hash
stringlengths
64
64
content
stringlengths
0
1.51M
b948cb71f2ab7d6f84041e8df687c4489830e3f41a70a58dd5f2dad1eb67ea26
"""Tests for OO layer of several polynomial representations. """ from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.domains import ZZ, QQ from sympy.polys.polyclasses import DMP, DMF, ANP from sympy.polys.polyerrors import (CoercionFailed, ExactQuotientFailed, NotInvertible) from sympy.polys.specialpolys import f_polys from sympy.testing.pytest import raises f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ] def test_DMP___init__(): f = DMP([[0], [], [0, 1, 2], [3]], ZZ) assert f.rep == [[1, 2], [3]] assert f.dom == ZZ assert f.lev == 1 f = DMP([[1, 2], [3]], ZZ, 1) assert f.rep == [[1, 2], [3]] assert f.dom == ZZ assert f.lev == 1 f = DMP({(1, 1): 1, (0, 0): 2}, ZZ, 1) assert f.rep == [[1, 0], [2]] assert f.dom == ZZ assert f.lev == 1 def test_DMP___eq__(): assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) assert DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) == \ DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) assert DMP([[[ZZ(1)]]], ZZ) != DMP([[ZZ(1)]], ZZ) assert DMP([[ZZ(1)]], ZZ) != DMP([[[ZZ(1)]]], ZZ) def test_DMP___bool__(): assert bool(DMP([[]], ZZ)) is False assert bool(DMP([[1]], ZZ)) is True def test_DMP_to_dict(): f = DMP([[3], [], [2], [], [8]], ZZ) assert f.to_dict() == \ {(4, 0): 3, (2, 0): 2, (0, 0): 8} assert f.to_sympy_dict() == \ {(4, 0): ZZ.to_sympy(3), (2, 0): ZZ.to_sympy(2), (0, 0): ZZ.to_sympy(8)} def test_DMP_properties(): assert DMP([[]], ZZ).is_zero is True assert DMP([[1]], ZZ).is_zero is False assert DMP([[1]], ZZ).is_one is True assert DMP([[2]], ZZ).is_one is False assert DMP([[1]], ZZ).is_ground is True assert DMP([[1], [2], [1]], ZZ).is_ground is False assert DMP([[1], [2, 0], [1, 0]], ZZ).is_sqf is True assert DMP([[1], [2, 0], [1, 0, 0]], ZZ).is_sqf is False assert DMP([[1, 2], [3]], ZZ).is_monic is True assert DMP([[2, 2], [3]], ZZ).is_monic is False assert DMP([[1, 2], [3]], ZZ).is_primitive is True assert DMP([[2, 4], [6]], ZZ).is_primitive is False def test_DMP_arithmetics(): f = DMP([[2], [2, 0]], ZZ) assert f.mul_ground(2) == DMP([[4], [4, 0]], ZZ) assert f.quo_ground(2) == DMP([[1], [1, 0]], ZZ) raises(ExactQuotientFailed, lambda: f.exquo_ground(3)) f = DMP([[-5]], ZZ) g = DMP([[5]], ZZ) assert f.abs() == g assert abs(f) == g assert g.neg() == f assert -g == f h = DMP([[]], ZZ) assert f.add(g) == h assert f + g == h assert g + f == h assert f + 5 == h assert 5 + f == h h = DMP([[-10]], ZZ) assert f.sub(g) == h assert f - g == h assert g - f == -h assert f - 5 == h assert 5 - f == -h h = DMP([[-25]], ZZ) assert f.mul(g) == h assert f * g == h assert g * f == h assert f * 5 == h assert 5 * f == h h = DMP([[25]], ZZ) assert f.sqr() == h assert f.pow(2) == h assert f**2 == h raises(TypeError, lambda: f.pow('x')) f = DMP([[1], [], [1, 0, 0]], ZZ) g = DMP([[2], [-2, 0]], ZZ) q = DMP([[2], [2, 0]], ZZ) r = DMP([[8, 0, 0]], ZZ) assert f.pdiv(g) == (q, r) assert f.pquo(g) == q assert f.prem(g) == r raises(ExactQuotientFailed, lambda: f.pexquo(g)) f = DMP([[1], [], [1, 0, 0]], ZZ) g = DMP([[1], [-1, 0]], ZZ) q = DMP([[1], [1, 0]], ZZ) r = DMP([[2, 0, 0]], ZZ) assert f.div(g) == (q, r) assert f.quo(g) == q assert f.rem(g) == r assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r raises(ExactQuotientFailed, lambda: f.exquo(g)) def test_DMP_functionality(): f = DMP([[1], [2, 0], [1, 0, 0]], ZZ) g = DMP([[1], [1, 0]], ZZ) h = DMP([[1]], ZZ) assert f.degree() == 2 assert f.degree_list() == (2, 2) assert f.total_degree() == 2 assert f.LC() == ZZ(1) assert f.TC() == ZZ(0) assert f.nth(1, 1) == ZZ(2) raises(TypeError, lambda: f.nth(0, 'x')) assert f.max_norm() == 2 assert f.l1_norm() == 4 u = DMP([[2], [2, 0]], ZZ) assert f.diff(m=1, j=0) == u assert f.diff(m=1, j=1) == u raises(TypeError, lambda: f.diff(m='x', j=0)) u = DMP([1, 2, 1], ZZ) v = DMP([1, 2, 1], ZZ) assert f.eval(a=1, j=0) == u assert f.eval(a=1, j=1) == v assert f.eval(1).eval(1) == ZZ(4) assert f.cofactors(g) == (g, g, h) assert f.gcd(g) == g assert f.lcm(g) == f u = DMP([[QQ(45), QQ(30), QQ(5)]], QQ) v = DMP([[QQ(1), QQ(2, 3), QQ(1, 9)]], QQ) assert u.monic() == v assert (4*f).content() == ZZ(4) assert (4*f).primitive() == (ZZ(4), f) f = DMP([[1], [2], [3], [4], [5], [6]], ZZ) assert f.trunc(3) == DMP([[1], [-1], [], [1], [-1], []], ZZ) f = DMP(f_4, ZZ) assert f.sqf_part() == -f assert f.sqf_list() == (ZZ(-1), [(-f, 1)]) f = DMP([[-1], [], [], [5]], ZZ) g = DMP([[3, 1], [], []], ZZ) h = DMP([[45, 30, 5]], ZZ) r = DMP([675, 675, 225, 25], ZZ) assert f.subresultants(g) == [f, g, h] assert f.resultant(g) == r f = DMP([1, 3, 9, -13], ZZ) assert f.discriminant() == -11664 f = DMP([QQ(2), QQ(0)], QQ) g = DMP([QQ(1), QQ(0), QQ(-16)], QQ) s = DMP([QQ(1, 32), QQ(0)], QQ) t = DMP([QQ(-1, 16)], QQ) h = DMP([QQ(1)], QQ) assert f.half_gcdex(g) == (s, h) assert f.gcdex(g) == (s, t, h) assert f.invert(g) == s f = DMP([[1], [2], [3]], QQ) raises(ValueError, lambda: f.half_gcdex(f)) raises(ValueError, lambda: f.gcdex(f)) raises(ValueError, lambda: f.invert(f)) f = DMP([1, 0, 20, 0, 150, 0, 500, 0, 625, -2, 0, -10, 9], ZZ) g = DMP([1, 0, 0, -2, 9], ZZ) h = DMP([1, 0, 5, 0], ZZ) assert g.compose(h) == f assert f.decompose() == [g, h] f = DMP([[1], [2], [3]], QQ) raises(ValueError, lambda: f.decompose()) raises(ValueError, lambda: f.sturm()) def test_DMP_exclude(): f = [[[[[[[[[[[[[[[[[[[[[[[[[[1]], [[]]]]]]]]]]]]]]]]]]]]]]]]]] J = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25] assert DMP(f, ZZ).exclude() == (J, DMP([1, 0], ZZ)) assert DMP([[1], [1, 0]], ZZ).exclude() == ([], DMP([[1], [1, 0]], ZZ)) def test_DMF__init__(): f = DMF(([[0], [], [0, 1, 2], [3]], [[1, 2, 3]]), ZZ) assert f.num == [[1, 2], [3]] assert f.den == [[1, 2, 3]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1, 2], [3]], [[1, 2, 3]]), ZZ, 1) assert f.num == [[1, 2], [3]] assert f.den == [[1, 2, 3]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[-1], [-2]], [[3], [-4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]], [[-3], [4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]], [[-3], [4]]), ZZ) assert f.num == [[-1], [-2]] assert f.den == [[3], [-4]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[]], [[-3], [4]]), ZZ) assert f.num == [[]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(17, ZZ, 1) assert f.num == [[17]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[1], [2]]), ZZ) assert f.num == [[1], [2]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF([[0], [], [0, 1, 2], [3]], ZZ) assert f.num == [[1, 2], [3]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF({(1, 1): 1, (0, 0): 2}, ZZ, 1) assert f.num == [[1, 0], [2]] assert f.den == [[1]] assert f.lev == 1 assert f.dom == ZZ f = DMF(([[QQ(1)], [QQ(2)]], [[-QQ(3)], [QQ(4)]]), QQ) assert f.num == [[-QQ(1)], [-QQ(2)]] assert f.den == [[QQ(3)], [-QQ(4)]] assert f.lev == 1 assert f.dom == QQ f = DMF(([[QQ(1, 5)], [QQ(2, 5)]], [[-QQ(3, 7)], [QQ(4, 7)]]), QQ) assert f.num == [[-QQ(7)], [-QQ(14)]] assert f.den == [[QQ(15)], [-QQ(20)]] assert f.lev == 1 assert f.dom == QQ raises(ValueError, lambda: DMF(([1], [[1]]), ZZ)) raises(ZeroDivisionError, lambda: DMF(([1], []), ZZ)) def test_DMF__bool__(): assert bool(DMF([[]], ZZ)) is False assert bool(DMF([[1]], ZZ)) is True def test_DMF_properties(): assert DMF([[]], ZZ).is_zero is True assert DMF([[]], ZZ).is_one is False assert DMF([[1]], ZZ).is_zero is False assert DMF([[1]], ZZ).is_one is True assert DMF(([[1]], [[2]]), ZZ).is_one is False def test_DMF_arithmetics(): f = DMF([[7], [-9]], ZZ) g = DMF([[-7], [9]], ZZ) assert f.neg() == -f == g f = DMF(([[1]], [[1], []]), ZZ) g = DMF(([[1]], [[1, 0]]), ZZ) h = DMF(([[1], [1, 0]], [[1, 0], []]), ZZ) assert f.add(g) == f + g == h assert g.add(f) == g + f == h h = DMF(([[-1], [1, 0]], [[1, 0], []]), ZZ) assert f.sub(g) == f - g == h h = DMF(([[1]], [[1, 0], []]), ZZ) assert f.mul(g) == f*g == h assert g.mul(f) == g*f == h h = DMF(([[1, 0]], [[1], []]), ZZ) assert f.quo(g) == f/g == h h = DMF(([[1]], [[1], [], [], []]), ZZ) assert f.pow(3) == f**3 == h h = DMF(([[1]], [[1, 0, 0, 0]]), ZZ) assert g.pow(3) == g**3 == h h = DMF(([[1, 0]], [[1]]), ZZ) assert g.pow(-1) == g**-1 == h def test_ANP___init__(): rep = [QQ(1), QQ(1)] mod = [QQ(1), QQ(0), QQ(1)] f = ANP(rep, mod, QQ) assert f.rep == [QQ(1), QQ(1)] assert f.mod == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ rep = {1: QQ(1), 0: QQ(1)} mod = {2: QQ(1), 0: QQ(1)} f = ANP(rep, mod, QQ) assert f.rep == [QQ(1), QQ(1)] assert f.mod == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ f = ANP(1, mod, QQ) assert f.rep == [QQ(1)] assert f.mod == [QQ(1), QQ(0), QQ(1)] assert f.dom == QQ f = ANP([1, 0.5], mod, QQ) assert all(QQ.of_type(a) for a in f.rep) raises(CoercionFailed, lambda: ANP([sqrt(2)], mod, QQ)) def test_ANP___eq__(): a = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ) b = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(2)], QQ) assert (a == a) is True assert (a != a) is False assert (a == b) is False assert (a != b) is True b = ANP([QQ(1), QQ(2)], [QQ(1), QQ(0), QQ(1)], QQ) assert (a == b) is False assert (a != b) is True def test_ANP___bool__(): assert bool(ANP([], [QQ(1), QQ(0), QQ(1)], QQ)) is False assert bool(ANP([QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ)) is True def test_ANP_properties(): mod = [QQ(1), QQ(0), QQ(1)] assert ANP([QQ(0)], mod, QQ).is_zero is True assert ANP([QQ(1)], mod, QQ).is_zero is False assert ANP([QQ(1)], mod, QQ).is_one is True assert ANP([QQ(2)], mod, QQ).is_one is False def test_ANP_arithmetics(): mod = [QQ(1), QQ(0), QQ(0), QQ(-2)] a = ANP([QQ(2), QQ(-1), QQ(1)], mod, QQ) b = ANP([QQ(1), QQ(2)], mod, QQ) c = ANP([QQ(-2), QQ(1), QQ(-1)], mod, QQ) assert a.neg() == -a == c c = ANP([QQ(2), QQ(0), QQ(3)], mod, QQ) assert a.add(b) == a + b == c assert b.add(a) == b + a == c c = ANP([QQ(2), QQ(-2), QQ(-1)], mod, QQ) assert a.sub(b) == a - b == c c = ANP([QQ(-2), QQ(2), QQ(1)], mod, QQ) assert b.sub(a) == b - a == c c = ANP([QQ(3), QQ(-1), QQ(6)], mod, QQ) assert a.mul(b) == a*b == c assert b.mul(a) == b*a == c c = ANP([QQ(-1, 43), QQ(9, 43), QQ(5, 43)], mod, QQ) assert a.pow(0) == a**(0) == ANP(1, mod, QQ) assert a.pow(1) == a**(1) == a assert a.pow(-1) == a**(-1) == c assert a.quo(a) == a.mul(a.pow(-1)) == a*a**(-1) == ANP(1, mod, QQ) c = ANP([], [1, 0, 0, -2], QQ) r1 = a.rem(b) (q, r2) = a.div(b) assert r1 == r2 == c == a % b raises(NotInvertible, lambda: a.div(c)) raises(NotInvertible, lambda: a.rem(c)) # Comparison with "hard-coded" value fails despite looking identical # from sympy import Rational # c = ANP([Rational(11, 10), Rational(-1, 5), Rational(-3, 5)], [1, 0, 0, -2], QQ) assert q == a/b # == c def test_ANP_unify(): mod = [QQ(1), QQ(0), QQ(-2)] a = ANP([QQ(1)], mod, QQ) b = ANP([ZZ(1)], mod, ZZ) assert a.unify(b)[0] == QQ assert b.unify(a)[0] == QQ assert a.unify(a)[0] == QQ assert b.unify(b)[0] == ZZ def test___hash__(): # issue 5571 # Make sure int vs. long doesn't affect hashing with Python ground types assert DMP([[1, 2], [3]], ZZ) == DMP([[int(1), int(2)], [int(3)]], ZZ) assert hash(DMP([[1, 2], [3]], ZZ)) == hash(DMP([[int(1), int(2)], [int(3)]], ZZ)) assert DMF( ([[1, 2], [3]], [[1]]), ZZ) == DMF(([[int(1), int(2)], [int(3)]], [[int(1)]]), ZZ) assert hash(DMF(([[1, 2], [3]], [[1]]), ZZ)) == hash(DMF(([[int(1), int(2)], [int(3)]], [[int(1)]]), ZZ)) assert ANP([1, 1], [1, 0, 1], ZZ) == ANP([int(1), int(1)], [int(1), int(0), int(1)], ZZ) assert hash( ANP([1, 1], [1, 0, 1], ZZ)) == hash(ANP([int(1), int(1)], [int(1), int(0), int(1)], ZZ))
b18aa7b9261b3995024959e8365e45f353cd25f9cf4681f352d13c06ba5cd892
"""Tests for algorithms for computing symbolic roots of polynomials. """ from sympy.core.numbers import (I, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, Wild, symbols) from sympy.functions.elementary.complexes import (conjugate, im, re) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import (root, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (acos, cos, sin) from sympy.polys.domains.integerring import ZZ from sympy.sets.sets import Interval from sympy.simplify.powsimp import powsimp from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof from sympy.polys.polyroots import (root_factors, roots_linear, roots_quadratic, roots_cubic, roots_quartic, roots_cyclotomic, roots_binomial, preprocess_roots, roots) from sympy.polys.orthopolys import legendre_poly from sympy.polys.polyerrors import PolynomialError from sympy.polys.polyutils import _nsort from sympy.testing.pytest import raises, slow from sympy.core.random import verify_numerically import mpmath from itertools import product a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z') def _check(roots): # this is the desired invariant for roots returned # by all_roots. It is trivially true for linear # polynomials. nreal = sum([1 if i.is_real else 0 for i in roots]) assert list(sorted(roots[:nreal])) == list(roots[:nreal]) for ix in range(nreal, len(roots), 2): if not ( roots[ix + 1] == roots[ix] or roots[ix + 1] == conjugate(roots[ix])): return False return True def test_roots_linear(): assert roots_linear(Poly(2*x + 1, x)) == [Rational(-1, 2)] def test_roots_quadratic(): assert roots_quadratic(Poly(2*x**2, x)) == [0, 0] assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [Rational(-3, 2), 0] assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2] assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2] _check(Poly(2*x**2 + 4*x + 3, x).all_roots()) f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c) assert roots_quadratic(Poly(f, x)) == \ [-e*(a + c)/(a - c) - sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c), -e*(a + c)/(a - c) + sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)] # check for simplification f = Poly(y*x**2 - 2*x - 2*y, x) assert roots_quadratic(f) == \ [-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y] f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x) assert roots_quadratic(f) == \ [1,y**2 + 1] f = Poly(sqrt(2)*x**2 - 1, x) r = roots_quadratic(f) assert r == _nsort(r) # issue 8255 f = Poly(-24*x**2 - 180*x + 264) assert [w.n(2) for w in f.all_roots(radicals=True)] == \ [w.n(2) for w in f.all_roots(radicals=False)] for _a, _b, _c in product((-2, 2), (-2, 2), (0, -1)): f = Poly(_a*x**2 + _b*x + _c) roots = roots_quadratic(f) assert roots == _nsort(roots) def test_issue_7724(): eq = Poly(x**4*I + x**2 + I, x) assert roots(eq) == { sqrt(I/2 + sqrt(5)*I/2): 1, sqrt(-sqrt(5)*I/2 + I/2): 1, -sqrt(I/2 + sqrt(5)*I/2): 1, -sqrt(-sqrt(5)*I/2 + I/2): 1} def test_issue_8438(): p = Poly([1, y, -2, -3], x).as_expr() roots = roots_cubic(Poly(p, x), x) z = Rational(-3, 2) - I*7/2 # this will fail in code given in commit msg post = [r.subs(y, z) for r in roots] assert set(post) == \ set(roots_cubic(Poly(p.subs(y, z), x))) # /!\ if p is not made an expression, this is *very* slow assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post) def test_issue_8285(): roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots() assert _check(roots) f = Poly(x**4 + 5*x**2 + 6, x) ro = [rootof(f, i) for i in range(4)] roots = Poly(x**4 + 5*x**2 + 6, x).all_roots() assert roots == ro assert _check(roots) # more than 2 complex roots from which to identify the # imaginary ones roots = Poly(2*x**8 - 1).all_roots() assert _check(roots) assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail def test_issue_8289(): roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots() assert _check(roots) roots = Poly(x**6 + 3*x**3 + 2, x).all_roots() assert _check(roots) roots = Poly(x**6 - x + 1).all_roots() assert _check(roots) # all imaginary roots with multiplicity of 2 roots = Poly(x**4 + 4*x**2 + 4, x).all_roots() assert _check(roots) def test_issue_14291(): assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1) ).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I] p = x**4 + 10*x**2 + 1 ans = [rootof(p, i) for i in range(4)] assert Poly(p).all_roots() == ans _check(ans) def test_issue_13340(): eq = Poly(y**3 + exp(x)*y + x, y, domain='EX') roots_d = roots(eq) assert len(roots_d) == 3 def test_issue_14522(): eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x) roots_eq = roots(eq) assert all(eq(r) == 0 for r in roots_eq) def test_issue_15076(): sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t)) assert sol[0].has(x) def test_issue_16589(): eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x) roots_eq = roots(eq) assert 0 in roots_eq def test_roots_cubic(): assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0] assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1] # valid for arbitrary y (issue 21263) r = root(y, 3) assert roots_cubic(Poly(x**3 - y, x)) == [r, r*(-S.Half + sqrt(3)*I/2), r*(-S.Half - sqrt(3)*I/2)] # simpler form when y is negative assert roots_cubic(Poly(x**3 - -1, x)) == \ [-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \ S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2 eq = -x**3 + 2*x**2 + 3*x - 2 assert roots(eq, trig=True, multiple=True) == \ roots_cubic(Poly(eq, x), trig=True) == [ Rational(2, 3) + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3, -2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + Rational(2, 3), -2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + Rational(2, 3), ] def test_roots_quartic(): assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0] assert roots_quartic(Poly(x**4 + x**3, x)) in [ [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1] ] assert roots_quartic(Poly(x**4 - x**3, x)) in [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ] lhs = roots_quartic(Poly(x**4 + x, x)) rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One] assert sorted(lhs, key=hash) == sorted(rhs, key=hash) # test of all branches of roots quartic for i, (a, b, c, d) in enumerate([(1, 2, 3, 0), (3, -7, -9, 9), (1, 2, 3, 4), (1, 2, 3, 4), (-7, -3, 3, -6), (-3, 5, -6, -4), (6, -5, -10, -3)]): if i == 2: c = -a*(a**2/S(8) - b/S(2)) elif i == 3: d = a*(a*(a**2*Rational(3, 256) - b/S(16)) + c/S(4)) eq = x**4 + a*x**3 + b*x**2 + c*x + d ans = roots_quartic(Poly(eq, x)) assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans) # not all symbolic quartics are unresolvable eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x) sol = roots_quartic(eq) assert all(verify_numerically(eq.subs(x, i), 0) for i in sol) z = symbols('z', negative=True) eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5 zans = roots_quartic(Poly(eq, x)) assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans]) # but some are (see also issue 4989) # it's ok if the solution is not Piecewise, but the tests below should pass eq = Poly(y*x**4 + x**3 - x + z, x) ans = roots_quartic(eq) assert all(type(i) == Piecewise for i in ans) reps = ( dict(y=Rational(-1, 3), z=Rational(-1, 4)), # 4 real dict(y=Rational(-1, 3), z=Rational(-1, 2)), # 2 real dict(y=Rational(-1, 3), z=-2)) # 0 real for rep in reps: sol = roots_quartic(Poly(eq.subs(rep), x)) assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)]) def test_issue_21287(): assert not any(isinstance(i, Piecewise) for i in roots_quartic( Poly(x**4 - x**2*(3 + 5*I) + 2*x*(-1 + I) - 1 + 3*I, x))) def test_roots_cyclotomic(): assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1] assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1] assert roots_cyclotomic(cyclotomic_poly( 3, x, polys=True)) == [Rational(-1, 2) - I*sqrt(3)/2, Rational(-1, 2) + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I] assert roots_cyclotomic(cyclotomic_poly( 6, x, polys=True)) == [S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [ -cos(pi/7) - I*sin(pi/7), -cos(pi/7) + I*sin(pi/7), -cos(pi*Rational(3, 7)) - I*sin(pi*Rational(3, 7)), -cos(pi*Rational(3, 7)) + I*sin(pi*Rational(3, 7)), cos(pi*Rational(2, 7)) - I*sin(pi*Rational(2, 7)), cos(pi*Rational(2, 7)) + I*sin(pi*Rational(2, 7)), ] assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [ -sqrt(2)/2 - I*sqrt(2)/2, -sqrt(2)/2 + I*sqrt(2)/2, sqrt(2)/2 - I*sqrt(2)/2, sqrt(2)/2 + I*sqrt(2)/2, ] assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [ -sqrt(3)/2 - I/2, -sqrt(3)/2 + I/2, sqrt(3)/2 - I/2, sqrt(3)/2 + I/2, ] assert roots_cyclotomic( cyclotomic_poly(1, x, polys=True), factor=True) == [1] assert roots_cyclotomic( cyclotomic_poly(2, x, polys=True), factor=True) == [-1] assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \ [-root(-1, 3), -1 + root(-1, 3)] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \ [-I, I] assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \ [-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3] assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \ [1 - root(-1, 3), root(-1, 3)] def test_roots_binomial(): assert roots_binomial(Poly(5*x, x)) == [0] assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0] assert roots_binomial(Poly(5*x + 2, x)) == [Rational(-2, 5)] A = 10**Rational(3, 4)/10 assert roots_binomial(Poly(5*x**4 + 2, x)) == \ [-A - A*I, -A + A*I, A - A*I, A + A*I] _check(roots_binomial(Poly(x**8 - 2))) a1 = Symbol('a1', nonnegative=True) b1 = Symbol('b1', nonnegative=True) r0 = roots_quadratic(Poly(a1*x**2 + b1, x)) r1 = roots_binomial(Poly(a1*x**2 + b1, x)) assert powsimp(r0[0]) == powsimp(r1[0]) assert powsimp(r0[1]) == powsimp(r1[1]) for a, b, s, n in product((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)): if a == b and a != 1: # a == b == 1 is sufficient continue p = Poly(a*x**n + s*b) ans = roots_binomial(p) assert ans == _nsort(ans) # issue 8813 assert roots(Poly(2*x**3 - 16*y**3, x)) == { 2*y*(Rational(-1, 2) - sqrt(3)*I/2): 1, 2*y: 1, 2*y*(Rational(-1, 2) + sqrt(3)*I/2): 1} def test_roots_preprocessing(): f = a*y*x**2 + y - b coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1 assert poly == Poly(a*y*x**2 + y - b, x) f = c**3*x**3 + c**2*x**2 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + x + a, x) f = c**3*x**3 + c**2*x**2 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + a, x) f = c**3*x**3 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x + a, x) f = c**3*x**3 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + a, x) E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 20*E*J/(F*L**2) assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \ 809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875 f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)]) g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)]) assert preprocess_roots(f) == (x, g) def test_roots0(): assert roots(1, x) == {} assert roots(x, x) == {S.Zero: 1} assert roots(x**9, x) == {S.Zero: 9} assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(2*x + 1, x) == {Rational(-1, 2): 1} assert roots((2*x + 1)**2, x) == {Rational(-1, 2): 2} assert roots((2*x + 1)**5, x) == {Rational(-1, 2): 5} assert roots((2*x + 1)**10, x) == {Rational(-1, 2): 10} assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1} assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2} assert roots(((2*x - 3)**2).expand(), x) == {Rational( 3, 2): 2} assert roots(((2*x + 3)**2).expand(), x) == {Rational(-3, 2): 2} assert roots(((2*x - 3)**3).expand(), x) == {Rational( 3, 2): 3} assert roots(((2*x + 3)**3).expand(), x) == {Rational(-3, 2): 3} assert roots(((2*x - 3)**5).expand(), x) == {Rational( 3, 2): 5} assert roots(((2*x + 3)**5).expand(), x) == {Rational(-3, 2): 5} assert roots(((a*x - b)**5).expand(), x) == { b/a: 5} assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5} assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1} assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, S.NegativeOne: 2} assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \ {S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1} assert roots(x**8 - 1, x) == { sqrt(2)/2 + I*sqrt(2)/2: 1, sqrt(2)/2 - I*sqrt(2)/2: 1, -sqrt(2)/2 + I*sqrt(2)/2: 1, -sqrt(2)/2 - I*sqrt(2)/2: 1, S.One: 1, -S.One: 1, I: 1, -I: 1 } f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \ 224*x**7 - 384*x**8 - 64*x**9 assert roots(f) == {S.Zero: 2, -S(2): 2, S(2): 1, Rational(-7, 2): 1, Rational(-3, 2): 1, Rational(-1, 2): 1, Rational(3, 2): 1} assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1} assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {} assert roots(((x - 2)*( x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \ {-S(3): 1, S(2): 1, S(4): 1, S(5): 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \ {-2*I: 1, 2*I: 1, -S(2): 1} assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \ {S.One: 1, S.Zero: 1, -S(2): 1, -2*I: 1, 2*I: 1} r1_2, r1_3 = S.Half, Rational(1, 3) x0 = (3*sqrt(33) + 19)**r1_3 x1 = 4/x0/3 x2 = x0/3 x3 = sqrt(3)*I/2 x4 = x3 - r1_2 x5 = -x3 - r1_2 assert roots(x**3 + x**2 - x + 1, x, cubics=True) == { -x1 - x2 - r1_3: 1, -x1/x4 - x2*x4 - r1_3: 1, -x1/x5 - x2*x5 - r1_3: 1, } f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4) r13_20, r1_20 = [ Rational(*r) for r in ((13, 20), (1, 20)) ] s2 = sqrt(2) assert roots(f, x) == { r13_20 + r1_20*sqrt(1 - 8*I*s2): 1, r13_20 - r1_20*sqrt(1 - 8*I*s2): 1, r13_20 + r1_20*sqrt(1 + 8*I*s2): 1, r13_20 - r1_20*sqrt(1 + 8*I*s2): 1, } f = x**4 + x**3 + x**2 + x + 1 r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ] assert roots(f, x) == { -r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, } f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2 assert roots(f, z) == { S.One: 1, S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, } assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {} assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {} assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1} assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1} assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1} assert roots( (x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1} assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One] assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I] ar, br = symbols('a, b', real=True) p = x**2*(ar-br)**2 + 2*x*(br-ar) + 1 assert roots(p, x, filter='R') == {1/(ar - br): 2} assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero] assert roots(1234, x, multiple=True) == [] f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1 assert roots(f) == { -I*sin(pi/7) + cos(pi/7): 1, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, I*sin(pi/7) + cos(pi/7): 1, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, } g = ((x**2 + 1)*f**2).expand() assert roots(g) == { -I*sin(pi/7) + cos(pi/7): 2, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, I*sin(pi/7) + cos(pi/7): 2, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, -I: 1, I: 1, } r = roots(x**3 + 40*x + 64) real_root = [rx for rx in r if rx.is_real][0] cr = 108 + 6*sqrt(1074) assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3) eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX') assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1} eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 + 175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x - 26*x + 24, x, domain='EX') assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1, -4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1} eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 + 14*sqrt(2), x, domain='EX') assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1} assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \ {-sqrt(2) + root(7, 3)*(-S.Half - sqrt(3)*I/2): 1, -sqrt(2) + root(7, 3)*(-S.Half + sqrt(3)*I/2): 1, -sqrt(2) + root(7, 3): 1} def test_roots_slow(): """Just test that calculating these roots does not hang. """ a, b, c, d, x = symbols("a,b,c,d,x") f1 = x**2*c + (a/b) + x*c*d - a f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d) assert list(roots(f1, x).values()) == [1, 1] assert list(roots(f2, x).values()) == [1, 1] (zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k") e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k) assert list(roots(e1 - e2, k).values()) == [1, 1, 1] f = x**3 + 2*x**2 + 8 R = list(roots(f).keys()) assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R]) def test_roots_inexact(): R1 = roots(x**2 + x + 1, x, multiple=True) R2 = roots(x**2 + x + 1.0, x, multiple=True) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-12 f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \ + 144.0*(2*sqrt(3.0) + 9.0) R1 = roots(f, multiple=True) R2 = (-12.7530479110482, -3.85012393732929, 4.89897948556636, 7.46155167569183) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-10 def test_roots_preprocessed(): E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 assert roots(f, x) == {} R1 = roots(f.evalf(), x, multiple=True) R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065, 503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851] w = Wild('w') p = w*E*J/(F*L**2) assert len(R1) == len(R2) for r1, r2 in zip(R1, R2): match = r1.match(p) assert match is not None and abs(match[w] - r2) < 1e-10 def test_roots_mixed(): f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4 _re, _im = intervals(f, all=True) _nroots = nroots(f) _sroots = roots(f, multiple=True) _re = [ Interval(a, b) for (a, b), _ in _re ] _im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b), _ in _im ] _intervals = _re + _im _sroots = [ r.evalf() for r in _sroots ] _nroots = sorted(_nroots, key=lambda x: x.sort_key()) _sroots = sorted(_sroots, key=lambda x: x.sort_key()) for _roots in (_nroots, _sroots): for i, r in zip(_intervals, _roots): if r.is_real: assert r in i else: assert (re(r), im(r)) in i def test_root_factors(): assert root_factors(Poly(1, x)) == [Poly(1, x)] assert root_factors(Poly(x, x)) == [Poly(x, x)] assert root_factors(x**2 - 1, x) == [x + 1, x - 1] assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)] assert root_factors((x**4 - 1)**2) == \ [x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I] assert root_factors(Poly(x**4 - 1, x), filter='Z') == \ [Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)] assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \ [x, x, x**6 + 6*x**4 + 12*x**2 + 8] @slow def test_nroots1(): n = 64 p = legendre_poly(n, x, polys=True) raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5)) roots = p.nroots(n=3) # The order of roots matters. They are ordered from smallest to the # largest. assert [str(r) for r in roots] == \ ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961', '-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841', '-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649', '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402', '-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121', '-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170', '0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753', '0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930', '0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999'] def test_nroots2(): p = Poly(x**5 + 3*x + 1, x) roots = p.nroots(n=3) # The order of roots matters. The roots are ordered by their real # components (if they agree, then by their imaginary components), # with real roots appearing first. assert [str(r) for r in roots] == \ ['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I', '1.01 - 0.937*I', '1.01 + 0.937*I'] roots = p.nroots(n=5) assert [str(r) for r in roots] == \ ['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I', '1.0051 - 0.93726*I', '1.0051 + 0.93726*I'] def test_roots_composite(): assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3 def test_issue_19113(): eq = cos(x)**3 - cos(x) + 1 raises(PolynomialError, lambda: roots(eq)) def test_issue_17454(): assert roots([1, -3*(-4 - 4*I)**2/8 + 12*I, 0], multiple=True) == [0, 0] def test_issue_20913(): assert Poly(x + 9671406556917067856609794, x).real_roots() == [-9671406556917067856609794] assert Poly(x**3 + 4, x).real_roots() == [-2**(S(2)/3)]
690066feb80ac631ce09392d39827e688e42a5be7d201bd6262c990a8c1c33e2
"""Utilities for algebraic number theory. """ from sympy.core.sympify import sympify from sympy.ntheory.factor_ import factorint from sympy.polys.domains.rationalfield import QQ from sympy.polys.domains.integerring import ZZ from sympy.polys.matrices.exceptions import DMRankError from sympy.polys.numberfields.minpoly import minpoly from sympy.printing.lambdarepr import IntervalPrinter from sympy.utilities.decorator import public from sympy.utilities.lambdify import lambdify from mpmath import mp def is_rat(c): r""" Test whether an argument is of an acceptable type to be used as a rational number. Explanation =========== Returns ``True`` on any argument of type ``int``, :ref:`ZZ`, or :ref:`QQ`. See Also ======== is_int """ # ``c in QQ`` is too accepting (e.g. ``3.14 in QQ`` is ``True``), # ``QQ.of_type(c)`` is too demanding (e.g. ``QQ.of_type(3)`` is ``False``). # # Meanwhile, if gmpy2 is installed then ``ZZ.of_type()`` accepts only # ``mpz``, not ``int``, so we need another clause to ensure ``int`` is # accepted. return isinstance(c, int) or ZZ.of_type(c) or QQ.of_type(c) def is_int(c): r""" Test whether an argument is of an acceptable type to be used as an integer. Explanation =========== Returns ``True`` on any argument of type ``int`` or :ref:`ZZ`. See Also ======== is_rat """ # If gmpy2 is installed then ``ZZ.of_type()`` accepts only # ``mpz``, not ``int``, so we need another clause to ensure ``int`` is # accepted. return isinstance(c, int) or ZZ.of_type(c) def get_num_denom(c): r""" Given any argument on which :py:func:`~.is_rat` is ``True``, return the numerator and denominator of this number. See Also ======== is_rat """ r = QQ(c) return r.numerator, r.denominator @public def extract_fundamental_discriminant(a): r""" Extract a fundamental discriminant from an integer *a*. Explanation =========== Given any rational integer *a* that is 0 or 1 mod 4, write $a = d f^2$, where $d$ is either 1 or a fundamental discriminant, and return a pair of dictionaries ``(D, F)`` giving the prime factorizations of $d$ and $f$ respectively, in the same format returned by :py:func:`~.factorint`. A fundamental discriminant $d$ is different from unity, and is either 1 mod 4 and squarefree, or is 0 mod 4 and such that $d/4$ is squarefree and 2 or 3 mod 4. This is the same as being the discriminant of some quadratic field. Examples ======== >>> from sympy.polys.numberfields.utilities import extract_fundamental_discriminant >>> print(extract_fundamental_discriminant(-432)) ({3: 1, -1: 1}, {2: 2, 3: 1}) For comparison: >>> from sympy import factorint >>> print(factorint(-432)) {2: 4, 3: 3, -1: 1} Parameters ========== a: int, must be 0 or 1 mod 4 Returns ======= Pair ``(D, F)`` of dictionaries. Raises ====== ValueError If *a* is not 0 or 1 mod 4. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Prop. 5.1.3) """ if a % 4 not in [0, 1]: raise ValueError('To extract fundamental discriminant, number must be 0 or 1 mod 4.') if a == 0: return {}, {0: 1} if a == 1: return {}, {} a_factors = factorint(a) D = {} F = {} # First pass: just make d squarefree, and a/d a perfect square. # We'll count primes (and units! i.e. -1) that are 3 mod 4 and present in d. num_3_mod_4 = 0 for p, e in a_factors.items(): if e % 2 == 1: D[p] = 1 if p % 4 == 3: num_3_mod_4 += 1 if e >= 3: F[p] = (e - 1) // 2 else: F[p] = e // 2 # Second pass: if d is cong. to 2 or 3 mod 4, then we must steal away # another factor of 4 from f**2 and give it to d. even = 2 in D if even or num_3_mod_4 % 2 == 1: e2 = F[2] assert e2 > 0 if e2 == 1: del F[2] else: F[2] = e2 - 1 D[2] = 3 if even else 2 return D, F @public class AlgIntPowers: r""" Compute the powers of an algebraic integer. Explanation =========== Given an algebraic integer $\theta$ by its monic irreducible polynomial ``T`` over :ref:`ZZ`, this class computes representations of arbitrarily high powers of $\theta$, as :ref:`ZZ`-linear combinations over $\{1, \theta, \ldots, \theta^{n-1}\}$, where $n = \deg(T)$. The representations are computed using the linear recurrence relations for powers of $\theta$, derived from the polynomial ``T``. See [1], Sec. 4.2.2. Optionally, the representations may be reduced with respect to a modulus. Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.utilities import AlgIntPowers >>> T = Poly(cyclotomic_poly(5)) >>> zeta_pow = AlgIntPowers(T) >>> print(zeta_pow[0]) [1, 0, 0, 0] >>> print(zeta_pow[1]) [0, 1, 0, 0] >>> print(zeta_pow[4]) # doctest: +SKIP [-1, -1, -1, -1] >>> print(zeta_pow[24]) # doctest: +SKIP [-1, -1, -1, -1] References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* """ def __init__(self, T, modulus=None): """ Parameters ========== T : :py:class:`~.Poly` The monic irreducible polynomial over :ref:`ZZ` defining the algebraic integer. modulus : int, None, optional If not ``None``, all representations will be reduced w.r.t. this. """ self.T = T self.modulus = modulus self.n = T.degree() self.powers_n_and_up = [[-c % self for c in reversed(T.rep.rep)][:-1]] self.max_so_far = self.n def red(self, exp): return exp if self.modulus is None else exp % self.modulus def __rmod__(self, other): return self.red(other) def compute_up_through(self, e): m = self.max_so_far if e <= m: return n = self.n r = self.powers_n_and_up c = r[0] for k in range(m+1, e+1): b = r[k-1-n][n-1] r.append( [c[0]*b % self] + [ (r[k-1-n][i-1] + c[i]*b) % self for i in range(1, n) ] ) self.max_so_far = e def get(self, e): n = self.n if e < 0: raise ValueError('Exponent must be non-negative.') elif e < n: return [1 if i == e else 0 for i in range(n)] else: self.compute_up_through(e) return self.powers_n_and_up[e - n] def __getitem__(self, item): return self.get(item) @public def coeff_search(m, R): r""" Generate coefficients for searching through polynomials. Explanation =========== Lead coeff is always non-negative. Explore all combinations with coeffs bounded in absolute value before increasing the bound. Skip the all-zero list, and skip any repeats. See examples. Examples ======== >>> from sympy.polys.numberfields.utilities import coeff_search >>> cs = coeff_search(2, 1) >>> C = [next(cs) for i in range(13)] >>> print(C) [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]] Parameters ========== m : int Length of coeff list. R : int Initial max abs val for coeffs (will increase as search proceeds). Returns ======= generator Infinite generator of lists of coefficients. """ R0 = R c = [R] * m while True: if R == R0 or R in c or -R in c: yield c[:] j = m - 1 while c[j] == -R: j -= 1 c[j] -= 1 for i in range(j + 1, m): c[i] = R for j in range(m): if c[j] != 0: break else: R += 1 c = [R] * m def supplement_a_subspace(M): r""" Extend a basis for a subspace to a basis for the whole space. Explanation =========== Given an $n \times r$ matrix *M* of rank $r$ (so $r \leq n$), this function computes an invertible $n \times n$ matrix $B$ such that the first $r$ columns of $B$ equal *M*. This operation can be interpreted as a way of extending a basis for a subspace, to give a basis for the whole space. To be precise, suppose you have an $n$-dimensional vector space $V$, with basis $\{v_1, v_2, \ldots, v_n\}$, and an $r$-dimensional subspace $W$ of $V$, spanned by a basis $\{w_1, w_2, \ldots, w_r\}$, where the $w_j$ are given as linear combinations of the $v_i$. If the columns of *M* represent the $w_j$ as such linear combinations, then the columns of the matrix $B$ computed by this function give a new basis $\{u_1, u_2, \ldots, u_n\}$ for $V$, again relative to the $\{v_i\}$ basis, and such that $u_j = w_j$ for $1 \leq j \leq r$. Examples ======== Note: The function works in terms of columns, so in these examples we print matrix transposes in order to make the columns easier to inspect. >>> from sympy.polys.matrices import DM >>> from sympy import QQ, FF >>> from sympy.polys.numberfields.utilities import supplement_a_subspace >>> M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose() >>> print(supplement_a_subspace(M).to_Matrix().transpose()) Matrix([[1, 7, 0], [2, 3, 4], [1, 0, 0]]) >>> M2 = M.convert_to(FF(7)) >>> print(M2.to_Matrix().transpose()) Matrix([[1, 0, 0], [2, 3, -3]]) >>> print(supplement_a_subspace(M2).to_Matrix().transpose()) Matrix([[1, 0, 0], [2, 3, -3], [0, 1, 0]]) Parameters ========== M : :py:class:`~.DomainMatrix` The columns give the basis for the subspace. Returns ======= :py:class:`~.DomainMatrix` This matrix is invertible and its first $r$ columns equal *M*. Raises ====== DMRankError If *M* was not of maximal rank. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory* (See Sec. 2.3.2.) """ n, r = M.shape # Let In be the n x n identity matrix. # Form the augmented matrix [M | In] and compute RREF. Maug = M.hstack(M.eye(n, M.domain)) R, pivots = Maug.rref() if pivots[:r] != tuple(range(r)): raise DMRankError('M was not of maximal rank') # Let J be the n x r matrix equal to the first r columns of In. # Since M is of rank r, RREF reduces [M | In] to [J | A], where A is the product of # elementary matrices Ei corresp. to the row ops performed by RREF. Since the Ei are # invertible, so is A. Let B = A^(-1). A = R[:, r:] B = A.inv() # Then B is the desired matrix. It is invertible, since B^(-1) == A. # And A * [M | In] == [J | A] # => A * M == J # => M == B * J == the first r columns of B. return B @public def isolate(alg, eps=None, fast=False): """ Find a rational isolating interval for a real algebraic number. Examples ======== >>> from sympy import isolate, sqrt, Rational >>> print(isolate(sqrt(2))) # doctest: +SKIP (1, 2) >>> print(isolate(sqrt(2), eps=Rational(1, 100))) (24/17, 17/12) Parameters ========== alg : str, int, :py:class:`~.Expr` The algebraic number to be isolated. Must be a real number, to use this particular function. However, see also :py:meth:`.Poly.intervals`, which isolates complex roots when you pass ``all=True``. eps : positive element of :ref:`QQ`, None, optional (default=None) Precision to be passed to :py:meth:`.Poly.refine_root` fast : boolean, optional (default=False) Say whether fast refinement procedure should be used. (Will be passed to :py:meth:`.Poly.refine_root`.) Returns ======= Pair of rational numbers defining an isolating interval for the given algebraic number. See Also ======== .Poly.intervals """ alg = sympify(alg) if alg.is_Rational: return (alg, alg) elif not alg.is_real: raise NotImplementedError( "complex algebraic numbers are not supported") func = lambdify((), alg, modules="mpmath", printer=IntervalPrinter()) poly = minpoly(alg, polys=True) intervals = poly.intervals(sqf=True) dps, done = mp.dps, False try: while not done: alg = func() for a, b in intervals: if a <= alg.a and alg.b <= b: done = True break else: mp.dps *= 2 finally: mp.dps = dps if eps is not None: a, b = poly.refine_root(a, b, eps=eps, fast=fast) return (a, b)
372e0f8ccaedc7bd24eafc159a2bda47086f77842a923edc162b7dec1ceb6f49
"""Prime ideals in number fields. """ from sympy.core.expr import Expr from sympy.polys.polytools import Poly from sympy.polys.domains.finitefield import FF from sympy.polys.domains.rationalfield import QQ from sympy.polys.domains.integerring import ZZ from sympy.polys.matrices.domainmatrix import DomainMatrix from sympy.polys.polyerrors import CoercionFailed, GeneratorsNeeded from sympy.polys.polyutils import IntegerPowerable from sympy.utilities.decorator import public from .basis import round_two, nilradical_mod_p from .exceptions import StructureError from .modules import ModuleEndomorphism, find_min_poly from .utilities import coeff_search, supplement_a_subspace def _check_formal_conditions_for_maximal_order(submodule): r""" Several functions in this module accept an argument which is to be a :py:class:`~.Submodule` representing the maximal order in a number field, such as returned by the :py:func:`~sympy.polys.numberfields.basis.round_two` algorithm. We do not attempt to check that the given ``Submodule`` actually represents a maximal order, but we do check a basic set of formal conditions that the ``Submodule`` must satisfy, at a minimum. The purpose is to catch an obviously ill-formed argument. """ prefix = 'The submodule representing the maximal order should ' cond = None if not submodule.is_power_basis_submodule(): cond = 'be a direct submodule of a power basis.' elif not submodule.starts_with_unity(): cond = 'have 1 as its first generator.' elif not submodule.is_sq_maxrank_HNF(): cond = 'have square matrix, of maximal rank, in Hermite Normal Form.' if cond is not None: raise StructureError(prefix + cond) class PrimeIdeal(IntegerPowerable): r""" A prime ideal in a ring of algebraic integers. """ def __init__(self, ZK, p, alpha, f, e=None): """ Parameters ========== ZK : :py:class:`~.Submodule` The maximal order where this ideal lives. p : int The rational prime this ideal divides. alpha : :py:class:`~.PowerBasisElement` Such that the ideal is equal to ``p*ZK + alpha*ZK``. f : int The inertia degree. e : int, ``None``, optional The ramification index, if already known. If ``None``, we will compute it here. """ _check_formal_conditions_for_maximal_order(ZK) self.ZK = ZK self.p = p self.alpha = alpha self.f = f self._test_factor = None self.e = e if e is not None else self.valuation(p * ZK) def pretty(self, field_gen=None, just_gens=False): """ Print a representation of this prime ideal. Examples ======== >>> from sympy import cyclotomic_poly, QQ >>> from sympy.abc import x, zeta >>> T = cyclotomic_poly(7, x) >>> K = QQ.algebraic_field((T, zeta)) >>> P = K.primes_above(11) >>> print(P[0].pretty()) [ (11, x**3 + 5*x**2 + 4*x - 1) e=1, f=3 ] >>> print(P[0].pretty(field_gen=zeta)) [ (11, zeta**3 + 5*zeta**2 + 4*zeta - 1) e=1, f=3 ] >>> print(P[0].pretty(field_gen=zeta, just_gens=True)) (11, zeta**3 + 5*zeta**2 + 4*zeta - 1) Parameters ========== field_gen : :py:class:`~.Symbol`, ``None``, optional (default=None) The symbol to use for the generator of the field. This will appear in our representation of ``self.alpha``. If ``None``, we use the variable of the defining polynomial of ``self.ZK``. just_gens : bool, optional (default=False) If ``True``, just print the "(p, alpha)" part, showing "just the generators" of the prime ideal. Otherwise, print a string of the form "[ (p, alpha) e=..., f=... ]", giving the ramification index and inertia degree, along with the generators. """ field_gen = field_gen or self.ZK.parent.T.gen p, alpha, e, f = self.p, self.alpha, self.e, self.f alpha_rep = str(alpha.numerator(x=field_gen).as_expr()) if alpha.denom > 1: alpha_rep = f'({alpha_rep})/{alpha.denom}' gens = f'({p}, {alpha_rep})' if just_gens: return gens return f'[ {gens} e={e}, f={f} ]' def __repr__(self): return self.pretty() def as_submodule(self): r""" Represent this prime ideal as a :py:class:`~.Submodule`. Explanation =========== The :py:class:`~.PrimeIdeal` class serves to bundle information about a prime ideal, such as its inertia degree, ramification index, and two-generator representation, as well as to offer helpful methods like :py:meth:`~.PrimeIdeal.valuation` and :py:meth:`~.PrimeIdeal.test_factor`. However, in order to be added and multiplied by other ideals or rational numbers, it must first be converted into a :py:class:`~.Submodule`, which is a class that supports these operations. In many cases, the user need not perform this conversion deliberately, since it is automatically performed by the arithmetic operator methods :py:meth:`~.PrimeIdeal.__add__` and :py:meth:`~.PrimeIdeal.__mul__`. Raising a :py:class:`~.PrimeIdeal` to a non-negative integer power is also supported. Examples ======== >>> from sympy import Poly, cyclotomic_poly, prime_decomp >>> T = Poly(cyclotomic_poly(7)) >>> P0 = prime_decomp(7, T)[0] >>> print(P0**6 == 7*P0.ZK) True Note that, on both sides of the equation above, we had a :py:class:`~.Submodule`. In the next equation we recall that adding ideals yields their GCD. This time, we need a deliberate conversion to :py:class:`~.Submodule` on the right: >>> print(P0 + 7*P0.ZK == P0.as_submodule()) True Returns ======= :py:class:`~.Submodule` Will be equal to ``self.p * self.ZK + self.alpha * self.ZK``. See Also ======== __add__ __mul__ """ M = self.p * self.ZK + self.alpha * self.ZK # Pre-set expensive boolean properties whose value we already know: M._starts_with_unity = False M._is_sq_maxrank_HNF = True return M def __eq__(self, other): if isinstance(other, PrimeIdeal): return self.as_submodule() == other.as_submodule() return NotImplemented def __add__(self, other): """ Convert to a :py:class:`~.Submodule` and add to another :py:class:`~.Submodule`. See Also ======== as_submodule """ return self.as_submodule() + other __radd__ = __add__ def __mul__(self, other): """ Convert to a :py:class:`~.Submodule` and multiply by another :py:class:`~.Submodule` or a rational number. See Also ======== as_submodule """ return self.as_submodule() * other __rmul__ = __mul__ def _zeroth_power(self): return self.ZK def _first_power(self): return self def test_factor(self): r""" Compute a test factor for this prime ideal. Explanation =========== Write $\mathfrak{p}$ for this prime ideal, $p$ for the rational prime it divides. Then, for computing $\mathfrak{p}$-adic valuations it is useful to have a number $\beta \in \mathbb{Z}_K$ such that $p/\mathfrak{p} = p \mathbb{Z}_K + \beta \mathbb{Z}_K$. Essentially, this is the same as the number $\Psi$ (or the "reagent") from Kummer's 1847 paper (*Ueber die Zerlegung...*, Crelle vol. 35) in which ideal divisors were invented. """ if self._test_factor is None: self._test_factor = _compute_test_factor(self.p, [self.alpha], self.ZK) return self._test_factor def valuation(self, I): r""" Compute the $\mathfrak{p}$-adic valuation of integral ideal I at this prime ideal. Parameters ========== I : :py:class:`~.Submodule` See Also ======== prime_valuation """ return prime_valuation(I, self) def reduce_poly(self, f, gen=None): r""" Reduce a univariate :py:class:`~.Poly` *f*, or an :py:class:`~.Expr` expressing the same, modulo this :py:class:`~.PrimeIdeal`. Explanation =========== If our second generator $\alpha$ is zero, then we simply reduce the coefficients of *f* mod the rational prime $p$ lying under this ideal. Otherwise we first reduce *f* mod $\alpha$ (as a polynomial in the same variable as *f*), and then mod $p$. Examples ======== >>> from sympy import QQ, cyclotomic_poly, symbols >>> zeta = symbols('zeta') >>> Phi = cyclotomic_poly(7, zeta) >>> k = QQ.algebraic_field((Phi, zeta)) >>> P = k.primes_above(11) >>> frp = P[0] >>> B = k.integral_basis(fmt='sympy') >>> print([frp.reduce_poly(b, zeta) for b in B]) [1, zeta, zeta**2, -5*zeta**2 - 4*zeta + 1, -zeta**2 - zeta - 5, 4*zeta**2 - zeta - 1] Parameters ========== f : :py:class:`~.Poly`, :py:class:`~.Expr` The univariate polynomial to be reduced. gen : :py:class:`~.Symbol`, None, optional (default=None) Symbol to use as the variable in the polynomials. If *f* is a :py:class:`~.Poly` or a non-constant :py:class:`~.Expr`, this replaces its variable. If *f* is a constant :py:class:`~.Expr`, then *gen* must be supplied. Returns ======= :py:class:`~.Poly`, :py:class:`~.Expr` Type is same as that of given *f*. If returning a :py:class:`~.Poly`, its domain will be the finite field $\mathbb{F}_p$. Raises ====== GeneratorsNeeded If *f* is a constant :py:class:`~.Expr` and *gen* is ``None``. NotImplementedError If *f* is other than :py:class:`~.Poly` or :py:class:`~.Expr`, or is not univariate. """ if isinstance(f, Expr): try: g = Poly(f) except GeneratorsNeeded as e: if gen is None: raise e from None g = Poly(f, gen) return self.reduce_poly(g).as_expr() if isinstance(f, Poly) and f.is_univariate: a = self.alpha.poly(f.gen) if a != 0: f = f.rem(a) return f.set_modulus(self.p) raise NotImplementedError def _compute_test_factor(p, gens, ZK): r""" Compute the test factor for a :py:class:`~.PrimeIdeal` $\mathfrak{p}$. Parameters ========== p : int The rational prime $\mathfrak{p}$ divides gens : list of :py:class:`PowerBasisElement` A complete set of generators for $\mathfrak{p}$ over *ZK*, EXCEPT that an element equivalent to rational *p* can and should be omitted (since it has no effect except to waste time). ZK : :py:class:`~.Submodule` The maximal order where the prime ideal $\mathfrak{p}$ lives. Returns ======= :py:class:`~.PowerBasisElement` References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Proposition 4.8.15.) """ _check_formal_conditions_for_maximal_order(ZK) E = ZK.endomorphism_ring() matrices = [E.inner_endomorphism(g).matrix(modulus=p) for g in gens] B = DomainMatrix.zeros((0, ZK.n), FF(p)).vstack(*matrices) # A nonzero element of the nullspace of B will represent a # lin comb over the omegas which (i) is not a multiple of p # (since it is nonzero over FF(p)), while (ii) is such that # its product with each g in gens _is_ a multiple of p (since # B represents multiplication by these generators). Theory # predicts that such an element must exist, so nullspace should # be non-trivial. x = B.nullspace()[0, :].transpose() beta = ZK.parent(ZK.matrix * x, denom=ZK.denom) return beta @public def prime_valuation(I, P): r""" Compute the *P*-adic valuation for an integral ideal *I*. Examples ======== >>> from sympy import QQ >>> from sympy.abc import theta >>> from sympy.polys import cyclotomic_poly >>> from sympy.polys.numberfields import prime_valuation >>> T = cyclotomic_poly(5) >>> K = QQ.algebraic_field((T, theta)) >>> P = K.primes_above(5) >>> ZK = K.maximal_order() >>> print(prime_valuation(25*ZK, P[0])) 8 Parameters ========== I : :py:class:`~.Submodule` An integral ideal whose valuation is desired. P : :py:class:`~.PrimeIdeal` The prime at which to compute the valuation. Returns ======= int See Also ======== .PrimeIdeal.valuation References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithm 4.8.17.) """ p, ZK = P.p, P.ZK n, W, d = ZK.n, ZK.matrix, ZK.denom A = W.convert_to(QQ).inv() * I.matrix * d / I.denom # Although A must have integer entries, given that I is an integral ideal, # as a DomainMatrix it will still be over QQ, so we convert back: A = A.convert_to(ZZ) D = A.det() if D % p != 0: return 0 beta = P.test_factor() f = d ** n // W.det() need_complete_test = (f % p == 0) v = 0 while True: # Entering the loop, the cols of A represent lin combs of omegas. # Turn them into lin combs of thetas: A = W * A # And then one column at a time... for j in range(n): c = ZK.parent(A[:, j], denom=d) c *= beta # ...turn back into lin combs of omegas, after multiplying by beta: c = ZK.represent(c).flat() for i in range(n): A[i, j] = c[i] if A[n - 1, n - 1].element % p != 0: break A = A / p # As noted above, domain converts to QQ even when division goes evenly. # So must convert back, even when we don't "need_complete_test". if need_complete_test: # In this case, having a non-integer entry is actually just our # halting condition. try: A = A.convert_to(ZZ) except CoercionFailed: break else: # In this case theory says we should not have any non-integer entries. A = A.convert_to(ZZ) v += 1 return v def _two_elt_rep(gens, ZK, p, f=None, Np=None): r""" Given a set of *ZK*-generators of a prime ideal, compute a set of just two *ZK*-generators for the same ideal, one of which is *p* itself. Parameters ========== gens : list of :py:class:`PowerBasisElement` Generators for the prime ideal over *ZK*, the ring of integers of the field $K$. ZK : :py:class:`~.Submodule` The maximal order in $K$. p : int The rational prime divided by the prime ideal. f : int, optional The inertia degree of the prime ideal, if known. Np : int, optional The norm $p^f$ of the prime ideal, if known. NOTE: There is no reason to supply both *f* and *Np*. Either one will save us from having to compute the norm *Np* ourselves. If both are known, *Np* is preferred since it saves one exponentiation. Returns ======= :py:class:`~.PowerBasisElement` representing a single algebraic integer alpha such that the prime ideal is equal to ``p*ZK + alpha*ZK``. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithm 4.7.10.) """ _check_formal_conditions_for_maximal_order(ZK) pb = ZK.parent T = pb.T # Detect the special cases in which either (a) all generators are multiples # of p, or (b) there are no generators (so `all` is vacuously true): if all((g % p).equiv(0) for g in gens): return pb.zero() if Np is None: if f is not None: Np = p**f else: Np = abs(pb.submodule_from_gens(gens).matrix.det()) omega = ZK.basis_element_pullbacks() beta = [p*om for om in omega[1:]] # note: we omit omega[0] == 1 beta += gens search = coeff_search(len(beta), 1) for c in search: alpha = sum(ci*betai for ci, betai in zip(c, beta)) # Note: It may be tempting to reduce alpha mod p here, to try to work # with smaller numbers, but must not do that, as it can result in an # infinite loop! E.g. try factoring 2 in Q(sqrt(-7)). n = alpha.norm(T) // Np if n % p != 0: # Now can reduce alpha mod p. return alpha % p def _prime_decomp_easy_case(p, ZK): r""" Compute the decomposition of rational prime *p* in the ring of integers *ZK* (given as a :py:class:`~.Submodule`), in the "easy case", i.e. the case where *p* does not divide the index of $\theta$ in *ZK*, where $\theta$ is the generator of the ``PowerBasis`` of which *ZK* is a ``Submodule``. """ T = ZK.parent.T T_bar = Poly(T, modulus=p) lc, fl = T_bar.factor_list() return [PrimeIdeal(ZK, p, ZK.parent.element_from_poly(Poly(t, domain=ZZ)), t.degree(), e) for t, e in fl] def _prime_decomp_compute_kernel(I, p, ZK): r""" Parameters ========== I : :py:class:`~.Module` An ideal of ``ZK/pZK``. p : int The rational prime being factored. ZK : :py:class:`~.Submodule` The maximal order. Returns ======= Pair ``(N, G)``, where: ``N`` is a :py:class:`~.Module` representing the kernel of the map ``a |--> a**p - a`` on ``(O/pO)/I``, guaranteed to be a module with unity. ``G`` is a :py:class:`~.Module` representing a basis for the separable algebra ``A = O/I`` (see Cohen). """ W = I.matrix n, r = W.shape # Want to take the Fp-basis given by the columns of I, adjoin (1, 0, ..., 0) # (which we know is not already in there since I is a basis for a prime ideal) # and then supplement this with additional columns to make an invertible n x n # matrix. This will then represent a full basis for ZK, whose first r columns # are pullbacks of the basis for I. if r == 0: B = W.eye(n, ZZ) else: B = W.hstack(W.eye(n, ZZ)[:, 0]) if B.shape[1] < n: B = supplement_a_subspace(B.convert_to(FF(p))).convert_to(ZZ) G = ZK.submodule_from_matrix(B) # Must compute G's multiplication table _before_ discarding the first r # columns. (See Step 9 in Alg 6.2.9 in Cohen, where the betas are actually # needed in order to represent each product of gammas. However, once we've # found the representations, then we can ignore the betas.) G.compute_mult_tab() G = G.discard_before(r) phi = ModuleEndomorphism(G, lambda x: x**p - x) N = phi.kernel(modulus=p) assert N.starts_with_unity() return N, G def _prime_decomp_maximal_ideal(I, p, ZK): r""" We have reached the case where we have a maximal (hence prime) ideal *I*, which we know because the quotient ``O/I`` is a field. Parameters ========== I : :py:class:`~.Module` An ideal of ``O/pO``. p : int The rational prime being factored. ZK : :py:class:`~.Submodule` The maximal order. Returns ======= :py:class:`~.PrimeIdeal` instance representing this prime """ m, n = I.matrix.shape f = m - n G = ZK.matrix * I.matrix gens = [ZK.parent(G[:, j], denom=ZK.denom) for j in range(G.shape[1])] alpha = _two_elt_rep(gens, ZK, p, f=f) return PrimeIdeal(ZK, p, alpha, f) def _prime_decomp_split_ideal(I, p, N, G, ZK): r""" Perform the step in the prime decomposition algorithm where we have determined the the quotient ``ZK/I`` is _not_ a field, and we want to perform a non-trivial factorization of *I* by locating an idempotent element of ``ZK/I``. """ assert I.parent == ZK and G.parent is ZK and N.parent is G # Since ZK/I is not a field, the kernel computed in the previous step contains # more than just the prime field Fp, and our basis N for the nullspace therefore # contains at least a second column (which represents an element outside Fp). # Let alpha be such an element: alpha = N(1).to_parent() assert alpha.module is G alpha_powers = [] m = find_min_poly(alpha, FF(p), powers=alpha_powers) # TODO (future work): # We don't actually need full factorization, so might use a faster method # to just break off a single non-constant factor m1? lc, fl = m.factor_list() m1 = fl[0][0] m2 = m.quo(m1) U, V, g = m1.gcdex(m2) # Sanity check: theory says m is squarefree, so m1, m2 should be coprime: assert g == 1 E = list(reversed(Poly(U * m1, domain=ZZ).rep.rep)) eps1 = sum(E[i]*alpha_powers[i] for i in range(len(E))) eps2 = 1 - eps1 idemps = [eps1, eps2] factors = [] for eps in idemps: e = eps.to_parent() assert e.module is ZK D = I.matrix.convert_to(FF(p)).hstack(*[ (e * om).column(domain=FF(p)) for om in ZK.basis_elements() ]) W = D.columnspace().convert_to(ZZ) H = ZK.submodule_from_matrix(W) factors.append(H) return factors @public def prime_decomp(p, T=None, ZK=None, dK=None, radical=None): r""" Compute the decomposition of rational prime *p* in a number field. Explanation =========== Ordinarily this should be accessed through the :py:meth:`~.AlgebraicField.primes_above` method of an :py:class:`~.AlgebraicField`. Examples ======== >>> from sympy import Poly, QQ >>> from sympy.abc import x, theta >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8) >>> K = QQ.algebraic_field((T, theta)) >>> print(K.primes_above(2)) [[ (2, x**2 + 1) e=1, f=1 ], [ (2, (x**2 + 3*x + 2)/2) e=1, f=1 ], [ (2, (3*x**2 + 3*x)/2) e=1, f=1 ]] Parameters ========== p : int The rational prime whose decomposition is desired. T : :py:class:`~.Poly`, optional Monic irreducible polynomial defining the number field $K$ in which to factor. NOTE: at least one of *T* or *ZK* must be provided. ZK : :py:class:`~.Submodule`, optional The maximal order for $K$, if already known. NOTE: at least one of *T* or *ZK* must be provided. dK : int, optional The discriminant of the field $K$, if already known. radical : :py:class:`~.Submodule`, optional The nilradical mod *p* in the integers of $K$, if already known. Returns ======= List of :py:class:`~.PrimeIdeal` instances. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithm 6.2.9.) """ if T is None and ZK is None: raise ValueError('At least one of T or ZK must be provided.') if ZK is not None: _check_formal_conditions_for_maximal_order(ZK) if T is None: T = ZK.parent.T radicals = {} if dK is None or ZK is None: ZK, dK = round_two(T, radicals=radicals) dT = T.discriminant() f_squared = dT // dK if f_squared % p != 0: return _prime_decomp_easy_case(p, ZK) radical = radical or radicals.get(p) or nilradical_mod_p(ZK, p) stack = [radical] primes = [] while stack: I = stack.pop() N, G = _prime_decomp_compute_kernel(I, p, ZK) if N.n == 1: P = _prime_decomp_maximal_ideal(I, p, ZK) primes.append(P) else: I1, I2 = _prime_decomp_split_ideal(I, p, N, G, ZK) stack.extend([I1, I2]) return primes
a14bab27178b370c66d1bdccb10fe302a9fee42d1a21b7e6e9731acc218105fe
"""Computational algebraic field theory. """ __all__ = [ 'minpoly', 'minimal_polynomial', 'field_isomorphism', 'primitive_element', 'to_number_field', 'isolate', 'round_two', 'prime_decomp', 'prime_valuation', ] from .minpoly import minpoly, minimal_polynomial from .subfield import field_isomorphism, primitive_element, to_number_field from .utilities import isolate from .basis import round_two from .primes import prime_decomp, prime_valuation
5067abae7e27a5df6b9a7dc23f671bafc9415b9a364754d0eaf738e3261d1d1d
r"""Modules in number fields. The classes defined here allow us to work with finitely generated, free modules, whose generators are algebraic numbers. There is an abstract base class called :py:class:`~.Module`, which has two concrete subclasses, :py:class:`~.PowerBasis` and :py:class:`~.Submodule`. Every module is defined by its basis, or set of generators: * For a :py:class:`~.PowerBasis`, the generators are the first $n$ powers (starting with the zeroth) of an algebraic integer $\theta$ of degree $n$. The :py:class:`~.PowerBasis` is constructed by passing the minimal polynomial of $\theta$. * For a :py:class:`~.Submodule`, the generators are a set of $\mathbb{Q}$-linear combinations of the generators of another module. That other module is then the "parent" of the :py:class:`~.Submodule`. The coefficients of the $\mathbb{Q}$-linear combinations may be given by an integer matrix, and a positive integer denominator. Each column of the matrix defines a generator. >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.abc import x >>> from sympy.polys.matrices import DomainMatrix, DM >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5, x)) >>> A = PowerBasis(T) >>> print(A) PowerBasis(x**4 + x**3 + x**2 + x + 1) >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3) >>> print(B) Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3 >>> print(B.parent) PowerBasis(x**4 + x**3 + x**2 + x + 1) Thus, every module is either a :py:class:`~.PowerBasis`, or a :py:class:`~.Submodule`, some ancestor of which is a :py:class:`~.PowerBasis`. (If ``S`` is a :py:class:`~.Submodule`, then its ancestors are ``S.parent``, ``S.parent.parent``, and so on). The :py:class:`~.ModuleElement` class represents a linear combination of the generators of any module. Critically, the coefficients of this linear combination are not restricted to be integers, but may be any rational numbers. This is necessary so that any and all algebraic integers be representable, starting from the power basis in a primitive element $\theta$ for the number field in question. For example, in a quadratic field $\mathbb{Q}(\sqrt{d})$ where $d \equiv 1 \mod{4}$, a denominator of $2$ is needed. A :py:class:`~.ModuleElement` can be constructed from an integer column vector and a denominator: >>> U = Poly(x**2 - 5) >>> M = PowerBasis(U) >>> e = M(DM([[1], [1]], ZZ), denom=2) >>> print(e) [1, 1]/2 >>> print(e.module) PowerBasis(x**2 - 5) The :py:class:`~.PowerBasisElement` class is a subclass of :py:class:`~.ModuleElement` that represents elements of a :py:class:`~.PowerBasis`, and adds functionality pertinent to elements represented directly over powers of the primitive element $\theta$. Arithmetic with module elements =============================== While a :py:class:`~.ModuleElement` represents a linear combination over the generators of a particular module, recall that every module is either a :py:class:`~.PowerBasis` or a descendant (along a chain of :py:class:`~.Submodule` objects) thereof, so that in fact every :py:class:`~.ModuleElement` represents an algebraic number in some field $\mathbb{Q}(\theta)$, where $\theta$ is the defining element of some :py:class:`~.PowerBasis`. It thus makes sense to talk about the number field to which a given :py:class:`~.ModuleElement` belongs. This means that any two :py:class:`~.ModuleElement` instances can be added, subtracted, multiplied, or divided, provided they belong to the same number field. Similarly, since $\mathbb{Q}$ is a subfield of every number field, any :py:class:`~.ModuleElement` may be added, multiplied, etc. by any rational number. >>> from sympy import QQ >>> from sympy.polys.numberfields.modules import to_col >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) >>> e = A(to_col([0, 2, 0, 0]), denom=3) >>> f = A(to_col([0, 0, 0, 7]), denom=5) >>> g = C(to_col([1, 1, 1, 1])) >>> e + f [0, 10, 0, 21]/15 >>> e - f [0, 10, 0, -21]/15 >>> e - g [-9, -7, -9, -9]/3 >>> e + QQ(7, 10) [21, 20, 0, 0]/30 >>> e * f [-14, -14, -14, -14]/15 >>> e ** 2 [0, 0, 4, 0]/9 >>> f // g [7, 7, 7, 7]/15 >>> f * QQ(2, 3) [0, 0, 0, 14]/15 However, care must be taken with arithmetic operations on :py:class:`~.ModuleElement`, because the module $C$ to which the result will belong will be the nearest common ancestor (NCA) of the modules $A$, $B$ to which the two operands belong, and $C$ may be different from either or both of $A$ and $B$. >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) >>> C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) >>> print((B(0) * C(0)).module == A) True Before the arithmetic operation is performed, copies of the two operands are automatically converted into elements of the NCA (the operands themselves are not modified). This upward conversion along an ancestor chain is easy: it just requires the successive multiplication by the defining matrix of each :py:class:`~.Submodule`. Conversely, downward conversion, i.e. representing a given :py:class:`~.ModuleElement` in a submodule, is also supported -- namely by the :py:meth:`~sympy.polys.numberfields.modules.Submodule.represent` method -- but is not guaranteed to succeed in general, since the given element may not belong to the submodule. The main circumstance in which this issue tends to arise is with multiplication, since modules, while closed under addition, need not be closed under multiplication. Multiplication -------------- Generally speaking, a module need not be closed under multiplication, i.e. need not form a ring. However, many of the modules we work with in the context of number fields are in fact rings, and our classes do support multiplication. Specifically, any :py:class:`~.Module` can attempt to compute its own multiplication table, but this does not happen unless an attempt is made to multiply two :py:class:`~.ModuleElement` instances belonging to it. >>> A = PowerBasis(T) >>> print(A._mult_tab is None) True >>> a = A(0)*A(1) >>> print(A._mult_tab is None) False Every :py:class:`~.PowerBasis` is, by its nature, closed under multiplication, so instances of :py:class:`~.PowerBasis` can always successfully compute their multiplication table. When a :py:class:`~.Submodule` attempts to compute its multiplication table, it converts each of its own generators into elements of its parent module, multiplies them there, in every possible pairing, and then tries to represent the results in itself, i.e. as $\mathbb{Z}$-linear combinations over its own generators. This will succeed if and only if the submodule is in fact closed under multiplication. Module Homomorphisms ==================== Many important number theoretic algorithms require the calculation of the kernel of one or more module homomorphisms. Accordingly we have several lightweight classes, :py:class:`~.ModuleHomomorphism`, :py:class:`~.ModuleEndomorphism`, :py:class:`~.InnerEndomorphism`, and :py:class:`~.EndomorphismRing`, which provide the minimal necessary machinery to support this. """ from sympy.core.numbers import igcd, ilcm from sympy.core.symbol import Dummy from sympy.polys.polytools import Poly from sympy.polys.densetools import dup_clear_denoms from sympy.polys.domains.finitefield import FF from sympy.polys.domains.rationalfield import QQ from sympy.polys.domains.integerring import ZZ from sympy.polys.matrices.domainmatrix import DomainMatrix from sympy.polys.matrices.exceptions import DMBadInputError from sympy.polys.matrices.normalforms import hermite_normal_form from sympy.polys.polyerrors import CoercionFailed, UnificationFailed from sympy.polys.polyutils import IntegerPowerable from .exceptions import ClosureFailure, MissingUnityError from .utilities import AlgIntPowers, is_int, is_rat, get_num_denom def to_col(coeffs): r"""Transform a list of integer coefficients into a column vector.""" return DomainMatrix([[ZZ(c) for c in coeffs]], (1, len(coeffs)), ZZ).transpose() class Module: """ Generic finitely-generated module. This is an abstract base class, and should not be instantiated directly. The two concrete subclasses are :py:class:`~.PowerBasis` and :py:class:`~.Submodule`. Every :py:class:`~.Submodule` is derived from another module, referenced by its ``parent`` attribute. If ``S`` is a submodule, then we refer to ``S.parent``, ``S.parent.parent``, and so on, as the "ancestors" of ``S``. Thus, every :py:class:`~.Module` is either a :py:class:`~.PowerBasis` or a :py:class:`~.Submodule`, some ancestor of which is a :py:class:`~.PowerBasis`. """ @property def n(self): """The number of generators of this module.""" raise NotImplementedError def mult_tab(self): """ Get the multiplication table for this module (if closed under mult). Explanation =========== Computes a dictionary ``M`` of dictionaries of lists, representing the upper triangular half of the multiplication table. In other words, if ``0 <= i <= j < self.n``, then ``M[i][j]`` is the list ``c`` of coefficients such that ``g[i] * g[j] == sum(c[k]*g[k], k in range(self.n))``, where ``g`` is the list of generators of this module. If ``j < i`` then ``M[i][j]`` is undefined. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> print(A.mult_tab()) # doctest: +SKIP {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]}, 1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]}, 2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]}, 3: {3: [0, 1, 0, 0]}} Returns ======= dict of dict of lists Raises ====== ClosureFailure If the module is not closed under multiplication. """ raise NotImplementedError @property def parent(self): """ The parent module, if any, for this module. Explanation =========== For a :py:class:`~.Submodule` this is its ``parent`` attribute; for a :py:class:`~.PowerBasis` this is ``None``. Returns ======= :py:class:`~.Module`, ``None`` See Also ======== Module """ return None def represent(self, elt): r""" Represent a module element as an integer-linear combination over the generators of this module. Explanation =========== In our system, to "represent" always means to write a :py:class:`~.ModuleElement` as a :ref:`ZZ`-linear combination over the generators of the present :py:class:`~.Module`. Furthermore, the incoming :py:class:`~.ModuleElement` must belong to an ancestor of the present :py:class:`~.Module` (or to the present :py:class:`~.Module` itself). The most common application is to represent a :py:class:`~.ModuleElement` in a :py:class:`~.Submodule`. For example, this is involved in computing multiplication tables. On the other hand, representing in a :py:class:`~.PowerBasis` is an odd case, and one which tends not to arise in practice, except for example when using a :py:class:`~.ModuleEndomorphism` on a :py:class:`~.PowerBasis`. In such a case, (1) the incoming :py:class:`~.ModuleElement` must belong to the :py:class:`~.PowerBasis` itself (since the latter has no proper ancestors) and (2) it is "representable" iff it belongs to $\mathbb{Z}[\theta]$ (although generally a :py:class:`~.PowerBasisElement` may represent any element of $\mathbb{Q}(\theta)$, i.e. any algebraic number). Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, to_col >>> from sympy.abc import zeta >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> a = A(to_col([2, 4, 6, 8])) The :py:class:`~.ModuleElement` ``a`` has all even coefficients. If we represent ``a`` in the submodule ``B = 2*A``, the coefficients in the column vector will be halved: >>> B = A.submodule_from_gens([2*A(i) for i in range(4)]) >>> b = B.represent(a) >>> print(b.transpose()) # doctest: +SKIP DomainMatrix([[1, 2, 3, 4]], (1, 4), ZZ) However, the element of ``B`` so defined still represents the same algebraic number: >>> print(a.poly(zeta).as_expr()) 8*zeta**3 + 6*zeta**2 + 4*zeta + 2 >>> print(B(b).over_power_basis().poly(zeta).as_expr()) 8*zeta**3 + 6*zeta**2 + 4*zeta + 2 Parameters ========== elt : :py:class:`~.ModuleElement` The module element to be represented. Must belong to some ancestor module of this module (including this module itself). Returns ======= :py:class:`~.DomainMatrix` over :ref:`ZZ` This will be a column vector, representing the coefficients of a linear combination of this module's generators, which equals the given element. Raises ====== ClosureFailure If the given element cannot be represented as a :ref:`ZZ`-linear combination over this module. See Also ======== .Submodule.represent .PowerBasis.represent """ raise NotImplementedError def ancestors(self, include_self=False): """ Return the list of ancestor modules of this module, from the foundational :py:class:`~.PowerBasis` downward, optionally including ``self``. See Also ======== Module """ c = self.parent a = [] if c is None else c.ancestors(include_self=True) if include_self: a.append(self) return a def power_basis_ancestor(self): """ Return the :py:class:`~.PowerBasis` that is an ancestor of this module. See Also ======== Module """ if isinstance(self, PowerBasis): return self c = self.parent if c is not None: return c.power_basis_ancestor() return None def nearest_common_ancestor(self, other): """ Locate the nearest common ancestor of this module and another. Returns ======= :py:class:`~.Module`, ``None`` See Also ======== Module """ sA = self.ancestors(include_self=True) oA = other.ancestors(include_self=True) nca = None for sa, oa in zip(sA, oA): if sa == oa: nca = sa else: break return nca def is_compat_col(self, col): """Say whether *col* is a suitable column vector for this module.""" return isinstance(col, DomainMatrix) and col.shape == (self.n, 1) and col.domain.is_ZZ def __call__(self, spec, denom=1): r""" Generate a :py:class:`~.ModuleElement` belonging to this module. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, to_col >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> e = A(to_col([1, 2, 3, 4]), denom=3) >>> print(e) # doctest: +SKIP [1, 2, 3, 4]/3 >>> f = A(2) >>> print(f) # doctest: +SKIP [0, 0, 1, 0] Parameters ========== spec : :py:class:`~.DomainMatrix`, int Specifies the numerators of the coefficients of the :py:class:`~.ModuleElement`. Can be either a column vector over :ref:`ZZ`, whose length must equal the number $n$ of generators of this module, or else an integer ``j``, $0 \leq j < n$, which is a shorthand for column $j$ of $I_n$, the $n \times n$ identity matrix. denom : int, optional (default=1) Denominator for the coefficients of the :py:class:`~.ModuleElement`. Returns ======= :py:class:`~.ModuleElement` The coefficients are the entries of the *spec* vector, divided by *denom*. """ if isinstance(spec, int) and 0 <= spec < self.n: spec = DomainMatrix.eye(self.n, ZZ)[:, spec].to_dense() if not self.is_compat_col(spec): raise ValueError('Compatible column vector required.') return make_mod_elt(self, spec, denom=denom) def starts_with_unity(self): """Say whether the module's first generator equals unity.""" raise NotImplementedError def basis_elements(self): """ Get list of :py:class:`~.ModuleElement` being the generators of this module. """ return [self(j) for j in range(self.n)] def zero(self): """Return a :py:class:`~.ModuleElement` representing zero.""" return self(0) * 0 def one(self): """ Return a :py:class:`~.ModuleElement` representing unity, and belonging to the first ancestor of this module (including itself) that starts with unity. """ return self.element_from_rational(1) def element_from_rational(self, a): """ Return a :py:class:`~.ModuleElement` representing a rational number. Explanation =========== The returned :py:class:`~.ModuleElement` will belong to the first module on this module's ancestor chain (including this module itself) that starts with unity. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, QQ >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> a = A.element_from_rational(QQ(2, 3)) >>> print(a) # doctest: +SKIP [2, 0, 0, 0]/3 Parameters ========== a : int, :ref:`ZZ`, :ref:`QQ` Returns ======= :py:class:`~.ModuleElement` """ raise NotImplementedError def submodule_from_gens(self, gens, hnf=True, hnf_modulus=None): """ Form the submodule generated by a list of :py:class:`~.ModuleElement` belonging to this module. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> gens = [A(0), 2*A(1), 3*A(2), 4*A(3)//5] >>> B = A.submodule_from_gens(gens) >>> print(B) # doctest: +SKIP Submodule[[5, 0, 0, 0], [0, 10, 0, 0], [0, 0, 15, 0], [0, 0, 0, 4]]/5 Parameters ========== gens : list of :py:class:`~.ModuleElement` belonging to this module. hnf : boolean, optional (default=True) If True, we will reduce the matrix into Hermite Normal Form before forming the :py:class:`~.Submodule`. hnf_modulus : int, None, optional (default=None) Modulus for use in the HNF reduction algorithm. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` See Also ======== submodule_from_matrix """ if not all(g.module == self for g in gens): raise ValueError('Generators must belong to this module.') n = len(gens) if n == 0: raise ValueError('Need at least one generator.') m = gens[0].n d = gens[0].denom if n == 1 else ilcm(*[g.denom for g in gens]) B = DomainMatrix.zeros((m, 0), ZZ).hstack(*[(d // g.denom) * g.col for g in gens]) if hnf: B = hermite_normal_form(B, D=hnf_modulus) return self.submodule_from_matrix(B, denom=d) def submodule_from_matrix(self, B, denom=1): """ Form the submodule generated by the elements of this module indicated by the columns of a matrix, with an optional denominator. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.polys.matrices import DM >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(DM([ ... [0, 10, 0, 0], ... [0, 0, 7, 0], ... ], ZZ).transpose(), denom=15) >>> print(B) # doctest: +SKIP Submodule[[0, 10, 0, 0], [0, 0, 7, 0]]/15 Parameters ========== B : :py:class:`~.DomainMatrix` over :ref:`ZZ` Each column gives the numerators of the coefficients of one generator of the submodule. Thus, the number of rows of *B* must equal the number of generators of the present module. denom : int, optional (default=1) Common denominator for all generators of the submodule. Returns ======= :py:class:`~.Submodule` Raises ====== ValueError If the given matrix *B* is not over :ref:`ZZ` or its number of rows does not equal the number of generators of the present module. See Also ======== submodule_from_gens """ m, n = B.shape if not B.domain.is_ZZ: raise ValueError('Matrix must be over ZZ.') if not m == self.n: raise ValueError('Matrix row count must match base module.') return Submodule(self, B, denom=denom) def whole_submodule(self): """ Return a submodule equal to this entire module. Explanation =========== This is useful when you have a :py:class:`~.PowerBasis` and want to turn it into a :py:class:`~.Submodule` (in order to use methods belonging to the latter). """ B = DomainMatrix.eye(self.n, ZZ) return self.submodule_from_matrix(B) def endomorphism_ring(self): """Form the :py:class:`~.EndomorphismRing` for this module.""" return EndomorphismRing(self) class PowerBasis(Module): """The module generated by the powers of an algebraic integer.""" def __init__(self, T): """ Parameters ========== T : :py:class:`~.Poly` The monic, irreducible, univariate polynomial over :ref:`ZZ`, a root of which is the generator of the power basis. """ self.T = T self._n = T.degree() self._mult_tab = None def __repr__(self): return f'PowerBasis({self.T.as_expr()})' def __eq__(self, other): if isinstance(other, PowerBasis): return self.T == other.T return NotImplemented @property def n(self): return self._n def mult_tab(self): if self._mult_tab is None: self.compute_mult_tab() return self._mult_tab def compute_mult_tab(self): theta_pow = AlgIntPowers(self.T) M = {} n = self.n for u in range(n): M[u] = {} for v in range(u, n): M[u][v] = theta_pow[u + v] self._mult_tab = M def represent(self, elt): r""" Represent a module element as an integer-linear combination over the generators of this module. See Also ======== .Module.represent .Submodule.represent """ if elt.module == self and elt.denom == 1: return elt.column() else: raise ClosureFailure('Element not representable in ZZ[theta].') def starts_with_unity(self): return True def element_from_rational(self, a): return self(0) * a def element_from_poly(self, f): """ Produce an element of this module, representing *f* after reduction mod our defining minimal polynomial. Parameters ========== f : :py:class:`~.Poly` over :ref:`ZZ` in same var as our defining poly. Returns ======= :py:class:`~.PowerBasisElement` """ n, k = self.n, f.degree() if k >= n: f = f % self.T if f == 0: return self.zero() d, c = dup_clear_denoms(f.rep.rep, QQ, convert=True) c = list(reversed(c)) ell = len(c) z = [ZZ(0)] * (n - ell) col = to_col(c + z) return self(col, denom=d) class Submodule(Module, IntegerPowerable): """A submodule of another module.""" def __init__(self, parent, matrix, denom=1, mult_tab=None): """ Parameters ========== parent : :py:class:`~.Module` The module from which this one is derived. matrix : :py:class:`~.DomainMatrix` over :ref:`ZZ` The matrix whose columns define this submodule's generators as linear combinations over the parent's generators. denom : int, optional (default=1) Denominator for the coefficients given by the matrix. mult_tab : dict, ``None``, optional If already known, the multiplication table for this module may be supplied. """ self._parent = parent self._matrix = matrix self._denom = denom self._mult_tab = mult_tab self._n = matrix.shape[1] self._QQ_matrix = None self._starts_with_unity = None self._is_sq_maxrank_HNF = None def __repr__(self): r = 'Submodule' + repr(self.matrix.transpose().to_Matrix().tolist()) if self.denom > 1: r += f'/{self.denom}' return r def reduced(self): """ Produce a reduced version of this submodule. Explanation =========== In the reduced version, it is guaranteed that 1 is the only positive integer dividing both the submodule's denominator, and every entry in the submodule's matrix. Returns ======= :py:class:`~.Submodule` """ if self.denom == 1: return self g = igcd(self.denom, *self.coeffs) if g == 1: return self return type(self)(self.parent, (self.matrix / g).convert_to(ZZ), denom=self.denom // g, mult_tab=self._mult_tab) def discard_before(self, r): """ Produce a new module by discarding all generators before a given index *r*. """ W = self.matrix[:, r:] s = self.n - r M = None mt = self._mult_tab if mt is not None: M = {} for u in range(s): M[u] = {} for v in range(u, s): M[u][v] = mt[r + u][r + v][r:] return Submodule(self.parent, W, denom=self.denom, mult_tab=M) @property def n(self): return self._n def mult_tab(self): if self._mult_tab is None: self.compute_mult_tab() return self._mult_tab def compute_mult_tab(self): gens = self.basis_element_pullbacks() M = {} n = self.n for u in range(n): M[u] = {} for v in range(u, n): M[u][v] = self.represent(gens[u] * gens[v]).flat() self._mult_tab = M @property def parent(self): return self._parent @property def matrix(self): return self._matrix @property def coeffs(self): return self.matrix.flat() @property def denom(self): return self._denom @property def QQ_matrix(self): """ :py:class:`~.DomainMatrix` over :ref:`QQ`, equal to ``self.matrix / self.denom``, and guaranteed to be dense. Explanation =========== Depending on how it is formed, a :py:class:`~.DomainMatrix` may have an internal representation that is sparse or dense. We guarantee a dense representation here, so that tests for equivalence of submodules always come out as expected. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.abc import x >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5, x)) >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(3*DomainMatrix.eye(4, ZZ), denom=6) >>> C = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2) >>> print(B.QQ_matrix == C.QQ_matrix) True Returns ======= :py:class:`~.DomainMatrix` over :ref:`QQ` """ if self._QQ_matrix is None: self._QQ_matrix = (self.matrix / self.denom).to_dense() return self._QQ_matrix def starts_with_unity(self): if self._starts_with_unity is None: self._starts_with_unity = self(0).equiv(1) return self._starts_with_unity def is_sq_maxrank_HNF(self): if self._is_sq_maxrank_HNF is None: self._is_sq_maxrank_HNF = is_sq_maxrank_HNF(self._matrix) return self._is_sq_maxrank_HNF def is_power_basis_submodule(self): return isinstance(self.parent, PowerBasis) def element_from_rational(self, a): if self.starts_with_unity(): return self(0) * a else: return self.parent.element_from_rational(a) def basis_element_pullbacks(self): """ Return list of this submodule's basis elements as elements of the submodule's parent module. """ return [e.to_parent() for e in self.basis_elements()] def represent(self, elt): """ Represent a module element as an integer-linear combination over the generators of this module. See Also ======== .Module.represent .PowerBasis.represent """ if elt.module == self: return elt.column() elif elt.module == self.parent: try: # The given element should be a ZZ-linear combination over our # basis vectors; however, due to the presence of denominators, # we need to solve over QQ. A = self.QQ_matrix b = elt.QQ_col x = A._solve(b)[0].transpose() x = x.convert_to(ZZ) except DMBadInputError: raise ClosureFailure('Element outside QQ-span of this basis.') except CoercionFailed: raise ClosureFailure('Element in QQ-span but not ZZ-span of this basis.') return x elif isinstance(self.parent, Submodule): coeffs_in_parent = self.parent.represent(elt) parent_element = self.parent(coeffs_in_parent) return self.represent(parent_element) else: raise ClosureFailure('Element outside ancestor chain of this module.') def is_compat_submodule(self, other): return isinstance(other, Submodule) and other.parent == self.parent def __eq__(self, other): if self.is_compat_submodule(other): return other.QQ_matrix == self.QQ_matrix return NotImplemented def add(self, other, hnf=True, hnf_modulus=None): """ Add this :py:class:`~.Submodule` to another. Explanation =========== This represents the module generated by the union of the two modules' sets of generators. Parameters ========== other : :py:class:`~.Submodule` hnf : boolean, optional (default=True) If ``True``, reduce the matrix of the combined module to its Hermite Normal Form. hnf_modulus : :ref:`ZZ`, None, optional If a positive integer is provided, use this as modulus in the HNF reduction. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` """ d, e = self.denom, other.denom m = ilcm(d, e) a, b = m // d, m // e B = (a * self.matrix).hstack(b * other.matrix) if hnf: B = hermite_normal_form(B, D=hnf_modulus) return self.parent.submodule_from_matrix(B, denom=m) def __add__(self, other): if self.is_compat_submodule(other): return self.add(other) return NotImplemented __radd__ = __add__ def mul(self, other, hnf=True, hnf_modulus=None): """ Multiply this :py:class:`~.Submodule` by a rational number, a :py:class:`~.ModuleElement`, or another :py:class:`~.Submodule`. Explanation =========== To multiply by a rational number or :py:class:`~.ModuleElement` means to form the submodule whose generators are the products of this quantity with all the generators of the present submodule. To multiply by another :py:class:`~.Submodule` means to form the submodule whose generators are all the products of one generator from the one submodule, and one generator from the other. Parameters ========== other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement`, :py:class:`~.Submodule` hnf : boolean, optional (default=True) If ``True``, reduce the matrix of the product module to its Hermite Normal Form. hnf_modulus : :ref:`ZZ`, None, optional If a positive integer is provided, use this as modulus in the HNF reduction. See :py:func:`~sympy.polys.matrices.normalforms.hermite_normal_form`. Returns ======= :py:class:`~.Submodule` """ if is_rat(other): a, b = get_num_denom(other) if a == b == 1: return self else: return Submodule(self.parent, self.matrix * a, denom=self.denom * b, mult_tab=None).reduced() elif isinstance(other, ModuleElement) and other.module == self.parent: # The submodule is multiplied by an element of the parent module. # We presume this means we want a new submodule of the parent module. gens = [other * e for e in self.basis_element_pullbacks()] return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus) elif self.is_compat_submodule(other): # This case usually means you're multiplying ideals, and want another # ideal, i.e. another submodule of the same parent module. alphas, betas = self.basis_element_pullbacks(), other.basis_element_pullbacks() gens = [a * b for a in alphas for b in betas] return self.parent.submodule_from_gens(gens, hnf=hnf, hnf_modulus=hnf_modulus) return NotImplemented def __mul__(self, other): return self.mul(other) __rmul__ = __mul__ def _first_power(self): return self def is_sq_maxrank_HNF(dm): r""" Say whether a :py:class:`~.DomainMatrix` is in that special case of Hermite Normal Form, in which the matrix is also square and of maximal rank. Explanation =========== We commonly work with :py:class:`~.Submodule` instances whose matrix is in this form, and it can be useful to be able to check that this condition is satisfied. For example this is the case with the :py:class:`~.Submodule` ``ZK`` returned by :py:func:`~sympy.polys.numberfields.basis.round_two`, which represents the maximal order in a number field, and with ideals formed therefrom, such as ``2 * ZK``. """ if dm.domain.is_ZZ and dm.is_square and dm.is_upper: n = dm.shape[0] for i in range(n): d = dm[i, i].element if d <= 0: return False for j in range(i + 1, n): if not (0 <= dm[i, j].element < d): return False return True return False def make_mod_elt(module, col, denom=1): r""" Factory function which builds a :py:class:`~.ModuleElement`, but ensures that it is a :py:class:`~.PowerBasisElement` if the module is a :py:class:`~.PowerBasis`. """ if isinstance(module, PowerBasis): return PowerBasisElement(module, col, denom=denom) else: return ModuleElement(module, col, denom=denom) class ModuleElement(IntegerPowerable): r""" Represents an element of a :py:class:`~.Module`. NOTE: Should not be constructed directly. Use the :py:meth:`~.Module.__call__` method or the :py:func:`make_mod_elt()` factory function instead. """ def __init__(self, module, col, denom=1): """ Parameters ========== module : :py:class:`~.Module` The module to which this element belongs. col : :py:class:`~.DomainMatrix` over :ref:`ZZ` Column vector giving the numerators of the coefficients of this element. denom : int, optional (default=1) Denominator for the coefficients of this element. """ self.module = module self.col = col self.denom = denom self._QQ_col = None def __repr__(self): r = str([int(c) for c in self.col.flat()]) if self.denom > 1: r += f'/{self.denom}' return r def reduced(self): """ Produce a reduced version of this ModuleElement, i.e. one in which the gcd of the denominator together with all numerator coefficients is 1. """ if self.denom == 1: return self g = igcd(self.denom, *self.coeffs) if g == 1: return self return type(self)(self.module, (self.col / g).convert_to(ZZ), denom=self.denom // g) def reduced_mod_p(self, p): """ Produce a version of this :py:class:`~.ModuleElement` in which all numerator coefficients have been reduced mod *p*. """ return make_mod_elt(self.module, self.col.convert_to(FF(p)).convert_to(ZZ), denom=self.denom) @classmethod def from_int_list(cls, module, coeffs, denom=1): """ Make a :py:class:`~.ModuleElement` from a list of ints (instead of a column vector). """ col = to_col(coeffs) return cls(module, col, denom=denom) @property def n(self): """The length of this element's column.""" return self.module.n def __len__(self): return self.n def column(self, domain=None): """ Get a copy of this element's column, optionally converting to a domain. """ return self.col.convert_to(domain) @property def coeffs(self): return self.col.flat() @property def QQ_col(self): """ :py:class:`~.DomainMatrix` over :ref:`QQ`, equal to ``self.col / self.denom``, and guaranteed to be dense. See Also ======== .Submodule.QQ_matrix """ if self._QQ_col is None: self._QQ_col = (self.col / self.denom).to_dense() return self._QQ_col def to_parent(self): """ Transform into a :py:class:`~.ModuleElement` belonging to the parent of this element's module. """ if not isinstance(self.module, Submodule): raise ValueError('Not an element of a Submodule.') return make_mod_elt( self.module.parent, self.module.matrix * self.col, denom=self.module.denom * self.denom) def to_ancestor(self, anc): """ Transform into a :py:class:`~.ModuleElement` belonging to a given ancestor of this element's module. Parameters ========== anc : :py:class:`~.Module` """ if anc == self.module: return self else: return self.to_parent().to_ancestor(anc) def over_power_basis(self): """ Transform into a :py:class:`~.PowerBasisElement` over our :py:class:`~.PowerBasis` ancestor. """ e = self while not isinstance(e.module, PowerBasis): e = e.to_parent() return e def is_compat(self, other): """ Test whether other is another :py:class:`~.ModuleElement` with same module. """ return isinstance(other, ModuleElement) and other.module == self.module def unify(self, other): """ Try to make a compatible pair of :py:class:`~.ModuleElement`, one equivalent to this one, and one equivalent to the other. Explanation =========== We search for the nearest common ancestor module for the pair of elements, and represent each one there. Returns ======= Pair ``(e1, e2)`` Each ``ei`` is a :py:class:`~.ModuleElement`, they belong to the same :py:class:`~.Module`, ``e1`` is equivalent to ``self``, and ``e2`` is equivalent to ``other``. Raises ====== UnificationFailed If ``self`` and ``other`` have no common ancestor module. """ if self.module == other.module: return self, other nca = self.module.nearest_common_ancestor(other.module) if nca is not None: return self.to_ancestor(nca), other.to_ancestor(nca) raise UnificationFailed(f"Cannot unify {self} with {other}") def __eq__(self, other): if self.is_compat(other): return self.QQ_col == other.QQ_col return NotImplemented def equiv(self, other): """ A :py:class:`~.ModuleElement` may test as equivalent to a rational number or another :py:class:`~.ModuleElement`, if they represent the same algebraic number. Explanation =========== This method is intended to check equivalence only in those cases in which it is easy to test; namely, when *other* is either a :py:class:`~.ModuleElement` that can be unified with this one (i.e. one which shares a common :py:class:`~.PowerBasis` ancestor), or else a rational number (which is easy because every :py:class:`~.PowerBasis` represents every rational number). Parameters ========== other : int, :ref:`ZZ`, :ref:`QQ`, :py:class:`~.ModuleElement` Returns ======= bool Raises ====== UnificationFailed If ``self`` and ``other`` do not share a common :py:class:`~.PowerBasis` ancestor. """ if self == other: return True elif isinstance(other, ModuleElement): a, b = self.unify(other) return a == b elif is_rat(other): if isinstance(self, PowerBasisElement): return self == self.module(0) * other else: return self.over_power_basis().equiv(other) return False def __add__(self, other): """ A :py:class:`~.ModuleElement` can be added to a rational number, or to another :py:class:`~.ModuleElement`. Explanation =========== When the other summand is a rational number, it will be converted into a :py:class:`~.ModuleElement` (belonging to the first ancestor of this module that starts with unity). In all cases, the sum belongs to the nearest common ancestor (NCA) of the modules of the two summands. If the NCA does not exist, we return ``NotImplemented``. """ if self.is_compat(other): d, e = self.denom, other.denom m = ilcm(d, e) u, v = m // d, m // e col = to_col([u * a + v * b for a, b in zip(self.coeffs, other.coeffs)]) return type(self)(self.module, col, denom=m).reduced() elif isinstance(other, ModuleElement): try: a, b = self.unify(other) except UnificationFailed: return NotImplemented return a + b elif is_rat(other): return self + self.module.element_from_rational(other) return NotImplemented __radd__ = __add__ def __neg__(self): return self * -1 def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other def __mul__(self, other): """ A :py:class:`~.ModuleElement` can be multiplied by a rational number, or by another :py:class:`~.ModuleElement`. Explanation =========== When the multiplier is a rational number, the product is computed by operating directly on the coefficients of this :py:class:`~.ModuleElement`. When the multiplier is another :py:class:`~.ModuleElement`, the product will belong to the nearest common ancestor (NCA) of the modules of the two operands, and that NCA must have a multiplication table. If the NCA does not exist, we return ``NotImplemented``. If the NCA does not have a mult. table, ``ClosureFailure`` will be raised. """ if self.is_compat(other): M = self.module.mult_tab() A, B = self.col.flat(), other.col.flat() n = self.n C = [0] * n for u in range(n): for v in range(u, n): c = A[u] * B[v] if v > u: c += A[v] * B[u] if c != 0: R = M[u][v] for k in range(n): C[k] += c * R[k] d = self.denom * other.denom return self.from_int_list(self.module, C, denom=d) elif isinstance(other, ModuleElement): try: a, b = self.unify(other) except UnificationFailed: return NotImplemented return a * b elif is_rat(other): a, b = get_num_denom(other) if a == b == 1: return self else: return make_mod_elt(self.module, self.col * a, denom=self.denom * b).reduced() return NotImplemented __rmul__ = __mul__ def _zeroth_power(self): return self.module.one() def _first_power(self): return self def __floordiv__(self, a): if is_rat(a): a = QQ(a) return self * (1/a) elif isinstance(a, ModuleElement): return self * (1//a) return NotImplemented def __rfloordiv__(self, a): return a // self.over_power_basis() def __mod__(self, m): r""" Reducing a :py:class:`~.ModuleElement` mod an integer *m* reduces all numerator coeffs mod $d m$, where $d$ is the denominator of the :py:class:`~.ModuleElement`. Explanation =========== Recall that a :py:class:`~.ModuleElement` $b$ represents a $\mathbb{Q}$-linear combination over the basis elements $\{\beta_0, \beta_1, \ldots, \beta_{n-1}\}$ of a module $B$. It uses a common denominator $d$, so that the representation is in the form $b=\frac{c_0 \beta_0 + c_1 \beta_1 + \cdots + c_{n-1} \beta_{n-1}}{d}$, with $d$ and all $c_i$ in $\mathbb{Z}$, and $d > 0$. If we want to work modulo $m B$, this means we want to reduce the coefficients of $b$ mod $m$. We can think of reducing an arbitrary rational number $r/s$ mod $m$ as adding or subtracting an integer multiple of $m$ so that the result is positive and less than $m$. But this is equivalent to reducing $r$ mod $m \cdot s$. Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> a = (A(0) + 15*A(1))//2 >>> print(a) [1, 15, 0, 0]/2 Here, ``a`` represents the number $\frac{1 + 15\zeta}{2}$. If we reduce mod 7, >>> print(a % 7) [1, 1, 0, 0]/2 we get $\frac{1 + \zeta}{2}$. Effectively, we subtracted $7 \zeta$. But it was achieved by reducing the numerator coefficients mod $14$. """ if is_int(m): M = m * self.denom col = to_col([c % M for c in self.coeffs]) return type(self)(self.module, col, denom=self.denom) return NotImplemented class PowerBasisElement(ModuleElement): r""" Subclass for :py:class:`~.ModuleElement` instances whose module is a :py:class:`~.PowerBasis`. """ @property def T(self): """Access the defining polynomial of the :py:class:`~.PowerBasis`.""" return self.module.T def numerator(self, x=None): """Obtain the numerator as a polynomial over :ref:`ZZ`.""" x = x or self.T.gen return Poly(reversed(self.coeffs), x, domain=ZZ) def poly(self, x=None): """Obtain the number as a polynomial over :ref:`QQ`.""" return self.numerator(x=x) // self.denom def norm(self, T=None): """Compute the norm of this number.""" T = T or self.T x = T.gen A = self.numerator(x=x) return T.resultant(A) // self.denom ** self.n def inverse(self): f = self.poly() f_inv = f.invert(self.T) return self.module.element_from_poly(f_inv) def __rfloordiv__(self, a): return self.inverse() * a def _negative_power(self, e, modulo=None): return self.inverse() ** abs(e) class ModuleHomomorphism: r"""A homomorphism from one module to another.""" def __init__(self, domain, codomain, mapping): r""" Parameters ========== domain : :py:class:`~.Module` The domain of the mapping. codomain : :py:class:`~.Module` The codomain of the mapping. mapping : callable An arbitrary callable is accepted, but should be chosen so as to represent an actual module homomorphism. In particular, should accept elements of *domain* and return elements of *codomain*. Examples ======== >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis, ModuleHomomorphism >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> B = A.submodule_from_gens([2*A(j) for j in range(4)]) >>> phi = ModuleHomomorphism(A, B, lambda x: 6*x) >>> print(phi.matrix()) # doctest: +SKIP DomainMatrix([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]], (4, 4), ZZ) """ self.domain = domain self.codomain = codomain self.mapping = mapping def matrix(self, modulus=None): r""" Compute the matrix of this homomorphism. Parameters ========== modulus : int, optional A positive prime number $p$ if the matrix should be reduced mod $p$. Returns ======= :py:class:`~.DomainMatrix` The matrix is over :ref:`ZZ`, or else over :ref:`GF(p)` if a modulus was given. """ basis = self.domain.basis_elements() cols = [self.codomain.represent(self.mapping(elt)) for elt in basis] if not cols: return DomainMatrix.zeros((self.codomain.n, 0), ZZ).to_dense() M = cols[0].hstack(*cols[1:]) if modulus: M = M.convert_to(FF(modulus)) return M def kernel(self, modulus=None): r""" Compute a Submodule representing the kernel of this homomorphism. Parameters ========== modulus : int, optional A positive prime number $p$ if the kernel should be computed mod $p$. Returns ======= :py:class:`~.Submodule` This submodule's generators span the kernel of this homomorphism over :ref:`ZZ`, or else over :ref:`GF(p)` if a modulus was given. """ M = self.matrix(modulus=modulus) if modulus is None: M = M.convert_to(QQ) # Note: Even when working over a finite field, what we want here is # the pullback into the integers, so in this case the conversion to ZZ # below is appropriate. When working over ZZ, the kernel should be a # ZZ-submodule, so, while the conversion to QQ above was required in # order for the nullspace calculation to work, conversion back to ZZ # afterward should always work. # TODO: # Watch <https://github.com/sympy/sympy/issues/21834>, which calls # for fraction-free algorithms. If this is implemented, we can skip # the conversion to `QQ` above. K = M.nullspace().convert_to(ZZ).transpose() return self.domain.submodule_from_matrix(K) class ModuleEndomorphism(ModuleHomomorphism): r"""A homomorphism from one module to itself.""" def __init__(self, domain, mapping): r""" Parameters ========== domain : :py:class:`~.Module` The common domain and codomain of the mapping. mapping : callable An arbitrary callable is accepted, but should be chosen so as to represent an actual module endomorphism. In particular, should accept and return elements of *domain*. """ super().__init__(domain, domain, mapping) class InnerEndomorphism(ModuleEndomorphism): r""" An inner endomorphism on a module, i.e. the endomorphism corresponding to multiplication by a fixed element. """ def __init__(self, domain, multiplier): r""" Parameters ========== domain : :py:class:`~.Module` The domain and codomain of the endomorphism. multiplier : :py:class:`~.ModuleElement` The element $a$ defining the mapping as $x \mapsto a x$. """ super().__init__(domain, lambda x: multiplier * x) self.multiplier = multiplier class EndomorphismRing: r"""The ring of endomorphisms on a module.""" def __init__(self, domain): """ Parameters ========== domain : :py:class:`~.Module` The domain and codomain of the endomorphisms. """ self.domain = domain def inner_endomorphism(self, multiplier): r""" Form an inner endomorphism belonging to this endomorphism ring. Parameters ========== multiplier : :py:class:`~.ModuleElement` Element $a$ defining the inner endomorphism $x \mapsto a x$. Returns ======= :py:class:`~.InnerEndomorphism` """ return InnerEndomorphism(self.domain, multiplier) def represent(self, element): r""" Represent an element of this endomorphism ring, as a single column vector. Explanation =========== Let $M$ be a module, and $E$ its ring of endomorphisms. Let $N$ be another module, and consider a homomorphism $\varphi: N \rightarrow E$. In the event that $\varphi$ is to be represented by a matrix $A$, each column of $A$ must represent an element of $E$. This is possible when the elements of $E$ are themselves representable as matrices, by stacking the columns of such a matrix into a single column. This method supports calculating such matrices $A$, by representing an element of this endomorphism ring first as a matrix, and then stacking that matrix's columns into a single column. Examples ======== Note that in these examples we print matrix transposes, to make their columns easier to inspect. >>> from sympy import Poly, cyclotomic_poly >>> from sympy.polys.numberfields.modules import PowerBasis >>> from sympy.polys.numberfields.modules import ModuleHomomorphism >>> T = Poly(cyclotomic_poly(5)) >>> M = PowerBasis(T) >>> E = M.endomorphism_ring() Let $\zeta$ be a primitive 5th root of unity, a generator of our field, and consider the inner endomorphism $\tau$ on the ring of integers, induced by $\zeta$: >>> zeta = M(1) >>> tau = E.inner_endomorphism(zeta) >>> tau.matrix().transpose() # doctest: +SKIP DomainMatrix( [[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [-1, -1, -1, -1]], (4, 4), ZZ) The matrix representation of $\tau$ is as expected. The first column shows that multiplying by $\zeta$ carries $1$ to $\zeta$, the second column that it carries $\zeta$ to $\zeta^2$, and so forth. The ``represent`` method of the endomorphism ring ``E`` stacks these into a single column: >>> E.represent(tau).transpose() # doctest: +SKIP DomainMatrix( [[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]], (1, 16), ZZ) This is useful when we want to consider a homomorphism $\varphi$ having ``E`` as codomain: >>> phi = ModuleHomomorphism(M, E, lambda x: E.inner_endomorphism(x)) and we want to compute the matrix of such a homomorphism: >>> phi.matrix().transpose() # doctest: +SKIP DomainMatrix( [[1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1], [0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0], [0, 0, 0, 1, -1, -1, -1, -1, 1, 0, 0, 0, 0, 1, 0, 0]], (4, 16), ZZ) Note that the stacked matrix of $\tau$ occurs as the second column in this example. This is because $\zeta$ is the second basis element of ``M``, and $\varphi(\zeta) = \tau$. Parameters ========== element : :py:class:`~.ModuleEndomorphism` belonging to this ring. Returns ======= :py:class:`~.DomainMatrix` Column vector equalling the vertical stacking of all the columns of the matrix that represents the given *element* as a mapping. """ if isinstance(element, ModuleEndomorphism) and element.domain == self.domain: M = element.matrix() # Transform the matrix into a single column, which should reproduce # the original columns, one after another. m, n = M.shape if n == 0: return M return M[:, 0].vstack(*[M[:, j] for j in range(1, n)]) raise NotImplementedError def find_min_poly(alpha, domain, x=None, powers=None): r""" Find a polynomial of least degree (not necessarily irreducible) satisfied by an element of a finitely-generated ring with unity. Examples ======== For the $n$th cyclotomic field, $n$ an odd prime, consider the quadratic equation whose roots are the two periods of length $(n-1)/2$. Article 356 of Gauss tells us that we should get $x^2 + x - (n-1)/4$ or $x^2 + x + (n+1)/4$ according to whether $n$ is 1 or 3 mod 4, respectively. >>> from sympy import Poly, cyclotomic_poly, primitive_root, QQ >>> from sympy.abc import x >>> from sympy.polys.numberfields.modules import PowerBasis, find_min_poly >>> n = 13 >>> g = primitive_root(n) >>> C = PowerBasis(Poly(cyclotomic_poly(n, x))) >>> ee = [g**(2*k+1) % n for k in range((n-1)//2)] >>> eta = sum(C(e) for e in ee) >>> print(find_min_poly(eta, QQ, x=x).as_expr()) x**2 + x - 3 >>> n = 19 >>> g = primitive_root(n) >>> C = PowerBasis(Poly(cyclotomic_poly(n, x))) >>> ee = [g**(2*k+2) % n for k in range((n-1)//2)] >>> eta = sum(C(e) for e in ee) >>> print(find_min_poly(eta, QQ, x=x).as_expr()) x**2 + x + 5 Parameters ========== alpha : :py:class:`~.ModuleElement` The element whose min poly is to be found, and whose module has multiplication and starts with unity. domain : :py:class:`~.Domain` The desired domain of the polynomial. x : :py:class:`~.Symbol`, optional The desired variable for the polynomial. powers : list, optional If desired, pass an empty list. The powers of *alpha* (as :py:class:`~.ModuleElement` instances) from the zeroth up to the degree of the min poly will be recorded here, as we compute them. Returns ======= :py:class:`~.Poly`, ``None`` The minimal polynomial for alpha, or ``None`` if no polynomial could be found over the desired domain. Raises ====== MissingUnityError If the module to which alpha belongs does not start with unity. ClosureFailure If the module to which alpha belongs is not closed under multiplication. """ R = alpha.module if not R.starts_with_unity(): raise MissingUnityError("alpha must belong to finitely generated ring with unity.") if powers is None: powers = [] one = R(0) powers.append(one) powers_matrix = one.column(domain=domain) ak = alpha m = None for k in range(1, R.n + 1): powers.append(ak) ak_col = ak.column(domain=domain) try: X = powers_matrix._solve(ak_col)[0] except DMBadInputError: # This means alpha^k still isn't in the domain-span of the lower powers. powers_matrix = powers_matrix.hstack(ak_col) ak *= alpha else: # alpha^k is in the domain-span of the lower powers, so we have found a # minimal-degree poly for alpha. coeffs = [1] + [-c for c in reversed(X.to_list_flat())] x = x or Dummy('x') if domain.is_FF: m = Poly(coeffs, x, modulus=domain.mod) else: m = Poly(coeffs, x, domain=domain) break return m
5f7e8bed0e37a27b3db368b96efa7f3551a0bf71715d96b14de3b79862d0124e
"""Computing integral bases for number fields. """ from sympy.polys.polytools import Poly from sympy.polys.domains.integerring import ZZ from sympy.polys.domains.rationalfield import QQ from sympy.polys.polyerrors import CoercionFailed from sympy.utilities.decorator import public from .modules import ModuleEndomorphism, ModuleHomomorphism, PowerBasis from .utilities import extract_fundamental_discriminant def _apply_Dedekind_criterion(T, p): r""" Apply the "Dedekind criterion" to test whether the order needs to be enlarged relative to a given prime *p*. """ x = T.gen T_bar = Poly(T, modulus=p) lc, fl = T_bar.factor_list() assert lc == 1 g_bar = Poly(1, x, modulus=p) for ti_bar, _ in fl: g_bar *= ti_bar h_bar = T_bar // g_bar g = Poly(g_bar, domain=ZZ) h = Poly(h_bar, domain=ZZ) f = (g * h - T) // p f_bar = Poly(f, modulus=p) Z_bar = f_bar for b in [g_bar, h_bar]: Z_bar = Z_bar.gcd(b) U_bar = T_bar // Z_bar m = Z_bar.degree() return U_bar, m def nilradical_mod_p(H, p, q=None): r""" Compute the nilradical mod *p* for a given order *H*, and prime *p*. Explanation =========== This is the ideal $I$ in $H/pH$ consisting of all elements some positive power of which is zero in this quotient ring, i.e. is a multiple of *p*. Parameters ========== H : :py:class:`~.Submodule` The given order. p : int The rational prime. q : int, optional If known, the smallest power of *p* that is $>=$ the dimension of *H*. If not provided, we compute it here. Returns ======= :py:class:`~.Module` representing the nilradical mod *p* in *H*. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory*. (See Lemma 6.1.6.) """ n = H.n if q is None: q = p while q < n: q *= p phi = ModuleEndomorphism(H, lambda x: x**q) return phi.kernel(modulus=p) def _second_enlargement(H, p, q): r""" Perform the second enlargement in the Round Two algorithm. """ Ip = nilradical_mod_p(H, p, q=q) B = H.parent.submodule_from_matrix(H.matrix * Ip.matrix, denom=H.denom) C = B + p*H E = C.endomorphism_ring() phi = ModuleHomomorphism(H, E, lambda x: E.inner_endomorphism(x)) gamma = phi.kernel(modulus=p) G = H.parent.submodule_from_matrix(H.matrix * gamma.matrix, denom=H.denom * p) H1 = G + H return H1, Ip @public def round_two(T, radicals=None): r""" Zassenhaus's "Round 2" algorithm. Explanation =========== Carry out Zassenhaus's "Round 2" algorithm on a monic irreducible polynomial *T* over :ref:`ZZ`. This computes an integral basis and the discriminant for the field $K = \mathbb{Q}[x]/(T(x))$. Ordinarily this function need not be called directly, as one can instead access the :py:meth:`~.AlgebraicField.maximal_order`, :py:meth:`~.AlgebraicField.integral_basis`, and :py:meth:`~.AlgebraicField.discriminant` methods of an :py:class:`~.AlgebraicField`. Examples ======== Working through an AlgebraicField: >>> from sympy import Poly, QQ >>> from sympy.abc import x, theta >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8) >>> K = QQ.algebraic_field((T, theta)) >>> print(K.maximal_order()) Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2 >>> print(K.discriminant()) -503 >>> print(K.integral_basis(fmt='sympy')) [1, theta, theta**2/2 + theta/2] Calling directly: >>> from sympy import Poly >>> from sympy.abc import x >>> from sympy.polys.numberfields.basis import round_two >>> T = Poly(x ** 3 + x ** 2 - 2 * x + 8) >>> print(round_two(T)) (Submodule[[2, 0, 0], [0, 2, 0], [0, 1, 1]]/2, -503) The nilradicals mod $p$ that are sometimes computed during the Round Two algorithm may be useful in further calculations. Pass a dictionary under `radicals` to receive these: >>> T = Poly(x**3 + 3*x**2 + 5) >>> rad = {} >>> ZK, dK = round_two(T, radicals=rad) >>> print(rad) {3: Submodule[[-1, 1, 0], [-1, 0, 1]]} Parameters ========== T : :py:class:`~.Poly` The irreducible monic polynomial over :ref:`ZZ` defining the number field. radicals : dict, optional This is a way for any $p$-radicals (if computed) to be returned by reference. If desired, pass an empty dictionary. If the algorithm reaches the point where it computes the nilradical mod $p$ of the ring of integers $Z_K$, then an $\mathbb{F}_p$-basis for this ideal will be stored in this dictionary under the key ``p``. This can be useful for other algorithms, such as prime decomposition. Returns ======= Pair ``(ZK, dK)``, where: ``ZK`` is a :py:class:`~sympy.polys.numberfields.modules.Submodule` representing the maximal order. ``dK`` is the discriminant of the field $K = \mathbb{Q}[x]/(T(x))$. See Also ======== .AlgebraicField.maximal_order .AlgebraicField.integral_basis .AlgebraicField.discriminant References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* """ if T.domain == QQ: try: T = Poly(T, domain=ZZ) except CoercionFailed: pass # Let the error be raised by the next clause. if ( not T.is_univariate or not T.is_irreducible or not T.is_monic or not T.domain == ZZ): raise ValueError('Round 2 requires a monic irreducible univariate polynomial over ZZ.') n = T.degree() D = T.discriminant() D_modulus = ZZ.from_sympy(abs(D)) # D must be 0 or 1 mod 4 (see Cohen Sec 4.4), which ensures we can write # it in the form D = D_0 * F**2, where D_0 is 1 or a fundamental discriminant. _, F = extract_fundamental_discriminant(D) Ztheta = PowerBasis(T) H = Ztheta.whole_submodule() nilrad = None while F: # Next prime: p, e = F.popitem() U_bar, m = _apply_Dedekind_criterion(T, p) if m == 0: continue # For a given prime p, the first enlargement of the order spanned by # the current basis can be done in a simple way: U = Ztheta.element_from_poly(Poly(U_bar, domain=ZZ)) # TODO: # Theory says only first m columns of the U//p*H term below are needed. # Could be slightly more efficient to use only those. Maybe `Submodule` # class should support a slice operator? H = H.add(U // p * H, hnf_modulus=D_modulus) if e <= m: continue # A second, and possibly more, enlargements for p will be needed. # These enlargements require a more involved procedure. q = p while q < n: q *= p H1, nilrad = _second_enlargement(H, p, q) while H1 != H: H = H1 H1, nilrad = _second_enlargement(H, p, q) # Note: We do not store all nilradicals mod p, only the very last. This is # because, unless computed against the entire integral basis, it might not # be accurate. (In other words, if H was not already equal to ZK when we # passed it to `_second_enlargement`, then we can't trust the nilradical # so computed.) Example: if T(x) = x ** 3 + 15 * x ** 2 - 9 * x + 13, then # F is divisible by 2, 3, and 7, and the nilradical mod 2 as computed above # will not be accurate for the full, maximal order ZK. if nilrad is not None and isinstance(radicals, dict): radicals[p] = nilrad ZK = H # Pre-set expensive boolean properties which we already know to be true: ZK._starts_with_unity = True ZK._is_sq_maxrank_HNF = True dK = (D * ZK.matrix.det() ** 2) // ZK.denom ** (2 * n) return ZK, dK
20ddfa3e21ef5af1f960eb56994d041d23e22a11abc8f7b370e6b075099eb0ca
"""Special exception classes for numberfields. """ class ClosureFailure(Exception): r""" Signals that a :py:class:`ModuleElement` which we tried to represent in a certain :py:class:`Module` cannot in fact be represented there. Examples ======== >>> from sympy.polys import Poly, cyclotomic_poly, ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.numberfields.modules import PowerBasis, to_col, ClosureFailure >>> from sympy.testing.pytest import raises >>> T = Poly(cyclotomic_poly(5)) >>> A = PowerBasis(T) >>> B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) Because we are in a cyclotomic field, the power basis ``A`` is an integral basis, and the submodule ``B`` is just the ideal $(2)$. Therefore ``B`` can represent an element having all even coefficients over the power basis: >>> a1 = A(to_col([2, 4, 6, 8])) >>> print(B.represent(a1)) DomainMatrix([[1], [2], [3], [4]], (4, 1), ZZ) but ``B`` cannot represent an element with an odd coefficient: >>> a2 = A(to_col([1, 2, 2, 2])) >>> print(raises(ClosureFailure, lambda: B.represent(a2))) <ExceptionInfo ClosureFailure('Element in QQ-span but not ZZ-span of this basis.')> """ pass class StructureError(Exception): r""" Represents cases in which an algebraic structure was expected to have a certain property, or be of a certain type, but was not. """ pass class MissingUnityError(StructureError): r"""Structure should contain a unity element but does not.""" pass __all__ = [ 'ClosureFailure', 'StructureError', 'MissingUnityError', ]
10ffd4685f49b2ec4ae814fd2f27b747e717952797df0ddfc89efb10fe4433e4
"""Minimal polynomials for algebraic numbers.""" from functools import reduce from sympy.core.add import Add from sympy.core.function import expand_mul, expand_multinomial from sympy.core.mul import Mul from sympy.core import (GoldenRatio, TribonacciConstant) from sympy.core.numbers import (I, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.functions import sqrt, cbrt from sympy.core.exprtools import Factors from sympy.core.function import _mexpand from sympy.core.traversal import preorder_traversal from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.trigonometric import cos, sin, tan from sympy.ntheory.factor_ import divisors from sympy.utilities.iterables import subsets from sympy.polys.domains import ZZ, QQ, FractionField from sympy.polys.orthopolys import dup_chebyshevt from sympy.polys.polyerrors import ( NotAlgebraic, GeneratorsError, ) from sympy.polys.polytools import ( Poly, PurePoly, invert, factor_list, groebner, resultant, degree, poly_from_expr, parallel_poly_from_expr, lcm ) from sympy.polys.polyutils import dict_from_expr, expr_from_dict, illegal from sympy.polys.ring_series import rs_compose_add from sympy.polys.rings import ring from sympy.polys.rootoftools import CRootOf from sympy.polys.specialpolys import cyclotomic_poly from sympy.simplify.radsimp import _split_gcd from sympy.simplify.simplify import _is_sum_surds from sympy.utilities import ( numbered_symbols, public, sift ) def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5): """ Return a factor having root ``v`` It is assumed that one of the factors has root ``v``. """ if isinstance(factors[0], tuple): factors = [f[0] for f in factors] if len(factors) == 1: return factors[0] prec1 = 10 points = {} symbols = dom.symbols if hasattr(dom, 'symbols') else [] while prec1 <= prec: # when dealing with non-Rational numbers we usually evaluate # with `subs` argument but we only need a ballpark evaluation xv = {x:v if not v.is_number else v.n(prec1)} fe = [f.as_expr().xreplace(xv) for f in factors] # assign integers [0, n) to symbols (if any) for n in subsets(range(bound), k=len(symbols), repetition=True): for s, i in zip(symbols, n): points[s] = i # evaluate the expression at these points candidates = [(abs(f.subs(points).n(prec1)), i) for i,f in enumerate(fe)] # if we get invalid numbers (e.g. from division by zero) # we try again if any(i in illegal for i, _ in candidates): continue # find the smallest two -- if they differ significantly # then we assume we have found the factor that becomes # 0 when v is substituted into it can = sorted(candidates) (a, ix), (b, _) = can[:2] if b > a * 10**6: # XXX what to use? return factors[ix] prec1 *= 2 raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v) def _separate_sq(p): """ helper function for ``_minimal_polynomial_sq`` It selects a rational ``g`` such that the polynomial ``p`` consists of a sum of terms whose surds squared have gcd equal to ``g`` and a sum of terms with surds squared prime with ``g``; then it takes the field norm to eliminate ``sqrt(g)`` See simplify.simplify.split_surds and polytools.sqf_norm. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x >>> from sympy.polys.numberfields.minpoly import _separate_sq >>> p= -x + sqrt(2) + sqrt(3) + sqrt(7) >>> p = _separate_sq(p); p -x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8 >>> p = _separate_sq(p); p -x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20 >>> p = _separate_sq(p); p -x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400 """ def is_sqrt(expr): return expr.is_Pow and expr.exp is S.Half # p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)] a = [] for y in p.args: if not y.is_Mul: if is_sqrt(y): a.append((S.One, y**2)) elif y.is_Atom: a.append((y, S.One)) elif y.is_Pow and y.exp.is_integer: a.append((y, S.One)) else: raise NotImplementedError else: T, F = sift(y.args, is_sqrt, binary=True) a.append((Mul(*F), Mul(*T)**2)) a.sort(key=lambda z: z[1]) if a[-1][1] is S.One: # there are no surds return p surds = [z for y, z in a] for i in range(len(surds)): if surds[i] != 1: break g, b1, b2 = _split_gcd(*surds[i:]) a1 = [] a2 = [] for y, z in a: if z in b1: a1.append(y*z**S.Half) else: a2.append(y*z**S.Half) p1 = Add(*a1) p2 = Add(*a2) p = _mexpand(p1**2) - _mexpand(p2**2) return p def _minimal_polynomial_sq(p, n, x): """ Returns the minimal polynomial for the ``nth-root`` of a sum of surds or ``None`` if it fails. Parameters ========== p : sum of surds n : positive integer x : variable of the returned polynomial Examples ======== >>> from sympy.polys.numberfields.minpoly import _minimal_polynomial_sq >>> from sympy import sqrt >>> from sympy.abc import x >>> q = 1 + sqrt(2) + sqrt(3) >>> _minimal_polynomial_sq(q, 3, x) x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8 """ p = sympify(p) n = sympify(n) if not n.is_Integer or not n > 0 or not _is_sum_surds(p): return None pn = p**Rational(1, n) # eliminate the square roots p -= x while 1: p1 = _separate_sq(p) if p1 is p: p = p1.subs({x:x**n}) break else: p = p1 # _separate_sq eliminates field extensions in a minimal way, so that # if n = 1 then `p = constant*(minimal_polynomial(p))` # if n > 1 it contains the minimal polynomial as a factor. if n == 1: p1 = Poly(p) if p.coeff(x**p1.degree(x)) < 0: p = -p p = p.primitive()[1] return p # by construction `p` has root `pn` # the minimal polynomial is the factor vanishing in x = pn factors = factor_list(p)[1] result = _choose_factor(factors, x, pn) return result def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None): """ return the minimal polynomial for ``op(ex1, ex2)`` Parameters ========== op : operation ``Add`` or ``Mul`` ex1, ex2 : expressions for the algebraic elements x : indeterminate of the polynomials dom: ground domain mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None Examples ======== >>> from sympy import sqrt, Add, Mul, QQ >>> from sympy.polys.numberfields.minpoly import _minpoly_op_algebraic_element >>> from sympy.abc import x, y >>> p1 = sqrt(sqrt(2) + 1) >>> p2 = sqrt(sqrt(2) - 1) >>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ) x - 1 >>> q1 = sqrt(y) >>> q2 = 1 / y >>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y)) x**2*y**2 - 2*x*y - y**3 + 1 References ========== .. [1] https://en.wikipedia.org/wiki/Resultant .. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638 "Degrees of sums in a separable field extension". """ y = Dummy(str(x)) if mp1 is None: mp1 = _minpoly_compose(ex1, x, dom) if mp2 is None: mp2 = _minpoly_compose(ex2, y, dom) else: mp2 = mp2.subs({x: y}) if op is Add: # mp1a = mp1.subs({x: x - y}) if dom == QQ: R, X = ring('X', QQ) p1 = R(dict_from_expr(mp1)[0]) p2 = R(dict_from_expr(mp2)[0]) else: (p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y) r = p1.compose(p2) mp1a = r.as_expr() elif op is Mul: mp1a = _muly(mp1, x, y) else: raise NotImplementedError('option not available') if op is Mul or dom != QQ: r = resultant(mp1a, mp2, gens=[y, x]) else: r = rs_compose_add(p1, p2) r = expr_from_dict(r.as_expr_dict(), x) deg1 = degree(mp1, x) deg2 = degree(mp2, y) if op is Mul and deg1 == 1 or deg2 == 1: # if deg1 = 1, then mp1 = x - a; mp1a = x - y - a; # r = mp2(x - a), so that `r` is irreducible return r r = Poly(r, x, domain=dom) _, factors = r.factor_list() res = _choose_factor(factors, x, op(ex1, ex2), dom) return res.as_expr() def _invertx(p, x): """ Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**(n - i) for (i,), c in p1.terms()] return Add(*a) def _muly(p, x, y): """ Returns ``_mexpand(y**deg*p.subs({x:x / y}))`` """ p1 = poly_from_expr(p, x)[0] n = degree(p1) a = [c * x**i * y**(n - i) for (i,), c in p1.terms()] return Add(*a) def _minpoly_pow(ex, pw, x, dom, mp=None): """ Returns ``minpoly(ex**pw, x)`` Parameters ========== ex : algebraic element pw : rational number x : indeterminate of the polynomial dom: ground domain mp : minimal polynomial of ``p`` Examples ======== >>> from sympy import sqrt, QQ, Rational >>> from sympy.polys.numberfields.minpoly import _minpoly_pow, minpoly >>> from sympy.abc import x, y >>> p = sqrt(1 + sqrt(2)) >>> _minpoly_pow(p, 2, x, QQ) x**2 - 2*x - 1 >>> minpoly(p**2, x) x**2 - 2*x - 1 >>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y)) x**3 - y >>> minpoly(y**Rational(1, 3), x) x**3 - y """ pw = sympify(pw) if not mp: mp = _minpoly_compose(ex, x, dom) if not pw.is_rational: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) if pw < 0: if mp == x: raise ZeroDivisionError('%s is zero' % ex) mp = _invertx(mp, x) if pw == -1: return mp pw = -pw ex = 1/ex y = Dummy(str(x)) mp = mp.subs({x: y}) n, d = pw.as_numer_denom() res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom) _, factors = res.factor_list() res = _choose_factor(factors, x, ex**pw, dom) return res.as_expr() def _minpoly_add(x, dom, *a): """ returns ``minpoly(Add(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom) p = a[0] + a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp) p = p + px return mp def _minpoly_mul(x, dom, *a): """ returns ``minpoly(Mul(*a), dom, x)`` """ mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom) p = a[0] * a[1] for px in a[2:]: mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp) p = p * px return mp def _minpoly_sin(ex, x): """ Returns the minimal polynomial of ``sin(ex)`` see http://mathworld.wolfram.com/TrigonometryAngles.html """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: n = c.q q = sympify(n) if q.is_prime: # for a = pi*p/q with q odd prime, using chebyshevt # write sin(q*a) = mp(sin(a))*sin(a); # the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1 a = dup_chebyshevt(n, ZZ) return Add(*[x**(n - i - 1)*a[i] for i in range(n)]) if c.p == 1: if q == 9: return 64*x**6 - 96*x**4 + 36*x**2 - 3 if n % 2 == 1: # for a = pi*p/q with q odd, use # sin(q*a) = 0 to see that the minimal polynomial must be # a factor of dup_chebyshevt(n, ZZ) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res expr = ((1 - cos(2*c*pi))/2)**S.Half res = _minpoly_compose(expr, x, QQ) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_cos(ex, x): """ Returns the minimal polynomial of ``cos(ex)`` see http://mathworld.wolfram.com/TrigonometryAngles.html """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: if c.p == 1: if c.q == 7: return 8*x**3 - 4*x**2 - 4*x + 1 if c.q == 9: return 8*x**3 - 6*x - 1 elif c.p == 2: q = sympify(c.q) if q.is_prime: s = _minpoly_sin(ex, x) return _mexpand(s.subs({x:sqrt((1 - x)/2)})) # for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p n = int(c.q) a = dup_chebyshevt(n, ZZ) a = [x**(n - i)*a[i] for i in range(n + 1)] r = Add(*a) - (-1)**c.p _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_tan(ex, x): """ Returns the minimal polynomial of ``tan(ex)`` see https://github.com/sympy/sympy/issues/21430 """ c, a = ex.args[0].as_coeff_Mul() if a is pi: if c.is_rational: c = c * 2 n = int(c.q) a = n if c.p % 2 == 0 else 1 terms = [] for k in range((c.p+1)%2, n+1, 2): terms.append(a*x**k) a = -(a*(n-k-1)*(n-k)) // ((k+1)*(k+2)) r = Add(*terms) _, factors = factor_list(r) res = _choose_factor(factors, x, ex) return res raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_exp(ex, x): """ Returns the minimal polynomial of ``exp(ex)`` """ c, a = ex.args[0].as_coeff_Mul() if a == I*pi: if c.is_rational: q = sympify(c.q) if c.p == 1 or c.p == -1: if q == 3: return x**2 - x + 1 if q == 4: return x**4 + 1 if q == 6: return x**4 - x**2 + 1 if q == 8: return x**8 + 1 if q == 9: return x**6 - x**3 + 1 if q == 10: return x**8 - x**6 + x**4 - x**2 + 1 if q.is_prime: s = 0 for i in range(q): s += (-x)**i return s # x**(2*q) = product(factors) factors = [cyclotomic_poly(i, x) for i in divisors(2*q)] mp = _choose_factor(factors, x, ex) return mp else: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) def _minpoly_rootof(ex, x): """ Returns the minimal polynomial of a ``CRootOf`` object. """ p = ex.expr p = p.subs({ex.poly.gens[0]:x}) _, factors = factor_list(p, x) result = _choose_factor(factors, x, ex) return result def _minpoly_compose(ex, x, dom): """ Computes the minimal polynomial of an algebraic element using operations on minimal polynomials Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True) x**2 - 2*x - 1 >>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True) x**2*y**2 - 2*x*y - y**3 + 1 """ if ex.is_Rational: return ex.q*x - ex.p if ex is I: _, factors = factor_list(x**2 + 1, x, domain=dom) return x**2 + 1 if len(factors) == 1 else x - I if ex is GoldenRatio: _, factors = factor_list(x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**2 - x - 1 else: return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom) if ex is TribonacciConstant: _, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom) if len(factors) == 1: return x**3 - x**2 - x - 1 else: fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 return _choose_factor(factors, x, fac, dom=dom) if hasattr(dom, 'symbols') and ex in dom.symbols: return x - ex if dom.is_QQ and _is_sum_surds(ex): # eliminate the square roots ex -= x while 1: ex1 = _separate_sq(ex) if ex1 is ex: return ex else: ex = ex1 if ex.is_Add: res = _minpoly_add(x, dom, *ex.args) elif ex.is_Mul: f = Factors(ex).factors r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational) if r[True] and dom == QQ: ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]]) r1 = dict(r[True]) dens = [y.q for y in r1.values()] lcmdens = reduce(lcm, dens, 1) neg1 = S.NegativeOne expn1 = r1.pop(neg1, S.Zero) nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()] ex2 = Mul(*nums) mp1 = minimal_polynomial(ex1, x) # use the fact that in SymPy canonicalization products of integers # raised to rational powers are organized in relatively prime # bases, and that in ``base**(n/d)`` a perfect power is # simplified with the root # Powers of -1 have to be treated separately to preserve sign. mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens) ex2 = neg1**expn1 * ex2**Rational(1, lcmdens) res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2) else: res = _minpoly_mul(x, dom, *ex.args) elif ex.is_Pow: res = _minpoly_pow(ex.base, ex.exp, x, dom) elif ex.__class__ is sin: res = _minpoly_sin(ex, x) elif ex.__class__ is cos: res = _minpoly_cos(ex, x) elif ex.__class__ is tan: res = _minpoly_tan(ex, x) elif ex.__class__ is exp: res = _minpoly_exp(ex, x) elif ex.__class__ is CRootOf: res = _minpoly_rootof(ex, x) else: raise NotAlgebraic("%s doesn't seem to be an algebraic element" % ex) return res @public def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None): """ Computes the minimal polynomial of an algebraic element. Parameters ========== ex : Expr Element or expression whose minimal polynomial is to be calculated. x : Symbol, optional Independent variable of the minimal polynomial compose : boolean, optional (default=True) Method to use for computing minimal polynomial. If ``compose=True`` (default) then ``_minpoly_compose`` is used, if ``compose=False`` then groebner bases are used. polys : boolean, optional (default=False) If ``True`` returns a ``Poly`` object else an ``Expr`` object. domain : Domain, optional Ground domain Notes ===== By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex`` are computed, then the arithmetic operations on them are performed using the resultant and factorization. If ``compose=False``, a bottom-up algorithm is used with ``groebner``. The default algorithm stalls less frequently. If no ground domain is given, it will be generated automatically from the expression. Examples ======== >>> from sympy import minimal_polynomial, sqrt, solve, QQ >>> from sympy.abc import x, y >>> minimal_polynomial(sqrt(2), x) x**2 - 2 >>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) x - sqrt(2) >>> minimal_polynomial(sqrt(2) + sqrt(3), x) x**4 - 10*x**2 + 1 >>> minimal_polynomial(solve(x**3 + x + 3)[0], x) x**3 + x + 3 >>> minimal_polynomial(sqrt(y), x) x**2 - y """ ex = sympify(ex) if ex.is_number: # not sure if it's always needed but try it for numbers (issue 8354) ex = _mexpand(ex, recursive=True) for expr in preorder_traversal(ex): if expr.is_AlgebraicNumber: compose = False break if x is not None: x, cls = sympify(x), Poly else: x, cls = Dummy('x'), PurePoly if not domain: if ex.free_symbols: domain = FractionField(QQ, list(ex.free_symbols)) else: domain = QQ if hasattr(domain, 'symbols') and x in domain.symbols: raise GeneratorsError("the variable %s is an element of the ground " "domain %s" % (x, domain)) if compose: result = _minpoly_compose(ex, x, domain) result = result.primitive()[1] c = result.coeff(x**degree(result, x)) if c.is_negative: result = expand_mul(-result) return cls(result, x, field=True) if polys else result.collect(x) if not domain.is_QQ: raise NotImplementedError("groebner method only works for QQ") result = _minpoly_groebner(ex, x, cls) return cls(result, x, field=True) if polys else result.collect(x) def _minpoly_groebner(ex, x, cls): """ Computes the minimal polynomial of an algebraic number using Groebner bases Examples ======== >>> from sympy import minimal_polynomial, sqrt, Rational >>> from sympy.abc import x >>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False) x**2 - 2*x - 1 """ generator = numbered_symbols('a', cls=Dummy) mapping, symbols = {}, {} def update_mapping(ex, exp, base=None): a = next(generator) symbols[ex] = a if base is not None: mapping[ex] = a**exp + base else: mapping[ex] = exp.as_expr(a) return a def bottom_up_scan(ex): """ Transform a given algebraic expression *ex* into a multivariate polynomial, by introducing fresh variables with defining equations. Explanation =========== The critical elements of the algebraic expression *ex* are root extractions, instances of :py:class:`~.AlgebraicNumber`, and negative powers. When we encounter a root extraction or an :py:class:`~.AlgebraicNumber` we replace this expression with a fresh variable ``a_i``, and record the defining polynomial for ``a_i``. For example, if ``a_0**(1/3)`` occurs, we will replace it with ``a_1``, and record the new defining polynomial ``a_1**3 - a_0``. When we encounter a negative power we transform it into a positive power by algebraically inverting the base. This means computing the minimal polynomial in ``x`` for the base, inverting ``x`` modulo this poly (which generates a new polynomial) and then substituting the original base expression for ``x`` in this last polynomial. We return the transformed expression, and we record the defining equations for new symbols using the ``update_mapping()`` function. """ if ex.is_Atom: if ex is S.ImaginaryUnit: if ex not in mapping: return update_mapping(ex, 2, 1) else: return symbols[ex] elif ex.is_Rational: return ex elif ex.is_Add: return Add(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Mul: return Mul(*[ bottom_up_scan(g) for g in ex.args ]) elif ex.is_Pow: if ex.exp.is_Rational: if ex.exp < 0: minpoly_base = _minpoly_groebner(ex.base, x, cls) inverse = invert(x, minpoly_base).as_expr() base_inv = inverse.subs(x, ex.base).expand() if ex.exp == -1: return bottom_up_scan(base_inv) else: ex = base_inv**(-ex.exp) if not ex.exp.is_Integer: base, exp = ( ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q) else: base, exp = ex.base, ex.exp base = bottom_up_scan(base) expr = base**exp if expr not in mapping: if exp.is_Integer: return expr.expand() else: return update_mapping(expr, 1 / exp, -base) else: return symbols[expr] elif ex.is_AlgebraicNumber: if ex not in mapping: return update_mapping(ex, ex.minpoly_of_element()) else: return symbols[ex] raise NotAlgebraic("%s doesn't seem to be an algebraic number" % ex) def simpler_inverse(ex): """ Returns True if it is more likely that the minimal polynomial algorithm works better with the inverse """ if ex.is_Pow: if (1/ex.exp).is_integer and ex.exp < 0: if ex.base.is_Add: return True if ex.is_Mul: hit = True for p in ex.args: if p.is_Add: return False if p.is_Pow: if p.base.is_Add and p.exp > 0: return False if hit: return True return False inverted = False ex = expand_multinomial(ex) if ex.is_AlgebraicNumber: return ex.minpoly_of_element().as_expr(x) elif ex.is_Rational: result = ex.q*x - ex.p else: inverted = simpler_inverse(ex) if inverted: ex = ex**-1 res = None if ex.is_Pow and (1/ex.exp).is_Integer: n = 1/ex.exp res = _minimal_polynomial_sq(ex.base, n, x) elif _is_sum_surds(ex): res = _minimal_polynomial_sq(ex, S.One, x) if res is not None: result = res if res is None: bus = bottom_up_scan(ex) F = [x - bus] + list(mapping.values()) G = groebner(F, list(symbols.values()) + [x], order='lex') _, factors = factor_list(G[-1]) # by construction G[-1] has root `ex` result = _choose_factor(factors, x, ex) if inverted: result = _invertx(result, x) if result.coeff(x**degree(result, x)) < 0: result = expand_mul(-result) return result @public def minpoly(ex, x=None, compose=True, polys=False, domain=None): """This is a synonym for :py:func:`~.minimal_polynomial`.""" return minimal_polynomial(ex, x=x, compose=compose, polys=polys, domain=domain)
b015e971fd638d557cfe6da6f9d2ed77214c0b5a71709d7ce967d0655a4091ea
r""" Functions in ``polys.numberfields.subfield`` solve the "Subfield Problem" and allied problems, for algebraic number fields. Following Cohen (see [Cohen93]_ Section 4.5), we can define the main problem as follows: * **Subfield Problem:** Given two number fields $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ via the minimal polynomials for their generators $\alpha$ and $\beta$, decide whether one field is isomorphic to a subfield of the other. From a solution to this problem flow solutions to the following problems as well: * **Primitive Element Problem:** Given several algebraic numbers $\alpha_1, \ldots, \alpha_m$, compute a single algebraic number $\theta$ such that $\mathbb{Q}(\alpha_1, \ldots, \alpha_m) = \mathbb{Q}(\theta)$. * **Field Isomorphism Problem:** Decide whether two number fields $\mathbb{Q}(\alpha)$, $\mathbb{Q}(\beta)$ are isomorphic. * **Field Membership Problem:** Given two algebraic numbers $\alpha$, $\beta$, decide whether $\alpha \in \mathbb{Q}(\beta)$, and if so write $\alpha = f(\beta)$ for some $f(x) \in \mathbb{Q}[x]$. """ from sympy.core.add import Add from sympy.core.numbers import AlgebraicNumber from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.core.sympify import sympify from sympy.ntheory import sieve from sympy.polys.densetools import dup_eval from sympy.polys.domains import QQ from sympy.polys.numberfields.minpoly import _choose_factor, minimal_polynomial from sympy.polys.polyerrors import IsomorphismFailed from sympy.polys.polytools import Poly, PurePoly, factor_list from sympy.utilities import public from mpmath import pslq, mp def is_isomorphism_possible(a, b): """Returns `True` if there is a chance for isomorphism. """ n = a.minpoly.degree() m = b.minpoly.degree() if m % n != 0: return False if n == m: return True da = a.minpoly.discriminant() db = b.minpoly.discriminant() i, k, half = 1, m//n, db//2 while True: p = sieve[i] P = p**k if P > half: break if ((da % p) % 2) and not (db % P): return False i += 1 return True def field_isomorphism_pslq(a, b): """Construct field isomorphism using PSLQ algorithm. """ if not a.root.is_real or not b.root.is_real: raise NotImplementedError("PSLQ doesn't support complex coefficients") f = a.minpoly g = b.minpoly.replace(f.gen) n, m, prev = 100, b.minpoly.degree(), None for i in range(1, 5): A = a.root.evalf(n) B = b.root.evalf(n) basis = [1, B] + [ B**i for i in range(2, m) ] + [A] dps, mp.dps = mp.dps, n coeffs = pslq(basis, maxcoeff=int(1e10), maxsteps=1000) mp.dps = dps if coeffs is None: break if coeffs != prev: prev = coeffs else: break coeffs = [S(c)/coeffs[-1] for c in coeffs[:-1]] while not coeffs[-1]: coeffs.pop() coeffs = list(reversed(coeffs)) h = Poly(coeffs, f.gen, domain='QQ') if f.compose(h).rem(g).is_zero: d, approx = len(coeffs) - 1, 0 for i, coeff in enumerate(coeffs): approx += coeff*B**(d - i) if A*approx < 0: return [ -c for c in coeffs ] else: return coeffs elif f.compose(-h).rem(g).is_zero: return [ -c for c in coeffs ] else: n *= 2 return None def field_isomorphism_factor(a, b): """Construct field isomorphism via factorization. """ _, factors = factor_list(a.minpoly, extension=b) for f, _ in factors: if f.degree() == 1: coeffs = f.rep.TC().to_sympy_list() d, terms = len(coeffs) - 1, [] for i, coeff in enumerate(coeffs): terms.append(coeff*b.root**(d - i)) root = Add(*terms) if (a.root - root).evalf(chop=True) == 0: return coeffs if (a.root + root).evalf(chop=True) == 0: return [-c for c in coeffs] return None @public def field_isomorphism(a, b, *, fast=True): r""" Find an embedding of one number field into another. Explanation =========== This function looks for an isomorphism from $\mathbb{Q}(a)$ onto some subfield of $\mathbb{Q}(b)$. Thus, it solves the Subfield Problem. Examples ======== >>> from sympy import sqrt, field_isomorphism, I >>> print(field_isomorphism(3, sqrt(2))) # doctest: +SKIP [3] >>> print(field_isomorphism( I*sqrt(3), I*sqrt(3)/2)) # doctest: +SKIP [2, 0] Parameters ========== a : :py:class:`~.Expr` Any expression representing an algebraic number. b : :py:class:`~.Expr` Any expression representing an algebraic number. fast : boolean, optional (default=True) If ``True``, we first attempt a potentially faster way of computing the isomorphism, falling back on a slower method if this fails. If ``False``, we go directly to the slower method, which is guaranteed to return a result. Returns ======= List of rational numbers, or None If $\mathbb{Q}(a)$ is not isomorphic to some subfield of $\mathbb{Q}(b)$, then return ``None``. Otherwise, return a list of rational numbers representing an element of $\mathbb{Q}(b)$ to which $a$ may be mapped, in order to define a monomorphism, i.e. an isomorphism from $\mathbb{Q}(a)$ to some subfield of $\mathbb{Q}(b)$. The elements of the list are the coefficients of falling powers of $b$. """ a, b = sympify(a), sympify(b) if not a.is_AlgebraicNumber: a = AlgebraicNumber(a) if not b.is_AlgebraicNumber: b = AlgebraicNumber(b) a = a.to_primitive_element() b = b.to_primitive_element() if a == b: return a.coeffs() n = a.minpoly.degree() m = b.minpoly.degree() if n == 1: return [a.root] if m % n != 0: return None if fast: try: result = field_isomorphism_pslq(a, b) if result is not None: return result except NotImplementedError: pass return field_isomorphism_factor(a, b) def _switch_domain(g, K): # An algebraic relation f(a, b) = 0 over Q can also be written # g(b) = 0 where g is in Q(a)[x] and h(a) = 0 where h is in Q(b)[x]. # This function transforms g into h where Q(b) = K. frep = g.rep.inject() hrep = frep.eject(K, front=True) return g.new(hrep, g.gens[0]) def _linsolve(p): # Compute root of linear polynomial. c, d = p.rep.rep return -d/c @public def primitive_element(extension, x=None, *, ex=False, polys=False): r""" Find a single generator for a number field given by several generators. Explanation =========== The basic problem is this: Given several algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$, find a single algebraic number $\theta$ such that $\mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n) = \mathbb{Q}(\theta)$. This function actually guarantees that $\theta$ will be a linear combination of the $\alpha_i$, with non-negative integer coefficients. Furthermore, if desired, this function will tell you how to express each $\alpha_i$ as a $\mathbb{Q}$-linear combination of the powers of $\theta$. Examples ======== >>> from sympy import primitive_element, sqrt, S, minpoly, simplify >>> from sympy.abc import x >>> f, lincomb, reps = primitive_element([sqrt(2), sqrt(3)], x, ex=True) Then ``lincomb`` tells us the primitive element as a linear combination of the given generators ``sqrt(2)`` and ``sqrt(3)``. >>> print(lincomb) [1, 1] This means the primtiive element is $\sqrt{2} + \sqrt{3}$. Meanwhile ``f`` is the minimal polynomial for this primitive element. >>> print(f) x**4 - 10*x**2 + 1 >>> print(minpoly(sqrt(2) + sqrt(3), x)) x**4 - 10*x**2 + 1 Finally, ``reps`` (which was returned only because we set keyword arg ``ex=True``) tells us how to recover each of the generators $\sqrt{2}$ and $\sqrt{3}$ as $\mathbb{Q}$-linear combinations of the powers of the primitive element $\sqrt{2} + \sqrt{3}$. >>> print([S(r) for r in reps[0]]) [1/2, 0, -9/2, 0] >>> theta = sqrt(2) + sqrt(3) >>> print(simplify(theta**3/2 - 9*theta/2)) sqrt(2) >>> print([S(r) for r in reps[1]]) [-1/2, 0, 11/2, 0] >>> print(simplify(-theta**3/2 + 11*theta/2)) sqrt(3) Parameters ========== extension : list of :py:class:`~.Expr` Each expression must represent an algebraic number $\alpha_i$. x : :py:class:`~.Symbol`, optional (default=None) The desired symbol to appear in the computed minimal polynomial for the primitive element $\theta$. If ``None``, we use a dummy symbol. ex : boolean, optional (default=False) If and only if ``True``, compute the representation of each $\alpha_i$ as a $\mathbb{Q}$-linear combination over the powers of $\theta$. polys : boolean, optional (default=False) If ``True``, return the minimal polynomial as a :py:class:`~.Poly`. Otherwise return it as an :py:class:`~.Expr`. Returns ======= Pair (f, coeffs) or triple (f, coeffs, reps), where: ``f`` is the minimal polynomial for the primitive element. ``coeffs`` gives the primitive element as a linear combination of the given generators. ``reps`` is present if and only if argument ``ex=True`` was passed, and is a list of lists of rational numbers. Each list gives the coefficients of falling powers of the primitive element, to recover one of the original, given generators. """ if not extension: raise ValueError("Cannot compute primitive element for empty extension") if x is not None: x, cls = sympify(x), Poly else: x, cls = Dummy('x'), PurePoly if not ex: gen, coeffs = extension[0], [1] g = minimal_polynomial(gen, x, polys=True) for ext in extension[1:]: _, factors = factor_list(g, extension=ext) g = _choose_factor(factors, x, gen) s, _, g = g.sqf_norm() gen += s*ext coeffs.append(s) if not polys: return g.as_expr(), coeffs else: return cls(g), coeffs gen, coeffs = extension[0], [1] f = minimal_polynomial(gen, x, polys=True) K = QQ.algebraic_field((f, gen)) # incrementally constructed field reps = [K.unit] # representations of extension elements in K for ext in extension[1:]: p = minimal_polynomial(ext, x, polys=True) L = QQ.algebraic_field((p, ext)) _, factors = factor_list(f, domain=L) f = _choose_factor(factors, x, gen) s, g, f = f.sqf_norm() gen += s*ext coeffs.append(s) K = QQ.algebraic_field((f, gen)) h = _switch_domain(g, K) erep = _linsolve(h.gcd(p)) # ext as element of K ogen = K.unit - s*erep # old gen as element of K reps = [dup_eval(_.rep, ogen, K) for _ in reps] + [erep] H = [_.rep for _ in reps] if not polys: return f.as_expr(), coeffs, H else: return f, coeffs, H @public def to_number_field(extension, theta=None, *, gen=None): r""" Express one algebraic number in the field generated by another. Explanation =========== Given two algebraic numbers $\eta, \theta$, this function either expresses $\eta$ as an element of $\mathbb{Q}(\theta)$, or else raises an exception if $\eta \not\in \mathbb{Q}(\theta)$. This function is essentially just a convenience, utilizing :py:func:`~.field_isomorphism` (our solution of the Subfield Problem) to solve this, the Field Membership Problem. As an additional convenience, this function allows you to pass a list of algebraic numbers $\alpha_1, \alpha_2, \ldots, \alpha_n$ instead of $\eta$. It then computes $\eta$ for you, as a solution of the Primitive Element Problem, using :py:func:`~.primitive_element` on the list of $\alpha_i$. Examples ======== >>> from sympy import sqrt, to_number_field >>> eta = sqrt(2) >>> theta = sqrt(2) + sqrt(3) >>> a = to_number_field(eta, theta) >>> print(type(a)) <class 'sympy.core.numbers.AlgebraicNumber'> >>> a.root sqrt(2) + sqrt(3) >>> print(a) sqrt(2) >>> a.coeffs() [1/2, 0, -9/2, 0] We get an :py:class:`~.AlgebraicNumber`, whose ``.root`` is $\theta$, whose value is $\eta$, and whose ``.coeffs()`` show how to write $\eta$ as a $\mathbb{Q}$-linear combination in falling powers of $\theta$. Parameters ========== extension : :py:class:`~.Expr` or list of :py:class:`~.Expr` Either the algebraic number that is to be expressed in the other field, or else a list of algebraic numbers, a primitive element for which is to be expressed in the other field. theta : :py:class:`~.Expr`, None, optional (default=None) If an :py:class:`~.Expr` representing an algebraic number, behavior is as described under **Explanation**. If ``None``, then this function reduces to a shorthand for calling :py:func:`~.primitive_element` on ``extension`` and turning the computed primitive element into an :py:class:`~.AlgebraicNumber`. gen : :py:class:`~.Symbol`, None, optional (default=None) If provided, this will be used as the generator symbol for the returned :py:class:`~.AlgebraicNumber`. Returns ======= AlgebraicNumber Belonging to $\mathbb{Q}(\theta)$ and equaling $\eta$. Raises ====== IsomorphismFailed If $\eta \not\in \mathbb{Q}(\theta)$. See Also ======== field_isomorphism primitive_element """ if hasattr(extension, '__iter__'): extension = list(extension) else: extension = [extension] if len(extension) == 1 and isinstance(extension[0], tuple): return AlgebraicNumber(extension[0]) minpoly, coeffs = primitive_element(extension, gen, polys=True) root = sum([ coeff*ext for coeff, ext in zip(coeffs, extension) ]) if theta is None: return AlgebraicNumber((minpoly, root)) else: theta = sympify(theta) if not theta.is_AlgebraicNumber: theta = AlgebraicNumber(theta, gen=gen) coeffs = field_isomorphism(root, theta) if coeffs is not None: return AlgebraicNumber(theta, coeffs) else: raise IsomorphismFailed( "%s is not in a subfield of %s" % (root, theta.root))
3407fa997f63577d0dd2a41bd70292c105a1ba777528fae9da9f5acc7593d560
