ logger.setLevel(level) logger.propagate = propagate # Remove any existing handlers for handler in logger.handlers[:]: logger.removeHandler(handler) handler = RichHandler(rich_tracebacks=rich_tracebacks, markup=True, **kwargs) if log_format: formatter = logging.Formatter(log_format) handler.setFormatter(formatter) logger.addHandler(handler)
Configure the any_agent logger with the specified settings. Args: level: The logging level to use (default: logging.INFO) rich_tracebacks: Whether to enable rich tracebacks (default: True) log_format: Optional custom log format string propagate: Whether to propagate logs to parent loggers (default: False) **kwargs: Additional keyword arguments to pass to RichHandler
setup_logger
python
mozilla-ai/any-agent
src/any_agent/logging.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/logging.py
Apache-2.0
def get_evidence_from_spans(self) -> str: """Get a summary of what happened in each step/span of the agent trace. This includes information about the input, output, and tool calls for each step. Returns: str: The evidence of all the spans in the trace """ evidence = "" for idx, span in enumerate(self.trace.spans): evidence += ( f"### Step {idx}: {span.attributes.get('gen_ai.operation.name')}\n" ) if idx == 0: input_val = span.attributes.get("gen_ai.input.messages") # messages should always be json if input_val: input_json = json.loads(input_val) evidence += f"Input: {json.dumps(input_json, indent=2)}\n\n" tool_args = span.attributes.get("gen_ai.tool.args") if tool_args: args_json = json.loads(tool_args) tool_name = span.attributes.get("gen_ai.tool.name") evidence += f"Tool called: {tool_name}\n\n" evidence += f"Tool arguments: {json.dumps(args_json, indent=2)}\n\n" output = span.attributes.get("gen_ai.output") if output: try: output_json = json.loads(output) # the output can be quite long, truncate if needed pretty_output = json.dumps(output_json, indent=2) pretty_output = ( pretty_output[:MAX_EVIDENCE_LENGTH] + "...[TRUNCATED]" if len(pretty_output) > MAX_EVIDENCE_LENGTH else pretty_output ) evidence += f"Output: {pretty_output}\n\n" except json.JSONDecodeError: evidence += f"Output: {output}\n\n" return evidence
Get a summary of what happened in each step/span of the agent trace. This includes information about the input, output, and tool calls for each step. Returns: str: The evidence of all the spans in the trace
get_evidence_from_spans
python
mozilla-ai/any-agent
src/any_agent/evaluation/agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/agent.py
Apache-2.0
def from_yaml(cls, evaluation_case_path: str) -> EvaluationCase: """Load a test case from a YAML file and process it.""" with open(evaluation_case_path, encoding="utf-8") as f: evaluation_case_dict = yaml.safe_load(f) if "ground_truth" in evaluation_case_dict: # remove the points from the ground_truth but keep the name and value evaluation_case_dict["ground_truth"].pop("points") # verify that the llm_judge is a valid litellm model validate_environment(evaluation_case_dict["llm_judge"]) return cls.model_validate(evaluation_case_dict)
Load a test case from a YAML file and process it.
from_yaml
python
mozilla-ai/any-agent
src/any_agent/evaluation/evaluation_case.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/evaluation_case.py
Apache-2.0
def evaluate_checkpoints( model: str, trace: AgentTrace, checkpoints: Sequence[CheckpointCriteria], ) -> list[EvaluationResult]: """Verify each checkpoint against the trace data using LLM. Args: model: The model to use for evaluation trace: The trace data to evaluate checkpoints: List of checkpoint criteria to verify processor: Trace processor to extract evidence Returns: List of evaluation results """ results = [] checking_agent: AnyAgent = get_agent(trace, model) for checkpoint in checkpoints: if callable(checkpoint.criteria): eval_output = checkpoint.criteria(trace) else: # Agent as a Judge evaluation = checking_agent.run( prompt=checkpoint.criteria, instrument=False ) eval_output = evaluation.final_output # type: ignore[assignment] result = EvaluationResult( passed=eval_output.passed, reason=eval_output.reasoning, criteria=checkpoint.criteria, points=checkpoint.points, ) results.append(result) return results
Verify each checkpoint against the trace data using LLM. Args: model: The model to use for evaluation trace: The trace data to evaluate checkpoints: List of checkpoint criteria to verify processor: Trace processor to extract evidence Returns: List of evaluation results
evaluate_checkpoints
python
mozilla-ai/any-agent
src/any_agent/evaluation/evaluators.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/evaluators.py
Apache-2.0
def _calculate_f1_score(prediction: str, ground_truth: str) -> float: """Calculate F1 score between prediction and ground truth strings.""" # Normalize strings: lowercase and roughly split into words pred_tokens = set(prediction.lower().split()) truth_tokens = set(ground_truth.lower().split()) if not truth_tokens: return 1.0 if not pred_tokens else 0.0 if not pred_tokens: return 0.0 # Calculate precision and recall common_tokens = pred_tokens.intersection(truth_tokens) precision = len(common_tokens) / len(pred_tokens) recall = len(common_tokens) / len(truth_tokens) return 2 * (precision * recall) / (precision + recall)
Calculate F1 score between prediction and ground truth strings.
_calculate_f1_score
python
mozilla-ai/any-agent
src/any_agent/evaluation/evaluators.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/evaluators.py
Apache-2.0
def evaluate_final_output( final_output: str, ground_truth_answer: GroundTruthAnswer, ) -> EvaluationResult: """Compare answers using simple string matching and F1 score.""" ground_truth_text = str(ground_truth_answer["value"]) # Check for exact match (case-insensitive) exact_match = final_output.strip().lower() == ground_truth_text.strip().lower() # Calculate F1 score for partial matching f1_score = _calculate_f1_score(final_output, ground_truth_text) return EvaluationResult( passed=exact_match, reason=f"Partial Match (F1) score is {round(f1_score, 2)}", criteria="Is the answer a direct match?", points=1, )
Compare answers using simple string matching and F1 score.
evaluate_final_output
python
mozilla-ai/any-agent
src/any_agent/evaluation/evaluators.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/evaluators.py
Apache-2.0
def score(self) -> float: """Calculate the score based on the evaluation results.""" if self.ground_truth_result is not None: all_results = [*self.checkpoint_results, self.ground_truth_result] else: all_results = self.checkpoint_results total_points = sum([result.points for result in all_results]) if total_points == 0: msg = "Total points is 0, cannot calculate score." raise ValueError(msg) passed_points = sum([result.points for result in all_results if result.passed]) return float(passed_points / total_points)
Calculate the score based on the evaluation results.
score
python
mozilla-ai/any-agent
src/any_agent/evaluation/schemas.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/evaluation/schemas.py
Apache-2.0
def _get_model(self, agent_config: AgentConfig) -> "Model": """Get the model configuration for an Agno agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE return model_type( id=agent_config.model_id, api_base=agent_config.api_base, api_key=agent_config.api_key, request_params=agent_config.model_args or {}, # type: ignore[arg-type] )
Get the model configuration for an Agno agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/agno.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/agno.py
Apache-2.0
def create( cls, agent_framework: AgentFramework | str, agent_config: AgentConfig, ) -> AnyAgent: """Create an agent using the given framework and config.""" return run_async_in_sync( cls.create_async( agent_framework=agent_framework, agent_config=agent_config, ) )
Create an agent using the given framework and config.
create
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
async def create_async( cls, agent_framework: AgentFramework | str, agent_config: AgentConfig, ) -> AnyAgent: """Create an agent using the given framework and config.""" agent_cls = cls._get_agent_type_by_framework(agent_framework) agent = agent_cls(agent_config) await agent._load_agent() return agent
Create an agent using the given framework and config.