'''Functions returning normal forms of matrices''' from collections import defaultdict from .domainmatrix import DomainMatrix from .exceptions import DMDomainError, DMShapeError from sympy.ntheory.modular import symmetric_residue from sympy.polys.domains import QQ, ZZ # TODO (future work): # There are faster algorithms for Smith and Hermite normal forms, which # we should implement. See e.g. the Kannan-Bachem algorithm: # <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix> def smith_normal_form(m): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import smith_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(smith_normal_form(m).to_Matrix()) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' invs = invariant_factors(m) smf = DomainMatrix.diag(invs, m.domain, m.shape) return smf def add_columns(m, i, j, a, b, c, d): # replace m[:, i] by a*m[:, i] + b*m[:, j] # and m[:, j] by c*m[:, i] + d*m[:, j] for k in range(len(m)): e = m[k][i] m[k][i] = a*e + b*m[k][j] m[k][j] = c*e + d*m[k][j] def invariant_factors(m): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' domain = m.domain if not domain.is_PID: msg = "The matrix entries must be over a principal ideal domain" raise ValueError(msg) if 0 in m.shape: return () rows, cols = shape = m.shape m = list(m.to_dense().rep) def add_rows(m, i, j, a, b, c, d): # replace m[i, :] by a*m[i, :] + b*m[j, :] # and m[j, :] by c*m[i, :] + d*m[j, :] for k in range(cols): e = m[i][k] m[i][k] = a*e + b*m[j][k] m[j][k] = c*e + d*m[j][k] def clear_column(m): # make m[1:, 0] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, rows): if m[j][0] == 0: continue d, r = domain.div(m[j][0], pivot) if r == 0: add_rows(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[j][0]) d_0 = domain.div(m[j][0], g)[0] d_j = domain.div(pivot, g)[0] add_rows(m, 0, j, a, b, d_0, -d_j) pivot = g return m def clear_row(m): # make m[0, 1:] zero by row and column operations if m[0][0] == 0: return m # pragma: nocover pivot = m[0][0] for j in range(1, cols): if m[0][j] == 0: continue d, r = domain.div(m[0][j], pivot) if r == 0: add_columns(m, 0, j, 1, 0, -d, 1) else: a, b, g = domain.gcdex(pivot, m[0][j]) d_0 = domain.div(m[0][j], g)[0] d_j = domain.div(pivot, g)[0] add_columns(m, 0, j, a, b, d_0, -d_j) pivot = g return m # permute the rows and columns until m[0,0] is non-zero if possible ind = [i for i in range(rows) if m[i][0] != 0] if ind and ind[0] != 0: m[0], m[ind[0]] = m[ind[0]], m[0] else: ind = [j for j in range(cols) if m[0][j] != 0] if ind and ind[0] != 0: for row in m: row[0], row[ind[0]] = row[ind[0]], row[0] # make the first row and column except m[0,0] zero while (any(m[0][i] != 0 for i in range(1,cols)) or any(m[i][0] != 0 for i in range(1,rows))): m = clear_column(m) m = clear_row(m) if 1 in shape: invs = () else: lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain) invs = invariant_factors(lower_right) if m[0][0]: result = [m[0][0]] result.extend(invs) # in case m[0] doesn't divide the invariants of the rest of the matrix for i in range(len(result)-1): if result[i] and domain.div(result[i+1], result[i])[1] != 0: g = domain.gcd(result[i+1], result[i]) result[i+1] = domain.div(result[i], g)[0]*result[i+1] result[i] = g else: break else: result = invs + (m[0][0],) return tuple(result) def _gcdex(a, b): r""" This supports the functions that compute Hermite Normal Form. Explanation =========== Let x, y be the coefficients returned by the extended Euclidean Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF, it is critical that x, y not only satisfy the condition of being small in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that y == 0 when a | b. """ x, y, g = ZZ.gcdex(a, b) if a != 0 and b % a == 0: y = 0 x = -1 if a < 0 else 1 return x, y, g def _hermite_normal_form(A): r""" Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`. Parameters ========== A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`. Returns ======= :py:class:`~.DomainMatrix` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithm 2.4.5.) """ if not A.domain.is_ZZ: raise DMDomainError('Matrix must be over domain ZZ.') # We work one row at a time, starting from the bottom row, and working our # way up. The total number of rows we will consider is min(m, n), where # A is an m x n matrix. m, n = A.shape rows = min(m, n) A = A.to_dense().rep.copy() # Our goal is to put pivot entries in the rightmost columns. # Invariant: Before processing each row, k should be the index of the # leftmost column in which we have so far put a pivot. k = n for i in range(m - 1, m - 1 - rows, -1): k -= 1 # k now points to the column in which we want to put a pivot. # We want zeros in all entries to the left of the pivot column. for j in range(k - 1, -1, -1): if A[i][j] != 0: # Replace cols j, k by lin combs of these cols such that, in row i, # col j has 0, while col k has the gcd of their row i entries. Note # that this ensures a nonzero entry in col k. u, v, d = _gcdex(A[i][k], A[i][j]) r, s = A[i][k] // d, A[i][j] // d add_columns(A, k, j, u, v, -s, r) b = A[i][k] # Do not want the pivot entry to be negative. if b < 0: add_columns(A, k, k, -1, 0, -1, 0) b = -b # The pivot entry will be 0 iff the row was 0 from the pivot col all the # way to the left. In this case, we are still working on the same pivot # col for the next row. Therefore: if b == 0: k += 1 # If the pivot entry is nonzero, then we want to reduce all entries to its # right in the sense of the division algorithm, i.e. make them all remainders # w.r.t. the pivot as divisor. else: for j in range(k + 1, n): q = A[i][j] // b add_columns(A, j, k, 1, -q, 0, 1) # Finally, the HNF consists of those columns of A in which we succeeded in making # a nonzero pivot. return DomainMatrix.from_rep(A)[:, k:] def _hermite_normal_form_modulo_D(A, D): r""" Perform the mod *D* Hermite Normal Form reduction algorithm on :py:class:`~.DomainMatrix` *A*. Explanation =========== If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form $W$, and if *D* is any positive integer known in advance to be a multiple of $\det(W)$, then the HNF of *A* can be computed by an algorithm that works mod *D* in order to prevent coefficient explosion. Parameters ========== A : :py:class:`~.DomainMatrix` over :ref:`ZZ` $m \times n$ matrix, having rank $m$. D : :ref:`ZZ` Positive integer, known to be a multiple of the determinant of the HNF of *A*. Returns ======= :py:class:`~.DomainMatrix` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`, or if *D* is given but is not in :ref:`ZZ`. DMShapeError If the matrix has more rows than columns. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithm 2.4.8.) """ if not A.domain.is_ZZ: raise DMDomainError('Matrix must be over domain ZZ.') if not ZZ.of_type(D) or D < 1: raise DMDomainError('Modulus D must be positive element of domain ZZ.') def add_columns_mod_R(m, R, i, j, a, b, c, d): # replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R # and m[:, j] by (c*m[:, i] + d*m[:, j]) % R for k in range(len(m)): e = m[k][i] m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R) m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R) W = defaultdict(dict) m, n = A.shape if n < m: raise DMShapeError('Matrix must have at least as many columns as rows.') A = A.to_dense().rep.copy() k = n R = D for i in range(m - 1, -1, -1): k -= 1 for j in range(k - 1, -1, -1): if A[i][j] != 0: u, v, d = _gcdex(A[i][k], A[i][j]) r, s = A[i][k] // d, A[i][j] // d add_columns_mod_R(A, R, k, j, u, v, -s, r) b = A[i][k] if b == 0: A[i][k] = b = R u, v, d = _gcdex(b, R) for ii in range(m): W[ii][i] = u*A[ii][k] % R if W[i][i] == 0: W[i][i] = R for j in range(i + 1, m): q = W[i][j] // W[i][i] add_columns(W, j, i, 1, -q, 0, 1) R //= d return DomainMatrix(W, (m, m), ZZ).to_dense() def hermite_normal_form(A, *, D=None, check_rank=False): r""" Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over :ref:`ZZ`. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.normalforms import hermite_normal_form >>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], ... [ZZ(3), ZZ(9), ZZ(6)], ... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) >>> print(hermite_normal_form(m).to_Matrix()) Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) Parameters ========== A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`. D : :ref:`ZZ`, optional Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* being any multiple of $\det(W)$ may be provided. In this case, if *A* also has rank $m$, then we may use an alternative algorithm that works mod *D* in order to prevent coefficient explosion. check_rank : boolean, optional (default=False) The basic assumption is that, if you pass a value for *D*, then you already believe that *A* has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo *D* algorithm to be used if the check fails), then set *check_rank* to ``True``. Returns ======= :py:class:`~.DomainMatrix` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`, or if *D* is given but is not in :ref:`ZZ`. DMShapeError If the mod *D* algorithm is used but the matrix has more rows than columns. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithms 2.4.5 and 2.4.8.) """ if not A.domain.is_ZZ: raise DMDomainError('Matrix must be over domain ZZ.') if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]): return _hermite_normal_form_modulo_D(A, D) else: return _hermite_normal_form(A)
2ff8d680564f0255d289205adc60c3d481cd2a0159c95803030538ad52311bf1
""" Module for the DomainMatrix class. A DomainMatrix represents a matrix with elements that are in a particular Domain. Each DomainMatrix internally wraps a DDM which is used for the lower-level operations. The idea is that the DomainMatrix class provides the convenience routines for converting between Expr and the poly domains as well as unifying matrices with different domains. """ from functools import reduce from typing import Union as tUnion, Tuple as tTuple from sympy.core.sympify import _sympify from ..domains import Domain from ..constructor import construct_domain from .exceptions import (DMNonSquareMatrixError, DMShapeError, DMDomainError, DMFormatError, DMBadInputError, DMNotAField) from .ddm import DDM from .sdm import SDM from .domainscalar import DomainScalar from sympy.polys.domains import ZZ, EXRAW def DM(rows, domain): """Convenient alias for DomainMatrix.from_list Examples ======= >>> from sympy import ZZ >>> from sympy.polys.matrices import DM >>> DM([[1, 2], [3, 4]], ZZ) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) See also ======= DomainMatrix.from_list """ return DomainMatrix.from_list(rows, domain) class DomainMatrix: r""" Associate Matrix with :py:class:`~.Domain` Explanation =========== DomainMatrix uses :py:class:`~.Domain` for its internal representation which makes it more faster for many common operations than current SymPy Matrix class, but this advantage makes it not entirely compatible with Matrix. DomainMatrix could be found analogous to numpy arrays with "dtype". In the DomainMatrix, each matrix has a domain such as :ref:`ZZ` or :ref:`QQ(a)`. Examples ======== Creating a DomainMatrix from the existing Matrix class: >>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> Matrix1 = Matrix([ ... [1, 2], ... [3, 4]]) >>> A = DomainMatrix.from_Matrix(Matrix1) >>> A DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ) Driectly forming a DomainMatrix: >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) See Also ======== DDM SDM Domain Poly """ rep: tUnion[SDM, DDM] shape: tTuple[int, int] domain: Domain def __new__(cls, rows, shape, domain, *, fmt=None): """ Creates a :py:class:`~.DomainMatrix`. Parameters ========== rows : Represents elements of DomainMatrix as list of lists shape : Represents dimension of DomainMatrix domain : Represents :py:class:`~.Domain` of DomainMatrix Raises ====== TypeError If any of rows, shape and domain are not provided """ if isinstance(rows, (DDM, SDM)): raise TypeError("Use from_rep to initialise from SDM/DDM") elif isinstance(rows, list): rep = DDM(rows, shape, domain) elif isinstance(rows, dict): rep = SDM(rows, shape, domain) else: msg = "Input should be list-of-lists or dict-of-dicts" raise TypeError(msg) if fmt is not None: if fmt == 'sparse': rep = rep.to_sdm() elif fmt == 'dense': rep = rep.to_ddm() else: raise ValueError("fmt should be 'sparse' or 'dense'") return cls.from_rep(rep) def __getnewargs__(self): rep = self.rep if isinstance(rep, DDM): arg = list(rep) elif isinstance(rep, SDM): arg = dict(rep) else: raise RuntimeError # pragma: no cover return arg, self.shape, self.domain def __getitem__(self, key): i, j = key m, n = self.shape if not (isinstance(i, slice) or isinstance(j, slice)): return DomainScalar(self.rep.getitem(i, j), self.domain) if not isinstance(i, slice): if not -m <= i < m: raise IndexError("Row index out of range") i = i % m i = slice(i, i+1) if not isinstance(j, slice): if not -n <= j < n: raise IndexError("Column index out of range") j = j % n j = slice(j, j+1) return self.from_rep(self.rep.extract_slice(i, j)) def getitem_sympy(self, i, j): return self.domain.to_sympy(self.rep.getitem(i, j)) def extract(self, rowslist, colslist): return self.from_rep(self.rep.extract(rowslist, colslist)) def __setitem__(self, key, value): i, j = key if not self.domain.of_type(value): raise TypeError if isinstance(i, int) and isinstance(j, int): self.rep.setitem(i, j, value) else: raise NotImplementedError @classmethod def from_rep(cls, rep): """Create a new DomainMatrix efficiently from DDM/SDM. Examples ======== Create a :py:class:`~.DomainMatrix` with an dense internal representation as :py:class:`~.DDM`: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.ddm import DDM >>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ) Create a :py:class:`~.DomainMatrix` with a sparse internal representation as :py:class:`~.SDM`: >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.polys.matrices.sdm import SDM >>> from sympy import ZZ >>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ) >>> dM = DomainMatrix.from_rep(drep) >>> dM DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ) Parameters ========== rep: SDM or DDM The internal sparse or dense representation of the matrix. Returns ======= DomainMatrix A :py:class:`~.DomainMatrix` wrapping *rep*. Notes ===== This takes ownership of rep as its internal representation. If rep is being mutated elsewhere then a copy should be provided to ``from_rep``. Only minimal verification or checking is done on *rep* as this is supposed to be an efficient internal routine. """ if not isinstance(rep, (DDM, SDM)): raise TypeError("rep should be of type DDM or SDM") self = super().__new__(cls) self.rep = rep self.shape = rep.shape self.domain = rep.domain return self @classmethod def from_list(cls, rows, domain): r""" Convert a list of lists into a DomainMatrix Parameters ========== rows: list of lists Each element of the inner lists should be either the single arg, or tuple of args, that would be passed to the domain constructor in order to form an element of the domain. See examples. Returns ======= DomainMatrix containing elements defined in rows Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import FF, QQ, ZZ >>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ) >>> A DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ) >>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7)) >>> B DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7)) >>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) >>> C DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ) See Also ======== from_list_sympy """ nrows = len(rows) ncols = 0 if not nrows else len(rows[0]) conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e) domain_rows = [[conv(e) for e in row] for row in rows] return DomainMatrix(domain_rows, (nrows, ncols), domain) @classmethod def from_list_sympy(cls, nrows, ncols, rows, **kwargs): r""" Convert a list of lists of Expr into a DomainMatrix using construct_domain Parameters ========== nrows: number of rows ncols: number of columns rows: list of lists Returns ======= DomainMatrix containing elements of rows Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x, y, z >>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]]) >>> A DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z]) See Also ======== sympy.polys.constructor.construct_domain, from_dict_sympy """ assert len(rows) == nrows assert all(len(row) == ncols for row in rows) items_sympy = [_sympify(item) for row in rows for item in row] domain, items_domain = cls.get_domain(items_sympy, **kwargs) domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)] return DomainMatrix(domain_rows, (nrows, ncols), domain) @classmethod def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs): """ Parameters ========== nrows: number of rows ncols: number of cols elemsdict: dict of dicts containing non-zero elements of the DomainMatrix Returns ======= DomainMatrix containing elements of elemsdict Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy.abc import x,y,z >>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}} >>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict) >>> A DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z]) See Also ======== from_list_sympy """ if not all(0 <= r < nrows for r in elemsdict): raise DMBadInputError("Row out of range") if not all(0 <= c < ncols for row in elemsdict.values() for c in row): raise DMBadInputError("Column out of range") items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()] domain, items_domain = cls.get_domain(items_sympy, **kwargs) idx = 0 items_dict = {} for i, row in elemsdict.items(): items_dict[i] = {} for j in row: items_dict[i][j] = items_domain[idx] idx += 1 return DomainMatrix(items_dict, (nrows, ncols), domain) @classmethod def from_Matrix(cls, M, fmt='sparse',**kwargs): r""" Convert Matrix to DomainMatrix Parameters ========== M: Matrix Returns ======= Returns DomainMatrix with identical elements as M Examples ======== >>> from sympy import Matrix >>> from sympy.polys.matrices import DomainMatrix >>> M = Matrix([ ... [1.0, 3.4], ... [2.4, 1]]) >>> A = DomainMatrix.from_Matrix(M) >>> A DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR) We can keep internal representation as ddm using fmt='dense' >>> from sympy import Matrix, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense') >>> A.rep [[1/2, 3/4], [0, 0]] See Also ======== Matrix """ if fmt == 'dense': return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs) return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs) @classmethod def get_domain(cls, items_sympy, **kwargs): K, items_K = construct_domain(items_sympy, **kwargs) return K, items_K def copy(self): return self.from_rep(self.rep.copy()) def convert_to(self, K): r""" Change the domain of DomainMatrix to desired domain or field Parameters ========== K : Represents the desired domain or field. Alternatively, ``None`` may be passed, in which case this method just returns a copy of this DomainMatrix. Returns ======= DomainMatrix DomainMatrix with the desired domain or field Examples ======== >>> from sympy import ZZ, ZZ_I >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.convert_to(ZZ_I) DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I) """ if K is None: return self.copy() return self.from_rep(self.rep.convert_to(K)) def to_sympy(self): return self.convert_to(EXRAW) def to_field(self): r""" Returns a DomainMatrix with the appropriate field Returns ======= DomainMatrix DomainMatrix with the appropriate field Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.to_field() DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ) """ K = self.domain.get_field() return self.convert_to(K) def to_sparse(self): """ Return a sparse DomainMatrix representation of *self*. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ) >>> A.rep [[1, 0], [0, 2]] >>> B = A.to_sparse() >>> B.rep {0: {0: 1}, 1: {1: 2}} """ if self.rep.fmt == 'sparse': return self return self.from_rep(SDM.from_ddm(self.rep)) def to_dense(self): """ Return a dense DomainMatrix representation of *self*. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ) >>> A.rep {0: {0: 1}, 1: {1: 2}} >>> B = A.to_dense() >>> B.rep [[1, 0], [0, 2]] """ if self.rep.fmt == 'dense': return self return self.from_rep(SDM.to_ddm(self.rep)) @classmethod def _unify_domain(cls, *matrices): """Convert matrices to a common domain""" domains = {matrix.domain for matrix in matrices} if len(domains) == 1: return matrices domain = reduce(lambda x, y: x.unify(y), domains) return tuple(matrix.convert_to(domain) for matrix in matrices) @classmethod def _unify_fmt(cls, *matrices, fmt=None): """Convert matrices to the same format. If all matrices have the same format, then return unmodified. Otherwise convert both to the preferred format given as *fmt* which should be 'dense' or 'sparse'. """ formats = {matrix.rep.fmt for matrix in matrices} if len(formats) == 1: return matrices if fmt == 'sparse': return tuple(matrix.to_sparse() for matrix in matrices) elif fmt == 'dense': return tuple(matrix.to_dense() for matrix in matrices) else: raise ValueError("fmt should be 'sparse' or 'dense'") def unify(self, *others, fmt=None): """ Unifies the domains and the format of self and other matrices. Parameters ========== others : DomainMatrix fmt: string 'dense', 'sparse' or `None` (default) The preferred format to convert to if self and other are not already in the same format. If `None` or not specified then no conversion if performed. Returns ======= Tuple[DomainMatrix] Matrices with unified domain and format Examples ======== Unify the domain of DomainMatrix that have different domains: >>> from sympy import ZZ, QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ) >>> Aq, Bq = A.unify(B) >>> Aq DomainMatrix([[1, 2]], (1, 2), QQ) >>> Bq DomainMatrix([[1/2, 2]], (1, 2), QQ) Unify the format (dense or sparse): >>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) >>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ) >>> B.rep {0: {0: 1}} >>> A2, B2 = A.unify(B, fmt='dense') >>> B2.rep [[1, 0], [0, 0]] See Also ======== convert_to, to_dense, to_sparse """ matrices = (self,) + others matrices = DomainMatrix._unify_domain(*matrices) if fmt is not None: matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt) return matrices def to_Matrix(self): r""" Convert DomainMatrix to Matrix Returns ======= Matrix MutableDenseMatrix for the DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.to_Matrix() Matrix([ [1, 2], [3, 4]]) See Also ======== from_Matrix """ from sympy.matrices.dense import MutableDenseMatrix elemlist = self.rep.to_list() elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row] return MutableDenseMatrix(*self.shape, elements_sympy) def to_list(self): return self.rep.to_list() def to_list_flat(self): return self.rep.to_list_flat() def to_dok(self): return self.rep.to_dok() def __repr__(self): return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain) def transpose(self): """Matrix transpose of ``self``""" return self.from_rep(self.rep.transpose()) def flat(self): rows, cols = self.shape return [self[i,j].element for i in range(rows) for j in range(cols)] @property def is_zero_matrix(self): return self.rep.is_zero_matrix() @property def is_upper(self): """ Says whether this matrix is upper-triangular. True can be returned even if the matrix is not square. """ return self.rep.is_upper() @property def is_lower(self): """ Says whether this matrix is lower-triangular. True can be returned even if the matrix is not square. """ return self.rep.is_lower() @property def is_square(self): return self.shape[0] == self.shape[1] def rank(self): rref, pivots = self.rref() return len(pivots) def hstack(A, *B): r"""Horizontally stack the given matrices. Parameters ========== B: DomainMatrix Matrices to stack horizontally. Returns ======= DomainMatrix DomainMatrix by stacking horizontally. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.hstack(B) DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ) >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.hstack(B, C) DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ) See Also ======== unify """ A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B))) def vstack(A, *B): r"""Vertically stack the given matrices. Parameters ========== B: DomainMatrix Matrices to stack vertically. Returns ======= DomainMatrix DomainMatrix by stacking vertically. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) >>> A.vstack(B) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ) >>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) >>> A.vstack(B, C) DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ) See Also ======== unify """ A, *B = A.unify(*B, fmt='dense') return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B))) def applyfunc(self, func, domain=None): if domain is None: domain = self.domain return self.from_rep(self.rep.applyfunc(func, domain)) def __add__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.add(B) def __sub__(A, B): if not isinstance(B, DomainMatrix): return NotImplemented A, B = A.unify(B, fmt='dense') return A.sub(B) def __neg__(A): return A.neg() def __mul__(A, B): """A * B""" if isinstance(B, DomainMatrix): A, B = A.unify(B, fmt='dense') return A.matmul(B) elif B in A.domain: return A.scalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.scalarmul(B.element) else: return NotImplemented def __rmul__(A, B): if B in A.domain: return A.rscalarmul(B) elif isinstance(B, DomainScalar): A, B = A.unify(B) return A.rscalarmul(B.element) else: return NotImplemented def __pow__(A, n): """A ** n""" if not isinstance(n, int): return NotImplemented return A.pow(n) def _check(a, op, b, ashape, bshape): if a.domain != b.domain: msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain) raise DMDomainError(msg) if ashape != bshape: msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape) raise DMShapeError(msg) if a.rep.fmt != b.rep.fmt: msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt) raise DMFormatError(msg) def add(A, B): r""" Adds two DomainMatrix matrices of the same Domain Parameters ========== A, B: DomainMatrix matrices to add Returns ======= DomainMatrix DomainMatrix after Addition Raises ====== DMShapeError If the dimensions of the two DomainMatrix are not equal ValueError If the domain of the two DomainMatrix are not same Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ) >>> A.add(B) DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ) See Also ======== sub, matmul """ A._check('+', B, A.shape, B.shape) return A.from_rep(A.rep.add(B.rep)) def sub(A, B): r""" Subtracts two DomainMatrix matrices of the same Domain Parameters ========== A, B: DomainMatrix matrices to substract Returns ======= DomainMatrix DomainMatrix after Substraction Raises ====== DMShapeError If the dimensions of the two DomainMatrix are not equal ValueError If the domain of the two DomainMatrix are not same Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(4), ZZ(3)], ... [ZZ(2), ZZ(1)]], (2, 2), ZZ) >>> A.sub(B) DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ) See Also ======== add, matmul """ A._check('-', B, A.shape, B.shape) return A.from_rep(A.rep.sub(B.rep)) def neg(A): r""" Returns the negative of DomainMatrix Parameters ========== A : Represents a DomainMatrix Returns ======= DomainMatrix DomainMatrix after Negation Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.neg() DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ) """ return A.from_rep(A.rep.neg()) def mul(A, b): r""" Performs term by term multiplication for the second DomainMatrix w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are list of DomainMatrix matrices created after term by term multiplication. Parameters ========== A, B: DomainMatrix matrices to multiply term-wise Returns ======= DomainMatrix DomainMatrix after term by term multiplication Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.mul(B) DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ), DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)], [DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ), DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ) See Also ======== matmul """ return A.from_rep(A.rep.mul(b)) def rmul(A, b): return A.from_rep(A.rep.rmul(b)) def matmul(A, B): r""" Performs matrix multiplication of two DomainMatrix matrices Parameters ========== A, B: DomainMatrix to multiply Returns ======= DomainMatrix DomainMatrix after multiplication Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.matmul(B) DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ) See Also ======== mul, pow, add, sub """ A._check('*', B, A.shape[1], B.shape[0]) return A.from_rep(A.rep.matmul(B.rep)) def _scalarmul(A, lamda, reverse): if lamda == A.domain.zero: return DomainMatrix.zeros(A.shape, A.domain) elif lamda == A.domain.one: return A.copy() elif reverse: return A.rmul(lamda) else: return A.mul(lamda) def scalarmul(A, lamda): return A._scalarmul(lamda, reverse=False) def rscalarmul(A, lamda): return A._scalarmul(lamda, reverse=True) def mul_elementwise(A, B): assert A.domain == B.domain return A.from_rep(A.rep.mul_elementwise(B.rep)) def __truediv__(A, lamda): """ Method for Scalar Divison""" if isinstance(lamda, int) or ZZ.of_type(lamda): lamda = DomainScalar(ZZ(lamda), ZZ) if not isinstance(lamda, DomainScalar): return NotImplemented A, lamda = A.to_field().unify(lamda) if lamda.element == lamda.domain.zero: raise ZeroDivisionError if lamda.element == lamda.domain.one: return A.to_field() return A.mul(1 / lamda.element) def pow(A, n): r""" Computes A**n Parameters ========== A : DomainMatrix n : exponent for A Returns ======= DomainMatrix DomainMatrix on computing A**n Raises ====== NotImplementedError if n is negative. Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.pow(2) DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ) See Also ======== matmul """ nrows, ncols = A.shape if nrows != ncols: raise DMNonSquareMatrixError('Power of a nonsquare matrix') if n < 0: raise NotImplementedError('Negative powers') elif n == 0: return A.eye(nrows, A.domain) elif n == 1: return A elif n % 2 == 1: return A * A**(n - 1) else: sqrtAn = A ** (n // 2) return sqrtAn * sqrtAn def scc(self): """Compute the strongly connected components of a DomainMatrix Explanation =========== A square matrix can be considered as the adjacency matrix for a directed graph where the row and column indices are the vertices. In this graph if there is an edge from vertex ``i`` to vertex ``j`` if ``M[i, j]`` is nonzero. This routine computes the strongly connected components of that graph which are subsets of the rows and columns that are connected by some nonzero element of the matrix. The strongly connected components are useful because many operations such as the determinant can be computed by working with the submatrices corresponding to each component. Examples ======== Find the strongly connected components of a matrix: >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)], ... [ZZ(0), ZZ(3), ZZ(0)], ... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ) >>> M.scc() [[1], [0, 2]] Compute the determinant from the components: >>> MM = M.to_Matrix() >>> MM Matrix([ [1, 0, 2], [0, 3, 0], [4, 6, 5]]) >>> MM[[1], [1]] Matrix([[3]]) >>> MM[[0, 2], [0, 2]] Matrix([ [1, 2], [4, 5]]) >>> MM.det() -9 >>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det() -9 The components are given in reverse topological order and represent a permutation of the rows and columns that will bring the matrix into block lower-triangular form: >>> MM[[1, 0, 2], [1, 0, 2]] Matrix([ [3, 0, 0], [0, 1, 2], [6, 4, 5]]) Returns ======= List of lists of integers Each list represents a strongly connected component. See also ======== sympy.matrices.matrices.MatrixBase.strongly_connected_components sympy.utilities.iterables.strongly_connected_components """ rows, cols = self.shape assert rows == cols return self.rep.scc() def rref(self): r""" Returns reduced-row echelon form and list of pivots for the DomainMatrix Returns ======= (DomainMatrix, list) reduced-row echelon form and list of pivots for the DomainMatrix Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> rref_matrix, rref_pivots = A.rref() >>> rref_matrix DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ) >>> rref_pivots (0, 1, 2) See Also ======== convert_to, lu """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref_ddm, pivots = self.rep.rref() return self.from_rep(rref_ddm), tuple(pivots) def columnspace(self): r""" Returns the columnspace for the DomainMatrix Returns ======= DomainMatrix The columns of this matrix form a basis for the columnspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.columnspace() DomainMatrix([[1], [2]], (2, 1), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(rows), pivots) def rowspace(self): r""" Returns the rowspace for the DomainMatrix Returns ======= DomainMatrix The rows of this matrix form a basis for the rowspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.rowspace() DomainMatrix([[1, -1]], (1, 2), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') rref, pivots = self.rref() rows, cols = self.shape return self.extract(range(len(pivots)), range(cols)) def nullspace(self): r""" Returns the nullspace for the DomainMatrix Returns ======= DomainMatrix The rows of this matrix form a basis for the nullspace. Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.nullspace() DomainMatrix([[1, 1]], (1, 2), QQ) """ if not self.domain.is_Field: raise DMNotAField('Not a field') return self.from_rep(self.rep.nullspace()[0]) def inv(self): r""" Finds the inverse of the DomainMatrix if exists Returns ======= DomainMatrix DomainMatrix after inverse Raises ====== ValueError If the domain of DomainMatrix not a Field DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(2), QQ(-1), QQ(0)], ... [QQ(-1), QQ(2), QQ(-1)], ... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ) >>> A.inv() DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ) See Also ======== neg """ if not self.domain.is_Field: raise DMNotAField('Not a field') m, n = self.shape if m != n: raise DMNonSquareMatrixError inv = self.rep.inv() return self.from_rep(inv) def det(self): r""" Returns the determinant of a Square DomainMatrix Returns ======= S.Complexes determinant of Square DomainMatrix Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.det() -2 """ m, n = self.shape if m != n: raise DMNonSquareMatrixError return self.rep.det() def lu(self): r""" Returns Lower and Upper decomposition of the DomainMatrix Returns ======= (L, U, exchange) L, U are Lower and Upper decomposition of the DomainMatrix, exchange is the list of indices of rows exchanged in the decomposition. Raises ====== ValueError If the domain of DomainMatrix not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(-1)], ... [QQ(2), QQ(-2)]], (2, 2), QQ) >>> A.lu() (DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), []) See Also ======== lu_solve """ if not self.domain.is_Field: raise DMNotAField('Not a field') L, U, swaps = self.rep.lu() return self.from_rep(L), self.from_rep(U), swaps def lu_solve(self, rhs): r""" Solver for DomainMatrix x in the A*x = B Parameters ========== rhs : DomainMatrix B Returns ======= DomainMatrix x in A*x = B Raises ====== DMShapeError If the DomainMatrix A and rhs have different number of rows ValueError If the domain of DomainMatrix A not a Field Examples ======== >>> from sympy import QQ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [QQ(1), QQ(2)], ... [QQ(3), QQ(4)]], (2, 2), QQ) >>> B = DomainMatrix([ ... [QQ(1), QQ(1)], ... [QQ(0), QQ(1)]], (2, 2), QQ) >>> A.lu_solve(B) DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ) See Also ======== lu """ if self.shape[0] != rhs.shape[0]: raise DMShapeError("Shape") if not self.domain.is_Field: raise DMNotAField('Not a field') sol = self.rep.lu_solve(rhs.rep) return self.from_rep(sol) def _solve(A, b): # XXX: Not sure about this method or its signature. It is just created # because it is needed by the holonomic module. if A.shape[0] != b.shape[0]: raise DMShapeError("Shape") if A.domain != b.domain or not A.domain.is_Field: raise DMNotAField('Not a field') Aaug = A.hstack(b) Arref, pivots = Aaug.rref() particular = Arref.from_rep(Arref.rep.particular()) nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace() nullspace = Arref.from_rep(nullspace_rep) return particular, nullspace def charpoly(self): r""" Returns the coefficients of the characteristic polynomial of the DomainMatrix. These elements will be domain elements. The domain of the elements will be same as domain of the DomainMatrix. Returns ======= list coefficients of the characteristic polynomial Raises ====== DMNonSquareMatrixError If the DomainMatrix is not a not Square DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> A.charpoly() [1, -5, -2] """ m, n = self.shape if m != n: raise DMNonSquareMatrixError("not square") return self.rep.charpoly() @classmethod def eye(cls, shape, domain): r""" Return identity matrix of size n Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.eye(3, QQ) DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ) """ if isinstance(shape, int): shape = (shape, shape) return cls.from_rep(SDM.eye(shape, domain)) @classmethod def diag(cls, diagonal, domain, shape=None): r""" Return diagonal matrix with entries from ``diagonal``. Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import ZZ >>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ) DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ) """ if shape is None: N = len(diagonal) shape = (N, N) return cls.from_rep(SDM.diag(diagonal, domain, shape)) @classmethod def zeros(cls, shape, domain, *, fmt='sparse'): """Returns a zero DomainMatrix of size shape, belonging to the specified domain Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.zeros((2, 3), QQ) DomainMatrix({}, (2, 3), QQ) """ return cls.from_rep(SDM.zeros(shape, domain)) @classmethod def ones(cls, shape, domain): """Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain Examples ======== >>> from sympy.polys.matrices import DomainMatrix >>> from sympy import QQ >>> DomainMatrix.ones((2,3), QQ) DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ) """ return cls.from_rep(DDM.ones(shape, domain)) def __eq__(A, B): r""" Checks for two DomainMatrix matrices to be equal or not Parameters ========== A, B: DomainMatrix to check equality Returns ======= Boolean True for equal, else False Raises ====== NotImplementedError If B is not a DomainMatrix Examples ======== >>> from sympy import ZZ >>> from sympy.polys.matrices import DomainMatrix >>> A = DomainMatrix([ ... [ZZ(1), ZZ(2)], ... [ZZ(3), ZZ(4)]], (2, 2), ZZ) >>> B = DomainMatrix([ ... [ZZ(1), ZZ(1)], ... [ZZ(0), ZZ(1)]], (2, 2), ZZ) >>> A.__eq__(A) True >>> A.__eq__(B) False """ if not isinstance(A, type(B)): return NotImplemented return A.domain == B.domain and A.rep == B.rep def unify_eq(A, B): if A.shape != B.shape: return False if A.domain != B.domain: A, B = A.unify(B) return A == B
e064e8be355f7416dd1ecba423ff696bb433e9a26b253374f8b07b82b0d63a6d
# # sympy.polys.matrices.linsolve module # # This module defines the _linsolve function which is the internal workhorse # used by linsolve. This computes the solution of a system of linear equations # using the SDM sparse matrix implementation in sympy.polys.matrices.sdm. This # is a replacement for solve_lin_sys in sympy.polys.solvers which is # inefficient for large sparse systems due to the use of a PolyRing with many # generators: # # https://github.com/sympy/sympy/issues/20857 # # The implementation of _linsolve here handles: # # - Extracting the coefficients from the Expr/Eq input equations. # - Constructing a domain and converting the coefficients to # that domain. # - Using the SDM.rref, SDM.nullspace etc methods to generate the full # solution working with arithmetic only in the domain of the coefficients. # # The routines here are particularly designed to be efficient for large sparse # systems of linear equations although as well as dense systems. It is # possible that for some small dense systems solve_lin_sys which uses the # dense matrix implementation DDM will be more efficient. With smaller systems # though the bulk of the time is spent just preprocessing the inputs and the # relative time spent in rref is too small to be noticeable. # from collections import defaultdict from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.polys.constructor import construct_domain from sympy.polys.solvers import PolyNonlinearError from .sdm import ( SDM, sdm_irref, sdm_particular_from_rref, sdm_nullspace_from_rref ) def _linsolve(eqs, syms): """Solve a linear system of equations. Examples ======== Solve a linear system with a unique solution: >>> from sympy import symbols, Eq >>> from sympy.polys.matrices.linsolve import _linsolve >>> x, y = symbols('x, y') >>> eqs = [Eq(x + y, 1), Eq(x - y, 2)] >>> _linsolve(eqs, [x, y]) {x: 3/2, y: -1/2} In the case of underdetermined systems the solution will be expressed in terms of the unknown symbols that are unconstrained: >>> _linsolve([Eq(x + y, 0)], [x, y]) {x: -y, y: y} """ # Number of unknowns (columns in the non-augmented matrix) nsyms = len(syms) # Convert to sparse augmented matrix (len(eqs) x (nsyms+1)) eqsdict, rhs = _linear_eq_to_dict(eqs, syms) Aaug = sympy_dict_to_dm(eqsdict, rhs, syms) K = Aaug.domain # sdm_irref has issues with float matrices. This uses the ddm_rref() # function. When sdm_rref() can handle float matrices reasonably this # should be removed... if K.is_RealField or K.is_ComplexField: Aaug = Aaug.to_ddm().rref()[0].to_sdm() # Compute reduced-row echelon form (RREF) Arref, pivots, nzcols = sdm_irref(Aaug) # No solution: if pivots and pivots[-1] == nsyms: return None # Particular solution for non-homogeneous system: P = sdm_particular_from_rref(Arref, nsyms+1, pivots) # Nullspace - general solution to homogeneous system # Note: using nsyms not nsyms+1 to ignore last column V, nonpivots = sdm_nullspace_from_rref(Arref, K.one, nsyms, pivots, nzcols) # Collect together terms from particular and nullspace: sol = defaultdict(list) for i, v in P.items(): sol[syms[i]].append(K.to_sympy(v)) for npi, Vi in zip(nonpivots, V): sym = syms[npi] for i, v in Vi.items(): sol[syms[i]].append(sym * K.to_sympy(v)) # Use a single call to Add for each term: sol = {s: Add(*terms) for s, terms in sol.items()} # Fill in the zeros: zero = S.Zero for s in set(syms) - set(sol): sol[s] = zero # All done! return sol def sympy_dict_to_dm(eqs_coeffs, eqs_rhs, syms): """Convert a system of dict equations to a sparse augmented matrix""" elems = set(eqs_rhs).union(*(e.values() for e in eqs_coeffs)) K, elems_K = construct_domain(elems, field=True, extension=True) elem_map = dict(zip(elems, elems_K)) neqs = len(eqs_coeffs) nsyms = len(syms) sym2index = dict(zip(syms, range(nsyms))) eqsdict = [] for eq, rhs in zip(eqs_coeffs, eqs_rhs): eqdict = {sym2index[s]: elem_map[c] for s, c in eq.items()} if rhs: eqdict[nsyms] = - elem_map[rhs] if eqdict: eqsdict.append(eqdict) sdm_aug = SDM(enumerate(eqsdict), (neqs, nsyms+1), K) return sdm_aug def _expand_eqs_deprecated(eqs): """Use expand to cancel nonlinear terms. This approach matches previous behaviour of linsolve but should be deprecated. """ def expand_eq(eq): if eq.is_Equality: eq = eq.lhs - eq.rhs return eq.expand() return [expand_eq(eq) for eq in eqs] def _linear_eq_to_dict(eqs, syms): """Convert a system Expr/Eq equations into dict form""" try: return _linear_eq_to_dict_inner(eqs, syms) except PolyNonlinearError: # XXX: This should be deprecated: eqs = _expand_eqs_deprecated(eqs) return _linear_eq_to_dict_inner(eqs, syms) def _linear_eq_to_dict_inner(eqs, syms): """Convert a system Expr/Eq equations into dict form""" syms = set(syms) eqsdict, eqs_rhs = [], [] for eq in eqs: rhs, eqdict = _lin_eq2dict(eq, syms) eqsdict.append(eqdict) eqs_rhs.append(rhs) return eqsdict, eqs_rhs def _lin_eq2dict(a, symset): """Efficiently convert a linear equation to a dict of coefficients""" if a in symset: return S.Zero, {a: S.One} elif a.is_Add: terms_list = defaultdict(list) coeff_list = [] for ai in a.args: ci, ti = _lin_eq2dict(ai, symset) coeff_list.append(ci) for mij, cij in ti.items(): terms_list[mij].append(cij) coeff = Add(*coeff_list) terms = {sym: Add(*coeffs) for sym, coeffs in terms_list.items()} return coeff, terms elif a.is_Mul: terms = terms_coeff = None coeff_list = [] for ai in a.args: ci, ti = _lin_eq2dict(ai, symset) if not ti: coeff_list.append(ci) elif terms is None: terms = ti terms_coeff = ci else: raise PolyNonlinearError coeff = Mul(*coeff_list) if terms is None: return coeff, {} else: terms = {sym: coeff * c for sym, c in terms.items()} return coeff * terms_coeff, terms elif a.is_Equality: return _lin_eq2dict(a.lhs - a.rhs, symset) elif not a.has_free(*symset): return a, {} else: raise PolyNonlinearError
47dfcb80a5c33fecb3bb8af7f45fb0245dd7a0bf9779c6de69f68f9e0d510e36
"""Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """ from sympy.core.numbers import (E, Float, I, Integer, Rational, oo, pi) from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.polys.polytools import Poly from sympy.abc import x, y, z from sympy.external.gmpy import HAS_GMPY from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, EXRAW, ZZ_gmpy, ZZ_python, QQ_gmpy, QQ_python) from sympy.polys.domains.algebraicfield import AlgebraicField from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.domains.realfield import RealField from sympy.polys.rings import ring from sympy.polys.fields import field from sympy.polys.agca.extensions import FiniteExtension from sympy.polys.polyerrors import ( UnificationFailed, GeneratorsError, CoercionFailed, NotInvertible, DomainError) from sympy.polys.polyutils import illegal from sympy.testing.pytest import raises from itertools import product ALG = QQ.algebraic_field(sqrt(2), sqrt(3)) def unify(K0, K1): return K0.unify(K1) def test_Domain_unify(): F3 = GF(3) assert unify(F3, F3) == F3 assert unify(F3, ZZ) == ZZ assert unify(F3, QQ) == QQ assert unify(F3, ALG) == ALG assert unify(F3, RR) == RR assert unify(F3, CC) == CC assert unify(F3, ZZ[x]) == ZZ[x] assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(F3, EX) == EX assert unify(ZZ, F3) == ZZ assert unify(ZZ, ZZ) == ZZ assert unify(ZZ, QQ) == QQ assert unify(ZZ, ALG) == ALG assert unify(ZZ, RR) == RR assert unify(ZZ, CC) == CC assert unify(ZZ, ZZ[x]) == ZZ[x] assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ, EX) == EX assert unify(QQ, F3) == QQ assert unify(QQ, ZZ) == QQ assert unify(QQ, QQ) == QQ assert unify(QQ, ALG) == ALG assert unify(QQ, RR) == RR assert unify(QQ, CC) == CC assert unify(QQ, ZZ[x]) == QQ[x] assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, EX) == EX assert unify(ZZ_I, F3) == ZZ_I assert unify(ZZ_I, ZZ) == ZZ_I assert unify(ZZ_I, ZZ_I) == ZZ_I assert unify(ZZ_I, QQ) == QQ_I assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(ZZ_I, RR) == CC assert unify(ZZ_I, CC) == CC assert unify(ZZ_I, ZZ[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x] assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x) assert unify(ZZ_I, EX) == EX assert unify(QQ_I, F3) == QQ_I assert unify(QQ_I, ZZ) == QQ_I assert unify(QQ_I, ZZ_I) == QQ_I assert unify(QQ_I, QQ) == QQ_I assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3)) assert unify(QQ_I, RR) == CC assert unify(QQ_I, CC) == CC assert unify(QQ_I, ZZ[x]) == QQ_I[x] assert unify(QQ_I, ZZ_I[x]) == QQ_I[x] assert unify(QQ_I, QQ[x]) == QQ_I[x] assert unify(QQ_I, QQ_I[x]) == QQ_I[x] assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x) assert unify(QQ_I, EX) == EX assert unify(RR, F3) == RR assert unify(RR, ZZ) == RR assert unify(RR, QQ) == RR assert unify(RR, ALG) == RR assert unify(RR, RR) == RR assert unify(RR, CC) == CC assert unify(RR, ZZ[x]) == RR[x] assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x) assert unify(RR, EX) == EX assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y) assert unify(CC, F3) == CC assert unify(CC, ZZ) == CC assert unify(CC, QQ) == CC assert unify(CC, ALG) == CC assert unify(CC, RR) == CC assert unify(CC, CC) == CC assert unify(CC, ZZ[x]) == CC[x] assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x) assert unify(CC, EX) == EX assert unify(ZZ[x], F3) == ZZ[x] assert unify(ZZ[x], ZZ) == ZZ[x] assert unify(ZZ[x], QQ) == QQ[x] assert unify(ZZ[x], ALG) == ALG[x] assert unify(ZZ[x], RR) == RR[x] assert unify(ZZ[x], CC) == CC[x] assert unify(ZZ[x], ZZ[x]) == ZZ[x] assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ[x], EX) == EX assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x) assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x) assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x) assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), EX) == EX assert unify(EX, F3) == EX assert unify(EX, ZZ) == EX assert unify(EX, QQ) == EX assert unify(EX, ALG) == EX assert unify(EX, RR) == EX assert unify(EX, CC) == EX assert unify(EX, ZZ[x]) == EX assert unify(EX, ZZ.frac_field(x)) == EX assert unify(EX, EX) == EX def test_Domain_unify_composite(): assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x) assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y) assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x) assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y) assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x) assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y) assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z) assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x) assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x) assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x) assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y) assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y) assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z) assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z) def test_Domain_unify_algebraic(): sqrt5 = QQ.algebraic_field(sqrt(5)) sqrt7 = QQ.algebraic_field(sqrt(7)) sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7)) assert sqrt5.unify(sqrt7) == sqrt57 assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y] assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y] assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y) assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y] assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y] assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y) assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y) def test_Domain_unify_FiniteExtension(): KxZZ = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) KxQQ = FiniteExtension(Poly(x**2 - 2, x, domain=QQ)) KxZZy = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) KxQQy = FiniteExtension(Poly(x**2 - 2, x, domain=QQ[y])) assert KxZZ.unify(KxZZ) == KxZZ assert KxQQ.unify(KxQQ) == KxQQ assert KxZZy.unify(KxZZy) == KxZZy assert KxQQy.unify(KxQQy) == KxQQy assert KxZZ.unify(ZZ) == KxZZ assert KxZZ.unify(QQ) == KxQQ assert KxQQ.unify(ZZ) == KxQQ assert KxQQ.unify(QQ) == KxQQ assert KxZZ.unify(ZZ[y]) == KxZZy assert KxZZ.unify(QQ[y]) == KxQQy assert KxQQ.unify(ZZ[y]) == KxQQy assert KxQQ.unify(QQ[y]) == KxQQy assert KxZZy.unify(ZZ) == KxZZy assert KxZZy.unify(QQ) == KxQQy assert KxQQy.unify(ZZ) == KxQQy assert KxQQy.unify(QQ) == KxQQy assert KxZZy.unify(ZZ[y]) == KxZZy assert KxZZy.unify(QQ[y]) == KxQQy assert KxQQy.unify(ZZ[y]) == KxQQy assert KxQQy.unify(QQ[y]) == KxQQy K = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y])) assert K.unify(ZZ) == K assert K.unify(ZZ[x]) == K assert K.unify(ZZ[y]) == K assert K.unify(ZZ[x, y]) == K Kz = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ[y, z])) assert K.unify(ZZ[z]) == Kz assert K.unify(ZZ[x, z]) == Kz assert K.unify(ZZ[y, z]) == Kz assert K.unify(ZZ[x, y, z]) == Kz Kx = FiniteExtension(Poly(x**2 - 2, x, domain=ZZ)) Ky = FiniteExtension(Poly(y**2 - 2, y, domain=ZZ)) Kxy = FiniteExtension(Poly(y**2 - 2, y, domain=Kx)) assert Kx.unify(Kx) == Kx assert Ky.unify(Ky) == Ky assert Kx.unify(Ky) == Kxy assert Ky.unify(Kx) == Kxy def test_Domain_unify_with_symbols(): raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z))) raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z))) def test_Domain__contains__(): assert (0 in EX) is True assert (0 in ZZ) is True assert (0 in QQ) is True assert (0 in RR) is True assert (0 in CC) is True assert (0 in ALG) is True assert (0 in ZZ[x, y]) is True assert (0 in QQ[x, y]) is True assert (0 in RR[x, y]) is True assert (-7 in EX) is True assert (-7 in ZZ) is True assert (-7 in QQ) is True assert (-7 in RR) is True assert (-7 in CC) is True assert (-7 in ALG) is True assert (-7 in ZZ[x, y]) is True assert (-7 in QQ[x, y]) is True assert (-7 in RR[x, y]) is True assert (17 in EX) is True assert (17 in ZZ) is True assert (17 in QQ) is True assert (17 in RR) is True assert (17 in CC) is True assert (17 in ALG) is True assert (17 in ZZ[x, y]) is True assert (17 in QQ[x, y]) is True assert (17 in RR[x, y]) is True assert (Rational(-1, 7) in EX) is True assert (Rational(-1, 7) in ZZ) is False assert (Rational(-1, 7) in QQ) is True assert (Rational(-1, 7) in RR) is True assert (Rational(-1, 7) in CC) is True assert (Rational(-1, 7) in ALG) is True assert (Rational(-1, 7) in ZZ[x, y]) is False assert (Rational(-1, 7) in QQ[x, y]) is True assert (Rational(-1, 7) in RR[x, y]) is True assert (Rational(3, 5) in EX) is True assert (Rational(3, 5) in ZZ) is False assert (Rational(3, 5) in QQ) is True assert (Rational(3, 5) in RR) is True assert (Rational(3, 5) in CC) is True assert (Rational(3, 5) in ALG) is True assert (Rational(3, 5) in ZZ[x, y]) is False assert (Rational(3, 5) in QQ[x, y]) is True assert (Rational(3, 5) in RR[x, y]) is True assert (3.0 in EX) is True assert (3.0 in ZZ) is True assert (3.0 in QQ) is True assert (3.0 in RR) is True assert (3.0 in CC) is True assert (3.0 in ALG) is True assert (3.0 in ZZ[x, y]) is True assert (3.0 in QQ[x, y]) is True assert (3.0 in RR[x, y]) is True assert (3.14 in EX) is True assert (3.14 in ZZ) is False assert (3.14 in QQ) is True assert (3.14 in RR) is True assert (3.14 in CC) is True assert (3.14 in ALG) is True assert (3.14 in ZZ[x, y]) is False assert (3.14 in QQ[x, y]) is True assert (3.14 in RR[x, y]) is True assert (oo in ALG) is False assert (oo in ZZ[x, y]) is False assert (oo in QQ[x, y]) is False assert (-oo in ZZ) is False assert (-oo in QQ) is False assert (-oo in ALG) is False assert (-oo in ZZ[x, y]) is False assert (-oo in QQ[x, y]) is False assert (sqrt(7) in EX) is True assert (sqrt(7) in ZZ) is False assert (sqrt(7) in QQ) is False assert (sqrt(7) in RR) is True assert (sqrt(7) in CC) is True assert (sqrt(7) in ALG) is False assert (sqrt(7) in ZZ[x, y]) is False assert (sqrt(7) in QQ[x, y]) is False assert (sqrt(7) in RR[x, y]) is True assert (2*sqrt(3) + 1 in EX) is True assert (2*sqrt(3) + 1 in ZZ) is False assert (2*sqrt(3) + 1 in QQ) is False assert (2*sqrt(3) + 1 in RR) is True assert (2*sqrt(3) + 1 in CC) is True assert (2*sqrt(3) + 1 in ALG) is True assert (2*sqrt(3) + 1 in ZZ[x, y]) is False assert (2*sqrt(3) + 1 in QQ[x, y]) is False assert (2*sqrt(3) + 1 in RR[x, y]) is True assert (sin(1) in EX) is True assert (sin(1) in ZZ) is False assert (sin(1) in QQ) is False assert (sin(1) in RR) is True assert (sin(1) in CC) is True assert (sin(1) in ALG) is False assert (sin(1) in ZZ[x, y]) is False assert (sin(1) in QQ[x, y]) is False assert (sin(1) in RR[x, y]) is True assert (x**2 + 1 in EX) is True assert (x**2 + 1 in ZZ) is False assert (x**2 + 1 in QQ) is False assert (x**2 + 1 in RR) is False assert (x**2 + 1 in CC) is False assert (x**2 + 1 in ALG) is False assert (x**2 + 1 in ZZ[x]) is True assert (x**2 + 1 in QQ[x]) is True assert (x**2 + 1 in RR[x]) is True assert (x**2 + 1 in ZZ[x, y]) is True assert (x**2 + 1 in QQ[x, y]) is True assert (x**2 + 1 in RR[x, y]) is True assert (x**2 + y**2 in EX) is True assert (x**2 + y**2 in ZZ) is False assert (x**2 + y**2 in QQ) is False assert (x**2 + y**2 in RR) is False assert (x**2 + y**2 in CC) is False assert (x**2 + y**2 in ALG) is False assert (x**2 + y**2 in ZZ[x]) is False assert (x**2 + y**2 in QQ[x]) is False assert (x**2 + y**2 in RR[x]) is False assert (x**2 + y**2 in ZZ[x, y]) is True assert (x**2 + y**2 in QQ[x, y]) is True assert (x**2 + y**2 in RR[x, y]) is True assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False def test_Domain_get_ring(): assert ZZ.has_assoc_Ring is True assert QQ.has_assoc_Ring is True assert ZZ[x].has_assoc_Ring is True assert QQ[x].has_assoc_Ring is True assert ZZ[x, y].has_assoc_Ring is True assert QQ[x, y].has_assoc_Ring is True assert ZZ.frac_field(x).has_assoc_Ring is True assert QQ.frac_field(x).has_assoc_Ring is True assert ZZ.frac_field(x, y).has_assoc_Ring is True assert QQ.frac_field(x, y).has_assoc_Ring is True assert EX.has_assoc_Ring is False assert RR.has_assoc_Ring is False assert ALG.has_assoc_Ring is False assert ZZ.get_ring() == ZZ assert QQ.get_ring() == ZZ assert ZZ[x].get_ring() == ZZ[x] assert QQ[x].get_ring() == QQ[x] assert ZZ[x, y].get_ring() == ZZ[x, y] assert QQ[x, y].get_ring() == QQ[x, y] assert ZZ.frac_field(x).get_ring() == ZZ[x] assert QQ.frac_field(x).get_ring() == QQ[x] assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y] assert QQ.frac_field(x, y).get_ring() == QQ[x, y] assert EX.get_ring() == EX assert RR.get_ring() == RR # XXX: This should also be like RR raises(DomainError, lambda: ALG.get_ring()) def test_Domain_get_field(): assert EX.has_assoc_Field is True assert ZZ.has_assoc_Field is True assert QQ.has_assoc_Field is True assert RR.has_assoc_Field is True assert ALG.has_assoc_Field is True assert ZZ[x].has_assoc_Field is True assert QQ[x].has_assoc_Field is True assert ZZ[x, y].has_assoc_Field is True assert QQ[x, y].has_assoc_Field is True assert EX.get_field() == EX assert ZZ.get_field() == QQ assert QQ.get_field() == QQ assert RR.get_field() == RR assert ALG.get_field() == ALG assert ZZ[x].get_field() == ZZ.frac_field(x) assert QQ[x].get_field() == QQ.frac_field(x) assert ZZ[x, y].get_field() == ZZ.frac_field(x, y) assert QQ[x, y].get_field() == QQ.frac_field(x, y) def test_Domain_get_exact(): assert EX.get_exact() == EX assert ZZ.get_exact() == ZZ assert QQ.get_exact() == QQ assert RR.get_exact() == QQ assert ALG.get_exact() == ALG assert ZZ[x].get_exact() == ZZ[x] assert QQ[x].get_exact() == QQ[x] assert ZZ[x, y].get_exact() == ZZ[x, y] assert QQ[x, y].get_exact() == QQ[x, y] assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x) assert QQ.frac_field(x).get_exact() == QQ.frac_field(x) assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y) assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y) def test_Domain_is_unit(): nums = [-2, -1, 0, 1, 2] invring = [False, True, False, True, False] invfield = [True, True, False, True, True] ZZx, QQx, QQxf = ZZ[x], QQ[x], QQ.frac_field(x) assert [ZZ.is_unit(ZZ(n)) for n in nums] == invring assert [QQ.is_unit(QQ(n)) for n in nums] == invfield assert [ZZx.is_unit(ZZx(n)) for n in nums] == invring assert [QQx.is_unit(QQx(n)) for n in nums] == invfield assert [QQxf.is_unit(QQxf(n)) for n in nums] == invfield assert ZZx.is_unit(ZZx(x)) is False assert QQx.is_unit(QQx(x)) is False assert QQxf.is_unit(QQxf(x)) is True def test_Domain_convert(): def check_element(e1, e2, K1, K2, K3): assert type(e1) is type(e2), '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) assert e1 == e2, '%s, %s: %s %s -> %s' % (e1, e2, K1, K2, K3) def check_domains(K1, K2): K3 = K1.unify(K2) check_element(K3.convert_from( K1.one, K1), K3.one, K1, K2, K3) check_element(K3.convert_from( K2.one, K2), K3.one, K1, K2, K3) check_element(K3.convert_from(K1.zero, K1), K3.zero, K1, K2, K3) check_element(K3.convert_from(K2.zero, K2), K3.zero, K1, K2, K3) def composite_domains(K): domains = [ K, K[y], K[z], K[y, z], K.frac_field(y), K.frac_field(z), K.frac_field(y, z), # XXX: These should be tested and made to work... # K.old_poly_ring(y), K.old_frac_field(y), ] return domains QQ2 = QQ.algebraic_field(sqrt(2)) QQ3 = QQ.algebraic_field(sqrt(3)) doms = [ZZ, QQ, QQ2, QQ3, QQ_I, ZZ_I, RR, CC] for i, K1 in enumerate(doms): for K2 in doms[i:]: for K3 in composite_domains(K1): for K4 in composite_domains(K2): check_domains(K3, K4) assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576) R, xr = ring("x", ZZ) assert ZZ.convert(xr - xr) == 0 assert ZZ.convert(xr - xr, R.to_domain()) == 0 assert CC.convert(ZZ_I(1, 2)) == CC(1, 2) assert CC.convert(QQ_I(1, 2)) == CC(1, 2) K1 = QQ.frac_field(x) K2 = ZZ.frac_field(x) K3 = QQ[x] K4 = ZZ[x] Ks = [K1, K2, K3, K4] for Ka, Kb in product(Ks, Ks): assert Ka.convert_from(Kb.from_sympy(x), Kb) == Ka.from_sympy(x) assert K2.convert_from(QQ(1, 2), QQ) == K2(QQ(1, 2)) def test_GlobalPolynomialRing_convert(): K1 = QQ.old_poly_ring(x) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = QQ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) K1 = ZZ.old_poly_ring(x, y) K2 = QQ[x] assert K1.convert(x) == K1.convert(K2.convert(x), K2) #assert K2.convert(x) == K2.convert(K1.convert(x), K1) def test_PolynomialRing__init(): R, = ring("", ZZ) assert ZZ.poly_ring() == R.to_domain() def test_FractionField__init(): F, = field("", ZZ) assert ZZ.frac_field() == F.to_domain() def test_FractionField_convert(): K = QQ.frac_field(x) assert K.convert(QQ(2, 3), QQ) == K.from_sympy(Rational(2, 3)) K = QQ.frac_field(x) assert K.convert(ZZ(2), ZZ) == K.from_sympy(Integer(2)) def test_inject(): assert ZZ.inject(x, y, z) == ZZ[x, y, z] assert ZZ[x].inject(y, z) == ZZ[x, y, z] assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z) raises(GeneratorsError, lambda: ZZ[x].inject(x)) def test_drop(): assert ZZ.drop(x) == ZZ assert ZZ[x].drop(x) == ZZ assert ZZ[x, y].drop(x) == ZZ[y] assert ZZ.frac_field(x).drop(x) == ZZ assert ZZ.frac_field(x, y).drop(x) == ZZ.frac_field(y) assert ZZ[x][y].drop(y) == ZZ[x] assert ZZ[x][y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(x) == ZZ[y] assert ZZ.frac_field(x)[y].drop(y) == ZZ.frac_field(x) Ky = FiniteExtension(Poly(x**2-1, x, domain=ZZ[y])) K = FiniteExtension(Poly(x**2-1, x, domain=ZZ)) assert Ky.drop(y) == K raises(GeneratorsError, lambda: Ky.drop(x)) def test_Domain_map(): seq = ZZ.map([1, 2, 3, 4]) assert all(ZZ.of_type(elt) for elt in seq) seq = ZZ.map([[1, 2, 3, 4]]) assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1 def test_Domain___eq__(): assert (ZZ[x, y] == ZZ[x, y]) is True assert (QQ[x, y] == QQ[x, y]) is True assert (ZZ[x, y] == QQ[x, y]) is False assert (QQ[x, y] == ZZ[x, y]) is False assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False assert RealField()[x] == RR[x] def test_Domain__algebraic_field(): alg = ZZ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = QQ.algebraic_field(sqrt(2)) assert alg.ext.minpoly == Poly(x**2 - 2) assert alg.dom == QQ alg = alg.algebraic_field(sqrt(3)) assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1) assert alg.dom == QQ def test_PolynomialRing_from_FractionField(): F, x,y = field("x,y", ZZ) R, X,Y = ring("x,y", ZZ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 F, x,y = field("x,y", QQ) R, X,Y = ring("x,y", QQ) f = (x**2 + y**2)/(x + 1) g = (x**2 + y**2)/4 h = x**2 + y**2 assert R.to_domain().from_FractionField(f, F.to_domain()) is None assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4 assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2 def test_FractionField_from_PolynomialRing(): R, x,y = ring("x,y", QQ) F, X,Y = field("x,y", ZZ) f = 3*x**2 + 5*y**2 g = x**2/3 + y**2/5 assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2 assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15 def test_FF_of_type(): assert FF(3).of_type(FF(3)(1)) is True assert FF(5).of_type(FF(5)(3)) is True assert FF(5).of_type(FF(7)(3)) is False def test___eq__(): assert not QQ[x] == ZZ[x] assert not QQ.frac_field(x) == ZZ.frac_field(x) def test_RealField_from_sympy(): assert RR.convert(S.Zero) == RR.dtype(0) assert RR.convert(S(0.0)) == RR.dtype(0.0) assert RR.convert(S.One) == RR.dtype(1) assert RR.convert(S(1.0)) == RR.dtype(1.0) assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf()) def test_not_in_any_domain(): check = illegal + [x] + [ float(i) for i in illegal if i != S.ComplexInfinity] for dom in (ZZ, QQ, RR, CC, EX): for i in check: if i == x and dom == EX: continue assert i not in dom, (i, dom) raises(CoercionFailed, lambda: dom.convert(i)) def test_ModularInteger(): F3 = FF(3) a = F3(0) assert isinstance(a, F3.dtype) and a == 0 a = F3(1) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) assert isinstance(a, F3.dtype) and a == 2 a = F3(3) assert isinstance(a, F3.dtype) and a == 0 a = F3(4) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(0)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(1)) assert isinstance(a, F3.dtype) and a == 1 a = F3(F3(2)) assert isinstance(a, F3.dtype) and a == 2 a = F3(F3(3)) assert isinstance(a, F3.dtype) and a == 0 a = F3(F3(4)) assert isinstance(a, F3.dtype) and a == 1 a = -F3(1) assert isinstance(a, F3.dtype) and a == 2 a = -F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2 + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2) + F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 3 - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(3) - F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)*F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 2/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/2 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)/F3(2) assert isinstance(a, F3.dtype) and a == 1 a = 1 % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % 2 assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(1) % F3(2) assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**0 assert isinstance(a, F3.dtype) and a == 1 a = F3(2)**1 assert isinstance(a, F3.dtype) and a == 2 a = F3(2)**2 assert isinstance(a, F3.dtype) and a == 1 F7 = FF(7) a = F7(3)**100000000000 assert isinstance(a, F7.dtype) and a == 4 a = F7(3)**-100000000000 assert isinstance(a, F7.dtype) and a == 2 a = F7(3)**S(2) assert isinstance(a, F7.dtype) and a == 2 assert bool(F3(3)) is False assert bool(F3(4)) is True F5 = FF(5) a = F5(1)**(-1) assert isinstance(a, F5.dtype) and a == 1 a = F5(2)**(-1) assert isinstance(a, F5.dtype) and a == 3 a = F5(3)**(-1) assert isinstance(a, F5.dtype) and a == 2 a = F5(4)**(-1) assert isinstance(a, F5.dtype) and a == 4 assert (F5(1) < F5(2)) is True assert (F5(1) <= F5(2)) is True assert (F5(1) > F5(2)) is False assert (F5(1) >= F5(2)) is False assert (F5(3) < F5(2)) is False assert (F5(3) <= F5(2)) is False assert (F5(3) > F5(2)) is True assert (F5(3) >= F5(2)) is True assert (F5(1) < F5(7)) is True assert (F5(1) <= F5(7)) is True assert (F5(1) > F5(7)) is False assert (F5(1) >= F5(7)) is False assert (F5(3) < F5(7)) is False assert (F5(3) <= F5(7)) is False assert (F5(3) > F5(7)) is True assert (F5(3) >= F5(7)) is True assert (F5(1) < 2) is True assert (F5(1) <= 2) is True assert (F5(1) > 2) is False assert (F5(1) >= 2) is False assert (F5(3) < 2) is False assert (F5(3) <= 2) is False assert (F5(3) > 2) is True assert (F5(3) >= 2) is True assert (F5(1) < 7) is True assert (F5(1) <= 7) is True assert (F5(1) > 7) is False assert (F5(1) >= 7) is False assert (F5(3) < 7) is False assert (F5(3) <= 7) is False assert (F5(3) > 7) is True assert (F5(3) >= 7) is True raises(NotInvertible, lambda: F5(0)**(-1)) raises(NotInvertible, lambda: F5(5)**(-1)) raises(ValueError, lambda: FF(0)) raises(ValueError, lambda: FF(2.1)) def test_QQ_int(): assert int(QQ(2**2000, 3**1250)) == 455431 assert int(QQ(2**100, 3)) == 422550200076076467165567735125 def test_RR_double(): assert RR(3.14) > 1e-50 assert RR(1e-13) > 1e-50 assert RR(1e-14) > 1e-50 assert RR(1e-15) > 1e-50 assert RR(1e-20) > 1e-50 assert RR(1e-40) > 1e-50 def test_RR_Float(): f1 = Float("1.01") f2 = Float("1.0000000000000000000001") assert f1._prec == 53 assert f2._prec == 80 assert RR(f1)-1 > 1e-50 assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's RR2 = RealField(prec=f2._prec) assert RR2(f1)-1 > 1e-50 assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's def test_CC_double(): assert CC(3.14).real > 1e-50 assert CC(1e-13).real > 1e-50 assert CC(1e-14).real > 1e-50 assert CC(1e-15).real > 1e-50 assert CC(1e-20).real > 1e-50 assert CC(1e-40).real > 1e-50 assert CC(3.14j).imag > 1e-50 assert CC(1e-13j).imag > 1e-50 assert CC(1e-14j).imag > 1e-50 assert CC(1e-15j).imag > 1e-50 assert CC(1e-20j).imag > 1e-50 assert CC(1e-40j).imag > 1e-50 def test_gaussian_domains(): I = S.ImaginaryUnit a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5*I)] assert ZZ_I.gcd(a, b) == b assert ZZ_I.gcd(a, c) == b assert ZZ_I.lcm(a, b) == a assert ZZ_I.lcm(a, c) == d assert ZZ_I(3, 4) != QQ_I(3, 4) # XXX is this right or should QQ->ZZ if possible? assert ZZ_I(3, 0) != 3 # and should this go to Integer? assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational? assert ZZ_I(0, 0).quadrant() == 0 assert ZZ_I(-1, 0).quadrant() == 2 assert QQ_I.convert(QQ(3, 2)) == QQ_I(QQ(3, 2), QQ(0)) assert QQ_I.convert(QQ(3, 2), QQ) == QQ_I(QQ(3, 2), QQ(0)) for G in (QQ_I, ZZ_I): q = G(3, 4) assert str(q) == '3 + 4*I' assert q.parent() == G assert q._get_xy(pi) == (None, None) assert q._get_xy(2) == (2, 0) assert q._get_xy(2*I) == (0, 2) assert hash(q) == hash((3, 4)) assert G(1, 2) == G(1, 2) assert G(1, 2) != G(1, 3) assert G(3, 0) == G(3) assert q + q == G(6, 8) assert q - q == G(0, 0) assert 3 - q == -q + 3 == G(0, -4) assert 3 + q == q + 3 == G(6, 4) assert q * q == G(-7, 24) assert 3 * q == q * 3 == G(9, 12) assert q ** 0 == G(1, 0) assert q ** 1 == q assert q ** 2 == q * q == G(-7, 24) assert q ** 3 == q * q * q == G(-117, 44) assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25) assert q / 1 == QQ_I(3, 4) assert q / 2 == QQ_I(S(3)/2, 2) assert q/3 == QQ_I(1, S(4)/3) assert 3/q == QQ_I(S(9)/25, -S(12)/25) i, r = divmod(q, 2) assert 2*i + r == q i, r = divmod(2, q) assert q*i + r == G(2, 0) raises(ZeroDivisionError, lambda: q % 0) raises(ZeroDivisionError, lambda: q / 0) raises(ZeroDivisionError, lambda: q // 0) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(ZeroDivisionError, lambda: divmod(q, 0)) raises(TypeError, lambda: q + x) raises(TypeError, lambda: q - x) raises(TypeError, lambda: x + q) raises(TypeError, lambda: x - q) raises(TypeError, lambda: q * x) raises(TypeError, lambda: x * q) raises(TypeError, lambda: q / x) raises(TypeError, lambda: x / q) raises(TypeError, lambda: q // x) raises(TypeError, lambda: x // q) assert G.from_sympy(S(2)) == G(2, 0) assert G.to_sympy(G(2, 0)) == S(2) raises(CoercionFailed, lambda: G.from_sympy(pi)) PR = G.inject(x) assert isinstance(PR, PolynomialRing) assert PR.domain == G assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x if G is QQ_I: AF = G.as_AlgebraicField() assert isinstance(AF, AlgebraicField) assert AF.domain == QQ assert AF.ext.args[0] == I for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]: assert G.is_negative(qi) is False assert G.is_positive(qi) is False assert G.is_nonnegative(qi) is False assert G.is_nonpositive(qi) is False domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)] if HAS_GMPY: domains += [ZZ_gmpy(), QQ_gmpy()] for K in domains: assert G.convert(K(2)) == G(2, 0) assert G.convert(K(2), K) == G(2, 0) for K in ZZ_I, QQ_I: assert G.convert(K(1, 1)) == G(1, 1) assert G.convert(K(1, 1), K) == G(1, 1) if G == ZZ_I: assert repr(q) == 'ZZ_I(3, 4)' assert q//3 == G(1, 1) assert 12//q == G(1, -2) assert 12 % q == G(1, 2) assert q % 2 == G(-1, 0) assert i == G(0, 0) assert r == G(2, 0) assert G.get_ring() == G assert G.get_field() == QQ_I else: assert repr(q) == 'QQ_I(3, 4)' assert G.get_ring() == ZZ_I assert G.get_field() == G assert q//3 == G(1, S(4)/3) assert 12//q == G(S(36)/25, -S(48)/25) assert 12 % q == G(0, 0) assert q % 2 == G(0, 0) assert i == G(S(6)/25, -S(8)/25), (G,i) assert r == G(0, 0) q2 = G(S(3)/2, S(5)/3) assert G.numer(q2) == ZZ_I(9, 10) assert G.denom(q2) == ZZ_I(6) def test_EX_EXRAW(): assert EXRAW.zero is S.Zero assert EXRAW.one is S.One assert EX(1) == EX.Expression(1) assert EX(1).ex is S.One assert EXRAW(1) is S.One # EX has cancelling but EXRAW does not assert 2*EX((x + y*x)/x) == EX(2 + 2*y) != 2*((x + y*x)/x) assert 2*EXRAW((x + y*x)/x) == 2*((x + y*x)/x) != (1 + y) assert EXRAW.convert_from(EX(1), EX) is EXRAW.one assert EX.convert_from(EXRAW(1), EXRAW) == EX.one assert EXRAW.from_sympy(S.One) is S.One assert EXRAW.to_sympy(EXRAW.one) is S.One raises(CoercionFailed, lambda: EXRAW.from_sympy([])) assert EXRAW.get_field() == EXRAW assert EXRAW.unify(EX) == EXRAW assert EX.unify(EXRAW) == EXRAW def test_canonical_unit(): for K in [ZZ, QQ, RR]: # CC? assert K.canonical_unit(K(2)) == K(1) assert K.canonical_unit(K(-2)) == K(-1) for K in [ZZ_I, QQ_I]: i = K.from_sympy(I) assert K.canonical_unit(K(2)) == K(1) assert K.canonical_unit(K(2)*i) == -i assert K.canonical_unit(-K(2)) == K(-1) assert K.canonical_unit(-K(2)*i) == i K = ZZ[x] assert K.canonical_unit(K(x + 1)) == K(1) assert K.canonical_unit(K(-x + 1)) == K(-1) K = ZZ_I[x] assert K.canonical_unit(K.from_sympy(I*x)) == ZZ_I(0, -1) K = ZZ_I.frac_field(x, y) i = K.from_sympy(I) assert i / i == K.one assert (K.one + i)/(i - K.one) == -i def test_issue_18278(): assert str(RR(2).parent()) == 'RR' assert str(CC(2).parent()) == 'CC' def test_Domain_is_negative(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_negative(a) == False assert CC.is_negative(b) == False def test_Domain_is_positive(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_positive(a) == False assert CC.is_positive(b) == False def test_Domain_is_nonnegative(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_nonnegative(a) == False assert CC.is_nonnegative(b) == False def test_Domain_is_nonpositive(): I = S.ImaginaryUnit a, b = [CC.convert(x) for x in (2 + I, 5)] assert CC.is_nonpositive(a) == False assert CC.is_nonpositive(b) == False def test_exponential_domain(): K = ZZ[E] eK = K.from_sympy(E) assert K.from_sympy(exp(3)) == eK ** 3 assert K.convert(exp(3)) == eK ** 3
6a217adeea09c67887ff2521882bf1842008c235f728eac4b5a76eb5f9574ed8
from sympy.abc import theta, x from sympy.core import S from sympy.core.numbers import AlgebraicNumber from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import Poly, cyclotomic_poly from sympy.polys.domains import QQ from sympy.polys.matrices import DomainMatrix, DM from sympy.polys.numberfields.basis import round_two from sympy.testing.pytest import raises def test_round_two(): # Poly must be monic, irreducible, and over ZZ: raises(ValueError, lambda: round_two(Poly(3 * x ** 2 + 1))) raises(ValueError, lambda: round_two(Poly(x ** 2 - 1))) raises(ValueError, lambda: round_two(Poly(x ** 2 + QQ(1, 2)))) # Test on many fields: cases = ( # A couple of cyclotomic fields: (cyclotomic_poly(5), DomainMatrix.eye(4, QQ), 125), (cyclotomic_poly(7), DomainMatrix.eye(6, QQ), -16807), # A couple of quadratic fields (one 1 mod 4, one 3 mod 4): (x ** 2 - 5, DM([[1, (1, 2)], [0, (1, 2)]], QQ), 5), (x ** 2 - 7, DM([[1, 0], [0, 1]], QQ), 28), # Dedekind's example of a field with 2 as essential disc divisor: (x ** 3 + x ** 2 - 2 * x + 8, DM([[1, 0, 0], [0, 1, 0], [0, (1, 2), (1, 2)]], QQ).transpose(), -503), # A bunch of cubics with various forms for F -- all of these require # second or third enlargements. (Five of them require a third, while the rest require just a second.) # F = 2^2 (x**3 + 3 * x**2 - 4 * x + 4, DM([((1, 2), (1, 4), (1, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -83), # F = 2^2 * 3 (x**3 + 3 * x**2 + 3 * x - 3, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -108), # F = 2^3 (x**3 + 5 * x**2 - x + 3, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -31), # F = 2^2 * 5 (x**3 + 5 * x**2 - 5 * x - 5, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 1300), # F = 3^2 (x**3 + 3 * x**2 + 5, DM([((1, 3), (1, 3), (1, 3)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -135), # F = 3^3 (x**3 + 6 * x**2 + 3 * x - 1, DM([((1, 3), (1, 3), (1, 3)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 81), # F = 2^2 * 3^2 (x**3 + 6 * x**2 + 4, DM([((1, 3), (2, 3), (1, 3)), (0, 1, 0), (0, 0, (1, 2))], QQ).transpose(), -108), # F = 2^3 * 7 (x**3 + 7 * x**2 + 7 * x - 7, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), 49), # F = 2^2 * 13 (x**3 + 7 * x**2 - x + 5, DM([((1, 2), 0, (1, 2)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -2028), # F = 2^4 (x**3 + 7 * x**2 - 5 * x + 5, DM([((1, 4), 0, (3, 4)), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), -140), # F = 5^2 (x**3 + 4 * x**2 - 3 * x + 7, DM([((1, 5), (4, 5), (4, 5)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -175), # F = 7^2 (x**3 + 8 * x**2 + 5 * x - 1, DM([((1, 7), (6, 7), (2, 7)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), 49), # F = 2 * 5 * 7 (x**3 + 8 * x**2 - 2 * x + 6, DM([(1, 0, 0), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -14700), # F = 2^2 * 3 * 5 (x**3 + 6 * x**2 - 3 * x + 8, DM([(1, 0, 0), (0, (1, 4), (1, 4)), (0, 0, 1)], QQ).transpose(), -675), # F = 2 * 3^2 * 7 (x**3 + 9 * x**2 + 6 * x - 8, DM([(1, 0, 0), (0, (1, 2), (1, 2)), (0, 0, 1)], QQ).transpose(), 3969), # F = 2^2 * 3^2 * 7 (x**3 + 15 * x**2 - 9 * x + 13, DM([((1, 6), (1, 3), (1, 6)), (0, 1, 0), (0, 0, 1)], QQ).transpose(), -5292), ) for f, B_exp, d_exp in cases: K = QQ.algebraic_field((f, theta)) B = K.maximal_order().QQ_matrix d = K.discriminant() assert d == d_exp # The computed basis need not equal the expected one, but their quotient # must be unimodular: assert (B.inv()*B_exp).det()**2 == 1 def test_AlgebraicField_integral_basis(): alpha = AlgebraicNumber(sqrt(5), alias='alpha') k = QQ.algebraic_field(alpha) B0 = k.integral_basis() B1 = k.integral_basis(fmt='sympy') B2 = k.integral_basis(fmt='alg') assert B0 == [k([1]), k([S.Half, S.Half])] assert B1 == [1, S.Half + alpha/2] assert B2 == [alpha.field_element([1]), alpha.field_element([S.Half, S.Half])]
4f761f168b9764d7011b601f2c443bed4ab2fbf4d3b9f19352ccac9b350736e0
from sympy.abc import x from sympy.core.numbers import (I, Rational) from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import Poly, cyclotomic_poly from sympy.polys.domains import FF, QQ from sympy.polys.matrices import DomainMatrix, DM from sympy.polys.matrices.exceptions import DMRankError from sympy.polys.numberfields.utilities import ( AlgIntPowers, coeff_search, extract_fundamental_discriminant, isolate, supplement_a_subspace, ) from sympy.printing.lambdarepr import IntervalPrinter from sympy.testing.pytest import raises def test_AlgIntPowers_01(): T = Poly(cyclotomic_poly(5)) zeta_pow = AlgIntPowers(T) raises(ValueError, lambda: zeta_pow[-1]) for e in range(10): a = e % 5 if a < 4: c = zeta_pow[e] assert c[a] == 1 and all(c[i] == 0 for i in range(4) if i != a) else: assert zeta_pow[e] == [-1] * 4 def test_AlgIntPowers_02(): T = Poly(x**3 + 2*x**2 + 3*x + 4) m = 7 theta_pow = AlgIntPowers(T, m) for e in range(10): computed = theta_pow[e] coeffs = (Poly(x)**e % T + Poly(x**3)).rep.rep[1:] expected = [c % m for c in reversed(coeffs)] assert computed == expected def test_coeff_search(): C = [] search = coeff_search(2, 1) for i, c in enumerate(search): C.append(c) if i == 12: break assert C == [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]] def test_extract_fundamental_discriminant(): # To extract, integer must be 0 or 1 mod 4. raises(ValueError, lambda: extract_fundamental_discriminant(2)) raises(ValueError, lambda: extract_fundamental_discriminant(3)) # Try many cases, of different forms: cases = ( (0, {}, {0: 1}), (1, {}, {}), (8, {2: 3}, {}), (-8, {2: 3, -1: 1}, {}), (12, {2: 2, 3: 1}, {}), (36, {}, {2: 1, 3: 1}), (45, {5: 1}, {3: 1}), (48, {2: 2, 3: 1}, {2: 1}), (1125, {5: 1}, {3: 1, 5: 1}), ) for a, D_expected, F_expected in cases: D, F = extract_fundamental_discriminant(a) assert D == D_expected assert F == F_expected def test_supplement_a_subspace_1(): M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose() # First supplement over QQ: B = supplement_a_subspace(M) assert B[:, :2] == M assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0] # Now supplement over FF(7): M = M.convert_to(FF(7)) B = supplement_a_subspace(M) assert B[:, :2] == M # When we work mod 7, first col of M goes to [1, 0, 0], # so the supplementary vector cannot equal this, as it did # when we worked over QQ. Instead, we get the second std basis vector: assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1] def test_supplement_a_subspace_2(): M = DM([[1, 0, 0], [2, 0, 0]], QQ).transpose() with raises(DMRankError): supplement_a_subspace(M) def test_IntervalPrinter(): ip = IntervalPrinter() assert ip.doprint(x**Rational(1, 3)) == "x**(mpi('1/3'))" assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))" def test_isolate(): assert isolate(1) == (1, 1) assert isolate(S.Half) == (S.Half, S.Half) assert isolate(sqrt(2)) == (1, 2) assert isolate(-sqrt(2)) == (-2, -1) assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17)) raises(NotImplementedError, lambda: isolate(I))
334bd92019e33c11d5e2f1549cf0482daaa247f7204ae539d24141fafee5d600
"""Tests on algebraic numbers. """ from sympy.core.containers import Tuple from sympy.core.numbers import (AlgebraicNumber, I, Rational) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.polytools import Poly from sympy.polys.numberfields.subfield import to_number_field from sympy.polys.polyclasses import DMP from sympy.polys.domains import QQ from sympy.polys.rootoftools import CRootOf from sympy.abc import x, y def test_AlgebraicNumber(): minpoly, root = x**2 - 2, sqrt(2) a = AlgebraicNumber(root, gen=x) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [S.One, S.Zero] assert a.native_coeffs() == [QQ(1), QQ(0)] a = AlgebraicNumber(root, gen=x, alias='y') assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True a = AlgebraicNumber(root, gen=x, alias=Symbol('y')) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ) assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) assert AlgebraicNumber( sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ) assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ) a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [S.One, S(2)] assert a.native_coeffs() == [QQ(1), QQ(2)] a = AlgebraicNumber((minpoly, root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False a = AlgebraicNumber((Poly(minpoly), root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(2)) assert a == b c = AlgebraicNumber(sqrt(2), gen=x) assert a == b assert a == c a = AlgebraicNumber(sqrt(2), [1, 2]) b = AlgebraicNumber(sqrt(2), [1, 3]) assert a != b and a != sqrt(2) + 3 assert (a == x) is False and (a != x) is True a = AlgebraicNumber(sqrt(2), [1, 0]) b = AlgebraicNumber(sqrt(2), [1, 0], alias=y) assert a.as_poly(x) == Poly(x, domain='QQ') assert b.as_poly() == Poly(y, domain='QQ') assert a.as_expr() == sqrt(2) assert a.as_expr(x) == x assert b.as_expr() == sqrt(2) assert b.as_expr(x) == x a = AlgebraicNumber(sqrt(2), [2, 3]) b = AlgebraicNumber(sqrt(2), [2, 3], alias=y) p = a.as_poly() assert p == Poly(2*p.gen + 3) assert a.as_poly(x) == Poly(2*x + 3, domain='QQ') assert b.as_poly() == Poly(2*y + 3, domain='QQ') assert a.as_expr() == 2*sqrt(2) + 3 assert a.as_expr(x) == 2*x + 3 assert b.as_expr() == 2*sqrt(2) + 3 assert b.as_expr(x) == 2*x + 3 a = AlgebraicNumber(sqrt(2)) b = to_number_field(sqrt(2)) assert a.args == b.args == (sqrt(2), Tuple(1, 0)) b = AlgebraicNumber(sqrt(2), alias='alpha') assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha')) a = AlgebraicNumber(sqrt(2), [1, 2, 3]) assert a.args == (sqrt(2), Tuple(1, 2, 3)) a = AlgebraicNumber(sqrt(2), [1, 2], "alpha") b = AlgebraicNumber(a) c = AlgebraicNumber(a, alias="gamma") assert a == b assert c.alias.name == "gamma" a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0]) b = AlgebraicNumber(a, [1, 0, 0]) assert b.root == a.root assert a.to_root() == sqrt(2) assert b.to_root() == 2 a = AlgebraicNumber(2) assert a.is_primitive_element is True def test_to_algebraic_integer(): a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 3 assert a.root == sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ) def test_AlgebraicNumber_to_root(): assert AlgebraicNumber(sqrt(2)).to_root() == sqrt(2) zeta5_squared = AlgebraicNumber(CRootOf(x**5 - 1, 4), coeffs=[1, 0, 0]) assert zeta5_squared.to_root() == CRootOf(x**4 + x**3 + x**2 + x + 1, 1) zeta3_squared = AlgebraicNumber(CRootOf(x**3 - 1, 2), coeffs=[1, 0, 0]) assert zeta3_squared.to_root() == -S(1)/2 - sqrt(3)*I/2 assert zeta3_squared.to_root(radicals=False) == CRootOf(x**2 + x + 1, 0)
78232577633f6ba451b8ff9721454290abc25aa71b80a7f677eb2a1c4b479aca
"""Tests for the subfield problem and allied problems. """ from sympy.core.numbers import (AlgebraicNumber, I, Rational) from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.numberfields.subfield import ( is_isomorphism_possible, field_isomorphism_pslq, field_isomorphism, primitive_element, to_number_field, ) from sympy.polys.polyerrors import IsomorphismFailed from sympy.polys.polytools import Poly from sympy.testing.pytest import raises from sympy.abc import x Q = Rational def test_field_isomorphism_pslq(): a = AlgebraicNumber(I) b = AlgebraicNumber(I*sqrt(3)) raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b)) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) c = AlgebraicNumber(sqrt(7)) d = AlgebraicNumber(sqrt(2) + sqrt(3)) e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7)) assert field_isomorphism_pslq(a, a) == [1, 0] assert field_isomorphism_pslq(a, b) is None assert field_isomorphism_pslq(a, c) is None assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0] assert field_isomorphism_pslq( a, e) == [Q(1, 80), 0, -Q(1, 2), 0, Q(59, 20), 0] assert field_isomorphism_pslq(b, a) is None assert field_isomorphism_pslq(b, b) == [1, 0] assert field_isomorphism_pslq(b, c) is None assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0] assert field_isomorphism_pslq(b, e) == [-Q( 3, 640), 0, Q(67, 320), 0, -Q(297, 160), 0, Q(313, 80), 0] assert field_isomorphism_pslq(c, a) is None assert field_isomorphism_pslq(c, b) is None assert field_isomorphism_pslq(c, c) == [1, 0] assert field_isomorphism_pslq(c, d) is None assert field_isomorphism_pslq(c, e) == [Q( 3, 640), 0, -Q(71, 320), 0, Q(377, 160), 0, -Q(469, 80), 0] assert field_isomorphism_pslq(d, a) is None assert field_isomorphism_pslq(d, b) is None assert field_isomorphism_pslq(d, c) is None assert field_isomorphism_pslq(d, d) == [1, 0] assert field_isomorphism_pslq(d, e) == [-Q( 3, 640), 0, Q(71, 320), 0, -Q(377, 160), 0, Q(549, 80), 0] assert field_isomorphism_pslq(e, a) is None assert field_isomorphism_pslq(e, b) is None assert field_isomorphism_pslq(e, c) is None assert field_isomorphism_pslq(e, d) is None assert field_isomorphism_pslq(e, e) == [1, 0] f = AlgebraicNumber(3*sqrt(2) + 8*sqrt(7) - 5) assert field_isomorphism_pslq( f, e) == [Q(3, 80), 0, -Q(139, 80), 0, Q(347, 20), 0, -Q(761, 20), -5] def test_field_isomorphism(): assert field_isomorphism(3, sqrt(2)) == [3] assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0] assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0] assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0] assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0] assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0] assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0] assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0] assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0] assert field_isomorphism( 2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27] assert field_isomorphism( -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27] assert field_isomorphism( 2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27] assert field_isomorphism( -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27] p = AlgebraicNumber( sqrt(2) + sqrt(3)) q = AlgebraicNumber(-sqrt(2) + sqrt(3)) r = AlgebraicNumber( sqrt(2) - sqrt(3)) s = AlgebraicNumber(-sqrt(2) - sqrt(3)) pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero] neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero] a = AlgebraicNumber(sqrt(2)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == neg_coeffs assert field_isomorphism(a, p, fast=False) == pos_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == neg_coeffs a = AlgebraicNumber(-sqrt(2)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == pos_coeffs assert field_isomorphism(a, r, fast=True) == neg_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == pos_coeffs assert field_isomorphism(a, r, fast=False) == neg_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero] neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero] a = AlgebraicNumber(sqrt(3)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs a = AlgebraicNumber(-sqrt(3)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_coeffs assert field_isomorphism(a, q, fast=True) == pos_coeffs assert field_isomorphism(a, r, fast=True) == neg_coeffs assert field_isomorphism(a, s, fast=True) == neg_coeffs assert field_isomorphism(a, p, fast=False) == pos_coeffs assert field_isomorphism(a, q, fast=False) == pos_coeffs assert field_isomorphism(a, r, fast=False) == neg_coeffs assert field_isomorphism(a, s, fast=False) == neg_coeffs pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)] neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)] a = AlgebraicNumber(3*sqrt(3) - 8) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1) pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One] neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One] pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One] neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One] assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_1_coeffs assert field_isomorphism(a, q, fast=True) == neg_5_coeffs assert field_isomorphism(a, r, fast=True) == pos_5_coeffs assert field_isomorphism(a, s, fast=True) == neg_1_coeffs assert field_isomorphism(a, p, fast=False) == pos_1_coeffs assert field_isomorphism(a, q, fast=False) == neg_5_coeffs assert field_isomorphism(a, r, fast=False) == pos_5_coeffs assert field_isomorphism(a, s, fast=False) == neg_1_coeffs a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) c = AlgebraicNumber(sqrt(7)) assert is_isomorphism_possible(a, b) is True assert is_isomorphism_possible(b, a) is True assert is_isomorphism_possible(c, p) is False assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(2 ** (S(1) / 3)) assert is_isomorphism_possible(a, b) is False assert field_isomorphism(a, b) is None def test_primitive_element(): assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1]) assert primitive_element( [sqrt(2), sqrt(3)], x) == (x**4 - 10*x**2 + 1, [1, 1]) assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1]) assert primitive_element([sqrt( 2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1]) assert primitive_element( [sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \ (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [- Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element( [sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2, domain='QQ'), [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \ (Poly(x**4 - 10*x**2 + 1, domain='QQ'), [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1]) raises(ValueError, lambda: primitive_element([], x, ex=False)) raises(ValueError, lambda: primitive_element([], x, ex=True)) # Issue 14117 a, b = I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3) assert primitive_element([a, b, I], x) == (x**4 + 6*x**2 + 1, [1, 0, 0]) def test_to_number_field(): assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2)) assert to_number_field( [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3)) a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero]) assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3))) def test_issue_22561(): a = to_number_field(sqrt(2), sqrt(2) + sqrt(3)) b = to_number_field(sqrt(2), sqrt(2) + sqrt(5)) assert field_isomorphism(a, b) == [1, 0]
f5fba98aeaccd7309531e4d51c3113af43c8d3c6508638a629ede78d5a128f06
"""Tests for minimal polynomials. """ from sympy.core.function import expand from sympy.core import (GoldenRatio, TribonacciConstant) from sympy.core.numbers import (AlgebraicNumber, I, Rational, oo, pi) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import (cbrt, sqrt) from sympy.functions.elementary.trigonometric import (cos, sin, tan) from sympy.polys.polytools import Poly from sympy.solvers.solveset import nonlinsolve from sympy.geometry import Circle, intersection from sympy.testing.pytest import raises, slow from sympy.sets.sets import FiniteSet from sympy.geometry.point import Point2D from sympy.polys.numberfields.minpoly import ( minimal_polynomial, _choose_factor, _minpoly_op_algebraic_element, _separate_sq, _minpoly_groebner, ) from sympy.polys.partfrac import apart from sympy.polys.polyerrors import ( NotAlgebraic, GeneratorsError, ) from sympy.polys.domains import QQ from sympy.polys.rootoftools import rootof from sympy.polys.polytools import degree from sympy.abc import x, y, z Q = Rational def test_minimal_polynomial(): assert minimal_polynomial(-7, x) == x + 7 assert minimal_polynomial(-1, x) == x + 1 assert minimal_polynomial( 0, x) == x assert minimal_polynomial( 1, x) == x - 1 assert minimal_polynomial( 7, x) == x - 7 assert minimal_polynomial(sqrt(2), x) == x**2 - 2 assert minimal_polynomial(sqrt(5), x) == x**2 - 5 assert minimal_polynomial(sqrt(6), x) == x**2 - 6 assert minimal_polynomial(2*sqrt(2), x) == x**2 - 8 assert minimal_polynomial(3*sqrt(5), x) == x**2 - 45 assert minimal_polynomial(4*sqrt(6), x) == x**2 - 96 assert minimal_polynomial(2*sqrt(2) + 3, x) == x**2 - 6*x + 1 assert minimal_polynomial(3*sqrt(5) + 6, x) == x**2 - 12*x - 9 assert minimal_polynomial(4*sqrt(6) + 7, x) == x**2 - 14*x - 47 assert minimal_polynomial(2*sqrt(2) - 3, x) == x**2 + 6*x + 1 assert minimal_polynomial(3*sqrt(5) - 6, x) == x**2 + 12*x - 9 assert minimal_polynomial(4*sqrt(6) - 7, x) == x**2 + 14*x - 47 assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2*x**2 - 5 assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10*x**4 + 49 assert minimal_polynomial(2*I + sqrt(2 + I), x) == x**4 + 4*x**2 + 8*x + 37 assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10*x**2 + 1 assert minimal_polynomial( sqrt(2) + sqrt(3) + sqrt(6), x) == x**4 - 22*x**2 - 48*x - 23 a = 1 - 9*sqrt(2) + 7*sqrt(3) assert minimal_polynomial( 1/a, x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1 assert minimal_polynomial( 1/sqrt(a), x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1 raises(NotAlgebraic, lambda: minimal_polynomial(oo, x)) raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x)) raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x)) assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2) assert minimal_polynomial(sqrt(2), x) == x**2 - 2 assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2) assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2, domain='QQ') assert minimal_polynomial(sqrt(2), x, polys=True, compose=False) == Poly(x**2 - 2, domain='QQ') a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) assert minimal_polynomial(a, x) == x**2 - 2 assert minimal_polynomial(b, x) == x**2 - 3 assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2, domain='QQ') assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3, domain='QQ') assert minimal_polynomial(sqrt(a/2 + 17), x) == 2*x**4 - 68*x**2 + 577 assert minimal_polynomial(sqrt(b/2 + 17), x) == 4*x**4 - 136*x**2 + 1153 a, b = sqrt(2)/3 + 7, AlgebraicNumber(sqrt(2)/3 + 7) f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \ 31608*x**2 - 189648*x + 141358 assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f assert minimal_polynomial( a**Q(3, 2), x) == 729*x**4 - 506898*x**2 + 84604519 # issue 5994 eq = S(''' -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)))''') assert minimal_polynomial(eq, x) == 8000*x**2 - 1 ex = (sqrt(5)*sqrt(I)/(5*sqrt(1 + 125*I)) + 25*sqrt(5)/(I**Q(5,2)*(1 + 125*I)**Q(3,2)) + 3125*sqrt(5)/(I**Q(11,2)*(1 + 125*I)**Q(3,2)) + 5*I*sqrt(1 - I/125)) mp = minimal_polynomial(ex, x) assert mp == 25*x**4 + 5000*x**2 + 250016 ex = 1 + sqrt(2) + sqrt(3) mp = minimal_polynomial(ex, x) assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8 ex = 1/(1 + sqrt(2) + sqrt(3)) mp = minimal_polynomial(ex, x) assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = (expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3))**Rational(1, 3) mp = minimal_polynomial(p, x) assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008 p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3) mp = minimal_polynomial(p, x) assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512 assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"), x) == x - 1 a = 1 + sqrt(2) assert minimal_polynomial((a*sqrt(2) + a)**3, x) == x**2 - 198*x + 1 p = 1/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, x, compose=False) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = 2/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, x, compose=False) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2 assert minimal_polynomial(1 + sqrt(2)*I, x, compose=False) == x**2 - 2*x + 3 assert minimal_polynomial(1/(1 + sqrt(2)) + 1, x, compose=False) == x**2 - 2 assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)), x, compose=False) == x**4 + 18*x**2 + 49 # minimal polynomial of I assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I K = QQ.algebraic_field(I*(sqrt(2) + 1)) assert minimal_polynomial(I, x, domain=K) == x - I assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1 assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1 #issue 11553 assert minimal_polynomial(GoldenRatio, x) == x**2 - x - 1 assert minimal_polynomial(TribonacciConstant + 3, x) == x**3 - 10*x**2 + 32*x - 34 assert minimal_polynomial(GoldenRatio, x, domain=QQ.algebraic_field(sqrt(5))) == \ 2*x - sqrt(5) - 1 assert minimal_polynomial(TribonacciConstant, x, domain=QQ.algebraic_field(cbrt(19 - 3*sqrt(33)))) == \ 48*x - 19*(19 - 3*sqrt(33))**Rational(2, 3) - 3*sqrt(33)*(19 - 3*sqrt(33))**Rational(2, 3) \ - 16*(19 - 3*sqrt(33))**Rational(1, 3) - 16 # AlgebraicNumber with an alias. # Wester H24 phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi') assert minimal_polynomial(phi, x) == x**2 - x - 1 def test_minimal_polynomial_issue_19732(): # https://github.com/sympy/sympy/issues/19732 expr = (-280898097948878450887044002323982963174671632174995451265117559518123750720061943079105185551006003416773064305074191140286225850817291393988597615/(-488144716373031204149459129212782509078221364279079444636386844223983756114492222145074506571622290776245390771587888364089507840000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729 - 24411360*sqrt(238368341569)/63568729) + 238326799225996604451373809274348704114327860564921529846705817404208077866956345381951726531296652901169111729944612727047670549086208000000*sqrt(S(11918417078450)/63568729 - 24411360*sqrt(238368341569)/63568729)) - 180561807339168676696180573852937120123827201075968945871075967679148461189459480842956689723484024031016208588658753107/(-59358007109636562851035004992802812513575019937126272896569856090962677491318275291141463850327474176000000*sqrt(238368341569)*sqrt(S(11918417078450)/63568729 - 24411360*sqrt(238368341569)/63568729) + 28980348180319251787320809875930301310576055074938369007463004788921613896002936637780993064387310446267596800000*sqrt(S(11918417078450)/63568729 - 24411360*sqrt(238368341569)/63568729))) poly = (2151288870990266634727173620565483054187142169311153766675688628985237817262915166497766867289157986631135400926544697981091151416655364879773546003475813114962656742744975460025956167152918469472166170500512008351638710934022160294849059721218824490226159355197136265032810944357335461128949781377875451881300105989490353140886315677977149440000000000000000000000*x**4 - 5773274155644072033773937864114266313663195672820501581692669271302387257492905909558846459600429795784309388968498783843631580008547382703258503404023153694528041873101120067477617592651525155101107144042679962433039557235772239171616433004024998230222455940044709064078962397144550855715640331680262171410099614469231080995436488414164502751395405398078353242072696360734131090111239998110773292915337556205692674790561090109440000000000000*x**2 + 211295968822207088328287206509522887719741955693091053353263782924470627623790749534705683380138972642560898936171035770539616881000369889020398551821767092685775598633794696371561234818461806577723412581353857653829324364446419444210520602157621008010129702779407422072249192199762604318993590841636967747488049176548615614290254356975376588506729604345612047361483789518445332415765213187893207704958013682516462853001964919444736320672860140355089) assert minimal_polynomial(expr, x) == poly def test_minimal_polynomial_hi_prec(): p = 1/sqrt(1 - 9*sqrt(2) + 7*sqrt(3) + Rational(1, 10)**30) mp = minimal_polynomial(p, x) # checked with Wolfram Alpha assert mp.coeff(x**6) == -1232000000000000000000000000001223999999999999999999999999999987999999999999999999999999999996000000000000000000000000000000 def test_minimal_polynomial_sq(): from sympy.core.add import Add from sympy.core.function import expand_multinomial p = expand_multinomial((1 + 5*sqrt(2) + 2*sqrt(3))**3) mp = minimal_polynomial(p**Rational(1, 3), x) assert mp == x**4 - 4*x**3 - 118*x**2 + 244*x + 1321 p = expand_multinomial((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3) mp = minimal_polynomial(p**Rational(1, 3), x) assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008 p = Add(*[sqrt(i) for i in range(1, 12)]) mp = minimal_polynomial(p, x) assert mp.subs({x: 0}) == -71965773323122507776 def test_minpoly_compose(): # issue 6868 eq = S(''' -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)))''') mp = minimal_polynomial(eq + 3, x) assert mp == 8000*x**2 - 48000*x + 71999 # issue 5888 assert minimal_polynomial(exp(I*pi/8), x) == x**8 + 1 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(exp(I*pi*Rational(2, 7)), x) assert mp == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1 mp = minimal_polynomial(exp(I*pi*Rational(2, 15)), x) assert mp == x**8 - x**7 + x**5 - x**4 + x**3 - x + 1 mp = minimal_polynomial(cos(pi*Rational(2, 7)), x) assert mp == 8*x**3 + 4*x**2 - 4*x - 1 mp = minimal_polynomial(sin(pi*Rational(2, 7)), x) ex = (5*cos(pi*Rational(2, 7)) - 7)/(9*cos(pi/7) - 5*cos(pi*Rational(3, 7))) mp = minimal_polynomial(ex, x) assert mp == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(-1/(2*cos(pi/7)), x) == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(sin(pi*Rational(2, 15)), x) == \ 256*x**8 - 448*x**6 + 224*x**4 - 32*x**2 + 1 assert minimal_polynomial(sin(pi*Rational(5, 14)), x) == 8*x**3 - 4*x**2 - 4*x + 1 assert minimal_polynomial(cos(pi/15), x) == 16*x**4 + 8*x**3 - 16*x**2 - 8*x + 1 ex = rootof(x**3 +x*4 + 1, 0) mp = minimal_polynomial(ex, x) assert mp == x**3 + 4*x + 1 mp = minimal_polynomial(ex + 1, x) assert mp == x**3 - 3*x**2 + 7*x - 4 assert minimal_polynomial(exp(I*pi/3), x) == x**2 - x + 1 assert minimal_polynomial(exp(I*pi/4), x) == x**4 + 1 assert minimal_polynomial(exp(I*pi/6), x) == x**4 - x**2 + 1 assert minimal_polynomial(exp(I*pi/9), x) == x**6 - x**3 + 1 assert minimal_polynomial(exp(I*pi/10), x) == x**8 - x**6 + x**4 - x**2 + 1 assert minimal_polynomial(sin(pi/9), x) == 64*x**6 - 96*x**4 + 36*x**2 - 3 assert minimal_polynomial(sin(pi/11), x) == 1024*x**10 - 2816*x**8 + \ 2816*x**6 - 1232*x**4 + 220*x**2 - 11 assert minimal_polynomial(sin(pi/21), x) == 4096*x**12 - 11264*x**10 + \ 11264*x**8 - 4992*x**6 + 960*x**4 - 64*x**2 + 1 assert minimal_polynomial(cos(pi/9), x) == 8*x**3 - 6*x - 1 ex = 2**Rational(1, 3)*exp(2*I*pi/3) assert minimal_polynomial(ex, x) == x**3 - 2 raises(NotAlgebraic, lambda: minimal_polynomial(cos(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(sin(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(exp(1.618*I*pi), x)) raises(NotAlgebraic, lambda: minimal_polynomial(exp(I*pi*sqrt(2)), x)) # issue 5934 ex = 1/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) + 24*sqrt(10)*sqrt(-sqrt(5) + 5))**2) + 1 raises(ZeroDivisionError, lambda: minimal_polynomial(ex, x)) ex = sqrt(1 + 2**Rational(1,3)) + sqrt(1 + 2**Rational(1,4)) + sqrt(2) mp = minimal_polynomial(ex, x) assert degree(mp) == 48 and mp.subs({x:0}) == -16630256576 ex = tan(pi/5, evaluate=False) mp = minimal_polynomial(ex, x) assert mp == x**4 - 10*x**2 + 5 assert mp.subs(x, tan(pi/5)).is_zero ex = tan(pi/6, evaluate=False) mp = minimal_polynomial(ex, x) assert mp == 3*x**2 - 1 assert mp.subs(x, tan(pi/6)).is_zero ex = tan(pi/10, evaluate=False) mp = minimal_polynomial(ex, x) assert mp == 5*x**4 - 10*x**2 + 1 assert mp.subs(x, tan(pi/10)).is_zero raises(NotAlgebraic, lambda: minimal_polynomial(tan(pi*sqrt(2)), x)) def test_minpoly_issue_7113(): # see discussion in https://github.com/sympy/sympy/pull/2234 from sympy.simplify.simplify import nsimplify r = nsimplify(pi, tolerance=0.000000001) mp = minimal_polynomial(r, x) assert mp == 1768292677839237920489538677417507171630859375*x**109 - \ 2734577732179183863586489182929671773182898498218854181690460140337930774573792597743853652058046464 def test_minpoly_issue_7574(): ex = -(-1)**Rational(1, 3) + (-1)**Rational(2,3) assert minimal_polynomial(ex, x) == x + 1 def test_choose_factor(): # Test that this does not enter an infinite loop: bad_factors = [Poly(x-2, x), Poly(x+2, x)] raises(NotImplementedError, lambda: _choose_factor(bad_factors, x, sqrt(3))) def test_minpoly_fraction_field(): assert minimal_polynomial(1/x, y) == -x*y + 1 assert minimal_polynomial(1 / (x + 1), y) == (x + 1)*y - 1 assert minimal_polynomial(sqrt(x), y) == y**2 - x assert minimal_polynomial(sqrt(x + 1), y) == y**2 - x - 1 assert minimal_polynomial(sqrt(x) / x, y) == x*y**2 - 1 assert minimal_polynomial(sqrt(2) * sqrt(x), y) == y**2 - 2 * x assert minimal_polynomial(sqrt(2) + sqrt(x), y) == \ y**4 + (-2*x - 4)*y**2 + x**2 - 4*x + 4 assert minimal_polynomial(x**Rational(1,3), y) == y**3 - x assert minimal_polynomial(x**Rational(1,3) + sqrt(x), y) == \ y**6 - 3*x*y**4 - 2*x*y**3 + 3*x**2*y**2 - 6*x**2*y - x**3 + x**2 assert minimal_polynomial(sqrt(x) / z, y) == z**2*y**2 - x assert minimal_polynomial(sqrt(x) / (z + 1), y) == (z**2 + 2*z + 1)*y**2 - x assert minimal_polynomial(1/x, y, polys=True) == Poly(-x*y + 1, y, domain='ZZ(x)') assert minimal_polynomial(1 / (x + 1), y, polys=True) == \ Poly((x + 1)*y - 1, y, domain='ZZ(x)') assert minimal_polynomial(sqrt(x), y, polys=True) == Poly(y**2 - x, y, domain='ZZ(x)') assert minimal_polynomial(sqrt(x) / z, y, polys=True) == \ Poly(z**2*y**2 - x, y, domain='ZZ(x, z)') # this is (sqrt(1 + x**3)/x).integrate(x).diff(x) - sqrt(1 + x**3)/x a = sqrt(x)/sqrt(1 + x**(-3)) - sqrt(x**3 + 1)/x + 1/(x**Rational(5, 2)* \ (1 + x**(-3))**Rational(3, 2)) + 1/(x**Rational(11, 2)*(1 + x**(-3))**Rational(3, 2)) assert minimal_polynomial(a, y) == y raises(NotAlgebraic, lambda: minimal_polynomial(exp(x), y)) raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x), x)) raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x) - y, x)) raises(NotImplementedError, lambda: minimal_polynomial(sqrt(x), y, compose=False)) @slow def test_minpoly_fraction_field_slow(): assert minimal_polynomial(minimal_polynomial(sqrt(x**Rational(1,5) - 1), y).subs(y, sqrt(x**Rational(1,5) - 1)), z) == z def test_minpoly_domain(): assert minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) == \ x - sqrt(2) assert minimal_polynomial(sqrt(8), x, domain=QQ.algebraic_field(sqrt(2))) == \ x - 2*sqrt(2) assert minimal_polynomial(sqrt(Rational(3,2)), x, domain=QQ.algebraic_field(sqrt(2))) == 2*x**2 - 3 raises(NotAlgebraic, lambda: minimal_polynomial(y, x, domain=QQ)) def test_issue_14831(): a = -2*sqrt(2)*sqrt(12*sqrt(2) + 17) assert minimal_polynomial(a, x) == x**2 + 16*x - 8 e = (-3*sqrt(12*sqrt(2) + 17) + 12*sqrt(2) + 17 - 2*sqrt(2)*sqrt(12*sqrt(2) + 17)) assert minimal_polynomial(e, x) == x def test_issue_18248(): assert nonlinsolve([x*y**3-sqrt(2)/3, x*y**6-4/(9*(sqrt(3)))],x,y) == \ FiniteSet((sqrt(3)/2, sqrt(6)/3), (sqrt(3)/2, -sqrt(6)/6 - sqrt(2)*I/2), (sqrt(3)/2, -sqrt(6)/6 + sqrt(2)*I/2)) def test_issue_13230(): c1 = Circle(Point2D(3, sqrt(5)), 5) c2 = Circle(Point2D(4, sqrt(7)), 6) assert intersection(c1, c2) == [Point2D(-1 + (-sqrt(7) + sqrt(5))*(-2*sqrt(7)/29 + 9*sqrt(5)/29 + sqrt(196*sqrt(35) + 1941)/29), -2*sqrt(7)/29 + 9*sqrt(5)/29 + sqrt(196*sqrt(35) + 1941)/29), Point2D(-1 + (-sqrt(7) + sqrt(5))*(-sqrt(196*sqrt(35) + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29), -sqrt(196*sqrt(35) + 1941)/29 - 2*sqrt(7)/29 + 9*sqrt(5)/29)] def test_issue_19760(): e = 1/(sqrt(1 + sqrt(2)) - sqrt(2)*sqrt(1 + sqrt(2))) + 1 mp_expected = x**4 - 4*x**3 + 4*x**2 - 2 for comp in (True, False): mp = Poly(minimal_polynomial(e, compose=comp)) assert mp(x) == mp_expected, "minimal_polynomial(e, compose=%s) = %s; %s expected" % (comp, mp(x), mp_expected) def test_issue_20163(): assert apart(1/(x**6+1), extension=[sqrt(3), I]) == \ (sqrt(3) + I)/(2*x + sqrt(3) + I)/6 + \ (sqrt(3) - I)/(2*x + sqrt(3) - I)/6 - \ (sqrt(3) - I)/(2*x - sqrt(3) + I)/6 - \ (sqrt(3) + I)/(2*x - sqrt(3) - I)/6 + \ I/(x + I)/6 - I/(x - I)/6 def test_issue_22559(): alpha = AlgebraicNumber(sqrt(2)) assert minimal_polynomial(alpha**3, x) == x**2 - 8 def test_issue_22561(): a = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1) / 2, 0, S(-9) / 2, 0], gen=x) assert a.as_expr() == sqrt(2) assert minimal_polynomial(a, x) == x**2 - 2 assert minimal_polynomial(a**3, x) == x**2 - 8 def test_separate_sq_not_impl(): raises(NotImplementedError, lambda: _separate_sq(x**(S(1)/3) + x)) def test_minpoly_op_algebraic_element_not_impl(): raises(NotImplementedError, lambda: _minpoly_op_algebraic_element(Pow, sqrt(2), sqrt(3), x, QQ)) def test_minpoly_groebner(): assert _minpoly_groebner(S(2)/3, x, Poly) == 3*x - 2 assert _minpoly_groebner( (sqrt(2) + 3)*(sqrt(2) + 1), x, Poly) == x**2 - 10*x - 7 assert _minpoly_groebner((sqrt(2) + 3)**(S(1)/3)*(sqrt(2) + 1)**(S(1)/3), x, Poly) == x**6 - 10*x**3 - 7 assert _minpoly_groebner((sqrt(2) + 3)**(-S(1)/3)*(sqrt(2) + 1)**(S(1)/3), x, Poly) == 7*x**6 - 2*x**3 - 1 raises(NotAlgebraic, lambda: _minpoly_groebner(pi**2, x, Poly))
fe646817e43e8ec5785cb3836da536f8023bba5d37375cf70325a088c7992f82
from sympy import QQ, ZZ, S from sympy.abc import x, theta from sympy.core.mul import prod from sympy.ntheory import factorint from sympy.ntheory.residue_ntheory import n_order from sympy.polys import Poly, cyclotomic_poly from sympy.polys.matrices import DomainMatrix from sympy.polys.numberfields.basis import round_two from sympy.polys.numberfields.exceptions import StructureError from sympy.polys.numberfields.modules import PowerBasis from sympy.polys.numberfields.primes import ( prime_decomp, _two_elt_rep, _check_formal_conditions_for_maximal_order, ) from sympy.polys.polyerrors import GeneratorsNeeded from sympy.testing.pytest import raises def test_check_formal_conditions_for_maximal_order(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1]) # Is a direct submodule of a power basis, but lacks 1 as first generator: raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B)) # Is not a direct submodule of a power basis: raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C)) # Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF: raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D)) def test_two_elt_rep(): ell = 7 T = Poly(cyclotomic_poly(ell)) ZK, dK = round_two(T) for p in [29, 13, 11, 5]: P = prime_decomp(p, T) for Pi in P: # We have Pi in two-element representation, and, because we are # looking at a cyclotomic field, this was computed by the "easy" # method that just factors T mod p. We will now convert this to # a set of Z-generators, then convert that back into a two-element # rep. The latter need not be identical to the two-elt rep we # already have, but it must have the same HNF. H = p*ZK + Pi.alpha*ZK gens = H.basis_element_pullbacks() # Note: we could supply f = Pi.f, but prefer to test behavior without it. b = _two_elt_rep(gens, ZK, p) if b != Pi.alpha: H2 = p*ZK + b*ZK assert H2 == H def test_valuation_at_prime_ideal(): p = 7 T = Poly(cyclotomic_poly(p)) ZK, dK = round_two(T) P = prime_decomp(p, T, dK=dK, ZK=ZK) assert len(P) == 1 P0 = P[0] v = P0.valuation(p*ZK) assert v == P0.e # Test easy 0 case: assert P0.valuation(5*ZK) == 0 def test_decomp_1(): # All prime decompositions in cyclotomic fields are in the "easy case," # since the index is unity. # Here we check the ramified prime. T = Poly(cyclotomic_poly(7)) raises(ValueError, lambda: prime_decomp(7)) P = prime_decomp(7, T) assert len(P) == 1 P0 = P[0] assert P0.e == 6 assert P0.f == 1 # Test powers: assert P0**0 == P0.ZK assert P0**1 == P0 assert P0**6 == 7 * P0.ZK def test_decomp_2(): # More easy cyclotomic cases, but here we check unramified primes. ell = 7 T = Poly(cyclotomic_poly(ell)) for p in [29, 13, 11, 5]: f_exp = n_order(p, ell) g_exp = (ell - 1) // f_exp P = prime_decomp(p, T) assert len(P) == g_exp for Pi in P: assert Pi.e == 1 assert Pi.f == f_exp def test_decomp_3(): T = Poly(x ** 2 - 35) rad = {} ZK, dK = round_two(T, radicals=rad) # 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the # rational primes 2, 5, 7 should be the square of a prime ideal. for p in [2, 5, 7]: P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p)) assert len(P) == 1 assert P[0].e == 2 assert P[0]**2 == p*ZK def test_decomp_4(): T = Poly(x ** 2 - 21) rad = {} ZK, dK = round_two(T, radicals=rad) # 21 is 1 mod 4, so field disc is 3*7, and theory says the # rational primes 3, 7 should be the square of a prime ideal. for p in [3, 7]: P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p)) assert len(P) == 1 assert P[0].e == 2 assert P[0]**2 == p*ZK def test_decomp_5(): # Here is our first test of the "hard case" of prime decomposition. # We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and # we consider the factorization of the rational prime 2, which divides # the index. # Theory says the form of p's factorization depends on the residue of # d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8. for d in [-7, -3]: T = Poly(x ** 2 - d) rad = {} ZK, dK = round_two(T, radicals=rad) p = 2 P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p)) if d % 8 == 1: assert len(P) == 2 assert all(P[i].e == 1 and P[i].f == 1 for i in range(2)) assert prod(Pi**Pi.e for Pi in P) == p * ZK else: assert d % 8 == 5 assert len(P) == 1 assert P[0].e == 1 assert P[0].f == 2 assert P[0].as_submodule() == p * ZK def test_decomp_6(): # Another case where 2 divides the index. This is Dedekind's example of # an essential discriminant divisor. (See Cohen, Excercise 6.10.) T = Poly(x ** 3 + x ** 2 - 2 * x + 8) rad = {} ZK, dK = round_two(T, radicals=rad) p = 2 P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p)) assert len(P) == 3 assert all(Pi.e == Pi.f == 1 for Pi in P) assert prod(Pi**Pi.e for Pi in P) == p*ZK def test_decomp_7(): # Try working through an AlgebraicField T = Poly(x ** 3 + x ** 2 - 2 * x + 8) K = QQ.algebraic_field((T, theta)) p = 2 P = K.primes_above(p) ZK = K.maximal_order() assert len(P) == 3 assert all(Pi.e == Pi.f == 1 for Pi in P) assert prod(Pi**Pi.e for Pi in P) == p*ZK def test_decomp_8(): # This time we consider various cubics, and try factoring all primes # dividing the index. cases = ( x ** 3 + 3 * x ** 2 - 4 * x + 4, x ** 3 + 3 * x ** 2 + 3 * x - 3, x ** 3 + 5 * x ** 2 - x + 3, x ** 3 + 5 * x ** 2 - 5 * x - 5, x ** 3 + 3 * x ** 2 + 5, x ** 3 + 6 * x ** 2 + 3 * x - 1, x ** 3 + 6 * x ** 2 + 4, x ** 3 + 7 * x ** 2 + 7 * x - 7, x ** 3 + 7 * x ** 2 - x + 5, x ** 3 + 7 * x ** 2 - 5 * x + 5, x ** 3 + 4 * x ** 2 - 3 * x + 7, x ** 3 + 8 * x ** 2 + 5 * x - 1, x ** 3 + 8 * x ** 2 - 2 * x + 6, x ** 3 + 6 * x ** 2 - 3 * x + 8, x ** 3 + 9 * x ** 2 + 6 * x - 8, x ** 3 + 15 * x ** 2 - 9 * x + 13, ) ''' def display(T, p, radical, P, I, J): """Useful for inspection, when running test manually.""" print('=' * 20) print(T, p, radical) for Pi in P: print(f' ({Pi.pretty()})') print("I: ", I) print("J: ", J) print(f'Equal: {I == J}') ''' for g in cases: T = Poly(g) rad = {} ZK, dK = round_two(T, radicals=rad) dT = T.discriminant() f_squared = dT // dK F = factorint(f_squared) for p in F: radical = rad.get(p) P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical) I = prod(Pi**Pi.e for Pi in P) J = p * ZK #display(T, p, radical, P, I, J) assert I == J def test_PrimeIdeal_eq(): # `==` should fail on objects of different types, so even a completely # inert PrimeIdeal should test unequal to the rational prime it divides. T = Poly(cyclotomic_poly(7)) P0 = prime_decomp(5, T)[0] assert P0.f == 6 assert P0.as_submodule() == 5 * P0.ZK assert P0 != 5 def test_PrimeIdeal_add(): T = Poly(cyclotomic_poly(7)) P0 = prime_decomp(7, T)[0] # Adding ideals computes their GCD, so adding the ramified prime dividing # 7 to 7 itself should reproduce this prime (as a submodule). assert P0 + 7 * P0.ZK == P0.as_submodule() def test_pretty_printing(): d = -7 T = Poly(x ** 2 - d) rad = {} ZK, dK = round_two(T, radicals=rad) p = 2 P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p)) assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]' assert P[0].pretty(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]' assert P[0].pretty(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)' def test_PrimeIdeal_reduce_poly(): T = Poly(cyclotomic_poly(7, x)) k = QQ.algebraic_field((T, x)) P = k.primes_above(11) frp = P[0] B = k.integral_basis(fmt='sympy') assert [frp.reduce_poly(b, x) for b in B] == [ 1, x, x ** 2, -5 * x ** 2 - 4 * x + 1, -x ** 2 - x - 5, 4 * x ** 2 - x - 1] Q = k.primes_above(19) frq = Q[0] assert frq.alpha.equiv(0) assert frq.reduce_poly(20*x**2 + 10) == x**2 - 9 raises(GeneratorsNeeded, lambda: frp.reduce_poly(S(1))) raises(NotImplementedError, lambda: frp.reduce_poly(1))
f9a2c8d9f29915c998ff9052de166dfefd6e3f4704a835c6da08d9ee5bbc1892
from sympy.abc import x, zeta from sympy.polys import Poly, cyclotomic_poly from sympy.polys.domains import FF, QQ, ZZ from sympy.polys.matrices import DomainMatrix, DM from sympy.polys.numberfields.exceptions import ( ClosureFailure, MissingUnityError ) from sympy.polys.numberfields.modules import ( Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement, find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col, ) from sympy.polys.numberfields.utilities import is_int from sympy.polys.polyerrors import UnificationFailed from sympy.testing.pytest import raises def test_to_col(): c = [1, 2, 3, 4] m = to_col(c) assert m.domain.is_ZZ assert m.shape == (4, 1) assert m.flat() == c def test_Module_NotImplemented(): M = Module() raises(NotImplementedError, lambda: M.n) raises(NotImplementedError, lambda: M.mult_tab()) raises(NotImplementedError, lambda: M.represent(None)) raises(NotImplementedError, lambda: M.starts_with_unity()) raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3))) def test_Module_ancestors(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) assert C.ancestors(include_self=True) == [A, B, C] assert D.ancestors(include_self=True) == [A, B, D] assert C.power_basis_ancestor() == A assert C.nearest_common_ancestor(D) == B M = Module() assert M.power_basis_ancestor() is None def test_Module_compat_col(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) col = to_col([1, 2, 3, 4]) row = col.transpose() assert A.is_compat_col(col) is True assert A.is_compat_col(row) is False assert A.is_compat_col(1) is False assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True def test_Module_call(): T = Poly(cyclotomic_poly(5, x)) B = PowerBasis(T) assert B(0).col.flat() == [1, 0, 0, 0] assert B(1).col.flat() == [0, 1, 0, 0] col = DomainMatrix.eye(4, ZZ)[:, 2] assert B(col).col == col raises(ValueError, lambda: B(-1)) def test_Module_starts_with_unity(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) assert A.starts_with_unity() is True assert B.starts_with_unity() is False def test_Module_basis_elements(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) basis = B.basis_elements() bp = B.basis_element_pullbacks() for i, (e, p) in enumerate(zip(basis, bp)): c = [0] * 4 assert e.module == B assert p.module == A c[i] = 1 assert e == B(to_col(c)) c[i] = 2 assert p == A(to_col(c)) def test_Module_zero(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) assert A.zero().col.flat() == [0, 0, 0, 0] assert A.zero().module == A assert B.zero().col.flat() == [0, 0, 0, 0] assert B.zero().module == B def test_Module_one(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) assert A.one().col.flat() == [1, 0, 0, 0] assert A.one().module == A assert B.one().col.flat() == [1, 0, 0, 0] assert B.one().module == A def test_Module_element_from_rational(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) rA = A.element_from_rational(QQ(22, 7)) rB = B.element_from_rational(QQ(22, 7)) assert rA.coeffs == [22, 0, 0, 0] assert rA.denom == 7 assert rA.module == A assert rB.coeffs == [22, 0, 0, 0] assert rB.denom == 7 assert rB.module == A def test_Module_submodule_from_gens(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)] B = A.submodule_from_gens(gens) # Because the 3rd and 4th generators do not add anything new, we expect # the cols of the matrix of B to just reproduce the first two gens: M = gens[0].column().hstack(gens[1].column()) assert B.matrix == M # At least one generator must be provided: raises(ValueError, lambda: A.submodule_from_gens([])) # All generators must belong to A: raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)])) def test_Module_submodule_from_matrix(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) e = B(to_col([1, 2, 3, 4])) f = e.to_parent() assert f.col.flat() == [2, 4, 6, 8] # Matrix must be over ZZ: raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ))) # Number of rows of matrix must equal number of generators of module A: raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ))) def test_Module_whole_submodule(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.whole_submodule() e = B(to_col([1, 2, 3, 4])) f = e.to_parent() assert f.col.flat() == [1, 2, 3, 4] e0, e1, e2, e3 = B(0), B(1), B(2), B(3) assert e2 * e3 == e0 assert e3 ** 2 == e1 def test_PowerBasis_repr(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)' def test_PowerBasis_eq(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = PowerBasis(T) assert A == B def test_PowerBasis_mult_tab(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) M = A.mult_tab() exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]}, 1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]}, 2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]}, 3: {3: [0, 1, 0, 0]}} # We get the table we expect: assert M == exp # And all entries are of expected type: assert all(is_int(c) for u in M for v in M[u] for c in M[u][v]) def test_PowerBasis_represent(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) col = to_col([1, 2, 3, 4]) a = A(col) assert A.represent(a) == col b = A(col, denom=2) raises(ClosureFailure, lambda: A.represent(b)) def test_PowerBasis_element_from_poly(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) f = Poly(1 + 2*x) g = Poly(x**4) h = Poly(0, x) assert A.element_from_poly(f).coeffs == [1, 2, 0, 0] assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1] assert A.element_from_poly(h).coeffs == [0, 0, 0, 0] def test_Submodule_repr(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3) assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3' def test_Submodule_reduced(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) D = C.reduced() assert D.denom == 1 and D == C == B def test_Submodule_discard_before(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) B.compute_mult_tab() C = B.discard_before(2) assert C.parent == B.parent assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF() assert C.matrix == B.matrix[:, 2:] assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}} def test_Submodule_QQ_matrix(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) assert C.QQ_matrix == B.QQ_matrix def test_Submodule_represent(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) a0 = A(to_col([6, 12, 18, 24])) a1 = A(to_col([2, 4, 6, 8])) a2 = A(to_col([1, 3, 5, 7])) b1 = B.represent(a1) assert b1.flat() == [1, 2, 3, 4] c0 = C.represent(a0) assert c0.flat() == [1, 2, 3, 4] Y = A.submodule_from_matrix(DomainMatrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], ], (3, 4), ZZ).transpose()) U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) z0 = Z(to_col([1, 2, 3, 4, 5, 6])) raises(ClosureFailure, lambda: Y.represent(A(3))) raises(ClosureFailure, lambda: B.represent(a2)) raises(ClosureFailure, lambda: B.represent(z0)) def test_Submodule_is_compat_submodule(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) assert B.is_compat_submodule(C) is True assert B.is_compat_submodule(A) is False assert B.is_compat_submodule(D) is False def test_Submodule_eq(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3) assert C == B def test_Submodule_add(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(DomainMatrix([ [4, 0, 0, 0], [0, 4, 0, 0], ], (2, 4), ZZ).transpose(), denom=6) C = A.submodule_from_matrix(DomainMatrix([ [0, 10, 0, 0], [0, 0, 7, 0], ], (2, 4), ZZ).transpose(), denom=15) D = A.submodule_from_matrix(DomainMatrix([ [20, 0, 0, 0], [ 0, 20, 0, 0], [ 0, 0, 14, 0], ], (3, 4), ZZ).transpose(), denom=30) assert B + C == D U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) Y = Z.submodule_from_gens([Z(0), Z(1)]) raises(TypeError, lambda: B + Y) def test_Submodule_mul(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) C = A.submodule_from_matrix(DomainMatrix([ [0, 10, 0, 0], [0, 0, 7, 0], ], (2, 4), ZZ).transpose(), denom=15) C1 = A.submodule_from_matrix(DomainMatrix([ [0, 20, 0, 0], [0, 0, 14, 0], ], (2, 4), ZZ).transpose(), denom=3) C2 = A.submodule_from_matrix(DomainMatrix([ [0, 0, 10, 0], [0, 0, 0, 7], ], (2, 4), ZZ).transpose(), denom=15) C3_unred = A.submodule_from_matrix(DomainMatrix([ [0, 0, 100, 0], [0, 0, 0, 70], [0, 0, 0, 70], [-49, -49, -49, -49] ], (4, 4), ZZ).transpose(), denom=225) C3 = A.submodule_from_matrix(DomainMatrix([ [4900, 4900, 0, 0], [4410, 4410, 10, 0], [2107, 2107, 7, 7] ], (3, 4), ZZ).transpose(), denom=225) assert C * 1 == C assert C ** 1 == C assert C * 10 == C1 assert C * A(1) == C2 assert C.mul(C, hnf=False) == C3_unred assert C * C == C3 assert C ** 2 == C3 def test_is_HNF(): M = DM([ [3, 2, 1], [0, 2, 1], [0, 0, 1] ], ZZ) M1 = DM([ [3, 2, 1], [0, -2, 1], [0, 0, 1] ], ZZ) M2 = DM([ [3, 2, 3], [0, 2, 1], [0, 0, 1] ], ZZ) assert is_sq_maxrank_HNF(M) is True assert is_sq_maxrank_HNF(M1) is False assert is_sq_maxrank_HNF(M2) is False def test_make_mod_elt(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) col = to_col([1, 2, 3, 4]) eA = make_mod_elt(A, col) eB = make_mod_elt(B, col) assert isinstance(eA, PowerBasisElement) assert not isinstance(eB, PowerBasisElement) def test_ModuleElement_repr(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 2, 3, 4]), denom=2) assert repr(e) == '[1, 2, 3, 4]/2' def test_ModuleElement_reduced(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([2, 4, 6, 8]), denom=2) f = e.reduced() assert f.denom == 1 and f == e def test_ModuleElement_reduced_mod_p(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([20, 40, 60, 80])) f = e.reduced_mod_p(7) assert f.coeffs == [-1, -2, -3, 3] def test_ModuleElement_from_int_list(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) c = [1, 2, 3, 4] assert ModuleElement.from_int_list(A, c).coeffs == c def test_ModuleElement_len(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(0) assert len(e) == 4 def test_ModuleElement_column(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(0) col1 = e.column() assert col1 == e.col and col1 is not e.col col2 = e.column(domain=FF(5)) assert col2.domain.is_FF def test_ModuleElement_QQ_col(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 2, 3, 4]), denom=1) f = A(to_col([3, 6, 9, 12]), denom=3) assert e.QQ_col == f.QQ_col def test_ModuleElement_to_ancestors(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) eD = D(0) eC = eD.to_parent() eB = eD.to_ancestor(B) eA = eD.over_power_basis() assert eC.module is C and eC.coeffs == [5, 0, 0, 0] assert eB.module is B and eB.coeffs == [15, 0, 0, 0] assert eA.module is A and eA.coeffs == [30, 0, 0, 0] a = A(0) raises(ValueError, lambda: a.to_parent()) def test_ModuleElement_compatibility(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ)) assert C(0).is_compat(C(1)) is True assert C(0).is_compat(D(0)) is False u, v = C(0).unify(D(0)) assert u.module is B and v.module is B assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0) u, v = C(0).unify(C(1)) assert u == C(0) and v == C(1) U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) raises(UnificationFailed, lambda: C(0).unify(Z(1))) def test_ModuleElement_eq(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 2, 3, 4]), denom=1) f = A(to_col([3, 6, 9, 12]), denom=3) assert e == f U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) assert e != Z(0) assert e != 3.14 def test_ModuleElement_equiv(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 2, 3, 4]), denom=1) f = A(to_col([3, 6, 9, 12]), denom=3) assert e.equiv(f) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) g = C(to_col([1, 2, 3, 4]), denom=1) h = A(to_col([3, 6, 9, 12]), denom=1) assert g.equiv(h) assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7)) U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) raises(UnificationFailed, lambda: e.equiv(Z(0))) assert e.equiv(3.14) is False def test_ModuleElement_add(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) e = A(to_col([1, 2, 3, 4]), denom=6) f = A(to_col([5, 6, 7, 8]), denom=10) g = C(to_col([1, 1, 1, 1]), denom=2) assert e + f == A(to_col([10, 14, 18, 22]), denom=15) assert e - f == A(to_col([-5, -4, -3, -2]), denom=15) assert e + g == A(to_col([10, 11, 12, 13]), denom=6) assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30) assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10) U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) raises(TypeError, lambda: e + Z(0)) raises(TypeError, lambda: e + 3.14) def test_ModuleElement_mul(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) e = A(to_col([0, 2, 0, 0]), denom=3) f = A(to_col([0, 0, 0, 7]), denom=5) g = C(to_col([0, 0, 0, 1]), denom=2) h = A(to_col([0, 0, 3, 1]), denom=7) assert e * f == A(to_col([-14, -14, -14, -14]), denom=15) assert e * g == A(to_col([-1, -1, -1, -1])) assert e * h == A(to_col([-2, -2, -2, 4]), denom=21) assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5) assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7)) assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9) U = Poly(cyclotomic_poly(7, x)) Z = PowerBasis(U) raises(TypeError, lambda: e * Z(0)) raises(TypeError, lambda: e * 3.14) raises(TypeError, lambda: e // 3.14) raises(ZeroDivisionError, lambda: e // 0) def test_ModuleElement_div(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) e = A(to_col([0, 2, 0, 0]), denom=3) f = A(to_col([0, 0, 0, 7]), denom=5) g = C(to_col([1, 1, 1, 1])) assert e // f == 10*A(3)//21 assert e // g == -2*A(2)//9 assert 3 // g == -A(1) def test_ModuleElement_pow(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ)) e = A(to_col([0, 2, 0, 0]), denom=3) g = C(to_col([0, 0, 0, 1]), denom=2) assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27) assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4) assert e ** 0 == A(to_col([1, 0, 0, 0])) assert g ** 0 == A(to_col([1, 0, 0, 0])) assert e ** 1 == e assert g ** 1 == g def test_ModuleElement_mod(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 15, 8, 0]), denom=2) assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2) raises(TypeError, lambda: e % QQ(1, 2)) def test_PowerBasisElement_polys(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 15, 8, 0]), denom=2) assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ) assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ) def test_PowerBasisElement_norm(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) lam = A(to_col([1, -1, 0, 0])) assert lam.norm() == 5 def test_PowerBasisElement_inverse(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) e = A(to_col([1, 1, 1, 1])) assert 2 // e == -2*A(1) assert e ** -3 == -A(3) def test_ModuleHomomorphism_matrix(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) phi = ModuleEndomorphism(A, lambda a: a ** 2) M = phi.matrix() assert M == DomainMatrix([ [1, 0, -1, 0], [0, 0, -1, 1], [0, 1, -1, 0], [0, 0, -1, 0] ], (4, 4), ZZ) def test_ModuleHomomorphism_kernel(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) phi = ModuleEndomorphism(A, lambda a: a ** 5) N = phi.kernel() assert N.n == 3 def test_EndomorphismRing_represent(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) R = A.endomorphism_ring() phi = R.inner_endomorphism(A(1)) col = R.represent(phi) assert col.transpose() == DomainMatrix([ [0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1] ], (1, 16), ZZ) B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ)) S = B.endomorphism_ring() psi = S.inner_endomorphism(A(1)) col = S.represent(psi) assert col == DomainMatrix([], (0, 0), ZZ) raises(NotImplementedError, lambda: R.represent(3.14)) def test_find_min_poly(): T = Poly(cyclotomic_poly(5, x)) A = PowerBasis(T) powers = [] m = find_min_poly(A(1), QQ, x=x, powers=powers) assert m == Poly(T, domain=QQ) assert len(powers) == 5 # powers list need not be passed m = find_min_poly(A(1), QQ, x=x) assert m == Poly(T, domain=QQ) B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ)) raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))
7f197c87be05461dab3dc964fe7c0f10bc6448c9f799bbfc51da7ad89255df69
from sympy.testing.pytest import raises from sympy.core.symbol import Symbol from sympy.polys.matrices.normalforms import ( invariant_factors, smith_normal_form, hermite_normal_form, _hermite_normal_form, _hermite_normal_form_modulo_D) from sympy.polys.domains import ZZ, QQ from sympy.polys.matrices import DomainMatrix, DM from sympy.polys.matrices.exceptions import DMDomainError, DMShapeError def test_smith_normal(): m = DM([[12, 6, 4, 8], [3, 9, 6, 12], [2, 16, 14, 28], [20, 10, 10, 20]], ZZ) smf = DM([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]], ZZ) assert smith_normal_form(m).to_dense() == smf x = Symbol('x') m = DM([[x-1, 1, -1], [ 0, x, -1], [ 0, -1, x]], QQ[x]) dx = m.domain.gens[0] assert invariant_factors(m) == (1, dx-1, dx**2-1) zr = DomainMatrix([], (0, 2), ZZ) zc = DomainMatrix([[], []], (2, 0), ZZ) assert smith_normal_form(zr).to_dense() == zr assert smith_normal_form(zc).to_dense() == zc assert smith_normal_form(DM([[2, 4]], ZZ)).to_dense() == DM([[2, 0]], ZZ) assert smith_normal_form(DM([[0, -2]], ZZ)).to_dense() == DM([[-2, 0]], ZZ) assert smith_normal_form(DM([[0], [-2]], ZZ)).to_dense() == DM([[-2], [0]], ZZ) m = DM([[3, 0, 0, 0], [0, 0, 0, 0], [0, 0, 2, 0]], ZZ) snf = DM([[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 0, 0]], ZZ) assert smith_normal_form(m).to_dense() == snf raises(ValueError, lambda: smith_normal_form(DM([[1]], ZZ[x]))) def test_hermite_normal(): m = DM([[2, 7, 17, 29, 41], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ) hnf = DM([[1, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ) assert hermite_normal_form(m) == hnf assert hermite_normal_form(m, D=ZZ(2)) == hnf assert hermite_normal_form(m, D=ZZ(2), check_rank=True) == hnf m = m.transpose() hnf = DM([[37, 0, 19], [222, -6, 113], [48, 0, 25], [0, 2, 1], [0, 0, 1]], ZZ) assert hermite_normal_form(m) == hnf raises(DMShapeError, lambda: _hermite_normal_form_modulo_D(m, ZZ(96))) raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, QQ(96))) m = DM([[8, 28, 68, 116, 164], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]], ZZ) hnf = DM([[4, 0, 0], [0, 2, 1], [0, 0, 1]], ZZ) assert hermite_normal_form(m) == hnf assert hermite_normal_form(m, D=ZZ(8)) == hnf assert hermite_normal_form(m, D=ZZ(8), check_rank=True) == hnf m = DM([[10, 8, 6, 30, 2], [45, 36, 27, 18, 9], [5, 4, 3, 2, 1]], ZZ) hnf = DM([[26, 2], [0, 9], [0, 1]], ZZ) assert hermite_normal_form(m) == hnf m = DM([[2, 7], [0, 0], [0, 0]], ZZ) hnf = DM([[], [], []], ZZ) assert hermite_normal_form(m) == hnf m = DM([[-2, 1], [0, 1]], ZZ) hnf = DM([[2, 1], [0, 1]], ZZ) assert hermite_normal_form(m) == hnf m = DomainMatrix([[QQ(1)]], (1, 1), QQ) raises(DMDomainError, lambda: hermite_normal_form(m)) raises(DMDomainError, lambda: _hermite_normal_form(m)) raises(DMDomainError, lambda: _hermite_normal_form_modulo_D(m, ZZ(1)))
22345aeae09f02ed619ba5eb3757d451a000d86795c62e4881569fe2f65ce0b9
from sympy.testing.pytest import raises from sympy.core.numbers import Integer, Rational from sympy.core.singleton import S from sympy.functions import sqrt from sympy.matrices.dense import Matrix from sympy.polys.domains import FF, ZZ, QQ, EXRAW from sympy.polys.matrices.domainmatrix import DomainMatrix, DomainScalar, DM from sympy.polys.matrices.exceptions import ( DMBadInputError, DMDomainError, DMShapeError, DMFormatError, DMNotAField, DMNonSquareMatrixError, DMNonInvertibleMatrixError, ) from sympy.polys.matrices.ddm import DDM from sympy.polys.matrices.sdm import SDM def test_DM(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DM([[1, 2], [3, 4]], ZZ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ def test_DomainMatrix_init(): lol = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] dod = {0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}} ddm = DDM(lol, (2, 2), ZZ) sdm = SDM(dod, (2, 2), ZZ) A = DomainMatrix(lol, (2, 2), ZZ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ A = DomainMatrix(dod, (2, 2), ZZ) assert A.rep == sdm assert A.shape == (2, 2) assert A.domain == ZZ raises(TypeError, lambda: DomainMatrix(ddm, (2, 2), ZZ)) raises(TypeError, lambda: DomainMatrix(sdm, (2, 2), ZZ)) raises(TypeError, lambda: DomainMatrix(Matrix([[1]]), (1, 1), ZZ)) for fmt, rep in [('sparse', sdm), ('dense', ddm)]: A = DomainMatrix(lol, (2, 2), ZZ, fmt=fmt) assert A.rep == rep A = DomainMatrix(dod, (2, 2), ZZ, fmt=fmt) assert A.rep == rep raises(ValueError, lambda: DomainMatrix(lol, (2, 2), ZZ, fmt='invalid')) raises(DMBadInputError, lambda: DomainMatrix([[ZZ(1), ZZ(2)]], (2, 2), ZZ)) def test_DomainMatrix_from_rep(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_rep(ddm) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ sdm = SDM({0: {0: ZZ(1), 1:ZZ(2)}, 1: {0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) A = DomainMatrix.from_rep(sdm) assert A.rep == sdm assert A.shape == (2, 2) assert A.domain == ZZ A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ) raises(TypeError, lambda: DomainMatrix.from_rep(A)) def test_DomainMatrix_from_list(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_list([[1, 2], [3, 4]], ZZ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ dom = FF(7) ddm = DDM([[dom(1), dom(2)], [dom(3), dom(4)]], (2, 2), dom) A = DomainMatrix.from_list([[1, 2], [3, 4]], dom) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == dom ddm = DDM([[QQ(1, 2), QQ(3, 1)], [QQ(1, 4), QQ(5, 1)]], (2, 2), QQ) A = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == QQ def test_DomainMatrix_from_list_sympy(): ddm = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A = DomainMatrix.from_list_sympy(2, 2, [[1, 2], [3, 4]]) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == ZZ K = QQ.algebraic_field(sqrt(2)) ddm = DDM( [[K.convert(1 + sqrt(2)), K.convert(2 + sqrt(2))], [K.convert(3 + sqrt(2)), K.convert(4 + sqrt(2))]], (2, 2), K ) A = DomainMatrix.from_list_sympy( 2, 2, [[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]], extension=True) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == K def test_DomainMatrix_from_dict_sympy(): sdm = SDM({0: {0: QQ(1, 2)}, 1: {1: QQ(2, 3)}}, (2, 2), QQ) sympy_dict = {0: {0: Rational(1, 2)}, 1: {1: Rational(2, 3)}} A = DomainMatrix.from_dict_sympy(2, 2, sympy_dict) assert A.rep == sdm assert A.shape == (2, 2) assert A.domain == QQ fds = DomainMatrix.from_dict_sympy raises(DMBadInputError, lambda: fds(2, 2, {3: {0: Rational(1, 2)}})) raises(DMBadInputError, lambda: fds(2, 2, {0: {3: Rational(1, 2)}})) def test_DomainMatrix_from_Matrix(): sdm = SDM({0: {0: ZZ(1), 1: ZZ(2)}, 1: {0: ZZ(3), 1: ZZ(4)}}, (2, 2), ZZ) A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]])) assert A.rep == sdm assert A.shape == (2, 2) assert A.domain == ZZ K = QQ.algebraic_field(sqrt(2)) sdm = SDM( {0: {0: K.convert(1 + sqrt(2)), 1: K.convert(2 + sqrt(2))}, 1: {0: K.convert(3 + sqrt(2)), 1: K.convert(4 + sqrt(2))}}, (2, 2), K ) A = DomainMatrix.from_Matrix( Matrix([[1 + sqrt(2), 2 + sqrt(2)], [3 + sqrt(2), 4 + sqrt(2)]]), extension=True) assert A.rep == sdm assert A.shape == (2, 2) assert A.domain == K A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense') ddm = DDM([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]], (2, 2), QQ) assert A.rep == ddm assert A.shape == (2, 2) assert A.domain == QQ def test_DomainMatrix_eq(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A == A B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(1)]], (2, 2), ZZ) assert A != B C = [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] assert A != C def test_DomainMatrix_unify_eq(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B1 = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) B2 = DomainMatrix([[QQ(1), QQ(3)], [QQ(3), QQ(4)]], (2, 2), QQ) B3 = DomainMatrix([[ZZ(1)]], (1, 1), ZZ) assert A.unify_eq(B1) is True assert A.unify_eq(B2) is False assert A.unify_eq(B3) is False def test_DomainMatrix_get_domain(): K, items = DomainMatrix.get_domain([1, 2, 3, 4]) assert items == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)] assert K == ZZ K, items = DomainMatrix.get_domain([1, 2, 3, Rational(1, 2)]) assert items == [QQ(1), QQ(2), QQ(3), QQ(1, 2)] assert K == QQ def test_DomainMatrix_convert_to(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.convert_to(QQ) assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Acopy = A.convert_to(None) assert Acopy == A and Acopy is not A def test_DomainMatrix_to_sympy(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_sympy() == A.convert_to(EXRAW) def test_DomainMatrix_to_field(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = A.to_field() assert Aq == DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) def test_DomainMatrix_to_sparse(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A_sparse = A.to_sparse() assert A_sparse.rep == {0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}} def test_DomainMatrix_to_dense(): A = DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ) A_dense = A.to_dense() assert A_dense.rep == DDM([[1, 2], [3, 4]], (2, 2), ZZ) def test_DomainMatrix_unify(): Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert Az.unify(Az) == (Az, Az) assert Az.unify(Aq) == (Aq, Aq) assert Aq.unify(Az) == (Aq, Aq) assert Aq.unify(Aq) == (Aq, Aq) As = DomainMatrix({0: {1: ZZ(1)}, 1:{0:ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert As.unify(As) == (As, As) assert Ad.unify(Ad) == (Ad, Ad) Bs, Bd = As.unify(Ad, fmt='dense') assert Bs.rep == DDM([[0, 1], [2, 0]], (2, 2), ZZ) assert Bd.rep == DDM([[1, 2],[3, 4]], (2, 2), ZZ) Bs, Bd = As.unify(Ad, fmt='sparse') assert Bs.rep == SDM({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ) assert Bd.rep == SDM({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ) raises(ValueError, lambda: As.unify(Ad, fmt='invalid')) def test_DomainMatrix_to_Matrix(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_Matrix() == Matrix([[1, 2], [3, 4]]) def test_DomainMatrix_to_list(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_list() == [[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]] def test_DomainMatrix_to_list_flat(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_list_flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)] def test_DomainMatrix_to_dok(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.to_dok() == {(0, 0):ZZ(1), (0, 1):ZZ(2), (1, 0):ZZ(3), (1, 1):ZZ(4)} def test_DomainMatrix_repr(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert repr(A) == 'DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)' def test_DomainMatrix_transpose(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AT = DomainMatrix([[ZZ(1), ZZ(3)], [ZZ(2), ZZ(4)]], (2, 2), ZZ) assert A.transpose() == AT def test_DomainMatrix_flat(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.flat() == [ZZ(1), ZZ(2), ZZ(3), ZZ(4)] def test_DomainMatrix_is_zero_matrix(): A = DomainMatrix([[ZZ(1)]], (1, 1), ZZ) B = DomainMatrix([[ZZ(0)]], (1, 1), ZZ) assert A.is_zero_matrix is False assert B.is_zero_matrix is True def test_DomainMatrix_is_upper(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(0), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.is_upper is True assert B.is_upper is False def test_DomainMatrix_is_lower(): A = DomainMatrix([[ZZ(1), ZZ(0)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.is_lower is True assert B.is_lower is False def test_DomainMatrix_is_square(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)]], (3, 2), ZZ) assert A.is_square is True assert B.is_square is False def test_DomainMatrix_rank(): A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(6), QQ(8)]], (3, 2), QQ) assert A.rank() == 2 def test_DomainMatrix_add(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert A + A == A.add(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A + L) raises(TypeError, lambda: L + A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DMShapeError, lambda: A1 + A2) raises(DMShapeError, lambda: A2 + A1) raises(DMShapeError, lambda: A1.add(A2)) raises(DMShapeError, lambda: A2.add(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Asum = DomainMatrix([[QQ(2), QQ(4)], [QQ(6), QQ(8)]], (2, 2), QQ) assert Az + Aq == Asum assert Aq + Az == Asum raises(DMDomainError, lambda: Az.add(Aq)) raises(DMDomainError, lambda: Aq.add(Az)) As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As + Ad Ads = Ad + As assert Asd == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ) assert Asd.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ) assert Ads == DomainMatrix([[1, 3], [5, 4]], (2, 2), ZZ) assert Ads.rep == DDM([[1, 3], [5, 4]], (2, 2), ZZ) raises(DMFormatError, lambda: As.add(Ad)) def test_DomainMatrix_sub(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(0), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) assert A - A == A.sub(A) == B A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[2, 3], [3, 4]] raises(TypeError, lambda: A - L) raises(TypeError, lambda: L - A) A1 = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) raises(DMShapeError, lambda: A1 - A2) raises(DMShapeError, lambda: A2 - A1) raises(DMShapeError, lambda: A1.sub(A2)) raises(DMShapeError, lambda: A2.sub(A1)) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Adiff = DomainMatrix([[QQ(0), QQ(0)], [QQ(0), QQ(0)]], (2, 2), QQ) assert Az - Aq == Adiff assert Aq - Az == Adiff raises(DMDomainError, lambda: Az.sub(Aq)) raises(DMDomainError, lambda: Aq.sub(Az)) As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As - Ad Ads = Ad - As assert Asd == DomainMatrix([[-1, -1], [-1, -4]], (2, 2), ZZ) assert Asd.rep == DDM([[-1, -1], [-1, -4]], (2, 2), ZZ) assert Asd == -Ads assert Asd.rep == -Ads.rep def test_DomainMatrix_neg(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aneg = DomainMatrix([[ZZ(-1), ZZ(-2)], [ZZ(-3), ZZ(-4)]], (2, 2), ZZ) assert -A == A.neg() == Aneg def test_DomainMatrix_mul(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) assert A*A == A.matmul(A) == A2 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) L = [[1, 2], [3, 4]] raises(TypeError, lambda: A * L) raises(TypeError, lambda: L * A) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Aq = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Aprod = DomainMatrix([[QQ(7), QQ(10)], [QQ(15), QQ(22)]], (2, 2), QQ) assert Az * Aq == Aprod assert Aq * Az == Aprod raises(DMDomainError, lambda: Az.matmul(Aq)) raises(DMDomainError, lambda: Aq.matmul(Az)) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) x = ZZ(2) assert A * x == x * A == A.mul(x) == AA A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) AA = DomainMatrix.zeros((2, 2), ZZ) x = ZZ(0) assert A * x == x * A == A.mul(x).to_sparse() == AA As = DomainMatrix({0: {1: ZZ(1)}, 1: {0: ZZ(2)}}, (2, 2), ZZ) Ad = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) Asd = As * Ad Ads = Ad * As assert Asd == DomainMatrix([[3, 4], [2, 4]], (2, 2), ZZ) assert Asd.rep == DDM([[3, 4], [2, 4]], (2, 2), ZZ) assert Ads == DomainMatrix([[4, 1], [8, 3]], (2, 2), ZZ) assert Ads.rep == DDM([[4, 1], [8, 3]], (2, 2), ZZ) def test_DomainMatrix_mul_elementwise(): A = DomainMatrix([[ZZ(2), ZZ(2)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(4), ZZ(0)], [ZZ(3), ZZ(0)]], (2, 2), ZZ) C = DomainMatrix([[ZZ(8), ZZ(0)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) assert A.mul_elementwise(B) == C assert B.mul_elementwise(A) == C def test_DomainMatrix_pow(): eye = DomainMatrix.eye(2, ZZ) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) A2 = DomainMatrix([[ZZ(7), ZZ(10)], [ZZ(15), ZZ(22)]], (2, 2), ZZ) A3 = DomainMatrix([[ZZ(37), ZZ(54)], [ZZ(81), ZZ(118)]], (2, 2), ZZ) assert A**0 == A.pow(0) == eye assert A**1 == A.pow(1) == A assert A**2 == A.pow(2) == A2 assert A**3 == A.pow(3) == A3 raises(TypeError, lambda: A ** Rational(1, 2)) raises(NotImplementedError, lambda: A ** -1) raises(NotImplementedError, lambda: A.pow(-1)) A = DomainMatrix.zeros((2, 1), ZZ) raises(DMNonSquareMatrixError, lambda: A ** 1) def test_DomainMatrix_scc(): Ad = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(0), ZZ(1), ZZ(0)], [ZZ(2), ZZ(0), ZZ(4)]], (3, 3), ZZ) As = Ad.to_sparse() Addm = Ad.rep Asdm = As.rep for A in [Ad, As, Addm, Asdm]: assert Ad.scc() == [[1], [0, 2]] def test_DomainMatrix_rref(): A = DomainMatrix([], (0, 1), QQ) assert A.rref() == (A, ()) A = DomainMatrix([[QQ(1)]], (1, 1), QQ) assert A.rref() == (A, (0,)) A = DomainMatrix([[QQ(0)]], (1, 1), QQ) assert A.rref() == (A, ()) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) assert pivots == (0, 1) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) assert pivots == (0, 1) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) Ar, pivots = A.rref() assert Ar == DomainMatrix([[QQ(0), QQ(1)], [QQ(0), QQ(0)]], (2, 2), QQ) assert pivots == (1,) Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(DMNotAField, lambda: Az.rref()) def test_DomainMatrix_columnspace(): A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ) Acol = DomainMatrix([[QQ(1), QQ(1)], [QQ(2), QQ(3)]], (2, 2), QQ) assert A.columnspace() == Acol Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ) raises(DMNotAField, lambda: Az.columnspace()) A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse') Acol = DomainMatrix({0: {0: QQ(1), 1: QQ(1)}, 1: {0: QQ(2), 1: QQ(3)}}, (2, 2), QQ) assert A.columnspace() == Acol def test_DomainMatrix_rowspace(): A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ) assert A.rowspace() == A Az = DomainMatrix([[ZZ(1), ZZ(-1), ZZ(1)], [ZZ(2), ZZ(-2), ZZ(3)]], (2, 3), ZZ) raises(DMNotAField, lambda: Az.rowspace()) A = DomainMatrix([[QQ(1), QQ(-1), QQ(1)], [QQ(2), QQ(-2), QQ(3)]], (2, 3), QQ, fmt='sparse') assert A.rowspace() == A def test_DomainMatrix_nullspace(): A = DomainMatrix([[QQ(1), QQ(1)], [QQ(1), QQ(1)]], (2, 2), QQ) Anull = DomainMatrix([[QQ(-1), QQ(1)]], (1, 2), QQ) assert A.nullspace() == Anull Az = DomainMatrix([[ZZ(1), ZZ(1)], [ZZ(1), ZZ(1)]], (2, 2), ZZ) raises(DMNotAField, lambda: Az.nullspace()) def test_DomainMatrix_solve(): # XXX: Maybe the _solve method should be changed... A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) particular = DomainMatrix([[1, 0]], (1, 2), QQ) nullspace = DomainMatrix([[-2, 1]], (1, 2), QQ) assert A._solve(b) == (particular, nullspace) b3 = DomainMatrix([[QQ(1)], [QQ(1)], [QQ(1)]], (3, 1), QQ) raises(DMShapeError, lambda: A._solve(b3)) bz = DomainMatrix([[ZZ(1)], [ZZ(1)]], (2, 1), ZZ) raises(DMNotAField, lambda: A._solve(bz)) def test_DomainMatrix_inv(): A = DomainMatrix([], (0, 0), QQ) assert A.inv() == A A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) Ainv = DomainMatrix([[QQ(-2), QQ(1)], [QQ(3, 2), QQ(-1, 2)]], (2, 2), QQ) assert A.inv() == Ainv Az = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(DMNotAField, lambda: Az.inv()) Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(DMNonSquareMatrixError, lambda: Ans.inv()) Aninv = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(6)]], (2, 2), QQ) raises(DMNonInvertibleMatrixError, lambda: Aninv.inv()) def test_DomainMatrix_det(): A = DomainMatrix([], (0, 0), ZZ) assert A.det() == 1 A = DomainMatrix([[1]], (1, 1), ZZ) assert A.det() == 1 A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.det() == ZZ(-2) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(3), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(-1) A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(1), ZZ(2), ZZ(4)], [ZZ(1), ZZ(2), ZZ(5)]], (3, 3), ZZ) assert A.det() == ZZ(0) Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(DMNonSquareMatrixError, lambda: Ans.det()) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) assert A.det() == QQ(-2) def test_DomainMatrix_lu(): A = DomainMatrix([], (0, 0), QQ) assert A.lu() == (A, A, []) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(3), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(3), QQ(4)], [QQ(0), QQ(2)]], (2, 2), QQ) swaps = [(0, 1)] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(2), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(0)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(0), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(0), QQ(2)], [QQ(0), QQ(4)]], (2, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(4), QQ(5), QQ(6)]], (2, 3), QQ) L = DomainMatrix([[QQ(1), QQ(0)], [QQ(4), QQ(1)]], (2, 2), QQ) U = DomainMatrix([[QQ(1), QQ(2), QQ(3)], [QQ(0), QQ(-3), QQ(-6)]], (2, 3), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) L = DomainMatrix([ [QQ(1), QQ(0), QQ(0)], [QQ(3), QQ(1), QQ(0)], [QQ(5), QQ(2), QQ(1)]], (3, 3), QQ) U = DomainMatrix([[QQ(1), QQ(2)], [QQ(0), QQ(-2)], [QQ(0), QQ(0)]], (3, 2), QQ) swaps = [] assert A.lu() == (L, U, swaps) A = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 1, 2]] L = [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]] U = [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]] to_dom = lambda rows, dom: [[dom(e) for e in row] for row in rows] A = DomainMatrix(to_dom(A, QQ), (4, 4), QQ) L = DomainMatrix(to_dom(L, QQ), (4, 4), QQ) U = DomainMatrix(to_dom(U, QQ), (4, 4), QQ) assert A.lu() == (L, U, []) A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) raises(DMNotAField, lambda: A.lu()) def test_DomainMatrix_lu_solve(): # Base case A = b = x = DomainMatrix([], (0, 0), QQ) assert A.lu_solve(b) == x # Basic example A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Example with swaps A = DomainMatrix([[QQ(0), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Non-invertible A = DomainMatrix([[QQ(1), QQ(2)], [QQ(2), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)]], (2, 1), QQ) raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b)) # Overdetermined, consistent A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(3)]], (3, 1), QQ) x = DomainMatrix([[QQ(0)], [QQ(1, 2)]], (2, 1), QQ) assert A.lu_solve(b) == x # Overdetermined, inconsistent A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)], [QQ(5), QQ(6)]], (3, 2), QQ) b = DomainMatrix([[QQ(1)], [QQ(2)], [QQ(4)]], (3, 1), QQ) raises(DMNonInvertibleMatrixError, lambda: A.lu_solve(b)) # Underdetermined A = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) b = DomainMatrix([[QQ(1)]], (1, 1), QQ) raises(NotImplementedError, lambda: A.lu_solve(b)) # Non-field A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) b = DomainMatrix([[ZZ(1)], [ZZ(2)]], (2, 1), ZZ) raises(DMNotAField, lambda: A.lu_solve(b)) # Shape mismatch A = DomainMatrix([[QQ(1), QQ(2)], [QQ(3), QQ(4)]], (2, 2), QQ) b = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(DMShapeError, lambda: A.lu_solve(b)) def test_DomainMatrix_charpoly(): A = DomainMatrix([], (0, 0), ZZ) assert A.charpoly() == [ZZ(1)] A = DomainMatrix([[1]], (1, 1), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-1)] A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)] A = DomainMatrix([[ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert A.charpoly() == [ZZ(1), ZZ(-15), ZZ(-18), ZZ(0)] Ans = DomainMatrix([[QQ(1), QQ(2)]], (1, 2), QQ) raises(DMNonSquareMatrixError, lambda: Ans.charpoly()) def test_DomainMatrix_eye(): A = DomainMatrix.eye(3, QQ) assert A.rep == SDM.eye((3, 3), QQ) assert A.shape == (3, 3) assert A.domain == QQ def test_DomainMatrix_zeros(): A = DomainMatrix.zeros((1, 2), QQ) assert A.rep == SDM.zeros((1, 2), QQ) assert A.shape == (1, 2) assert A.domain == QQ def test_DomainMatrix_ones(): A = DomainMatrix.ones((2, 3), QQ) assert A.rep == DDM.ones((2, 3), QQ) assert A.shape == (2, 3) assert A.domain == QQ def test_DomainMatrix_diag(): A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (2, 2), ZZ) assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ) == A A = DomainMatrix({0:{0:ZZ(2)}, 1:{1:ZZ(3)}}, (3, 4), ZZ) assert DomainMatrix.diag([ZZ(2), ZZ(3)], ZZ, (3, 4)) == A def test_DomainMatrix_hstack(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) AB = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(5), ZZ(6)], [ZZ(3), ZZ(4), ZZ(7), ZZ(8)]], (2, 4), ZZ) ABC = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(5), ZZ(6), ZZ(9), ZZ(10)], [ZZ(3), ZZ(4), ZZ(7), ZZ(8), ZZ(11), ZZ(12)]], (2, 6), ZZ) assert A.hstack(B) == AB assert A.hstack(B, C) == ABC def test_DomainMatrix_vstack(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ) C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ) AB = DomainMatrix([ [ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (4, 2), ZZ) ABC = DomainMatrix([ [ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)], [ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)], [ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (6, 2), ZZ) assert A.vstack(B) == AB assert A.vstack(B, C) == ABC def test_DomainMatrix_applyfunc(): A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ) B = DomainMatrix([[ZZ(2), ZZ(4)]], (1, 2), ZZ) assert A.applyfunc(lambda x: 2*x) == B def test_DomainMatrix_scalarmul(): A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) lamda = DomainScalar(QQ(3)/QQ(2), QQ) assert A * lamda == DomainMatrix([[QQ(3, 2), QQ(3)], [QQ(9, 2), QQ(6)]], (2, 2), QQ) assert A * 2 == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert 2 * A == DomainMatrix([[ZZ(2), ZZ(4)], [ZZ(6), ZZ(8)]], (2, 2), ZZ) assert A * DomainScalar(ZZ(0), ZZ) == DomainMatrix({}, (2, 2), ZZ) assert A * DomainScalar(ZZ(1), ZZ) == A raises(TypeError, lambda: A * 1.5) def test_DomainMatrix_truediv(): A = DomainMatrix.from_Matrix(Matrix([[1, 2], [3, 4]])) lamda = DomainScalar(QQ(3)/QQ(2), QQ) assert A / lamda == DomainMatrix({0: {0: QQ(2, 3), 1: QQ(4, 3)}, 1: {0: QQ(2), 1: QQ(8, 3)}}, (2, 2), QQ) b = DomainScalar(ZZ(1), ZZ) assert A / b == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ) assert A / 1 == DomainMatrix({0: {0: QQ(1), 1: QQ(2)}, 1: {0: QQ(3), 1: QQ(4)}}, (2, 2), QQ) assert A / 2 == DomainMatrix({0: {0: QQ(1, 2), 1: QQ(1)}, 1: {0: QQ(3, 2), 1: QQ(2)}}, (2, 2), QQ) raises(ZeroDivisionError, lambda: A / 0) raises(TypeError, lambda: A / 1.5) raises(ZeroDivisionError, lambda: A / DomainScalar(ZZ(0), ZZ)) def test_DomainMatrix_getitem(): dM = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) assert dM[1:,:-2] == DomainMatrix([[ZZ(4)], [ZZ(7)]], (2, 1), ZZ) assert dM[2,:-2] == DomainMatrix([[ZZ(7)]], (1, 1), ZZ) assert dM[:-2,:-2] == DomainMatrix([[ZZ(1)]], (1, 1), ZZ) assert dM[:-1,0:2] == DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(4), ZZ(5)]], (2, 2), ZZ) assert dM[:, -1] == DomainMatrix([[ZZ(3)], [ZZ(6)], [ZZ(9)]], (3, 1), ZZ) assert dM[-1, :] == DomainMatrix([[ZZ(7), ZZ(8), ZZ(9)]], (1, 3), ZZ) assert dM[::-1, :] == DomainMatrix([ [ZZ(7), ZZ(8), ZZ(9)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(1), ZZ(2), ZZ(3)]], (3, 3), ZZ) raises(IndexError, lambda: dM[4, :-2]) raises(IndexError, lambda: dM[:-2, 4]) assert dM[1, 2] == DomainScalar(ZZ(6), ZZ) assert dM[-2, 2] == DomainScalar(ZZ(6), ZZ) assert dM[1, -2] == DomainScalar(ZZ(5), ZZ) assert dM[-1, -3] == DomainScalar(ZZ(7), ZZ) raises(IndexError, lambda: dM[3, 3]) raises(IndexError, lambda: dM[1, 4]) raises(IndexError, lambda: dM[-1, -4]) dM = DomainMatrix({0: {0: ZZ(1)}}, (10, 10), ZZ) assert dM[5, 5] == DomainScalar(ZZ(0), ZZ) assert dM[0, 0] == DomainScalar(ZZ(1), ZZ) dM = DomainMatrix({1: {0: 1}}, (2,1), ZZ) assert dM[0:, 0] == DomainMatrix({1: {0: 1}}, (2, 1), ZZ) raises(IndexError, lambda: dM[3, 0]) dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) assert dM[:2,:2] == DomainMatrix({}, (2, 2), ZZ) assert dM[2:,2:] == DomainMatrix({0: {0: 1}, 2: {2: 1}}, (3, 3), ZZ) assert dM[3:,3:] == DomainMatrix({1: {1: 1}}, (2, 2), ZZ) assert dM[2:, 6:] == DomainMatrix({}, (3, 0), ZZ) def test_DomainMatrix_getitem_sympy(): dM = DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) val1 = dM.getitem_sympy(0, 0) assert val1 is S.Zero val2 = dM.getitem_sympy(2, 2) assert val2 == 2 and isinstance(val2, Integer) def test_DomainMatrix_extract(): dM1 = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(3)], [ZZ(4), ZZ(5), ZZ(6)], [ZZ(7), ZZ(8), ZZ(9)]], (3, 3), ZZ) dM2 = DomainMatrix([ [ZZ(1), ZZ(3)], [ZZ(7), ZZ(9)]], (2, 2), ZZ) assert dM1.extract([0, 2], [0, 2]) == dM2 assert dM1.to_sparse().extract([0, 2], [0, 2]) == dM2.to_sparse() assert dM1.extract([0, -1], [0, -1]) == dM2 assert dM1.to_sparse().extract([0, -1], [0, -1]) == dM2.to_sparse() dM3 = DomainMatrix([ [ZZ(1), ZZ(2), ZZ(2)], [ZZ(4), ZZ(5), ZZ(5)], [ZZ(4), ZZ(5), ZZ(5)]], (3, 3), ZZ) assert dM1.extract([0, 1, 1], [0, 1, 1]) == dM3 assert dM1.to_sparse().extract([0, 1, 1], [0, 1, 1]) == dM3.to_sparse() empty = [ ([], [], (0, 0)), ([1], [], (1, 0)), ([], [1], (0, 1)), ] for rows, cols, size in empty: assert dM1.extract(rows, cols) == DomainMatrix.zeros(size, ZZ).to_dense() assert dM1.to_sparse().extract(rows, cols) == DomainMatrix.zeros(size, ZZ) dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) bad_indices = [([2], [0]), ([0], [2]), ([-3], [0]), ([0], [-3])] for rows, cols in bad_indices: raises(IndexError, lambda: dM.extract(rows, cols)) raises(IndexError, lambda: dM.to_sparse().extract(rows, cols)) def test_DomainMatrix_setitem(): dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) dM[2, 2] = ZZ(2) assert dM == DomainMatrix({2: {2: ZZ(2)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) def setitem(i, j, val): dM[i, j] = val raises(TypeError, lambda: setitem(2, 2, QQ(1, 2))) raises(NotImplementedError, lambda: setitem(slice(1, 2), 2, ZZ(1))) def test_DomainMatrix_pickling(): import pickle dM = DomainMatrix({2: {2: ZZ(1)}, 4: {4: ZZ(1)}}, (5, 5), ZZ) assert pickle.loads(pickle.dumps(dM)) == dM dM = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ) assert pickle.loads(pickle.dumps(dM)) == dM
79b983fa003c523d0a7c869acd5c834018b0c28f0b34e4a0d3303f40538548b3