create_async
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
async def run_async( self, prompt: str, instrument: bool = True, **kwargs: Any ) -> AgentTrace: """Run the agent asynchronously with the given prompt. Args: prompt: The user prompt to be passed to the agent. instrument: Whether to instrument the underlying framework to generate LLM Calls and Tool Execution Spans. If `False` the returned `AgentTrace` will only contain a single `invoke_agent` span. kwargs: Will be passed to the underlying runner used by the framework. Returns: The `AgentTrace` containing information about the steps taken by the agent. """ try: trace = AgentTrace() with self._tracer.start_as_current_span( f"invoke_agent [{self.config.name}]" ) as invoke_span: if instrument and self._instrumentor: trace_id = invoke_span.get_span_context().trace_id async with self._lock: # We check the locked `_running_traces` inside `instrument`. # If there is more than 1 entry in `running_traces`, it means that the agent has # already being instrumented so me won't instrument it again. self._running_traces[trace_id] = AgentTrace() self._instrumentor.instrument( agent=self, # type: ignore[arg-type] ) invoke_span.set_attributes( { "gen_ai.operation.name": "invoke_agent", "gen_ai.agent.name": self.config.name, "gen_ai.agent.description": self.config.description or "No description.", "gen_ai.request.model": self.config.model_id, } ) final_output = await self._run_async(prompt, **kwargs) if instrument and self._instrumentor: async with self._lock: self._instrumentor.uninstrument(self) # type: ignore[arg-type] trace = self._running_traces.pop(trace_id) except Exception as e: if instrument: async with self._lock: trace = self._running_traces.pop(trace_id) trace.add_span(invoke_span) raise AgentRunError(trace) from e else: trace.add_span(invoke_span) trace.final_output = final_output return trace
Run the agent asynchronously with the given prompt. Args: prompt: The user prompt to be passed to the agent. instrument: Whether to instrument the underlying framework to generate LLM Calls and Tool Execution Spans. If `False` the returned `AgentTrace` will only contain a single `invoke_agent` span. kwargs: Will be passed to the underlying runner used by the framework. Returns: The `AgentTrace` containing information about the steps taken by the agent.
run_async
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
def serve(self, serving_config: A2AServingConfig | None = None) -> None: """Serve this agent using the protocol defined in the serving_config. Args: serving_config: Configuration for serving the agent. If None, uses default A2AServingConfig. Must be an instance of A2AServingConfig. Raises: ImportError: If the `serving` dependencies are not installed. Example: agent = AnyAgent.create("tinyagent", AgentConfig(...)) config = A2AServingConfig(port=8080, endpoint="/my-agent") agent.serve(config) """ from any_agent.serving import A2AServingConfig, _get_a2a_app, serve_a2a if serving_config is None: serving_config = A2AServingConfig() app = _get_a2a_app(self, serving_config=serving_config) serve_a2a( app, host=serving_config.host, port=serving_config.port, endpoint=serving_config.endpoint, log_level=serving_config.log_level, )
Serve this agent using the protocol defined in the serving_config. Args: serving_config: Configuration for serving the agent. If None, uses default A2AServingConfig. Must be an instance of A2AServingConfig. Raises: ImportError: If the `serving` dependencies are not installed. Example: agent = AnyAgent.create("tinyagent", AgentConfig(...)) config = A2AServingConfig(port=8080, endpoint="/my-agent") agent.serve(config)
serve
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
async def serve_async( self, serving_config: A2AServingConfig | None = None ) -> tuple[asyncio.Task[Any], uvicorn.Server]: """Serve this agent asynchronously using the protocol defined in the serving_config. Args: serving_config: Configuration for serving the agent. If None, uses default A2AServingConfig. Must be an instance of A2AServingConfig. Returns: A tuple containing: - asyncio.Task: The server task (keep a reference to prevent garbage collection) - uvicorn.Server: The server instance for controlling the server lifecycle Raises: ImportError: If the `serving` dependencies are not installed. Example: >>> agent = await AnyAgent.create_async("tinyagent", AgentConfig(...)) >>> config = A2AServingConfig(port=8080) >>> task, server = await agent.serve_async(config) >>> try: ... # Server is running ... await asyncio.sleep(10) >>> finally: ... server.should_exit = True ... await task """ from any_agent.serving import A2AServingConfig, _get_a2a_app, serve_a2a_async if serving_config is None: serving_config = A2AServingConfig() if not isinstance(serving_config, A2AServingConfig): msg = ( f"serving_config must be an instance of A2AServingConfig, " f"got {serving_config.type}. " f"Currently only A2A serving is supported." ) raise ValueError(msg) app = _get_a2a_app(self, serving_config=serving_config) return await serve_a2a_async( app, host=serving_config.host, port=serving_config.port, endpoint=serving_config.endpoint, log_level=serving_config.log_level, )
Serve this agent asynchronously using the protocol defined in the serving_config. Args: serving_config: Configuration for serving the agent. If None, uses default A2AServingConfig. Must be an instance of A2AServingConfig. Returns: A tuple containing: - asyncio.Task: The server task (keep a reference to prevent garbage collection) - uvicorn.Server: The server instance for controlling the server lifecycle Raises: ImportError: If the `serving` dependencies are not installed. Example: >>> agent = await AnyAgent.create_async("tinyagent", AgentConfig(...)) >>> config = A2AServingConfig(port=8080) >>> task, server = await agent.serve_async(config) >>> try: ... # Server is running ... await asyncio.sleep(10) >>> finally: ... server.should_exit = True ... await task
serve_async
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
async def _run_async(self, prompt: str, **kwargs: Any) -> str | BaseModel: """To be implemented by each framework."""
To be implemented by each framework.
_run_async
python
mozilla-ai/any-agent
src/any_agent/frameworks/any_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/any_agent.py
Apache-2.0
def _get_model(self, agent_config: AgentConfig) -> "BaseLlm": """Get the model configuration for a Google agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE model_args = agent_config.model_args or {} if self.config.output_type: model_args["tool_choice"] = "required" return model_type( model=agent_config.model_id, api_key=agent_config.api_key, api_base=agent_config.api_base, **model_args, )
Get the model configuration for a Google agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/google.py
Apache-2.0
async def _load_agent(self) -> None: """Load the Google agent with the given configuration.""" if not adk_available: msg = "You need to `pip install 'any-agent[google]'` to use this agent" raise ImportError(msg) tools, _ = await self._load_tools(self.config.tools) agent_type = self.config.agent_type or LlmAgent self._tools = tools instructions = self.config.instructions or "" if self.config.output_type: instructions += ( "You must call the final_output tool when finished." "The 'answer' argument passed to the final_output tool must be a JSON string that matches the following schema:\n" f"{self.config.output_type.model_json_schema()}" ) output_fn = FinalOutputTool(self.config.output_type) tools.append(output_fn) self._agent = agent_type( name=self.config.name, instruction=instructions, model=self._get_model(self.config), tools=tools, **self.config.agent_args or {}, output_key="response", )
Load the Google agent with the given configuration.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/google.py
Apache-2.0
def _get_model(self, agent_config: AgentConfig) -> "LanguageModelLike": """Get the model configuration for a LangChain agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE model_args = agent_config.model_args or {} return cast( "LanguageModelLike", model_type( model=agent_config.model_id, api_key=agent_config.api_key, api_base=agent_config.api_base, model_kwargs=model_args, # type: ignore[arg-type] ), )
Get the model configuration for a LangChain agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/langchain.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/langchain.py
Apache-2.0
async def _load_agent(self) -> None: """Load the LangChain agent with the given configuration.""" if not langchain_available: msg = "You need to `pip install 'any-agent[langchain]'` to use this agent" raise ImportError(msg) imported_tools, _ = await self._load_tools(self.config.tools) self._tools = imported_tools agent_type = self.config.agent_type or DEFAULT_AGENT_TYPE agent_args = self.config.agent_args or {} if self.config.output_type: agent_args["response_format"] = self.config.output_type self._agent = agent_type( name=self.config.name, model=self._get_model(self.config), tools=imported_tools, prompt=self.config.instructions, **agent_args, )
Load the LangChain agent with the given configuration.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/langchain.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/langchain.py
Apache-2.0
def _get_model(self, agent_config: AgentConfig) -> "LLM": """Get the model configuration for a llama_index agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE return cast( "LLM", model_type( model=agent_config.model_id, api_key=agent_config.api_key, api_base=agent_config.api_base, additional_kwargs=agent_config.model_args or {}, # type: ignore[arg-type] ), )
Get the model configuration for a llama_index agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/llama_index.py
Apache-2.0
async def _load_agent(self) -> None: """Load the LLamaIndex agent with the given configuration.""" if not llama_index_available: msg = "You need to `pip install 'any-agent[llama_index]'` to use this agent" raise ImportError(msg) instructions = self.config.instructions tools_to_use = list(self.config.tools) if self.config.output_type: instructions = instructions or "" instructions += f"""You must return a {self.config.output_type.__name__} JSON string. This object must match the following schema: {self.config.output_type.model_json_schema()} You can use the 'final_output' tool to help verify your output """ tools_to_use.append(FinalOutputTool(self.config.output_type)) imported_tools, _ = await self._load_tools(tools_to_use) agent_type = self.config.agent_type or DEFAULT_AGENT_TYPE # if agent type is FunctionAgent but there are no tools, throw an error if agent_type == FunctionAgent and not imported_tools: logger.warning( "FunctionAgent requires tools and none were provided. Using ReActAgent instead." ) agent_type = ReActAgent self._tools = imported_tools self._agent = agent_type( name=self.config.name, tools=imported_tools, description=self.config.description or "The main agent", llm=self._get_model(self.config), system_prompt=instructions, **self.config.agent_args or {}, )
Load the LLamaIndex agent with the given configuration.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/llama_index.py
Apache-2.0
def _get_model( self, agent_config: AgentConfig, ) -> "Model": """Get the model configuration for an OpenAI agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE return model_type( model=agent_config.model_id, base_url=agent_config.api_base, api_key=agent_config.api_key, )
Get the model configuration for an OpenAI agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/openai.py
Apache-2.0
async def _load_agent(self) -> None: """Load the OpenAI agent with the given configuration.""" if not agents_available: msg = "You need to `pip install 'any-agent[openai]'` to use this agent" raise ImportError(msg) if not agents_available: msg = "You need to `pip install openai-agents` to use this agent" raise ImportError(msg) tools, mcp_servers = await self._load_tools(self.config.tools) tools = self._filter_mcp_tools(tools, mcp_servers) kwargs_ = self.config.agent_args or {} if self.config.model_args: kwargs_["model_settings"] = ModelSettings(**self.config.model_args) if self.config.output_type: kwargs_["output_type"] = self.config.output_type self._tools = tools self._agent = Agent( name=self.config.name, instructions=self.config.instructions, model=self._get_model(self.config), tools=tools, mcp_servers=[mcp_server.server for mcp_server in mcp_servers], **kwargs_, )
Load the OpenAI agent with the given configuration.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/openai.py
Apache-2.0
def _filter_mcp_tools(self, tools: list[Any], mcp_servers: list[Any]) -> list[Any]: """OpenAI frameowrk doesn't expect the mcp tool to be included in `tools`.""" non_mcp_tools = [] for tool in tools: if any(tool in mcp_server.tools for mcp_server in mcp_servers): continue non_mcp_tools.append(tool) return non_mcp_tools
OpenAI frameowrk doesn't expect the mcp tool to be included in `tools`.