from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.logic.boolalg import And from sympy.core.symbol import Str from sympy.unify.core import Compound, Variable from sympy.unify.usympy import (deconstruct, construct, unify, is_associative, is_commutative) from sympy.abc import x, y, z, n def test_deconstruct(): expr = Basic(S(1), S(2), S(3)) expected = Compound(Basic, (1, 2, 3)) assert deconstruct(expr) == expected assert deconstruct(1) == 1 assert deconstruct(x) == x assert deconstruct(x, variables=(x,)) == Variable(x) assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x)) assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \ Compound(Add, (1, Variable(x))) def test_construct(): expr = Compound(Basic, (S(1), S(2), S(3))) expected = Basic(S(1), S(2), S(3)) assert construct(expr) == expected def test_nested(): expr = Basic(S(1), Basic(S(2)), S(3)) cmpd = Compound(Basic, (S(1), Compound(Basic, Tuple(2)), S(3))) assert deconstruct(expr) == cmpd assert construct(cmpd) == expr def test_unify(): expr = Basic(S(1), S(2), S(3)) a, b, c = map(Symbol, 'abc') pattern = Basic(a, b, c) assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}] assert list(unify(expr, pattern, variables=(a, b, c))) == \ [{a: 1, b: 2, c: 3}] def test_unify_variables(): assert list(unify(Basic(S(1), S(2)), Basic(S(1), x), {}, variables=(x,))) == [{x: 2}] def test_s_input(): expr = Basic(S(1), S(2)) a, b = map(Symbol, 'ab') pattern = Basic(a, b) assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}] assert list(unify(expr, pattern, {a: 5}, (a, b))) == [] def iterdicteq(a, b): a = tuple(a) b = tuple(b) return len(a) == len(b) and all(x in b for x in a) def test_unify_commutative(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, b, c, evaluate=False) result = tuple(unify(expr, pattern, {}, (a, b, c))) expected = ({a: 1, b: 2, c: 3}, {a: 1, b: 3, c: 2}, {a: 2, b: 1, c: 3}, {a: 2, b: 3, c: 1}, {a: 3, b: 1, c: 2}, {a: 3, b: 2, c: 1}) assert iterdicteq(result, expected) def test_unify_iter(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, c, evaluate=False) assert is_associative(deconstruct(pattern)) assert is_commutative(deconstruct(pattern)) result = list(unify(expr, pattern, {}, (a, c))) expected = [{a: 1, c: Add(2, 3, evaluate=False)}, {a: 1, c: Add(3, 2, evaluate=False)}, {a: 2, c: Add(1, 3, evaluate=False)}, {a: 2, c: Add(3, 1, evaluate=False)}, {a: 3, c: Add(1, 2, evaluate=False)}, {a: 3, c: Add(2, 1, evaluate=False)}, {a: Add(1, 2, evaluate=False), c: 3}, {a: Add(2, 1, evaluate=False), c: 3}, {a: Add(1, 3, evaluate=False), c: 2}, {a: Add(3, 1, evaluate=False), c: 2}, {a: Add(2, 3, evaluate=False), c: 1}, {a: Add(3, 2, evaluate=False), c: 1}] assert iterdicteq(result, expected) def test_hard_match(): from sympy.functions.elementary.trigonometric import (cos, sin) expr = sin(x) + cos(x)**2 p, q = map(Symbol, 'pq') pattern = sin(p) + cos(p)**2 assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}] def test_matrix(): from sympy.matrices.expressions.matexpr import MatrixSymbol X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 2, 2) Z = MatrixSymbol('Z', 2, 3) assert list(unify(X, Y, {}, variables=[n, Str('X')])) == [{Str('X'): Str('Y'), n: 2}] assert list(unify(X, Z, {}, variables=[n, Str('X')])) == [] def test_non_frankenAdds(): # the is_commutative property used to fail because of Basic.__new__ # This caused is_commutative and str calls to fail expr = x+y*2 rebuilt = construct(deconstruct(expr)) # Ensure that we can run these commands without causing an error str(rebuilt) rebuilt.is_commutative def test_FiniteSet_commutivity(): from sympy.sets.sets import FiniteSet a, b, c, x, y = symbols('a,b,c,x,y') s = FiniteSet(a, b, c) t = FiniteSet(x, y) variables = (x, y) assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables)) def test_FiniteSet_complex(): from sympy.sets.sets import FiniteSet a, b, c, x, y, z = symbols('a,b,c,x,y,z') expr = FiniteSet(Basic(S(1), x), y, Basic(x, z)) pattern = FiniteSet(a, Basic(x, b)) variables = a, b expected = tuple([{b: 1, a: FiniteSet(y, Basic(x, z))}, {b: z, a: FiniteSet(y, Basic(S(1), x))}]) assert iterdicteq(unify(expr, pattern, variables=variables), expected) def test_and(): variables = x, y expected = tuple([{x: z > 0, y: n < 3}]) assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables), expected) def test_Union(): from sympy.sets.sets import Interval assert list(unify(Interval(0, 1) + Interval(10, 11), Interval(0, 1) + Interval(12, 13), variables=(Interval(12, 13),))) def test_is_commutative(): assert is_commutative(deconstruct(x+y)) assert is_commutative(deconstruct(x*y)) assert not is_commutative(deconstruct(x**y)) def test_commutative_in_commutative(): from sympy.abc import a,b,c,d from sympy.functions.elementary.trigonometric import (cos, sin) eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4) pat = a*cos(b)*cos(c) + d*sin(b)*sin(c) assert next(unify(eq, pat, variables=(a,b,c,d)))
06003cce6773f4dc3e5dbbb8fb0dd4001796ca9a8bbe6cbd5732fbe3812662d1
from sympy.unify.rewrite import rewriterule from sympy.core.basic import Basic from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.trigonometric import sin from sympy.abc import x, y from sympy.strategies.rl import rebuild from sympy.assumptions import Q p, q = Symbol('p'), Symbol('q') def test_simple(): rl = rewriterule(Basic(p, S(1)), Basic(p, S(2)), variables=(p,)) assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] p1 = p**2 p2 = p**3 rl = rewriterule(p1, p2, variables=(p,)) expr = x**2 assert list(rl(expr)) == [x**3] def test_simple_variables(): rl = rewriterule(Basic(x, S(1)), Basic(x, S(2)), variables=(x,)) assert list(rl(Basic(S(3), S(1)))) == [Basic(S(3), S(2))] rl = rewriterule(x**2, x**3, variables=(x,)) assert list(rl(y**2)) == [y**3] def test_moderate(): p1 = p**2 + q**3 p2 = (p*q)**4 rl = rewriterule(p1, p2, (p, q)) expr = x**2 + y**3 assert list(rl(expr)) == [(x*y)**4] def test_sincos(): p1 = sin(p)**2 + sin(p)**2 p2 = 1 rl = rewriterule(p1, p2, (p, q)) assert list(rl(sin(x)**2 + sin(x)**2)) == [1] assert list(rl(sin(y)**2 + sin(y)**2)) == [1] def test_Exprs_ok(): rl = rewriterule(p+q, q+p, (p, q)) next(rl(x+y)).is_commutative str(next(rl(x+y))) def test_condition_simple(): rl = rewriterule(x, x+1, [x], lambda x: x < 10) assert not list(rl(S(15))) assert rebuild(next(rl(S(5)))) == 6 def test_condition_multiple(): rl = rewriterule(x + y, x**y, [x,y], lambda x, y: x.is_integer) a = Symbol('a') b = Symbol('b', integer=True) expr = a + b assert list(rl(expr)) == [b**a] c = Symbol('c', integer=True) d = Symbol('d', integer=True) assert set(rl(c + d)) == {c**d, d**c} def test_assumptions(): rl = rewriterule(x + y, x**y, [x, y], assume=Q.integer(x)) a, b = map(Symbol, 'ab') expr = a + b assert list(rl(expr, Q.integer(b))) == [b**a]
20244bb5d53b9d764e249a327d095f6b4bae8be5008887531a8be591dae77801
#!/usr/bin/env python """ Import diagnostics. Run bin/diagnose_imports.py --help for details. """ from typing import Dict as tDict if __name__ == "__main__": import sys import inspect import builtins import optparse from os.path import abspath, dirname, join, normpath this_file = abspath(__file__) sympy_dir = join(dirname(this_file), '..', '..', '..') sympy_dir = normpath(sympy_dir) sys.path.insert(0, sympy_dir) option_parser = optparse.OptionParser( usage= "Usage: %prog option [options]\n" "\n" "Import analysis for imports between SymPy modules.") option_group = optparse.OptionGroup( option_parser, 'Analysis options', 'Options that define what to do. Exactly one of these must be given.') option_group.add_option( '--problems', help= 'Print all import problems, that is: ' 'If an import pulls in a package instead of a module ' '(e.g. sympy.core instead of sympy.core.add); ' # see ##PACKAGE## 'if it imports a symbol that is already present; ' # see ##DUPLICATE## 'if it imports a symbol ' 'from somewhere other than the defining module.', # see ##ORIGIN## action='count') option_group.add_option( '--origins', help= 'For each imported symbol in each module, ' 'print the module that defined it. ' '(This is useful for import refactoring.)', action='count') option_parser.add_option_group(option_group) option_group = optparse.OptionGroup( option_parser, 'Sort options', 'These options define the sort order for output lines. ' 'At most one of these options is allowed. ' 'Unsorted output will reflect the order in which imports happened.') option_group.add_option( '--by-importer', help='Sort output lines by name of importing module.', action='count') option_group.add_option( '--by-origin', help='Sort output lines by name of imported module.', action='count') option_parser.add_option_group(option_group) (options, args) = option_parser.parse_args() if args: option_parser.error( 'Unexpected arguments %s (try %s --help)' % (args, sys.argv[0])) if options.problems > 1: option_parser.error('--problems must not be given more than once.') if options.origins > 1: option_parser.error('--origins must not be given more than once.') if options.by_importer > 1: option_parser.error('--by-importer must not be given more than once.') if options.by_origin > 1: option_parser.error('--by-origin must not be given more than once.') options.problems = options.problems == 1 options.origins = options.origins == 1 options.by_importer = options.by_importer == 1 options.by_origin = options.by_origin == 1 if not options.problems and not options.origins: option_parser.error( 'At least one of --problems and --origins is required') if options.problems and options.origins: option_parser.error( 'At most one of --problems and --origins is allowed') if options.by_importer and options.by_origin: option_parser.error( 'At most one of --by-importer and --by-origin is allowed') options.by_process = not options.by_importer and not options.by_origin builtin_import = builtins.__import__ class Definition: """Information about a symbol's definition.""" def __init__(self, name, value, definer): self.name = name self.value = value self.definer = definer def __hash__(self): return hash(self.name) def __eq__(self, other): return self.name == other.name and self.value == other.value def __ne__(self, other): return not (self == other) def __repr__(self): return 'Definition(%s, ..., %s)' % ( repr(self.name), repr(self.definer)) # Maps each function/variable to name of module to define it symbol_definers = {} # type: tDict[Definition, str] def in_module(a, b): """Is a the same module as or a submodule of b?""" return a == b or a != None and b != None and a.startswith(b + '.') def relevant(module): """Is module relevant for import checking? Only imports between relevant modules will be checked.""" return in_module(module, 'sympy') sorted_messages = [] def msg(msg, *args): global options, sorted_messages if options.by_process: print(msg % args) else: sorted_messages.append(msg % args) def tracking_import(module, globals=globals(), locals=[], fromlist=None, level=-1): """__import__ wrapper - does not change imports at all, but tracks them. Default order is implemented by doing output directly. All other orders are implemented by collecting output information into a sorted list that will be emitted after all imports are processed. Indirect imports can only occur after the requested symbol has been imported directly (because the indirect import would not have a module to pick the symbol up from). So this code detects indirect imports by checking whether the symbol in question was already imported. Keeps the semantics of __import__ unchanged.""" global options, symbol_definers caller_frame = inspect.getframeinfo(sys._getframe(1)) importer_filename = caller_frame.filename importer_module = globals['__name__'] if importer_filename == caller_frame.filename: importer_reference = '%s line %s' % ( importer_filename, str(caller_frame.lineno)) else: importer_reference = importer_filename result = builtin_import(module, globals, locals, fromlist, level) importee_module = result.__name__ # We're only interested if importer and importee are in SymPy if relevant(importer_module) and relevant(importee_module): for symbol in result.__dict__.iterkeys(): definition = Definition( symbol, result.__dict__[symbol], importer_module) if definition not in symbol_definers: symbol_definers[definition] = importee_module if hasattr(result, '__path__'): ##PACKAGE## # The existence of __path__ is documented in the tutorial on modules. # Python 3.3 documents this in http://docs.python.org/3.3/reference/import.html if options.by_origin: msg('Error: %s (a package) is imported by %s', module, importer_reference) else: msg('Error: %s contains package import %s', importer_reference, module) if fromlist != None: symbol_list = fromlist if '*' in symbol_list: if (importer_filename.endswith('__init__.py') or importer_filename.endswith('__init__.pyc') or importer_filename.endswith('__init__.pyo')): # We do not check starred imports inside __init__ # That's the normal "please copy over its imports to my namespace" symbol_list = [] else: symbol_list = result.__dict__.iterkeys() for symbol in symbol_list: if symbol not in result.__dict__: if options.by_origin: msg('Error: %s.%s is not defined (yet), but %s tries to import it', importee_module, symbol, importer_reference) else: msg('Error: %s tries to import %s.%s, which did not define it (yet)', importer_reference, importee_module, symbol) else: definition = Definition( symbol, result.__dict__[symbol], importer_module) symbol_definer = symbol_definers[definition] if symbol_definer == importee_module: ##DUPLICATE## if options.by_origin: msg('Error: %s.%s is imported again into %s', importee_module, symbol, importer_reference) else: msg('Error: %s imports %s.%s again', importer_reference, importee_module, symbol) else: ##ORIGIN## if options.by_origin: msg('Error: %s.%s is imported by %s, which should import %s.%s instead', importee_module, symbol, importer_reference, symbol_definer, symbol) else: msg('Error: %s imports %s.%s but should import %s.%s instead', importer_reference, importee_module, symbol, symbol_definer, symbol) return result builtins.__import__ = tracking_import __import__('sympy') sorted_messages.sort() for message in sorted_messages: print(message)
897f53241dfa5ce602c65bc36edc6ba19595258e395fdc289616274c2dae4a81
# coding=utf-8 from os import walk, sep, pardir from os.path import split, join, abspath, exists, isfile from glob import glob import re import random import ast from sympy.testing.pytest import raises from sympy.testing.quality_unicode import _test_this_file_encoding # System path separator (usually slash or backslash) to be # used with excluded files, e.g. # exclude = set([ # "%(sep)smpmath%(sep)s" % sepd, # ]) sepd = {"sep": sep} # path and sympy_path SYMPY_PATH = abspath(join(split(__file__)[0], pardir, pardir)) # go to sympy/ assert exists(SYMPY_PATH) TOP_PATH = abspath(join(SYMPY_PATH, pardir)) BIN_PATH = join(TOP_PATH, "bin") EXAMPLES_PATH = join(TOP_PATH, "examples") # Error messages message_space = "File contains trailing whitespace: %s, line %s." message_implicit = "File contains an implicit import: %s, line %s." message_tabs = "File contains tabs instead of spaces: %s, line %s." message_carriage = "File contains carriage returns at end of line: %s, line %s" message_str_raise = "File contains string exception: %s, line %s" message_gen_raise = "File contains generic exception: %s, line %s" message_old_raise = "File contains old-style raise statement: %s, line %s, \"%s\"" message_eof = "File does not end with a newline: %s, line %s" message_multi_eof = "File ends with more than 1 newline: %s, line %s" message_test_suite_def = "Function should start with 'test_' or '_': %s, line %s" message_duplicate_test = "This is a duplicate test function: %s, line %s" message_self_assignments = "File contains assignments to self/cls: %s, line %s." message_func_is = "File contains '.func is': %s, line %s." message_bare_expr = "File contains bare expression: %s, line %s." implicit_test_re = re.compile(r'^\s*(>>> )?(\.\.\. )?from .* import .*\*') str_raise_re = re.compile( r'^\s*(>>> )?(\.\.\. )?raise(\s+(\'|\")|\s*(\(\s*)+(\'|\"))') gen_raise_re = re.compile( r'^\s*(>>> )?(\.\.\. )?raise(\s+Exception|\s*(\(\s*)+Exception)') old_raise_re = re.compile(r'^\s*(>>> )?(\.\.\. )?raise((\s*\(\s*)|\s+)\w+\s*,') test_suite_def_re = re.compile(r'^def\s+(?!(_|test))[^(]*\(\s*\)\s*:$') test_ok_def_re = re.compile(r'^def\s+test_.*:$') test_file_re = re.compile(r'.*[/\\]test_.*\.py$') func_is_re = re.compile(r'\.\s*func\s+is') def tab_in_leading(s): """Returns True if there are tabs in the leading whitespace of a line, including the whitespace of docstring code samples.""" n = len(s) - len(s.lstrip()) if not s[n:n + 3] in ['...', '>>>']: check = s[:n] else: smore = s[n + 3:] check = s[:n] + smore[:len(smore) - len(smore.lstrip())] return not (check.expandtabs() == check) def find_self_assignments(s): """Returns a list of "bad" assignments: if there are instances of assigning to the first argument of the class method (except for staticmethod's). """ t = [n for n in ast.parse(s).body if isinstance(n, ast.ClassDef)] bad = [] for c in t: for n in c.body: if not isinstance(n, ast.FunctionDef): continue if any(d.id == 'staticmethod' for d in n.decorator_list if isinstance(d, ast.Name)): continue if n.name == '__new__': continue if not n.args.args: continue first_arg = n.args.args[0].arg for m in ast.walk(n): if isinstance(m, ast.Assign): for a in m.targets: if isinstance(a, ast.Name) and a.id == first_arg: bad.append(m) elif (isinstance(a, ast.Tuple) and any(q.id == first_arg for q in a.elts if isinstance(q, ast.Name))): bad.append(m) return bad def check_directory_tree(base_path, file_check, exclusions=set(), pattern="*.py"): """ Checks all files in the directory tree (with base_path as starting point) with the file_check function provided, skipping files that contain any of the strings in the set provided by exclusions. """ if not base_path: return for root, dirs, files in walk(base_path): check_files(glob(join(root, pattern)), file_check, exclusions) def check_files(files, file_check, exclusions=set(), pattern=None): """ Checks all files with the file_check function provided, skipping files that contain any of the strings in the set provided by exclusions. """ if not files: return for fname in files: if not exists(fname) or not isfile(fname): continue if any(ex in fname for ex in exclusions): continue if pattern is None or re.match(pattern, fname): file_check(fname) class _Visit(ast.NodeVisitor): """return the line number corresponding to the line on which a bare expression appears if it is a binary op or a comparison that is not in a with block. EXAMPLES ======== >>> import ast >>> class _Visit(ast.NodeVisitor): ... def visit_Expr(self, node): ... if isinstance(node.value, (ast.BinOp, ast.Compare)): ... print(node.lineno) ... def visit_With(self, node): ... pass # no checking there ... >>> code='''x = 1 # line 1 ... for i in range(3): ... x == 2 # <-- 3 ... if x == 2: ... x == 3 # <-- 5 ... x + 1 # <-- 6 ... x = 1 ... if x == 1: ... print(1) ... while x != 1: ... x == 1 # <-- 11 ... with raises(TypeError): ... c == 1 ... raise TypeError ... assert x == 1 ... ''' >>> _Visit().visit(ast.parse(code)) 3 5 6 11 """ def visit_Expr(self, node): if isinstance(node.value, (ast.BinOp, ast.Compare)): assert None, message_bare_expr % ('', node.lineno) def visit_With(self, node): pass BareExpr = _Visit() def line_with_bare_expr(code): """return None or else 0-based line number of code on which a bare expression appeared. """ tree = ast.parse(code) try: BareExpr.visit(tree) except AssertionError as msg: assert msg.args msg = msg.args[0] assert msg.startswith(message_bare_expr.split(':', 1)[0]) return int(msg.rsplit(' ', 1)[1].rstrip('.')) # the line number def test_files(): """ This test tests all files in SymPy and checks that: o no lines contains a trailing whitespace o no lines end with \r\n o no line uses tabs instead of spaces o that the file ends with a single newline o there are no general or string exceptions o there are no old style raise statements o name of arg-less test suite functions start with _ or test_ o no duplicate function names that start with test_ o no assignments to self variable in class methods o no lines contain ".func is" except in the test suite o there is no do-nothing expression like `a == b` or `x + 1` """ def test(fname): with open(fname, encoding="utf8") as test_file: test_this_file(fname, test_file) with open(fname, encoding='utf8') as test_file: _test_this_file_encoding(fname, test_file) def test_this_file(fname, test_file): idx = None code = test_file.read() test_file.seek(0) # restore reader to head py = fname if sep not in fname else fname.rsplit(sep, 1)[-1] if py.startswith('test_'): idx = line_with_bare_expr(code) if idx is not None: assert False, message_bare_expr % (fname, idx + 1) line = None # to flag the case where there were no lines in file tests = 0 test_set = set() for idx, line in enumerate(test_file): if test_file_re.match(fname): if test_suite_def_re.match(line): assert False, message_test_suite_def % (fname, idx + 1) if test_ok_def_re.match(line): tests += 1 test_set.add(line[3:].split('(')[0].strip()) if len(test_set) != tests: assert False, message_duplicate_test % (fname, idx + 1) if line.endswith(" \n") or line.endswith("\t\n"): assert False, message_space % (fname, idx + 1) if line.endswith("\r\n"): assert False, message_carriage % (fname, idx + 1) if tab_in_leading(line): assert False, message_tabs % (fname, idx + 1) if str_raise_re.search(line): assert False, message_str_raise % (fname, idx + 1) if gen_raise_re.search(line): assert False, message_gen_raise % (fname, idx + 1) if (implicit_test_re.search(line) and not list(filter(lambda ex: ex in fname, import_exclude))): assert False, message_implicit % (fname, idx + 1) if func_is_re.search(line) and not test_file_re.search(fname): assert False, message_func_is % (fname, idx + 1) result = old_raise_re.search(line) if result is not None: assert False, message_old_raise % ( fname, idx + 1, result.group(2)) if line is not None: if line == '\n' and idx > 0: assert False, message_multi_eof % (fname, idx + 1) elif not line.endswith('\n'): # eof newline check assert False, message_eof % (fname, idx + 1) # Files to test at top level top_level_files = [join(TOP_PATH, file) for file in [ "isympy.py", "build.py", "setup.py", "setupegg.py", ]] # Files to exclude from all tests exclude = { "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevparser.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlexer.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlistener.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexparser.py" % sepd, "%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexlexer.py" % sepd, } # Files to exclude from the implicit import test import_exclude = { # glob imports are allowed in top-level __init__.py: "%(sep)ssympy%(sep)s__init__.py" % sepd, # these __init__.py should be fixed: # XXX: not really, they use useful import pattern (DRY) "%(sep)svector%(sep)s__init__.py" % sepd, "%(sep)smechanics%(sep)s__init__.py" % sepd, "%(sep)squantum%(sep)s__init__.py" % sepd, "%(sep)spolys%(sep)s__init__.py" % sepd, "%(sep)spolys%(sep)sdomains%(sep)s__init__.py" % sepd, # interactive SymPy executes ``from sympy import *``: "%(sep)sinteractive%(sep)ssession.py" % sepd, # isympy.py executes ``from sympy import *``: "%(sep)sisympy.py" % sepd, # these two are import timing tests: "%(sep)sbin%(sep)ssympy_time.py" % sepd, "%(sep)sbin%(sep)ssympy_time_cache.py" % sepd, # Taken from Python stdlib: "%(sep)sparsing%(sep)ssympy_tokenize.py" % sepd, # this one should be fixed: "%(sep)splotting%(sep)spygletplot%(sep)s" % sepd, # False positive in the docstring "%(sep)sbin%(sep)stest_external_imports.py" % sepd, "%(sep)sbin%(sep)stest_submodule_imports.py" % sepd, # These are deprecated stubs that can be removed at some point: "%(sep)sutilities%(sep)sruntests.py" % sepd, "%(sep)sutilities%(sep)spytest.py" % sepd, "%(sep)sutilities%(sep)srandtest.py" % sepd, "%(sep)sutilities%(sep)stmpfiles.py" % sepd, "%(sep)sutilities%(sep)squality_unicode.py" % sepd, "%(sep)sutilities%(sep)sbenchmarking.py" % sepd, } check_files(top_level_files, test) check_directory_tree(BIN_PATH, test, {"~", ".pyc", ".sh"}, "*") check_directory_tree(SYMPY_PATH, test, exclude) check_directory_tree(EXAMPLES_PATH, test, exclude) def _with_space(c): # return c with a random amount of leading space return random.randint(0, 10)*' ' + c def test_raise_statement_regular_expression(): candidates_ok = [ "some text # raise Exception, 'text'", "raise ValueError('text') # raise Exception, 'text'", "raise ValueError('text')", "raise ValueError", "raise ValueError('text')", "raise ValueError('text') #,", # Talking about an exception in a docstring ''''"""This function will raise ValueError, except when it doesn't"""''', "raise (ValueError('text')", ] str_candidates_fail = [ "raise 'exception'", "raise 'Exception'", 'raise "exception"', 'raise "Exception"', "raise 'ValueError'", ] gen_candidates_fail = [ "raise Exception('text') # raise Exception, 'text'", "raise Exception('text')", "raise Exception", "raise Exception('text')", "raise Exception('text') #,", "raise Exception, 'text'", "raise Exception, 'text' # raise Exception('text')", "raise Exception, 'text' # raise Exception, 'text'", ">>> raise Exception, 'text'", ">>> raise Exception, 'text' # raise Exception('text')", ">>> raise Exception, 'text' # raise Exception, 'text'", ] old_candidates_fail = [ "raise Exception, 'text'", "raise Exception, 'text' # raise Exception('text')", "raise Exception, 'text' # raise Exception, 'text'", ">>> raise Exception, 'text'", ">>> raise Exception, 'text' # raise Exception('text')", ">>> raise Exception, 'text' # raise Exception, 'text'", "raise ValueError, 'text'", "raise ValueError, 'text' # raise Exception('text')", "raise ValueError, 'text' # raise Exception, 'text'", ">>> raise ValueError, 'text'", ">>> raise ValueError, 'text' # raise Exception('text')", ">>> raise ValueError, 'text' # raise Exception, 'text'", "raise(ValueError,", "raise (ValueError,", "raise( ValueError,", "raise ( ValueError,", "raise(ValueError ,", "raise (ValueError ,", "raise( ValueError ,", "raise ( ValueError ,", ] for c in candidates_ok: assert str_raise_re.search(_with_space(c)) is None, c assert gen_raise_re.search(_with_space(c)) is None, c assert old_raise_re.search(_with_space(c)) is None, c for c in str_candidates_fail: assert str_raise_re.search(_with_space(c)) is not None, c for c in gen_candidates_fail: assert gen_raise_re.search(_with_space(c)) is not None, c for c in old_candidates_fail: assert old_raise_re.search(_with_space(c)) is not None, c def test_implicit_imports_regular_expression(): candidates_ok = [ "from sympy import something", ">>> from sympy import something", "from sympy.somewhere import something", ">>> from sympy.somewhere import something", "import sympy", ">>> import sympy", "import sympy.something.something", "... import sympy", "... import sympy.something.something", "... from sympy import something", "... from sympy.somewhere import something", ">> from sympy import *", # To allow 'fake' docstrings "# from sympy import *", "some text # from sympy import *", ] candidates_fail = [ "from sympy import *", ">>> from sympy import *", "from sympy.somewhere import *", ">>> from sympy.somewhere import *", "... from sympy import *", "... from sympy.somewhere import *", ] for c in candidates_ok: assert implicit_test_re.search(_with_space(c)) is None, c for c in candidates_fail: assert implicit_test_re.search(_with_space(c)) is not None, c def test_test_suite_defs(): candidates_ok = [ " def foo():\n", "def foo(arg):\n", "def _foo():\n", "def test_foo():\n", ] candidates_fail = [ "def foo():\n", "def foo() :\n", "def foo( ):\n", "def foo():\n", ] for c in candidates_ok: assert test_suite_def_re.search(c) is None, c for c in candidates_fail: assert test_suite_def_re.search(c) is not None, c def test_test_duplicate_defs(): candidates_ok = [ "def foo():\ndef foo():\n", "def test():\ndef test_():\n", "def test_():\ndef test__():\n", ] candidates_fail = [ "def test_():\ndef test_ ():\n", "def test_1():\ndef test_1():\n", ] ok = (None, 'check') def check(file): tests = 0 test_set = set() for idx, line in enumerate(file.splitlines()): if test_ok_def_re.match(line): tests += 1 test_set.add(line[3:].split('(')[0].strip()) if len(test_set) != tests: return False, message_duplicate_test % ('check', idx + 1) return None, 'check' for c in candidates_ok: assert check(c) == ok for c in candidates_fail: assert check(c) != ok def test_find_self_assignments(): candidates_ok = [ "class A(object):\n def foo(self, arg): arg = self\n", "class A(object):\n def foo(self, arg): self.prop = arg\n", "class A(object):\n def foo(self, arg): obj, obj2 = arg, self\n", "class A(object):\n @classmethod\n def bar(cls, arg): arg = cls\n", "class A(object):\n def foo(var, arg): arg = var\n", ] candidates_fail = [ "class A(object):\n def foo(self, arg): self = arg\n", "class A(object):\n def foo(self, arg): obj, self = arg, arg\n", "class A(object):\n def foo(self, arg):\n if arg: self = arg", "class A(object):\n @classmethod\n def foo(cls, arg): cls = arg\n", "class A(object):\n def foo(var, arg): var = arg\n", ] for c in candidates_ok: assert find_self_assignments(c) == [] for c in candidates_fail: assert find_self_assignments(c) != [] def test_test_unicode_encoding(): unicode_whitelist = ['foo'] unicode_strict_whitelist = ['bar'] fname = 'abc' test_file = ['α'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['# coding=utf-8', 'α'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['# coding=utf-8', 'abc'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'abc' test_file = ['abc'] _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'foo' test_file = ['α'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'foo' test_file = ['# coding=utf-8', 'α'] _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'foo' test_file = ['# coding=utf-8', 'abc'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'foo' test_file = ['abc'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'bar' test_file = ['α'] raises(AssertionError, lambda: _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)) fname = 'bar' test_file = ['# coding=utf-8', 'α'] _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'bar' test_file = ['# coding=utf-8', 'abc'] _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist) fname = 'bar' test_file = ['abc'] _test_this_file_encoding( fname, test_file, unicode_whitelist, unicode_strict_whitelist)
42044f9ccac264933a20658971b5da9698bc4cf5b32308655b0dbbf3faceb5ce
from sympy.core import Rational, S from sympy.simplify import simplify, trigsimp from sympy.core.function import (Derivative, Function, diff) from sympy.core.numbers import pi from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.integrals.integrals import Integral from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix from sympy.vector.vector import Vector, BaseVector, VectorAdd, \ VectorMul, VectorZero from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.vector import Cross, Dot, cross from sympy.testing.pytest import raises C = CoordSys3D('C') i, j, k = C.base_vectors() a, b, c = symbols('a b c') def test_cross(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Cross(v1, v2) == Cross(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Cross(v1, v2).doit() == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert cross(v1, v2) == C.z**3*C.i + (-C.x*C.z)*C.j + (C.x*C.y - C.x*C.z**2)*C.k assert Cross(v1, v2) == -Cross(v2, v1) assert Cross(v1, v2) + Cross(v2, v1) == Vector.zero def test_dot(): v1 = C.x * i + C.z * C.z * j v2 = C.x * i + C.y * j + C.z * k assert Dot(v1, v2) == Dot(C.x*C.i + C.z**2*C.j, C.x*C.i + C.y*C.j + C.z*C.k) assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2).doit() == C.x**2 + C.y*C.z**2 assert Dot(v1, v2) == Dot(v2, v1) def test_vector_sympy(): """ Test whether the Vector framework confirms to the hashing and equality testing properties of SymPy. """ v1 = 3*j assert v1 == j*3 assert v1.components == {j: 3} v2 = 3*i + 4*j + 5*k v3 = 2*i + 4*j + i + 4*k + k assert v3 == v2 assert v3.__hash__() == v2.__hash__() def test_vector(): assert isinstance(i, BaseVector) assert i != j assert j != k assert k != i assert i - i == Vector.zero assert i + Vector.zero == i assert i - Vector.zero == i assert Vector.zero != 0 assert -Vector.zero == Vector.zero v1 = a*i + b*j + c*k v2 = a**2*i + b**2*j + c**2*k v3 = v1 + v2 v4 = 2 * v1 v5 = a * i assert isinstance(v1, VectorAdd) assert v1 - v1 == Vector.zero assert v1 + Vector.zero == v1 assert v1.dot(i) == a assert v1.dot(j) == b assert v1.dot(k) == c assert i.dot(v2) == a**2 assert j.dot(v2) == b**2 assert k.dot(v2) == c**2 assert v3.dot(i) == a**2 + a assert v3.dot(j) == b**2 + b assert v3.dot(k) == c**2 + c assert v1 + v2 == v2 + v1 assert v1 - v2 == -1 * (v2 - v1) assert a * v1 == v1 * a assert isinstance(v5, VectorMul) assert v5.base_vector == i assert v5.measure_number == a assert isinstance(v4, Vector) assert isinstance(v4, VectorAdd) assert isinstance(v4, Vector) assert isinstance(Vector.zero, VectorZero) assert isinstance(Vector.zero, Vector) assert isinstance(v1 * 0, VectorZero) assert v1.to_matrix(C) == Matrix([[a], [b], [c]]) assert i.components == {i: 1} assert v5.components == {i: a} assert v1.components == {i: a, j: b, k: c} assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(a, v1) == v1*a assert VectorMul(1, i) == i assert VectorAdd(v1, Vector.zero) == v1 assert VectorMul(0, Vector.zero) == Vector.zero raises(TypeError, lambda: v1.outer(1)) raises(TypeError, lambda: v1.dot(1)) def test_vector_magnitude_normalize(): assert Vector.zero.magnitude() == 0 assert Vector.zero.normalize() == Vector.zero assert i.magnitude() == 1 assert j.magnitude() == 1 assert k.magnitude() == 1 assert i.normalize() == i assert j.normalize() == j assert k.normalize() == k v1 = a * i assert v1.normalize() == (a/sqrt(a**2))*i assert v1.magnitude() == sqrt(a**2) v2 = a*i + b*j + c*k assert v2.magnitude() == sqrt(a**2 + b**2 + c**2) assert v2.normalize() == v2 / v2.magnitude() v3 = i + j assert v3.normalize() == (sqrt(2)/2)*C.i + (sqrt(2)/2)*C.j def test_vector_simplify(): A, s, k, m = symbols('A, s, k, m') test1 = (1 / a + 1 / b) * i assert (test1 & i) != (a + b) / (a * b) test1 = simplify(test1) assert (test1 & i) == (a + b) / (a * b) assert test1.simplify() == simplify(test1) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * i test2 = simplify(test2) assert (test2 & i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * a - 2 * (2 + 2 * a)) / (2 + 2 * a)) * i test3 = simplify(test3) assert (test3 & i) == 0 test4 = ((-4 * a * b**2 - 2 * b**3 - 2 * a**2 * b) / (a + b)**2) * i test4 = simplify(test4) assert (test4 & i) == -2 * b v = (sin(a)+cos(a))**2*i - j assert trigsimp(v) == (2*sin(a + pi/4)**2)*i + (-1)*j assert trigsimp(v) == v.trigsimp() assert simplify(Vector.zero) == Vector.zero def test_vector_dot(): assert i.dot(Vector.zero) == 0 assert Vector.zero.dot(i) == 0 assert i & Vector.zero == 0 assert i.dot(i) == 1 assert i.dot(j) == 0 assert i.dot(k) == 0 assert i & i == 1 assert i & j == 0 assert i & k == 0 assert j.dot(i) == 0 assert j.dot(j) == 1 assert j.dot(k) == 0 assert j & i == 0 assert j & j == 1 assert j & k == 0 assert k.dot(i) == 0 assert k.dot(j) == 0 assert k.dot(k) == 1 assert k & i == 0 assert k & j == 0 assert k & k == 1 raises(TypeError, lambda: k.dot(1)) def test_vector_cross(): assert i.cross(Vector.zero) == Vector.zero assert Vector.zero.cross(i) == Vector.zero assert i.cross(i) == Vector.zero assert i.cross(j) == k assert i.cross(k) == -j assert i ^ i == Vector.zero assert i ^ j == k assert i ^ k == -j assert j.cross(i) == -k assert j.cross(j) == Vector.zero assert j.cross(k) == i assert j ^ i == -k assert j ^ j == Vector.zero assert j ^ k == i assert k.cross(i) == j assert k.cross(j) == -i assert k.cross(k) == Vector.zero assert k ^ i == j assert k ^ j == -i assert k ^ k == Vector.zero assert k.cross(1) == Cross(k, 1) def test_projection(): v1 = i + j + k v2 = 3*i + 4*j v3 = 0*i + 0*j assert v1.projection(v1) == i + j + k assert v1.projection(v2) == Rational(7, 3)*C.i + Rational(7, 3)*C.j + Rational(7, 3)*C.k assert v1.projection(v1, scalar=True) == S.One assert v1.projection(v2, scalar=True) == Rational(7, 3) assert v3.projection(v1) == Vector.zero assert v3.projection(v1, scalar=True) == S.Zero def test_vector_diff_integrate(): f = Function('f') v = f(a)*C.i + a**2*C.j - C.k assert Derivative(v, a) == Derivative((f(a))*C.i + a**2*C.j + (-1)*C.k, a) assert (diff(v, a) == v.diff(a) == Derivative(v, a).doit() == (Derivative(f(a), a))*C.i + 2*a*C.j) assert (Integral(v, a) == (Integral(f(a), a))*C.i + (Integral(a**2, a))*C.j + (Integral(-1, a))*C.k) def test_vector_args(): raises(ValueError, lambda: BaseVector(3, C)) raises(TypeError, lambda: BaseVector(0, Vector.zero)) def test_srepr(): from sympy.printing.repr import srepr res = "CoordSys3D(Str('C'), Tuple(ImmutableDenseMatrix([[Integer(1), "\ "Integer(0), Integer(0)], [Integer(0), Integer(1), Integer(0)], "\ "[Integer(0), Integer(0), Integer(1)]]), VectorZero())).i" assert srepr(C.i) == res
055461aebfc9780b022affc4fa40368da5c1f195d37e3ee790d813e68f973897
from sympy.core.numbers import pi from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.testing.pytest import raises from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.integrals import ParametricIntegral, vector_integrate from sympy.vector.parametricregion import ParametricRegion from sympy.vector.implicitregion import ImplicitRegion from sympy.abc import x, y, z, u, v, r, t, theta, phi from sympy.geometry import Point, Segment, Curve, Circle, Polygon, Plane C = CoordSys3D('C') def test_parametric_lineintegrals(): halfcircle = ParametricRegion((4*cos(theta), 4*sin(theta)), (theta, -pi/2, pi/2)) assert ParametricIntegral(C.x*C.y**4, halfcircle) == S(8192)/5 curve = ParametricRegion((t, t**2, t**3), (t, 0, 1)) field1 = 8*C.x**2*C.y*C.z*C.i + 5*C.z*C.j - 4*C.x*C.y*C.k assert ParametricIntegral(field1, curve) == 1 line = ParametricRegion((4*t - 1, 2 - 2*t, t), (t, 0, 1)) assert ParametricIntegral(C.x*C.z*C.i - C.y*C.z*C.k, line) == 3 assert ParametricIntegral(4*C.x**3, ParametricRegion((1, t), (t, 0, 2))) == 8 helix = ParametricRegion((cos(t), sin(t), 3*t), (t, 0, 4*pi)) assert ParametricIntegral(C.x*C.y*C.z, helix) == -3*sqrt(10)*pi field2 = C.y*C.i + C.z*C.j + C.z*C.k assert ParametricIntegral(field2, ParametricRegion((cos(t), sin(t), t**2), (t, 0, pi))) == -5*pi/2 + pi**4/2 def test_parametric_surfaceintegrals(): semisphere = ParametricRegion((2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)),\ (theta, 0, 2*pi), (phi, 0, pi/2)) assert ParametricIntegral(C.z, semisphere) == 8*pi cylinder = ParametricRegion((sqrt(3)*cos(theta), sqrt(3)*sin(theta), z), (z, 0, 6), (theta, 0, 2*pi)) assert ParametricIntegral(C.y, cylinder) == 0 cone = ParametricRegion((v*cos(u), v*sin(u), v), (u, 0, 2*pi), (v, 0, 1)) assert ParametricIntegral(C.x*C.i + C.y*C.j + C.z**4*C.k, cone) == pi/3 triangle1 = ParametricRegion((x, y), (x, 0, 2), (y, 0, 10 - 5*x)) triangle2 = ParametricRegion((x, y), (y, 0, 10 - 5*x), (x, 0, 2)) assert ParametricIntegral(-15.6*C.y*C.k, triangle1) == ParametricIntegral(-15.6*C.y*C.k, triangle2) assert ParametricIntegral(C.z, triangle1) == 10*C.z def test_parametric_volumeintegrals(): cube = ParametricRegion((x, y, z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) assert ParametricIntegral(1, cube) == 1 solidsphere1 = ParametricRegion((r*sin(phi)*cos(theta), r*sin(phi)*sin(theta), r*cos(phi)),\ (r, 0, 2), (theta, 0, 2*pi), (phi, 0, pi)) solidsphere2 = ParametricRegion((r*sin(phi)*cos(theta), r*sin(phi)*sin(theta), r*cos(phi)),\ (r, 0, 2), (phi, 0, pi), (theta, 0, 2*pi)) assert ParametricIntegral(C.x**2 + C.y**2, solidsphere1) == -256*pi/15 assert ParametricIntegral(C.x**2 + C.y**2, solidsphere2) == 256*pi/15 region_under_plane1 = ParametricRegion((x, y, z), (x, 0, 3), (y, 0, -2*x/3 + 2),\ (z, 0, 6 - 2*x - 3*y)) region_under_plane2 = ParametricRegion((x, y, z), (x, 0, 3), (z, 0, 6 - 2*x - 3*y),\ (y, 0, -2*x/3 + 2)) assert ParametricIntegral(C.x*C.i + C.j - 100*C.k, region_under_plane1) == \ ParametricIntegral(C.x*C.i + C.j - 100*C.k, region_under_plane2) assert ParametricIntegral(2*C.x, region_under_plane2) == -9 def test_vector_integrate(): halfdisc = ParametricRegion((r*cos(theta), r* sin(theta)), (r, -2, 2), (theta, 0, pi)) assert vector_integrate(C.x**2, halfdisc) == 4*pi assert vector_integrate(C.x, ParametricRegion((t, t**2), (t, 2, 3))) == -17*sqrt(17)/12 + 37*sqrt(37)/12 assert vector_integrate(C.y**3*C.z, (C.x, 0, 3), (C.y, -1, 4)) == 765*C.z/4 s1 = Segment(Point(0, 0), Point(0, 1)) assert vector_integrate(-15*C.y, s1) == S(-15)/2 s2 = Segment(Point(4, 3, 9), Point(1, 1, 7)) assert vector_integrate(C.y*C.i, s2) == -6 curve = Curve((sin(t), cos(t)), (t, 0, 2)) assert vector_integrate(5*C.z, curve) == 10*C.z c1 = Circle(Point(2, 3), 6) assert vector_integrate(C.x*C.y, c1) == 72*pi c2 = Circle(Point(0, 0), Point(1, 1), Point(1, 0)) assert vector_integrate(1, c2) == c2.circumference triangle = Polygon((0, 0), (1, 0), (1, 1)) assert vector_integrate(C.x*C.i - 14*C.y*C.j, triangle) == 0 p1, p2, p3, p4 = [(0, 0), (1, 0), (5, 1), (0, 1)] poly = Polygon(p1, p2, p3, p4) assert vector_integrate(-23*C.z, poly) == -161*C.z - 23*sqrt(17)*C.z point = Point(2, 3) assert vector_integrate(C.i*C.y - C.z, point) == ParametricIntegral(C.y*C.i, ParametricRegion((2, 3))) c3 = ImplicitRegion((x, y), x**2 + y**2 - 4) assert vector_integrate(45, c3) == 180*pi c4 = ImplicitRegion((x, y), (x - 3)**2 + (y - 4)**2 - 9) assert vector_integrate(1, c4) == 6*pi pl = Plane(Point(1, 1, 1), Point(2, 3, 4), Point(2, 2, 2)) raises(ValueError, lambda: vector_integrate(C.x*C.z*C.i + C.k, pl))
7f547e04bffadd505b7345e0117fcb63357fdceba961de21a79473464e9d01b2
from sympy.core.numbers import pi from sympy.core.symbol import symbols from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix from sympy.simplify.simplify import simplify from sympy.vector import (CoordSys3D, Vector, Dyadic, DyadicAdd, DyadicMul, DyadicZero, BaseDyadic, express) A = CoordSys3D('A') def test_dyadic(): a, b = symbols('a, b') assert Dyadic.zero != 0 assert isinstance(Dyadic.zero, DyadicZero) assert BaseDyadic(A.i, A.j) != BaseDyadic(A.j, A.i) assert (BaseDyadic(Vector.zero, A.i) == BaseDyadic(A.i, Vector.zero) == Dyadic.zero) d1 = A.i | A.i d2 = A.j | A.j d3 = A.i | A.j assert isinstance(d1, BaseDyadic) d_mul = a*d1 assert isinstance(d_mul, DyadicMul) assert d_mul.base_dyadic == d1 assert d_mul.measure_number == a assert isinstance(a*d1 + b*d3, DyadicAdd) assert d1 == A.i.outer(A.i) assert d3 == A.i.outer(A.j) v1 = a*A.i - A.k v2 = A.i + b*A.j assert v1 | v2 == v1.outer(v2) == a * (A.i|A.i) + (a*b) * (A.i|A.j) +\ - (A.k|A.i) - b * (A.k|A.j) assert d1 * 0 == Dyadic.zero assert d1 != Dyadic.zero assert d1 * 2 == 2 * (A.i | A.i) assert d1 / 2. == 0.5 * d1 assert d1.dot(0 * d1) == Vector.zero assert d1 & d2 == Dyadic.zero assert d1.dot(A.i) == A.i == d1 & A.i assert d1.cross(Vector.zero) == Dyadic.zero assert d1.cross(A.i) == Dyadic.zero assert d1 ^ A.j == d1.cross(A.j) assert d1.cross(A.k) == - A.i | A.j assert d2.cross(A.i) == - A.j | A.k == d2 ^ A.i assert A.i ^ d1 == Dyadic.zero assert A.j.cross(d1) == - A.k | A.i == A.j ^ d1 assert Vector.zero.cross(d1) == Dyadic.zero assert A.k ^ d1 == A.j | A.i assert A.i.dot(d1) == A.i & d1 == A.i assert A.j.dot(d1) == Vector.zero assert Vector.zero.dot(d1) == Vector.zero assert A.j & d2 == A.j assert d1.dot(d3) == d1 & d3 == A.i | A.j == d3 assert d3 & d1 == Dyadic.zero q = symbols('q') B = A.orient_new_axis('B', q, A.k) assert express(d1, B) == express(d1, B, B) expr1 = ((cos(q)**2) * (B.i | B.i) + (-sin(q) * cos(q)) * (B.i | B.j) + (-sin(q) * cos(q)) * (B.j | B.i) + (sin(q)**2) * (B.j | B.j)) assert (express(d1, B) - expr1).simplify() == Dyadic.zero expr2 = (cos(q)) * (B.i | A.i) + (-sin(q)) * (B.j | A.i) assert (express(d1, B, A) - expr2).simplify() == Dyadic.zero expr3 = (cos(q)) * (A.i | B.i) + (-sin(q)) * (A.i | B.j) assert (express(d1, A, B) - expr3).simplify() == Dyadic.zero assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0], [0, 0, 0], [0, 0, 0]]) assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') v1 = a * A.i + b * A.j + c * A.k v2 = d * A.i + e * A.j + f * A.k d4 = v1.outer(v2) assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f], [b * d, b * e, b * f], [c * d, c * e, c * f]]) d5 = v1.outer(v1) C = A.orient_new_axis('C', q, A.i) for expected, actual in zip(C.rotation_matrix(A) * d5.to_matrix(A) * \ C.rotation_matrix(A).T, d5.to_matrix(C)): assert (expected - actual).simplify() == 0 def test_dyadic_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = CoordSys3D('N') dy = N.i | N.i test1 = (1 / x + 1 / y) * dy assert (N.i & test1 & N.i) != (x + y) / (x * y) test1 = test1.simplify() assert test1.simplify() == simplify(test1) assert (N.i & test1 & N.i) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy test2 = test2.simplify() assert (N.i & test2 & N.i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy test3 = test3.simplify() assert (N.i & test3 & N.i) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy test4 = test4.simplify() assert (N.i & test4 & N.i) == -2 * y def test_dyadic_srepr(): from sympy.printing.repr import srepr N = CoordSys3D('N') dy = N.i | N.j res = "BaseDyadic(CoordSys3D(Str('N'), Tuple(ImmutableDenseMatrix([["\ "Integer(1), Integer(0), Integer(0)], [Integer(0), Integer(1), "\ "Integer(0)], [Integer(0), Integer(0), Integer(1)]]), "\ "VectorZero())).i, CoordSys3D(Str('N'), Tuple(ImmutableDenseMatrix("\ "[[Integer(1), Integer(0), Integer(0)], [Integer(0), Integer(1), "\ "Integer(0)], [Integer(0), Integer(0), Integer(1)]]), VectorZero())).j)" assert srepr(dy) == res
e1222143b9b5ec109696d564af66c8d0fc35046b26c7e5aade00f71c60d66a23
from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.abc import x, y, z, s, t from sympy.sets import FiniteSet, EmptySet from sympy.geometry import Point from sympy.vector import ImplicitRegion from sympy.testing.pytest import raises def test_ImplicitRegion(): ellipse = ImplicitRegion((x, y), (x**2/4 + y**2/16 - 1)) assert ellipse.equation == x**2/4 + y**2/16 - 1 assert ellipse.variables == (x, y) assert ellipse.degree == 2 r = ImplicitRegion((x, y, z), Eq(x**4 + y**2 - x*y, 6)) assert r.equation == x**4 + y**2 - x*y - 6 assert r.variables == (x, y, z) assert r.degree == 4 def test_regular_point(): r1 = ImplicitRegion((x,), x**2 - 16) assert r1.regular_point() == (-4,) c1 = ImplicitRegion((x, y), x**2 + y**2 - 4) assert c1.regular_point() == (0, -2) c2 = ImplicitRegion((x, y), (x - S(5)/2)**2 + y**2 - (S(1)/4)**2) assert c2.regular_point() == (S(5)/2, -S(1)/4) c3 = ImplicitRegion((x, y), (y - 5)**2 - 16*(x - 5)) assert c3.regular_point() == (5, 5) r2 = ImplicitRegion((x, y), x**2 - 4*x*y - 3*y**2 + 4*x + 8*y - 5) assert r2.regular_point() == (S(4)/7, S(9)/7) r3 = ImplicitRegion((x, y), x**2 - 2*x*y + 3*y**2 - 2*x - 5*y + 3/2) raises(ValueError, lambda: r3.regular_point()) def test_singular_points_and_multiplicty(): r1 = ImplicitRegion((x, y, z), Eq(x + y + z, 0)) assert r1.singular_points() == FiniteSet((-y - z, y, z)) assert r1.multiplicity((0, 0, 0)) == 1 assert r1.multiplicity((-y - z, y, z)) == 1 r2 = ImplicitRegion((x, y, z), x*y*z + y**4 -x**2*z**2) assert r2.singular_points() == FiniteSet((0, 0, z), ((-y*sqrt(4*y**2 + 1)/2 + y/2)/z, y, z),\ ((y*sqrt(4*y**2 + 1)/2 + y/2)/z, y, z)) assert r2.multiplicity((0, 0, 0)) == 3 assert r2.multiplicity((0, 0, 6)) == 2 r3 = ImplicitRegion((x, y, z), z**2 - x**2 - y**2) assert r3.singular_points() == FiniteSet((0, 0, 0)) assert r3.multiplicity((0, 0, 0)) == 2 r4 = ImplicitRegion((x, y), x**2 + y**2 - 2*x) assert r4.singular_points() == EmptySet assert r4.multiplicity(Point(1, 3)) == 0 def test_rational_parametrization(): p = ImplicitRegion((x,), x - 2) assert p.rational_parametrization() == (x - 2,) line = ImplicitRegion((x, y), Eq(y, 3*x + 2)) assert line.rational_parametrization() == (x, 3*x + 2) circle1 = ImplicitRegion((x, y), (x-2)**2 + (y+3)**2 - 4) assert circle1.rational_parametrization(parameters=t) == (4*t/(t**2 + 1) + 2, 4*t**2/(t**2 + 1) - 5) circle2 = ImplicitRegion((x, y), (x - S.Half)**2 + y**2 - (S(1)/2)**2) assert circle2.rational_parametrization(parameters=t) == (t/(t**2 + 1) + S(1)/2, t**2/(t**2 + 1) - S(1)/2) circle3 = ImplicitRegion((x, y), Eq(x**2 + y**2, 2*x)) assert circle3.rational_parametrization(parameters=(t,)) == (2*t/(t**2 + 1) + 1, 2*t**2/(t**2 + 1) - 1) parabola = ImplicitRegion((x, y), (y - 3)**2 - 4*(x + 6)) assert parabola.rational_parametrization(t) == (-6 + 4/t**2, 3 + 4/t) rect_hyperbola = ImplicitRegion((x, y), x*y - 1) assert rect_hyperbola.rational_parametrization(t) == (-1 + (t + 1)/t, t) cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2) assert cubic_curve.rational_parametrization(parameters=(t)) == (t**2 - 1, t*(t**2 - 1)) cuspidal = ImplicitRegion((x, y), (x**3 - y**2)) assert cuspidal.rational_parametrization(t) == (t**2, t**3) I = ImplicitRegion((x, y), x**3 + x**2 - y**2) assert I.rational_parametrization(t) == (t**2 - 1, t*(t**2 - 1)) sphere = ImplicitRegion((x, y, z), Eq(x**2 + y**2 + z**2, 2*x)) assert sphere.rational_parametrization(parameters=(s, t)) == (2/(s**2 + t**2 + 1), 2*t/(s**2 + t**2 + 1), 2*s/(s**2 + t**2 + 1)) conic = ImplicitRegion((x, y), Eq(x**2 + 4*x*y + 3*y**2 + x - y + 10, 0)) assert conic.rational_parametrization(t) == ( S(17)/2 + 4/(3*t**2 + 4*t + 1), 4*t/(3*t**2 + 4*t + 1) - S(11)/2) r1 = ImplicitRegion((x, y), y**2 - x**3 + x) raises(NotImplementedError, lambda: r1.rational_parametrization()) r2 = ImplicitRegion((x, y), y**2 - x**3 - x**2 + 1) raises(NotImplementedError, lambda: r2.rational_parametrization())
9c740874632955301e2a2fda731d34581533224b0cf04753ec9e857a13cdc795
# -*- coding: utf-8 -*- from sympy.core.function import Function from sympy.integrals.integrals import Integral from sympy.printing.latex import latex from sympy.printing.pretty import pretty as xpretty from sympy.vector import CoordSys3D, Vector, express from sympy.abc import a, b, c from sympy.testing.pytest import XFAIL def pretty(expr): """ASCII pretty-printing""" return xpretty(expr, use_unicode=False, wrap_line=False) def upretty(expr): """Unicode pretty-printing""" return xpretty(expr, use_unicode=True, wrap_line=False) # Initialize the basic and tedious vector/dyadic expressions # needed for testing. # Some of the pretty forms shown denote how the expressions just # above them should look with pretty printing. N = CoordSys3D('N') C = N.orient_new_axis('C', a, N.k) # type: ignore v = [] d = [] v.append(Vector.zero) v.append(N.i) # type: ignore v.append(-N.i) # type: ignore v.append(N.i + N.j) # type: ignore v.append(a*N.i) # type: ignore v.append(a*N.i - b*N.j) # type: ignore v.append((a**2 + N.x)*N.i + N.k) # type: ignore v.append((a**2 + b)*N.i + 3*(C.y - c)*N.k) # type: ignore f = Function('f') v.append(N.j - (Integral(f(b)) - C.x**2)*N.k) # type: ignore upretty_v_8 = """\ ⎛ 2 ⌠ ⎞ \n\ j_N + ⎜x_C - ⎮ f(b) db⎟ k_N\n\ ⎝ ⌡ ⎠ \ """ pretty_v_8 = """\ j_N + / / \\\n\ | 2 | |\n\ |x_C - | f(b) db|\n\ | | |\n\ \\ / / \ """ v.append(N.i + C.k) # type: ignore v.append(express(N.i, C)) # type: ignore v.append((a**2 + b)*N.i + (Integral(f(b)))*N.k) # type: ignore upretty_v_11 = """\ ⎛ 2 ⎞ ⎛⌠ ⎞ \n\ ⎝a + b⎠ i_N + ⎜⎮ f(b) db⎟ k_N\n\ ⎝⌡ ⎠ \ """ pretty_v_11 = """\ / 2 \\ + / / \\\n\ \\a + b/ i_N| | |\n\ | | f(b) db|\n\ | | |\n\ \\/ / \ """ for x in v: d.append(x | N.k) # type: ignore s = 3*N.x**2*C.y # type: ignore upretty_s = """\ 2\n\ 3⋅y_C⋅x_N \ """ pretty_s = """\ 2\n\ 3*y_C*x_N \ """ # This is the pretty form for ((a**2 + b)*N.i + 3*(C.y - c)*N.k) | N.k upretty_d_7 = """\ ⎛ 2 ⎞ \n\ ⎝a + b⎠ (i_N|k_N) + (3⋅y_C - 3⋅c) (k_N|k_N)\ """ pretty_d_7 = """\ / 2 \\ (i_N|k_N) + (3*y_C - 3*c) (k_N|k_N)\n\ \\a + b/ \ """ def test_str_printing(): assert str(v[0]) == '0' assert str(v[1]) == 'N.i' assert str(v[2]) == '(-1)*N.i' assert str(v[3]) == 'N.i + N.j' assert str(v[8]) == 'N.j + (C.x**2 - Integral(f(b), b))*N.k' assert str(v[9]) == 'C.k + N.i' assert str(s) == '3*C.y*N.x**2' assert str(d[0]) == '0' assert str(d[1]) == '(N.i|N.k)' assert str(d[4]) == 'a*(N.i|N.k)' assert str(d[5]) == 'a*(N.i|N.k) + (-b)*(N.j|N.k)' assert str(d[8]) == ('(N.j|N.k) + (C.x**2 - ' + 'Integral(f(b), b))*(N.k|N.k)') @XFAIL def test_pretty_printing_ascii(): assert pretty(v[0]) == '0' assert pretty(v[1]) == 'i_N' assert pretty(v[5]) == '(a) i_N + (-b) j_N' assert pretty(v[8]) == pretty_v_8 assert pretty(v[2]) == '(-1) i_N' assert pretty(v[11]) == pretty_v_11 assert pretty(s) == pretty_s assert pretty(d[0]) == '(0|0)' assert pretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)' assert pretty(d[7]) == pretty_d_7 assert pretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)' def test_pretty_print_unicode_v(): assert upretty(v[0]) == '0' assert upretty(v[1]) == 'i_N' assert upretty(v[5]) == '(a) i_N + (-b) j_N' # Make sure the printing works in other objects assert upretty(v[5].args) == '((a) i_N, (-b) j_N)' assert upretty(v[8]) == upretty_v_8 assert upretty(v[2]) == '(-1) i_N' assert upretty(v[11]) == upretty_v_11 assert upretty(s) == upretty_s assert upretty(d[0]) == '(0|0)' assert upretty(d[5]) == '(a) (i_N|k_N) + (-b) (j_N|k_N)' assert upretty(d[7]) == upretty_d_7 assert upretty(d[10]) == '(cos(a)) (i_C|k_N) + (-sin(a)) (j_C|k_N)' def test_latex_printing(): assert latex(v[0]) == '\\mathbf{\\hat{0}}' assert latex(v[1]) == '\\mathbf{\\hat{i}_{N}}' assert latex(v[2]) == '- \\mathbf{\\hat{i}_{N}}' assert latex(v[5]) == ('(a)\\mathbf{\\hat{i}_{N}} + ' + '(- b)\\mathbf{\\hat{j}_{N}}') assert latex(v[6]) == ('(\\mathbf{{x}_{N}} + a^{2})\\mathbf{\\hat{i}_' + '{N}} + \\mathbf{\\hat{k}_{N}}') assert latex(v[8]) == ('\\mathbf{\\hat{j}_{N}} + (\\mathbf{{x}_' + '{C}}^{2} - \\int f{\\left(b \\right)}\\,' + ' db)\\mathbf{\\hat{k}_{N}}') assert latex(s) == '3 \\mathbf{{y}_{C}} \\mathbf{{x}_{N}}^{2}' assert latex(d[0]) == '(\\mathbf{\\hat{0}}|\\mathbf{\\hat{0}})' assert latex(d[4]) == ('(a)\\left(\\mathbf{\\hat{i}_{N}}{\\middle|}' + '\\mathbf{\\hat{k}_{N}}\\right)') assert latex(d[9]) == ('\\left(\\mathbf{\\hat{k}_{C}}{\\middle|}' + '\\mathbf{\\hat{k}_{N}}\\right) + \\left(' + '\\mathbf{\\hat{i}_{N}}{\\middle|}\\mathbf{' + '\\hat{k}_{N}}\\right)') assert latex(d[11]) == ('(a^{2} + b)\\left(\\mathbf{\\hat{i}_{N}}' + '{\\middle|}\\mathbf{\\hat{k}_{N}}\\right) + ' + '(\\int f{\\left(b \\right)}\\, db)\\left(' + '\\mathbf{\\hat{k}_{N}}{\\middle|}\\mathbf{' + '\\hat{k}_{N}}\\right)') def test_custom_names(): A = CoordSys3D('A', vector_names=['x', 'y', 'z'], variable_names=['i', 'j', 'k']) assert A.i.__str__() == 'A.i' assert A.x.__str__() == 'A.x' assert A.i._pretty_form == 'i_A' assert A.x._pretty_form == 'x_A' assert A.i._latex_form == r'\mathbf{{i}_{A}}' assert A.x._latex_form == r"\mathbf{\hat{x}_{A}}"
cbabd831dea0bd8a12c848840624712489639d01966d3893101627a2e07ed12f
from sympy.core.function import (Derivative, Function) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.geometry import Point, Point2D, Line, Polygon, Segment, convex_hull,\ intersection, centroid, Point3D, Line3D from sympy.geometry.util import idiff, closest_points, farthest_points, _ordered_points, are_coplanar from sympy.solvers.solvers import solve from sympy.testing.pytest import raises def test_idiff(): x = Symbol('x', real=True) y = Symbol('y', real=True) t = Symbol('t', real=True) f = Function('f') g = Function('g') # the use of idiff in ellipse also provides coverage circ = x**2 + y**2 - 4 ans = 3*x*(-x**2 - y**2)/y**5 assert ans == idiff(circ, y, x, 3).simplify() assert ans == idiff(circ, [y], x, 3).simplify() assert idiff(circ, y, x, 3).simplify() == ans explicit = 12*x/sqrt(-x**2 + 4)**5 assert ans.subs(y, solve(circ, y)[0]).equals(explicit) assert True in [sol.diff(x, 3).equals(explicit) for sol in solve(circ, y)] assert idiff(x + t + y, [y, t], x) == -Derivative(t, x) - 1 assert idiff(f(x) * exp(f(x)) - x * exp(x), f(x), x) == (x + 1) * exp(x - f(x))/(f(x) + 1) assert idiff(f(x) - y * exp(x), [f(x), y], x) == (y + Derivative(y, x)) * exp(x) assert idiff(f(x) - y * exp(x), [y, f(x)], x) == -y + exp(-x) * Derivative(f(x), x) assert idiff(f(x) - g(x), [f(x), g(x)], x) == Derivative(g(x), x) def test_intersection(): assert intersection(Point(0, 0)) == [] raises(TypeError, lambda: intersection(Point(0, 0), 3)) assert intersection( Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), (0, 1)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] assert intersection( Line((0, 0), (0, 1)), Segment((0, 0), (2, 0)), Segment((-1, 0), (1, 0)), Line((0, 0), slope=1), pairwise=True) == [ Point(0, 0), Segment((0, 0), (1, 0))] def test_convex_hull(): raises(TypeError, lambda: convex_hull(Point(0, 0), 3)) points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert convex_hull(*points, **dict(polygon=False)) == ( [Point2D(-5, -2), Point2D(1, -1), Point2D(3, -1), Point2D(15, -4)], [Point2D(-5, -2), Point2D(15, -4)]) def test_centroid(): p = Polygon((0, 0), (10, 0), (10, 10)) q = p.translate(0, 20) assert centroid(p, q) == Point(20, 40)/3 p = Segment((0, 0), (2, 0)) q = Segment((0, 0), (2, 2)) assert centroid(p, q) == Point(1, -sqrt(2) + 2) assert centroid(Point(0, 0), Point(2, 0)) == Point(2, 0)/2 assert centroid(Point(0, 0), Point(0, 0), Point(2, 0)) == Point(2, 0)/3 def test_farthest_points_closest_points(): from sympy.core.random import randint from sympy.utilities.iterables import subsets for how in (min, max): if how == min: func = closest_points else: func = farthest_points raises(ValueError, lambda: func(Point2D(0, 0), Point2D(0, 0))) # 3rd pt dx is close and pt is closer to 1st pt p1 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 1)] # 3rd pt dx is close and pt is closer to 2nd pt p2 = [Point2D(0, 0), Point2D(3, 0), Point2D(2, 1)] # 3rd pt dx is close and but pt is not closer p3 = [Point2D(0, 0), Point2D(3, 0), Point2D(1, 10)] # 3rd pt dx is not closer and it's closer to 2nd pt p4 = [Point2D(0, 0), Point2D(3, 0), Point2D(4, 0)] # 3rd pt dx is not closer and it's closer to 1st pt p5 = [Point2D(0, 0), Point2D(3, 0), Point2D(-1, 0)] # duplicate point doesn't affect outcome dup = [Point2D(0, 0), Point2D(3, 0), Point2D(3, 0), Point2D(-1, 0)] # symbolic x = Symbol('x', positive=True) s = [Point2D(a) for a in ((x, 1), (x + 3, 2), (x + 2, 2))] for points in (p1, p2, p3, p4, p5, dup, s): d = how(i.distance(j) for i, j in subsets(set(points), 2)) ans = a, b = list(func(*points))[0] assert a.distance(b) == d assert ans == _ordered_points(ans) # if the following ever fails, the above tests were not sufficient # and the logical error in the routine should be fixed points = set() while len(points) != 7: points.add(Point2D(randint(1, 100), randint(1, 100))) points = list(points) d = how(i.distance(j) for i, j in subsets(points, 2)) ans = a, b = list(func(*points))[0] assert a.distance(b) == d assert ans == _ordered_points(ans) # equidistant points a, b, c = ( Point2D(0, 0), Point2D(1, 0), Point2D(S.Half, sqrt(3)/2)) ans = {_ordered_points((i, j)) for i, j in subsets((a, b, c), 2)} assert closest_points(b, c, a) == ans assert farthest_points(b, c, a) == ans # unique to farthest points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] assert farthest_points(*points) == { (Point2D(-5, 2), Point2D(15, 4))} points = [(1, -1), (1, -2), (3, -1), (-5, -2), (15, -4)] assert farthest_points(*points) == { (Point2D(-5, -2), Point2D(15, -4))} assert farthest_points((1, 1), (0, 0)) == { (Point2D(0, 0), Point2D(1, 1))} raises(ValueError, lambda: farthest_points((1, 1))) def test_are_coplanar(): a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) d = Line(Point2D(0, 3), Point2D(1, 5)) assert are_coplanar(a, b, c) == False assert are_coplanar(a, d) == False
32488e54032279bae2dda40a5c3040e2a71f1da05fc5c8befe703ddfad22bd62
from sympy.core.basic import Basic from sympy.core.numbers import (I, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane from sympy.geometry.entity import rotate, scale, translate, GeometryEntity from sympy.matrices import Matrix from sympy.utilities.iterables import subsets, permutations, cartes from sympy.utilities.misc import Undecidable from sympy.testing.pytest import raises, warns def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(TypeError, lambda: Point(1)) raises(ValueError, lambda: Point([1])) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert p1.origin == Point(0, 0) assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) raises(TypeError, lambda: Point.distance(p1, 0)) raises(TypeError, lambda: Point.distance(p1, GeometryEntity())) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 raises(ValueError, lambda: Point.canberra_distance(p3, p3)) p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] assert p3.intersection(line) == [] assert Point.intersection(Point(0, 0, 0), Point(0, 0)) == [Point(0, 0, 0)] x_pos = Symbol('x', positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert Point.is_concyclic(Point(0, 0, 0, 0), Point(1, 0, 0, 0), Point(1, 1, 0, 0), Point(1, 1, 1, 0)) is False assert p1.is_scalar_multiple(p1) assert p1.is_scalar_multiple(2*p1) assert not p1.is_scalar_multiple(p2) assert Point.is_scalar_multiple(Point(1, 1), (-1, -1)) assert Point.is_scalar_multiple(Point(0, 0), (0, -1)) # test when is_scalar_multiple can't be determined raises(Undecidable, lambda: Point.is_scalar_multiple(Point(sympify("x1%y1"), sympify("x2%y2")), Point(0, 1))) assert Point(0, 1).orthogonal_direction == Point(1, 0) assert Point(1, 0).orthogonal_direction == Point(0, 1) assert p1.is_zero is None assert p3.is_zero assert p4.is_zero is False assert p1.is_nonzero is None assert p3.is_nonzero is False assert p4.is_nonzero assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test project assert Point.project((0, 1), (1, 0)) == Point(0, 0) assert Point.project((1, 1), (1, 0)) == Point(1, 0) raises(ValueError, lambda: Point.project(p1, Point(0, 0))) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # test __contains__ assert 0 in Point(0, 0, 0, 0) assert 1 not in Point(0, 0, 0, 0) # test affine_rank assert Point.affine_rank() == -1 def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = S.Half p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) assert 5 * p4 == Point3D(5, 5, 5) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Test coordinate properties assert p1.coordinates == (x1, x2, x3) assert p2.coordinates == (y1, y2, y3) assert p3.coordinates == (0, 0, 0) assert p4.coordinates == (1, 1, 1) assert p5.coordinates == (0, 1, 2) assert p5.x == 0 assert p5.y == 1 assert p5.z == 2 # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b, c = S.Half, Rational(1, 3), Rational(1, 4) assert Point3D(a, b, c).evalf(2) == \ Point(a.n(2), b.n(2), c.n(2), evaluate=False) raises(ValueError, lambda: Point3D(1, 2, 3) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warns(UserWarning): raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warns(UserWarning): assert p - p_4d == Point(1, 1, 1, -1) p_4d3d = Point(0, 0, 1, 0) with warns(UserWarning): assert p - p_4d3d == Point(1, 1, 0, 0) def test_Point2D(): # Test Distance p1 = Point2D(1, 5) p2 = Point2D(4, 2.5) p3 = (6, 3) assert p1.distance(p2) == sqrt(61)/2 assert p2.distance(p3) == sqrt(17)/2 # Test coordinates assert p1.x == 1 assert p1.y == 5 assert p2.x == 4 assert p2.y == 2.5 assert p1.coordinates == (1, 5) assert p2.coordinates == (4, 2.5) # test bounds assert p1.bounds == (1, 5, 1, 5) def test_issue_9214(): p1 = Point3D(4, -2, 6) p2 = Point3D(1, 2, 3) p3 = Point3D(7, 2, 3) assert Point3D.are_collinear(p1, p2, p3) is False def test_issue_11617(): p1 = Point3D(1,0,2) p2 = Point2D(2,0) with warns(UserWarning): assert p1.distance(p2) == sqrt(5) def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi/2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) def test_concyclic_doctest_bug(): p1, p2 = Point(-1, 0), Point(1, 0) p3, p4 = Point(0, 1), Point(-1, 2) assert Point.is_concyclic(p1, p2, p3) assert not Point.is_concyclic(p1, p2, p3, p4) def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1,2), [1,2], Point(1,2)) singles2d2 = ((1,3), [1,3], Point(1,3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1,2) singles3d = ((1,2,3), [1,2,3], Point(1,2,3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1,2,3) singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4)) doubles4d = subsets(singles4d, 2) p4d = Point(1,2,3,4) # test 2D test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__'] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles3d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False) a = Point(0, 1) assert a/10.0 == Point(0, 0.1, evaluate=False) a = Point(0, 1) assert a*10.0 == Point(0.0, 10.0, evaluate=False) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error') # raise error with unmatched dimension raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='error')) # test unknown on_morph raises(ValueError, lambda: Point(1, 1, dim=3, on_morph='unknown')) # test invalid expressions raises(TypeError, lambda: Point(Basic(), Basic())) def test_unit(): assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2) def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1)))) def test__normalize_dimension(): assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [ Point(1, 2), Point(3, 4)] assert Point._normalize_dimension( Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [ Point(1, 2, 0), Point(3, 4, 0)] def test_direction_cosine(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1] assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1] assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0] assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3] assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0] assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3] assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1] assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
d2904a766448113ab4a49623c518f7e01d23fa8e7a7f88aacc9cbd2786ee53b5
from sympy.core.numbers import (Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.geometry import (Circle, Ellipse, Point, Line, Parabola, Polygon, Ray, RegularPolygon, Segment, Triangle, Plane, Curve) from sympy.geometry.entity import scale, GeometryEntity from sympy.testing.pytest import raises def test_entity(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert GeometryEntity(x, y) in GeometryEntity(x, y) raises(NotImplementedError, lambda: Point(0, 0) in GeometryEntity(x, y)) assert GeometryEntity(x, y) == GeometryEntity(x, y) assert GeometryEntity(x, y).equals(GeometryEntity(x, y)) c = Circle((0, 0), 5) assert GeometryEntity.encloses(c, Point(0, 0)) assert GeometryEntity.encloses(c, Segment((0, 0), (1, 1))) assert GeometryEntity.encloses(c, Line((0, 0), (1, 1))) is False assert GeometryEntity.encloses(c, Circle((0, 0), 4)) assert GeometryEntity.encloses(c, Polygon(Point(0, 0), Point(1, 0), Point(0, 1))) assert GeometryEntity.encloses(c, RegularPolygon(Point(8, 8), 1, 3)) is False def test_svg(): a = Symbol('a') b = Symbol('b') d = Symbol('d') entity = Circle(Point(a, b), d) assert entity._repr_svg_() is None entity = Circle(Point(0, 0), S.Infinity) assert entity._repr_svg_() is None def test_subs(): x = Symbol('x', real=True) y = Symbol('y', real=True) p = Point(x, 2) q = Point(1, 1) r = Point(3, 4) for o in [p, Segment(p, q), Ray(p, q), Line(p, q), Triangle(p, q, r), RegularPolygon(p, 3, 6), Polygon(p, q, r, Point(5, 4)), Circle(p, 3), Ellipse(p, 3, 4)]: assert 'y' in str(o.subs(x, y)) assert p.subs({x: 1}) == Point(1, 2) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs((1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs(Point(1, 2), Point(3, 4)) == Point(3, 4) assert Point(1, 2).subs({(1, 2)}) == Point(2, 2) raises(ValueError, lambda: Point(1, 2).subs(1)) raises(ValueError, lambda: Point(1, 1).subs((Point(1, 1), Point(1, 2)), 1, 2)) def test_transform(): assert scale(1, 2, (3, 4)).tolist() == \ [[1, 0, 0], [0, 2, 0], [0, -4, 1]] def test_reflect_entity_overrides(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) c = Circle((x, y), 3) cr = c.reflect(l) assert cr == Circle(r, -3) assert c.area == -cr.area pent = RegularPolygon((1, 2), 1, 5) slope = S.ComplexInfinity while slope is S.ComplexInfinity: slope = Rational(*(x._random()/2).as_real_imag()) l = Line(pent.vertices[1], slope=slope) rpent = pent.reflect(l) assert rpent.center == pent.center.reflect(l) rvert = [i.reflect(l) for i in pent.vertices] for v in rpent.vertices: for i in range(len(rvert)): ri = rvert[i] if ri.equals(v): rvert.remove(ri) break assert not rvert assert pent.area.equals(-rpent.area) def test_geometry_EvalfMixin(): x = pi t = Symbol('t') for g in [ Point(x, x), Plane(Point(0, x, 0), (0, 0, x)), Curve((x*t, x), (t, 0, x)), Ellipse((x, x), x, -x), Circle((x, x), x), Line((0, x), (x, 0)), Segment((0, x), (x, 0)), Ray((0, x), (x, 0)), Parabola((0, x), Line((-x, 0), (x, 0))), Polygon((0, 0), (0, x), (x, 0), (x, x)), RegularPolygon((0, x), x, 4, x), Triangle((0, 0), (x, 0), (x, x)), ]: assert str(g).replace('pi', '3.1') == str(g.n(2))
6bc1ada859b24b53778667f81b8e6f5665c534654208f30a4d0b4f72a92113ac
from sympy.core.numbers import (Float, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (acos, cos, sin) from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D, Polygon, Ray, RegularPolygon, Segment, Triangle, are_similar, convex_hull, intersection, Line, Ray2D) from sympy.testing.pytest import raises, slow, warns from sympy.core.random import verify_numerically from sympy.geometry.polygon import rad, deg from sympy.integrals.integrals import integrate def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float @slow def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) q = Symbol('q', real=True) u = Symbol('u', real=True) v = Symbol('v', real=True) w = Symbol('w', real=True) x1 = Symbol('x1', real=True) half = S.Half a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(Point(0, 0)) == Point(0, 0) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15, -15), Point(15, -15), Point(15, 15), Point(-15, 15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) p7 = Polygon( Point(x, y), Point(q, u), Point(v, w)) p8 = Polygon( Point(x, y), Point(v, w), Point(q, u)) p9 = Polygon( Point(0, 0), Point(4, 4), Point(3, 0), Point(5, 2)) p10 = Polygon( Point(0, 2), Point(2, 2), Point(0, 0), Point(2, 0)) p11 = Polygon(Point(0, 0), 1, n=3) p12 = Polygon(Point(0, 0), 1, 0, n=3) r = Ray(Point(-9, 6.6), Point(-9, 5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0) ).is_convex() is False # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5, 2.5), 5)) is False assert p1.encloses(Ellipse(Point(2.5, 2), 5, 6)) is False assert p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert hash(p1) == hash(p2) assert hash(p7) == hash(p8) assert hash(p3) != hash(p9) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))] assert p10.area == 0 assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0) assert p11 == p12 assert p11.vertices[0] == Point(1, 0) assert p11.args[0] == Point(0, 0) p11.spin(pi/2) assert p11.vertices[0] == Point(0, 1) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == pi*Rational(3, 5) assert p1.exterior_angle == pi*Rational(2, 5) assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var in (5, 10, pi / 3) assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3)) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8)) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False assert t1.is_similar(t2) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment( p1, Point(Rational(5, 2), Rational(5, 2))) assert t2.bisectors()[p2] == Segment( Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4)) p4 = Point(0, x1) assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0)) ic = (250 - 125*sqrt(2))/50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Exradius assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2 # Excenters assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2].equals(s1[0]) assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 # p3.distance(p4) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2) def test_convex_hull(): p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \ Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \ Point(4, -1), Point(6, 2)] ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1]) #test handling of duplicate points p.append(p[3]) #more than 3 collinear points another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \ Point(-45, -24)] ch2 = Segment(another_p[0], another_p[1]) assert convex_hull(*another_p) == ch2 assert convex_hull(*p) == ch assert convex_hull(p[0]) == p[0] assert convex_hull(p[0], p[1]) == Segment(p[0], p[1]) # no unique points assert convex_hull(*[p[-1]]*3) == p[-1] # collection of items assert convex_hull(*[Point(0, 0), \ Segment(Point(1, 0), Point(1, 1)), \ RegularPolygon(Point(2, 0), 2, 4)]) == \ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2)) def test_encloses(): # square with a dimpled left side s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \ Point(S.Half, S.Half)) # the following is True if the polygon isn't treated as closing on itself assert s.encloses(Point(0, S.Half)) is False assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex assert s.encloses(Point(Rational(3, 4), S.Half)) is True def test_triangle_kwargs(): assert Triangle(sss=(3, 4, 5)) == \ Triangle(Point(0, 0), Point(3, 0), Point(3, 4)) assert Triangle(asa=(30, 2, 30)) == \ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3)) assert Triangle(sas=(1, 45, 2)) == \ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2)) assert Triangle(sss=(1, 2, 5)) is None assert deg(rad(180)) == 180 def test_transform(): pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)] assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13)) # Checks for symmetric scaling assert RegularPolygon((0, 0), 1, 4).scale(2, 2) == \ RegularPolygon(Point2D(0, 0), 2, 4, 0) def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2)) def test_bisectors(): p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3)) q = Polygon(Point(1, 0), Point(2, 0), Point(3, 3), Point(-1, 5)) poly = Polygon(Point(3, 4), Point(0, 0), Point(8, 7), Point(-1, 1), Point(19, -19)) t = Triangle(p1, p2, p3) assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) assert p.bisectors()[Point2D(0, 3)] == Ray2D(Point2D(0, 3), \ Point2D(sin(acos(2*sqrt(5)/5)/2), 3 - cos(acos(2*sqrt(5)/5)/2))) assert q.bisectors()[Point2D(-1, 5)] == \ Ray2D(Point2D(-1, 5), Point2D(-1 + sqrt(29)*(5*sin(acos(9*sqrt(145)/145)/2) + \ 2*cos(acos(9*sqrt(145)/145)/2))/29, sqrt(29)*(-5*cos(acos(9*sqrt(145)/145)/2) + \ 2*sin(acos(9*sqrt(145)/145)/2))/29 + 5)) assert poly.bisectors()[Point2D(-1, 1)] == Ray2D(Point2D(-1, 1), \ Point2D(-1 + sin(acos(sqrt(26)/26)/2 + pi/4), 1 - sin(-acos(sqrt(26)/26)/2 + pi/4))) def test_incenter(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \ == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2) def test_inradius(): assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1 def test_incircle(): assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \ == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2)) def test_exradii(): t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2)) assert t.exradii[t.sides[2]] == (-2 + sqrt(10)) def test_medians(): t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half)) def test_medial(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \ == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half)) def test_nine_point_circle(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \ == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4) def test_eulerline(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \ == Line(Point2D(0, 0), Point2D(S.Half, S.Half)) assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \ == Point2D(5, 5*sqrt(3)/3) assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \ == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2))) def test_intersection(): poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) poly2 = Polygon(Point(0, 1), Point(-5, 0), Point(0, -4), Point(0, Rational(1, 5)), Point(S.Half, -0.1), Point(1, 0), Point(0, 1)) assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0), Segment(Point(0, Rational(1, 5)), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0), Segment(Point(0, 0), Point(0, Rational(1, 5))), Segment(Point(1, 0), Point(0, 1))] assert poly1.intersection(Point(0, 0)) == [Point(0, 0)] assert poly1.intersection(Point(-12, -43)) == [] assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0), Point(0, 0), Point(Rational(1, 3), 0), Point(1, 0)] assert poly2.intersection(Line((-12, 12), (12, 12))) == [] assert poly2.intersection(Ray((-3, 4), (1, 0))) == [Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2), Point(0, 0)] assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)), Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)), Segment(Point(0, -4), Point(0, Rational(1, 5))), Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))), Segment(Point(0, 1), Point(-5, 0)), Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \ == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))] assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == [] def test_parameter_value(): t = Symbol('t') sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0)) assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)} q = Polygon((0, 0), (2, 1), (2, 4), (4, 0)) assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708 raises(ValueError, lambda: sq.parameter_value((5, 6), t)) raises(ValueError, lambda: sq.parameter_value(Circle(Point(0, 0), 1), t)) def test_issue_12966(): poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0)) t = Symbol('t') pt = poly.arbitrary_point(t) DELTA = 5/poly.perimeter assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)] def test_second_moment_of_area(): x, y = symbols('x, y') # triangle p1, p2, p3 = [(0, 0), (4, 0), (0, 2)] p = (0, 0) # equation of hypotenuse eq_y = (1-x/4)*2 I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4)) I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4)) I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4)) triangle = Polygon(p1, p2, p3) assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0 # rectangle p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)] I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4)) I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4)) I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4)) rectangle = Polygon(p1, p2, p3, p4) assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0 r = RegularPolygon(Point(0, 0), 5, 3) assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0) def test_first_moment(): a, b = symbols('a, b', positive=True) # rectangle p1 = Polygon((0, 0), (a, 0), (a, b), (0, b)) assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8) assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9) p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30)) assert p1.first_moment_of_area() == (4500, 6000) # triangle p2 = Polygon((0, 0), (a, 0), (a/2, b)) assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24) assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768) p2 = Polygon((0, 0), (12, 0), (12, 30)) assert p2.first_moment_of_area() == (S(1600)/3, -S(640)/3) def test_section_modulus_and_polar_second_moment_of_area(): a, b = symbols('a, b', positive=True) x, y = symbols('x, y') rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b)) assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x)) assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12 convex = RegularPolygon((0, 0), 1, 6) assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16)) assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8) concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1)) assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519)) assert concave.polar_second_moment_of_area() == Rational(-38669, 252) def test_cut_section(): # concave polygon p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3)) l = Line((0, 0), (Rational(9, 2), 3)) p1 = p.cut_section(l)[0] p2 = p.cut_section(l)[1] assert p1 == Polygon( Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3))) assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3), Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3))) # convex polygon p = RegularPolygon(Point2D(0, 0), 6, 6) s = p.cut_section(Line((0, 0), slope=1)) assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)), Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3))) assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3))) # case where line does not intersects but coincides with the edge of polygon a, b = 20, 10 t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)] p = Polygon(t1, t2, t3, t4) p1, p2 = p.cut_section(Line((0, b), slope=0)) assert p1 == None assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) p3, p4 = p.cut_section(Line((0, 0), slope=0)) assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) assert p4 == None # case where the line does not intersect with a polygon at all raises(ValueError, lambda: p.cut_section(Line((0, a), slope=0))) def test_type_of_triangle(): # Isoceles triangle p1 = Polygon(Point(0, 0), Point(5, 0), Point(2, 4)) assert p1.is_isosceles() == True assert p1.is_scalene() == False assert p1.is_equilateral() == False # Scalene triangle p2 = Polygon (Point(0, 0), Point(0, 2), Point(4, 0)) assert p2.is_isosceles() == False assert p2.is_scalene() == True assert p2.is_equilateral() == False # Equilateral triagle p3 = Polygon(Point(0, 0), Point(6, 0), Point(3, sqrt(27))) assert p3.is_isosceles() == True assert p3.is_scalene() == False assert p3.is_equilateral() == True def test_do_poly_distance(): # Non-intersecting polygons square1 = Polygon (Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0)) triangle1 = Polygon(Point(1, 2), Point(2, 2), Point(2, 1)) assert square1._do_poly_distance(triangle1) == sqrt(2)/2 # Polygons which sides intersect square2 = Polygon(Point(1, 0), Point(2, 0), Point(2, 1), Point(1, 1)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert square1._do_poly_distance(square2) == 0 # Polygons which bodies intersect triangle2 = Polygon(Point(0, -1), Point(2, -1), Point(S.Half, S.Half)) with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert triangle2._do_poly_distance(square1) == 0
80f1d2d8c87d810a4b6d26021d998d715a0b46fda4e3fd0726f82ed9c138d535
from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.parsing.ast_parser import parse_expr from sympy.testing.pytest import raises from sympy.core.sympify import SympifyError def test_parse_expr(): a, b = symbols('a, b') # tests issue_16393 assert parse_expr('a + b', {}) == a + b raises(SympifyError, lambda: parse_expr('a + ', {})) # tests Transform.visit_Num assert parse_expr('1 + 2', {}) == S(3) assert parse_expr('1 + 2.0', {}) == S(3.0) # tests Transform.visit_Name assert parse_expr('Rational(1, 2)', {}) == S(1)/2 assert parse_expr('a', {'a': a}) == a
bd809310bb6fee4e303af0f0b6a612453d1b138019de3eaffc66386e8acd19c7
# -*- coding: utf-8 -*- import sys from sympy.assumptions import Q from sympy.core import Symbol, Function, Float, Rational, Integer, I, Mul, Pow, Eq from sympy.functions import exp, factorial, factorial2, sin from sympy.logic import And from sympy.series import Limit from sympy.testing.pytest import raises, skip from sympy.parsing.sympy_parser import ( parse_expr, standard_transformations, rationalize, TokenError, split_symbols, implicit_multiplication, convert_equals_signs, convert_xor, function_exponentiation, lambda_notation, auto_symbol, repeated_decimals, implicit_multiplication_application, auto_number, factorial_notation, implicit_application, _transformation, T ) def test_sympy_parser(): x = Symbol('x') inputs = { '2*x': 2 * x, '3.00': Float(3), '22/7': Rational(22, 7), '2+3j': 2 + 3*I, 'exp(x)': exp(x), 'x!': factorial(x), 'x!!': factorial2(x), '(x + 1)! - 1': factorial(x + 1) - 1, '3.[3]': Rational(10, 3), '.0[3]': Rational(1, 30), '3.2[3]': Rational(97, 30), '1.3[12]': Rational(433, 330), '1 + 3.[3]': Rational(13, 3), '1 + .0[3]': Rational(31, 30), '1 + 3.2[3]': Rational(127, 30), '.[0011]': Rational(1, 909), '0.1[00102] + 1': Rational(366697, 333330), '1.[0191]': Rational(10190, 9999), '10!': 3628800, '-(2)': -Integer(2), '[-1, -2, 3]': [Integer(-1), Integer(-2), Integer(3)], 'Symbol("x").free_symbols': x.free_symbols, "S('S(3).n(n=3)')": 3.00, 'factorint(12, visual=True)': Mul( Pow(2, 2, evaluate=False), Pow(3, 1, evaluate=False), evaluate=False), 'Limit(sin(x), x, 0, dir="-")': Limit(sin(x), x, 0, dir='-'), 'Q.even(x)': Q.even(x), } for text, result in inputs.items(): assert parse_expr(text) == result raises(TypeError, lambda: parse_expr('x', standard_transformations)) raises(TypeError, lambda: parse_expr('x', transformations=lambda x,y: 1)) raises(TypeError, lambda: parse_expr('x', transformations=(lambda x,y: 1,))) raises(TypeError, lambda: parse_expr('x', transformations=((),))) raises(TypeError, lambda: parse_expr('x', {}, [], [])) raises(TypeError, lambda: parse_expr('x', [], [], {})) raises(TypeError, lambda: parse_expr('x', [], [], {})) def test_rationalize(): inputs = { '0.123': Rational(123, 1000) } transformations = standard_transformations + (rationalize,) for text, result in inputs.items(): assert parse_expr(text, transformations=transformations) == result def test_factorial_fail(): inputs = ['x!!!', 'x!!!!', '(!)'] for text in inputs: try: parse_expr(text) assert False except TokenError: assert True def test_repeated_fail(): inputs = ['1[1]', '.1e1[1]', '0x1[1]', '1.1j[1]', '1.1[1 + 1]', '0.1[[1]]', '0x1.1[1]'] # All are valid Python, so only raise TypeError for invalid indexing for text in inputs: raises(TypeError, lambda: parse_expr(text)) inputs = ['0.1[', '0.1[1', '0.1[]'] for text in inputs: raises((TokenError, SyntaxError), lambda: parse_expr(text)) def test_repeated_dot_only(): assert parse_expr('.[1]') == Rational(1, 9) assert parse_expr('1 + .[1]') == Rational(10, 9) def test_local_dict(): local_dict = { 'my_function': lambda x: x + 2 } inputs = { 'my_function(2)': Integer(4) } for text, result in inputs.items(): assert parse_expr(text, local_dict=local_dict) == result def test_local_dict_split_implmult(): t = standard_transformations + (split_symbols, implicit_multiplication,) w = Symbol('w', real=True) y = Symbol('y') assert parse_expr('yx', local_dict={'x':w}, transformations=t) == y*w def test_local_dict_symbol_to_fcn(): x = Symbol('x') d = {'foo': Function('bar')} assert parse_expr('foo(x)', local_dict=d) == d['foo'](x) d = {'foo': Symbol('baz')} raises(TypeError, lambda: parse_expr('foo(x)', local_dict=d)) def test_global_dict(): global_dict = { 'Symbol': Symbol } inputs = { 'Q & S': And(Symbol('Q'), Symbol('S')) } for text, result in inputs.items(): assert parse_expr(text, global_dict=global_dict) == result def test_issue_2515(): raises(TokenError, lambda: parse_expr('(()')) raises(TokenError, lambda: parse_expr('"""')) def test_issue_7663(): x = Symbol('x') e = '2*(x+1)' assert parse_expr(e, evaluate=0) == parse_expr(e, evaluate=False) assert parse_expr(e, evaluate=0).equals(2*(x+1)) def test_recursive_evaluate_false_10560(): inputs = { '4*-3' : '4*-3', '-4*3' : '(-4)*3', "-2*x*y": '(-2)*x*y', "x*-4*x": "x*(-4)*x" } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_function_evaluate_false(): inputs = [ 'Abs(0)', 'im(0)', 're(0)', 'sign(0)', 'arg(0)', 'conjugate(0)', 'acos(0)', 'acot(0)', 'acsc(0)', 'asec(0)', 'asin(0)', 'atan(0)', 'acosh(0)', 'acoth(0)', 'acsch(0)', 'asech(0)', 'asinh(0)', 'atanh(0)', 'cos(0)', 'cot(0)', 'csc(0)', 'sec(0)', 'sin(0)', 'tan(0)', 'cosh(0)', 'coth(0)', 'csch(0)', 'sech(0)', 'sinh(0)', 'tanh(0)', 'exp(0)', 'log(0)', 'sqrt(0)', ] for case in inputs: expr = parse_expr(case, evaluate=False) assert case == str(expr) != str(expr.doit()) assert str(parse_expr('ln(0)', evaluate=False)) == 'log(0)' assert str(parse_expr('cbrt(0)', evaluate=False)) == '0**(1/3)' def test_issue_10773(): inputs = { '-10/5': '(-10)/5', '-10/-5' : '(-10)/(-5)', } for text, result in inputs.items(): assert parse_expr(text, evaluate=False) == parse_expr(result, evaluate=False) def test_split_symbols(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') xy = Symbol('xy') assert parse_expr("xy") == xy assert parse_expr("xy", transformations=transformations) == x*y def test_split_symbols_function(): transformations = standard_transformations + \ (split_symbols, implicit_multiplication,) x = Symbol('x') y = Symbol('y') a = Symbol('a') f = Function('f') assert parse_expr("ay(x+1)", transformations=transformations) == a*y*(x+1) assert parse_expr("af(x+1)", transformations=transformations, local_dict={'f':f}) == a*f(x+1) def test_functional_exponent(): t = standard_transformations + (convert_xor, function_exponentiation) x = Symbol('x') y = Symbol('y') a = Symbol('a') yfcn = Function('y') assert parse_expr("sin^2(x)", transformations=t) == (sin(x))**2 assert parse_expr("sin^y(x)", transformations=t) == (sin(x))**y assert parse_expr("exp^y(x)", transformations=t) == (exp(x))**y assert parse_expr("E^y(x)", transformations=t) == exp(yfcn(x)) assert parse_expr("a^y(x)", transformations=t) == a**(yfcn(x)) def test_match_parentheses_implicit_multiplication(): transformations = standard_transformations + \ (implicit_multiplication,) raises(TokenError, lambda: parse_expr('(1,2),(3,4]',transformations=transformations)) def test_convert_equals_signs(): transformations = standard_transformations + \ (convert_equals_signs, ) x = Symbol('x') y = Symbol('y') assert parse_expr("1*2=x", transformations=transformations) == Eq(2, x) assert parse_expr("y = x", transformations=transformations) == Eq(y, x) assert parse_expr("(2*y = x) = False", transformations=transformations) == Eq(Eq(2*y, x), False) def test_parse_function_issue_3539(): x = Symbol('x') f = Function('f') assert parse_expr('f(x)') == f(x) def test_split_symbols_numeric(): transformations = ( standard_transformations + (implicit_multiplication_application,)) n = Symbol('n') expr1 = parse_expr('2**n * 3**n') expr2 = parse_expr('2**n3**n', transformations=transformations) assert expr1 == expr2 == 2**n*3**n expr1 = parse_expr('n12n34', transformations=transformations) assert expr1 == n*12*n*34 def test_unicode_names(): assert parse_expr('α') == Symbol('α') def test_python3_features(): # Make sure the tokenizer can handle Python 3-only features if sys.version_info < (3, 7): skip("test_python3_features requires Python 3.7 or newer") assert parse_expr("123_456") == 123456 assert parse_expr("1.2[3_4]") == parse_expr("1.2[34]") == Rational(611, 495) assert parse_expr("1.2[012_012]") == parse_expr("1.2[012012]") == Rational(400, 333) assert parse_expr('.[3_4]') == parse_expr('.[34]') == Rational(34, 99) assert parse_expr('.1[3_4]') == parse_expr('.1[34]') == Rational(133, 990) assert parse_expr('123_123.123_123[3_4]') == parse_expr('123123.123123[34]') == Rational(12189189189211, 99000000) def test_issue_19501(): x = Symbol('x') eq = parse_expr('E**x(1+x)', local_dict={'x': x}, transformations=( standard_transformations + (implicit_multiplication_application,))) assert eq.free_symbols == {x} def test_parsing_definitions(): from sympy.abc import x assert len(_transformation) == 12 # if this changes, extend below assert _transformation[0] == lambda_notation assert _transformation[1] == auto_symbol assert _transformation[2] == repeated_decimals assert _transformation[3] == auto_number assert _transformation[4] == factorial_notation assert _transformation[5] == implicit_multiplication_application assert _transformation[6] == convert_xor assert _transformation[7] == implicit_application assert _transformation[8] == implicit_multiplication assert _transformation[9] == convert_equals_signs assert _transformation[10] == function_exponentiation assert _transformation[11] == rationalize assert T[:5] == T[0,1,2,3,4] == standard_transformations t = _transformation assert T[-1, 0] == (t[len(t) - 1], t[0]) assert T[:5, 8] == standard_transformations + (t[8],) assert parse_expr('0.3x^2', transformations='all') == 3*x**2/10 assert parse_expr('sin 3x', transformations='implicit') == sin(3*x) def test_builtins(): cases = [ ('abs(x)', 'Abs(x)'), ('max(x, y)', 'Max(x, y)'), ('min(x, y)', 'Min(x, y)'), ('pow(x, y)', 'Pow(x, y)'), ] for built_in_func_call, sympy_func_call in cases: assert parse_expr(built_in_func_call) == parse_expr(sympy_func_call) assert str(parse_expr('pow(38, -1, 97)')) == '23'
dd9d9ca24832586d32d17c51c37aa2e1388695a44ec07e2c8ebdb7478b0964d7
from typing import Type from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import expand from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.polys.polyroots import roots from sympy.polys.polytools import (cancel, degree) from sympy.core.containers import Tuple from sympy.core.evalf import EvalfMixin from sympy.core.logic import fuzzy_and from sympy.core.numbers import Integer, ComplexInfinity from sympy.core.symbol import Dummy from sympy.core.sympify import sympify, _sympify from sympy.polys import Poly, rootof from sympy.series import limit from sympy.matrices import ImmutableMatrix, eye from sympy.matrices.expressions import MatMul, MatAdd from mpmath.libmp.libmpf import prec_to_dps __all__ = ['TransferFunction', 'Series', 'MIMOSeries', 'Parallel', 'MIMOParallel', 'Feedback', 'MIMOFeedback', 'TransferFunctionMatrix'] def _roots(poly, var): """ like roots, but works on higher-order polynomials. """ r = roots(poly, var, multiple=True) n = degree(poly) if len(r) != n: r = [rootof(poly, var, k) for k in range(n)] return r class LinearTimeInvariant(Basic, EvalfMixin): """A common class for all the Linear Time-Invariant Dynamical Systems.""" _clstype: Type # Users should not directly interact with this class. def __new__(cls, *system, **kwargs): if cls is LinearTimeInvariant: raise NotImplementedError('The LTICommon class is not meant to be used directly.') return super(LinearTimeInvariant, cls).__new__(cls, *system, **kwargs) @classmethod def _check_args(cls, args): if not args: raise ValueError("Atleast 1 argument must be passed.") if not all(isinstance(arg, cls._clstype) for arg in args): raise TypeError(f"All arguments must be of type {cls._clstype}.") var_set = {arg.var for arg in args} if len(var_set) != 1: raise ValueError("All transfer functions should use the same complex variable" f" of the Laplace transform. {len(var_set)} different values found.") @property def is_SISO(self): """Returns `True` if the passed LTI system is SISO else returns False.""" return self._is_SISO class SISOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the SISO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = True class MIMOLinearTimeInvariant(LinearTimeInvariant): """A common class for all the MIMO Linear Time-Invariant Dynamical Systems.""" # Users should not directly interact with this class. _is_SISO = False SISOLinearTimeInvariant._clstype = SISOLinearTimeInvariant MIMOLinearTimeInvariant._clstype = MIMOLinearTimeInvariant def _check_other_SISO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], SISOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper def _check_other_MIMO(func): def wrapper(*args, **kwargs): if not isinstance(args[-1], MIMOLinearTimeInvariant): return NotImplemented else: return func(*args, **kwargs) return wrapper class TransferFunction(SISOLinearTimeInvariant): r""" A class for representing LTI (Linear, time-invariant) systems that can be strictly described by ratio of polynomials in the Laplace transform complex variable. The arguments are ``num``, ``den``, and ``var``, where ``num`` and ``den`` are numerator and denominator polynomials of the ``TransferFunction`` respectively, and the third argument is a complex variable of the Laplace transform used by these polynomials of the transfer function. ``num`` and ``den`` can be either polynomials or numbers, whereas ``var`` has to be a Symbol. Explanation =========== Generally, a dynamical system representing a physical model can be described in terms of Linear Ordinary Differential Equations like - $\small{b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y= a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x}$ Here, $x$ is the input signal and $y$ is the output signal and superscript on both is the order of derivative (not exponent). Derivative is taken with respect to the independent variable, $t$. Also, generally $m$ is greater than $n$. It is not feasible to analyse the properties of such systems in their native form therefore, we use mathematical tools like Laplace transform to get a better perspective. Taking the Laplace transform of both the sides in the equation (at zero initial conditions), we get - $\small{\mathcal{L}[b_{m}y^{\left(m\right)}+b_{m-1}y^{\left(m-1\right)}+\dots+b_{1}y^{\left(1\right)}+b_{0}y]= \mathcal{L}[a_{n}x^{\left(n\right)}+a_{n-1}x^{\left(n-1\right)}+\dots+a_{1}x^{\left(1\right)}+a_{0}x]}$ Using the linearity property of Laplace transform and also considering zero initial conditions (i.e. $\small{y(0^{-}) = 0}$, $\small{y'(0^{-}) = 0}$ and so on), the equation above gets translated to - $\small{b_{m}\mathcal{L}[y^{\left(m\right)}]+\dots+b_{1}\mathcal{L}[y^{\left(1\right)}]+b_{0}\mathcal{L}[y]= a_{n}\mathcal{L}[x^{\left(n\right)}]+\dots+a_{1}\mathcal{L}[x^{\left(1\right)}]+a_{0}\mathcal{L}[x]}$ Now, applying Derivative property of Laplace transform, $\small{b_{m}s^{m}\mathcal{L}[y]+\dots+b_{1}s\mathcal{L}[y]+b_{0}\mathcal{L}[y]= a_{n}s^{n}\mathcal{L}[x]+\dots+a_{1}s\mathcal{L}[x]+a_{0}\mathcal{L}[x]}$ Here, the superscript on $s$ is **exponent**. Note that the zero initial conditions assumption, mentioned above, is very important and cannot be ignored otherwise the dynamical system cannot be considered time-independent and the simplified equation above cannot be reached. Collecting $\mathcal{L}[y]$ and $\mathcal{L}[x]$ terms from both the sides and taking the ratio $\frac{ \mathcal{L}\left\{y\right\} }{ \mathcal{L}\left\{x\right\} }$, we get the typical rational form of transfer function. The numerator of the transfer function is, therefore, the Laplace transform of the output signal (The signals are represented as functions of time) and similarly, the denominator of the transfer function is the Laplace transform of the input signal. It is also a convention to denote the input and output signal's Laplace transform with capital alphabets like shown below. $H(s) = \frac{Y(s)}{X(s)} = \frac{ \mathcal{L}\left\{y(t)\right\} }{ \mathcal{L}\left\{x(t)\right\} }$ $s$, also known as complex frequency, is a complex variable in the Laplace domain. It corresponds to the equivalent variable $t$, in the time domain. Transfer functions are sometimes also referred to as the Laplace transform of the system's impulse response. Transfer function, $H$, is represented as a rational function in $s$ like, $H(s) =\ \frac{a_{n}s^{n}+a_{n-1}s^{n-1}+\dots+a_{1}s+a_{0}}{b_{m}s^{m}+b_{m-1}s^{m-1}+\dots+b_{1}s+b_{0}}$ Parameters ========== num : Expr, Number The numerator polynomial of the transfer function. den : Expr, Number The denominator polynomial of the transfer function. var : Symbol Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== TypeError When ``var`` is not a Symbol or when ``num`` or ``den`` is not a number or a polynomial. ValueError When ``den`` is zero. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf1 TransferFunction(a + s, s**2 + s + 1, s) >>> tf1.num a + s >>> tf1.den s**2 + s + 1 >>> tf1.var s >>> tf1.args (a + s, s**2 + s + 1, s) Any complex variable can be used for ``var``. >>> tf2 = TransferFunction(a*p**3 - a*p**2 + s*p, p + a**2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) >>> tf3 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf3 TransferFunction((p - 1)*(p + 3), (p - 1)*(p + 5), p) To negate a transfer function the ``-`` operator can be prepended: >>> tf4 = TransferFunction(-a + s, p**2 + s, p) >>> -tf4 TransferFunction(a - s, p**2 + s, p) >>> tf5 = TransferFunction(s**4 - 2*s**3 + 5*s + 4, s + 4, s) >>> -tf5 TransferFunction(-s**4 + 2*s**3 - 5*s - 4, s + 4, s) You can use a Float or an Integer (or other constants) as numerator and denominator: >>> tf6 = TransferFunction(1/2, 4, s) >>> tf6.num 0.500000000000000 >>> tf6.den 4 >>> tf6.var s >>> tf6.args (0.5, 4, s) You can take the integer power of a transfer function using the ``**`` operator: >>> tf7 = TransferFunction(s + a, s - a, s) >>> tf7**3 TransferFunction((a + s)**3, (-a + s)**3, s) >>> tf7**0 TransferFunction(1, 1, s) >>> tf8 = TransferFunction(p + 4, p - 3, p) >>> tf8**-1 TransferFunction(p - 3, p + 4, p) Addition, subtraction, and multiplication of transfer functions can form unevaluated ``Series`` or ``Parallel`` objects. >>> tf9 = TransferFunction(s + 1, s**2 + s + 1, s) >>> tf10 = TransferFunction(s - p, s + 3, s) >>> tf11 = TransferFunction(4*s**2 + 2*s - 4, s - 1, s) >>> tf12 = TransferFunction(1 - s, s**2 + 4, s) >>> tf9 + tf10 Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - tf11 Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-4*s**2 - 2*s + 4, s - 1, s)) >>> tf9 * tf10 Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-p + s, s + 3, s)) >>> tf10 - (tf9 + tf12) Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(-s - 1, s**2 + s + 1, s), TransferFunction(s - 1, s**2 + 4, s)) >>> tf10 - (tf9 * tf12) Parallel(TransferFunction(-p + s, s + 3, s), Series(TransferFunction(-1, 1, s), TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s))) >>> tf11 * tf10 * tf9 Series(TransferFunction(4*s**2 + 2*s - 4, s - 1, s), TransferFunction(-p + s, s + 3, s), TransferFunction(s + 1, s**2 + s + 1, s)) >>> tf9 * tf11 + tf10 * tf12 Parallel(Series(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s)), Series(TransferFunction(-p + s, s + 3, s), TransferFunction(1 - s, s**2 + 4, s))) >>> (tf9 + tf12) * (tf10 + tf11) Series(Parallel(TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(1 - s, s**2 + 4, s)), Parallel(TransferFunction(-p + s, s + 3, s), TransferFunction(4*s**2 + 2*s - 4, s - 1, s))) These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function using ``.doit()`` method or by ``.rewrite(TransferFunction)``. >>> ((tf9 + tf10) * tf12).doit() TransferFunction((1 - s)*((-p + s)*(s**2 + s + 1) + (s + 1)*(s + 3)), (s + 3)*(s**2 + 4)*(s**2 + s + 1), s) >>> (tf9 * tf10 - tf11 * tf12).rewrite(TransferFunction) TransferFunction(-(1 - s)*(s + 3)*(s**2 + s + 1)*(4*s**2 + 2*s - 4) + (-p + s)*(s - 1)*(s + 1)*(s**2 + 4), (s - 1)*(s + 3)*(s**2 + 4)*(s**2 + s + 1), s) See Also ======== Feedback, Series, Parallel References ========== .. [1] https://en.wikipedia.org/wiki/Transfer_function .. [2] https://en.wikipedia.org/wiki/Laplace_transform """ def __new__(cls, num, den, var): num, den = _sympify(num), _sympify(den) if not isinstance(var, Symbol): raise TypeError("Variable input must be a Symbol.") if den == 0: raise ValueError("TransferFunction cannot have a zero denominator.") if (((isinstance(num, Expr) and num.has(Symbol)) or num.is_number) and ((isinstance(den, Expr) and den.has(Symbol)) or den.is_number)): obj = super(TransferFunction, cls).__new__(cls, num, den, var) obj._num = num obj._den = den obj._var = var return obj else: raise TypeError("Unsupported type for numerator or denominator of TransferFunction.") @classmethod def from_rational_expression(cls, expr, var=None): r""" Creates a new ``TransferFunction`` efficiently from a rational expression. Parameters ========== expr : Expr, Number The rational expression representing the ``TransferFunction``. var : Symbol, optional Complex variable of the Laplace transform used by the polynomials of the transfer function. Raises ====== ValueError When ``expr`` is of type ``Number`` and optional parameter ``var`` is not passed. When ``expr`` has more than one variables and an optional parameter ``var`` is not passed. ZeroDivisionError When denominator of ``expr`` is zero or it has ``ComplexInfinity`` in its numerator. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> expr1 = (s + 5)/(3*s**2 + 2*s + 1) >>> tf1 = TransferFunction.from_rational_expression(expr1) >>> tf1 TransferFunction(s + 5, 3*s**2 + 2*s + 1, s) >>> expr2 = (a*p**3 - a*p**2 + s*p)/(p + a**2) # Expr with more than one variables >>> tf2 = TransferFunction.from_rational_expression(expr2, p) >>> tf2 TransferFunction(a*p**3 - a*p**2 + p*s, a**2 + p, p) In case of conflict between two or more variables in a expression, SymPy will raise a ``ValueError``, if ``var`` is not passed by the user. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1)) Traceback (most recent call last): ... ValueError: Conflicting values found for positional argument `var` ({a, s}). Specify it manually. This can be corrected by specifying the ``var`` parameter manually. >>> tf = TransferFunction.from_rational_expression((a + a*s)/(s**2 + s + 1), s) >>> tf TransferFunction(a*s + a, s**2 + s + 1, s) ``var`` also need to be specified when ``expr`` is a ``Number`` >>> tf3 = TransferFunction.from_rational_expression(10, s) >>> tf3 TransferFunction(10, 1, s) """ expr = _sympify(expr) if var is None: _free_symbols = expr.free_symbols _len_free_symbols = len(_free_symbols) if _len_free_symbols == 1: var = list(_free_symbols)[0] elif _len_free_symbols == 0: raise ValueError("Positional argument `var` not found in the TransferFunction defined. Specify it manually.") else: raise ValueError("Conflicting values found for positional argument `var` ({}). Specify it manually.".format(_free_symbols)) _num, _den = expr.as_numer_denom() if _den == 0 or _num.has(ComplexInfinity): raise ZeroDivisionError("TransferFunction cannot have a zero denominator.") return cls(_num, _den, var) @property def num(self): """ Returns the numerator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s**2 + p*s + 3, s - 4, s) >>> G1.num p*s + s**2 + 3 >>> G2 = TransferFunction((p + 5)*(p - 3), (p - 3)*(p + 1), p) >>> G2.num (p - 3)*(p + 5) """ return self._num @property def den(self): """ Returns the denominator polynomial of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(s + 4, p**3 - 2*p + 4, s) >>> G1.den p**3 - 2*p + 4 >>> G2 = TransferFunction(3, 4, s) >>> G2.den 4 """ return self._den @property def var(self): """ Returns the complex variable of the Laplace transform used by the polynomials of the transfer function. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G1.var p >>> G2 = TransferFunction(0, s - 5, s) >>> G2.var s """ return self._var def _eval_subs(self, old, new): arg_num = self.num.subs(old, new) arg_den = self.den.subs(old, new) argnew = TransferFunction(arg_num, arg_den, self.var) return self if old == self.var else argnew def _eval_evalf(self, prec): return TransferFunction( self.num._eval_evalf(prec), self.den._eval_evalf(prec), self.var) def _eval_simplify(self, **kwargs): tf = cancel(Mul(self.num, 1/self.den, evaluate=False), expand=False).as_numer_denom() num_, den_ = tf[0], tf[1] return TransferFunction(num_, den_, self.var) def expand(self): """ Returns the transfer function with numerator and denominator in expanded form. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> G1 = TransferFunction((a - s)**2, (s**2 + a)**2, s) >>> G1.expand() TransferFunction(a**2 - 2*a*s + s**2, a**2 + 2*a*s**2 + s**4, s) >>> G2 = TransferFunction((p + 3*b)*(p - b), (p - b)*(p + 2*b), p) >>> G2.expand() TransferFunction(-3*b**2 + 2*b*p + p**2, -2*b**2 + b*p + p**2, p) """ return TransferFunction(expand(self.num), expand(self.den), self.var) def dc_gain(self): """ Computes the gain of the response as the frequency approaches zero. The DC gain is infinite for systems with pure integrators. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(s + 3, s**2 - 9, s) >>> tf1.dc_gain() -1/3 >>> tf2 = TransferFunction(p**2, p - 3 + p**3, p) >>> tf2.dc_gain() 0 >>> tf3 = TransferFunction(a*p**2 - b, s + b, s) >>> tf3.dc_gain() (a*p**2 - b)/b >>> tf4 = TransferFunction(1, s, s) >>> tf4.dc_gain() oo """ m = Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) return limit(m, self.var, 0) def poles(self): """ Returns the poles of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.poles() [-5, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.poles() [I, I, -I, -I] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.poles() [-p/a] """ return _roots(Poly(self.den, self.var), self.var) def zeros(self): """ Returns the zeros of a transfer function. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) >>> tf1.zeros() [-3, 1] >>> tf2 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) >>> tf2.zeros() [1, 1] >>> tf3 = TransferFunction(s**2, a*s + p, s) >>> tf3.zeros() [0, 0] """ return _roots(Poly(self.num, self.var), self.var) def is_stable(self): """ Returns True if the transfer function is asymptotically stable; else False. This would not check the marginal or conditional stability of the system. Examples ======== >>> from sympy.abc import s, p, a >>> from sympy import symbols >>> from sympy.physics.control.lti import TransferFunction >>> q, r = symbols('q, r', negative=True) >>> tf1 = TransferFunction((1 - s)**2, (s + 1)**2, s) >>> tf1.is_stable() True >>> tf2 = TransferFunction((1 - p)**2, (s**2 + 1)**2, s) >>> tf2.is_stable() False >>> tf3 = TransferFunction(4, q*s - r, s) >>> tf3.is_stable() False >>> tf4 = TransferFunction(p + 1, a*p - s**2, p) >>> tf4.is_stable() is None # Not enough info about the symbols to determine stability True """ return fuzzy_and(pole.as_real_imag()[0].is_negative for pole in self.poles()) def __add__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Parallel(self, *arg_list) else: raise ValueError("TransferFunction cannot be added with {}.". format(type(other))) def __radd__(self, other): return self + other def __sub__(self, other): if isinstance(other, (TransferFunction, Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Parallel(self, -other) elif isinstance(other, Parallel): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = [-i for i in list(other.args)] return Parallel(self, *arg_list) else: raise ValueError("{} cannot be subtracted from a TransferFunction." .format(type(other))) def __rsub__(self, other): return -self + other def __mul__(self, other): if isinstance(other, (TransferFunction, Parallel)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") return Series(self, other) elif isinstance(other, Series): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") arg_list = list(other.args) return Series(self, *arg_list) else: raise ValueError("TransferFunction cannot be multiplied with {}." .format(type(other))) __rmul__ = __mul__ def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], (Series, TransferFunction))): if not self.var == other.var: raise ValueError("Both TransferFunction and Parallel should use the" " same complex variable of the Laplace transform.") if other.args[1] == self: # plant and controller with unit feedback. return Feedback(self, other.args[0]) other_arg_list = list(other.args[1].args) if isinstance(other.args[1], Series) else other.args[1] if other_arg_list == other.args[1]: return Feedback(self, other_arg_list) elif self in other_arg_list: other_arg_list.remove(self) else: return Feedback(self, Series(*other_arg_list)) if len(other_arg_list) == 1: return Feedback(self, *other_arg_list) else: return Feedback(self, Series(*other_arg_list)) else: raise ValueError("TransferFunction cannot be divided by {}.". format(type(other))) __rtruediv__ = __truediv__ def __pow__(self, p): p = sympify(p) if not isinstance(p, Integer): raise ValueError("Exponent must be an Integer.") if p == 0: return TransferFunction(1, 1, self.var) elif p > 0: num_, den_ = self.num**p, self.den**p else: p = abs(p) num_, den_ = self.den**p, self.num**p return TransferFunction(num_, den_, self.var) def __neg__(self): return TransferFunction(-self.num, self.den, self.var) @property def is_proper(self): """ Returns True if degree of the numerator polynomial is less than or equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf1.is_proper False >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*p + 2, p) >>> tf2.is_proper True """ return degree(self.num, self.var) <= degree(self.den, self.var) @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial is strictly less than degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_strictly_proper False >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf2.is_strictly_proper True """ return degree(self.num, self.var) < degree(self.den, self.var) @property def is_biproper(self): """ Returns True if degree of the numerator polynomial is equal to degree of the denominator polynomial, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf1.is_biproper True >>> tf2 = TransferFunction(p**2, p + a, p) >>> tf2.is_biproper False """ return degree(self.num, self.var) == degree(self.den, self.var) def to_expr(self): """ Converts a ``TransferFunction`` object to SymPy Expr. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction >>> from sympy import Expr >>> tf1 = TransferFunction(s, a*s**2 + 1, s) >>> tf1.to_expr() s/(a*s**2 + 1) >>> isinstance(_, Expr) True >>> tf2 = TransferFunction(1, (p + 3*b)*(b - p), p) >>> tf2.to_expr() 1/((b - p)*(3*b + p)) >>> tf3 = TransferFunction((s - 2)*(s - 3), (s - 1)*(s - 2)*(s - 3), s) >>> tf3.to_expr() ((s - 3)*(s - 2))/(((s - 3)*(s - 2)*(s - 1))) """ if self.num != 1: return Mul(self.num, Pow(self.den, -1, evaluate=False), evaluate=False) else: return Pow(self.den, -1, evaluate=False) def _flatten_args(args, _cls): temp_args = [] for arg in args: if isinstance(arg, _cls): temp_args.extend(arg.args) else: temp_args.append(arg) return tuple(temp_args) def _dummify_args(_arg, var): dummy_dict = {} dummy_arg_list = [] for arg in _arg: _s = Dummy() dummy_dict[_s] = var dummy_arg = arg.subs({var: _s}) dummy_arg_list.append(dummy_arg) return dummy_arg_list, dummy_dict class Series(SISOLinearTimeInvariant): r""" A class for representing a series configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Series(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, SISO in this case. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> S1 = Series(tf1, tf2) >>> S1 Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> S1.var s >>> S2 = Series(tf2, Parallel(tf3, -tf1)) >>> S2 Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Parallel(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> S2.var s >>> S3 = Series(Parallel(tf1, tf2), Parallel(tf2, tf3)) >>> S3 Series(Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> S3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> S3 = Series(tf1, tf2, -tf3) >>> S3.doit() TransferFunction(-p**2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> S4 = Series(tf2, Parallel(tf1, -tf3)) >>> S4.doit() TransferFunction((s**3 - 2)*(-p**2*(-p + s) + (p + s)*(a*p**2 + b*s)), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== MIMOSeries, Parallel, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Series) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Series(G1, G2).var p >>> Series(-G3, Parallel(G1, G2)).var p """ return self.args[0].var def doit(self, **kwargs): """ Returns the resultant transfer function obtained after evaluating the transfer functions in series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Series(tf2, tf1).doit() TransferFunction((s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s) >>> Series(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-a*p**2 - b*s), (-p + s)*(s**4 + 5*s + 6), s) """ _num_arg = (arg.doit().num for arg in self.args) _den_arg = (arg.doit().den for arg in self.args) res_num = Mul(*_num_arg, evaluate=True) res_den = Mul(*_den_arg, evaluate=True) return TransferFunction(res_num, res_den, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): if isinstance(other, Parallel): arg_list = list(other.args) return Parallel(self, *arg_list) return Parallel(self, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): arg_list = list(self.args) return Series(*arg_list, other) def __truediv__(self, other): if (isinstance(other, Parallel) and len(other.args) == 2 and isinstance(other.args[0], TransferFunction) and isinstance(other.args[1], Series)): if not self.var == other.var: raise ValueError("All the transfer functions should use the same complex variable " "of the Laplace transform.") self_arg_list = set(list(self.args)) other_arg_list = set(list(other.args[1].args)) res = list(self_arg_list ^ other_arg_list) if len(res) == 0: return Feedback(self, other.args[0]) elif len(res) == 1: return Feedback(self, *res) else: return Feedback(self, Series(*res)) else: raise ValueError("This transfer function expression is invalid.") def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Mul(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> S1 = Series(-tf2, tf1) >>> S1.is_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**2 + 5*s + 6, s) >>> tf3 = TransferFunction(1, s**2 + s + 1, s) >>> S1 = Series(tf1, tf2) >>> S1.is_strictly_proper False >>> S2 = Series(tf1, tf2, tf3) >>> S2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): r""" Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p, s**2, s) >>> tf3 = TransferFunction(s**2, 1, s) >>> S1 = Series(tf1, -tf2) >>> S1.is_biproper False >>> S2 = Series(tf2, tf3) >>> S2.is_biproper True """ return self.doit().is_biproper def _mat_mul_compatible(*args): """To check whether shapes are compatible for matrix mul.""" return all(args[i].num_outputs == args[i+1].num_inputs for i in range(len(args)-1)) class MIMOSeries(MIMOLinearTimeInvariant): r""" A class for representing a series configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO systems in a series configuration. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOSeries(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. ``num_outputs`` of the MIMO system is not equal to the ``num_inputs`` of its adjacent MIMO system. (Matrix multiplication constraint, basically) TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import MIMOSeries, TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> mat_a = Matrix([[5*s], [5]]) # 2 Outputs 1 Input >>> mat_b = Matrix([[5, 1/(6*s**2)]]) # 1 Output 2 Inputs >>> mat_c = Matrix([[1, s], [5/s, 1]]) # 2 Outputs 2 Inputs >>> tfm_a = TransferFunctionMatrix.from_Matrix(mat_a, s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(mat_b, s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(mat_c, s) >>> MIMOSeries(tfm_c, tfm_b, tfm_a) MIMOSeries(TransferFunctionMatrix(((TransferFunction(1, 1, s), TransferFunction(s, 1, s)), (TransferFunction(5, s, s), TransferFunction(1, 1, s)))), TransferFunctionMatrix(((TransferFunction(5, 1, s), TransferFunction(1, 6*s**2, s)),)), TransferFunctionMatrix(((TransferFunction(5*s, 1, s),), (TransferFunction(5, 1, s),)))) >>> pprint(_, use_unicode=False) # For Better Visualization [5*s] [1 s] [---] [5 1 ] [- -] [ 1 ] [- ----] [1 1] [ ] *[1 2] *[ ] [ 5 ] [ 6*s ]{t} [5 1] [ - ] [- -] [ 1 ]{t} [s 1]{t} >>> MIMOSeries(tfm_c, tfm_b, tfm_a).doit() TransferFunctionMatrix(((TransferFunction(150*s**4 + 25*s, 6*s**3, s), TransferFunction(150*s**4 + 5*s, 6*s**2, s)), (TransferFunction(150*s**3 + 25, 6*s**3, s), TransferFunction(150*s**3 + 5, 6*s**2, s)))) >>> pprint(_, use_unicode=False) # (2 Inputs -A-> 2 Outputs) -> (2 Inputs -B-> 1 Output) -> (1 Input -C-> 2 Outputs) is equivalent to (2 Inputs -Series Equivalent-> 2 Outputs). [ 4 4 ] [150*s + 25*s 150*s + 5*s] [------------- ------------] [ 3 2 ] [ 6*s 6*s ] [ ] [ 3 3 ] [ 150*s + 25 150*s + 5 ] [ ----------- ---------- ] [ 3 2 ] [ 6*s 6*s ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. ``MIMOSeries(A, B)`` is not equivalent to ``A*B``. It is always in the reverse order, that is ``B*A``. See Also ======== Series, MIMOParallel """ def __new__(cls, *args, evaluate=False): cls._check_args(args) if _mat_mul_compatible(*args): obj = super().__new__(cls, *args) else: raise ValueError("Number of input signals do not match the number" " of output signals of adjacent systems for some args.") return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> tfm_1 = TransferFunctionMatrix([[G1, G2, G3]]) >>> tfm_2 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> MIMOSeries(tfm_2, tfm_1).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the series system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the series system.""" return self.args[-1].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, cancel=False, **kwargs): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a series configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOSeries, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf2]]) >>> tfm2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf1]]) >>> MIMOSeries(tfm2, tfm1).doit() TransferFunctionMatrix(((TransferFunction(2*(-p + s)*(s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)**2*(s**4 + 5*s + 6)**2, s), TransferFunction((-p + s)**2*(s**3 - 2)*(a*p**2 + b*s) + (-p + s)*(a*p**2 + b*s)**2*(s**4 + 5*s + 6), (-p + s)**3*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2)**2*(s**4 + 5*s + 6) + (s**3 - 2)*(a*p**2 + b*s)*(s**4 + 5*s + 6)**2, (-p + s)*(s**4 + 5*s + 6)**3, s), TransferFunction(2*(s**3 - 2)*(a*p**2 + b*s), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in reversed(self.args)) if cancel: res = MatMul(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) _dummy_args, _dummy_dict = _dummify_args(_arg, self.var) res = MatMul(*_dummy_args, evaluate=True) temp_tfm = TransferFunctionMatrix.from_Matrix(res, self.var) return temp_tfm.subs(_dummy_dict) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): if isinstance(other, MIMOParallel): arg_list = list(other.args) return MIMOParallel(self, *arg_list) return MIMOParallel(self, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): self_arg_list = list(self.args) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, *self_arg_list) # A*B = MIMOSeries(B, A) arg_list = list(self.args) return MIMOSeries(other, *arg_list) def __neg__(self): arg_list = list(self.args) arg_list[0] = -arg_list[0] return MIMOSeries(*arg_list) class Parallel(SISOLinearTimeInvariant): r""" A class for representing a parallel configuration of SISO systems. Parameters ========== args : SISOLinearTimeInvariant SISO systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``Parallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(p**2, p + s, s) >>> P1 = Parallel(tf1, tf2) >>> P1 Parallel(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)) >>> P1.var s >>> P2 = Parallel(tf2, Series(tf3, -tf1)) >>> P2 Parallel(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), Series(TransferFunction(p**2, p + s, s), TransferFunction(-a*p**2 - b*s, -p + s, s))) >>> P2.var s >>> P3 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) >>> P3 Parallel(Series(TransferFunction(a*p**2 + b*s, -p + s, s), TransferFunction(s**3 - 2, s**4 + 5*s + 6, s)), Series(TransferFunction(s**3 - 2, s**4 + 5*s + 6, s), TransferFunction(p**2, p + s, s))) >>> P3.var s You can get the resultant transfer function by using ``.doit()`` method: >>> Parallel(tf1, tf2, -tf3).doit() TransferFunction(-p**2*(-p + s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2) + (p + s)*(a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) >>> Parallel(tf2, Series(tf1, -tf3)).doit() TransferFunction(-p**2*(a*p**2 + b*s)*(s**4 + 5*s + 6) + (-p + s)*(p + s)*(s**3 - 2), (-p + s)*(p + s)*(s**4 + 5*s + 6), s) Notes ===== All the transfer functions should use the same complex variable ``var`` of the Laplace transform. See Also ======== Series, TransferFunction, Feedback """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, Parallel) cls._check_args(args) obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the transfer functions. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Parallel, Series >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> Parallel(G1, G2).var p >>> Parallel(-G3, Series(G1, G2)).var p """ return self.args[0].var def doit(self, **kwargs): """ Returns the resultant transfer function obtained after evaluating the transfer functions in parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> Parallel(tf2, tf1).doit() TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) >>> Parallel(-tf1, -tf2).doit() TransferFunction((2 - s**3)*(-p + s) + (-a*p**2 - b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s) """ _arg = (arg.doit().to_expr() for arg in self.args) res = Add(*_arg).as_numer_denom() return TransferFunction(*res, self.var) def _eval_rewrite_as_TransferFunction(self, *args, **kwargs): return self.doit() @_check_other_SISO def __add__(self, other): self_arg_list = list(self.args) return Parallel(*self_arg_list, other) __radd__ = __add__ @_check_other_SISO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_SISO def __mul__(self, other): if isinstance(other, Series): arg_list = list(other.args) return Series(self, *arg_list) return Series(self, other) def __neg__(self): return Series(TransferFunction(-1, 1, self.var), self) def to_expr(self): """Returns the equivalent ``Expr`` object.""" return Add(*(arg.to_expr() for arg in self.args), evaluate=False) @property def is_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is less than or equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) >>> tf2 = TransferFunction(p**2 - 4*p, p**3 + 3*s + 2, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(-tf2, tf1) >>> P1.is_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_proper True """ return self.doit().is_proper @property def is_strictly_proper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is strictly less than degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, tf2) >>> P1.is_strictly_proper False >>> P2 = Parallel(tf2, tf3) >>> P2.is_strictly_proper True """ return self.doit().is_strictly_proper @property def is_biproper(self): """ Returns True if degree of the numerator polynomial of the resultant transfer function is equal to degree of the denominator polynomial of the same, else False. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, Parallel >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(p**2, p + s, s) >>> tf3 = TransferFunction(s, s**2 + s + 1, s) >>> P1 = Parallel(tf1, -tf2) >>> P1.is_biproper True >>> P2 = Parallel(tf2, tf3) >>> P2.is_biproper False """ return self.doit().is_biproper class MIMOParallel(MIMOLinearTimeInvariant): r""" A class for representing a parallel configuration of MIMO systems. Parameters ========== args : MIMOLinearTimeInvariant MIMO Systems in a parallel arrangement. evaluate : Boolean, Keyword When passed ``True``, returns the equivalent ``MIMOParallel(*args).doit()``. Set to ``False`` by default. Raises ====== ValueError When no argument is passed. ``var`` attribute is not same for every system. All MIMO systems passed do not have same shape. TypeError Any of the passed ``*args`` has unsupported type A combination of SISO and MIMO systems is passed. There should be homogeneity in the type of systems passed, MIMO in this case. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOParallel >>> from sympy import Matrix, pprint >>> expr_1 = 1/s >>> expr_2 = s/(s**2-1) >>> expr_3 = (2 + s)/(s**2 - 1) >>> expr_4 = 5 >>> tfm_a = TransferFunctionMatrix.from_Matrix(Matrix([[expr_1, expr_2], [expr_3, expr_4]]), s) >>> tfm_b = TransferFunctionMatrix.from_Matrix(Matrix([[expr_2, expr_1], [expr_4, expr_3]]), s) >>> tfm_c = TransferFunctionMatrix.from_Matrix(Matrix([[expr_3, expr_4], [expr_1, expr_2]]), s) >>> MIMOParallel(tfm_a, tfm_b, tfm_c) MIMOParallel(TransferFunctionMatrix(((TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s)), (TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)))), TransferFunctionMatrix(((TransferFunction(s, s**2 - 1, s), TransferFunction(1, s, s)), (TransferFunction(5, 1, s), TransferFunction(s + 2, s**2 - 1, s)))), TransferFunctionMatrix(((TransferFunction(s + 2, s**2 - 1, s), TransferFunction(5, 1, s)), (TransferFunction(1, s, s), TransferFunction(s, s**2 - 1, s))))) >>> pprint(_, use_unicode=False) # For Better Visualization [ 1 s ] [ s 1 ] [s + 2 5 ] [ - ------] [------ - ] [------ - ] [ s 2 ] [ 2 s ] [ 2 1 ] [ s - 1] [s - 1 ] [s - 1 ] [ ] + [ ] + [ ] [s + 2 5 ] [ 5 s + 2 ] [ 1 s ] [------ - ] [ - ------] [ - ------] [ 2 1 ] [ 1 2 ] [ s 2 ] [s - 1 ]{t} [ s - 1]{t} [ s - 1]{t} >>> MIMOParallel(tfm_a, tfm_b, tfm_c).doit() TransferFunctionMatrix(((TransferFunction(s**2 + s*(2*s + 2) - 1, s*(s**2 - 1), s), TransferFunction(2*s**2 + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s)), (TransferFunction(s**2 + s*(s + 2) + 5*s*(s**2 - 1) - 1, s*(s**2 - 1), s), TransferFunction(5*s**2 + 2*s - 3, s**2 - 1, s)))) >>> pprint(_, use_unicode=False) [ 2 2 / 2 \ ] [ s + s*(2*s + 2) - 1 2*s + 5*s*\s - 1/ - 1] [ -------------------- -----------------------] [ / 2 \ / 2 \ ] [ s*\s - 1/ s*\s - 1/ ] [ ] [ 2 / 2 \ 2 ] [s + s*(s + 2) + 5*s*\s - 1/ - 1 5*s + 2*s - 3 ] [--------------------------------- -------------- ] [ / 2 \ 2 ] [ s*\s - 1/ s - 1 ]{t} Notes ===== All the transfer function matrices should use the same complex variable ``var`` of the Laplace transform. See Also ======== Parallel, MIMOSeries """ def __new__(cls, *args, evaluate=False): args = _flatten_args(args, MIMOParallel) cls._check_args(args) if any(arg.shape != args[0].shape for arg in args): raise TypeError("Shape of all the args is not equal.") obj = super().__new__(cls, *args) return obj.doit() if evaluate else obj @property def var(self): """ Returns the complex variable used by all the systems. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOParallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(p**2, p**2 - 1, p) >>> tfm_a = TransferFunctionMatrix([[G1, G2], [G3, G4]]) >>> tfm_b = TransferFunctionMatrix([[G2, G1], [G4, G3]]) >>> MIMOParallel(tfm_a, tfm_b).var p """ return self.args[0].var @property def num_inputs(self): """Returns the number of input signals of the parallel system.""" return self.args[0].num_inputs @property def num_outputs(self): """Returns the number of output signals of the parallel system.""" return self.args[0].num_outputs @property def shape(self): """Returns the shape of the equivalent MIMO system.""" return self.num_outputs, self.num_inputs def doit(self, **kwargs): """ Returns the resultant transfer function matrix obtained after evaluating the MIMO systems arranged in a parallel configuration. Examples ======== >>> from sympy.abc import s, p, a, b >>> from sympy.physics.control.lti import TransferFunction, MIMOParallel, TransferFunctionMatrix >>> tf1 = TransferFunction(a*p**2 + b*s, s - p, s) >>> tf2 = TransferFunction(s**3 - 2, s**4 + 5*s + 6, s) >>> tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]]) >>> MIMOParallel(tfm_1, tfm_2).doit() TransferFunctionMatrix(((TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)), (TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s), TransferFunction((-p + s)*(s**3 - 2) + (a*p**2 + b*s)*(s**4 + 5*s + 6), (-p + s)*(s**4 + 5*s + 6), s)))) """ _arg = (arg.doit()._expr_mat for arg in self.args) res = MatAdd(*_arg, evaluate=True) return TransferFunctionMatrix.from_Matrix(res, self.var) def _eval_rewrite_as_TransferFunctionMatrix(self, *args, **kwargs): return self.doit() @_check_other_MIMO def __add__(self, other): self_arg_list = list(self.args) return MIMOParallel(*self_arg_list, other) __radd__ = __add__ @_check_other_MIMO def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other @_check_other_MIMO def __mul__(self, other): if isinstance(other, MIMOSeries): arg_list = list(other.args) return MIMOSeries(*arg_list, self) return MIMOSeries(other, self) def __neg__(self): arg_list = [-arg for arg in list(self.args)] return MIMOParallel(*arg_list) class Feedback(SISOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two SISO input/output systems. The first argument, ``sys1``, is the feedforward part of the closed-loop system or in simple words, the dynamical model representing the process to be controlled. The second argument, ``sys2``, is the feedback system and controls the fed back signal to ``sys1``. Both ``sys1`` and ``sys2`` can either be ``Series`` or ``TransferFunction`` objects. Parameters ========== sys1 : Series, TransferFunction The feedforward path system. sys2 : Series, TransferFunction, optional The feedback path system (often a feedback controller). It is the model sitting on the feedback path. If not specified explicitly, the sys2 is assumed to be unit (1.0) transfer function. sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. When a combination of ``sys1`` and ``sys2`` yields zero denominator. TypeError When either ``sys1`` or ``sys2`` is not a ``Series`` or a ``TransferFunction`` object. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1 Feedback(TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) >>> F1.var s >>> F1.args (TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s), TransferFunction(5*s - 10, s + 7, s), -1) You can get the feedforward and feedback path systems by using ``.sys1`` and ``.sys2`` respectively. >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) You can get the resultant closed loop transfer function obtained by negative feedback interconnection using ``.doit()`` method. >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> C = TransferFunction(5*s + 10, s + 10, s) >>> F2 = Feedback(G*C, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s + 10)*(5*s + 10)*(s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s + 10)*((s + 10)*(s**2 + 2*s + 3) + (5*s + 10)*(2*s**2 + 5*s + 1))*(s**2 + 2*s + 3), s) To negate a ``Feedback`` object, the ``-`` operator can be prepended: >>> -F1 Feedback(TransferFunction(-3*s**2 - 7*s + 3, s**2 - 4*s + 2, s), TransferFunction(10 - 5*s, s + 7, s), -1) >>> -F2 Feedback(Series(TransferFunction(-1, 1, s), TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s), TransferFunction(5*s + 10, s + 10, s)), TransferFunction(-1, 1, s), -1) See Also ======== MIMOFeedback, Series, Parallel """ def __new__(cls, sys1, sys2=None, sign=-1): if not sys2: sys2 = TransferFunction(1, 1, sys1.var) if not (isinstance(sys1, (TransferFunction, Series)) and isinstance(sys2, (TransferFunction, Series))): raise TypeError("Unsupported type for `sys1` or `sys2` of Feedback.") if sign not in [-1, 1]: raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if Mul(sys1.to_expr(), sys2.to_expr()).simplify() == sign: raise ValueError("The equivalent system will have zero denominator.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): """ Returns the feedforward system of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys1 TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys1 TransferFunction(1, 1, p) """ return self.args[0] @property def sys2(self): """ Returns the feedback controller of the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.sys2 TransferFunction(5*s - 10, s + 7, s) >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.sys2 Series(TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p), TransferFunction(5*p + 10, p + 10, p), TransferFunction(1 - s, p + 2, p)) """ return self.args[1] @property def var(self): """ Returns the complex variable of the Laplace transform used by all the transfer functions involved in the feedback interconnection. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.var s >>> G = TransferFunction(2*s**2 + 5*s + 1, p**2 + 2*p + 3, p) >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - s, p + 2, p) >>> F2 = Feedback(TransferFunction(1, 1, p), G*C*P) >>> F2.var p """ return self.sys1.var @property def sign(self): """ Returns the type of MIMO Feedback model. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): """ Returns the sensitivity function of the feedback loop. Sensitivity of a Feedback system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> C = TransferFunction(5*p + 10, p + 10, p) >>> P = TransferFunction(1 - p, p + 2, p) >>> F_1 = Feedback(P, C) >>> F_1.sensitivity 1/((1 - p)*(5*p + 10)/((p + 2)*(p + 10)) + 1) """ return 1/(1 - self.sign*self.sys1.to_expr()*self.sys2.to_expr()) def doit(self, cancel=False, expand=False, **kwargs): """ Returns the resultant transfer function obtained by the feedback interconnection. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, Feedback >>> plant = TransferFunction(3*s**2 + 7*s - 3, s**2 - 4*s + 2, s) >>> controller = TransferFunction(5*s - 10, s + 7, s) >>> F1 = Feedback(plant, controller) >>> F1.doit() TransferFunction((s + 7)*(s**2 - 4*s + 2)*(3*s**2 + 7*s - 3), ((s + 7)*(s**2 - 4*s + 2) + (5*s - 10)*(3*s**2 + 7*s - 3))*(s**2 - 4*s + 2), s) >>> G = TransferFunction(2*s**2 + 5*s + 1, s**2 + 2*s + 3, s) >>> F2 = Feedback(G, TransferFunction(1, 1, s)) >>> F2.doit() TransferFunction((s**2 + 2*s + 3)*(2*s**2 + 5*s + 1), (s**2 + 2*s + 3)*(3*s**2 + 7*s + 4), s) Use kwarg ``expand=True`` to expand the resultant transfer function. Use ``cancel=True`` to cancel out the common terms in numerator and denominator. >>> F2.doit(cancel=True, expand=True) TransferFunction(2*s**2 + 5*s + 1, 3*s**2 + 7*s + 4, s) >>> F2.doit(expand=True) TransferFunction(2*s**4 + 9*s**3 + 17*s**2 + 17*s + 3, 3*s**4 + 13*s**3 + 27*s**2 + 29*s + 12, s) """ arg_list = list(self.sys1.args) if isinstance(self.sys1, Series) else [self.sys1] # F_n and F_d are resultant TFs of num and den of Feedback. F_n, unit = self.sys1.doit(), TransferFunction(1, 1, self.sys1.var) if self.sign == -1: F_d = Parallel(unit, Series(self.sys2, *arg_list)).doit() else: F_d = Parallel(unit, -Series(self.sys2, *arg_list)).doit() _resultant_tf = TransferFunction(F_n.num * F_d.den, F_n.den * F_d.num, F_n.var) if cancel: _resultant_tf = _resultant_tf.simplify() if expand: _resultant_tf = _resultant_tf.expand() return _resultant_tf def _eval_rewrite_as_TransferFunction(self, num, den, sign, **kwargs): return self.doit() def __neg__(self): return Feedback(-self.sys1, -self.sys2, self.sign) def _is_invertible(a, b, sign): """ Checks whether a given pair of MIMO systems passed is invertible or not. """ _mat = eye(a.num_outputs) - sign*(a.doit()._expr_mat)*(b.doit()._expr_mat) _det = _mat.det() return _det != 0 class MIMOFeedback(MIMOLinearTimeInvariant): r""" A class for representing closed-loop feedback interconnection between two MIMO input/output systems. Parameters ========== sys1 : MIMOSeries, TransferFunctionMatrix The MIMO system placed on the feedforward path. sys2 : MIMOSeries, TransferFunctionMatrix The system placed on the feedback path (often a feedback controller). sign : int, optional The sign of feedback. Can either be ``1`` (for positive feedback) or ``-1`` (for negative feedback). Default value is `-1`. Raises ====== ValueError When ``sys1`` and ``sys2`` are not using the same complex variable of the Laplace transform. Forward path model should have an equal number of inputs/outputs to the feedback path outputs/inputs. When product of ``sys1`` and ``sys2`` is not a square matrix. When the equivalent MIMO system is not invertible. TypeError When either ``sys1`` or ``sys2`` is not a ``MIMOSeries`` or a ``TransferFunctionMatrix`` object. Examples ======== >>> from sympy import Matrix, pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix, MIMOFeedback >>> plant_mat = Matrix([[1, 1/s], [0, 1]]) >>> controller_mat = Matrix([[10, 0], [0, 10]]) # Constant Gain >>> plant = TransferFunctionMatrix.from_Matrix(plant_mat, s) >>> controller = TransferFunctionMatrix.from_Matrix(controller_mat, s) >>> feedback = MIMOFeedback(plant, controller) # Negative Feedback (default) >>> pprint(feedback, use_unicode=False) / [1 1] [10 0 ] \-1 [1 1] | [- -] [-- - ] | [- -] | [1 s] [1 1 ] | [1 s] |I + [ ] *[ ] | * [ ] | [0 1] [0 10] | [0 1] | [- -] [- --] | [- -] \ [1 1]{t} [1 1 ]{t}/ [1 1]{t} To get the equivalent system matrix, use either ``doit`` or ``rewrite`` method. >>> pprint(feedback.doit(), use_unicode=False) [1 1 ] [-- -----] [11 121*s] [ ] [0 1 ] [- -- ] [1 11 ]{t} To negate the ``MIMOFeedback`` object, use ``-`` operator. >>> neg_feedback = -feedback >>> pprint(neg_feedback.doit(), use_unicode=False) [-1 -1 ] [--- -----] [ 11 121*s] [ ] [ 0 -1 ] [ - --- ] [ 1 11 ]{t} See Also ======== Feedback, MIMOSeries, MIMOParallel """ def __new__(cls, sys1, sys2, sign=-1): if not (isinstance(sys1, (TransferFunctionMatrix, MIMOSeries)) and isinstance(sys2, (TransferFunctionMatrix, MIMOSeries))): raise TypeError("Unsupported type for `sys1` or `sys2` of MIMO Feedback.") if sys1.num_inputs != sys2.num_outputs or \ sys1.num_outputs != sys2.num_inputs: raise ValueError("Product of `sys1` and `sys2` " "must yield a square matrix.") if sign not in [-1, 1]: raise ValueError("Unsupported type for feedback. `sign` arg should " "either be 1 (positive feedback loop) or -1 (negative feedback loop).") if not _is_invertible(sys1, sys2, sign): raise ValueError("Non-Invertible system inputted.") if sys1.var != sys2.var: raise ValueError("Both `sys1` and `sys2` should be using the" " same complex variable.") return super().__new__(cls, sys1, sys2, _sympify(sign)) @property def sys1(self): r""" Returns the system placed on the feedforward path of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2 + s + 1, s**2 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> F_1.sys1 TransferFunctionMatrix(((TransferFunction(s**2 + s + 1, s**2 - s + 1, s), TransferFunction(1, s, s)), (TransferFunction(1, s, s), TransferFunction(s**2 + s + 1, s**2 - s + 1, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [s + s + 1 1 ] [---------- - ] [ 2 s ] [s - s + 1 ] [ ] [ 2 ] [ 1 s + s + 1] [ - ----------] [ s 2 ] [ s - s + 1]{t} """ return self.args[0] @property def sys2(self): r""" Returns the feedback controller of the MIMO feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s**2, s**3 - s + 1, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(1, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2) >>> F_1.sys2 TransferFunctionMatrix(((TransferFunction(s**2, s**3 - s + 1, s), TransferFunction(1, 1, s)), (TransferFunction(1, 1, s), TransferFunction(1, s, s)))) >>> pprint(_, use_unicode=False) [ 2 ] [ s 1] [---------- -] [ 3 1] [s - s + 1 ] [ ] [ 1 1] [ - -] [ 1 s]{t} """ return self.args[1] @property def var(self): r""" Returns the complex variable of the Laplace transform used by all the transfer functions involved in the MIMO feedback loop. Examples ======== >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_1.var p """ return self.sys1.var @property def sign(self): r""" Returns the type of feedback interconnection of two models. ``1`` for Positive and ``-1`` for Negative. """ return self.args[2] @property def sensitivity(self): r""" Returns the sensitivity function matrix of the feedback loop. Sensitivity of a closed-loop system is the ratio of change in the open loop gain to the change in the closed loop gain. .. note:: This method would not return the complementary sensitivity function. Examples ======== >>> from sympy import pprint >>> from sympy.abc import p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(p, 1 - p, p) >>> tf2 = TransferFunction(1, p, p) >>> tf3 = TransferFunction(1, 1, p) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]]) >>> sys2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf2]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) # Positive feedback >>> F_2 = MIMOFeedback(sys1, sys2) # Negative feedback >>> pprint(F_1.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [- p + 3*p - 4*p + 3*p - 1 p - 2*p + 3*p - 3*p + 1 ] [---------------------------- -----------------------------] [ 4 3 2 5 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3*p] [ ] [ 4 3 2 3 2 ] [ p - p - p + p 3*p - 6*p + 4*p - 1 ] [ -------------------------- -------------------------- ] [ 4 3 2 4 3 2 ] [ p + 3*p - 8*p + 8*p - 3 p + 3*p - 8*p + 8*p - 3 ] >>> pprint(F_2.sensitivity, use_unicode=False) [ 4 3 2 5 4 2 ] [p - 3*p + 2*p + p - 1 p - 2*p + 3*p - 3*p + 1] [------------------------ --------------------------] [ 4 3 5 4 2 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - p ] [ ] [ 4 3 2 4 3 ] [ p - p - p + p 2*p - 3*p + 2*p - 1 ] [ ------------------- --------------------- ] [ 4 3 4 3 ] [ p - 3*p + 2*p - 1 p - 3*p + 2*p - 1 ] """ _sys1_mat = self.sys1.doit()._expr_mat _sys2_mat = self.sys2.doit()._expr_mat return (eye(self.sys1.num_inputs) - \ self.sign*_sys1_mat*_sys2_mat).inv() def doit(self, cancel=True, expand=False, **kwargs): r""" Returns the resultant transfer function matrix obtained by the feedback interconnection. Examples ======== >>> from sympy import pprint >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, MIMOFeedback >>> tf1 = TransferFunction(s, 1 - s, s) >>> tf2 = TransferFunction(1, s, s) >>> tf3 = TransferFunction(5, 1, s) >>> tf4 = TransferFunction(s - 1, s, s) >>> tf5 = TransferFunction(0, 1, s) >>> sys1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) >>> sys2 = TransferFunctionMatrix([[tf3, tf5], [tf5, tf5]]) >>> F_1 = MIMOFeedback(sys1, sys2, 1) >>> pprint(F_1, use_unicode=False) / [ s 1 ] [5 0] \-1 [ s 1 ] | [----- - ] [- -] | [----- - ] | [1 - s s ] [1 1] | [1 - s s ] |I - [ ] *[ ] | * [ ] | [ 5 s - 1] [0 0] | [ 5 s - 1] | [ - -----] [- -] | [ - -----] \ [ 1 s ]{t} [1 1]{t}/ [ 1 s ]{t} >>> pprint(F_1.doit(), use_unicode=False) [ -s s - 1 ] [------- ----------- ] [6*s - 1 s*(6*s - 1) ] [ ] [5*s - 5 (s - 1)*(6*s + 24)] [------- ------------------] [6*s - 1 s*(6*s - 1) ]{t} If the user wants the resultant ``TransferFunctionMatrix`` object without canceling the common factors then the ``cancel`` kwarg should be passed ``False``. >>> pprint(F_1.doit(cancel=False), use_unicode=False) [ 25*s*(1 - s) 25 - 25*s ] [ -------------------- -------------- ] [ 25*(1 - 6*s)*(1 - s) 25*s*(1 - 6*s) ] [ ] [s*(25*s - 25) + 5*(1 - s)*(6*s - 1) s*(s - 1)*(6*s - 1) + s*(25*s - 25)] [----------------------------------- -----------------------------------] [ (1 - s)*(6*s - 1) 2 ] [ s *(6*s - 1) ]{t} If the user wants the expanded form of the resultant transfer function matrix, the ``expand`` kwarg should be passed as ``True``. >>> pprint(F_1.doit(expand=True), use_unicode=False) [ -s s - 1 ] [------- -------- ] [6*s - 1 2 ] [ 6*s - s ] [ ] [ 2 ] [5*s - 5 6*s + 18*s - 24] [------- ----------------] [6*s - 1 2 ] [ 6*s - s ]{t} """ _mat = self.sensitivity * self.sys1.doit()._expr_mat _resultant_tfm = _to_TFM(_mat, self.var) if cancel: _resultant_tfm = _resultant_tfm.simplify() if expand: _resultant_tfm = _resultant_tfm.expand() return _resultant_tfm def _eval_rewrite_as_TransferFunctionMatrix(self, sys1, sys2, sign, **kwargs): return self.doit() def __neg__(self): return MIMOFeedback(-self.sys1, -self.sys2, self.sign) def _to_TFM(mat, var): """Private method to convert ImmutableMatrix to TransferFunctionMatrix efficiently""" to_tf = lambda expr: TransferFunction.from_rational_expression(expr, var) arg = [[to_tf(expr) for expr in row] for row in mat.tolist()] return TransferFunctionMatrix(arg) class TransferFunctionMatrix(MIMOLinearTimeInvariant): r""" A class for representing the MIMO (multiple-input and multiple-output) generalization of the SISO (single-input and single-output) transfer function. It is a matrix of transfer functions (``TransferFunction``, SISO-``Series`` or SISO-``Parallel``). There is only one argument, ``arg`` which is also the compulsory argument. ``arg`` is expected to be strictly of the type list of lists which holds the transfer functions or reducible to transfer functions. Parameters ========== arg : Nested ``List`` (strictly). Users are expected to input a nested list of ``TransferFunction``, ``Series`` and/or ``Parallel`` objects. Examples ======== .. note:: ``pprint()`` can be used for better visualization of ``TransferFunctionMatrix`` objects. >>> from sympy.abc import s, p, a >>> from sympy import pprint >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> tf_1 = TransferFunction(s + a, s**2 + s + 1, s) >>> tf_2 = TransferFunction(p**4 - 3*p + 2, s + p, s) >>> tf_3 = TransferFunction(3, s + 2, s) >>> tf_4 = TransferFunction(-a + p, 9*s - 9, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_3]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),))) >>> tfm_1.var s >>> tfm_1.num_inputs 1 >>> tfm_1.num_outputs 3 >>> tfm_1.shape (3, 1) >>> tfm_1.args (((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(3, s + 2, s),)),) >>> tfm_2 = TransferFunctionMatrix([[tf_1, -tf_3], [tf_2, -tf_1], [tf_3, -tf_2]]) >>> tfm_2 TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(tfm_2, use_unicode=False) # pretty-printing for better visualization [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} TransferFunctionMatrix can be transposed, if user wants to switch the input and output transfer functions >>> tfm_2.transpose() TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(p**4 - 3*p + 2, p + s, s), TransferFunction(3, s + 2, s)), (TransferFunction(-3, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)))) >>> pprint(_, use_unicode=False) [ 4 ] [ a + s p - 3*p + 2 3 ] [---------- ------------ ----- ] [ 2 p + s s + 2 ] [s + s + 1 ] [ ] [ 4 ] [ -3 -a - s - p + 3*p - 2] [ ----- ---------- --------------] [ s + 2 2 p + s ] [ s + s + 1 ]{t} >>> tf_5 = TransferFunction(5, s, s) >>> tf_6 = TransferFunction(5*s, (2 + s**2), s) >>> tf_7 = TransferFunction(5, (s*(2 + s**2)), s) >>> tf_8 = TransferFunction(5, 1, s) >>> tfm_3 = TransferFunctionMatrix([[tf_5, tf_6], [tf_7, tf_8]]) >>> tfm_3 TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s)))) >>> pprint(tfm_3, use_unicode=False) [ 5 5*s ] [ - ------] [ s 2 ] [ s + 2] [ ] [ 5 5 ] [---------- - ] [ / 2 \ 1 ] [s*\s + 2/ ]{t} >>> tfm_3.var s >>> tfm_3.shape (2, 2) >>> tfm_3.num_outputs 2 >>> tfm_3.num_inputs 2 >>> tfm_3.args (((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)), (TransferFunction(5, s*(s**2 + 2), s), TransferFunction(5, 1, s))),) To access the ``TransferFunction`` at any index in the ``TransferFunctionMatrix``, use the index notation. >>> tfm_3[1, 0] # gives the TransferFunction present at 2nd Row and 1st Col. Similar to that in Matrix classes TransferFunction(5, s*(s**2 + 2), s) >>> tfm_3[0, 0] # gives the TransferFunction present at 1st Row and 1st Col. TransferFunction(5, s, s) >>> tfm_3[:, 0] # gives the first column TransferFunctionMatrix(((TransferFunction(5, s, s),), (TransferFunction(5, s*(s**2 + 2), s),))) >>> pprint(_, use_unicode=False) [ 5 ] [ - ] [ s ] [ ] [ 5 ] [----------] [ / 2 \] [s*\s + 2/]{t} >>> tfm_3[0, :] # gives the first row TransferFunctionMatrix(((TransferFunction(5, s, s), TransferFunction(5*s, s**2 + 2, s)),)) >>> pprint(_, use_unicode=False) [5 5*s ] [- ------] [s 2 ] [ s + 2]{t} To negate a transfer function matrix, ``-`` operator can be prepended: >>> tfm_4 = TransferFunctionMatrix([[tf_2], [-tf_1], [tf_3]]) >>> -tfm_4 TransferFunctionMatrix(((TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(-3, s + 2, s),))) >>> tfm_5 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, -tf_1]]) >>> -tfm_5 TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(-p**4 + 3*p - 2, p + s, s)), (TransferFunction(-3, s + 2, s), TransferFunction(a + s, s**2 + s + 1, s)))) ``subs()`` returns the ``TransferFunctionMatrix`` object with the value substituted in the expression. This will not mutate your original ``TransferFunctionMatrix``. >>> tfm_2.subs(p, 2) # substituting p everywhere in tfm_2 with 2. TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-a - s, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ a + s -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -a - s ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} >>> pprint(tfm_2, use_unicode=False) # State of tfm_2 is unchanged after substitution [ a + s -3 ] [ ---------- ----- ] [ 2 s + 2 ] [ s + s + 1 ] [ ] [ 4 ] [p - 3*p + 2 -a - s ] [------------ ---------- ] [ p + s 2 ] [ s + s + 1 ] [ ] [ 4 ] [ 3 - p + 3*p - 2] [ ----- --------------] [ s + 2 p + s ]{t} ``subs()`` also supports multiple substitutions. >>> tfm_2.subs({p: 2, a: 1}) # substituting p with 2 and a with 1 TransferFunctionMatrix(((TransferFunction(s + 1, s**2 + s + 1, s), TransferFunction(-3, s + 2, s)), (TransferFunction(12, s + 2, s), TransferFunction(-s - 1, s**2 + s + 1, s)), (TransferFunction(3, s + 2, s), TransferFunction(-12, s + 2, s)))) >>> pprint(_, use_unicode=False) [ s + 1 -3 ] [---------- ----- ] [ 2 s + 2 ] [s + s + 1 ] [ ] [ 12 -s - 1 ] [ ----- ----------] [ s + 2 2 ] [ s + s + 1] [ ] [ 3 -12 ] [ ----- ----- ] [ s + 2 s + 2 ]{t} Users can reduce the ``Series`` and ``Parallel`` elements of the matrix to ``TransferFunction`` by using ``doit()``. >>> tfm_6 = TransferFunctionMatrix([[Series(tf_3, tf_4), Parallel(tf_3, tf_4)]]) >>> tfm_6 TransferFunctionMatrix(((Series(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s)), Parallel(TransferFunction(3, s + 2, s), TransferFunction(-a + p, 9*s - 9, s))),)) >>> pprint(tfm_6, use_unicode=False) [ -a + p 3 -a + p 3 ] [-------*----- ------- + -----] [9*s - 9 s + 2 9*s - 9 s + 2]{t} >>> tfm_6.doit() TransferFunctionMatrix(((TransferFunction(-3*a + 3*p, (s + 2)*(9*s - 9), s), TransferFunction(27*s + (-a + p)*(s + 2) - 27, (s + 2)*(9*s - 9), s)),)) >>> pprint(_, use_unicode=False) [ -3*a + 3*p 27*s + (-a + p)*(s + 2) - 27] [----------------- ----------------------------] [(s + 2)*(9*s - 9) (s + 2)*(9*s - 9) ]{t} >>> tf_9 = TransferFunction(1, s, s) >>> tf_10 = TransferFunction(1, s**2, s) >>> tfm_7 = TransferFunctionMatrix([[Series(tf_9, tf_10), tf_9], [tf_10, Parallel(tf_9, tf_10)]]) >>> tfm_7 TransferFunctionMatrix(((Series(TransferFunction(1, s, s), TransferFunction(1, s**2, s)), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), Parallel(TransferFunction(1, s, s), TransferFunction(1, s**2, s))))) >>> pprint(tfm_7, use_unicode=False) [ 1 1 ] [---- - ] [ 2 s ] [s*s ] [ ] [ 1 1 1] [ -- -- + -] [ 2 2 s] [ s s ]{t} >>> tfm_7.doit() TransferFunctionMatrix(((TransferFunction(1, s**3, s), TransferFunction(1, s, s)), (TransferFunction(1, s**2, s), TransferFunction(s**2 + s, s**3, s)))) >>> pprint(_, use_unicode=False) [1 1 ] [-- - ] [ 3 s ] [s ] [ ] [ 2 ] [1 s + s] [-- ------] [ 2 3 ] [s s ]{t} Addition, subtraction, and multiplication of transfer function matrices can form unevaluated ``Series`` or ``Parallel`` objects. - For addition and subtraction: All the transfer function matrices must have the same shape. - For multiplication (C = A * B): The number of inputs of the first transfer function matrix (A) must be equal to the number of outputs of the second transfer function matrix (B). Also, use pretty-printing (``pprint``) to analyse better. >>> tfm_8 = TransferFunctionMatrix([[tf_3], [tf_2], [-tf_1]]) >>> tfm_9 = TransferFunctionMatrix([[-tf_3]]) >>> tfm_10 = TransferFunctionMatrix([[tf_1], [tf_2], [tf_4]]) >>> tfm_11 = TransferFunctionMatrix([[tf_4], [-tf_1]]) >>> tfm_12 = TransferFunctionMatrix([[tf_4, -tf_1, tf_3], [-tf_2, -tf_4, -tf_3]]) >>> tfm_8 + tfm_10 MIMOParallel(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),)))) >>> pprint(_, use_unicode=False) [ 3 ] [ a + s ] [ ----- ] [ ---------- ] [ s + 2 ] [ 2 ] [ ] [ s + s + 1 ] [ 4 ] [ ] [p - 3*p + 2] [ 4 ] [------------] + [p - 3*p + 2] [ p + s ] [------------] [ ] [ p + s ] [ -a - s ] [ ] [ ---------- ] [ -a + p ] [ 2 ] [ ------- ] [ s + s + 1 ]{t} [ 9*s - 9 ]{t} >>> -tfm_10 - tfm_8 MIMOParallel(TransferFunctionMatrix(((TransferFunction(-a - s, s**2 + s + 1, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a - p, 9*s - 9, s),))), TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),), (TransferFunction(-p**4 + 3*p - 2, p + s, s),), (TransferFunction(a + s, s**2 + s + 1, s),)))) >>> pprint(_, use_unicode=False) [ -a - s ] [ -3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [- p + 3*p - 2] [- p + 3*p - 2] + [--------------] [--------------] [ p + s ] [ p + s ] [ ] [ ] [ a + s ] [ a - p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 MIMOSeries(TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ ] *[------------] [ 4 ] [ p + s ] [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_12 * tfm_8 * tfm_9 MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))), TransferFunctionMatrix(((TransferFunction(-a + p, 9*s - 9, s), TransferFunction(-a - s, s**2 + s + 1, s), TransferFunction(3, s + 2, s)), (TransferFunction(-p**4 + 3*p - 2, p + s, s), TransferFunction(a - p, 9*s - 9, s), TransferFunction(-3, s + 2, s))))) >>> pprint(_, use_unicode=False) [ 3 ] [ ----- ] [ -a + p -a - s 3 ] [ s + 2 ] [ ------- ---------- -----] [ ] [ 9*s - 9 2 s + 2] [ 4 ] [ s + s + 1 ] [p - 3*p + 2] [ -3 ] [ ] *[------------] *[-----] [ 4 ] [ p + s ] [s + 2]{t} [- p + 3*p - 2 a - p -3 ] [ ] [-------------- ------- -----] [ -a - s ] [ p + s 9*s - 9 s + 2]{t} [ ---------- ] [ 2 ] [ s + s + 1 ]{t} >>> tfm_10 + tfm_8*tfm_9 MIMOParallel(TransferFunctionMatrix(((TransferFunction(a + s, s**2 + s + 1, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a + p, 9*s - 9, s),))), MIMOSeries(TransferFunctionMatrix(((TransferFunction(-3, s + 2, s),),)), TransferFunctionMatrix(((TransferFunction(3, s + 2, s),), (TransferFunction(p**4 - 3*p + 2, p + s, s),), (TransferFunction(-a - s, s**2 + s + 1, s),))))) >>> pprint(_, use_unicode=False) [ a + s ] [ 3 ] [ ---------- ] [ ----- ] [ 2 ] [ s + 2 ] [ s + s + 1 ] [ ] [ ] [ 4 ] [ 4 ] [p - 3*p + 2] [ -3 ] [p - 3*p + 2] + [------------] *[-----] [------------] [ p + s ] [s + 2]{t} [ p + s ] [ ] [ ] [ -a - s ] [ -a + p ] [ ---------- ] [ ------- ] [ 2 ] [ 9*s - 9 ]{t} [ s + s + 1 ]{t} These unevaluated ``Series`` or ``Parallel`` objects can convert into the resultant transfer function matrix using ``.doit()`` method or by ``.rewrite(TransferFunctionMatrix)``. >>> (-tfm_8 + tfm_10 + tfm_8*tfm_9).doit() TransferFunctionMatrix(((TransferFunction((a + s)*(s + 2)**3 - 3*(s + 2)**2*(s**2 + s + 1) - 9*(s + 2)*(s**2 + s + 1), (s + 2)**3*(s**2 + s + 1), s),), (TransferFunction((p + s)*(-3*p**4 + 9*p - 6), (p + s)**2*(s + 2), s),), (TransferFunction((-a + p)*(s + 2)*(s**2 + s + 1)**2 + (a + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + (3*a + 3*s)*(9*s - 9)*(s**2 + s + 1), (s + 2)*(9*s - 9)*(s**2 + s + 1)**2, s),))) >>> (-tfm_12 * -tfm_8 * -tfm_9).rewrite(TransferFunctionMatrix) TransferFunctionMatrix(((TransferFunction(3*(-3*a + 3*p)*(p + s)*(s + 2)*(s**2 + s + 1)**2 + 3*(-3*a - 3*s)*(p + s)*(s + 2)*(9*s - 9)*(s**2 + s + 1) + 3*(a + s)*(s + 2)**2*(9*s - 9)*(-p**4 + 3*p - 2)*(s**2 + s + 1), (p + s)*(s + 2)**3*(9*s - 9)*(s**2 + s + 1)**2, s),), (TransferFunction(3*(-a + p)*(p + s)*(s + 2)**2*(-p**4 + 3*p - 2)*(s**2 + s + 1) + 3*(3*a + 3*s)*(p + s)**2*(s + 2)*(9*s - 9) + 3*(p + s)*(s + 2)*(9*s - 9)*(-3*p**4 + 9*p - 6)*(s**2 + s + 1), (p + s)**2*(s + 2)**3*(9*s - 9)*(s**2 + s + 1), s),))) See Also ======== TransferFunction, MIMOSeries, MIMOParallel, Feedback """ def __new__(cls, arg): expr_mat_arg = [] try: var = arg[0][0].var except TypeError: raise ValueError("`arg` param in TransferFunctionMatrix should " "strictly be a nested list containing TransferFunction objects.") for row_index, row in enumerate(arg): temp = [] for col_index, element in enumerate(row): if not isinstance(element, SISOLinearTimeInvariant): raise TypeError("Each element is expected to be of type `SISOLinearTimeInvariant`.") if var != element.var: raise ValueError("Conflicting value(s) found for `var`. All TransferFunction instances in " "TransferFunctionMatrix should use the same complex variable in Laplace domain.") temp.append(element.to_expr()) expr_mat_arg.append(temp) if isinstance(arg, (tuple, list, Tuple)): # Making nested Tuple (sympy.core.containers.Tuple) from nested list or nested Python tuple arg = Tuple(*(Tuple(*r, sympify=False) for r in arg), sympify=False) obj = super(TransferFunctionMatrix, cls).__new__(cls, arg) obj._expr_mat = ImmutableMatrix(expr_mat_arg) return obj @classmethod def from_Matrix(cls, matrix, var): """ Creates a new ``TransferFunctionMatrix`` efficiently from a SymPy Matrix of ``Expr`` objects. Parameters ========== matrix : ``ImmutableMatrix`` having ``Expr``/``Number`` elements. var : Symbol Complex variable of the Laplace transform which will be used by the all the ``TransferFunction`` objects in the ``TransferFunctionMatrix``. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix, pprint >>> M = Matrix([[s, 1/s], [1/(s+1), s]]) >>> M_tf = TransferFunctionMatrix.from_Matrix(M, s) >>> pprint(M_tf, use_unicode=False) [ s 1] [ - -] [ 1 s] [ ] [ 1 s] [----- -] [s + 1 1]{t} >>> M_tf.elem_poles() [[[], [0]], [[-1], []]] >>> M_tf.elem_zeros() [[[0], []], [[], [0]]] """ return _to_TFM(matrix, var) @property def var(self): """ Returns the complex variable used by all the transfer functions or ``Series``/``Parallel`` objects in a transfer function matrix. Examples ======== >>> from sympy.abc import p, s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix, Series, Parallel >>> G1 = TransferFunction(p**2 + 2*p + 4, p - 6, p) >>> G2 = TransferFunction(p, 4 - p, p) >>> G3 = TransferFunction(0, p**4 - 1, p) >>> G4 = TransferFunction(s + 1, s**2 + s + 1, s) >>> S1 = Series(G1, G2) >>> S2 = Series(-G3, Parallel(G2, -G1)) >>> tfm1 = TransferFunctionMatrix([[G1], [G2], [G3]]) >>> tfm1.var p >>> tfm2 = TransferFunctionMatrix([[-S1, -S2], [S1, S2]]) >>> tfm2.var p >>> tfm3 = TransferFunctionMatrix([[G4]]) >>> tfm3.var s """ return self.args[0][0][0].var @property def num_inputs(self): """ Returns the number of inputs of the system. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> G1 = TransferFunction(s + 3, s**2 - 3, s) >>> G2 = TransferFunction(4, s**2, s) >>> G3 = TransferFunction(p**2 + s**2, p - 3, s) >>> tfm_1 = TransferFunctionMatrix([[G2, -G1, G3], [-G2, -G1, -G3]]) >>> tfm_1.num_inputs 3 See Also ======== num_outputs """ return self._expr_mat.shape[1] @property def num_outputs(self): """ Returns the number of outputs of the system. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunctionMatrix >>> from sympy import Matrix >>> M_1 = Matrix([[s], [1/s]]) >>> TFM = TransferFunctionMatrix.from_Matrix(M_1, s) >>> print(TFM) TransferFunctionMatrix(((TransferFunction(s, 1, s),), (TransferFunction(1, s, s),))) >>> TFM.num_outputs 2 See Also ======== num_inputs """ return self._expr_mat.shape[0] @property def shape(self): """ Returns the shape of the transfer function matrix, that is, ``(# of outputs, # of inputs)``. Examples ======== >>> from sympy.abc import s, p >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf1 = TransferFunction(p**2 - 1, s**4 + s**3 - p, p) >>> tf2 = TransferFunction(1 - p, p**2 - 3*p + 7, p) >>> tf3 = TransferFunction(3, 4, p) >>> tfm1 = TransferFunctionMatrix([[tf1, -tf2]]) >>> tfm1.shape (1, 2) >>> tfm2 = TransferFunctionMatrix([[-tf2, tf3], [tf1, -tf1]]) >>> tfm2.shape (2, 2) """ return self._expr_mat.shape def __neg__(self): neg = -self._expr_mat return _to_TFM(neg, self.var) @_check_other_MIMO def __add__(self, other): if not isinstance(other, MIMOParallel): return MIMOParallel(self, other) other_arg_list = list(other.args) return MIMOParallel(self, *other_arg_list) @_check_other_MIMO def __sub__(self, other): return self + (-other) @_check_other_MIMO def __mul__(self, other): if not isinstance(other, MIMOSeries): return MIMOSeries(other, self) other_arg_list = list(other.args) return MIMOSeries(*other_arg_list, self) def __getitem__(self, key): trunc = self._expr_mat.__getitem__(key) if isinstance(trunc, ImmutableMatrix): return _to_TFM(trunc, self.var) return TransferFunction.from_rational_expression(trunc, self.var) def transpose(self): """Returns the transpose of the ``TransferFunctionMatrix`` (switched input and output layers).""" transposed_mat = self._expr_mat.transpose() return _to_TFM(transposed_mat, self.var) def elem_poles(self): """ Returns the poles of each element of the ``TransferFunctionMatrix``. .. note:: Actual poles of a MIMO system are NOT the poles of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s + 2, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s + 2, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_poles() [[[-1], [-2, -1]], [[-2, -1], [-5/2 + sqrt(65)/2, -sqrt(65)/2 - 5/2]]] See Also ======== elem_zeros """ return [[element.poles() for element in row] for row in self.doit().args[0]] def elem_zeros(self): """ Returns the zeros of each element of the ``TransferFunctionMatrix``. .. note:: Actual zeros of a MIMO system are NOT the zeros of individual elements. Examples ======== >>> from sympy.abc import s >>> from sympy.physics.control.lti import TransferFunction, TransferFunctionMatrix >>> tf_1 = TransferFunction(3, (s + 1), s) >>> tf_2 = TransferFunction(s + 6, (s + 1)*(s + 2), s) >>> tf_3 = TransferFunction(s + 3, s**2 + 3*s + 2, s) >>> tf_4 = TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s) >>> tfm_1 = TransferFunctionMatrix([[tf_1, tf_2], [tf_3, tf_4]]) >>> tfm_1 TransferFunctionMatrix(((TransferFunction(3, s + 1, s), TransferFunction(s + 6, (s + 1)*(s + 2), s)), (TransferFunction(s + 3, s**2 + 3*s + 2, s), TransferFunction(s**2 - 9*s + 20, s**2 + 5*s - 10, s)))) >>> tfm_1.elem_zeros() [[[], [-6]], [[-3], [4, 5]]] See Also ======== elem_poles """ return [[element.zeros() for element in row] for row in self.doit().args[0]] def _flat(self): """Returns flattened list of args in TransferFunctionMatrix""" return [elem for tup in self.args[0] for elem in tup] def _eval_evalf(self, prec): """Calls evalf() on each transfer function in the transfer function matrix""" dps = prec_to_dps(prec) mat = self._expr_mat.applyfunc(lambda a: a.evalf(n=dps)) return _to_TFM(mat, self.var) def _eval_simplify(self, **kwargs): """Simplifies the transfer function matrix""" simp_mat = self._expr_mat.applyfunc(lambda a: cancel(a, expand=False)) return _to_TFM(simp_mat, self.var) def expand(self, **hints): """Expands the transfer function matrix""" expand_mat = self._expr_mat.expand(**hints) return _to_TFM(expand_mat, self.var)