_filter_mcp_tools
python
mozilla-ai/any-agent
src/any_agent/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/openai.py
Apache-2.0
def _get_model(self, agent_config: AgentConfig) -> Any: """Get the model configuration for a smolagents agent.""" model_type = agent_config.model_type or DEFAULT_MODEL_TYPE model_args = agent_config.model_args or {} kwargs = { "model_id": agent_config.model_id, "api_key": agent_config.api_key, "api_base": agent_config.api_base, **model_args, } return model_type(**kwargs)
Get the model configuration for a smolagents agent.
_get_model
python
mozilla-ai/any-agent
src/any_agent/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/smolagents.py
Apache-2.0
async def _load_agent(self) -> None: """Load the Smolagents agent with the given configuration.""" if not smolagents_available: msg = "You need to `pip install 'any-agent[smolagents]'` to use this agent" raise ImportError(msg) tools, _ = await self._load_tools(self.config.tools) main_agent_type = self.config.agent_type or DEFAULT_AGENT_TYPE agent_args = self.config.agent_args or {} self._tools = tools self._agent = main_agent_type( name=self.config.name, model=self._get_model(self.config), tools=tools, verbosity_level=-1, # OFF **agent_args, ) if self.config.instructions: self._agent.prompt_templates["system_prompt"] = self.config.instructions if self.config.output_type: output_type = self.config.output_type class CustomFinalAnswerTool(FinalAnswerTool): # type: ignore[no-untyped-call] inputs = { # noqa: RUF012 "answer": { "type": "string", "description": f"The final answer to the problem. The input must be a string that conforms to the{output_type.__name__} object.", } } def forward(self, answer: str) -> Any: output_type.model_validate_json(answer) return answer self._agent.tools["final_answer"] = CustomFinalAnswerTool() # type: ignore[no-untyped-call] self._agent.prompt_templates[ "system_prompt" ] += f"""\n\nYour final answer must be a {self.config.output_type.__name__} object. This object must match the following schema: {self.config.output_type.model_json_schema()} """ assert self._agent
Load the Smolagents agent with the given configuration.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/smolagents.py
Apache-2.0
async def call_tool(self, request: dict[str, Any]) -> str: """Call the tool function. Args: request: The tool request with name and arguments Returns: Tool execution result """ try: arguments = request.get("arguments", {}) if hasattr(self.tool_function, "__annotations__"): func_args = self.tool_function.__annotations__ for arg_name, arg_type in func_args.items(): if arg_name in arguments: with suppress(Exception): arguments[arg_name] = arg_type(arguments[arg_name]) if asyncio.iscoroutinefunction(self.tool_function): result = await self.tool_function(**arguments) else: result = self.tool_function(**arguments) if ( isinstance(result, CallToolResult) and result.content and isinstance(result.content[0], TextContent) ): result = result.content[0].text return str(result) except Exception as e: return f"Error executing tool: {e}"
Call the tool function. Args: request: The tool request with name and arguments Returns: Tool execution result
call_tool
python
mozilla-ai/any-agent
src/any_agent/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/tinyagent.py
Apache-2.0
def __init__(self, config: AgentConfig) -> None: """Initialize the TinyAgent. Args: config: Agent configuration tracing: Optional tracing configuration """ super().__init__(config) self.clients: dict[str, ToolExecutor] = {} self.completion_params = { "model": self.config.model_id, "tools": [], "tool_choice": "auto", **(self.config.model_args or {}), } if self.config.api_key: self.completion_params["api_key"] = self.config.api_key if self.config.api_base: self.completion_params["api_base"] = self.config.api_base
Initialize the TinyAgent. Args: config: Agent configuration tracing: Optional tracing configuration
__init__
python
mozilla-ai/any-agent
src/any_agent/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/tinyagent.py
Apache-2.0
async def _load_agent(self) -> None: """Load the agent and its tools.""" wrapped_tools, mcp_servers = await self._load_tools(self.config.tools) self._mcp_servers = ( mcp_servers # Store servers so that they don't get garbage collected ) self._tools = wrapped_tools for tool in wrapped_tools: tool_name = tool.__name__ tool_desc = tool.__doc__ or f"Tool to {tool_name}" if not hasattr(tool, "__input_schema__"): sig = inspect.signature(tool) properties = {} required = [] for param_name, param in sig.parameters.items(): if param.kind in ( inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD, ): continue properties[param_name] = { "type": "string", "description": f"Parameter {param_name}", } if param.default == inspect.Parameter.empty: required.append(param_name) input_schema = { "type": "object", "properties": properties, "required": required, } else: input_schema = tool.__input_schema__ self.completion_params["tools"].append( { "type": "function", "function": { "name": tool_name, "description": tool_desc, "parameters": input_schema, }, } ) self.clients[tool_name] = ToolExecutor(tool) logger.debug("Registered tool: %s", tool_name)
Load the agent and its tools.
_load_agent
python
mozilla-ai/any-agent
src/any_agent/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/frameworks/tinyagent.py
Apache-2.0
async def serve_a2a_async( server: A2AStarletteApplication, host: str, port: int, endpoint: str, log_level: str = "warning", ) -> tuple[asyncio.Task[Any], uvicorn.Server]: """Provide an A2A server to be used in an event loop.""" uv_server = _create_server(server, host, port, endpoint, log_level) task = asyncio.create_task(uv_server.serve()) while not uv_server.started: # noqa: ASYNC110 await asyncio.sleep(0.1) if port == 0: server_port = uv_server.servers[0].sockets[0].getsockname()[1] server.agent_card.url = f"http://{host}:{server_port}/{endpoint.lstrip('/')}" return (task, uv_server)
Provide an A2A server to be used in an event loop.