1aada369d06caa5c7204e51a96b8933eb493912f928f1204549bcd3e2048c7a9
from collections import deque from sympy.core.random import randint from sympy.external import import_module from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.numbers import Number from sympy.core.power import Pow from sympy.core.singleton import S from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger __all__ = [ # Public interfaces 'generate_gate_rules', 'generate_equivalent_ids', 'GateIdentity', 'bfs_identity_search', 'random_identity_search', # "Private" functions 'is_scalar_sparse_matrix', 'is_scalar_nonsparse_matrix', 'is_degenerate', 'is_reducible', ] np = import_module('numpy') scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def is_scalar_sparse_matrix(circuit, nqubits, identity_only, eps=1e-11): """Checks if a given scipy.sparse matrix is a scalar matrix. A scalar matrix is such that B = bI, where B is the scalar matrix, b is some scalar multiple, and I is the identity matrix. A scalar matrix would have only the element b along it's main diagonal and zeroes elsewhere. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number The tolerance value for zeroing out elements in the matrix. Values in the range [-eps, +eps] will be changed to a zero. """ if not np or not scipy: pass matrix = represent(Mul(*circuit), nqubits=nqubits, format='scipy.sparse') # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, int)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Due to floating pointing operations, must zero out # elements that are "very" small in the dense matrix # See parameter for default value. # Get the ndarray version of the dense matrix dense_matrix = matrix.todense().getA() # Since complex values can't be compared, must split # the matrix into real and imaginary components # Find the real values in between -eps and eps bool_real = np.logical_and(dense_matrix.real > -eps, dense_matrix.real < eps) # Find the imaginary values between -eps and eps bool_imag = np.logical_and(dense_matrix.imag > -eps, dense_matrix.imag < eps) # Replaces values between -eps and eps with 0 corrected_real = np.where(bool_real, 0.0, dense_matrix.real) corrected_imag = np.where(bool_imag, 0.0, dense_matrix.imag) # Convert the matrix with real values into imaginary values corrected_imag = corrected_imag * complex(1j) # Recombine the real and imaginary components corrected_dense = corrected_real + corrected_imag # Check if it's diagonal row_indices = corrected_dense.nonzero()[0] col_indices = corrected_dense.nonzero()[1] # Check if the rows indices and columns indices are the same # If they match, then matrix only contains elements along diagonal bool_indices = row_indices == col_indices is_diagonal = bool_indices.all() first_element = corrected_dense[0][0] # If the first element is a zero, then can't rescale matrix # and definitely not diagonal if (first_element == 0.0 + 0.0j): return False # The dimensions of the dense matrix should still # be 2^nqubits if there are elements all along the # the main diagonal trace_of_corrected = (corrected_dense/first_element).trace() expected_trace = pow(2, nqubits) has_correct_trace = trace_of_corrected == expected_trace # If only looking for identity matrices # first element must be a 1 real_is_one = abs(first_element.real - 1.0) < eps imag_is_zero = abs(first_element.imag) < eps is_one = real_is_one and imag_is_zero is_identity = is_one if identity_only else True return bool(is_diagonal and has_correct_trace and is_identity) def is_scalar_nonsparse_matrix(circuit, nqubits, identity_only, eps=None): """Checks if a given circuit, in matrix form, is equivalent to a scalar value. Parameters ========== circuit : Gate tuple Sequence of quantum gates representing a quantum circuit nqubits : int Number of qubits in the circuit identity_only : bool Check for only identity matrices eps : number This argument is ignored. It is just for signature compatibility with is_scalar_sparse_matrix. Note: Used in situations when is_scalar_sparse_matrix has bugs """ matrix = represent(Mul(*circuit), nqubits=nqubits) # In some cases, represent returns a 1D scalar value in place # of a multi-dimensional scalar matrix if (isinstance(matrix, Number)): return matrix == 1 if identity_only else True # If represent returns a matrix, check if the matrix is diagonal # and if every item along the diagonal is the same else: # Added up the diagonal elements matrix_trace = matrix.trace() # Divide the trace by the first element in the matrix # if matrix is not required to be the identity matrix adjusted_matrix_trace = (matrix_trace/matrix[0] if not identity_only else matrix_trace) is_identity = matrix[0] == 1.0 if identity_only else True has_correct_trace = adjusted_matrix_trace == pow(2, nqubits) # The matrix is scalar if it's diagonal and the adjusted trace # value is equal to 2^nqubits return bool( matrix.is_diagonal() and has_correct_trace and is_identity) if np and scipy: is_scalar_matrix = is_scalar_sparse_matrix else: is_scalar_matrix = is_scalar_nonsparse_matrix def _get_min_qubits(a_gate): if isinstance(a_gate, Pow): return a_gate.base.min_qubits else: return a_gate.min_qubits def ll_op(left, right): """Perform a LL operation. A LL operation multiplies both left and right circuits with the dagger of the left circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a LL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LL operation: >>> from sympy.physics.quantum.identitysearch import ll_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> ll_op((x, y, z), ()) ((Y(0), Z(0)), (X(0),)) >>> ll_op((y, z), (x,)) ((Z(0),), (Y(0), X(0))) """ if (len(left) > 0): ll_gate = left[0] ll_gate_is_unitary = is_scalar_matrix( (Dagger(ll_gate), ll_gate), _get_min_qubits(ll_gate), True) if (len(left) > 0 and ll_gate_is_unitary): # Get the new left side w/o the leftmost gate new_left = left[1:len(left)] # Add the leftmost gate to the left position on the right side new_right = (Dagger(ll_gate),) + right # Return the new gate rule return (new_left, new_right) return None def lr_op(left, right): """Perform a LR operation. A LR operation multiplies both left and right circuits with the dagger of the left circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a LR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a LR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a LR operation: >>> from sympy.physics.quantum.identitysearch import lr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> lr_op((x, y, z), ()) ((X(0), Y(0)), (Z(0),)) >>> lr_op((x, y), (z,)) ((X(0),), (Z(0), Y(0))) """ if (len(left) > 0): lr_gate = left[len(left) - 1] lr_gate_is_unitary = is_scalar_matrix( (Dagger(lr_gate), lr_gate), _get_min_qubits(lr_gate), True) if (len(left) > 0 and lr_gate_is_unitary): # Get the new left side w/o the rightmost gate new_left = left[0:len(left) - 1] # Add the rightmost gate to the right position on the right side new_right = right + (Dagger(lr_gate),) # Return the new gate rule return (new_left, new_right) return None def rl_op(left, right): """Perform a RL operation. A RL operation multiplies both left and right circuits with the dagger of the right circuit's leftmost gate, and the dagger is multiplied on the left side of both circuits. If a RL is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RL is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RL operation: >>> from sympy.physics.quantum.identitysearch import rl_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rl_op((x,), (y, z)) ((Y(0), X(0)), (Z(0),)) >>> rl_op((x, y), (z,)) ((Z(0), X(0), Y(0)), ()) """ if (len(right) > 0): rl_gate = right[0] rl_gate_is_unitary = is_scalar_matrix( (Dagger(rl_gate), rl_gate), _get_min_qubits(rl_gate), True) if (len(right) > 0 and rl_gate_is_unitary): # Get the new right side w/o the leftmost gate new_right = right[1:len(right)] # Add the leftmost gate to the left position on the left side new_left = (Dagger(rl_gate),) + left # Return the new gate rule return (new_left, new_right) return None def rr_op(left, right): """Perform a RR operation. A RR operation multiplies both left and right circuits with the dagger of the right circuit's rightmost gate, and the dagger is multiplied on the right side of both circuits. If a RR is possible, it returns the new gate rule as a 2-tuple (LHS, RHS), where LHS is the left circuit and and RHS is the right circuit of the new rule. If a RR is not possible, None is returned. Parameters ========== left : Gate tuple The left circuit of a gate rule expression. right : Gate tuple The right circuit of a gate rule expression. Examples ======== Generate a new gate rule using a RR operation: >>> from sympy.physics.quantum.identitysearch import rr_op >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> rr_op((x, y), (z,)) ((X(0), Y(0), Z(0)), ()) >>> rr_op((x,), (y, z)) ((X(0), Z(0)), (Y(0),)) """ if (len(right) > 0): rr_gate = right[len(right) - 1] rr_gate_is_unitary = is_scalar_matrix( (Dagger(rr_gate), rr_gate), _get_min_qubits(rr_gate), True) if (len(right) > 0 and rr_gate_is_unitary): # Get the new right side w/o the rightmost gate new_right = right[0:len(right) - 1] # Add the rightmost gate to the right position on the right side new_left = left + (Dagger(rr_gate),) # Return the new gate rule return (new_left, new_right) return None def generate_gate_rules(gate_seq, return_as_muls=False): """Returns a set of gate rules. Each gate rules is represented as a 2-tuple of tuples or Muls. An empty tuple represents an arbitrary scalar value. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules. A gate rule is an expression such as ABC = D or AB = CD, where A, B, C, and D are gates. Each value on either side of the equal sign represents a circuit. The four operations allow one to find a set of equivalent circuits from a gate identity. The letters denoting the operation tell the user what activities to perform on each expression. The first letter indicates which side of the equal sign to focus on. The second letter indicates which gate to focus on given the side. Once this information is determined, the inverse of the gate is multiplied on both circuits to create a new gate rule. For example, given the identity, ABCD = 1, a LL operation means look at the left value and multiply both left sides by the inverse of the leftmost gate A. If A is Hermitian, the inverse of A is still A. The resulting new rule is BCD = A. The following is a summary of the four operations. Assume that in the examples, all gates are Hermitian. LL : left circuit, left multiply ABCD = E -> AABCD = AE -> BCD = AE LR : left circuit, right multiply ABCD = E -> ABCDD = ED -> ABC = ED RL : right circuit, left multiply ABC = ED -> EABC = EED -> EABC = D RR : right circuit, right multiply AB = CD -> ABD = CDD -> ABD = C The number of gate rules generated is n*(n+1), where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix return_as_muls : bool True to return a set of Muls; False to return a set of tuples Examples ======== Find the gate rules of the current circuit using tuples: >>> from sympy.physics.quantum.identitysearch import generate_gate_rules >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_gate_rules((x, x)) {((X(0),), (X(0),)), ((X(0), X(0)), ())} >>> generate_gate_rules((x, y, z)) {((), (X(0), Z(0), Y(0))), ((), (Y(0), X(0), Z(0))), ((), (Z(0), Y(0), X(0))), ((X(0),), (Z(0), Y(0))), ((Y(0),), (X(0), Z(0))), ((Z(0),), (Y(0), X(0))), ((X(0), Y(0)), (Z(0),)), ((Y(0), Z(0)), (X(0),)), ((Z(0), X(0)), (Y(0),)), ((X(0), Y(0), Z(0)), ()), ((Y(0), Z(0), X(0)), ()), ((Z(0), X(0), Y(0)), ())} Find the gate rules of the current circuit using Muls: >>> generate_gate_rules(x*x, return_as_muls=True) {(1, 1)} >>> generate_gate_rules(x*y*z, return_as_muls=True) {(1, X(0)*Z(0)*Y(0)), (1, Y(0)*X(0)*Z(0)), (1, Z(0)*Y(0)*X(0)), (X(0)*Y(0), Z(0)), (Y(0)*Z(0), X(0)), (Z(0)*X(0), Y(0)), (X(0)*Y(0)*Z(0), 1), (Y(0)*Z(0)*X(0), 1), (Z(0)*X(0)*Y(0), 1), (X(0), Z(0)*Y(0)), (Y(0), X(0)*Z(0)), (Z(0), Y(0)*X(0))} """ if isinstance(gate_seq, Number): if return_as_muls: return {(S.One, S.One)} else: return {((), ())} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Each item in queue is a 3-tuple: # i) first item is the left side of an equality # ii) second item is the right side of an equality # iii) third item is the number of operations performed # The argument, gate_seq, will start on the left side, and # the right side will be empty, implying the presence of an # identity. queue = deque() # A set of gate rules rules = set() # Maximum number of operations to perform max_ops = len(gate_seq) def process_new_rule(new_rule, ops): if new_rule is not None: new_left, new_right = new_rule if new_rule not in rules and (new_right, new_left) not in rules: rules.add(new_rule) # If haven't reached the max limit on operations if ops + 1 < max_ops: queue.append(new_rule + (ops + 1,)) queue.append((gate_seq, (), 0)) rules.add((gate_seq, ())) while len(queue) > 0: left, right, ops = queue.popleft() # Do a LL new_rule = ll_op(left, right) process_new_rule(new_rule, ops) # Do a LR new_rule = lr_op(left, right) process_new_rule(new_rule, ops) # Do a RL new_rule = rl_op(left, right) process_new_rule(new_rule, ops) # Do a RR new_rule = rr_op(left, right) process_new_rule(new_rule, ops) if return_as_muls: # Convert each rule as tuples into a rule as muls mul_rules = set() for rule in rules: left, right = rule mul_rules.add((Mul(*left), Mul(*right))) rules = mul_rules return rules def generate_equivalent_ids(gate_seq, return_as_muls=False): """Returns a set of equivalent gate identities. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. This function uses the four operations (LL, LR, RL, RR) to generate the gate rules and, subsequently, to locate equivalent gate identities. Note that all equivalent identities are reachable in n operations from the starting gate identity, where n is the number of gates in the sequence. The max number of gate identities is 2n, where n is the number of gates in the sequence (unproven). Parameters ========== gate_seq : Gate tuple, Mul, or Number A variable length tuple or Mul of Gates whose product is equal to a scalar matrix. return_as_muls: bool True to return as Muls; False to return as tuples Examples ======== Find equivalent gate identities from the current circuit with tuples: >>> from sympy.physics.quantum.identitysearch import generate_equivalent_ids >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> generate_equivalent_ids((x, x)) {(X(0), X(0))} >>> generate_equivalent_ids((x, y, z)) {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} Find equivalent gate identities from the current circuit with Muls: >>> generate_equivalent_ids(x*x, return_as_muls=True) {1} >>> generate_equivalent_ids(x*y*z, return_as_muls=True) {X(0)*Y(0)*Z(0), X(0)*Z(0)*Y(0), Y(0)*X(0)*Z(0), Y(0)*Z(0)*X(0), Z(0)*X(0)*Y(0), Z(0)*Y(0)*X(0)} """ if isinstance(gate_seq, Number): return {S.One} elif isinstance(gate_seq, Mul): gate_seq = gate_seq.args # Filter through the gate rules and keep the rules # with an empty tuple either on the left or right side # A set of equivalent gate identities eq_ids = set() gate_rules = generate_gate_rules(gate_seq) for rule in gate_rules: l, r = rule if l == (): eq_ids.add(r) elif r == (): eq_ids.add(l) if return_as_muls: convert_to_mul = lambda id_seq: Mul(*id_seq) eq_ids = set(map(convert_to_mul, eq_ids)) return eq_ids class GateIdentity(Basic): """Wrapper class for circuits that reduce to a scalar value. A gate identity is a quantum circuit such that the product of the gates in the circuit is equal to a scalar value. For example, XYZ = i, where X, Y, Z are the Pauli gates and i is the imaginary value, is considered a gate identity. Parameters ========== args : Gate tuple A variable length tuple of Gates that form an identity. Examples ======== Create a GateIdentity and look at its attributes: >>> from sympy.physics.quantum.identitysearch import GateIdentity >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> an_identity.circuit X(0)*Y(0)*Z(0) >>> an_identity.equivalent_ids {(X(0), Y(0), Z(0)), (X(0), Z(0), Y(0)), (Y(0), X(0), Z(0)), (Y(0), Z(0), X(0)), (Z(0), X(0), Y(0)), (Z(0), Y(0), X(0))} """ def __new__(cls, *args): # args should be a tuple - a variable length argument list obj = Basic.__new__(cls, *args) obj._circuit = Mul(*args) obj._rules = generate_gate_rules(args) obj._eq_ids = generate_equivalent_ids(args) return obj @property def circuit(self): return self._circuit @property def gate_rules(self): return self._rules @property def equivalent_ids(self): return self._eq_ids @property def sequence(self): return self.args def __str__(self): """Returns the string of gates in a tuple.""" return str(self.circuit) def is_degenerate(identity_set, gate_identity): """Checks if a gate identity is a permutation of another identity. Parameters ========== identity_set : set A Python set with GateIdentity objects. gate_identity : GateIdentity The GateIdentity to check for existence in the set. Examples ======== Check if the identity is a permutation of another identity: >>> from sympy.physics.quantum.identitysearch import ( ... GateIdentity, is_degenerate) >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> an_identity = GateIdentity(x, y, z) >>> id_set = {an_identity} >>> another_id = (y, z, x) >>> is_degenerate(id_set, another_id) True >>> another_id = (x, x) >>> is_degenerate(id_set, another_id) False """ # For now, just iteratively go through the set and check if the current # gate_identity is a permutation of an identity in the set for an_id in identity_set: if (gate_identity in an_id.equivalent_ids): return True return False def is_reducible(circuit, nqubits, begin, end): """Determines if a circuit is reducible by checking if its subcircuits are scalar values. Parameters ========== circuit : Gate tuple A tuple of Gates representing a circuit. The circuit to check if a gate identity is contained in a subcircuit. nqubits : int The number of qubits the circuit operates on. begin : int The leftmost gate in the circuit to include in a subcircuit. end : int The rightmost gate in the circuit to include in a subcircuit. Examples ======== Check if the circuit can be reduced: >>> from sympy.physics.quantum.identitysearch import is_reducible >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> is_reducible((x, y, z), 1, 0, 3) True Check if an interval in the circuit can be reduced: >>> is_reducible((x, y, z), 1, 1, 3) False >>> is_reducible((x, y, y), 1, 1, 3) True """ current_circuit = () # Start from the gate at "end" and go down to almost the gate at "begin" for ndx in reversed(range(begin, end)): next_gate = circuit[ndx] current_circuit = (next_gate,) + current_circuit # If a circuit as a matrix is equivalent to a scalar value if (is_scalar_matrix(current_circuit, nqubits, False)): return True return False def bfs_identity_search(gate_list, nqubits, max_depth=None, identity_only=False): """Constructs a set of gate identities from the list of possible gates. Performs a breadth first search over the space of gate identities. This allows the finding of the shortest gate identities first. Parameters ========== gate_list : list, Gate A list of Gates from which to search for gate identities. nqubits : int The number of qubits the quantum circuit operates on. max_depth : int The longest quantum circuit to construct from gate_list. identity_only : bool True to search for gate identities that reduce to identity; False to search for gate identities that reduce to a scalar. Examples ======== Find a list of gate identities: >>> from sympy.physics.quantum.identitysearch import bfs_identity_search >>> from sympy.physics.quantum.gate import X, Y, Z >>> x = X(0); y = Y(0); z = Z(0) >>> bfs_identity_search([x], 1, max_depth=2) {GateIdentity(X(0), X(0))} >>> bfs_identity_search([x, y, z], 1) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0)), GateIdentity(X(0), Y(0), Z(0))} Find a list of identities that only equal to 1: >>> bfs_identity_search([x, y, z], 1, identity_only=True) {GateIdentity(X(0), X(0)), GateIdentity(Y(0), Y(0)), GateIdentity(Z(0), Z(0))} """ if max_depth is None or max_depth <= 0: max_depth = len(gate_list) id_only = identity_only # Start with an empty sequence (implicitly contains an IdentityGate) queue = deque([()]) # Create an empty set of gate identities ids = set() # Begin searching for gate identities in given space. while (len(queue) > 0): current_circuit = queue.popleft() for next_gate in gate_list: new_circuit = current_circuit + (next_gate,) # Determines if a (strict) subcircuit is a scalar matrix circuit_reducible = is_reducible(new_circuit, nqubits, 1, len(new_circuit)) # In many cases when the matrix is a scalar value, # the evaluated matrix will actually be an integer if (is_scalar_matrix(new_circuit, nqubits, id_only) and not is_degenerate(ids, new_circuit) and not circuit_reducible): ids.add(GateIdentity(*new_circuit)) elif (len(new_circuit) < max_depth and not circuit_reducible): queue.append(new_circuit) return ids def random_identity_search(gate_list, numgates, nqubits): """Randomly selects numgates from gate_list and checks if it is a gate identity. If the circuit is a gate identity, the circuit is returned; Otherwise, None is returned. """ gate_size = len(gate_list) circuit = () for i in range(numgates): next_gate = gate_list[randint(0, gate_size - 1)] circuit = circuit + (next_gate,) is_scalar = is_scalar_matrix(circuit, nqubits, False) return circuit if is_scalar else None
1111f5291bbbd8d787d6c73e495cc59e699271534c0d5bbf942c465f1b3332a2
"""Dirac notation for states.""" from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.numbers import oo from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import integrate from sympy.printing.pretty.stringpict import stringPict from sympy.physics.quantum.qexpr import QExpr, dispatch_method __all__ = [ 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'OrthogonalKet', 'OrthogonalBra', 'OrthogonalState', 'Wavefunction' ] #----------------------------------------------------------------------------- # States, bras and kets. #----------------------------------------------------------------------------- # ASCII brackets _lbracket = "<" _rbracket = ">" _straight_bracket = "|" # Unicode brackets # MATHEMATICAL ANGLE BRACKETS _lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}" _rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}" # LIGHT VERTICAL BAR _straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}" # Other options for unicode printing of <, > and | for Dirac notation. # LEFT-POINTING ANGLE BRACKET # _lbracket = "\u2329" # _rbracket = "\u232A" # LEFT ANGLE BRACKET # _lbracket = "\u3008" # _rbracket = "\u3009" # VERTICAL LINE # _straight_bracket = "\u007C" class StateBase(QExpr): """Abstract base class for general abstract states in quantum mechanics. All other state classes defined will need to inherit from this class. It carries the basic structure for all other states such as dual, _eval_adjoint and label. This is an abstract base class and you should not instantiate it directly, instead use State. """ @classmethod def _operators_to_state(self, ops, **options): """ Returns the eigenstate instance for the passed operators. This method should be overridden in subclasses. It will handle being passed either an Operator instance or set of Operator instances. It should return the corresponding state INSTANCE or simply raise a NotImplementedError. See cartesian.py for an example. """ raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!") def _state_to_operators(self, op_classes, **options): """ Returns the operators which this state instance is an eigenstate of. This method should be overridden in subclasses. It will be called on state instances and be passed the operator classes that we wish to make into instances. The state instance will then transform the classes appropriately, or raise a NotImplementedError if it cannot return operator instances. See cartesian.py for examples, """ raise NotImplementedError( "Cannot map this state to operators. Method not implemented!") @property def operators(self): """Return the operator(s) that this state is an eigenstate of""" from .operatorset import state_to_operators # import internally to avoid circular import errors return state_to_operators(self) def _enumerate_state(self, num_states, **options): raise NotImplementedError("Cannot enumerate this state!") def _represent_default_basis(self, **options): return self._represent(basis=self.operators) #------------------------------------------------------------------------- # Dagger/dual #------------------------------------------------------------------------- @property def dual(self): """Return the dual state of this one.""" return self.dual_class()._new_rawargs(self.hilbert_space, *self.args) @classmethod def dual_class(self): """Return the class used to construct the dual.""" raise NotImplementedError( 'dual_class must be implemented in a subclass' ) def _eval_adjoint(self): """Compute the dagger of this state using the dual.""" return self.dual #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _pretty_brackets(self, height, use_unicode=True): # Return pretty printed brackets for the state # Ideally, this could be done by pform.parens but it does not support the angled < and > # Setup for unicode vs ascii if use_unicode: lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "") slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \ '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \ '\N{BOX DRAWINGS LIGHT VERTICAL}' else: lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "") slash, bslash, vert = '/', '\\', '|' # If height is 1, just return brackets if height == 1: return stringPict(lbracket), stringPict(rbracket) # Make height even height += (height % 2) brackets = [] for bracket in lbracket, rbracket: # Create left bracket if bracket in {_lbracket, _lbracket_ucode}: bracket_args = [ ' ' * (height//2 - i - 1) + slash for i in range(height // 2)] bracket_args.extend( [' ' * i + bslash for i in range(height // 2)]) # Create right bracket elif bracket in {_rbracket, _rbracket_ucode}: bracket_args = [ ' ' * i + bslash for i in range(height // 2)] bracket_args.extend([ ' ' * ( height//2 - i - 1) + slash for i in range(height // 2)]) # Create straight bracket elif bracket in {_straight_bracket, _straight_bracket_ucode}: bracket_args = [vert] * height else: raise ValueError(bracket) brackets.append( stringPict('\n'.join(bracket_args), baseline=height//2)) return brackets def _sympystr(self, printer, *args): contents = self._print_contents(printer, *args) return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', "")) def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm # Get brackets pform = self._print_contents_pretty(printer, *args) lbracket, rbracket = self._pretty_brackets( pform.height(), printer._use_unicode) # Put together state pform = prettyForm(*pform.left(lbracket)) pform = prettyForm(*pform.right(rbracket)) return pform def _latex(self, printer, *args): contents = self._print_contents_latex(printer, *args) # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', "")) class KetBase(StateBase): """Base class for Kets. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Ket. """ lbracket = _straight_bracket rbracket = _rbracket lbracket_ucode = _straight_bracket_ucode rbracket_ucode = _rbracket_ucode lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle ' @classmethod def default_args(self): return ("psi",) @classmethod def dual_class(self): return BraBase def __mul__(self, other): """KetBase*other""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, BraBase): return OuterProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*KetBase""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, BraBase): return InnerProduct(other, self) else: return Expr.__rmul__(self, other) #------------------------------------------------------------------------- # _eval_* methods #------------------------------------------------------------------------- def _eval_innerproduct(self, bra, **hints): """Evaluate the inner product between this ket and a bra. This is called to compute <bra|ket>, where the ket is ``self``. This method will dispatch to sub-methods having the format:: ``def _eval_innerproduct_BraClass(self, **hints):`` Subclasses should define these methods (one for each BraClass) to teach the ket how to take inner products with bras. """ return dispatch_method(self, '_eval_innerproduct', bra, **hints) def _apply_operator(self, op, **options): """Apply an Operator to this Ket. This method will dispatch to methods having the format:: ``def _apply_operator_OperatorName(op, **options):`` Subclasses should define these methods (one for each OperatorName) to teach the Ket how operators act on it. Parameters ========== op : Operator The Operator that is acting on the Ket. options : dict A dict of key/value pairs that control how the operator is applied to the Ket. """ return dispatch_method(self, '_apply_operator', op, **options) class BraBase(StateBase): """Base class for Bras. This class defines the dual property and the brackets for printing. This is an abstract base class and you should not instantiate it directly, instead use Bra. """ lbracket = _lbracket rbracket = _straight_bracket lbracket_ucode = _lbracket_ucode rbracket_ucode = _straight_bracket_ucode lbracket_latex = r'\left\langle ' rbracket_latex = r'\right|' @classmethod def _operators_to_state(self, ops, **options): state = self.dual_class()._operators_to_state(ops, **options) return state.dual def _state_to_operators(self, op_classes, **options): return self.dual._state_to_operators(op_classes, **options) def _enumerate_state(self, num_states, **options): dual_states = self.dual._enumerate_state(num_states, **options) return [x.dual for x in dual_states] @classmethod def default_args(self): return self.dual_class().default_args() @classmethod def dual_class(self): return KetBase def __mul__(self, other): """BraBase*other""" from sympy.physics.quantum.innerproduct import InnerProduct if isinstance(other, KetBase): return InnerProduct(self, other) else: return Expr.__mul__(self, other) def __rmul__(self, other): """other*BraBase""" from sympy.physics.quantum.operator import OuterProduct if isinstance(other, KetBase): return OuterProduct(other, self) else: return Expr.__rmul__(self, other) def _represent(self, **options): """A default represent that uses the Ket's version.""" from sympy.physics.quantum.dagger import Dagger return Dagger(self.dual._represent(**options)) class State(StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class Ket(State, KetBase): """A general time-independent Ket in quantum mechanics. Inherits from State and KetBase. This class should be used as the base class for all physical, time-independent Kets in a system. This class and its subclasses will be the main classes that users will use for expressing Kets in Dirac notation [1]_. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Ket and looking at its properties:: >>> from sympy.physics.quantum import Ket >>> from sympy import symbols, I >>> k = Ket('psi') >>> k |psi> >>> k.hilbert_space H >>> k.is_commutative False >>> k.label (psi,) Ket's know about their associated bra:: >>> k.dual <psi| >>> k.dual_class() <class 'sympy.physics.quantum.state.Bra'> Take a linear combination of two kets:: >>> k0 = Ket(0) >>> k1 = Ket(1) >>> 2*I*k0 - 4*k1 2*I*|0> - 4*|1> Compound labels are passed as tuples:: >>> n, m = symbols('n,m') >>> k = Ket(n,m) >>> k |nm> References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Bra class Bra(State, BraBase): """A general time-independent Bra in quantum mechanics. Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This class and its subclasses will be the main classes that users will use for expressing Bras in Dirac notation. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time. Examples ======== Create a simple Bra and look at its properties:: >>> from sympy.physics.quantum import Bra >>> from sympy import symbols, I >>> b = Bra('psi') >>> b <psi| >>> b.hilbert_space H >>> b.is_commutative False Bra's know about their dual Ket's:: >>> b.dual |psi> >>> b.dual_class() <class 'sympy.physics.quantum.state.Ket'> Like Kets, Bras can have compound labels and be manipulated in a similar manner:: >>> n, m = symbols('n,m') >>> b = Bra(n,m) - I*Bra(m,n) >>> b -I*<mn| + <nm| Symbols in a Bra can be substituted using ``.subs``:: >>> b.subs(n,m) <mm| - I*<mm| References ========== .. [1] https://en.wikipedia.org/wiki/Bra-ket_notation """ @classmethod def dual_class(self): return Ket #----------------------------------------------------------------------------- # Time dependent states, bras and kets. #----------------------------------------------------------------------------- class TimeDepState(StateBase): """Base class for a general time-dependent quantum state. This class is used as a base class for any time-dependent state. The main difference between this class and the time-independent state is that this class takes a second argument that is the time in addition to the usual label argument. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. """ #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def default_args(self): return ("psi", "t") #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def label(self): """The label of the state.""" return self.args[:-1] @property def time(self): """The time of the state.""" return self.args[-1] #------------------------------------------------------------------------- # Printing #------------------------------------------------------------------------- def _print_time(self, printer, *args): return printer._print(self.time, *args) _print_time_repr = _print_time _print_time_latex = _print_time def _print_time_pretty(self, printer, *args): pform = printer._print(self.time, *args) return pform def _print_contents(self, printer, *args): label = self._print_label(printer, *args) time = self._print_time(printer, *args) return '%s;%s' % (label, time) def _print_label_repr(self, printer, *args): label = self._print_sequence(self.label, ',', printer, *args) time = self._print_time_repr(printer, *args) return '%s,%s' % (label, time) def _print_contents_pretty(self, printer, *args): label = self._print_label_pretty(printer, *args) time = self._print_time_pretty(printer, *args) return printer._print_seq((label, time), delimiter=';') def _print_contents_latex(self, printer, *args): label = self._print_sequence( self.label, self._label_separator, printer, *args) time = self._print_time_latex(printer, *args) return '%s;%s' % (label, time) class TimeDepKet(TimeDepState, KetBase): """General time-dependent Ket in quantum mechanics. This inherits from ``TimeDepState`` and ``KetBase`` and is the main class that should be used for Kets that vary with time. Its dual is a ``TimeDepBra``. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== Create a TimeDepKet and look at its attributes:: >>> from sympy.physics.quantum import TimeDepKet >>> k = TimeDepKet('psi', 't') >>> k |psi;t> >>> k.time t >>> k.label (psi,) >>> k.hilbert_space H TimeDepKets know about their dual bra:: >>> k.dual <psi;t| >>> k.dual_class() <class 'sympy.physics.quantum.state.TimeDepBra'> """ @classmethod def dual_class(self): return TimeDepBra class TimeDepBra(TimeDepState, BraBase): """General time-dependent Bra in quantum mechanics. This inherits from TimeDepState and BraBase and is the main class that should be used for Bras that vary with time. Its dual is a TimeDepBra. Parameters ========== args : tuple The list of numbers or parameters that uniquely specify the ket. This will usually be its symbol or its quantum numbers. For time-dependent state, this will include the time as the final argument. Examples ======== >>> from sympy.physics.quantum import TimeDepBra >>> b = TimeDepBra('psi', 't') >>> b <psi;t| >>> b.time t >>> b.label (psi,) >>> b.hilbert_space H >>> b.dual |psi;t> """ @classmethod def dual_class(self): return TimeDepKet class OrthogonalState(State, StateBase): """General abstract quantum state used as a base class for Ket and Bra.""" pass class OrthogonalKet(OrthogonalState, KetBase): """Orthogonal Ket in quantum mechanics. The inner product of two states with different labels will give zero, states with the same label will give one. >>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet >>> from sympy.abc import m, n >>> (OrthogonalBra(n)*OrthogonalKet(n)).doit() 1 >>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit() 0 >>> (OrthogonalBra(n)*OrthogonalKet(m)).doit() <n|m> """ @classmethod def dual_class(self): return OrthogonalBra def _eval_innerproduct(self, bra, **hints): if len(self.args) != len(bra.args): raise ValueError('Cannot multiply a ket that has a different number of labels.') for i in range(len(self.args)): diff = self.args[i] - bra.args[i] diff = diff.expand() if diff.is_zero is False: return 0 if diff.is_zero is None: return None return 1 class OrthogonalBra(OrthogonalState, BraBase): """Orthogonal Bra in quantum mechanics. """ @classmethod def dual_class(self): return OrthogonalKet class Wavefunction(Function): """Class for representations in continuous bases This class takes an expression and coordinates in its constructor. It can be used to easily calculate normalizations and probabilities. Parameters ========== expr : Expr The expression representing the functional form of the w.f. coords : Symbol or tuple The coordinates to be integrated over, and their bounds Examples ======== Particle in a box, specifying bounds in the more primitive way of using Piecewise: >>> from sympy import Symbol, Piecewise, pi, N >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = Symbol('x', real=True) >>> n = 1 >>> L = 1 >>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) >>> f = Wavefunction(g, x) >>> f.norm 1 >>> f.is_normalized True >>> p = f.prob() >>> p(0) 0 >>> p(L) 0 >>> p(0.5) 2 >>> p(0.85*L) 2*sin(0.85*pi)**2 >>> N(p(0.85*L)) 0.412214747707527 Additionally, you can specify the bounds of the function and the indices in a more compact way: >>> from sympy import symbols, pi, diff >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> f(L+1) 0 >>> f(L-1) sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L) >>> f(-1) 0 >>> f(0.85) sqrt(2)*sin(0.85*pi*n/L)/sqrt(L) >>> f(0.85, n=1, L=1) sqrt(2)*sin(0.85*pi) >>> f.is_commutative False All arguments are automatically sympified, so you can define the variables as strings rather than symbols: >>> expr = x**2 >>> f = Wavefunction(expr, 'x') >>> type(f.variables[0]) <class 'sympy.core.symbol.Symbol'> Derivatives of Wavefunctions will return Wavefunctions: >>> diff(f, x) Wavefunction(2*x, x) """ #Any passed tuples for coordinates and their bounds need to be #converted to Tuples before Function's constructor is called, to #avoid errors from calling is_Float in the constructor def __new__(cls, *args, **options): new_args = [None for i in args] ct = 0 for arg in args: if isinstance(arg, tuple): new_args[ct] = Tuple(*arg) else: new_args[ct] = arg ct += 1 return super().__new__(cls, *new_args, **options) def __call__(self, *args, **options): var = self.variables if len(args) != len(var): raise NotImplementedError( "Incorrect number of arguments to function!") ct = 0 #If the passed value is outside the specified bounds, return 0 for v in var: lower, upper = self.limits[v] #Do the comparison to limits only if the passed symbol is actually #a symbol present in the limits; #Had problems with a comparison of x > L if isinstance(args[ct], Expr) and \ not (lower in args[ct].free_symbols or upper in args[ct].free_symbols): continue if (args[ct] < lower) == True or (args[ct] > upper) == True: return S.Zero ct += 1 expr = self.expr #Allows user to make a call like f(2, 4, m=1, n=1) for symbol in list(expr.free_symbols): if str(symbol) in options.keys(): val = options[str(symbol)] expr = expr.subs(symbol, val) return expr.subs(zip(var, args)) def _eval_derivative(self, symbol): expr = self.expr deriv = expr._eval_derivative(symbol) return Wavefunction(deriv, *self.args[1:]) def _eval_conjugate(self): return Wavefunction(conjugate(self.expr), *self.args[1:]) def _eval_transpose(self): return self @property def free_symbols(self): return self.expr.free_symbols @property def is_commutative(self): """ Override Function's is_commutative so that order is preserved in represented expressions """ return False @classmethod def eval(self, *args): return None @property def variables(self): """ Return the coordinates which the wavefunction depends on Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x,y = symbols('x,y') >>> f = Wavefunction(x*y, x, y) >>> f.variables (x, y) >>> g = Wavefunction(x*y, x) >>> g.variables (x,) """ var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]] return tuple(var) @property def limits(self): """ Return the limits of the coordinates which the w.f. depends on If no limits are specified, defaults to ``(-oo, oo)``. Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, (x, 0, 1)) >>> f.limits {x: (0, 1)} >>> f = Wavefunction(x**2, x) >>> f.limits {x: (-oo, oo)} >>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2)) >>> f.limits {x: (-oo, oo), y: (-1, 2)} """ limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo) for g in self._args[1:]] return dict(zip(self.variables, tuple(limits))) @property def expr(self): """ Return the expression which is the functional form of the Wavefunction Examples ======== >>> from sympy.physics.quantum.state import Wavefunction >>> from sympy import symbols >>> x, y = symbols('x, y') >>> f = Wavefunction(x**2, x) >>> f.expr x**2 """ return self._args[0] @property def is_normalized(self): """ Returns true if the Wavefunction is properly normalized Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.is_normalized True """ return (self.norm == 1.0) @property # type: ignore @cacheit def norm(self): """ Return the normalization of the specified functional form. This function integrates over the coordinates of the Wavefunction, with the bounds specified. Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sqrt, sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sqrt(2/L)*sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm 1 >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.norm sqrt(2)*sqrt(L)/2 """ exp = self.expr*conjugate(self.expr) var = self.variables limits = self.limits for v in var: curr_limits = limits[v] exp = integrate(exp, (v, curr_limits[0], curr_limits[1])) return sqrt(exp) def normalize(self): """ Return a normalized version of the Wavefunction Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x = symbols('x', real=True) >>> L = symbols('L', positive=True) >>> n = symbols('n', integer=True, positive=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.normalize() Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L)) """ const = self.norm if const is oo: raise NotImplementedError("The function is not normalizable!") else: return Wavefunction((const)**(-1)*self.expr, *self.args[1:]) def prob(self): r""" Return the absolute magnitude of the w.f., `|\psi(x)|^2` Examples ======== >>> from sympy import symbols, pi >>> from sympy.functions import sin >>> from sympy.physics.quantum.state import Wavefunction >>> x, L = symbols('x,L', real=True) >>> n = symbols('n', integer=True) >>> g = sin(n*pi*x/L) >>> f = Wavefunction(g, (x, 0, L)) >>> f.prob() Wavefunction(sin(pi*n*x/L)**2, x) """ return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
74ea6d4d5f7625c13c9c9f69dfdb8dee13d9a8893fa8d66e6beaac346fcebf80
"""An implementation of gates that act on qubits. Gates are unitary operators that act on the space of qubits. Medium Term Todo: * Optimize Gate._apply_operators_Qubit to remove the creation of many intermediate Qubit objects. * Add commutation relationships to all operators and use this in gate_sort. * Fix gate_sort and gate_simp. * Get multi-target UGates plotting properly. * Get UGate to work with either sympy/numpy matrices and output either format. This should also use the matrix slots. """ from itertools import chain import random from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.numbers import (I, Integer) from sympy.core.power import Pow from sympy.core.numbers import Number from sympy.core.singleton import S as _S from sympy.core.sorting import default_sort_key from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.operator import (UnitaryOperator, Operator, HermitianOperator) from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye from sympy.physics.quantum.matrixcache import matrix_cache from sympy.matrices.matrices import MatrixBase from sympy.utilities.iterables import is_sequence __all__ = [ 'Gate', 'CGate', 'UGate', 'OneQubitGate', 'TwoQubitGate', 'IdentityGate', 'HadamardGate', 'XGate', 'YGate', 'ZGate', 'TGate', 'PhaseGate', 'SwapGate', 'CNotGate', # Aliased gate names 'CNOT', 'SWAP', 'H', 'X', 'Y', 'Z', 'T', 'S', 'Phase', 'normalized', 'gate_sort', 'gate_simp', 'random_circuit', 'CPHASE', 'CGateS', ] #----------------------------------------------------------------------------- # Gate Super-Classes #----------------------------------------------------------------------------- _normalized = True def _max(*args, **kwargs): if "key" not in kwargs: kwargs["key"] = default_sort_key return max(*args, **kwargs) def _min(*args, **kwargs): if "key" not in kwargs: kwargs["key"] = default_sort_key return min(*args, **kwargs) def normalized(normalize): """Set flag controlling normalization of Hadamard gates by 1/sqrt(2). This is a global setting that can be used to simplify the look of various expressions, by leaving off the leading 1/sqrt(2) of the Hadamard gate. Parameters ---------- normalize : bool Should the Hadamard gate include the 1/sqrt(2) normalization factor? When True, the Hadamard gate will have the 1/sqrt(2). When False, the Hadamard gate will not have this factor. """ global _normalized _normalized = normalize def _validate_targets_controls(tandc): tandc = list(tandc) # Check for integers for bit in tandc: if not bit.is_Integer and not bit.is_Symbol: raise TypeError('Integer expected, got: %r' % tandc[bit]) # Detect duplicates if len(list(set(tandc))) != len(tandc): raise QuantumError( 'Target/control qubits in a gate cannot be duplicated' ) class Gate(UnitaryOperator): """Non-controlled unitary gate operator that acts on qubits. This is a general abstract gate that needs to be subclassed to do anything useful. Parameters ---------- label : tuple, int A list of the target qubits (as ints) that the gate will apply to. Examples ======== """ _label_separator = ',' gate_name = 'G' gate_name_latex = 'G' #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): args = Tuple(*UnitaryOperator._eval_args(args)) _validate_targets_controls(args) return args @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def nqubits(self): """The total number of qubits this gate acts on. For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits. """ return len(self.targets) @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(self.targets) + 1 @property def targets(self): """A tuple of target qubits.""" return self.label @property def gate_name_plot(self): return r'$%s$' % self.gate_name_latex #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): """The matrix rep. of the target part of the gate. Parameters ---------- format : str The format string ('sympy','numpy', etc.) """ raise NotImplementedError( 'get_target_matrix is not implemented in Gate.') #------------------------------------------------------------------------- # Apply #------------------------------------------------------------------------- def _apply_operator_IntQubit(self, qubits, **options): """Redirect an apply from IntQubit to Qubit""" return self._apply_operator_Qubit(qubits, **options) def _apply_operator_Qubit(self, qubits, **options): """Apply this gate to a Qubit.""" # Check number of qubits this gate acts on. if qubits.nqubits < self.min_qubits: raise QuantumError( 'Gate needs a minimum of %r qubits to act on, got: %r' % (self.min_qubits, qubits.nqubits) ) # If the controls are not met, just return if isinstance(self, CGate): if not self.eval_controls(qubits): return qubits targets = self.targets target_matrix = self.get_target_matrix(format='sympy') # Find which column of the target matrix this applies to. column_index = 0 n = 1 for target in targets: column_index += n*qubits[target] n = n << 1 column = target_matrix[:, int(column_index)] # Now apply each column element to the qubit. result = 0 for index in range(column.rows): # TODO: This can be optimized to reduce the number of Qubit # creations. We should simply manipulate the raw list of qubit # values and then build the new Qubit object once. # Make a copy of the incoming qubits. new_qubit = qubits.__class__(*qubits.args) # Flip the bits that need to be flipped. for bit in range(len(targets)): if new_qubit[targets[bit]] != (index >> bit) & 1: new_qubit = new_qubit.flip(targets[bit]) # The value in that row and column times the flipped-bit qubit # is the result for that part. result += column[index]*new_qubit return result #------------------------------------------------------------------------- # Represent #------------------------------------------------------------------------- def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): format = options.get('format', 'sympy') nqubits = options.get('nqubits', 0) if nqubits == 0: raise QuantumError( 'The number of qubits must be given as nqubits.') # Make sure we have enough qubits for the gate. if nqubits < self.min_qubits: raise QuantumError( 'The number of qubits %r is too small for the gate.' % nqubits ) target_matrix = self.get_target_matrix(format) targets = self.targets if isinstance(self, CGate): controls = self.controls else: controls = [] m = represent_zbasis( controls, targets, target_matrix, nqubits, format ) return m #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _sympystr(self, printer, *args): label = self._print_label(printer, *args) return '%s(%s)' % (self.gate_name, label) def _pretty(self, printer, *args): a = stringPict(self.gate_name) b = self._print_label_pretty(printer, *args) return self._print_subscript_pretty(a, b) def _latex(self, printer, *args): label = self._print_label(printer, *args) return '%s_{%s}' % (self.gate_name_latex, label) def plot_gate(self, axes, gate_idx, gate_grid, wire_grid): raise NotImplementedError('plot_gate is not implemented.') class CGate(Gate): """A general unitary gate with control qubits. A general control gate applies a target gate to a set of targets if all of the control qubits have a particular values (set by ``CGate.control_value``). Parameters ---------- label : tuple The label in this case has the form (controls, gate), where controls is a tuple/list of control qubits (as ints) and gate is a ``Gate`` instance that is the target operator. Examples ======== """ gate_name = 'C' gate_name_latex = 'C' # The values this class controls for. control_value = _S.One simplify_cgate = False #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # _eval_args has the right logic for the controls argument. controls = args[0] gate = args[1] if not is_sequence(controls): controls = (controls,) controls = UnitaryOperator._eval_args(controls) _validate_targets_controls(chain(controls, gate.targets)) return (Tuple(*controls), gate) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def nqubits(self): """The total number of qubits this gate acts on. For controlled gate subclasses this includes both target and control qubits, so that, for examples the CNOT gate acts on 2 qubits. """ return len(self.targets) + len(self.controls) @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(_max(self.controls), _max(self.targets)) + 1 @property def targets(self): """A tuple of target qubits.""" return self.gate.targets @property def controls(self): """A tuple of control qubits.""" return tuple(self.label[0]) @property def gate(self): """The non-controlled gate that will be applied to the targets.""" return self.label[1] #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): return self.gate.get_target_matrix(format) def eval_controls(self, qubit): """Return True/False to indicate if the controls are satisfied.""" return all(qubit[bit] == self.control_value for bit in self.controls) def decompose(self, **options): """Decompose the controlled gate into CNOT and single qubits gates.""" if len(self.controls) == 1: c = self.controls[0] t = self.gate.targets[0] if isinstance(self.gate, YGate): g1 = PhaseGate(t) g2 = CNotGate(c, t) g3 = PhaseGate(t) g4 = ZGate(t) return g1*g2*g3*g4 if isinstance(self.gate, ZGate): g1 = HadamardGate(t) g2 = CNotGate(c, t) g3 = HadamardGate(t) return g1*g2*g3 else: return self #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _print_label(self, printer, *args): controls = self._print_sequence(self.controls, ',', printer, *args) gate = printer._print(self.gate, *args) return '(%s),%s' % (controls, gate) def _pretty(self, printer, *args): controls = self._print_sequence_pretty( self.controls, ',', printer, *args) gate = printer._print(self.gate) gate_name = stringPict(self.gate_name) first = self._print_subscript_pretty(gate_name, controls) gate = self._print_parens_pretty(gate) final = prettyForm(*first.right(gate)) return final def _latex(self, printer, *args): controls = self._print_sequence(self.controls, ',', printer, *args) gate = printer._print(self.gate, *args) return r'%s_{%s}{\left(%s\right)}' % \ (self.gate_name_latex, controls, gate) def plot_gate(self, circ_plot, gate_idx): """ Plot the controlled gate. If *simplify_cgate* is true, simplify C-X and C-Z gates into their more familiar forms. """ min_wire = int(_min(chain(self.controls, self.targets))) max_wire = int(_max(chain(self.controls, self.targets))) circ_plot.control_line(gate_idx, min_wire, max_wire) for c in self.controls: circ_plot.control_point(gate_idx, int(c)) if self.simplify_cgate: if self.gate.gate_name == 'X': self.gate.plot_gate_plus(circ_plot, gate_idx) elif self.gate.gate_name == 'Z': circ_plot.control_point(gate_idx, self.targets[0]) else: self.gate.plot_gate(circ_plot, gate_idx) else: self.gate.plot_gate(circ_plot, gate_idx) #------------------------------------------------------------------------- # Miscellaneous #------------------------------------------------------------------------- def _eval_dagger(self): if isinstance(self.gate, HermitianOperator): return self else: return Gate._eval_dagger(self) def _eval_inverse(self): if isinstance(self.gate, HermitianOperator): return self else: return Gate._eval_inverse(self) def _eval_power(self, exp): if isinstance(self.gate, HermitianOperator): if exp == -1: return Gate._eval_power(self, exp) elif abs(exp) % 2 == 0: return self*(Gate._eval_inverse(self)) else: return self else: return Gate._eval_power(self, exp) class CGateS(CGate): """Version of CGate that allows gate simplifications. I.e. cnot looks like an oplus, cphase has dots, etc. """ simplify_cgate=True class UGate(Gate): """General gate specified by a set of targets and a target matrix. Parameters ---------- label : tuple A tuple of the form (targets, U), where targets is a tuple of the target qubits and U is a unitary matrix with dimension of len(targets). """ gate_name = 'U' gate_name_latex = 'U' #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): targets = args[0] if not is_sequence(targets): targets = (targets,) targets = Gate._eval_args(targets) _validate_targets_controls(targets) mat = args[1] if not isinstance(mat, MatrixBase): raise TypeError('Matrix expected, got: %r' % mat) #make sure this matrix is of a Basic type mat = _sympify(mat) dim = 2**len(targets) if not all(dim == shape for shape in mat.shape): raise IndexError( 'Number of targets must match the matrix size: %r %r' % (targets, mat) ) return (targets, mat) @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args[0]) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def targets(self): """A tuple of target qubits.""" return tuple(self.label[0]) #------------------------------------------------------------------------- # Gate methods #------------------------------------------------------------------------- def get_target_matrix(self, format='sympy'): """The matrix rep. of the target part of the gate. Parameters ---------- format : str The format string ('sympy','numpy', etc.) """ return self.label[1] #------------------------------------------------------------------------- # Print methods #------------------------------------------------------------------------- def _pretty(self, printer, *args): targets = self._print_sequence_pretty( self.targets, ',', printer, *args) gate_name = stringPict(self.gate_name) return self._print_subscript_pretty(gate_name, targets) def _latex(self, printer, *args): targets = self._print_sequence(self.targets, ',', printer, *args) return r'%s_{%s}' % (self.gate_name_latex, targets) def plot_gate(self, circ_plot, gate_idx): circ_plot.one_qubit_box( self.gate_name_plot, gate_idx, int(self.targets[0]) ) class OneQubitGate(Gate): """A single qubit unitary gate base class.""" nqubits = _S.One def plot_gate(self, circ_plot, gate_idx): circ_plot.one_qubit_box( self.gate_name_plot, gate_idx, int(self.targets[0]) ) def _eval_commutator(self, other, **hints): if isinstance(other, OneQubitGate): if self.targets != other.targets or self.__class__ == other.__class__: return _S.Zero return Operator._eval_commutator(self, other, **hints) def _eval_anticommutator(self, other, **hints): if isinstance(other, OneQubitGate): if self.targets != other.targets or self.__class__ == other.__class__: return Integer(2)*self*other return Operator._eval_anticommutator(self, other, **hints) class TwoQubitGate(Gate): """A two qubit unitary gate base class.""" nqubits = Integer(2) #----------------------------------------------------------------------------- # Single Qubit Gates #----------------------------------------------------------------------------- class IdentityGate(OneQubitGate): """The single qubit identity gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = '1' gate_name_latex = '1' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('eye2', format) def _eval_commutator(self, other, **hints): return _S.Zero def _eval_anticommutator(self, other, **hints): return Integer(2)*other class HadamardGate(HermitianOperator, OneQubitGate): """The single qubit Hadamard gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== >>> from sympy import sqrt >>> from sympy.physics.quantum.qubit import Qubit >>> from sympy.physics.quantum.gate import HadamardGate >>> from sympy.physics.quantum.qapply import qapply >>> qapply(HadamardGate(0)*Qubit('1')) sqrt(2)*|0>/2 - sqrt(2)*|1>/2 >>> # Hadamard on bell state, applied on 2 qubits. >>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11')) >>> qapply(HadamardGate(0)*HadamardGate(1)*psi) sqrt(2)*|00>/2 + sqrt(2)*|11>/2 """ gate_name = 'H' gate_name_latex = 'H' def get_target_matrix(self, format='sympy'): if _normalized: return matrix_cache.get_matrix('H', format) else: return matrix_cache.get_matrix('Hsqrt2', format) def _eval_commutator_XGate(self, other, **hints): return I*sqrt(2)*YGate(self.targets[0]) def _eval_commutator_YGate(self, other, **hints): return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0])) def _eval_commutator_ZGate(self, other, **hints): return -I*sqrt(2)*YGate(self.targets[0]) def _eval_anticommutator_XGate(self, other, **hints): return sqrt(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero def _eval_anticommutator_ZGate(self, other, **hints): return sqrt(2)*IdentityGate(self.targets[0]) class XGate(HermitianOperator, OneQubitGate): """The single qubit X, or NOT, gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'X' gate_name_latex = 'X' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('X', format) def plot_gate(self, circ_plot, gate_idx): OneQubitGate.plot_gate(self,circ_plot,gate_idx) def plot_gate_plus(self, circ_plot, gate_idx): circ_plot.not_point( gate_idx, int(self.label[0]) ) def _eval_commutator_YGate(self, other, **hints): return Integer(2)*I*ZGate(self.targets[0]) def _eval_anticommutator_XGate(self, other, **hints): return Integer(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero def _eval_anticommutator_ZGate(self, other, **hints): return _S.Zero class YGate(HermitianOperator, OneQubitGate): """The single qubit Y gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'Y' gate_name_latex = 'Y' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('Y', format) def _eval_commutator_ZGate(self, other, **hints): return Integer(2)*I*XGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return Integer(2)*IdentityGate(self.targets[0]) def _eval_anticommutator_ZGate(self, other, **hints): return _S.Zero class ZGate(HermitianOperator, OneQubitGate): """The single qubit Z gate. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'Z' gate_name_latex = 'Z' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('Z', format) def _eval_commutator_XGate(self, other, **hints): return Integer(2)*I*YGate(self.targets[0]) def _eval_anticommutator_YGate(self, other, **hints): return _S.Zero class PhaseGate(OneQubitGate): """The single qubit phase, or S, gate. This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and does nothing if the state is ``|0>``. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'S' gate_name_latex = 'S' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('S', format) def _eval_commutator_ZGate(self, other, **hints): return _S.Zero def _eval_commutator_TGate(self, other, **hints): return _S.Zero class TGate(OneQubitGate): """The single qubit pi/8 gate. This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and does nothing if the state is ``|0>``. Parameters ---------- target : int The target qubit this gate will apply to. Examples ======== """ gate_name = 'T' gate_name_latex = 'T' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('T', format) def _eval_commutator_ZGate(self, other, **hints): return _S.Zero def _eval_commutator_PhaseGate(self, other, **hints): return _S.Zero # Aliases for gate names. H = HadamardGate X = XGate Y = YGate Z = ZGate T = TGate Phase = S = PhaseGate #----------------------------------------------------------------------------- # 2 Qubit Gates #----------------------------------------------------------------------------- class CNotGate(HermitianOperator, CGate, TwoQubitGate): """Two qubit controlled-NOT. This gate performs the NOT or X gate on the target qubit if the control qubits all have the value 1. Parameters ---------- label : tuple A tuple of the form (control, target). Examples ======== >>> from sympy.physics.quantum.gate import CNOT >>> from sympy.physics.quantum.qapply import qapply >>> from sympy.physics.quantum.qubit import Qubit >>> c = CNOT(1,0) >>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left |11> """ gate_name = 'CNOT' gate_name_latex = r'\text{CNOT}' simplify_cgate = True #------------------------------------------------------------------------- # Initialization #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): args = Gate._eval_args(args) return args @classmethod def _eval_hilbert_space(cls, args): """This returns the smallest possible Hilbert space.""" return ComplexSpace(2)**(_max(args) + 1) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def min_qubits(self): """The minimum number of qubits this gate needs to act on.""" return _max(self.label) + 1 @property def targets(self): """A tuple of target qubits.""" return (self.label[1],) @property def controls(self): """A tuple of control qubits.""" return (self.label[0],) @property def gate(self): """The non-controlled gate that will be applied to the targets.""" return XGate(self.label[1]) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- # The default printing of Gate works better than those of CGate, so we # go around the overridden methods in CGate. def _print_label(self, printer, *args): return Gate._print_label(self, printer, *args) def _pretty(self, printer, *args): return Gate._pretty(self, printer, *args) def _latex(self, printer, *args): return Gate._latex(self, printer, *args) #------------------------------------------------------------------------- # Commutator/AntiCommutator #------------------------------------------------------------------------- def _eval_commutator_ZGate(self, other, **hints): """[CNOT(i, j), Z(i)] == 0.""" if self.controls[0] == other.targets[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) def _eval_commutator_TGate(self, other, **hints): """[CNOT(i, j), T(i)] == 0.""" return self._eval_commutator_ZGate(other, **hints) def _eval_commutator_PhaseGate(self, other, **hints): """[CNOT(i, j), S(i)] == 0.""" return self._eval_commutator_ZGate(other, **hints) def _eval_commutator_XGate(self, other, **hints): """[CNOT(i, j), X(j)] == 0.""" if self.targets[0] == other.targets[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) def _eval_commutator_CNotGate(self, other, **hints): """[CNOT(i, j), CNOT(i,k)] == 0.""" if self.controls[0] == other.controls[0]: return _S.Zero else: raise NotImplementedError('Commutator not implemented: %r' % other) class SwapGate(TwoQubitGate): """Two qubit SWAP gate. This gate swap the values of the two qubits. Parameters ---------- label : tuple A tuple of the form (target1, target2). Examples ======== """ gate_name = 'SWAP' gate_name_latex = r'\text{SWAP}' def get_target_matrix(self, format='sympy'): return matrix_cache.get_matrix('SWAP', format) def decompose(self, **options): """Decompose the SWAP gate into CNOT gates.""" i, j = self.targets[0], self.targets[1] g1 = CNotGate(i, j) g2 = CNotGate(j, i) return g1*g2*g1 def plot_gate(self, circ_plot, gate_idx): min_wire = int(_min(self.targets)) max_wire = int(_max(self.targets)) circ_plot.control_line(gate_idx, min_wire, max_wire) circ_plot.swap_point(gate_idx, min_wire) circ_plot.swap_point(gate_idx, max_wire) def _represent_ZGate(self, basis, **options): """Represent the SWAP gate in the computational basis. The following representation is used to compute this: SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0| """ format = options.get('format', 'sympy') targets = [int(t) for t in self.targets] min_target = _min(targets) max_target = _max(targets) nqubits = options.get('nqubits', self.min_qubits) op01 = matrix_cache.get_matrix('op01', format) op10 = matrix_cache.get_matrix('op10', format) op11 = matrix_cache.get_matrix('op11', format) op00 = matrix_cache.get_matrix('op00', format) eye2 = matrix_cache.get_matrix('eye2', format) result = None for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)): product = nqubits*[eye2] product[nqubits - min_target - 1] = i product[nqubits - max_target - 1] = j new_result = matrix_tensor_product(*product) if result is None: result = new_result else: result = result + new_result return result # Aliases for gate names. CNOT = CNotGate SWAP = SwapGate def CPHASE(a,b): return CGateS((a,),Z(b)) #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'): """Represent a gate with controls, targets and target_matrix. This function does the low-level work of representing gates as matrices in the standard computational basis (ZGate). Currently, we support two main cases: 1. One target qubit and no control qubits. 2. One target qubits and multiple control qubits. For the base of multiple controls, we use the following expression [1]: 1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2}) Parameters ---------- controls : list, tuple A sequence of control qubits. targets : list, tuple A sequence of target qubits. target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse The matrix form of the transformation to be performed on the target qubits. The format of this matrix must match that passed into the `format` argument. nqubits : int The total number of qubits used for the representation. format : str The format of the final matrix ('sympy', 'numpy', 'scipy.sparse'). Examples ======== References ---------- [1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html. """ controls = [int(x) for x in controls] targets = [int(x) for x in targets] nqubits = int(nqubits) # This checks for the format as well. op11 = matrix_cache.get_matrix('op11', format) eye2 = matrix_cache.get_matrix('eye2', format) # Plain single qubit case if len(controls) == 0 and len(targets) == 1: product = [] bit = targets[0] # Fill product with [I1,Gate,I2] such that the unitaries, # I, cause the gate to be applied to the correct Qubit if bit != nqubits - 1: product.append(matrix_eye(2**(nqubits - bit - 1), format=format)) product.append(target_matrix) if bit != 0: product.append(matrix_eye(2**bit, format=format)) return matrix_tensor_product(*product) # Single target, multiple controls. elif len(targets) == 1 and len(controls) >= 1: target = targets[0] # Build the non-trivial part. product2 = [] for i in range(nqubits): product2.append(matrix_eye(2, format=format)) for control in controls: product2[nqubits - 1 - control] = op11 product2[nqubits - 1 - target] = target_matrix - eye2 return matrix_eye(2**nqubits, format=format) + \ matrix_tensor_product(*product2) # Multi-target, multi-control is not yet implemented. else: raise NotImplementedError( 'The representation of multi-target, multi-control gates ' 'is not implemented.' ) #----------------------------------------------------------------------------- # Gate manipulation functions. #----------------------------------------------------------------------------- def gate_simp(circuit): """Simplifies gates symbolically It first sorts gates using gate_sort. It then applies basic simplification rules to the circuit, e.g., XGate**2 = Identity """ # Bubble sort out gates that commute. circuit = gate_sort(circuit) # Do simplifications by subing a simplification into the first element # which can be simplified. We recursively call gate_simp with new circuit # as input more simplifications exist. if isinstance(circuit, Add): return sum(gate_simp(t) for t in circuit.args) elif isinstance(circuit, Mul): circuit_args = circuit.args elif isinstance(circuit, Pow): b, e = circuit.as_base_exp() circuit_args = (gate_simp(b)**e,) else: return circuit # Iterate through each element in circuit, simplify if possible. for i in range(len(circuit_args)): # H,X,Y or Z squared is 1. # T**2 = S, S**2 = Z if isinstance(circuit_args[i], Pow): if isinstance(circuit_args[i].base, (HadamardGate, XGate, YGate, ZGate)) \ and isinstance(circuit_args[i].exp, Number): # Build a new circuit taking replacing the # H,X,Y,Z squared with one. newargs = (circuit_args[:i] + (circuit_args[i].base**(circuit_args[i].exp % 2),) + circuit_args[i + 1:]) # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, PhaseGate): # Build a new circuit taking old circuit but splicing # in simplification. newargs = circuit_args[:i] # Replace PhaseGate**2 with ZGate. newargs = newargs + (ZGate(circuit_args[i].base.args[0])** (Integer(circuit_args[i].exp/2)), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break elif isinstance(circuit_args[i].base, TGate): # Build a new circuit taking all the old elements. newargs = circuit_args[:i] # Put an Phasegate in place of any TGate**2. newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])** Integer(circuit_args[i].exp/2), circuit_args[i].base** (circuit_args[i].exp % 2)) # Append the last elements. newargs = newargs + circuit_args[i + 1:] # Recursively simplify the new circuit. circuit = gate_simp(Mul(*newargs)) break return circuit def gate_sort(circuit): """Sorts the gates while keeping track of commutation relations This function uses a bubble sort to rearrange the order of gate application. Keeps track of Quantum computations special commutation relations (e.g. things that apply to the same Qubit do not commute with each other) circuit is the Mul of gates that are to be sorted. """ # Make sure we have an Add or Mul. if isinstance(circuit, Add): return sum(gate_sort(t) for t in circuit.args) if isinstance(circuit, Pow): return gate_sort(circuit.base)**circuit.exp elif isinstance(circuit, Gate): return circuit if not isinstance(circuit, Mul): return circuit changes = True while changes: changes = False circ_array = circuit.args for i in range(len(circ_array) - 1): # Go through each element and switch ones that are in wrong order if isinstance(circ_array[i], (Gate, Pow)) and \ isinstance(circ_array[i + 1], (Gate, Pow)): # If we have a Pow object, look at only the base first_base, first_exp = circ_array[i].as_base_exp() second_base, second_exp = circ_array[i + 1].as_base_exp() # Use SymPy's hash based sorting. This is not mathematical # sorting, but is rather based on comparing hashes of objects. # See Basic.compare for details. if first_base.compare(second_base) > 0: if Commutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) circuit = Mul(*new_args) changes = True break if AntiCommutator(first_base, second_base).doit() == 0: new_args = (circuit.args[:i] + (circuit.args[i + 1],) + (circuit.args[i],) + circuit.args[i + 2:]) sign = _S.NegativeOne**(first_exp*second_exp) circuit = sign*Mul(*new_args) changes = True break return circuit #----------------------------------------------------------------------------- # Utility functions #----------------------------------------------------------------------------- def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)): """Return a random circuit of ngates and nqubits. This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP) gates. Parameters ---------- ngates : int The number of gates in the circuit. nqubits : int The number of qubits in the circuit. gate_space : tuple A tuple of the gate classes that will be used in the circuit. Repeating gate classes multiple times in this tuple will increase the frequency they appear in the random circuit. """ qubit_space = range(nqubits) result = [] for i in range(ngates): g = random.choice(gate_space) if g == CNotGate or g == SwapGate: qubits = random.sample(qubit_space, 2) g = g(*qubits) else: qubit = random.choice(qubit_space) g = g(qubit) result.append(g) return Mul(*result) def zx_basis_transform(self, format='sympy'): """Transformation matrix from Z to X basis.""" return matrix_cache.get_matrix('ZX', format) def zy_basis_transform(self, format='sympy'): """Transformation matrix from Z to Y basis.""" return matrix_cache.get_matrix('ZY', format)
aa68191d3f4e2d6284e6b37ee0341a954ec6bd150fb7c996c80751940eb87e4f
"""Logic for representing operators in state in various bases. TODO: * Get represent working with continuous hilbert spaces. * Document default basis functionality. """ from sympy.core.add import Add from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.core.power import Pow from sympy.integrals.integrals import integrate from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.matrixutils import flatten_scalar from sympy.physics.quantum.state import KetBase, BraBase, StateBase from sympy.physics.quantum.operator import Operator, OuterProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators __all__ = [ 'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result', 'get_basis', 'enumerate_states' ] #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def _sympy_to_scalar(e): """Convert from a SymPy scalar to a Python scalar.""" if isinstance(e, Expr): if e.is_Integer: return int(e) elif e.is_Float: return float(e) elif e.is_Rational: return float(e) elif e.is_Number or e.is_NumberSymbol or e == I: return complex(e) raise TypeError('Expected number, got: %r' % e) def represent(expr, **options): """Represent the quantum expression in the given basis. In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen: * Ket -> column vector or function * Bra -> row vector of function * Operator -> matrix or differential operator This function is the top-level interface for this action. This function walks the SymPy expression tree looking for ``QExpr`` instances that have a ``_represent`` method. This method is then called and the object is replaced by the representation returned by this method. By default, the ``_represent`` method will dispatch to other methods that handle the representation logic for a particular basis set. The naming convention for these methods is the following:: def _represent_FooBasis(self, e, basis, **options) This function will have the logic for representing instances of its class in the basis set having a class named ``FooBasis``. Parameters ========== expr : Expr The expression to represent. basis : Operator, basis set An object that contains the information about the basis set. If an operator is used, the basis is assumed to be the orthonormal eigenvectors of that operator. In general though, the basis argument can be any object that contains the basis set information. options : dict Key/value pairs of options that are passed to the underlying method that finds the representation. These options can be used to control how the representation is done. For example, this is where the size of the basis set would be set. Returns ======= e : Expr The SymPy expression of the represented quantum expression. Examples ======== Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp`` method, the ket can be represented in the z-spin basis. >>> from sympy.physics.quantum import Operator, represent, Ket >>> from sympy import Matrix >>> class SzUpKet(Ket): ... def _represent_SzOp(self, basis, **options): ... return Matrix([1,0]) ... >>> class SzOp(Operator): ... pass ... >>> sz = SzOp('Sz') >>> up = SzUpKet('up') >>> represent(up, basis=sz) Matrix([ [1], [0]]) Here we see an example of representations in a continuous basis. We see that the result of representing various combinations of cartesian position operators and kets give us continuous expressions involving DiracDelta functions. >>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra >>> X = XOp() >>> x = XKet() >>> y = XBra('y') >>> represent(X*x) x*DiracDelta(x - x_2) >>> represent(X*x*y) x*DiracDelta(x - x_3)*DiracDelta(x_1 - y) """ format = options.get('format', 'sympy') if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct): options['replace_none'] = False temp_basis = get_basis(expr, **options) if temp_basis is not None: options['basis'] = temp_basis try: return expr._represent(**options) except NotImplementedError as strerr: #If no _represent_FOO method exists, map to the #appropriate basis state and try #the other methods of representation options['replace_none'] = True if isinstance(expr, (KetBase, BraBase)): try: return rep_innerproduct(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) elif isinstance(expr, Operator): try: return rep_expectation(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) else: raise NotImplementedError(strerr) elif isinstance(expr, Add): result = represent(expr.args[0], **options) for args in expr.args[1:]: # scipy.sparse doesn't support += so we use plain = here. result = result + represent(args, **options) return result elif isinstance(expr, Pow): base, exp = expr.as_base_exp() if format in ('numpy', 'scipy.sparse'): exp = _sympy_to_scalar(exp) base = represent(base, **options) # scipy.sparse doesn't support negative exponents # and warns when inverting a matrix in csr format. if format == 'scipy.sparse' and exp < 0: from scipy.sparse.linalg import inv exp = - exp base = inv(base.tocsc()).tocsr() return base ** exp elif isinstance(expr, TensorProduct): new_args = [represent(arg, **options) for arg in expr.args] return TensorProduct(*new_args) elif isinstance(expr, Dagger): return Dagger(represent(expr.args[0], **options)) elif isinstance(expr, Commutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B - B*A elif isinstance(expr, AntiCommutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B + B*A elif isinstance(expr, InnerProduct): return represent(Mul(expr.bra, expr.ket), **options) elif not isinstance(expr, (Mul, OuterProduct)): # For numpy and scipy.sparse, we can only handle numerical prefactors. if format in ('numpy', 'scipy.sparse'): return _sympy_to_scalar(expr) return expr if not isinstance(expr, (Mul, OuterProduct)): raise TypeError('Mul expected, got: %r' % expr) if "index" in options: options["index"] += 1 else: options["index"] = 1 if "unities" not in options: options["unities"] = [] result = represent(expr.args[-1], **options) last_arg = expr.args[-1] for arg in reversed(expr.args[:-1]): if isinstance(last_arg, Operator): options["index"] += 1 options["unities"].append(options["index"]) elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase): options["index"] += 1 elif isinstance(last_arg, KetBase) and isinstance(arg, Operator): options["unities"].append(options["index"]) elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase): options["unities"].append(options["index"]) result = represent(arg, **options)*result last_arg = arg # All three matrix formats create 1 by 1 matrices when inner products of # vectors are taken. In these cases, we simply return a scalar. result = flatten_scalar(result) result = integrate_result(expr, result, **options) return result def rep_innerproduct(expr, **options): """ Returns an innerproduct like representation (e.g. ``<x'|x>``) for the given state. Attempts to calculate inner product with a bra from the specified basis. Should only be passed an instance of KetBase or BraBase Parameters ========== expr : KetBase or BraBase The expression to be represented Examples ======== >>> from sympy.physics.quantum.represent import rep_innerproduct >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> rep_innerproduct(XKet()) DiracDelta(x - x_1) >>> rep_innerproduct(XKet(), basis=PxOp()) sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi)) >>> rep_innerproduct(PxKet(), basis=XOp()) sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi)) """ if not isinstance(expr, (KetBase, BraBase)): raise TypeError("expr passed is not a Bra or Ket") basis = get_basis(expr, **options) if not isinstance(basis, StateBase): raise NotImplementedError("Can't form this representation!") if "index" not in options: options["index"] = 1 basis_kets = enumerate_states(basis, options["index"], 2) if isinstance(expr, BraBase): bra = expr ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0]) else: bra = (basis_kets[1].dual if basis_kets[0] == expr else basis_kets[0].dual) ket = expr prod = InnerProduct(bra, ket) result = prod.doit() format = options.get('format', 'sympy') return expr._format_represent(result, format) def rep_expectation(expr, **options): """ Returns an ``<x'|A|x>`` type representation for the given operator. Parameters ========== expr : Operator Operator to be represented in the specified basis Examples ======== >>> from sympy.physics.quantum.cartesian import XOp, PxOp, PxKet >>> from sympy.physics.quantum.represent import rep_expectation >>> rep_expectation(XOp()) x_1*DiracDelta(x_1 - x_2) >>> rep_expectation(XOp(), basis=PxOp()) <px_2|*X*|px_1> >>> rep_expectation(XOp(), basis=PxKet()) <px_2|*X*|px_1> """ if "index" not in options: options["index"] = 1 if not isinstance(expr, Operator): raise TypeError("The passed expression is not an operator") basis_state = get_basis(expr, **options) if basis_state is None or not isinstance(basis_state, StateBase): raise NotImplementedError("Could not get basis kets for this operator") basis_kets = enumerate_states(basis_state, options["index"], 2) bra = basis_kets[1].dual ket = basis_kets[0] return qapply(bra*expr*ket) def integrate_result(orig_expr, result, **options): """ Returns the result of integrating over any unities ``(|x><x|)`` in the given expression. Intended for integrating over the result of representations in continuous bases. This function integrates over any unities that may have been inserted into the quantum expression and returns the result. It uses the interval of the Hilbert space of the basis state passed to it in order to figure out the limits of integration. The unities option must be specified for this to work. Note: This is mostly used internally by represent(). Examples are given merely to show the use cases. Parameters ========== orig_expr : quantum expression The original expression which was to be represented result: Expr The resulting representation that we wish to integrate over Examples ======== >>> from sympy import symbols, DiracDelta >>> from sympy.physics.quantum.represent import integrate_result >>> from sympy.physics.quantum.cartesian import XOp, XKet >>> x_ket = XKet() >>> X_op = XOp() >>> x, x_1, x_2 = symbols('x, x_1, x_2') >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2)) x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2) >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2), ... unities=[1]) x*DiracDelta(x - x_2) """ if not isinstance(result, Expr): return result options['replace_none'] = True if "basis" not in options: arg = orig_expr.args[-1] options["basis"] = get_basis(arg, **options) elif not isinstance(options["basis"], StateBase): options["basis"] = get_basis(orig_expr, **options) basis = options.pop("basis", None) if basis is None: return result unities = options.pop("unities", []) if len(unities) == 0: return result kets = enumerate_states(basis, unities) coords = [k.label[0] for k in kets] for coord in coords: if coord in result.free_symbols: #TODO: Add support for sets of operators basis_op = state_to_operators(basis) start = basis_op.hilbert_space.interval.start end = basis_op.hilbert_space.interval.end result = integrate(result, (coord, start, end)) return result def get_basis(expr, *, basis=None, replace_none=True, **options): """ Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression. There are three behaviors: 1. The basis specified in options is already an instance of StateBase. If this is the case, it is simply returned. If the class is specified but not an instance, a default instance is returned. 2. The basis specified is an operator or set of operators. If this is the case, the operator_to_state mapping method is used. 3. No basis is specified. If expr is a state, then a default instance of its class is returned. If expr is an operator, then it is mapped to the corresponding state. If it is neither, then we cannot obtain the basis state. If the basis cannot be mapped, then it is not changed. This will be called from within represent, and represent will only pass QExpr's. TODO (?): Support for Muls and other types of expressions? Parameters ========== expr : Operator or StateBase Expression whose basis is sought Examples ======== >>> from sympy.physics.quantum.represent import get_basis >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> x = XKet() >>> X = XOp() >>> get_basis(x) |x> >>> get_basis(X) |x> >>> get_basis(x, basis=PxOp()) |px> >>> get_basis(x, basis=PxKet) |px> """ if basis is None and not replace_none: return None if basis is None: if isinstance(expr, KetBase): return _make_default(expr.__class__) elif isinstance(expr, BraBase): return _make_default(expr.dual_class()) elif isinstance(expr, Operator): state_inst = operators_to_state(expr) return (state_inst if state_inst is not None else None) else: return None elif (isinstance(basis, Operator) or (not isinstance(basis, StateBase) and issubclass(basis, Operator))): state = operators_to_state(basis) if state is None: return None elif isinstance(state, StateBase): return state else: return _make_default(state) elif isinstance(basis, StateBase): return basis elif issubclass(basis, StateBase): return _make_default(basis) else: return None def _make_default(expr): # XXX: Catching TypeError like this is a bad way of distinguishing # instances from classes. The logic using this function should be # rewritten somehow. try: expr = expr() except TypeError: return expr return expr def enumerate_states(*args, **options): """ Returns instances of the given state with dummy indices appended Operates in two different modes: 1. Two arguments are passed to it. The first is the base state which is to be indexed, and the second argument is a list of indices to append. 2. Three arguments are passed. The first is again the base state to be indexed. The second is the start index for counting. The final argument is the number of kets you wish to receive. Tries to call state._enumerate_state. If this fails, returns an empty list Parameters ========== args : list See list of operation modes above for explanation Examples ======== >>> from sympy.physics.quantum.cartesian import XBra, XKet >>> from sympy.physics.quantum.represent import enumerate_states >>> test = XKet('foo') >>> enumerate_states(test, 1, 3) [|foo_1>, |foo_2>, |foo_3>] >>> test2 = XBra('bar') >>> enumerate_states(test2, [4, 5, 10]) [<bar_4|, <bar_5|, <bar_10|] """ state = args[0] if len(args) not in (2, 3): raise NotImplementedError("Wrong number of arguments!") if not isinstance(state, StateBase): raise TypeError("First argument is not a state!") if len(args) == 3: num_states = args[2] options['start_index'] = args[1] else: num_states = len(args[1]) options['index_list'] = args[1] try: ret = state._enumerate_state(num_states, **options) except NotImplementedError: ret = [] return ret
fe483cbb0233847736516bf134427015b76e7732475dff03fa11b5875df946bb
"""Qubits for quantum computing. Todo: * Finish implementing measurement logic. This should include POVM. * Update docstrings. * Update tests. """ import math from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.singleton import S from sympy.functions.elementary.complexes import conjugate from sympy.functions.elementary.exponential import log from sympy.core.basic import _sympify from sympy.external.gmpy import SYMPY_INTS from sympy.matrices import Matrix, zeros from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.state import Ket, Bra, State from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix ) from mpmath.libmp.libintmath import bitcount __all__ = [ 'Qubit', 'QubitBra', 'IntQubit', 'IntQubitBra', 'qubit_to_matrix', 'matrix_to_qubit', 'matrix_to_density', 'measure_all', 'measure_partial', 'measure_partial_oneshot', 'measure_all_oneshot' ] #----------------------------------------------------------------------------- # Qubit Classes #----------------------------------------------------------------------------- class QubitState(State): """Base class for Qubit and QubitBra.""" #------------------------------------------------------------------------- # Initialization/creation #------------------------------------------------------------------------- @classmethod def _eval_args(cls, args): # If we are passed a QubitState or subclass, we just take its qubit # values directly. if len(args) == 1 and isinstance(args[0], QubitState): return args[0].qubit_values # Turn strings into tuple of strings if len(args) == 1 and isinstance(args[0], str): args = tuple( S.Zero if qb == "0" else S.One for qb in args[0]) else: args = tuple( S.Zero if qb == "0" else S.One if qb == "1" else qb for qb in args) args = tuple(_sympify(arg) for arg in args) # Validate input (must have 0 or 1 input) for element in args: if element not in (S.Zero, S.One): raise ValueError( "Qubit values must be 0 or 1, got: %r" % element) return args @classmethod def _eval_hilbert_space(cls, args): return ComplexSpace(2)**len(args) #------------------------------------------------------------------------- # Properties #------------------------------------------------------------------------- @property def dimension(self): """The number of Qubits in the state.""" return len(self.qubit_values) @property def nqubits(self): return self.dimension @property def qubit_values(self): """Returns the values of the qubits as a tuple.""" return self.label #------------------------------------------------------------------------- # Special methods #------------------------------------------------------------------------- def __len__(self): return self.dimension def __getitem__(self, bit): return self.qubit_values[int(self.dimension - bit - 1)] #------------------------------------------------------------------------- # Utility methods #------------------------------------------------------------------------- def flip(self, *bits): """Flip the bit(s) given.""" newargs = list(self.qubit_values) for i in bits: bit = int(self.dimension - i - 1) if newargs[bit] == 1: newargs[bit] = 0 else: newargs[bit] = 1 return self.__class__(*tuple(newargs)) class Qubit(QubitState, Ket): """A multi-qubit ket in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). Examples ======== Create a qubit in a couple of different ways and look at their attributes: >>> from sympy.physics.quantum.qubit import Qubit >>> Qubit(0,0,0) |000> >>> q = Qubit('0101') >>> q |0101> >>> q.nqubits 4 >>> len(q) 4 >>> q.dimension 4 >>> q.qubit_values (0, 1, 0, 1) We can flip the value of an individual qubit: >>> q.flip(1) |0111> We can take the dagger of a Qubit to get a bra: >>> from sympy.physics.quantum.dagger import Dagger >>> Dagger(q) <0101| >>> type(Dagger(q)) <class 'sympy.physics.quantum.qubit.QubitBra'> Inner products work as expected: >>> ip = Dagger(q)*q >>> ip <0101|0101> >>> ip.doit() 1 """ @classmethod def dual_class(self): return QubitBra def _eval_innerproduct_QubitBra(self, bra, **hints): if self.label == bra.label: return S.One else: return S.Zero def _represent_default_basis(self, **options): return self._represent_ZGate(None, **options) def _represent_ZGate(self, basis, **options): """Represent this qubits in the computational basis (ZGate). """ _format = options.get('format', 'sympy') n = 1 definite_state = 0 for it in reversed(self.qubit_values): definite_state += n*it n = n*2 result = [0]*(2**self.dimension) result[int(definite_state)] = 1 if _format == 'sympy': return Matrix(result) elif _format == 'numpy': import numpy as np return np.matrix(result, dtype='complex').transpose() elif _format == 'scipy.sparse': from scipy import sparse return sparse.csr_matrix(result, dtype='complex').transpose() def _eval_trace(self, bra, **kwargs): indices = kwargs.get('indices', []) #sort index list to begin trace from most-significant #qubit sorted_idx = list(indices) if len(sorted_idx) == 0: sorted_idx = list(range(0, self.nqubits)) sorted_idx.sort() #trace out for each of index new_mat = self*bra for i in range(len(sorted_idx) - 1, -1, -1): # start from tracing out from leftmost qubit new_mat = self._reduced_density(new_mat, int(sorted_idx[i])) if (len(sorted_idx) == self.nqubits): #in case full trace was requested return new_mat[0] else: return matrix_to_density(new_mat) def _reduced_density(self, matrix, qubit, **options): """Compute the reduced density matrix by tracing out one qubit. The qubit argument should be of type Python int, since it is used in bit operations """ def find_index_that_is_projected(j, k, qubit): bit_mask = 2**qubit - 1 return ((j >> qubit) << (1 + qubit)) + (j & bit_mask) + (k << qubit) old_matrix = represent(matrix, **options) old_size = old_matrix.cols #we expect the old_size to be even new_size = old_size//2 new_matrix = Matrix().zeros(new_size) for i in range(new_size): for j in range(new_size): for k in range(2): col = find_index_that_is_projected(j, k, qubit) row = find_index_that_is_projected(i, k, qubit) new_matrix[i, j] += old_matrix[row, col] return new_matrix class QubitBra(QubitState, Bra): """A multi-qubit bra in the computational (z) basis. We use the normal convention that the least significant qubit is on the right, so ``|00001>`` has a 1 in the least significant qubit. Parameters ========== values : list, str The qubit values as a list of ints ([0,0,0,1,1,]) or a string ('011'). See also ======== Qubit: Examples using qubits """ @classmethod def dual_class(self): return Qubit class IntQubitState(QubitState): """A base class for qubits that work with binary representations.""" @classmethod def _eval_args(cls, args, nqubits=None): # The case of a QubitState instance if len(args) == 1 and isinstance(args[0], QubitState): return QubitState._eval_args(args) # otherwise, args should be integer elif not all(isinstance(a, (int, Integer)) for a in args): raise ValueError('values must be integers, got (%s)' % (tuple(type(a) for a in args),)) # use nqubits if specified if nqubits is not None: if not isinstance(nqubits, (int, Integer)): raise ValueError('nqubits must be an integer, got (%s)' % type(nqubits)) if len(args) != 1: raise ValueError( 'too many positional arguments (%s). should be (number, nqubits=n)' % (args,)) return cls._eval_args_with_nqubits(args[0], nqubits) # For a single argument, we construct the binary representation of # that integer with the minimal number of bits. if len(args) == 1 and args[0] > 1: #rvalues is the minimum number of bits needed to express the number rvalues = reversed(range(bitcount(abs(args[0])))) qubit_values = [(args[0] >> i) & 1 for i in rvalues] return QubitState._eval_args(qubit_values) # For two numbers, the second number is the number of bits # on which it is expressed, so IntQubit(0,5) == |00000>. elif len(args) == 2 and args[1] > 1: return cls._eval_args_with_nqubits(args[0], args[1]) else: return QubitState._eval_args(args) @classmethod def _eval_args_with_nqubits(cls, number, nqubits): need = bitcount(abs(number)) if nqubits < need: raise ValueError( 'cannot represent %s with %s bits' % (number, nqubits)) qubit_values = [(number >> i) & 1 for i in reversed(range(nqubits))] return QubitState._eval_args(qubit_values) def as_int(self): """Return the numerical value of the qubit.""" number = 0 n = 1 for i in reversed(self.qubit_values): number += n*i n = n << 1 return number def _print_label(self, printer, *args): return str(self.as_int()) def _print_label_pretty(self, printer, *args): label = self._print_label(printer, *args) return prettyForm(label) _print_label_repr = _print_label _print_label_latex = _print_label class IntQubit(IntQubitState, Qubit): """A qubit ket that store integers as binary numbers in qubit values. The differences between this class and ``Qubit`` are: * The form of the constructor. * The qubit values are printed as their corresponding integer, rather than the raw qubit values. The internal storage format of the qubit values in the same as ``Qubit``. Parameters ========== values : int, tuple If a single argument, the integer we want to represent in the qubit values. This integer will be represented using the fewest possible number of qubits. If a pair of integers and the second value is more than one, the first integer gives the integer to represent in binary form and the second integer gives the number of qubits to use. List of zeros and ones is also accepted to generate qubit by bit pattern. nqubits : int The integer that represents the number of qubits. This number should be passed with keyword ``nqubits=N``. You can use this in order to avoid ambiguity of Qubit-style tuple of bits. Please see the example below for more details. Examples ======== Create a qubit for the integer 5: >>> from sympy.physics.quantum.qubit import IntQubit >>> from sympy.physics.quantum.qubit import Qubit >>> q = IntQubit(5) >>> q |5> We can also create an ``IntQubit`` by passing a ``Qubit`` instance. >>> q = IntQubit(Qubit('101')) >>> q |5> >>> q.as_int() 5 >>> q.nqubits 3 >>> q.qubit_values (1, 0, 1) We can go back to the regular qubit form. >>> Qubit(q) |101> Please note that ``IntQubit`` also accepts a ``Qubit``-style list of bits. So, the code below yields qubits 3, not a single bit ``1``. >>> IntQubit(1, 1) |3> To avoid ambiguity, use ``nqubits`` parameter. Use of this keyword is recommended especially when you provide the values by variables. >>> IntQubit(1, nqubits=1) |1> >>> a = 1 >>> IntQubit(a, nqubits=1) |1> """ @classmethod def dual_class(self): return IntQubitBra def _eval_innerproduct_IntQubitBra(self, bra, **hints): return Qubit._eval_innerproduct_QubitBra(self, bra) class IntQubitBra(IntQubitState, QubitBra): """A qubit bra that store integers as binary numbers in qubit values.""" @classmethod def dual_class(self): return IntQubit #----------------------------------------------------------------------------- # Qubit <---> Matrix conversion functions #----------------------------------------------------------------------------- def matrix_to_qubit(matrix): """Convert from the matrix repr. to a sum of Qubit objects. Parameters ---------- matrix : Matrix, numpy.matrix, scipy.sparse The matrix to build the Qubit representation of. This works with SymPy matrices, numpy matrices and scipy.sparse sparse matrices. Examples ======== Represent a state and then go back to its qubit form: >>> from sympy.physics.quantum.qubit import matrix_to_qubit, Qubit >>> from sympy.physics.quantum.represent import represent >>> q = Qubit('01') >>> matrix_to_qubit(represent(q)) |01> """ # Determine the format based on the type of the input matrix format = 'sympy' if isinstance(matrix, numpy_ndarray): format = 'numpy' if isinstance(matrix, scipy_sparse_matrix): format = 'scipy.sparse' # Make sure it is of correct dimensions for a Qubit-matrix representation. # This logic should work with sympy, numpy or scipy.sparse matrices. if matrix.shape[0] == 1: mlistlen = matrix.shape[1] nqubits = log(mlistlen, 2) ket = False cls = QubitBra elif matrix.shape[1] == 1: mlistlen = matrix.shape[0] nqubits = log(mlistlen, 2) ket = True cls = Qubit else: raise QuantumError( 'Matrix must be a row/column vector, got %r' % matrix ) if not isinstance(nqubits, Integer): raise QuantumError('Matrix must be a row/column vector of size ' '2**nqubits, got: %r' % matrix) # Go through each item in matrix, if element is non-zero, make it into a # Qubit item times the element. result = 0 for i in range(mlistlen): if ket: element = matrix[i, 0] else: element = matrix[0, i] if format in ('numpy', 'scipy.sparse'): element = complex(element) if element != 0.0: # Form Qubit array; 0 in bit-locations where i is 0, 1 in # bit-locations where i is 1 qubit_array = [int(i & (1 << x) != 0) for x in range(nqubits)] qubit_array.reverse() result = result + element*cls(*qubit_array) # If SymPy simplified by pulling out a constant coefficient, undo that. if isinstance(result, (Mul, Add, Pow)): result = result.expand() return result def matrix_to_density(mat): """ Works by finding the eigenvectors and eigenvalues of the matrix. We know we can decompose rho by doing: sum(EigenVal*|Eigenvect><Eigenvect|) """ from sympy.physics.quantum.density import Density eigen = mat.eigenvects() args = [[matrix_to_qubit(Matrix( [vector, ])), x[0]] for x in eigen for vector in x[2] if x[0] != 0] if (len(args) == 0): return S.Zero else: return Density(*args) def qubit_to_matrix(qubit, format='sympy'): """Converts an Add/Mul of Qubit objects into it's matrix representation This function is the inverse of ``matrix_to_qubit`` and is a shorthand for ``represent(qubit)``. """ return represent(qubit, format=format) #----------------------------------------------------------------------------- # Measurement #----------------------------------------------------------------------------- def measure_all(qubit, format='sympy', normalize=True): """Perform an ensemble measurement of all qubits. Parameters ========== qubit : Qubit, Add The qubit to measure. This can be any Qubit or a linear combination of them. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ======= result : list A list that consists of primitive states and their probabilities. Examples ======== >>> from sympy.physics.quantum.qubit import Qubit, measure_all >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_all(q) [(|00>, 1/4), (|01>, 1/4), (|10>, 1/4), (|11>, 1/4)] """ m = qubit_to_matrix(qubit, format) if format == 'sympy': results = [] if normalize: m = m.normalized() size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size)/math.log(2)) for i in range(size): if m[i] != 0.0: results.append( (Qubit(IntQubit(i, nqubits=nqubits)), m[i]*conjugate(m[i])) ) return results else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial(qubit, bits, format='sympy', normalize=True): """Perform a partial ensemble measure on the specified qubits. Parameters ========== qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ======= result : list A list that consists of primitive states and their probabilities. Examples ======== >>> from sympy.physics.quantum.qubit import Qubit, measure_partial >>> from sympy.physics.quantum.gate import H >>> from sympy.physics.quantum.qapply import qapply >>> c = H(0)*H(1)*Qubit('00') >>> c H(0)*H(1)*|00> >>> q = qapply(c) >>> measure_partial(q, (0,)) [(sqrt(2)*|00>/2 + sqrt(2)*|10>/2, 1/2), (sqrt(2)*|01>/2 + sqrt(2)*|11>/2, 1/2)] """ m = qubit_to_matrix(qubit, format) if isinstance(bits, (SYMPY_INTS, Integer)): bits = (int(bits),) if format == 'sympy': if normalize: m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function. output = [] for outcome in possible_outcomes: # Calculate probability of finding the specified bits with # given values. prob_of_outcome = 0 prob_of_outcome += (outcome.H*outcome)[0] # If the output has a chance, append it to output with found # probability. if prob_of_outcome != 0: if normalize: next_matrix = matrix_to_qubit(outcome.normalized()) else: next_matrix = matrix_to_qubit(outcome) output.append(( next_matrix, prob_of_outcome )) return output else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def measure_partial_oneshot(qubit, bits, format='sympy'): """Perform a partial oneshot measurement on the specified qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. bits : tuple The qubits to measure. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit, format) if format == 'sympy': m = m.normalized() possible_outcomes = _get_possible_outcomes(m, bits) # Form output from function random_number = random.random() total_prob = 0 for outcome in possible_outcomes: # Calculate probability of finding the specified bits # with given values total_prob += (outcome.H*outcome)[0] if total_prob >= random_number: return matrix_to_qubit(outcome.normalized()) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" ) def _get_possible_outcomes(m, bits): """Get the possible states that can be produced in a measurement. Parameters ---------- m : Matrix The matrix representing the state of the system. bits : tuple, list Which bits will be measured. Returns ------- result : list The list of possible states which can occur given this measurement. These are un-normalized so we can derive the probability of finding this state by taking the inner product with itself """ # This is filled with loads of dirty binary tricks...You have been warned size = max(m.shape) # Max of shape to account for bra or ket nqubits = int(math.log(size, 2) + .1) # Number of qubits possible # Make the output states and put in output_matrices, nothing in them now. # Each state will represent a possible outcome of the measurement # Thus, output_matrices[0] is the matrix which we get when all measured # bits return 0. and output_matrices[1] is the matrix for only the 0th # bit being true output_matrices = [] for i in range(1 << len(bits)): output_matrices.append(zeros(2**nqubits, 1)) # Bitmasks will help sort how to determine possible outcomes. # When the bit mask is and-ed with a matrix-index, # it will determine which state that index belongs to bit_masks = [] for bit in bits: bit_masks.append(1 << bit) # Make possible outcome states for i in range(2**nqubits): trueness = 0 # This tells us to which output_matrix this value belongs # Find trueness for j in range(len(bit_masks)): if i & bit_masks[j]: trueness += j + 1 # Put the value in the correct output matrix output_matrices[trueness][i] = m[i] return output_matrices def measure_all_oneshot(qubit, format='sympy'): """Perform a oneshot ensemble measurement on all qubits. A oneshot measurement is equivalent to performing a measurement on a quantum system. This type of measurement does not return the probabilities like an ensemble measurement does, but rather returns *one* of the possible resulting states. The exact state that is returned is determined by picking a state randomly according to the ensemble probabilities. Parameters ---------- qubits : Qubit The qubit to measure. This can be any Qubit or a linear combination of them. format : str The format of the intermediate matrices to use. Possible values are ('sympy','numpy','scipy.sparse'). Currently only 'sympy' is implemented. Returns ------- result : Qubit The qubit that the system collapsed to upon measurement. """ import random m = qubit_to_matrix(qubit) if format == 'sympy': m = m.normalized() random_number = random.random() total = 0 result = 0 for i in m: total += i*i.conjugate() if total > random_number: break result += 1 return Qubit(IntQubit(result, int(math.log(max(m.shape), 2) + .1))) else: raise NotImplementedError( "This function cannot handle non-SymPy matrix formats yet" )
17d86ebd1fa48c5f5ea1f9dffe79cdfe4a99cf498e4896bb7504ef67de3809d8
""" qasm.py - Functions to parse a set of qasm commands into a SymPy Circuit. Examples taken from Chuang's page: http://www.media.mit.edu/quanta/qasm2circ/ The code returns a circuit and an associated list of labels. >>> from sympy.physics.quantum.qasm import Qasm >>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*H(1) >>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*CNOT(0,1)*CNOT(1,0) """ __all__ = [ 'Qasm', ] from sympy.physics.quantum.gate import H, CNOT, X, Z, CGate, CGateS, SWAP, S, T,CPHASE from sympy.physics.quantum.circuitplot import Mz def read_qasm(lines): return Qasm(*lines.splitlines()) def read_qasm_file(filename): return Qasm(*open(filename).readlines()) def prod(c): p = 1 for ci in c: p *= ci return p def flip_index(i, n): """Reorder qubit indices from largest to smallest. >>> from sympy.physics.quantum.qasm import flip_index >>> flip_index(0, 2) 1 >>> flip_index(1, 2) 0 """ return n-i-1 def trim(line): """Remove everything following comment # characters in line. >>> from sympy.physics.quantum.qasm import trim >>> trim('nothing happens here') 'nothing happens here' >>> trim('something #happens here') 'something ' """ if '#' not in line: return line return line.split('#')[0] def get_index(target, labels): """Get qubit labels from the rest of the line,and return indices >>> from sympy.physics.quantum.qasm import get_index >>> get_index('q0', ['q0', 'q1']) 1 >>> get_index('q1', ['q0', 'q1']) 0 """ nq = len(labels) return flip_index(labels.index(target), nq) def get_indices(targets, labels): return [get_index(t, labels) for t in targets] def nonblank(args): for line in args: line = trim(line) if line.isspace(): continue yield line return def fullsplit(line): words = line.split() rest = ' '.join(words[1:]) return fixcommand(words[0]), [s.strip() for s in rest.split(',')] def fixcommand(c): """Fix Qasm command names. Remove all of forbidden characters from command c, and replace 'def' with 'qdef'. """ forbidden_characters = ['-'] c = c.lower() for char in forbidden_characters: c = c.replace(char, '') if c == 'def': return 'qdef' return c def stripquotes(s): """Replace explicit quotes in a string. >>> from sympy.physics.quantum.qasm import stripquotes >>> stripquotes("'S'") == 'S' True >>> stripquotes('"S"') == 'S' True >>> stripquotes('S') == 'S' True """ s = s.replace('"', '') # Remove second set of quotes? s = s.replace("'", '') return s class Qasm: """Class to form objects from Qasm lines >>> from sympy.physics.quantum.qasm import Qasm >>> q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*H(1) >>> q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1') >>> q.get_circuit() CNOT(1,0)*CNOT(0,1)*CNOT(1,0) """ def __init__(self, *args, **kwargs): self.defs = {} self.circuit = [] self.labels = [] self.inits = {} self.add(*args) self.kwargs = kwargs def add(self, *lines): for line in nonblank(lines): command, rest = fullsplit(line) if self.defs.get(command): #defs come first, since you can override built-in function = self.defs.get(command) indices = self.indices(rest) if len(indices) == 1: self.circuit.append(function(indices[0])) else: self.circuit.append(function(indices[:-1], indices[-1])) elif hasattr(self, command): function = getattr(self, command) function(*rest) else: print("Function %s not defined. Skipping" % command) def get_circuit(self): return prod(reversed(self.circuit)) def get_labels(self): return list(reversed(self.labels)) def plot(self): from sympy.physics.quantum.circuitplot import CircuitPlot circuit, labels = self.get_circuit(), self.get_labels() CircuitPlot(circuit, len(labels), labels=labels, inits=self.inits) def qubit(self, arg, init=None): self.labels.append(arg) if init: self.inits[arg] = init def indices(self, args): return get_indices(args, self.labels) def index(self, arg): return get_index(arg, self.labels) def nop(self, *args): pass def x(self, arg): self.circuit.append(X(self.index(arg))) def z(self, arg): self.circuit.append(Z(self.index(arg))) def h(self, arg): self.circuit.append(H(self.index(arg))) def s(self, arg): self.circuit.append(S(self.index(arg))) def t(self, arg): self.circuit.append(T(self.index(arg))) def measure(self, arg): self.circuit.append(Mz(self.index(arg))) def cnot(self, a1, a2): self.circuit.append(CNOT(*self.indices([a1, a2]))) def swap(self, a1, a2): self.circuit.append(SWAP(*self.indices([a1, a2]))) def cphase(self, a1, a2): self.circuit.append(CPHASE(*self.indices([a1, a2]))) def toffoli(self, a1, a2, a3): i1, i2, i3 = self.indices([a1, a2, a3]) self.circuit.append(CGateS((i1, i2), X(i3))) def cx(self, a1, a2): fi, fj = self.indices([a1, a2]) self.circuit.append(CGate(fi, X(fj))) def cz(self, a1, a2): fi, fj = self.indices([a1, a2]) self.circuit.append(CGate(fi, Z(fj))) def defbox(self, *args): print("defbox not supported yet. Skipping: ", args) def qdef(self, name, ncontrols, symbol): from sympy.physics.quantum.circuitplot import CreateOneQubitGate, CreateCGate ncontrols = int(ncontrols) command = fixcommand(name) symbol = stripquotes(symbol) if ncontrols > 0: self.defs[command] = CreateCGate(symbol) else: self.defs[command] = CreateOneQubitGate(symbol)
54ba9ea173c7ba28eea74215330f0c7fb13f987a3d0df82824b3eb92bcfde157
"""Primitive circuit operations on quantum circuits.""" from functools import reduce from sympy.core.sorting import default_sort_key from sympy.core.containers import Tuple from sympy.core.mul import Mul from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.utilities import numbered_symbols from sympy.physics.quantum.gate import Gate __all__ = [ 'kmp_table', 'find_subcircuit', 'replace_subcircuit', 'convert_to_symbolic_indices', 'convert_to_real_indices', 'random_reduce', 'random_insert' ] def kmp_table(word): """Build the 'partial match' table of the Knuth-Morris-Pratt algorithm. Note: This is applicable to strings or quantum circuits represented as tuples. """ # Current position in subcircuit pos = 2 # Beginning position of candidate substring that # may reappear later in word cnd = 0 # The 'partial match' table that helps one determine # the next location to start substring search table = list() table.append(-1) table.append(0) while pos < len(word): if word[pos - 1] == word[cnd]: cnd = cnd + 1 table.append(cnd) pos = pos + 1 elif cnd > 0: cnd = table[cnd] else: table.append(0) pos = pos + 1 return table def find_subcircuit(circuit, subcircuit, start=0, end=0): """Finds the subcircuit in circuit, if it exists. Explanation =========== If the subcircuit exists, the index of the start of the subcircuit in circuit is returned; otherwise, -1 is returned. The algorithm that is implemented is the Knuth-Morris-Pratt algorithm. Parameters ========== circuit : tuple, Gate or Mul A tuple of Gates or Mul representing a quantum circuit subcircuit : tuple, Gate or Mul A tuple of Gates or Mul to find in circuit start : int The location to start looking for subcircuit. If start is the same or past end, -1 is returned. end : int The last place to look for a subcircuit. If end is less than 1 (one), then the length of circuit is taken to be end. Examples ======== Find the first instance of a subcircuit: >>> from sympy.physics.quantum.circuitutils import find_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0) >>> subcircuit = Z(0)*Y(0) >>> find_subcircuit(circuit, subcircuit) 1 Find the first instance starting at a specific position: >>> find_subcircuit(circuit, subcircuit, start=1) 1 >>> find_subcircuit(circuit, subcircuit, start=2) -1 >>> circuit = circuit*subcircuit >>> find_subcircuit(circuit, subcircuit, start=2) 4 Find the subcircuit within some interval: >>> find_subcircuit(circuit, subcircuit, start=2, end=2) -1 """ if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if len(subcircuit) == 0 or len(subcircuit) > len(circuit): return -1 if end < 1: end = len(circuit) # Location in circuit pos = start # Location in the subcircuit index = 0 # 'Partial match' table table = kmp_table(subcircuit) while (pos + index) < end: if subcircuit[index] == circuit[pos + index]: index = index + 1 else: pos = pos + index - table[index] index = table[index] if table[index] > -1 else 0 if index == len(subcircuit): return pos return -1 def replace_subcircuit(circuit, subcircuit, replace=None, pos=0): """Replaces a subcircuit with another subcircuit in circuit, if it exists. Explanation =========== If multiple instances of subcircuit exists, the first instance is replaced. The position to being searching from (if different from 0) may be optionally given. If subcircuit cannot be found, circuit is returned. Parameters ========== circuit : tuple, Gate or Mul A quantum circuit. subcircuit : tuple, Gate or Mul The circuit to be replaced. replace : tuple, Gate or Mul The replacement circuit. pos : int The location to start search and replace subcircuit, if it exists. This may be used if it is known beforehand that multiple instances exist, and it is desirable to replace a specific instance. If a negative number is given, pos will be defaulted to 0. Examples ======== Find and remove the subcircuit: >>> from sympy.physics.quantum.circuitutils import replace_subcircuit >>> from sympy.physics.quantum.gate import X, Y, Z, H >>> circuit = X(0)*Z(0)*Y(0)*H(0)*X(0)*H(0)*Y(0) >>> subcircuit = Z(0)*Y(0) >>> replace_subcircuit(circuit, subcircuit) (X(0), H(0), X(0), H(0), Y(0)) Remove the subcircuit given a starting search point: >>> replace_subcircuit(circuit, subcircuit, pos=1) (X(0), H(0), X(0), H(0), Y(0)) >>> replace_subcircuit(circuit, subcircuit, pos=2) (X(0), Z(0), Y(0), H(0), X(0), H(0), Y(0)) Replace the subcircuit: >>> replacement = H(0)*Z(0) >>> replace_subcircuit(circuit, subcircuit, replace=replacement) (X(0), H(0), Z(0), H(0), X(0), H(0), Y(0)) """ if pos < 0: pos = 0 if isinstance(circuit, Mul): circuit = circuit.args if isinstance(subcircuit, Mul): subcircuit = subcircuit.args if isinstance(replace, Mul): replace = replace.args elif replace is None: replace = () # Look for the subcircuit starting at pos loc = find_subcircuit(circuit, subcircuit, start=pos) # If subcircuit was found if loc > -1: # Get the gates to the left of subcircuit left = circuit[0:loc] # Get the gates to the right of subcircuit right = circuit[loc + len(subcircuit):len(circuit)] # Recombine the left and right side gates into a circuit circuit = left + replace + right return circuit def _sympify_qubit_map(mapping): new_map = {} for key in mapping: new_map[key] = sympify(mapping[key]) return new_map def convert_to_symbolic_indices(seq, start=None, gen=None, qubit_map=None): """Returns the circuit with symbolic indices and the dictionary mapping symbolic indices to real indices. The mapping is 1 to 1 and onto (bijective). Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects, or a Mul start : Symbol An optional starting symbolic index gen : object An optional numbered symbol generator qubit_map : dict An existing mapping of symbolic indices to real indices All symbolic indices have the format 'i#', where # is some number >= 0. """ if isinstance(seq, Mul): seq = seq.args # A numbered symbol generator index_gen = numbered_symbols(prefix='i', start=-1) cur_ndx = next(index_gen) # keys are symbolic indices; values are real indices ndx_map = {} def create_inverse_map(symb_to_real_map): rev_items = lambda item: tuple([item[1], item[0]]) return dict(map(rev_items, symb_to_real_map.items())) if start is not None: if not isinstance(start, Symbol): msg = 'Expected Symbol for starting index, got %r.' % start raise TypeError(msg) cur_ndx = start if gen is not None: if not isinstance(gen, numbered_symbols().__class__): msg = 'Expected a generator, got %r.' % gen raise TypeError(msg) index_gen = gen if qubit_map is not None: if not isinstance(qubit_map, dict): msg = ('Expected dict for existing map, got ' + '%r.' % qubit_map) raise TypeError(msg) ndx_map = qubit_map ndx_map = _sympify_qubit_map(ndx_map) # keys are real indices; keys are symbolic indices inv_map = create_inverse_map(ndx_map) sym_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): result = convert_to_symbolic_indices(item.args, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif isinstance(item, (tuple, Tuple)): result = convert_to_symbolic_indices(item, qubit_map=ndx_map, start=cur_ndx, gen=index_gen) sym_item, new_map, cur_ndx, index_gen = result ndx_map.update(new_map) inv_map = create_inverse_map(ndx_map) elif item in inv_map: sym_item = inv_map[item] else: cur_ndx = next(gen) ndx_map[cur_ndx] = item inv_map[item] = cur_ndx sym_item = cur_ndx if isinstance(item, Gate): sym_item = item.__class__(*sym_item) sym_seq = sym_seq + (sym_item,) return sym_seq, ndx_map, cur_ndx, index_gen def convert_to_real_indices(seq, qubit_map): """Returns the circuit with real indices. Parameters ========== seq : tuple, Gate/Integer/tuple or Mul A tuple of Gate, Integer, or tuple objects or a Mul qubit_map : dict A dictionary mapping symbolic indices to real indices. Examples ======== Change the symbolic indices to real integers: >>> from sympy import symbols >>> from sympy.physics.quantum.circuitutils import convert_to_real_indices >>> from sympy.physics.quantum.gate import X, Y, H >>> i0, i1 = symbols('i:2') >>> index_map = {i0 : 0, i1 : 1} >>> convert_to_real_indices(X(i0)*Y(i1)*H(i0)*X(i1), index_map) (X(0), Y(1), H(0), X(1)) """ if isinstance(seq, Mul): seq = seq.args if not isinstance(qubit_map, dict): msg = 'Expected dict for qubit_map, got %r.' % qubit_map raise TypeError(msg) qubit_map = _sympify_qubit_map(qubit_map) real_seq = () for item in seq: # Nested items, so recurse if isinstance(item, Gate): real_item = convert_to_real_indices(item.args, qubit_map) elif isinstance(item, (tuple, Tuple)): real_item = convert_to_real_indices(item, qubit_map) else: real_item = qubit_map[item] if isinstance(item, Gate): real_item = item.__class__(*real_item) real_seq = real_seq + (real_item,) return real_seq def random_reduce(circuit, gate_ids, seed=None): """Shorten the length of a quantum circuit. Explanation =========== random_reduce looks for circuit identities in circuit, randomly chooses one to remove, and returns a shorter yet equivalent circuit. If no identities are found, the same circuit is returned. Parameters ========== circuit : Gate tuple of Mul A tuple of Gates representing a quantum circuit gate_ids : list, GateIdentity List of gate identities to find in circuit seed : int or list seed used for _randrange; to override the random selection, provide a list of integers: the elements of gate_ids will be tested in the order given by the list """ from sympy.core.random import _randrange if not gate_ids: return circuit if isinstance(circuit, Mul): circuit = circuit.args ids = flatten_ids(gate_ids) # Create the random integer generator with the seed randrange = _randrange(seed) # Look for an identity in the circuit while ids: i = randrange(len(ids)) id = ids.pop(i) if find_subcircuit(circuit, id) != -1: break else: # no identity was found return circuit # return circuit with the identity removed return replace_subcircuit(circuit, id) def random_insert(circuit, choices, seed=None): """Insert a circuit into another quantum circuit. Explanation =========== random_insert randomly chooses a location in the circuit to insert a randomly selected circuit from amongst the given choices. Parameters ========== circuit : Gate tuple or Mul A tuple or Mul of Gates representing a quantum circuit choices : list Set of circuit choices seed : int or list seed used for _randrange; to override the random selections, give a list two integers, [i, j] where i is the circuit location where choice[j] will be inserted. Notes ===== Indices for insertion should be [0, n] if n is the length of the circuit. """ from sympy.core.random import _randrange if not choices: return circuit if isinstance(circuit, Mul): circuit = circuit.args # get the location in the circuit and the element to insert from choices randrange = _randrange(seed) loc = randrange(len(circuit) + 1) choice = choices[randrange(len(choices))] circuit = list(circuit) circuit[loc: loc] = choice return tuple(circuit) # Flatten the GateIdentity objects (with gate rules) into one single list def flatten_ids(ids): collapse = lambda acc, an_id: acc + sorted(an_id.equivalent_ids, key=default_sort_key) ids = reduce(collapse, ids, []) ids.sort(key=default_sort_key) return ids
230fbd80692cbd684f990fd57a9988f747a42b2cc774f96ae94e35c1d3388a42
""" This module has all the classes and functions related to waves in optics. **Contains** * TWave """ __all__ = ['TWave'] from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.function import Derivative, Function from sympy.core.numbers import (Number, pi, I) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import _sympify, sympify from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (atan2, cos, sin) from sympy.physics.units import speed_of_light, meter, second c = speed_of_light.convert_to(meter/second) class TWave(Expr): r""" This is a simple transverse sine wave travelling in a one-dimensional space. Basic properties are required at the time of creation of the object, but they can be changed later with respective methods provided. Explanation =========== It is represented as :math:`A \times cos(k*x - \omega \times t + \phi )`, where :math:`A` is the amplitude, :math:`\omega` is the angular frequency, :math:`k` is the wavenumber (spatial frequency), :math:`x` is a spatial variable to represent the position on the dimension on which the wave propagates, and :math:`\phi` is the phase angle of the wave. Arguments ========= amplitude : Sympifyable Amplitude of the wave. frequency : Sympifyable Frequency of the wave. phase : Sympifyable Phase angle of the wave. time_period : Sympifyable Time period of the wave. n : Sympifyable Refractive index of the medium. Raises ======= ValueError : When neither frequency nor time period is provided or they are not consistent. TypeError : When anything other than TWave objects is added. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A1, phi1, A2, phi2, f = symbols('A1, phi1, A2, phi2, f') >>> w1 = TWave(A1, f, phi1) >>> w2 = TWave(A2, f, phi2) >>> w3 = w1 + w2 # Superposition of two waves >>> w3 TWave(sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2), f, atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)), 1/f, n) >>> w3.amplitude sqrt(A1**2 + 2*A1*A2*cos(phi1 - phi2) + A2**2) >>> w3.phase atan2(A1*sin(phi1) + A2*sin(phi2), A1*cos(phi1) + A2*cos(phi2)) >>> w3.speed 299792458*meter/(second*n) >>> w3.angular_velocity 2*pi*f """ def __new__( cls, amplitude, frequency=None, phase=S.Zero, time_period=None, n=Symbol('n')): if time_period is not None: time_period = _sympify(time_period) _frequency = S.One/time_period if frequency is not None: frequency = _sympify(frequency) _time_period = S.One/frequency if time_period is not None: if frequency != S.One/time_period: raise ValueError("frequency and time_period should be consistent.") if frequency is None and time_period is None: raise ValueError("Either frequency or time period is needed.") if frequency is None: frequency = _frequency if time_period is None: time_period = _time_period amplitude = _sympify(amplitude) phase = _sympify(phase) n = sympify(n) obj = Basic.__new__(cls, amplitude, frequency, phase, time_period, n) return obj @property def amplitude(self): """ Returns the amplitude of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.amplitude A """ return self.args[0] @property def frequency(self): """ Returns the frequency of the wave, in cycles per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.frequency f """ return self.args[1] @property def phase(self): """ Returns the phase angle of the wave, in radians. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.phase phi """ return self.args[2] @property def time_period(self): """ Returns the temporal period of the wave, in seconds per cycle. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.time_period 1/f """ return self.args[3] @property def n(self): """ Returns the refractive index of the medium """ return self.args[4] @property def wavelength(self): """ Returns the wavelength (spatial period) of the wave, in meters per cycle. It depends on the medium of the wave. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavelength 299792458*meter/(second*f*n) """ return c/(self.frequency*self.n) @property def speed(self): """ Returns the propagation speed of the wave, in meters per second. It is dependent on the propagation medium. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.speed 299792458*meter/(second*n) """ return self.wavelength*self.frequency @property def angular_velocity(self): """ Returns the angular velocity of the wave, in radians per second. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.angular_velocity 2*pi*f """ return 2*pi*self.frequency @property def wavenumber(self): """ Returns the wavenumber of the wave, in radians per meter. Examples ======== >>> from sympy import symbols >>> from sympy.physics.optics import TWave >>> A, phi, f = symbols('A, phi, f') >>> w = TWave(A, f, phi) >>> w.wavenumber pi*second*f*n/(149896229*meter) """ return 2*pi/self.wavelength def __str__(self): """String representation of a TWave.""" from sympy.printing import sstr return type(self).__name__ + sstr(self.args) __repr__ = __str__ def __add__(self, other): """ Addition of two waves will result in their superposition. The type of interference will depend on their phase angles. """ if isinstance(other, TWave): if self.frequency == other.frequency and self.wavelength == other.wavelength: return TWave(sqrt(self.amplitude**2 + other.amplitude**2 + 2 * self.amplitude*other.amplitude*cos( self.phase - other.phase)), self.frequency, atan2(self.amplitude*sin(self.phase) + other.amplitude*sin(other.phase), self.amplitude*cos(self.phase) + other.amplitude*cos(other.phase)) ) else: raise NotImplementedError("Interference of waves with different frequencies" " has not been implemented.") else: raise TypeError(type(other).__name__ + " and TWave objects cannot be added.") def __mul__(self, other): """ Multiplying a wave by a scalar rescales the amplitude of the wave. """ other = sympify(other) if isinstance(other, Number): return TWave(self.amplitude*other, *self.args[1:]) else: raise TypeError(type(other).__name__ + " and TWave objects cannot be multiplied.") def __sub__(self, other): return self.__add__(-1*other) def __neg__(self): return self.__mul__(-1) def __radd__(self, other): return self.__add__(other) def __rmul__(self, other): return self.__mul__(other) def __rsub__(self, other): return (-self).__radd__(other) def _eval_rewrite_as_sin(self, *args, **kwargs): return self.amplitude*sin(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase + pi/2, evaluate=False) def _eval_rewrite_as_cos(self, *args, **kwargs): return self.amplitude*cos(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase) def _eval_rewrite_as_pde(self, *args, **kwargs): mu, epsilon, x, t = symbols('mu, epsilon, x, t') E = Function('E') return Derivative(E(x, t), x, 2) + mu*epsilon*Derivative(E(x, t), t, 2) def _eval_rewrite_as_exp(self, *args, **kwargs): return self.amplitude*exp(I*(self.wavenumber*Symbol('x') - self.angular_velocity*Symbol('t') + self.phase))
54d1edc5b418e215694a3bd98e72071ac3eed9e6a7ffbf835eb39d2d05d3b006