serve_a2a_async
python
mozilla-ai/any-agent
src/any_agent/serving/server.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/serving/server.py
Apache-2.0
async def a2a_tool_async( url: str, toolname: str | None = None, http_kwargs: dict[str, Any] | None = None ) -> Callable[[str], Coroutine[Any, Any, str]]: """Perform a query using A2A to another agent. Args: url (str): The url in which the A2A agent is located. toolname (str): The name for the created tool. Defaults to `call_{agent name in card}`. Leading and trailing whitespace are removed. Whitespace in the middle is replaced by `_`. http_kwargs (dict): Additional kwargs to pass to the httpx client. Returns: An async `Callable` that takes a query and returns the agent response. """ if not a2a_tool_available: msg = "You need to `pip install 'any-agent[a2a]'` to use this tool" raise ImportError(msg) async with httpx.AsyncClient(follow_redirects=True) as resolver_client: a2a_agent_card: AgentCard = await ( A2ACardResolver(httpx_client=resolver_client, base_url=url) ).get_agent_card() async def _send_query(query: str) -> str: async with httpx.AsyncClient(follow_redirects=True) as query_client: client = A2AClient(httpx_client=query_client, agent_card=a2a_agent_card) send_message_payload = SendMessageRequest( id=str(uuid4), params=MessageSendParams( message=Message( role=Role.user, parts=[Part(root=TextPart(text=query))], # the id is not currently tracked messageId=uuid4().hex, ) ), ) # TODO check how to capture exceptions and pass them on to the enclosing framework response = await client.send_message( send_message_payload, http_kwargs=http_kwargs ) result: str = response.model_dump_json() return result new_name = toolname or a2a_agent_card.name new_name = re.sub(r"\s+", "_", new_name.strip()) _send_query.__name__ = f"call_{new_name}" _send_query.__doc__ = f"""{a2a_agent_card.description} Send a query to the agent named {a2a_agent_card.name}. Agent description: {a2a_agent_card.description} Args: query (str): The query to perform. Returns: The result from the A2A agent, encoded in json. """ return _send_query
Perform a query using A2A to another agent. Args: url (str): The url in which the A2A agent is located. toolname (str): The name for the created tool. Defaults to `call_{agent name in card}`. Leading and trailing whitespace are removed. Whitespace in the middle is replaced by `_`. http_kwargs (dict): Additional kwargs to pass to the httpx client. Returns: An async `Callable` that takes a query and returns the agent response.
a2a_tool_async
python
mozilla-ai/any-agent
src/any_agent/tools/a2a.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/a2a.py
Apache-2.0
def a2a_tool( url: str, toolname: str | None = None, http_kwargs: dict[str, Any] | None = None ) -> Callable[[str], str]: """Perform a query using A2A to another agent (synchronous version). Args: url (str): The url in which the A2A agent is located. toolname (str): The name for the created tool. Defaults to `call_{agent name in card}`. Leading and trailing whitespace are removed. Whitespace in the middle is replaced by `_`. http_kwargs (dict): Additional kwargs to pass to the httpx client. Returns: A sync `Callable` that takes a query and returns the agent response. """ if not a2a_tool_available: msg = "You need to `pip install 'any-agent[a2a]'` to use this tool" raise ImportError(msg) # Fetch the async tool upfront to get proper name and documentation (otherwise the tool doesn't have the right name and documentation) async_tool = run_async_in_sync(a2a_tool_async(url, toolname, http_kwargs)) def sync_wrapper(query: str) -> Any: """Execute the A2A tool query synchronously.""" return run_async_in_sync(async_tool(query)) # Copy essential metadata from the async tool sync_wrapper.__name__ = async_tool.__name__ sync_wrapper.__doc__ = async_tool.__doc__ return sync_wrapper
Perform a query using A2A to another agent (synchronous version). Args: url (str): The url in which the A2A agent is located. toolname (str): The name for the created tool. Defaults to `call_{agent name in card}`. Leading and trailing whitespace are removed. Whitespace in the middle is replaced by `_`. http_kwargs (dict): Additional kwargs to pass to the httpx client. Returns: A sync `Callable` that takes a query and returns the agent response.
a2a_tool
python
mozilla-ai/any-agent
src/any_agent/tools/a2a.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/a2a.py
Apache-2.0
def __init__(self, output_type: type[BaseModel]): """Create the function that will be used as a tool.""" self.output_type = output_type # Set docstring for the callable object self.__doc__ = f"""You must call this tool in order to return the final answer. Args: answer: The final output that can be loaded as a Pydantic model. This must be a JSON compatible string that matches the following schema: {output_type.model_json_schema()} Returns: A dictionary with the following keys: - success: True if the output is valid, False otherwise. - result: The final output if success is True, otherwise an error message. """ # Set function name for tool frameworks that expect it self.__name__ = "final_output"
Create the function that will be used as a tool.
__init__
python
mozilla-ai/any-agent
src/any_agent/tools/final_output.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/final_output.py
Apache-2.0
def search_web(query: str) -> str: """Perform a duckduckgo web search based on your query (think a Google search) then returns the top search results. Args: query (str): The search query to perform. Returns: The top search results. """ ddgs = DDGS() results = ddgs.text(query, max_results=10) return "\n".join( f"[{result['title']}]({result['href']})\n{result['body']}" for result in results )
Perform a duckduckgo web search based on your query (think a Google search) then returns the top search results. Args: query (str): The search query to perform. Returns: The top search results.
search_web
python
mozilla-ai/any-agent
src/any_agent/tools/web_browsing.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/web_browsing.py
Apache-2.0
def visit_webpage(url: str) -> str: """Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages. Args: url: The url of the webpage to visit. """ try: response = requests.get(url) response.raise_for_status() markdown_content = markdownify(response.text).strip() # type: ignore[no-untyped-call] markdown_content = re.sub(r"\n{2,}", "\n", markdown_content) return _truncate_content(markdown_content, 10000) except RequestException as e: return f"Error fetching the webpage: {e!s}" except Exception as e: return f"An unexpected error occurred: {e!s}"
Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages. Args: url: The url of the webpage to visit.
visit_webpage
python
mozilla-ai/any-agent
src/any_agent/tools/web_browsing.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/web_browsing.py
Apache-2.0
def search_tavily(query: str, include_images: bool = False) -> str: """Perform a Tavily web search based on your query and return the top search results. See https://blog.tavily.com/getting-started-with-the-tavily-search-api for more information. Args: query (str): The search query to perform. include_images (bool): Whether to include images in the results. Returns: The top search results as a formatted string. """ if not tavily_available: msg = "You need to `pip install 'tavily-python'` to use this tool" raise ImportError(msg) api_key = os.getenv("TAVILY_API_KEY") if not api_key: return "TAVILY_API_KEY environment variable not set." try: client = TavilyClient(api_key) response = client.search(query, include_images=include_images) results = response.get("results", []) output = [] for result in results: output.append( f"[{result.get('title', 'No Title')}]({result.get('url', '#')})\n{result.get('content', '')}" ) if include_images and "images" in response: output.append("\nImages:") for image in response["images"]: output.append(image) return "\n\n".join(output) if output else "No results found." except Exception as e: return f"Error performing Tavily search: {e!s}"
Perform a Tavily web search based on your query and return the top search results. See https://blog.tavily.com/getting-started-with-the-tavily-search-api for more information. Args: query (str): The search query to perform. include_images (bool): Whether to include images in the results. Returns: The top search results as a formatted string.
search_tavily
python
mozilla-ai/any-agent
src/any_agent/tools/web_browsing.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/web_browsing.py
Apache-2.0
def verify_callable(tool: Callable[..., Any]) -> None: """Verify that `tool` is a valid callable. - It needs to have some sort of docstring that describes what it does - It needs to have typed argument - It needs to have a typed return. We need these things because this info gets provided to the agent so that they know how and when to call the tool. """ signature = inspect.signature(tool) if not tool.__doc__: msg = f"Tool {tool} needs to have a docstring but does not" raise ValueError(msg) # Check if the function has a return type if signature.return_annotation is inspect.Signature.empty: msg = f"Tool {tool} needs to have a return type but does not" raise ValueError(msg) # Check if all parameters have type annotations for param in signature.parameters.values(): if param.annotation is inspect.Signature.empty: msg = f"Tool {tool} needs to have typed arguments but does not" raise ValueError(msg)
Verify that `tool` is a valid callable. - It needs to have some sort of docstring that describes what it does - It needs to have typed argument - It needs to have a typed return. We need these things because this info gets provided to the agent so that they know how and when to call the tool.
verify_callable
python
mozilla-ai/any-agent
src/any_agent/tools/wrappers.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/wrappers.py
Apache-2.0
async def list_tools(self) -> list[T]: """List tools from the MCP server."""
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/mcp_connection.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/mcp_connection.py
Apache-2.0
def _filter_tools(self, tools: Sequence[T]) -> Sequence[T]: """Filter the tools to only include the ones listed in mcp_tool['tools'].""" requested_tools = list(self.mcp_tool.tools or []) if not requested_tools: return tools name_to_tool = { tool.name if isinstance(tool, HasName) else tool: tool for tool in tools } missing_tools = [name for name in requested_tools if name not in name_to_tool] if missing_tools: error_message = dedent( f"""Could not find all requested tools in the MCP server: Requested ({len(requested_tools)}): {requested_tools} Set ({len(name_to_tool)}): {list(name_to_tool.keys())} Missing: {missing_tools} """ ) raise ValueError(error_message) return [name_to_tool[name] for name in requested_tools]
Filter the tools to only include the ones listed in mcp_tool['tools'].
_filter_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/mcp_connection.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/mcp_connection.py
Apache-2.0
async def list_tools(self) -> list["AgnoMCPTools"]: """List tools from the MCP server.""" if self._server is None: msg = "MCP server is not set up. Please call `list_tools` from a concrete class." raise ValueError(msg) tools = await self._exit_stack.enter_async_context(self._server) return [tools]
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/agno.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/agno.py
Apache-2.0
async def list_tools(self) -> list["AgnoMCPTools"]: """List tools from the MCP server.""" from mcp import StdioServerParameters server_params = StdioServerParameters( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, ) kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["timeout_seconds"] = int( self.mcp_tool.client_session_timeout_seconds ) self._server = AgnoMCPTools( server_params=server_params, env=self.mcp_tool.env, include_tools=list(self.mcp_tool.tools) if self.mcp_tool.tools else None, **kwargs, # type: ignore[arg-type] ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/agno.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/agno.py
Apache-2.0
async def list_tools(self) -> list["AgnoMCPTools"]: """List tools from the MCP server.""" client = sse_client( url=self.mcp_tool.url, headers=dict(self.mcp_tool.headers or {}), ) sse_transport = await self._exit_stack.enter_async_context(client) stdio, write = sse_transport kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["read_timeout_seconds"] = timedelta( seconds=self.mcp_tool.client_session_timeout_seconds ) client_session = ClientSession(stdio, write, **kwargs) # type: ignore[arg-type] session = await self._exit_stack.enter_async_context(client_session) await session.initialize() self._server = AgnoMCPTools( session=session, include_tools=list(self.mcp_tool.tools) if self.mcp_tool.tools else None, ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/agno.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/agno.py
Apache-2.0
def _check_dependencies(self) -> None: """Check if the required dependencies for the MCP server are available.""" self.libraries = "any-agent[mcp,agno]" self.mcp_available = mcp_available super()._check_dependencies()
Check if the required dependencies for the MCP server are available.
_check_dependencies
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/agno.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/agno.py
Apache-2.0
async def list_tools(self) -> list["GoogleMCPTool"]: """List tools from the MCP server.""" if not self._params: msg = "MCP params is not set up. Please call `list_tools` from a concrete class." raise ValueError(msg) server = GoogleMCPToolset(connection_params=self._params) tools = await server.get_tools() return self._filter_tools(tools) # type: ignore[return-value]
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/google.py
Apache-2.0
async def list_tools(self) -> list["GoogleMCPTool"]: """List tools from the MCP server.""" self._params = GoogleStdioServerParameters( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/google.py
Apache-2.0
async def list_tools(self) -> list["GoogleMCPTool"]: """List tools from the MCP server.""" self._params = GoogleSseServerParameters( url=self.mcp_tool.url, headers=dict(self.mcp_tool.headers or {}), ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/google.py
Apache-2.0
def _check_dependencies(self) -> None: """Check if the required dependencies for the MCP server are available.""" self.libraries = "any-agent[mcp,google]" self.mcp_available = mcp_available super()._check_dependencies()
Check if the required dependencies for the MCP server are available.
_check_dependencies
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/google.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/google.py
Apache-2.0
async def list_tools(self) -> list["BaseTool"]: """List tools from the MCP server.""" if not self._client: msg = "MCP client is not set up. Please call `list_tools` from a concrete class." raise ValueError(msg) stdio, write = await self._exit_stack.enter_async_context(self._client) kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["read_timeout_seconds"] = timedelta( seconds=self.mcp_tool.client_session_timeout_seconds ) client_session = ClientSession( stdio, write, **kwargs, # type: ignore[arg-type] ) session = await self._exit_stack.enter_async_context(client_session) await session.initialize() tools = await load_mcp_tools(session) return self._filter_tools(tools) # type: ignore[return-value]
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/langchain.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/langchain.py
Apache-2.0
async def list_tools(self) -> list["BaseTool"]: """List tools from the MCP server.""" server_params = StdioServerParameters( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, ) self._client = stdio_client(server_params) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/langchain.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/langchain.py
Apache-2.0
async def list_tools(self) -> list["BaseTool"]: """List tools from the MCP server.""" kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["sse_read_timeout"] = self.mcp_tool.client_session_timeout_seconds self._client = sse_client( url=self.mcp_tool.url, headers=dict(self.mcp_tool.headers or {}), **kwargs, # type: ignore[arg-type] ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/langchain.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/langchain.py
Apache-2.0
async def list_tools(self) -> list["LlamaIndexFunctionTool"]: """List tools from the MCP server.""" if not self._client: msg = "MCP client is not set up. Please call `list_tool` from a concrete class." raise ValueError(msg) allowed_tools = self.mcp_tool.tools if allowed_tools is not None: allowed_tools = list(allowed_tools) mcp_tool_spec = LlamaIndexMcpToolSpec( client=self._client, allowed_tools=allowed_tools, ) return await mcp_tool_spec.to_tool_list_async()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/llama_index.py
Apache-2.0
async def list_tools(self) -> list["LlamaIndexFunctionTool"]: """List tools from the MCP server.""" kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["timeout"] = self.mcp_tool.client_session_timeout_seconds self._client = LlamaIndexMCPClient( command_or_url=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, **kwargs, # type: ignore[arg-type] ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/llama_index.py
Apache-2.0
async def list_tools(self) -> list["LlamaIndexFunctionTool"]: """List tools from the MCP server.""" kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["timeout"] = self.mcp_tool.client_session_timeout_seconds self._client = LlamaIndexMCPClient( command_or_url=self.mcp_tool.url, **kwargs, # type: ignore[arg-type] ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/llama_index.py
Apache-2.0
def _check_dependencies(self) -> None: """Check if the required dependencies for the MCP server are available.""" self.libraries = "any-agent[mcp,llama_index]" self.mcp_available = mcp_available super()._check_dependencies()
Check if the required dependencies for the MCP server are available.
_check_dependencies
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/llama_index.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/llama_index.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" if not self._server: msg = "MCP server is not set up. Please call `setup` from a concrete class." raise ValueError(msg) await self._exit_stack.enter_async_context(self._server) tools = await self._server.list_tools() return self._filter_tools(tools) # type: ignore[return-value]
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/openai.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" params = OpenAIInternalMCPServerStdioParams( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, # type: ignore[typeddict-item] ) self._server = OpenAIInternalMCPServerStdio( name="OpenAI MCP Server", params=params, client_session_timeout_seconds=self.mcp_tool.client_session_timeout_seconds, ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/openai.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" params = OpenAIInternalMCPServerSseParams(url=self.mcp_tool.url) self._server = OpenAIInternalMCPServerSse( name="OpenAI MCP Server", params=params, client_session_timeout_seconds=self.mcp_tool.client_session_timeout_seconds, ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/openai.py
Apache-2.0
def _check_dependencies(self) -> None: """Check if the required dependencies for the MCP server are available.""" self.libraries = "any-agent[mcp,openai]" self.mcp_available = mcp_available super()._check_dependencies()
Check if the required dependencies for the MCP server are available.
_check_dependencies
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/openai.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/openai.py
Apache-2.0
async def list_tools(self) -> list["SmolagentsTool"]: """List tools from the MCP server.""" if not self._client: msg = "Tool collection is not set up. Please call `list_tools` from a concrete class." raise ValueError(msg) tools = self._client.get_tools() return self._filter_tools(tools) # type: ignore[return-value]
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/smolagents.py
Apache-2.0
async def list_tools(self) -> list["SmolagentsTool"]: """List tools from the MCP server.""" server_parameters = StdioServerParameters( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env=self.mcp_tool.env, ) self._client = MCPClient(server_parameters) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/smolagents.py
Apache-2.0
async def list_tools(self) -> list["SmolagentsTool"]: """List tools from the MCP server.""" server_parameters = { "url": self.mcp_tool.url, } self._client = MCPClient(server_parameters) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/smolagents.py
Apache-2.0
def _check_dependencies(self) -> None: """Check if the required dependencies for the MCP server are available.""" self.libraries = "any-agent[mcp,smolagents]" self.mcp_available = mcp_available super()._check_dependencies()
Check if the required dependencies for the MCP server are available.