from sympy.core.add import Add from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import (I, Rational, oo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.dense import eye from sympy.polys.polytools import factor from sympy.polys.rootoftools import CRootOf from sympy.simplify.simplify import simplify from sympy.core.containers import Tuple from sympy.matrices import ImmutableMatrix, Matrix from sympy.physics.control import (TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback) from sympy.testing.pytest import raises a, x, b, s, g, d, p, k, a0, a1, a2, b0, b1, b2, tau, zeta, wn = symbols('a, x, b, s, g, d, p, k,\ a0:3, b0:3, tau, zeta, wn') TF1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) TF2 = TransferFunction(k, 1, s) TF3 = TransferFunction(a2*p - s, a2*s + p, s) def test_TransferFunction_construction(): tf = TransferFunction(s + 1, s**2 + s + 1, s) assert tf.num == (s + 1) assert tf.den == (s**2 + s + 1) assert tf.args == (s + 1, s**2 + s + 1, s) tf1 = TransferFunction(s + 4, s - 5, s) assert tf1.num == (s + 4) assert tf1.den == (s - 5) assert tf1.args == (s + 4, s - 5, s) # using different polynomial variables. tf2 = TransferFunction(p + 3, p**2 - 9, p) assert tf2.num == (p + 3) assert tf2.den == (p**2 - 9) assert tf2.args == (p + 3, p**2 - 9, p) tf3 = TransferFunction(p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) assert tf3.args == (p**3 + 5*p**2 + 4, p**4 + 3*p + 1, p) # no pole-zero cancellation on its own. tf4 = TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s) assert tf4.den == (s - 1)*(s + 5) assert tf4.args == ((s + 3)*(s - 1), (s - 1)*(s + 5), s) tf4_ = TransferFunction(p + 2, p + 2, p) assert tf4_.args == (p + 2, p + 2, p) tf5 = TransferFunction(s - 1, 4 - p, s) assert tf5.args == (s - 1, 4 - p, s) tf5_ = TransferFunction(s - 1, s - 1, s) assert tf5_.args == (s - 1, s - 1, s) tf6 = TransferFunction(5, 6, s) assert tf6.num == 5 assert tf6.den == 6 assert tf6.args == (5, 6, s) tf6_ = TransferFunction(1/2, 4, s) assert tf6_.num == 0.5 assert tf6_.den == 4 assert tf6_.args == (0.500000000000000, 4, s) tf7 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, s) tf8 = TransferFunction(3*s**2 + 2*p + 4*s, 8*p**2 + 7*s, p) assert not tf7 == tf8 tf7_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) tf8_ = TransferFunction(a0*s + a1*s**2 + a2*s**3, b0*p - b1*s, s) assert tf7_ == tf8_ assert -(-tf7_) == tf7_ == -(-(-(-tf7_))) tf9 = TransferFunction(a*s**3 + b*s**2 + g*s + d, d*p + g*p**2 + g*s, s) assert tf9.args == (a*s**3 + b*s**2 + d + g*s, d*p + g*p**2 + g*s, s) tf10 = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) tf10_ = TransferFunction(p**3 + d, g*s**2 + d*s + a, p) assert tf10.args == (d + p**3, a + d*s + g*s**2, p) assert tf10_ == tf10 tf11 = TransferFunction(a1*s + a0, b2*s**2 + b1*s + b0, s) assert tf11.num == (a0 + a1*s) assert tf11.den == (b0 + b1*s + b2*s**2) assert tf11.args == (a0 + a1*s, b0 + b1*s + b2*s**2, s) # when just the numerator is 0, leave the denominator alone. tf12 = TransferFunction(0, p**2 - p + 1, p) assert tf12.args == (0, p**2 - p + 1, p) tf13 = TransferFunction(0, 1, s) assert tf13.args == (0, 1, s) # float exponents tf14 = TransferFunction(a0*s**0.5 + a2*s**0.6 - a1, a1*p**(-8.7), s) assert tf14.args == (a0*s**0.5 - a1 + a2*s**0.6, a1*p**(-8.7), s) tf15 = TransferFunction(a2**2*p**(1/4) + a1*s**(-4/5), a0*s - p, p) assert tf15.args == (a1*s**(-0.8) + a2**2*p**0.25, a0*s - p, p) omega_o, k_p, k_o, k_i = symbols('omega_o, k_p, k_o, k_i') tf18 = TransferFunction((k_p + k_o*s + k_i/s), s**2 + 2*omega_o*s + omega_o**2, s) assert tf18.num == k_i/s + k_o*s + k_p assert tf18.args == (k_i/s + k_o*s + k_p, omega_o**2 + 2*omega_o*s + s**2, s) # ValueError when denominator is zero. raises(ValueError, lambda: TransferFunction(4, 0, s)) raises(ValueError, lambda: TransferFunction(s, 0, s)) raises(ValueError, lambda: TransferFunction(0, 0, s)) raises(TypeError, lambda: TransferFunction(Matrix([1, 2, 3]), s, s)) raises(TypeError, lambda: TransferFunction(s**2 + 2*s - 1, s + 3, 3)) raises(TypeError, lambda: TransferFunction(p + 1, 5 - p, 4)) raises(TypeError, lambda: TransferFunction(3, 4, 8)) def test_TransferFunction_functions(): # classmethod from_rational_expression expr_1 = Mul(0, Pow(s, -1, evaluate=False), evaluate=False) expr_2 = s/0 expr_3 = (p*s**2 + 5*s)/(s + 1)**3 expr_4 = 6 expr_5 = ((2 + 3*s)*(5 + 2*s))/((9 + 3*s)*(5 + 2*s**2)) expr_6 = (9*s**4 + 4*s**2 + 8)/((s + 1)*(s + 9)) tf = TransferFunction(s + 1, s**2 + 2, s) delay = exp(-s/tau) expr_7 = delay*tf.to_expr() H1 = TransferFunction.from_rational_expression(expr_7, s) H2 = TransferFunction(s + 1, (s**2 + 2)*exp(s/tau), s) expr_8 = Add(2, 3*s/(s**2 + 1), evaluate=False) assert TransferFunction.from_rational_expression(expr_1) == TransferFunction(0, s, s) raises(ZeroDivisionError, lambda: TransferFunction.from_rational_expression(expr_2)) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_3)) assert TransferFunction.from_rational_expression(expr_3, s) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, s) assert TransferFunction.from_rational_expression(expr_3, p) == TransferFunction((p*s**2 + 5*s), (s + 1)**3, p) raises(ValueError, lambda: TransferFunction.from_rational_expression(expr_4)) assert TransferFunction.from_rational_expression(expr_4, s) == TransferFunction(6, 1, s) assert TransferFunction.from_rational_expression(expr_5, s) == \ TransferFunction((2 + 3*s)*(5 + 2*s), (9 + 3*s)*(5 + 2*s**2), s) assert TransferFunction.from_rational_expression(expr_6, s) == \ TransferFunction((9*s**4 + 4*s**2 + 8), (s + 1)*(s + 9), s) assert H1 == H2 assert TransferFunction.from_rational_expression(expr_8, s) == \ TransferFunction(2*s**2 + 3*s + 2, s**2 + 1, s) # explicitly cancel poles and zeros. tf0 = TransferFunction(s**5 + s**3 + s, s - s**2, s) a = TransferFunction(-(s**4 + s**2 + 1), s - 1, s) assert tf0.simplify() == simplify(tf0) == a tf1 = TransferFunction((p + 3)*(p - 1), (p - 1)*(p + 5), p) b = TransferFunction(p + 3, p + 5, p) assert tf1.simplify() == simplify(tf1) == b # expand the numerator and the denominator. G1 = TransferFunction((1 - s)**2, (s**2 + 1)**2, s) G2 = TransferFunction(1, -3, p) c = (a2*s**p + a1*s**s + a0*p**p)*(p**s + s**p) d = (b0*s**s + b1*p**s)*(b2*s*p + p**p) e = a0*p**p*p**s + a0*p**p*s**p + a1*p**s*s**s + a1*s**p*s**s + a2*p**s*s**p + a2*s**(2*p) f = b0*b2*p*s*s**s + b0*p**p*s**s + b1*b2*p*p**s*s + b1*p**p*p**s g = a1*a2*s*s**p + a1*p*s + a2*b1*p*s*s**p + b1*p**2*s G3 = TransferFunction(c, d, s) G4 = TransferFunction(a0*s**s - b0*p**p, (a1*s + b1*s*p)*(a2*s**p + p), p) assert G1.expand() == TransferFunction(s**2 - 2*s + 1, s**4 + 2*s**2 + 1, s) assert tf1.expand() == TransferFunction(p**2 + 2*p - 3, p**2 + 4*p - 5, p) assert G2.expand() == G2 assert G3.expand() == TransferFunction(e, f, s) assert G4.expand() == TransferFunction(a0*s**s - b0*p**p, g, p) # purely symbolic polynomials. p1 = a1*s + a0 p2 = b2*s**2 + b1*s + b0 SP1 = TransferFunction(p1, p2, s) expect1 = TransferFunction(2.0*s + 1.0, 5.0*s**2 + 4.0*s + 3.0, s) expect1_ = TransferFunction(2*s + 1, 5*s**2 + 4*s + 3, s) assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}) == expect1_ assert SP1.subs({a0: 1, a1: 2, b0: 3, b1: 4, b2: 5}).evalf() == expect1 assert expect1_.evalf() == expect1 c1, d0, d1, d2 = symbols('c1, d0:3') p3, p4 = c1*p, d2*p**3 + d1*p**2 - d0 SP2 = TransferFunction(p3, p4, p) expect2 = TransferFunction(2.0*p, 5.0*p**3 + 2.0*p**2 - 3.0, p) expect2_ = TransferFunction(2*p, 5*p**3 + 2*p**2 - 3, p) assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}) == expect2_ assert SP2.subs({c1: 2, d0: 3, d1: 2, d2: 5}).evalf() == expect2 assert expect2_.evalf() == expect2 SP3 = TransferFunction(a0*p**3 + a1*s**2 - b0*s + b1, a1*s + p, s) expect3 = TransferFunction(2.0*p**3 + 4.0*s**2 - s + 5.0, p + 4.0*s, s) expect3_ = TransferFunction(2*p**3 + 4*s**2 - s + 5, p + 4*s, s) assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}) == expect3_ assert SP3.subs({a0: 2, a1: 4, b0: 1, b1: 5}).evalf() == expect3 assert expect3_.evalf() == expect3 SP4 = TransferFunction(s - a1*p**3, a0*s + p, p) expect4 = TransferFunction(7.0*p**3 + s, p - s, p) expect4_ = TransferFunction(7*p**3 + s, p - s, p) assert SP4.subs({a0: -1, a1: -7}) == expect4_ assert SP4.subs({a0: -1, a1: -7}).evalf() == expect4 assert expect4_.evalf() == expect4 # Low-frequency (or DC) gain. assert tf0.dc_gain() == 1 assert tf1.dc_gain() == Rational(3, 5) assert SP2.dc_gain() == 0 assert expect4.dc_gain() == -1 assert expect2_.dc_gain() == 0 assert TransferFunction(1, s, s).dc_gain() == oo # Poles of a transfer function. tf_ = TransferFunction(x**3 - k, k, x) _tf = TransferFunction(k, x**4 - k, x) TF_ = TransferFunction(x**2, x**10 + x + x**2, x) _TF = TransferFunction(x**10 + x + x**2, x**2, x) assert G1.poles() == [I, I, -I, -I] assert G2.poles() == [] assert tf1.poles() == [-5, 1] assert expect4_.poles() == [s] assert SP4.poles() == [-a0*s] assert expect3.poles() == [-0.25*p] assert str(expect2.poles()) == str([0.729001428685125, -0.564500714342563 - 0.710198984796332*I, -0.564500714342563 + 0.710198984796332*I]) assert str(expect1.poles()) == str([-0.4 - 0.66332495807108*I, -0.4 + 0.66332495807108*I]) assert _tf.poles() == [k**(Rational(1, 4)), -k**(Rational(1, 4)), I*k**(Rational(1, 4)), -I*k**(Rational(1, 4))] assert TF_.poles() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(x**2, a0*x**10 + x + x**2, x).poles()) # Stability of a transfer function. q, r = symbols('q, r', negative=True) t = symbols('t', positive=True) TF_ = TransferFunction(s**2 + a0 - a1*p, q*s - r, s) stable_tf = TransferFunction(s**2 + a0 - a1*p, q*s - 1, s) stable_tf_ = TransferFunction(s**2 + a0 - a1*p, q*s - t, s) assert G1.is_stable() is False assert G2.is_stable() is True assert tf1.is_stable() is False # as one pole is +ve, and the other is -ve. assert expect2.is_stable() is False assert expect1.is_stable() is True assert stable_tf.is_stable() is True assert stable_tf_.is_stable() is True assert TF_.is_stable() is False assert expect4_.is_stable() is None # no assumption provided for the only pole 's'. assert SP4.is_stable() is None # Zeros of a transfer function. assert G1.zeros() == [1, 1] assert G2.zeros() == [] assert tf1.zeros() == [-3, 1] assert expect4_.zeros() == [7**(Rational(2, 3))*(-s)**(Rational(1, 3))/7, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 - sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14, -7**(Rational(2, 3))*(-s)**(Rational(1, 3))/14 + sqrt(3)*7**(Rational(2, 3))*I*(-s)**(Rational(1, 3))/14] assert SP4.zeros() == [(s/a1)**(Rational(1, 3)), -(s/a1)**(Rational(1, 3))/2 - sqrt(3)*I*(s/a1)**(Rational(1, 3))/2, -(s/a1)**(Rational(1, 3))/2 + sqrt(3)*I*(s/a1)**(Rational(1, 3))/2] assert str(expect3.zeros()) == str([0.125 - 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0), 1.11102430216445*sqrt(-0.405063291139241*p**3 - 1.0) + 0.125]) assert tf_.zeros() == [k**(Rational(1, 3)), -k**(Rational(1, 3))/2 - sqrt(3)*I*k**(Rational(1, 3))/2, -k**(Rational(1, 3))/2 + sqrt(3)*I*k**(Rational(1, 3))/2] assert _TF.zeros() == [CRootOf(x**9 + x + 1, 0), 0, CRootOf(x**9 + x + 1, 1), CRootOf(x**9 + x + 1, 2), CRootOf(x**9 + x + 1, 3), CRootOf(x**9 + x + 1, 4), CRootOf(x**9 + x + 1, 5), CRootOf(x**9 + x + 1, 6), CRootOf(x**9 + x + 1, 7), CRootOf(x**9 + x + 1, 8)] raises(NotImplementedError, lambda: TransferFunction(a0*x**10 + x + x**2, x**2, x).zeros()) # negation of TF. tf2 = TransferFunction(s + 3, s**2 - s**3 + 9, s) tf3 = TransferFunction(-3*p + 3, 1 - p, p) assert -tf2 == TransferFunction(-s - 3, s**2 - s**3 + 9, s) assert -tf3 == TransferFunction(3*p - 3, 1 - p, p) # taking power of a TF. tf4 = TransferFunction(p + 4, p - 3, p) tf5 = TransferFunction(s**2 + 1, 1 - s, s) expect2 = TransferFunction((s**2 + 1)**3, (1 - s)**3, s) expect1 = TransferFunction((p + 4)**2, (p - 3)**2, p) assert (tf4*tf4).doit() == tf4**2 == pow(tf4, 2) == expect1 assert (tf5*tf5*tf5).doit() == tf5**3 == pow(tf5, 3) == expect2 assert tf5**0 == pow(tf5, 0) == TransferFunction(1, 1, s) assert Series(tf4).doit()**-1 == tf4**-1 == pow(tf4, -1) == TransferFunction(p - 3, p + 4, p) assert (tf5*tf5).doit()**-1 == tf5**-2 == pow(tf5, -2) == TransferFunction((1 - s)**2, (s**2 + 1)**2, s) raises(ValueError, lambda: tf4**(s**2 + s - 1)) raises(ValueError, lambda: tf5**s) raises(ValueError, lambda: tf4**tf5) # SymPy's own functions. tf = TransferFunction(s - 1, s**2 - 2*s + 1, s) tf6 = TransferFunction(s + p, p**2 - 5, s) assert factor(tf) == TransferFunction(s - 1, (s - 1)**2, s) assert tf.num.subs(s, 2) == tf.den.subs(s, 2) == 1 # subs & xreplace assert tf.subs(s, 2) == TransferFunction(s - 1, s**2 - 2*s + 1, s) assert tf6.subs(p, 3) == TransferFunction(s + 3, 4, s) assert tf3.xreplace({p: s}) == TransferFunction(-3*s + 3, 1 - s, s) raises(TypeError, lambda: tf3.xreplace({p: exp(2)})) assert tf3.subs(p, exp(2)) == tf3 tf7 = TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) assert tf7.xreplace({s: k}) == TransferFunction(a0*k**p + a1*p**k, a2*p - k, k) assert tf7.subs(s, k) == TransferFunction(a0*s**p + a1*p**s, a2*p - s, s) # Conversion to Expr with to_expr() tf8 = TransferFunction(a0*s**5 + 5*s**2 + 3, s**6 - 3, s) tf9 = TransferFunction((5 + s), (5 + s)*(6 + s), s) tf10 = TransferFunction(0, 1, s) tf11 = TransferFunction(1, 1, s) assert tf8.to_expr() == Mul((a0*s**5 + 5*s**2 + 3), Pow((s**6 - 3), -1, evaluate=False), evaluate=False) assert tf9.to_expr() == Mul((s + 5), Pow((5 + s)*(6 + s), -1, evaluate=False), evaluate=False) assert tf10.to_expr() == Mul(S(0), Pow(1, -1, evaluate=False), evaluate=False) assert tf11.to_expr() == Pow(1, -1, evaluate=False) def test_TransferFunction_addition_and_subtraction(): tf1 = TransferFunction(s + 6, s - 5, s) tf2 = TransferFunction(s + 3, s + 1, s) tf3 = TransferFunction(s + 1, s**2 + s + 1, s) tf4 = TransferFunction(p, 2 - p, p) # addition assert tf1 + tf2 == Parallel(tf1, tf2) assert tf3 + tf1 == Parallel(tf3, tf1) assert -tf1 + tf2 + tf3 == Parallel(-tf1, tf2, tf3) assert tf1 + (tf2 + tf3) == Parallel(tf1, tf2, tf3) c = symbols("c", commutative=False) raises(ValueError, lambda: tf1 + Matrix([1, 2, 3])) raises(ValueError, lambda: tf2 + c) raises(ValueError, lambda: tf3 + tf4) raises(ValueError, lambda: tf1 + (s - 1)) raises(ValueError, lambda: tf1 + 8) raises(ValueError, lambda: (1 - p**3) + tf1) # subtraction assert tf1 - tf2 == Parallel(tf1, -tf2) assert tf3 - tf2 == Parallel(tf3, -tf2) assert -tf1 - tf3 == Parallel(-tf1, -tf3) assert tf1 - tf2 + tf3 == Parallel(tf1, -tf2, tf3) raises(ValueError, lambda: tf1 - Matrix([1, 2, 3])) raises(ValueError, lambda: tf3 - tf4) raises(ValueError, lambda: tf1 - (s - 1)) raises(ValueError, lambda: tf1 - 8) raises(ValueError, lambda: (s + 5) - tf2) raises(ValueError, lambda: (1 + p**4) - tf1) def test_TransferFunction_multiplication_and_division(): G1 = TransferFunction(s + 3, -s**3 + 9, s) G2 = TransferFunction(s + 1, s - 5, s) G3 = TransferFunction(p, p**4 - 6, p) G4 = TransferFunction(p + 4, p - 5, p) G5 = TransferFunction(s + 6, s - 5, s) G6 = TransferFunction(s + 3, s + 1, s) G7 = TransferFunction(1, 1, s) # multiplication assert G1*G2 == Series(G1, G2) assert -G1*G5 == Series(-G1, G5) assert -G2*G5*-G6 == Series(-G2, G5, -G6) assert -G1*-G2*-G5*-G6 == Series(-G1, -G2, -G5, -G6) assert G3*G4 == Series(G3, G4) assert (G1*G2)*-(G5*G6) == \ Series(G1, G2, TransferFunction(-1, 1, s), Series(G5, G6)) assert G1*G2*(G5 + G6) == Series(G1, G2, Parallel(G5, G6)) c = symbols("c", commutative=False) raises(ValueError, lambda: G3 * Matrix([1, 2, 3])) raises(ValueError, lambda: G1 * c) raises(ValueError, lambda: G3 * G5) raises(ValueError, lambda: G5 * (s - 1)) raises(ValueError, lambda: 9 * G5) raises(ValueError, lambda: G3 / Matrix([1, 2, 3])) raises(ValueError, lambda: G6 / 0) raises(ValueError, lambda: G3 / G5) raises(ValueError, lambda: G5 / 2) raises(ValueError, lambda: G5 / s**2) raises(ValueError, lambda: (s - 4*s**2) / G2) raises(ValueError, lambda: 0 / G4) raises(ValueError, lambda: G5 / G6) raises(ValueError, lambda: -G3 /G4) raises(ValueError, lambda: G7 / (1 + G6)) raises(ValueError, lambda: G7 / (G5 * G6)) raises(ValueError, lambda: G7 / (G7 + (G5 + G6))) def test_TransferFunction_is_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') G1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) G2 = TransferFunction(tau - s**3, tau + p**4, tau) G3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) G4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert G1.is_proper assert G2.is_proper assert G3.is_proper assert not G4.is_proper def test_TransferFunction_is_strictly_proper(): omega_o, zeta, tau = symbols('omega_o, zeta, tau') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert not tf1.is_strictly_proper assert not tf2.is_strictly_proper assert tf3.is_strictly_proper assert not tf4.is_strictly_proper def test_TransferFunction_is_biproper(): tau, omega_o, zeta = symbols('tau, omega_o, zeta') tf1 = TransferFunction(omega_o**2, s**2 + p*omega_o*zeta*s + omega_o**2, omega_o) tf2 = TransferFunction(tau - s**3, tau + p**4, tau) tf3 = TransferFunction(a*b*s**3 + s**2 - a*p + s, b - s*p**2, p) tf4 = TransferFunction(b*s**2 + p**2 - a*p + s, b - p**2, s) assert tf1.is_biproper assert tf2.is_biproper assert not tf3.is_biproper assert not tf4.is_biproper def test_Series_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) s0 = Series(tf, tf2) assert s0.args == (tf, tf2) assert s0.var == s s1 = Series(Parallel(tf, -tf2), tf2) assert s1.args == (Parallel(tf, -tf2), tf2) assert s1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) s2 = Series(tf, Parallel(tf3_, tf4_), tf2) assert s2.args == (tf, Parallel(tf3_, tf4_), tf2) s3 = Series(tf, tf2, tf4) assert s3.args == (tf, tf2, tf4) s4 = Series(tf3_, tf4_) assert s4.args == (tf3_, tf4_) assert s4.var == s s6 = Series(tf2, tf4, Parallel(tf2, -tf), tf4) assert s6.args == (tf2, tf4, Parallel(tf2, -tf), tf4) s7 = Series(tf, tf2) assert s0 == s7 assert not s0 == s2 raises(ValueError, lambda: Series(tf, tf3)) raises(ValueError, lambda: Series(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Series(-tf3, tf2)) raises(TypeError, lambda: Series(2, tf, tf4)) raises(TypeError, lambda: Series(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Series(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOSeries_construction(): tf_1 = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf_2 = TransferFunction(a2*p - s, a2*s + p, s) tf_3 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tfm_1 = TransferFunctionMatrix([[tf_1, tf_2, tf_3], [-tf_3, -tf_2, tf_1]]) tfm_2 = TransferFunctionMatrix([[-tf_2], [-tf_2], [-tf_3]]) tfm_3 = TransferFunctionMatrix([[-tf_3]]) tfm_4 = TransferFunctionMatrix([[TF3], [TF2], [-TF1]]) tfm_5 = TransferFunctionMatrix.from_Matrix(Matrix([1/p]), p) s8 = MIMOSeries(tfm_2, tfm_1) assert s8.args == (tfm_2, tfm_1) assert s8.var == s assert s8.shape == (s8.num_outputs, s8.num_inputs) == (2, 1) s9 = MIMOSeries(tfm_3, tfm_2, tfm_1) assert s9.args == (tfm_3, tfm_2, tfm_1) assert s9.var == s assert s9.shape == (s9.num_outputs, s9.num_inputs) == (2, 1) s11 = MIMOSeries(tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.args == (tfm_3, MIMOParallel(-tfm_2, -tfm_4), tfm_1) assert s11.shape == (s11.num_outputs, s11.num_inputs) == (2, 1) # arg cannot be empty tuple. raises(ValueError, lambda: MIMOSeries()) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOSeries(tfm_1, tf_1)) # for all the adjascent transfer function matrices: # no. of inputs of first TFM must be equal to the no. of outputs of the second TFM. raises(ValueError, lambda: MIMOSeries(tfm_1, tfm_2, -tfm_1)) # all the TFMs must use the same complex variable. raises(ValueError, lambda: MIMOSeries(tfm_3, tfm_5)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOSeries(2, tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(s**2 + p*s, -tfm_2, tfm_3)) raises(TypeError, lambda: MIMOSeries(Matrix([1/p]), tfm_3)) def test_Series_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1*tf2*tf3 == Series(tf1, tf2, tf3) == Series(Series(tf1, tf2), tf3) \ == Series(tf1, Series(tf2, tf3)) assert tf1*(tf2 + tf3) == Series(tf1, Parallel(tf2, tf3)) assert tf1*tf2 + tf5 == Parallel(Series(tf1, tf2), tf5) assert tf1*tf2 - tf5 == Parallel(Series(tf1, tf2), -tf5) assert tf1*tf2 + tf3 + tf5 == Parallel(Series(tf1, tf2), tf3, tf5) assert tf1*tf2 - tf3 - tf5 == Parallel(Series(tf1, tf2), -tf3, -tf5) assert tf1*tf2 - tf3 + tf5 == Parallel(Series(tf1, tf2), -tf3, tf5) assert tf1*tf2 + tf3*tf5 == Parallel(Series(tf1, tf2), Series(tf3, tf5)) assert tf1*tf2 - tf3*tf5 == Parallel(Series(tf1, tf2), Series(TransferFunction(-1, 1, s), Series(tf3, tf5))) assert tf2*tf3*(tf2 - tf1)*tf3 == Series(tf2, tf3, Parallel(tf2, -tf1), tf3) assert -tf1*tf2 == Series(-tf1, tf2) assert -(tf1*tf2) == Series(TransferFunction(-1, 1, s), Series(tf1, tf2)) raises(ValueError, lambda: tf1*tf2*tf4) raises(ValueError, lambda: tf1*(tf2 - tf4)) raises(ValueError, lambda: tf3*Matrix([1, 2, 3])) # evaluate=True -> doit() assert Series(tf1, tf2, evaluate=True) == Series(tf1, tf2).doit() == \ TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf1, tf2, Parallel(tf1, -tf3), evaluate=True) == Series(tf1, tf2, Parallel(tf1, -tf3)).doit() == \ TransferFunction(k*(a2*s + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2, s) assert Series(tf2, tf1, -tf3, evaluate=True) == Series(tf2, tf1, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Series(tf1, -tf2, evaluate=False) == Series(tf1, -tf2).doit() assert Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)).doit() == \ TransferFunction((k*(s**2 + 2*s*wn*zeta + wn**2) + 1)*(-a2*p + k*(a2*s + p) + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(-tf1, -tf2, -tf3).doit() == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Series(tf1, tf2, tf3).doit() == \ TransferFunction(-k*(a2*p - s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf2, tf3, Parallel(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*p - s)**2*(k*(s**2 + 2*s*wn*zeta + wn**2) - 1), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2), s) assert Series(tf1, tf2).rewrite(TransferFunction) == TransferFunction(k, s**2 + 2*s*wn*zeta + wn**2, s) assert Series(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(k*(-a2*p + s), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) S1 = Series(Parallel(tf1, tf2), Parallel(tf2, -tf3)) assert S1.is_proper assert not S1.is_strictly_proper assert S1.is_biproper S2 = Series(tf1, tf2, tf3) assert S2.is_proper assert S2.is_strictly_proper assert not S2.is_biproper S3 = Series(tf1, -tf2, Parallel(tf1, -tf3)) assert S3.is_proper assert S3.is_strictly_proper assert not S3.is_biproper def test_MIMOSeries_functions(): tfm1 = TransferFunctionMatrix([[TF1, TF2, TF3], [-TF3, -TF2, TF1]]) tfm2 = TransferFunctionMatrix([[-TF1], [-TF2], [-TF3]]) tfm3 = TransferFunctionMatrix([[-TF1]]) tfm4 = TransferFunctionMatrix([[-TF2, -TF3], [-TF1, TF2]]) tfm5 = TransferFunctionMatrix([[TF2, -TF2], [-TF3, -TF2]]) tfm6 = TransferFunctionMatrix([[-TF3], [TF1]]) tfm7 = TransferFunctionMatrix([[TF1], [-TF2]]) assert tfm1*tfm2 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm6) assert tfm1*tfm2 + tfm7 + tfm6 == MIMOParallel(MIMOSeries(tfm2, tfm1), tfm7, tfm6) assert tfm1*tfm2 - tfm6 - tfm7 == MIMOParallel(MIMOSeries(tfm2, tfm1), -tfm6, -tfm7) assert tfm4*tfm5 + (tfm4 - tfm5) == MIMOParallel(MIMOSeries(tfm5, tfm4), tfm4, -tfm5) assert tfm4*-tfm6 + (-tfm4*tfm6) == MIMOParallel(MIMOSeries(-tfm6, tfm4), MIMOSeries(tfm6, -tfm4)) raises(ValueError, lambda: tfm1*tfm2 + TF1) raises(TypeError, lambda: tfm1*tfm2 + a0) raises(TypeError, lambda: tfm4*tfm6 - (s - 1)) raises(TypeError, lambda: tfm4*-tfm6 - 8) raises(TypeError, lambda: (-1 + p**5) + tfm1*tfm2) # Shape criteria. raises(TypeError, lambda: -tfm1*tfm2 + tfm4) raises(TypeError, lambda: tfm1*tfm2 - tfm4 + tfm5) raises(TypeError, lambda: tfm1*tfm2 - tfm4*tfm5) assert tfm1*tfm2*-tfm3 == MIMOSeries(-tfm3, tfm2, tfm1) assert (tfm1*-tfm2)*tfm3 == MIMOSeries(tfm3, -tfm2, tfm1) # Multiplication of a Series object with a SISO TF not allowed. raises(ValueError, lambda: tfm4*tfm5*TF1) raises(TypeError, lambda: tfm4*tfm5*a1) raises(TypeError, lambda: tfm4*-tfm5*(s - 2)) raises(TypeError, lambda: tfm5*tfm4*9) raises(TypeError, lambda: (-p**3 + 1)*tfm5*tfm4) # Transfer function matrix in the arguments. assert (MIMOSeries(tfm2, tfm1, evaluate=True) == MIMOSeries(tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2)**2 - (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),), (TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2, s),)))) # doit() should not cancel poles and zeros. mat_1 = Matrix([[1/(1+s), (1+s)/(1+s**2+2*s)**3]]) mat_2 = Matrix([[(1+s)], [(1+s**2+2*s)**3/(1+s)]]) tm_1, tm_2 = TransferFunctionMatrix.from_Matrix(mat_1, s), TransferFunctionMatrix.from_Matrix(mat_2, s) assert (MIMOSeries(tm_2, tm_1).doit() == TransferFunctionMatrix(((TransferFunction(2*(s + 1)**2*(s**2 + 2*s + 1)**3, (s + 1)**2*(s**2 + 2*s + 1)**3, s),),))) assert MIMOSeries(tm_2, tm_1).doit().simplify() == TransferFunctionMatrix(((TransferFunction(2, 1, s),),)) # calling doit() will expand the internal Series and Parallel objects. assert (MIMOSeries(-tfm3, -tfm2, tfm1, evaluate=True) == MIMOSeries(-tfm3, -tfm2, tfm1).doit() == TransferFunctionMatrix(((TransferFunction(k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*p - s)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (a2*s + p)**2, (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),), (TransferFunction(-k**2*(a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**2 + (-a2*p + s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*p - s)*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)**2*(s**2 + 2*s*wn*zeta + wn**2)**3, s),)))) assert (MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5, evaluate=True) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).doit() == TransferFunctionMatrix(((TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), TransferFunction(k*(-a2*p - \ k*(a2*s + p) + s), a2*s + p, s)), (TransferFunction(-k*(-a2*s - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2)), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s), \ TransferFunction((-a2*p + s)*(-a2*p - k*(a2*s + p) + s), (a2*s + p)**2, s)))) == MIMOSeries(MIMOParallel(tfm4, tfm5), tfm5).rewrite(TransferFunctionMatrix)) def test_Parallel_construction(): tf = TransferFunction(a0*s**3 + a1*s**2 - a2*s, b0*p**4 + b1*p**3 - b2*s*p, s) tf2 = TransferFunction(a2*p - s, a2*s + p, s) tf3 = TransferFunction(a0*p + p**a1 - s, p, p) tf4 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) inp = Function('X_d')(s) out = Function('X')(s) p0 = Parallel(tf, tf2) assert p0.args == (tf, tf2) assert p0.var == s p1 = Parallel(Series(tf, -tf2), tf2) assert p1.args == (Series(tf, -tf2), tf2) assert p1.var == s tf3_ = TransferFunction(inp, 1, s) tf4_ = TransferFunction(-out, 1, s) p2 = Parallel(tf, Series(tf3_, -tf4_), tf2) assert p2.args == (tf, Series(tf3_, -tf4_), tf2) p3 = Parallel(tf, tf2, tf4) assert p3.args == (tf, tf2, tf4) p4 = Parallel(tf3_, tf4_) assert p4.args == (tf3_, tf4_) assert p4.var == s p5 = Parallel(tf, tf2) assert p0 == p5 assert not p0 == p1 p6 = Parallel(tf2, tf4, Series(tf2, -tf4)) assert p6.args == (tf2, tf4, Series(tf2, -tf4)) p7 = Parallel(tf2, tf4, Series(tf2, -tf), tf4) assert p7.args == (tf2, tf4, Series(tf2, -tf), tf4) raises(ValueError, lambda: Parallel(tf, tf3)) raises(ValueError, lambda: Parallel(tf, tf2, tf3, tf4)) raises(ValueError, lambda: Parallel(-tf3, tf4)) raises(TypeError, lambda: Parallel(2, tf, tf4)) raises(TypeError, lambda: Parallel(s**2 + p*s, tf3, tf2)) raises(TypeError, lambda: Parallel(tf3, Matrix([1, 2, 3, 4]))) def test_MIMOParallel_construction(): tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF3], [TF2], [TF1]]) tfm3 = TransferFunctionMatrix([[TF1]]) tfm4 = TransferFunctionMatrix([[TF2], [TF1], [TF3]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF2, TF1]]) tfm6 = TransferFunctionMatrix([[TF2, TF1], [TF1, TF2]]) tfm7 = TransferFunctionMatrix.from_Matrix(Matrix([[1/p]]), p) p8 = MIMOParallel(tfm1, tfm2) assert p8.args == (tfm1, tfm2) assert p8.var == s assert p8.shape == (p8.num_outputs, p8.num_inputs) == (3, 1) p9 = MIMOParallel(MIMOSeries(tfm3, tfm1), tfm2) assert p9.args == (MIMOSeries(tfm3, tfm1), tfm2) assert p9.var == s assert p9.shape == (p9.num_outputs, p9.num_inputs) == (3, 1) p10 = MIMOParallel(tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.args == (tfm1, MIMOSeries(tfm3, tfm4), tfm2) assert p10.var == s assert p10.shape == (p10.num_outputs, p10.num_inputs) == (3, 1) p11 = MIMOParallel(tfm2, tfm1, tfm4) assert p11.args == (tfm2, tfm1, tfm4) assert p11.shape == (p11.num_outputs, p11.num_inputs) == (3, 1) p12 = MIMOParallel(tfm6, tfm5) assert p12.args == (tfm6, tfm5) assert p12.shape == (p12.num_outputs, p12.num_inputs) == (2, 2) p13 = MIMOParallel(tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.args == (tfm2, tfm4, MIMOSeries(-tfm3, tfm4), -tfm4) assert p13.shape == (p13.num_outputs, p13.num_inputs) == (3, 1) # arg cannot be empty tuple. raises(TypeError, lambda: MIMOParallel(())) # arg cannot contain SISO as well as MIMO systems. raises(TypeError, lambda: MIMOParallel(tfm1, tfm2, TF1)) # all TFMs must have same shapes. raises(TypeError, lambda: MIMOParallel(tfm1, tfm3, tfm4)) # all TFMs must be using the same complex variable. raises(ValueError, lambda: MIMOParallel(tfm3, tfm7)) # Number or expression not allowed in the arguments. raises(TypeError, lambda: MIMOParallel(2, tfm1, tfm4)) raises(TypeError, lambda: MIMOParallel(s**2 + p*s, -tfm4, tfm2)) def test_Parallel_functions(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) assert tf1 + tf2 + tf3 == Parallel(tf1, tf2, tf3) assert tf1 + tf2 + tf3 + tf5 == Parallel(tf1, tf2, tf3, tf5) assert tf1 + tf2 - tf3 - tf5 == Parallel(tf1, tf2, -tf3, -tf5) assert tf1 + tf2*tf3 == Parallel(tf1, Series(tf2, tf3)) assert tf1 - tf2*tf3 == Parallel(tf1, -Series(tf2,tf3)) assert -tf1 - tf2 == Parallel(-tf1, -tf2) assert -(tf1 + tf2) == Series(TransferFunction(-1, 1, s), Parallel(tf1, tf2)) assert (tf2 + tf3)*tf1 == Series(Parallel(tf2, tf3), tf1) assert (tf1 + tf2)*(tf3*tf5) == Series(Parallel(tf1, tf2), tf3, tf5) assert -(tf2 + tf3)*-tf5 == Series(TransferFunction(-1, 1, s), Parallel(tf2, tf3), -tf5) assert tf2 + tf3 + tf2*tf1 + tf5 == Parallel(tf2, tf3, Series(tf2, tf1), tf5) assert tf2 + tf3 + tf2*tf1 - tf3 == Parallel(tf2, tf3, Series(tf2, tf1), -tf3) assert (tf1 + tf2 + tf5)*(tf3 + tf5) == Series(Parallel(tf1, tf2, tf5), Parallel(tf3, tf5)) raises(ValueError, lambda: tf1 + tf2 + tf4) raises(ValueError, lambda: tf1 - tf2*tf4) raises(ValueError, lambda: tf3 + Matrix([1, 2, 3])) # evaluate=True -> doit() assert Parallel(tf1, tf2, evaluate=True) == Parallel(tf1, tf2).doit() == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf1, tf2, Series(-tf1, tf3), evaluate=True) == \ Parallel(tf1, tf2, Series(-tf1, tf3)).doit() == TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)**2 + \ (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) + (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + \ 2*s*wn*zeta + wn**2)**2, s) assert Parallel(tf2, tf1, -tf3, evaluate=True) == Parallel(tf2, tf1, -tf3).doit() == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2) \ , (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert not Parallel(tf1, -tf2, evaluate=False) == Parallel(tf1, -tf2).doit() assert Parallel(Series(tf1, tf2), Series(tf2, tf3)).doit() == \ TransferFunction(k*(a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2) + k*(a2*s + p), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(-tf1, -tf2, -tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert -Parallel(tf1, tf2, tf3).doit() == \ TransferFunction(-a2*s - k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - p - (a2*p - s)*(s**2 + 2*s*wn*zeta + wn**2), \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf2, tf3, Series(tf2, -tf1), tf3).doit() == \ TransferFunction(k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) - k*(a2*s + p) + (2*a2*p - 2*s)*(s**2 + 2*s*wn*zeta \ + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, tf2).rewrite(TransferFunction) == \ TransferFunction(k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s) assert Parallel(tf2, tf1, -tf3).rewrite(TransferFunction) == \ TransferFunction(a2*s + k*(a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2) + p + (-a2*p + s)*(s**2 + 2*s*wn*zeta + \ wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Parallel(tf1, Parallel(tf2, tf3)) == Parallel(tf1, tf2, tf3) == Parallel(Parallel(tf1, tf2), tf3) P1 = Parallel(Series(tf1, tf2), Series(tf2, tf3)) assert P1.is_proper assert not P1.is_strictly_proper assert P1.is_biproper P2 = Parallel(tf1, -tf2, -tf3) assert P2.is_proper assert not P2.is_strictly_proper assert P2.is_biproper P3 = Parallel(tf1, -tf2, Series(tf1, tf3)) assert P3.is_proper assert not P3.is_strictly_proper assert P3.is_biproper def test_MIMOParallel_functions(): tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tfm1 = TransferFunctionMatrix([[TF1], [TF2], [TF3]]) tfm2 = TransferFunctionMatrix([[-TF2], [tf5], [-TF1]]) tfm3 = TransferFunctionMatrix([[tf5], [-tf5], [TF2]]) tfm4 = TransferFunctionMatrix([[TF2, -tf5], [TF1, tf5]]) tfm5 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5]]) tfm6 = TransferFunctionMatrix([[-TF2]]) tfm7 = TransferFunctionMatrix([[tf4], [-tf4], [tf4]]) assert tfm1 + tfm2 + tfm3 == MIMOParallel(tfm1, tfm2, tfm3) == MIMOParallel(MIMOParallel(tfm1, tfm2), tfm3) assert tfm2 - tfm1 - tfm3 == MIMOParallel(tfm2, -tfm1, -tfm3) assert tfm2 - tfm3 + (-tfm1*tfm6*-tfm6) == MIMOParallel(tfm2, -tfm3, MIMOSeries(-tfm6, tfm6, -tfm1)) assert tfm1 + tfm1 - (-tfm1*tfm6) == MIMOParallel(tfm1, tfm1, -MIMOSeries(tfm6, -tfm1)) assert tfm2 - tfm3 - tfm1 + tfm2 == MIMOParallel(tfm2, -tfm3, -tfm1, tfm2) assert tfm1 + tfm2 - tfm3 - tfm1 == MIMOParallel(tfm1, tfm2, -tfm3, -tfm1) raises(ValueError, lambda: tfm1 + tfm2 + TF2) raises(TypeError, lambda: tfm1 - tfm2 - a1) raises(TypeError, lambda: tfm2 - tfm3 - (s - 1)) raises(TypeError, lambda: -tfm3 - tfm2 - 9) raises(TypeError, lambda: (1 - p**3) - tfm3 - tfm2) # All TFMs must use the same complex var. tfm7 uses 'p'. raises(ValueError, lambda: tfm3 - tfm2 - tfm7) raises(ValueError, lambda: tfm2 - tfm1 + tfm7) # (tfm1 +/- tfm2) has (3, 1) shape while tfm4 has (2, 2) shape. raises(TypeError, lambda: tfm1 + tfm2 + tfm4) raises(TypeError, lambda: (tfm1 - tfm2) - tfm4) assert (tfm1 + tfm2)*tfm6 == MIMOSeries(tfm6, MIMOParallel(tfm1, tfm2)) assert (tfm2 - tfm3)*tfm6*-tfm6 == MIMOSeries(-tfm6, tfm6, MIMOParallel(tfm2, -tfm3)) assert (tfm2 - tfm1 - tfm3)*(tfm6 + tfm6) == MIMOSeries(MIMOParallel(tfm6, tfm6), MIMOParallel(tfm2, -tfm1, -tfm3)) raises(ValueError, lambda: (tfm4 + tfm5)*TF1) raises(TypeError, lambda: (tfm2 - tfm3)*a2) raises(TypeError, lambda: (tfm3 + tfm2)*(s - 6)) raises(TypeError, lambda: (tfm1 + tfm2 + tfm3)*0) raises(TypeError, lambda: (1 - p**3)*(tfm1 + tfm3)) # (tfm3 - tfm2) has (3, 1) shape while tfm4*tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm3 - tfm2)*tfm4*tfm5) # (tfm1 - tfm2) has (3, 1) shape while tfm5 has (2, 2) shape. raises(ValueError, lambda: (tfm1 - tfm2)*tfm5) # TFM in the arguments. assert (MIMOParallel(tfm1, tfm2, evaluate=True) == MIMOParallel(tfm1, tfm2).doit() == MIMOParallel(tfm1, tfm2).rewrite(TransferFunctionMatrix) == TransferFunctionMatrix(((TransferFunction(-k*(s**2 + 2*s*wn*zeta + wn**2) + 1, s**2 + 2*s*wn*zeta + wn**2, s),), \ (TransferFunction(-a0 + a1*s**2 + a2*s + k*(a0 + s), a0 + s, s),), (TransferFunction(-a2*s - p + (a2*p - s)* \ (s**2 + 2*s*wn*zeta + wn**2), (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s),)))) def test_Feedback_construction(): tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) f1 = Feedback(TransferFunction(1, 1, s), tf1*tf2*tf3) assert f1.args == (TransferFunction(1, 1, s), Series(tf1, tf2, tf3), -1) assert f1.sys1 == TransferFunction(1, 1, s) assert f1.sys2 == Series(tf1, tf2, tf3) assert f1.var == s f2 = Feedback(tf1, tf2*tf3) assert f2.args == (tf1, Series(tf2, tf3), -1) assert f2.sys1 == tf1 assert f2.sys2 == Series(tf2, tf3) assert f2.var == s f3 = Feedback(tf1*tf2, tf5) assert f3.args == (Series(tf1, tf2), tf5, -1) assert f3.sys1 == Series(tf1, tf2) f4 = Feedback(tf4, tf6) assert f4.args == (tf4, tf6, -1) assert f4.sys1 == tf4 assert f4.var == p f5 = Feedback(tf5, TransferFunction(1, 1, s)) assert f5.args == (tf5, TransferFunction(1, 1, s), -1) assert f5.var == s assert f5 == Feedback(tf5) # When sys2 is not passed explicitly, it is assumed to be unit tf. f6 = Feedback(TransferFunction(1, 1, p), tf4) assert f6.args == (TransferFunction(1, 1, p), tf4, -1) assert f6.var == p f7 = -Feedback(tf4*tf6, TransferFunction(1, 1, p)) assert f7.args == (Series(TransferFunction(-1, 1, p), Series(tf4, tf6)), -TransferFunction(1, 1, p), -1) assert f7.sys1 == Series(TransferFunction(-1, 1, p), Series(tf4, tf6)) # denominator can't be a Parallel instance raises(TypeError, lambda: Feedback(tf1, tf2 + tf3)) raises(TypeError, lambda: Feedback(tf1, Matrix([1, 2, 3]))) raises(TypeError, lambda: Feedback(TransferFunction(1, 1, s), s - 1)) raises(TypeError, lambda: Feedback(1, 1)) # raises(ValueError, lambda: Feedback(TransferFunction(1, 1, s), TransferFunction(1, 1, s))) raises(ValueError, lambda: Feedback(tf2, tf4*tf5)) raises(ValueError, lambda: Feedback(tf2, tf1, 1.5)) # `sign` can only be -1 or 1 raises(ValueError, lambda: Feedback(tf1, -tf1**-1)) # denominator can't be zero raises(ValueError, lambda: Feedback(tf4, tf5)) # Both systems should use the same `var` def test_Feedback_functions(): tf = TransferFunction(1, 1, s) tf1 = TransferFunction(1, s**2 + 2*zeta*wn*s + wn**2, s) tf2 = TransferFunction(k, 1, s) tf3 = TransferFunction(a2*p - s, a2*s + p, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf6 = TransferFunction(s - p, p + s, p) assert tf / (tf + tf1) == Feedback(tf, tf1) assert tf / (tf + tf1*tf2*tf3) == Feedback(tf, tf1*tf2*tf3) assert tf1 / (tf + tf1*tf2*tf3) == Feedback(tf1, tf2*tf3) assert (tf1*tf2) / (tf + tf1*tf2) == Feedback(tf1*tf2, tf) assert (tf1*tf2) / (tf + tf1*tf2*tf5) == Feedback(tf1*tf2, tf5) assert (tf1*tf2) / (tf + tf1*tf2*tf5*tf3) in (Feedback(tf1*tf2, tf5*tf3), Feedback(tf1*tf2, tf3*tf5)) assert tf4 / (TransferFunction(1, 1, p) + tf4*tf6) == Feedback(tf4, tf6) assert tf5 / (tf + tf5) == Feedback(tf5, tf) raises(TypeError, lambda: tf1*tf2*tf3 / (1 + tf1*tf2*tf3)) raises(ValueError, lambda: tf1*tf2*tf3 / tf3*tf5) raises(ValueError, lambda: tf2*tf3 / (tf + tf2*tf3*tf4)) assert Feedback(tf, tf1*tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf, tf1*tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1, tf2*tf3).doit() == \ TransferFunction((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2), (k*(a2*p - s) + \ (a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1, tf2*tf3).sensitivity == \ 1/(k*(a2*p - s)/((a2*s + p)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf1*tf2, tf5).doit() == \ TransferFunction(k*(a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(tf1*tf2, tf5, 1).sensitivity == \ 1/(-k*(-a0 + a1*s**2 + a2*s)/((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2)) + 1) assert Feedback(tf4, tf6).doit() == \ TransferFunction(p*(p + s)*(a0*p + p**a1 - s), p*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert -Feedback(tf4*tf6, TransferFunction(1, 1, p)).doit() == \ TransferFunction(-p*(-p + s)*(p + s)*(a0*p + p**a1 - s), p*(p + s)*(p*(p + s) + (-p + s)*(a0*p + p**a1 - s)), p) assert Feedback(tf, tf).doit() == TransferFunction(1, 2, s) assert Feedback(tf1, tf2*tf5).rewrite(TransferFunction) == \ TransferFunction((a0 + s)*(s**2 + 2*s*wn*zeta + wn**2), (k*(-a0 + a1*s**2 + a2*s) + \ (a0 + s)*(s**2 + 2*s*wn*zeta + wn**2))*(s**2 + 2*s*wn*zeta + wn**2), s) assert Feedback(TransferFunction(1, 1, p), tf4).rewrite(TransferFunction) == \ TransferFunction(p, a0*p + p + p**a1 - s, p) def test_MIMOFeedback_construction(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s + 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix([[tf3, tf4], [tf1, tf2]]) f1 = MIMOFeedback(tfm_1, tfm_2) assert f1.args == (tfm_1, tfm_2, -1) assert f1.sys1 == tfm_1 assert f1.sys2 == tfm_2 assert f1.var == s assert f1.sign == -1 assert -(-f1) == f1 f2 = MIMOFeedback(tfm_2, tfm_1, 1) assert f2.args == (tfm_2, tfm_1, 1) assert f2.sys1 == tfm_2 assert f2.sys2 == tfm_1 assert f2.var == s assert f2.sign == 1 f3 = MIMOFeedback(tfm_1, MIMOSeries(tfm_3, tfm_2)) assert f3.args == (tfm_1, MIMOSeries(tfm_3, tfm_2), -1) assert f3.sys1 == tfm_1 assert f3.sys2 == MIMOSeries(tfm_3, tfm_2) assert f3.var == s assert f3.sign == -1 mat = Matrix([[1, 1/s], [0, 1]]) sys1 = controller = TransferFunctionMatrix.from_Matrix(mat, s) f4 = MIMOFeedback(sys1, controller) assert f4.args == (sys1, controller, -1) assert f4.sys1 == f4.sys2 == sys1 def test_MIMOFeedback_errors(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s**3 - 1, s) tf3 = TransferFunction(s, s - 1, s) tf4 = TransferFunction(s, s**2 + 1, s) tf5 = TransferFunction(1, 1, s) tf6 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]]) tfm_2 = TransferFunctionMatrix([[tf2, tf3], [tf4, tf1]]) tfm_3 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_4 = TransferFunctionMatrix([[tf1, tf5], [tf5, tf5]]) tfm_5 = TransferFunctionMatrix([[-tf3, tf3], [tf3, tf6]]) # tfm_4 is inverse of tfm_5. Therefore tfm_5*tfm_4 = I tfm_6 = TransferFunctionMatrix([[-tf3]]) tfm_7 = TransferFunctionMatrix([[tf3, tf4]]) # Unsupported Types raises(TypeError, lambda: MIMOFeedback(tf1, tf2)) raises(TypeError, lambda: MIMOFeedback(MIMOParallel(tfm_1, tfm_2), tfm_3)) # Shape Errors raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_6, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_7, tfm_7)) # sign not 1/-1 raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_2, -2)) # Non-Invertible Systems raises(ValueError, lambda: MIMOFeedback(tfm_5, tfm_4, 1)) raises(ValueError, lambda: MIMOFeedback(tfm_4, -tfm_5)) raises(ValueError, lambda: MIMOFeedback(tfm_3, tfm_3, 1)) # Variable not same in both the systems tfm_8 = TransferFunctionMatrix.from_Matrix(eye(2), var=p) raises(ValueError, lambda: MIMOFeedback(tfm_1, tfm_8, 1)) def test_MIMOFeedback_functions(): tf1 = TransferFunction(1, s, s) tf2 = TransferFunction(s, s - 1, s) tf3 = TransferFunction(1, 1, s) tf4 = TransferFunction(-1, s - 1, s) tfm_1 = TransferFunctionMatrix.from_Matrix(eye(2), var=s) tfm_2 = TransferFunctionMatrix([[tf1, tf3], [tf3, tf3]]) tfm_3 = TransferFunctionMatrix([[-tf2, tf2], [tf2, tf4]]) tfm_4 = TransferFunctionMatrix([[tf1, tf2], [-tf2, tf1]]) # sensitivity, doit(), rewrite() F_1 = MIMOFeedback(tfm_2, tfm_3) F_2 = MIMOFeedback(tfm_2, MIMOSeries(tfm_4, -tfm_1), 1) assert F_1.sensitivity == Matrix([[1/2, 0], [0, 1/2]]) assert F_2.sensitivity == Matrix([[(-2*s**4 + s**2)/(s**2 - s + 1), (2*s**3 - s**2)/(s**2 - s + 1)], [-s**2, s]]) assert F_1.doit() == \ TransferFunctionMatrix(((TransferFunction(1, 2*s, s), TransferFunction(1, 2, s)), (TransferFunction(1, 2, s), TransferFunction(1, 2, s)))) == F_1.rewrite(TransferFunctionMatrix) assert F_2.doit(cancel=False, expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**5 + 2*s**4 - 2*s**3 + s**2, s**5 - 2*s**4 + 3*s**3 - 2*s**2 + s, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit(cancel=False) == \ TransferFunctionMatrix(((TransferFunction(s*(2*s**3 - s**2)*(s**2 - s + 1) + \ (-2*s**4 + s**2)*(s**2 - s + 1), s*(s**2 - s + 1)**2, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert F_2.doit() == \ TransferFunctionMatrix(((TransferFunction(s*(-2*s**2 + s*(2*s - 1) + 1), s**2 - s + 1, s), TransferFunction(-2*s**3*(s - 1), s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(s*(1 - s), 1, s)))) assert F_2.doit(expand=True) == \ TransferFunctionMatrix(((TransferFunction(-s**2 + s, s**2 - s + 1, s), TransferFunction(-2*s**4 + 2*s**3, s**2 - s + 1, s)), (TransferFunction(0, 1, s), TransferFunction(-s**2 + s, 1, s)))) assert -(F_1.doit()) == (-F_1).doit() # First negating then calculating vs calculating then negating. def test_TransferFunctionMatrix_construction(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) tf4 = TransferFunction(a0*p + p**a1 - s, p, p) tfm3_ = TransferFunctionMatrix([[-TF3]]) assert tfm3_.shape == (tfm3_.num_outputs, tfm3_.num_inputs) == (1, 1) assert tfm3_.args == Tuple(Tuple(Tuple(-TF3))) assert tfm3_.var == s tfm5 = TransferFunctionMatrix([[TF1, -TF2], [TF3, tf5]]) assert tfm5.shape == (tfm5.num_outputs, tfm5.num_inputs) == (2, 2) assert tfm5.args == Tuple(Tuple(Tuple(TF1, -TF2), Tuple(TF3, tf5))) assert tfm5.var == s tfm7 = TransferFunctionMatrix([[TF1, TF2], [TF3, -tf5], [-tf5, TF2]]) assert tfm7.shape == (tfm7.num_outputs, tfm7.num_inputs) == (3, 2) assert tfm7.args == Tuple(Tuple(Tuple(TF1, TF2), Tuple(TF3, -tf5), Tuple(-tf5, TF2))) assert tfm7.var == s # all transfer functions will use the same complex variable. tf4 uses 'p'. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF2], [tf4]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, tf4], [TF3, tf5]])) # length of all the lists in the TFM should be equal. raises(ValueError, lambda: TransferFunctionMatrix([[TF1], [TF3, tf5]])) raises(ValueError, lambda: TransferFunctionMatrix([[TF1, TF3], [tf5]])) # lists should only support transfer functions in them. raises(TypeError, lambda: TransferFunctionMatrix([[TF1, TF2], [TF3, Matrix([1, 2])]])) raises(TypeError, lambda: TransferFunctionMatrix([[TF1, Matrix([1, 2])], [TF3, TF2]])) # `arg` should strictly be nested list of TransferFunction raises(ValueError, lambda: TransferFunctionMatrix([TF1, TF2, tf5])) raises(ValueError, lambda: TransferFunctionMatrix([TF1])) def test_TransferFunctionMatrix_functions(): tf5 = TransferFunction(a1*s**2 + a2*s - a0, s + a0, s) # Classmethod (from_matrix) mat_1 = ImmutableMatrix([ [s*(s + 1)*(s - 3)/(s**4 + 1), 2], [p, p*(s + 1)/(s*(s**1 + 1))] ]) mat_2 = ImmutableMatrix([[(2*s + 1)/(s**2 - 9)]]) mat_3 = ImmutableMatrix([[1, 2], [3, 4]]) assert TransferFunctionMatrix.from_Matrix(mat_1, s) == \ TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(p, 1, s), TransferFunction(p, s, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_2, s) == \ TransferFunctionMatrix([[TransferFunction(2*s + 1, s**2 - 9, s)]]) assert TransferFunctionMatrix.from_Matrix(mat_3, p) == \ TransferFunctionMatrix([[TransferFunction(1, 1, p), TransferFunction(2, 1, p)], [TransferFunction(3, 1, p), TransferFunction(4, 1, p)]]) # Negating a TFM tfm1 = TransferFunctionMatrix([[TF1], [TF2]]) assert -tfm1 == TransferFunctionMatrix([[-TF1], [-TF2]]) tfm2 = TransferFunctionMatrix([[TF1, TF2, TF3], [tf5, -TF1, -TF3]]) assert -tfm2 == TransferFunctionMatrix([[-TF1, -TF2, -TF3], [-tf5, TF1, TF3]]) # subs() H_1 = TransferFunctionMatrix.from_Matrix(mat_1, s) H_2 = TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(s**2 - a), s)]]) assert H_1.subs(p, 1) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) assert H_1.subs({p: 1, s: 1}) == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s)], [TransferFunction(1, 1, s), TransferFunction(1, s, s)]]) # This should ignore `s` as it is `var` assert H_2.subs(p, 2) == TransferFunctionMatrix([[TransferFunction(2*a*s, k*s**2, s), TransferFunction(2*s, k*(-a + s**2), s)]]) assert H_2.subs(k, 1) == TransferFunctionMatrix([[TransferFunction(a*p*s, s**2, s), TransferFunction(p*s, -a + s**2, s)]]) assert H_2.subs(a, 0) == TransferFunctionMatrix([[TransferFunction(0, k*s**2, s), TransferFunction(p*s, k*s**2, s)]]) assert H_2.subs({p: 1, k: 1, a: a0}) == TransferFunctionMatrix([[TransferFunction(a0*s, s**2, s), TransferFunction(s, -a0 + s**2, s)]]) # transpose() assert H_1.transpose() == TransferFunctionMatrix([[TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(p, 1, s)], [TransferFunction(2, 1, s), TransferFunction(p, s, s)]]) assert H_2.transpose() == TransferFunctionMatrix([[TransferFunction(a*p*s, k*s**2, s)], [TransferFunction(p*s, k*(-a + s**2), s)]]) assert H_1.transpose().transpose() == H_1 assert H_2.transpose().transpose() == H_2 # elem_poles() assert H_1.elem_poles() == [[[-sqrt(2)/2 - sqrt(2)*I/2, -sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2, sqrt(2)/2 + sqrt(2)*I/2], []], [[], [0]]] assert H_2.elem_poles() == [[[0, 0], [sqrt(a), -sqrt(a)]]] assert tfm2.elem_poles() == [[[wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [], [-p/a2]], [[-a0], [wn*(-zeta + sqrt((zeta - 1)*(zeta + 1))), wn*(-zeta - sqrt((zeta - 1)*(zeta + 1)))], [-p/a2]]] # elem_zeros() assert H_1.elem_zeros() == [[[-1, 0, 3], []], [[], []]] assert H_2.elem_zeros() == [[[0], [0]]] assert tfm2.elem_zeros() == [[[], [], [a2*p]], [[-a2/(2*a1) - sqrt(4*a0*a1 + a2**2)/(2*a1), -a2/(2*a1) + sqrt(4*a0*a1 + a2**2)/(2*a1)], [], [a2*p]]] # doit() H_3 = TransferFunctionMatrix([[Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))]]) H_4 = TransferFunctionMatrix([[Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))]]) assert H_3.doit() == TransferFunctionMatrix([[TransferFunction(s**2 - 2*s + 5, s*(s**3 - 3), s)]]) assert H_4.doit() == TransferFunctionMatrix([[TransferFunction(1, 4*s**4 - s**2 - 2*s + 5, s)]]) # _flat() assert H_1._flat() == [TransferFunction(s*(s - 3)*(s + 1), s**4 + 1, s), TransferFunction(2, 1, s), TransferFunction(p, 1, s), TransferFunction(p, s, s)] assert H_2._flat() == [TransferFunction(a*p*s, k*s**2, s), TransferFunction(p*s, k*(-a + s**2), s)] assert H_3._flat() == [Series(TransferFunction(1, s**3 - 3, s), TransferFunction(s**2 - 2*s + 5, 1, s), TransferFunction(1, s, s))] assert H_4._flat() == [Parallel(TransferFunction(s**3 - 3, 4*s**4 - s**2 - 2*s + 5, s), TransferFunction(4 - s**3, 4*s**4 - s**2 - 2*s + 5, s))] # evalf() assert H_1.evalf() == \ TransferFunctionMatrix(((TransferFunction(s*(s - 3.0)*(s + 1.0), s**4 + 1.0, s), TransferFunction(2.0, 1, s)), (TransferFunction(1.0*p, 1, s), TransferFunction(p, s, s)))) assert H_2.subs({a:3.141, p:2.88, k:2}).evalf() == \ TransferFunctionMatrix(((TransferFunction(4.5230399999999999494093572138808667659759521484375, s, s), TransferFunction(2.87999999999999989341858963598497211933135986328125*s, 2.0*s**2 - 6.282000000000000028421709430404007434844970703125, s)),)) # simplify() H_5 = TransferFunctionMatrix([[TransferFunction(s**5 + s**3 + s, s - s**2, s), TransferFunction((s + 3)*(s - 1), (s - 1)*(s + 5), s)]]) assert H_5.simplify() == simplify(H_5) == \ TransferFunctionMatrix(((TransferFunction(-s**4 - s**2 - 1, s - 1, s), TransferFunction(s + 3, s + 5, s)),)) # expand() assert (H_1.expand() == TransferFunctionMatrix(((TransferFunction(s**3 - 2*s**2 - 3*s, s**4 + 1, s), TransferFunction(2, 1, s)), (TransferFunction(p, 1, s), TransferFunction(p, s, s))))) assert H_5.expand() == \ TransferFunctionMatrix(((TransferFunction(s**5 + s**3 + s, -s**2 + s, s), TransferFunction(s**2 + 2*s - 3, s**2 + 4*s - 5, s)),))
7a670612a41e0affa4549c727d7eba4d9c5a849f296339c52c4d5fcb2cde6467
from sympy.core.numbers import Integer from sympy.core.symbol import Symbol from sympy.physics.quantum.qexpr import QExpr, _qsympify_sequence from sympy.physics.quantum.hilbert import HilbertSpace from sympy.core.containers import Tuple x = Symbol('x') y = Symbol('y') def test_qexpr_new(): q = QExpr(0) assert q.label == (0,) assert q.hilbert_space == HilbertSpace() assert q.is_commutative is False q = QExpr(0, 1) assert q.label == (Integer(0), Integer(1)) q = QExpr._new_rawargs(HilbertSpace(), Integer(0), Integer(1)) assert q.label == (Integer(0), Integer(1)) assert q.hilbert_space == HilbertSpace() def test_qexpr_commutative(): q1 = QExpr(x) q2 = QExpr(y) assert q1.is_commutative is False assert q2.is_commutative is False assert q1*q2 != q2*q1 q = QExpr._new_rawargs(Integer(0), Integer(1), HilbertSpace()) assert q.is_commutative is False def test_qexpr_commutative_free_symbols(): q1 = QExpr(x) assert q1.free_symbols.pop().is_commutative is False q2 = QExpr('q2') assert q2.free_symbols.pop().is_commutative is False def test_qexpr_subs(): q1 = QExpr(x, y) assert q1.subs(x, y) == QExpr(y, y) assert q1.subs({x: 1, y: 2}) == QExpr(1, 2) def test_qsympify(): assert _qsympify_sequence([[1, 2], [1, 3]]) == (Tuple(1, 2), Tuple(1, 3)) assert _qsympify_sequence(([1, 2, [3, 4, [2, ]], 1], 3)) == \ (Tuple(1, 2, Tuple(3, 4, Tuple(2,)), 1), 3) assert _qsympify_sequence((1,)) == (1,)
061b31fe08f972962fe0185525142887194a93fadca788c7b524654cffa6ff1b
from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.matrices.dense import Matrix from sympy.printing.latex import latex from sympy.physics.quantum import (Dagger, Commutator, AntiCommutator, qapply, Operator, represent) from sympy.physics.quantum.pauli import (SigmaOpBase, SigmaX, SigmaY, SigmaZ, SigmaMinus, SigmaPlus, qsimplify_pauli) from sympy.physics.quantum.pauli import SigmaZKet, SigmaZBra from sympy.testing.pytest import raises sx, sy, sz = SigmaX(), SigmaY(), SigmaZ() sx1, sy1, sz1 = SigmaX(1), SigmaY(1), SigmaZ(1) sx2, sy2, sz2 = SigmaX(2), SigmaY(2), SigmaZ(2) sm, sp = SigmaMinus(), SigmaPlus() sm1, sp1 = SigmaMinus(1), SigmaPlus(1) A, B = Operator("A"), Operator("B") def test_pauli_operators_types(): assert isinstance(sx, SigmaOpBase) and isinstance(sx, SigmaX) assert isinstance(sy, SigmaOpBase) and isinstance(sy, SigmaY) assert isinstance(sz, SigmaOpBase) and isinstance(sz, SigmaZ) assert isinstance(sm, SigmaOpBase) and isinstance(sm, SigmaMinus) assert isinstance(sp, SigmaOpBase) and isinstance(sp, SigmaPlus) def test_pauli_operators_commutator(): assert Commutator(sx, sy).doit() == 2 * I * sz assert Commutator(sy, sz).doit() == 2 * I * sx assert Commutator(sz, sx).doit() == 2 * I * sy def test_pauli_operators_commutator_with_labels(): assert Commutator(sx1, sy1).doit() == 2 * I * sz1 assert Commutator(sy1, sz1).doit() == 2 * I * sx1 assert Commutator(sz1, sx1).doit() == 2 * I * sy1 assert Commutator(sx2, sy2).doit() == 2 * I * sz2 assert Commutator(sy2, sz2).doit() == 2 * I * sx2 assert Commutator(sz2, sx2).doit() == 2 * I * sy2 assert Commutator(sx1, sy2).doit() == 0 assert Commutator(sy1, sz2).doit() == 0 assert Commutator(sz1, sx2).doit() == 0 def test_pauli_operators_anticommutator(): assert AntiCommutator(sy, sz).doit() == 0 assert AntiCommutator(sz, sx).doit() == 0 assert AntiCommutator(sx, sm).doit() == 1 assert AntiCommutator(sx, sp).doit() == 1 def test_pauli_operators_adjoint(): assert Dagger(sx) == sx assert Dagger(sy) == sy assert Dagger(sz) == sz def test_pauli_operators_adjoint_with_labels(): assert Dagger(sx1) == sx1 assert Dagger(sy1) == sy1 assert Dagger(sz1) == sz1 assert Dagger(sx1) != sx2 assert Dagger(sy1) != sy2 assert Dagger(sz1) != sz2 def test_pauli_operators_multiplication(): assert qsimplify_pauli(sx * sx) == 1 assert qsimplify_pauli(sy * sy) == 1 assert qsimplify_pauli(sz * sz) == 1 assert qsimplify_pauli(sx * sy) == I * sz assert qsimplify_pauli(sy * sz) == I * sx assert qsimplify_pauli(sz * sx) == I * sy assert qsimplify_pauli(sy * sx) == - I * sz assert qsimplify_pauli(sz * sy) == - I * sx assert qsimplify_pauli(sx * sz) == - I * sy def test_pauli_operators_multiplication_with_labels(): assert qsimplify_pauli(sx1 * sx1) == 1 assert qsimplify_pauli(sy1 * sy1) == 1 assert qsimplify_pauli(sz1 * sz1) == 1 assert isinstance(sx1 * sx2, Mul) assert isinstance(sy1 * sy2, Mul) assert isinstance(sz1 * sz2, Mul) assert qsimplify_pauli(sx1 * sy1 * sx2 * sy2) == - sz1 * sz2 assert qsimplify_pauli(sy1 * sz1 * sz2 * sx2) == - sx1 * sy2 def test_pauli_states(): sx, sz = SigmaX(), SigmaZ() up = SigmaZKet(0) down = SigmaZKet(1) assert qapply(sx * up) == down assert qapply(sx * down) == up assert qapply(sz * up) == up assert qapply(sz * down) == - down up = SigmaZBra(0) down = SigmaZBra(1) assert qapply(up * sx, dagger=True) == down assert qapply(down * sx, dagger=True) == up assert qapply(up * sz, dagger=True) == up assert qapply(down * sz, dagger=True) == - down assert Dagger(SigmaZKet(0)) == SigmaZBra(0) assert Dagger(SigmaZBra(1)) == SigmaZKet(1) raises(ValueError, lambda: SigmaZBra(2)) raises(ValueError, lambda: SigmaZKet(2)) def test_use_name(): assert sm.use_name is False assert sm1.use_name is True assert sx.use_name is False assert sx1.use_name is True def test_printing(): assert latex(sx) == r'{\sigma_x}' assert latex(sx1) == r'{\sigma_x^{(1)}}' assert latex(sy) == r'{\sigma_y}' assert latex(sy1) == r'{\sigma_y^{(1)}}' assert latex(sz) == r'{\sigma_z}' assert latex(sz1) == r'{\sigma_z^{(1)}}' assert latex(sm) == r'{\sigma_-}' assert latex(sm1) == r'{\sigma_-^{(1)}}' assert latex(sp) == r'{\sigma_+}' assert latex(sp1) == r'{\sigma_+^{(1)}}' def test_represent(): assert represent(sx) == Matrix([[0, 1], [1, 0]]) assert represent(sy) == Matrix([[0, -I], [I, 0]]) assert represent(sz) == Matrix([[1, 0], [0, -1]]) assert represent(sm) == Matrix([[0, 0], [1, 0]]) assert represent(sp) == Matrix([[0, 1], [0, 0]])
1efa6de36966b23a452aeb37d7a16c0de90e3d82197bd4b025302a961e171066
from sympy.core.random import randint from sympy.core.numbers import Integer from sympy.matrices.dense import (Matrix, ones, zeros) from sympy.physics.quantum.matrixutils import ( to_sympy, to_numpy, to_scipy_sparse, matrix_tensor_product, matrix_to_zero, matrix_zeros, numpy_ndarray, scipy_sparse_matrix ) from sympy.external import import_module from sympy.testing.pytest import skip m = Matrix([[1, 2], [3, 4]]) def test_sympy_to_sympy(): assert to_sympy(m) == m def test_matrix_to_zero(): assert matrix_to_zero(m) == m assert matrix_to_zero(Matrix([[0, 0], [0, 0]])) == Integer(0) np = import_module('numpy') def test_to_numpy(): if not np: skip("numpy not installed.") result = np.matrix([[1, 2], [3, 4]], dtype='complex') assert (to_numpy(m) == result).all() def test_matrix_tensor_product(): if not np: skip("numpy not installed.") l1 = zeros(4) for i in range(16): l1[i] = 2**i l2 = zeros(4) for i in range(16): l2[i] = i l3 = zeros(2) for i in range(4): l3[i] = i vec = Matrix([1, 2, 3]) #test for Matrix known 4x4 matricies numpyl1 = np.matrix(l1.tolist()) numpyl2 = np.matrix(l2.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, l2] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [l2, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for other known matrix of different dimensions numpyl2 = np.matrix(l3.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, l3] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [l3, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for non square matrix numpyl2 = np.matrix(vec.tolist()) numpy_product = np.kron(numpyl1, numpyl2) args = [l1, vec] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() numpy_product = np.kron(numpyl2, numpyl1) args = [vec, l1] sympy_product = matrix_tensor_product(*args) assert numpy_product.tolist() == sympy_product.tolist() #test for random matrix with random values that are floats random_matrix1 = np.random.rand(randint(1, 5), randint(1, 5)) random_matrix2 = np.random.rand(randint(1, 5), randint(1, 5)) numpy_product = np.kron(random_matrix1, random_matrix2) args = [Matrix(random_matrix1.tolist()), Matrix(random_matrix2.tolist())] sympy_product = matrix_tensor_product(*args) assert not (sympy_product - Matrix(numpy_product.tolist())).tolist() > \ (ones(sympy_product.rows, sympy_product.cols)*epsilon).tolist() #test for three matrix kronecker sympy_product = matrix_tensor_product(l1, vec, l2) numpy_product = np.kron(l1, np.kron(vec, l2)) assert numpy_product.tolist() == sympy_product.tolist() scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def test_to_scipy_sparse(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") else: sparse = scipy.sparse result = sparse.csr_matrix([[1, 2], [3, 4]], dtype='complex') assert np.linalg.norm((to_scipy_sparse(m) - result).todense()) == 0.0 epsilon = .000001 def test_matrix_zeros_sympy(): sym = matrix_zeros(4, 4, format='sympy') assert isinstance(sym, Matrix) def test_matrix_zeros_numpy(): if not np: skip("numpy not installed.") num = matrix_zeros(4, 4, format='numpy') assert isinstance(num, numpy_ndarray) def test_matrix_zeros_scipy(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") sci = matrix_zeros(4, 4, format='scipy.sparse') assert isinstance(sci, scipy_sparse_matrix)
d49f8304c24504c704d3ef0269f3d0291308da7567b6935db332bdeb25fd9989
# -*- encoding: utf-8 -*- """ TODO: * Address Issue 2251, printing of spin states """ from typing import Dict as tDict, Any from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2 from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.qubit import Qubit, IntQubit from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.sho1d import RaisingOp from sympy.core.function import (Derivative, Function) from sympy.core.numbers import oo from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.matrices.dense import Matrix from sympy.sets.sets import Interval from sympy.testing.pytest import XFAIL # Imports used in srepr strings from sympy.physics.quantum.spin import JzOp from sympy.printing import srepr from sympy.printing.pretty import pretty as xpretty from sympy.printing.latex import latex MutableDenseMatrix = Matrix ENV = {} # type: tDict[str, Any] exec('from sympy import *', ENV) exec('from sympy.physics.quantum import *', ENV) exec('from sympy.physics.quantum.cg import *', ENV) exec('from sympy.physics.quantum.spin import *', ENV) exec('from sympy.physics.quantum.hilbert import *', ENV) exec('from sympy.physics.quantum.qubit import *', ENV) exec('from sympy.physics.quantum.qexpr import *', ENV) exec('from sympy.physics.quantum.gate import *', ENV) exec('from sympy.physics.quantum.constants import *', ENV) def sT(expr, string): """ sT := sreprTest from sympy/printing/tests/test_repr.py """ assert srepr(expr) == string assert eval(string, ENV) == expr def pretty(expr): """ASCII pretty-printing""" return xpretty(expr, use_unicode=False, wrap_line=False) def upretty(expr): """Unicode pretty-printing""" return xpretty(expr, use_unicode=True, wrap_line=False) def test_anticommutator(): A = Operator('A') B = Operator('B') ac = AntiCommutator(A, B) ac_tall = AntiCommutator(A**2, B) assert str(ac) == '{A,B}' assert pretty(ac) == '{A,B}' assert upretty(ac) == '{A,B}' assert latex(ac) == r'\left\{A,B\right\}' sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))") assert str(ac_tall) == '{A**2,B}' ascii_str = \ """\ / 2 \\\n\ <A ,B>\n\ \\ /\ """ ucode_str = \ """\ ⎧ 2 ⎫\n\ ⎨A ,B⎬\n\ ⎩ ⎭\ """ assert pretty(ac_tall) == ascii_str assert upretty(ac_tall) == ucode_str assert latex(ac_tall) == r'\left\{A^{2},B\right\}' sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") def test_cg(): cg = CG(1, 2, 3, 4, 5, 6) wigner3j = Wigner3j(1, 2, 3, 4, 5, 6) wigner6j = Wigner6j(1, 2, 3, 4, 5, 6) wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9) assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ 5,6 \n\ C \n\ 1,2,3,4\ """ ucode_str = \ """\ 5,6 \n\ C \n\ 1,2,3,4\ """ assert pretty(cg) == ascii_str assert upretty(cg) == ucode_str assert latex(cg) == 'C^{5,6}_{1,2,3,4}' assert latex(cg ** 2) == R'\left(C^{5,6}_{1,2,3,4}\right)^{2}' sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ /1 3 5\\\n\ | |\n\ \\2 4 6/\ """ ucode_str = \ """\ ⎛1 3 5⎞\n\ ⎜ ⎟\n\ ⎝2 4 6⎠\ """ assert pretty(wigner3j) == ascii_str assert upretty(wigner3j) == ucode_str assert latex(wigner3j) == \ r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)' sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ /1 2 3\\\n\ < >\n\ \\4 5 6/\ """ ucode_str = \ """\ ⎧1 2 3⎫\n\ ⎨ ⎬\n\ ⎩4 5 6⎭\ """ assert pretty(wigner6j) == ascii_str assert upretty(wigner6j) == ucode_str assert latex(wigner6j) == \ r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}' sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)' ascii_str = \ """\ /1 2 3\\\n\ | |\n\ <4 5 6>\n\ | |\n\ \\7 8 9/\ """ ucode_str = \ """\ ⎧1 2 3⎫\n\ ⎪ ⎪\n\ ⎨4 5 6⎬\n\ ⎪ ⎪\n\ ⎩7 8 9⎭\ """ assert pretty(wigner9j) == ascii_str assert upretty(wigner9j) == ucode_str assert latex(wigner9j) == \ r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}' sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))") def test_commutator(): A = Operator('A') B = Operator('B') c = Commutator(A, B) c_tall = Commutator(A**2, B) assert str(c) == '[A,B]' assert pretty(c) == '[A,B]' assert upretty(c) == '[A,B]' assert latex(c) == r'\left[A,B\right]' sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))") assert str(c_tall) == '[A**2,B]' ascii_str = \ """\ [ 2 ]\n\ [A ,B]\ """ ucode_str = \ """\ ⎡ 2 ⎤\n\ ⎣A ,B⎦\ """ assert pretty(c_tall) == ascii_str assert upretty(c_tall) == ucode_str assert latex(c_tall) == r'\left[A^{2},B\right]' sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") def test_constants(): assert str(hbar) == 'hbar' assert pretty(hbar) == 'hbar' assert upretty(hbar) == 'ℏ' assert latex(hbar) == r'\hbar' sT(hbar, "HBar()") def test_dagger(): x = symbols('x') expr = Dagger(x) assert str(expr) == 'Dagger(x)' ascii_str = \ """\ +\n\ x \ """ ucode_str = \ """\ †\n\ x \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert latex(expr) == r'x^{\dagger}' sT(expr, "Dagger(Symbol('x'))") @XFAIL def test_gate_failing(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) g = UGate((0,), uMat) assert str(g) == 'U(0)' def test_gate(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) q = Qubit(1, 0, 1, 0, 1) g1 = IdentityGate(2) g2 = CGate((3, 0), XGate(1)) g3 = CNotGate(1, 0) g4 = UGate((0,), uMat) assert str(g1) == '1(2)' assert pretty(g1) == '1 \n 2' assert upretty(g1) == '1 \n 2' assert latex(g1) == r'1_{2}' sT(g1, "IdentityGate(Integer(2))") assert str(g1*q) == '1(2)*|10101>' ascii_str = \ """\ 1 *|10101>\n\ 2 \ """ ucode_str = \ """\ 1 ⋅❘10101⟩\n\ 2 \ """ assert pretty(g1*q) == ascii_str assert upretty(g1*q) == ucode_str assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }' sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))") assert str(g2) == 'C((3,0),X(1))' ascii_str = \ """\ C /X \\\n\ 3,0\\ 1/\ """ ucode_str = \ """\ C ⎛X ⎞\n\ 3,0⎝ 1⎠\ """ assert pretty(g2) == ascii_str assert upretty(g2) == ucode_str assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}' sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))") assert str(g3) == 'CNOT(1,0)' ascii_str = \ """\ CNOT \n\ 1,0\ """ ucode_str = \ """\ CNOT \n\ 1,0\ """ assert pretty(g3) == ascii_str assert upretty(g3) == ucode_str assert latex(g3) == r'\text{CNOT}_{1,0}' sT(g3, "CNotGate(Integer(1),Integer(0))") ascii_str = \ """\ U \n\ 0\ """ ucode_str = \ """\ U \n\ 0\ """ assert str(g4) == \ """\ U((0,),Matrix([\n\ [a, b],\n\ [c, d]]))\ """ assert pretty(g4) == ascii_str assert upretty(g4) == ucode_str assert latex(g4) == r'U_{0}' sT(g4, "UGate(Tuple(Integer(0)),ImmutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))") def test_hilbert(): h1 = HilbertSpace() h2 = ComplexSpace(2) h3 = FockSpace() h4 = L2(Interval(0, oo)) assert str(h1) == 'H' assert pretty(h1) == 'H' assert upretty(h1) == 'H' assert latex(h1) == r'\mathcal{H}' sT(h1, "HilbertSpace()") assert str(h2) == 'C(2)' ascii_str = \ """\ 2\n\ C \ """ ucode_str = \ """\ 2\n\ C \ """ assert pretty(h2) == ascii_str assert upretty(h2) == ucode_str assert latex(h2) == r'\mathcal{C}^{2}' sT(h2, "ComplexSpace(Integer(2))") assert str(h3) == 'F' assert pretty(h3) == 'F' assert upretty(h3) == 'F' assert latex(h3) == r'\mathcal{F}' sT(h3, "FockSpace()") assert str(h4) == 'L2(Interval(0, oo))' ascii_str = \ """\ 2\n\ L \ """ ucode_str = \ """\ 2\n\ L \ """ assert pretty(h4) == ascii_str assert upretty(h4) == ucode_str assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)' sT(h4, "L2(Interval(Integer(0), oo, false, true))") assert str(h1 + h2) == 'H+C(2)' ascii_str = \ """\ 2\n\ H + C \ """ ucode_str = \ """\ 2\n\ H ⊕ C \ """ assert pretty(h1 + h2) == ascii_str assert upretty(h1 + h2) == ucode_str assert latex(h1 + h2) sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") assert str(h1*h2) == "H*C(2)" ascii_str = \ """\ 2\n\ H x C \ """ ucode_str = \ """\ 2\n\ H ⨂ C \ """ assert pretty(h1*h2) == ascii_str assert upretty(h1*h2) == ucode_str assert latex(h1*h2) sT(h1*h2, "TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") assert str(h1**2) == 'H**2' ascii_str = \ """\ x2\n\ H \ """ ucode_str = \ """\ ⨂2\n\ H \ """ assert pretty(h1**2) == ascii_str assert upretty(h1**2) == ucode_str assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}' sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))") def test_innerproduct(): x = symbols('x') ip1 = InnerProduct(Bra(), Ket()) ip2 = InnerProduct(TimeDepBra(), TimeDepKet()) ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1)) ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1))) ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2)) ip_tall2 = InnerProduct(Bra(x), Ket(x/2)) ip_tall3 = InnerProduct(Bra(x/2), Ket(x)) assert str(ip1) == '<psi|psi>' assert pretty(ip1) == '<psi|psi>' assert upretty(ip1) == '⟨ψ❘ψ⟩' assert latex( ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }' sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))") assert str(ip2) == '<psi;t|psi;t>' assert pretty(ip2) == '<psi;t|psi;t>' assert upretty(ip2) == '⟨ψ;t❘ψ;t⟩' assert latex(ip2) == \ r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }' sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))") assert str(ip3) == "<1,1|1,1>" assert pretty(ip3) == '<1,1|1,1>' assert upretty(ip3) == '⟨1,1❘1,1⟩' assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }' sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))") assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>" assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>' assert upretty(ip4) == '⟨1,1,j₁=1,j₂=1❘1,1,j₁=1,j₂=1⟩' assert latex(ip4) == \ r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }' sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))") assert str(ip_tall1) == '<x/2|x/2>' ascii_str = \ """\ / | \\ \n\ / x|x \\\n\ \\ -|- /\n\ \\2|2/ \ """ ucode_str = \ """\ ╱ │ ╲ \n\ ╱ x│x ╲\n\ ╲ ─│─ ╱\n\ ╲2│2╱ \ """ assert pretty(ip_tall1) == ascii_str assert upretty(ip_tall1) == ucode_str assert latex(ip_tall1) == \ r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }' sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))") assert str(ip_tall2) == '<x|x/2>' ascii_str = \ """\ / | \\ \n\ / |x \\\n\ \\ x|- /\n\ \\ |2/ \ """ ucode_str = \ """\ ╱ │ ╲ \n\ ╱ │x ╲\n\ ╲ x│─ ╱\n\ ╲ │2╱ \ """ assert pretty(ip_tall2) == ascii_str assert upretty(ip_tall2) == ucode_str assert latex(ip_tall2) == \ r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }' sT(ip_tall2, "InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))") assert str(ip_tall3) == '<x/2|x>' ascii_str = \ """\ / | \\ \n\ / x| \\\n\ \\ -|x /\n\ \\2| / \ """ ucode_str = \ """\ ╱ │ ╲ \n\ ╱ x│ ╲\n\ ╲ ─│x ╱\n\ ╲2│ ╱ \ """ assert pretty(ip_tall3) == ascii_str assert upretty(ip_tall3) == ucode_str assert latex(ip_tall3) == \ r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }' sT(ip_tall3, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))") def test_operator(): a = Operator('A') b = Operator('B', Symbol('t'), S.Half) inv = a.inv() f = Function('f') x = symbols('x') d = DifferentialOperator(Derivative(f(x), x), f(x)) op = OuterProduct(Ket(), Bra()) assert str(a) == 'A' assert pretty(a) == 'A' assert upretty(a) == 'A' assert latex(a) == 'A' sT(a, "Operator(Symbol('A'))") assert str(inv) == 'A**(-1)' ascii_str = \ """\ -1\n\ A \ """ ucode_str = \ """\ -1\n\ A \ """ assert pretty(inv) == ascii_str assert upretty(inv) == ucode_str assert latex(inv) == r'A^{-1}' sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))") assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))' ascii_str = \ """\ /d \\\n\ DifferentialOperator|--(f(x)),f(x)|\n\ \\dx /\ """ ucode_str = \ """\ ⎛d ⎞\n\ DifferentialOperator⎜──(f(x)),f(x)⎟\n\ ⎝dx ⎠\ """ assert pretty(d) == ascii_str assert upretty(d) == ucode_str assert latex(d) == \ r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)' sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))") assert str(b) == 'Operator(B,t,1/2)' assert pretty(b) == 'Operator(B,t,1/2)' assert upretty(b) == 'Operator(B,t,1/2)' assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)' sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))") assert str(op) == '|psi><psi|' assert pretty(op) == '|psi><psi|' assert upretty(op) == '❘ψ⟩⟨ψ❘' assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}' sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))") def test_qexpr(): q = QExpr('q') assert str(q) == 'q' assert pretty(q) == 'q' assert upretty(q) == 'q' assert latex(q) == r'q' sT(q, "QExpr(Symbol('q'))") def test_qubit(): q1 = Qubit('0101') q2 = IntQubit(8) assert str(q1) == '|0101>' assert pretty(q1) == '|0101>' assert upretty(q1) == '❘0101⟩' assert latex(q1) == r'{\left|0101\right\rangle }' sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))") assert str(q2) == '|8>' assert pretty(q2) == '|8>' assert upretty(q2) == '❘8⟩' assert latex(q2) == r'{\left|8\right\rangle }' sT(q2, "IntQubit(8)") def test_spin(): lz = JzOp('L') ket = JzKet(1, 0) bra = JzBra(1, 0) cket = JzKetCoupled(1, 0, (1, 2)) cbra = JzBraCoupled(1, 0, (1, 2)) cket_big = JzKetCoupled(1, 0, (1, 2, 3)) cbra_big = JzBraCoupled(1, 0, (1, 2, 3)) rot = Rotation(1, 2, 3) bigd = WignerD(1, 2, 3, 4, 5, 6) smalld = WignerD(1, 2, 3, 0, 4, 0) assert str(lz) == 'Lz' ascii_str = \ """\ L \n\ z\ """ ucode_str = \ """\ L \n\ z\ """ assert pretty(lz) == ascii_str assert upretty(lz) == ucode_str assert latex(lz) == 'L_z' sT(lz, "JzOp(Symbol('L'))") assert str(J2) == 'J2' ascii_str = \ """\ 2\n\ J \ """ ucode_str = \ """\ 2\n\ J \ """ assert pretty(J2) == ascii_str assert upretty(J2) == ucode_str assert latex(J2) == r'J^2' sT(J2, "J2Op(Symbol('J'))") assert str(Jz) == 'Jz' ascii_str = \ """\ J \n\ z\ """ ucode_str = \ """\ J \n\ z\ """ assert pretty(Jz) == ascii_str assert upretty(Jz) == ucode_str assert latex(Jz) == 'J_z' sT(Jz, "JzOp(Symbol('J'))") assert str(ket) == '|1,0>' assert pretty(ket) == '|1,0>' assert upretty(ket) == '❘1,0⟩' assert latex(ket) == r'{\left|1,0\right\rangle }' sT(ket, "JzKet(Integer(1),Integer(0))") assert str(bra) == '<1,0|' assert pretty(bra) == '<1,0|' assert upretty(bra) == '⟨1,0❘' assert latex(bra) == r'{\left\langle 1,0\right|}' sT(bra, "JzBra(Integer(1),Integer(0))") assert str(cket) == '|1,0,j1=1,j2=2>' assert pretty(cket) == '|1,0,j1=1,j2=2>' assert upretty(cket) == '❘1,0,j₁=1,j₂=2⟩' assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }' sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") assert str(cbra) == '<1,0,j1=1,j2=2|' assert pretty(cbra) == '<1,0,j1=1,j2=2|' assert upretty(cbra) == '⟨1,0,j₁=1,j₂=2❘' assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}' sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>' # TODO: Fix non-unicode pretty printing # i.e. j1,2 -> j(1,2) assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>' assert upretty(cket_big) == '❘1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3⟩' assert latex(cket_big) == \ r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }' sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|' assert pretty(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j1,2=3|' assert upretty(cbra_big) == '⟨1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3❘' assert latex(cbra_big) == \ r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}' sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") assert str(rot) == 'R(1,2,3)' assert pretty(rot) == 'R (1,2,3)' assert upretty(rot) == 'ℛ (1,2,3)' assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)' sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))") assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ 1 \n\ D (4,5,6)\n\ 2,3 \ """ ucode_str = \ """\ 1 \n\ D (4,5,6)\n\ 2,3 \ """ assert pretty(bigd) == ascii_str assert upretty(bigd) == ucode_str assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)' sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)' ascii_str = \ """\ 1 \n\ d (4)\n\ 2,3 \ """ ucode_str = \ """\ 1 \n\ d (4)\n\ 2,3 \ """ assert pretty(smalld) == ascii_str assert upretty(smalld) == ucode_str assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)' sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))") def test_state(): x = symbols('x') bra = Bra() ket = Ket() bra_tall = Bra(x/2) ket_tall = Ket(x/2) tbra = TimeDepBra() tket = TimeDepKet() assert str(bra) == '<psi|' assert pretty(bra) == '<psi|' assert upretty(bra) == '⟨ψ❘' assert latex(bra) == r'{\left\langle \psi\right|}' sT(bra, "Bra(Symbol('psi'))") assert str(ket) == '|psi>' assert pretty(ket) == '|psi>' assert upretty(ket) == '❘ψ⟩' assert latex(ket) == r'{\left|\psi\right\rangle }' sT(ket, "Ket(Symbol('psi'))") assert str(bra_tall) == '<x/2|' ascii_str = \ """\ / |\n\ / x|\n\ \\ -|\n\ \\2|\ """ ucode_str = \ """\ ╱ │\n\ ╱ x│\n\ ╲ ─│\n\ ╲2│\ """ assert pretty(bra_tall) == ascii_str assert upretty(bra_tall) == ucode_str assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}' sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))") assert str(ket_tall) == '|x/2>' ascii_str = \ """\ | \\ \n\ |x \\\n\ |- /\n\ |2/ \ """ ucode_str = \ """\ │ ╲ \n\ │x ╲\n\ │─ ╱\n\ │2╱ \ """ assert pretty(ket_tall) == ascii_str assert upretty(ket_tall) == ucode_str assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }' sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))") assert str(tbra) == '<psi;t|' assert pretty(tbra) == '<psi;t|' assert upretty(tbra) == '⟨ψ;t❘' assert latex(tbra) == r'{\left\langle \psi;t\right|}' sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))") assert str(tket) == '|psi;t>' assert pretty(tket) == '|psi;t>' assert upretty(tket) == '❘ψ;t⟩' assert latex(tket) == r'{\left|\psi;t\right\rangle }' sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))") def test_tensorproduct(): tp = TensorProduct(JzKet(1, 1), JzKet(1, 0)) assert str(tp) == '|1,1>x|1,0>' assert pretty(tp) == '|1,1>x |1,0>' assert upretty(tp) == '❘1,1⟩⨂ ❘1,0⟩' assert latex(tp) == \ r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}' sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))") def test_big_expr(): f = Function('f') x = symbols('x') e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1)) e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2)) e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1))) e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval( 0, oo)) + HilbertSpace()) assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)' ascii_str = \ """\ / 3 \\ \n\ |/ +\\ | \n\ 2 / + +\\ <| /d \\ | + +> \n\ /J \\ x \\A + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\ \\ z/ \\\\ \\dx / / / \ """ ucode_str = \ """\ ⎧ 3 ⎫ \n\ ⎪⎛ †⎞ ⎪ \n\ 2 ⎛ † †⎞ ⎨⎜ ⎛d ⎞ ⎟ † †⎬ \n\ ⎛J ⎞ ⨂ ⎝A + B ⎠⋅⎪⎜DifferentialOperator⎜──(f(x)),f(x)⎟ ⎟ ,A + B ⎪⋅(⟨1,0❘ + ⟨1,1❘)⋅(❘0,0⟩ + ❘1,-1⟩)\n\ ⎝ z⎠ ⎩⎝ ⎝dx ⎠ ⎠ ⎭ \ """ assert pretty(e1) == ascii_str assert upretty(e1) == ucode_str assert latex(e1) == \ r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)' sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))") assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]' ascii_str = \ """\ [ 2 ] / -2 + +\\ [ 2 ]\n\ [/J \\ ,A + B]*<E ,D *C >*[J ,J ]\n\ [\\ z/ ] \\ / [ z]\ """ ucode_str = \ """\ ⎡ 2 ⎤ ⎧ -2 † †⎫ ⎡ 2 ⎤\n\ ⎢⎛J ⎞ ,A + B⎥⋅⎨E ,D ⋅C ⎬⋅⎢J ,J ⎥\n\ ⎣⎝ z⎠ ⎦ ⎩ ⎭ ⎣ z⎦\ """ assert pretty(e2) == ascii_str assert upretty(e2) == ucode_str assert latex(e2) == \ r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]' sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))") assert str(e3) == \ "Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>" ascii_str = \ """\ [ + ] / 2 \\ \n\ /1 3 5\\*[B + A,C + D]x |- J + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\ | | \\ z/ \n\ \\2 4 6/ \ """ ucode_str = \ """\ ⎡ † ⎤ ⎛ 2 ⎞ \n\ ⎛1 3 5⎞⋅⎣B + A,C + D⎦⨂ ⎜- J + J ⎟⋅❘1,0⟩⟨1,1❘⋅(❘1,0,j₁=1,j₂=1⟩ + ❘1,1,j₁=1,j₂=1⟩)⨂ ❘1,-1,j₁=1,j₂=1⟩\n\ ⎜ ⎟ ⎝ z⎠ \n\ ⎝2 4 6⎠ \ """ assert pretty(e3) == ascii_str assert upretty(e3) == ucode_str assert latex(e3) == \ r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}' sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))") assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)' ascii_str = \ """\ // 1 2\\ x2\\ / 2 \\\n\ \\\\C x C / + F / x \\L + H/\ """ ucode_str = \ """\ ⎛⎛ 1 2⎞ ⨂2⎞ ⎛ 2 ⎞\n\ ⎝⎝C ⨂ C ⎠ ⊕ F ⎠ ⨂ ⎝L ⊕ H⎠\ """ assert pretty(e4) == ascii_str assert upretty(e4) == ucode_str assert latex(e4) == \ r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)' sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))") def _test_sho1d(): ad = RaisingOp('a') assert pretty(ad) == ' \N{DAGGER}\na ' assert latex(ad) == 'a^{\\dagger}'
3a3208baabbfd75e0eb2e16999aa15eae171f432640d3e5245516bd62c4df259
from sympy.core.backend import Symbol, symbols, sin, cos, Matrix from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols from sympy.physics.mechanics import inertia, Body from sympy.testing.pytest import raises def test_default(): body = Body('body') assert body.name == 'body' assert body.loads == [] point = Point('body_masscenter') point.set_vel(body.frame, 0) com = body.masscenter frame = body.frame assert com.vel(frame) == point.vel(frame) assert body.mass == Symbol('body_mass') ixx, iyy, izz = symbols('body_ixx body_iyy body_izz') ixy, iyz, izx = symbols('body_ixy body_iyz body_izx') assert body.inertia == (inertia(body.frame, ixx, iyy, izz, ixy, iyz, izx), body.masscenter) def test_custom_rigid_body(): # Body with RigidBody. rigidbody_masscenter = Point('rigidbody_masscenter') rigidbody_mass = Symbol('rigidbody_mass') rigidbody_frame = ReferenceFrame('rigidbody_frame') body_inertia = inertia(rigidbody_frame, 1, 0, 0) rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass, rigidbody_frame, body_inertia) com = rigid_body.masscenter frame = rigid_body.frame rigidbody_masscenter.set_vel(rigidbody_frame, 0) assert com.vel(frame) == rigidbody_masscenter.vel(frame) assert com.pos_from(com) == rigidbody_masscenter.pos_from(com) assert rigid_body.mass == rigidbody_mass assert rigid_body.inertia == (body_inertia, rigidbody_masscenter) assert rigid_body.is_rigidbody assert hasattr(rigid_body, 'masscenter') assert hasattr(rigid_body, 'mass') assert hasattr(rigid_body, 'frame') assert hasattr(rigid_body, 'inertia') def test_particle_body(): # Body with Particle particle_masscenter = Point('particle_masscenter') particle_mass = Symbol('particle_mass') particle_frame = ReferenceFrame('particle_frame') particle_body = Body('particle_body', particle_masscenter, particle_mass, particle_frame) com = particle_body.masscenter frame = particle_body.frame particle_masscenter.set_vel(particle_frame, 0) assert com.vel(frame) == particle_masscenter.vel(frame) assert com.pos_from(com) == particle_masscenter.pos_from(com) assert particle_body.mass == particle_mass assert not hasattr(particle_body, "_inertia") assert hasattr(particle_body, 'frame') assert hasattr(particle_body, 'masscenter') assert hasattr(particle_body, 'mass') assert not particle_body.is_rigidbody def test_particle_body_add_force(): # Body with Particle particle_masscenter = Point('particle_masscenter') particle_mass = Symbol('particle_mass') particle_frame = ReferenceFrame('particle_frame') particle_body = Body('particle_body', particle_masscenter, particle_mass, particle_frame) a = Symbol('a') force_vector = a * particle_body.frame.x particle_body.apply_force(force_vector, particle_body.masscenter) assert len(particle_body.loads) == 1 point = particle_body.masscenter.locatenew( particle_body._name + '_point0', 0) point.set_vel(particle_body.frame, 0) force_point = particle_body.loads[0][0] frame = particle_body.frame assert force_point.vel(frame) == point.vel(frame) assert force_point.pos_from(force_point) == point.pos_from(force_point) assert particle_body.loads[0][1] == force_vector def test_body_add_force(): # Body with RigidBody. rigidbody_masscenter = Point('rigidbody_masscenter') rigidbody_mass = Symbol('rigidbody_mass') rigidbody_frame = ReferenceFrame('rigidbody_frame') body_inertia = inertia(rigidbody_frame, 1, 0, 0) rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass, rigidbody_frame, body_inertia) l = Symbol('l') Fa = Symbol('Fa') point = rigid_body.masscenter.locatenew( 'rigidbody_body_point0', l * rigid_body.frame.x) point.set_vel(rigid_body.frame, 0) force_vector = Fa * rigid_body.frame.z # apply_force with point rigid_body.apply_force(force_vector, point) assert len(rigid_body.loads) == 1 force_point = rigid_body.loads[0][0] frame = rigid_body.frame assert force_point.vel(frame) == point.vel(frame) assert force_point.pos_from(force_point) == point.pos_from(force_point) assert rigid_body.loads[0][1] == force_vector # apply_force without point rigid_body.apply_force(force_vector) assert len(rigid_body.loads) == 2 assert rigid_body.loads[1][1] == force_vector # passing something else than point raises(TypeError, lambda: rigid_body.apply_force(force_vector, 0)) raises(TypeError, lambda: rigid_body.apply_force(0)) def test_body_add_torque(): body = Body('body') torque_vector = body.frame.x body.apply_torque(torque_vector) assert len(body.loads) == 1 assert body.loads[0] == (body.frame, torque_vector) raises(TypeError, lambda: body.apply_torque(0)) def test_body_masscenter_vel(): A = Body('A') N = ReferenceFrame('N') B = Body('B', frame=N) A.masscenter.set_vel(N, N.z) assert A.masscenter_vel(B) == N.z assert A.masscenter_vel(N) == N.z def test_body_ang_vel(): A = Body('A') N = ReferenceFrame('N') B = Body('B', frame=N) A.frame.set_ang_vel(N, N.y) assert A.ang_vel_in(B) == N.y assert B.ang_vel_in(A) == -N.y assert A.ang_vel_in(N) == N.y def test_body_dcm(): A = Body('A') B = Body('B') A.frame.orient_axis(B.frame, B.frame.z, 10) assert A.dcm(B) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]]) assert A.dcm(B.frame) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]]) def test_body_axis(): N = ReferenceFrame('N') B = Body('B', frame=N) assert B.x == N.x assert B.y == N.y assert B.z == N.z def test_apply_force_multiple_one_point(): a, b = symbols('a b') P = Point('P') B = Body('B') f1 = a*B.x f2 = b*B.y B.apply_force(f1, P) assert B.loads == [(P, f1)] B.apply_force(f2, P) assert B.loads == [(P, f1+f2)] def test_apply_force(): f, g = symbols('f g') q, x, v1, v2 = dynamicsymbols('q x v1 v2') P1 = Point('P1') P2 = Point('P2') B1 = Body('B1') B2 = Body('B2') N = ReferenceFrame('N') P1.set_vel(B1.frame, v1*B1.x) P2.set_vel(B2.frame, v2*B2.x) force = f*q*N.z # time varying force B1.apply_force(force, P1, B2, P2) #applying equal and opposite force on moving points assert B1.loads == [(P1, force)] assert B2.loads == [(P2, -force)] g1 = B1.mass*g*N.y g2 = B2.mass*g*N.y B1.apply_force(g1) #applying gravity on B1 masscenter B2.apply_force(g2) #applying gravity on B2 masscenter assert B1.loads == [(P1,force), (B1.masscenter, g1)] assert B2.loads == [(P2, -force), (B2.masscenter, g2)] force2 = x*N.x B1.apply_force(force2, reaction_body=B2) #Applying time varying force on masscenter assert B1.loads == [(P1, force), (B1.masscenter, force2+g1)] assert B2.loads == [(P2, -force), (B2.masscenter, -force2+g2)] def test_apply_torque(): t = symbols('t') q = dynamicsymbols('q') B1 = Body('B1') B2 = Body('B2') N = ReferenceFrame('N') torque = t*q*N.x B1.apply_torque(torque, B2) #Applying equal and opposite torque assert B1.loads == [(B1.frame, torque)] assert B2.loads == [(B2.frame, -torque)] torque2 = t*N.y B1.apply_torque(torque2) assert B1.loads == [(B1.frame, torque+torque2)] def test_clear_load(): a = symbols('a') P = Point('P') B = Body('B') force = a*B.z B.apply_force(force, P) assert B.loads == [(P, force)] B.clear_loads() assert B.loads == [] def test_remove_load(): P1 = Point('P1') P2 = Point('P2') B = Body('B') f1 = B.x f2 = B.y B.apply_force(f1, P1) B.apply_force(f2, P2) assert B.loads == [(P1, f1), (P2, f2)] B.remove_load(P2) assert B.loads == [(P1, f1)] B.apply_torque(f1.cross(f2)) assert B.loads == [(P1, f1), (B.frame, f1.cross(f2))] B.remove_load() assert B.loads == [(P1, f1)] def test_apply_loads_on_multi_degree_freedom_holonomic_system(): """Example based on: https://pydy.readthedocs.io/en/latest/examples/multidof-holonomic.html""" W = Body('W') #Wall B = Body('B') #Block P = Body('P') #Pendulum b = Body('b') #bob q1, q2 = dynamicsymbols('q1 q2') #generalized coordinates k, c, g, kT = symbols('k c g kT') #constants F, T = dynamicsymbols('F T') #Specified forces #Applying forces B.apply_force(F*W.x) W.apply_force(k*q1*W.x, reaction_body=B) #Spring force W.apply_force(c*q1.diff()*W.x, reaction_body=B) #dampner P.apply_force(P.mass*g*W.y) b.apply_force(b.mass*g*W.y) #Applying torques P.apply_torque(kT*q2*W.z, reaction_body=b) P.apply_torque(T*W.z) assert B.loads == [(B.masscenter, (F - k*q1 - c*q1.diff())*W.x)] assert P.loads == [(P.masscenter, P.mass*g*W.y), (P.frame, (T + kT*q2)*W.z)] assert b.loads == [(b.masscenter, b.mass*g*W.y), (b.frame, -kT*q2*W.z)] assert W.loads == [(W.masscenter, (c*q1.diff() + k*q1)*W.x)]
6216c40b245456a6abdfe528cd370a401ab5f363e4da839c4aff38041767ff8d
import functools, itertools from sympy.core.sympify import _sympify, sympify from sympy.core.expr import Expr from sympy.core import Basic, Tuple from sympy.tensor.array import ImmutableDenseNDimArray from sympy.core.symbol import Symbol from sympy.core.numbers import Integer class ArrayComprehension(Basic): """ Generate a list comprehension. Explanation =========== If there is a symbolic dimension, for example, say [i for i in range(1, N)] where N is a Symbol, then the expression will not be expanded to an array. Otherwise, calling the doit() function will launch the expansion. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.doit() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) >>> b.doit() ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k)) """ def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') arglist = [sympify(function)] arglist.extend(cls._check_limits_validity(function, symbols)) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args[1:] obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) return obj @property def function(self): """The function applied across limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.function 10*i + j """ return self._args[0] @property def limits(self): """ The list of limits that will be applied while expanding the array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.limits ((i, 1, 4), (j, 1, 3)) """ return self._limits @property def free_symbols(self): """ The set of the free_symbols in the array. Variables appeared in the bounds are supposed to be excluded from the free symbol set. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.free_symbols set() >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.free_symbols {k} """ expr_free_sym = self.function.free_symbols for var, inf, sup in self._limits: expr_free_sym.discard(var) curr_free_syms = inf.free_symbols.union(sup.free_symbols) expr_free_sym = expr_free_sym.union(curr_free_syms) return expr_free_sym @property def variables(self): """The tuples of the variables in the limits. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.variables [i, j] """ return [l[0] for l in self._limits] @property def bound_symbols(self): """The list of dummy variables. Note ==== Note that all variables are dummy variables since a limit without lower bound or upper bound is not accepted. """ return [l[0] for l in self._limits if len(l) != 1] @property def shape(self): """ The shape of the expanded array, which may have symbols. Note ==== Both the lower and the upper bounds are included while calculating the shape. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.shape (4, 3) >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.shape (4, k + 3) """ return self._shape @property def is_shape_numeric(self): """ Test if the array is shape-numeric which means there is no symbolic dimension. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.is_shape_numeric True >>> b = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, k+3)) >>> b.is_shape_numeric False """ for _, inf, sup in self._limits: if Basic(inf, sup).atoms(Symbol): return False return True def rank(self): """The rank of the expanded array. Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.rank() 2 """ return self._rank def __len__(self): """ The length of the expanded array which means the number of elements in the array. Raises ====== ValueError : When the length of the array is symbolic Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> len(a) 12 """ if self._loop_size.free_symbols: raise ValueError('Symbolic length is not supported') return self._loop_size @classmethod def _check_limits_validity(cls, function, limits): #limits = sympify(limits) new_limits = [] for var, inf, sup in limits: var = _sympify(var) inf = _sympify(inf) #since this is stored as an argument, it should be #a Tuple if isinstance(sup, list): sup = Tuple(*sup) else: sup = _sympify(sup) new_limits.append(Tuple(var, inf, sup)) if any((not isinstance(i, Expr)) or i.atoms(Symbol, Integer) != i.atoms() for i in [inf, sup]): raise TypeError('Bounds should be an Expression(combination of Integer and Symbol)') if (inf > sup) == True: raise ValueError('Lower bound should be inferior to upper bound') if var in inf.free_symbols or var in sup.free_symbols: raise ValueError('Variable should not be part of its bounds') return new_limits @classmethod def _calculate_shape_from_limits(cls, limits): return tuple([sup - inf + 1 for _, inf, sup in limits]) @classmethod def _calculate_loop_size(cls, shape): if not shape: return 0 loop_size = 1 for l in shape: loop_size = loop_size * l return loop_size def doit(self): if not self.is_shape_numeric: return self return self._expand_array() def _expand_array(self): res = [] for values in itertools.product(*[range(inf, sup+1) for var, inf, sup in self._limits]): res.append(self._get_element(values)) return ImmutableDenseNDimArray(res, self.shape) def _get_element(self, values): temp = self.function for var, val in zip(self.variables, values): temp = temp.subs(var, val) return temp def tolist(self): """Transform the expanded array to a list. Raises ====== ValueError : When there is a symbolic dimension Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tolist() [[11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]] """ if self.is_shape_numeric: return self._expand_array().tolist() raise ValueError("A symbolic array cannot be expanded to a list") def tomatrix(self): """Transform the expanded array to a matrix. Raises ====== ValueError : When there is a symbolic dimension ValueError : When the rank of the expanded array is not equal to 2 Examples ======== >>> from sympy.tensor.array import ArrayComprehension >>> from sympy import symbols >>> i, j = symbols('i j') >>> a = ArrayComprehension(10*i + j, (i, 1, 4), (j, 1, 3)) >>> a.tomatrix() Matrix([ [11, 12, 13], [21, 22, 23], [31, 32, 33], [41, 42, 43]]) """ from sympy.matrices import Matrix if not self.is_shape_numeric: raise ValueError("A symbolic array cannot be expanded to a matrix") if self._rank != 2: raise ValueError('Dimensions must be of size of 2') return Matrix(self._expand_array().tomatrix()) def isLambda(v): LAMBDA = lambda: 0 return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__ class ArrayComprehensionMap(ArrayComprehension): ''' A subclass of ArrayComprehension dedicated to map external function lambda. Notes ===== Only the lambda function is considered. At most one argument in lambda function is accepted in order to avoid ambiguity in value assignment. Examples ======== >>> from sympy.tensor.array import ArrayComprehensionMap >>> from sympy import symbols >>> i, j, k = symbols('i j k') >>> a = ArrayComprehensionMap(lambda: 1, (i, 1, 4)) >>> a.doit() [1, 1, 1, 1] >>> b = ArrayComprehensionMap(lambda a: a+1, (j, 1, 4)) >>> b.doit() [2, 3, 4, 5] ''' def __new__(cls, function, *symbols, **assumptions): if any(len(l) != 3 or None for l in symbols): raise ValueError('ArrayComprehension requires values lower and upper bound' ' for the expression') if not isLambda(function): raise ValueError('Data type not supported') arglist = cls._check_limits_validity(function, symbols) obj = Basic.__new__(cls, *arglist, **assumptions) obj._limits = obj._args obj._shape = cls._calculate_shape_from_limits(obj._limits) obj._rank = len(obj._shape) obj._loop_size = cls._calculate_loop_size(obj._shape) obj._lambda = function return obj @property def func(self): class _(ArrayComprehensionMap): def __new__(cls, *args, **kwargs): return ArrayComprehensionMap(self._lambda, *args, **kwargs) return _ def _get_element(self, values): temp = self._lambda if self._lambda.__code__.co_argcount == 0: temp = temp() elif self._lambda.__code__.co_argcount == 1: temp = temp(functools.reduce(lambda a, b: a*b, values)) return temp
c31130209bbac0ca186d2554c6692037a7781c30f72e0002129a5c9baf84e331
import itertools from collections.abc import Iterable from sympy.core._print_helpers import Printable from sympy.core.containers import Tuple from sympy.core.function import diff from sympy.core.singleton import S from sympy.core.sympify import _sympify from sympy.tensor.array.ndim_array import NDimArray from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray from sympy.tensor.array.sparse_ndim_array import SparseNDimArray def _arrayfy(a): from sympy.matrices import MatrixBase if isinstance(a, NDimArray): return a if isinstance(a, (MatrixBase, list, tuple, Tuple)): return ImmutableDenseNDimArray(a) return a def tensorproduct(*args): """ Tensor product among scalars or array-like objects. Examples ======== >>> from sympy.tensor.array import tensorproduct, Array >>> from sympy.abc import x, y, z, t >>> A = Array([[1, 2], [3, 4]]) >>> B = Array([x, y]) >>> tensorproduct(A, B) [[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]] >>> tensorproduct(A, x) [[x, 2*x], [3*x, 4*x]] >>> tensorproduct(A, B, B) [[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]] Applying this function on two matrices will result in a rank 4 array. >>> from sympy import Matrix, eye >>> m = Matrix([[x, y], [z, t]]) >>> p = tensorproduct(eye(3), m) >>> p [[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]] """ from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray if len(args) == 0: return S.One if len(args) == 1: return _arrayfy(args[0]) from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.matrices.expressions.matexpr import MatrixSymbol if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args): return ArrayTensorProduct(*args) if len(args) > 2: return tensorproduct(tensorproduct(args[0], args[1]), *args[2:]) # length of args is 2: a, b = map(_arrayfy, args) if not isinstance(a, NDimArray) or not isinstance(b, NDimArray): return a*b if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray): lp = len(b) new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()} return ImmutableSparseNDimArray(new_array, a.shape + b.shape) product_list = [i*j for i in Flatten(a) for j in Flatten(b)] return ImmutableDenseNDimArray(product_list, a.shape + b.shape) def _util_contraction_diagonal(array, *contraction_or_diagonal_axes): array = _arrayfy(array) # Verify contraction_axes: taken_dims = set() for axes_group in contraction_or_diagonal_axes: if not isinstance(axes_group, Iterable): raise ValueError("collections of contraction/diagonal axes expected") dim = array.shape[axes_group[0]] for d in axes_group: if d in taken_dims: raise ValueError("dimension specified more than once") if dim != array.shape[d]: raise ValueError("cannot contract or diagonalize between axes of different dimension") taken_dims.add(d) rank = array.rank() remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims] cum_shape = [0]*rank _cumul = 1 for i in range(rank): cum_shape[rank - i - 1] = _cumul _cumul *= int(array.shape[rank - i - 1]) # DEFINITION: by absolute position it is meant the position along the one # dimensional array containing all the tensor components. # Possible future work on this module: move computation of absolute # positions to a class method. # Determine absolute positions of the uncontracted indices: remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])] for i in range(rank) if i not in taken_dims] # Determine absolute positions of the contracted indices: summed_deltas = [] for axes_group in contraction_or_diagonal_axes: lidx = [] for js in range(array.shape[axes_group[0]]): lidx.append(sum([cum_shape[ig] * js for ig in axes_group])) summed_deltas.append(lidx) return array, remaining_indices, remaining_shape, summed_deltas def tensorcontraction(array, *contraction_axes): """ Contraction of an array-like object on the specified axes. Examples ======== >>> from sympy import Array, tensorcontraction >>> from sympy import Matrix, eye >>> tensorcontraction(eye(3), (0, 1)) 3 >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensorcontraction(A, (0, 2)) [21, 30] Matrix multiplication may be emulated with a proper combination of ``tensorcontraction`` and ``tensorproduct`` >>> from sympy import tensorproduct >>> from sympy.abc import a,b,c,d,e,f,g,h >>> m1 = Matrix([[a, b], [c, d]]) >>> m2 = Matrix([[e, f], [g, h]]) >>> p = tensorproduct(m1, m2) >>> p [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]] >>> tensorcontraction(p, (1, 2)) [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]] >>> m1*m2 Matrix([ [a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]) """ from sympy.tensor.array.expressions.array_expressions import _array_contraction from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _array_contraction(array, *contraction_axes) array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes) # Compute the contracted array: # # 1. external for loops on all uncontracted indices. # Uncontracted indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all contracted indices. # It sums the values of the absolute contracted index and the absolute # uncontracted index for the external loop. contracted_array = [] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = S.Zero for sum_to_index in itertools.product(*summed_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum += array[idx] contracted_array.append(isum) if len(remaining_indices) == 0: assert len(contracted_array) == 1 return contracted_array[0] return type(array)(contracted_array, remaining_shape) def tensordiagonal(array, *diagonal_axes): """ Diagonalization of an array-like object on the specified axes. This is equivalent to multiplying the expression by Kronecker deltas uniting the axes. The diagonal indices are put at the end of the axes. Examples ======== ``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is equivalent to the diagonal of the matrix: >>> from sympy import Array, tensordiagonal >>> from sympy import Matrix, eye >>> tensordiagonal(eye(3), (0, 1)) [1, 1, 1] >>> from sympy.abc import a,b,c,d >>> m1 = Matrix([[a, b], [c, d]]) >>> tensordiagonal(m1, [0, 1]) [a, d] In case of higher dimensional arrays, the diagonalized out dimensions are appended removed and appended as a single dimension at the end: >>> A = Array(range(18), (3, 2, 3)) >>> A [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]] >>> tensordiagonal(A, (0, 2)) [[0, 7, 14], [3, 10, 17]] >>> from sympy import permutedims >>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0]) True """ if any(len(i) <= 1 for i in diagonal_axes): raise ValueError("need at least two axes to diagonalize") from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _array_diagonal(array, *diagonal_axes) ArrayDiagonal._validate(array, *diagonal_axes) array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes) # Compute the diagonalized array: # # 1. external for loops on all undiagonalized indices. # Undiagonalized indices are determined by the combinatorial product of # the absolute positions of the remaining indices. # 2. internal loop on all diagonal indices. # It appends the values of the absolute diagonalized index and the absolute # undiagonalized index for the external loop. diagonalized_array = [] diagonal_shape = [len(i) for i in diagonal_deltas] for icontrib in itertools.product(*remaining_indices): index_base_position = sum(icontrib) isum = [] for sum_to_index in itertools.product(*diagonal_deltas): idx = array._get_tuple_index(index_base_position + sum(sum_to_index)) isum.append(array[idx]) isum = type(array)(isum).reshape(*diagonal_shape) diagonalized_array.append(isum) return type(array)(diagonalized_array, remaining_shape + diagonal_shape) def derive_by_array(expr, dx): r""" Derivative by arrays. Supports both arrays and scalars. Explanation =========== Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}` this function will return a new array `B` defined by `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}` Examples ======== >>> from sympy import derive_by_array >>> from sympy.abc import x, y, z, t >>> from sympy import cos >>> derive_by_array(cos(x*t), x) -t*sin(t*x) >>> derive_by_array(cos(x*t), [x, y, z, t]) [-t*sin(t*x), 0, 0, -x*sin(t*x)] >>> derive_by_array([x, y**2*z], [[x, y], [z, t]]) [[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]] """ from sympy.matrices import MatrixBase from sympy.tensor.array import SparseNDimArray array_types = (Iterable, MatrixBase, NDimArray) if isinstance(dx, array_types): dx = ImmutableDenseNDimArray(dx) for i in dx: if not i._diff_wrt: raise ValueError("cannot derive by this array") if isinstance(expr, array_types): if isinstance(expr, NDimArray): expr = expr.as_immutable() else: expr = ImmutableDenseNDimArray(expr) if isinstance(dx, array_types): if isinstance(expr, SparseNDimArray): lp = len(expr) new_array = {k + i*lp: v for i, x in enumerate(Flatten(dx)) for k, v in expr.diff(x)._sparse_array.items()} else: new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)] return type(expr)(new_array, dx.shape + expr.shape) else: return expr.diff(dx) else: expr = _sympify(expr) if isinstance(dx, array_types): return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape) else: dx = _sympify(dx) return diff(expr, dx) def permutedims(expr, perm): """ Permutes the indices of an array. Parameter specifies the permutation of the indices. Examples ======== >>> from sympy.abc import x, y, z, t >>> from sympy import sin >>> from sympy import Array, permutedims >>> a = Array([[x, y, z], [t, sin(x), 0]]) >>> a [[x, y, z], [t, sin(x), 0]] >>> permutedims(a, (1, 0)) [[x, t], [y, sin(x)], [z, 0]] If the array is of second order, ``transpose`` can be used: >>> from sympy import transpose >>> transpose(a) [[x, t], [y, sin(x)], [z, 0]] Examples on higher dimensions: >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) >>> permutedims(b, (2, 1, 0)) [[[1, 5], [3, 7]], [[2, 6], [4, 8]]] >>> permutedims(b, (1, 2, 0)) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] ``Permutation`` objects are also allowed: >>> from sympy.combinatorics import Permutation >>> permutedims(b, Permutation([1, 2, 0])) [[[1, 5], [2, 6]], [[3, 7], [4, 8]]] """ from sympy.tensor.array import SparseNDimArray from sympy.tensor.array.expressions.array_expressions import _ArrayExpr from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract from sympy.tensor.array.expressions.array_expressions import _permute_dims from sympy.matrices.expressions.matexpr import MatrixSymbol if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)): return _permute_dims(expr, perm) if not isinstance(expr, NDimArray): expr = ImmutableDenseNDimArray(expr) from sympy.combinatorics import Permutation if not isinstance(perm, Permutation): perm = Permutation(list(perm)) if perm.size != expr.rank(): raise ValueError("wrong permutation size") # Get the inverse permutation: iperm = ~perm new_shape = perm(expr.shape) if isinstance(expr, SparseNDimArray): return type(expr)({tuple(perm(expr._get_tuple_index(k))): v for k, v in expr._sparse_array.items()}, new_shape) indices_span = perm([range(i) for i in expr.shape]) new_array = [None]*len(expr) for i, idx in enumerate(itertools.product(*indices_span)): t = iperm(idx) new_array[i] = expr[t] return type(expr)(new_array, new_shape) class Flatten(Printable): ''' Flatten an iterable object to a list in a lazy-evaluation way. Notes ===== This class is an iterator with which the memory cost can be economised. Optimisation has been considered to ameliorate the performance for some specific data types like DenseNDimArray and SparseNDimArray. Examples ======== >>> from sympy.tensor.array.arrayop import Flatten >>> from sympy.tensor.array import Array >>> A = Array(range(6)).reshape(2, 3) >>> Flatten(A) Flatten([[0, 1, 2], [3, 4, 5]]) >>> [i for i in Flatten(A)] [0, 1, 2, 3, 4, 5] ''' def __init__(self, iterable): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array import NDimArray if not isinstance(iterable, (Iterable, MatrixBase)): raise NotImplementedError("Data type not yet supported") if isinstance(iterable, list): iterable = NDimArray(iterable) self._iter = iterable self._idx = 0 def __iter__(self): return self def __next__(self): from sympy.matrices.matrices import MatrixBase if len(self._iter) > self._idx: if isinstance(self._iter, DenseNDimArray): result = self._iter._array[self._idx] elif isinstance(self._iter, SparseNDimArray): if self._idx in self._iter._sparse_array: result = self._iter._sparse_array[self._idx] else: result = 0 elif isinstance(self._iter, MatrixBase): result = self._iter[self._idx] elif hasattr(self._iter, '__next__'): result = next(self._iter) else: result = self._iter[self._idx] else: raise StopIteration self._idx += 1 return result def next(self): return self.__next__() def _sympystr(self, printer): return type(self).__name__ + '(' + printer._print(self._iter) + ')'
8fb9019b5a135fe0f55f7a947590be7190badff4edd12b1089b4641db2c40509
from sympy.testing.pytest import raises from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, tensor_heads) from sympy.core.numbers import Rational from sympy.core.symbol import symbols from sympy.matrices.dense import diag from sympy.tensor.array import Array from sympy.core.random import randint L = TensorIndexType("L") i, j, k, m, m1, m2, m3, m4 = tensor_indices("i j k m m1 m2 m3 m4", L) i0 = tensor_indices("i0", L) L_0, L_1 = tensor_indices("L_0 L_1", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) def test_invalid_partial_derivative_valence(): raises(ValueError, lambda: PartialDerivative(C(j), D(-j))) raises(ValueError, lambda: PartialDerivative(C(-j), D(j))) def test_tensor_partial_deriv(): # Test flatten: expr = PartialDerivative(PartialDerivative(A(i), A(j)), A(i)) assert expr.expr == A(L_0) assert expr.variables == (A(j), A(L_0)) expr1 = PartialDerivative(A(i), A(j)) assert expr1.expr == A(i) assert expr1.variables == (A(j),) expr2 = A(i)*PartialDerivative(H(k, -i), A(j)) assert expr2.get_indices() == [L_0, k, -L_0, -j] expr2b = A(i)*PartialDerivative(H(k, -i), A(-j)) assert expr2b.get_indices() == [L_0, k, -L_0, j] expr3 = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) assert expr3.get_indices() == [L_0, k, -L_0, -j] expr4 = (A(i) + B(i))*PartialDerivative(C(j), D(j)) assert expr4.get_indices() == [i, L_0, -L_0] expr4b = (A(i) + B(i))*PartialDerivative(C(-j), D(-j)) assert expr4b.get_indices() == [i, -L_0, L_0] expr5 = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) assert expr5.get_indices() == [L_0, -L_0, -j] def test_replace_arrays_partial_derivative(): x, y, z, t = symbols("x y z t") # d(A^i)/d(A_j) = d(g^ik A_k)/d(A_j) = g^ik delta_jk expr = PartialDerivative(A(i), A(-j)) assert expr.get_free_indices() == [i, j] assert expr.get_indices() == [i, j] assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [i, j]) == Array([[1, 0], [0, -1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [i, j]) == Array([[1, 0], [0, -1]]) expr = PartialDerivative(A(i), A(j)) assert expr.get_free_indices() == [i, -j] assert expr.get_indices() == [i, -j] assert expr.replace_with_arrays({A(i): [x, y]}, [i, -j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [i, -j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [i, -j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [i, -j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [i, -j]) == Array([[1, 0], [0, 1]]) expr = PartialDerivative(A(-i), A(-j)) assert expr.get_free_indices() == [-i, j] assert expr.get_indices() == [-i, j] assert expr.replace_with_arrays({A(-i): [x, y]}, [-i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, 1)}, [-i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(-i): [x, y], L: diag(1, -1)}, [-i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, [-i, j]) == Array([[1, 0], [0, 1]]) assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, [-i, j]) == Array([[1, 0], [0, 1]]) expr = PartialDerivative(A(i), A(i)) assert expr.get_free_indices() == [] assert expr.get_indices() == [L_0, -L_0] assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, []) == 2 assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, []) == 2 expr = PartialDerivative(A(-i), A(-i)) assert expr.get_free_indices() == [] assert expr.get_indices() == [-L_0, L_0] assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, 1)}, []) == 2 assert expr.replace_with_arrays({A(i): [x, y], L: diag(1, -1)}, []) == 2 expr = PartialDerivative(H(i, j) + H(j, i), A(i)) assert expr.get_indices() == [L_0, j, -L_0] assert expr.get_free_indices() == [j] expr = PartialDerivative(H(i, j) + H(j, i), A(k))*B(-i) assert expr.get_indices() == [L_0, j, -k, -L_0] assert expr.get_free_indices() == [j, -k] expr = PartialDerivative(A(i)*(H(-i, j) + H(j, -i)), A(j)) assert expr.get_indices() == [L_0, -L_0, L_1, -L_1] assert expr.get_free_indices() == [] expr = A(j)*A(-j) + expr assert expr.get_indices() == [L_0, -L_0, L_1, -L_1] assert expr.get_free_indices() == [] expr = A(i)*(B(j)*PartialDerivative(C(-j), D(i)) + C(j)*PartialDerivative(D(-j), B(i))) assert expr.get_indices() == [L_0, L_1, -L_1, -L_0] assert expr.get_free_indices() == [] expr = A(i)*PartialDerivative(C(-j), D(i)) assert expr.get_indices() == [L_0, -j, -L_0] assert expr.get_free_indices() == [-j] def test_expand_partial_derivative_sum_rule(): tau = symbols("tau") # check sum rule for D(tensor, symbol) expr1aa = PartialDerivative(A(i), tau) assert expr1aa._expand_partial_derivative() == PartialDerivative(A(i), tau) expr1ab = PartialDerivative(A(i) + B(i), tau) assert (expr1ab._expand_partial_derivative() == PartialDerivative(A(i), tau) + PartialDerivative(B(i), tau)) expr1ac = PartialDerivative(A(i) + B(i) + C(i), tau) assert (expr1ac._expand_partial_derivative() == PartialDerivative(A(i), tau) + PartialDerivative(B(i), tau) + PartialDerivative(C(i), tau)) # check sum rule for D(tensor, D(j)) expr1ba = PartialDerivative(A(i), D(j)) assert expr1ba._expand_partial_derivative() ==\ PartialDerivative(A(i), D(j)) expr1bb = PartialDerivative(A(i) + B(i), D(j)) assert (expr1bb._expand_partial_derivative() == PartialDerivative(A(i), D(j)) + PartialDerivative(B(i), D(j))) expr1bc = PartialDerivative(A(i) + B(i) + C(i), D(j)) assert expr1bc._expand_partial_derivative() ==\ PartialDerivative(A(i), D(j))\ + PartialDerivative(B(i), D(j))\ + PartialDerivative(C(i), D(j)) # check sum rule for D(tensor, H(j, k)) expr1ca = PartialDerivative(A(i), H(j, k)) assert expr1ca._expand_partial_derivative() ==\ PartialDerivative(A(i), H(j, k)) expr1cb = PartialDerivative(A(i) + B(i), H(j, k)) assert (expr1cb._expand_partial_derivative() == PartialDerivative(A(i), H(j, k)) + PartialDerivative(B(i), H(j, k))) expr1cc = PartialDerivative(A(i) + B(i) + C(i), H(j, k)) assert (expr1cc._expand_partial_derivative() == PartialDerivative(A(i), H(j, k)) + PartialDerivative(B(i), H(j, k)) + PartialDerivative(C(i), H(j, k))) # check sum rule for D(D(tensor, D(j)), H(k, m)) expr1da = PartialDerivative(A(i), (D(j), H(k, m))) assert expr1da._expand_partial_derivative() ==\ PartialDerivative(A(i), (D(j), H(k, m))) expr1db = PartialDerivative(A(i) + B(i), (D(j), H(k, m))) assert expr1db._expand_partial_derivative() ==\ PartialDerivative(A(i), (D(j), H(k, m)))\ + PartialDerivative(B(i), (D(j), H(k, m))) expr1dc = PartialDerivative(A(i) + B(i) + C(i), (D(j), H(k, m))) assert expr1dc._expand_partial_derivative() ==\ PartialDerivative(A(i), (D(j), H(k, m)))\ + PartialDerivative(B(i), (D(j), H(k, m)))\ + PartialDerivative(C(i), (D(j), H(k, m))) def test_expand_partial_derivative_constant_factor_rule(): nneg = randint(0, 1000) pos = randint(1, 1000) neg = -randint(1, 1000) c1 = Rational(nneg, pos) c2 = Rational(neg, pos) c3 = Rational(nneg, neg) expr2a = PartialDerivative(nneg*A(i), D(j)) assert expr2a._expand_partial_derivative() ==\ nneg*PartialDerivative(A(i), D(j)) expr2b = PartialDerivative(neg*A(i), D(j)) assert expr2b._expand_partial_derivative() ==\ neg*PartialDerivative(A(i), D(j)) expr2ca = PartialDerivative(c1*A(i), D(j)) assert expr2ca._expand_partial_derivative() ==\ c1*PartialDerivative(A(i), D(j)) expr2cb = PartialDerivative(c2*A(i), D(j)) assert expr2cb._expand_partial_derivative() ==\ c2*PartialDerivative(A(i), D(j)) expr2cc = PartialDerivative(c3*A(i), D(j)) assert expr2cc._expand_partial_derivative() ==\ c3*PartialDerivative(A(i), D(j)) def test_expand_partial_derivative_full_linearity(): nneg = randint(0, 1000) pos = randint(1, 1000) neg = -randint(1, 1000) c1 = Rational(nneg, pos) c2 = Rational(neg, pos) c3 = Rational(nneg, neg) # check full linearity p = PartialDerivative(42, D(j)) assert p and not p._expand_partial_derivative() expr3a = PartialDerivative(nneg*A(i) + pos*B(i), D(j)) assert expr3a._expand_partial_derivative() ==\ nneg*PartialDerivative(A(i), D(j))\ + pos*PartialDerivative(B(i), D(j)) expr3b = PartialDerivative(nneg*A(i) + neg*B(i), D(j)) assert expr3b._expand_partial_derivative() ==\ nneg*PartialDerivative(A(i), D(j))\ + neg*PartialDerivative(B(i), D(j)) expr3c = PartialDerivative(neg*A(i) + pos*B(i), D(j)) assert expr3c._expand_partial_derivative() ==\ neg*PartialDerivative(A(i), D(j))\ + pos*PartialDerivative(B(i), D(j)) expr3d = PartialDerivative(c1*A(i) + c2*B(i), D(j)) assert expr3d._expand_partial_derivative() ==\ c1*PartialDerivative(A(i), D(j))\ + c2*PartialDerivative(B(i), D(j)) expr3e = PartialDerivative(c2*A(i) + c1*B(i), D(j)) assert expr3e._expand_partial_derivative() ==\ c2*PartialDerivative(A(i), D(j))\ + c1*PartialDerivative(B(i), D(j)) expr3f = PartialDerivative(c2*A(i) + c3*B(i), D(j)) assert expr3f._expand_partial_derivative() ==\ c2*PartialDerivative(A(i), D(j))\ + c3*PartialDerivative(B(i), D(j)) expr3g = PartialDerivative(c3*A(i) + c2*B(i), D(j)) assert expr3g._expand_partial_derivative() ==\ c3*PartialDerivative(A(i), D(j))\ + c2*PartialDerivative(B(i), D(j)) expr3h = PartialDerivative(c3*A(i) + c1*B(i), D(j)) assert expr3h._expand_partial_derivative() ==\ c3*PartialDerivative(A(i), D(j))\ + c1*PartialDerivative(B(i), D(j)) expr3i = PartialDerivative(c1*A(i) + c3*B(i), D(j)) assert expr3i._expand_partial_derivative() ==\ c1*PartialDerivative(A(i), D(j))\ + c3*PartialDerivative(B(i), D(j)) def test_expand_partial_derivative_product_rule(): # check product rule expr4a = PartialDerivative(A(i)*B(j), D(k)) assert expr4a._expand_partial_derivative() == \ PartialDerivative(A(i), D(k))*B(j)\ + A(i)*PartialDerivative(B(j), D(k)) expr4b = PartialDerivative(A(i)*B(j)*C(k), D(m)) assert expr4b._expand_partial_derivative() ==\ PartialDerivative(A(i), D(m))*B(j)*C(k)\ + A(i)*PartialDerivative(B(j), D(m))*C(k)\ + A(i)*B(j)*PartialDerivative(C(k), D(m)) expr4c = PartialDerivative(A(i)*B(j), C(k), D(m)) assert expr4c._expand_partial_derivative() ==\ PartialDerivative(A(i), C(k), D(m))*B(j) \ + PartialDerivative(A(i), C(k))*PartialDerivative(B(j), D(m))\ + PartialDerivative(A(i), D(m))*PartialDerivative(B(j), C(k))\ + A(i)*PartialDerivative(B(j), C(k), D(m)) def test_eval_partial_derivative_expr_by_symbol(): tau, alpha = symbols("tau alpha") expr1 = PartialDerivative(tau**alpha, tau) assert expr1._perform_derivative() == alpha * 1 / tau * tau ** alpha expr2 = PartialDerivative(2*tau + 3*tau**4, tau) assert expr2._perform_derivative() == 2 + 12 * tau ** 3 expr3 = PartialDerivative(2*tau + 3*tau**4, alpha) assert expr3._perform_derivative() == 0 def test_eval_partial_derivative_single_tensors_by_scalar(): tau, mu = symbols("tau mu") expr = PartialDerivative(tau**mu, tau) assert expr._perform_derivative() == mu*tau**mu/tau expr1a = PartialDerivative(A(i), tau) assert expr1a._perform_derivative() == 0 expr1b = PartialDerivative(A(-i), tau) assert expr1b._perform_derivative() == 0 expr2a = PartialDerivative(H(i, j), tau) assert expr2a._perform_derivative() == 0 expr2b = PartialDerivative(H(i, -j), tau) assert expr2b._perform_derivative() == 0 expr2c = PartialDerivative(H(-i, j), tau) assert expr2c._perform_derivative() == 0 expr2d = PartialDerivative(H(-i, -j), tau) assert expr2d._perform_derivative() == 0 def test_eval_partial_derivative_single_1st_rank_tensors_by_tensor(): expr1 = PartialDerivative(A(i), A(j)) assert expr1._perform_derivative() - L.delta(i, -j) == 0 expr2 = PartialDerivative(A(i), A(-j)) assert expr2._perform_derivative() - L.metric(i, L_0) * L.delta(-L_0, j) == 0 expr3 = PartialDerivative(A(-i), A(-j)) assert expr3._perform_derivative() - L.delta(-i, j) == 0 expr4 = PartialDerivative(A(-i), A(j)) assert expr4._perform_derivative() - L.metric(-i, -L_0) * L.delta(L_0, -j) == 0 expr5 = PartialDerivative(A(i), B(j)) expr6 = PartialDerivative(A(i), C(j)) expr7 = PartialDerivative(A(i), D(j)) expr8 = PartialDerivative(A(i), H(j, k)) assert expr5._perform_derivative() == 0 assert expr6._perform_derivative() == 0 assert expr7._perform_derivative() == 0 assert expr8._perform_derivative() == 0 expr9 = PartialDerivative(A(i), A(i)) assert expr9._perform_derivative() - L.delta(L_0, -L_0) == 0 expr10 = PartialDerivative(A(-i), A(-i)) assert expr10._perform_derivative() - L.delta(-L_0, L_0) == 0 def test_eval_partial_derivative_single_2nd_rank_tensors_by_tensor(): expr1 = PartialDerivative(H(i, j), H(m, m1)) assert expr1._perform_derivative() - L.delta(i, -m) * L.delta(j, -m1) == 0 expr2 = PartialDerivative(H(i, j), H(-m, m1)) assert expr2._perform_derivative() - L.metric(i, L_0) * L.delta(-L_0, m) * L.delta(j, -m1) == 0 expr3 = PartialDerivative(H(i, j), H(m, -m1)) assert expr3._perform_derivative() - L.delta(i, -m) * L.metric(j, L_0) * L.delta(-L_0, m1) == 0 expr4 = PartialDerivative(H(i, j), H(-m, -m1)) assert expr4._perform_derivative() - L.metric(i, L_0) * L.delta(-L_0, m) * L.metric(j, L_1) * L.delta(-L_1, m1) == 0 def test_eval_partial_derivative_divergence_type(): expr1a = PartialDerivative(A(i), A(i)) expr1b = PartialDerivative(A(i), A(k)) expr1c = PartialDerivative(L.delta(-i, k) * A(i), A(k)) assert (expr1a._perform_derivative() - (L.delta(-i, k) * expr1b._perform_derivative())).contract_delta(L.delta) == 0 assert (expr1a._perform_derivative() - expr1c._perform_derivative()).contract_delta(L.delta) == 0 expr2a = PartialDerivative(H(i, j), H(i, j)) expr2b = PartialDerivative(H(i, j), H(k, m)) expr2c = PartialDerivative(L.delta(-i, k) * L.delta(-j, m) * H(i, j), H(k, m)) assert (expr2a._perform_derivative() - (L.delta(-i, k) * L.delta(-j, m) * expr2b._perform_derivative())).contract_delta(L.delta) == 0 assert (expr2a._perform_derivative() - expr2c._perform_derivative()).contract_delta(L.delta) == 0 def test_eval_partial_derivative_expr1(): tau, alpha = symbols("tau alpha") # this is only some special expression # tested: vector derivative # tested: scalar derivative # tested: tensor derivative base_expr1 = A(i)*H(-i, j) + A(i)*A(-i)*A(j) + tau**alpha*A(j) tensor_derivative = PartialDerivative(base_expr1, H(k, m))._perform_derivative() vector_derivative = PartialDerivative(base_expr1, A(k))._perform_derivative() scalar_derivative = PartialDerivative(base_expr1, tau)._perform_derivative() assert (tensor_derivative - A(L_0)*L.metric(-L_0, -L_1)*L.delta(L_1, -k)*L.delta(j, -m)) == 0 assert (vector_derivative - (tau**alpha*L.delta(j, -k) + L.delta(L_0, -k)*A(-L_0)*A(j) + A(L_0)*L.metric(-L_0, -L_1)*L.delta(L_1, -k)*A(j) + A(L_0)*A(-L_0)*L.delta(j, -k) + L.delta(L_0, -k)*H(-L_0, j))).expand() == 0 assert (vector_derivative.contract_metric(L.metric).contract_delta(L.delta) - (tau**alpha*L.delta(j, -k) + A(L_0)*A(-L_0)*L.delta(j, -k) + H(-k, j) + 2*A(j)*A(-k))).expand() == 0 assert scalar_derivative - alpha*1/tau*tau**alpha*A(j) == 0 def test_eval_partial_derivative_mixed_scalar_tensor_expr2(): tau, alpha = symbols("tau alpha") base_expr2 = A(i)*A(-i) + tau**2 vector_expression = PartialDerivative(base_expr2, A(k))._perform_derivative() assert (vector_expression - (L.delta(L_0, -k)*A(-L_0) + A(L_0)*L.metric(-L_0, -L_1)*L.delta(L_1, -k))).expand() == 0 scalar_expression = PartialDerivative(base_expr2, tau)._perform_derivative() assert scalar_expression == 2*tau
4951a26a0ed29f90546a953a14bd9e68fd93935f88138242aad4430816e09845
from functools import wraps from sympy.concrete.summations import Sum from sympy.core.function import expand from sympy.core.numbers import Integer from sympy.matrices.dense import (Matrix, eye) from sympy.tensor.indexed import Indexed from sympy.combinatorics import Permutation from sympy.core import S, Rational, Symbol, Basic, Add from sympy.core.containers import Tuple from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.tensor.array import Array from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, \ get_symmetric_group_sgs, TensorIndex, tensor_mul, TensAdd, \ riemann_cyclic_replace, riemann_cyclic, TensMul, tensor_heads, \ TensorManager, TensExpr, TensorHead, canon_bp, \ tensorhead, tensorsymmetry, TensorType, substitute_indices from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy, ignore_warnings from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.matrices import diag def filter_warnings_decorator(f): @wraps(f) def wrapper(): with ignore_warnings(SymPyDeprecationWarning): f() return wrapper def _is_equal(arg1, arg2): if isinstance(arg1, TensExpr): return arg1.equals(arg2) elif isinstance(arg2, TensExpr): return arg2.equals(arg1) return arg1 == arg2 #################### Tests from tensor_can.py ####################### def test_canonicalize_no_slot_sym(): # A_d0 * B^d0; T_c = A^d0*B_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1 = tensor_indices('a,b,d0,d1', Lorentz) A, B = tensor_heads('A,B', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*B(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*B(-L_0)' # A^a * B^b; T_c = T t = A(a)*B(b) tc = t.canon_bp() assert tc == t # B^b * A^a t1 = B(b)*A(a) tc = t1.canon_bp() assert str(tc) == 'A(a)*B(b)' # A symmetric # A^{b}_{d0}*A^{d0, a}; T_c = A^{a d0}*A{b}_{d0} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, -d0)*A(d0, a) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, -L_0)' # A^{d1}_{d0}*B^d0*C_d1 # T_c = A^{d0 d1}*B_d0*C_d1 B, C = tensor_heads('B,C', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0)*C(-L_1)' # A without symmetry # A^{d1}_{d0}*B^d0*C_d1 ord=[d0,-d0,d1,-d1]; g = [2,1,0,3,4,5] # T_c = A^{d0 d1}*B_d1*C_d0; can = [0,2,3,1,4,5] A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(d0)*C(-d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1)*C(-L_0)' # A, B without symmetry # A^{d1}_{d0}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d0 d1} B = TensorHead('B', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_0, -L_1)' # A_{d0}^{d1}*B_{d1}^{d0} # T_c = A^{d0 d1}*B_{d1 d0} t = A(-d0, d1)*B(-d1, d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-L_1, -L_0)' # A, B, C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c=A^{d0 d1}*B_{a d1}*C_{d0 b} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_1)*C(-L_0, -b)' # A symmetric, B and C without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} # T_c = A^{d0 d1}*B_{a d0}*C_{d1 b} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-L_1, -b)' # A and C symmetric, B without symmetry # A^{d1 d0}*B_{a d0}*C_{d1 b} ord=[a,b,d0,-d0,d1,-d1] # T_c = A^{d0 d1}*B_{a d0}*C_{b d1} C = TensorHead('C', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d1, d0)*B(-a, -d0)*C(-d1, -b) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1)*B(-a, -L_0)*C(-b, -L_1)' def test_canonicalize_no_dummies(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a, b, c, d', Lorentz) # A commuting # A^c A^b A^a # T_c = A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == 'A(a)*A(b)*A(c)' # A anticommuting # A^c A^b A^a # T_c = -A^a A^b A^c A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(c)*A(b)*A(a) tc = t.canon_bp() assert str(tc) == '-A(a)*A(b)*A(c)' # A commuting and symmetric # A^{b,d}*A^{c,a} # T_c = A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' # A anticommuting and symmetric # A^{b,d}*A^{c,a} # T_c = -A^{a c}*A^{b d} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2), 1) t = A(b, d)*A(c, a) tc = t.canon_bp() assert str(tc) == '-A(a, c)*A(b, d)' # A^{c,a}*A^{b,d} # T_c = A^{a c}*A^{b d} t = A(c, a)*A(b, d) tc = t.canon_bp() assert str(tc) == 'A(a, c)*A(b, d)' def test_tensorhead_construction_without_symmetry(): L = TensorIndexType('Lorentz') A1 = TensorHead('A', [L, L]) A2 = TensorHead('A', [L, L], TensorSymmetry.no_symmetry(2)) assert A1 == A2 A3 = TensorHead('A', [L, L], TensorSymmetry.fully_symmetric(2)) # Symmetric assert A1 != A3 def test_no_metric_symmetry(): # no metric symmetry; A no symmetry # A^d1_d0 * A^d0_d1 # T_c = A^d0_d1 * A^d1_d0 Lorentz = TensorIndexType('Lorentz', dummy_name='L', metric_symmetry=0) d0, d1, d2, d3 = tensor_indices('d:4', Lorentz) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2)) t = A(d1, -d0)*A(d0, -d1) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)' # A^d1_d2 * A^d0_d3 * A^d2_d1 * A^d3_d0 # T_c = A^d0_d1 * A^d1_d0 * A^d2_d3 * A^d3_d2 t = A(d1, -d2)*A(d0, -d3)*A(d2, -d1)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_0)*A(L_2, -L_3)*A(L_3, -L_2)' # A^d0_d2 * A^d1_d3 * A^d3_d0 * A^d2_d1 # T_c = A^d0_d1 * A^d1_d2 * A^d2_d3 * A^d3_d0 t = A(d0, -d1)*A(d1, -d2)*A(d2, -d3)*A(d3, -d0) tc = t.canon_bp() assert str(tc) == 'A(L_0, -L_1)*A(L_1, -L_2)*A(L_2, -L_3)*A(L_3, -L_0)' def test_canonicalize1(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Lorentz) # A_d0*A^d0; ord = [d0,-d0] # T_c = A^d0*A_d0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1)) t = A(-d0)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)' # A commuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c = A^d0*A_d0*A^d1*A_d1*A^d2*A_d2 t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert str(tc) == 'A(L_0)*A(-L_0)*A(L_1)*A(-L_1)*A(L_2)*A(-L_2)' # A anticommuting # A_d0*A_d1*A_d2*A^d2*A^d1*A^d0 # T_c 0 A = TensorHead('A', [Lorentz], TensorSymmetry.no_symmetry(1), 1) t = A(-d0)*A(-d1)*A(-d2)*A(d2)*A(d1)*A(d0) tc = t.canon_bp() assert tc == 0 # A commuting symmetric # A^{d0 b}*A^a_d1*A^d1_d0 # T_c = A^{a d0}*A^{b d1}*A_{d0 d1} A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(a, -d1)*A(d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0)*A(b, L_1)*A(-L_0, -L_1)' # A, B commuting symmetric # A^{d0 b}*A^d1_d0*B^a_d1 # T_c = A^{b d0}*A_d0^d1*B^a_d1 B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(d0, b)*A(d1, -d0)*B(a, -d1) tc = t.canon_bp() assert str(tc) == 'A(b, L_0)*A(-L_0, L_1)*B(a, -L_1)' # A commuting symmetric # A^{d1 d0 b}*A^{a}_{d1 d0}; ord=[a,b, d0,-d0,d1,-d1] # T_c = A^{a d0 d1}*A^{b}_{d0 d1} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) t = A(d1, d0, b)*A(a, -d1, -d0) tc = t.canon_bp() assert str(tc) == 'A(a, L_0, L_1)*A(b, -L_0, -L_1)' # A^{d3 d0 d2}*A^a0_{d1 d2}*A^d1_d3^a1*A^{a2 a3}_d0 # T_c = A^{a0 d0 d1}*A^a1_d0^d2*A^{a2 a3 d3}*A_{d1 d2 d3} t = A(d3, d0, d2)*A(a0, -d1, -d2)*A(d1, -d3, a1)*A(a2, a3, -d0) tc = t.canon_bp() assert str(tc) == 'A(a0, L_0, L_1)*A(a1, -L_0, L_2)*A(a2, a3, L_3)*A(-L_1, -L_2, -L_3)' # A commuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # in this esxample and in the next three, # renaming dummy indices and using symmetry of A, # T = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 # can = 0 A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3)) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert tc == 0 # A anticommuting symmetric, B antisymmetric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(L_0, L_1, L_2)*A(-L_0, -L_1, L_3)*B(-L_2, -L_3)' # A anticommuting symmetric, B antisymmetric commuting, antisymmetric metric # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = -A^{d0 d1 d2} * A_{d0 d1}^d3 * B_{d2 d3} Spinor = TensorIndexType('Spinor', dummy_name='S', metric_symmetry=-1) a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Spinor) A = TensorHead('A', [Spinor]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == '-A(S_0, S_1, S_2)*A(-S_0, -S_1, S_3)*B(-S_2, -S_3)' # A anticommuting symmetric, B antisymmetric anticommuting, # no metric symmetry # A^{d0 d1 d2} * A_{d2 d3 d1} * B_d0^d3 # T_c = A^{d0 d1 d2} * A_{d0 d1 d3} * B_d2^d3 Mat = TensorIndexType('Mat', metric_symmetry=0, dummy_name='M') a, a0, a1, a2, a3, b, d0, d1, d2, d3 = \ tensor_indices('a,a0,a1,a2,a3,b,d0,d1,d2,d3', Mat) A = TensorHead('A', [Mat]*3, TensorSymmetry.fully_symmetric(3), 1) B = TensorHead('B', [Mat]*2, TensorSymmetry.fully_symmetric(-2)) t = A(d0, d1, d2)*A(-d2, -d3, -d1)*B(-d0, d3) tc = t.canon_bp() assert str(tc) == 'A(M_0, M_1, M_2)*A(-M_0, -M_1, -M_3)*B(-M_2, M_3)' # Gamma anticommuting # Gamma_{mu nu} * gamma^rho * Gamma^{nu mu alpha} # T_c = -Gamma^{mu nu} * gamma^rho * Gamma_{alpha mu nu} alpha, beta, gamma, mu, nu, rho = \ tensor_indices('alpha,beta,gamma,mu,nu,rho', Lorentz) Gamma = TensorHead('Gamma', [Lorentz], TensorSymmetry.fully_symmetric(1), 2) Gamma2 = TensorHead('Gamma', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2), 2) Gamma3 = TensorHead('Gamma', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3), 2) t = Gamma2(-mu, -nu)*Gamma(rho)*Gamma3(nu, mu, alpha) tc = t.canon_bp() assert str(tc) == '-Gamma(L_0, L_1)*Gamma(rho)*Gamma(alpha, -L_0, -L_1)' # Gamma_{mu nu} * Gamma^{gamma beta} * gamma_rho * Gamma^{nu mu alpha} # T_c = Gamma^{mu nu} * Gamma^{beta gamma} * gamma_rho * Gamma^alpha_{mu nu} t = Gamma2(mu, nu)*Gamma2(beta, gamma)*Gamma(-rho)*Gamma3(alpha, -mu, -nu) tc = t.canon_bp() assert str(tc) == 'Gamma(L_0, L_1)*Gamma(beta, gamma)*Gamma(-rho)*Gamma(alpha, -L_0, -L_1)' # f^a_{b,c} antisymmetric in b,c; A_mu^a no symmetry # f^c_{d a} * f_{c e b} * A_mu^d * A_nu^a * A^{nu e} * A^{mu b} # g = [8,11,5, 9,13,7, 1,10, 3,4, 2,12, 0,6, 14,15] # T_c = -f^{a b c} * f_a^{d e} * A^mu_b * A_{mu d} * A^nu_c * A_{nu e} Flavor = TensorIndexType('Flavor', dummy_name='F') a, b, c, d, e, ff = tensor_indices('a,b,c,d,e,f', Flavor) mu, nu = tensor_indices('mu,nu', Lorentz) f = TensorHead('f', [Flavor]*3, TensorSymmetry.direct_product(1, -2)) A = TensorHead('A', [Lorentz, Flavor], TensorSymmetry.no_symmetry(2)) t = f(c, -d, -a)*f(-c, -e, -b)*A(-mu, d)*A(-nu, a)*A(nu, e)*A(mu, b) tc = t.canon_bp() assert str(tc) == '-f(F_0, F_1, F_2)*f(-F_0, F_3, F_4)*A(L_0, -F_1)*A(-L_0, -F_3)*A(L_1, -F_2)*A(-L_1, -F_4)' def test_bug_correction_tensor_indices(): # to make sure that tensor_indices does not return a list if creating # only one index: A = TensorIndexType("A") i = tensor_indices('i', A) assert not isinstance(i, (tuple, list)) assert isinstance(i, TensorIndex) def test_riemann_invariants(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11 = \ tensor_indices('d0:12', Lorentz) # R^{d0 d1}_{d1 d0}; ord = [d0,-d0,d1,-d1] # T_c = -R^{d0 d1}_{d0 d1} R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(d0, d1, -d1, -d0) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, -L_0, -L_1)' # R_d11^d1_d0^d5 * R^{d6 d4 d0}_d5 * R_{d7 d2 d8 d9} * # R_{d10 d3 d6 d4} * R^{d2 d7 d11}_d1 * R^{d8 d9 d3 d10} # can = [0,2,4,6, 1,3,8,10, 5,7,12,14, 9,11,16,18, 13,15,20,22, # 17,19,21<F10,23, 24,25] # T_c = R^{d0 d1 d2 d3} * R_{d0 d1}^{d4 d5} * R_{d2 d3}^{d6 d7} * # R_{d4 d5}^{d8 d9} * R_{d6 d7}^{d10 d11} * R_{d8 d9 d10 d11} t = R(-d11,d1,-d0,d5)*R(d6,d4,d0,-d5)*R(-d7,-d2,-d8,-d9)* \ R(-d10,-d3,-d6,-d4)*R(d2,d7,d11,-d1)*R(d8,d9,d3,d10) tc = t.canon_bp() assert str(tc) == 'R(L_0, L_1, L_2, L_3)*R(-L_0, -L_1, L_4, L_5)*R(-L_2, -L_3, L_6, L_7)*R(-L_4, -L_5, L_8, L_9)*R(-L_6, -L_7, L_10, L_11)*R(-L_8, -L_9, -L_10, -L_11)' def test_riemann_products(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') d0, d1, d2, d3, d4, d5, d6 = tensor_indices('d0:7', Lorentz) a0, a1, a2, a3, a4, a5 = tensor_indices('a0:6', Lorentz) a, b = tensor_indices('a,b', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) # R^{a b d0}_d0 = 0 t = R(a, b, d0, -d0) tc = t.canon_bp() assert tc == 0 # R^{d0 b a}_d0 # T_c = -R^{a d0 b}_d0 t = R(d0, b, a, -d0) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, b, -L_0)' # R^d1_d2^b_d0 * R^{d0 a}_d1^d2; ord=[a,b,d0,-d0,d1,-d1,d2,-d2] # T_c = -R^{a d0 d1 d2}* R^b_{d0 d1 d2} t = R(d1, -d2, b, -d0)*R(d0, a, -d1, d2) tc = t.canon_bp() assert str(tc) == '-R(a, L_0, L_1, L_2)*R(b, -L_0, -L_1, -L_2)' # A symmetric commuting # R^{d6 d5}_d2^d1 * R^{d4 d0 d2 d3} * A_{d6 d0} A_{d3 d1} * A_{d4 d5} # g = [12,10,5,2, 8,0,4,6, 13,1, 7,3, 9,11,14,15] # T_c = -R^{d0 d1 d2 d3} * R_d0^{d4 d5 d6} * A_{d1 d4}*A_{d2 d5}*A_{d3 d6} V = TensorHead('V', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = R(d6, d5, -d2, d1)*R(d4, d0, d2, d3)*V(-d6, -d0)*V(-d3, -d1)*V(-d4, -d5) tc = t.canon_bp() assert str(tc) == '-R(L_0, L_1, L_2, L_3)*R(-L_0, L_4, L_5, L_6)*V(-L_1, -L_4)*V(-L_2, -L_5)*V(-L_3, -L_6)' # R^{d2 a0 a2 d0} * R^d1_d2^{a1 a3} * R^{a4 a5}_{d0 d1} # T_c = R^{a0 d0 a2 d1}*R^{a1 a3}_d0^d2*R^{a4 a5}_{d1 d2} t = R(d2, a0, a2, d0)*R(d1, -d2, a1, a3)*R(a4, a5, -d0, -d1) tc = t.canon_bp() assert str(tc) == 'R(a0, L_0, a2, L_1)*R(a1, a3, -L_0, L_2)*R(a4, a5, -L_1, -L_2)' ###################################################################### def test_canonicalize2(): D = Symbol('D') Eucl = TensorIndexType('Eucl', metric_symmetry=1, dim=D, dummy_name='E') i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10,i11,i12,i13,i14 = \ tensor_indices('i0:15', Eucl) A = TensorHead('A', [Eucl]*3, TensorSymmetry.fully_symmetric(-3)) # two examples from Cvitanovic, Group Theory page 59 # of identities for antisymmetric tensors of rank 3 # contracted according to the Kuratowski graph eq.(6.59) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i3,i7,i5)*A(-i2,-i5,i6)*A(-i4,-i6,i8) t1 = t.canon_bp() assert t1 == 0 # eq.(6.60) #t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)* # A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i3,-i12,i14) t = A(i0,i1,i2)*A(-i1,i3,i4)*A(-i2,i5,i6)*A(-i3,i7,i8)*A(-i6,-i7,i9)*\ A(-i8,i10,i13)*A(-i5,-i10,i11)*A(-i4,-i11,i12)*A(-i9,-i12,i14) t1 = t.canon_bp() assert t1 == 0 def test_canonicalize3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0,a1,a2,a3,a4 = tensor_indices('a0:5', Spinor) chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) t = chi(a1)*psi(a0) t1 = t.canon_bp() assert t1 == t t = psi(a1)*chi(a0) t1 = t.canon_bp() assert t1 == -chi(a0)*psi(a1) def test_TensorIndexType(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', metric_name='g', metric_symmetry=1, dim=D, dummy_name='L') m0, m1, m2, m3, m4 = tensor_indices('m0:5', Lorentz) sym2 = TensorSymmetry.fully_symmetric(2) sym2n = TensorSymmetry(*get_symmetric_group_sgs(2)) assert sym2 == sym2n g = Lorentz.metric assert str(g) == 'g(Lorentz,Lorentz)' assert Lorentz.eps_dim == Lorentz.dim TSpace = TensorIndexType('TSpace', dummy_name = 'TSpace') i0, i1 = tensor_indices('i0 i1', TSpace) g = TSpace.metric A = TensorHead('A', [TSpace]*2, sym2) assert str(A(i0,-i0).canon_bp()) == 'A(TSpace_0, -TSpace_0)' def test_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) assert a.tensor_index_type == Lorentz assert a != -a A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a,b)*B(-b,c) indices = t.get_indices() L_0 = TensorIndex('L_0', Lorentz) assert indices == [a, L_0, -L_0, c] raises(ValueError, lambda: tensor_indices(3, Lorentz)) raises(ValueError, lambda: A(a,b,c)) A = TensorHead('A', [Lorentz, Lorentz]) assert A('a', 'b') == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz)) assert A('a', '-b') == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz, is_up=False)) assert A('a', TensorIndex('b', Lorentz)) == A(TensorIndex('a', Lorentz), TensorIndex('b', Lorentz)) def test_TensorSymmetry(): assert TensorSymmetry.fully_symmetric(2) == \ TensorSymmetry(get_symmetric_group_sgs(2)) assert TensorSymmetry.fully_symmetric(-3) == \ TensorSymmetry(get_symmetric_group_sgs(3, True)) assert TensorSymmetry.direct_product(-4) == \ TensorSymmetry.fully_symmetric(-4) assert TensorSymmetry.fully_symmetric(-1) == \ TensorSymmetry.fully_symmetric(1) assert TensorSymmetry.direct_product(1, -1, 1) == \ TensorSymmetry.no_symmetry(3) assert TensorSymmetry(get_symmetric_group_sgs(2)) == \ TensorSymmetry(*get_symmetric_group_sgs(2)) # TODO: add check for *get_symmetric_group_sgs(0) sym = TensorSymmetry.fully_symmetric(-3) assert sym.rank == 3 assert sym.base == Tuple(0, 1) assert sym.generators == Tuple(Permutation(0, 1)(3, 4), Permutation(1, 2)(3, 4)) def test_TensExpr(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) g = Lorentz.metric A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) raises(ValueError, lambda: g(c, d)/g(a, b)) raises(ValueError, lambda: S.One/g(a, b)) raises(ValueError, lambda: (A(c, d) + g(c, d))/g(a, b)) raises(ValueError, lambda: S.One/(A(c, d) + g(c, d))) raises(ValueError, lambda: A(a, b) + A(a, c)) #t = A(a, b) + B(a, b) # assigned to t for below #raises(NotImplementedError, lambda: TensExpr.__mul__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__add__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__radd__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__sub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rsub__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__truediv__(t, 'a')) #raises(NotImplementedError, lambda: TensExpr.__rtruediv__(t, 'a')) with ignore_warnings(SymPyDeprecationWarning): # DO NOT REMOVE THIS AFTER DEPRECATION REMOVED: raises(ValueError, lambda: A(a, b)**2) raises(NotImplementedError, lambda: 2**A(a, b)) raises(NotImplementedError, lambda: abs(A(a, b))) def test_TensorHead(): # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') A = TensorHead('A', [Lorentz]*2) assert A.name == 'A' assert A.index_types == [Lorentz, Lorentz] assert A.rank == 2 assert A.symmetry == TensorSymmetry.no_symmetry(2) assert A.comm == 0 def test_add1(): assert TensAdd().args == () assert TensAdd().doit() == 0 # simple example of algebraic expression Lorentz = TensorIndexType('Lorentz', dummy_name='L') a,b,d0,d1,i,j,k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t1 = A(b, -d0)*B(d0, a) assert TensAdd(t1).equals(t1) t2a = B(d0, a) + A(d0, a) t2 = A(b, -d0)*t2a assert str(t2) == 'A(b, -L_0)*(A(L_0, a) + B(L_0, a))' t2 = t2.expand() assert str(t2) == 'A(b, -L_0)*A(L_0, a) + A(b, -L_0)*B(L_0, a)' t2 = t2.canon_bp() assert str(t2) == 'A(a, L_0)*A(b, -L_0) + A(b, L_0)*B(a, -L_0)' t2b = t2 + t1 assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + A(b, -L_0)*B(L_0, a) + A(b, L_0)*B(a, -L_0)' t2b = t2b.canon_bp() assert str(t2b) == 'A(a, L_0)*A(b, -L_0) + 2*A(b, L_0)*B(a, -L_0)' p, q, r = tensor_heads('p,q,r', [Lorentz]) t = q(d0)*2 assert str(t) == '2*q(d0)' t = 2*q(d0) assert str(t) == '2*q(d0)' t1 = p(d0) + 2*q(d0) assert str(t1) == '2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) assert str(t2) == '2*q(-d0) + p(-d0)' t1 = p(d0) t3 = t1*t2 assert str(t3) == 'p(L_0)*(2*q(-L_0) + p(-L_0))' t3 = t3.expand() assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)' t3 = t2*t1 t3 = t3.expand() assert str(t3) == 'p(-L_0)*p(L_0) + 2*q(-L_0)*p(L_0)' t3 = t3.canon_bp() assert str(t3) == 'p(L_0)*p(-L_0) + 2*p(L_0)*q(-L_0)' t1 = p(d0) + 2*q(d0) t3 = t1*t2 t3 = t3.canon_bp() assert str(t3) == 'p(L_0)*p(-L_0) + 4*p(L_0)*q(-L_0) + 4*q(L_0)*q(-L_0)' t1 = p(d0) - 2*q(d0) assert str(t1) == '-2*q(d0) + p(d0)' t2 = p(-d0) + 2*q(-d0) t3 = t1*t2 t3 = t3.canon_bp() assert t3 == p(d0)*p(-d0) - 4*q(d0)*q(-d0) t = p(i)*p(j)*(p(k) + q(k)) + p(i)*(p(j) + q(j))*(p(k) - 3*q(k)) t = t.canon_bp() assert t == 2*p(i)*p(j)*p(k) - 2*p(i)*p(j)*q(k) + p(i)*p(k)*q(j) - 3*p(i)*q(j)*q(k) t1 = (p(i) + q(i) + 2*r(i))*(p(j) - q(j)) t2 = (p(j) + q(j) + 2*r(j))*(p(i) - q(i)) t = t1 + t2 t = t.canon_bp() assert t == 2*p(i)*p(j) + 2*p(i)*r(j) + 2*p(j)*r(i) - 2*q(i)*q(j) - 2*q(i)*r(j) - 2*q(j)*r(i) t = p(i)*q(j)/2 assert 2*t == p(i)*q(j) t = (p(i) + q(i))/2 assert 2*t == p(i) + q(i) t = S.One - p(i)*p(-i) t = t.canon_bp() tz1 = t + p(-j)*p(j) assert tz1 != 1 tz1 = tz1.canon_bp() assert tz1.equals(1) t = S.One + p(i)*p(-i) assert (t - p(-j)*p(j)).canon_bp().equals(1) t = A(a, b) + B(a, b) assert t.rank == 2 t1 = t - A(a, b) - B(a, b) assert t1 == 0 t = 1 - (A(a, -a) + B(a, -a)) t1 = 1 + (A(a, -a) + B(a, -a)) assert (t + t1).expand().equals(2) t2 = 1 + A(a, -a) assert t1 != t2 assert t2 != TensMul.from_data(0, [], [], []) def test_special_eq_ne(): # test special equality cases: Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, d0, d1, i, j, k = tensor_indices('a,b,d0,d1,i,j,k', Lorentz) # A, B symmetric A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p, q, r = tensor_heads('p,q,r', [Lorentz]) t = 0*A(a, b) assert _is_equal(t, 0) assert _is_equal(t, S.Zero) assert p(i) != A(a, b) assert A(a, -a) != A(a, b) assert 0*(A(a, b) + B(a, b)) == 0 assert 0*(A(a, b) + B(a, b)) is S.Zero assert 3*(A(a, b) - A(a, b)) is S.Zero assert p(i) + q(i) != A(a, b) assert p(i) + q(i) != A(a, b) + B(a, b) assert p(i) - p(i) == 0 assert p(i) - p(i) is S.Zero assert _is_equal(A(a, b), A(b, a)) def test_add2(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m, n, p, q = tensor_indices('m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) A = TensorHead('A', [Lorentz]*3, TensorSymmetry.fully_symmetric(-3)) t1 = 2*R(m, n, p, q) - R(m, q, n, p) + R(m, p, n, q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t1 = Rational(2, 3)*R(m,n,p,q) - Rational(1, 3)*R(m,q,n,p) + Rational(1, 3)*R(m,p,n,q) t2 = t1*A(-n, -p, -q) t2 = t2.canon_bp() assert t2 == 0 t = A(m, -m, n) + A(n, p, -p) t = t.canon_bp() assert t == 0 def test_add3(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i0, i1 = tensor_indices('i0:2', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) B = TensorHead('B', [Lorentz]) expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0)) expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.args == (E**2, -px**2, -py**2, -pz**2, -A(i0)*A(-i0)) expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.args == (-E**2, px**2, py**2, pz**2, A(i0)*A(-i0)) expr4 = B(i1)*B(-i1) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.args == (2*E**2, -2*px**2, -2*py**2, -2*pz**2, B(i1)*B(-i1), -A(i0)*A(-i0)) def test_mul(): from sympy.abc import x Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b, c, d = tensor_indices('a,b,c,d', Lorentz) t = TensMul.from_data(S.One, [], [], []) assert str(t) == '1' A, B = tensor_heads('A B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = (1 + x)*A(a, b) assert str(t) == '(x + 1)*A(a, b)' assert t.index_types == [Lorentz, Lorentz] assert t.rank == 2 assert t.dum == [] assert t.coeff == 1 + x assert sorted(t.free) == [(a, 0), (b, 1)] assert t.components == [A] ts = A(a, b) assert str(ts) == 'A(a, b)' assert ts.index_types == [Lorentz, Lorentz] assert ts.rank == 2 assert ts.dum == [] assert ts.coeff == 1 assert sorted(ts.free) == [(a, 0), (b, 1)] assert ts.components == [A] t = A(-b, a)*B(-a, c)*A(-c, d) t1 = tensor_mul(*t.split()) assert t == t1 assert tensor_mul(*[]) == TensMul.from_data(S.One, [], [], []) t = TensMul.from_data(1, [], [], []) C = TensorHead('C', []) assert str(C()) == 'C' assert str(t) == '1' assert t == 1 raises(ValueError, lambda: A(a, b)*A(a, c)) def test_substitute_indices(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) p = TensorHead('p', [Lorentz]) t = p(i) t1 = t.substitute_indices((j, k)) assert t1 == t t1 = t.substitute_indices((i, j)) assert t1 == p(j) t1 = t.substitute_indices((i, -j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, j)) assert t1 == p(-j) t1 = t.substitute_indices((-i, -j)) assert t1 == p(j) t = A(m, n) t1 = t.substitute_indices((m, i), (n, -i)) assert t1 == A(n, -n) t1 = substitute_indices(t, (m, i), (n, -i)) assert t1 == A(n, -n) t = A(i, k)*B(-k, -j) t1 = t.substitute_indices((i, j), (j, k)) t1a = A(j, l)*B(-l, -k) assert t1 == t1a t1 = substitute_indices(t, (i, j), (j, k)) assert t1 == t1a t = A(i, j) + B(i, j) t1 = t.substitute_indices((j, -i)) t1a = A(i, -i) + B(i, -i) assert t1 == t1a t1 = substitute_indices(t, (j, -i)) assert t1 == t1a def test_riemann_cyclic_replace(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0, m2, m1, m3) t1 = riemann_cyclic_replace(t) t1a = Rational(-1, 3)*R(m0, m3, m2, m1) + Rational(1, 3)*R(m0, m1, m2, m3) + Rational(2, 3)*R(m0, m2, m1, m3) assert t1 == t1a def test_riemann_cyclic(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') i, j, k, l, m, n, p, q = tensor_indices('i,j,k,l,m,n,p,q', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(i,j,k,l) + R(i,l,j,k) + R(i,k,l,j) - \ R(i,j,l,k) - R(i,l,k,j) - R(i,k,j,l) t2 = t*R(-i,-j,-k,-l) t3 = riemann_cyclic(t2) assert t3 == 0 t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l)) t1 = riemann_cyclic(t) assert t1 == 0 t = R(i,j,k,l) t1 = riemann_cyclic(t) assert t1 == Rational(-1, 3)*R(i, l, j, k) + Rational(1, 3)*R(i, k, j, l) + Rational(2, 3)*R(i, j, k, l) t = R(i,j,k,l)*R(-k,-l,m,n)*(R(-m,-n,-i,-j) + 2*R(-m,-j,-n,-i)) t1 = riemann_cyclic(t) assert t1 == 0 @XFAIL def test_div(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') m0, m1, m2, m3 = tensor_indices('m0:4', Lorentz) R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann()) t = R(m0,m1,-m1,m3) t1 = t/S(4) assert str(t1) == '(1/4)*R(m0, L_0, -L_0, m3)' t = t.canon_bp() assert not t1._is_canon_bp t1 = t*4 assert t1._is_canon_bp t1 = t1/4 assert t1._is_canon_bp def test_contract_metric1(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p = TensorHead('p', [Lorentz]) t = g(a, b)*p(-b) t1 = t.contract_metric(g) assert t1 == p(a) A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) # case with g with all free indices t1 = A(a,b)*B(-b,c)*g(d, e) t2 = t1.contract_metric(g) assert t1 == t2 # case of g(d, -d) t1 = A(a,b)*B(-b,c)*g(-d, d) t2 = t1.contract_metric(g) assert t2 == D*A(a, d)*B(-d, c) # g with one free index t1 = A(a,b)*B(-b,-c)*g(c, d) t2 = t1.contract_metric(g) assert t2 == A(a, c)*B(-c, d) # g with both indices contracted with another tensor t1 = A(a,b)*B(-b,-c)*g(c, -a) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, b)*B(-b, -a)) t1 = A(a,b)*B(-b,-c)*g(c, d)*g(-a, -d) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a,b)*B(-b,-a)) t1 = A(a,b)*g(-a,-b) t2 = t1.contract_metric(g) assert _is_equal(t2, A(a, -a)) assert not t2.free Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) g = Lorentz.metric assert _is_equal(g(a, -a).contract_metric(g), Lorentz.dim) # no dim def test_contract_metric2(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e, L_0 = tensor_indices('a,b,c,d,e,L_0', Lorentz) g = Lorentz.metric p, q = tensor_heads('p,q', [Lorentz]) t1 = g(a,b)*p(c)*p(-c) t2 = 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == 3*D*p(a)*p(-a)*q(b)*q(-b) t1 = g(a,b)*p(c)*p(-c) t2 = 3*q(-a)*q(-b) t = t1*t2 t = t.contract_metric(g) t = t.canon_bp() assert t == 3*p(a)*p(-a)*q(b)*q(-b) t1 = 2*g(a,b)*p(c)*p(-c) t2 = - 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t = 6*g(a,b)*g(-a,-b)*p(c)*p(-c)*q(d)*q(-d) t = t.contract_metric(g) t1 = 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) + 3*g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) assert t == (2 + 6*D)*p(a)*p(-a)*q(b)*q(-b) t1 = p(a)*p(b) + p(a)*q(b) + 2*g(a,b)*p(c)*p(-c) t2 = q(-a)*q(-b) - g(-a,-b)*q(c)*q(-c) t = t1*t2 t = t.contract_metric(g) t1 = (1 - 2*D)*p(a)*p(-a)*q(b)*q(-b) + p(a)*q(-a)*p(b)*q(-b) assert canon_bp(t - t1) == 0 t = g(a,b)*g(c,d)*g(-b,-c) t1 = t.contract_metric(g) assert t1 == g(a, d) t1 = g(a,b)*g(c,d) + g(a,c)*g(b,d) + g(a,d)*g(b,c) t2 = t1.substitute_indices((a,-a),(b,-b),(c,-c),(d,-d)) t = t1*t2 t = t.contract_metric(g) assert t.equals(3*D**2 + 6*D) t = 2*p(a)*g(b,-b) t1 = t.contract_metric(g) assert t1.equals(2*D*p(a)) t = 2*p(a)*g(b,-a) t1 = t.contract_metric(g) assert t1 == 2*p(b) M = Symbol('M') t = (p(a)*p(b) + g(a, b)*M**2)*g(-a, -b) - D*M**2 t1 = t.contract_metric(g) assert t1 == p(a)*p(-a) A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) t = A(a, b)*p(L_0)*g(-a, -b) t1 = t.contract_metric(g) assert str(t1) == 'A(L_1, -L_1)*p(L_0)' or str(t1) == 'A(-L_1, L_1)*p(L_0)' def test_metric_contract3(): D = Symbol('D') Spinor = TensorIndexType('Spinor', dim=D, metric_symmetry=-1, dummy_name='S') a0, a1, a2, a3, a4 = tensor_indices('a0:5', Spinor) C = Spinor.metric chi, psi = tensor_heads('chi,psi', [Spinor], TensorSymmetry.no_symmetry(1), 1) B = TensorHead('B', [Spinor]*2, TensorSymmetry.no_symmetry(2)) t = C(a0,-a0) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a0) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a1,a0)*C(-a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(-a0,a1)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(-D) t = C(a1,-a0)*C(a0,-a1) t1 = t.contract_metric(C) assert t1.equals(D) t = C(a0,a1)*B(-a1,-a0) t1 = t.contract_metric(C) t1 = t1.canon_bp() assert _is_equal(t1, B(a0,-a0)) t = C(a1,a0)*B(-a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(a0,-a1)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,a1)*B(-a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, -B(a0,-a0)) t = C(-a0,-a1)*B(a1,a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(-a1, a0)*B(a1,-a0) t1 = t.contract_metric(C) assert _is_equal(t1, B(a0,-a0)) t = C(a0,a1)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, psi(a0)) t = C(a1,a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -psi(a0)) t = C(a0,a1)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(a1)*psi(-a1)) t = C(a1,a0)*chi(-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(a1)*psi(-a1)) t = C(-a1,a0)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(a0,-a1)*chi(-a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a0,-a1)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, chi(-a1)*psi(a1)) t = C(-a1,-a0)*chi(a0)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -chi(-a1)*psi(a1)) t = C(-a1,-a0)*B(a0,a2)*psi(a1) t1 = t.contract_metric(C) assert _is_equal(t1, -B(-a1,a2)*psi(a1)) t = C(a1,a0)*B(-a2,-a0)*psi(-a1) t1 = t.contract_metric(C) assert _is_equal(t1, B(-a2,a1)*psi(-a1)) def test_epsilon(): Lorentz = TensorIndexType('Lorentz', dim=4, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) epsilon = Lorentz.epsilon p, q, r, s = tensor_heads('p,q,r,s', [Lorentz]) t = epsilon(b,a,c,d) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(c,b,d,a) t1 = t.canon_bp() assert t1 == epsilon(a,b,c,d) t = epsilon(c,a,d,b) t1 = t.canon_bp() assert t1 == -epsilon(a,b,c,d) t = epsilon(a,b,c,d)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,b,d,a)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*q(-b) t1 = t.canon_bp() assert t1 == -epsilon(c,d,a,b)*p(-a)*q(-b) t = epsilon(c,a,d,b)*p(-a)*p(-b) t1 = t.canon_bp() assert t1 == 0 t = epsilon(c,a,d,b)*p(-a)*q(-b) + epsilon(a,b,c,d)*p(-b)*q(-a) t1 = t.canon_bp() assert t1 == -2*epsilon(c,d,a,b)*p(-a)*q(-b) # Test that epsilon can be create with a SymPy integer: Lorentz = TensorIndexType('Lorentz', dim=Integer(4), dummy_name='L') epsilon = Lorentz.epsilon assert isinstance(epsilon, TensorHead) def test_contract_delta1(): # see Group Theory by Cvitanovic page 9 n = Symbol('n') Color = TensorIndexType('Color', dim=n, dummy_name='C') a, b, c, d, e, f = tensor_indices('a,b,c,d,e,f', Color) delta = Color.delta def idn(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,c)*delta(d,b) def T(a, b, d, c): assert a.is_up and d.is_up assert not (b.is_up or c.is_up) return delta(a,b)*delta(d,c) def P1(a, b, c, d): return idn(a,b,c,d) - 1/n*T(a,b,c,d) def P2(a, b, c, d): return 1/n*T(a,b,c,d) t = P1(a, -b, e, -f)*P1(f, -e, d, -c) t1 = t.contract_delta(delta) assert canon_bp(t1 - P1(a, -b, d, -c)) == 0 t = P2(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == P2(a, -b, d, -c) t = P1(a, -b, e, -f)*P2(f, -e, d, -c) t1 = t.contract_delta(delta) assert t1 == 0 t = P1(a, -b, b, -a) t1 = t.contract_delta(delta) assert t1.equals(n**2 - 1) @filter_warnings_decorator def test_fun(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) t = q(c)*p(a)*q(b) + g(a,b)*g(c,d)*q(-d) assert t(a,b,c) == t assert canon_bp(t - t(b,a,c) - q(c)*p(a)*q(b) + q(c)*p(b)*q(a)) == 0 assert t(b,c,d) == q(d)*p(b)*q(c) + g(b,c)*g(d,e)*q(-e) t1 = t.substitute_indices((a,b),(b,a)) assert canon_bp(t1 - q(c)*p(b)*q(a) - g(a,b)*g(c,d)*q(-d)) == 0 # check that g_{a b; c} = 0 # example taken from L. Brewin # "A brief introduction to Cadabra" arxiv:0903.2085 # dg_{a b c} = \partial_{a} g_{b c} is symmetric in b, c dg = TensorHead('dg', [Lorentz]*3, TensorSymmetry.direct_product(1, 2)) # gamma^a_{b c} is the Christoffel symbol gamma = S.Half*g(a,d)*(dg(-b,-d,-c) + dg(-c,-b,-d) - dg(-d,-b,-c)) # t = g_{a b; c} t = dg(-c,-a,-b) - g(-a,-d)*gamma(d,-b,-c) - g(-b,-d)*gamma(d,-a,-c) t = t.contract_metric(g) assert t == 0 t = q(c)*p(a)*q(b) assert t(b,c,d) == q(d)*p(b)*q(c) def test_TensorManager(): Lorentz = TensorIndexType('Lorentz', dummy_name='L') LorentzH = TensorIndexType('LorentzH', dummy_name='LH') i, j = tensor_indices('i,j', Lorentz) ih, jh = tensor_indices('ih,jh', LorentzH) p, q = tensor_heads('p q', [Lorentz]) ph, qh = tensor_heads('ph qh', [LorentzH]) Gsymbol = Symbol('Gsymbol') GHsymbol = Symbol('GHsymbol') TensorManager.set_comm(Gsymbol, GHsymbol, 0) G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), Gsymbol) assert TensorManager._comm_i2symbol[G.comm] == Gsymbol GH = TensorHead('GH', [LorentzH], TensorSymmetry.no_symmetry(1), GHsymbol) ps = G(i)*p(-i) psh = GH(ih)*ph(-ih) t = ps + psh t1 = t*t assert canon_bp(t1 - ps*ps - 2*ps*psh - psh*psh) == 0 qs = G(i)*q(-i) qsh = GH(ih)*qh(-ih) assert _is_equal(ps*qsh, qsh*ps) assert not _is_equal(ps*qs, qs*ps) n = TensorManager.comm_symbols2i(Gsymbol) assert TensorManager.comm_i2symbol(n) == Gsymbol assert GHsymbol in TensorManager._comm_symbols2i raises(ValueError, lambda: TensorManager.set_comm(GHsymbol, 1, 2)) TensorManager.set_comms((Gsymbol,GHsymbol,0),(Gsymbol,1,1)) assert TensorManager.get_comm(n, 1) == TensorManager.get_comm(1, n) == 1 TensorManager.clear() assert TensorManager.comm == [{0:0, 1:0, 2:0}, {0:0, 1:1, 2:None}, {0:0, 1:None}] assert GHsymbol not in TensorManager._comm_symbols2i nh = TensorManager.comm_symbols2i(GHsymbol) assert TensorManager.comm_i2symbol(nh) == GHsymbol assert GHsymbol in TensorManager._comm_symbols2i def test_hash(): D = Symbol('D') Lorentz = TensorIndexType('Lorentz', dim=D, dummy_name='L') a, b, c, d, e = tensor_indices('a,b,c,d,e', Lorentz) g = Lorentz.metric p, q = tensor_heads('p q', [Lorentz]) p_type = p.args[1] t1 = p(a)*q(b) t2 = p(a)*p(b) assert hash(t1) != hash(t2) t3 = p(a)*p(b) + g(a,b) t4 = p(a)*p(b) - g(a,b) assert hash(t3) != hash(t4) assert a.func(*a.args) == a assert Lorentz.func(*Lorentz.args) == Lorentz assert g.func(*g.args) == g assert p.func(*p.args) == p assert p_type.func(*p_type.args) == p_type assert p(a).func(*(p(a)).args) == p(a) assert t1.func(*t1.args) == t1 assert t2.func(*t2.args) == t2 assert t3.func(*t3.args) == t3 assert t4.func(*t4.args) == t4 assert hash(a.func(*a.args)) == hash(a) assert hash(Lorentz.func(*Lorentz.args)) == hash(Lorentz) assert hash(g.func(*g.args)) == hash(g) assert hash(p.func(*p.args)) == hash(p) assert hash(p_type.func(*p_type.args)) == hash(p_type) assert hash(p(a).func(*(p(a)).args)) == hash(p(a)) assert hash(t1.func(*t1.args)) == hash(t1) assert hash(t2.func(*t2.args)) == hash(t2) assert hash(t3.func(*t3.args)) == hash(t3) assert hash(t4.func(*t4.args)) == hash(t4) def check_all(obj): return all([isinstance(_, Basic) for _ in obj.args]) assert check_all(a) assert check_all(Lorentz) assert check_all(g) assert check_all(p) assert check_all(p_type) assert check_all(p(a)) assert check_all(t1) assert check_all(t2) assert check_all(t3) assert check_all(t4) tsymmetry = TensorSymmetry.direct_product(-2, 1, 3) assert tsymmetry.func(*tsymmetry.args) == tsymmetry assert hash(tsymmetry.func(*tsymmetry.args)) == hash(tsymmetry) assert check_all(tsymmetry) ### TEST VALUED TENSORS ### def _get_valued_base_test_variables(): minkowski = Matrix(( (1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1), )) Lorentz = TensorIndexType('Lorentz', dim=4) Lorentz.data = minkowski i0, i1, i2, i3, i4 = tensor_indices('i0:5', Lorentz) E, px, py, pz = symbols('E px py pz') A = TensorHead('A', [Lorentz]) A.data = [E, px, py, pz] B = TensorHead('B', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm') B.data = range(4) AB = TensorHead("AB", [Lorentz]*2) AB.data = minkowski ba_matrix = Matrix(( (1, 2, 3, 4), (5, 6, 7, 8), (9, 0, -1, -2), (-3, -4, -5, -6), )) BA = TensorHead("BA", [Lorentz]*2) BA.data = ba_matrix # Let's test the diagonal metric, with inverted Minkowski metric: LorentzD = TensorIndexType('LorentzD') LorentzD.data = [-1, 1, 1, 1] mu0, mu1, mu2 = tensor_indices('mu0:3', LorentzD) C = TensorHead('C', [LorentzD]) C.data = [E, px, py, pz] ### non-diagonal metric ### ndm_matrix = ( (1, 1, 0,), (1, 0, 1), (0, 1, 0,), ) ndm = TensorIndexType("ndm") ndm.data = ndm_matrix n0, n1, n2 = tensor_indices('n0:3', ndm) NA = TensorHead('NA', [ndm]) NA.data = range(10, 13) NB = TensorHead('NB', [ndm]*2) NB.data = [[i+j for j in range(10, 13)] for i in range(10, 13)] NC = TensorHead('NC', [ndm]*3) NC.data = [[[i+j+k for k in range(4, 7)] for j in range(1, 4)] for i in range(2, 5)] return (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) @filter_warnings_decorator def test_valued_tensor_iter(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() list_BA = [Array([1, 2, 3, 4]), Array([5, 6, 7, 8]), Array([9, 0, -1, -2]), Array([-3, -4, -5, -6])] # iteration on VTensorHead assert list(A) == [E, px, py, pz] assert list(ba_matrix) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, -1, -2, -3, -4, -5, -6] assert list(BA) == list_BA # iteration on VTensMul assert list(A(i1)) == [E, px, py, pz] assert list(BA(i1, i2)) == list_BA assert list(3 * BA(i1, i2)) == [3 * i for i in list_BA] assert list(-5 * BA(i1, i2)) == [-5 * i for i in list_BA] # iteration on VTensAdd # A(i1) + A(i1) assert list(A(i1) + A(i1)) == [2*E, 2*px, 2*py, 2*pz] assert BA(i1, i2) - BA(i1, i2) == 0 assert list(BA(i1, i2) - 2 * BA(i1, i2)) == [-i for i in list_BA] @filter_warnings_decorator def test_valued_tensor_covariant_contravariant_elements(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert A(-i0)[0] == A(i0)[0] assert A(-i0)[1] == -A(i0)[1] assert AB(i0, i1)[1, 1] == -1 assert AB(i0, -i1)[1, 1] == 1 assert AB(-i0, -i1)[1, 1] == -1 assert AB(-i0, i1)[1, 1] == 1 @filter_warnings_decorator def test_valued_tensor_get_matrix(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() matab = AB(i0, i1).get_matrix() assert matab == Matrix([ [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1], ]) # when alternating contravariant/covariant with [1, -1, -1, -1] metric # it becomes the identity matrix: assert AB(i0, -i1).get_matrix() == eye(4) # covariant and contravariant forms: assert A(i0).get_matrix() == Matrix([E, px, py, pz]) assert A(-i0).get_matrix() == Matrix([E, -px, -py, -pz]) @filter_warnings_decorator def test_valued_tensor_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert (A(i0) * A(-i0)).data == E ** 2 - px ** 2 - py ** 2 - pz ** 2 assert (A(i0) * A(-i0)).data == A ** 2 assert (A(i0) * A(-i0)).data == A(i0) ** 2 assert (A(i0) * B(-i0)).data == -px - 2 * py - 3 * pz for i in range(4): for j in range(4): assert (A(i0) * B(-i1))[i, j] == [E, px, py, pz][i] * [0, -1, -2, -3][j] # test contraction on the alternative Minkowski metric: [-1, 1, 1, 1] assert (C(mu0) * C(-mu0)).data == -E ** 2 + px ** 2 + py ** 2 + pz ** 2 contrexp = A(i0) * AB(i1, -i0) assert A(i0).rank == 1 assert AB(i1, -i0).rank == 2 assert contrexp.rank == 1 for i in range(4): assert contrexp[i] == [E, px, py, pz][i] @filter_warnings_decorator def test_valued_tensor_self_contraction(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert AB(i0, -i0).data == 4 assert BA(i0, -i0).data == 2 @filter_warnings_decorator def test_valued_tensor_pow(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() assert C**2 == -E**2 + px**2 + py**2 + pz**2 assert C**1 == sqrt(-E**2 + px**2 + py**2 + pz**2) assert C(mu0)**2 == C**2 assert C(mu0)**1 == C**1 @filter_warnings_decorator def test_valued_tensor_expressions(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() x1, x2, x3 = symbols('x1:4') # test coefficient in contraction: rank2coeff = x1 * A(i3) * B(i2) assert rank2coeff[1, 1] == x1 * px assert rank2coeff[3, 3] == 3 * pz * x1 coeff_expr = ((x1 * A(i4)) * (B(-i4) / x2)).data assert coeff_expr.expand() == -px*x1/x2 - 2*py*x1/x2 - 3*pz*x1/x2 add_expr = A(i0) + B(i0) assert add_expr[0] == E assert add_expr[1] == px + 1 assert add_expr[2] == py + 2 assert add_expr[3] == pz + 3 sub_expr = A(i0) - B(i0) assert sub_expr[0] == E assert sub_expr[1] == px - 1 assert sub_expr[2] == py - 2 assert sub_expr[3] == pz - 3 assert (add_expr * B(-i0)).data == -px - 2*py - 3*pz - 14 expr1 = x1*A(i0) + x2*B(i0) expr2 = expr1 * B(i1) * (-4) expr3 = expr2 + 3*x3*AB(i0, i1) expr4 = expr3 / 2 assert expr4 * 2 == expr3 expr5 = (expr4 * BA(-i1, -i0)) assert expr5.data.expand() == 28*E*x1 + 12*px*x1 + 20*py*x1 + 28*pz*x1 + 136*x2 + 3*x3 @filter_warnings_decorator def test_valued_tensor_add_scalar(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # one scalar summand after the contracted tensor expr1 = A(i0)*A(-i0) - (E**2 - px**2 - py**2 - pz**2) assert expr1.data == 0 # multiple scalar summands in front of the contracted tensor expr2 = E**2 - px**2 - py**2 - pz**2 - A(i0)*A(-i0) assert expr2.data == 0 # multiple scalar summands after the contracted tensor expr3 = A(i0)*A(-i0) - E**2 + px**2 + py**2 + pz**2 assert expr3.data == 0 # multiple scalar summands and multiple tensors expr4 = C(mu0)*C(-mu0) + 2*E**2 - 2*px**2 - 2*py**2 - 2*pz**2 - A(i0)*A(-i0) assert expr4.data == 0 @filter_warnings_decorator def test_noncommuting_components(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() euclid = TensorIndexType('Euclidean') euclid.data = [1, 1] i1, i2, i3 = tensor_indices('i1:4', euclid) a, b, c, d = symbols('a b c d', commutative=False) V1 = TensorHead('V1', [euclid]*2) V1.data = [[a, b], (c, d)] V2 = TensorHead('V2', [euclid]*2) V2.data = [[a, c], [b, d]] vtp = V1(i1, i2) * V2(-i2, -i1) assert vtp.data == a**2 + b**2 + c**2 + d**2 assert vtp.data != a**2 + 2*b*c + d**2 vtp2 = V1(i1, i2)*V1(-i2, -i1) assert vtp2.data == a**2 + b*c + c*b + d**2 assert vtp2.data != a**2 + 2*b*c + d**2 Vc = (b * V1(i1, -i1)).data assert Vc.expand() == b * a + b * d @filter_warnings_decorator def test_valued_non_diagonal_metric(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() mmatrix = Matrix(ndm_matrix) assert (NA(n0)*NA(-n0)).data == (NA(n0).get_matrix().T * mmatrix * NA(n0).get_matrix())[0, 0] @filter_warnings_decorator def test_valued_assign_numpy_ndarray(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # this is needed to make sure that a numpy.ndarray can be assigned to a # tensor. arr = [E+1, px-1, py, pz] A.data = Array(arr) for i in range(4): assert A(i0).data[i] == arr[i] qx, qy, qz = symbols('qx qy qz') A(-i0).data = Array([E, qx, qy, qz]) for i in range(4): assert A(i0).data[i] == [E, -qx, -qy, -qz][i] assert A.data[i] == [E, -qx, -qy, -qz][i] # test on multi-indexed tensors. random_4x4_data = [[(i**3-3*i**2)%(j+7) for i in range(4)] for j in range(4)] AB(-i0, -i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j] AB(-i0, i1).data = random_4x4_data for i in range(4): for j in range(4): assert AB(i0, i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1) assert AB(-i0, i1).data[i, j] == random_4x4_data[i][j] assert AB(i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if i else 1)*(-1 if j else 1) assert AB(-i0, -i1).data[i, j] == random_4x4_data[i][j]*(-1 if j else 1) @filter_warnings_decorator def test_valued_metric_inverse(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() # let's assign some fancy matrix, just to verify it: # (this has no physical sense, it's just testing sympy); # it is symmetrical: md = [[2, 2, 2, 1], [2, 3, 1, 0], [2, 1, 2, 3], [1, 0, 3, 2]] Lorentz.data = md m = Matrix(md) metric = Lorentz.metric minv = m.inv() meye = eye(4) # the Kronecker Delta: KD = Lorentz.get_kronecker_delta() for i in range(4): for j in range(4): assert metric(i0, i1).data[i, j] == m[i, j] assert metric(-i0, -i1).data[i, j] == minv[i, j] assert metric(i0, -i1).data[i, j] == meye[i, j] assert metric(-i0, i1).data[i, j] == meye[i, j] assert metric(i0, i1)[i, j] == m[i, j] assert metric(-i0, -i1)[i, j] == minv[i, j] assert metric(i0, -i1)[i, j] == meye[i, j] assert metric(-i0, i1)[i, j] == meye[i, j] assert KD(i0, -i1)[i, j] == meye[i, j] @filter_warnings_decorator def test_valued_canon_bp_swapaxes(): (A, B, AB, BA, C, Lorentz, E, px, py, pz, LorentzD, mu0, mu1, mu2, ndm, n0, n1, n2, NA, NB, NC, minkowski, ba_matrix, ndm_matrix, i0, i1, i2, i3, i4) = _get_valued_base_test_variables() e1 = A(i1)*A(i0) e2 = e1.canon_bp() assert e2 == A(i0)*A(i1) for i in range(4): for j in range(4): assert e1[i, j] == e2[j, i] o1 = B(i2)*A(i1)*B(i0) o2 = o1.canon_bp() for i in range(4): for j in range(4): for k in range(4): assert o1[i, j, k] == o2[j, i, k] @filter_warnings_decorator def test_valued_components_with_wrong_symmetry(): IT = TensorIndexType('IT', dim=3) i0, i1, i2, i3 = tensor_indices('i0:4', IT) IT.data = [1, 1, 1] A_nosym = TensorHead('A', [IT]*2) A_sym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(2)) A_antisym = TensorHead('A', [IT]*2, TensorSymmetry.fully_symmetric(-2)) mat_nosym = Matrix([[1,2,3],[4,5,6],[7,8,9]]) mat_sym = mat_nosym + mat_nosym.T mat_antisym = mat_nosym - mat_nosym.T A_nosym.data = mat_nosym A_nosym.data = mat_sym A_nosym.data = mat_antisym def assign(A, dat): A.data = dat A_sym.data = mat_sym raises(ValueError, lambda: assign(A_sym, mat_nosym)) raises(ValueError, lambda: assign(A_sym, mat_antisym)) A_antisym.data = mat_antisym raises(ValueError, lambda: assign(A_antisym, mat_sym)) raises(ValueError, lambda: assign(A_antisym, mat_nosym)) A_sym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] A_antisym.data = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] @filter_warnings_decorator def test_issue_10972_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) F.data = [[0, 1], [-1, 0]] mul_1 = F(mu, alpha) * u(-alpha) * F(nu, beta) * u(-beta) assert (mul_1.data == Array([[0, 0], [0, 1]])) mul_2 = F(mu, alpha) * F(nu, beta) * u(-alpha) * u(-beta) assert (mul_2.data == mul_1.data) assert ((mul_1 + mul_1).data == 2 * mul_1.data) @filter_warnings_decorator def test_TensMul_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='L', dim=4) Lorentz.data = [-1, 1, 1, 1] mu, nu, alpha, beta = tensor_indices('\\mu, \\nu, \\alpha, \\beta', Lorentz) u = TensorHead('u', [Lorentz]) u.data = [1, 0, 0, 0] F = TensorHead('F', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2)) Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z') F.data = [ [0, Ex, Ey, Ez], [-Ex, 0, Bz, -By], [-Ey, -Bz, 0, Bx], [-Ez, By, -Bx, 0]] E = F(mu, nu) * u(-nu) assert ((E(mu) * E(nu)).data == Array([[0, 0, 0, 0], [0, Ex ** 2, Ex * Ey, Ex * Ez], [0, Ex * Ey, Ey ** 2, Ey * Ez], [0, Ex * Ez, Ey * Ez, Ez ** 2]]) ) assert ((E(mu) * E(nu)).canon_bp().data == (E(mu) * E(nu)).data) assert ((F(mu, alpha) * F(beta, nu) * u(-alpha) * u(-beta)).data == - (E(mu) * E(nu)).data ) assert ((F(alpha, mu) * F(beta, nu) * u(-alpha) * u(-beta)).data == (E(mu) * E(nu)).data ) g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data # tensor 'perp' is orthogonal to vector 'u' perp = u(mu) * u(nu) + g(mu, nu) mul_1 = u(-mu) * perp(mu, nu) assert (mul_1.data == Array([0, 0, 0, 0])) mul_2 = u(-mu) * perp(mu, alpha) * perp(nu, beta) assert (mul_2.data == Array.zeros(4, 4, 4)) Fperp = perp(mu, alpha) * perp(nu, beta) * F(-alpha, -beta) assert (Fperp.data[0, :] == Array([0, 0, 0, 0])) assert (Fperp.data[:, 0] == Array([0, 0, 0, 0])) mul_3 = u(-mu) * Fperp(mu, nu) assert (mul_3.data == Array([0, 0, 0, 0])) @filter_warnings_decorator def test_issue_11020_TensAdd_data(): Lorentz = TensorIndexType('Lorentz', metric_symmetry=1, dummy_name='i', dim=2) Lorentz.data = [-1, 1] a, b, c, d = tensor_indices('a, b, c, d', Lorentz) i0, i1 = tensor_indices('i_0:2', Lorentz) # metric tensor g = TensorHead('g', [Lorentz]*2, TensorSymmetry.fully_symmetric(2)) g.data = Lorentz.data u = TensorHead('u', [Lorentz]) u.data = [1, 0] add_1 = g(b, c) * g(d, i0) * u(-i0) - g(b, c) * u(d) assert (add_1.data == Array.zeros(2, 2, 2)) # Now let us replace index `d` with `a`: add_2 = g(b, c) * g(a, i0) * u(-i0) - g(b, c) * u(a) assert (add_2.data == Array.zeros(2, 2, 2)) # some more tests # perp is tensor orthogonal to u^\mu perp = u(a) * u(b) + g(a, b) mul_1 = u(-a) * perp(a, b) assert (mul_1.data == Array([0, 0])) mul_2 = u(-c) * perp(c, a) * perp(d, b) assert (mul_2.data == Array.zeros(2, 2, 2)) def test_index_iteration(): L = TensorIndexType("Lorentz", dummy_name="L") i0, i1, i2, i3, i4 = tensor_indices('i0:5', L) L0 = tensor_indices('L_0', L) L1 = tensor_indices('L_1', L) A = TensorHead("A", [L, L]) B = TensorHead("B", [L, L], TensorSymmetry.fully_symmetric(2)) e1 = A(i0,i2) e2 = A(i0,-i0) e3 = A(i0,i1)*B(i2,i3) e4 = A(i0,i1)*B(i2,-i1) e5 = A(i0,i1)*B(-i0,-i1) e6 = e1 + e4 assert list(e1._iterate_free_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e1._iterate_dummy_indices) == [] assert list(e1._iterate_indices) == [(i0, (1, 0)), (i2, (1, 1))] assert list(e2._iterate_free_indices) == [] assert list(e2._iterate_dummy_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e2._iterate_indices) == [(L0, (1, 0)), (-L0, (1, 1))] assert list(e3._iterate_free_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e3._iterate_dummy_indices) == [] assert list(e3._iterate_indices) == [(i0, (0, 1, 0)), (i1, (0, 1, 1)), (i2, (1, 1, 0)), (i3, (1, 1, 1))] assert list(e4._iterate_free_indices) == [(i0, (0, 1, 0)), (i2, (1, 1, 0))] assert list(e4._iterate_dummy_indices) == [(L0, (0, 1, 1)), (-L0, (1, 1, 1))] assert list(e4._iterate_indices) == [(i0, (0, 1, 0)), (L0, (0, 1, 1)), (i2, (1, 1, 0)), (-L0, (1, 1, 1))] assert list(e5._iterate_free_indices) == [] assert list(e5._iterate_dummy_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e5._iterate_indices) == [(L0, (0, 1, 0)), (L1, (0, 1, 1)), (-L0, (1, 1, 0)), (-L1, (1, 1, 1))] assert list(e6._iterate_free_indices) == [(i0, (0, 0, 1, 0)), (i2, (0, 1, 1, 0)), (i0, (1, 1, 0)), (i2, (1, 1, 1))] assert list(e6._iterate_dummy_indices) == [(L0, (0, 0, 1, 1)), (-L0, (0, 1, 1, 1))] assert list(e6._iterate_indices) == [(i0, (0, 0, 1, 0)), (L0, (0, 0, 1, 1)), (i2, (0, 1, 1, 0)), (-L0, (0, 1, 1, 1)), (i0, (1, 1, 0)), (i2, (1, 1, 1))] assert e1.get_indices() == [i0, i2] assert e1.get_free_indices() == [i0, i2] assert e2.get_indices() == [L0, -L0] assert e2.get_free_indices() == [] assert e3.get_indices() == [i0, i1, i2, i3] assert e3.get_free_indices() == [i0, i1, i2, i3] assert e4.get_indices() == [i0, L0, i2, -L0] assert e4.get_free_indices() == [i0, i2] assert e5.get_indices() == [L0, L1, -L0, -L1] assert e5.get_free_indices() == [] def test_tensor_expand(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) L_0 = TensorIndex("L_0", L) A, B, C, D = tensor_heads("A B C D", [L]) assert isinstance(Add(A(i), B(i)), TensAdd) assert isinstance(expand(A(i)+B(i)), TensAdd) expr = A(i)*(A(-i)+B(-i)) assert expr.args == (A(L_0), A(-L_0) + B(-L_0)) assert expr != A(i)*A(-i) + A(i)*B(-i) assert expr.expand() == A(i)*A(-i) + A(i)*B(-i) assert str(expr) == "A(L_0)*(A(-L_0) + B(-L_0))" expr = A(i)*A(j) + A(i)*B(j) assert str(expr) == "A(i)*A(j) + A(i)*B(j)" expr = A(-i)*(A(i)*A(j) + A(i)*B(j)*C(k)*C(-k)) assert expr != A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert expr.expand() == A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j)*C(k)*C(-k) assert str(expr) == "A(-L_0)*(A(L_0)*A(j) + A(L_0)*B(j)*C(L_1)*C(-L_1))" assert str(expr.canon_bp()) == 'A(j)*A(L_0)*A(-L_0) + A(L_0)*A(-L_0)*B(j)*C(L_1)*C(-L_1)' expr = A(-i)*(2*A(i)*A(j) + A(i)*B(j)) assert expr.expand() == 2*A(-i)*A(i)*A(j) + A(-i)*A(i)*B(j) expr = 2*A(i)*A(-i) assert expr.coeff == 2 expr = A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k))) assert str(expr) == "A(i)*(B(j)*C(k) + C(j)*(A(k) + D(k)))" assert str(expr.expand()) == "A(i)*B(j)*C(k) + A(i)*C(j)*A(k) + A(i)*C(j)*D(k)" assert isinstance(TensMul(3), TensMul) tm = TensMul(3).doit() assert tm == 3 assert isinstance(tm, Integer) p1 = B(j)*B(-j) + B(j)*C(-j) p2 = C(-i)*p1 p3 = A(i)*p2 assert p3.expand() == A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = A(i)*(B(-i) + C(-i)*(B(j)*B(-j) + B(j)*C(-j))) assert expr.expand() == A(i)*B(-i) + A(i)*C(-i)*B(j)*B(-j) + A(i)*C(-i)*B(j)*C(-j) expr = C(-i)*(B(j)*B(-j) + B(j)*C(-j)) assert expr.expand() == C(-i)*B(j)*B(-j) + C(-i)*B(j)*C(-j) def test_tensor_alternative_construction(): L = TensorIndexType("L") i0, i1, i2, i3 = tensor_indices('i0:4', L) A = TensorHead("A", [L]) x, y = symbols("x y") assert A(i0) == A(Symbol("i0")) assert A(-i0) == A(-Symbol("i0")) raises(TypeError, lambda: A(x+y)) raises(ValueError, lambda: A(2*x)) def test_tensor_replacement(): L = TensorIndexType("L") L2 = TensorIndexType("L2", dim=2) i, j, k, l = tensor_indices("i j k l", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) K = TensorHead("K", [L]*4) expr = H(i, j) repl = {H(i,-j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, -2], [3, -4]])) assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [-2, 4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [2, -4]]) # Test stability of optional parameter 'indices' assert expr.replace_with_arrays(repl) == Array([[1, -2], [3, -4]]) expr = H(i,j) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) assert expr.replace_with_arrays(repl) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, j]) == Array([[1, 2], [3, 4]]) assert expr.replace_with_arrays(repl, [i, -j]) == Array([[1, -2], [3, -4]]) assert expr.replace_with_arrays(repl, [-i, j]) == Array([[1, 2], [-3, -4]]) assert expr.replace_with_arrays(repl, [-i, -j]) == Array([[1, -2], [-3, 4]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[1, 3], [2, 4]]) assert expr.replace_with_arrays(repl, [j, -i]) == Array([[1, -3], [2, -4]]) assert expr.replace_with_arrays(repl, [-j, i]) == Array([[1, 3], [-2, -4]]) assert expr.replace_with_arrays(repl, [-j, -i]) == Array([[1, -3], [-2, 4]]) # Not the same indices: expr = H(i,k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} assert expr._extract_data(repl) == ([i, k], Array([[1, 2], [3, 4]])) expr = A(i)*A(-i) repl = {A(i): [1,2], L: diag(1, -1)} assert expr._extract_data(repl) == ([], -3) assert expr.replace_with_arrays(repl, []) == -3 expr = K(i, j, -j, k)*A(-i)*A(-k) repl = {A(i): [1, 2], K(i,j,k,l): Array([1]*2**4).reshape(2,2,2,2), L: diag(1, -1)} assert expr._extract_data(repl) expr = H(j, k) repl = {H(i,j): [[1,2],[3,4]], L: diag(1, -1)} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {B(i): [1, 2]} raises(ValueError, lambda: expr._extract_data(repl)) expr = A(i) repl = {A(i): [[1, 2], [3, 4]]} raises(ValueError, lambda: expr._extract_data(repl)) # TensAdd: expr = A(k)*H(i, j) + B(k)*H(i, j) repl = {A(k): [1], B(k): [1], H(i, j): [[1, 2],[3,4]], L:diag(1,1)} assert expr._extract_data(repl) == ([k, i, j], Array([[[2, 4], [6, 8]]])) assert expr.replace_with_arrays(repl, [k, i, j]) == Array([[[2, 4], [6, 8]]]) assert expr.replace_with_arrays(repl, [k, j, i]) == Array([[[2, 6], [4, 8]]]) expr = A(k)*A(-k) + 100 repl = {A(k): [2, 3], L: diag(1, 1)} assert expr.replace_with_arrays(repl, []) == 113 ## Symmetrization: expr = H(i, j) + H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[2, 5], [5, 8]])) assert expr.replace_with_arrays(repl, [i, j]) == Array([[2, 5], [5, 8]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[2, 5], [5, 8]]) ## Anti-symmetrization: expr = H(i, j) - H(j, i) repl = {H(i, j): [[1, 2], [3, 4]]} assert expr.replace_with_arrays(repl, [i, j]) == Array([[0, -1], [1, 0]]) assert expr.replace_with_arrays(repl, [j, i]) == Array([[0, 1], [-1, 0]]) # Tensors with contractions in replacements: expr = K(i, j, k, -k) repl = {K(i, j, k, -k): [[1, 2], [3, 4]]} assert expr._extract_data(repl) == ([i, j], Array([[1, 2], [3, 4]])) expr = H(i, -i) repl = {H(i, -i): 42} assert expr._extract_data(repl) == ([], 42) expr = H(i, -i) repl = { H(-i, -j): Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]), L: Array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]), } assert expr._extract_data(repl) == ([], 4) # Replace with array, raise exception if indices are not compatible: expr = A(i)*A(j) repl = {A(i): [1, 2]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [j])) # Raise exception if array dimension is not compatible: expr = A(i) repl = {A(i): [[1, 2]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [i])) # TensorIndexType with dimension, wrong dimension in replacement array: u1, u2, u3 = tensor_indices("u1:4", L2) U = TensorHead("U", [L2]) expr = U(u1)*U(-u2) repl = {U(u1): [[1]]} raises(ValueError, lambda: expr.replace_with_arrays(repl, [u1, -u2])) def test_rewrite_tensor_to_Indexed(): L = TensorIndexType("L", dim=4) A = TensorHead("A", [L]*4) B = TensorHead("B", [L]) i0, i1, i2, i3 = symbols("i0:4") L_0, L_1 = symbols("L_0:2") a1 = A(i0, i1, i2, i3) assert a1.rewrite(Indexed) == Indexed(Symbol("A"), i0, i1, i2, i3) a2 = A(i0, -i0, i2, i3) assert a2.rewrite(Indexed) == Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) a3 = a2 + A(i2, i3, i0, -i0) assert a3.rewrite(Indexed) == \ Sum(Indexed(Symbol("A"), L_0, L_0, i2, i3), (L_0, 0, 3)) +\ Sum(Indexed(Symbol("A"), i2, i3, L_0, L_0), (L_0, 0, 3)) b1 = B(-i0)*a1 assert b1.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_0)*Indexed(Symbol("A"), L_0, i1, i2, i3), (L_0, 0, 3)) b2 = B(-i3)*a2 assert b2.rewrite(Indexed) == Sum(Indexed(Symbol("B"), L_1)*Indexed(Symbol("A"), L_0, L_0, i2, L_1), (L_0, 0, 3), (L_1, 0, 3)) def test_tensorsymmetry(): with warns_deprecated_sympy(): tensorsymmetry([1]*2) def test_tensorhead(): with warns_deprecated_sympy(): tensorhead('A', []) def test_TensorType(): with warns_deprecated_sympy(): sym2 = TensorSymmetry.fully_symmetric(2) Lorentz = TensorIndexType('Lorentz') S2 = TensorType([Lorentz]*2, sym2) assert isinstance(S2, TensorType)
a42bea992714d28431c78e2a9bd4f73242885ca8151510e44872c385236a3886