_check_dependencies
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/smolagents.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/smolagents.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" if not self._client: msg = "MCP client is not set up. Please call `setup` from a concrete class." raise ValueError(msg) # Setup the client connection using exit stack to manage lifecycle stdio, write = await self._exit_stack.enter_async_context(self._client) # Create a client session client_session = ClientSession( stdio, write, timedelta(seconds=self.mcp_tool.client_session_timeout_seconds) if self.mcp_tool.client_session_timeout_seconds else None, ) # Start the session session: ClientSession = await self._exit_stack.enter_async_context( client_session ) if not session: msg = "Failed to create MCP session" raise ValueError(msg) await session.initialize() # Get the available tools from the MCP server using schema available_tools = await session.list_tools() # Filter tools if specific tools were requested filtered_tools = self._filter_tools(available_tools.tools) # Create callable tool functions tool_list = list[Any]() for tool_info in filtered_tools: tool_list.append(self._create_tool_from_info(tool_info, session)) # type: ignore[arg-type] return tool_list
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/tinyagent.py
Apache-2.0
def _create_tool_from_info( self, tool: Tool, session: "ClientSession" ) -> Callable[..., Any]: """Create a tool function from tool information.""" tool_name = tool.name if hasattr(tool, "name") else tool tool_description = tool.description if hasattr(tool, "description") else "" input_schema = tool.inputSchema if hasattr(tool, "inputSchema") else None if not session: msg = "Not connected to MCP server" raise ValueError(msg) async def tool_function(*args, **kwargs) -> Any: # type: ignore[no-untyped-def] """Tool function that calls the MCP server.""" # Combine args and kwargs combined_args = {} if args and len(args) > 0: combined_args = args[0] combined_args.update(kwargs) if not session: msg = "Not connected to MCP server" raise ValueError(msg) # Call the tool on the MCP server try: return await session.call_tool(tool_name, combined_args) # type: ignore[arg-type] except Exception as e: return f"Error calling tool {tool_name}: {e!s}" # Set attributes for the tool function tool_function.__name__ = tool_name # type: ignore[assignment] tool_function.__doc__ = tool_description # this isn't a defined attribute of a callable, but we pass it to tinyagent so that it can use it appropriately # when constructing the ToolExecutor. tool_function.__input_schema__ = input_schema # type: ignore[attr-defined] return tool_function
Create a tool function from tool information.
_create_tool_from_info
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/tinyagent.py
Apache-2.0
async def tool_function(*args, **kwargs) -> Any: # type: ignore[no-untyped-def] """Tool function that calls the MCP server.""" # Combine args and kwargs combined_args = {} if args and len(args) > 0: combined_args = args[0] combined_args.update(kwargs) if not session: msg = "Not connected to MCP server" raise ValueError(msg) # Call the tool on the MCP server try: return await session.call_tool(tool_name, combined_args) # type: ignore[arg-type] except Exception as e: return f"Error calling tool {tool_name}: {e!s}"
Tool function that calls the MCP server.
tool_function
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/tinyagent.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" server_params = StdioServerParameters( command=self.mcp_tool.command, args=list(self.mcp_tool.args), env={**os.environ}, ) self._client = stdio_client(server_params) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/tinyagent.py
Apache-2.0
async def list_tools(self) -> list["MCPTool"]: """List tools from the MCP server.""" kwargs = {} if self.mcp_tool.client_session_timeout_seconds: kwargs["sse_read_timeout"] = self.mcp_tool.client_session_timeout_seconds self._client = sse_client( url=self.mcp_tool.url, headers=dict(self.mcp_tool.headers or {}), **kwargs, # type: ignore[arg-type] ) return await super().list_tools()
List tools from the MCP server.
list_tools
python
mozilla-ai/any-agent
src/any_agent/tools/mcp/frameworks/tinyagent.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tools/mcp/frameworks/tinyagent.py
Apache-2.0
def from_otel(cls, otel_span: Span) -> AgentSpan: """Create an AgentSpan from an OTEL Span.""" return cls( name=otel_span.name, kind=SpanKind.from_otel(otel_span.kind), parent=SpanContext.from_otel(otel_span.parent), start_time=otel_span.start_time, end_time=otel_span.end_time, status=Status.from_otel(otel_span.status), context=SpanContext.from_otel(otel_span.context), attributes=dict(otel_span.attributes) if otel_span.attributes else {}, links=[Link.from_otel(link) for link in otel_span.links], events=[Event.from_otel(event) for event in otel_span.events], resource=Resource.from_otel(otel_span.resource), )
Create an AgentSpan from an OTEL Span.
from_otel
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def to_readable_span(self) -> ReadableSpan: """Create an ReadableSpan from the AgentSpan.""" return ReadableSpan( name=self.name, kind=self.kind, parent=self.parent, start_time=self.start_time, end_time=self.end_time, status=self.status, context=self.context, attributes=self.attributes, links=self.links, events=self.events, resource=self.resource, )
Create an ReadableSpan from the AgentSpan.
to_readable_span
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def serialize_final_output(self, value: str | BaseModel | None) -> Any: """Serialize the final_output and handle any BaseModel subclass.""" if value is None: return None if isinstance(value, str): return value if isinstance(value, BaseModel): # This will properly serialize any BaseModel subclass return value.model_dump() return value
Serialize the final_output and handle any BaseModel subclass.
serialize_final_output
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def _invalidate_usage_and_cost_cache(self) -> None: """Clear the cached usage_and_cost property if it exists.""" if "usage" in self.__dict__: del self.tokens if "cost" in self.__dict__: del self.cost
Clear the cached usage_and_cost property if it exists.
_invalidate_usage_and_cost_cache
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def add_span(self, span: AgentSpan | Span) -> None: """Add an AgentSpan to the trace and clear the usage_and_cost cache if present.""" if not isinstance(span, AgentSpan): span = AgentSpan.from_otel(span) self.spans.append(span) self._invalidate_usage_and_cost_cache()
Add an AgentSpan to the trace and clear the usage_and_cost cache if present.
add_span
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def duration(self) -> timedelta: """Duration of the parent `invoke_agent` span as a datetime.timedelta object. The duration is computed from the span's start and end time (in nanoseconds). Raises ValueError if: - There are no spans. - The invoke_agent span is not the last span. - Any of the start/end times are missing. """ if not self.spans: msg = "No spans found in trace" raise ValueError(msg) span = self.spans[-1] if not span.is_agent_invocation(): msg = "Last span is not `invoke_agent`" raise ValueError(msg) if span.start_time is not None and span.end_time is not None: duration_ns = span.end_time - span.start_time return timedelta(seconds=duration_ns / 1_000_000_000) msg = "Start or end time is missing for the `invoke_agent` span" raise ValueError(msg)
Duration of the parent `invoke_agent` span as a datetime.timedelta object. The duration is computed from the span's start and end time (in nanoseconds). Raises ValueError if: - There are no spans. - The invoke_agent span is not the last span. - Any of the start/end times are missing.
duration
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def tokens(self) -> TokenInfo: """The current total token count for this trace. Cached after first computation.""" sum_input_tokens = 0 sum_output_tokens = 0 for span in self.spans: if span.is_llm_call(): sum_input_tokens += span.attributes.get("gen_ai.usage.input_tokens", 0) sum_output_tokens += span.attributes.get( "gen_ai.usage.output_tokens", 0 ) return TokenInfo(input_tokens=sum_input_tokens, output_tokens=sum_output_tokens)
The current total token count for this trace. Cached after first computation.
tokens
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def cost(self) -> CostInfo: """The current total cost for this trace. Cached after first computation.""" sum_input_cost = 0.0 sum_output_cost = 0.0 for span in self.spans: if span.is_llm_call(): cost_info = compute_cost_info(span.attributes) if cost_info: sum_input_cost += cost_info.input_cost sum_output_cost += cost_info.output_cost return CostInfo(input_cost=sum_input_cost, output_cost=sum_output_cost)
The current total cost for this trace. Cached after first computation.
cost
python
mozilla-ai/any-agent
src/any_agent/tracing/agent_trace.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/agent_trace.py
Apache-2.0
def enable_console_traces() -> None: """Enable printing traces to the console.""" has_console_exporter = any( isinstance(getattr(p, "span_exporter", None), _ConsoleExporter) for p in TRACE_PROVIDER._active_span_processor._span_processors ) if not has_console_exporter: TRACE_PROVIDER.add_span_processor(SimpleSpanProcessor(_ConsoleExporter()))
Enable printing traces to the console.
enable_console_traces
python
mozilla-ai/any-agent
src/any_agent/tracing/__init__.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/__init__.py
Apache-2.0
def disable_console_traces() -> None: """Disable printing traces to the console.""" with TRACE_PROVIDER._active_span_processor._lock: TRACE_PROVIDER._active_span_processor._span_processors = tuple( p for p in TRACE_PROVIDER._active_span_processor._span_processors if not isinstance(getattr(p, "span_exporter", None), _ConsoleExporter) )
Disable printing traces to the console.
disable_console_traces
python
mozilla-ai/any-agent
src/any_agent/tracing/__init__.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/tracing/__init__.py
Apache-2.0
def run_async_in_sync(coro: Coroutine[Any, Any, T]) -> T: """Run an async coroutine in a synchronous context. Handles different event loop scenarios: - If a loop is running, uses threading to avoid conflicts - If no loop exists, creates one or uses the current loop Args: coro: The coroutine to execute Returns: The result of the coroutine execution """ try: # Check if there's a running event loop asyncio.get_running_loop() # If we get here, there's a loop running, so we can't use run_until_complete() # or asyncio.run() - must use threading approach def run_in_thread() -> T: return asyncio.run(coro) with concurrent.futures.ThreadPoolExecutor() as executor: return executor.submit(run_in_thread).result() except RuntimeError: # No running event loop - try to get available loop try: loop = asyncio.get_event_loop() return loop.run_until_complete(coro) except RuntimeError: # No event loop at all - create one return asyncio.run(coro)
Run an async coroutine in a synchronous context. Handles different event loop scenarios: - If a loop is running, uses threading to avoid conflicts - If no loop exists, creates one or uses the current loop Args: coro: The coroutine to execute Returns: The result of the coroutine execution
run_async_in_sync
python
mozilla-ai/any-agent
src/any_agent/utils/asyncio_sync.py
https://github.com/mozilla-ai/any-agent/blob/master/src/any_agent/utils/asyncio_sync.py
Apache-2.0
async def echo_sse_server() -> AsyncGenerator[dict[str, str]]: """This fixture runs a FastMCP server in a subprocess. I thought about trying to mock all the individual mcp client calls, but I went with this because this way we don't need to actually mock anything. This is similar to what MCPAdapt does in their testing https://github.com/grll/mcpadapt/blob/main/tests/test_core.py """ import asyncio process = await asyncio.create_subprocess_exec( "python", "-c", SSE_MCP_SERVER_SCRIPT, ) # Smart ping instead of hardcoded sleep await wait_for_server_async("http://127.0.0.1:8000") try: yield {"url": "http://127.0.0.1:8000/sse"} finally: # Clean up the process when test is done process.kill() await process.wait()
This fixture runs a FastMCP server in a subprocess. I thought about trying to mock all the individual mcp client calls, but I went with this because this way we don't need to actually mock anything. This is similar to what MCPAdapt does in their testing https://github.com/grll/mcpadapt/blob/main/tests/test_core.py
echo_sse_server
python
mozilla-ai/any-agent
tests/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/conftest.py
Apache-2.0
def configure_logging(pytestconfig: pytest.Config) -> None: """Configure the logging level based on the verbosity of the test run. This is a session fixture, so it only gets called once per test session. """ verbosity = pytestconfig.getoption("verbose") level = logging.DEBUG if verbosity > 0 else logging.INFO setup_logger(level=level)
Configure the logging level based on the verbosity of the test run. This is a session fixture, so it only gets called once per test session.
configure_logging
python
mozilla-ai/any-agent
tests/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/conftest.py
Apache-2.0
def mock_litellm_response() -> ModelResponse: """Fixture to create a standard mock LiteLLM response""" return ModelResponse.model_validate_json( '{"id":"chatcmpl-BWnfbHWPsQp05roQ06LAD1mZ9tOjT","created":1747157127,"model":"gpt-4o-2024-08-06","object":"chat.completion","system_fingerprint":"fp_f5bdcc3276","choices":[{"finish_reason":"stop","index":0,"message":{"content":"The state capital of Pennsylvania is Harrisburg.","role":"assistant","tool_calls":null,"function_call":null,"annotations":[]}}],"usage":{"completion_tokens":11,"prompt_tokens":138,"total_tokens":149,"completion_tokens_details":{"accepted_prediction_tokens":0,"audio_tokens":0,"reasoning_tokens":0,"rejected_prediction_tokens":0},"prompt_tokens_details":{"audio_tokens":0,"cached_tokens":0}},"service_tier":"default"}' )
Fixture to create a standard mock LiteLLM response
mock_litellm_response
python
mozilla-ai/any-agent
tests/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/conftest.py
Apache-2.0
def mock_litellm_streaming() -> Callable[[Any, Any], AsyncGenerator[Any]]: """ Create a fixture that returns an async generator function to mock streaming responses. This returns a function that can be used as a side_effect. """ async def _mock_streaming_response( *args: Any, **kwargs: Any ) -> AsyncGenerator[Any]: # First chunk with role yield { "choices": [ { "delta": {"role": "assistant", "content": "The state "}, "index": 0, "finish_reason": None, } ] } # Middle chunks with content yield { "choices": [ {"delta": {"content": "capital of "}, "index": 0, "finish_reason": None} ] } yield { "choices": [ { "delta": {"content": "Pennsylvania is "}, "index": 0, "finish_reason": None, } ] } # Final chunk with finish reason yield { "choices": [ { "delta": {"content": "Harrisburg."}, "index": 0, "finish_reason": "stop", } ] } return _mock_streaming_response
Create a fixture that returns an async generator function to mock streaming responses. This returns a function that can be used as a side_effect.
mock_litellm_streaming
python
mozilla-ai/any-agent
tests/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/conftest.py
Apache-2.0
def mock_visit_webpage(url: str) -> str: """Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages. Args: url: The url of the webpage to visit. """ return ( "# Any Agent Framework Review\n" "Any Agent is the top choice for developers needing flexibility and power in multi-agent systems." )
Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages. Args: url: The url of the webpage to visit.
mock_visit_webpage
python
mozilla-ai/any-agent
tests/integration/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/conftest.py
Apache-2.0
def pytest_addoption(parser: pytest.Parser) -> None: """ Add custom command-line options to pytest. This hook adds the `--update-trace-assets` flag to pytest, which can be used when running integration tests. When this flag is set, tests that generate trace asset files (aka the integration test that produces agent traces) will update the asset files in the assets directory. This is useful when the expected trace output changes and you want to regenerate the reference files. """ parser.addoption( "--update-trace-assets", action="store_true", default=False, help="Update trace asset files instead of asserting equality.", )
Add custom command-line options to pytest. This hook adds the `--update-trace-assets` flag to pytest, which can be used when running integration tests. When this flag is set, tests that generate trace asset files (aka the integration test that produces agent traces) will update the asset files in the assets directory. This is useful when the expected trace output changes and you want to regenerate the reference files.
pytest_addoption
python
mozilla-ai/any-agent
tests/integration/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/conftest.py
Apache-2.0
def _is_port_available(port: int, host: str = "localhost") -> bool: """Check if a port is available for binding. This isn't a perfect check but it at least tells us if there is absolutely no chance of binding to the port. """ with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: try: sock.bind((host, port)) except OSError: return False return True
Check if a port is available for binding. This isn't a perfect check but it at least tells us if there is absolutely no chance of binding to the port.
_is_port_available
python
mozilla-ai/any-agent
tests/integration/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/conftest.py
Apache-2.0
def _get_deterministic_port(test_name: str, framework_name: str) -> int: """Generate a deterministic port number based on test name and framework. This ensures each test gets a unique port that remains consistent across runs. """ # Create a unique string by combining test name and framework unique_string = f"{test_name}_{framework_name}" # Generate a hash and convert to a port number in the range 6000-9999 hash_value = int(hashlib.md5(unique_string.encode()).hexdigest()[:4], 16) # noqa: S324 return 6000 + (hash_value % 4000)
Generate a deterministic port number based on test name and framework. This ensures each test gets a unique port that remains consistent across runs.