from sympy.core import symbols, Symbol, Tuple, oo, Dummy from sympy.tensor.indexed import IndexException from sympy.testing.pytest import raises from sympy.utilities.iterables import iterable # import test: from sympy.concrete.summations import Sum from sympy.core.function import Function, Subs, Derivative from sympy.core.relational import (StrictLessThan, GreaterThan, StrictGreaterThan, LessThan) from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.series.order import Order from sympy.sets.fancysets import Range from sympy.tensor.indexed import IndexedBase, Idx, Indexed def test_Idx_construction(): i, a, b = symbols('i a b', integer=True) assert Idx(i) != Idx(i, 1) assert Idx(i, a) == Idx(i, (0, a - 1)) assert Idx(i, oo) == Idx(i, (0, oo)) x = symbols('x', integer=False) raises(TypeError, lambda: Idx(x)) raises(TypeError, lambda: Idx(0.5)) raises(TypeError, lambda: Idx(i, x)) raises(TypeError, lambda: Idx(i, 0.5)) raises(TypeError, lambda: Idx(i, (x, 5))) raises(TypeError, lambda: Idx(i, (2, x))) raises(TypeError, lambda: Idx(i, (2, 3.5))) def test_Idx_properties(): i, a, b = symbols('i a b', integer=True) assert Idx(i).is_integer assert Idx(i).name == 'i' assert Idx(i + 2).name == 'i + 2' assert Idx('foo').name == 'foo' def test_Idx_bounds(): i, a, b = symbols('i a b', integer=True) assert Idx(i).lower is None assert Idx(i).upper is None assert Idx(i, a).lower == 0 assert Idx(i, a).upper == a - 1 assert Idx(i, 5).lower == 0 assert Idx(i, 5).upper == 4 assert Idx(i, oo).lower == 0 assert Idx(i, oo).upper is oo assert Idx(i, (a, b)).lower == a assert Idx(i, (a, b)).upper == b assert Idx(i, (1, 5)).lower == 1 assert Idx(i, (1, 5)).upper == 5 assert Idx(i, (-oo, oo)).lower is -oo assert Idx(i, (-oo, oo)).upper is oo def test_Idx_fixed_bounds(): i, a, b, x = symbols('i a b x', integer=True) assert Idx(x).lower is None assert Idx(x).upper is None assert Idx(x, a).lower == 0 assert Idx(x, a).upper == a - 1 assert Idx(x, 5).lower == 0 assert Idx(x, 5).upper == 4 assert Idx(x, oo).lower == 0 assert Idx(x, oo).upper is oo assert Idx(x, (a, b)).lower == a assert Idx(x, (a, b)).upper == b assert Idx(x, (1, 5)).lower == 1 assert Idx(x, (1, 5)).upper == 5 assert Idx(x, (-oo, oo)).lower is -oo assert Idx(x, (-oo, oo)).upper is oo def test_Idx_inequalities(): i14 = Idx("i14", (1, 4)) i79 = Idx("i79", (7, 9)) i46 = Idx("i46", (4, 6)) i35 = Idx("i35", (3, 5)) assert i14 <= 5 assert i14 < 5 assert not (i14 >= 5) assert not (i14 > 5) assert 5 >= i14 assert 5 > i14 assert not (5 <= i14) assert not (5 < i14) assert LessThan(i14, 5) assert StrictLessThan(i14, 5) assert not GreaterThan(i14, 5) assert not StrictGreaterThan(i14, 5) assert i14 <= 4 assert isinstance(i14 < 4, StrictLessThan) assert isinstance(i14 >= 4, GreaterThan) assert not (i14 > 4) assert isinstance(i14 <= 1, LessThan) assert not (i14 < 1) assert i14 >= 1 assert isinstance(i14 > 1, StrictGreaterThan) assert not (i14 <= 0) assert not (i14 < 0) assert i14 >= 0 assert i14 > 0 from sympy.abc import x assert isinstance(i14 < x, StrictLessThan) assert isinstance(i14 > x, StrictGreaterThan) assert isinstance(i14 <= x, LessThan) assert isinstance(i14 >= x, GreaterThan) assert i14 < i79 assert i14 <= i79 assert not (i14 > i79) assert not (i14 >= i79) assert i14 <= i46 assert isinstance(i14 < i46, StrictLessThan) assert isinstance(i14 >= i46, GreaterThan) assert not (i14 > i46) assert isinstance(i14 < i35, StrictLessThan) assert isinstance(i14 > i35, StrictGreaterThan) assert isinstance(i14 <= i35, LessThan) assert isinstance(i14 >= i35, GreaterThan) iNone1 = Idx("iNone1") iNone2 = Idx("iNone2") assert isinstance(iNone1 < iNone2, StrictLessThan) assert isinstance(iNone1 > iNone2, StrictGreaterThan) assert isinstance(iNone1 <= iNone2, LessThan) assert isinstance(iNone1 >= iNone2, GreaterThan) def test_Idx_inequalities_current_fails(): i14 = Idx("i14", (1, 4)) assert S(5) >= i14 assert S(5) > i14 assert not (S(5) <= i14) assert not (S(5) < i14) def test_Idx_func_args(): i, a, b = symbols('i a b', integer=True) ii = Idx(i) assert ii.func(*ii.args) == ii ii = Idx(i, a) assert ii.func(*ii.args) == ii ii = Idx(i, (a, b)) assert ii.func(*ii.args) == ii def test_Idx_subs(): i, a, b = symbols('i a b', integer=True) assert Idx(i, a).subs(a, b) == Idx(i, b) assert Idx(i, a).subs(i, b) == Idx(b, a) assert Idx(i).subs(i, 2) == Idx(2) assert Idx(i, a).subs(a, 2) == Idx(i, 2) assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b)) def test_IndexedBase_sugar(): i, j = symbols('i j', integer=True) a = symbols('a') A1 = Indexed(a, i, j) A2 = IndexedBase(a) assert A1 == A2[i, j] assert A1 == A2[(i, j)] assert A1 == A2[[i, j]] assert A1 == A2[Tuple(i, j)] assert all(a.is_Integer for a in A2[1, 0].args[1:]) def test_IndexedBase_subs(): i = symbols('i', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i] == B[i].subs(b, a) C = {1: 2} assert C[1] == A[1].subs(A, C) def test_IndexedBase_shape(): i, j, m, n = symbols('i j m n', integer=True) a = IndexedBase('a', shape=(m, m)) b = IndexedBase('a', shape=(m, n)) assert b.shape == Tuple(m, n) assert a[i, j] != b[i, j] assert a[i, j] == b[i, j].subs(n, m) assert b.func(*b.args) == b assert b[i, j].func(*b[i, j].args) == b[i, j] raises(IndexException, lambda: b[i]) raises(IndexException, lambda: b[i, i, j]) F = IndexedBase("F", shape=m) assert F.shape == Tuple(m) assert F[i].subs(i, j) == F[j] raises(IndexException, lambda: F[i, j]) def test_IndexedBase_assumptions(): i = Symbol('i', integer=True) a = Symbol('a') A = IndexedBase(a, positive=True) for c in (A, A[i]): assert c.is_real assert c.is_complex assert not c.is_imaginary assert c.is_nonnegative assert c.is_nonzero assert c.is_commutative assert log(exp(c)) == c assert A != IndexedBase(a) assert A == IndexedBase(a, positive=True, real=True) assert A[i] != Indexed(a, i) def test_IndexedBase_assumptions_inheritance(): I = Symbol('I', integer=True) I_inherit = IndexedBase(I) I_explicit = IndexedBase('I', integer=True) assert I_inherit.is_integer assert I_explicit.is_integer assert I_inherit.label.is_integer assert I_explicit.label.is_integer assert I_inherit == I_explicit def test_issue_17652(): """Regression test issue #17652. IndexedBase.label should not upcast subclasses of Symbol """ class SubClass(Symbol): pass x = SubClass('X') assert type(x) == SubClass base = IndexedBase(x) assert type(x) == SubClass assert type(base.label) == SubClass def test_Indexed_constructor(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A == Indexed(Symbol('A'), i, j) assert A == Indexed(IndexedBase('A'), i, j) raises(TypeError, lambda: Indexed(A, i, j)) raises(IndexException, lambda: Indexed("A")) assert A.free_symbols == {A, A.base.label, i, j} def test_Indexed_func_args(): i, j = symbols('i j', integer=True) a = symbols('a') A = Indexed(a, i, j) assert A == A.func(*A.args) def test_Indexed_subs(): i, j, k = symbols('i j k', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i, j] == B[i, j].subs(b, a) assert A[i, j] == A[i, k].subs(k, j) def test_Indexed_properties(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A.name == 'A[i, j]' assert A.rank == 2 assert A.indices == (i, j) assert A.base == IndexedBase('A') assert A.ranges == [None, None] raises(IndexException, lambda: A.shape) n, m = symbols('n m', integer=True) assert Indexed('A', Idx( i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n) raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape) def test_Indexed_shape_precedence(): i, j = symbols('i j', integer=True) o, p = symbols('o p', integer=True) n, m = symbols('n m', integer=True) a = IndexedBase('a', shape=(o, p)) assert a.shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), (None, None)] assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p) def test_complex_indices(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert A.rank == 2 assert A.indices == (i, i + j) def test_not_interable(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert not iterable(A) def test_Indexed_coeff(): N = Symbol('N', integer=True) len_y = N i = Idx('i', len_y-1) y = IndexedBase('y', shape=(len_y,)) a = (1/y[i+1]*y[i]).coeff(y[i]) b = (y[i]/y[i+1]).coeff(y[i]) assert a == b def test_differentiation(): from sympy.functions.special.tensor_functions import KroneckerDelta i, j, k, l = symbols('i j k l', cls=Idx) a = symbols('a') m, n = symbols("m, n", integer=True, finite=True) assert m.is_real h, L = symbols('h L', cls=IndexedBase) hi, hj = h[i], h[j] expr = hi assert expr.diff(hj) == KroneckerDelta(i, j) assert expr.diff(hi) == KroneckerDelta(i, i) expr = S(2) * hi assert expr.diff(hj) == S(2) * KroneckerDelta(i, j) assert expr.diff(hi) == S(2) * KroneckerDelta(i, i) assert expr.diff(a) is S.Zero assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2 assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit() assert Sum(expr, (i, -oo, oo)).diff(hi).doit() is oo expr = a * hj * hj / S(2) assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j) assert expr.diff(a) == hj * hj / S(2) assert expr.diff(a, 2) is S.Zero assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j] assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i] expr = a * sin(hj * hj) assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j) assert expr.diff(hj) == 2*a*cos(hj * hj) * hj expr = a * L[i, j] * h[j] assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j) assert expr.diff(hj) == a*L[i, j] assert expr.diff(L[i, j]) == a*h[j] assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j] assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j] assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l] assert h[m].diff(h[m]) == 1 assert h[m].diff(h[n]) == KroneckerDelta(m, n) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a def test_indexed_series(): A = IndexedBase("A") i = symbols("i", integer=True) assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i]) def test_indexed_is_constant(): A = IndexedBase("A") i, j, k = symbols("i,j,k") assert not A[i].is_constant() assert A[i].is_constant(j) assert not A[1+2*i, k].is_constant() assert not A[1+2*i, k].is_constant(i) assert A[1+2*i, k].is_constant(j) assert not A[1+2*i, k].is_constant(k) def test_issue_12533(): d = IndexedBase('d') assert IndexedBase(range(5)) == Range(0, 5, 1) assert d[0].subs(Symbol("d"), range(5)) == 0 assert d[0].subs(d, range(5)) == 0 assert d[1].subs(d, range(5)) == 1 assert Indexed(Range(5), 2) == 2 def test_issue_12780(): n = symbols("n") i = Idx("i", (0, n)) raises(TypeError, lambda: i.subs(n, 1.5)) def test_issue_18604(): m = symbols("m") assert Idx("i", m).name == 'i' assert Idx("i", m).lower == 0 assert Idx("i", m).upper == m - 1 m = symbols("m", real=False) raises(TypeError, lambda: Idx("i", m)) def test_Subs_with_Indexed(): A = IndexedBase("A") i, j, k = symbols("i,j,k") x, y, z = symbols("x,y,z") f = Function("f") assert Subs(A[i], A[i], A[j]).diff(A[j]) == 1 assert Subs(A[i], A[i], x).diff(A[i]) == 0 assert Subs(A[i], A[i], x).diff(A[j]) == 0 assert Subs(A[i], A[i], x).diff(x) == 1 assert Subs(A[i], A[i], x).diff(y) == 0 assert Subs(A[i], A[i], A[j]).diff(A[k]) == KroneckerDelta(j, k) assert Subs(x, x, A[i]).diff(A[j]) == KroneckerDelta(i, j) assert Subs(f(A[i]), A[i], x).diff(A[j]) == 0 assert Subs(f(A[i]), A[i], A[k]).diff(A[j]) == Derivative(f(A[k]), A[k])*KroneckerDelta(j, k) assert Subs(x, x, A[i]**2).diff(A[j]) == 2*KroneckerDelta(i, j)*A[i] assert Subs(A[i], A[i], A[j]**2).diff(A[k]) == 2*KroneckerDelta(j, k)*A[j] assert Subs(A[i]*x, x, A[i]).diff(A[i]) == 2*A[i] assert Subs(A[i]*x, x, A[i]).diff(A[j]) == 2*A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[i]) == A[j] + A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[j]) == A[i] + A[j]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[i]).diff(A[k]) == 2*A[i]*KroneckerDelta(i, k) assert Subs(A[i]*x, x, A[j]).diff(A[k]) == KroneckerDelta(i, k)*A[j] + KroneckerDelta(j, k)*A[i] assert Subs(A[i]*x, A[i], x).diff(A[i]) == 0 assert Subs(A[i]*x, A[i], x).diff(A[j]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[i]) == x assert Subs(A[i]*x, A[j], x).diff(A[j]) == x*KroneckerDelta(i, j) assert Subs(A[i]*x, A[i], x).diff(A[k]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[k]) == x*KroneckerDelta(i, k) def test_complicated_derivative_with_Indexed(): x, y = symbols("x,y", cls=IndexedBase) sigma = symbols("sigma") i, j, k = symbols("i,j,k") m0,m1,m2,m3,m4,m5 = symbols("m0:6") f = Function("f") expr = f((x[i] - y[i])**2/sigma) _xi_1 = symbols("xi_1", cls=Dummy) assert expr.diff(x[m0]).dummy_eq( (x[i] - y[i])*KroneckerDelta(i, m0)*\ 2*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma ) assert expr.diff(x[m0]).diff(x[m1]).dummy_eq( 2*KroneckerDelta(i, m0)*\ KroneckerDelta(i, m1)*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma + \ 4*(x[i] - y[i])**2*KroneckerDelta(i, m0)*KroneckerDelta(i, m1)*\ Subs( Derivative(f(_xi_1), _xi_1, _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma**2 )
61e47cd40668d263c1c7b4346b24ec40df24fc33f5a4b0e803872ff4897cc3dc
import random from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import _af_invert from sympy.testing.pytest import raises from sympy.core.function import diff from sympy.core.symbol import symbols from sympy.functions.elementary.complexes import (adjoint, conjugate, transpose) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.tensor.array import Array, ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableSparseNDimArray from sympy.tensor.array.arrayop import tensorproduct, tensorcontraction, derive_by_array, permutedims, Flatten, \ tensordiagonal def test_import_NDimArray(): from sympy.tensor.array import NDimArray del NDimArray def test_tensorproduct(): x,y,z,t = symbols('x y z t') from sympy.abc import a,b,c,d assert tensorproduct() == 1 assert tensorproduct([x]) == Array([x]) assert tensorproduct([x], [y]) == Array([[x*y]]) assert tensorproduct([x], [y], [z]) == Array([[[x*y*z]]]) assert tensorproduct([x], [y], [z], [t]) == Array([[[[x*y*z*t]]]]) assert tensorproduct(x) == x assert tensorproduct(x, y) == x*y assert tensorproduct(x, y, z) == x*y*z assert tensorproduct(x, y, z, t) == x*y*z*t for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: A = ArrayType([x, y]) B = ArrayType([1, 2, 3]) C = ArrayType([a, b, c, d]) assert tensorproduct(A, B, C) == ArrayType([[[a*x, b*x, c*x, d*x], [2*a*x, 2*b*x, 2*c*x, 2*d*x], [3*a*x, 3*b*x, 3*c*x, 3*d*x]], [[a*y, b*y, c*y, d*y], [2*a*y, 2*b*y, 2*c*y, 2*d*y], [3*a*y, 3*b*y, 3*c*y, 3*d*y]]]) assert tensorproduct([x, y], [1, 2, 3]) == tensorproduct(A, B) assert tensorproduct(A, 2) == ArrayType([2*x, 2*y]) assert tensorproduct(A, [2]) == ArrayType([[2*x], [2*y]]) assert tensorproduct([2], A) == ArrayType([[2*x, 2*y]]) assert tensorproduct(a, A) == ArrayType([a*x, a*y]) assert tensorproduct(a, A, B) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]]) assert tensorproduct(A, B, a) == ArrayType([[a*x, 2*a*x, 3*a*x], [a*y, 2*a*y, 3*a*y]]) assert tensorproduct(B, a, A) == ArrayType([[a*x, a*y], [2*a*x, 2*a*y], [3*a*x, 3*a*y]]) # tests for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: a = SparseArrayType({1:2, 3:4},(1000, 2000)) b = SparseArrayType({1:2, 3:4},(1000, 2000)) assert tensorproduct(a, b) == ImmutableSparseNDimArray({2000001: 4, 2000003: 8, 6000001: 8, 6000003: 16}, (1000, 2000, 1000, 2000)) def test_tensorcontraction(): from sympy.abc import a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x B = Array(range(18), (2, 3, 3)) assert tensorcontraction(B, (1, 2)) == Array([12, 39]) C1 = Array([a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x], (2, 3, 2, 2)) assert tensorcontraction(C1, (0, 2)) == Array([[a + o, b + p], [e + s, f + t], [i + w, j + x]]) assert tensorcontraction(C1, (0, 2, 3)) == Array([a + p, e + t, i + x]) assert tensorcontraction(C1, (2, 3)) == Array([[a + d, e + h, i + l], [m + p, q + t, u + x]]) def test_derivative_by_array(): from sympy.abc import i, j, t, x, y, z bexpr = x*y**2*exp(z)*log(t) sexpr = sin(bexpr) cexpr = cos(bexpr) a = Array([sexpr]) assert derive_by_array(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert derive_by_array(sexpr, [x, y, z]) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert derive_by_array(a, [x, y, z]) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert derive_by_array(sexpr, [[x, y], [z, t]]) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert derive_by_array(a, [[x, y], [z, t]]) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert derive_by_array([[x, y], [z, t]], [x, y]) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert derive_by_array([[x, y], [z, t]], [[x, y], [z, t]]) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(sexpr, t) == x*y**2*exp(z)*cos(x*y**2*exp(z)*log(t))/t assert diff(sexpr, Array([x, y, z])) == Array([bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr, bexpr*cexpr]) assert diff(a, Array([x, y, z])) == Array([[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr], [bexpr*cexpr]]) assert diff(sexpr, Array([[x, y], [z, t]])) == Array([[bexpr/x*cexpr, 2*y*bexpr/y**2*cexpr], [bexpr*cexpr, bexpr/log(t)/t*cexpr]]) assert diff(a, Array([[x, y], [z, t]])) == Array([[[bexpr/x*cexpr], [2*y*bexpr/y**2*cexpr]], [[bexpr*cexpr], [bexpr/log(t)/t*cexpr]]]) assert diff(Array([[x, y], [z, t]]), Array([x, y])) == Array([[[1, 0], [0, 0]], [[0, 1], [0, 0]]]) assert diff(Array([[x, y], [z, t]]), Array([[x, y], [z, t]])) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # test for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: b = MutableSparseNDimArray({0:i, 1:j}, (10000, 20000)) assert derive_by_array(b, i) == ImmutableSparseNDimArray({0: 1}, (10000, 20000)) assert derive_by_array(b, (i, j)) == ImmutableSparseNDimArray({0: 1, 200000001: 1}, (2, 10000, 20000)) #https://github.com/sympy/sympy/issues/20655 U = Array([x, y, z]) E = 2 assert derive_by_array(E, U) == ImmutableDenseNDimArray([0, 0, 0]) def test_issue_emerged_while_discussing_10972(): ua = Array([-1,0]) Fa = Array([[0, 1], [-1, 0]]) po = tensorproduct(Fa, ua, Fa, ua) assert tensorcontraction(po, (1, 2), (4, 5)) == Array([[0, 0], [0, 1]]) sa = symbols('a0:144') po = Array(sa, [2, 2, 3, 3, 2, 2]) assert tensorcontraction(po, (0, 1), (2, 3), (4, 5)) == sa[0] + sa[108] + sa[111] + sa[124] + sa[127] + sa[140] + sa[143] + sa[16] + sa[19] + sa[3] + sa[32] + sa[35] assert tensorcontraction(po, (0, 1, 4, 5), (2, 3)) == sa[0] + sa[111] + sa[127] + sa[143] + sa[16] + sa[32] assert tensorcontraction(po, (0, 1), (4, 5)) == Array([[sa[0] + sa[108] + sa[111] + sa[3], sa[112] + sa[115] + sa[4] + sa[7], sa[11] + sa[116] + sa[119] + sa[8]], [sa[12] + sa[120] + sa[123] + sa[15], sa[124] + sa[127] + sa[16] + sa[19], sa[128] + sa[131] + sa[20] + sa[23]], [sa[132] + sa[135] + sa[24] + sa[27], sa[136] + sa[139] + sa[28] + sa[31], sa[140] + sa[143] + sa[32] + sa[35]]]) assert tensorcontraction(po, (0, 1), (2, 3)) == Array([[sa[0] + sa[108] + sa[124] + sa[140] + sa[16] + sa[32], sa[1] + sa[109] + sa[125] + sa[141] + sa[17] + sa[33]], [sa[110] + sa[126] + sa[142] + sa[18] + sa[2] + sa[34], sa[111] + sa[127] + sa[143] + sa[19] + sa[3] + sa[35]]]) def test_array_permutedims(): sa = symbols('a0:144') for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: m1 = ArrayType(sa[:6], (2, 3)) assert permutedims(m1, (1, 0)) == transpose(m1) assert m1.tomatrix().T == permutedims(m1, (1, 0)).tomatrix() assert m1.tomatrix().T == transpose(m1).tomatrix() assert m1.tomatrix().C == conjugate(m1).tomatrix() assert m1.tomatrix().H == adjoint(m1).tomatrix() assert m1.tomatrix().T == m1.transpose().tomatrix() assert m1.tomatrix().C == m1.conjugate().tomatrix() assert m1.tomatrix().H == m1.adjoint().tomatrix() raises(ValueError, lambda: permutedims(m1, (0,))) raises(ValueError, lambda: permutedims(m1, (0, 0))) raises(ValueError, lambda: permutedims(m1, (1, 2, 0))) # Some tests with random arrays: dims = 6 shape = [random.randint(1,5) for i in range(dims)] elems = [random.random() for i in range(tensorproduct(*shape))] ra = ArrayType(elems, shape) perm = list(range(dims)) # Randomize the permutation: random.shuffle(perm) # Test inverse permutation: assert permutedims(permutedims(ra, perm), _af_invert(perm)) == ra # Test that permuted shape corresponds to action by `Permutation`: assert permutedims(ra, perm).shape == tuple(Permutation(perm)(shape)) z = ArrayType.zeros(4,5,6,7) assert permutedims(z, (2, 3, 1, 0)).shape == (6, 7, 5, 4) assert permutedims(z, [2, 3, 1, 0]).shape == (6, 7, 5, 4) assert permutedims(z, Permutation([2, 3, 1, 0])).shape == (6, 7, 5, 4) po = ArrayType(sa, [2, 2, 3, 3, 2, 2]) raises(ValueError, lambda: permutedims(po, (1, 1))) raises(ValueError, lambda: po.transpose()) raises(ValueError, lambda: po.adjoint()) assert permutedims(po, reversed(range(po.rank()))) == ArrayType( [[[[[[sa[0], sa[72]], [sa[36], sa[108]]], [[sa[12], sa[84]], [sa[48], sa[120]]], [[sa[24], sa[96]], [sa[60], sa[132]]]], [[[sa[4], sa[76]], [sa[40], sa[112]]], [[sa[16], sa[88]], [sa[52], sa[124]]], [[sa[28], sa[100]], [sa[64], sa[136]]]], [[[sa[8], sa[80]], [sa[44], sa[116]]], [[sa[20], sa[92]], [sa[56], sa[128]]], [[sa[32], sa[104]], [sa[68], sa[140]]]]], [[[[sa[2], sa[74]], [sa[38], sa[110]]], [[sa[14], sa[86]], [sa[50], sa[122]]], [[sa[26], sa[98]], [sa[62], sa[134]]]], [[[sa[6], sa[78]], [sa[42], sa[114]]], [[sa[18], sa[90]], [sa[54], sa[126]]], [[sa[30], sa[102]], [sa[66], sa[138]]]], [[[sa[10], sa[82]], [sa[46], sa[118]]], [[sa[22], sa[94]], [sa[58], sa[130]]], [[sa[34], sa[106]], [sa[70], sa[142]]]]]], [[[[[sa[1], sa[73]], [sa[37], sa[109]]], [[sa[13], sa[85]], [sa[49], sa[121]]], [[sa[25], sa[97]], [sa[61], sa[133]]]], [[[sa[5], sa[77]], [sa[41], sa[113]]], [[sa[17], sa[89]], [sa[53], sa[125]]], [[sa[29], sa[101]], [sa[65], sa[137]]]], [[[sa[9], sa[81]], [sa[45], sa[117]]], [[sa[21], sa[93]], [sa[57], sa[129]]], [[sa[33], sa[105]], [sa[69], sa[141]]]]], [[[[sa[3], sa[75]], [sa[39], sa[111]]], [[sa[15], sa[87]], [sa[51], sa[123]]], [[sa[27], sa[99]], [sa[63], sa[135]]]], [[[sa[7], sa[79]], [sa[43], sa[115]]], [[sa[19], sa[91]], [sa[55], sa[127]]], [[sa[31], sa[103]], [sa[67], sa[139]]]], [[[sa[11], sa[83]], [sa[47], sa[119]]], [[sa[23], sa[95]], [sa[59], sa[131]]], [[sa[35], sa[107]], [sa[71], sa[143]]]]]]]) assert permutedims(po, (1, 0, 2, 3, 4, 5)) == ArrayType( [[[[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]]], [[[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]]], [[[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]]], [[[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]]], [[[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]]], [[[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]]]], [[[[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]]], [[[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]]], [[[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]]], [ [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]]], [[[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]]], [[[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]]]]) assert permutedims(po, (0, 2, 1, 4, 3, 5)) == ArrayType( [[[[[[sa[0], sa[1]], [sa[4], sa[5]], [sa[8], sa[9]]], [[sa[2], sa[3]], [sa[6], sa[7]], [sa[10], sa[11]]]], [[[sa[36], sa[37]], [sa[40], sa[41]], [sa[44], sa[45]]], [[sa[38], sa[39]], [sa[42], sa[43]], [sa[46], sa[47]]]]], [[[[sa[12], sa[13]], [sa[16], sa[17]], [sa[20], sa[21]]], [[sa[14], sa[15]], [sa[18], sa[19]], [sa[22], sa[23]]]], [[[sa[48], sa[49]], [sa[52], sa[53]], [sa[56], sa[57]]], [[sa[50], sa[51]], [sa[54], sa[55]], [sa[58], sa[59]]]]], [[[[sa[24], sa[25]], [sa[28], sa[29]], [sa[32], sa[33]]], [[sa[26], sa[27]], [sa[30], sa[31]], [sa[34], sa[35]]]], [[[sa[60], sa[61]], [sa[64], sa[65]], [sa[68], sa[69]]], [[sa[62], sa[63]], [sa[66], sa[67]], [sa[70], sa[71]]]]]], [[[[[sa[72], sa[73]], [sa[76], sa[77]], [sa[80], sa[81]]], [[sa[74], sa[75]], [sa[78], sa[79]], [sa[82], sa[83]]]], [[[sa[108], sa[109]], [sa[112], sa[113]], [sa[116], sa[117]]], [[sa[110], sa[111]], [sa[114], sa[115]], [sa[118], sa[119]]]]], [[[[sa[84], sa[85]], [sa[88], sa[89]], [sa[92], sa[93]]], [[sa[86], sa[87]], [sa[90], sa[91]], [sa[94], sa[95]]]], [[[sa[120], sa[121]], [sa[124], sa[125]], [sa[128], sa[129]]], [[sa[122], sa[123]], [sa[126], sa[127]], [sa[130], sa[131]]]]], [[[[sa[96], sa[97]], [sa[100], sa[101]], [sa[104], sa[105]]], [[sa[98], sa[99]], [sa[102], sa[103]], [sa[106], sa[107]]]], [[[sa[132], sa[133]], [sa[136], sa[137]], [sa[140], sa[141]]], [[sa[134], sa[135]], [sa[138], sa[139]], [sa[142], sa[143]]]]]]]) po2 = po.reshape(4, 9, 2, 2) assert po2 == ArrayType([[[[sa[0], sa[1]], [sa[2], sa[3]]], [[sa[4], sa[5]], [sa[6], sa[7]]], [[sa[8], sa[9]], [sa[10], sa[11]]], [[sa[12], sa[13]], [sa[14], sa[15]]], [[sa[16], sa[17]], [sa[18], sa[19]]], [[sa[20], sa[21]], [sa[22], sa[23]]], [[sa[24], sa[25]], [sa[26], sa[27]]], [[sa[28], sa[29]], [sa[30], sa[31]]], [[sa[32], sa[33]], [sa[34], sa[35]]]], [[[sa[36], sa[37]], [sa[38], sa[39]]], [[sa[40], sa[41]], [sa[42], sa[43]]], [[sa[44], sa[45]], [sa[46], sa[47]]], [[sa[48], sa[49]], [sa[50], sa[51]]], [[sa[52], sa[53]], [sa[54], sa[55]]], [[sa[56], sa[57]], [sa[58], sa[59]]], [[sa[60], sa[61]], [sa[62], sa[63]]], [[sa[64], sa[65]], [sa[66], sa[67]]], [[sa[68], sa[69]], [sa[70], sa[71]]]], [[[sa[72], sa[73]], [sa[74], sa[75]]], [[sa[76], sa[77]], [sa[78], sa[79]]], [[sa[80], sa[81]], [sa[82], sa[83]]], [[sa[84], sa[85]], [sa[86], sa[87]]], [[sa[88], sa[89]], [sa[90], sa[91]]], [[sa[92], sa[93]], [sa[94], sa[95]]], [[sa[96], sa[97]], [sa[98], sa[99]]], [[sa[100], sa[101]], [sa[102], sa[103]]], [[sa[104], sa[105]], [sa[106], sa[107]]]], [[[sa[108], sa[109]], [sa[110], sa[111]]], [[sa[112], sa[113]], [sa[114], sa[115]]], [[sa[116], sa[117]], [sa[118], sa[119]]], [[sa[120], sa[121]], [sa[122], sa[123]]], [[sa[124], sa[125]], [sa[126], sa[127]]], [[sa[128], sa[129]], [sa[130], sa[131]]], [[sa[132], sa[133]], [sa[134], sa[135]]], [[sa[136], sa[137]], [sa[138], sa[139]]], [[sa[140], sa[141]], [sa[142], sa[143]]]]]) assert permutedims(po2, (3, 2, 0, 1)) == ArrayType([[[[sa[0], sa[4], sa[8], sa[12], sa[16], sa[20], sa[24], sa[28], sa[32]], [sa[36], sa[40], sa[44], sa[48], sa[52], sa[56], sa[60], sa[64], sa[68]], [sa[72], sa[76], sa[80], sa[84], sa[88], sa[92], sa[96], sa[100], sa[104]], [sa[108], sa[112], sa[116], sa[120], sa[124], sa[128], sa[132], sa[136], sa[140]]], [[sa[2], sa[6], sa[10], sa[14], sa[18], sa[22], sa[26], sa[30], sa[34]], [sa[38], sa[42], sa[46], sa[50], sa[54], sa[58], sa[62], sa[66], sa[70]], [sa[74], sa[78], sa[82], sa[86], sa[90], sa[94], sa[98], sa[102], sa[106]], [sa[110], sa[114], sa[118], sa[122], sa[126], sa[130], sa[134], sa[138], sa[142]]]], [[[sa[1], sa[5], sa[9], sa[13], sa[17], sa[21], sa[25], sa[29], sa[33]], [sa[37], sa[41], sa[45], sa[49], sa[53], sa[57], sa[61], sa[65], sa[69]], [sa[73], sa[77], sa[81], sa[85], sa[89], sa[93], sa[97], sa[101], sa[105]], [sa[109], sa[113], sa[117], sa[121], sa[125], sa[129], sa[133], sa[137], sa[141]]], [[sa[3], sa[7], sa[11], sa[15], sa[19], sa[23], sa[27], sa[31], sa[35]], [sa[39], sa[43], sa[47], sa[51], sa[55], sa[59], sa[63], sa[67], sa[71]], [sa[75], sa[79], sa[83], sa[87], sa[91], sa[95], sa[99], sa[103], sa[107]], [sa[111], sa[115], sa[119], sa[123], sa[127], sa[131], sa[135], sa[139], sa[143]]]]]) # test for large scale sparse array for SparseArrayType in [ImmutableSparseNDimArray, MutableSparseNDimArray]: A = SparseArrayType({1:1, 10000:2}, (10000, 20000, 10000)) assert permutedims(A, (0, 1, 2)) == A assert permutedims(A, (1, 0, 2)) == SparseArrayType({1: 1, 100000000: 2}, (20000, 10000, 10000)) B = SparseArrayType({1:1, 20000:2}, (10000, 20000)) assert B.transpose() == SparseArrayType({10000: 1, 1: 2}, (20000, 10000)) def test_flatten(): from sympy.matrices.dense import Matrix for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray, Matrix]: A = ArrayType(range(24)).reshape(4, 6) assert [i for i in Flatten(A)] == [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] for i, v in enumerate(Flatten(A)): assert i == v def test_tensordiagonal(): from sympy.matrices.dense import eye expr = Array(range(9)).reshape(3, 3) raises(ValueError, lambda: tensordiagonal(expr, [0], [1])) raises(ValueError, lambda: tensordiagonal(expr, [0, 0])) assert tensordiagonal(eye(3), [0, 1]) == Array([1, 1, 1]) assert tensordiagonal(expr, [0, 1]) == Array([0, 4, 8]) x, y, z = symbols("x y z") expr2 = tensorproduct([x, y, z], expr) assert tensordiagonal(expr2, [1, 2]) == Array([[0, 4*x, 8*x], [0, 4*y, 8*y], [0, 4*z, 8*z]]) assert tensordiagonal(expr2, [0, 1]) == Array([[0, 3*y, 6*z], [x, 4*y, 7*z], [2*x, 5*y, 8*z]]) assert tensordiagonal(expr2, [0, 1, 2]) == Array([0, 4*y, 8*z]) # assert tensordiagonal(expr2, [0]) == permutedims(expr2, [1, 2, 0]) # assert tensordiagonal(expr2, [1]) == permutedims(expr2, [0, 2, 1]) # assert tensordiagonal(expr2, [2]) == expr2 # assert tensordiagonal(expr2, [1], [2]) == expr2 # assert tensordiagonal(expr2, [0], [1]) == permutedims(expr2, [2, 0, 1]) a, b, c, X, Y, Z = symbols("a b c X Y Z") expr3 = tensorproduct([x, y, z], [1, 2, 3], [a, b, c], [X, Y, Z]) assert tensordiagonal(expr3, [0, 1, 2, 3]) == Array([x*a*X, 2*y*b*Y, 3*z*c*Z]) assert tensordiagonal(expr3, [0, 1], [2, 3]) == tensorproduct([x, 2*y, 3*z], [a*X, b*Y, c*Z]) # assert tensordiagonal(expr3, [0], [1, 2], [3]) == tensorproduct([x, y, z], [a, 2*b, 3*c], [X, Y, Z]) assert tensordiagonal(tensordiagonal(expr3, [2, 3]), [0, 1]) == tensorproduct([a*X, b*Y, c*Z], [x, 2*y, 3*z]) raises(ValueError, lambda: tensordiagonal([[1, 2, 3], [4, 5, 6]], [0, 1])) raises(ValueError, lambda: tensordiagonal(expr3.reshape(3, 3, 9), [1, 2]))
f638bfd78b339feaa82fa0d0e66bb320535a5de7d3ee7e793c58a05e8170939d
from copy import copy from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray from sympy.core.containers import Dict from sympy.core.function import diff from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.matrices import SparseMatrix from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.matrices import Matrix from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray from sympy.testing.pytest import raises def test_ndim_array_initiation(): arr_with_no_elements = ImmutableDenseNDimArray([], shape=(0,)) assert len(arr_with_no_elements) == 0 assert arr_with_no_elements.rank() == 1 raises(ValueError, lambda: ImmutableDenseNDimArray([0], shape=(0,))) raises(ValueError, lambda: ImmutableDenseNDimArray([1, 2, 3], shape=(0,))) raises(ValueError, lambda: ImmutableDenseNDimArray([], shape=())) raises(ValueError, lambda: ImmutableSparseNDimArray([0], shape=(0,))) raises(ValueError, lambda: ImmutableSparseNDimArray([1, 2, 3], shape=(0,))) raises(ValueError, lambda: ImmutableSparseNDimArray([], shape=())) arr_with_one_element = ImmutableDenseNDimArray([23]) assert len(arr_with_one_element) == 1 assert arr_with_one_element[0] == 23 assert arr_with_one_element[:] == ImmutableDenseNDimArray([23]) assert arr_with_one_element.rank() == 1 arr_with_symbol_element = ImmutableDenseNDimArray([Symbol('x')]) assert len(arr_with_symbol_element) == 1 assert arr_with_symbol_element[0] == Symbol('x') assert arr_with_symbol_element[:] == ImmutableDenseNDimArray([Symbol('x')]) assert arr_with_symbol_element.rank() == 1 number5 = 5 vector = ImmutableDenseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector.rank() == 1 vector = ImmutableSparseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector._sparse_array == Dict() assert vector.rank() == 1 n_dim_array = ImmutableDenseNDimArray(range(3**4), (3, 3, 3, 3,)) assert len(n_dim_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == (3, 3, 3, 3) assert n_dim_array.rank() == 4 array_shape = (3, 3, 3, 3) sparse_array = ImmutableSparseNDimArray.zeros(*array_shape) assert len(sparse_array._sparse_array) == 0 assert len(sparse_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == array_shape assert n_dim_array.rank() == 4 one_dim_array = ImmutableDenseNDimArray([2, 3, 1]) assert len(one_dim_array) == 3 assert one_dim_array.shape == (3,) assert one_dim_array.rank() == 1 assert one_dim_array.tolist() == [2, 3, 1] shape = (3, 3) array_with_many_args = ImmutableSparseNDimArray.zeros(*shape) assert len(array_with_many_args) == 3 * 3 assert array_with_many_args.shape == shape assert array_with_many_args[0, 0] == 0 assert array_with_many_args.rank() == 2 shape = (int(3), int(3)) array_with_long_shape = ImmutableSparseNDimArray.zeros(*shape) assert len(array_with_long_shape) == 3 * 3 assert array_with_long_shape.shape == shape assert array_with_long_shape[int(0), int(0)] == 0 assert array_with_long_shape.rank() == 2 vector_with_long_shape = ImmutableDenseNDimArray(range(5), int(5)) assert len(vector_with_long_shape) == 5 assert vector_with_long_shape.shape == (int(5),) assert vector_with_long_shape.rank() == 1 raises(ValueError, lambda: vector_with_long_shape[int(5)]) from sympy.abc import x for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: rank_zero_array = ArrayType(x) assert len(rank_zero_array) == 1 assert rank_zero_array.shape == () assert rank_zero_array.rank() == 0 assert rank_zero_array[()] == x raises(ValueError, lambda: rank_zero_array[0]) def test_reshape(): array = ImmutableDenseNDimArray(range(50), 50) assert array.shape == (50,) assert array.rank() == 1 array = array.reshape(5, 5, 2) assert array.shape == (5, 5, 2) assert array.rank() == 3 assert len(array) == 50 def test_getitem(): for ArrayType in [ImmutableDenseNDimArray, ImmutableSparseNDimArray]: array = ArrayType(range(24)).reshape(2, 3, 4) assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) assert array[0, 0] == ArrayType([0, 1, 2, 3]) value = 0 for i in range(2): for j in range(3): for k in range(4): assert array[i, j, k] == value value += 1 raises(ValueError, lambda: array[3, 4, 5]) raises(ValueError, lambda: array[3, 4, 5, 6]) raises(ValueError, lambda: array[3, 4, 5, 3:4]) def test_iterator(): array = ImmutableDenseNDimArray(range(4), (2, 2)) assert array[0] == ImmutableDenseNDimArray([0, 1]) assert array[1] == ImmutableDenseNDimArray([2, 3]) array = array.reshape(4) j = 0 for i in array: assert i == j j += 1 def test_sparse(): sparse_array = ImmutableSparseNDimArray([0, 0, 0, 1], (2, 2)) assert len(sparse_array) == 2 * 2 # dictionary where all data is, only non-zero entries are actually stored: assert len(sparse_array._sparse_array) == 1 assert sparse_array.tolist() == [[0, 0], [0, 1]] for i, j in zip(sparse_array, [[0, 0], [0, 1]]): assert i == ImmutableSparseNDimArray(j) def sparse_assignment(): sparse_array[0, 0] = 123 assert len(sparse_array._sparse_array) == 1 raises(TypeError, sparse_assignment) assert len(sparse_array._sparse_array) == 1 assert sparse_array[0, 0] == 0 assert sparse_array/0 == ImmutableSparseNDimArray([[S.NaN, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2)) # test for large scale sparse array # equality test assert ImmutableSparseNDimArray.zeros(100000, 200000) == ImmutableSparseNDimArray.zeros(100000, 200000) # __mul__ and __rmul__ a = ImmutableSparseNDimArray({200001: 1}, (100000, 200000)) assert a * 3 == ImmutableSparseNDimArray({200001: 3}, (100000, 200000)) assert 3 * a == ImmutableSparseNDimArray({200001: 3}, (100000, 200000)) assert a * 0 == ImmutableSparseNDimArray({}, (100000, 200000)) assert 0 * a == ImmutableSparseNDimArray({}, (100000, 200000)) # __truediv__ assert a/3 == ImmutableSparseNDimArray({200001: Rational(1, 3)}, (100000, 200000)) # __neg__ assert -a == ImmutableSparseNDimArray({200001: -1}, (100000, 200000)) def test_calculation(): a = ImmutableDenseNDimArray([1]*9, (3, 3)) b = ImmutableDenseNDimArray([9]*9, (3, 3)) c = a + b for i in c: assert i == ImmutableDenseNDimArray([10, 10, 10]) assert c == ImmutableDenseNDimArray([10]*9, (3, 3)) assert c == ImmutableSparseNDimArray([10]*9, (3, 3)) c = b - a for i in c: assert i == ImmutableDenseNDimArray([8, 8, 8]) assert c == ImmutableDenseNDimArray([8]*9, (3, 3)) assert c == ImmutableSparseNDimArray([8]*9, (3, 3)) def test_ndim_array_converting(): dense_array = ImmutableDenseNDimArray([1, 2, 3, 4], (2, 2)) alist = dense_array.tolist() assert alist == [[1, 2], [3, 4]] matrix = dense_array.tomatrix() assert (isinstance(matrix, Matrix)) for i in range(len(dense_array)): assert dense_array[dense_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == dense_array.shape assert ImmutableDenseNDimArray(matrix) == dense_array assert ImmutableDenseNDimArray(matrix.as_immutable()) == dense_array assert ImmutableDenseNDimArray(matrix.as_mutable()) == dense_array sparse_array = ImmutableSparseNDimArray([1, 2, 3, 4], (2, 2)) alist = sparse_array.tolist() assert alist == [[1, 2], [3, 4]] matrix = sparse_array.tomatrix() assert(isinstance(matrix, SparseMatrix)) for i in range(len(sparse_array)): assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == sparse_array.shape assert ImmutableSparseNDimArray(matrix) == sparse_array assert ImmutableSparseNDimArray(matrix.as_immutable()) == sparse_array assert ImmutableSparseNDimArray(matrix.as_mutable()) == sparse_array def test_converting_functions(): arr_list = [1, 2, 3, 4] arr_matrix = Matrix(((1, 2), (3, 4))) # list arr_ndim_array = ImmutableDenseNDimArray(arr_list, (2, 2)) assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() # Matrix arr_ndim_array = ImmutableDenseNDimArray(arr_matrix) assert (isinstance(arr_ndim_array, ImmutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() assert arr_matrix.shape == arr_ndim_array.shape def test_equality(): first_list = [1, 2, 3, 4] second_list = [1, 2, 3, 4] third_list = [4, 3, 2, 1] assert first_list == second_list assert first_list != third_list first_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2)) second_ndim_array = ImmutableDenseNDimArray(second_list, (2, 2)) fourth_ndim_array = ImmutableDenseNDimArray(first_list, (2, 2)) assert first_ndim_array == second_ndim_array def assignment_attempt(a): a[0, 0] = 0 raises(TypeError, lambda: assignment_attempt(second_ndim_array)) assert first_ndim_array == second_ndim_array assert first_ndim_array == fourth_ndim_array def test_arithmetic(): a = ImmutableDenseNDimArray([3 for i in range(9)], (3, 3)) b = ImmutableDenseNDimArray([7 for i in range(9)], (3, 3)) c1 = a + b c2 = b + a assert c1 == c2 d1 = a - b d2 = b - a assert d1 == d2 * (-1) e1 = a * 5 e2 = 5 * a e3 = copy(a) e3 *= 5 assert e1 == e2 == e3 f1 = a / 5 f2 = copy(a) f2 /= 5 assert f1 == f2 assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \ f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5) assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \ == type(e1) == type(e2) == type(e3) == type(f1) z0 = -a assert z0 == ImmutableDenseNDimArray([-3 for i in range(9)], (3, 3)) def test_higher_dimenions(): m3 = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert m3.tolist() == [[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]] assert m3._get_tuple_index(0) == (0, 0, 0) assert m3._get_tuple_index(1) == (0, 0, 1) assert m3._get_tuple_index(4) == (0, 1, 0) assert m3._get_tuple_index(12) == (1, 0, 0) assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]' m3_rebuilt = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]) assert m3 == m3_rebuilt m3_other = ImmutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4)) assert m3 == m3_other def test_rebuild_immutable_arrays(): sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert sparr == sparr.func(*sparr.args) assert densarr == densarr.func(*densarr.args) def test_slices(): md = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert md[:] == ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert md[:, :, :] == md sd = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert sd == ImmutableSparseNDimArray(md) assert sd[:] == ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert sd[:, :, :] == sd def test_diff_and_applyfunc(): from sympy.abc import x, y, z md = ImmutableDenseNDimArray([[x, y], [x*z, x*y*z]]) assert md.diff(x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]]) assert diff(md, x) == ImmutableDenseNDimArray([[1, 0], [z, y*z]]) sd = ImmutableSparseNDimArray(md) assert sd == ImmutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2)) assert sd.diff(x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]]) assert diff(sd, x) == ImmutableSparseNDimArray([[1, 0], [z, y*z]]) mdn = md.applyfunc(lambda x: x*3) assert mdn == ImmutableDenseNDimArray([[3*x, 3*y], [3*x*z, 3*x*y*z]]) assert md != mdn sdn = sd.applyfunc(lambda x: x/2) assert sdn == ImmutableSparseNDimArray([[x/2, y/2], [x*z/2, x*y*z/2]]) assert sd != sdn sdp = sd.applyfunc(lambda x: x+1) assert sdp == ImmutableSparseNDimArray([[x + 1, y + 1], [x*z + 1, x*y*z + 1]]) assert sd != sdp def test_op_priority(): from sympy.abc import x md = ImmutableDenseNDimArray([1, 2, 3]) e1 = (1+x)*md e2 = md*(1+x) assert e1 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x]) assert e1 == e2 sd = ImmutableSparseNDimArray([1, 2, 3]) e3 = (1+x)*sd e4 = sd*(1+x) assert e3 == ImmutableDenseNDimArray([1+x, 2+2*x, 3+3*x]) assert e3 == e4 def test_symbolic_indexing(): x, y, z, w = symbols("x y z w") M = ImmutableDenseNDimArray([[x, y], [z, w]]) i, j = symbols("i, j") Mij = M[i, j] assert isinstance(Mij, Indexed) Ms = ImmutableSparseNDimArray([[2, 3*x], [4, 5]]) msij = Ms[i, j] assert isinstance(msij, Indexed) for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]: assert Mij.subs({i: oi, j: oj}) == M[oi, oj] assert msij.subs({i: oi, j: oj}) == Ms[oi, oj] A = IndexedBase("A", (0, 2)) assert A[0, 0].subs(A, M) == x assert A[i, j].subs(A, M) == M[i, j] assert M[i, j].subs(M, A) == A[i, j] assert isinstance(M[3 * i - 2, j], Indexed) assert M[3 * i - 2, j].subs({i: 1, j: 0}) == M[1, 0] assert isinstance(M[i, 0], Indexed) assert M[i, 0].subs(i, 0) == M[0, 0] assert M[0, i].subs(i, 1) == M[0, 1] assert M[i, j].diff(x) == ImmutableDenseNDimArray([[1, 0], [0, 0]])[i, j] assert Ms[i, j].diff(x) == ImmutableSparseNDimArray([[0, 3], [0, 0]])[i, j] Mo = ImmutableDenseNDimArray([1, 2, 3]) assert Mo[i].subs(i, 1) == 2 Mos = ImmutableSparseNDimArray([1, 2, 3]) assert Mos[i].subs(i, 1) == 2 raises(ValueError, lambda: M[i, 2]) raises(ValueError, lambda: M[i, -1]) raises(ValueError, lambda: M[2, i]) raises(ValueError, lambda: M[-1, i]) raises(ValueError, lambda: Ms[i, 2]) raises(ValueError, lambda: Ms[i, -1]) raises(ValueError, lambda: Ms[2, i]) raises(ValueError, lambda: Ms[-1, i]) def test_issue_12665(): # Testing Python 3 hash of immutable arrays: arr = ImmutableDenseNDimArray([1, 2, 3]) # This should NOT raise an exception: hash(arr) def test_zeros_without_shape(): arr = ImmutableDenseNDimArray.zeros() assert arr == ImmutableDenseNDimArray(0) def test_issue_21870(): a0 = ImmutableDenseNDimArray(0) assert a0.rank() == 0 a1 = ImmutableDenseNDimArray(a0) assert a1.rank() == 0
ac515ad28d0025880f367a6a8a397dd556fd116da480719073a72ef5fd5f22f6
from copy import copy from sympy.tensor.array.dense_ndim_array import MutableDenseNDimArray from sympy.core.function import diff from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.matrices import SparseMatrix from sympy.matrices import Matrix from sympy.tensor.array.sparse_ndim_array import MutableSparseNDimArray from sympy.testing.pytest import raises def test_ndim_array_initiation(): arr_with_one_element = MutableDenseNDimArray([23]) assert len(arr_with_one_element) == 1 assert arr_with_one_element[0] == 23 assert arr_with_one_element.rank() == 1 raises(ValueError, lambda: arr_with_one_element[1]) arr_with_symbol_element = MutableDenseNDimArray([Symbol('x')]) assert len(arr_with_symbol_element) == 1 assert arr_with_symbol_element[0] == Symbol('x') assert arr_with_symbol_element.rank() == 1 number5 = 5 vector = MutableDenseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector.rank() == 1 raises(ValueError, lambda: arr_with_one_element[5]) vector = MutableSparseNDimArray.zeros(number5) assert len(vector) == number5 assert vector.shape == (number5,) assert vector._sparse_array == {} assert vector.rank() == 1 n_dim_array = MutableDenseNDimArray(range(3**4), (3, 3, 3, 3,)) assert len(n_dim_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == (3, 3, 3, 3) assert n_dim_array.rank() == 4 raises(ValueError, lambda: n_dim_array[0, 0, 0, 3]) raises(ValueError, lambda: n_dim_array[3, 0, 0, 0]) raises(ValueError, lambda: n_dim_array[3**4]) array_shape = (3, 3, 3, 3) sparse_array = MutableSparseNDimArray.zeros(*array_shape) assert len(sparse_array._sparse_array) == 0 assert len(sparse_array) == 3 * 3 * 3 * 3 assert n_dim_array.shape == array_shape assert n_dim_array.rank() == 4 one_dim_array = MutableDenseNDimArray([2, 3, 1]) assert len(one_dim_array) == 3 assert one_dim_array.shape == (3,) assert one_dim_array.rank() == 1 assert one_dim_array.tolist() == [2, 3, 1] shape = (3, 3) array_with_many_args = MutableSparseNDimArray.zeros(*shape) assert len(array_with_many_args) == 3 * 3 assert array_with_many_args.shape == shape assert array_with_many_args[0, 0] == 0 assert array_with_many_args.rank() == 2 shape = (int(3), int(3)) array_with_long_shape = MutableSparseNDimArray.zeros(*shape) assert len(array_with_long_shape) == 3 * 3 assert array_with_long_shape.shape == shape assert array_with_long_shape[int(0), int(0)] == 0 assert array_with_long_shape.rank() == 2 vector_with_long_shape = MutableDenseNDimArray(range(5), int(5)) assert len(vector_with_long_shape) == 5 assert vector_with_long_shape.shape == (int(5),) assert vector_with_long_shape.rank() == 1 raises(ValueError, lambda: vector_with_long_shape[int(5)]) from sympy.abc import x for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]: rank_zero_array = ArrayType(x) assert len(rank_zero_array) == 1 assert rank_zero_array.shape == () assert rank_zero_array.rank() == 0 assert rank_zero_array[()] == x raises(ValueError, lambda: rank_zero_array[0]) def test_sympify(): from sympy.abc import x, y, z, t arr = MutableDenseNDimArray([[x, y], [1, z*t]]) arr_other = sympify(arr) assert arr_other.shape == (2, 2) assert arr_other == arr def test_reshape(): array = MutableDenseNDimArray(range(50), 50) assert array.shape == (50,) assert array.rank() == 1 array = array.reshape(5, 5, 2) assert array.shape == (5, 5, 2) assert array.rank() == 3 assert len(array) == 50 def test_iterator(): array = MutableDenseNDimArray(range(4), (2, 2)) assert array[0] == MutableDenseNDimArray([0, 1]) assert array[1] == MutableDenseNDimArray([2, 3]) array = array.reshape(4) j = 0 for i in array: assert i == j j += 1 def test_getitem(): for ArrayType in [MutableDenseNDimArray, MutableSparseNDimArray]: array = ArrayType(range(24)).reshape(2, 3, 4) assert array.tolist() == [[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]] assert array[0] == ArrayType([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]) assert array[0, 0] == ArrayType([0, 1, 2, 3]) value = 0 for i in range(2): for j in range(3): for k in range(4): assert array[i, j, k] == value value += 1 raises(ValueError, lambda: array[3, 4, 5]) raises(ValueError, lambda: array[3, 4, 5, 6]) raises(ValueError, lambda: array[3, 4, 5, 3:4]) def test_sparse(): sparse_array = MutableSparseNDimArray([0, 0, 0, 1], (2, 2)) assert len(sparse_array) == 2 * 2 # dictionary where all data is, only non-zero entries are actually stored: assert len(sparse_array._sparse_array) == 1 assert sparse_array.tolist() == [[0, 0], [0, 1]] for i, j in zip(sparse_array, [[0, 0], [0, 1]]): assert i == MutableSparseNDimArray(j) sparse_array[0, 0] = 123 assert len(sparse_array._sparse_array) == 2 assert sparse_array[0, 0] == 123 assert sparse_array/0 == MutableSparseNDimArray([[S.ComplexInfinity, S.NaN], [S.NaN, S.ComplexInfinity]], (2, 2)) # when element in sparse array become zero it will disappear from # dictionary sparse_array[0, 0] = 0 assert len(sparse_array._sparse_array) == 1 sparse_array[1, 1] = 0 assert len(sparse_array._sparse_array) == 0 assert sparse_array[0, 0] == 0 # test for large scale sparse array # equality test a = MutableSparseNDimArray.zeros(100000, 200000) b = MutableSparseNDimArray.zeros(100000, 200000) assert a == b a[1, 1] = 1 b[1, 1] = 2 assert a != b # __mul__ and __rmul__ assert a * 3 == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert 3 * a == MutableSparseNDimArray({200001: 3}, (100000, 200000)) assert a * 0 == MutableSparseNDimArray({}, (100000, 200000)) assert 0 * a == MutableSparseNDimArray({}, (100000, 200000)) # __truediv__ assert a/3 == MutableSparseNDimArray({200001: Rational(1, 3)}, (100000, 200000)) # __neg__ assert -a == MutableSparseNDimArray({200001: -1}, (100000, 200000)) def test_calculation(): a = MutableDenseNDimArray([1]*9, (3, 3)) b = MutableDenseNDimArray([9]*9, (3, 3)) c = a + b for i in c: assert i == MutableDenseNDimArray([10, 10, 10]) assert c == MutableDenseNDimArray([10]*9, (3, 3)) assert c == MutableSparseNDimArray([10]*9, (3, 3)) c = b - a for i in c: assert i == MutableSparseNDimArray([8, 8, 8]) assert c == MutableDenseNDimArray([8]*9, (3, 3)) assert c == MutableSparseNDimArray([8]*9, (3, 3)) def test_ndim_array_converting(): dense_array = MutableDenseNDimArray([1, 2, 3, 4], (2, 2)) alist = dense_array.tolist() assert alist == [[1, 2], [3, 4]] matrix = dense_array.tomatrix() assert (isinstance(matrix, Matrix)) for i in range(len(dense_array)): assert dense_array[dense_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == dense_array.shape assert MutableDenseNDimArray(matrix) == dense_array assert MutableDenseNDimArray(matrix.as_immutable()) == dense_array assert MutableDenseNDimArray(matrix.as_mutable()) == dense_array sparse_array = MutableSparseNDimArray([1, 2, 3, 4], (2, 2)) alist = sparse_array.tolist() assert alist == [[1, 2], [3, 4]] matrix = sparse_array.tomatrix() assert(isinstance(matrix, SparseMatrix)) for i in range(len(sparse_array)): assert sparse_array[sparse_array._get_tuple_index(i)] == matrix[i] assert matrix.shape == sparse_array.shape assert MutableSparseNDimArray(matrix) == sparse_array assert MutableSparseNDimArray(matrix.as_immutable()) == sparse_array assert MutableSparseNDimArray(matrix.as_mutable()) == sparse_array def test_converting_functions(): arr_list = [1, 2, 3, 4] arr_matrix = Matrix(((1, 2), (3, 4))) # list arr_ndim_array = MutableDenseNDimArray(arr_list, (2, 2)) assert (isinstance(arr_ndim_array, MutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() # Matrix arr_ndim_array = MutableDenseNDimArray(arr_matrix) assert (isinstance(arr_ndim_array, MutableDenseNDimArray)) assert arr_matrix.tolist() == arr_ndim_array.tolist() assert arr_matrix.shape == arr_ndim_array.shape def test_equality(): first_list = [1, 2, 3, 4] second_list = [1, 2, 3, 4] third_list = [4, 3, 2, 1] assert first_list == second_list assert first_list != third_list first_ndim_array = MutableDenseNDimArray(first_list, (2, 2)) second_ndim_array = MutableDenseNDimArray(second_list, (2, 2)) third_ndim_array = MutableDenseNDimArray(third_list, (2, 2)) fourth_ndim_array = MutableDenseNDimArray(first_list, (2, 2)) assert first_ndim_array == second_ndim_array second_ndim_array[0, 0] = 0 assert first_ndim_array != second_ndim_array assert first_ndim_array != third_ndim_array assert first_ndim_array == fourth_ndim_array def test_arithmetic(): a = MutableDenseNDimArray([3 for i in range(9)], (3, 3)) b = MutableDenseNDimArray([7 for i in range(9)], (3, 3)) c1 = a + b c2 = b + a assert c1 == c2 d1 = a - b d2 = b - a assert d1 == d2 * (-1) e1 = a * 5 e2 = 5 * a e3 = copy(a) e3 *= 5 assert e1 == e2 == e3 f1 = a / 5 f2 = copy(a) f2 /= 5 assert f1 == f2 assert f1[0, 0] == f1[0, 1] == f1[0, 2] == f1[1, 0] == f1[1, 1] == \ f1[1, 2] == f1[2, 0] == f1[2, 1] == f1[2, 2] == Rational(3, 5) assert type(a) == type(b) == type(c1) == type(c2) == type(d1) == type(d2) \ == type(e1) == type(e2) == type(e3) == type(f1) z0 = -a assert z0 == MutableDenseNDimArray([-3 for i in range(9)], (3, 3)) def test_higher_dimenions(): m3 = MutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert m3.tolist() == [[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]] assert m3._get_tuple_index(0) == (0, 0, 0) assert m3._get_tuple_index(1) == (0, 0, 1) assert m3._get_tuple_index(4) == (0, 1, 0) assert m3._get_tuple_index(12) == (1, 0, 0) assert str(m3) == '[[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]' m3_rebuilt = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]]) assert m3 == m3_rebuilt m3_other = MutableDenseNDimArray([[[10, 11, 12, 13], [14, 15, 16, 17], [18, 19, 20, 21]], [[22, 23, 24, 25], [26, 27, 28, 29], [30, 31, 32, 33]]], (2, 3, 4)) assert m3 == m3_other def test_slices(): md = MutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert md[:] == MutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert md[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert md[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert md[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert md[:, :, :] == md sd = MutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert sd == MutableSparseNDimArray(md) assert sd[:] == MutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert sd[:, :, 0].tomatrix() == Matrix([[10, 14, 18], [22, 26, 30]]) assert sd[0, 1:2, :].tomatrix() == Matrix([[14, 15, 16, 17]]) assert sd[0, 1:3, :].tomatrix() == Matrix([[14, 15, 16, 17], [18, 19, 20, 21]]) assert sd[:, :, :] == sd def test_slices_assign(): a = MutableDenseNDimArray(range(12), shape=(4, 3)) b = MutableSparseNDimArray(range(12), shape=(4, 3)) for i in [a, b]: assert i.tolist() == [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[0, :] = [2, 2, 2] assert i.tolist() == [[2, 2, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[0, 1:] = [8, 8] assert i.tolist() == [[2, 8, 8], [3, 4, 5], [6, 7, 8], [9, 10, 11]] i[1:3, 1] = [20, 44] assert i.tolist() == [[2, 8, 8], [3, 20, 5], [6, 44, 8], [9, 10, 11]] def test_diff(): from sympy.abc import x, y, z md = MutableDenseNDimArray([[x, y], [x*z, x*y*z]]) assert md.diff(x) == MutableDenseNDimArray([[1, 0], [z, y*z]]) assert diff(md, x) == MutableDenseNDimArray([[1, 0], [z, y*z]]) sd = MutableSparseNDimArray(md) assert sd == MutableSparseNDimArray([x, y, x*z, x*y*z], (2, 2)) assert sd.diff(x) == MutableSparseNDimArray([[1, 0], [z, y*z]]) assert diff(sd, x) == MutableSparseNDimArray([[1, 0], [z, y*z]])
7b74a29fe60eda7791f7628f7320f86fc7f948f6d5e6f2da1b34651fb722d15b
from collections import defaultdict from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.sorting import default_sort_key from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.combinatorics import Permutation from sympy.matrices.expressions.matexpr import MatrixElement from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, \ get_shape, ArrayElement, _array_tensor_product, _array_diagonal, _array_contraction, _array_add, \ _permute_dims from sympy.tensor.array.expressions.utils import _get_argindex, _get_diagonal_indices def convert_indexed_to_array(expr, first_indices=None): r""" Parse indexed expression into a form useful for code generation. Examples ======== >>> from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array >>> from sympy import MatrixSymbol, Sum, symbols >>> i, j, k, d = symbols("i j k d") >>> M = MatrixSymbol("M", d, d) >>> N = MatrixSymbol("N", d, d) Recognize the trace in summation form: >>> expr = Sum(M[i, i], (i, 0, d-1)) >>> convert_indexed_to_array(expr) ArrayContraction(M, (0, 1)) Recognize the extraction of the diagonal by using the same index `i` on both axes of the matrix: >>> expr = M[i, i] >>> convert_indexed_to_array(expr) ArrayDiagonal(M, (0, 1)) This function can help perform the transformation expressed in two different mathematical notations as: `\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}` Recognize the matrix multiplication in summation form: >>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1)) >>> convert_indexed_to_array(expr) ArrayContraction(ArrayTensorProduct(M, N), (1, 2)) Specify that ``k`` has to be the starting index: >>> convert_indexed_to_array(expr, first_indices=[k]) ArrayContraction(ArrayTensorProduct(N, M), (0, 3)) """ result, indices = _convert_indexed_to_array(expr) if any(isinstance(i, (int, Integer)) for i in indices): result = ArrayElement(result, indices) indices = [] if not first_indices: return result def _check_is_in(elem, indices): if elem in indices: return True if any(elem in i for i in indices if isinstance(i, frozenset)): return True return False repl = {j: i for i in indices if isinstance(i, frozenset) for j in i} first_indices = [repl.get(i, i) for i in first_indices] for i in first_indices: if not _check_is_in(i, indices): first_indices.remove(i) first_indices.extend([i for i in indices if not _check_is_in(i, first_indices)]) def _get_pos(elem, indices): if elem in indices: return indices.index(elem) for i, e in enumerate(indices): if not isinstance(e, frozenset): continue if elem in e: return i raise ValueError("not found") permutation = [_get_pos(i, first_indices) for i in indices] return _permute_dims(result, permutation) def _convert_indexed_to_array(expr): if isinstance(expr, Sum): function = expr.function summation_indices = expr.variables subexpr, subindices = _convert_indexed_to_array(function) subindicessets = {j: i for i in subindices if isinstance(i, frozenset) for j in i} summation_indices = sorted(set([subindicessets.get(i, i) for i in summation_indices]), key=default_sort_key) # TODO: check that Kronecker delta is only contracted to one other element: kronecker_indices = set([]) if isinstance(function, Mul): for arg in function.args: if not isinstance(arg, KroneckerDelta): continue arg_indices = sorted(set(arg.indices), key=default_sort_key) if len(arg_indices) == 2: kronecker_indices.update(arg_indices) kronecker_indices = sorted(kronecker_indices, key=default_sort_key) # Check dimensional consistency: shape = get_shape(subexpr) if shape: for ind, istart, iend in expr.limits: i = _get_argindex(subindices, ind) if istart != 0 or iend+1 != shape[i]: raise ValueError("summation index and array dimension mismatch: %s" % ind) contraction_indices = [] subindices = list(subindices) if isinstance(subexpr, ArrayDiagonal): diagonal_indices = list(subexpr.diagonal_indices) dindices = subindices[-len(diagonal_indices):] subindices = subindices[:-len(diagonal_indices)] for index in summation_indices: if index in dindices: position = dindices.index(index) contraction_indices.append(diagonal_indices[position]) diagonal_indices[position] = None diagonal_indices = [i for i in diagonal_indices if i is not None] for i, ind in enumerate(subindices): if ind in summation_indices: pass if diagonal_indices: subexpr = _array_diagonal(subexpr.expr, *diagonal_indices) else: subexpr = subexpr.expr axes_contraction = defaultdict(list) for i, ind in enumerate(subindices): include = all(j not in kronecker_indices for j in ind) if isinstance(ind, frozenset) else ind not in kronecker_indices if ind in summation_indices and include: axes_contraction[ind].append(i) subindices[i] = None for k, v in axes_contraction.items(): if any(i in kronecker_indices for i in k) if isinstance(k, frozenset) else k in kronecker_indices: continue contraction_indices.append(tuple(v)) free_indices = [i for i in subindices if i is not None] indices_ret = list(free_indices) indices_ret.sort(key=lambda x: free_indices.index(x)) return _array_contraction( subexpr, *contraction_indices, free_indices=free_indices ), tuple(indices_ret) if isinstance(expr, Mul): args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args]) # Check if there are KroneckerDelta objects: kronecker_delta_repl = {} for arg in args: if not isinstance(arg, KroneckerDelta): continue # Diagonalize two indices: i, j = arg.indices kindices = set(arg.indices) if i in kronecker_delta_repl: kindices.update(kronecker_delta_repl[i]) if j in kronecker_delta_repl: kindices.update(kronecker_delta_repl[j]) kindices = frozenset(kindices) for index in kindices: kronecker_delta_repl[index] = kindices # Remove KroneckerDelta objects, their relations should be handled by # ArrayDiagonal: newargs = [] newindices = [] for arg, loc_indices in zip(args, indices): if isinstance(arg, KroneckerDelta): continue newargs.append(arg) newindices.append(loc_indices) flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i] diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices) tp = _array_tensor_product(*newargs) if diagonal_indices: return _array_diagonal(tp, *diagonal_indices), ret_indices else: return tp, ret_indices if isinstance(expr, MatrixElement): indices = expr.args[1:] diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return _array_diagonal(expr.args[0], *diagonal_indices), ret_indices else: return expr.args[0], ret_indices if isinstance(expr, Indexed): indices = expr.indices diagonal_indices, ret_indices = _get_diagonal_indices(indices) if diagonal_indices: return _array_diagonal(expr.base, *diagonal_indices), ret_indices else: return expr.args[0], ret_indices if isinstance(expr, IndexedBase): raise NotImplementedError if isinstance(expr, KroneckerDelta): return expr, expr.indices if isinstance(expr, Add): args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args]) args = list(args) # Check if all indices are compatible. Otherwise expand the dimensions: index0set = set(indices[0]) index0 = indices[0] for i in range(1, len(args)): if set(indices[i]) != index0set: raise NotImplementedError("indices must be the same") permutation = Permutation([index0.index(j) for j in indices[i]]) # Perform index permutations: args[i] = _permute_dims(args[i], permutation) return _array_add(*args), index0 if isinstance(expr, Pow): subexpr, subindices = _convert_indexed_to_array(expr.base) if isinstance(expr.exp, (int, Integer)): diags = zip(*[(2*i, 2*i + 1) for i in range(expr.exp)]) arr = _array_diagonal(_array_tensor_product(*[subexpr for i in range(expr.exp)]), *diags) return arr, subindices return expr, ()
e156993571d3136a23952da3d7f38571c43c2809b048df24cbd5c193eb79df94
import itertools from collections import defaultdict from typing import Tuple as tTuple, Union as tUnion, FrozenSet, Dict as tDict, List, Optional from functools import singledispatch from itertools import accumulate from sympy import MatMul, Basic, Wild from sympy.assumptions.ask import (Q, ask) from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions.hadamard import hadamard_product, HadamardPower from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions.special import (Identity, ZeroMatrix, OneMatrix) from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions.transpose import Transpose from sympy.combinatorics.permutations import _af_invert, Permutation from sympy.matrices.common import MatrixCommon from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions.matexpr import MatrixElement from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \ ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \ ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE, \ ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> tTuple[Optional[_ArgE], bool, int]: scan_indices_int: List[int] = [i for i in scan_indices if i is not None] if len(scan_indices_int) == 0: return None, False, -1 transpose: bool = False candidate: Optional[_ArgE] = None candidate_index: int = -1 for arg_with_ind2 in remaining_args: if not isinstance(arg_with_ind2.element, MatrixExpr): continue for index in scan_indices_int: if candidate_index != -1 and candidate_index != index: # A candidate index has already been selected, check # repetitions only for that index: continue if index in arg_with_ind2.indices: if set(arg_with_ind2.indices) == {index}: # Index repeated twice in arg_with_ind2 candidate = None break if candidate is None: candidate = arg_with_ind2 candidate_index = index transpose = (index == arg_with_ind2.indices[1]) else: # Index repeated more than twice, break candidate = None break return candidate, transpose, candidate_index def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool): other = candidate.element other_index: Optional[int] if transpose2: other = Transpose(other) other_index = candidate.indices[0] else: other_index = candidate.indices[1] new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other editor.args_with_ind.remove(candidate) new_arge = _ArgE(new_element) return new_arge, other_index def _support_function_tp1_recognize(contraction_indices, args): if len(contraction_indices) == 0: return _a2m_tensor_product(*args) ac = _array_contraction(_array_tensor_product(*args), *contraction_indices) editor = _EditArrayContraction(ac) editor.track_permutation_start() while True: flag_stop: bool = True for i, arg_with_ind in enumerate(editor.args_with_ind): if not isinstance(arg_with_ind.element, MatrixExpr): continue first_index = arg_with_ind.indices[0] second_index = arg_with_ind.indices[1] first_frequency = editor.count_args_with_index(first_index) second_frequency = editor.count_args_with_index(second_index) if first_index is not None and first_frequency == 1 and first_index == second_index: flag_stop = False arg_with_ind.element = Trace(arg_with_ind.element)._normalize() arg_with_ind.indices = [] break scan_indices = [] if first_frequency == 2: scan_indices.append(first_index) if second_frequency == 2: scan_indices.append(second_index) candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:]) if candidate is not None: flag_stop = False editor.track_permutation_merge(arg_with_ind, candidate) transpose1 = found_index == first_index new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose) if found_index == first_index: new_arge.indices = [second_index, other_index] else: new_arge.indices = [first_index, other_index] set_indices = set(new_arge.indices) if len(set_indices) == 1 and set_indices != {None}: # This is a trace: new_arge.element = Trace(new_arge.element)._normalize() new_arge.indices = [] editor.args_with_ind[i] = new_arge # TODO: is this break necessary? break if flag_stop: break editor.refresh_indices() return editor.to_array_contraction() def _find_trivial_matrices_rewrite(expr: ArrayTensorProduct): # If there are matrices of trivial shape in the tensor product (i.e. shape # (1, 1)), try to check if there is a suitable non-trivial MatMul where the # expression can be inserted. # For example, if "a" has shape (1, 1) and "b" has shape (k, 1), the # expressions "_array_tensor_product(a, b*b.T)" can be rewritten as # "b*a*b.T" trivial_matrices = [] pos: Optional[int] = None first: Optional[MatrixExpr] = None second: Optional[MatrixExpr] = None removed: List[int] = [] counter: int = 0 args: List[Optional[Basic]] = [i for i in expr.args] for i, arg in enumerate(expr.args): if isinstance(arg, MatrixExpr): if arg.shape == (1, 1): trivial_matrices.append(arg) args[i] = None removed.extend([counter, counter+1]) elif pos is None and isinstance(arg, MatMul): margs = arg.args for j, e in enumerate(margs): if isinstance(e, MatrixExpr) and e.shape[1] == 1: pos = i first = MatMul.fromiter(margs[:j+1]) second = MatMul.fromiter(margs[j+1:]) break counter += get_rank(arg) if pos is None: return expr, [] args[pos] = (first*MatMul.fromiter(i for i in trivial_matrices)*second).doit() return _array_tensor_product(*[i for i in args if i is not None]), removed @singledispatch def _array2matrix(expr): return expr @_array2matrix.register(ZeroArray) # type: ignore def _(expr: ZeroArray): if get_rank(expr) == 2: return ZeroMatrix(*expr.shape) else: return expr @_array2matrix.register(ArrayTensorProduct) # type: ignore def _(expr: ArrayTensorProduct): return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args]) @_array2matrix.register(ArrayContraction) # type: ignore def _(expr: ArrayContraction): expr = expr.flatten_contraction_of_diagonal() expr = identify_removable_identity_matrices(expr) expr = expr.split_multiple_contractions() expr = identify_hadamard_products(expr) if not isinstance(expr, ArrayContraction): return _array2matrix(expr) subexpr = expr.expr contraction_indices: tTuple[tTuple[int]] = expr.contraction_indices if contraction_indices == ((0,), (1,)) or ( contraction_indices == ((0,),) and subexpr.shape[1] == 1 ) or ( contraction_indices == ((1,),) and subexpr.shape[0] == 1 ): shape = subexpr.shape subexpr = _array2matrix(subexpr) if isinstance(subexpr, MatrixExpr): return OneMatrix(1, shape[0])*subexpr*OneMatrix(shape[1], 1) if isinstance(subexpr, ArrayTensorProduct): newexpr = _array_contraction(_array2matrix(subexpr), *contraction_indices) contraction_indices = newexpr.contraction_indices if any(i > 2 for i in newexpr.subranks): addends = _array_add(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i, ArrayAdd) else [i] for i in expr.expr.args])]) newexpr = _array_contraction(addends, *contraction_indices) if isinstance(newexpr, ArrayAdd): ret = _array2matrix(newexpr) return ret assert isinstance(newexpr, ArrayContraction) ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args)) return ret elif not isinstance(subexpr, _CodegenArrayAbstract): ret = _array2matrix(subexpr) if isinstance(ret, MatrixExpr): assert expr.contraction_indices == ((0, 1),) return _a2m_trace(ret) else: return _array_contraction(ret, *expr.contraction_indices) @_array2matrix.register(ArrayDiagonal) # type: ignore def _(expr: ArrayDiagonal): pexpr = _array_diagonal(_array2matrix(expr.expr), *expr.diagonal_indices) pexpr = identify_hadamard_products(pexpr) if isinstance(pexpr, ArrayDiagonal): pexpr = _array_diag2contr_diagmatrix(pexpr) if expr == pexpr: return expr return _array2matrix(pexpr) @_array2matrix.register(PermuteDims) # type: ignore def _(expr: PermuteDims): if expr.permutation.array_form == [1, 0]: return _a2m_transpose(_array2matrix(expr.expr)) elif isinstance(expr.expr, ArrayTensorProduct): ranks = expr.expr.subranks inv_permutation = expr.permutation**(-1) newrange = [inv_permutation(i) for i in range(sum(ranks))] newpos = [] counter = 0 for rank in ranks: newpos.append(newrange[counter:counter+rank]) counter += rank newargs = [] newperm = [] scalars = [] for pos, arg in zip(newpos, expr.expr.args): if len(pos) == 0: scalars.append(_array2matrix(arg)) elif pos == sorted(pos): newargs.append((_array2matrix(arg), pos[0])) newperm.extend(pos) elif len(pos) == 2: newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0])) newperm.extend(reversed(pos)) else: raise NotImplementedError() newargs = [i[0] for i in newargs] return _permute_dims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm)) elif isinstance(expr.expr, ArrayContraction): mat_mul_lines = _array2matrix(expr.expr) if not isinstance(mat_mul_lines, ArrayTensorProduct): flat_cyclic_form = [j for i in expr.permutation.cyclic_form for j in i] expr_shape = get_shape(expr) if all(expr_shape[i] == 1 for i in flat_cyclic_form): return mat_mul_lines return mat_mul_lines # TODO: this assumes that all arguments are matrices, it may not be the case: permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))] args_array = [None for i in mat_mul_lines.args] for i in range(len(mat_mul_lines.args)): p1 = permuted[2*i] p2 = permuted[2*i+1] if p1 // 2 != p2 // 2: return _permute_dims(mat_mul_lines, permutation) pos = p1 // 2 if p1 > p2: args_array[i] = _a2m_transpose(mat_mul_lines.args[pos]) # type: ignore else: args_array[i] = mat_mul_lines.args[pos] # type: ignore return _a2m_tensor_product(*args_array) else: return expr @_array2matrix.register(ArrayAdd) # type: ignore def _(expr: ArrayAdd): addends = [_array2matrix(arg) for arg in expr.args] return _a2m_add(*addends) @_array2matrix.register(ArrayElementwiseApplyFunc) # type: ignore def _(expr: ArrayElementwiseApplyFunc): subexpr = _array2matrix(expr.expr) if isinstance(subexpr, MatrixExpr): if subexpr.shape != (1, 1): d = expr.function.bound_symbols[0] w = Wild("w", exclude=[d]) p = Wild("p", exclude=[d]) m = expr.function.expr.match(w*d**p) if m is not None: return m[w]*HadamardPower(subexpr, m[p]) return ElementwiseApplyFunction(expr.function, subexpr) else: return ArrayElementwiseApplyFunc(expr.function, subexpr) @_array2matrix.register(ArrayElement) # type: ignore def _(expr: ArrayElement): ret = _array2matrix(expr.name) if isinstance(ret, MatrixExpr): return MatrixElement(ret, *expr.indices) return ArrayElement(ret, expr.indices) @singledispatch def _remove_trivial_dims(expr): return expr, [] @_remove_trivial_dims.register(ArrayTensorProduct) # type: ignore def _(expr: ArrayTensorProduct): # Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`. # The matrix expression has to be equivalent to the tensor product of the # matrices, with trivial dimensions (i.e. dim=1) dropped. # That is, add contractions over trivial dimensions: removed = [] newargs = [] cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args])) pending = None prev_i = None for i, arg in enumerate(expr.args): current_range = list(range(cumul[i], cumul[i+1])) if isinstance(arg, OneArray): removed.extend(current_range) continue if not isinstance(arg, (MatrixExpr, MatrixCommon)): rarg, rem = _remove_trivial_dims(arg) removed.extend(rem) newargs.append(rarg) continue elif getattr(arg, "is_Identity", False) and arg.shape == (1, 1): if arg.shape == (1, 1): # Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1. removed.extend(current_range) continue elif arg.shape == (1, 1): arg, _ = _remove_trivial_dims(arg) # Matrix is equivalent to scalar: if len(newargs) == 0: newargs.append(arg) elif 1 in get_shape(newargs[-1]): if newargs[-1].shape[1] == 1: newargs[-1] = newargs[-1]*arg else: newargs[-1] = arg*newargs[-1] removed.extend(current_range) else: newargs.append(arg) elif 1 in arg.shape: k = [i for i in arg.shape if i != 1][0] if pending is None: pending = k prev_i = i newargs.append(arg) elif pending == k: prev = newargs[-1] if prev.shape[0] == 1: d1 = cumul[prev_i] prev = _a2m_transpose(prev) else: d1 = cumul[prev_i] + 1 if arg.shape[1] == 1: d2 = cumul[i] + 1 arg = _a2m_transpose(arg) else: d2 = cumul[i] newargs[-1] = prev*arg pending = None removed.extend([d1, d2]) else: newargs.append(arg) pending = k prev_i = i else: newargs.append(arg) pending = None newexpr, newremoved = _a2m_tensor_product(*newargs), sorted(removed) if isinstance(newexpr, ArrayTensorProduct): newexpr, newremoved2 = _find_trivial_matrices_rewrite(newexpr) newremoved = _combine_removed(-1, newremoved, newremoved2) return newexpr, newremoved @_remove_trivial_dims.register(ArrayAdd) # type: ignore def _(expr: ArrayAdd): rec = [_remove_trivial_dims(arg) for arg in expr.args] newargs, removed = zip(*rec) if len(set(map(tuple, removed))) != 1: return expr, [] return _a2m_add(*newargs), removed[0] @_remove_trivial_dims.register(PermuteDims) # type: ignore def _(expr: PermuteDims): subexpr, subremoved = _remove_trivial_dims(expr.expr) p = expr.permutation.array_form pinv = _af_invert(expr.permutation.array_form) shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))])) premoved = [pinv[i] for i in subremoved] p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved] # TODO: check if subremoved should be permuted as well... newexpr = _permute_dims(subexpr, p2) premoved = sorted(premoved) if newexpr != expr: newexpr, removed2 = _remove_trivial_dims(_array2matrix(newexpr)) premoved = _combine_removed(-1, premoved, removed2) return newexpr, premoved @_remove_trivial_dims.register(ArrayContraction) # type: ignore def _(expr: ArrayContraction): new_expr, removed0 = _array_contraction_to_diagonal_multiple_identity(expr) if new_expr != expr: new_expr2, removed1 = _remove_trivial_dims(_array2matrix(new_expr)) removed = _combine_removed(-1, removed0, removed1) return new_expr2, removed rank1 = get_rank(expr) expr, removed1 = remove_identity_matrices(expr) if not isinstance(expr, ArrayContraction): expr2, removed2 = _remove_trivial_dims(expr) return expr2, _combine_removed(rank1, removed1, removed2) newexpr, removed2 = _remove_trivial_dims(expr.expr) shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))])) new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices] # Remove possible empty tuples "()": new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0] contraction_indices_flat = [j for i in expr.contraction_indices for j in i] removed2 = [i for i in removed2 if i not in contraction_indices_flat] new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices] # Shift removed2: removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2) removed = _combine_removed(rank1, removed1, removed2) return _array_contraction(newexpr, *new_contraction_indices), list(removed) def _remove_diagonalized_identity_matrices(expr: ArrayDiagonal): assert isinstance(expr, ArrayDiagonal) editor = _EditArrayContraction(expr) mapping = {i: {j for j in editor.args_with_ind if i in j.indices} for i in range(-1, -1-editor.number_of_diagonal_indices, -1)} removed = [] counter: int = 0 for i, arg_with_ind in enumerate(editor.args_with_ind): counter += len(arg_with_ind.indices) if isinstance(arg_with_ind.element, Identity): if None in arg_with_ind.indices and any(i is not None and (i < 0) == True for i in arg_with_ind.indices): diag_ind = [j for j in arg_with_ind.indices if j is not None][0] other = [j for j in mapping[diag_ind] if j != arg_with_ind][0] if not isinstance(other.element, MatrixExpr): continue if 1 not in other.element.shape: continue if None not in other.indices: continue editor.args_with_ind[i].element = None none_index = other.indices.index(None) other.element = DiagMatrix(other.element) other_range = editor.get_absolute_range(other) removed.extend([other_range[0] + none_index]) editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None] removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, get_rank(expr.expr)) return editor.to_array_contraction(), removed @_remove_trivial_dims.register(ArrayDiagonal) # type: ignore def _(expr: ArrayDiagonal): newexpr, removed = _remove_trivial_dims(expr.expr) shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))])) new_diag_indices = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices} for old_diag_tuple, new_diag_tuple in new_diag_indices.items(): if len(new_diag_tuple) == 1: removed = [i for i in removed if i not in old_diag_tuple] new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices.values()] # type: ignore rank = get_rank(expr.expr) removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank) removed = sorted({i for i in removed}) # If there are single axes to diagonalize remaining, it means that their # corresponding dimension has been removed, they no longer need diagonalization: new_diag_indices = [i for i in new_diag_indices if len(i) > 0] # type: ignore if len(new_diag_indices) > 0: newexpr2 = _array_diagonal(newexpr, *new_diag_indices, allow_trivial_diags=True) else: newexpr2 = newexpr if isinstance(newexpr2, ArrayDiagonal): newexpr3, removed2 = _remove_diagonalized_identity_matrices(newexpr2) removed = _combine_removed(-1, removed, removed2) return newexpr3, removed else: return newexpr2, removed @_remove_trivial_dims.register(ElementwiseApplyFunction) # type: ignore def _(expr: ElementwiseApplyFunction): subexpr, removed = _remove_trivial_dims(expr.expr) if subexpr.shape == (1, 1): # TODO: move this to ElementwiseApplyFunction return expr.function(subexpr), removed + [0, 1] return ElementwiseApplyFunction(expr.function, subexpr), [] @_remove_trivial_dims.register(ArrayElementwiseApplyFunc) # type: ignore def _(expr: ArrayElementwiseApplyFunc): subexpr, removed = _remove_trivial_dims(expr.expr) return ArrayElementwiseApplyFunc(expr.function, subexpr), removed def convert_array_to_matrix(expr): r""" Recognize matrix expressions in codegen objects. If more than one matrix multiplication line have been detected, return a list with the matrix expressions. Examples ======== >>> from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array >>> from sympy.tensor.array import tensorcontraction, tensorproduct >>> from sympy import MatrixSymbol, Sum >>> from sympy.abc import i, j, k, l, N >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A*B >>> cg = convert_indexed_to_array(expr, first_indices=[k]) >>> convert_array_to_matrix(cg) B.T*A.T Transposition is detected: >>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A.T*B >>> cg = convert_indexed_to_array(expr, first_indices=[k]) >>> convert_array_to_matrix(cg) B.T*A Detect the trace: >>> expr = Sum(A[i, i], (i, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) Trace(A) Recognize some more complex traces: >>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) Trace(A*B) More complicated expressions: >>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1)) >>> cg = convert_indexed_to_array(expr) >>> convert_array_to_matrix(cg) A*B.T*A.T Expressions constructed from matrix expressions do not contain literal indices, the positions of free indices are returned instead: >>> expr = A*B >>> cg = convert_matrix_to_array(expr) >>> convert_array_to_matrix(cg) A*B If more than one line of matrix multiplications is detected, return separate matrix multiplication factors embedded in a tensor product object: >>> cg = tensorcontraction(tensorproduct(A, B, C, D), (1, 2), (5, 6)) >>> convert_array_to_matrix(cg) ArrayTensorProduct(A*B, C*D) The two lines have free indices at axes 0, 3 and 4, 7, respectively. """ rec = _array2matrix(expr) rec, removed = _remove_trivial_dims(rec) return rec def _array_diag2contr_diagmatrix(expr: ArrayDiagonal): if isinstance(expr.expr, ArrayTensorProduct): args = list(expr.expr.args) diag_indices = list(expr.diagonal_indices) mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args]) tuple_links = [[mapping[j] for j in i] for i in diag_indices] contr_indices = [] total_rank = get_rank(expr) replaced = [False for arg in args] for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)): if len(abs_pos) != 2: continue (pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos arg1 = args[pos1_outer] arg2 = args[pos2_outer] if get_rank(arg1) != 2 or get_rank(arg2) != 2: if replaced[pos1_outer]: diag_indices[i] = None if replaced[pos2_outer]: diag_indices[i] = None continue pos1_in2 = 1 - pos1_inner pos2_in2 = 1 - pos2_inner if arg1.shape[pos1_in2] == 1: if arg1.shape[pos1_inner] != 1: darg1 = DiagMatrix(arg1) else: darg1 = arg1 args.append(darg1) contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner))) total_rank += 1 diag_indices[i] = None args[pos1_outer] = OneArray(arg1.shape[pos1_in2]) replaced[pos1_outer] = True elif arg2.shape[pos2_in2] == 1: if arg2.shape[pos2_inner] != 1: darg2 = DiagMatrix(arg2) else: darg2 = arg2 args.append(darg2) contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner))) total_rank += 1 diag_indices[i] = None args[pos2_outer] = OneArray(arg2.shape[pos2_in2]) replaced[pos2_outer] = True diag_indices_new = [i for i in diag_indices if i is not None] cumul = list(accumulate([0] + [get_rank(arg) for arg in args])) contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices] tc = _array_contraction( _array_tensor_product(*args), *contr_indices2 ) td = _array_diagonal(tc, *diag_indices_new) return td return expr def _a2m_mul(*args): if not any(isinstance(i, _CodegenArrayAbstract) for i in args): from sympy.matrices.expressions.matmul import MatMul return MatMul(*args).doit() else: return _array_contraction( _array_tensor_product(*args), *[(2*i-1, 2*i) for i in range(1, len(args))] ) def _a2m_tensor_product(*args): scalars = [] arrays = [] for arg in args: if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)): arrays.append(arg) else: scalars.append(arg) scalar = Mul.fromiter(scalars) if len(arrays) == 0: return scalar if scalar != 1: if isinstance(arrays[0], _CodegenArrayAbstract): arrays = [scalar] + arrays else: arrays[0] *= scalar return _array_tensor_product(*arrays) def _a2m_add(*args): if not any(isinstance(i, _CodegenArrayAbstract) for i in args): from sympy.matrices.expressions.matadd import MatAdd return MatAdd(*args).doit() else: return _array_add(*args) def _a2m_trace(arg): if isinstance(arg, _CodegenArrayAbstract): return _array_contraction(arg, (0, 1)) else: from sympy.matrices.expressions.trace import Trace return Trace(arg) def _a2m_transpose(arg): if isinstance(arg, _CodegenArrayAbstract): return _permute_dims(arg, [1, 0]) else: from sympy.matrices.expressions.transpose import Transpose return Transpose(arg).doit() def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]): editor: _EditArrayContraction = _EditArrayContraction(expr) map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list) map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int) for arg_with_ind in editor.args_with_ind: for ind in arg_with_ind.indices: map_ind_to_inds[ind] += 1 if None in arg_with_ind.indices: continue map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind) k: FrozenSet[int] v: List[_ArgE] for k, v in map_contr_to_args.items(): make_trace: bool = False if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1: # This is a trace: the arguments are fully contracted with only one # index, and the index isn't used anywhere else: make_trace = True first_element = S.One elif len(k) != 2: # Hadamard product only defined for matrices: continue if len(v) == 1: # Hadamard product with a single argument makes no sense: continue for ind in k: if map_ind_to_inds[ind] <= 2: # There is no other contraction, skip: continue def check_transpose(x): x = [i if i >= 0 else -1-i for i in x] return x == sorted(x) # Check if expression is a trace: if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]): # This is a trace make_trace = True first_element = v[0].element if not check_transpose(v[0].indices): first_element = first_element.T hadamard_factors = v[1:] else: hadamard_factors = v # This is a Hadamard product: hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors]) hp_indices = v[0].indices if not check_transpose(hadamard_factors[0].indices): hp_indices = list(reversed(hp_indices)) if make_trace: hp = Trace(first_element*hp.T)._normalize() hp_indices = [] editor.insert_after(v[0], _ArgE(hp, hp_indices)) for i in v: editor.args_with_ind.remove(i) return editor.to_array_contraction() def identify_removable_identity_matrices(expr): editor = _EditArrayContraction(expr) flag: bool = True while flag: flag = False for arg_with_ind in editor.args_with_ind: if isinstance(arg_with_ind.element, Identity): k = arg_with_ind.element.shape[0] # Candidate for removal: if arg_with_ind.indices == [None, None]: # Free identity matrix, will be cleared by _remove_trivial_dims: continue elif None in arg_with_ind.indices: ind = [j for j in arg_with_ind.indices if j is not None][0] counted = editor.count_args_with_index(ind) if counted == 1: # Identity matrix contracted only on one index with itself, # transform to a OneArray(k) element: editor.insert_after(arg_with_ind, OneArray(k)) editor.args_with_ind.remove(arg_with_ind) flag = True break elif counted > 2: # Case counted = 2 is a matrix multiplication by identity matrix, skip it. # Case counted > 2 is a multiple contraction, # this is a case where the contraction becomes a diagonalization if the # identity matrix is dropped. continue elif arg_with_ind.indices[0] == arg_with_ind.indices[1]: ind = arg_with_ind.indices[0] counted = editor.count_args_with_index(ind) if counted > 1: editor.args_with_ind.remove(arg_with_ind) flag = True break else: # This is a trace, skip it as it will be recognized somewhere else: pass elif ask(Q.diagonal(arg_with_ind.element)): if arg_with_ind.indices == [None, None]: continue elif None in arg_with_ind.indices: pass elif arg_with_ind.indices[0] == arg_with_ind.indices[1]: ind = arg_with_ind.indices[0] counted = editor.count_args_with_index(ind) if counted == 3: # A_ai B_bi D_ii ==> A_ai D_ij B_bj ind_new = editor.get_new_contraction_index() other_args = [j for j in editor.args_with_ind if j != arg_with_ind] other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices] arg_with_ind.indices = [ind, ind_new] flag = True break return editor.to_array_contraction() def remove_identity_matrices(expr: ArrayContraction): editor = _EditArrayContraction(expr) removed: List[int] = [] permutation_map = {} free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind])) free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])} update_pairs = {} for ind in range(editor.number_of_contraction_indices): args = editor.get_args_with_index(ind) identity_matrices = [i for i in args if isinstance(i.element, Identity)] number_identity_matrices = len(identity_matrices) # If the contraction involves a non-identity matrix and multiple identity matrices: if number_identity_matrices != len(args) - 1 or number_identity_matrices == 0: continue # Get the non-identity element: non_identity = [i for i in args if not isinstance(i.element, Identity)][0] # Check that all identity matrices have at least one free index # (otherwise they would be contractions to some other elements) if any([None not in i.indices for i in identity_matrices]): continue # Mark the identity matrices for removal: for i in identity_matrices: i.element = None removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None]))) last_removed = removed.pop(-1) update_pairs[last_removed, ind] = non_identity.indices[:] # Remove the indices from the non-identity matrix, as the contraction # no longer exists: non_identity.indices = [None if i == ind else i for i in non_identity.indices] removed.sort() shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))])) for (last_removed, ind), non_identity_indices in update_pairs.items(): pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind] assert len(pos) == 1 for j in pos: permutation_map[j] = last_removed editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None] ret_expr = editor.to_array_contraction() permutation = [] counter = 0 counter2 = 0 for j in range(get_rank(expr)): if j in removed: continue if counter2 in permutation_map: target = permutation_map[counter2] permutation.append(target - shifts[target]) counter2 += 1 else: while counter in permutation_map.values(): counter += 1 permutation.append(counter) counter += 1 counter2 += 1 ret_expr2 = _permute_dims(ret_expr, _af_invert(permutation)) return ret_expr2, removed def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]: # Concatenate two axis removal operations as performed by # _remove_trivial_dims, removed1 = sorted(removed1) removed2 = sorted(removed2) i = 0 j = 0 removed = [] while True: if j >= len(removed2): while i < len(removed1): removed.append(removed1[i]) i += 1 break elif i < len(removed1) and removed1[i] <= i + removed2[j]: removed.append(removed1[i]) i += 1 else: removed.append(i + removed2[j]) j += 1 return removed def _array_contraction_to_diagonal_multiple_identity(expr: ArrayContraction): editor = _EditArrayContraction(expr) editor.track_permutation_start() removed: List[int] = [] diag_index_counter: int = 0 for i in range(editor.number_of_contraction_indices): identities = [] args = [] for j, arg in enumerate(editor.args_with_ind): if i not in arg.indices: continue if isinstance(arg.element, Identity): identities.append(arg) else: args.append(arg) if len(identities) == 0: continue if len(args) + len(identities) < 3: continue new_diag_ind = -1 - diag_index_counter diag_index_counter += 1 # Variable "flag" to control whether to skip this contraction set: flag: bool = True for i1, id1 in enumerate(identities): if None not in id1.indices: flag = True break free_pos = list(range(*editor.get_absolute_free_range(id1)))[0] editor._track_permutation[-1].append(free_pos) # type: ignore id1.element = None flag = False break if flag: continue for arg in identities[:i1] + identities[i1+1:]: arg.element = None removed.extend(range(*editor.get_absolute_free_range(arg))) for arg in args: arg.indices = [new_diag_ind if j == i else j for j in arg.indices] for j, e in enumerate(editor.args_with_ind): if e.element is None: editor._track_permutation[j] = None # type: ignore editor._track_permutation = [i for i in editor._track_permutation if i is not None] # type: ignore # Renumber permutation array form in order to deal with deleted positions: remap = {e: i for i, e in enumerate(sorted({k for j in editor._track_permutation for k in j}))} editor._track_permutation = [[remap[j] for j in i] for i in editor._track_permutation] editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None] new_expr = editor.to_array_contraction() return new_expr, removed
fb14be5ff89373fbb18776ba84f9df4f159dab592c03b8707c50f3a1b092968d
from sympy.core.basic import Basic from sympy.core.function import Lambda from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct) from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.tensor.array.expressions.array_expressions import \ ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \ _array_diagonal, _array_add, _permute_dims def convert_matrix_to_array(expr: Basic) -> Basic: if isinstance(expr, MatMul): args_nonmat = [] args = [] for arg in expr.args: if isinstance(arg, MatrixExpr): args.append(arg) else: args_nonmat.append(convert_matrix_to_array(arg)) contractions = [(2*i+1, 2*i+2) for i in range(len(args)-1)] scalar = _array_tensor_product(*args_nonmat) if args_nonmat else S.One if scalar == 1: tprod = _array_tensor_product( *[convert_matrix_to_array(arg) for arg in args]) else: tprod = _array_tensor_product( scalar, *[convert_matrix_to_array(arg) for arg in args]) return _array_contraction( tprod, *contractions ) elif isinstance(expr, MatAdd): return _array_add( *[convert_matrix_to_array(arg) for arg in expr.args] ) elif isinstance(expr, Transpose): return _permute_dims( convert_matrix_to_array(expr.args[0]), [1, 0] ) elif isinstance(expr, Trace): inner_expr: MatrixExpr = convert_matrix_to_array(expr.arg) # type: ignore return _array_contraction(inner_expr, (0, len(inner_expr.shape) - 1)) elif isinstance(expr, Mul): return _array_tensor_product(*[convert_matrix_to_array(i) for i in expr.args]) elif isinstance(expr, Pow): base = convert_matrix_to_array(expr.base) if (expr.exp > 0) == True: return _array_tensor_product(*[base for i in range(expr.exp)]) else: return expr elif isinstance(expr, MatPow): base = convert_matrix_to_array(expr.base) if expr.exp.is_Integer != True: b = symbols("b", cls=Dummy) return ArrayElementwiseApplyFunc(Lambda(b, b**expr.exp), convert_matrix_to_array(base)) elif (expr.exp > 0) == True: return convert_matrix_to_array(MatMul.fromiter(base for i in range(expr.exp))) else: return expr elif isinstance(expr, HadamardProduct): tp = _array_tensor_product(*[convert_matrix_to_array(arg) for arg in expr.args]) diag = [[2*i for i in range(len(expr.args))], [2*i+1 for i in range(len(expr.args))]] return _array_diagonal(tp, *diag) elif isinstance(expr, HadamardPower): base, exp = expr.args if isinstance(exp, Integer) and exp > 0: return convert_matrix_to_array(HadamardProduct.fromiter(base for i in range(exp))) else: d = Dummy("d") return ArrayElementwiseApplyFunc(Lambda(d, d**exp), base) else: return expr
c80b49b01a963dcb7b8a4c3a381a3ca8024be017533ce40cbb634f1025e8c0ae
import operator from collections import defaultdict, Counter from functools import reduce import itertools from itertools import accumulate from typing import Optional, List, Dict as tDict, Tuple as tTuple import typing from sympy import Integer, KroneckerDelta from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Function, Lambda) from sympy.core.mul import Mul from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import (Dummy, Symbol) from sympy.matrices.expressions.diagonal import diagonalize_vector from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.expressions.special import ZeroMatrix from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct) from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray from sympy.tensor.array.ndim_array import NDimArray from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.matrices.expressions.matexpr import MatrixElement from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \ _get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \ _build_push_indices_down_func_transformation from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import _af_invert from sympy.core.sympify import _sympify class _ArrayExpr(Expr): pass class ArraySymbol(_ArrayExpr): """ Symbol representing an array expression """ def __new__(cls, symbol, shape: typing.Iterable) -> "ArraySymbol": if isinstance(symbol, str): symbol = Symbol(symbol) # symbol = _sympify(symbol) shape = Tuple(*map(_sympify, shape)) obj = Expr.__new__(cls, symbol, shape) return obj @property def name(self): return self._args[0] @property def shape(self): return self._args[1] def __getitem__(self, item): return ArrayElement(self, item) def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("cannot express explicit array with symbolic shape") data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])] return ImmutableDenseNDimArray(data).reshape(*self.shape) class ArrayElement(_ArrayExpr): """ An element of an array. """ _diff_wrt = True is_symbol = True is_commutative = True def __new__(cls, name, indices): if isinstance(name, str): name = Symbol(name) name = _sympify(name) indices = _sympify(tuple(indices)) if hasattr(name, "shape"): if any((i >= s) == True for i, s in zip(indices, name.shape)): raise ValueError("shape is out of bounds") if any((i < 0) == True for i in indices): raise ValueError("shape contains negative values") obj = Expr.__new__(cls, name, indices) return obj @property def name(self): return self._args[0] @property def indices(self): return self._args[1] def _eval_derivative(self, s): if not isinstance(s, ArrayElement): return S.Zero if s == self: return S.One if s.name != self.name: return S.Zero return Mul.fromiter(KroneckerDelta(i, j) for i, j in zip(self.indices, s.indices)) class ZeroArray(_ArrayExpr): """ Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices. """ def __new__(cls, *shape): if len(shape) == 0: return S.Zero shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray.zeros(*self.shape) class OneArray(_ArrayExpr): """ Symbolic array of ones. """ def __new__(cls, *shape): if len(shape) == 0: return S.One shape = map(_sympify, shape) obj = Expr.__new__(cls, *shape) return obj @property def shape(self): return self._args def as_explicit(self): if not all(i.is_Integer for i in self.shape): raise ValueError("Cannot return explicit form for symbolic shape.") return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape) class _CodegenArrayAbstract(Basic): @property def subranks(self): """ Returns the ranks of the objects in the uppermost tensor product inside the current object. In case no tensor products are contained, return the atomic ranks. Examples ======== >>> from sympy.tensor.array import tensorproduct, tensorcontraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> P = MatrixSymbol("P", 3, 3) Important: do not confuse the rank of the matrix with the rank of an array. >>> tp = tensorproduct(M, N, P) >>> tp.subranks [2, 2, 2] >>> co = tensorcontraction(tp, (1, 2), (3, 4)) >>> co.subranks [2, 2, 2] """ return self._subranks[:] def subrank(self): """ The sum of ``subranks``. """ return sum(self.subranks) @property def shape(self): return self._shape class ArrayTensorProduct(_CodegenArrayAbstract): r""" Class to represent the tensor product of array-like objects. """ def __new__(cls, *args, **kwargs): args = [_sympify(arg) for arg in args] canonicalize = kwargs.pop("canonicalize", False) ranks = [get_rank(arg) for arg in args] obj = Basic.__new__(cls, *args) obj._subranks = ranks shapes = [get_shape(i) for i in args] if any(i is None for i in shapes): obj._shape = None else: obj._shape = tuple(j for i in shapes for j in i) if canonicalize: return obj._canonicalize() return obj def _canonicalize(self): args = self.args args = self._flatten(args) ranks = [get_rank(arg) for arg in args] # Check if there are nested permutation and lift them up: permutation_cycles = [] for i, arg in enumerate(args): if not isinstance(arg, PermuteDims): continue permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form]) args[i] = arg.expr if permutation_cycles: return _permute_dims(_array_tensor_product(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles)) if len(args) == 1: return args[0] # If any object is a ZeroArray, return a ZeroArray: if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args): shapes = reduce(operator.add, [get_shape(i) for i in args], ()) return ZeroArray(*shapes) # If there are contraction objects inside, transform the whole # expression into `ArrayContraction`: contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)} if contractions: ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args] cumulative_ranks = list(accumulate([0] + ranks))[:-1] tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args]) contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices] return _array_contraction(tp, *contraction_indices) diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)} if diagonals: inverse_permutation = [] last_perm = [] ranks = [get_rank(arg) for arg in args] cumulative_ranks = list(accumulate([0] + ranks))[:-1] for i, arg in enumerate(args): if isinstance(arg, ArrayDiagonal): i1 = get_rank(arg) - len(arg.diagonal_indices) i2 = len(arg.diagonal_indices) inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)]) last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)]) else: inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))]) inverse_permutation.extend(last_perm) tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args]) ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args] cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1] diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices] return _permute_dims(_array_diagonal(tp, *diagonal_indices), _af_invert(inverse_permutation)) return self.func(*args, canonicalize=False) def doit(self, **kwargs): deep = kwargs.get("deep", True) if deep: return self.func(*[arg.doit(**kwargs) for arg in self.args])._canonicalize() else: return self._canonicalize() @classmethod def _flatten(cls, args): args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])] return args def as_explicit(self): return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args]) class ArrayAdd(_CodegenArrayAbstract): r""" Class for elementwise array additions. """ def __new__(cls, *args, **kwargs): args = [_sympify(arg) for arg in args] ranks = [get_rank(arg) for arg in args] ranks = list(set(ranks)) if len(ranks) != 1: raise ValueError("summing arrays of different ranks") shapes = [arg.shape for arg in args] if len({i for i in shapes if i is not None}) > 1: raise ValueError("mismatching shapes in addition") canonicalize = kwargs.pop("canonicalize", False) obj = Basic.__new__(cls, *args) obj._subranks = ranks if any(i is None for i in shapes): obj._shape = None else: obj._shape = shapes[0] if canonicalize: return obj._canonicalize() return obj def _canonicalize(self): args = self.args # Flatten: args = self._flatten_args(args) shapes = [get_shape(arg) for arg in args] args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))] if len(args) == 0: if any(i for i in shapes if i is None): raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object") return ZeroArray(*shapes[0]) elif len(args) == 1: return args[0] return self.func(*args, canonicalize=False) def doit(self, **kwargs): deep = kwargs.get("deep", True) if deep: return self.func(*[arg.doit(**kwargs) for arg in self.args])._canonicalize() else: return self._canonicalize() @classmethod def _flatten_args(cls, args): new_args = [] for arg in args: if isinstance(arg, ArrayAdd): new_args.extend(arg.args) else: new_args.append(arg) return new_args def as_explicit(self): return reduce(operator.add, [arg.as_explicit() for arg in self.args]) class PermuteDims(_CodegenArrayAbstract): r""" Class to represent permutation of axes of arrays. Examples ======== >>> from sympy.tensor.array import permutedims >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> cg = permutedims(M, [1, 0]) The object ``cg`` represents the transposition of ``M``, as the permutation ``[1, 0]`` will act on its indices by switching them: `M_{ij} \Rightarrow M_{ji}` This is evident when transforming back to matrix form: >>> from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix >>> convert_array_to_matrix(cg) M.T >>> N = MatrixSymbol("N", 3, 2) >>> cg = permutedims(N, [1, 0]) >>> cg.shape (2, 3) Permutations of tensor products are simplified in order to achieve a standard form: >>> from sympy.tensor.array import tensorproduct >>> M = MatrixSymbol("M", 4, 5) >>> tp = tensorproduct(M, N) >>> tp.shape (4, 5, 3, 2) >>> perm1 = permutedims(tp, [2, 3, 1, 0]) The args ``(M, N)`` have been sorted and the permutation has been simplified, the expression is equivalent: >>> perm1.expr.args (N, M) >>> perm1.shape (3, 2, 5, 4) >>> perm1.permutation (2 3) The permutation in its array form has been simplified from ``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor product `M` and `N` have been switched: >>> perm1.permutation.array_form [0, 1, 3, 2] We can nest a second permutation: >>> perm2 = permutedims(perm1, [1, 0, 2, 3]) >>> perm2.shape (2, 3, 5, 4) >>> perm2.permutation.array_form [1, 0, 3, 2] """ def __new__(cls, expr, permutation, **kwargs): from sympy.combinatorics import Permutation expr = _sympify(expr) permutation = Permutation(permutation) permutation_size = permutation.size expr_rank = get_rank(expr) if permutation_size != expr_rank: raise ValueError("Permutation size must be the length of the shape of expr") canonicalize = kwargs.pop("canonicalize", False) obj = Basic.__new__(cls, expr, permutation) obj._subranks = [get_rank(expr)] shape = get_shape(expr) if shape is None: obj._shape = None else: obj._shape = tuple(shape[permutation(i)] for i in range(len(shape))) if canonicalize: return obj._canonicalize() return obj def _canonicalize(self): expr = self.expr permutation = self.permutation if isinstance(expr, PermuteDims): subexpr = expr.expr subperm = expr.permutation permutation = permutation * subperm expr = subexpr if isinstance(expr, ArrayContraction): expr, permutation = self._PermuteDims_denestarg_ArrayContraction(expr, permutation) if isinstance(expr, ArrayTensorProduct): expr, permutation = self._PermuteDims_denestarg_ArrayTensorProduct(expr, permutation) if isinstance(expr, (ZeroArray, ZeroMatrix)): return ZeroArray(*[expr.shape[i] for i in permutation.array_form]) plist = permutation.array_form if plist == sorted(plist): return expr return self.func(expr, permutation, canonicalize=False) def doit(self, **kwargs): deep = kwargs.get("deep", True) if deep: return self.func(*[arg.doit(**kwargs) for arg in self.args])._canonicalize() else: return self._canonicalize() @property def expr(self): return self.args[0] @property def permutation(self): return self.args[1] @classmethod def _PermuteDims_denestarg_ArrayTensorProduct(cls, expr, permutation): # Get the permutation in its image-form: perm_image_form = _af_invert(permutation.array_form) args = list(expr.args) # Starting index global position for every arg: cumul = list(accumulate([0] + expr.subranks)) # Split `perm_image_form` into a list of list corresponding to the indices # of every argument: perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))] # Create an index, target-position-key array: ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)] # Sort the array according to the target-position-key: # In this way, we define a canonical way to sort the arguments according # to the permutation. ps.sort(key=lambda x: x[1]) # Read the inverse-permutation (i.e. image-form) of the args: perm_args_image_form = [i[0] for i in ps] # Apply the args-permutation to the `args`: args_sorted = [args[i] for i in perm_args_image_form] # Apply the args-permutation to the array-form of the permutation of the axes (of `expr`): perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form] new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i])) return _array_tensor_product(*args_sorted), new_permutation @classmethod def _PermuteDims_denestarg_ArrayContraction(cls, expr, permutation): if not isinstance(expr, ArrayContraction): return expr, permutation if not isinstance(expr.expr, ArrayTensorProduct): return expr, permutation args = expr.expr.args subranks = [get_rank(arg) for arg in expr.expr.args] contraction_indices = expr.contraction_indices contraction_indices_flat = [j for i in contraction_indices for j in i] cumul = list(accumulate([0] + subranks)) # Spread the permutation in its array form across the args in the corresponding # tensor-product arguments with free indices: permutation_array_blocks_up = [] image_form = _af_invert(permutation.array_form) counter = 0 for i, e in enumerate(subranks): current = [] for j in range(cumul[i], cumul[i+1]): if j in contraction_indices_flat: continue current.append(image_form[counter]) counter += 1 permutation_array_blocks_up.append(current) # Get the map of axis repositioning for every argument of tensor-product: index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)] index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks) inverse_permutation = permutation**(-1) index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up] # Sorting key is a list of tuple, first element is the index of `args`, second element of # the tuple is the sorting key to sort `args` of the tensor product: sorting_keys = list(enumerate(index_blocks_up_permuted)) sorting_keys.sort(key=lambda x: x[1]) # Now we can get the permutation acting on the args in its image-form: new_perm_image_form = [i[0] for i in sorting_keys] # Apply the args-level permutation to various elements: new_index_blocks = [index_blocks[i] for i in new_perm_image_form] new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i]) new_args = [args[i] for i in new_perm_image_form] new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices] new_expr = _array_contraction(_array_tensor_product(*new_args), *new_contraction_indices) new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i])) return new_expr, new_permutation @classmethod def _check_permutation_mapping(cls, expr, permutation): subranks = expr.subranks index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])] permuted_indices = [permutation(i) for i in range(expr.subrank())] new_args = list(expr.args) arg_candidate_index = index2arg[permuted_indices[0]] current_indices = [] new_permutation = [] inserted_arg_cand_indices = set([]) for i, idx in enumerate(permuted_indices): if index2arg[idx] != arg_candidate_index: new_permutation.extend(current_indices) current_indices = [] arg_candidate_index = index2arg[idx] current_indices.append(idx) arg_candidate_rank = subranks[arg_candidate_index] if len(current_indices) == arg_candidate_rank: new_permutation.extend(sorted(current_indices)) local_current_indices = [j - min(current_indices) for j in current_indices] i1 = index2arg[i] new_args[i1] = _permute_dims(new_args[i1], Permutation(local_current_indices)) inserted_arg_cand_indices.add(arg_candidate_index) current_indices = [] new_permutation.extend(current_indices) # TODO: swap args positions in order to simplify the expression: # TODO: this should be in a function args_positions = list(range(len(new_args))) # Get possible shifts: maps = {} cumulative_subranks = [0] + list(accumulate(subranks)) for i in range(0, len(subranks)): s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])]) if len(s) != 1: continue elem = next(iter(s)) if i != elem: maps[i] = elem # Find cycles in the map: lines = [] current_line = [] while maps: if len(current_line) == 0: k, v = maps.popitem() current_line.append(k) else: k = current_line[-1] if k not in maps: current_line = [] continue v = maps.pop(k) if v in current_line: lines.append(current_line) current_line = [] continue current_line.append(v) for line in lines: for i, e in enumerate(line): args_positions[line[(i + 1) % len(line)]] = e # TODO: function in order to permute the args: permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)] new_args = [new_args[i] for i in args_positions] new_permutation_blocks = [permutation_blocks[i] for i in args_positions] new_permutation2 = [j for i in new_permutation_blocks for j in i] return _array_tensor_product(*new_args), Permutation(new_permutation2) # **(-1) @classmethod def _check_if_there_are_closed_cycles(cls, expr, permutation): args = list(expr.args) subranks = expr.subranks cyclic_form = permutation.cyclic_form cumulative_subranks = [0] + list(accumulate(subranks)) cyclic_min = [min(i) for i in cyclic_form] cyclic_max = [max(i) for i in cyclic_form] cyclic_keep = [] for i, cycle in enumerate(cyclic_form): flag = True for j in range(0, len(cumulative_subranks) - 1): if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]: # Found a sinkable cycle. args[j] = _permute_dims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]])) flag = False break if flag: cyclic_keep.append(cyclic_form[i]) return _array_tensor_product(*args), Permutation(cyclic_keep, size=permutation.size) def nest_permutation(self): r""" DEPRECATED. """ ret = self._nest_permutation(self.expr, self.permutation) if ret is None: return self return ret @classmethod def _nest_permutation(cls, expr, permutation): if isinstance(expr, ArrayTensorProduct): return _permute_dims(*cls._check_if_there_are_closed_cycles(expr, permutation)) elif isinstance(expr, ArrayContraction): # Invert tree hierarchy: put the contraction above. cycles = permutation.cyclic_form newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles) newpermutation = Permutation(newcycles) new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices] return _array_contraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices) elif isinstance(expr, ArrayAdd): return _array_add(*[PermuteDims(arg, permutation) for arg in expr.args]) return None def as_explicit(self): return permutedims(self.expr.as_explicit(), self.permutation) class ArrayDiagonal(_CodegenArrayAbstract): r""" Class to represent the diagonal operator. Explanation =========== In a 2-dimensional array it returns the diagonal, this looks like the operation: `A_{ij} \rightarrow A_{ii}` The diagonal over axes 1 and 2 (the second and third) of the tensor product of two 2-dimensional arrays `A \otimes B` is `\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}` In this last example the array expression has been reduced from 4-dimensional to 3-dimensional. Notice that no contraction has occurred, rather there is a new index `i` for the diagonal, contraction would have reduced the array to 2 dimensions. Notice that the diagonalized out dimensions are added as new dimensions at the end of the indices. """ def __new__(cls, expr, *diagonal_indices, **kwargs): expr = _sympify(expr) diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices] canonicalize = kwargs.get("canonicalize", False) shape = get_shape(expr) if shape is not None: cls._validate(expr, *diagonal_indices, **kwargs) # Get new shape: positions, shape = cls._get_positions_shape(shape, diagonal_indices) else: positions = None if len(diagonal_indices) == 0: return expr obj = Basic.__new__(cls, expr, *diagonal_indices) obj._positions = positions obj._subranks = _get_subranks(expr) obj._shape = shape if canonicalize: return obj._canonicalize() return obj def _canonicalize(self): expr = self.expr diagonal_indices = self.diagonal_indices trivial_diags = [i for i in diagonal_indices if len(i) == 1] if len(trivial_diags) > 0: trivial_pos = {e[0]: i for i, e in enumerate(diagonal_indices) if len(e) == 1} diag_pos = {e: i for i, e in enumerate(diagonal_indices) if len(e) > 1} diagonal_indices_short = [i for i in diagonal_indices if len(i) > 1] rank1 = get_rank(self) rank2 = len(diagonal_indices) rank3 = rank1 - rank2 inv_permutation = [] counter1: int = 0 indices_down = ArrayDiagonal._push_indices_down(diagonal_indices_short, list(range(rank1)), get_rank(expr)) for i in indices_down: if i in trivial_pos: inv_permutation.append(rank3 + trivial_pos[i]) elif isinstance(i, (Integer, int)): inv_permutation.append(counter1) counter1 += 1 else: inv_permutation.append(rank3 + diag_pos[i]) permutation = _af_invert(inv_permutation) if len(diagonal_indices_short) > 0: return _permute_dims(_array_diagonal(expr, *diagonal_indices_short), permutation) else: return _permute_dims(expr, permutation) if isinstance(expr, ArrayAdd): return self._ArrayDiagonal_denest_ArrayAdd(expr, *diagonal_indices) if isinstance(expr, ArrayDiagonal): return self._ArrayDiagonal_denest_ArrayDiagonal(expr, *diagonal_indices) if isinstance(expr, PermuteDims): return self._ArrayDiagonal_denest_PermuteDims(expr, *diagonal_indices) if isinstance(expr, (ZeroArray, ZeroMatrix)): positions, shape = self._get_positions_shape(expr.shape, diagonal_indices) return ZeroArray(*shape) return self.func(expr, *diagonal_indices, canonicalize=False) def doit(self, **kwargs): deep = kwargs.get("deep", True) if deep: return self.func(*[arg.doit(**kwargs) for arg in self.args])._canonicalize() else: return self._canonicalize() @staticmethod def _validate(expr, *diagonal_indices, **kwargs): # Check that no diagonalization happens on indices with mismatched # dimensions: shape = get_shape(expr) for i in diagonal_indices: if any(j >= len(shape) for j in i): raise ValueError("index is larger than expression shape") if len({shape[j] for j in i}) != 1: raise ValueError("diagonalizing indices of different dimensions") if not kwargs.get("allow_trivial_diags", False) and len(i) <= 1: raise ValueError("need at least two axes to diagonalize") if len(set(i)) != len(i): raise ValueError("axis index cannot be repeated") @staticmethod def _remove_trivial_dimensions(shape, *diagonal_indices): return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1] @property def expr(self): return self.args[0] @property def diagonal_indices(self): return self.args[1:] @staticmethod def _flatten(expr, *outer_diagonal_indices): inner_diagonal_indices = expr.diagonal_indices all_inner = [j for i in inner_diagonal_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices) diagonal_indices = inner_diagonal_indices + outer_diagonal_indices return _array_diagonal(expr.expr, *diagonal_indices) @classmethod def _ArrayDiagonal_denest_ArrayAdd(cls, expr, *diagonal_indices): return _array_add(*[_array_diagonal(arg, *diagonal_indices) for arg in expr.args]) @classmethod def _ArrayDiagonal_denest_ArrayDiagonal(cls, expr, *diagonal_indices): return cls._flatten(expr, *diagonal_indices) @classmethod def _ArrayDiagonal_denest_PermuteDims(cls, expr: PermuteDims, *diagonal_indices): back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices] nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)] back_nondiag = [expr.permutation(i) for i in nondiag] remap = {e: i for i, e in enumerate(sorted(back_nondiag))} new_permutation1 = [remap[i] for i in back_nondiag] shift = len(new_permutation1) diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))] new_permutation = new_permutation1 + diag_block_perm return _permute_dims( _array_diagonal( expr.expr, *back_diagonal_indices ), new_permutation ) def _push_indices_down_nonstatic(self, indices): transform = lambda x: self._positions[x] if x < len(self._positions) else None return _apply_recursively_over_nested_lists(transform, indices) def _push_indices_up_nonstatic(self, indices): def transform(x): for i, e in enumerate(self._positions): if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e): return i return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_down(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) transform = lambda x: positions[x] if x < len(positions) else None return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, diagonal_indices, indices, rank): positions, shape = cls._get_positions_shape(range(rank), diagonal_indices) def transform(x): for i, e in enumerate(positions): if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)): return i return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _get_positions_shape(cls, shape, diagonal_indices): data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices)) pos1, shp1 = zip(*data1) if data1 else ((), ()) data2 = tuple((i, shape[i[0]]) for i in diagonal_indices) pos2, shp2 = zip(*data2) if data2 else ((), ()) positions = pos1 + pos2 shape = shp1 + shp2 return positions, shape def as_explicit(self): return tensordiagonal(self.expr.as_explicit(), *self.diagonal_indices) class ArrayElementwiseApplyFunc(_CodegenArrayAbstract): def __new__(cls, function, element): if not isinstance(function, Lambda): d = Dummy('d') function = Lambda(d, function(d)) obj = _CodegenArrayAbstract.__new__(cls, function, element) obj._subranks = _get_subranks(element) return obj @property def function(self): return self.args[0] @property def expr(self): return self.args[1] @property def shape(self): return self.expr.shape def _get_function_fdiff(self): d = Dummy("d") function = self.function(d) fdiff = function.diff(d) if isinstance(fdiff, Function): fdiff = type(fdiff) else: fdiff = Lambda(d, fdiff) return fdiff class ArrayContraction(_CodegenArrayAbstract): r""" This class is meant to represent contractions of arrays in a form easily processable by the code printers. """ def __new__(cls, expr, *contraction_indices, **kwargs): contraction_indices = _sort_contraction_indices(contraction_indices) expr = _sympify(expr) canonicalize = kwargs.get("canonicalize", False) obj = Basic.__new__(cls, expr, *contraction_indices) obj._subranks = _get_subranks(expr) obj._mapping = _get_mapping_from_subranks(obj._subranks) free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)} obj._free_indices_to_position = free_indices_to_position shape = get_shape(expr) cls._validate(expr, *contraction_indices) if shape: shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices)) obj._shape = shape if canonicalize: return obj._canonicalize() return obj def _canonicalize(self): expr = self.expr contraction_indices = self.contraction_indices if len(contraction_indices) == 0: return expr if isinstance(expr, ArrayContraction): return self._ArrayContraction_denest_ArrayContraction(expr, *contraction_indices) if isinstance(expr, (ZeroArray, ZeroMatrix)): return self._ArrayContraction_denest_ZeroArray(expr, *contraction_indices) if isinstance(expr, PermuteDims): return self._ArrayContraction_denest_PermuteDims(expr, *contraction_indices) if isinstance(expr, ArrayTensorProduct): expr, contraction_indices = self._sort_fully_contracted_args(expr, contraction_indices) expr, contraction_indices = self._lower_contraction_to_addends(expr, contraction_indices) if len(contraction_indices) == 0: return expr if isinstance(expr, ArrayDiagonal): return self._ArrayContraction_denest_ArrayDiagonal(expr, *contraction_indices) if isinstance(expr, ArrayAdd): return self._ArrayContraction_denest_ArrayAdd(expr, *contraction_indices) # Check single index contractions on 1-dimensional axes: contraction_indices = [i for i in contraction_indices if len(i) > 1 or get_shape(expr)[i[0]] != 1] if len(contraction_indices) == 0: return expr return self.func(expr, *contraction_indices, canonicalize=False) def doit(self, **kwargs): deep = kwargs.get("deep", True) if deep: return self.func(*[arg.doit(**kwargs) for arg in self.args])._canonicalize() else: return self._canonicalize() def __mul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") def __rmul__(self, other): if other == 1: return self else: raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.") @staticmethod def _validate(expr, *contraction_indices): shape = get_shape(expr) if shape is None: return # Check that no contraction happens when the shape is mismatched: for i in contraction_indices: if len({shape[j] for j in i if shape[j] != -1}) != 1: raise ValueError("contracting indices of different dimensions") @classmethod def _push_indices_down(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_down_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _push_indices_up(cls, contraction_indices, indices): flattened_contraction_indices = [j for i in contraction_indices for j in i] flattened_contraction_indices.sort() transform = _build_push_indices_up_func_transformation(flattened_contraction_indices) return _apply_recursively_over_nested_lists(transform, indices) @classmethod def _lower_contraction_to_addends(cls, expr, contraction_indices): if isinstance(expr, ArrayAdd): raise NotImplementedError() if not isinstance(expr, ArrayTensorProduct): return expr, contraction_indices subranks = expr.subranks cumranks = list(accumulate([0] + subranks)) contraction_indices_remaining = [] contraction_indices_args = [[] for i in expr.args] backshift = set([]) for i, contraction_group in enumerate(contraction_indices): for j in range(len(expr.args)): if not isinstance(expr.args[j], ArrayAdd): continue if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group): contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group]) backshift.update(contraction_group) break else: contraction_indices_remaining.append(contraction_group) if len(contraction_indices_remaining) == len(contraction_indices): return expr, contraction_indices total_rank = get_rank(expr) shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)])) contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining] ret = _array_tensor_product(*[ _array_contraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args) ]) return ret, contraction_indices_remaining def split_multiple_contractions(self): """ Recognize multiple contractions and attempt at rewriting them as paired-contractions. This allows some contractions involving more than two indices to be rewritten as multiple contractions involving two indices, thus allowing the expression to be rewritten as a matrix multiplication line. Examples: * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C` Care for: - matrix being diagonalized (i.e. `A_ii`) - vectors being diagonalized (i.e. `a_i0`) Multiple contractions can be split into matrix multiplications if not more than two arguments are non-diagonals or non-vectors. Vectors get diagonalized while diagonal matrices remain diagonal. The non-diagonal matrices can be at the beginning or at the end of the final matrix multiplication line. """ editor = _EditArrayContraction(self) contraction_indices = self.contraction_indices onearray_insert = [] for indl, links in enumerate(contraction_indices): if len(links) <= 2: continue # Check multiple contractions: # # Examples: # # * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2) # # Care for: # - matrix being diagonalized (i.e. `A_ii`) # - vectors being diagonalized (i.e. `a_i0`) # Multiple contractions can be split into matrix multiplications if # not more than three arguments are non-diagonals or non-vectors. # # Vectors get diagonalized while diagonal matrices remain diagonal. # The non-diagonal matrices can be at the beginning or at the end # of the final matrix multiplication line. positions = editor.get_mapping_for_index(indl) # Also consider the case of diagonal matrices being contracted: current_dimension = self.expr.shape[links[0]] not_vectors: tTuple[_ArgE, int] = [] vectors: tTuple[_ArgE, int] = [] for arg_ind, rel_ind in positions: arg = editor.args_with_ind[arg_ind] mat = arg.element abs_arg_start, abs_arg_end = editor.get_absolute_range(arg) other_arg_pos = 1-rel_ind other_arg_abs = abs_arg_start + other_arg_pos if ((1 not in mat.shape) or ((current_dimension == 1) is True and mat.shape != (1, 1)) or any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl) ): not_vectors.append((arg, rel_ind)) else: vectors.append((arg, rel_ind)) if len(not_vectors) > 2: # If more than two arguments in the multiple contraction are # non-vectors and non-diagonal matrices, we cannot find a way # to split this contraction into a matrix multiplication line: continue # Three cases to handle: # - zero non-vectors # - one non-vector # - two non-vectors for v, rel_ind in vectors: v.element = diagonalize_vector(v.element) vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:] first_not_vector, rel_ind = vectors_to_loop[0] new_index = first_not_vector.indices[rel_ind] for v, rel_ind in vectors_to_loop[1:-1]: v.indices[rel_ind] = new_index new_index = editor.get_new_contraction_index() assert v.indices.index(None) == 1 - rel_ind v.indices[v.indices.index(None)] = new_index onearray_insert.append(v) last_vec, rel_ind = vectors_to_loop[-1] last_vec.indices[rel_ind] = new_index for v in onearray_insert: editor.insert_after(v, _ArgE(OneArray(1), [None])) return editor.to_array_contraction() def flatten_contraction_of_diagonal(self): if not isinstance(self.expr, ArrayDiagonal): return self contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices) new_contraction_indices = [] diagonal_indices = self.expr.diagonal_indices[:] for i in contraction_down: contraction_group = list(i) for j in i: diagonal_with = [k for k in diagonal_indices if j in k] contraction_group.extend([l for k in diagonal_with for l in k]) diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with] new_contraction_indices.append(sorted(set(contraction_group))) new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices) return _array_contraction( _array_diagonal( self.expr.expr, *diagonal_indices ), *new_contraction_indices ) @staticmethod def _get_free_indices_to_position_map(free_indices, contraction_indices): free_indices_to_position = {} flattened_contraction_indices = [j for i in contraction_indices for j in i] counter = 0 for ind in free_indices: while counter in flattened_contraction_indices: counter += 1 free_indices_to_position[ind] = counter counter += 1 return free_indices_to_position @staticmethod def _get_index_shifts(expr): """ Get the mapping of indices at the positions before the contraction occurs. Examples ======== >>> from sympy.tensor.array import tensorproduct, tensorcontraction >>> from sympy import MatrixSymbol >>> M = MatrixSymbol("M", 3, 3) >>> N = MatrixSymbol("N", 3, 3) >>> cg = tensorcontraction(tensorproduct(M, N), [1, 2]) >>> cg._get_index_shifts(cg) [0, 2] Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They need to be shifted by 0 and 2 to get the corresponding positions before the contraction (that is, 0 and 3). """ inner_contraction_indices = expr.contraction_indices all_inner = [j for i in inner_contraction_indices for j in i] all_inner.sort() # TODO: add API for total rank and cumulative rank: total_rank = _get_subrank(expr) inner_rank = len(all_inner) outer_rank = total_rank - inner_rank shifts = [0 for i in range(outer_rank)] counter = 0 pointer = 0 for i in range(outer_rank): while pointer < inner_rank and counter >= all_inner[pointer]: counter += 1 pointer += 1 shifts[i] += pointer counter += 1 return shifts @staticmethod def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices): shifts = ArrayContraction._get_index_shifts(expr) outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices) return outer_contraction_indices @staticmethod def _flatten(expr, *outer_contraction_indices): inner_contraction_indices = expr.contraction_indices outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices) contraction_indices = inner_contraction_indices + outer_contraction_indices return _array_contraction(expr.expr, *contraction_indices) @classmethod def _ArrayContraction_denest_ArrayContraction(cls, expr, *contraction_indices): return cls._flatten(expr, *contraction_indices) @classmethod def _ArrayContraction_denest_ZeroArray(cls, expr, *contraction_indices): contraction_indices_flat = [j for i in contraction_indices for j in i] shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat] return ZeroArray(*shape) @classmethod def _ArrayContraction_denest_ArrayAdd(cls, expr, *contraction_indices): return _array_add(*[_array_contraction(i, *contraction_indices) for i in expr.args]) @classmethod def _ArrayContraction_denest_PermuteDims(cls, expr, *contraction_indices): permutation = expr.permutation plist = permutation.array_form new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices] new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)] new_plist = cls._push_indices_up(new_contraction_indices, new_plist) return _permute_dims( _array_contraction(expr.expr, *new_contraction_indices), Permutation(new_plist) ) @classmethod def _ArrayContraction_denest_ArrayDiagonal(cls, expr: 'ArrayDiagonal', *contraction_indices): diagonal_indices = list(expr.diagonal_indices) down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr)) # Flatten diagonally contracted indices: down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices] new_contraction_indices = [] for contr_indgrp in down_contraction_indices: ind = contr_indgrp[:] for j, diag_indgrp in enumerate(diagonal_indices): if diag_indgrp is None: continue if any(i in diag_indgrp for i in contr_indgrp): ind.extend(diag_indgrp) diagonal_indices[j] = None new_contraction_indices.append(sorted(set(ind))) new_diagonal_indices_down = [i for i in diagonal_indices if i is not None] new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down) return _array_diagonal( _array_contraction(expr.expr, *new_contraction_indices), *new_diagonal_indices ) @classmethod def _sort_fully_contracted_args(cls, expr, contraction_indices): if expr.shape is None: return expr, contraction_indices cumul = list(accumulate([0] + expr.subranks)) index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))] contraction_indices_flat = {j for i in contraction_indices for j in i} fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)] new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,)) new_args = [expr.args[i] for i in new_pos] new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]] index_permutation_array_form = _af_invert(new_index_blocks_flat) new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices] new_contraction_indices = _sort_contraction_indices(new_contraction_indices) return _array_tensor_product(*new_args), new_contraction_indices def _get_contraction_tuples(self): r""" Return tuples containing the argument index and position within the argument of the index position. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.tensor.array import tensorproduct, tensorcontraction >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> cg = tensorcontraction(tensorproduct(A, B), (1, 2)) >>> cg._get_contraction_tuples() [[(0, 1), (1, 0)]] Notes ===== Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices of the tensor product `A\otimes B` are contracted, has been transformed into `(0, 1)` and `(1, 0)`, identifying the same indices in a different notation. `(0, 1)` is the second index (1) of the first argument (i.e. 0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second argument (i.e. 1 or `B`). """ mapping = self._mapping return [[mapping[j] for j in i] for i in self.contraction_indices] @staticmethod def _contraction_tuples_to_contraction_indices(expr, contraction_tuples): # TODO: check that `expr` has `.subranks`: ranks = expr.subranks cumulative_ranks = [0] + list(accumulate(ranks)) return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples] @property def free_indices(self): return self._free_indices[:] @property def free_indices_to_position(self): return dict(self._free_indices_to_position) @property def expr(self): return self.args[0] @property def contraction_indices(self): return self.args[1:] def _contraction_indices_to_components(self): expr = self.expr if not isinstance(expr, ArrayTensorProduct): raise NotImplementedError("only for contractions of tensor products") ranks = expr.subranks mapping = {} counter = 0 for i, rank in enumerate(ranks): for j in range(rank): mapping[counter] = (i, j) counter += 1 return mapping def sort_args_by_name(self): """ Sort arguments in the tensor product so that their order is lexicographical. Examples ======== >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) >>> cg = convert_matrix_to_array(C*D*A*B) >>> cg ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5)) >>> cg.sort_args_by_name() ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7)) """ expr = self.expr if not isinstance(expr, ArrayTensorProduct): return self args = expr.args sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1])) pos_sorted, args_sorted = zip(*sorted_data) reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)} contraction_tuples = self._get_contraction_tuples() contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples] c_tp = _array_tensor_product(*args_sorted) new_contr_indices = self._contraction_tuples_to_contraction_indices( c_tp, contraction_tuples ) return _array_contraction(c_tp, *new_contr_indices) def _get_contraction_links(self): r""" Returns a dictionary of links between arguments in the tensor product being contracted. See the example for an explanation of the values. Examples ======== >>> from sympy import MatrixSymbol >>> from sympy.abc import N >>> from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array >>> A = MatrixSymbol("A", N, N) >>> B = MatrixSymbol("B", N, N) >>> C = MatrixSymbol("C", N, N) >>> D = MatrixSymbol("D", N, N) Matrix multiplications are pairwise contractions between neighboring matrices: `A_{ij} B_{jk} C_{kl} D_{lm}` >>> cg = convert_matrix_to_array(A*B*C*D) >>> cg ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6)) >>> cg._get_contraction_links() {0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}} This dictionary is interpreted as follows: argument in position 0 (i.e. matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that is argument in position 1 (matrix `B`) on the first index slot of `B`, this is the contraction provided by the index `j` from `A`. The argument in position 1 (that is, matrix `B`) has two contractions, the ones provided by the indices `j` and `k`, respectively the first and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and `(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of argument in position 0 (that is, `A_{\ldot j}`), and so on. """ args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices) return dlinks def as_explicit(self): return tensorcontraction(self.expr.as_explicit(), *self.contraction_indices) class _ArgE: """ The ``_ArgE`` object contains references to the array expression (``.element``) and a list containing the information about index contractions (``.indices``). Index contractions are numbered and contracted indices show the number of the contraction. Uncontracted indices have ``None`` value. For example: ``_ArgE(M, [None, 3])`` This object means that expression ``M`` is part of an array contraction and has two indices, the first is not contracted (value ``None``), the second index is contracted to the 4th (i.e. number ``3``) group of the array contraction object. """ indices: List[Optional[int]] def __init__(self, element, indices: Optional[List[Optional[int]]] = None): self.element = element if indices is None: self.indices = [None for i in range(get_rank(element))] else: self.indices = indices def __str__(self): return "_ArgE(%s, %s)" % (self.element, self.indices) __repr__ = __str__ class _IndPos: """ Index position, requiring two integers in the constructor: - arg: the position of the argument in the tensor product, - rel: the relative position of the index inside the argument. """ def __init__(self, arg: int, rel: int): self.arg = arg self.rel = rel def __str__(self): return "_IndPos(%i, %i)" % (self.arg, self.rel) __repr__ = __str__ def __iter__(self): yield from [self.arg, self.rel] class _EditArrayContraction: """ Utility class to help manipulate array contraction objects. This class takes as input an ``ArrayContraction`` object and turns it into an editable object. The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects which can be used to easily edit the contraction structure of the expression. Once editing is finished, the ``ArrayContraction`` object may be recreated by calling the ``.to_array_contraction()`` method. """ def __init__(self, base_array: typing.Union[ArrayContraction, ArrayDiagonal, ArrayTensorProduct]): expr: Basic diagonalized: tTuple[tTuple[int, ...], ...] contraction_indices: List[tTuple[int]] if isinstance(base_array, ArrayContraction): mapping = _get_mapping_from_subranks(base_array.subranks) expr = base_array.expr contraction_indices = base_array.contraction_indices diagonalized = () elif isinstance(base_array, ArrayDiagonal): if isinstance(base_array.expr, ArrayContraction): mapping = _get_mapping_from_subranks(base_array.expr.subranks) expr = base_array.expr.expr diagonalized = ArrayContraction._push_indices_down(base_array.expr.contraction_indices, base_array.diagonal_indices) contraction_indices = base_array.expr.contraction_indices elif isinstance(base_array.expr, ArrayTensorProduct): mapping = {} expr = base_array.expr diagonalized = base_array.diagonal_indices contraction_indices = [] else: mapping = {} expr = base_array.expr diagonalized = base_array.diagonal_indices contraction_indices = [] elif isinstance(base_array, ArrayTensorProduct): expr = base_array contraction_indices = [] diagonalized = () else: raise NotImplementedError() if isinstance(expr, ArrayTensorProduct): args = list(expr.args) else: args = [expr] args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args] for i, contraction_tuple in enumerate(contraction_indices): for j in contraction_tuple: arg_pos, rel_pos = mapping[j] args_with_ind[arg_pos].indices[rel_pos] = i self.args_with_ind: List[_ArgE] = args_with_ind self.number_of_contraction_indices: int = len(contraction_indices) self._track_permutation: Optional[List[List[int]]] = None mapping = _get_mapping_from_subranks(base_array.subranks) # Trick: add diagonalized indices as negative indices into the editor object: for i, e in enumerate(diagonalized): for j in e: arg_pos, rel_pos = mapping[j] self.args_with_ind[arg_pos].indices[rel_pos] = -1 - i def insert_after(self, arg: _ArgE, new_arg: _ArgE): pos = self.args_with_ind.index(arg) self.args_with_ind.insert(pos + 1, new_arg) def get_new_contraction_index(self): self.number_of_contraction_indices += 1 return self.number_of_contraction_indices - 1 def refresh_indices(self): updates: tDict[int, int] = {} for arg_with_ind in self.args_with_ind: updates.update({i: -1 for i in arg_with_ind.indices if i is not None}) for i, e in enumerate(sorted(updates)): updates[e] = i self.number_of_contraction_indices: int = len(updates) for arg_with_ind in self.args_with_ind: arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices] def merge_scalars(self): scalars = [] for arg_with_ind in self.args_with_ind: if len(arg_with_ind.indices) == 0: scalars.append(arg_with_ind) for i in scalars: self.args_with_ind.remove(i) scalar = Mul.fromiter([i.element for i in scalars]) if len(self.args_with_ind) == 0: self.args_with_ind.append(_ArgE(scalar)) else: from sympy.tensor.array.expressions.conv_array_to_matrix import _a2m_tensor_product self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element) def to_array_contraction(self): # Count the ranks of the arguments: counter = 0 # Create a collector for the new diagonal indices: diag_indices = defaultdict(list) count_index_freq = Counter() for arg_with_ind in self.args_with_ind: count_index_freq.update(Counter(arg_with_ind.indices)) free_index_count = count_index_freq[None] # Construct the inverse permutation: inv_perm1 = [] inv_perm2 = [] # Keep track of which diagonal indices have already been processed: done = set([]) # Counter for the diagonal indices: counter4 = 0 for arg_with_ind in self.args_with_ind: # If some diagonalization axes have been removed, they should be # permuted in order to keep the permutation. # Add permutation here counter2 = 0 # counter for the indices for i in arg_with_ind.indices: if i is None: inv_perm1.append(counter4) counter2 += 1 counter4 += 1 continue if i >= 0: continue # Reconstruct the diagonal indices: diag_indices[-1 - i].append(counter + counter2) if count_index_freq[i] == 1 and i not in done: inv_perm1.append(free_index_count - 1 - i) done.add(i) elif i not in done: inv_perm2.append(free_index_count - 1 - i) done.add(i) counter2 += 1 # Remove negative indices to restore a proper editor object: arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices] counter += len([i for i in arg_with_ind.indices if i is None or i < 0]) inverse_permutation = inv_perm1 + inv_perm2 permutation = _af_invert(inverse_permutation) # Get the diagonal indices after the detection of HadamardProduct in the expression: diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1] self.merge_scalars() self.refresh_indices() args = [arg.element for arg in self.args_with_ind] contraction_indices = self.get_contraction_indices() expr = _array_contraction(_array_tensor_product(*args), *contraction_indices) expr2 = _array_diagonal(expr, *diag_indices_filtered) if self._track_permutation is not None: permutation2 = _af_invert([j for i in self._track_permutation for j in i]) expr2 = _permute_dims(expr2, permutation2) expr3 = _permute_dims(expr2, permutation) return expr3 def get_contraction_indices(self) -> List[List[int]]: contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)] current_position: int = 0 for i, arg_with_ind in enumerate(self.args_with_ind): for j in arg_with_ind.indices: if j is not None: contraction_indices[j].append(current_position) current_position += 1 return contraction_indices def get_mapping_for_index(self, ind) -> List[_IndPos]: if ind >= self.number_of_contraction_indices: raise ValueError("index value exceeding the index range") positions: List[_IndPos] = [] for i, arg_with_ind in enumerate(self.args_with_ind): for j, arg_ind in enumerate(arg_with_ind.indices): if ind == arg_ind: positions.append(_IndPos(i, j)) return positions def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]: contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)] for i, arg_with_ind in enumerate(self.args_with_ind): for j, ind in enumerate(arg_with_ind.indices): if ind is not None: contraction_indices[ind].append(_IndPos(i, j)) return contraction_indices def count_args_with_index(self, index: int) -> int: """ Count the number of arguments that have the given index. """ counter: int = 0 for arg_with_ind in self.args_with_ind: if index in arg_with_ind.indices: counter += 1 return counter def get_args_with_index(self, index: int) -> List[_ArgE]: """ Get a list of arguments having the given index. """ ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices] return ret @property def number_of_diagonal_indices(self): data = set([]) for arg in self.args_with_ind: data.update({i for i in arg.indices if i is not None and i < 0}) return len(data) def track_permutation_start(self): permutation = [] perm_diag = [] counter: int = 0 counter2: int = -1 for arg_with_ind in self.args_with_ind: perm = [] for i in arg_with_ind.indices: if i is not None: if i < 0: perm_diag.append(counter2) counter2 -= 1 continue perm.append(counter) counter += 1 permutation.append(perm) max_ind = max([max(i) if i else -1 for i in permutation]) if permutation else -1 perm_diag = [max_ind - i for i in perm_diag] self._track_permutation = permutation + [perm_diag] def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE): index_destination = self.args_with_ind.index(destination) index_element = self.args_with_ind.index(from_element) self._track_permutation[index_destination].extend(self._track_permutation[index_element]) # type: ignore self._track_permutation.pop(index_element) # type: ignore def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]: """ Return the range of the free indices of the arg as absolute positions among all free indices. """ counter = 0 for arg_with_ind in self.args_with_ind: number_free_indices = len([i for i in arg_with_ind.indices if i is None]) if arg_with_ind == arg: return counter, counter + number_free_indices counter += number_free_indices raise IndexError("argument not found") def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]: """ Return the absolute range of indices for arg, disregarding dummy indices. """ counter = 0 for arg_with_ind in self.args_with_ind: number_indices = len(arg_with_ind.indices) if arg_with_ind == arg: return counter, counter + number_indices counter += number_indices raise IndexError("argument not found") def get_rank(expr): if isinstance(expr, (MatrixExpr, MatrixElement)): return 2 if isinstance(expr, _CodegenArrayAbstract): return len(expr.shape) if isinstance(expr, NDimArray): return expr.rank() if isinstance(expr, Indexed): return expr.rank if isinstance(expr, IndexedBase): shape = expr.shape if shape is None: return -1 else: return len(shape) if hasattr(expr, "shape"): return len(expr.shape) return 0 def _get_subrank(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subrank() return get_rank(expr) def _get_subranks(expr): if isinstance(expr, _CodegenArrayAbstract): return expr.subranks else: return [get_rank(expr)] def get_shape(expr): if hasattr(expr, "shape"): return expr.shape return () def nest_permutation(expr): if isinstance(expr, PermuteDims): return expr.nest_permutation() else: return expr def _array_tensor_product(*args, **kwargs): return ArrayTensorProduct(*args, canonicalize=True, **kwargs) def _array_contraction(expr, *contraction_indices, **kwargs): return ArrayContraction(expr, *contraction_indices, canonicalize=True, **kwargs) def _array_diagonal(expr, *diagonal_indices, **kwargs): return ArrayDiagonal(expr, *diagonal_indices, canonicalize=True, **kwargs) def _permute_dims(expr, permutation, **kwargs): return PermuteDims(expr, permutation, canonicalize=True, **kwargs) def _array_add(*args, **kwargs): return ArrayAdd(*args, canonicalize=True, **kwargs)
96dd685071e7f41c2e7b61742de81425d3a11f099ba41647c4a9594564042b70
import operator from functools import reduce, singledispatch from sympy.core.expr import Expr from sympy.core.singleton import S from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions.matexpr import (MatrixExpr, MatrixSymbol) from sympy.matrices.expressions.special import Identity from sympy.matrices.expressions.transpose import Transpose from sympy.combinatorics.permutations import _af_invert from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.tensor.array.expressions.array_expressions import ZeroArray, ArraySymbol, ArrayTensorProduct, \ ArrayAdd, PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, get_rank, \ get_shape, ArrayContraction, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array @singledispatch def array_derive(expr, x): raise NotImplementedError(f"not implemented for type {type(expr)}") @array_derive.register(Expr) # type: ignore def _(expr: Expr, x: Expr): return ZeroArray(*x.shape) # type: ignore @array_derive.register(ArrayTensorProduct) # type: ignore def _(expr: ArrayTensorProduct, x: Expr): args = expr.args addend_list = [] for i, arg in enumerate(expr.args): darg = array_derive(arg, x) if darg == 0: continue args_prev = args[:i] args_succ = args[i+1:] shape_prev = reduce(operator.add, map(get_shape, args_prev), ()) shape_succ = reduce(operator.add, map(get_shape, args_succ), ()) addend = _array_tensor_product(*args_prev, darg, *args_succ) tot1 = len(get_shape(x)) tot2 = tot1 + len(shape_prev) tot3 = tot2 + len(get_shape(arg)) tot4 = tot3 + len(shape_succ) perm = [i for i in range(tot1, tot2)] + \ [i for i in range(tot1)] + [i for i in range(tot2, tot3)] + \ [i for i in range(tot3, tot4)] addend = _permute_dims(addend, _af_invert(perm)) addend_list.append(addend) if len(addend_list) == 1: return addend_list[0] elif len(addend_list) == 0: return S.Zero else: return _array_add(*addend_list) @array_derive.register(ArraySymbol) # type: ignore def _(expr: ArraySymbol, x: Expr): if expr == x: return _permute_dims( ArrayTensorProduct.fromiter(Identity(i) for i in expr.shape), [2*i for i in range(len(expr.shape))] + [2*i+1 for i in range(len(expr.shape))] ) return ZeroArray(*(x.shape + expr.shape)) # type: ignore @array_derive.register(MatrixSymbol) # type: ignore def _(expr: MatrixSymbol, x: Expr): m, n = expr.shape if expr == x: return _permute_dims( _array_tensor_product(Identity(m), Identity(n)), [0, 2, 1, 3] ) return ZeroArray(*(x.shape + expr.shape)) # type: ignore @array_derive.register(Identity) # type: ignore def _(expr: Identity, x: Expr): return ZeroArray(*(x.shape + expr.shape)) # type: ignore @array_derive.register(Transpose) # type: ignore def _(expr: Transpose, x: Expr): # D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni # D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn) fd = array_derive(expr.arg, x) return _permute_dims(fd, [0, 1, 3, 2]) @array_derive.register(Inverse) # type: ignore def _(expr: Inverse, x: Expr): mat = expr.I dexpr = array_derive(mat, x) tp = _array_tensor_product(-expr, dexpr, expr) mp = _array_contraction(tp, (1, 4), (5, 6)) pp = _permute_dims(mp, [1, 2, 0, 3]) return pp @array_derive.register(ElementwiseApplyFunction) # type: ignore def _(expr: ElementwiseApplyFunction, x: Expr): assert get_rank(expr) == 2 assert get_rank(x) == 2 fdiff = expr._get_function_fdiff() dexpr = array_derive(expr.expr, x) tp = _array_tensor_product( ElementwiseApplyFunction(fdiff, expr.expr), dexpr ) td = _array_diagonal( tp, (0, 4), (1, 5) ) return td @array_derive.register(ArrayElementwiseApplyFunc) # type: ignore def _(expr: ArrayElementwiseApplyFunc, x: Expr): fdiff = expr._get_function_fdiff() subexpr = expr.expr dsubexpr = array_derive(subexpr, x) tp = _array_tensor_product( dsubexpr, ArrayElementwiseApplyFunc(fdiff, subexpr) ) b = get_rank(x) c = get_rank(expr) diag_indices = [(b + i, b + c + i) for i in range(c)] return _array_diagonal(tp, *diag_indices) @array_derive.register(MatrixExpr) # type: ignore def _(expr: MatrixExpr, x: Expr): cg = convert_matrix_to_array(expr) return array_derive(cg, x) @array_derive.register(HadamardProduct) # type: ignore def _(expr: HadamardProduct, x: Expr): raise NotImplementedError() @array_derive.register(ArrayContraction) # type: ignore def _(expr: ArrayContraction, x: Expr): fd = array_derive(expr.expr, x) rank_x = len(get_shape(x)) contraction_indices = expr.contraction_indices new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices] return _array_contraction(fd, *new_contraction_indices) @array_derive.register(ArrayDiagonal) # type: ignore def _(expr: ArrayDiagonal, x: Expr): dsubexpr = array_derive(expr.expr, x) rank_x = len(get_shape(x)) diag_indices = [[j + rank_x for j in i] for i in expr.diagonal_indices] return _array_diagonal(dsubexpr, *diag_indices) @array_derive.register(ArrayAdd) # type: ignore def _(expr: ArrayAdd, x: Expr): return _array_add(*[array_derive(arg, x) for arg in expr.args]) @array_derive.register(PermuteDims) # type: ignore def _(expr: PermuteDims, x: Expr): de = array_derive(expr.expr, x) perm = [0, 1] + [i + 2 for i in expr.permutation.array_form] return _permute_dims(de, perm) def matrix_derive(expr, x): from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix ce = convert_matrix_to_array(expr) dce = array_derive(ce, x) return convert_array_to_matrix(dce).doit()
e9fc0d936951b517e1d711397ed6f37c5ceee30eeace1742518a71268250341f