_get_deterministic_port
python
mozilla-ai/any-agent
tests/integration/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/conftest.py
Apache-2.0
def test_port(request, agent_framework): """Single fixture that provides a unique, deterministic port for each test.""" test_name = request.node.name framework_name = agent_framework.value port = _get_deterministic_port(test_name, framework_name) # Ensure the port is available, if not, try nearby ports original_port = port attempts = 0 while not _is_port_available(port) and attempts < 50: port = original_port + attempts + 1 attempts += 1 if not _is_port_available(port): msg = f"Could not find an available port starting from {original_port}" raise RuntimeError(msg) return port
Single fixture that provides a unique, deterministic port for each test.
test_port
python
mozilla-ai/any-agent
tests/integration/conftest.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/conftest.py
Apache-2.0
def assert_first_llm_call(llm_call: AgentSpan) -> None: """Checks the `_set_llm_inputs` implemented by each framework's instrumentation.""" assert llm_call.attributes.get("gen_ai.input.messages", None) is not None # input.messages should be a valid JSON string (list of dicts) input_messages = json.loads(llm_call.attributes.get("gen_ai.input.messages")) assert input_messages[0]["role"] == "system" assert input_messages[1]["role"] == "user"
Checks the `_set_llm_inputs` implemented by each framework's instrumentation.
assert_first_llm_call
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_agent.py
Apache-2.0
def assert_first_tool_execution(tool_execution: AgentSpan) -> None: """Checks the tools setup implemented by each framework's instrumentation.""" assert tool_execution.attributes.get("gen_ai.tool.args", None) is not None # tool.args should be a JSON string (dict) args = json.loads(tool_execution.attributes.get("gen_ai.tool.args")) assert "timezone" in args assert isinstance(agent_trace, AgentTrace) assert agent_trace.final_output
Checks the tools setup implemented by each framework's instrumentation.
assert_first_tool_execution
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_agent.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_agent.py
Apache-2.0
def mock_capital(query: str) -> str: """Perform a duckduckgo web search based on your query (think a Google search) then returns the top search results. Args: query (str): The search query to perform. Returns: The top search results. """ if "France" in query: return "The capital of France is Paris." if "Spain" in query: return "The capital of Spain is Madrid." return "No info"
Perform a duckduckgo web search based on your query (think a Google search) then returns the top search results. Args: query (str): The search query to perform. Returns: The top search results.
mock_capital
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_agent_twice.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_agent_twice.py
Apache-2.0
async def test_run_agent_twice(agent_framework: AgentFramework) -> None: """When an agent is run twice, state from the first run shouldn't bleed into the second run""" model_id = "gpt-4.1-nano" env_check = validate_environment(model_id) if not env_check["keys_in_environment"]: pytest.skip(f"{env_check['missing_keys']} needed for {agent_framework}") model_args: dict[str, Any] = ( {"parallel_tool_calls": False} if agent_framework not in [AgentFramework.AGNO, AgentFramework.LLAMA_INDEX] else {} ) model_args["temperature"] = 0.0 agent = await AnyAgent.create_async( agent_framework, AgentConfig( model_id=model_id, instructions="You must use the tools to find an answer", model_args=model_args, tools=[mock_capital], ), ) results = await asyncio.gather( agent.run_async("What is the capital of France?"), agent.run_async("What is the capital of Spain?"), ) outputs = [r.final_output for r in results] assert all(o is not None for o in outputs) assert sum("Paris" in o for o in outputs) == 1 assert sum("Madrid" in o for o in outputs) == 1 first_spans = results[0].spans second_spans = results[1].spans assert second_spans[: len(first_spans)] != first_spans, ( "Spans from the first run should not be in the second" )
When an agent is run twice, state from the first run shouldn't bleed into the second run
test_run_agent_twice
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_agent_twice.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_agent_twice.py
Apache-2.0
def _assert_contains_current_date_info(final_output: str) -> None: """Assert that the final output contains current date and time information.""" now = datetime.datetime.now() assert all( [ str(now.year) in final_output, str(now.day) in final_output, now.strftime("%B") in final_output, ] )
Assert that the final output contains current date and time information.
_assert_contains_current_date_info
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_multi_agent_a2a_tool.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_multi_agent_a2a_tool.py
Apache-2.0
def _assert_has_date_agent_tool_call(agent_trace: AgentTrace) -> None: """Assert that the agent trace contains a tool execution span for the date agent.""" assert any( span.is_tool_execution() and span.attributes.get("gen_ai.tool.name", None) == "call_date_agent" for span in agent_trace.spans )
Assert that the agent trace contains a tool execution span for the date agent.
_assert_has_date_agent_tool_call
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_multi_agent_a2a_tool.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_multi_agent_a2a_tool.py
Apache-2.0
async def test_load_and_run_multi_agent_a2a(agent_framework: AgentFramework) -> None: """Tests that an agent contacts another using A2A using the adapter tool. Note that there is an issue when using Google ADK: https://github.com/google/adk-python/pull/566 """ if agent_framework in [ # async a2a is not supported AgentFramework.SMOLAGENTS, # spans are not built correctly AgentFramework.LLAMA_INDEX, # AgentFramework.GOOGLE, ]: pytest.skip( "https://github.com/mozilla-ai/any-agent/issues/357 tracks fixing so these tests can be re-enabled" ) kwargs = {} kwargs["model_id"] = "gpt-4.1-nano" agent_model = kwargs["model_id"] env_check = validate_environment(kwargs["model_id"]) if not env_check["keys_in_environment"]: pytest.skip(f"{env_check['missing_keys']} needed for {agent_framework}") model_args = ( {"parallel_tool_calls": False} if agent_framework not in [AgentFramework.AGNO, AgentFramework.LLAMA_INDEX] else None ) main_agent = None served_agent = None served_task = None served_server = None try: tool_agent_endpoint = "tool_agent" # DATE AGENT import datetime def get_datetime() -> str: """Return the current date and time""" return str(datetime.datetime.now()) date_agent_description = "Agent that can return the current date." date_agent_cfg = AgentConfig( instructions="Use the available tools to obtain additional information to answer the query.", name="date_agent", model_id=agent_model, description=date_agent_description, tools=[get_datetime], model_args=model_args, ) date_agent = await AnyAgent.create_async( agent_framework=agent_framework, agent_config=date_agent_cfg, ) # SERVING PROPER served_agent = date_agent (served_task, served_server) = await served_agent.serve_async( serving_config=A2AServingConfig( port=0, endpoint=f"/{tool_agent_endpoint}", log_level="info", ) ) test_port = served_server.servers[0].sockets[0].getsockname()[1] server_url = f"http://localhost:{test_port}/{tool_agent_endpoint}" await wait_for_server_async(server_url) # Search agent is ready for card resolution logger.info( "Setting up agent", extra={"endpoint": server_url}, ) main_agent_cfg = AgentConfig( instructions="Use the available tools to obtain additional information to answer the query.", description="The orchestrator that can use other agents via tools using the A2A protocol.", tools=[await a2a_tool_async(server_url, http_kwargs={"timeout": 10.0})], model_args=model_args, **kwargs, # type: ignore[arg-type] ) main_agent = await AnyAgent.create_async( agent_framework=agent_framework, agent_config=main_agent_cfg, ) agent_trace = await main_agent.run_async(DATE_PROMPT) _assert_valid_agent_trace(agent_trace) _assert_contains_current_date_info(agent_trace.final_output) _assert_has_date_agent_tool_call(agent_trace) try: span_tree = build_tree(agent_trace.spans).model_dump_json(indent=2) logger.info("span tree:") logger.info(span_tree) except KeyError as e: pytest.fail(f"The span tree was not built successfully: {e}") final_output_log = f"Final output: {agent_trace.final_output}" logger.info(final_output_log) finally: if served_server: await served_server.shutdown() if served_task: served_task.cancel()
Tests that an agent contacts another using A2A using the adapter tool. Note that there is an issue when using Google ADK: https://github.com/google/adk-python/pull/566
test_load_and_run_multi_agent_a2a
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_multi_agent_a2a_tool.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_multi_agent_a2a_tool.py
Apache-2.0
def _run_server( agent_framework_str: str, port: int, endpoint: str, model_id: str, server_queue: Queue, ): """Run the server for the sync test. This needs to be defined outside the test function so that it can be run in a separate process.""" date_agent_description = "Agent that can return the current date." date_agent_cfg = AgentConfig( instructions="Use the available tools to obtain additional information to answer the query.", name="date_agent", model_id=model_id, description=date_agent_description, tools=[get_datetime], model_args={"parallel_tool_calls": False} if agent_framework_str not in ["agno", "llama_index"] else None, ) date_agent = AnyAgent.create( agent_framework=AgentFramework.from_string(agent_framework_str), agent_config=date_agent_cfg, ) from any_agent.serving import A2AServingConfig, _get_a2a_app, serve_a2a serving_config = A2AServingConfig( port=port, endpoint=f"/{endpoint}", log_level="info", ) app = _get_a2a_app(date_agent, serving_config=serving_config) serve_a2a( app, host=serving_config.host, port=serving_config.port, endpoint=serving_config.endpoint, log_level=serving_config.log_level, server_queue=server_queue, )
Run the server for the sync test. This needs to be defined outside the test function so that it can be run in a separate process.
_run_server
python
mozilla-ai/any-agent
tests/integration/test_load_and_run_multi_agent_a2a_tool.py
https://github.com/mozilla-ai/any-agent/blob/master/tests/integration/test_load_and_run_multi_agent_a2a_tool.py
Apache-2.0