from sympy import Lambda, S, Dummy from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices.expressions.hadamard import HadamardProduct, HadamardPower from sympy.matrices.expressions.special import (Identity, OneMatrix, ZeroMatrix) from sympy.matrices.expressions.matexpr import MatrixElement from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array from sympy.tensor.array.expressions.conv_array_to_matrix import _support_function_tp1_recognize, \ _array_diag2contr_diagmatrix, convert_array_to_matrix, _remove_trivial_dims, _array2matrix, \ _combine_removed, identify_removable_identity_matrices, _array_contraction_to_diagonal_multiple_identity from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.combinatorics import Permutation from sympy.matrices.expressions.diagonal import DiagMatrix, DiagonalMatrix from sympy.matrices import Trace, MatMul, Transpose from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, \ ArrayElement, ArraySymbol, ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \ _array_diagonal, _permute_dims, PermuteDims, ArrayAdd, ArrayDiagonal from sympy.testing.pytest import raises i, j, k, l, m, n = symbols("i j k l m n") I = Identity(k) I1 = Identity(1) M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) X = MatrixSymbol("X", k, k) Y = MatrixSymbol("Y", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) d = MatrixSymbol("d", k, 1) x = MatrixSymbol("x", k, 1) y = MatrixSymbol("y", k, 1) def test_arrayexpr_convert_array_to_matrix(): cg = _array_contraction(_array_tensor_product(M), (0, 1)) assert convert_array_to_matrix(cg) == Trace(M) cg = _array_contraction(_array_tensor_product(M, N), (0, 1), (2, 3)) assert convert_array_to_matrix(cg) == Trace(M) * Trace(N) cg = _array_contraction(_array_tensor_product(M, N), (0, 3), (1, 2)) assert convert_array_to_matrix(cg) == Trace(M * N) cg = _array_contraction(_array_tensor_product(M, N), (0, 2), (1, 3)) assert convert_array_to_matrix(cg) == Trace(M * N.T) cg = convert_matrix_to_array(M * N * P) assert convert_array_to_matrix(cg) == M * N * P cg = convert_matrix_to_array(M * N.T * P) assert convert_array_to_matrix(cg) == M * N.T * P cg = _array_contraction(_array_tensor_product(M,N,P,Q), (1, 2), (5, 6)) assert convert_array_to_matrix(cg) == _array_tensor_product(M * N, P * Q) cg = _array_contraction(_array_tensor_product(-2, M, N), (1, 2)) assert convert_array_to_matrix(cg) == -2 * M * N a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) cg = PermuteDims( _array_contraction( _array_tensor_product( a, ArrayAdd( _array_tensor_product(b, c), _array_tensor_product(c, b), ) ), (2, 4)), [0, 1, 3, 2]) assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b) za = ZeroArray(m, n) assert convert_array_to_matrix(za) == ZeroMatrix(m, n) cg = _array_tensor_product(3, M) assert convert_array_to_matrix(cg) == 3 * M # Partial conversion to matrix multiplication: expr = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 4, 6)) assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(M.T*N, P, Q), (0, 2, 4)) x = MatrixSymbol("x", k, 1) cg = PermuteDims( _array_contraction(_array_tensor_product(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))), (0, 5)), Permutation(1, 2, 3)) assert convert_array_to_matrix(cg) == x expr = ArrayAdd(M, PermuteDims(M, [1, 0])) assert convert_array_to_matrix(expr) == M + Transpose(M) def test_arrayexpr_convert_array_to_matrix2(): cg = _array_contraction(_array_tensor_product(M, N), (1, 3)) assert convert_array_to_matrix(cg) == M * N.T cg = PermuteDims(_array_tensor_product(M, N), Permutation([0, 1, 3, 2])) assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T) cg = _array_tensor_product(M, PermuteDims(N, Permutation([1, 0]))) assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T) cg = _array_contraction( PermuteDims( _array_tensor_product(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5) ) assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T) cg = _array_contraction( _array_tensor_product(M, N, P, PermuteDims(Q, Permutation([1, 0]))), (1, 5), (2, 3) ) assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T) cg = _array_tensor_product(M, PermuteDims(N, [1, 0])) assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T) cg = _array_tensor_product(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0])) assert convert_array_to_matrix(cg) == _array_tensor_product(M.T, N.T) cg = _array_tensor_product(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0])) assert convert_array_to_matrix(cg) == _array_tensor_product(N.T, M.T) cg = _array_contraction(M, (0,), (1,)) assert convert_array_to_matrix(cg) == OneMatrix(1, k)*M*OneMatrix(k, 1) cg = _array_contraction(x, (0,), (1,)) assert convert_array_to_matrix(cg) == OneMatrix(1, k)*x Xm = MatrixSymbol("Xm", m, n) cg = _array_contraction(Xm, (0,), (1,)) assert convert_array_to_matrix(cg) == OneMatrix(1, m)*Xm*OneMatrix(n, 1) def test_arrayexpr_convert_array_to_diagonalized_vector(): # Check matrix recognition over trivial dimensions: cg = _array_tensor_product(a, b) assert convert_array_to_matrix(cg) == a * b.T cg = _array_tensor_product(I1, a, b) assert convert_array_to_matrix(cg) == a * b.T # Recognize trace inside a tensor product: cg = _array_contraction(_array_tensor_product(A, B, C), (0, 3), (1, 2)) assert convert_array_to_matrix(cg) == Trace(A * B) * C # Transform diagonal operator to contraction: cg = _array_diagonal(_array_tensor_product(A, a), (1, 2)) assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (1, 3)) assert convert_array_to_matrix(cg) == A * DiagMatrix(a) cg = _array_diagonal(_array_tensor_product(a, b), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == _permute_dims( _array_contraction(_array_tensor_product(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0] ) assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a) cg = _array_diagonal(_array_tensor_product(A, a), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (0, 3)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) cg = _array_diagonal(_array_tensor_product(I, x, I1), (0, 2), (3, 5)) assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(I, OneArray(1), I1, DiagMatrix(x)), (0, 5)) assert convert_array_to_matrix(cg) == DiagMatrix(x) cg = _array_diagonal(_array_tensor_product(I, x, A, B), (1, 2), (5, 6)) assert _array_diag2contr_diagmatrix(cg) == _array_diagonal(_array_contraction(_array_tensor_product(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6)) # TODO: this is returning a wrong result: # convert_array_to_matrix(cg) cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3, 5)) assert convert_array_to_matrix(cg) == a*b.T cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3)) assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), a, b, I1), (2, 6)) assert convert_array_to_matrix(cg) == a*b.T cg = _array_diagonal(_array_tensor_product(x, I1), (1, 2)) assert isinstance(cg, ArrayDiagonal) assert cg.diagonal_indices == ((1, 2),) assert convert_array_to_matrix(cg) == x cg = _array_diagonal(_array_tensor_product(x, I), (0, 2)) assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), I, DiagMatrix(x)), (1, 3)) assert convert_array_to_matrix(cg).doit() == DiagMatrix(x) raises(ValueError, lambda: _array_diagonal(x, (1,))) # Ignore identity matrices with contractions: cg = _array_contraction(_array_tensor_product(I, A, I, I), (0, 2), (1, 3), (5, 7)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg) == Trace(A) * I cg = _array_contraction(_array_tensor_product(Trace(A) * I, I, I), (1, 5), (3, 4)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg).doit() == Trace(A) * I # Add DiagMatrix when required: cg = _array_contraction(_array_tensor_product(A, a), (1, 2)) assert cg.split_multiple_contractions() == cg assert convert_array_to_matrix(cg) == A * a cg = _array_contraction(_array_tensor_product(A, a, B), (1, 2, 4)) assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (1, 2), (3, 5)) assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B cg = _array_contraction(_array_tensor_product(A, a, B), (0, 2, 4)) assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B cg = _array_contraction(_array_tensor_product(A, a, b, a.T, B), (0, 2, 4, 7, 9)) assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), DiagMatrix(b), OneArray(1), DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5), (6, 9), (8, 12)) assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T cg = _array_contraction(_array_tensor_product(I1, I1, I1), (1, 2, 4)) assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(I1, I1, OneArray(1), I1), (1, 2), (3, 5)) assert convert_array_to_matrix(cg) == 1 cg = _array_contraction(_array_tensor_product(I, I, I, I, A), (1, 2, 8), (5, 6, 9)) assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4), (5, 6, 8)) expected = _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), C, DiagMatrix(a), OneArray(1), B), (1, 3), (2, 5), (6, 7), (8, 10)) assert cg.split_multiple_contractions() == expected assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B cg = _array_contraction(_array_tensor_product(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) expected = _array_contraction(_array_tensor_product(a, I1, OneArray(1), b, I1, OneArray(1), (a.T*b).applyfunc(cos)), (1, 3), (2, 10), (6, 8), (7, 11)) assert cg.split_multiple_contractions().dummy_eq(expected) assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T)) def test_arrayexpr_convert_array_contraction_tp_additions(): a = ArrayAdd( _array_tensor_product(M, N), _array_tensor_product(N, M) ) tp = _array_tensor_product(P, a, Q) expr = _array_contraction(tp, (3, 4)) expected = _array_tensor_product( P, ArrayAdd( _array_contraction(_array_tensor_product(M, N), (1, 2)), _array_contraction(_array_tensor_product(N, M), (1, 2)), ), Q ) assert expr == expected assert convert_array_to_matrix(expr) == _array_tensor_product(P, M * N + N * M, Q) expr = _array_contraction(tp, (1, 2), (3, 4), (5, 6)) result = _array_contraction( _array_tensor_product( P, ArrayAdd( _array_contraction(_array_tensor_product(M, N), (1, 2)), _array_contraction(_array_tensor_product(N, M), (1, 2)), ), Q ), (1, 2), (3, 4)) assert expr == result assert convert_array_to_matrix(expr) == P * (M * N + N * M) * Q def test_arrayexpr_convert_array_to_implicit_matmul(): # Trivial dimensions are suppressed, so the result can be expressed in matrix form: cg = _array_tensor_product(a, b) assert convert_array_to_matrix(cg) == a * b.T cg = _array_tensor_product(a, b, I) assert convert_array_to_matrix(cg) == _array_tensor_product(a*b.T, I) cg = _array_tensor_product(I, a, b) assert convert_array_to_matrix(cg) == _array_tensor_product(I, a*b.T) cg = _array_tensor_product(a, I, b) assert convert_array_to_matrix(cg) == _array_tensor_product(a, I, b) cg = _array_contraction(_array_tensor_product(I, I), (1, 2)) assert convert_array_to_matrix(cg) == I cg = PermuteDims(_array_tensor_product(I, Identity(1)), [0, 2, 1, 3]) assert convert_array_to_matrix(cg) == I def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims(): # Tensor Product: assert _remove_trivial_dims(_array_tensor_product(a, b)) == (a * b.T, [1, 3]) assert _remove_trivial_dims(_array_tensor_product(a.T, b)) == (a * b.T, [0, 3]) assert _remove_trivial_dims(_array_tensor_product(a, b.T)) == (a * b.T, [1, 2]) assert _remove_trivial_dims(_array_tensor_product(a.T, b.T)) == (a * b.T, [0, 2]) assert _remove_trivial_dims(_array_tensor_product(I, a.T, b.T)) == (_array_tensor_product(I, a * b.T), [2, 4]) assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T)) == (_array_tensor_product(a.T, I, b.T), []) assert _remove_trivial_dims(_array_tensor_product(a, I)) == (_array_tensor_product(a, I), []) assert _remove_trivial_dims(_array_tensor_product(I, a)) == (_array_tensor_product(I, a), []) assert _remove_trivial_dims(_array_tensor_product(a.T, b.T, c, d)) == ( _array_tensor_product(a * b.T, c * d.T), [0, 2, 5, 7]) assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T, c, d, I)) == ( _array_tensor_product(a.T, I, b*c.T, d, I), [4, 7]) # Addition: cg = ArrayAdd(_array_tensor_product(a, b), _array_tensor_product(c, d)) assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3]) # Permute Dims: cg = PermuteDims(_array_tensor_product(a, b), Permutation(3)(1, 2)) assert _remove_trivial_dims(cg) == (a * b.T, [2, 3]) cg = PermuteDims(_array_tensor_product(a, I, b), Permutation(5)(1, 2, 3, 4)) assert _remove_trivial_dims(cg) == (cg, []) cg = PermuteDims(_array_tensor_product(I, b, a), Permutation(5)(1, 2, 4, 5, 3)) assert _remove_trivial_dims(cg) == (PermuteDims(_array_tensor_product(I, b * a.T), [0, 2, 3, 1]), [4, 5]) # Diagonal: cg = _array_diagonal(_array_tensor_product(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, []) # Contraction: cg = _array_contraction(_array_tensor_product(M, a), (1, 2)) assert _remove_trivial_dims(cg) == (cg, []) # A few more cases to test the removal and shift of nested removed axes # with array contractions and array diagonals: tp = _array_tensor_product( OneMatrix(1, 1), M, x, OneMatrix(1, 1), Identity(1), ) expr = _array_contraction(tp, (1, 8)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 5, 6, 7] expr = _array_contraction(tp, (1, 8), (3, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 3, 4, 5] expr = _array_diagonal(tp, (1, 8)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 5, 6, 7, 8] expr = _array_diagonal(tp, (1, 8), (3, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [0, 3, 4, 5, 6] expr = _array_diagonal(_array_contraction(_array_tensor_product(A, x, I, I1), (1, 2, 5)), (1, 4)) rexpr, removed = _remove_trivial_dims(expr) assert removed == [2, 3] cg = _array_diagonal(_array_tensor_product(PermuteDims(_array_tensor_product(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5)) rexpr, removed = _remove_trivial_dims(cg) assert removed == [1, 2] # Contractions with identity matrices need to be followed by a permutation # in order cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8)) ret, removed = _remove_trivial_dims(cg) assert ret == PermuteDims(_array_tensor_product(A, B, C, M), [0, 2, 3, 4, 5, 6, 7, 1]) assert removed == [] cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8), (3, 4)) ret, removed = _remove_trivial_dims(cg) assert ret == PermuteDims(_array_contraction(_array_tensor_product(A, B, C, M), (3, 4)), [0, 2, 3, 4, 5, 1]) assert removed == [] # Trivial matrices are sometimes inserted into MatMul expressions: cg = _array_tensor_product(b*b.T, a.T*a) ret, removed = _remove_trivial_dims(cg) assert ret == b*a.T*a*b.T assert removed == [2, 3] Xs = ArraySymbol("X", (3, 2, k)) cg = _array_tensor_product(M, Xs, b.T*c, a*a.T, b*b.T, c.T*d) ret, removed = _remove_trivial_dims(cg) assert ret == _array_tensor_product(M, Xs, a*b.T*c*c.T*d*a.T, b*b.T) assert removed == [5, 6, 11, 12] cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5)) assert _remove_trivial_dims(cg) == (PermuteDims(_array_diagonal(_array_tensor_product(I, x), (1, 2)), Permutation(1, 2)), [1]) expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2)) assert _remove_trivial_dims(expr) == (PermuteDims(_array_tensor_product(DiagMatrix(x), y), [1, 2, 3, 0]), [0]) expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2), (3, 4)) assert _remove_trivial_dims(expr) == (expr, []) def test_arrayexpr_convert_array_to_matrix_diag2contraction_diagmatrix(): cg = _array_diagonal(_array_tensor_product(M, a), (1, 2)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == _array_contraction(_array_tensor_product(M, OneArray(1), DiagMatrix(a)), (1, 3)) raises(ValueError, lambda: _array_diagonal(_array_tensor_product(a, M), (1, 2))) cg = _array_diagonal(_array_tensor_product(a.T, M), (1, 2)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == _array_contraction(_array_tensor_product(OneArray(1), M, DiagMatrix(a.T)), (1, 4)) cg = _array_diagonal(_array_tensor_product(a.T, M, N, b.T), (1, 2), (4, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == _array_contraction( _array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9)) cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 2), (4, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == _array_contraction( _array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9)) cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 4), (3, 7)) res = _array_diag2contr_diagmatrix(cg) assert res.shape == cg.shape assert res == _array_contraction( _array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9)) I1 = Identity(1) x = MatrixSymbol("x", k, 1) A = MatrixSymbol("A", k, k) cg = _array_diagonal(_array_tensor_product(x, A.T, I1), (0, 2)) assert _array_diag2contr_diagmatrix(cg).shape == cg.shape assert _array2matrix(cg).shape == cg.shape def test_arrayexpr_convert_array_to_matrix_support_function(): assert _support_function_tp1_recognize([], [2 * k]) == 2 * k assert _support_function_tp1_recognize([(1, 2)], [A, 2 * k, B, 3]) == 6 * k * A * B assert _support_function_tp1_recognize([(0, 3), (1, 2)], [A, B]) == Trace(A * B) assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T assert _support_function_tp1_recognize([(1, 2), (5, 6)], [A, B, C, D]) == _array_tensor_product(A * B, C * D) assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims( _array_tensor_product(A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(0, 3), (1, 4)], [A, B, C]) == B * A * C assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4), (7, 8)], [X, Y, A, B, C, D]) == X * Y * A * B * C * D assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4)], [X, Y, A, B, C, D]) == _array_tensor_product(X * Y * A * B, C * D) assert _support_function_tp1_recognize([(1, 7), (3, 8), (4, 11)], [X, Y, A, B, C, D]) == PermuteDims( _array_tensor_product(X * B.T, Y * C, A.T * D.T), [0, 2, 4, 1, 3, 5] ) assert _support_function_tp1_recognize([(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == PermuteDims( _array_tensor_product(Trace(X) * A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [A, A, B, C, D]) == A ** 2 * B * C * D assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D assert _support_function_tp1_recognize([(1, 6), (3, 8), (5, 10)], [X, Y, A, B, C, D]) == PermuteDims( _array_tensor_product(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5] ) assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims( _array_tensor_product(A * C, B * D), [0, 2, 1, 3]) assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D def test_convert_array_to_hadamard_products(): expr = HadamardProduct(M, N) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = HadamardProduct(M, N)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = Q*HadamardProduct(M, N)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = Q*HadamardProduct(M, N.T)*P cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == expr expr = HadamardProduct(M, N)*HadamardProduct(Q, P) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert expr == ret expr = P.T*HadamardProduct(M, N)*HadamardProduct(Q, P) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert expr == ret # ArrayDiagonal should be converted cg = _array_diagonal(_array_tensor_product(M, N, Q), (1, 3), (0, 2, 4)) ret = convert_array_to_matrix(cg) expected = PermuteDims(_array_diagonal(_array_tensor_product(HadamardProduct(M.T, N.T), Q), (1, 2)), [1, 0, 2]) assert expected == ret # Special case that should return the same expression: cg = _array_diagonal(_array_tensor_product(HadamardProduct(M, N), Q), (0, 2)) ret = convert_array_to_matrix(cg) assert ret == cg # Hadamard products with traces: expr = Trace(HadamardProduct(M, N)) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M.T, N.T)) expr = Trace(A*HadamardProduct(M, N)) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M, N)*A) expr = Trace(HadamardProduct(A, M)*N) cg = convert_matrix_to_array(expr) ret = convert_array_to_matrix(cg) assert ret == Trace(HadamardProduct(M.T, N)*A) # These should not be converted into Hadamard products: cg = _array_diagonal(_array_tensor_product(M, N), (0, 1, 2, 3)) ret = convert_array_to_matrix(cg) assert ret == cg cg = _array_diagonal(_array_tensor_product(A), (0, 1)) ret = convert_array_to_matrix(cg) assert ret == cg cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 2, 4), (1, 3, 5)) assert convert_array_to_matrix(cg) == HadamardProduct(M, N, P) cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 3, 4), (1, 2, 5)) assert convert_array_to_matrix(cg) == HadamardProduct(M, P, N.T) cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5)) assert convert_array_to_matrix(cg) == DiagMatrix(x) def test_identify_removable_identity_matrices(): D = DiagonalMatrix(MatrixSymbol("D", k, k)) cg = _array_contraction(_array_tensor_product(A, B, I), (1, 2, 4, 5)) expected = _array_contraction(_array_tensor_product(A, B), (1, 2)) assert identify_removable_identity_matrices(cg) == expected cg = _array_contraction(_array_tensor_product(A, B, C, I), (1, 3, 5, 6, 7)) expected = _array_contraction(_array_tensor_product(A, B, C), (1, 3, 5)) assert identify_removable_identity_matrices(cg) == expected # Tests with diagonal matrices: cg = _array_contraction(_array_tensor_product(A, B, D), (1, 2, 4, 5)) ret = identify_removable_identity_matrices(cg) expected = _array_contraction(_array_tensor_product(A, B, D), (1, 4), (2, 5)) assert ret == expected cg = _array_contraction(_array_tensor_product(A, B, D, M, N), (1, 2, 4, 5, 6, 8)) ret = identify_removable_identity_matrices(cg) assert ret == cg def test_combine_removed(): assert _combine_removed(6, [0, 1, 2], [0, 1, 2]) == [0, 1, 2, 3, 4, 5] assert _combine_removed(8, [2, 5], [1, 3, 4]) == [1, 2, 4, 5, 6] assert _combine_removed(8, [7], []) == [7] def test_array_contraction_to_diagonal_multiple_identities(): expr = _array_contraction(_array_tensor_product(A, B, I, C), (1, 2, 4), (5, 6)) assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, []) assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(A, B, C), (1, 2, 4)) expr = _array_contraction(_array_tensor_product(A, I, I), (1, 2, 4)) assert _array_contraction_to_diagonal_multiple_identity(expr) == (A, [2]) assert convert_array_to_matrix(expr) == A expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 4), (3, 6)) assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, []) expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 3, 4, 6)) assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, []) def test_convert_array_element_to_matrix(): expr = ArrayElement(M, (i, j)) assert convert_array_to_matrix(expr) == MatrixElement(M, i, j) expr = ArrayElement(_array_contraction(_array_tensor_product(M, N), (1, 3)), (i, j)) assert convert_array_to_matrix(expr) == MatrixElement(M*N.T, i, j) expr = ArrayElement(_array_tensor_product(M, N), (i, j, m, n)) assert convert_array_to_matrix(expr) == expr def test_convert_array_elementwise_function_to_matrix(): d = Dummy("d") expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x.T*y) assert convert_array_to_matrix(expr) == sin(x.T*y) expr = ArrayElementwiseApplyFunc(Lambda(d, d**2), x.T*y) assert convert_array_to_matrix(expr) == (x.T*y)**2 expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x) assert convert_array_to_matrix(expr).dummy_eq(x.applyfunc(sin)) expr = ArrayElementwiseApplyFunc(Lambda(d, 1 / (2 * sqrt(d))), x) assert convert_array_to_matrix(expr) == S.Half * HadamardPower(x, -S.Half)
33af8609c9398c0df17778449f47301c96543c863fde9fd7d324f2fcd73bfb43
from sympy.concrete.summations import Sum from sympy.core.symbol import symbols from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.tensor.indexed import IndexedBase from sympy.combinatorics import Permutation from sympy.tensor.array.expressions.array_expressions import ArrayContraction, ArrayTensorProduct, \ ArrayDiagonal, ArrayAdd, PermuteDims, ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, \ _array_add, _permute_dims from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix from sympy.tensor.array.expressions.conv_indexed_to_array import convert_indexed_to_array, _convert_indexed_to_array from sympy.testing.pytest import raises A, B = symbols("A B", cls=IndexedBase) i, j, k, l, m, n = symbols("i j k l m n") I = Identity(k) M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) d = MatrixSymbol("d", k, 1) def test_arrayexpr_convert_index_to_array_support_function(): expr = M[i, j] assert _convert_indexed_to_array(expr) == (M, (i, j)) expr = M[i, j]*N[k, l] assert _convert_indexed_to_array(expr) == (ArrayTensorProduct(M, N), (i, j, k, l)) expr = M[i, j]*N[j, k] assert _convert_indexed_to_array(expr) == (ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)), (i, k, j)) expr = Sum(M[i, j]*N[j, k], (j, 0, k-1)) assert _convert_indexed_to_array(expr) == (ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (i, k)) expr = M[i, j] + N[i, j] assert _convert_indexed_to_array(expr) == (ArrayAdd(M, N), (i, j)) expr = M[i, j] + N[j, i] assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(N, Permutation([1, 0]))), (i, j)) expr = M[i, j] + M[j, i] assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(M, Permutation([1, 0]))), (i, j)) expr = (M*N*P)[i, j] assert _convert_indexed_to_array(expr) == (_array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j)) expr = expr.function # Disregard summation in previous expression ret1, ret2 = _convert_indexed_to_array(expr) assert ret1 == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)) assert str(ret2) == "(i, j, _i_1, _i_2)" expr = KroneckerDelta(i, j)*M[i, k] assert _convert_indexed_to_array(expr) == (M, ({i, j}, k)) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l] assert _convert_indexed_to_array(expr) == (M, ({i, j, k}, l)) expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add( ArrayTensorProduct(M, N), _permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, k}))) expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l]) assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add( ArrayTensorProduct(M, N), _permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3)) ), (1, 2)), (i, l, frozenset({j, m, k}))) expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n) assert _convert_indexed_to_array(expr) == (M, ({i, j, k, m, n}, 0)) expr = M[i, i] assert _convert_indexed_to_array(expr) == (ArrayDiagonal(M, (0, 1)), (i,)) def test_arrayexpr_convert_indexed_to_array_expression(): s = Sum(A[i]*B[i], (i, 0, 3)) cg = convert_indexed_to_array(s) assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1)) expr = M*N result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2)) elem = expr[i, j] assert convert_indexed_to_array(elem) == result expr = M*N*M elem = expr[i, j] result = _array_contraction(_array_tensor_product(M, M, N), (1, 4), (2, 5)) cg = convert_indexed_to_array(elem) assert cg == result cg = convert_indexed_to_array((M * N * P)[i, j]) assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)) cg = convert_indexed_to_array((M * N.T * P)[i, j]) assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 3), (2, 4)) expr = -2*M*N elem = expr[i, j] cg = convert_indexed_to_array(elem) assert cg == ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2)) def test_arrayexpr_convert_indexed_to_array_and_back_to_matrix(): expr = a.T*b elem = expr[0, 0] cg = convert_indexed_to_array(elem) assert cg == ArrayElement(ArrayContraction(ArrayTensorProduct(a, b), (0, 2)), [0, 0]) expr = M[i,j] + N[i,j] p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == M + N expr = M[i,j] + N[j,i] p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == M + N.T expr = M[i,j]*N[k,l] + N[i,j]*M[k,l] p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == ArrayAdd( ArrayTensorProduct(M, N), ArrayTensorProduct(N, M)) expr = (M*N*P)[i, j] p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == M * N * P expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1)) p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == M * N * P expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1)) p1, p2 = _convert_indexed_to_array(expr) assert convert_array_to_matrix(p1) == M * P * N + M * P.T * N + N * P * M + N * P.T * M def test_arrayexpr_convert_indexed_to_array_out_of_bounds(): expr = Sum(M[i, i], (i, 0, 4)) raises(ValueError, lambda: convert_indexed_to_array(expr)) expr = Sum(M[i, i], (i, 0, k)) raises(ValueError, lambda: convert_indexed_to_array(expr)) expr = Sum(M[i, i], (i, 1, k-1)) raises(ValueError, lambda: convert_indexed_to_array(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, 4)) raises(ValueError, lambda: convert_indexed_to_array(expr)) expr = Sum(M[i, j]*N[j,m], (j, 0, k)) raises(ValueError, lambda: convert_indexed_to_array(expr)) expr = Sum(M[i, j]*N[j,m], (j, 1, k-1)) raises(ValueError, lambda: convert_indexed_to_array(expr))
af0190ac2926dff9dbdf8b80d92b5c55f08e19e60e8c6943442343d1aad5eec1
from sympy import Lambda from sympy.core.symbol import symbols, Dummy from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct) from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions.special import Identity from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions.transpose import Transpose from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction, \ PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, _array_contraction, _array_tensor_product from sympy.tensor.array.expressions.conv_array_to_matrix import convert_array_to_matrix from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array i, j, k, l, m, n = symbols("i j k l m n") I = Identity(k) M = MatrixSymbol("M", k, k) N = MatrixSymbol("N", k, k) P = MatrixSymbol("P", k, k) Q = MatrixSymbol("Q", k, k) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) X = MatrixSymbol("X", k, k) Y = MatrixSymbol("Y", k, k) a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) c = MatrixSymbol("c", k, 1) d = MatrixSymbol("d", k, 1) def test_arrayexpr_convert_matrix_to_array(): expr = M*N result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2)) assert convert_matrix_to_array(expr) == result expr = M*N*M result = _array_contraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4)) assert convert_matrix_to_array(expr) == result expr = Transpose(M) assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0]) expr = M*Transpose(N) assert convert_matrix_to_array(expr) == _array_contraction(_array_tensor_product(M, PermuteDims(N, [1, 0])), (1, 2)) expr = 3*M*N res = convert_matrix_to_array(expr) rexpr = convert_array_to_matrix(res) assert expr == rexpr expr = 3*M + N*M.T*M + 4*k*N res = convert_matrix_to_array(expr) rexpr = convert_array_to_matrix(res) assert expr == rexpr expr = Inverse(M)*N rexpr = convert_array_to_matrix(convert_matrix_to_array(expr)) assert expr == rexpr expr = M**2 rexpr = convert_array_to_matrix(convert_matrix_to_array(expr)) assert expr == rexpr expr = M*(2*N + 3*M) res = convert_matrix_to_array(expr) rexpr = convert_array_to_matrix(res) assert expr == rexpr expr = Trace(M) result = ArrayContraction(M, (0, 1)) assert convert_matrix_to_array(expr) == result expr = 3*Trace(M) result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1)) assert convert_matrix_to_array(expr) == result expr = 3*Trace(Trace(M) * M) result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3)) assert convert_matrix_to_array(expr) == result expr = 3*Trace(M)**2 result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3)) assert convert_matrix_to_array(expr) == result expr = HadamardProduct(M, N) result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3)) assert convert_matrix_to_array(expr) == result expr = HadamardProduct(M*N, N*M) result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, N, M), (1, 2), (5, 6)), (0, 2), (1, 3)) assert convert_matrix_to_array(expr) == result expr = HadamardPower(M, 2) result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3)) assert convert_matrix_to_array(expr) == result expr = HadamardPower(M*N, 2) result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, M, N), (1, 2), (5, 6)), (0, 2), (1, 3)) assert convert_matrix_to_array(expr) == result expr = HadamardPower(M, n) d0 = Dummy("d0") result = ArrayElementwiseApplyFunc(Lambda(d0, d0**n), M) assert convert_matrix_to_array(expr).dummy_eq(result) expr = M**2 assert isinstance(expr, MatPow) assert convert_matrix_to_array(expr) == ArrayContraction(ArrayTensorProduct(M, M), (1, 2)) expr = a.T*b cg = convert_matrix_to_array(expr) assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))
f77f4b2ab881bb19b5039247858de5ad57a02f31d7a4d4189ac4ce05be1bbd78
import random from sympy import tensordiagonal, eye, KroneckerDelta from sympy.core.symbol import symbols from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import ZeroMatrix from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensorproduct) from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray from sympy.combinatorics import Permutation from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, ArraySymbol, ArrayElement, \ PermuteDims, ArrayContraction, ArrayTensorProduct, ArrayDiagonal, \ ArrayAdd, nest_permutation, ArrayElementwiseApplyFunc, _EditArrayContraction, _ArgE, _array_tensor_product, \ _array_contraction, _array_diagonal, _array_add, _permute_dims from sympy.testing.pytest import raises i, j, k, l, m, n = symbols("i j k l m n") M = ArraySymbol("M", (k, k)) N = ArraySymbol("N", (k, k)) P = ArraySymbol("P", (k, k)) Q = ArraySymbol("Q", (k, k)) A = ArraySymbol("A", (k, k)) B = ArraySymbol("B", (k, k)) C = ArraySymbol("C", (k, k)) D = ArraySymbol("D", (k, k)) X = ArraySymbol("X", (k, k)) Y = ArraySymbol("Y", (k, k)) a = ArraySymbol("a", (k, 1)) b = ArraySymbol("b", (k, 1)) c = ArraySymbol("c", (k, 1)) d = ArraySymbol("d", (k, 1)) def test_array_symbol_and_element(): A = ArraySymbol("A", (2,)) A0 = ArrayElement(A, (0,)) A1 = ArrayElement(A, (1,)) assert A.as_explicit() == ImmutableDenseNDimArray([A0, A1]) A2 = tensorproduct(A, A) assert A2.shape == (2, 2) # TODO: not yet supported: # assert A2.as_explicit() == Array([[A[0]*A[0], A[1]*A[0]], [A[0]*A[1], A[1]*A[1]]]) A3 = tensorcontraction(A2, (0, 1)) assert A3.shape == () # TODO: not yet supported: # assert A3.as_explicit() == Array([]) A = ArraySymbol("A", (2, 3, 4)) Ae = A.as_explicit() assert Ae == ImmutableDenseNDimArray( [[[ArrayElement(A, (i, j, k)) for k in range(4)] for j in range(3)] for i in range(2)]) p = _permute_dims(A, Permutation(0, 2, 1)) assert isinstance(p, PermuteDims) def test_zero_array(): assert ZeroArray() == 0 assert ZeroArray().is_Integer za = ZeroArray(3, 2, 4) assert za.shape == (3, 2, 4) za_e = za.as_explicit() assert za_e.shape == (3, 2, 4) m, n, k = symbols("m n k") za = ZeroArray(m, n, k, 2) assert za.shape == (m, n, k, 2) raises(ValueError, lambda: za.as_explicit()) def test_one_array(): assert OneArray() == 1 assert OneArray().is_Integer oa = OneArray(3, 2, 4) assert oa.shape == (3, 2, 4) oa_e = oa.as_explicit() assert oa_e.shape == (3, 2, 4) m, n, k = symbols("m n k") oa = OneArray(m, n, k, 2) assert oa.shape == (m, n, k, 2) raises(ValueError, lambda: oa.as_explicit()) def test_arrayexpr_contraction_construction(): cg = _array_contraction(A) assert cg == A cg = _array_contraction(_array_tensor_product(A, B), (1, 0)) assert cg == _array_contraction(_array_tensor_product(A, B), (0, 1)) cg = _array_contraction(_array_tensor_product(M, N), (0, 1)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (0, 1)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 1)] cg = _array_contraction(_array_tensor_product(M, N), (1, 2)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 1), (1, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(1, 2)] cg = _array_contraction(_array_tensor_product(M, M, N), (1, 4), (2, 5)) indtup = cg._get_contraction_tuples() assert indtup == [[(0, 0), (1, 1)], [(0, 1), (2, 0)]] assert cg._contraction_tuples_to_contraction_indices(cg.expr, indtup) == [(0, 3), (1, 4)] # Test removal of trivial contraction: assert _array_contraction(a, (1,)) == a assert _array_contraction( _array_tensor_product(a, b), (0, 2), (1,), (3,)) == _array_contraction( _array_tensor_product(a, b), (0, 2)) def test_arrayexpr_array_flatten(): # Flatten nested ArrayTensorProduct objects: expr1 = _array_tensor_product(M, N) expr2 = _array_tensor_product(P, Q) expr = _array_tensor_product(expr1, expr2) assert expr == _array_tensor_product(M, N, P, Q) assert expr.args == (M, N, P, Q) # Flatten mixed ArrayTensorProduct and ArrayContraction objects: cg1 = _array_contraction(expr1, (1, 2)) cg2 = _array_contraction(expr2, (0, 3)) expr = _array_tensor_product(cg1, cg2) assert expr == _array_contraction(_array_tensor_product(M, N, P, Q), (1, 2), (4, 7)) expr = _array_tensor_product(M, cg1) assert expr == _array_contraction(_array_tensor_product(M, M, N), (3, 4)) # Flatten nested ArrayContraction objects: cgnested = _array_contraction(cg1, (0, 1)) assert cgnested == _array_contraction(_array_tensor_product(M, N), (0, 3), (1, 2)) cgnested = _array_contraction(_array_tensor_product(cg1, cg2), (0, 3)) assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 6), (1, 2), (4, 7)) cg3 = _array_contraction(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4)) cgnested = _array_contraction(cg3, (0, 1)) assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 5), (1, 3), (2, 4)) cgnested = _array_contraction(cg3, (0, 3), (1, 2)) assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 7), (1, 3), (2, 4), (5, 6)) cg4 = _array_contraction(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7)) cgnested = _array_contraction(cg4, (0, 1)) assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 5), (3, 7)) cgnested = _array_contraction(cg4, (0, 1), (2, 3)) assert cgnested == _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 5), (3, 7), (4, 6)) cg = _array_diagonal(cg4) assert cg == cg4 assert isinstance(cg, type(cg4)) # Flatten nested ArrayDiagonal objects: cg1 = _array_diagonal(expr1, (1, 2)) cg2 = _array_diagonal(expr2, (0, 3)) cg3 = _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4)) cg4 = _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7)) cgnested = _array_diagonal(cg1, (0, 1)) assert cgnested == _array_diagonal(_array_tensor_product(M, N), (1, 2), (0, 3)) cgnested = _array_diagonal(cg3, (1, 2)) assert cgnested == _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 3), (2, 4), (5, 6)) cgnested = _array_diagonal(cg4, (1, 2)) assert cgnested == _array_diagonal(_array_tensor_product(M, N, P, Q), (1, 5), (3, 7), (2, 4)) cg = _array_add(M, N) cg2 = _array_add(cg, P) assert isinstance(cg2, ArrayAdd) assert cg2.args == (M, N, P) assert cg2.shape == (k, k) expr = _array_tensor_product(_array_diagonal(X, (0, 1)), _array_diagonal(A, (0, 1))) assert expr == _array_diagonal(_array_tensor_product(X, A), (0, 1), (2, 3)) expr1 = _array_diagonal(_array_tensor_product(X, A), (1, 2)) expr2 = _array_tensor_product(expr1, a) assert expr2 == _permute_dims(_array_diagonal(_array_tensor_product(X, A, a), (1, 2)), [0, 1, 4, 2, 3]) expr1 = _array_contraction(_array_tensor_product(X, A), (1, 2)) expr2 = _array_tensor_product(expr1, a) assert isinstance(expr2, ArrayContraction) assert isinstance(expr2.expr, ArrayTensorProduct) cg = _array_tensor_product(_array_diagonal(_array_tensor_product(A, X, Y), (0, 3), (1, 5)), a, b) assert cg == _permute_dims(_array_diagonal(_array_tensor_product(A, X, Y, a, b), (0, 3), (1, 5)), [0, 1, 6, 7, 2, 3, 4, 5]) def test_arrayexpr_array_diagonal(): cg = _array_diagonal(M, (1, 0)) assert cg == _array_diagonal(M, (0, 1)) cg = _array_diagonal(_array_tensor_product(M, N, P), (4, 1), (2, 0)) assert cg == _array_diagonal(_array_tensor_product(M, N, P), (1, 4), (0, 2)) cg = _array_diagonal(_array_tensor_product(M, N), (1, 2), (3,), allow_trivial_diags=True) assert cg == _permute_dims(_array_diagonal(_array_tensor_product(M, N), (1, 2)), [0, 2, 1]) Ax = ArraySymbol("Ax", shape=(1, 2, 3, 4, 3, 5, 6, 2, 7)) cg = _array_diagonal(Ax, (1, 7), (3,), (2, 4), (6,), allow_trivial_diags=True) assert cg == _permute_dims(_array_diagonal(Ax, (1, 7), (2, 4)), [0, 2, 4, 5, 1, 6, 3]) cg = _array_diagonal(M, (0,), allow_trivial_diags=True) assert cg == _permute_dims(M, [1, 0]) raises(ValueError, lambda: _array_diagonal(M, (0, 0))) def test_arrayexpr_array_shape(): expr = _array_tensor_product(M, N, P, Q) assert expr.shape == (k, k, k, k, k, k, k, k) Z = MatrixSymbol("Z", m, n) expr = _array_tensor_product(M, Z) assert expr.shape == (k, k, m, n) expr2 = _array_contraction(expr, (0, 1)) assert expr2.shape == (m, n) expr2 = _array_diagonal(expr, (0, 1)) assert expr2.shape == (m, n, k) exprp = _permute_dims(expr, [2, 1, 3, 0]) assert exprp.shape == (m, k, n, k) expr3 = _array_tensor_product(N, Z) expr2 = _array_add(expr, expr3) assert expr2.shape == (k, k, m, n) # Contraction along axes with discordant dimensions: raises(ValueError, lambda: _array_contraction(expr, (1, 2))) # Also diagonal needs the same dimensions: raises(ValueError, lambda: _array_diagonal(expr, (1, 2))) # Diagonal requires at least to axes to compute the diagonal: raises(ValueError, lambda: _array_diagonal(expr, (1,))) def test_arrayexpr_permutedims_sink(): cg = _permute_dims(_array_tensor_product(M, N), [0, 1, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_tensor_product(M, _permute_dims(N, [1, 0])) cg = _permute_dims(_array_tensor_product(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_tensor_product(_permute_dims(M, [1, 0]), _permute_dims(N, [1, 0])) cg = _permute_dims(_array_tensor_product(M, N), [3, 2, 1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_tensor_product(_permute_dims(N, [1, 0]), _permute_dims(M, [1, 0])) cg = _permute_dims(_array_contraction(_array_tensor_product(M, N), (1, 2)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_contraction(_permute_dims(_array_tensor_product(M, N), [[0, 3]]), (1, 2)) cg = _permute_dims(_array_tensor_product(M, N), [1, 0, 3, 2], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_tensor_product(_permute_dims(M, [1, 0]), _permute_dims(N, [1, 0])) cg = _permute_dims(_array_contraction(_array_tensor_product(M, N, P), (1, 2), (3, 4)), [1, 0], nest_permutation=False) sunk = nest_permutation(cg) assert sunk == _array_contraction(_permute_dims(_array_tensor_product(M, N, P), [[0, 5]]), (1, 2), (3, 4)) def test_arrayexpr_push_indices_up_and_down(): indices = list(range(12)) contr_diag_indices = [(0, 6), (2, 8)] assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (1, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15) assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (None, 0, None, 1, 2, 3, None, 4, None, 5, 6, 7) assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (1, 3, 4, 5, 7, 9, (0, 6), (2, 8), None, None, None, None) assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (6, 0, 7, 1, 2, 3, 6, 4, 7, 5, None, None) contr_diag_indices = [(1, 2), (7, 8)] assert ArrayContraction._push_indices_down(contr_diag_indices, indices) == (0, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15) assert ArrayContraction._push_indices_up(contr_diag_indices, indices) == (0, None, None, 1, 2, 3, 4, None, None, 5, 6, 7) assert ArrayDiagonal._push_indices_down(contr_diag_indices, indices, 10) == (0, 3, 4, 5, 6, 9, (1, 2), (7, 8), None, None, None, None) assert ArrayDiagonal._push_indices_up(contr_diag_indices, indices, 10) == (0, 6, 6, 1, 2, 3, 4, 7, 7, 5, None, None) def test_arrayexpr_split_multiple_contractions(): a = MatrixSymbol("a", k, 1) b = MatrixSymbol("b", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) X = MatrixSymbol("X", k, k) cg = _array_contraction(_array_tensor_product(A.T, a, b, b.T, (A*X*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9)) expected = _array_contraction(_array_tensor_product(A.T, DiagMatrix(a), OneArray(1), b, b.T, (A*X*b).applyfunc(cos)), (1, 3), (2, 9), (6, 7, 10)) assert cg.split_multiple_contractions().dummy_eq(expected) # Check no overlap of lines: cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4), (5, 6, 8), (3, 7)) assert cg.split_multiple_contractions() == cg cg = _array_contraction(_array_tensor_product(a, b, A), (0, 2, 4), (1, 3)) assert cg.split_multiple_contractions() == cg def test_arrayexpr_nested_permutations(): cg = _permute_dims(_permute_dims(M, (1, 0)), (1, 0)) assert cg == M times = 3 plist1 = [list(range(6)) for i in range(times)] plist2 = [list(range(6)) for i in range(times)] for i in range(times): random.shuffle(plist1[i]) random.shuffle(plist2[i]) plist1.append([2, 5, 4, 1, 0, 3]) plist2.append([3, 5, 0, 4, 1, 2]) plist1.append([2, 5, 4, 0, 3, 1]) plist2.append([3, 0, 5, 1, 2, 4]) plist1.append([5, 4, 2, 0, 3, 1]) plist2.append([4, 5, 0, 2, 3, 1]) Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() Pe = P.subs(k, 3).as_explicit() cge = tensorproduct(Me, Ne, Pe) for permutation_array1, permutation_array2 in zip(plist1, plist2): p1 = Permutation(permutation_array1) p2 = Permutation(permutation_array2) cg = _permute_dims( _permute_dims( _array_tensor_product(M, N, P), p1), p2 ) result = _permute_dims( _array_tensor_product(M, N, P), p2*p1 ) assert cg == result # Check that `permutedims` behaves the same way with explicit-component arrays: result1 = _permute_dims(_permute_dims(cge, p1), p2) result2 = _permute_dims(cge, p2*p1) assert result1 == result2 def test_arrayexpr_contraction_permutation_mix(): Me = M.subs(k, 3).as_explicit() Ne = N.subs(k, 3).as_explicit() cg1 = _array_contraction(PermuteDims(_array_tensor_product(M, N), Permutation([0, 2, 1, 3])), (2, 3)) cg2 = _array_contraction(_array_tensor_product(M, N), (1, 3)) assert cg1 == cg2 cge1 = tensorcontraction(permutedims(tensorproduct(Me, Ne), Permutation([0, 2, 1, 3])), (2, 3)) cge2 = tensorcontraction(tensorproduct(Me, Ne), (1, 3)) assert cge1 == cge2 cg1 = _permute_dims(_array_tensor_product(M, N), Permutation([0, 1, 3, 2])) cg2 = _array_tensor_product(M, _permute_dims(N, Permutation([1, 0]))) assert cg1 == cg2 cg1 = _array_contraction( _permute_dims( _array_tensor_product(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])), (1, 2), (3, 5) ) cg2 = _array_contraction( _array_tensor_product(M, N, P, _permute_dims(Q, Permutation([1, 0]))), (1, 5), (2, 3) ) assert cg1 == cg2 cg1 = _array_contraction( _permute_dims( _array_tensor_product(M, N, P, Q), Permutation([1, 0, 4, 6, 2, 7, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = _permute_dims( _array_contraction( _array_tensor_product(M, P, Q, N), (0, 1), (2, 3), (4, 7)), [1, 0] ) assert cg1 == cg2 cg1 = _array_contraction( _permute_dims( _array_tensor_product(M, N, P, Q), Permutation([1, 0, 4, 6, 7, 2, 5, 3])), (0, 1), (2, 6), (3, 7) ) cg2 = _permute_dims( _array_contraction( _array_tensor_product(_permute_dims(M, [1, 0]), N, P, Q), (0, 1), (3, 6), (4, 5) ), Permutation([1, 0]) ) assert cg1 == cg2 def test_arrayexpr_permute_tensor_product(): cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 1, 0, 5, 4, 6, 7])) cg2 = _array_tensor_product(N, _permute_dims(M, [1, 0]), _permute_dims(P, [1, 0]), Q) assert cg1 == cg2 # TODO: reverse operation starting with `PermuteDims` and getting down to `bb`... cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 4, 5, 0, 1, 6, 7])) cg2 = _array_tensor_product(N, P, M, Q) assert cg1 == cg2 cg1 = _permute_dims(_array_tensor_product(M, N, P, Q), Permutation([2, 3, 4, 6, 5, 7, 0, 1])) assert cg1.expr == _array_tensor_product(N, P, Q, M) assert cg1.permutation == Permutation([0, 1, 2, 4, 3, 5, 6, 7]) cg1 = _array_contraction( _permute_dims( _array_tensor_product(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]) cg2 = _permute_dims(_array_contraction(_array_tensor_product(Q, Q, N, M), (3, 5, 6)), [0, 2, 3, 1, 4]) assert cg1 == cg2 cg1 = _array_contraction( _array_contraction( _array_contraction( _array_contraction( _permute_dims( _array_tensor_product(N, Q, Q, M), [2, 1, 5, 4, 0, 3, 6, 7]), [1, 2, 6]), [1, 3, 4]), [1]), [0]) cg2 = _array_contraction(_array_tensor_product(M, N, Q, Q), (0, 3, 5), (1, 4, 7), (2,), (6,)) assert cg1 == cg2 def test_arrayexpr_canonicalize_diagonal__permute_dims(): tp = _array_tensor_product(M, Q, N, P) expr = _array_diagonal( _permute_dims(tp, [0, 1, 2, 4, 7, 6, 3, 5]), (2, 4, 5), (6, 7), (0, 3)) result = _array_diagonal(tp, (2, 6, 7), (3, 5), (0, 4)) assert expr == result tp = _array_tensor_product(M, N, P, Q) expr = _array_diagonal(_permute_dims(tp, [0, 5, 2, 4, 1, 6, 3, 7]), (1, 2, 6), (3, 4)) result = _array_diagonal(_array_tensor_product(M, P, N, Q), (3, 4, 5), (1, 2)) assert expr == result def test_arrayexpr_canonicalize_diagonal_contraction(): tp = _array_tensor_product(M, N, P, Q) expr = _array_contraction(_array_diagonal(tp, (1, 3, 4)), (0, 3)) result = _array_diagonal(_array_contraction(_array_tensor_product(M, N, P, Q), (0, 6)), (0, 2, 3)) assert expr == result expr = _array_contraction(_array_diagonal(tp, (0, 1, 2, 3, 7)), (1, 2, 3)) result = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 1, 2, 3, 5, 6, 7)) assert expr == result expr = _array_contraction(_array_diagonal(tp, (0, 2, 6, 7)), (1, 2, 3)) result = _array_diagonal(_array_contraction(tp, (3, 4, 5)), (0, 2, 3, 4)) assert expr == result td = _array_diagonal(_array_tensor_product(M, N, P, Q), (0, 3)) expr = _array_contraction(td, (2, 1), (0, 4, 6, 5, 3)) result = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 1, 3, 5, 6, 7), (2, 4)) assert expr == result def test_arrayexpr_array_wrong_permutation_size(): cg = _array_tensor_product(M, N) raises(ValueError, lambda: _permute_dims(cg, [1, 0])) raises(ValueError, lambda: _permute_dims(cg, [1, 0, 2, 3, 5, 4])) def test_arrayexpr_nested_array_elementwise_add(): cg = _array_contraction(_array_add( _array_tensor_product(M, N), _array_tensor_product(N, M) ), (1, 2)) result = _array_add( _array_contraction(_array_tensor_product(M, N), (1, 2)), _array_contraction(_array_tensor_product(N, M), (1, 2)) ) assert cg == result cg = _array_diagonal(_array_add( _array_tensor_product(M, N), _array_tensor_product(N, M) ), (1, 2)) result = _array_add( _array_diagonal(_array_tensor_product(M, N), (1, 2)), _array_diagonal(_array_tensor_product(N, M), (1, 2)) ) assert cg == result def test_arrayexpr_array_expr_zero_array(): za1 = ZeroArray(k, l, m, n) zm1 = ZeroMatrix(m, n) za2 = ZeroArray(k, m, m, n) zm2 = ZeroMatrix(m, m) zm3 = ZeroMatrix(k, k) assert _array_tensor_product(M, N, za1) == ZeroArray(k, k, k, k, k, l, m, n) assert _array_tensor_product(M, N, zm1) == ZeroArray(k, k, k, k, m, n) assert _array_contraction(za1, (3,)) == ZeroArray(k, l, m) assert _array_contraction(zm1, (1,)) == ZeroArray(m) assert _array_contraction(za2, (1, 2)) == ZeroArray(k, n) assert _array_contraction(zm2, (0, 1)) == 0 assert _array_diagonal(za2, (1, 2)) == ZeroArray(k, n, m) assert _array_diagonal(zm2, (0, 1)) == ZeroArray(m) assert _permute_dims(za1, [2, 1, 3, 0]) == ZeroArray(m, l, n, k) assert _permute_dims(zm1, [1, 0]) == ZeroArray(n, m) assert _array_add(za1) == za1 assert _array_add(zm1) == ZeroArray(m, n) tp1 = _array_tensor_product(MatrixSymbol("A", k, l), MatrixSymbol("B", m, n)) assert _array_add(tp1, za1) == tp1 tp2 = _array_tensor_product(MatrixSymbol("C", k, l), MatrixSymbol("D", m, n)) assert _array_add(tp1, za1, tp2) == _array_add(tp1, tp2) assert _array_add(M, zm3) == M assert _array_add(M, N, zm3) == _array_add(M, N) def test_arrayexpr_array_expr_applyfunc(): A = ArraySymbol("A", (3, k, 2)) aaf = ArrayElementwiseApplyFunc(sin, A) assert aaf.shape == (3, k, 2) def test_edit_array_contraction(): cg = _array_contraction(_array_tensor_product(A, B, C, D), (1, 2, 5)) ecg = _EditArrayContraction(cg) assert ecg.to_array_contraction() == cg ecg.args_with_ind[1], ecg.args_with_ind[2] = ecg.args_with_ind[2], ecg.args_with_ind[1] assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, C, B, D), (1, 3, 4)) ci = ecg.get_new_contraction_index() new_arg = _ArgE(X) new_arg.indices = [ci, ci] ecg.args_with_ind.insert(2, new_arg) assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, C, X, B, D), (1, 3, 6), (4, 5)) assert ecg.get_contraction_indices() == [[1, 3, 6], [4, 5]] assert [[tuple(j) for j in i] for i in ecg.get_contraction_indices_to_ind_rel_pos()] == [[(0, 1), (1, 1), (3, 0)], [(2, 0), (2, 1)]] assert [list(i) for i in ecg.get_mapping_for_index(0)] == [[0, 1], [1, 1], [3, 0]] assert [list(i) for i in ecg.get_mapping_for_index(1)] == [[2, 0], [2, 1]] raises(ValueError, lambda: ecg.get_mapping_for_index(2)) ecg.args_with_ind.pop(1) assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, B, D), (1, 4), (2, 3)) ecg.args_with_ind[0].indices[1] = ecg.args_with_ind[1].indices[0] ecg.args_with_ind[1].indices[1] = ecg.args_with_ind[2].indices[0] assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, B, D), (1, 2), (3, 4)) ecg.insert_after(ecg.args_with_ind[1], _ArgE(C)) assert ecg.to_array_contraction() == _array_contraction(_array_tensor_product(A, X, C, B, D), (1, 2), (3, 6)) def test_array_expressions_no_canonicalization(): tp = _array_tensor_product(M, N, P) # ArrayTensorProduct: expr = ArrayTensorProduct(tp, N) assert str(expr) == "ArrayTensorProduct(ArrayTensorProduct(M, N, P), N)" assert expr.doit() == ArrayTensorProduct(M, N, P, N) expr = ArrayTensorProduct(ArrayContraction(M, (0, 1)), N) assert str(expr) == "ArrayTensorProduct(ArrayContraction(M, (0, 1)), N)" assert expr.doit() == ArrayContraction(ArrayTensorProduct(M, N), (0, 1)) expr = ArrayTensorProduct(ArrayDiagonal(M, (0, 1)), N) assert str(expr) == "ArrayTensorProduct(ArrayDiagonal(M, (0, 1)), N)" assert expr.doit() == PermuteDims(ArrayDiagonal(ArrayTensorProduct(M, N), (0, 1)), [2, 0, 1]) expr = ArrayTensorProduct(PermuteDims(M, [1, 0]), N) assert str(expr) == "ArrayTensorProduct(PermuteDims(M, (0 1)), N)" assert expr.doit() == PermuteDims(ArrayTensorProduct(M, N), [1, 0, 2, 3]) # ArrayContraction: expr = ArrayContraction(_array_contraction(tp, (0, 2)), (0, 1)) assert isinstance(expr, ArrayContraction) assert isinstance(expr.expr, ArrayContraction) assert str(expr) == "ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N, P), (0, 2)), (0, 1))" assert expr.doit() == ArrayContraction(tp, (0, 2), (1, 3)) expr = ArrayContraction(ArrayContraction(ArrayContraction(tp, (0, 1)), (0, 1)), (0, 1)) assert expr.doit() == ArrayContraction(tp, (0, 1), (2, 3), (4, 5)) # assert expr._canonicalize() == ArrayContraction(ArrayContraction(tp, (0, 1)), (0, 1), (2, 3)) expr = ArrayContraction(ArrayDiagonal(tp, (0, 1)), (0, 1)) assert str(expr) == "ArrayContraction(ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 1)), (0, 1))" assert expr.doit() == ArrayDiagonal(ArrayContraction(ArrayTensorProduct(N, M, P), (0, 1)), (0, 1)) expr = ArrayContraction(PermuteDims(M, [1, 0]), (0, 1)) assert str(expr) == "ArrayContraction(PermuteDims(M, (0 1)), (0, 1))" assert expr.doit() == ArrayContraction(M, (0, 1)) # ArrayDiagonal: expr = ArrayDiagonal(ArrayDiagonal(tp, (0, 2)), (0, 1)) assert str(expr) == "ArrayDiagonal(ArrayDiagonal(ArrayTensorProduct(M, N, P), (0, 2)), (0, 1))" assert expr.doit() == ArrayDiagonal(tp, (0, 2), (1, 3)) expr = ArrayDiagonal(ArrayDiagonal(ArrayDiagonal(tp, (0, 1)), (0, 1)), (0, 1)) assert expr.doit() == ArrayDiagonal(tp, (0, 1), (2, 3), (4, 5)) assert expr._canonicalize() == expr.doit() expr = ArrayDiagonal(ArrayContraction(tp, (0, 1)), (0, 1)) assert str(expr) == "ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, P), (0, 1)), (0, 1))" assert expr.doit() == expr expr = ArrayDiagonal(PermuteDims(M, [1, 0]), (0, 1)) assert str(expr) == "ArrayDiagonal(PermuteDims(M, (0 1)), (0, 1))" assert expr.doit() == ArrayDiagonal(M, (0, 1)) # ArrayAdd: expr = ArrayAdd(M) assert isinstance(expr, ArrayAdd) assert expr.doit() == M expr = ArrayAdd(ArrayAdd(M, N), P) assert str(expr) == "ArrayAdd(ArrayAdd(M, N), P)" assert expr.doit() == ArrayAdd(M, N, P) expr = ArrayAdd(M, ArrayAdd(N, ArrayAdd(P, M))) assert expr.doit() == ArrayAdd(M, N, P, M) assert expr._canonicalize() == ArrayAdd(M, N, ArrayAdd(P, M)) expr = ArrayAdd(M, ZeroArray(k, k), N) assert str(expr) == "ArrayAdd(M, ZeroArray(k, k), N)" assert expr.doit() == ArrayAdd(M, N) # PermuteDims: expr = PermuteDims(PermuteDims(M, [1, 0]), [1, 0]) assert str(expr) == "PermuteDims(PermuteDims(M, (0 1)), (0 1))" assert expr.doit() == M expr = PermuteDims(PermuteDims(PermuteDims(M, [1, 0]), [1, 0]), [1, 0]) assert expr.doit() == PermuteDims(M, [1, 0]) assert expr._canonicalize() == expr.doit() def test_array_expr_construction_with_functions(): tp = tensorproduct(M, N) assert tp == ArrayTensorProduct(M, N) expr = tensorproduct(A, eye(2)) assert expr == ArrayTensorProduct(A, eye(2)) # Contraction: expr = tensorcontraction(M, (0, 1)) assert expr == ArrayContraction(M, (0, 1)) expr = tensorcontraction(tp, (1, 2)) assert expr == ArrayContraction(tp, (1, 2)) expr = tensorcontraction(tensorcontraction(tp, (1, 2)), (0, 1)) assert expr == ArrayContraction(tp, (0, 3), (1, 2)) # Diagonalization: expr = tensordiagonal(M, (0, 1)) assert expr == ArrayDiagonal(M, (0, 1)) expr = tensordiagonal(tensordiagonal(tp, (0, 1)), (0, 1)) assert expr == ArrayDiagonal(tp, (0, 1), (2, 3)) # Permutation of dimensions: expr = permutedims(M, [1, 0]) assert expr == PermuteDims(M, [1, 0]) expr = permutedims(PermuteDims(tp, [1, 0, 2, 3]), [0, 1, 3, 2]) assert expr == PermuteDims(tp, [1, 0, 3, 2]) def test_array_element_expressions(): # Check commutative property: assert M[0, 0]*N[0, 0] == N[0, 0]*M[0, 0] # Check derivatives: assert M[0, 0].diff(M[0, 0]) == 1 assert M[0, 0].diff(M[1, 0]) == 0 assert M[0, 0].diff(N[0, 0]) == 0 assert M[0, 1].diff(M[i, j]) == KroneckerDelta(i, 0)*KroneckerDelta(j, 1) assert M[0, 1].diff(N[i, j]) == 0 K4 = ArraySymbol("K4", shape=(k, k, k, k)) assert K4[i, j, k, l].diff(K4[1, 2, 3, 4]) == ( KroneckerDelta(i, 1)*KroneckerDelta(j, 2)*KroneckerDelta(k, 3)*KroneckerDelta(l, 4) )
620b18da15857f8e12a8ade85db36e63a3d7bad2f505796c047b21f48c25df38
from sympy.core.symbol import symbols from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayTensorProduct, \ PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, ArrayContraction, _permute_dims from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive k = symbols("k") I = Identity(k) X = MatrixSymbol("X", k, k) x = MatrixSymbol("x", k, 1) A = MatrixSymbol("A", k, k) B = MatrixSymbol("B", k, k) C = MatrixSymbol("C", k, k) D = MatrixSymbol("D", k, k) A1 = ArraySymbol("A", (3, 2, k)) def test_arrayexpr_derivatives1(): res = array_derive(X, X) assert res == PermuteDims(ArrayTensorProduct(I, I), [0, 2, 1, 3]) cg = ArrayTensorProduct(A, X, B) res = array_derive(cg, X) assert res == _permute_dims( ArrayTensorProduct(I, A, I, B), [0, 4, 2, 3, 1, 5, 6, 7]) cg = ArrayContraction(X, (0, 1)) res = array_derive(cg, X) assert res == ArrayContraction(ArrayTensorProduct(I, I), (1, 3)) cg = ArrayDiagonal(X, (0, 1)) res = array_derive(cg, X) assert res == ArrayDiagonal(ArrayTensorProduct(I, I), (1, 3)) cg = ElementwiseApplyFunction(sin, X) res = array_derive(cg, X) assert res.dummy_eq(ArrayDiagonal( ArrayTensorProduct( ElementwiseApplyFunction(cos, X), I, I ), (0, 3), (1, 5))) cg = ArrayElementwiseApplyFunc(sin, X) res = array_derive(cg, X) assert res.dummy_eq(ArrayDiagonal( ArrayTensorProduct( I, I, ArrayElementwiseApplyFunc(cos, X) ), (1, 4), (3, 5))) res = array_derive(A1, A1) assert res == PermuteDims( ArrayTensorProduct(Identity(3), Identity(2), Identity(k)), [0, 2, 4, 1, 3, 5] ) cg = ArrayElementwiseApplyFunc(sin, A1) res = array_derive(cg, A1) assert res.dummy_eq(ArrayDiagonal( ArrayTensorProduct( Identity(3), Identity(2), Identity(k), ArrayElementwiseApplyFunc(cos, A1) ), (1, 6), (3, 7), (5, 8) ))
e8c09e0bd2855df3d76662e690f3554b1df27aac6cb7566649ebff5624496662
from sympy.assumptions.ask import Q from sympy.assumptions.refine import refine from sympy.core.numbers import oo from sympy.core.relational import Equality, Eq, Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, symbols) from sympy.functions import Piecewise from sympy.functions.elementary.trigonometric import cos, sin from sympy.sets.sets import (Interval, Union) from sympy.simplify.simplify import simplify from sympy.logic.boolalg import ( And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or, POSform, SOPform, Xor, Xnor, conjuncts, disjuncts, distribute_or_over_and, distribute_and_over_or, eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic, to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false, BooleanAtom, is_literal, term_to_integer, truth_table, as_Boolean, to_anf, is_anf, distribute_xor_over_and, anf_coeffs, ANFform, bool_minterm, bool_maxterm, bool_monomial, _check_pair, _convert_to_varsSOP, _convert_to_varsPOS, Exclusive,) from sympy.assumptions.cnf import CNF from sympy.testing.pytest import raises, XFAIL, slow from itertools import combinations, permutations, product A, B, C, D = symbols('A:D') a, b, c, d, e, w, x, y, z = symbols('a:e w:z') def test_overloading(): """Test that |, & are overloaded as expected""" assert A & B == And(A, B) assert A | B == Or(A, B) assert (A & B) | C == Or(And(A, B), C) assert A >> B == Implies(A, B) assert A << B == Implies(B, A) assert ~A == Not(A) assert A ^ B == Xor(A, B) def test_And(): assert And() is true assert And(A) == A assert And(True) is true assert And(False) is false assert And(True, True) is true assert And(True, False) is false assert And(False, False) is false assert And(True, A) == A assert And(False, A) is false assert And(True, True, True) is true assert And(True, True, A) == A assert And(True, False, A) is false assert And(1, A) == A raises(TypeError, lambda: And(2, A)) raises(TypeError, lambda: And(A < 2, A)) assert And(A < 1, A >= 1) is false e = A > 1 assert And(e, e.canonical) == e.canonical g, l, ge, le = A > B, B < A, A >= B, B <= A assert And(g, l, ge, le) == And(ge, g) assert {And(*i) for i in permutations((l,g,le,ge))} == {And(ge, g)} assert And(And(Eq(a, 0), Eq(b, 0)), And(Ne(a, 0), Eq(c, 0))) is false def test_Or(): assert Or() is false assert Or(A) == A assert Or(True) is true assert Or(False) is false assert Or(True, True) is true assert Or(True, False) is true assert Or(False, False) is false assert Or(True, A) is true assert Or(False, A) == A assert Or(True, False, False) is true assert Or(True, False, A) is true assert Or(False, False, A) == A assert Or(1, A) is true raises(TypeError, lambda: Or(2, A)) raises(TypeError, lambda: Or(A < 2, A)) assert Or(A < 1, A >= 1) is true e = A > 1 assert Or(e, e.canonical) == e g, l, ge, le = A > B, B < A, A >= B, B <= A assert Or(g, l, ge, le) == Or(g, ge) def test_Xor(): assert Xor() is false assert Xor(A) == A assert Xor(A, A) is false assert Xor(True, A, A) is true assert Xor(A, A, A, A, A) == A assert Xor(True, False, False, A, B) == ~Xor(A, B) assert Xor(True) is true assert Xor(False) is false assert Xor(True, True) is false assert Xor(True, False) is true assert Xor(False, False) is false assert Xor(True, A) == ~A assert Xor(False, A) == A assert Xor(True, False, False) is true assert Xor(True, False, A) == ~A assert Xor(False, False, A) == A assert isinstance(Xor(A, B), Xor) assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D) assert Xor(A, B, Xor(B, C)) == Xor(A, C) assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B) e = A > 1 assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1) def test_rewrite_as_And(): expr = x ^ y assert expr.rewrite(And) == (x | y) & (~x | ~y) def test_rewrite_as_Or(): expr = x ^ y assert expr.rewrite(Or) == (x & ~y) | (y & ~x) def test_rewrite_as_Nand(): expr = (y & z) | (z & ~w) assert expr.rewrite(Nand) == ~(~(y & z) & ~(z & ~w)) def test_rewrite_as_Nor(): expr = z & (y | ~w) assert expr.rewrite(Nor) == ~(~z | ~(y | ~w)) def test_Not(): raises(TypeError, lambda: Not(True, False)) assert Not(True) is false assert Not(False) is true assert Not(0) is true assert Not(1) is false assert Not(2) is false def test_Nand(): assert Nand() is false assert Nand(A) == ~A assert Nand(True) is false assert Nand(False) is true assert Nand(True, True) is false assert Nand(True, False) is true assert Nand(False, False) is true assert Nand(True, A) == ~A assert Nand(False, A) is true assert Nand(True, True, True) is false assert Nand(True, True, A) == ~A assert Nand(True, False, A) is true def test_Nor(): assert Nor() is true assert Nor(A) == ~A assert Nor(True) is false assert Nor(False) is true assert Nor(True, True) is false assert Nor(True, False) is false assert Nor(False, False) is true assert Nor(True, A) is false assert Nor(False, A) == ~A assert Nor(True, True, True) is false assert Nor(True, True, A) is false assert Nor(True, False, A) is false def test_Xnor(): assert Xnor() is true assert Xnor(A) == ~A assert Xnor(A, A) is true assert Xnor(True, A, A) is false assert Xnor(A, A, A, A, A) == ~A assert Xnor(True) is false assert Xnor(False) is true assert Xnor(True, True) is true assert Xnor(True, False) is false assert Xnor(False, False) is true assert Xnor(True, A) == A assert Xnor(False, A) == ~A assert Xnor(True, False, False) is false assert Xnor(True, False, A) == A assert Xnor(False, False, A) == ~A def test_Implies(): raises(ValueError, lambda: Implies(A, B, C)) assert Implies(True, True) is true assert Implies(True, False) is false assert Implies(False, True) is true assert Implies(False, False) is true assert Implies(0, A) is true assert Implies(1, 1) is true assert Implies(1, 0) is false assert A >> B == B << A assert (A < 1) >> (A >= 1) == (A >= 1) assert (A < 1) >> (S.One > A) is true assert A >> A is true def test_Equivalent(): assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A) assert Equivalent() is true assert Equivalent(A, A) == Equivalent(A) is true assert Equivalent(True, True) == Equivalent(False, False) is true assert Equivalent(True, False) == Equivalent(False, True) is false assert Equivalent(A, True) == A assert Equivalent(A, False) == Not(A) assert Equivalent(A, B, True) == A & B assert Equivalent(A, B, False) == ~A & ~B assert Equivalent(1, A) == A assert Equivalent(0, A) == Not(A) assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C) assert Equivalent(A < 1, A >= 1) is false assert Equivalent(A < 1, A >= 1, 0) is false assert Equivalent(A < 1, A >= 1, 1) is false assert Equivalent(A < 1, S.One > A) == Equivalent(1, 1) == Equivalent(0, 0) assert Equivalent(Equality(A, B), Equality(B, A)) is true def test_Exclusive(): assert Exclusive(False, False, False) is true assert Exclusive(True, False, False) is true assert Exclusive(True, True, False) is false assert Exclusive(True, True, True) is false def test_equals(): assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True assert (A >> B).equals(~A >> ~B) is False assert (A >> (B >> A)).equals(A >> (C >> A)) is False raises(NotImplementedError, lambda: (A & B).equals(A > B)) def test_simplification_boolalg(): """ Test working of simplification methods. """ set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]] set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]] assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x)) assert Not(SOPform([x, y, z], set2)) == \ Not(Or(And(Not(x), Not(z)), And(x, z))) assert POSform([x, y, z], set1 + set2) is true assert SOPform([x, y, z], set1 + set2) is true assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, 3, 7, 11, 15] dontcares = [0, 2, 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1], [1, 1, 1, 1]] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [1, {y: 1, z: 1}] dontcares = [0, [0, 0, 1, 0], 5] assert ( SOPform([w, x, y, z], minterms, dontcares) == Or(And(y, z), And(Not(w), Not(x)))) assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z) minterms = [{y: 1, z: 1}, 1] dontcares = [[0, 0, 0, 0]] minterms = [[0, 0, 0]] raises(ValueError, lambda: SOPform([w, x, y, z], minterms)) raises(ValueError, lambda: POSform([w, x, y, z], minterms)) raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"])) # test simplification ans = And(A, Or(B, C)) assert simplify_logic(A & (B | C)) == ans assert simplify_logic((A & B) | (A & C)) == ans assert simplify_logic(Implies(A, B)) == Or(Not(A), B) assert simplify_logic(Equivalent(A, B)) == \ Or(And(A, B), And(Not(A), Not(B))) assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C) assert simplify_logic(And(Equality(A, 2), A)) is S.false assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A) assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C) assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \ == And(Equality(A, 3), Or(B, C)) b = (~x & ~y & ~z) | (~x & ~y & z) e = And(A, b) assert simplify_logic(e) == A & ~x & ~y raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla')) assert simplify(Or(x <= y, And(x < y, z))) == (x <= y) assert simplify(Or(x <= y, And(y > x, z))) == (x <= y) assert simplify(Or(x >= y, And(y < x, z))) == (x >= y) # Check that expressions with nine variables or more are not simplified # (without the force-flag) a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j') expr = a & b & c & d & e & f & g & h & j | \ a & b & c & d & e & f & g & h & ~j # This expression can be simplified to get rid of the j variables assert simplify_logic(expr) == expr # check input ans = SOPform([x, y], [[1, 0]]) assert SOPform([x, y], [[1, 0]]) == ans assert POSform([x, y], [[1, 0]]) == ans raises(ValueError, lambda: SOPform([x], [[1]], [[1]])) assert SOPform([x], [[1]], [[0]]) is true assert SOPform([x], [[0]], [[1]]) is true assert SOPform([x], [], []) is false raises(ValueError, lambda: POSform([x], [[1]], [[1]])) assert POSform([x], [[1]], [[0]]) is true assert POSform([x], [[0]], [[1]]) is true assert POSform([x], [], []) is false # check working of simplify assert simplify((A & B) | (A & C)) == And(A, Or(B, C)) assert simplify(And(x, Not(x))) == False assert simplify(Or(x, Not(x))) == True assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0)) assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1)) assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y)) assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1)) assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify( ) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2)) assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1) assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1) assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify( ) == And(Ne(x, 1), Ne(x, 0)) def test_bool_map(): """ Test working of bool_map function. """ minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] assert bool_map(Not(Not(a)), a) == (a, {a: a}) assert bool_map(SOPform([w, x, y, z], minterms), POSform([w, x, y, z], minterms)) == \ (And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y}) assert bool_map(SOPform([x, z, y], [[1, 0, 1]]), SOPform([a, b, c], [[1, 0, 1]])) != False function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]]) function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]]) assert bool_map(function1, function2) == \ (function1, {y: a, z: b}) assert bool_map(Xor(x, y), ~Xor(x, y)) == False assert bool_map(And(x, y), Or(x, y)) is None assert bool_map(And(x, y), And(x, y, z)) is None # issue 16179 assert bool_map(Xor(x, y, z), ~Xor(x, y, z)) == False assert bool_map(Xor(a, x, y, z), ~Xor(a, x, y, z)) == False def test_bool_symbol(): """Test that mixing symbols with boolean values works as expected""" assert And(A, True) == A assert And(A, True, True) == A assert And(A, False) is false assert And(A, True, False) is false assert Or(A, True) is true assert Or(A, False) == A def test_is_boolean(): assert isinstance(True, Boolean) is False assert isinstance(true, Boolean) is True assert 1 == True assert 1 != true assert (1 == true) is False assert 0 == False assert 0 != false assert (0 == false) is False assert true.is_Boolean is True assert (A & B).is_Boolean assert (A | B).is_Boolean assert (~A).is_Boolean assert (A ^ B).is_Boolean assert A.is_Boolean != isinstance(A, Boolean) assert isinstance(A, Boolean) def test_subs(): assert (A & B).subs(A, True) == B assert (A & B).subs(A, False) is false assert (A & B).subs(B, True) == A assert (A & B).subs(B, False) is false assert (A & B).subs({A: True, B: True}) is true assert (A | B).subs(A, True) is true assert (A | B).subs(A, False) == B assert (A | B).subs(B, True) is true assert (A | B).subs(B, False) == A assert (A | B).subs({A: True, B: True}) is true """ we test for axioms of boolean algebra see https://en.wikipedia.org/wiki/Boolean_algebra_(structure) """ def test_commutative(): """Test for commutativity of And and Or""" A, B = map(Boolean, symbols('A,B')) assert A & B == B & A assert A | B == B | A def test_and_associativity(): """Test for associativity of And""" assert (A & B) & C == A & (B & C) def test_or_assicativity(): assert ((A | B) | C) == (A | (B | C)) def test_double_negation(): a = Boolean() assert ~(~a) == a # test methods def test_eliminate_implications(): assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B assert eliminate_implications( A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A)) assert eliminate_implications(Equivalent(A, B, C, D)) == \ (~A | B) & (~B | C) & (~C | D) & (~D | A) def test_conjuncts(): assert conjuncts(A & B & C) == {A, B, C} assert conjuncts((A | B) & C) == {A | B, C} assert conjuncts(A) == {A} assert conjuncts(True) == {True} assert conjuncts(False) == {False} def test_disjuncts(): assert disjuncts(A | B | C) == {A, B, C} assert disjuncts((A | B) & C) == {(A | B) & C} assert disjuncts(A) == {A} assert disjuncts(True) == {True} assert disjuncts(False) == {False} def test_distribute(): assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C)) assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C)) assert distribute_xor_over_and(And(A, Xor(B, C))) == Xor(And(A, B), And(A, C)) def test_to_anf(): x, y, z = symbols('x,y,z') assert to_anf(And(x, y)) == And(x, y) assert to_anf(Or(x, y)) == Xor(x, y, And(x, y)) assert to_anf(Or(Implies(x, y), And(x, y), y)) == \ Xor(x, True, x & y, remove_true=False) assert to_anf(Or(Nand(x, y), Nor(x, y), Xnor(x, y), Implies(x, y))) == True assert to_anf(Or(x, Not(y), Nor(x,z), And(x, y), Nand(y, z))) == \ Xor(True, And(y, z), And(x, y, z), remove_true=False) assert to_anf(Xor(x, y)) == Xor(x, y) assert to_anf(Not(x)) == Xor(x, True, remove_true=False) assert to_anf(Nand(x, y)) == Xor(True, And(x, y), remove_true=False) assert to_anf(Nor(x, y)) == Xor(x, y, True, And(x, y), remove_true=False) assert to_anf(Implies(x, y)) == Xor(x, True, And(x, y), remove_true=False) assert to_anf(Equivalent(x, y)) == Xor(x, y, True, remove_true=False) assert to_anf(Nand(x | y, x >> y), deep=False) == \ Xor(True, And(Or(x, y), Implies(x, y)), remove_true=False) assert to_anf(Nor(x ^ y, x & y), deep=False) == \ Xor(True, Or(Xor(x, y), And(x, y)), remove_true=False) def test_to_nnf(): assert to_nnf(true) is true assert to_nnf(false) is false assert to_nnf(A) == A assert to_nnf(A | ~A | B) is true assert to_nnf(A & ~A & B) is false assert to_nnf(A >> B) == ~A | B assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A) assert to_nnf(A ^ B ^ C) == \ (A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C) assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C) assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C assert to_nnf(Not(A >> B)) == A & ~B assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C)) assert to_nnf(Not(A ^ B ^ C)) == \ (~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C) assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C) assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B) assert to_nnf((A >> B) ^ (B >> A), False) == \ (~A | ~B | A | B) & ((A & ~B) | (~A & B)) assert ITE(A, 1, 0).to_nnf() == A assert ITE(A, 0, 1).to_nnf() == ~A # although ITE can hold non-Boolean, it will complain if # an attempt is made to convert the ITE to Boolean nnf raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf()) def test_to_cnf(): assert to_cnf(~(B | C)) == And(Not(B), Not(C)) assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C)) assert to_cnf(A >> B) == (~A) | B assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C) assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C assert to_cnf(A & B) == And(A, B) assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A))) assert to_cnf(Equivalent(A, B & C)) == \ (~A | B) & (~A | C) & (~B | ~C | A) assert to_cnf(Equivalent(A, B | C), True) == \ And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A))) assert to_cnf(A + 1) == A + 1 def test_issue_18904(): x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 = symbols('x1:16') eq = (( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 ) | ( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x10 & x9 ) | ( x1 & x11 & x3 & x12 & x5 & x13 & x14 & x15 & x9 )) assert is_cnf(to_cnf(eq)) raises(ValueError, lambda: to_cnf(eq, simplify=True)) for f, t in zip((And, Or), (to_cnf, to_dnf)): eq = f(x1, x2, x3, x4, x5, x6, x7, x8, x9) raises(ValueError, lambda: to_cnf(eq, simplify=True)) assert t(eq, simplify=True, force=True) == eq def test_issue_9949(): assert is_cnf(to_cnf((b > -5) | (a > 2) & (a < 4))) def test_to_CNF(): assert CNF.CNF_to_cnf(CNF.to_CNF(~(B | C))) == to_cnf(~(B | C)) assert CNF.CNF_to_cnf(CNF.to_CNF((A & B) | C)) == to_cnf((A & B) | C) assert CNF.CNF_to_cnf(CNF.to_CNF(A >> B)) == to_cnf(A >> B) assert CNF.CNF_to_cnf(CNF.to_CNF(A >> (B & C))) == to_cnf(A >> (B & C)) assert CNF.CNF_to_cnf(CNF.to_CNF(A & (B | C) | ~A & (B | C))) == to_cnf(A & (B | C) | ~A & (B | C)) assert CNF.CNF_to_cnf(CNF.to_CNF(A & B)) == to_cnf(A & B) def test_to_dnf(): assert to_dnf(~(B | C)) == And(Not(B), Not(C)) assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C)) assert to_dnf(A >> B) == (~A) | B assert to_dnf(A >> (B & C)) == (~A) | (B & C) assert to_dnf(A | B) == A | B assert to_dnf(Equivalent(A, B), True) == \ Or(And(A, B), And(Not(A), Not(B))) assert to_dnf(Equivalent(A, B & C), True) == \ Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C))) assert to_dnf(A + 1) == A + 1 def test_to_int_repr(): x, y, z = map(Boolean, symbols('x,y,z')) def sorted_recursive(arg): try: return sorted(sorted_recursive(x) for x in arg) except TypeError: # arg is not a sequence return arg assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \ sorted_recursive([[1, 2], [1, 3]]) assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \ sorted_recursive([[1, 2], [3, -1]]) def test_is_anf(): x, y = symbols('x,y') assert is_anf(true) is True assert is_anf(false) is True assert is_anf(x) is True assert is_anf(And(x, y)) is True assert is_anf(Xor(x, y, And(x, y))) is True assert is_anf(Xor(x, y, Or(x, y))) is False assert is_anf(Xor(Not(x), y)) is False def test_is_nnf(): assert is_nnf(true) is True assert is_nnf(A) is True assert is_nnf(~A) is True assert is_nnf(A & B) is True assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True assert is_nnf((A | B) & (~A | ~B)) is True assert is_nnf(Not(Or(A, B))) is False assert is_nnf(A ^ B) is False assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False def test_is_cnf(): assert is_cnf(x) is True assert is_cnf(x | y | z) is True assert is_cnf(x & y & z) is True assert is_cnf((x | y) & z) is True assert is_cnf((x & y) | z) is False assert is_cnf(~(x & y) | z) is False def test_is_dnf(): assert is_dnf(x) is True assert is_dnf(x | y | z) is True assert is_dnf(x & y & z) is True assert is_dnf((x & y) | z) is True assert is_dnf((x | y) & z) is False assert is_dnf(~(x | y) & z) is False def test_ITE(): A, B, C = symbols('A:C') assert ITE(True, False, True) is false assert ITE(True, True, False) is true assert ITE(False, True, False) is false assert ITE(False, False, True) is true assert isinstance(ITE(A, B, C), ITE) A = True assert ITE(A, B, C) == B A = False assert ITE(A, B, C) == C B = True assert ITE(And(A, B), B, C) == C assert ITE(Or(A, False), And(B, True), False) is false assert ITE(x, A, B) == Not(x) assert ITE(x, B, A) == x assert ITE(1, x, y) == x assert ITE(0, x, y) == y raises(TypeError, lambda: ITE(2, x, y)) raises(TypeError, lambda: ITE(1, [], y)) raises(TypeError, lambda: ITE(1, (), y)) raises(TypeError, lambda: ITE(1, y, [])) assert ITE(1, 1, 1) is S.true assert isinstance(ITE(1, 1, 1, evaluate=False), ITE) raises(TypeError, lambda: ITE(x > 1, y, x)) assert ITE(Eq(x, True), y, x) == ITE(x, y, x) assert ITE(Eq(x, False), y, x) == ITE(~x, y, x) assert ITE(Ne(x, True), y, x) == ITE(~x, y, x) assert ITE(Ne(x, False), y, x) == ITE(x, y, x) assert ITE(Eq(S. true, x), y, x) == ITE(x, y, x) assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x) assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x) # 0 and 1 in the context are not treated as True/False # so the equality must always be False since dissimilar # objects cannot be equal assert ITE(Eq(x, 0), y, x) == x assert ITE(Eq(x, 1), y, x) == x assert ITE(Ne(x, 0), y, x) == y assert ITE(Ne(x, 1), y, x) == y assert ITE(Eq(x, 0), y, z).subs(x, 0) == y assert ITE(Eq(x, 0), y, z).subs(x, 1) == z raises(ValueError, lambda: ITE(x > 1, y, x, z)) def test_is_literal(): assert is_literal(True) is True assert is_literal(False) is True assert is_literal(A) is True assert is_literal(~A) is True assert is_literal(Or(A, B)) is False assert is_literal(Q.zero(A)) is True assert is_literal(Not(Q.zero(A))) is True assert is_literal(Or(A, B)) is False assert is_literal(And(Q.zero(A), Q.zero(B))) is False assert is_literal(x < 3) assert not is_literal(x + y < 3) def test_operators(): # Mostly test __and__, __rand__, and so on assert True & A == A & True == A assert False & A == A & False == False assert A & B == And(A, B) assert True | A == A | True == True assert False | A == A | False == A assert A | B == Or(A, B) assert ~A == Not(A) assert True >> A == A << True == A assert False >> A == A << False == True assert A >> True == True << A == True assert A >> False == False << A == ~A assert A >> B == B << A == Implies(A, B) assert True ^ A == A ^ True == ~A assert False ^ A == A ^ False == A assert A ^ B == Xor(A, B) def test_true_false(): assert true is S.true assert false is S.false assert true is not True assert false is not False assert true assert not false assert true == True assert false == False assert not (true == False) assert not (false == True) assert not (true == false) assert hash(true) == hash(True) assert hash(false) == hash(False) assert len({true, True}) == len({false, False}) == 1 assert isinstance(true, BooleanAtom) assert isinstance(false, BooleanAtom) # We don't want to subclass from bool, because bool subclasses from # int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and # 1 then we want them to on true and false. See the docstrings of the # various And, Or, etc. functions for examples. assert not isinstance(true, bool) assert not isinstance(false, bool) # Note: using 'is' comparison is important here. We want these to return # true and false, not True and False assert Not(true) is false assert Not(True) is false assert Not(false) is true assert Not(False) is true assert ~true is false assert ~false is true for T, F in product((True, true), (False, false)): assert And(T, F) is false assert And(F, T) is false assert And(F, F) is false assert And(T, T) is true assert And(T, x) == x assert And(F, x) is false if not (T is True and F is False): assert T & F is false assert F & T is false if F is not False: assert F & F is false if T is not True: assert T & T is true assert Or(T, F) is true assert Or(F, T) is true assert Or(F, F) is false assert Or(T, T) is true assert Or(T, x) is true assert Or(F, x) == x if not (T is True and F is False): assert T | F is true assert F | T is true if F is not False: assert F | F is false if T is not True: assert T | T is true assert Xor(T, F) is true assert Xor(F, T) is true assert Xor(F, F) is false assert Xor(T, T) is false assert Xor(T, x) == ~x assert Xor(F, x) == x if not (T is True and F is False): assert T ^ F is true assert F ^ T is true if F is not False: assert F ^ F is false if T is not True: assert T ^ T is false assert Nand(T, F) is true assert Nand(F, T) is true assert Nand(F, F) is true assert Nand(T, T) is false assert Nand(T, x) == ~x assert Nand(F, x) is true assert Nor(T, F) is false assert Nor(F, T) is false assert Nor(F, F) is true assert Nor(T, T) is false assert Nor(T, x) is false assert Nor(F, x) == ~x assert Implies(T, F) is false assert Implies(F, T) is true assert Implies(F, F) is true assert Implies(T, T) is true assert Implies(T, x) == x assert Implies(F, x) is true assert Implies(x, T) is true assert Implies(x, F) == ~x if not (T is True and F is False): assert T >> F is false assert F << T is false assert F >> T is true assert T << F is true if F is not False: assert F >> F is true assert F << F is true if T is not True: assert T >> T is true assert T << T is true assert Equivalent(T, F) is false assert Equivalent(F, T) is false assert Equivalent(F, F) is true assert Equivalent(T, T) is true assert Equivalent(T, x) == x assert Equivalent(F, x) == ~x assert Equivalent(x, T) == x assert Equivalent(x, F) == ~x assert ITE(T, T, T) is true assert ITE(T, T, F) is true assert ITE(T, F, T) is false assert ITE(T, F, F) is false assert ITE(F, T, T) is true assert ITE(F, T, F) is false assert ITE(F, F, T) is true assert ITE(F, F, F) is false assert all(i.simplify(1, 2) is i for i in (S.true, S.false)) def test_bool_as_set(): assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo) assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2) assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo) assert Not(x > 2).as_set() == Interval(-oo, 2) # issue 10240 assert Not(And(x > 2, x < 3)).as_set() == \ Union(Interval(-oo, 2), Interval(3, oo)) assert true.as_set() == S.UniversalSet assert false.as_set() is S.EmptySet assert x.as_set() == S.UniversalSet assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1) assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set() raises(NotImplementedError, lambda: (sin(x) < 1).as_set()) # watch for object morph in as_set assert Eq(-1, cos(2*x)**2/sin(2*x)**2).as_set() is S.EmptySet @XFAIL def test_multivariate_bool_as_set(): x, y = symbols('x,y') assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \ Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True) def test_all_or_nothing(): x = symbols('x', extended_real=True) args = x >= -oo, x <= oo v = And(*args) if v.func is And: assert len(v.args) == len(args) - args.count(S.true) else: assert v == True v = Or(*args) if v.func is Or: assert len(v.args) == 2 else: assert v == True def test_canonical_atoms(): assert true.canonical == true assert false.canonical == false def test_negated_atoms(): assert true.negated == false assert false.negated == true def test_issue_8777(): assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True) assert And(x >= 1, x < oo).as_set() == Interval(1, oo) assert (x < oo).as_set() == Interval(-oo, oo) assert (x > -oo).as_set() == Interval(-oo, oo) def test_issue_8975(): assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \ Interval(-oo, -2) + Interval(2, oo) def test_term_to_integer(): assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82 assert term_to_integer('0010101000111001') == 10809 def test_issue_21971(): a, b, c, d = symbols('a b c d') f = a & b & c | a & c assert f.subs(a & c, d) == b & d | d assert f.subs(a & b & c, d) == a & c | d f = (a | b | c) & (a | c) assert f.subs(a | c, d) == (b | d) & d assert f.subs(a | b | c, d) == (a | c) & d f = (a ^ b ^ c) & (a ^ c) assert f.subs(a ^ c, d) == (b ^ d) & d assert f.subs(a ^ b ^ c, d) == (a ^ c) & d def test_truth_table(): assert list(truth_table(And(x, y), [x, y], input=False)) == \ [False, False, False, True] assert list(truth_table(x | y, [x, y], input=False)) == \ [False, True, True, True] assert list(truth_table(x >> y, [x, y], input=False)) == \ [True, True, False, True] assert list(truth_table(And(x, y), [x, y])) == \ [([0, 0], False), ([0, 1], False), ([1, 0], False), ([1, 1], True)] def test_issue_8571(): for t in (S.true, S.false): raises(TypeError, lambda: +t) raises(TypeError, lambda: -t) raises(TypeError, lambda: abs(t)) # use int(bool(t)) to get 0 or 1 raises(TypeError, lambda: int(t)) for o in [S.Zero, S.One, x]: for _ in range(2): raises(TypeError, lambda: o + t) raises(TypeError, lambda: o - t) raises(TypeError, lambda: o % t) raises(TypeError, lambda: o*t) raises(TypeError, lambda: o/t) raises(TypeError, lambda: o**t) o, t = t, o # do again in reversed order def test_expand_relational(): n = symbols('n', negative=True) p, q = symbols('p q', positive=True) r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0) assert r is not S.false assert r.expand() is S.false assert (q > 0).expand() is S.true def test_issue_12717(): assert S.true.is_Atom == True assert S.false.is_Atom == True def test_as_Boolean(): nz = symbols('nz', nonzero=True) assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz)) z = symbols('z', zero=True) assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z)) assert all(as_Boolean(i) == i for i in (x, x < 0)) for i in (2, S(2), x + 1, []): raises(TypeError, lambda: as_Boolean(i)) def test_binary_symbols(): assert ITE(x < 1, y, z).binary_symbols == {y, z} for f in (Eq, Ne): assert f(x, 1).binary_symbols == set() assert f(x, True).binary_symbols == {x} assert f(x, False).binary_symbols == {x} assert S.true.binary_symbols == set() assert S.false.binary_symbols == set() assert x.binary_symbols == {x} assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == {x, y} assert Q.prime(x).binary_symbols == set() assert Q.lt(x, 1).binary_symbols == set() assert Q.is_true(x).binary_symbols == {x} assert Q.eq(x, True).binary_symbols == {x} assert Q.prime(x).binary_symbols == set() def test_BooleanFunction_diff(): assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True)) def test_issue_14700(): A, B, C, D, E, F, G, H = symbols('A B C D E F G H') q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) | (B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) | (D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) | (D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) | (B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) | (D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H)) solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) & (D | G | H) & (F | G | H) & (B | F | ~D | ~H) & (~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) & (A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) & (B | E | H | ~A | ~D | ~F | ~G)) assert simplify_logic(q, "dnf") == soldnf assert simplify_logic(q, "cnf") == solcnf minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1]] dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]] assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x) # Should not be more complicated with don't cares assert SOPform([w, x, y, z], minterms, dontcares) == \ (x & ~w) | (y & z & ~x) def test_relational_simplification(): w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) # Test all combinations or sign and order assert Or(x >= y, x < y).simplify() == S.true assert Or(x >= y, y > x).simplify() == S.true assert Or(x >= y, -x > -y).simplify() == S.true assert Or(x >= y, -y < -x).simplify() == S.true assert Or(-x <= -y, x < y).simplify() == S.true assert Or(-x <= -y, -x > -y).simplify() == S.true assert Or(-x <= -y, y > x).simplify() == S.true assert Or(-x <= -y, -y < -x).simplify() == S.true assert Or(y <= x, x < y).simplify() == S.true assert Or(y <= x, y > x).simplify() == S.true assert Or(y <= x, -x > -y).simplify() == S.true assert Or(y <= x, -y < -x).simplify() == S.true assert Or(-y >= -x, x < y).simplify() == S.true assert Or(-y >= -x, y > x).simplify() == S.true assert Or(-y >= -x, -x > -y).simplify() == S.true assert Or(-y >= -x, -y < -x).simplify() == S.true assert Or(x < y, x >= y).simplify() == S.true assert Or(y > x, x >= y).simplify() == S.true assert Or(-x > -y, x >= y).simplify() == S.true assert Or(-y < -x, x >= y).simplify() == S.true assert Or(x < y, -x <= -y).simplify() == S.true assert Or(-x > -y, -x <= -y).simplify() == S.true assert Or(y > x, -x <= -y).simplify() == S.true assert Or(-y < -x, -x <= -y).simplify() == S.true assert Or(x < y, y <= x).simplify() == S.true assert Or(y > x, y <= x).simplify() == S.true assert Or(-x > -y, y <= x).simplify() == S.true assert Or(-y < -x, y <= x).simplify() == S.true assert Or(x < y, -y >= -x).simplify() == S.true assert Or(y > x, -y >= -x).simplify() == S.true assert Or(-x > -y, -y >= -x).simplify() == S.true assert Or(-y < -x, -y >= -x).simplify() == S.true # Some other tests assert Or(x >= y, w < z, x <= y).simplify() == S.true assert And(x >= y, x < y).simplify() == S.false assert Or(x >= y, Eq(y, x)).simplify() == (x >= y) assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y) assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \ (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z)) assert Or(Eq(x, y), x >= y, w < y, z < y).simplify() == \ (x >= y) | (y > z) | (w < y) assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify() == \ Eq(x, y) & (y > z) & (w < y) # assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify(relational_minmax=True) == \ # And(Eq(x, y), y > Max(w, z)) # assert Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify(relational_minmax=True) == \ # (Eq(x, y) | (x >= 1) | (y > Min(2, z))) assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \ (Eq(x, y) & (x >= 1) & (y >= 5) & (y > z)) assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \ (Eq(x, y) & Eq(d, e) & (d >= e)) assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0)) assert Xor(x >= y, x <= y).simplify() == Ne(x, y) assert And(x > 1, x < -1, Eq(x, y)).simplify() == S.false # From #16690 assert And(x >= y, Eq(y, 0)).simplify() == And(x >= 0, Eq(y, 0)) def test_issue_8373(): x = symbols('x', real=True) assert Or(x < 1, x > -1).simplify() == S.true assert Or(x < 1, x >= 1).simplify() == S.true assert And(x < 1, x >= 1).simplify() == S.false assert Or(x <= 1, x >= 1).simplify() == S.true def test_issue_7950(): x = symbols('x', real=True) assert And(Eq(x, 1), Eq(x, 2)).simplify() == S.false @slow def test_relational_simplification_numerically(): def test_simplification_numerically_function(original, simplified): symb = original.free_symbols n = len(symb) valuelist = list(set(list(combinations(list(range(-(n-1), n))*n, n)))) for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.subs(sublist) simplifiedvalue = simplified.subs(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for {}"\ "".format(original, simplified, sublist) w, x, y, z = symbols('w x y z', real=True) d, e = symbols('d e', real=False) expressions = (And(Eq(x, y), x >= y, w < y, y >= z, z < y), And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y), And(x >= y, Eq(y, x)), Or(And(Eq(x, y), x >= y, w < y, Or(y >= z, z < y)), And(Eq(x, y), x >= 1, 2 < y, y >= -1, z < y)), (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)), ) for expression in expressions: test_simplification_numerically_function(expression, expression.simplify()) def test_relational_simplification_patterns_numerically(): from sympy.core import Wild from sympy.logic.boolalg import _simplify_patterns_and, \ _simplify_patterns_or, _simplify_patterns_xor a = Wild('a') b = Wild('b') c = Wild('c') symb = [a, b, c] patternlists = [[And, _simplify_patterns_and()], [Or, _simplify_patterns_or()], [Xor, _simplify_patterns_xor()]] valuelist = list(set(list(combinations(list(range(-2, 3))*3, 3)))) # Skip combinations of +/-2 and 0, except for all 0 valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)] for func, patternlist in patternlists: for pattern in patternlist: original = func(*pattern[0].args) simplified = pattern[1] for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.xreplace(sublist) simplifiedvalue = simplified.xreplace(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for"\ "{}".format(pattern[0], simplified, sublist) def test_issue_16803(): n = symbols('n') # No simplification done, but should not raise an exception assert ((n > 3) | (n < 0) | ((n > 0) & (n < 3))).simplify() == \ (n > 3) | (n < 0) | ((n > 0) & (n < 3)) def test_issue_17530(): r = {x: oo, y: oo} assert Or(x + y > 0, x - y < 0).subs(r) assert not And(x + y < 0, x - y < 0).subs(r) raises(TypeError, lambda: Or(x + y < 0, x - y < 0).subs(r)) raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r)) raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r)) def test_anf_coeffs(): assert anf_coeffs([1, 0]) == [1, 1] assert anf_coeffs([0, 0, 0, 1]) == [0, 0, 0, 1] assert anf_coeffs([0, 1, 1, 1]) == [0, 1, 1, 1] assert anf_coeffs([1, 1, 1, 0]) == [1, 0, 0, 1] assert anf_coeffs([1, 0, 0, 0]) == [1, 1, 1, 1] assert anf_coeffs([1, 0, 0, 1]) == [1, 1, 1, 0] assert anf_coeffs([1, 1, 0, 1]) == [1, 0, 1, 1] def test_ANFform(): x, y = symbols('x,y') assert ANFform([x], [1, 1]) == True assert ANFform([x], [0, 0]) == False assert ANFform([x], [1, 0]) == Xor(x, True, remove_true=False) assert ANFform([x, y], [1, 1, 1, 0]) == \ Xor(True, And(x, y), remove_true=False) def test_bool_minterm(): x, y = symbols('x,y') assert bool_minterm(3, [x, y]) == And(x, y) assert bool_minterm([1, 0], [x, y]) == And(Not(y), x) def test_bool_maxterm(): x, y = symbols('x,y') assert bool_maxterm(2, [x, y]) == Or(Not(x), y) assert bool_maxterm([0, 1], [x, y]) == Or(Not(y), x) def test_bool_monomial(): x, y = symbols('x,y') assert bool_monomial(1, [x, y]) == y assert bool_monomial([1, 1], [x, y]) == And(x, y) def test_check_pair(): assert _check_pair([0, 1, 0], [0, 1, 1]) == 2 assert _check_pair([0, 1, 0], [1, 1, 1]) == -1 def test_issue_19114(): expr = (B & C) | (A & ~C) | (~A & ~B) # Expression is minimal, but there are multiple minimal forms possible res1 = (A & B) | (C & ~A) | (~B & ~C) result = to_dnf(expr, simplify=True) assert result in (expr, res1) def test_issue_20870(): result = SOPform([a, b, c, d], [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15]) expected = ((d & ~b) | (a & b & c) | (a & ~c & ~d) | (b & ~a & ~c) | (c & ~a & ~d)) assert result == expected def test_convert_to_varsSOP(): assert _convert_to_varsSOP([0, 1, 0], [x, y, z]) == And(Not(x), y, Not(z)) assert _convert_to_varsSOP([3, 1, 0], [x, y, z]) == And(y, Not(z)) def test_convert_to_varsPOS(): assert _convert_to_varsPOS([0, 1, 0], [x, y, z]) == Or(x, Not(y), z) assert _convert_to_varsPOS([3, 1, 0], [x, y, z]) == Or(Not(y), z) def test_refine(): # relational assert not refine(x < 0, ~(x < 0)) assert refine(x < 0, (x < 0)) assert refine(x < 0, (0 > x)) is S.true assert refine(x < 0, (y < 0)) == (x < 0) assert not refine(x <= 0, ~(x <= 0)) assert refine(x <= 0, (x <= 0)) assert refine(x <= 0, (0 >= x)) is S.true assert refine(x <= 0, (y <= 0)) == (x <= 0) assert not refine(x > 0, ~(x > 0)) assert refine(x > 0, (x > 0)) assert refine(x > 0, (0 < x)) is S.true assert refine(x > 0, (y > 0)) == (x > 0) assert not refine(x >= 0, ~(x >= 0)) assert refine(x >= 0, (x >= 0)) assert refine(x >= 0, (0 <= x)) is S.true assert refine(x >= 0, (y >= 0)) == (x >= 0) assert not refine(Eq(x, 0), ~(Eq(x, 0))) assert refine(Eq(x, 0), (Eq(x, 0))) assert refine(Eq(x, 0), (Eq(0, x))) is S.true assert refine(Eq(x, 0), (Eq(y, 0))) == Eq(x, 0) assert not refine(Ne(x, 0), ~(Ne(x, 0))) assert refine(Ne(x, 0), (Ne(0, x))) is S.true assert refine(Ne(x, 0), (Ne(x, 0))) assert refine(Ne(x, 0), (Ne(y, 0))) == (Ne(x, 0)) # boolean functions assert refine(And(x > 0, y > 0), (x > 0)) == (y > 0) assert refine(And(x > 0, y > 0), (x > 0) & (y > 0)) is S.true # predicates assert refine(Q.positive(x), Q.positive(x)) is S.true assert refine(Q.positive(x), Q.negative(x)) is S.false assert refine(Q.positive(x), Q.real(x)) == Q.positive(x) def test_relational_threeterm_simplification_patterns_numerically(): from sympy.core import Wild from sympy.logic.boolalg import _simplify_patterns_and3 a = Wild('a') b = Wild('b') c = Wild('c') symb = [a, b, c] patternlists = [[And, _simplify_patterns_and3()]] valuelist = list(set(list(combinations(list(range(-2, 3))*3, 3)))) # Skip combinations of +/-2 and 0, except for all 0 valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)] for func, patternlist in patternlists: for pattern in patternlist: original = func(*pattern[0].args) simplified = pattern[1] for values in valuelist: sublist = dict(zip(symb, values)) originalvalue = original.xreplace(sublist) simplifiedvalue = simplified.xreplace(sublist) assert originalvalue == simplifiedvalue, "Original: {}\nand"\ " simplified: {}\ndo not evaluate to the same value for"\ "{}".format(pattern[0], simplified, sublist)
8e5725ea24bc8993d632b35d6cd4f749c72fa202c0bf2de1ec3e0bf4eddac3f5
from sympy.assumptions import Q from sympy.core.expr import Expr from sympy.core.add import Add from sympy.core.function import Function from sympy.core.kind import NumberKind, UndefinedKind from sympy.core.numbers import I, Integer, oo, pi, Rational from sympy.core.singleton import S from sympy.core.symbol import Symbol, symbols from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import cos, sin from sympy.matrices.common import (ShapeError, NonSquareMatrixError, _MinimalMatrix, _CastableMatrix, MatrixShaping, MatrixProperties, MatrixOperations, MatrixArithmetic, MatrixSpecial, MatrixKind) from sympy.matrices.matrices import MatrixCalculus from sympy.matrices import (Matrix, diag, eye, matrix_multiply_elementwise, ones, zeros, SparseMatrix, banded, MutableDenseMatrix, MutableSparseMatrix, ImmutableDenseMatrix, ImmutableSparseMatrix) from sympy.polys.polytools import Poly from sympy.utilities.iterables import flatten from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray as Array from sympy.abc import x, y, z # classes to test the basic matrix classes class ShapingOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixShaping): pass def eye_Shaping(n): return ShapingOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Shaping(n): return ShapingOnlyMatrix(n, n, lambda i, j: 0) class PropertiesOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixProperties): pass def eye_Properties(n): return PropertiesOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Properties(n): return PropertiesOnlyMatrix(n, n, lambda i, j: 0) class OperationsOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixOperations): pass def eye_Operations(n): return OperationsOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Operations(n): return OperationsOnlyMatrix(n, n, lambda i, j: 0) class ArithmeticOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixArithmetic): pass def eye_Arithmetic(n): return ArithmeticOnlyMatrix(n, n, lambda i, j: int(i == j)) def zeros_Arithmetic(n): return ArithmeticOnlyMatrix(n, n, lambda i, j: 0) class SpecialOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixSpecial): pass class CalculusOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixCalculus): pass def test__MinimalMatrix(): x = _MinimalMatrix(2, 3, [1, 2, 3, 4, 5, 6]) assert x.rows == 2 assert x.cols == 3 assert x[2] == 3 assert x[1, 1] == 5 assert list(x) == [1, 2, 3, 4, 5, 6] assert list(x[1, :]) == [4, 5, 6] assert list(x[:, 1]) == [2, 5] assert list(x[:, :]) == list(x) assert x[:, :] == x assert _MinimalMatrix(x) == x assert _MinimalMatrix([[1, 2, 3], [4, 5, 6]]) == x assert _MinimalMatrix(([1, 2, 3], [4, 5, 6])) == x assert _MinimalMatrix([(1, 2, 3), (4, 5, 6)]) == x assert _MinimalMatrix(((1, 2, 3), (4, 5, 6))) == x assert not (_MinimalMatrix([[1, 2], [3, 4], [5, 6]]) == x) def test_kind(): assert Matrix([[1, 2], [3, 4]]).kind == MatrixKind(NumberKind) assert Matrix([[0, 0], [0, 0]]).kind == MatrixKind(NumberKind) assert Matrix(0, 0, []).kind == MatrixKind(NumberKind) assert Matrix([[x]]).kind == MatrixKind(NumberKind) assert Matrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind) assert SparseMatrix([[1]]).kind == MatrixKind(NumberKind) assert SparseMatrix([[1, Matrix([[1]])]]).kind == MatrixKind(UndefinedKind) # ShapingOnlyMatrix tests def test_vec(): m = ShapingOnlyMatrix(2, 2, [1, 3, 2, 4]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_todok(): a, b, c, d = symbols('a:d') m1 = MutableDenseMatrix([[a, b], [c, d]]) m2 = ImmutableDenseMatrix([[a, b], [c, d]]) m3 = MutableSparseMatrix([[a, b], [c, d]]) m4 = ImmutableSparseMatrix([[a, b], [c, d]]) assert m1.todok() == m2.todok() == m3.todok() == m4.todok() == \ {(0, 0): a, (0, 1): b, (1, 0): c, (1, 1): d} def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] flat_lst = [S.One, S.Half, x*y, S.Zero, x, y, z, x**2, y, -S.One, z*x, 3] m = ShapingOnlyMatrix(3, 4, flat_lst) assert m.tolist() == lst def test_todod(): m = ShapingOnlyMatrix(3, 2, [[S.One, 0], [0, S.Half], [x, 0]]) dict = {0: {0: S.One}, 1: {1: S.Half}, 2: {0: x}} assert m.todod() == dict def test_row_col_del(): e = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(IndexError, lambda: e.row_del(5)) raises(IndexError, lambda: e.row_del(-5)) raises(IndexError, lambda: e.col_del(5)) raises(IndexError, lambda: e.col_del(-5)) assert e.row_del(2) == e.row_del(-1) == Matrix([[1, 2, 3], [4, 5, 6]]) assert e.col_del(2) == e.col_del(-1) == Matrix([[1, 2], [4, 5], [7, 8]]) assert e.row_del(1) == e.row_del(-2) == Matrix([[1, 2, 3], [7, 8, 9]]) assert e.col_del(1) == e.col_del(-2) == Matrix([[1, 3], [4, 6], [7, 9]]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A, B, C, D = diag(a, b, b), diag(a, b, c), diag(a, c, b), diag(c, c, b) A = ShapingOnlyMatrix(A.rows, A.cols, A) B = ShapingOnlyMatrix(B.rows, B.cols, B) C = ShapingOnlyMatrix(C.rows, C.cols, C) D = ShapingOnlyMatrix(D.rows, D.cols, D) assert A.get_diag_blocks() == [a, b, b] assert B.get_diag_blocks() == [a, b, c] assert C.get_diag_blocks() == [a, c, b] assert D.get_diag_blocks() == [c, c, b] def test_shape(): m = ShapingOnlyMatrix(1, 2, [0, 0]) assert m.shape == (1, 2) def test_reshape(): m0 = eye_Shaping(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = ShapingOnlyMatrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_row_col(): m = ShapingOnlyMatrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) assert m.row(0) == Matrix(1, 3, [1, 2, 3]) assert m.col(0) == Matrix(3, 1, [1, 4, 7]) def test_row_join(): assert eye_Shaping(3).row_join(Matrix([7, 7, 7])) == \ Matrix([[1, 0, 0, 7], [0, 1, 0, 7], [0, 0, 1, 7]]) def test_col_join(): assert eye_Shaping(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye_Shaping(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros_Shaping(3).col_insert(i, c4).row(0).tolist()) == l # issue 13643 assert eye_Shaping(6).col_insert(3, Matrix([[2, 2], [2, 2], [2, 2], [2, 2], [2, 2], [2, 2]])) == \ Matrix([[1, 0, 0, 2, 2, 0, 0, 0], [0, 1, 0, 2, 2, 0, 0, 0], [0, 0, 1, 2, 2, 0, 0, 0], [0, 0, 0, 2, 2, 1, 0, 0], [0, 0, 0, 2, 2, 0, 1, 0], [0, 0, 0, 2, 2, 0, 0, 1]]) def test_extract(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_hstack(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) assert m == m.hstack(m) assert m.hstack(m, m, m) == ShapingOnlyMatrix.hstack(m, m, m) == Matrix([ [0, 1, 2, 0, 1, 2, 0, 1, 2], [3, 4, 5, 3, 4, 5, 3, 4, 5], [6, 7, 8, 6, 7, 8, 6, 7, 8], [9, 10, 11, 9, 10, 11, 9, 10, 11]]) raises(ShapeError, lambda: m.hstack(m, m2)) assert Matrix.hstack() == Matrix() # test regression #12938 M1 = Matrix.zeros(0, 0) M2 = Matrix.zeros(0, 1) M3 = Matrix.zeros(0, 2) M4 = Matrix.zeros(0, 3) m = ShapingOnlyMatrix.hstack(M1, M2, M3, M4) assert m.rows == 0 and m.cols == 6 def test_vstack(): m = ShapingOnlyMatrix(4, 3, lambda i, j: i*3 + j) m2 = ShapingOnlyMatrix(3, 4, lambda i, j: i*3 + j) assert m == m.vstack(m) assert m.vstack(m, m, m) == ShapingOnlyMatrix.vstack(m, m, m) == Matrix([ [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11], [0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10, 11]]) raises(ShapeError, lambda: m.vstack(m, m2)) assert Matrix.vstack() == Matrix() # PropertiesOnlyMatrix tests def test_atoms(): m = PropertiesOnlyMatrix(2, 2, [1, 2, x, 1 - 1/x]) assert m.atoms() == {S.One, S(2), S.NegativeOne, x} assert m.atoms(Symbol) == {x} def test_free_symbols(): assert PropertiesOnlyMatrix([[x], [0]]).free_symbols == {x} def test_has(): A = PropertiesOnlyMatrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = PropertiesOnlyMatrix(((2, y), (2, 3))) assert not A.has(x) def test_is_anti_symmetric(): x = symbols('x') assert PropertiesOnlyMatrix(2, 1, [1, 2]).is_anti_symmetric() is False m = PropertiesOnlyMatrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in m]) assert m.is_anti_symmetric(simplify=False) is True m = PropertiesOnlyMatrix(3, 3, [x.expand() for x in [S.One] + list(m)[1:]]) assert m.is_anti_symmetric() is False def test_diagonal_symmetrical(): m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = PropertiesOnlyMatrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = PropertiesOnlyMatrix(3, 3, diag(1, 2, 3)) assert m.is_diagonal() assert m.is_symmetric() m = PropertiesOnlyMatrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = PropertiesOnlyMatrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = PropertiesOnlyMatrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = PropertiesOnlyMatrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_is_hermitian(): a = PropertiesOnlyMatrix([[1, I], [-I, 1]]) assert a.is_hermitian a = PropertiesOnlyMatrix([[2*I, I], [-I, 1]]) assert a.is_hermitian is False a = PropertiesOnlyMatrix([[x, I], [-I, 1]]) assert a.is_hermitian is None a = PropertiesOnlyMatrix([[x, 1], [-I, 1]]) assert a.is_hermitian is False def test_is_Identity(): assert eye_Properties(3).is_Identity assert not PropertiesOnlyMatrix(zeros(3)).is_Identity assert not PropertiesOnlyMatrix(ones(3)).is_Identity # issue 6242 assert not PropertiesOnlyMatrix([[1, 0, 0]]).is_Identity def test_is_symbolic(): a = PropertiesOnlyMatrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = PropertiesOnlyMatrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, x, 3]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_symbolic() is False a = PropertiesOnlyMatrix([[1], [x], [3]]) assert a.is_symbolic() is True a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_upper is True a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_upper is False def test_is_lower(): a = PropertiesOnlyMatrix([[1, 2, 3]]) assert a.is_lower is False a = PropertiesOnlyMatrix([[1], [2], [3]]) assert a.is_lower is True def test_is_square(): m = PropertiesOnlyMatrix([[1], [1]]) m2 = PropertiesOnlyMatrix([[2, 2], [2, 2]]) assert not m.is_square assert m2.is_square def test_is_symmetric(): m = PropertiesOnlyMatrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() m = PropertiesOnlyMatrix(2, 2, [0, 1, 0, 1]) assert not m.is_symmetric() def test_is_hessenberg(): A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = PropertiesOnlyMatrix(3, 3, [3, 2, 0, 4, 4, 1, 1, 5, 2]) assert A.is_lower_hessenberg A = PropertiesOnlyMatrix(3, 3, [3, 2, -1, 4, 4, 1, 1, 5, 2]) assert A.is_lower_hessenberg is False assert A.is_upper_hessenberg is False A = PropertiesOnlyMatrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg def test_is_zero(): assert PropertiesOnlyMatrix(0, 0, []).is_zero_matrix assert PropertiesOnlyMatrix([[0, 0], [0, 0]]).is_zero_matrix assert PropertiesOnlyMatrix(zeros(3, 4)).is_zero_matrix assert not PropertiesOnlyMatrix(eye(3)).is_zero_matrix assert PropertiesOnlyMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert PropertiesOnlyMatrix([[x, 1], [0, 0]]).is_zero_matrix == False a = Symbol('a', nonzero=True) assert PropertiesOnlyMatrix([[a, 0], [0, 0]]).is_zero_matrix == False def test_values(): assert set(PropertiesOnlyMatrix(2, 2, [0, 1, 2, 3] ).values()) == {1, 2, 3} x = Symbol('x', real=True) assert set(PropertiesOnlyMatrix(2, 2, [x, 0, 0, 1] ).values()) == {x, 1} # OperationsOnlyMatrix tests def test_applyfunc(): m0 = OperationsOnlyMatrix(eye(3)) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) assert m0.applyfunc(lambda x: 1) == ones(3) def test_adjoint(): dat = [[0, I], [1, 0]] ans = OperationsOnlyMatrix([[0, 1], [-I, 0]]) assert ans.adjoint() == Matrix(dat) def test_as_real_imag(): m1 = OperationsOnlyMatrix(2, 2, [1, 2, 3, 4]) m3 = OperationsOnlyMatrix(2, 2, [1 + S.ImaginaryUnit, 2 + 2*S.ImaginaryUnit, 3 + 3*S.ImaginaryUnit, 4 + 4*S.ImaginaryUnit]) a, b = m3.as_real_imag() assert a == m1 assert b == m1 def test_conjugate(): M = OperationsOnlyMatrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_doit(): a = OperationsOnlyMatrix([[Add(x, x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_evalf(): a = OperationsOnlyMatrix(2, 1, [sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_expand(): m0 = OperationsOnlyMatrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert OperationsOnlyMatrix(1, 1, [exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) def test_refine(): m0 = OperationsOnlyMatrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_replace(): F, G = symbols('F, G', cls=Function) K = OperationsOnlyMatrix(2, 2, lambda i, j: G(i+j)) M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): F, G = symbols('F, G', cls=Function) K = OperationsOnlyMatrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1) \ : G(1)}), (G(2), {F(2): G(2)})]) M = OperationsOnlyMatrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G, True) assert N == K def test_rot90(): A = Matrix([[1, 2], [3, 4]]) assert A == A.rot90(0) == A.rot90(4) assert A.rot90(2) == A.rot90(-2) == A.rot90(6) == Matrix(((4, 3), (2, 1))) assert A.rot90(3) == A.rot90(-1) == A.rot90(7) == Matrix(((2, 4), (1, 3))) assert A.rot90() == A.rot90(-7) == A.rot90(-3) == Matrix(((3, 1), (4, 2))) def test_simplify(): n = Symbol('n') f = Function('f') M = OperationsOnlyMatrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) assert M.simplify() == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = OperationsOnlyMatrix([[eq]]) assert M.simplify() == Matrix([[eq]]) assert M.simplify(ratio=oo) == Matrix([[eq.simplify(ratio=oo)]]) # https://github.com/sympy/sympy/issues/19353 m = Matrix([[30, 2], [3, 4]]) assert (1/(m.trace())).simplify() == Rational(1, 34) def test_subs(): assert OperationsOnlyMatrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert OperationsOnlyMatrix([[x*y]]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([[(x - 1)*(y - 1)]]) def test_trace(): M = OperationsOnlyMatrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_xreplace(): assert OperationsOnlyMatrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert OperationsOnlyMatrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) def test_permute(): a = OperationsOnlyMatrix(3, 4, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) raises(IndexError, lambda: a.permute([[0, 5]])) raises(ValueError, lambda: a.permute(Symbol('x'))) b = a.permute_rows([[0, 2], [0, 1]]) assert a.permute([[0, 2], [0, 1]]) == b == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) b = a.permute_cols([[0, 2], [0, 1]]) assert a.permute([[0, 2], [0, 1]], orientation='cols') == b ==\ Matrix([ [ 2, 3, 1, 4], [ 6, 7, 5, 8], [10, 11, 9, 12]]) b = a.permute_cols([[0, 2], [0, 1]], direction='backward') assert a.permute([[0, 2], [0, 1]], orientation='cols', direction='backward') == b ==\ Matrix([ [ 3, 1, 2, 4], [ 7, 5, 6, 8], [11, 9, 10, 12]]) assert a.permute([1, 2, 0, 3]) == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) from sympy.combinatorics import Permutation assert a.permute(Permutation([1, 2, 0, 3])) == Matrix([ [5, 6, 7, 8], [9, 10, 11, 12], [1, 2, 3, 4]]) def test_upper_triangular(): A = OperationsOnlyMatrix([ [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1] ]) R = A.upper_triangular(2) assert R == OperationsOnlyMatrix([ [0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0] ]) R = A.upper_triangular(-2) assert R == OperationsOnlyMatrix([ [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [0, 1, 1, 1] ]) R = A.upper_triangular() assert R == OperationsOnlyMatrix([ [1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [0, 0, 0, 1] ]) def test_lower_triangular(): A = OperationsOnlyMatrix([ [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1] ]) L = A.lower_triangular() assert L == ArithmeticOnlyMatrix([ [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1]]) L = A.lower_triangular(2) assert L == ArithmeticOnlyMatrix([ [1, 1, 1, 0], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1] ]) L = A.lower_triangular(-2) assert L == ArithmeticOnlyMatrix([ [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0] ]) # ArithmeticOnlyMatrix tests def test_abs(): m = ArithmeticOnlyMatrix([[1, -2], [x, y]]) assert abs(m) == ArithmeticOnlyMatrix([[1, 2], [Abs(x), Abs(y)]]) def test_add(): m = ArithmeticOnlyMatrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == ArithmeticOnlyMatrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = ArithmeticOnlyMatrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_multiplication(): a = ArithmeticOnlyMatrix(( (1, 2), (3, 1), (0, 6), )) b = ArithmeticOnlyMatrix(( (1, 2), (3, 0), )) raises(ShapeError, lambda: b*a) raises(TypeError, lambda: a*{}) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = a.multiply_elementwise(c) assert h == matrix_multiply_elementwise(a, c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: a.multiply_elementwise(b)) c = b * Symbol("x") assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, ArithmeticOnlyMatrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 # https://github.com/sympy/sympy/issues/22353 A = Matrix(ones(3, 1)) _h = -Rational(1, 2) B = Matrix([_h, _h, _h]) assert A.multiply_elementwise(B) == Matrix([ [_h], [_h], [_h]]) def test_matmul(): a = Matrix([[1, 2], [3, 4]]) assert a.__matmul__(2) == NotImplemented assert a.__rmatmul__(2) == NotImplemented #This is done this way because @ is only supported in Python 3.5+ #To check 2@a case try: eval('2 @ a') except SyntaxError: pass except TypeError: #TypeError is raised in case of NotImplemented is returned pass #Check a@2 case try: eval('a @ 2') except SyntaxError: pass except TypeError: #TypeError is raised in case of NotImplemented is returned pass def test_non_matmul(): """ Test that if explicitly specified as non-matrix, mul reverts to scalar multiplication. """ class foo(Expr): is_Matrix=False is_MatrixLike=False shape = (1, 1) A = Matrix([[1, 2], [3, 4]]) b = foo() assert b*A == Matrix([[b, 2*b], [3*b, 4*b]]) assert A*b == Matrix([[b, 2*b], [3*b, 4*b]]) def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) A = ArithmeticOnlyMatrix([[2, 3], [4, 5]]) assert (A**5)[:] == (6140, 8097, 10796, 14237) A = ArithmeticOnlyMatrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == (290, 262, 251, 448, 440, 368, 702, 954, 433) assert A**0 == eye(3) assert A**1 == A assert (ArithmeticOnlyMatrix([[2]]) ** 100)[0, 0] == 2**100 assert ArithmeticOnlyMatrix([[1, 2], [3, 4]])**Integer(2) == ArithmeticOnlyMatrix([[7, 10], [15, 22]]) A = Matrix([[1,2],[4,5]]) assert A.pow(20, method='cayley') == A.pow(20, method='multiply') def test_neg(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert -n == ArithmeticOnlyMatrix(1, 2, [-1, -2]) def test_sub(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert n - n == ArithmeticOnlyMatrix(1, 2, [0, 0]) def test_div(): n = ArithmeticOnlyMatrix(1, 2, [1, 2]) assert n/2 == ArithmeticOnlyMatrix(1, 2, [S.Half, S(2)/2]) # SpecialOnlyMatrix tests def test_eye(): assert list(SpecialOnlyMatrix.eye(2, 2)) == [1, 0, 0, 1] assert list(SpecialOnlyMatrix.eye(2)) == [1, 0, 0, 1] assert type(SpecialOnlyMatrix.eye(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.eye(2, cls=Matrix)) == Matrix def test_ones(): assert list(SpecialOnlyMatrix.ones(2, 2)) == [1, 1, 1, 1] assert list(SpecialOnlyMatrix.ones(2)) == [1, 1, 1, 1] assert SpecialOnlyMatrix.ones(2, 3) == Matrix([[1, 1, 1], [1, 1, 1]]) assert type(SpecialOnlyMatrix.ones(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.ones(2, cls=Matrix)) == Matrix def test_zeros(): assert list(SpecialOnlyMatrix.zeros(2, 2)) == [0, 0, 0, 0] assert list(SpecialOnlyMatrix.zeros(2)) == [0, 0, 0, 0] assert SpecialOnlyMatrix.zeros(2, 3) == Matrix([[0, 0, 0], [0, 0, 0]]) assert type(SpecialOnlyMatrix.zeros(2)) == SpecialOnlyMatrix assert type(SpecialOnlyMatrix.zeros(2, cls=Matrix)) == Matrix def test_diag_make(): diag = SpecialOnlyMatrix.diag a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert diag(a, b, b) == Matrix([ [1, 2, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0], [0, 0, 3, x, 0, 0], [0, 0, y, 3, 0, 0], [0, 0, 0, 0, 3, x], [0, 0, 0, 0, y, 3], ]) assert diag(a, b, c) == Matrix([ [1, 2, 0, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0, 0], [0, 0, 3, x, 0, 0, 0], [0, 0, y, 3, 0, 0, 0], [0, 0, 0, 0, 3, x, 3], [0, 0, 0, 0, y, 3, z], [0, 0, 0, 0, x, y, z], ]) assert diag(a, c, b) == Matrix([ [1, 2, 0, 0, 0, 0, 0], [2, 3, 0, 0, 0, 0, 0], [0, 0, 3, x, 3, 0, 0], [0, 0, y, 3, z, 0, 0], [0, 0, x, y, z, 0, 0], [0, 0, 0, 0, 0, 3, x], [0, 0, 0, 0, 0, y, 3], ]) a = Matrix([x, y, z]) b = Matrix([[1, 2], [3, 4]]) c = Matrix([[5, 6]]) # this "wandering diagonal" is what makes this # a block diagonal where each block is independent # of the others assert diag(a, 7, b, c) == Matrix([ [x, 0, 0, 0, 0, 0], [y, 0, 0, 0, 0, 0], [z, 0, 0, 0, 0, 0], [0, 7, 0, 0, 0, 0], [0, 0, 1, 2, 0, 0], [0, 0, 3, 4, 0, 0], [0, 0, 0, 0, 5, 6]]) raises(ValueError, lambda: diag(a, 7, b, c, rows=5)) assert diag(1) == Matrix([[1]]) assert diag(1, rows=2) == Matrix([[1, 0], [0, 0]]) assert diag(1, cols=2) == Matrix([[1, 0], [0, 0]]) assert diag(1, rows=3, cols=2) == Matrix([[1, 0], [0, 0], [0, 0]]) assert diag(*[2, 3]) == Matrix([ [2, 0], [0, 3]]) assert diag(Matrix([2, 3])) == Matrix([ [2], [3]]) assert diag([1, [2, 3], 4], unpack=False) == \ diag([[1], [2, 3], [4]], unpack=False) == Matrix([ [1, 0], [2, 3], [4, 0]]) assert type(diag(1)) == SpecialOnlyMatrix assert type(diag(1, cls=Matrix)) == Matrix assert Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) assert Matrix.diag([1, 2, 3], unpack=False).shape == (3, 1) assert Matrix.diag([[1, 2, 3]]).shape == (3, 1) assert Matrix.diag([[1, 2, 3]], unpack=False).shape == (1, 3) assert Matrix.diag([[[1, 2, 3]]]).shape == (1, 3) # kerning can be used to move the starting point assert Matrix.diag(ones(0, 2), 1, 2) == Matrix([ [0, 0, 1, 0], [0, 0, 0, 2]]) assert Matrix.diag(ones(2, 0), 1, 2) == Matrix([ [0, 0], [0, 0], [1, 0], [0, 2]]) def test_diagonal(): m = Matrix(3, 3, range(9)) d = m.diagonal() assert d == m.diagonal(0) assert tuple(d) == (0, 4, 8) assert tuple(m.diagonal(1)) == (1, 5) assert tuple(m.diagonal(-1)) == (3, 7) assert tuple(m.diagonal(2)) == (2,) assert type(m.diagonal()) == type(m) s = SparseMatrix(3, 3, {(1, 1): 1}) assert type(s.diagonal()) == type(s) assert type(m) != type(s) raises(ValueError, lambda: m.diagonal(3)) raises(ValueError, lambda: m.diagonal(-3)) raises(ValueError, lambda: m.diagonal(pi)) M = ones(2, 3) assert banded({i: list(M.diagonal(i)) for i in range(1-M.rows, M.cols)}) == M def test_jordan_block(): assert SpecialOnlyMatrix.jordan_block(3, 2) == SpecialOnlyMatrix.jordan_block(3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) \ == SpecialOnlyMatrix.jordan_block(3, 2, band='upper') \ == SpecialOnlyMatrix.jordan_block( size=3, eigenval=2, eigenvalue=2) \ == Matrix([ [2, 1, 0], [0, 2, 1], [0, 0, 2]]) assert SpecialOnlyMatrix.jordan_block(3, 2, band='lower') == Matrix([ [2, 0, 0], [1, 2, 0], [0, 1, 2]]) # missing eigenvalue raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(2)) # non-integral size raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(3.5, 2)) # size not specified raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block(eigenvalue=2)) # inconsistent eigenvalue raises(ValueError, lambda: SpecialOnlyMatrix.jordan_block( eigenvalue=2, eigenval=4)) # Deprecated feature with warns_deprecated_sympy(): assert (SpecialOnlyMatrix.jordan_block(cols=3, eigenvalue=2) == SpecialOnlyMatrix(3, 3, (2, 1, 0, 0, 2, 1, 0, 0, 2))) with warns_deprecated_sympy(): assert (SpecialOnlyMatrix.jordan_block(rows=3, eigenvalue=2) == SpecialOnlyMatrix(3, 3, (2, 1, 0, 0, 2, 1, 0, 0, 2))) with warns_deprecated_sympy(): assert SpecialOnlyMatrix.jordan_block(3, 2) == \ SpecialOnlyMatrix.jordan_block(cols=3, eigenvalue=2) == \ SpecialOnlyMatrix.jordan_block(rows=3, eigenvalue=2) with warns_deprecated_sympy(): assert SpecialOnlyMatrix.jordan_block( rows=4, cols=3, eigenvalue=2) == \ Matrix([ [2, 1, 0], [0, 2, 1], [0, 0, 2], [0, 0, 0]]) # Using alias keyword assert SpecialOnlyMatrix.jordan_block(size=3, eigenvalue=2) == \ SpecialOnlyMatrix.jordan_block(size=3, eigenval=2) def test_orthogonalize(): m = Matrix([[1, 2], [3, 4]]) assert m.orthogonalize(Matrix([[2], [1]])) == [Matrix([[2], [1]])] assert m.orthogonalize(Matrix([[2], [1]]), normalize=True) == \ [Matrix([[2*sqrt(5)/5], [sqrt(5)/5]])] assert m.orthogonalize(Matrix([[1], [2]]), Matrix([[-1], [4]])) == \ [Matrix([[1], [2]]), Matrix([[Rational(-12, 5)], [Rational(6, 5)]])] assert m.orthogonalize(Matrix([[0], [0]]), Matrix([[-1], [4]])) == \ [Matrix([[-1], [4]])] assert m.orthogonalize(Matrix([[0], [0]])) == [] n = Matrix([[9, 1, 9], [3, 6, 10], [8, 5, 2]]) vecs = [Matrix([[-5], [1]]), Matrix([[-5], [2]]), Matrix([[-5], [-2]])] assert n.orthogonalize(*vecs) == \ [Matrix([[-5], [1]]), Matrix([[Rational(5, 26)], [Rational(25, 26)]])] vecs = [Matrix([0, 0, 0]), Matrix([1, 2, 3]), Matrix([1, 4, 5])] raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True)) vecs = [Matrix([1, 2, 3]), Matrix([4, 5, 6]), Matrix([7, 8, 9])] raises(ValueError, lambda: Matrix.orthogonalize(*vecs, rankcheck=True)) def test_wilkinson(): wminus, wplus = Matrix.wilkinson(1) assert wminus == Matrix([ [-1, 1, 0], [1, 0, 1], [0, 1, 1]]) assert wplus == Matrix([ [1, 1, 0], [1, 0, 1], [0, 1, 1]]) wminus, wplus = Matrix.wilkinson(3) assert wminus == Matrix([ [-3, 1, 0, 0, 0, 0, 0], [1, -2, 1, 0, 0, 0, 0], [0, 1, -1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 1, 3]]) assert wplus == Matrix([ [3, 1, 0, 0, 0, 0, 0], [1, 2, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 1, 2, 1], [0, 0, 0, 0, 0, 1, 3]]) # CalculusOnlyMatrix tests @XFAIL def test_diff(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [x, y]) # TODO: currently not working as ``_MinimalMatrix`` cannot be sympified: assert m.diff(x) == Matrix(2, 1, [1, 0]) def test_integrate(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [x, y]) assert m.integrate(x) == Matrix(2, 1, [x**2/2, y*x]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = CalculusOnlyMatrix(3, 1, [rho*cos(phi), rho*sin(phi), rho**2]) Y = CalculusOnlyMatrix(2, 1, [rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J m = CalculusOnlyMatrix(2, 2, [1, 2, 3, 4]) m2 = CalculusOnlyMatrix(4, 1, [1, 2, 3, 4]) raises(TypeError, lambda: m.jacobian(Matrix([1, 2]))) raises(TypeError, lambda: m2.jacobian(m)) def test_limit(): x, y = symbols('x y') m = CalculusOnlyMatrix(2, 1, [1/x, y]) assert m.limit(x, 5) == Matrix(2, 1, [Rational(1, 5), y]) def test_issue_13774(): M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) v = [1, 1, 1] raises(TypeError, lambda: M*v) raises(TypeError, lambda: v*M) def test_companion(): x = Symbol('x') y = Symbol('y') raises(ValueError, lambda: Matrix.companion(1)) raises(ValueError, lambda: Matrix.companion(Poly([1], x))) raises(ValueError, lambda: Matrix.companion(Poly([2, 1], x))) raises(ValueError, lambda: Matrix.companion(Poly(x*y, [x, y]))) c0, c1, c2 = symbols('c0:3') assert Matrix.companion(Poly([1, c0], x)) == Matrix([-c0]) assert Matrix.companion(Poly([1, c1, c0], x)) == \ Matrix([[0, -c0], [1, -c1]]) assert Matrix.companion(Poly([1, c2, c1, c0], x)) == \ Matrix([[0, 0, -c0], [1, 0, -c1], [0, 1, -c2]]) def test_issue_10589(): x, y, z = symbols("x, y z") M1 = Matrix([x, y, z]) M1 = M1.subs(zip([x, y, z], [1, 2, 3])) assert M1 == Matrix([[1], [2], [3]]) M2 = Matrix([[x, x, x, x, x], [x, x, x, x, x], [x, x, x, x, x]]) M2 = M2.subs(zip([x], [1])) assert M2 == Matrix([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1]]) def test_rmul_pr19860(): class Foo(ImmutableDenseMatrix): _op_priority = MutableDenseMatrix._op_priority + 0.01 a = Matrix(2, 2, [1, 2, 3, 4]) b = Foo(2, 2, [1, 2, 3, 4]) # This would throw a RecursionError: maximum recursion depth # since b always has higher priority even after a.as_mutable() c = a*b assert isinstance(c, Foo) assert c == Matrix([[7, 10], [15, 22]]) def test_issue_18956(): A = Array([[1, 2], [3, 4]]) B = Matrix([[1,2],[3,4]]) raises(TypeError, lambda: B + A) raises(TypeError, lambda: A + B) def test__eq__(): class My(object): def __iter__(self): yield 1 yield 2 return def __getitem__(self, i): return list(self)[i] a = Matrix(2, 1, [1, 2]) assert a != My() class My_sympy(My): def _sympy_(self): return Matrix(self) assert a == My_sympy()
ed8b5b64b7d081e0192fe0accccfd49c3201a2d6022ac35042d89de020febc33
from sympy.testing.pytest import warns_deprecated_sympy from sympy.core.symbol import Symbol from sympy.polys.polytools import Poly from sympy.matrices import Matrix from sympy.matrices.normalforms import ( invariant_factors, smith_normal_form, hermite_normal_form, ) from sympy.polys.domains import ZZ, QQ from sympy.core.numbers import Integer def test_smith_normal(): m = Matrix([[12,6,4,8],[3,9,6,12],[2,16,14,28],[20,10,10,20]]) smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]]) assert smith_normal_form(m) == smf x = Symbol('x') with warns_deprecated_sympy(): m = Matrix([[Poly(x-1), Poly(1, x),Poly(-1,x)], [0, Poly(x), Poly(-1,x)], [Poly(0,x),Poly(-1,x),Poly(x)]]) invs = 1, x - 1, x**2 - 1 assert invariant_factors(m, domain=QQ[x]) == invs m = Matrix([[2, 4]]) smf = Matrix([[2, 0]]) assert smith_normal_form(m) == smf def test_smith_normal_deprecated(): from sympy.polys.solvers import RawMatrix as Matrix with warns_deprecated_sympy(): m = Matrix([[12, 6, 4,8],[3,9,6,12],[2,16,14,28],[20,10,10,20]]) setattr(m, 'ring', ZZ) with warns_deprecated_sympy(): smf = Matrix([[1, 0, 0, 0], [0, 10, 0, 0], [0, 0, -30, 0], [0, 0, 0, 0]]) assert smith_normal_form(m) == smf x = Symbol('x') with warns_deprecated_sympy(): m = Matrix([[Poly(x-1), Poly(1, x),Poly(-1,x)], [0, Poly(x), Poly(-1,x)], [Poly(0,x),Poly(-1,x),Poly(x)]]) setattr(m, 'ring', QQ[x]) invs = (Poly(1, x, domain='QQ'), Poly(x - 1, domain='QQ'), Poly(x**2 - 1, domain='QQ')) assert invariant_factors(m) == invs with warns_deprecated_sympy(): m = Matrix([[2, 4]]) setattr(m, 'ring', ZZ) with warns_deprecated_sympy(): smf = Matrix([[2, 0]]) assert smith_normal_form(m) == smf def test_hermite_normal(): m = Matrix([[2, 7, 17, 29, 41], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]]) hnf = Matrix([[1, 0, 0], [0, 2, 1], [0, 0, 1]]) assert hermite_normal_form(m) == hnf tr_hnf = Matrix([[37, 0, 19], [222, -6, 113], [48, 0, 25], [0, 2, 1], [0, 0, 1]]) assert hermite_normal_form(m.transpose()) == tr_hnf m = Matrix([[8, 28, 68, 116, 164], [3, 11, 19, 31, 43], [5, 13, 23, 37, 47]]) hnf = Matrix([[4, 0, 0], [0, 2, 1], [0, 0, 1]]) assert hermite_normal_form(m) == hnf assert hermite_normal_form(m, D=8) == hnf assert hermite_normal_form(m, D=ZZ(8)) == hnf assert hermite_normal_form(m, D=Integer(8)) == hnf m = Matrix([[10, 8, 6, 30, 2], [45, 36, 27, 18, 9], [5, 4, 3, 2, 1]]) hnf = Matrix([[26, 2], [0, 9], [0, 1]]) assert hermite_normal_form(m) == hnf m = Matrix([[2, 7], [0, 0], [0, 0]]) hnf = Matrix(3, 0, []) assert hermite_normal_form(m) == hnf
2f1e436ebb380877293f916b66ffadd193c68e285f6fe884f21589392d45f3a0
import random import concurrent.futures from collections.abc import Hashable from sympy.core.add import Add from sympy.core.function import (Function, diff, expand) from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.trigonometric import (cos, sin, tan) from sympy.polys.polytools import (Poly, PurePoly) from sympy.printing.str import sstr from sympy.sets.sets import FiniteSet from sympy.simplify.simplify import (signsimp, simplify) from sympy.simplify.trigsimp import trigsimp from sympy.matrices.matrices import (ShapeError, MatrixError, NonSquareMatrixError, DeferredVector, _find_reasonable_pivot_naive, _simplify) from sympy.matrices import ( GramSchmidt, ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix, casoratian, diag, eye, hessian, matrix_multiply_elementwise, ones, randMatrix, rot_axis1, rot_axis2, rot_axis3, wronskian, zeros, MutableDenseMatrix, ImmutableDenseMatrix, MatrixSymbol, dotprodsimp) from sympy.matrices.utilities import _dotprodsimp_state from sympy.core import Tuple, Wild from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.utilities.iterables import flatten, capture, iterable from sympy.testing.pytest import raises, XFAIL, slow, skip, warns_deprecated_sympy from sympy.assumptions import Q from sympy.tensor.array import Array from sympy.matrices.expressions import MatPow from sympy.abc import a, b, c, d, x, y, z, t # don't re-order this list classes = (Matrix, SparseMatrix, ImmutableMatrix, ImmutableSparseMatrix) def test_args(): for n, cls in enumerate(classes): m = cls.zeros(3, 2) # all should give back the same type of arguments, e.g. ints for shape assert m.shape == (3, 2) and all(type(i) is int for i in m.shape) assert m.rows == 3 and type(m.rows) is int assert m.cols == 2 and type(m.cols) is int if not n % 2: assert type(m.flat()) in (list, tuple, Tuple) else: assert type(m.todok()) is dict def test_deprecated_mat_smat(): for cls in Matrix, ImmutableMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): mat = m._mat assert mat == m.flat() for cls in SparseMatrix, ImmutableSparseMatrix: m = cls.zeros(3, 2) with warns_deprecated_sympy(): smat = m._smat assert smat == m.todok() def test_division(): v = Matrix(1, 2, [x, y]) assert v/z == Matrix(1, 2, [x/z, y/z]) def test_sum(): m = Matrix([[1, 2, 3], [x, y, x], [2*y, -50, z*x]]) assert m + m == Matrix([[2, 4, 6], [2*x, 2*y, 2*x], [4*y, -100, 2*z*x]]) n = Matrix(1, 2, [1, 2]) raises(ShapeError, lambda: m + n) def test_abs(): m = Matrix(1, 2, [-3, x]) n = Matrix(1, 2, [3, Abs(x)]) assert abs(m) == n def test_addition(): a = Matrix(( (1, 2), (3, 1), )) b = Matrix(( (1, 2), (3, 0), )) assert a + b == a.add(b) == Matrix([[2, 4], [6, 1]]) def test_fancy_index_matrix(): for M in (Matrix, SparseMatrix): a = M(3, 3, range(9)) assert a == a[:, :] assert a[1, :] == Matrix(1, 3, [3, 4, 5]) assert a[:, 1] == Matrix([1, 4, 7]) assert a[[0, 1], :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[[0, 1], 2] == a[[0, 1], [2]] assert a[2, [0, 1]] == a[[2], [0, 1]] assert a[:, [0, 1]] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[0, 0] == 0 assert a[0:2, :] == Matrix([[0, 1, 2], [3, 4, 5]]) assert a[:, 0:2] == Matrix([[0, 1], [3, 4], [6, 7]]) assert a[::2, 1] == a[[0, 2], 1] assert a[1, ::2] == a[1, [0, 2]] a = M(3, 3, range(9)) assert a[[0, 2, 1, 2, 1], :] == Matrix([ [0, 1, 2], [6, 7, 8], [3, 4, 5], [6, 7, 8], [3, 4, 5]]) assert a[:, [0,2,1,2,1]] == Matrix([ [0, 2, 1, 2, 1], [3, 5, 4, 5, 4], [6, 8, 7, 8, 7]]) a = SparseMatrix.zeros(3) a[1, 2] = 2 a[0, 1] = 3 a[2, 0] = 4 assert a.extract([1, 1], [2]) == Matrix([ [2], [2]]) assert a.extract([1, 0], [2, 2, 2]) == Matrix([ [2, 2, 2], [0, 0, 0]]) assert a.extract([1, 0, 1, 2], [2, 0, 1, 0]) == Matrix([ [2, 0, 0, 0], [0, 0, 3, 0], [2, 0, 0, 0], [0, 4, 0, 4]]) def test_multiplication(): a = Matrix(( (1, 2), (3, 1), (0, 6), )) b = Matrix(( (1, 2), (3, 0), )) c = a*b assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 try: eval('c = a @ b') except SyntaxError: pass else: assert c[0, 0] == 7 assert c[0, 1] == 2 assert c[1, 0] == 6 assert c[1, 1] == 6 assert c[2, 0] == 18 assert c[2, 1] == 0 h = matrix_multiply_elementwise(a, c) assert h == a.multiply_elementwise(c) assert h[0, 0] == 7 assert h[0, 1] == 4 assert h[1, 0] == 18 assert h[1, 1] == 6 assert h[2, 0] == 0 assert h[2, 1] == 0 raises(ShapeError, lambda: matrix_multiply_elementwise(a, b)) c = b * Symbol("x") assert isinstance(c, Matrix) assert c[0, 0] == x assert c[0, 1] == 2*x assert c[1, 0] == 3*x assert c[1, 1] == 0 c2 = x * b assert c == c2 c = 5 * b assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 try: eval('c = 5 @ b') except SyntaxError: pass else: assert isinstance(c, Matrix) assert c[0, 0] == 5 assert c[0, 1] == 2*5 assert c[1, 0] == 3*5 assert c[1, 1] == 0 M = Matrix([[oo, 0], [0, oo]]) assert M ** 2 == M M = Matrix([[oo, oo], [0, 0]]) assert M ** 2 == Matrix([[nan, nan], [nan, nan]]) def test_power(): raises(NonSquareMatrixError, lambda: Matrix((1, 2))**2) R = Rational A = Matrix([[2, 3], [4, 5]]) assert (A**-3)[:] == [R(-269)/8, R(153)/8, R(51)/2, R(-29)/2] assert (A**5)[:] == [6140, 8097, 10796, 14237] A = Matrix([[2, 1, 3], [4, 2, 4], [6, 12, 1]]) assert (A**3)[:] == [290, 262, 251, 448, 440, 368, 702, 954, 433] assert A**0 == eye(3) assert A**1 == A assert (Matrix([[2]]) ** 100)[0, 0] == 2**100 assert eye(2)**10000000 == eye(2) assert Matrix([[1, 2], [3, 4]])**Integer(2) == Matrix([[7, 10], [15, 22]]) A = Matrix([[33, 24], [48, 57]]) assert (A**S.Half)[:] == [5, 2, 4, 7] A = Matrix([[0, 4], [-1, 5]]) assert (A**S.Half)**2 == A assert Matrix([[1, 0], [1, 1]])**S.Half == Matrix([[1, 0], [S.Half, 1]]) assert Matrix([[1, 0], [1, 1]])**0.5 == Matrix([[1.0, 0], [0.5, 1.0]]) from sympy.abc import n assert Matrix([[1, a], [0, 1]])**n == Matrix([[1, a*n], [0, 1]]) assert Matrix([[b, a], [0, b]])**n == Matrix([[b**n, a*b**(n-1)*n], [0, b**n]]) assert Matrix([ [a**n, a**(n - 1)*n, (a**n*n**2 - a**n*n)/(2*a**2)], [ 0, a**n, a**(n - 1)*n], [ 0, 0, a**n]]) assert Matrix([[a, 1, 0], [0, a, 0], [0, 0, b]])**n == Matrix([ [a**n, a**(n-1)*n, 0], [0, a**n, 0], [0, 0, b**n]]) A = Matrix([[1, 0], [1, 7]]) assert A._matrix_pow_by_jordan_blocks(S(3)) == A._eval_pow_by_recursion(3) A = Matrix([[2]]) assert A**10 == Matrix([[2**10]]) == A._matrix_pow_by_jordan_blocks(S(10)) == \ A._eval_pow_by_recursion(10) # testing a matrix that cannot be jordan blocked issue 11766 m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m._matrix_pow_by_jordan_blocks(S(10))) # test issue 11964 raises(MatrixError, lambda: Matrix([[1, 1], [3, 3]])._matrix_pow_by_jordan_blocks(S(-10))) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) # Nilpotent jordan block size 3 assert A**10.0 == Matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[8, 1], [3, 2]]) assert A**10.0 == Matrix([[1760744107, 272388050], [817164150, 126415807]]) A = Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 1 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) # Nilpotent jordan block size 2 assert A**10.0 == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) n = Symbol('n', integer=True) assert isinstance(A**n, MatPow) n = Symbol('n', integer=True, negative=True) raises(ValueError, lambda: A**n) n = Symbol('n', integer=True, nonnegative=True) assert A**n == Matrix([ [KroneckerDelta(0, n), KroneckerDelta(1, n), -KroneckerDelta(0, n) - KroneckerDelta(1, n) + 1], [ 0, KroneckerDelta(0, n), 1 - KroneckerDelta(0, n)], [ 0, 0, 1]]) assert A**(n + 2) == Matrix([[0, 0, 1], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**Rational(3, 2)) A = Matrix([[0, 0, 1], [3, 0, 1], [4, 3, 1]]) assert A**5.0 == Matrix([[168, 72, 89], [291, 144, 161], [572, 267, 329]]) assert A**5.0 == A**5 A = Matrix([[0, 1, 0],[-1, 0, 0],[0, 0, 0]]) n = Symbol("n") An = A**n assert An.subs(n, 2).doit() == A**2 raises(ValueError, lambda: An.subs(n, -2).doit()) assert An * An == A**(2*n) # concretizing behavior for non-integer and complex powers A = Matrix([[0,0,0],[0,0,0],[0,0,0]]) n = Symbol('n', integer=True, positive=True) assert A**n == A n = Symbol('n', integer=True, nonnegative=True) assert A**n == diag(0**n, 0**n, 0**n) assert (A**n).subs(n, 0) == eye(3) assert (A**n).subs(n, 1) == zeros(3) A = Matrix ([[2,0,0],[0,2,0],[0,0,2]]) assert A**2.1 == diag (2**2.1, 2**2.1, 2**2.1) assert A**I == diag (2**I, 2**I, 2**I) A = Matrix([[0, 1, 0], [0, 0, 1], [0, 0, 1]]) raises(ValueError, lambda: A**2.1) raises(ValueError, lambda: A**I) A = Matrix([[S.Half, S.Half], [S.Half, S.Half]]) assert A**S.Half == A A = Matrix([[1, 1],[3, 3]]) assert A**S.Half == Matrix ([[S.Half, S.Half], [3*S.Half, 3*S.Half]]) def test_issue_17247_expression_blowup_1(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M.exp().expand() == Matrix([ [ (exp(2*x) + exp(2))/2, (-exp(2*x) + exp(2))/2], [(-exp(2*x) + exp(2))/2, (exp(2*x) + exp(2))/2]]) def test_issue_17247_expression_blowup_2(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): P, J = M.jordan_form () assert P*J*P.inv() def test_issue_17247_expression_blowup_3(): M = Matrix([[1+x, 1-x], [1-x, 1+x]]) with dotprodsimp(True): assert M**100 == Matrix([ [633825300114114700748351602688*x**100 + 633825300114114700748351602688, 633825300114114700748351602688 - 633825300114114700748351602688*x**100], [633825300114114700748351602688 - 633825300114114700748351602688*x**100, 633825300114114700748351602688*x**100 + 633825300114114700748351602688]]) def test_issue_17247_expression_blowup_4(): # This matrix takes extremely long on current master even with intermediate simplification so an abbreviated version is used. It is left here for test in case of future optimizations. # M = Matrix(S('''[ # [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256, 15/128 - 3*I/32, 19/256 + 551*I/1024], # [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096, 129/256 - 549*I/512, 42533/16384 + 29103*I/8192], # [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128, 3/64 + 13*I/64, -23/32 - 59*I/256], # [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024, 119/128 + 143*I/128, -10879/2048 + 4343*I/4096], # [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], # [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], # [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], # [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], # [ -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], # [ 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], # [ -4, 9 - 5*I, -4*I, 27/2 + 6*I, -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], # [ -2*I, 119/8 + 29*I/4, 1/4 + 5*I/2, -23/8 - 57*I/16, 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) # assert M**10 == Matrix([ # [ 7*(-221393644768594642173548179825793834595 - 1861633166167425978847110897013541127952*I)/9671406556917033397649408, 15*(31670992489131684885307005100073928751695 + 10329090958303458811115024718207404523808*I)/77371252455336267181195264, 7*(-3710978679372178839237291049477017392703 + 1377706064483132637295566581525806894169*I)/19342813113834066795298816, (9727707023582419994616144751727760051598 - 59261571067013123836477348473611225724433*I)/9671406556917033397649408, (31896723509506857062605551443641668183707 + 54643444538699269118869436271152084599580*I)/38685626227668133590597632, (-2024044860947539028275487595741003997397402 + 130959428791783397562960461903698670485863*I)/309485009821345068724781056, 3*(26190251453797590396533756519358368860907 - 27221191754180839338002754608545400941638*I)/77371252455336267181195264, (1154643595139959842768960128434994698330461 + 3385496216250226964322872072260446072295634*I)/618970019642690137449562112, 3*(-31849347263064464698310044805285774295286 - 11877437776464148281991240541742691164309*I)/77371252455336267181195264, (4661330392283532534549306589669150228040221 - 4171259766019818631067810706563064103956871*I)/1237940039285380274899124224, (9598353794289061833850770474812760144506 + 358027153990999990968244906482319780943983*I)/309485009821345068724781056, (-9755135335127734571547571921702373498554177 - 4837981372692695195747379349593041939686540*I)/2475880078570760549798248448], # [(-379516731607474268954110071392894274962069 - 422272153179747548473724096872271700878296*I)/77371252455336267181195264, (41324748029613152354787280677832014263339501 - 12715121258662668420833935373453570749288074*I)/1237940039285380274899124224, (-339216903907423793947110742819264306542397 + 494174755147303922029979279454787373566517*I)/77371252455336267181195264, (-18121350839962855576667529908850640619878381 - 37413012454129786092962531597292531089199003*I)/1237940039285380274899124224, (2489661087330511608618880408199633556675926 + 1137821536550153872137379935240732287260863*I)/309485009821345068724781056, (-136644109701594123227587016790354220062972119 + 110130123468183660555391413889600443583585272*I)/4951760157141521099596496896, (1488043981274920070468141664150073426459593 - 9691968079933445130866371609614474474327650*I)/1237940039285380274899124224, 27*(4636797403026872518131756991410164760195942 + 3369103221138229204457272860484005850416533*I)/4951760157141521099596496896, (-8534279107365915284081669381642269800472363 + 2241118846262661434336333368511372725482742*I)/1237940039285380274899124224, (60923350128174260992536531692058086830950875 - 263673488093551053385865699805250505661590126*I)/9903520314283042199192993792, (18520943561240714459282253753348921824172569 + 24846649186468656345966986622110971925703604*I)/4951760157141521099596496896, (-232781130692604829085973604213529649638644431 + 35981505277760667933017117949103953338570617*I)/9903520314283042199192993792], # [ (8742968295129404279528270438201520488950 + 3061473358639249112126847237482570858327*I)/4835703278458516698824704, (-245657313712011778432792959787098074935273 + 253113767861878869678042729088355086740856*I)/38685626227668133590597632, (1947031161734702327107371192008011621193 - 19462330079296259148177542369999791122762*I)/9671406556917033397649408, (552856485625209001527688949522750288619217 + 392928441196156725372494335248099016686580*I)/77371252455336267181195264, (-44542866621905323121630214897126343414629 + 3265340021421335059323962377647649632959*I)/19342813113834066795298816, (136272594005759723105646069956434264218730 - 330975364731707309489523680957584684763587*I)/38685626227668133590597632, (27392593965554149283318732469825168894401 + 75157071243800133880129376047131061115278*I)/38685626227668133590597632, 7*(-357821652913266734749960136017214096276154 - 45509144466378076475315751988405961498243*I)/309485009821345068724781056, (104485001373574280824835174390219397141149 - 99041000529599568255829489765415726168162*I)/77371252455336267181195264, (1198066993119982409323525798509037696321291 + 4249784165667887866939369628840569844519936*I)/618970019642690137449562112, (-114985392587849953209115599084503853611014 - 52510376847189529234864487459476242883449*I)/77371252455336267181195264, (6094620517051332877965959223269600650951573 - 4683469779240530439185019982269137976201163*I)/1237940039285380274899124224], # [ (611292255597977285752123848828590587708323 - 216821743518546668382662964473055912169502*I)/77371252455336267181195264, (-1144023204575811464652692396337616594307487 + 12295317806312398617498029126807758490062855*I)/309485009821345068724781056, (-374093027769390002505693378578475235158281 - 573533923565898290299607461660384634333639*I)/77371252455336267181195264, (47405570632186659000138546955372796986832987 - 2837476058950808941605000274055970055096534*I)/1237940039285380274899124224, (-571573207393621076306216726219753090535121 + 533381457185823100878764749236639320783831*I)/77371252455336267181195264, (-7096548151856165056213543560958582513797519 - 24035731898756040059329175131592138642195366*I)/618970019642690137449562112, (2396762128833271142000266170154694033849225 + 1448501087375679588770230529017516492953051*I)/309485009821345068724781056, (-150609293845161968447166237242456473262037053 + 92581148080922977153207018003184520294188436*I)/4951760157141521099596496896, 5*(270278244730804315149356082977618054486347 - 1997830155222496880429743815321662710091562*I)/1237940039285380274899124224, (62978424789588828258068912690172109324360330 + 44803641177219298311493356929537007630129097*I)/2475880078570760549798248448, 19*(-451431106327656743945775812536216598712236 + 114924966793632084379437683991151177407937*I)/1237940039285380274899124224, (63417747628891221594106738815256002143915995 - 261508229397507037136324178612212080871150958*I)/9903520314283042199192993792], # [ (-2144231934021288786200752920446633703357 + 2305614436009705803670842248131563850246*I)/1208925819614629174706176, (-90720949337459896266067589013987007078153 - 221951119475096403601562347412753844534569*I)/19342813113834066795298816, (11590973613116630788176337262688659880376 + 6514520676308992726483494976339330626159*I)/4835703278458516698824704, 3*(-131776217149000326618649542018343107657237 + 79095042939612668486212006406818285287004*I)/38685626227668133590597632, (10100577916793945997239221374025741184951 - 28631383488085522003281589065994018550748*I)/9671406556917033397649408, 67*(10090295594251078955008130473573667572549 + 10449901522697161049513326446427839676762*I)/77371252455336267181195264, (-54270981296988368730689531355811033930513 - 3413683117592637309471893510944045467443*I)/19342813113834066795298816, (440372322928679910536575560069973699181278 - 736603803202303189048085196176918214409081*I)/77371252455336267181195264, (33220374714789391132887731139763250155295 + 92055083048787219934030779066298919603554*I)/38685626227668133590597632, 5*(-594638554579967244348856981610805281527116 - 82309245323128933521987392165716076704057*I)/309485009821345068724781056, (128056368815300084550013708313312073721955 - 114619107488668120303579745393765245911404*I)/77371252455336267181195264, 21*(59839959255173222962789517794121843393573 + 241507883613676387255359616163487405826334*I)/618970019642690137449562112], # [ (-13454485022325376674626653802541391955147 + 184471402121905621396582628515905949793486*I)/19342813113834066795298816, (-6158730123400322562149780662133074862437105 - 3416173052604643794120262081623703514107476*I)/154742504910672534362390528, (770558003844914708453618983120686116100419 - 127758381209767638635199674005029818518766*I)/77371252455336267181195264, (-4693005771813492267479835161596671660631703 + 12703585094750991389845384539501921531449948*I)/309485009821345068724781056, (-295028157441149027913545676461260860036601 - 841544569970643160358138082317324743450770*I)/77371252455336267181195264, (56716442796929448856312202561538574275502893 + 7216818824772560379753073185990186711454778*I)/1237940039285380274899124224, 15*(-87061038932753366532685677510172566368387 + 61306141156647596310941396434445461895538*I)/154742504910672534362390528, (-3455315109680781412178133042301025723909347 - 24969329563196972466388460746447646686670670*I)/618970019642690137449562112, (2453418854160886481106557323699250865361849 + 1497886802326243014471854112161398141242514*I)/309485009821345068724781056, (-151343224544252091980004429001205664193082173 + 90471883264187337053549090899816228846836628*I)/4951760157141521099596496896, (1652018205533026103358164026239417416432989 - 9959733619236515024261775397109724431400162*I)/1237940039285380274899124224, 3*(40676374242956907656984876692623172736522006 + 31023357083037817469535762230872667581366205*I)/4951760157141521099596496896], # [ (-1226990509403328460274658603410696548387 - 4131739423109992672186585941938392788458*I)/1208925819614629174706176, (162392818524418973411975140074368079662703 + 23706194236915374831230612374344230400704*I)/9671406556917033397649408, (-3935678233089814180000602553655565621193 + 2283744757287145199688061892165659502483*I)/1208925819614629174706176, (-2400210250844254483454290806930306285131 - 315571356806370996069052930302295432758205*I)/19342813113834066795298816, (13365917938215281056563183751673390817910 + 15911483133819801118348625831132324863881*I)/4835703278458516698824704, 3*(-215950551370668982657516660700301003897855 + 51684341999223632631602864028309400489378*I)/38685626227668133590597632, (20886089946811765149439844691320027184765 - 30806277083146786592790625980769214361844*I)/9671406556917033397649408, (562180634592713285745940856221105667874855 + 1031543963988260765153550559766662245114916*I)/77371252455336267181195264, (-65820625814810177122941758625652476012867 - 12429918324787060890804395323920477537595*I)/19342813113834066795298816, (319147848192012911298771180196635859221089 - 402403304933906769233365689834404519960394*I)/38685626227668133590597632, (23035615120921026080284733394359587955057 + 115351677687031786114651452775242461310624*I)/38685626227668133590597632, (-3426830634881892756966440108592579264936130 - 1022954961164128745603407283836365128598559*I)/309485009821345068724781056], # [ (-192574788060137531023716449082856117537757 - 69222967328876859586831013062387845780692*I)/19342813113834066795298816, (2736383768828013152914815341491629299773262 - 2773252698016291897599353862072533475408743*I)/77371252455336267181195264, (-23280005281223837717773057436155921656805 + 214784953368021840006305033048142888879224*I)/19342813113834066795298816, (-3035247484028969580570400133318947903462326 - 2195168903335435855621328554626336958674325*I)/77371252455336267181195264, (984552428291526892214541708637840971548653 - 64006622534521425620714598573494988589378*I)/77371252455336267181195264, (-3070650452470333005276715136041262898509903 + 7286424705750810474140953092161794621989080*I)/154742504910672534362390528, (-147848877109756404594659513386972921139270 - 416306113044186424749331418059456047650861*I)/38685626227668133590597632, (55272118474097814260289392337160619494260781 + 7494019668394781211907115583302403519488058*I)/1237940039285380274899124224, (-581537886583682322424771088996959213068864 + 542191617758465339135308203815256798407429*I)/77371252455336267181195264, (-6422548983676355789975736799494791970390991 - 23524183982209004826464749309156698827737702*I)/618970019642690137449562112, 7*(180747195387024536886923192475064903482083 + 84352527693562434817771649853047924991804*I)/154742504910672534362390528, (-135485179036717001055310712747643466592387031 + 102346575226653028836678855697782273460527608*I)/4951760157141521099596496896], # [ (3384238362616083147067025892852431152105 + 156724444932584900214919898954874618256*I)/604462909807314587353088, (-59558300950677430189587207338385764871866 + 114427143574375271097298201388331237478857*I)/4835703278458516698824704, (-1356835789870635633517710130971800616227 - 7023484098542340388800213478357340875410*I)/1208925819614629174706176, (234884918567993750975181728413524549575881 + 79757294640629983786895695752733890213506*I)/9671406556917033397649408, (-7632732774935120473359202657160313866419 + 2905452608512927560554702228553291839465*I)/1208925819614629174706176, (52291747908702842344842889809762246649489 - 520996778817151392090736149644507525892649*I)/19342813113834066795298816, (17472406829219127839967951180375981717322 + 23464704213841582137898905375041819568669*I)/4835703278458516698824704, (-911026971811893092350229536132730760943307 + 150799318130900944080399439626714846752360*I)/38685626227668133590597632, (26234457233977042811089020440646443590687 - 45650293039576452023692126463683727692890*I)/9671406556917033397649408, 3*(288348388717468992528382586652654351121357 + 454526517721403048270274049572136109264668*I)/77371252455336267181195264, (-91583492367747094223295011999405657956347 - 12704691128268298435362255538069612411331*I)/19342813113834066795298816, (411208730251327843849027957710164064354221 - 569898526380691606955496789378230959965898*I)/38685626227668133590597632], # [ (27127513117071487872628354831658811211795 - 37765296987901990355760582016892124833857*I)/4835703278458516698824704, (1741779916057680444272938534338833170625435 + 3083041729779495966997526404685535449810378*I)/77371252455336267181195264, 3*(-60642236251815783728374561836962709533401 - 24630301165439580049891518846174101510744*I)/19342813113834066795298816, 3*(445885207364591681637745678755008757483408 - 350948497734812895032502179455610024541643*I)/38685626227668133590597632, (-47373295621391195484367368282471381775684 + 219122969294089357477027867028071400054973*I)/19342813113834066795298816, (-2801565819673198722993348253876353741520438 - 2250142129822658548391697042460298703335701*I)/77371252455336267181195264, (801448252275607253266997552356128790317119 - 50890367688077858227059515894356594900558*I)/77371252455336267181195264, (-5082187758525931944557763799137987573501207 + 11610432359082071866576699236013484487676124*I)/309485009821345068724781056, (-328925127096560623794883760398247685166830 - 643447969697471610060622160899409680422019*I)/77371252455336267181195264, 15*(2954944669454003684028194956846659916299765 + 33434406416888505837444969347824812608566*I)/1237940039285380274899124224, (-415749104352001509942256567958449835766827 + 479330966144175743357171151440020955412219*I)/77371252455336267181195264, 3*(-4639987285852134369449873547637372282914255 - 11994411888966030153196659207284951579243273*I)/1237940039285380274899124224], # [ (-478846096206269117345024348666145495601 + 1249092488629201351470551186322814883283*I)/302231454903657293676544, (-17749319421930878799354766626365926894989 - 18264580106418628161818752318217357231971*I)/1208925819614629174706176, (2801110795431528876849623279389579072819 + 363258850073786330770713557775566973248*I)/604462909807314587353088, (-59053496693129013745775512127095650616252 + 78143588734197260279248498898321500167517*I)/4835703278458516698824704, (-283186724922498212468162690097101115349 - 6443437753863179883794497936345437398276*I)/1208925819614629174706176, (188799118826748909206887165661384998787543 + 84274736720556630026311383931055307398820*I)/9671406556917033397649408, (-5482217151670072904078758141270295025989 + 1818284338672191024475557065444481298568*I)/1208925819614629174706176, (56564463395350195513805521309731217952281 - 360208541416798112109946262159695452898431*I)/19342813113834066795298816, 11*(1259539805728870739006416869463689438068 + 1409136581547898074455004171305324917387*I)/4835703278458516698824704, 5*(-123701190701414554945251071190688818343325 + 30997157322590424677294553832111902279712*I)/38685626227668133590597632, (16130917381301373033736295883982414239781 - 32752041297570919727145380131926943374516*I)/9671406556917033397649408, (650301385108223834347093740500375498354925 + 899526407681131828596801223402866051809258*I)/77371252455336267181195264], # [ (9011388245256140876590294262420614839483 + 8167917972423946282513000869327525382672*I)/1208925819614629174706176, (-426393174084720190126376382194036323028924 + 180692224825757525982858693158209545430621*I)/9671406556917033397649408, (24588556702197802674765733448108154175535 - 45091766022876486566421953254051868331066*I)/4835703278458516698824704, (1872113939365285277373877183750416985089691 + 3030392393733212574744122057679633775773130*I)/77371252455336267181195264, (-222173405538046189185754954524429864167549 - 75193157893478637039381059488387511299116*I)/19342813113834066795298816, (2670821320766222522963689317316937579844558 - 2645837121493554383087981511645435472169191*I)/77371252455336267181195264, 5*(-2100110309556476773796963197283876204940 + 41957457246479840487980315496957337371937*I)/19342813113834066795298816, (-5733743755499084165382383818991531258980593 - 3328949988392698205198574824396695027195732*I)/154742504910672534362390528, (707827994365259025461378911159398206329247 - 265730616623227695108042528694302299777294*I)/77371252455336267181195264, (-1442501604682933002895864804409322823788319 + 11504137805563265043376405214378288793343879*I)/309485009821345068724781056, (-56130472299445561499538726459719629522285 - 61117552419727805035810982426639329818864*I)/9671406556917033397649408, (39053692321126079849054272431599539429908717 - 10209127700342570953247177602860848130710666*I)/1237940039285380274899124224]]) M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M**10 == Matrix(S('''[ [ 7369525394972778926719607798014571861/604462909807314587353088 - 229284202061790301477392339912557559*I/151115727451828646838272, -19704281515163975949388435612632058035/1208925819614629174706176 + 14319858347987648723768698170712102887*I/302231454903657293676544, -3623281909451783042932142262164941211/604462909807314587353088 - 6039240602494288615094338643452320495*I/604462909807314587353088, 109260497799140408739847239685705357695/2417851639229258349412352 - 7427566006564572463236368211555511431*I/2417851639229258349412352, -16095803767674394244695716092817006641/2417851639229258349412352 + 10336681897356760057393429626719177583*I/1208925819614629174706176, -42207883340488041844332828574359769743/2417851639229258349412352 - 182332262671671273188016400290188468499*I/4835703278458516698824704], [50566491050825573392726324995779608259/1208925819614629174706176 - 90047007594468146222002432884052362145*I/2417851639229258349412352, 74273703462900000967697427843983822011/1208925819614629174706176 + 265947522682943571171988741842776095421*I/1208925819614629174706176, -116900341394390200556829767923360888429/2417851639229258349412352 - 53153263356679268823910621474478756845*I/2417851639229258349412352, 195407378023867871243426523048612490249/1208925819614629174706176 - 1242417915995360200584837585002906728929*I/9671406556917033397649408, -863597594389821970177319682495878193/302231454903657293676544 + 476936100741548328800725360758734300481*I/9671406556917033397649408, -3154451590535653853562472176601754835575/19342813113834066795298816 - 232909875490506237386836489998407329215*I/2417851639229258349412352], [ -1715444997702484578716037230949868543/302231454903657293676544 + 5009695651321306866158517287924120777*I/302231454903657293676544, -30551582497996879620371947949342101301/604462909807314587353088 - 7632518367986526187139161303331519629*I/151115727451828646838272, 312680739924495153190604170938220575/18889465931478580854784 - 108664334509328818765959789219208459*I/75557863725914323419136, -14693696966703036206178521686918865509/604462909807314587353088 + 72345386220900843930147151999899692401*I/1208925819614629174706176, -8218872496728882299722894680635296519/1208925819614629174706176 - 16776782833358893712645864791807664983*I/1208925819614629174706176, 143237839169380078671242929143670635137/2417851639229258349412352 + 2883817094806115974748882735218469447*I/2417851639229258349412352], [ 3087979417831061365023111800749855987/151115727451828646838272 + 34441942370802869368851419102423997089*I/604462909807314587353088, -148309181940158040917731426845476175667/604462909807314587353088 - 263987151804109387844966835369350904919*I/9671406556917033397649408, 50259518594816377378747711930008883165/1208925819614629174706176 - 95713974916869240305450001443767979653*I/2417851639229258349412352, 153466447023875527996457943521467271119/2417851639229258349412352 + 517285524891117105834922278517084871349*I/2417851639229258349412352, -29184653615412989036678939366291205575/604462909807314587353088 - 27551322282526322041080173287022121083*I/1208925819614629174706176, 196404220110085511863671393922447671649/1208925819614629174706176 - 1204712019400186021982272049902206202145*I/9671406556917033397649408], [ -2632581805949645784625606590600098779/151115727451828646838272 - 589957435912868015140272627522612771*I/37778931862957161709568, 26727850893953715274702844733506310247/302231454903657293676544 - 10825791956782128799168209600694020481*I/302231454903657293676544, -1036348763702366164044671908440791295/151115727451828646838272 + 3188624571414467767868303105288107375*I/151115727451828646838272, -36814959939970644875593411585393242449/604462909807314587353088 - 18457555789119782404850043842902832647*I/302231454903657293676544, 12454491297984637815063964572803058647/604462909807314587353088 - 340489532842249733975074349495329171*I/302231454903657293676544, -19547211751145597258386735573258916681/604462909807314587353088 + 87299583775782199663414539883938008933*I/1208925819614629174706176], [ -40281994229560039213253423262678393183/604462909807314587353088 - 2939986850065527327299273003299736641*I/604462909807314587353088, 331940684638052085845743020267462794181/2417851639229258349412352 - 284574901963624403933361315517248458969*I/1208925819614629174706176, 6453843623051745485064693628073010961/302231454903657293676544 + 36062454107479732681350914931391590957*I/604462909807314587353088, -147665869053634695632880753646441962067/604462909807314587353088 - 305987938660447291246597544085345123927*I/9671406556917033397649408, 107821369195275772166593879711259469423/2417851639229258349412352 - 11645185518211204108659001435013326687*I/302231454903657293676544, 64121228424717666402009446088588091619/1208925819614629174706176 + 265557133337095047883844369272389762133*I/1208925819614629174706176]]''')) def test_issue_17247_expression_blowup_5(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.charpoly('x') == PurePoly(x**6 + (-6 - 6*I)*x**5 + 36*I*x**4, x, domain='EX') def test_issue_17247_expression_blowup_6(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('bareiss') == 0 def test_issue_17247_expression_blowup_7(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.det('berkowitz') == 0 def test_issue_17247_expression_blowup_8(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.det('lu') == 0 def test_issue_17247_expression_blowup_9(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, -1, -2, -3, -4, -5, -6], [0, 1, 2, 3, 4, 5, 6, 7], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]), (0, 1)) def test_issue_17247_expression_blowup_10(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor(0, 0) == 0 def test_issue_17247_expression_blowup_11(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.cofactor_matrix() == Matrix(6, 6, [0]*36) def test_issue_17247_expression_blowup_12(): M = Matrix(6, 6, lambda i, j: 1 + (-1)**(i+j)*I) with dotprodsimp(True): assert M.eigenvals() == {6: 1, 6*I: 1, 0: 4} def test_issue_17247_expression_blowup_13(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) ev = M.eigenvects() assert ev[0] == (0, 2, [Matrix([0, -1, 0, 1])]) assert ev[1][0] == x - sqrt(2)*(x - 1) + 1 assert ev[1][1] == 1 assert ev[1][2][0].expand(deep=False, numer=True) == Matrix([ [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x - sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x + sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) assert ev[2][0] == x + sqrt(2)*(x - 1) + 1 assert ev[2][1] == 1 assert ev[2][2][0].expand(deep=False, numer=True) == Matrix([ [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [-4*x/(x**2 - 2*x + 1) + (x + 1)*(x + sqrt(2)*(x - 1) + 1)/(x**2 - 2*x + 1)], [(-x - sqrt(2)*(x - 1) - 1)/(x - 1)], [1] ]) def test_issue_17247_expression_blowup_14(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.echelon_form() == Matrix([ [x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x], [ 0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0], [ 0, 0, 0, 0, 0, 0, 0, 0]]) def test_issue_17247_expression_blowup_15(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.rowspace() == [Matrix([[x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x, x + 1, 1 - x]]), Matrix([[0, 4*x, 0, 4*x, 0, 4*x, 0, 4*x]])] def test_issue_17247_expression_blowup_16(): M = Matrix(8, 8, ([1+x, 1-x]*4 + [1-x, 1+x]*4)*4) with dotprodsimp(True): assert M.columnspace() == [Matrix([[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x]]), Matrix([[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1],[1 - x],[x + 1]])] def test_issue_17247_expression_blowup_17(): M = Matrix(8, 8, [x+i for i in range (64)]) with dotprodsimp(True): assert M.nullspace() == [ Matrix([[1],[-2],[1],[0],[0],[0],[0],[0]]), Matrix([[2],[-3],[0],[1],[0],[0],[0],[0]]), Matrix([[3],[-4],[0],[0],[1],[0],[0],[0]]), Matrix([[4],[-5],[0],[0],[0],[1],[0],[0]]), Matrix([[5],[-6],[0],[0],[0],[0],[1],[0]]), Matrix([[6],[-7],[0],[0],[0],[0],[0],[1]])] def test_issue_17247_expression_blowup_18(): M = Matrix(6, 6, ([1+x, 1-x]*3 + [1-x, 1+x]*3)*3) with dotprodsimp(True): assert not M.is_nilpotent() def test_issue_17247_expression_blowup_19(): M = Matrix(S('''[ [ -3/4, 0, 1/4 + I/2, 0], [ 0, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 1/2 - I, 0, 0, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert not M.is_diagonalizable() def test_issue_17247_expression_blowup_20(): M = Matrix([ [x + 1, 1 - x, 0, 0], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 0], [ 0, 0, 0, x + 1]]) with dotprodsimp(True): assert M.diagonalize() == (Matrix([ [1, 1, 0, (x + 1)/(x - 1)], [1, -1, 0, 0], [1, 1, 1, 0], [0, 0, 0, 1]]), Matrix([ [2, 0, 0, 0], [0, 2*x, 0, 0], [0, 0, x + 1, 0], [0, 0, 0, x + 1]])) def test_issue_17247_expression_blowup_21(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='GE') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_22(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LU') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_23(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='ADJ').expand() == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_24(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='CH') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_25(): M = SparseMatrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.inv(method='LDL') == Matrix(S('''[ [-26194832/3470993 - 31733264*I/3470993, 156352/3470993 + 10325632*I/3470993, 0, -7741283181072/3306971225785 + 2999007604624*I/3306971225785], [4408224/3470993 - 9675328*I/3470993, -2422272/3470993 + 1523712*I/3470993, 0, -1824666489984/3306971225785 - 1401091949952*I/3306971225785], [-26406945676288/22270005630769 + 10245925485056*I/22270005630769, 7453523312640/22270005630769 + 1601616519168*I/22270005630769, 633088/6416033 - 140288*I/6416033, 872209227109521408/21217636514687010905 + 6066405081802389504*I/21217636514687010905], [0, 0, 0, -11328/952745 + 87616*I/952745]]''')) def test_issue_17247_expression_blowup_26(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64, -9/32 - I/16, 183/256 - 97*I/128], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512, -219/128 + 115*I/256, 6301/4096 - 6609*I/1024], [ 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64, 1/4 - 5*I/16, 65/128 + 87*I/64], [ -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128, 85/256 - 33*I/16, 805/128 + 2415*I/512], [ 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16, 1/4 + I/2, -129/64 - 9*I/64], [ 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128, 125/64 + 87*I/64, -2063/256 + 541*I/128], [ -2, 17/4 - 13*I/2, 1 + I, -19/4 + 5*I/4, 1/2 - I, 9/4 + 55*I/16, -3/4, 45/32 - 37*I/16], [ 1/4 + 13*I/4, -825/64 - 147*I/32, 21/8 + I, -537/64 + 143*I/16, -5/8 - 39*I/16, 2473/256 + 137*I/64, -149/64 + 49*I/32, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.rank() == 4 def test_issue_17247_expression_blowup_27(): M = Matrix([ [ 0, 1 - x, x + 1, 1 - x], [1 - x, x + 1, 0, x + 1], [ 0, 1 - x, x + 1, 1 - x], [ 0, 0, 1 - x, 0]]) with dotprodsimp(True): P, J = M.jordan_form() assert P.expand() == Matrix(S('''[ [ 0, 4*x/(x**2 - 2*x + 1), -(-17*x**4 + 12*sqrt(2)*x**4 - 4*sqrt(2)*x**3 + 6*x**3 - 6*x - 4*sqrt(2)*x + 12*sqrt(2) + 17)/(-7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 + 8*x**3 - 2*x**2 + 8*x + 6*sqrt(2)*x - 5*sqrt(2) - 7), -(12*sqrt(2)*x**4 + 17*x**4 - 6*x**3 - 4*sqrt(2)*x**3 - 4*sqrt(2)*x + 6*x - 17 + 12*sqrt(2))/(7*x**4 + 5*sqrt(2)*x**4 - 6*sqrt(2)*x**3 - 8*x**3 + 2*x**2 - 8*x + 6*sqrt(2)*x - 5*sqrt(2) + 7)], [x - 1, x/(x - 1) + 1/(x - 1), (-7*x**3 + 5*sqrt(2)*x**3 - x**2 + sqrt(2)*x**2 - sqrt(2)*x - x - 5*sqrt(2) - 7)/(-3*x**3 + 2*sqrt(2)*x**3 - 2*sqrt(2)*x**2 + 3*x**2 + 2*sqrt(2)*x + 3*x - 3 - 2*sqrt(2)), (7*x**3 + 5*sqrt(2)*x**3 + x**2 + sqrt(2)*x**2 - sqrt(2)*x + x - 5*sqrt(2) + 7)/(2*sqrt(2)*x**3 + 3*x**3 - 3*x**2 - 2*sqrt(2)*x**2 - 3*x + 2*sqrt(2)*x - 2*sqrt(2) + 3)], [ 0, 1, -(-3*x**2 + 2*sqrt(2)*x**2 + 2*x - 3 - 2*sqrt(2))/(-x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x + 1 + sqrt(2)), -(2*sqrt(2)*x**2 + 3*x**2 - 2*x - 2*sqrt(2) + 3)/(x**2 + sqrt(2)*x**2 - 2*sqrt(2)*x - 1 + sqrt(2))], [1 - x, 0, 1, 1]]''')).expand() assert J == Matrix(S('''[ [0, 1, 0, 0], [0, 0, 0, 0], [0, 0, x - sqrt(2)*(x - 1) + 1, 0], [0, 0, 0, x + sqrt(2)*(x - 1) + 1]]''')) def test_issue_17247_expression_blowup_28(): M = Matrix(S('''[ [ -3/4, 45/32 - 37*I/16, 0, 0], [-149/64 + 49*I/32, -177/128 - 1369*I/128, 0, -2063/256 + 541*I/128], [ 0, 9/4 + 55*I/16, 2473/256 + 137*I/64, 0], [ 0, 0, 0, -177/128 - 1369*I/128]]''')) with dotprodsimp(True): assert M.singular_values() == S('''[ sqrt(14609315/131072 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) + 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2 + sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 + sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2), sqrt(14609315/131072 - sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))/2 - sqrt(64789115132571/2147483648 - 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3) - 76627253330829751075/(35184372088832*sqrt(64789115132571/4294967296 + 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)) + 2*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3))) - 3546944054712886603889144627/(110680464442257309696*(25895222463957462655758224991455280215303/633825300114114700748351602688 + sqrt(1213909058710955930446995195883114969038524625997915131236390724543989220134670)*I/22282920707136844948184236032)**(1/3)))/2)]''') def test_issue_16823(): # This still needs to be fixed if not using dotprodsimp. M = Matrix(S('''[ [1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I,15/128-3/32*I,19/256+551/1024*I], [21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I,129/256-549/512*I,42533/16384+29103/8192*I], [-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I,3/64+13/64*I,-23/32-59/256*I], [1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I,119/128+143/128*I,-10879/2048+4343/4096*I], [-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I,-9/32-1/16*I,183/256-97/128*I], [1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I,-219/128+115/256*I,6301/4096-6609/1024*I], [-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I,1/4-5/16*I,65/128+87/64*I], [-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I,85/256-33/16*I,805/128+2415/512*I], [0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I,1/4+1/2*I,-129/64-9/64*I], [1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I,125/64+87/64*I,-2063/256+541/128*I], [0,-4*I,0,-6,-4,9-5*I,-4*I,27/2+6*I,-2,17/4-13/2*I,1+I,-19/4+5/4*I,1/2-I,9/4+55/16*I,-3/4,45/32-37/16*I], [0,1/4+1/2*I,1,-9/4+3*I,-2*I,119/8+29/4*I,1/4+5/2*I,-23/8-57/16*I,1/4+13/4*I,-825/64-147/32*I,21/8+I,-537/64+143/16*I,-5/8-39/16*I,2473/256+137/64*I,-149/64+49/32*I,-177/128-1369/128*I]]''')) with dotprodsimp(True): assert M.rank() == 8 def test_issue_18531(): # solve_linear_system still needs fixing but the rref works. M = Matrix([ [1, 1, 1, 1, 1, 0, 1, 0, 0], [1 + sqrt(2), -1 + sqrt(2), 1 - sqrt(2), -sqrt(2) - 1, 1, 1, -1, 1, 1], [-5 + 2*sqrt(2), -5 - 2*sqrt(2), -5 - 2*sqrt(2), -5 + 2*sqrt(2), -7, 2, -7, -2, 0], [-3*sqrt(2) - 1, 1 - 3*sqrt(2), -1 + 3*sqrt(2), 1 + 3*sqrt(2), -7, -5, 7, -5, 3], [7 - 4*sqrt(2), 4*sqrt(2) + 7, 4*sqrt(2) + 7, 7 - 4*sqrt(2), 7, -12, 7, 12, 0], [-1 + 3*sqrt(2), 1 + 3*sqrt(2), -3*sqrt(2) - 1, 1 - 3*sqrt(2), 7, -5, -7, -5, 3], [-3 + 2*sqrt(2), -3 - 2*sqrt(2), -3 - 2*sqrt(2), -3 + 2*sqrt(2), -1, 2, -1, -2, 0], [1 - sqrt(2), -sqrt(2) - 1, 1 + sqrt(2), -1 + sqrt(2), -1, 1, 1, 1, 1] ]) with dotprodsimp(True): assert M.rref() == (Matrix([ [1, 0, 0, 0, 0, 0, 0, 0, 1/2], [0, 1, 0, 0, 0, 0, 0, 0, -1/2], [0, 0, 1, 0, 0, 0, 0, 0, 1/2], [0, 0, 0, 1, 0, 0, 0, 0, -1/2], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, -1/2], [0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, -1/2]]), (0, 1, 2, 3, 4, 5, 6, 7)) def test_creation(): raises(ValueError, lambda: Matrix(5, 5, range(20))) raises(ValueError, lambda: Matrix(5, -1, [])) raises(IndexError, lambda: Matrix((1, 2))[2]) with raises(IndexError): Matrix((1, 2))[3] = 5 assert Matrix() == Matrix([]) == Matrix([[]]) == Matrix(0, 0, []) # anything used to be allowed in a matrix with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).tolist() == [[[1], (2,)]] with warns_deprecated_sympy(): assert Matrix([[[1], (2,)]]).T.tolist() == [[[1]], [(2,)]] M = Matrix([[0]]) with warns_deprecated_sympy(): M[0, 0] = S.EmptySet a = Matrix([[x, 0], [0, 0]]) m = a assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] b = Matrix(2, 2, [x, 0, 0, 0]) m = b assert m.cols == m.rows assert m.cols == 2 assert m[:] == [x, 0, 0, 0] assert a == b assert Matrix(b) == b c23 = Matrix(2, 3, range(1, 7)) c13 = Matrix(1, 3, range(7, 10)) c = Matrix([c23, c13]) assert c.cols == 3 assert c.rows == 3 assert c[:] == [1, 2, 3, 4, 5, 6, 7, 8, 9] assert Matrix(eye(2)) == eye(2) assert ImmutableMatrix(ImmutableMatrix(eye(2))) == ImmutableMatrix(eye(2)) assert ImmutableMatrix(c) == c.as_immutable() assert Matrix(ImmutableMatrix(c)) == ImmutableMatrix(c).as_mutable() assert c is not Matrix(c) dat = [[ones(3,2), ones(3,3)*2], [ones(2,3)*3, ones(2,2)*4]] M = Matrix(dat) assert M == Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) assert M.tolist() != dat # keep block form if evaluate=False assert Matrix(dat, evaluate=False).tolist() == dat A = MatrixSymbol("A", 2, 2) dat = [ones(2), A] assert Matrix(dat) == Matrix([ [ 1, 1], [ 1, 1], [A[0, 0], A[0, 1]], [A[1, 0], A[1, 1]]]) with warns_deprecated_sympy(): assert Matrix(dat, evaluate=False).tolist() == [[i] for i in dat] # 0-dim tolerance assert Matrix([ones(2), ones(0)]) == Matrix([ones(2)]) raises(ValueError, lambda: Matrix([ones(2), ones(0, 3)])) raises(ValueError, lambda: Matrix([ones(2), ones(3, 0)])) # mix of Matrix and iterable M = Matrix([[1, 2], [3, 4]]) M2 = Matrix([M, (5, 6)]) assert M2 == Matrix([[1, 2], [3, 4], [5, 6]]) def test_irregular_block(): assert Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) == Matrix([ [1, 2, 2, 2, 3, 3], [1, 2, 2, 2, 3, 3], [4, 2, 2, 2, 5, 5], [6, 6, 7, 7, 5, 5]]) def test_tolist(): lst = [[S.One, S.Half, x*y, S.Zero], [x, y, z, x**2], [y, -S.One, z*x, 3]] m = Matrix(lst) assert m.tolist() == lst def test_as_mutable(): assert zeros(0, 3).as_mutable() == zeros(0, 3) assert zeros(0, 3).as_immutable() == ImmutableMatrix(zeros(0, 3)) assert zeros(3, 0).as_immutable() == ImmutableMatrix(zeros(3, 0)) def test_slicing(): m0 = eye(4) assert m0[:3, :3] == eye(3) assert m0[2:4, 0:2] == zeros(2) m1 = Matrix(3, 3, lambda i, j: i + j) assert m1[0, :] == Matrix(1, 3, (0, 1, 2)) assert m1[1:3, 1] == Matrix(2, 1, (2, 3)) m2 = Matrix([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15]]) assert m2[:, -1] == Matrix(4, 1, [3, 7, 11, 15]) assert m2[-2:, :] == Matrix([[8, 9, 10, 11], [12, 13, 14, 15]]) def test_submatrix_assignment(): m = zeros(4) m[2:4, 2:4] = eye(2) assert m == Matrix(((0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1))) m[:2, :2] = eye(2) assert m == eye(4) m[:, 0] = Matrix(4, 1, (1, 2, 3, 4)) assert m == Matrix(((1, 0, 0, 0), (2, 1, 0, 0), (3, 0, 1, 0), (4, 0, 0, 1))) m[:, :] = zeros(4) assert m == zeros(4) m[:, :] = [(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16)] assert m == Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) m[:2, 0] = [0, 0] assert m == Matrix(((0, 2, 3, 4), (0, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) def test_extract(): m = Matrix(4, 3, lambda i, j: i*3 + j) assert m.extract([0, 1, 3], [0, 1]) == Matrix(3, 2, [0, 1, 3, 4, 9, 10]) assert m.extract([0, 3], [0, 0, 2]) == Matrix(2, 3, [0, 0, 2, 9, 9, 11]) assert m.extract(range(4), range(3)) == m raises(IndexError, lambda: m.extract([4], [0])) raises(IndexError, lambda: m.extract([0], [3])) def test_reshape(): m0 = eye(3) assert m0.reshape(1, 9) == Matrix(1, 9, (1, 0, 0, 0, 1, 0, 0, 0, 1)) m1 = Matrix(3, 4, lambda i, j: i + j) assert m1.reshape( 4, 3) == Matrix(((0, 1, 2), (3, 1, 2), (3, 4, 2), (3, 4, 5))) assert m1.reshape(2, 6) == Matrix(((0, 1, 2, 3, 1, 2), (3, 4, 2, 3, 4, 5))) def test_applyfunc(): m0 = eye(3) assert m0.applyfunc(lambda x: 2*x) == eye(3)*2 assert m0.applyfunc(lambda x: 0) == zeros(3) def test_expand(): m0 = Matrix([[x*(x + y), 2], [((x + y)*y)*x, x*(y + x*(x + y))]]) # Test if expand() returns a matrix m1 = m0.expand() assert m1 == Matrix( [[x*y + x**2, 2], [x*y**2 + y*x**2, x*y + y*x**2 + x**3]]) a = Symbol('a', real=True) assert Matrix([exp(I*a)]).expand(complex=True) == \ Matrix([cos(a) + I*sin(a)]) assert Matrix([[0, 1, 2], [0, 0, -1], [0, 0, 0]]).exp() == Matrix([ [1, 1, Rational(3, 2)], [0, 1, -1], [0, 0, 1]] ) def test_refine(): m0 = Matrix([[Abs(x)**2, sqrt(x**2)], [sqrt(x**2)*Abs(y)**2, sqrt(y**2)*Abs(x)**2]]) m1 = m0.refine(Q.real(x) & Q.real(y)) assert m1 == Matrix([[x**2, Abs(x)], [y**2*Abs(x), x**2*Abs(y)]]) m1 = m0.refine(Q.positive(x) & Q.positive(y)) assert m1 == Matrix([[x**2, x], [x*y**2, x**2*y]]) m1 = m0.refine(Q.negative(x) & Q.negative(y)) assert m1 == Matrix([[x**2, -x], [-x*y**2, -x**2*y]]) def test_random(): M = randMatrix(3, 3) M = randMatrix(3, 3, seed=3) assert M == randMatrix(3, 3, seed=3) M = randMatrix(3, 4, 0, 150) M = randMatrix(3, seed=4, symmetric=True) assert M == randMatrix(3, seed=4, symmetric=True) S = M.copy() S.simplify() assert S == M # doesn't fail when elements are Numbers, not int rng = random.Random(4) assert M == randMatrix(3, symmetric=True, prng=rng) # Ensure symmetry for size in (10, 11): # Test odd and even for percent in (100, 70, 30): M = randMatrix(size, symmetric=True, percent=percent, prng=rng) assert M == M.T M = randMatrix(10, min=1, percent=70) zero_count = 0 for i in range(M.shape[0]): for j in range(M.shape[1]): if M[i, j] == 0: zero_count += 1 assert zero_count == 30 def test_inverse(): A = eye(4) assert A.inv() == eye(4) assert A.inv(method="LU") == eye(4) assert A.inv(method="ADJ") == eye(4) assert A.inv(method="CH") == eye(4) assert A.inv(method="LDL") == eye(4) assert A.inv(method="QR") == eye(4) A = Matrix([[2, 3, 5], [3, 6, 2], [8, 3, 6]]) Ainv = A.inv() assert A*Ainv == eye(3) assert A.inv(method="LU") == Ainv assert A.inv(method="ADJ") == Ainv assert A.inv(method="CH") == Ainv assert A.inv(method="LDL") == Ainv assert A.inv(method="QR") == Ainv AA = Matrix([[0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0], [1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0], [1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0], [1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1], [0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0], [1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], [0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0], [0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0], [1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0], [0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1], [1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0], [0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0], [1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1], [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1], [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1], [0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1], [0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0], [0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0]]) assert AA.inv(method="BLOCK") * AA == eye(AA.shape[0]) # test that immutability is not a problem cls = ImmutableMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) cls = ImmutableSparseMatrix m = cls([[48, 49, 31], [ 9, 71, 94], [59, 28, 65]]) assert all(type(m.inv(s)) is cls for s in 'GE ADJ LU CH LDL QR'.split()) def test_matrix_inverse_mod(): A = Matrix(2, 1, [1, 0]) raises(NonSquareMatrixError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 0, 0, 0]) raises(ValueError, lambda: A.inv_mod(2)) A = Matrix(2, 2, [1, 2, 3, 4]) Ai = Matrix(2, 2, [1, 1, 0, 1]) assert A.inv_mod(3) == Ai A = Matrix(2, 2, [1, 0, 0, 1]) assert A.inv_mod(2) == A A = Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]) raises(ValueError, lambda: A.inv_mod(5)) A = Matrix(3, 3, [5, 1, 3, 2, 6, 0, 2, 1, 1]) Ai = Matrix(3, 3, [6, 8, 0, 1, 5, 6, 5, 6, 4]) assert A.inv_mod(9) == Ai A = Matrix(3, 3, [1, 6, -3, 4, 1, -5, 3, -5, 5]) Ai = Matrix(3, 3, [4, 3, 3, 1, 2, 5, 1, 5, 1]) assert A.inv_mod(6) == Ai A = Matrix(3, 3, [1, 6, 1, 4, 1, 5, 3, 2, 5]) Ai = Matrix(3, 3, [6, 0, 3, 6, 6, 4, 1, 6, 1]) assert A.inv_mod(7) == Ai def test_jacobian_hessian(): L = Matrix(1, 2, [x**2*y, 2*y**2 + x*y]) syms = [x, y] assert L.jacobian(syms) == Matrix([[2*x*y, x**2], [y, 4*y + x]]) L = Matrix(1, 2, [x, x**2*y**3]) assert L.jacobian(syms) == Matrix([[1, 0], [2*x*y**3, x**2*3*y**2]]) f = x**2*y syms = [x, y] assert hessian(f, syms) == Matrix([[2*y, 2*x], [2*x, 0]]) f = x**2*y**3 assert hessian(f, syms) == \ Matrix([[2*y**3, 6*x*y**2], [6*x*y**2, 6*x**2*y]]) f = z + x*y**2 g = x**2 + 2*y**3 ans = Matrix([[0, 2*y], [2*y, 2*x]]) assert ans == hessian(f, Matrix([x, y])) assert ans == hessian(f, Matrix([x, y]).T) assert hessian(f, (y, x), [g]) == Matrix([ [ 0, 6*y**2, 2*x], [6*y**2, 2*x, 2*y], [ 2*x, 2*y, 0]]) def test_wronskian(): assert wronskian([cos(x), sin(x)], x) == cos(x)**2 + sin(x)**2 assert wronskian([exp(x), exp(2*x)], x) == exp(3*x) assert wronskian([exp(x), x], x) == exp(x) - x*exp(x) assert wronskian([1, x, x**2], x) == 2 w1 = -6*exp(x)*sin(x)*x + 6*cos(x)*exp(x)*x**2 - 6*exp(x)*cos(x)*x - \ exp(x)*cos(x)*x**3 + exp(x)*sin(x)*x**3 assert wronskian([exp(x), cos(x), x**3], x).expand() == w1 assert wronskian([exp(x), cos(x), x**3], x, method='berkowitz').expand() \ == w1 w2 = -x**3*cos(x)**2 - x**3*sin(x)**2 - 6*x*cos(x)**2 - 6*x*sin(x)**2 assert wronskian([sin(x), cos(x), x**3], x).expand() == w2 assert wronskian([sin(x), cos(x), x**3], x, method='berkowitz').expand() \ == w2 assert wronskian([], x) == 1 def test_subs(): assert Matrix([[1, x], [x, 4]]).subs(x, 5) == Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([[x, -1], [y, -2]]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs([(x, -1), (y, -2)]) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([[x, 2], [x + y, 4]]).subs({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) assert Matrix([x*y]).subs({x: y - 1, y: x - 1}, simultaneous=True) == \ Matrix([(x - 1)*(y - 1)]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).subs(1, 2) def test_xreplace(): assert Matrix([[1, x], [x, 4]]).xreplace({x: 5}) == \ Matrix([[1, 5], [5, 4]]) assert Matrix([[x, 2], [x + y, 4]]).xreplace({x: -1, y: -2}) == \ Matrix([[-1, 2], [-3, 4]]) for cls in classes: assert Matrix([[2, 0], [0, 2]]) == cls.eye(2).xreplace({1: 2}) def test_simplify(): n = Symbol('n') f = Function('f') M = Matrix([[ 1/x + 1/y, (x + x*y) / x ], [ (f(x) + y*f(x))/f(x), 2 * (1/n - cos(n * pi)/n) / pi ]]) M.simplify() assert M == Matrix([[ (x + y)/(x * y), 1 + y ], [ 1 + y, 2*((1 - 1*cos(pi*n))/(pi*n)) ]]) eq = (1 + x)**2 M = Matrix([[eq]]) M.simplify() assert M == Matrix([[eq]]) M.simplify(ratio=oo) assert M == Matrix([[eq.simplify(ratio=oo)]]) def test_transpose(): M = Matrix([[1, 2, 3, 4, 5, 6, 7, 8, 9, 0], [1, 2, 3, 4, 5, 6, 7, 8, 9, 0]]) assert M.T == Matrix( [ [1, 1], [2, 2], [3, 3], [4, 4], [5, 5], [6, 6], [7, 7], [8, 8], [9, 9], [0, 0] ]) assert M.T.T == M assert M.T == M.transpose() def test_conjugate(): M = Matrix([[0, I, 5], [1, 2, 0]]) assert M.T == Matrix([[0, 1], [I, 2], [5, 0]]) assert M.C == Matrix([[0, -I, 5], [1, 2, 0]]) assert M.C == M.conjugate() assert M.H == M.T.C assert M.H == Matrix([[ 0, 1], [-I, 2], [ 5, 0]]) def test_conj_dirac(): raises(AttributeError, lambda: eye(3).D) M = Matrix([[1, I, I, I], [0, 1, I, I], [0, 0, 1, I], [0, 0, 0, 1]]) assert M.D == Matrix([[ 1, 0, 0, 0], [-I, 1, 0, 0], [-I, -I, -1, 0], [-I, -I, I, -1]]) def test_trace(): M = Matrix([[1, 0, 0], [0, 5, 0], [0, 0, 8]]) assert M.trace() == 14 def test_shape(): M = Matrix([[x, 0, 0], [0, y, 0]]) assert M.shape == (2, 3) def test_col_row_op(): M = Matrix([[x, 0, 0], [0, y, 0]]) M.row_op(1, lambda r, j: r + j + 1) assert M == Matrix([[x, 0, 0], [1, y + 2, 3]]) M.col_op(0, lambda c, j: c + y**j) assert M == Matrix([[x + 1, 0, 0], [1 + y, y + 2, 3]]) # neither row nor slice give copies that allow the original matrix to # be changed assert M.row(0) == Matrix([[x + 1, 0, 0]]) r1 = M.row(0) r1[0] = 42 assert M[0, 0] == x + 1 r1 = M[0, :-1] # also testing negative slice r1[0] = 42 assert M[0, 0] == x + 1 c1 = M.col(0) assert c1 == Matrix([x + 1, 1 + y]) c1[0] = 0 assert M[0, 0] == x + 1 c1 = M[:, 0] c1[0] = 42 assert M[0, 0] == x + 1 def test_zip_row_op(): for cls in classes[:2]: # XXX: immutable matrices don't support row ops M = cls.eye(3) M.zip_row_op(1, 0, lambda v, u: v + 2*u) assert M == cls([[1, 0, 0], [2, 1, 0], [0, 0, 1]]) M = cls.eye(3)*2 M[0, 1] = -1 M.zip_row_op(1, 0, lambda v, u: v + 2*u); M assert M == cls([[2, -1, 0], [4, 0, 0], [0, 0, 2]]) def test_issue_3950(): m = Matrix([1, 2, 3]) a = Matrix([1, 2, 3]) b = Matrix([2, 2, 3]) assert not (m in []) assert not (m in [1]) assert m != 1 assert m == a assert m != b def test_issue_3981(): class Index1: def __index__(self): return 1 class Index2: def __index__(self): return 2 index1 = Index1() index2 = Index2() m = Matrix([1, 2, 3]) assert m[index2] == 3 m[index2] = 5 assert m[2] == 5 m = Matrix([[1, 2, 3], [4, 5, 6]]) assert m[index1, index2] == 6 assert m[1, index2] == 6 assert m[index1, 2] == 6 m[index1, index2] = 4 assert m[1, 2] == 4 m[1, index2] = 6 assert m[1, 2] == 6 m[index1, 2] = 8 assert m[1, 2] == 8 def test_evalf(): a = Matrix([sqrt(5), 6]) assert all(a.evalf()[i] == a[i].evalf() for i in range(2)) assert all(a.evalf(2)[i] == a[i].evalf(2) for i in range(2)) assert all(a.n(2)[i] == a[i].n(2) for i in range(2)) def test_is_symbolic(): a = Matrix([[x, x], [x, x]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3, 4], [5, 6, 7, 8]]) assert a.is_symbolic() is False a = Matrix([[1, 2, 3, 4], [5, 6, x, 8]]) assert a.is_symbolic() is True a = Matrix([[1, x, 3]]) assert a.is_symbolic() is True a = Matrix([[1, 2, 3]]) assert a.is_symbolic() is False a = Matrix([[1], [x], [3]]) assert a.is_symbolic() is True a = Matrix([[1], [2], [3]]) assert a.is_symbolic() is False def test_is_upper(): a = Matrix([[1, 2, 3]]) assert a.is_upper is True a = Matrix([[1], [2], [3]]) assert a.is_upper is False a = zeros(4, 2) assert a.is_upper is True def test_is_lower(): a = Matrix([[1, 2, 3]]) assert a.is_lower is False a = Matrix([[1], [2], [3]]) assert a.is_lower is True def test_is_nilpotent(): a = Matrix(4, 4, [0, 2, 1, 6, 0, 0, 1, 2, 0, 0, 0, 3, 0, 0, 0, 0]) assert a.is_nilpotent() a = Matrix([[1, 0], [0, 1]]) assert not a.is_nilpotent() a = Matrix([]) assert a.is_nilpotent() def test_zeros_ones_fill(): n, m = 3, 5 a = zeros(n, m) a.fill( 5 ) b = 5 * ones(n, m) assert a == b assert a.rows == b.rows == 3 assert a.cols == b.cols == 5 assert a.shape == b.shape == (3, 5) assert zeros(2) == zeros(2, 2) assert ones(2) == ones(2, 2) assert zeros(2, 3) == Matrix(2, 3, [0]*6) assert ones(2, 3) == Matrix(2, 3, [1]*6) a.fill(0) assert a == zeros(n, m) def test_empty_zeros(): a = zeros(0) assert a == Matrix() a = zeros(0, 2) assert a.rows == 0 assert a.cols == 2 a = zeros(2, 0) assert a.rows == 2 assert a.cols == 0 def test_issue_3749(): a = Matrix([[x**2, x*y], [x*sin(y), x*cos(y)]]) assert a.diff(x) == Matrix([[2*x, y], [sin(y), cos(y)]]) assert Matrix([ [x, -x, x**2], [exp(x), 1/x - exp(-x), x + 1/x]]).limit(x, oo) == \ Matrix([[oo, -oo, oo], [oo, 0, oo]]) assert Matrix([ [(exp(x) - 1)/x, 2*x + y*x, x**x ], [1/x, abs(x), abs(sin(x + 1))]]).limit(x, 0) == \ Matrix([[1, 0, 1], [oo, 0, sin(1)]]) assert a.integrate(x) == Matrix([ [Rational(1, 3)*x**3, y*x**2/2], [x**2*sin(y)/2, x**2*cos(y)/2]]) def test_inv_iszerofunc(): A = eye(4) A.col_swap(0, 1) for method in "GE", "LU": assert A.inv(method=method, iszerofunc=lambda x: x == 0) == \ A.inv(method="ADJ") def test_jacobian_metrics(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi)]) Y = Matrix([rho, phi]) J = X.jacobian(Y) assert J == X.jacobian(Y.T) assert J == (X.T).jacobian(Y) assert J == (X.T).jacobian(Y.T) g = J.T*eye(J.shape[0])*J g = g.applyfunc(trigsimp) assert g == Matrix([[1, 0], [0, rho**2]]) def test_jacobian2(): rho, phi = symbols("rho,phi") X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) Y = Matrix([rho, phi]) J = Matrix([ [cos(phi), -rho*sin(phi)], [sin(phi), rho*cos(phi)], [ 2*rho, 0], ]) assert X.jacobian(Y) == J def test_issue_4564(): X = Matrix([exp(x + y + z), exp(x + y + z), exp(x + y + z)]) Y = Matrix([x, y, z]) for i in range(1, 3): for j in range(1, 3): X_slice = X[:i, :] Y_slice = Y[:j, :] J = X_slice.jacobian(Y_slice) assert J.rows == i assert J.cols == j for k in range(j): assert J[:, k] == X_slice def test_nonvectorJacobian(): X = Matrix([[exp(x + y + z), exp(x + y + z)], [exp(x + y + z), exp(x + y + z)]]) raises(TypeError, lambda: X.jacobian(Matrix([x, y, z]))) X = X[0, :] Y = Matrix([[x, y], [x, z]]) raises(TypeError, lambda: X.jacobian(Y)) raises(TypeError, lambda: X.jacobian(Matrix([ [x, y], [x, z] ]))) def test_vec(): m = Matrix([[1, 3], [2, 4]]) m_vec = m.vec() assert m_vec.cols == 1 for i in range(4): assert m_vec[i] == i + 1 def test_vech(): m = Matrix([[1, 2], [2, 3]]) m_vech = m.vech() assert m_vech.cols == 1 for i in range(3): assert m_vech[i] == i + 1 m_vech = m.vech(diagonal=False) assert m_vech[0] == 2 m = Matrix([[1, x*(x + y)], [y*x + x**2, 1]]) m_vech = m.vech(diagonal=False) assert m_vech[0] == y*x + x**2 m = Matrix([[1, x*(x + y)], [y*x, 1]]) m_vech = m.vech(diagonal=False, check_symmetry=False) assert m_vech[0] == y*x raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) raises(ShapeError, lambda: Matrix([[1, 3]]).vech()) raises(ValueError, lambda: Matrix([[1, 3], [2, 4]]).vech()) def test_diag(): # mostly tested in testcommonmatrix.py assert diag([1, 2, 3]) == Matrix([1, 2, 3]) m = [1, 2, [3]] raises(ValueError, lambda: diag(m)) assert diag(m, strict=False) == Matrix([1, 2, 3]) def test_get_diag_blocks1(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert a.get_diag_blocks() == [a] assert b.get_diag_blocks() == [b] assert c.get_diag_blocks() == [c] def test_get_diag_blocks2(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) assert diag(a, b, b).get_diag_blocks() == [a, b, b] assert diag(a, b, c).get_diag_blocks() == [a, b, c] assert diag(a, c, b).get_diag_blocks() == [a, c, b] assert diag(c, c, b).get_diag_blocks() == [c, c, b] def test_inv_block(): a = Matrix([[1, 2], [2, 3]]) b = Matrix([[3, x], [y, 3]]) c = Matrix([[3, x, 3], [y, 3, z], [x, y, z]]) A = diag(a, b, b) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), b.inv()) A = diag(a, b, c) assert A.inv(try_block_diag=True) == diag(a.inv(), b.inv(), c.inv()) A = diag(a, c, b) assert A.inv(try_block_diag=True) == diag(a.inv(), c.inv(), b.inv()) A = diag(a, a, b, a, c, a) assert A.inv(try_block_diag=True) == diag( a.inv(), a.inv(), b.inv(), a.inv(), c.inv(), a.inv()) assert A.inv(try_block_diag=True, method="ADJ") == diag( a.inv(method="ADJ"), a.inv(method="ADJ"), b.inv(method="ADJ"), a.inv(method="ADJ"), c.inv(method="ADJ"), a.inv(method="ADJ")) def test_creation_args(): """ Check that matrix dimensions can be specified using any reasonable type (see issue 4614). """ raises(ValueError, lambda: zeros(3, -1)) raises(TypeError, lambda: zeros(1, 2, 3, 4)) assert zeros(int(3)) == zeros(3) assert zeros(Integer(3)) == zeros(3) raises(ValueError, lambda: zeros(3.)) assert eye(int(3)) == eye(3) assert eye(Integer(3)) == eye(3) raises(ValueError, lambda: eye(3.)) assert ones(int(3), Integer(4)) == ones(3, 4) raises(TypeError, lambda: Matrix(5)) raises(TypeError, lambda: Matrix(1, 2)) raises(ValueError, lambda: Matrix([1, [2]])) def test_diagonal_symmetrical(): m = Matrix(2, 2, [0, 1, 1, 0]) assert not m.is_diagonal() assert m.is_symmetric() assert m.is_symmetric(simplify=False) m = Matrix(2, 2, [1, 0, 0, 1]) assert m.is_diagonal() m = diag(1, 2, 3) assert m.is_diagonal() assert m.is_symmetric() m = Matrix(3, 3, [1, 0, 0, 0, 2, 0, 0, 0, 3]) assert m == diag(1, 2, 3) m = Matrix(2, 3, zeros(2, 3)) assert not m.is_symmetric() assert m.is_diagonal() m = Matrix(((5, 0), (0, 6), (0, 0))) assert m.is_diagonal() m = Matrix(((5, 0, 0), (0, 6, 0))) assert m.is_diagonal() m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) assert m.is_symmetric() assert not m.is_symmetric(simplify=False) assert m.expand().is_symmetric(simplify=False) def test_diagonalization(): m = Matrix([[1, 2+I], [2-I, 3]]) assert m.is_diagonalizable() m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) assert not m.is_diagonalizable() assert not m.is_symmetric() raises(NonSquareMatrixError, lambda: m.diagonalize()) # diagonalizable m = diag(1, 2, 3) (P, D) = m.diagonalize() assert P == eye(3) assert D == m m = Matrix(2, 2, [0, 1, 1, 0]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(2, 2, [1, 0, 0, 3]) assert m.is_symmetric() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == eye(2) assert D == m m = Matrix(2, 2, [1, 1, 0, 0]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D m = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D for i in P: assert i.as_numer_denom()[1] == 1 m = Matrix(2, 2, [1, 0, 0, 0]) assert m.is_diagonal() assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D assert P == Matrix([[0, 1], [1, 0]]) # diagonalizable, complex only m = Matrix(2, 2, [0, 1, -1, 0]) assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) assert m.is_diagonalizable() (P, D) = m.diagonalize() assert P.inv() * m * P == D # not diagonalizable m = Matrix(2, 2, [0, 1, 0, 0]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) m = Matrix(3, 3, [-3, 1, -3, 20, 3, 10, 2, -2, 4]) assert not m.is_diagonalizable() raises(MatrixError, lambda: m.diagonalize()) # symbolic a, b, c, d = symbols('a b c d') m = Matrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() def test_issue_15887(): # Mutable matrix should not use cache a = MutableDenseMatrix([[0, 1], [1, 0]]) assert a.is_diagonalizable() is True a[1, 0] = 0 assert a.is_diagonalizable() is False a = MutableDenseMatrix([[0, 1], [1, 0]]) a.diagonalize() a[1, 0] = 0 raises(MatrixError, lambda: a.diagonalize()) # Test deprecated cache and kwargs with warns_deprecated_sympy(): a.is_diagonalizable(clear_cache=True) with warns_deprecated_sympy(): a.is_diagonalizable(clear_subproducts=True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # diagonalizable m = Matrix(3, 3, [7, -12, 6, 10, -19, 10, 12, -24, 13]) Jmust = Matrix(3, 3, [-1, 0, 0, 0, 1, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J assert Jmust == m.diagonalize()[1] # m = Matrix(3, 3, [0, 6, 3, 1, 3, 1, -2, 2, 1]) # m.jordan_form() # very long # m.jordan_form() # # diagonalizable, complex only # Jordan cells # complexity: one of eigenvalues is zero m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) # The blocks are ordered according to the value of their eigenvalues, # in order to make the matrix compatible with .diagonalize() Jmust = Matrix(3, 3, [2, 1, 0, 0, 2, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J # complexity: all of eigenvalues are equal m = Matrix(3, 3, [2, 6, -15, 1, 1, -5, 1, 2, -6]) # Jmust = Matrix(3, 3, [-1, 0, 0, 0, -1, 1, 0, 0, -1]) # same here see 1456ff Jmust = Matrix(3, 3, [-1, 1, 0, 0, -1, 0, 0, 0, -1]) P, J = m.jordan_form() assert Jmust == J # complexity: two of eigenvalues are zero m = Matrix(3, 3, [4, -5, 2, 5, -7, 3, 6, -9, 4]) Jmust = Matrix(3, 3, [0, 1, 0, 0, 0, 0, 0, 0, 1]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 5, -2, -3, -3, -1, 3, 3, 2, 1, -2, -3, -1, 1, 5, 5]) Jmust = Matrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2] ) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [6, 2, -8, -6, -3, 2, 9, 6, 2, -2, -8, -6, -1, 0, 3, 4]) # Jmust = Matrix(4, 4, [2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, -2]) # same here see 1456ff Jmust = Matrix(4, 4, [-2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2]) P, J = m.jordan_form() assert Jmust == J m = Matrix(4, 4, [5, 4, 2, 1, 0, 1, -1, -1, -1, -1, 3, 0, 1, 1, -1, 2]) assert not m.is_diagonalizable() Jmust = Matrix(4, 4, [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 1, 0, 0, 0, 4]) P, J = m.jordan_form() assert Jmust == J # checking for maximum precision to remain unchanged m = Matrix([[Float('1.0', precision=110), Float('2.0', precision=110)], [Float('3.14159265358979323846264338327', precision=110), Float('4.0', precision=110)]]) P, J = m.jordan_form() for term in J.values(): if isinstance(term, Float): assert term._prec == 110 def test_jordan_form_complex_issue_9274(): A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) p = 2 - 4*I; q = 2 + 4*I; Jmust1 = Matrix([[p, 1, 0, 0], [0, p, 0, 0], [0, 0, q, 1], [0, 0, 0, q]]) Jmust2 = Matrix([[q, 1, 0, 0], [0, q, 0, 0], [0, 0, p, 1], [0, 0, 0, p]]) P, J = A.jordan_form() assert J == Jmust1 or J == Jmust2 assert simplify(P*J*P.inv()) == A def test_issue_10220(): # two non-orthogonal Jordan blocks with eigenvalue 1 M = Matrix([[1, 0, 0, 1], [0, 1, 1, 0], [0, 0, 1, 1], [0, 0, 0, 1]]) P, J = M.jordan_form() assert P == Matrix([[0, 1, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) assert J == Matrix([ [1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def test_jordan_form_issue_15858(): A = Matrix([ [1, 1, 1, 0], [-2, -1, 0, -1], [0, 0, -1, -1], [0, 0, 2, 1]]) (P, J) = A.jordan_form() assert P.expand() == Matrix([ [ -I, -I/2, I, I/2], [-1 + I, 0, -1 - I, 0], [ 0, -S(1)/2 - I/2, 0, -S(1)/2 + I/2], [ 0, 1, 0, 1]]) assert J == Matrix([ [-I, 1, 0, 0], [0, -I, 0, 0], [0, 0, I, 1], [0, 0, 0, I]]) def test_Matrix_berkowitz_charpoly(): UA, K_i, K_w = symbols('UA K_i K_w') A = Matrix([[-K_i - UA + K_i**2/(K_i + K_w), K_i*K_w/(K_i + K_w)], [ K_i*K_w/(K_i + K_w), -K_w + K_w**2/(K_i + K_w)]]) charpoly = A.charpoly(x) assert charpoly == \ Poly(x**2 + (K_i*UA + K_w*UA + 2*K_i*K_w)/(K_i + K_w)*x + K_i*K_w*UA/(K_i + K_w), x, domain='ZZ(K_i,K_w,UA)') assert type(charpoly) is PurePoly A = Matrix([[1, 3], [2, 0]]) assert A.charpoly() == A.charpoly(x) == PurePoly(x**2 - x - 6) A = Matrix([[1, 2], [x, 0]]) p = A.charpoly(x) assert p.gen != x assert p.as_expr().subs(p.gen, x) == x**2 - 3*x def test_exp_jordan_block(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_exp_jblock() == Matrix([[exp(l)]]) m = Matrix.jordan_block(3, l) assert m._eval_matrix_exp_jblock() == \ Matrix([ [exp(l), exp(l), exp(l)/2], [0, exp(l), exp(l)], [0, 0, exp(l)]]) def test_exp(): m = Matrix([[3, 4], [0, -2]]) m_exp = Matrix([[exp(3), -4*exp(-2)/5 + 4*exp(3)/5], [0, exp(-2)]]) assert m.exp() == m_exp assert exp(m) == m_exp m = Matrix([[1, 0], [0, 1]]) assert m.exp() == Matrix([[E, 0], [0, E]]) assert exp(m) == Matrix([[E, 0], [0, E]]) m = Matrix([[1, -1], [1, 1]]) assert m.exp() == Matrix([[E*cos(1), -E*sin(1)], [E*sin(1), E*cos(1)]]) def test_log(): l = Symbol('lamda') m = Matrix.jordan_block(1, l) assert m._eval_matrix_log_jblock() == Matrix([[log(l)]]) m = Matrix.jordan_block(4, l) assert m._eval_matrix_log_jblock() == \ Matrix( [ [log(l), 1/l, -1/(2*l**2), 1/(3*l**3)], [0, log(l), 1/l, -1/(2*l**2)], [0, 0, log(l), 1/l], [0, 0, 0, log(l)] ] ) m = Matrix( [[0, 0, 1], [0, 0, 0], [-1, 0, 0]] ) raises(MatrixError, lambda: m.log()) def test_has(): A = Matrix(((x, y), (2, 3))) assert A.has(x) assert not A.has(z) assert A.has(Symbol) A = A.subs(x, 2) assert not A.has(x) def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero1(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=None indicates that no simplifications # should be performed during the search. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2 + sin(x)**2, S.Half]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column) assert pivot_val == S.Half def test_find_reasonable_pivot_naive_finds_guaranteed_nonzero2(): # Test if matrices._find_reasonable_pivot_naive() # finds a guaranteed non-zero pivot when the # some of the candidate pivots are symbolic expressions. # Keyword argument: simpfunc=_simplify indicates that the search # should attempt to simplify candidate pivots. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x**2, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert pivot_val == 1 def test_find_reasonable_pivot_naive_simplifies(): # Test if matrices._find_reasonable_pivot_naive() # simplifies candidate pivots, and reports # their offsets correctly. x = Symbol('x') column = Matrix(3, 1, [x, cos(x)**2+sin(x)**2+x, cos(x)**2+sin(x)**2]) pivot_offset, pivot_val, pivot_assumed_nonzero, simplified =\ _find_reasonable_pivot_naive(column, simpfunc=_simplify) assert len(simplified) == 2 assert simplified[0][0] == 1 assert simplified[0][1] == 1+x assert simplified[1][0] == 2 assert simplified[1][1] == 1 def test_errors(): raises(ValueError, lambda: Matrix([[1, 2], [1]])) raises(IndexError, lambda: Matrix([[1, 2]])[1.2, 5]) raises(IndexError, lambda: Matrix([[1, 2]])[1, 5.2]) raises(ValueError, lambda: randMatrix(3, c=4, symmetric=True)) raises(ValueError, lambda: Matrix([1, 2]).reshape(4, 6)) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_matrix([1, 0], Matrix([1, 2]))) raises(TypeError, lambda: Matrix([[1, 2], [3, 4]]).copyin_list([0, 1], set())) raises(NonSquareMatrixError, lambda: Matrix([[1, 2, 3], [2, 3, 0]]).inv()) raises(ShapeError, lambda: Matrix(1, 2, [1, 2]).row_join(Matrix([[1, 2], [3, 4]]))) raises( ShapeError, lambda: Matrix([1, 2]).col_join(Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).row_insert(1, Matrix([[1, 2], [3, 4]]))) raises(ShapeError, lambda: Matrix([1]).col_insert(1, Matrix([[1, 2], [3, 4]]))) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).trace()) raises(TypeError, lambda: Matrix([1]).applyfunc(1)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor(4, 5)) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).minor_submatrix(4, 5)) raises(TypeError, lambda: Matrix([1, 2, 3]).cross(1)) raises(TypeError, lambda: Matrix([1, 2, 3]).dot(1)) raises(ShapeError, lambda: Matrix([1, 2, 3]).dot(Matrix([1, 2]))) raises(ShapeError, lambda: Matrix([1, 2]).dot([])) raises(TypeError, lambda: Matrix([1, 2]).dot('a')) with warns_deprecated_sympy(): Matrix([[1, 2], [3, 4]]).dot(Matrix([[4, 3], [1, 2]])) raises(ShapeError, lambda: Matrix([1, 2]).dot([1, 2, 3])) raises(NonSquareMatrixError, lambda: Matrix([1, 2, 3]).exp()) raises(ShapeError, lambda: Matrix([[1, 2], [3, 4]]).normalized()) raises(ValueError, lambda: Matrix([1, 2]).inv(method='not a method')) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_GE()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_GE()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_ADJ()) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inverse_ADJ()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).inverse_LU()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).is_nilpotent()) raises(NonSquareMatrixError, lambda: Matrix([1, 2]).det()) raises(ValueError, lambda: Matrix([[1, 2], [3, 4]]).det(method='Not a real method')) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc="Not function")) raises(ValueError, lambda: Matrix([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]).det(iszerofunc=False)) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), Matrix([[1, 2], [2, 1]]))) raises(ValueError, lambda: hessian(Matrix([[1, 2], [3, 4]]), [])) raises(ValueError, lambda: hessian(Symbol('x')**2, 'a')) raises(IndexError, lambda: eye(3)[5, 2]) raises(IndexError, lambda: eye(3)[2, 5]) M = Matrix(((1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16))) raises(ValueError, lambda: M.det('method=LU_decomposition()')) V = Matrix([[10, 10, 10]]) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.row_insert(4.7, V)) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(ValueError, lambda: M.col_insert(-4.2, V)) def test_len(): assert len(Matrix()) == 0 assert len(Matrix([[1, 2]])) == len(Matrix([[1], [2]])) == 2 assert len(Matrix(0, 2, lambda i, j: 0)) == \ len(Matrix(2, 0, lambda i, j: 0)) == 0 assert len(Matrix([[0, 1, 2], [3, 4, 5]])) == 6 assert Matrix([1]) == Matrix([[1]]) assert not Matrix() assert Matrix() == Matrix([]) def test_integrate(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2))) assert A.integrate(x) == \ Matrix(((x, 4*x, x**2/2), (x*y, 2*x, 4*x), (10*x, 5*x, x**3/3))) assert A.integrate(y) == \ Matrix(((y, 4*y, x*y), (y**2/2, 2*y, 4*y), (10*y, 5*y, y*x**2))) def test_limit(): A = Matrix(((1, 4, sin(x)/x), (y, 2, 4), (10, 5, x**2 + 1))) assert A.limit(x, 0) == Matrix(((1, 4, 1), (y, 2, 4), (10, 5, 1))) def test_diff(): A = MutableDenseMatrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) assert isinstance(A.diff(x), type(A)) assert A.diff(x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A.diff(y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A, x) == MutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A, y) == MutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) A_imm = A.as_immutable() assert isinstance(A_imm.diff(x), type(A_imm)) assert A_imm.diff(x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert A_imm.diff(y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) assert diff(A_imm, x) == ImmutableDenseMatrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) assert diff(A_imm, y) == ImmutableDenseMatrix(((0, 0, 0), (1, 0, 0), (0, 0, 0))) def test_diff_by_matrix(): # Derive matrix by matrix: A = MutableDenseMatrix([[x, y], [z, t]]) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A, A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) A_imm = A.as_immutable() assert A_imm.diff(A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) assert diff(A_imm, A_imm) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Derive a constant matrix: assert A.diff(a) == MutableDenseMatrix([[0, 0], [0, 0]]) B = ImmutableDenseMatrix([a, b]) assert A.diff(B) == Array.zeros(2, 1, 2, 2) assert A.diff(A) == Array([[[[1, 0], [0, 0]], [[0, 1], [0, 0]]], [[[0, 0], [1, 0]], [[0, 0], [0, 1]]]]) # Test diff with tuples: dB = B.diff([[a, b]]) assert dB.shape == (2, 2, 1) assert dB == Array([[[1], [0]], [[0], [1]]]) f = Function("f") fxyz = f(x, y, z) assert fxyz.diff([[x, y, z]]) == Array([fxyz.diff(x), fxyz.diff(y), fxyz.diff(z)]) assert fxyz.diff(([x, y, z], 2)) == Array([ [fxyz.diff(x, 2), fxyz.diff(x, y), fxyz.diff(x, z)], [fxyz.diff(x, y), fxyz.diff(y, 2), fxyz.diff(y, z)], [fxyz.diff(x, z), fxyz.diff(z, y), fxyz.diff(z, 2)], ]) expr = sin(x)*exp(y) assert expr.diff([[x, y]]) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(y, ((x, y),)) == Array([cos(x)*exp(y), sin(x)*exp(y)]) assert expr.diff(x, ((x, y),)) == Array([-sin(x)*exp(y), cos(x)*exp(y)]) assert expr.diff(((y, x),), [[x, y]]) == Array([[cos(x)*exp(y), -sin(x)*exp(y)], [sin(x)*exp(y), cos(x)*exp(y)]]) # Test different notations: assert fxyz.diff(x).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[0, 1, 0] assert fxyz.diff(z).diff(y).diff(x) == fxyz.diff(((x, y, z),), 3)[2, 1, 0] assert fxyz.diff([[x, y, z]], ((z, y, x),)) == Array([[fxyz.diff(i).diff(j) for i in (x, y, z)] for j in (z, y, x)]) # Test scalar derived by matrix remains matrix: res = x.diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[1, 0]]) res = (x**3).diff(Matrix([[x, y]])) assert isinstance(res, ImmutableDenseMatrix) assert res == Matrix([[3*x**2, 0]]) def test_getattr(): A = Matrix(((1, 4, x), (y, 2, 4), (10, 5, x**2 + 1))) raises(AttributeError, lambda: A.nonexistantattribute) assert getattr(A, 'diff')(x) == Matrix(((0, 0, 1), (0, 0, 0), (0, 0, 2*x))) def test_hessenberg(): A = Matrix([[3, 4, 1], [2, 4, 5], [0, 1, 2]]) assert A.is_upper_hessenberg A = A.T assert A.is_lower_hessenberg A[0, -1] = 1 assert A.is_lower_hessenberg is False A = Matrix([[3, 4, 1], [2, 4, 5], [3, 1, 2]]) assert not A.is_upper_hessenberg A = zeros(5, 2) assert A.is_upper_hessenberg def test_cholesky(): raises(NonSquareMatrixError, lambda: Matrix((1, 2)).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: Matrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: Matrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert Matrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = Matrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = Matrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky().expand() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) raises(NonSquareMatrixError, lambda: SparseMatrix((1, 2)).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky()) raises(ValueError, lambda: SparseMatrix(((5 + I, 0), (0, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 5), (5, 1))).cholesky()) raises(ValueError, lambda: SparseMatrix(((1, 2), (3, 4))).cholesky(hermitian=False)) assert SparseMatrix(((5 + I, 0), (0, 1))).cholesky(hermitian=False) == Matrix([ [sqrt(5 + I), 0], [0, 1]]) A = SparseMatrix(((1, 5), (5, 1))) L = A.cholesky(hermitian=False) assert L == Matrix([[1, 0], [5, 2*sqrt(6)*I]]) assert L*L.T == A A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11))) L = A.cholesky() assert L * L.T == A assert L.is_lower assert L == Matrix([[5, 0, 0], [3, 3, 0], [-1, 1, 3]]) A = SparseMatrix(((4, -2*I, 2 + 2*I), (2*I, 2, -1 + I), (2 - 2*I, -1 - I, 11))) assert A.cholesky() == Matrix(((2, 0, 0), (I, 1, 0), (1 - I, 0, 3))) def test_matrix_norm(): # Vector Tests # Test columns and symbols x = Symbol('x', real=True) v = Matrix([cos(x), sin(x)]) assert trigsimp(v.norm(2)) == 1 assert v.norm(10) == Pow(cos(x)**10 + sin(x)**10, Rational(1, 10)) # Test Rows A = Matrix([[5, Rational(3, 2)]]) assert A.norm() == Pow(25 + Rational(9, 4), S.Half) assert A.norm(oo) == max(A) assert A.norm(-oo) == min(A) # Matrix Tests # Intuitive test A = Matrix([[1, 1], [1, 1]]) assert A.norm(2) == 2 assert A.norm(-2) == 0 assert A.norm('frobenius') == 2 assert eye(10).norm(2) == eye(10).norm(-2) == 1 assert A.norm(oo) == 2 # Test with Symbols and more complex entries A = Matrix([[3, y, y], [x, S.Half, -pi]]) assert (A.norm('fro') == sqrt(Rational(37, 4) + 2*abs(y)**2 + pi**2 + x**2)) # Check non-square A = Matrix([[1, 2, -3], [4, 5, Rational(13, 2)]]) assert A.norm(2) == sqrt(Rational(389, 8) + sqrt(78665)/8) assert A.norm(-2) is S.Zero assert A.norm('frobenius') == sqrt(389)/2 # Test properties of matrix norms # https://en.wikipedia.org/wiki/Matrix_norm#Definition # Two matrices A = Matrix([[1, 2], [3, 4]]) B = Matrix([[5, 5], [-2, 2]]) C = Matrix([[0, -I], [I, 0]]) D = Matrix([[1, 0], [0, -1]]) L = [A, B, C, D] alpha = Symbol('alpha', real=True) for order in ['fro', 2, -2]: # Zero Check assert zeros(3).norm(order) is S.Zero # Check Triangle Inequality for all Pairs of Matrices for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert (dif >= 0) # Scalar multiplication linearity for M in [A, B, C, D]: dif = simplify((alpha*M).norm(order) - abs(alpha) * M.norm(order)) assert dif == 0 # Test Properties of Vector Norms # https://en.wikipedia.org/wiki/Vector_norm # Two column vectors a = Matrix([1, 1 - 1*I, -3]) b = Matrix([S.Half, 1*I, 1]) c = Matrix([-1, -1, -1]) d = Matrix([3, 2, I]) e = Matrix([Integer(1e2), Rational(1, 1e2), 1]) L = [a, b, c, d, e] alpha = Symbol('alpha', real=True) for order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity, pi]: # Zero Check if order > 0: assert Matrix([0, 0, 0]).norm(order) is S.Zero # Triangle inequality on all pairs if order >= 1: # Triangle InEq holds only for these norms for X in L: for Y in L: dif = (X.norm(order) + Y.norm(order) - (X + Y).norm(order)) assert simplify(dif >= 0) is S.true # Linear to scalar multiplication if order in [1, 2, -1, -2, S.Infinity, S.NegativeInfinity]: for X in L: dif = simplify((alpha*X).norm(order) - (abs(alpha) * X.norm(order))) assert dif == 0 # ord=1 M = Matrix(3, 3, [1, 3, 0, -2, -1, 0, 3, 9, 6]) assert M.norm(1) == 13 def test_condition_number(): x = Symbol('x', real=True) A = eye(3) A[0, 0] = 10 A[2, 2] = Rational(1, 10) assert A.condition_number() == 100 A[1, 1] = x assert A.condition_number() == Max(10, Abs(x)) / Min(Rational(1, 10), Abs(x)) M = Matrix([[cos(x), sin(x)], [-sin(x), cos(x)]]) Mc = M.condition_number() assert all(Float(1.).epsilon_eq(Mc.subs(x, val).evalf()) for val in [Rational(1, 5), S.Half, Rational(1, 10), pi/2, pi, pi*Rational(7, 4) ]) #issue 10782 assert Matrix([]).condition_number() == 0 def test_equality(): A = Matrix(((1, 2, 3), (4, 5, 6), (7, 8, 9))) B = Matrix(((9, 8, 7), (6, 5, 4), (3, 2, 1))) assert A == A[:, :] assert not A != A[:, :] assert not A == B assert A != B assert A != 10 assert not A == 10 # A SparseMatrix can be equal to a Matrix C = SparseMatrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) D = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 1))) assert C == D assert not C != D def test_col_join(): assert eye(3).col_join(Matrix([[7, 7, 7]])) == \ Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [7, 7, 7]]) def test_row_insert(): r4 = Matrix([[4, 4, 4]]) for i in range(-4, 5): l = [1, 0, 0] l.insert(i, 4) assert flatten(eye(3).row_insert(i, r4).col(0).tolist()) == l def test_col_insert(): c4 = Matrix([4, 4, 4]) for i in range(-4, 5): l = [0, 0, 0] l.insert(i, 4) assert flatten(zeros(3).col_insert(i, c4).row(0).tolist()) == l def test_normalized(): assert Matrix([3, 4]).normalized() == \ Matrix([Rational(3, 5), Rational(4, 5)]) # Zero vector trivial cases assert Matrix([0, 0, 0]).normalized() == Matrix([0, 0, 0]) # Machine precision error truncation trivial cases m = Matrix([0,0,1.e-100]) assert m.normalized( iszerofunc=lambda x: x.evalf(n=10, chop=True).is_zero ) == Matrix([0, 0, 0]) def test_print_nonzero(): assert capture(lambda: eye(3).print_nonzero()) == \ '[X ]\n[ X ]\n[ X]\n' assert capture(lambda: eye(3).print_nonzero('.')) == \ '[. ]\n[ . ]\n[ .]\n' def test_zeros_eye(): assert Matrix.eye(3) == eye(3) assert Matrix.zeros(3) == zeros(3) assert ones(3, 4) == Matrix(3, 4, [1]*12) i = Matrix([[1, 0], [0, 1]]) z = Matrix([[0, 0], [0, 0]]) for cls in classes: m = cls.eye(2) assert i == m # but m == i will fail if m is immutable assert i == eye(2, cls=cls) assert type(m) == cls m = cls.zeros(2) assert z == m assert z == zeros(2, cls=cls) assert type(m) == cls def test_is_zero(): assert Matrix().is_zero_matrix assert Matrix([[0, 0], [0, 0]]).is_zero_matrix assert zeros(3, 4).is_zero_matrix assert not eye(3).is_zero_matrix assert Matrix([[x, 0], [0, 0]]).is_zero_matrix == None assert SparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert ImmutableSparseMatrix([[x, 0], [0, 0]]).is_zero_matrix == None assert Matrix([[x, 1], [0, 0]]).is_zero_matrix == False a = Symbol('a', nonzero=True) assert Matrix([[a, 0], [0, 0]]).is_zero_matrix == False def test_rotation_matrices(): # This tests the rotation matrices by rotating about an axis and back. theta = pi/3 r3_plus = rot_axis3(theta) r3_minus = rot_axis3(-theta) r2_plus = rot_axis2(theta) r2_minus = rot_axis2(-theta) r1_plus = rot_axis1(theta) r1_minus = rot_axis1(-theta) assert r3_minus*r3_plus*eye(3) == eye(3) assert r2_minus*r2_plus*eye(3) == eye(3) assert r1_minus*r1_plus*eye(3) == eye(3) # Check the correctness of the trace of the rotation matrix assert r1_plus.trace() == 1 + 2*cos(theta) assert r2_plus.trace() == 1 + 2*cos(theta) assert r3_plus.trace() == 1 + 2*cos(theta) # Check that a rotation with zero angle doesn't change anything. assert rot_axis1(0) == eye(3) assert rot_axis2(0) == eye(3) assert rot_axis3(0) == eye(3) def test_DeferredVector(): assert str(DeferredVector("vector")[4]) == "vector[4]" assert sympify(DeferredVector("d")) == DeferredVector("d") raises(IndexError, lambda: DeferredVector("d")[-1]) assert str(DeferredVector("d")) == "d" assert repr(DeferredVector("test")) == "DeferredVector('test')" def test_DeferredVector_not_iterable(): assert not iterable(DeferredVector('X')) def test_DeferredVector_Matrix(): raises(TypeError, lambda: Matrix(DeferredVector("V"))) def test_GramSchmidt(): R = Rational m1 = Matrix(1, 2, [1, 2]) m2 = Matrix(1, 2, [2, 3]) assert GramSchmidt([m1, m2]) == \ [Matrix(1, 2, [1, 2]), Matrix(1, 2, [R(2)/5, R(-1)/5])] assert GramSchmidt([m1.T, m2.T]) == \ [Matrix(2, 1, [1, 2]), Matrix(2, 1, [R(2)/5, R(-1)/5])] # from wikipedia assert GramSchmidt([Matrix([3, 1]), Matrix([2, 2])], True) == [ Matrix([3*sqrt(10)/10, sqrt(10)/10]), Matrix([-sqrt(10)/10, 3*sqrt(10)/10])] # https://github.com/sympy/sympy/issues/9488 L = FiniteSet(Matrix([1])) assert GramSchmidt(L) == [Matrix([[1]])] def test_casoratian(): assert casoratian([1, 2, 3, 4], 1) == 0 assert casoratian([1, 2, 3, 4], 1, zero=False) == 0 def test_zero_dimension_multiply(): assert (Matrix()*zeros(0, 3)).shape == (0, 3) assert zeros(3, 0)*zeros(0, 3) == zeros(3, 3) assert zeros(0, 3)*zeros(3, 0) == Matrix() def test_slice_issue_2884(): m = Matrix(2, 2, range(4)) assert m[1, :] == Matrix([[2, 3]]) assert m[-1, :] == Matrix([[2, 3]]) assert m[:, 1] == Matrix([[1, 3]]).T assert m[:, -1] == Matrix([[1, 3]]).T raises(IndexError, lambda: m[2, :]) raises(IndexError, lambda: m[2, 2]) def test_slice_issue_3401(): assert zeros(0, 3)[:, -1].shape == (0, 1) assert zeros(3, 0)[0, :] == Matrix(1, 0, []) def test_copyin(): s = zeros(3, 3) s[3] = 1 assert s[:, 0] == Matrix([0, 1, 0]) assert s[3] == 1 assert s[3: 4] == [1] s[1, 1] = 42 assert s[1, 1] == 42 assert s[1, 1:] == Matrix([[42, 0]]) s[1, 1:] = Matrix([[5, 6]]) assert s[1, :] == Matrix([[1, 5, 6]]) s[1, 1:] = [[42, 43]] assert s[1, :] == Matrix([[1, 42, 43]]) s[0, 0] = 17 assert s[:, :1] == Matrix([17, 1, 0]) s[0, 0] = [1, 1, 1] assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = Matrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) s[0, 0] = SparseMatrix([1, 1, 1]) assert s[:, 0] == Matrix([1, 1, 1]) def test_invertible_check(): # sometimes a singular matrix will have a pivot vector shorter than # the number of rows in a matrix... assert Matrix([[1, 2], [1, 2]]).rref() == (Matrix([[1, 2], [0, 0]]), (0,)) raises(ValueError, lambda: Matrix([[1, 2], [1, 2]]).inv()) m = Matrix([ [-1, -1, 0], [ x, 1, 1], [ 1, x, -1], ]) assert len(m.rref()[1]) != m.rows # in addition, unless simplify=True in the call to rref, the identity # matrix will be returned even though m is not invertible assert m.rref()[0] != eye(3) assert m.rref(simplify=signsimp)[0] != eye(3) raises(ValueError, lambda: m.inv(method="ADJ")) raises(ValueError, lambda: m.inv(method="GE")) raises(ValueError, lambda: m.inv(method="LU")) def test_issue_3959(): x, y = symbols('x, y') e = x*y assert e.subs(x, Matrix([3, 5, 3])) == Matrix([3, 5, 3])*y def test_issue_5964(): assert str(Matrix([[1, 2], [3, 4]])) == 'Matrix([[1, 2], [3, 4]])' def test_issue_7604(): x, y = symbols("x y") assert sstr(Matrix([[x, 2*y], [y**2, x + 3]])) == \ 'Matrix([\n[ x, 2*y],\n[y**2, x + 3]])' def test_is_Identity(): assert eye(3).is_Identity assert eye(3).as_immutable().is_Identity assert not zeros(3).is_Identity assert not ones(3).is_Identity # issue 6242 assert not Matrix([[1, 0, 0]]).is_Identity # issue 8854 assert SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1}).is_Identity assert not SparseMatrix(2,3, range(6)).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1}).is_Identity assert not SparseMatrix(3,3, {(0,0):1, (1,1):1, (2,2):1, (0,1):2, (0,2):3}).is_Identity def test_dot(): assert ones(1, 3).dot(ones(3, 1)) == 3 assert ones(1, 3).dot([1, 1, 1]) == 3 assert Matrix([1, 2, 3]).dot(Matrix([1, 2, 3])) == 14 assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I])) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=False) == -5 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True) == 13 + I assert Matrix([1, 2, 3*I]).dot(Matrix([I, 2, 3*I]), hermitian=True, conjugate_convention="physics") == 13 - I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="right") == 4 + 8*I assert Matrix([1, 2, 3*I]).dot(Matrix([4, 5*I, 6]), hermitian=True, conjugate_convention="left") == 4 - 8*I assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), hermitian=False, conjugate_convention="left") == -5 assert Matrix([I, 2*I]).dot(Matrix([I, 2*I]), conjugate_convention="left") == 5 raises(ValueError, lambda: Matrix([1, 2]).dot(Matrix([3, 4]), hermitian=True, conjugate_convention="test")) def test_dual(): B_x, B_y, B_z, E_x, E_y, E_z = symbols( 'B_x B_y B_z E_x E_y E_z', real=True) F = Matrix(( ( 0, E_x, E_y, E_z), (-E_x, 0, B_z, -B_y), (-E_y, -B_z, 0, B_x), (-E_z, B_y, -B_x, 0) )) Fd = Matrix(( ( 0, -B_x, -B_y, -B_z), (B_x, 0, E_z, -E_y), (B_y, -E_z, 0, E_x), (B_z, E_y, -E_x, 0) )) assert F.dual().equals(Fd) assert eye(3).dual().equals(zeros(3)) assert F.dual().dual().equals(-F) def test_anti_symmetric(): assert Matrix([1, 2]).is_anti_symmetric() is False m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, -(x + 1)**2, 0, x*y, -y, -x*y, 0]) assert m.is_anti_symmetric() is True assert m.is_anti_symmetric(simplify=False) is False assert m.is_anti_symmetric(simplify=lambda x: x) is False # tweak to fail m[2, 1] = -m[2, 1] assert m.is_anti_symmetric() is False # untweak m[2, 1] = -m[2, 1] m = m.expand() assert m.is_anti_symmetric(simplify=False) is True m[0, 0] = 1 assert m.is_anti_symmetric() is False def test_normalize_sort_diogonalization(): A = Matrix(((1, 2), (2, 1))) P, Q = A.diagonalize(normalize=True) assert P*P.T == P.T*P == eye(P.cols) P, Q = A.diagonalize(normalize=True, sort=True) assert P*P.T == P.T*P == eye(P.cols) assert P*Q*P.inv() == A def test_issue_5321(): raises(ValueError, lambda: Matrix([[1, 2, 3], Matrix(0, 1, [])])) def test_issue_5320(): assert Matrix.hstack(eye(2), 2*eye(2)) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) assert Matrix.vstack(eye(2), 2*eye(2)) == Matrix([ [1, 0], [0, 1], [2, 0], [0, 2] ]) cls = SparseMatrix assert cls.hstack(cls(eye(2)), cls(2*eye(2))) == Matrix([ [1, 0, 2, 0], [0, 1, 0, 2] ]) def test_issue_11944(): A = Matrix([[1]]) AIm = sympify(A) assert Matrix.hstack(AIm, A) == Matrix([[1, 1]]) assert Matrix.vstack(AIm, A) == Matrix([[1], [1]]) def test_cross(): a = [1, 2, 3] b = [3, 4, 5] col = Matrix([-2, 4, -2]) row = col.T def test(M, ans): assert ans == M assert type(M) == cls for cls in classes: A = cls(a) B = cls(b) test(A.cross(B), col) test(A.cross(B.T), col) test(A.T.cross(B.T), row) test(A.T.cross(B), row) raises(ShapeError, lambda: Matrix(1, 2, [1, 1]).cross(Matrix(1, 2, [1, 1]))) def test_hash(): for cls in classes[-2:]: s = {cls.eye(1), cls.eye(1)} assert len(s) == 1 and s.pop() == cls.eye(1) # issue 3979 for cls in classes[:2]: assert not isinstance(cls.eye(1), Hashable) @XFAIL def test_issue_3979(): # when this passes, delete this and change the [1:2] # to [:2] in the test_hash above for issue 3979 cls = classes[0] raises(AttributeError, lambda: hash(cls.eye(1))) def test_adjoint(): dat = [[0, I], [1, 0]] ans = Matrix([[0, 1], [-I, 0]]) for cls in classes: assert ans == cls(dat).adjoint() def test_simplify_immutable(): assert simplify(ImmutableMatrix([[sin(x)**2 + cos(x)**2]])) == \ ImmutableMatrix([[1]]) def test_replace(): F, G = symbols('F, G', cls=Function) K = Matrix(2, 2, lambda i, j: G(i+j)) M = Matrix(2, 2, lambda i, j: F(i+j)) N = M.replace(F, G) assert N == K def test_replace_map(): F, G = symbols('F, G', cls=Function) with warns_deprecated_sympy(): K = Matrix(2, 2, [(G(0), {F(0): G(0)}), (G(1), {F(1): G(1)}), (G(1), {F(1): G(1)}), (G(2), {F(2): G(2)})]) M = Matrix(2, 2, lambda i, j: F(i+j)) with warns_deprecated_sympy(): N = M.replace(F, G, True) assert N == K def test_atoms(): m = Matrix([[1, 2], [x, 1 - 1/x]]) assert m.atoms() == {S.One,S(2),S.NegativeOne, x} assert m.atoms(Symbol) == {x} def test_pinv(): # Pseudoinverse of an invertible matrix is the inverse. A1 = Matrix([[a, b], [c, d]]) assert simplify(A1.pinv(method="RD")) == simplify(A1.inv()) # Test the four properties of the pseudoinverse for various matrices. As = [Matrix([[13, 104], [2212, 3], [-3, 5]]), Matrix([[1, 7, 9], [11, 17, 19]]), Matrix([a, b])] for A in As: A_pinv = A.pinv(method="RD") AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Pinv with diagonalization makes expression too complicated. for A in As: A_pinv = simplify(A.pinv(method="ED")) AAp = A * A_pinv ApA = A_pinv * A assert simplify(AAp * A) == A assert simplify(ApA * A_pinv) == A_pinv assert AAp.H == AAp assert ApA.H == ApA # XXX Computing pinv using diagonalization makes an expression that # is too complicated to simplify. # A1 = Matrix([[a, b], [c, d]]) # assert simplify(A1.pinv(method="ED")) == simplify(A1.inv()) # so this is tested numerically at a fixed random point from sympy.core.numbers import comp q = A1.pinv(method="ED") w = A1.inv() reps = {a: -73633, b: 11362, c: 55486, d: 62570} assert all( comp(i.n(), j.n()) for i, j in zip(q.subs(reps), w.subs(reps)) ) @slow @XFAIL def test_pinv_rank_deficient_when_diagonalization_fails(): # Test the four properties of the pseudoinverse for matrices when # diagonalization of A.H*A fails. As = [ Matrix([ [61, 89, 55, 20, 71, 0], [62, 96, 85, 85, 16, 0], [69, 56, 17, 4, 54, 0], [10, 54, 91, 41, 71, 0], [ 7, 30, 10, 48, 90, 0], [0, 0, 0, 0, 0, 0]]) ] for A in As: A_pinv = A.pinv(method="ED") AAp = A * A_pinv ApA = A_pinv * A assert AAp.H == AAp assert ApA.H == ApA def test_issue_7201(): assert ones(0, 1) + ones(0, 1) == Matrix(0, 1, []) assert ones(1, 0) + ones(1, 0) == Matrix(1, 0, []) def test_free_symbols(): for M in ImmutableMatrix, ImmutableSparseMatrix, Matrix, SparseMatrix: assert M([[x], [0]]).free_symbols == {x} def test_from_ndarray(): """See issue 7465.""" try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') assert Matrix(array([1, 2, 3])) == Matrix([1, 2, 3]) assert Matrix(array([[1, 2, 3]])) == Matrix([[1, 2, 3]]) assert Matrix(array([[1, 2, 3], [4, 5, 6]])) == \ Matrix([[1, 2, 3], [4, 5, 6]]) assert Matrix(array([x, y, z])) == Matrix([x, y, z]) raises(NotImplementedError, lambda: Matrix(array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))) assert Matrix([array([1, 2]), array([3, 4])]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([1, 2]), [3, 4]]) == Matrix([[1, 2], [3, 4]]) assert Matrix([array([]), array([])]) == Matrix([]) def test_17522_numpy(): from sympy.matrices.common import _matrixify try: from numpy import array, matrix except ImportError: skip('NumPy must be available to test indexing matrixified NumPy ndarrays and matrices') m = _matrixify(array([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_17522_mpmath(): from sympy.matrices.common import _matrixify try: from mpmath import matrix except ImportError: skip('mpmath must be available to test indexing matrixified mpmath matrices') m = _matrixify(matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_17522_scipy(): from sympy.matrices.common import _matrixify try: from scipy.sparse import csr_matrix except ImportError: skip('SciPy must be available to test indexing matrixified SciPy sparse matrices') m = _matrixify(csr_matrix([[1, 2], [3, 4]])) assert m[3] == 4 assert list(m) == [1, 2, 3, 4] def test_hermitian(): a = Matrix([[1, I], [-I, 1]]) assert a.is_hermitian a[0, 0] = 2*I assert a.is_hermitian is False a[0, 0] = x assert a.is_hermitian is None a[0, 1] = a[1, 0]*I assert a.is_hermitian is False def test_doit(): a = Matrix([[Add(x,x, evaluate=False)]]) assert a[0] != 2*x assert a.doit() == Matrix([[2*x]]) def test_issue_9457_9467_9876(): # for row_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.row_del(1) assert M == Matrix([[1, 2, 3], [3, 4, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.row_del(-2) assert N == Matrix([[1, 2, 3], [3, 4, 5]]) O = Matrix([[1, 2, 3], [5, 6, 7], [9, 10, 11]]) O.row_del(-1) assert O == Matrix([[1, 2, 3], [5, 6, 7]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.row_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.row_del(-10)) # for col_del(index) M = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) M.col_del(1) assert M == Matrix([[1, 3], [2, 4], [3, 5]]) N = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) N.col_del(-2) assert N == Matrix([[1, 3], [2, 4], [3, 5]]) P = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: P.col_del(10)) Q = Matrix([[1, 2, 3], [2, 3, 4], [3, 4, 5]]) raises(IndexError, lambda: Q.col_del(-10)) def test_issue_9422(): x, y = symbols('x y', commutative=False) a, b = symbols('a b') M = eye(2) M1 = Matrix(2, 2, [x, y, y, z]) assert y*x*M != x*y*M assert b*a*M == a*b*M assert x*M1 != M1*x assert a*M1 == M1*a assert y*x*M == Matrix([[y*x, 0], [0, y*x]]) def test_issue_10770(): M = Matrix([]) a = ['col_insert', 'row_join'], Matrix([9, 6, 3]) b = ['row_insert', 'col_join'], a[1].T c = ['row_insert', 'col_insert'], Matrix([[1, 2], [3, 4]]) for ops, m in (a, b, c): for op in ops: f = getattr(M, op) new = f(m) if 'join' in op else f(42, m) assert new == m and id(new) != id(m) def test_issue_10658(): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert A.extract([0, 1, 2], [True, True, False]) == \ Matrix([[1, 2], [4, 5], [7, 8]]) assert A.extract([0, 1, 2], [True, False, False]) == Matrix([[1], [4], [7]]) assert A.extract([True, False, False], [0, 1, 2]) == Matrix([[1, 2, 3]]) assert A.extract([True, False, True], [0, 1, 2]) == \ Matrix([[1, 2, 3], [7, 8, 9]]) assert A.extract([0, 1, 2], [False, False, False]) == Matrix(3, 0, []) assert A.extract([False, False, False], [0, 1, 2]) == Matrix(0, 3, []) assert A.extract([True, False, True], [False, True, False]) == \ Matrix([[2], [8]]) def test_opportunistic_simplification(): # this test relates to issue #10718, #9480, #11434 # issue #9480 m = Matrix([[-5 + 5*sqrt(2), -5], [-5*sqrt(2)/2 + 5, -5*sqrt(2)/2]]) assert m.rank() == 1 # issue #10781 m = Matrix([[3+3*sqrt(3)*I, -9],[4,-3+3*sqrt(3)*I]]) assert simplify(m.rref()[0] - Matrix([[1, -9/(3 + 3*sqrt(3)*I)], [0, 0]])) == zeros(2, 2) # issue #11434 ax,ay,bx,by,cx,cy,dx,dy,ex,ey,t0,t1 = symbols('a_x a_y b_x b_y c_x c_y d_x d_y e_x e_y t_0 t_1') m = Matrix([[ax,ay,ax*t0,ay*t0,0],[bx,by,bx*t0,by*t0,0],[cx,cy,cx*t0,cy*t0,1],[dx,dy,dx*t0,dy*t0,1],[ex,ey,2*ex*t1-ex*t0,2*ey*t1-ey*t0,0]]) assert m.rank() == 4 def test_partial_pivoting(): # example from https://en.wikipedia.org/wiki/Pivot_element # partial pivoting with back substitution gives a perfect result # naive pivoting give an error ~1e-13, so anything better than # 1e-15 is good mm=Matrix([[0.003, 59.14, 59.17], [5.291, -6.13, 46.78]]) assert (mm.rref()[0] - Matrix([[1.0, 0, 10.0], [ 0, 1.0, 1.0]])).norm() < 1e-15 # issue #11549 m_mixed = Matrix([[6e-17, 1.0, 4], [ -1.0, 0, 8], [ 0, 0, 1]]) m_float = Matrix([[6e-17, 1.0, 4.], [ -1.0, 0., 8.], [ 0., 0., 1.]]) m_inv = Matrix([[ 0, -1.0, 8.0], [1.0, 6.0e-17, -4.0], [ 0, 0, 1]]) # this example is numerically unstable and involves a matrix with a norm >= 8, # this comparing the difference of the results with 1e-15 is numerically sound. assert (m_mixed.inv() - m_inv).norm() < 1e-15 assert (m_float.inv() - m_inv).norm() < 1e-15 def test_iszero_substitution(): """ When doing numerical computations, all elements that pass the iszerofunc test should be set to numerically zero if they aren't already. """ # Matrix from issue #9060 m = Matrix([[0.9, -0.1, -0.2, 0],[-0.8, 0.9, -0.4, 0],[-0.1, -0.8, 0.6, 0]]) m_rref = m.rref(iszerofunc=lambda x: abs(x)<6e-15)[0] m_correct = Matrix([[1.0, 0, -0.301369863013699, 0],[ 0, 1.0, -0.712328767123288, 0],[ 0, 0, 0, 0]]) m_diff = m_rref - m_correct assert m_diff.norm() < 1e-15 # if a zero-substitution wasn't made, this entry will be -1.11022302462516e-16 assert m_rref[2,2] == 0 def test_issue_11238(): from sympy.geometry.point import Point xx = 8*tan(pi*Rational(13, 45))/(tan(pi*Rational(13, 45)) + sqrt(3)) yy = (-8*sqrt(3)*tan(pi*Rational(13, 45))**2 + 24*tan(pi*Rational(13, 45)))/(-3 + tan(pi*Rational(13, 45))**2) p1 = Point(0, 0) p2 = Point(1, -sqrt(3)) p0 = Point(xx,yy) m1 = Matrix([p1 - simplify(p0), p2 - simplify(p0)]) m2 = Matrix([p1 - p0, p2 - p0]) m3 = Matrix([simplify(p1 - p0), simplify(p2 - p0)]) # This system has expressions which are zero and # cannot be easily proved to be such, so without # numerical testing, these assertions will fail. Z = lambda x: abs(x.n()) < 1e-20 assert m1.rank(simplify=True, iszerofunc=Z) == 1 assert m2.rank(simplify=True, iszerofunc=Z) == 1 assert m3.rank(simplify=True, iszerofunc=Z) == 1 def test_as_real_imag(): m1 = Matrix(2,2,[1,2,3,4]) m2 = m1*S.ImaginaryUnit m3 = m1 + m2 for kls in classes: a,b = kls(m3).as_real_imag() assert list(a) == list(m1) assert list(b) == list(m1) def test_deprecated(): # Maintain tests for deprecated functions. We must capture # the deprecation warnings. When the deprecated functionality is # removed, the corresponding tests should be removed. m = Matrix(3, 3, [0, 1, 0, -4, 4, 0, -2, 1, 2]) P, Jcells = m.jordan_cells() assert Jcells[1] == Matrix(1, 1, [2]) assert Jcells[0] == Matrix(2, 2, [2, 1, 0, 2]) with warns_deprecated_sympy(): assert Matrix([[1,2],[3,4]]).dot(Matrix([[1,3],[4,5]])) == [10, 19, 14, 28] def test_issue_14489(): from sympy.core.mod import Mod A = Matrix([-1, 1, 2]) B = Matrix([10, 20, -15]) assert Mod(A, 3) == Matrix([2, 1, 2]) assert Mod(B, 4) == Matrix([2, 0, 1]) def test_issue_14943(): # Test that __array__ accepts the optional dtype argument try: from numpy import array except ImportError: skip('NumPy must be available to test creating matrices from ndarrays') M = Matrix([[1,2], [3,4]]) assert array(M, dtype=float).dtype.name == 'float64' def test_case_6913(): m = MatrixSymbol('m', 1, 1) a = Symbol("a") a = m[0, 0]>0 assert str(a) == 'm[0, 0] > 0' def test_issue_11948(): A = MatrixSymbol('A', 3, 3) a = Wild('a') assert A.match(a) == {a: A} def test_gramschmidt_conjugate_dot(): vecs = [Matrix([1, I]), Matrix([1, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I]]), Matrix([[1], [-I]])] vecs = [Matrix([1, I, 0]), Matrix([I, 0, -I])] assert Matrix.orthogonalize(*vecs) == \ [Matrix([[1], [I], [0]]), Matrix([[I/2], [S(1)/2], [-I]])] mat = Matrix([[1, I], [1, -I]]) Q, R = mat.QRdecomposition() assert Q * Q.H == Matrix.eye(2) def test_issue_8207(): a = Matrix(MatrixSymbol('a', 3, 1)) b = Matrix(MatrixSymbol('b', 3, 1)) c = a.dot(b) d = diff(c, a[0, 0]) e = diff(d, a[0, 0]) assert d == b[0, 0] assert e == 0 def test_func(): from sympy.simplify.simplify import nthroot A = Matrix([[1, 2],[0, 3]]) assert A.analytic_func(sin(x*t), x) == Matrix([[sin(t), sin(3*t) - sin(t)], [0, sin(3*t)]]) A = Matrix([[2, 1],[1, 2]]) assert (pi * A / 6).analytic_func(cos(x), x) == Matrix([[sqrt(3)/4, -sqrt(3)/4], [-sqrt(3)/4, sqrt(3)/4]]) raises(ValueError, lambda : zeros(5).analytic_func(log(x), x)) raises(ValueError, lambda : (A*x).analytic_func(log(x), x)) A = Matrix([[0, -1, -2, 3], [0, -1, -2, 3], [0, 1, 0, -1], [0, 0, -1, 1]]) assert A.analytic_func(exp(x), x) == A.exp() raises(ValueError, lambda : A.analytic_func(sqrt(x), x)) A = Matrix([[41, 12],[12, 34]]) assert simplify(A.analytic_func(sqrt(x), x)**2) == A A = Matrix([[3, -12, 4], [-1, 0, -2], [-1, 5, -1]]) assert simplify(A.analytic_func(nthroot(x, 3), x)**3) == A A = Matrix([[2, 0, 0, 0], [1, 2, 0, 0], [0, 1, 3, 0], [0, 0, 1, 3]]) assert A.analytic_func(exp(x), x) == A.exp() A = Matrix([[0, 2, 1, 6], [0, 0, 1, 2], [0, 0, 0, 3], [0, 0, 0, 0]]) assert A.analytic_func(exp(x*t), x) == expand(simplify((A*t).exp())) def test_issue_19809(): def f(): assert _dotprodsimp_state.state == None m = Matrix([[1]]) m = m * m return True with dotprodsimp(True): with concurrent.futures.ThreadPoolExecutor() as executor: future = executor.submit(f) assert future.result()
9333dc0d078cdb1a6ec235eea14ac2f6e2a871a73dfef38e52b02986d4b941c1
from sympy.core.sympify import _sympify from sympy.core import S, Basic from sympy.matrices.common import NonSquareMatrixError from sympy.matrices.expressions.matpow import MatPow class Inverse(MatPow): """ The multiplicative inverse of a matrix expression This is a symbolic object that simply stores its argument without evaluating it. To actually compute the inverse, use the ``.inverse()`` method of matrices. Examples ======== >>> from sympy import MatrixSymbol, Inverse >>> A = MatrixSymbol('A', 3, 3) >>> B = MatrixSymbol('B', 3, 3) >>> Inverse(A) A**(-1) >>> A.inverse() == Inverse(A) True >>> (A*B).inverse() B**(-1)*A**(-1) >>> Inverse(A*B) (A*B)**(-1) """ is_Inverse = True exp = S.NegativeOne def __new__(cls, mat, exp=S.NegativeOne): # exp is there to make it consistent with # inverse.func(*inverse.args) == inverse mat = _sympify(mat) exp = _sympify(exp) if not mat.is_Matrix: raise TypeError("mat should be a matrix") if not mat.is_square: raise NonSquareMatrixError("Inverse of non-square matrix %s" % mat) return Basic.__new__(cls, mat, exp) @property def arg(self): return self.args[0] @property def shape(self): return self.arg.shape def _eval_inverse(self): return self.arg def _eval_determinant(self): from sympy.matrices.expressions.determinant import det return 1/det(self.arg) def doit(self, **hints): if 'inv_expand' in hints and hints['inv_expand'] == False: return self arg = self.arg if hints.get('deep', True): arg = arg.doit(**hints) return arg.inverse() def _eval_derivative_matrix_lines(self, x): arg = self.args[0] lines = arg._eval_derivative_matrix_lines(x) for line in lines: line.first_pointer *= -self.T line.second_pointer *= self return lines from sympy.assumptions.ask import ask, Q from sympy.assumptions.refine import handlers_dict def refine_Inverse(expr, assumptions): """ >>> from sympy import MatrixSymbol, Q, assuming, refine >>> X = MatrixSymbol('X', 2, 2) >>> X.I X**(-1) >>> with assuming(Q.orthogonal(X)): ... print(refine(X.I)) X.T """ if ask(Q.orthogonal(expr), assumptions): return expr.arg.T elif ask(Q.unitary(expr), assumptions): return expr.arg.conjugate() elif ask(Q.singular(expr), assumptions): raise ValueError("Inverse of singular matrix %s" % expr.arg) return expr handlers_dict['Inverse'] = refine_Inverse
b18b29b59c55fadb630eb83470fec1a22f595e104efd89388a40d64fe4ce9a77
from sympy.assumptions.ask import (Q, ask) from sympy.core import Basic, Add, Mul, S from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import re, im from sympy.strategies import typed, exhaust, condition, do_one, unpack from sympy.strategies.traverse import bottom_up from sympy.utilities.iterables import is_sequence, sift from sympy.utilities.misc import filldedent from sympy.matrices import Matrix, ShapeError from sympy.matrices.common import NonInvertibleMatrixError from sympy.matrices.expressions.determinant import det, Determinant from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions.matexpr import MatrixExpr, MatrixElement from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions.special import ZeroMatrix, Identity from sympy.matrices.expressions.trace import trace from sympy.matrices.expressions.transpose import Transpose, transpose class BlockMatrix(MatrixExpr): """A BlockMatrix is a Matrix comprised of other matrices. The submatrices are stored in a SymPy Matrix object but accessed as part of a Matrix Expression >>> from sympy import (MatrixSymbol, BlockMatrix, symbols, ... Identity, ZeroMatrix, block_collapse) >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m, m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]]) >>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]]) >>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]]) Some matrices might be comprised of rows of blocks with the matrices in each row having the same height and the rows all having the same total number of columns but not having the same number of columns for each matrix in each row. In this case, the matrix is not a block matrix and should be instantiated by Matrix. >>> from sympy import ones, Matrix >>> dat = [ ... [ones(3,2), ones(3,3)*2], ... [ones(2,3)*3, ones(2,2)*4]] ... >>> BlockMatrix(dat) Traceback (most recent call last): ... ValueError: Although this matrix is comprised of blocks, the blocks do not fill the matrix in a size-symmetric fashion. To create a full matrix from these arguments, pass them directly to Matrix. >>> Matrix(dat) Matrix([ [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [1, 1, 2, 2, 2], [3, 3, 3, 4, 4], [3, 3, 3, 4, 4]]) See Also ======== sympy.matrices.matrices.MatrixBase.irregular """ def __new__(cls, *args, **kwargs): from sympy.matrices.immutable import ImmutableDenseMatrix isMat = lambda i: getattr(i, 'is_Matrix', False) if len(args) != 1 or \ not is_sequence(args[0]) or \ len({isMat(r) for r in args[0]}) != 1: raise ValueError(filldedent(''' expecting a sequence of 1 or more rows containing Matrices.''')) rows = args[0] if args else [] if not isMat(rows): if rows and isMat(rows[0]): rows = [rows] # rows is not list of lists or [] # regularity check # same number of matrices in each row blocky = ok = len({len(r) for r in rows}) == 1 if ok: # same number of rows for each matrix in a row for r in rows: ok = len({i.rows for i in r}) == 1 if not ok: break blocky = ok if ok: # same number of cols for each matrix in each col for c in range(len(rows[0])): ok = len({rows[i][c].cols for i in range(len(rows))}) == 1 if not ok: break if not ok: # same total cols in each row ok = len({ sum([i.cols for i in r]) for r in rows}) == 1 if blocky and ok: raise ValueError(filldedent(''' Although this matrix is comprised of blocks, the blocks do not fill the matrix in a size-symmetric fashion. To create a full matrix from these arguments, pass them directly to Matrix.''')) raise ValueError(filldedent(''' When there are not the same number of rows in each row's matrices or there are not the same number of total columns in each row, the matrix is not a block matrix. If this matrix is known to consist of blocks fully filling a 2-D space then see Matrix.irregular.''')) mat = ImmutableDenseMatrix(rows, evaluate=False) obj = Basic.__new__(cls, mat) return obj @property def shape(self): numrows = numcols = 0 M = self.blocks for i in range(M.shape[0]): numrows += M[i, 0].shape[0] for i in range(M.shape[1]): numcols += M[0, i].shape[1] return (numrows, numcols) @property def blockshape(self): return self.blocks.shape @property def blocks(self): return self.args[0] @property def rowblocksizes(self): return [self.blocks[i, 0].rows for i in range(self.blockshape[0])] @property def colblocksizes(self): return [self.blocks[0, i].cols for i in range(self.blockshape[1])] def structurally_equal(self, other): return (isinstance(other, BlockMatrix) and self.shape == other.shape and self.blockshape == other.blockshape and self.rowblocksizes == other.rowblocksizes and self.colblocksizes == other.colblocksizes) def _blockmul(self, other): if (isinstance(other, BlockMatrix) and self.colblocksizes == other.rowblocksizes): return BlockMatrix(self.blocks*other.blocks) return self * other def _blockadd(self, other): if (isinstance(other, BlockMatrix) and self.structurally_equal(other)): return BlockMatrix(self.blocks + other.blocks) return self + other def _eval_transpose(self): # Flip all the individual matrices matrices = [transpose(matrix) for matrix in self.blocks] # Make a copy M = Matrix(self.blockshape[0], self.blockshape[1], matrices) # Transpose the block structure M = M.transpose() return BlockMatrix(M) def _eval_trace(self): if self.rowblocksizes == self.colblocksizes: return Add(*[trace(self.blocks[i, i]) for i in range(self.blockshape[0])]) raise NotImplementedError( "Can't perform trace of irregular blockshape") def _eval_determinant(self): if self.blockshape == (1, 1): return det(self.blocks[0, 0]) if self.blockshape == (2, 2): [[A, B], [C, D]] = self.blocks.tolist() if ask(Q.invertible(A)): return det(A)*det(D - C*A.I*B) elif ask(Q.invertible(D)): return det(D)*det(A - B*D.I*C) return Determinant(self) def as_real_imag(self): real_matrices = [re(matrix) for matrix in self.blocks] real_matrices = Matrix(self.blockshape[0], self.blockshape[1], real_matrices) im_matrices = [im(matrix) for matrix in self.blocks] im_matrices = Matrix(self.blockshape[0], self.blockshape[1], im_matrices) return (real_matrices, im_matrices) def transpose(self): """Return transpose of matrix. Examples ======== >>> from sympy import MatrixSymbol, BlockMatrix, ZeroMatrix >>> from sympy.abc import m, n >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m, m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m,n), Y]]) >>> B.transpose() Matrix([ [X.T, 0], [Z.T, Y.T]]) >>> _.transpose() Matrix([ [X, Z], [0, Y]]) """ return self._eval_transpose() def schur(self, mat = 'A', generalized = False): """Return the Schur Complement of the 2x2 BlockMatrix Parameters ========== mat : String, optional The matrix with respect to which the Schur Complement is calculated. 'A' is used by default generalized : bool, optional If True, returns the generalized Schur Component which uses Moore-Penrose Inverse Examples ======== >>> from sympy import symbols, MatrixSymbol, BlockMatrix >>> m, n = symbols('m n') >>> A = MatrixSymbol('A', n, n) >>> B = MatrixSymbol('B', n, m) >>> C = MatrixSymbol('C', m, n) >>> D = MatrixSymbol('D', m, m) >>> X = BlockMatrix([[A, B], [C, D]]) The default Schur Complement is evaluated with "A" >>> X.schur() -C*A**(-1)*B + D >>> X.schur('D') A - B*D**(-1)*C Schur complement with non-invertible matrices is not defined. Instead, the generalized Schur complement can be calculated which uses the Moore-Penrose Inverse. To achieve this, `generalized` must be set to `True` >>> X.schur('B', generalized=True) C - D*(B.T*B)**(-1)*B.T*A >>> X.schur('C', generalized=True) -A*(C.T*C)**(-1)*C.T*D + B Returns ======= M : Matrix The Schur Complement Matrix Raises ====== ShapeError If the block matrix is not a 2x2 matrix NonInvertibleMatrixError If given matrix is non-invertible References ========== .. [1] Wikipedia Article on Schur Component : https://en.wikipedia.org/wiki/Schur_complement See Also ======== sympy.matrices.matrices.MatrixBase.pinv """ if self.blockshape == (2, 2): [[A, B], [C, D]] = self.blocks.tolist() d={'A' : A, 'B' : B, 'C' : C, 'D' : D} try: inv = (d[mat].T*d[mat]).inv()*d[mat].T if generalized else d[mat].inv() if mat == 'A': return D - C * inv * B elif mat == 'B': return C - D * inv * A elif mat == 'C': return B - A * inv * D elif mat == 'D': return A - B * inv * C #For matrices where no sub-matrix is square return self except NonInvertibleMatrixError: raise NonInvertibleMatrixError('The given matrix is not invertible. Please set generalized=True \ to compute the generalized Schur Complement which uses Moore-Penrose Inverse') else: raise ShapeError('Schur Complement can only be calculated for 2x2 block matrices') def LDUdecomposition(self): """Returns the Block LDU decomposition of a 2x2 Block Matrix Returns ======= (L, D, U) : Matrices L : Lower Diagonal Matrix D : Diagonal Matrix U : Upper Diagonal Matrix Examples ======== >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse >>> m, n = symbols('m n') >>> A = MatrixSymbol('A', n, n) >>> B = MatrixSymbol('B', n, m) >>> C = MatrixSymbol('C', m, n) >>> D = MatrixSymbol('D', m, m) >>> X = BlockMatrix([[A, B], [C, D]]) >>> L, D, U = X.LDUdecomposition() >>> block_collapse(L*D*U) Matrix([ [A, B], [C, D]]) Raises ====== ShapeError If the block matrix is not a 2x2 matrix NonInvertibleMatrixError If the matrix "A" is non-invertible See Also ======== sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition """ if self.blockshape == (2,2): [[A, B], [C, D]] = self.blocks.tolist() try: AI = A.I except NonInvertibleMatrixError: raise NonInvertibleMatrixError('Block LDU decomposition cannot be calculated when\ "A" is singular') Ip = Identity(B.shape[0]) Iq = Identity(B.shape[1]) Z = ZeroMatrix(*B.shape) L = BlockMatrix([[Ip, Z], [C*AI, Iq]]) D = BlockDiagMatrix(A, self.schur()) U = BlockMatrix([[Ip, AI*B],[Z.T, Iq]]) return L, D, U else: raise ShapeError("Block LDU decomposition is supported only for 2x2 block matrices") def UDLdecomposition(self): """Returns the Block UDL decomposition of a 2x2 Block Matrix Returns ======= (U, D, L) : Matrices U : Upper Diagonal Matrix D : Diagonal Matrix L : Lower Diagonal Matrix Examples ======== >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse >>> m, n = symbols('m n') >>> A = MatrixSymbol('A', n, n) >>> B = MatrixSymbol('B', n, m) >>> C = MatrixSymbol('C', m, n) >>> D = MatrixSymbol('D', m, m) >>> X = BlockMatrix([[A, B], [C, D]]) >>> U, D, L = X.UDLdecomposition() >>> block_collapse(U*D*L) Matrix([ [A, B], [C, D]]) Raises ====== ShapeError If the block matrix is not a 2x2 matrix NonInvertibleMatrixError If the matrix "D" is non-invertible See Also ======== sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition sympy.matrices.expressions.blockmatrix.BlockMatrix.LUdecomposition """ if self.blockshape == (2,2): [[A, B], [C, D]] = self.blocks.tolist() try: DI = D.I except NonInvertibleMatrixError: raise NonInvertibleMatrixError('Block UDL decomposition cannot be calculated when\ "D" is singular') Ip = Identity(A.shape[0]) Iq = Identity(B.shape[1]) Z = ZeroMatrix(*B.shape) U = BlockMatrix([[Ip, B*DI], [Z.T, Iq]]) D = BlockDiagMatrix(self.schur('D'), D) L = BlockMatrix([[Ip, Z],[DI*C, Iq]]) return U, D, L else: raise ShapeError("Block UDL decomposition is supported only for 2x2 block matrices") def LUdecomposition(self): """Returns the Block LU decomposition of a 2x2 Block Matrix Returns ======= (L, U) : Matrices L : Lower Diagonal Matrix U : Upper Diagonal Matrix Examples ======== >>> from sympy import symbols, MatrixSymbol, BlockMatrix, block_collapse >>> m, n = symbols('m n') >>> A = MatrixSymbol('A', n, n) >>> B = MatrixSymbol('B', n, m) >>> C = MatrixSymbol('C', m, n) >>> D = MatrixSymbol('D', m, m) >>> X = BlockMatrix([[A, B], [C, D]]) >>> L, U = X.LUdecomposition() >>> block_collapse(L*U) Matrix([ [A, B], [C, D]]) Raises ====== ShapeError If the block matrix is not a 2x2 matrix NonInvertibleMatrixError If the matrix "A" is non-invertible See Also ======== sympy.matrices.expressions.blockmatrix.BlockMatrix.UDLdecomposition sympy.matrices.expressions.blockmatrix.BlockMatrix.LDUdecomposition """ if self.blockshape == (2,2): [[A, B], [C, D]] = self.blocks.tolist() try: A = A**0.5 AI = A.I except NonInvertibleMatrixError: raise NonInvertibleMatrixError('Block LU decomposition cannot be calculated when\ "A" is singular') Z = ZeroMatrix(*B.shape) Q = self.schur()**0.5 L = BlockMatrix([[A, Z], [C*AI, Q]]) U = BlockMatrix([[A, AI*B],[Z.T, Q]]) return L, U else: raise ShapeError("Block LU decomposition is supported only for 2x2 block matrices") def _entry(self, i, j, **kwargs): # Find row entry orig_i, orig_j = i, j for row_block, numrows in enumerate(self.rowblocksizes): cmp = i < numrows if cmp == True: break elif cmp == False: i -= numrows elif row_block < self.blockshape[0] - 1: # Can't tell which block and it's not the last one, return unevaluated return MatrixElement(self, orig_i, orig_j) for col_block, numcols in enumerate(self.colblocksizes): cmp = j < numcols if cmp == True: break elif cmp == False: j -= numcols elif col_block < self.blockshape[1] - 1: return MatrixElement(self, orig_i, orig_j) return self.blocks[row_block, col_block][i, j] @property def is_Identity(self): if self.blockshape[0] != self.blockshape[1]: return False for i in range(self.blockshape[0]): for j in range(self.blockshape[1]): if i==j and not self.blocks[i, j].is_Identity: return False if i!=j and not self.blocks[i, j].is_ZeroMatrix: return False return True @property def is_structurally_symmetric(self): return self.rowblocksizes == self.colblocksizes def equals(self, other): if self == other: return True if (isinstance(other, BlockMatrix) and self.blocks == other.blocks): return True return super().equals(other) class BlockDiagMatrix(BlockMatrix): """A sparse matrix with block matrices along its diagonals Examples ======== >>> from sympy import MatrixSymbol, BlockDiagMatrix, symbols >>> n, m, l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m, m) >>> BlockDiagMatrix(X, Y) Matrix([ [X, 0], [0, Y]]) Notes ===== If you want to get the individual diagonal blocks, use :meth:`get_diag_blocks`. See Also ======== sympy.matrices.dense.diag """ def __new__(cls, *mats): return Basic.__new__(BlockDiagMatrix, *[_sympify(m) for m in mats]) @property def diag(self): return self.args @property def blocks(self): from sympy.matrices.immutable import ImmutableDenseMatrix mats = self.args data = [[mats[i] if i == j else ZeroMatrix(mats[i].rows, mats[j].cols) for j in range(len(mats))] for i in range(len(mats))] return ImmutableDenseMatrix(data, evaluate=False) @property def shape(self): return (sum(block.rows for block in self.args), sum(block.cols for block in self.args)) @property def blockshape(self): n = len(self.args) return (n, n) @property def rowblocksizes(self): return [block.rows for block in self.args] @property def colblocksizes(self): return [block.cols for block in self.args] def _all_square_blocks(self): """Returns true if all blocks are square""" return all(mat.is_square for mat in self.args) def _eval_determinant(self): if self._all_square_blocks(): return Mul(*[det(mat) for mat in self.args]) # At least one block is non-square. Since the entire matrix must be square we know there must # be at least two blocks in this matrix, in which case the entire matrix is necessarily rank-deficient return S.Zero def _eval_inverse(self, expand='ignored'): if self._all_square_blocks(): return BlockDiagMatrix(*[mat.inverse() for mat in self.args]) # See comment in _eval_determinant() raise NonInvertibleMatrixError('Matrix det == 0; not invertible.') def _eval_transpose(self): return BlockDiagMatrix(*[mat.transpose() for mat in self.args]) def _blockmul(self, other): if (isinstance(other, BlockDiagMatrix) and self.colblocksizes == other.rowblocksizes): return BlockDiagMatrix(*[a*b for a, b in zip(self.args, other.args)]) else: return BlockMatrix._blockmul(self, other) def _blockadd(self, other): if (isinstance(other, BlockDiagMatrix) and self.blockshape == other.blockshape and self.rowblocksizes == other.rowblocksizes and self.colblocksizes == other.colblocksizes): return BlockDiagMatrix(*[a + b for a, b in zip(self.args, other.args)]) else: return BlockMatrix._blockadd(self, other) def get_diag_blocks(self): """Return the list of diagonal blocks of the matrix. Examples ======== >>> from sympy.matrices import BlockDiagMatrix, Matrix >>> A = Matrix([[1, 2], [3, 4]]) >>> B = Matrix([[5, 6], [7, 8]]) >>> M = BlockDiagMatrix(A, B) How to get diagonal blocks from the block diagonal matrix: >>> diag_blocks = M.get_diag_blocks() >>> diag_blocks[0] Matrix([ [1, 2], [3, 4]]) >>> diag_blocks[1] Matrix([ [5, 6], [7, 8]]) """ return self.args def block_collapse(expr): """Evaluates a block matrix expression >>> from sympy import MatrixSymbol, BlockMatrix, symbols, Identity, ZeroMatrix, block_collapse >>> n,m,l = symbols('n m l') >>> X = MatrixSymbol('X', n, n) >>> Y = MatrixSymbol('Y', m, m) >>> Z = MatrixSymbol('Z', n, m) >>> B = BlockMatrix([[X, Z], [ZeroMatrix(m, n), Y]]) >>> print(B) Matrix([ [X, Z], [0, Y]]) >>> C = BlockMatrix([[Identity(n), Z]]) >>> print(C) Matrix([[I, Z]]) >>> print(block_collapse(C*B)) Matrix([[X, Z + Z*Y]]) """ from sympy.strategies.util import expr_fns hasbm = lambda expr: isinstance(expr, MatrixExpr) and expr.has(BlockMatrix) conditioned_rl = condition( hasbm, typed( {MatAdd: do_one(bc_matadd, bc_block_plus_ident), MatMul: do_one(bc_matmul, bc_dist), MatPow: bc_matmul, Transpose: bc_transpose, Inverse: bc_inverse, BlockMatrix: do_one(bc_unpack, deblock)} ) ) rule = exhaust( bottom_up( exhaust(conditioned_rl), fns=expr_fns ) ) result = rule(expr) doit = getattr(result, 'doit', None) if doit is not None: return doit() else: return result def bc_unpack(expr): if expr.blockshape == (1, 1): return expr.blocks[0, 0] return expr def bc_matadd(expr): args = sift(expr.args, lambda M: isinstance(M, BlockMatrix)) blocks = args[True] if not blocks: return expr nonblocks = args[False] block = blocks[0] for b in blocks[1:]: block = block._blockadd(b) if nonblocks: return MatAdd(*nonblocks) + block else: return block def bc_block_plus_ident(expr): idents = [arg for arg in expr.args if arg.is_Identity] if not idents: return expr blocks = [arg for arg in expr.args if isinstance(arg, BlockMatrix)] if (blocks and all(b.structurally_equal(blocks[0]) for b in blocks) and blocks[0].is_structurally_symmetric): block_id = BlockDiagMatrix(*[Identity(k) for k in blocks[0].rowblocksizes]) rest = [arg for arg in expr.args if not arg.is_Identity and not isinstance(arg, BlockMatrix)] return MatAdd(block_id * len(idents), *blocks, *rest).doit() return expr def bc_dist(expr): """ Turn a*[X, Y] into [a*X, a*Y] """ factor, mat = expr.as_coeff_mmul() if factor == 1: return expr unpacked = unpack(mat) if isinstance(unpacked, BlockDiagMatrix): B = unpacked.diag new_B = [factor * mat for mat in B] return BlockDiagMatrix(*new_B) elif isinstance(unpacked, BlockMatrix): B = unpacked.blocks new_B = [ [factor * B[i, j] for j in range(B.cols)] for i in range(B.rows)] return BlockMatrix(new_B) return expr def bc_matmul(expr): if isinstance(expr, MatPow): if expr.args[1].is_Integer: factor, matrices = (1, [expr.args[0]]*expr.args[1]) else: return expr else: factor, matrices = expr.as_coeff_matrices() i = 0 while (i+1 < len(matrices)): A, B = matrices[i:i+2] if isinstance(A, BlockMatrix) and isinstance(B, BlockMatrix): matrices[i] = A._blockmul(B) matrices.pop(i+1) elif isinstance(A, BlockMatrix): matrices[i] = A._blockmul(BlockMatrix([[B]])) matrices.pop(i+1) elif isinstance(B, BlockMatrix): matrices[i] = BlockMatrix([[A]])._blockmul(B) matrices.pop(i+1) else: i+=1 return MatMul(factor, *matrices).doit() def bc_transpose(expr): collapse = block_collapse(expr.arg) return collapse._eval_transpose() def bc_inverse(expr): if isinstance(expr.arg, BlockDiagMatrix): return expr.inverse() expr2 = blockinverse_1x1(expr) if expr != expr2: return expr2 return blockinverse_2x2(Inverse(reblock_2x2(expr.arg))) def blockinverse_1x1(expr): if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (1, 1): mat = Matrix([[expr.arg.blocks[0].inverse()]]) return BlockMatrix(mat) return expr def blockinverse_2x2(expr): if isinstance(expr.arg, BlockMatrix) and expr.arg.blockshape == (2, 2): # See: Inverses of 2x2 Block Matrices, Tzon-Tzer Lu and Sheng-Hua Shiou [[A, B], [C, D]] = expr.arg.blocks.tolist() formula = _choose_2x2_inversion_formula(A, B, C, D) if formula != None: MI = expr.arg.schur(formula).I if formula == 'A': AI = A.I return BlockMatrix([[AI + AI * B * MI * C * AI, -AI * B * MI], [-MI * C * AI, MI]]) if formula == 'B': BI = B.I return BlockMatrix([[-MI * D * BI, MI], [BI + BI * A * MI * D * BI, -BI * A * MI]]) if formula == 'C': CI = C.I return BlockMatrix([[-CI * D * MI, CI + CI * D * MI * A * CI], [MI, -MI * A * CI]]) if formula == 'D': DI = D.I return BlockMatrix([[MI, -MI * B * DI], [-DI * C * MI, DI + DI * C * MI * B * DI]]) return expr def _choose_2x2_inversion_formula(A, B, C, D): """ Assuming [[A, B], [C, D]] would form a valid square block matrix, find which of the classical 2x2 block matrix inversion formulas would be best suited. Returns 'A', 'B', 'C', 'D' to represent the algorithm involving inversion of the given argument or None if the matrix cannot be inverted using any of those formulas. """ # Try to find a known invertible matrix. Note that the Schur complement # is currently not being considered for this A_inv = ask(Q.invertible(A)) if A_inv == True: return 'A' B_inv = ask(Q.invertible(B)) if B_inv == True: return 'B' C_inv = ask(Q.invertible(C)) if C_inv == True: return 'C' D_inv = ask(Q.invertible(D)) if D_inv == True: return 'D' # Otherwise try to find a matrix that isn't known to be non-invertible if A_inv != False: return 'A' if B_inv != False: return 'B' if C_inv != False: return 'C' if D_inv != False: return 'D' return None def deblock(B): """ Flatten a BlockMatrix of BlockMatrices """ if not isinstance(B, BlockMatrix) or not B.blocks.has(BlockMatrix): return B wrap = lambda x: x if isinstance(x, BlockMatrix) else BlockMatrix([[x]]) bb = B.blocks.applyfunc(wrap) # everything is a block try: MM = Matrix(0, sum(bb[0, i].blocks.shape[1] for i in range(bb.shape[1])), []) for row in range(0, bb.shape[0]): M = Matrix(bb[row, 0].blocks) for col in range(1, bb.shape[1]): M = M.row_join(bb[row, col].blocks) MM = MM.col_join(M) return BlockMatrix(MM) except ShapeError: return B def reblock_2x2(expr): """ Reblock a BlockMatrix so that it has 2x2 blocks of block matrices. If possible in such a way that the matrix continues to be invertible using the classical 2x2 block inversion formulas. """ if not isinstance(expr, BlockMatrix) or not all(d > 2 for d in expr.blockshape): return expr BM = BlockMatrix # for brevity's sake rowblocks, colblocks = expr.blockshape blocks = expr.blocks for i in range(1, rowblocks): for j in range(1, colblocks): # try to split rows at i and cols at j A = bc_unpack(BM(blocks[:i, :j])) B = bc_unpack(BM(blocks[:i, j:])) C = bc_unpack(BM(blocks[i:, :j])) D = bc_unpack(BM(blocks[i:, j:])) formula = _choose_2x2_inversion_formula(A, B, C, D) if formula is not None: return BlockMatrix([[A, B], [C, D]]) # else: nothing worked, just split upper left corner return BM([[blocks[0, 0], BM(blocks[0, 1:])], [BM(blocks[1:, 0]), BM(blocks[1:, 1:])]]) def bounds(sizes): """ Convert sequence of numbers into pairs of low-high pairs >>> from sympy.matrices.expressions.blockmatrix import bounds >>> bounds((1, 10, 50)) [(0, 1), (1, 11), (11, 61)] """ low = 0 rv = [] for size in sizes: rv.append((low, low + size)) low += size return rv def blockcut(expr, rowsizes, colsizes): """ Cut a matrix expression into Blocks >>> from sympy import ImmutableMatrix, blockcut >>> M = ImmutableMatrix(4, 4, range(16)) >>> B = blockcut(M, (1, 3), (1, 3)) >>> type(B).__name__ 'BlockMatrix' >>> ImmutableMatrix(B.blocks[0, 1]) Matrix([[1, 2, 3]]) """ rowbounds = bounds(rowsizes) colbounds = bounds(colsizes) return BlockMatrix([[MatrixSlice(expr, rowbound, colbound) for colbound in colbounds] for rowbound in rowbounds])
8f601db5589c1aa0ec8a493bb71fc380fcbf097070fdc7bf7fc876143a9a292e
from sympy.matrices.expressions.trace import Trace from sympy.testing.pytest import raises, slow from sympy.matrices.expressions.blockmatrix import ( block_collapse, bc_matmul, bc_block_plus_ident, BlockDiagMatrix, BlockMatrix, bc_dist, bc_matadd, bc_transpose, bc_inverse, blockcut, reblock_2x2, deblock) from sympy.matrices.expressions import (MatrixSymbol, Identity, Inverse, trace, Transpose, det, ZeroMatrix) from sympy.matrices.common import NonInvertibleMatrixError from sympy.matrices import ( Matrix, ImmutableMatrix, ImmutableSparseMatrix) from sympy.core import Tuple, symbols, Expr from sympy.functions import transpose i, j, k, l, m, n, p = symbols('i:n, p', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) C = MatrixSymbol('C', n, n) D = MatrixSymbol('D', n, n) G = MatrixSymbol('G', n, n) H = MatrixSymbol('H', n, n) b1 = BlockMatrix([[G, H]]) b2 = BlockMatrix([[G], [H]]) def test_bc_matmul(): assert bc_matmul(H*b1*b2*G) == BlockMatrix([[(H*G*G + H*H*H)*G]]) def test_bc_matadd(): assert bc_matadd(BlockMatrix([[G, H]]) + BlockMatrix([[H, H]])) == \ BlockMatrix([[G+H, H+H]]) def test_bc_transpose(): assert bc_transpose(Transpose(BlockMatrix([[A, B], [C, D]]))) == \ BlockMatrix([[A.T, C.T], [B.T, D.T]]) def test_bc_dist_diag(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) X = BlockDiagMatrix(A, B, C) assert bc_dist(X+X).equals(BlockDiagMatrix(2*A, 2*B, 2*C)) def test_block_plus_ident(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) Z = MatrixSymbol('Z', n + m, n + m) assert bc_block_plus_ident(X + Identity(m + n) + Z) == \ BlockDiagMatrix(Identity(n), Identity(m)) + X + Z def test_BlockMatrix(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, k) C = MatrixSymbol('C', l, m) D = MatrixSymbol('D', l, k) M = MatrixSymbol('M', m + k, p) N = MatrixSymbol('N', l + n, k + m) X = BlockMatrix(Matrix([[A, B], [C, D]])) assert X.__class__(*X.args) == X # block_collapse does nothing on normal inputs E = MatrixSymbol('E', n, m) assert block_collapse(A + 2*E) == A + 2*E F = MatrixSymbol('F', m, m) assert block_collapse(E.T*A*F) == E.T*A*F assert X.shape == (l + n, k + m) assert X.blockshape == (2, 2) assert transpose(X) == BlockMatrix(Matrix([[A.T, C.T], [B.T, D.T]])) assert transpose(X).shape == X.shape[::-1] # Test that BlockMatrices and MatrixSymbols can still mix assert (X*M).is_MatMul assert X._blockmul(M).is_MatMul assert (X*M).shape == (n + l, p) assert (X + N).is_MatAdd assert X._blockadd(N).is_MatAdd assert (X + N).shape == X.shape E = MatrixSymbol('E', m, 1) F = MatrixSymbol('F', k, 1) Y = BlockMatrix(Matrix([[E], [F]])) assert (X*Y).shape == (l + n, 1) assert block_collapse(X*Y).blocks[0, 0] == A*E + B*F assert block_collapse(X*Y).blocks[1, 0] == C*E + D*F # block_collapse passes down into container objects, transposes, and inverse assert block_collapse(transpose(X*Y)) == transpose(block_collapse(X*Y)) assert block_collapse(Tuple(X*Y, 2*X)) == ( block_collapse(X*Y), block_collapse(2*X)) # Make sure that MatrixSymbols will enter 1x1 BlockMatrix if it simplifies Ab = BlockMatrix([[A]]) Z = MatrixSymbol('Z', *A.shape) assert block_collapse(Ab + Z) == A + Z def test_block_collapse_explicit_matrices(): A = Matrix([[1, 2], [3, 4]]) assert block_collapse(BlockMatrix([[A]])) == A A = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert block_collapse(BlockMatrix([[A]])) == A def test_issue_17624(): a = MatrixSymbol("a", 2, 2) z = ZeroMatrix(2, 2) b = BlockMatrix([[a, z], [z, z]]) assert block_collapse(b * b) == BlockMatrix([[a**2, z], [z, z]]) assert block_collapse(b * b * b) == BlockMatrix([[a**3, z], [z, z]]) def test_issue_18618(): A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) assert A == Matrix(BlockDiagMatrix(A)) def test_BlockMatrix_trace(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) assert trace(X) == trace(A) + trace(D) assert trace(BlockMatrix([ZeroMatrix(n, n)])) == 0 def test_BlockMatrix_Determinant(): A, B, C, D = [MatrixSymbol(s, 3, 3) for s in 'ABCD'] X = BlockMatrix([[A, B], [C, D]]) from sympy.assumptions.ask import Q from sympy.assumptions.assume import assuming with assuming(Q.invertible(A)): assert det(X) == det(A) * det(X.schur('A')) assert isinstance(det(X), Expr) assert det(BlockMatrix([A])) == det(A) assert det(BlockMatrix([ZeroMatrix(n, n)])) == 0 def test_squareBlockMatrix(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) Y = BlockMatrix([[A]]) assert X.is_square Q = X + Identity(m + n) assert (block_collapse(Q) == BlockMatrix([[A + Identity(n), B], [C, D + Identity(m)]])) assert (X + MatrixSymbol('Q', n + m, n + m)).is_MatAdd assert (X * MatrixSymbol('Q', n + m, n + m)).is_MatMul assert block_collapse(Y.I) == A.I assert isinstance(X.inverse(), Inverse) assert not X.is_Identity Z = BlockMatrix([[Identity(n), B], [C, D]]) assert not Z.is_Identity def test_BlockMatrix_2x2_inverse_symbolic(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, k - m) C = MatrixSymbol('C', k - n, m) D = MatrixSymbol('D', k - n, k - m) X = BlockMatrix([[A, B], [C, D]]) assert X.is_square and X.shape == (k, k) assert isinstance(block_collapse(X.I), Inverse) # Can't invert when none of the blocks is square # test code path where only A is invertible A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = ZeroMatrix(m, m) X = BlockMatrix([[A, B], [C, D]]) assert block_collapse(X.inverse()) == BlockMatrix([ [A.I + A.I * B * X.schur('A').I * C * A.I, -A.I * B * X.schur('A').I], [-X.schur('A').I * C * A.I, X.schur('A').I], ]) # test code path where only B is invertible A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', n, n) C = ZeroMatrix(m, m) D = MatrixSymbol('D', m, n) X = BlockMatrix([[A, B], [C, D]]) assert block_collapse(X.inverse()) == BlockMatrix([ [-X.schur('B').I * D * B.I, X.schur('B').I], [B.I + B.I * A * X.schur('B').I * D * B.I, -B.I * A * X.schur('B').I], ]) # test code path where only C is invertible A = MatrixSymbol('A', n, m) B = ZeroMatrix(n, n) C = MatrixSymbol('C', m, m) D = MatrixSymbol('D', m, n) X = BlockMatrix([[A, B], [C, D]]) assert block_collapse(X.inverse()) == BlockMatrix([ [-C.I * D * X.schur('C').I, C.I + C.I * D * X.schur('C').I * A * C.I], [X.schur('C').I, -X.schur('C').I * A * C.I], ]) # test code path where only D is invertible A = ZeroMatrix(n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) assert block_collapse(X.inverse()) == BlockMatrix([ [X.schur('D').I, -X.schur('D').I * B * D.I], [-D.I * C * X.schur('D').I, D.I + D.I * C * X.schur('D').I * B * D.I], ]) def test_BlockMatrix_2x2_inverse_numeric(): """Test 2x2 block matrix inversion numerically for all 4 formulas""" M = Matrix([[1, 2], [3, 4]]) # rank deficient matrices that have full rank when two of them combined D1 = Matrix([[1, 2], [2, 4]]) D2 = Matrix([[1, 3], [3, 9]]) D3 = Matrix([[1, 4], [4, 16]]) assert D1.rank() == D2.rank() == D3.rank() == 1 assert (D1 + D2).rank() == (D2 + D3).rank() == (D3 + D1).rank() == 2 # Only A is invertible K = BlockMatrix([[M, D1], [D2, D3]]) assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv() # Only B is invertible K = BlockMatrix([[D1, M], [D2, D3]]) assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv() # Only C is invertible K = BlockMatrix([[D1, D2], [M, D3]]) assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv() # Only D is invertible K = BlockMatrix([[D1, D2], [D3, M]]) assert block_collapse(K.inv()).as_explicit() == K.as_explicit().inv() @slow def test_BlockMatrix_3x3_symbolic(): # Only test one of these, instead of all permutations, because it's slow rowblocksizes = (n, m, k) colblocksizes = (m, k, n) K = BlockMatrix([ [MatrixSymbol('M%s%s' % (rows, cols), rows, cols) for cols in colblocksizes] for rows in rowblocksizes ]) collapse = block_collapse(K.I) assert isinstance(collapse, BlockMatrix) def test_BlockDiagMatrix(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) C = MatrixSymbol('C', l, l) M = MatrixSymbol('M', n + m + l, n + m + l) X = BlockDiagMatrix(A, B, C) Y = BlockDiagMatrix(A, 2*B, 3*C) assert X.blocks[1, 1] == B assert X.shape == (n + m + l, n + m + l) assert all(X.blocks[i, j].is_ZeroMatrix if i != j else X.blocks[i, j] in [A, B, C] for i in range(3) for j in range(3)) assert X.__class__(*X.args) == X assert X.get_diag_blocks() == (A, B, C) assert isinstance(block_collapse(X.I * X), Identity) assert bc_matmul(X*X) == BlockDiagMatrix(A*A, B*B, C*C) assert block_collapse(X*X) == BlockDiagMatrix(A*A, B*B, C*C) #XXX: should be == ?? assert block_collapse(X + X).equals(BlockDiagMatrix(2*A, 2*B, 2*C)) assert block_collapse(X*Y) == BlockDiagMatrix(A*A, 2*B*B, 3*C*C) assert block_collapse(X + Y) == BlockDiagMatrix(2*A, 3*B, 4*C) # Ensure that BlockDiagMatrices can still interact with normal MatrixExprs assert (X*(2*M)).is_MatMul assert (X + (2*M)).is_MatAdd assert (X._blockmul(M)).is_MatMul assert (X._blockadd(M)).is_MatAdd def test_BlockDiagMatrix_nonsquare(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', k, l) X = BlockDiagMatrix(A, B) assert X.shape == (n + k, m + l) assert X.shape == (n + k, m + l) assert X.rowblocksizes == [n, k] assert X.colblocksizes == [m, l] C = MatrixSymbol('C', n, m) D = MatrixSymbol('D', k, l) Y = BlockDiagMatrix(C, D) assert block_collapse(X + Y) == BlockDiagMatrix(A + C, B + D) assert block_collapse(X * Y.T) == BlockDiagMatrix(A * C.T, B * D.T) raises(NonInvertibleMatrixError, lambda: BlockDiagMatrix(A, C.T).inverse()) def test_BlockDiagMatrix_determinant(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', m, m) assert det(BlockDiagMatrix()) == 1 assert det(BlockDiagMatrix(A)) == det(A) assert det(BlockDiagMatrix(A, B)) == det(A) * det(B) # non-square blocks C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', n, m) assert det(BlockDiagMatrix(C, D)) == 0 def test_BlockDiagMatrix_trace(): assert trace(BlockDiagMatrix()) == 0 assert trace(BlockDiagMatrix(ZeroMatrix(n, n))) == 0 A = MatrixSymbol('A', n, n) assert trace(BlockDiagMatrix(A)) == trace(A) B = MatrixSymbol('B', m, m) assert trace(BlockDiagMatrix(A, B)) == trace(A) + trace(B) # non-square blocks C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', n, m) assert isinstance(trace(BlockDiagMatrix(C, D)), Trace) def test_BlockDiagMatrix_transpose(): A = MatrixSymbol('A', n, m) B = MatrixSymbol('B', k, l) assert transpose(BlockDiagMatrix()) == BlockDiagMatrix() assert transpose(BlockDiagMatrix(A)) == BlockDiagMatrix(A.T) assert transpose(BlockDiagMatrix(A, B)) == BlockDiagMatrix(A.T, B.T) def test_issue_2460(): bdm1 = BlockDiagMatrix(Matrix([i]), Matrix([j])) bdm2 = BlockDiagMatrix(Matrix([k]), Matrix([l])) assert block_collapse(bdm1 + bdm2) == BlockDiagMatrix(Matrix([i + k]), Matrix([j + l])) def test_blockcut(): A = MatrixSymbol('A', n, m) B = blockcut(A, (n/2, n/2), (m/2, m/2)) assert B == BlockMatrix([[A[:n/2, :m/2], A[:n/2, m/2:]], [A[n/2:, :m/2], A[n/2:, m/2:]]]) M = ImmutableMatrix(4, 4, range(16)) B = blockcut(M, (2, 2), (2, 2)) assert M == ImmutableMatrix(B) B = blockcut(M, (1, 3), (2, 2)) assert ImmutableMatrix(B.blocks[0, 1]) == ImmutableMatrix([[2, 3]]) def test_reblock_2x2(): B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), 2, 2) for j in range(3)] for i in range(3)]) assert B.blocks.shape == (3, 3) BB = reblock_2x2(B) assert BB.blocks.shape == (2, 2) assert B.shape == BB.shape assert B.as_explicit() == BB.as_explicit() def test_deblock(): B = BlockMatrix([[MatrixSymbol('A_%d%d'%(i,j), n, n) for j in range(4)] for i in range(4)]) assert deblock(reblock_2x2(B)) == B def test_block_collapse_type(): bm1 = BlockDiagMatrix(ImmutableMatrix([1]), ImmutableMatrix([2])) bm2 = BlockDiagMatrix(ImmutableMatrix([3]), ImmutableMatrix([4])) assert bm1.T.__class__ == BlockDiagMatrix assert block_collapse(bm1 - bm2).__class__ == BlockDiagMatrix assert block_collapse(Inverse(bm1)).__class__ == BlockDiagMatrix assert block_collapse(Transpose(bm1)).__class__ == BlockDiagMatrix assert bc_transpose(Transpose(bm1)).__class__ == BlockDiagMatrix assert bc_inverse(Inverse(bm1)).__class__ == BlockDiagMatrix def test_invalid_block_matrix(): raises(ValueError, lambda: BlockMatrix([ [Identity(2), Identity(5)], ])) raises(ValueError, lambda: BlockMatrix([ [Identity(n), Identity(m)], ])) raises(ValueError, lambda: BlockMatrix([ [ZeroMatrix(n, n), ZeroMatrix(n, n)], [ZeroMatrix(n, n - 1), ZeroMatrix(n, n + 1)], ])) raises(ValueError, lambda: BlockMatrix([ [ZeroMatrix(n - 1, n), ZeroMatrix(n, n)], [ZeroMatrix(n + 1, n), ZeroMatrix(n, n)], ])) def test_block_lu_decomposition(): A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, m) C = MatrixSymbol('C', m, n) D = MatrixSymbol('D', m, m) X = BlockMatrix([[A, B], [C, D]]) #LDU decomposition L, D, U = X.LDUdecomposition() assert block_collapse(L*D*U) == X #UDL decomposition U, D, L = X.UDLdecomposition() assert block_collapse(U*D*L) == X #LU decomposition L, U = X.LUdecomposition() assert block_collapse(L*U) == X def test_issue_21866(): n = 10 I = Identity(n) O = ZeroMatrix(n, n) A = BlockMatrix([[ I, O, O, O ], [ O, I, O, O ], [ O, O, I, O ], [ I, O, O, I ]]) Ainv = block_collapse(A.inv()) AinvT = BlockMatrix([[ I, O, O, O ], [ O, I, O, O ], [ O, O, I, O ], [ -I, O, O, I ]]) assert Ainv == AinvT
42eb542adaf7e46099e224b61f5593cccc1ad2302f2f4a6b712f36527b60af99
from sympy.core import S, symbols from sympy.matrices import eye, ones, Matrix, ShapeError from sympy.matrices.expressions import ( Identity, MatrixExpr, MatrixSymbol, Determinant, det, per, ZeroMatrix, Transpose, Permanent ) from sympy.matrices.expressions.special import OneMatrix from sympy.testing.pytest import raises from sympy.assumptions.ask import Q from sympy.assumptions.refine import refine n = symbols('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) C = MatrixSymbol('C', 3, 4) def test_det(): assert isinstance(Determinant(A), Determinant) assert not isinstance(Determinant(A), MatrixExpr) raises(ShapeError, lambda: Determinant(C)) assert det(eye(3)) == 1 assert det(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 17 _ = A / det(A) # Make sure this is possible raises(TypeError, lambda: Determinant(S.One)) assert Determinant(A).arg is A def test_eval_determinant(): assert det(Identity(n)) == 1 assert det(ZeroMatrix(n, n)) == 0 assert det(OneMatrix(n, n)) == Determinant(OneMatrix(n, n)) assert det(OneMatrix(1, 1)) == 1 assert det(OneMatrix(2, 2)) == 0 assert det(Transpose(A)) == det(A) def test_refine(): assert refine(det(A), Q.orthogonal(A)) == 1 assert refine(det(A), Q.singular(A)) == 0 assert refine(det(A), Q.unit_triangular(A)) == 1 assert refine(det(A), Q.normal(A)) == det(A) def test_commutative(): det_a = Determinant(A) det_b = Determinant(B) assert det_a.is_commutative assert det_b.is_commutative assert det_a * det_b == det_b * det_a def test_permanent(): assert isinstance(Permanent(A), Permanent) assert not isinstance(Permanent(A), MatrixExpr) assert isinstance(Permanent(C), Permanent) assert Permanent(ones(3, 3)).doit() == 6 _ = C / per(C) assert per(Matrix(3, 3, [1, 3, 2, 4, 1, 3, 2, 5, 2])) == 103 raises(TypeError, lambda: Permanent(S.One)) assert Permanent(A).arg is A
20e8ea541d688207dc59f02333998a1d2b2c1c8d632340ff4a78c3a6359a0982
from sympy.core import Lambda, S, symbols from sympy.concrete import Sum from sympy.functions import adjoint, conjugate, transpose from sympy.matrices import eye, Matrix, ShapeError, ImmutableMatrix from sympy.matrices.expressions import ( Adjoint, Identity, FunctionMatrix, MatrixExpr, MatrixSymbol, Trace, ZeroMatrix, trace, MatPow, MatAdd, MatMul ) from sympy.matrices.expressions.special import OneMatrix from sympy.testing.pytest import raises n = symbols('n', integer=True) A = MatrixSymbol('A', n, n) B = MatrixSymbol('B', n, n) C = MatrixSymbol('C', 3, 4) def test_Trace(): assert isinstance(Trace(A), Trace) assert not isinstance(Trace(A), MatrixExpr) raises(ShapeError, lambda: Trace(C)) assert trace(eye(3)) == 3 assert trace(Matrix(3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9])) == 15 assert adjoint(Trace(A)) == trace(Adjoint(A)) assert conjugate(Trace(A)) == trace(Adjoint(A)) assert transpose(Trace(A)) == Trace(A) _ = A / Trace(A) # Make sure this is possible # Some easy simplifications assert trace(Identity(5)) == 5 assert trace(ZeroMatrix(5, 5)) == 0 assert trace(OneMatrix(1, 1)) == 1 assert trace(OneMatrix(2, 2)) == 2 assert trace(OneMatrix(n, n)) == n assert trace(2*A*B) == 2*Trace(A*B) assert trace(A.T) == trace(A) i, j = symbols('i j') F = FunctionMatrix(3, 3, Lambda((i, j), i + j)) assert trace(F) == (0 + 0) + (1 + 1) + (2 + 2) raises(TypeError, lambda: Trace(S.One)) assert Trace(A).arg is A assert str(trace(A)) == str(Trace(A).doit()) assert Trace(A).is_commutative is True def test_Trace_A_plus_B(): assert trace(A + B) == Trace(A) + Trace(B) assert Trace(A + B).arg == MatAdd(A, B) assert Trace(A + B).doit() == Trace(A) + Trace(B) def test_Trace_MatAdd_doit(): # See issue #9028 X = ImmutableMatrix([[1, 2, 3]]*3) Y = MatrixSymbol('Y', 3, 3) q = MatAdd(X, 2*X, Y, -3*Y) assert Trace(q).arg == q assert Trace(q).doit() == 18 - 2*Trace(Y) def test_Trace_MatPow_doit(): X = Matrix([[1, 2], [3, 4]]) assert Trace(X).doit() == 5 q = MatPow(X, 2) assert Trace(q).arg == q assert Trace(q).doit() == 29 def test_Trace_MutableMatrix_plus(): # See issue #9043 X = Matrix([[1, 2], [3, 4]]) assert Trace(X) + Trace(X) == 2*Trace(X) def test_Trace_doit_deep_False(): X = Matrix([[1, 2], [3, 4]]) q = MatPow(X, 2) assert Trace(q).doit(deep=False).arg == q q = MatAdd(X, 2*X) assert Trace(q).doit(deep=False).arg == q q = MatMul(X, 2*X) assert Trace(q).doit(deep=False).arg == q def test_trace_constant_factor(): # Issue 9052: gave 2*Trace(MatMul(A)) instead of 2*Trace(A) assert trace(2*A) == 2*Trace(A) X = ImmutableMatrix([[1, 2], [3, 4]]) assert trace(MatMul(2, X)) == 10 def test_rewrite(): assert isinstance(trace(A).rewrite(Sum), Sum) def test_trace_normalize(): assert Trace(B*A) != Trace(A*B) assert Trace(B*A)._normalize() == Trace(A*B) assert Trace(B*A.T)._normalize() == Trace(A*B.T) def test_trace_as_explicit(): raises(ValueError, lambda: Trace(A).as_explicit()) X = MatrixSymbol("X", 3, 3) assert Trace(X).as_explicit() == X[0, 0] + X[1, 1] + X[2, 2] assert Trace(eye(3)).as_explicit() == 3
4c78ade26d5b4ae76689721e54e903994a18bf284796effdc77031ed643b2697
from sympy.core import Basic, Expr from sympy.core.function import Lambda from sympy.core.numbers import oo, Infinity, NegativeInfinity, Zero, Integer from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import (Max, Min) from sympy.sets.fancysets import ImageSet from sympy.sets.setexpr import set_div from sympy.sets.sets import Set, Interval, FiniteSet, Union from sympy.multipledispatch import dispatch _x, _y = symbols("x y") @dispatch(Basic, Basic) # type: ignore # noqa:F811 def _set_pow(x, y): # noqa:F811 return None @dispatch(Set, Set) # type: ignore # noqa:F811 def _set_pow(x, y): # noqa:F811 return ImageSet(Lambda((_x, _y), (_x ** _y)), x, y) @dispatch(Expr, Expr) # type: ignore # noqa:F811 def _set_pow(x, y): # noqa:F811 return x**y @dispatch(Interval, Zero) # type: ignore # noqa:F811 def _set_pow(x, z): # noqa:F811 return FiniteSet(S.One) @dispatch(Interval, Integer) # type: ignore # noqa:F811 def _set_pow(x, exponent): # noqa:F811 """ Powers in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ s1 = x.start**exponent s2 = x.end**exponent if ((s2 > s1) if exponent > 0 else (x.end > -x.start)) == True: left_open = x.left_open right_open = x.right_open # TODO: handle unevaluated condition. sleft = s2 else: # TODO: `s2 > s1` could be unevaluated. left_open = x.right_open right_open = x.left_open sleft = s1 if x.start.is_positive: return Interval( Min(s1, s2), Max(s1, s2), left_open, right_open) elif x.end.is_negative: return Interval( Min(s1, s2), Max(s1, s2), left_open, right_open) # Case where x.start < 0 and x.end > 0: if exponent.is_odd: if exponent.is_negative: if x.start.is_zero: return Interval(s2, oo, x.right_open) if x.end.is_zero: return Interval(-oo, s1, True, x.left_open) return Union(Interval(-oo, s1, True, x.left_open), Interval(s2, oo, x.right_open)) else: return Interval(s1, s2, x.left_open, x.right_open) elif exponent.is_even: if exponent.is_negative: if x.start.is_zero: return Interval(s2, oo, x.right_open) if x.end.is_zero: return Interval(s1, oo, x.left_open) return Interval(0, oo) else: return Interval(S.Zero, sleft, S.Zero not in x, left_open) @dispatch(Interval, Infinity) # type: ignore # noqa:F811 def _set_pow(b, e): # noqa:F811 # TODO: add logic for open intervals? if b.start.is_nonnegative: if b.end < 1: return FiniteSet(S.Zero) if b.start > 1: return FiniteSet(S.Infinity) return Interval(0, oo) elif b.end.is_negative: if b.start > -1: return FiniteSet(S.Zero) if b.end < -1: return FiniteSet(-oo, oo) return Interval(-oo, oo) else: if b.start > -1: if b.end < 1: return FiniteSet(S.Zero) return Interval(0, oo) return Interval(-oo, oo) @dispatch(Interval, NegativeInfinity) # type: ignore # noqa:F811 def _set_pow(b, e): # noqa:F811 return _set_pow(set_div(S.One, b), oo)
612c066ca15b90120c6bd6280e25bec0238a3f31350f6c332032c8028f201b67
from sympy.core.numbers import oo, Infinity, NegativeInfinity from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.core import Basic, Expr from sympy.multipledispatch import dispatch from sympy.sets import Interval, FiniteSet # XXX: The functions in this module are clearly not tested and are broken in a # number of ways. _x, _y = symbols("x y") @dispatch(Basic, Basic) # type: ignore # noqa:F811 def _set_add(x, y): # noqa:F811 return None @dispatch(Expr, Expr) # type: ignore # noqa:F811 def _set_add(x, y): # noqa:F811 return x+y @dispatch(Interval, Interval) # type: ignore # noqa:F811 def _set_add(x, y): # noqa:F811 """ Additions in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ return Interval(x.start + y.start, x.end + y.end, x.left_open or y.left_open, x.right_open or y.right_open) @dispatch(Interval, Infinity) # type: ignore # noqa:F811 def _set_add(x, y): # noqa:F811 if x.start is S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet({S.Infinity}) @dispatch(Interval, NegativeInfinity) # type: ignore # noqa:F811 def _set_add(x, y): # noqa:F811 if x.end is S.Infinity: return Interval(-oo, oo) return FiniteSet({S.NegativeInfinity}) @dispatch(Basic, Basic) # type: ignore def _set_sub(x, y): # noqa:F811 return None @dispatch(Expr, Expr) # type: ignore # noqa:F811 def _set_sub(x, y): # noqa:F811 return x-y @dispatch(Interval, Interval) # type: ignore # noqa:F811 def _set_sub(x, y): # noqa:F811 """ Subtractions in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ return Interval(x.start - y.end, x.end - y.start, x.left_open or y.right_open, x.right_open or y.left_open) @dispatch(Interval, Infinity) # type: ignore # noqa:F811 def _set_sub(x, y): # noqa:F811 if x.start is S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet(-oo) @dispatch(Interval, NegativeInfinity) # type: ignore # noqa:F811 def _set_sub(x, y): # noqa:F811 if x.start is S.NegativeInfinity: return Interval(-oo, oo) return FiniteSet(-oo)
90b46f14ee6cbc1c8a0ee6e475415f1162f16f67ff4d95f430f8bb2c1d41cbed
from sympy.core.singleton import S from sympy.sets.sets import Set from sympy.calculus.singularities import singularities from sympy.core import Expr, Add from sympy.core.function import Lambda, FunctionClass, diff, expand_mul from sympy.core.numbers import Float, oo from sympy.core.symbol import Dummy, symbols, Wild from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.miscellaneous import Min, Max from sympy.logic.boolalg import true from sympy.multipledispatch import dispatch from sympy.sets import (imageset, Interval, FiniteSet, Union, ImageSet, Intersection, Range, Complement) from sympy.sets.sets import EmptySet, is_function_invertible_in_set from sympy.sets.fancysets import Integers, Naturals, Reals from sympy.functions.elementary.exponential import match_real_imag _x, _y = symbols("x y") FunctionUnion = (FunctionClass, Lambda) @dispatch(FunctionClass, Set) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 return None @dispatch(FunctionUnion, FiniteSet) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 return FiniteSet(*map(f, x)) @dispatch(Lambda, Interval) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 from sympy.solvers.solveset import solveset from sympy.series import limit # TODO: handle functions with infinitely many solutions (eg, sin, tan) # TODO: handle multivariate functions expr = f.expr if len(expr.free_symbols) > 1 or len(f.variables) != 1: return var = f.variables[0] if not var.is_real: if expr.subs(var, Dummy(real=True)).is_real is False: return if expr.is_Piecewise: result = S.EmptySet domain_set = x for (p_expr, p_cond) in expr.args: if p_cond is true: intrvl = domain_set else: intrvl = p_cond.as_set() intrvl = Intersection(domain_set, intrvl) if p_expr.is_Number: image = FiniteSet(p_expr) else: image = imageset(Lambda(var, p_expr), intrvl) result = Union(result, image) # remove the part which has been `imaged` domain_set = Complement(domain_set, intrvl) if domain_set is S.EmptySet: break return result if not x.start.is_comparable or not x.end.is_comparable: return try: from sympy.polys.polyutils import _nsort sing = list(singularities(expr, var, x)) if len(sing) > 1: sing = _nsort(sing) except NotImplementedError: return if x.left_open: _start = limit(expr, var, x.start, dir="+") elif x.start not in sing: _start = f(x.start) if x.right_open: _end = limit(expr, var, x.end, dir="-") elif x.end not in sing: _end = f(x.end) if len(sing) == 0: soln_expr = solveset(diff(expr, var), var) if not (isinstance(soln_expr, FiniteSet) or soln_expr is S.EmptySet): return solns = list(soln_expr) extr = [_start, _end] + [f(i) for i in solns if i.is_real and i in x] start, end = Min(*extr), Max(*extr) left_open, right_open = False, False if _start <= _end: # the minimum or maximum value can occur simultaneously # on both the edge of the interval and in some interior # point if start == _start and start not in solns: left_open = x.left_open if end == _end and end not in solns: right_open = x.right_open else: if start == _end and start not in solns: left_open = x.right_open if end == _start and end not in solns: right_open = x.left_open return Interval(start, end, left_open, right_open) else: return imageset(f, Interval(x.start, sing[0], x.left_open, True)) + \ Union(*[imageset(f, Interval(sing[i], sing[i + 1], True, True)) for i in range(0, len(sing) - 1)]) + \ imageset(f, Interval(sing[-1], x.end, True, x.right_open)) @dispatch(FunctionClass, Interval) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 if f == exp: return Interval(exp(x.start), exp(x.end), x.left_open, x.right_open) elif f == log: return Interval(log(x.start), log(x.end), x.left_open, x.right_open) return ImageSet(Lambda(_x, f(_x)), x) @dispatch(FunctionUnion, Union) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 return Union(*(imageset(f, arg) for arg in x.args)) @dispatch(FunctionUnion, Intersection) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 # If the function is invertible, intersect the maps of the sets. if is_function_invertible_in_set(f, x): return Intersection(*(imageset(f, arg) for arg in x.args)) else: return ImageSet(Lambda(_x, f(_x)), x) @dispatch(FunctionUnion, EmptySet) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 return x @dispatch(FunctionUnion, Set) # type: ignore # noqa:F811 def _set_function(f, x): # noqa:F811 return ImageSet(Lambda(_x, f(_x)), x) @dispatch(FunctionUnion, Range) # type: ignore # noqa:F811 def _set_function(f, self): # noqa:F811 if not self: return S.EmptySet if not isinstance(f.expr, Expr): return if self.size == 1: return FiniteSet(f(self[0])) if f is S.IdentityFunction: return self x = f.variables[0] expr = f.expr # handle f that is linear in f's variable if x not in expr.free_symbols or x in expr.diff(x).free_symbols: return if self.start.is_finite: F = f(self.step*x + self.start) # for i in range(len(self)) else: F = f(-self.step*x + self[-1]) F = expand_mul(F) if F != expr: return imageset(x, F, Range(self.size)) @dispatch(FunctionUnion, Integers) # type: ignore # noqa:F811 def _set_function(f, self): # noqa:F811 expr = f.expr if not isinstance(expr, Expr): return n = f.variables[0] if expr == abs(n): return S.Naturals0 # f(x) + c and f(-x) + c cover the same integers # so choose the form that has the fewest negatives c = f(0) fx = f(n) - c f_x = f(-n) - c neg_count = lambda e: sum(_.could_extract_minus_sign() for _ in Add.make_args(e)) if neg_count(f_x) < neg_count(fx): expr = f_x + c a = Wild('a', exclude=[n]) b = Wild('b', exclude=[n]) match = expr.match(a*n + b) if match and match[a] and ( not match[a].atoms(Float) and not match[b].atoms(Float)): # canonical shift a, b = match[a], match[b] if a in [1, -1]: # drop integer addends in b nonint = [] for bi in Add.make_args(b): if not bi.is_integer: nonint.append(bi) b = Add(*nonint) if b.is_number and a.is_real: # avoid Mod for complex numbers, #11391 br, bi = match_real_imag(b) if br and br.is_comparable and a.is_comparable: br %= a b = br + S.ImaginaryUnit*bi elif b.is_number and a.is_imaginary: br, bi = match_real_imag(b) ai = a/S.ImaginaryUnit if bi and bi.is_comparable and ai.is_comparable: bi %= ai b = br + S.ImaginaryUnit*bi expr = a*n + b if expr != f.expr: return ImageSet(Lambda(n, expr), S.Integers) @dispatch(FunctionUnion, Naturals) # type: ignore # noqa:F811 def _set_function(f, self): # noqa:F811 expr = f.expr if not isinstance(expr, Expr): return x = f.variables[0] if not expr.free_symbols - {x}: if expr == abs(x): if self is S.Naturals: return self return S.Naturals0 step = expr.coeff(x) c = expr.subs(x, 0) if c.is_Integer and step.is_Integer and expr == step*x + c: if self is S.Naturals: c += step if step > 0: if step == 1: if c == 0: return S.Naturals0 elif c == 1: return S.Naturals return Range(c, oo, step) return Range(c, -oo, step) @dispatch(FunctionUnion, Reals) # type: ignore # noqa:F811 def _set_function(f, self): # noqa:F811 expr = f.expr if not isinstance(expr, Expr): return return _set_function(f, Interval(-oo, oo))
b3766bd827375dcfb153eb91aabbd55c8261efdf8f52704991307e54566c0293
from sympy.core import Basic, Expr from sympy.core.numbers import oo from sympy.core.symbol import symbols from sympy.multipledispatch import dispatch from sympy.sets.setexpr import set_mul from sympy.sets.sets import Interval, Set _x, _y = symbols("x y") @dispatch(Basic, Basic) # type: ignore # noqa:F811 def _set_mul(x, y): # noqa:F811 return None @dispatch(Set, Set) # type: ignore # noqa:F811 def _set_mul(x, y): # noqa:F811 return None @dispatch(Expr, Expr) # type: ignore # noqa:F811 def _set_mul(x, y): # noqa:F811 return x*y @dispatch(Interval, Interval) # type: ignore # noqa:F811 def _set_mul(x, y): # noqa:F811 """ Multiplications in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ # TODO: some intervals containing 0 and oo will fail as 0*oo returns nan. comvals = ( (x.start * y.start, bool(x.left_open or y.left_open)), (x.start * y.end, bool(x.left_open or y.right_open)), (x.end * y.start, bool(x.right_open or y.left_open)), (x.end * y.end, bool(x.right_open or y.right_open)), ) # TODO: handle symbolic intervals minval, minopen = min(comvals) maxval, maxopen = max(comvals) return Interval( minval, maxval, minopen, maxopen ) @dispatch(Basic, Basic) # type: ignore # noqa:F811 def _set_div(x, y): # noqa:F811 return None @dispatch(Expr, Expr) # type: ignore # noqa:F811 def _set_div(x, y): # noqa:F811 return x/y @dispatch(Set, Set) # type: ignore # noqa:F811 # noqa:F811 def _set_div(x, y): # noqa:F811 return None @dispatch(Interval, Interval) # type: ignore # noqa:F811 def _set_div(x, y): # noqa:F811 """ Divisions in interval arithmetic https://en.wikipedia.org/wiki/Interval_arithmetic """ if (y.start*y.end).is_negative: return Interval(-oo, oo) if y.start == 0: s2 = oo else: s2 = 1/y.start if y.end == 0: s1 = -oo else: s1 = 1/y.end return set_mul(x, Interval(s1, s2, y.right_open, y.left_open))
cb31e90fcf780216dac2a041848076068d3ecb4be1d2feb6074b2f0b3f9af948
from sympy.core.expr import unchanged from sympy.sets.contains import Contains from sympy.sets.fancysets import (ImageSet, Range, normalize_theta_set, ComplexRegion) from sympy.sets.sets import (FiniteSet, Interval, Union, imageset, Intersection, ProductSet) from sympy.sets.conditionset import ConditionSet from sympy.simplify.simplify import simplify from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.function import Lambda from sympy.core.numbers import (I, Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin, tan) from sympy.logic.boolalg import And from sympy.matrices.dense import eye from sympy.testing.pytest import XFAIL, raises from sympy.abc import x, y, t, z from sympy.core.mod import Mod import itertools def test_naturals(): N = S.Naturals assert 5 in N assert -5 not in N assert 5.5 not in N ni = iter(N) a, b, c, d = next(ni), next(ni), next(ni), next(ni) assert (a, b, c, d) == (1, 2, 3, 4) assert isinstance(a, Basic) assert N.intersect(Interval(-5, 5)) == Range(1, 6) assert N.intersect(Interval(-5, 5, True, True)) == Range(1, 5) assert N.boundary == N assert N.is_open == False assert N.is_closed == True assert N.inf == 1 assert N.sup is oo assert not N.contains(oo) for s in (S.Naturals0, S.Naturals): assert s.intersection(S.Reals) is s assert s.is_subset(S.Reals) assert N.as_relational(x) == And(Eq(floor(x), x), x >= 1, x < oo) def test_naturals0(): N = S.Naturals0 assert 0 in N assert -1 not in N assert next(iter(N)) == 0 assert not N.contains(oo) assert N.contains(sin(x)) == Contains(sin(x), N) def test_integers(): Z = S.Integers assert 5 in Z assert -5 in Z assert 5.5 not in Z assert not Z.contains(oo) assert not Z.contains(-oo) zi = iter(Z) a, b, c, d = next(zi), next(zi), next(zi), next(zi) assert (a, b, c, d) == (0, 1, -1, 2) assert isinstance(a, Basic) assert Z.intersect(Interval(-5, 5)) == Range(-5, 6) assert Z.intersect(Interval(-5, 5, True, True)) == Range(-4, 5) assert Z.intersect(Interval(5, S.Infinity)) == Range(5, S.Infinity) assert Z.intersect(Interval.Lopen(5, S.Infinity)) == Range(6, S.Infinity) assert Z.inf is -oo assert Z.sup is oo assert Z.boundary == Z assert Z.is_open == False assert Z.is_closed == True assert Z.as_relational(x) == And(Eq(floor(x), x), -oo < x, x < oo) def test_ImageSet(): raises(ValueError, lambda: ImageSet(x, S.Integers)) assert ImageSet(Lambda(x, 1), S.Integers) == FiniteSet(1) assert ImageSet(Lambda(x, y), S.Integers) == {y} assert ImageSet(Lambda(x, 1), S.EmptySet) == S.EmptySet empty = Intersection(FiniteSet(log(2)/pi), S.Integers) assert unchanged(ImageSet, Lambda(x, 1), empty) # issue #17471 squares = ImageSet(Lambda(x, x**2), S.Naturals) assert 4 in squares assert 5 not in squares assert FiniteSet(*range(10)).intersect(squares) == FiniteSet(1, 4, 9) assert 16 not in squares.intersect(Interval(0, 10)) si = iter(squares) a, b, c, d = next(si), next(si), next(si), next(si) assert (a, b, c, d) == (1, 4, 9, 16) harmonics = ImageSet(Lambda(x, 1/x), S.Naturals) assert Rational(1, 5) in harmonics assert Rational(.25) in harmonics assert 0.25 not in harmonics assert Rational(.3) not in harmonics assert (1, 2) not in harmonics assert harmonics.is_iterable assert imageset(x, -x, Interval(0, 1)) == Interval(-1, 0) assert ImageSet(Lambda(x, x**2), Interval(0, 2)).doit() == Interval(0, 4) assert ImageSet(Lambda((x, y), 2*x), {4}, {3}).doit() == FiniteSet(8) assert (ImageSet(Lambda((x, y), x+y), {1, 2, 3}, {10, 20, 30}).doit() == FiniteSet(11, 12, 13, 21, 22, 23, 31, 32, 33)) c = Interval(1, 3) * Interval(1, 3) assert Tuple(2, 6) in ImageSet(Lambda(((x, y),), (x, 2*y)), c) assert Tuple(2, S.Half) in ImageSet(Lambda(((x, y),), (x, 1/y)), c) assert Tuple(2, -2) not in ImageSet(Lambda(((x, y),), (x, y**2)), c) assert Tuple(2, -2) in ImageSet(Lambda(((x, y),), (x, -2)), c) c3 = ProductSet(Interval(3, 7), Interval(8, 11), Interval(5, 9)) assert Tuple(8, 3, 9) in ImageSet(Lambda(((t, y, x),), (y, t, x)), c3) assert Tuple(Rational(1, 8), 3, 9) in ImageSet(Lambda(((t, y, x),), (1/y, t, x)), c3) assert 2/pi not in ImageSet(Lambda(((x, y),), 2/x), c) assert 2/S(100) not in ImageSet(Lambda(((x, y),), 2/x), c) assert Rational(2, 3) in ImageSet(Lambda(((x, y),), 2/x), c) S1 = imageset(lambda x, y: x + y, S.Integers, S.Naturals) assert S1.base_pset == ProductSet(S.Integers, S.Naturals) assert S1.base_sets == (S.Integers, S.Naturals) # Passing a set instead of a FiniteSet shouldn't raise assert unchanged(ImageSet, Lambda(x, x**2), {1, 2, 3}) S2 = ImageSet(Lambda(((x, y),), x+y), {(1, 2), (3, 4)}) assert 3 in S2.doit() # FIXME: This doesn't yet work: #assert 3 in S2 assert S2._contains(3) is None raises(TypeError, lambda: ImageSet(Lambda(x, x**2), 1)) def test_image_is_ImageSet(): assert isinstance(imageset(x, sqrt(sin(x)), Range(5)), ImageSet) def test_halfcircle(): r, th = symbols('r, theta', real=True) L = Lambda(((r, th),), (r*cos(th), r*sin(th))) halfcircle = ImageSet(L, Interval(0, 1)*Interval(0, pi)) assert (1, 0) in halfcircle assert (0, -1) not in halfcircle assert (0, 0) in halfcircle assert halfcircle._contains((r, 0)) is None # This one doesn't work: #assert (r, 2*pi) not in halfcircle assert not halfcircle.is_iterable def test_ImageSet_iterator_not_injective(): L = Lambda(x, x - x % 2) # produces 0, 2, 2, 4, 4, 6, 6, ... evens = ImageSet(L, S.Naturals) i = iter(evens) # No repeats here assert (next(i), next(i), next(i), next(i)) == (0, 2, 4, 6) def test_inf_Range_len(): raises(ValueError, lambda: len(Range(0, oo, 2))) assert Range(0, oo, 2).size is S.Infinity assert Range(0, -oo, -2).size is S.Infinity assert Range(oo, 0, -2).size is S.Infinity assert Range(-oo, 0, 2).size is S.Infinity def test_Range_set(): empty = Range(0) assert Range(5) == Range(0, 5) == Range(0, 5, 1) r = Range(10, 20, 2) assert 12 in r assert 8 not in r assert 11 not in r assert 30 not in r assert list(Range(0, 5)) == list(range(5)) assert list(Range(5, 0, -1)) == list(range(5, 0, -1)) assert Range(5, 15).sup == 14 assert Range(5, 15).inf == 5 assert Range(15, 5, -1).sup == 15 assert Range(15, 5, -1).inf == 6 assert Range(10, 67, 10).sup == 60 assert Range(60, 7, -10).inf == 10 assert len(Range(10, 38, 10)) == 3 assert Range(0, 0, 5) == empty assert Range(oo, oo, 1) == empty assert Range(oo, 1, 1) == empty assert Range(-oo, 1, -1) == empty assert Range(1, oo, -1) == empty assert Range(1, -oo, 1) == empty assert Range(1, -4, oo) == empty ip = symbols('ip', positive=True) assert Range(0, ip, -1) == empty assert Range(0, -ip, 1) == empty assert Range(1, -4, -oo) == Range(1, 2) assert Range(1, 4, oo) == Range(1, 2) assert Range(-oo, oo).size == oo assert Range(oo, -oo, -1).size == oo raises(ValueError, lambda: Range(-oo, oo, 2)) raises(ValueError, lambda: Range(x, pi, y)) raises(ValueError, lambda: Range(x, y, 0)) assert 5 in Range(0, oo, 5) assert -5 in Range(-oo, 0, 5) assert oo not in Range(0, oo) ni = symbols('ni', integer=False) assert ni not in Range(oo) u = symbols('u', integer=None) assert Range(oo).contains(u) is not False inf = symbols('inf', infinite=True) assert inf not in Range(-oo, oo) raises(ValueError, lambda: Range(0, oo, 2)[-1]) raises(ValueError, lambda: Range(0, -oo, -2)[-1]) assert Range(-oo, 1, 1)[-1] is S.Zero assert Range(oo, 1, -1)[-1] == 2 assert inf not in Range(oo) assert Range(1, 10, 1)[-1] == 9 assert all(i.is_Integer for i in Range(0, -1, 1)) it = iter(Range(-oo, 0, 2)) raises(TypeError, lambda: next(it)) assert empty.intersect(S.Integers) == empty assert Range(-1, 10, 1).intersect(S.Integers) == Range(-1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals) == Range(1, 10, 1) assert Range(-1, 10, 1).intersect(S.Naturals0) == Range(0, 10, 1) # test slicing assert Range(1, 10, 1)[5] == 6 assert Range(1, 12, 2)[5] == 11 assert Range(1, 10, 1)[-1] == 9 assert Range(1, 10, 3)[-1] == 7 raises(ValueError, lambda: Range(oo,0,-1)[1:3:0]) raises(ValueError, lambda: Range(oo,0,-1)[:1]) raises(ValueError, lambda: Range(1, oo)[-2]) raises(ValueError, lambda: Range(-oo, 1)[2]) raises(IndexError, lambda: Range(10)[-20]) raises(IndexError, lambda: Range(10)[20]) raises(ValueError, lambda: Range(2, -oo, -2)[2:2:0]) assert Range(2, -oo, -2)[2:2:2] == empty assert Range(2, -oo, -2)[:2:2] == Range(2, -2, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:2]) assert Range(-oo, 4, 2)[::-2] == Range(2, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[::2]) assert Range(oo, 2, -2)[::] == Range(oo, 2, -2) assert Range(-oo, 4, 2)[:-2:-2] == Range(2, 0, -4) assert Range(-oo, 4, 2)[:-2:2] == Range(-oo, 0, 4) raises(ValueError, lambda: Range(-oo, 4, 2)[:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[:2:-2]) assert Range(-oo, 4, 2)[-2::-2] == Range(0, -oo, -4) raises(ValueError, lambda: Range(-oo, 4, 2)[-2:0:-2]) raises(ValueError, lambda: Range(-oo, 4, 2)[0::2]) assert Range(oo, 2, -2)[0::] == Range(oo, 2, -2) raises(ValueError, lambda: Range(-oo, 4, 2)[0:-2:2]) assert Range(oo, 2, -2)[0:-2:] == Range(oo, 6, -2) raises(ValueError, lambda: Range(oo, 2, -2)[0:2:]) raises(ValueError, lambda: Range(-oo, 4, 2)[2::-1]) assert Range(-oo, 4, 2)[-2::2] == Range(0, 4, 4) assert Range(oo, 0, -2)[-10:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[0]) raises(ValueError, lambda: Range(oo, 0, -2)[-10:10:2]) raises(ValueError, lambda: Range(oo, 0, -2)[0::-2]) assert Range(oo, 0, -2)[0:-4:-2] == empty assert Range(oo, 0, -2)[:0:2] == empty raises(ValueError, lambda: Range(oo, 0, -2)[:1:-1]) # test empty Range assert Range(x, x, y) == empty assert empty.reversed == empty assert 0 not in empty assert list(empty) == [] assert len(empty) == 0 assert empty.size is S.Zero assert empty.intersect(FiniteSet(0)) is S.EmptySet assert bool(empty) is False raises(IndexError, lambda: empty[0]) assert empty[:0] == empty raises(NotImplementedError, lambda: empty.inf) raises(NotImplementedError, lambda: empty.sup) assert empty.as_relational(x) is S.false AB = [None] + list(range(12)) for R in [ Range(1, 10), Range(1, 10, 2), ]: r = list(R) for a, b, c in itertools.product(AB, AB, [-3, -1, None, 1, 3]): for reverse in range(2): r = list(reversed(r)) R = R.reversed result = list(R[a:b:c]) ans = r[a:b:c] txt = ('\n%s[%s:%s:%s] = %s -> %s' % ( R, a, b, c, result, ans)) check = ans == result assert check, txt assert Range(1, 10, 1).boundary == Range(1, 10, 1) for r in (Range(1, 10, 2), Range(1, oo, 2)): rev = r.reversed assert r.inf == rev.inf and r.sup == rev.sup assert r.step == -rev.step builtin_range = range raises(TypeError, lambda: Range(builtin_range(1))) assert S(builtin_range(10)) == Range(10) assert S(builtin_range(1000000000000)) == Range(1000000000000) # test Range.as_relational assert Range(1, 4).as_relational(x) == (x >= 1) & (x <= 3) & Eq(Mod(x, 1), 0) assert Range(oo, 1, -2).as_relational(x) == (x >= 3) & (x < oo) & Eq(Mod(x + 1, -2), 0) def test_Range_symbolic(): # symbolic Range xr = Range(x, x + 4, 5) sr = Range(x, y, t) i = Symbol('i', integer=True) ip = Symbol('i', integer=True, positive=True) ipr = Range(ip) inr = Range(0, -ip, -1) ir = Range(i, i + 19, 2) ir2 = Range(i, i*8, 3*i) i = Symbol('i', integer=True) inf = symbols('inf', infinite=True) raises(ValueError, lambda: Range(inf)) raises(ValueError, lambda: Range(inf, 0, -1)) raises(ValueError, lambda: Range(inf, inf, 1)) raises(ValueError, lambda: Range(1, 1, inf)) # args assert xr.args == (x, x + 5, 5) assert sr.args == (x, y, t) assert ir.args == (i, i + 20, 2) assert ir2.args == (i, 10*i, 3*i) # reversed raises(ValueError, lambda: xr.reversed) raises(ValueError, lambda: sr.reversed) assert ipr.reversed.args == (ip - 1, -1, -1) assert inr.reversed.args == (-ip + 1, 1, 1) assert ir.reversed.args == (i + 18, i - 2, -2) assert ir2.reversed.args == (7*i, -2*i, -3*i) # contains assert inf not in sr assert inf not in ir assert 0 in ipr assert 0 in inr raises(TypeError, lambda: 1 in ipr) raises(TypeError, lambda: -1 in inr) assert .1 not in sr assert .1 not in ir assert i + 1 not in ir assert i + 2 in ir raises(TypeError, lambda: x in xr) # XXX is this what contains is supposed to do? raises(TypeError, lambda: 1 in sr) # XXX is this what contains is supposed to do? # iter raises(ValueError, lambda: next(iter(xr))) raises(ValueError, lambda: next(iter(sr))) assert next(iter(ir)) == i assert next(iter(ir2)) == i assert sr.intersect(S.Integers) == sr assert sr.intersect(FiniteSet(x)) == Intersection({x}, sr) raises(ValueError, lambda: sr[:2]) raises(ValueError, lambda: xr[0]) raises(ValueError, lambda: sr[0]) # len assert len(ir) == ir.size == 10 assert len(ir2) == ir2.size == 3 raises(ValueError, lambda: len(xr)) raises(ValueError, lambda: xr.size) raises(ValueError, lambda: len(sr)) raises(ValueError, lambda: sr.size) # bool assert bool(Range(0)) == False assert bool(xr) assert bool(ir) assert bool(ipr) assert bool(inr) raises(ValueError, lambda: bool(sr)) raises(ValueError, lambda: bool(ir2)) # inf raises(ValueError, lambda: xr.inf) raises(ValueError, lambda: sr.inf) assert ipr.inf == 0 assert inr.inf == -ip + 1 assert ir.inf == i raises(ValueError, lambda: ir2.inf) # sup raises(ValueError, lambda: xr.sup) raises(ValueError, lambda: sr.sup) assert ipr.sup == ip - 1 assert inr.sup == 0 assert ir.inf == i raises(ValueError, lambda: ir2.sup) # getitem raises(ValueError, lambda: xr[0]) raises(ValueError, lambda: sr[0]) raises(ValueError, lambda: sr[-1]) raises(ValueError, lambda: sr[:2]) assert ir[:2] == Range(i, i + 4, 2) assert ir[0] == i assert ir[-2] == i + 16 assert ir[-1] == i + 18 assert ir2[:2] == Range(i, 7*i, 3*i) assert ir2[0] == i assert ir2[-2] == 4*i assert ir2[-1] == 7*i raises(ValueError, lambda: Range(i)[-1]) assert ipr[0] == ipr.inf == 0 assert ipr[-1] == ipr.sup == ip - 1 assert inr[0] == inr.sup == 0 assert inr[-1] == inr.inf == -ip + 1 raises(ValueError, lambda: ipr[-2]) assert ir.inf == i assert ir.sup == i + 18 raises(ValueError, lambda: Range(i).inf) # as_relational assert ir.as_relational(x) == ((x >= i) & (x <= i + 18) & Eq(Mod(-i + x, 2), 0)) assert ir2.as_relational(x) == Eq( Mod(-i + x, 3*i), 0) & (((x >= i) & (x <= 7*i) & (3*i >= 1)) | ((x <= i) & (x >= 7*i) & (3*i <= -1))) assert Range(i, i + 1).as_relational(x) == Eq(x, i) assert sr.as_relational(z) == Eq( Mod(t, 1), 0) & Eq(Mod(x, 1), 0) & Eq(Mod(-x + z, t), 0 ) & (((z >= x) & (z <= -t + y) & (t >= 1)) | ((z <= x) & (z >= -t + y) & (t <= -1))) assert xr.as_relational(z) == Eq(z, x) & Eq(Mod(x, 1), 0) # symbols can clash if user wants (but it must be integer) assert xr.as_relational(x) == Eq(Mod(x, 1), 0) # contains() for symbolic values (issue #18146) e = Symbol('e', integer=True, even=True) o = Symbol('o', integer=True, odd=True) assert Range(5).contains(i) == And(i >= 0, i <= 4) assert Range(1).contains(i) == Eq(i, 0) assert Range(-oo, 5, 1).contains(i) == (i <= 4) assert Range(-oo, oo).contains(i) == True assert Range(0, 8, 2).contains(i) == Contains(i, Range(0, 8, 2)) assert Range(0, 8, 2).contains(e) == And(e >= 0, e <= 6) assert Range(0, 8, 2).contains(2*i) == And(2*i >= 0, 2*i <= 6) assert Range(0, 8, 2).contains(o) == False assert Range(1, 9, 2).contains(e) == False assert Range(1, 9, 2).contains(o) == And(o >= 1, o <= 7) assert Range(8, 0, -2).contains(o) == False assert Range(9, 1, -2).contains(o) == And(o >= 3, o <= 9) assert Range(-oo, 8, 2).contains(i) == Contains(i, Range(-oo, 8, 2)) def test_range_range_intersection(): for a, b, r in [ (Range(0), Range(1), S.EmptySet), (Range(3), Range(4, oo), S.EmptySet), (Range(3), Range(-3, -1), S.EmptySet), (Range(1, 3), Range(0, 3), Range(1, 3)), (Range(1, 3), Range(1, 4), Range(1, 3)), (Range(1, oo, 2), Range(2, oo, 2), S.EmptySet), (Range(0, oo, 2), Range(oo), Range(0, oo, 2)), (Range(0, oo, 2), Range(100), Range(0, 100, 2)), (Range(2, oo, 2), Range(oo), Range(2, oo, 2)), (Range(0, oo, 2), Range(5, 6), S.EmptySet), (Range(2, 80, 1), Range(55, 71, 4), Range(55, 71, 4)), (Range(0, 6, 3), Range(-oo, 5, 3), S.EmptySet), (Range(0, oo, 2), Range(5, oo, 3), Range(8, oo, 6)), (Range(4, 6, 2), Range(2, 16, 7), S.EmptySet),]: assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r a, b = b, a assert a.intersect(b) == r assert a.intersect(b.reversed) == r assert a.reversed.intersect(b) == r assert a.reversed.intersect(b.reversed) == r def test_range_interval_intersection(): p = symbols('p', positive=True) assert isinstance(Range(3).intersect(Interval(p, p + 2)), Intersection) assert Range(4).intersect(Interval(0, 3)) == Range(4) assert Range(4).intersect(Interval(-oo, oo)) == Range(4) assert Range(4).intersect(Interval(1, oo)) == Range(1, 4) assert Range(4).intersect(Interval(1.1, oo)) == Range(2, 4) assert Range(4).intersect(Interval(0.1, 3)) == Range(1, 4) assert Range(4).intersect(Interval(0.1, 3.1)) == Range(1, 4) assert Range(4).intersect(Interval.open(0, 3)) == Range(1, 3) assert Range(4).intersect(Interval.open(0.1, 0.5)) is S.EmptySet # Null Range intersections assert Range(0).intersect(Interval(0.2, 0.8)) is S.EmptySet assert Range(0).intersect(Interval(-oo, oo)) is S.EmptySet def test_range_is_finite_set(): assert Range(-100, 100).is_finite_set is True assert Range(2, oo).is_finite_set is False assert Range(-oo, 50).is_finite_set is False assert Range(-oo, oo).is_finite_set is False assert Range(oo, -oo).is_finite_set is True assert Range(0, 0).is_finite_set is True assert Range(oo, oo).is_finite_set is True assert Range(-oo, -oo).is_finite_set is True n = Symbol('n', integer=True) m = Symbol('m', integer=True) assert Range(n, n + 49).is_finite_set is True assert Range(n, 0).is_finite_set is True assert Range(-3, n + 7).is_finite_set is True assert Range(n, m).is_finite_set is True assert Range(n + m, m - n).is_finite_set is True assert Range(n, n + m + n).is_finite_set is True assert Range(n, oo).is_finite_set is False assert Range(-oo, n).is_finite_set is False assert Range(n, -oo).is_finite_set is True assert Range(oo, n).is_finite_set is True def test_Range_is_iterable(): assert Range(-100, 100).is_iterable is True assert Range(2, oo).is_iterable is False assert Range(-oo, 50).is_iterable is False assert Range(-oo, oo).is_iterable is False assert Range(oo, -oo).is_iterable is True assert Range(0, 0).is_iterable is True assert Range(oo, oo).is_iterable is True assert Range(-oo, -oo).is_iterable is True n = Symbol('n', integer=True) m = Symbol('m', integer=True) p = Symbol('p', integer=True, positive=True) assert Range(n, n + 49).is_iterable is True assert Range(n, 0).is_iterable is False assert Range(-3, n + 7).is_iterable is False assert Range(-3, p + 7).is_iterable is False # Should work with better __iter__ assert Range(n, m).is_iterable is False assert Range(n + m, m - n).is_iterable is False assert Range(n, n + m + n).is_iterable is False assert Range(n, oo).is_iterable is False assert Range(-oo, n).is_iterable is False x = Symbol('x') assert Range(x, x + 49).is_iterable is False assert Range(x, 0).is_iterable is False assert Range(-3, x + 7).is_iterable is False assert Range(x, m).is_iterable is False assert Range(x + m, m - x).is_iterable is False assert Range(x, x + m + x).is_iterable is False assert Range(x, oo).is_iterable is False assert Range(-oo, x).is_iterable is False def test_Integers_eval_imageset(): ans = ImageSet(Lambda(x, 2*x + Rational(3, 7)), S.Integers) im = imageset(Lambda(x, -2*x + Rational(3, 7)), S.Integers) assert im == ans im = imageset(Lambda(x, -2*x - Rational(11, 7)), S.Integers) assert im == ans y = Symbol('y') L = imageset(x, 2*x + y, S.Integers) assert y + 4 in L a, b, c = 0.092, 0.433, 0.341 assert a in imageset(x, a + c*x, S.Integers) assert b in imageset(x, b + c*x, S.Integers) _x = symbols('x', negative=True) eq = _x**2 - _x + 1 assert imageset(_x, eq, S.Integers).lamda.expr == _x**2 + _x + 1 eq = 3*_x - 1 assert imageset(_x, eq, S.Integers).lamda.expr == 3*_x + 2 assert imageset(x, (x, 1/x), S.Integers) == \ ImageSet(Lambda(x, (x, 1/x)), S.Integers) def test_Range_eval_imageset(): a, b, c = symbols('a b c') assert imageset(x, a*(x + b) + c, Range(3)) == \ imageset(x, a*x + a*b + c, Range(3)) eq = (x + 1)**2 assert imageset(x, eq, Range(3)).lamda.expr == eq eq = a*(x + b) + c r = Range(3, -3, -2) imset = imageset(x, eq, r) assert imset.lamda.expr != eq assert list(imset) == [eq.subs(x, i).expand() for i in list(r)] def test_fun(): assert (FiniteSet(*ImageSet(Lambda(x, sin(pi*x/4)), Range(-10, 11))) == FiniteSet(-1, -sqrt(2)/2, 0, sqrt(2)/2, 1)) def test_Range_is_empty(): i = Symbol('i', integer=True) n = Symbol('n', negative=True, integer=True) p = Symbol('p', positive=True, integer=True) assert Range(0).is_empty assert not Range(1).is_empty assert Range(1, 0).is_empty assert not Range(-1, 0).is_empty assert Range(i).is_empty is None assert Range(n).is_empty assert Range(p).is_empty is False assert Range(n, 0).is_empty is False assert Range(n, p).is_empty is False assert Range(p, n).is_empty assert Range(n, -1).is_empty is None assert Range(p, n, -1).is_empty is False def test_Reals(): assert 5 in S.Reals assert S.Pi in S.Reals assert -sqrt(2) in S.Reals assert (2, 5) not in S.Reals assert sqrt(-1) not in S.Reals assert S.Reals == Interval(-oo, oo) assert S.Reals != Interval(0, oo) assert S.Reals.is_subset(Interval(-oo, oo)) assert S.Reals.intersect(Range(-oo, oo)) == Range(-oo, oo) assert S.ComplexInfinity not in S.Reals assert S.NaN not in S.Reals assert x + S.ComplexInfinity not in S.Reals def test_Complex(): assert 5 in S.Complexes assert 5 + 4*I in S.Complexes assert S.Pi in S.Complexes assert -sqrt(2) in S.Complexes assert -I in S.Complexes assert sqrt(-1) in S.Complexes assert S.Complexes.intersect(S.Reals) == S.Reals assert S.Complexes.union(S.Reals) == S.Complexes assert S.Complexes == ComplexRegion(S.Reals*S.Reals) assert (S.Complexes == ComplexRegion(Interval(1, 2)*Interval(3, 4))) == False assert str(S.Complexes) == "Complexes" assert repr(S.Complexes) == "Complexes" def take(n, iterable): "Return first n items of the iterable as a list" return list(itertools.islice(iterable, n)) def test_intersections(): assert S.Integers.intersect(S.Reals) == S.Integers assert 5 in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(S.Reals) assert -5 not in S.Naturals.intersect(S.Reals) assert 5.5 not in S.Integers.intersect(S.Reals) assert 5 in S.Integers.intersect(Interval(3, oo)) assert -5 in S.Integers.intersect(Interval(-oo, 3)) assert all(x.is_Integer for x in take(10, S.Integers.intersect(Interval(3, oo)) )) def test_infinitely_indexed_set_1(): from sympy.abc import n, m assert imageset(Lambda(n, n), S.Integers) == imageset(Lambda(m, m), S.Integers) assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(m, 2*m + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(n, 2*n), S.Integers).intersect( imageset(Lambda(n, 2*n + 1), S.Integers)) is S.EmptySet assert imageset(Lambda(m, 2*m), S.Integers).intersect( imageset(Lambda(n, 3*n), S.Integers)).dummy_eq( ImageSet(Lambda(t, 6*t), S.Integers)) assert imageset(x, x/2 + Rational(1, 3), S.Integers).intersect(S.Integers) is S.EmptySet assert imageset(x, x/2 + S.Half, S.Integers).intersect(S.Integers) is S.Integers # https://github.com/sympy/sympy/issues/17355 S53 = ImageSet(Lambda(n, 5*n + 3), S.Integers) assert S53.intersect(S.Integers) == S53 def test_infinitely_indexed_set_2(): from sympy.abc import n a = Symbol('a', integer=True) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, n + a), S.Integers) assert imageset(Lambda(n, n + pi), S.Integers) == \ imageset(Lambda(n, n + a + pi), S.Integers) assert imageset(Lambda(n, n), S.Integers) == \ imageset(Lambda(n, -n + a), S.Integers) assert imageset(Lambda(n, -6*n), S.Integers) == \ ImageSet(Lambda(n, 6*n), S.Integers) assert imageset(Lambda(n, 2*n + pi), S.Integers) == \ ImageSet(Lambda(n, 2*n + pi - 2), S.Integers) def test_imageset_intersect_real(): from sympy.abc import n assert imageset(Lambda(n, n + (n - 1)*(n + 1)*I), S.Integers).intersect(S.Reals) == FiniteSet(-1, 1) im = (n - 1)*(n + S.Half) assert imageset(Lambda(n, n + im*I), S.Integers ).intersect(S.Reals) == FiniteSet(1) assert imageset(Lambda(n, n + im*(n + 1)*I), S.Naturals0 ).intersect(S.Reals) == FiniteSet(1) assert imageset(Lambda(n, n/2 + im.expand()*I), S.Integers ).intersect(S.Reals) == ImageSet(Lambda(x, x/2), ConditionSet( n, Eq(n**2 - n/2 - S(1)/2, 0), S.Integers)) assert imageset(Lambda(n, n/(1/n - 1) + im*(n + 1)*I), S.Integers ).intersect(S.Reals) == FiniteSet(S.Half) assert imageset(Lambda(n, n/(n - 6) + (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect( S.Reals) == FiniteSet(-1) assert imageset(Lambda(n, n/(n**2 - 9) + (n - 3)*(n + 1)*I/(2*n + 2)), S.Integers).intersect( S.Reals) is S.EmptySet s = ImageSet( Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) # s is unevaluated, but after intersection the result # should be canonical assert s.intersect(S.Reals) == imageset( Lambda(n, 2*n*pi - pi/4), S.Integers) == ImageSet( Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers) def test_imageset_intersect_interval(): from sympy.abc import n f1 = ImageSet(Lambda(n, n*pi), S.Integers) f2 = ImageSet(Lambda(n, 2*n), Interval(0, pi)) f3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers) # complex expressions f4 = ImageSet(Lambda(n, n*I*pi), S.Integers) f5 = ImageSet(Lambda(n, 2*I*n*pi + pi/2), S.Integers) # non-linear expressions f6 = ImageSet(Lambda(n, log(n)), S.Integers) f7 = ImageSet(Lambda(n, n**2), S.Integers) f8 = ImageSet(Lambda(n, Abs(n)), S.Integers) f9 = ImageSet(Lambda(n, exp(n)), S.Naturals0) assert f1.intersect(Interval(-1, 1)) == FiniteSet(0) assert f1.intersect(Interval(0, 2*pi, False, True)) == FiniteSet(0, pi) assert f2.intersect(Interval(1, 2)) == Interval(1, 2) assert f3.intersect(Interval(-1, 1)) == S.EmptySet assert f3.intersect(Interval(-5, 5)) == FiniteSet(pi*Rational(-3, 2), pi/2) assert f4.intersect(Interval(-1, 1)) == FiniteSet(0) assert f4.intersect(Interval(1, 2)) == S.EmptySet assert f5.intersect(Interval(0, 1)) == S.EmptySet assert f6.intersect(Interval(0, 1)) == FiniteSet(S.Zero, log(2)) assert f7.intersect(Interval(0, 10)) == Intersection(f7, Interval(0, 10)) assert f8.intersect(Interval(0, 2)) == Intersection(f8, Interval(0, 2)) assert f9.intersect(Interval(1, 2)) == Intersection(f9, Interval(1, 2)) def test_imageset_intersect_diophantine(): from sympy.abc import m, n # Check that same lambda variable for both ImageSets is handled correctly img1 = ImageSet(Lambda(n, 2*n + 1), S.Integers) img2 = ImageSet(Lambda(n, 4*n + 1), S.Integers) assert img1.intersect(img2) == img2 # Empty solution set returned by diophantine: assert ImageSet(Lambda(n, 2*n), S.Integers).intersect( ImageSet(Lambda(n, 2*n + 1), S.Integers)) == S.EmptySet # Check intersection with S.Integers: assert ImageSet(Lambda(n, 9/n + 20*n/3), S.Integers).intersect( S.Integers) == FiniteSet(-61, -23, 23, 61) # Single solution (2, 3) for diophantine solution: assert ImageSet(Lambda(n, (n - 2)**2), S.Integers).intersect( ImageSet(Lambda(n, -(n - 3)**2), S.Integers)) == FiniteSet(0) # Single parametric solution for diophantine solution: assert ImageSet(Lambda(n, n**2 + 5), S.Integers).intersect( ImageSet(Lambda(m, 2*m), S.Integers)).dummy_eq(ImageSet( Lambda(n, 4*n**2 + 4*n + 6), S.Integers)) # 4 non-parametric solution couples for dioph. equation: assert ImageSet(Lambda(n, n**2 - 9), S.Integers).intersect( ImageSet(Lambda(m, -m**2), S.Integers)) == FiniteSet(-9, 0) # Double parametric solution for diophantine solution: assert ImageSet(Lambda(m, m**2 + 40), S.Integers).intersect( ImageSet(Lambda(n, 41*n), S.Integers)).dummy_eq(Intersection( ImageSet(Lambda(m, m**2 + 40), S.Integers), ImageSet(Lambda(n, 41*n), S.Integers))) # Check that diophantine returns *all* (8) solutions (permute=True) assert ImageSet(Lambda(n, n**4 - 2**4), S.Integers).intersect( ImageSet(Lambda(m, -m**4 + 3**4), S.Integers)) == FiniteSet(0, 65) assert ImageSet(Lambda(n, pi/12 + n*5*pi/12), S.Integers).intersect( ImageSet(Lambda(n, 7*pi/12 + n*11*pi/12), S.Integers)).dummy_eq(ImageSet( Lambda(n, 55*pi*n/12 + 17*pi/4), S.Integers)) # TypeError raised by diophantine (#18081) assert ImageSet(Lambda(n, n*log(2)), S.Integers).intersection( S.Integers).dummy_eq(Intersection(ImageSet( Lambda(n, n*log(2)), S.Integers), S.Integers)) # NotImplementedError raised by diophantine (no solver for cubic_thue) assert ImageSet(Lambda(n, n**3 + 1), S.Integers).intersect( ImageSet(Lambda(n, n**3), S.Integers)).dummy_eq(Intersection( ImageSet(Lambda(n, n**3 + 1), S.Integers), ImageSet(Lambda(n, n**3), S.Integers))) def test_infinitely_indexed_set_3(): from sympy.abc import n, m assert imageset(Lambda(m, 2*pi*m), S.Integers).intersect( imageset(Lambda(n, 3*pi*n), S.Integers)).dummy_eq( ImageSet(Lambda(t, 6*pi*t), S.Integers)) assert imageset(Lambda(n, 2*n + 1), S.Integers) == \ imageset(Lambda(n, 2*n - 1), S.Integers) assert imageset(Lambda(n, 3*n + 2), S.Integers) == \ imageset(Lambda(n, 3*n - 1), S.Integers) def test_ImageSet_simplification(): from sympy.abc import n, m assert imageset(Lambda(n, n), S.Integers) == S.Integers assert imageset(Lambda(n, sin(n)), imageset(Lambda(m, tan(m)), S.Integers)) == \ imageset(Lambda(m, sin(tan(m))), S.Integers) assert imageset(n, 1 + 2*n, S.Naturals) == Range(3, oo, 2) assert imageset(n, 1 + 2*n, S.Naturals0) == Range(1, oo, 2) assert imageset(n, 1 - 2*n, S.Naturals) == Range(-1, -oo, -2) def test_ImageSet_contains(): assert (2, S.Half) in imageset(x, (x, 1/x), S.Integers) assert imageset(x, x + I*3, S.Integers).intersection(S.Reals) is S.EmptySet i = Dummy(integer=True) q = imageset(x, x + I*y, S.Integers).intersection(S.Reals) assert q.subs(y, I*i).intersection(S.Integers) is S.Integers q = imageset(x, x + I*y/x, S.Integers).intersection(S.Reals) assert q.subs(y, 0) is S.Integers assert q.subs(y, I*i*x).intersection(S.Integers) is S.Integers z = cos(1)**2 + sin(1)**2 - 1 q = imageset(x, x + I*z, S.Integers).intersection(S.Reals) assert q is not S.EmptySet def test_ComplexRegion_contains(): r = Symbol('r', real=True) # contains in ComplexRegion a = Interval(2, 3) b = Interval(4, 6) c = Interval(7, 9) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*b, c*a)) assert 2.5 + 4.5*I in c1 assert 2 + 4*I in c1 assert 3 + 4*I in c1 assert 8 + 2.5*I in c2 assert 2.5 + 6.1*I not in c1 assert 4.5 + 3.2*I not in c1 assert c1.contains(x) == Contains(x, c1, evaluate=False) assert c1.contains(r) == False assert c2.contains(x) == Contains(x, c2, evaluate=False) assert c2.contains(r) == False r1 = Interval(0, 1) theta1 = Interval(0, 2*S.Pi) c3 = ComplexRegion(r1*theta1, polar=True) assert (0.5 + I*6/10) in c3 assert (S.Half + I*6/10) in c3 assert (S.Half + .6*I) in c3 assert (0.5 + .6*I) in c3 assert I in c3 assert 1 in c3 assert 0 in c3 assert 1 + I not in c3 assert 1 - I not in c3 assert c3.contains(x) == Contains(x, c3, evaluate=False) assert c3.contains(r + 2*I) == Contains( r + 2*I, c3, evaluate=False) # is in fact False assert c3.contains(1/(1 + r**2)) == Contains( 1/(1 + r**2), c3, evaluate=False) # is in fact True r2 = Interval(0, 3) theta2 = Interval(pi, 2*pi, left_open=True) c4 = ComplexRegion(r2*theta2, polar=True) assert c4.contains(0) == True assert c4.contains(2 + I) == False assert c4.contains(-2 + I) == False assert c4.contains(-2 - I) == True assert c4.contains(2 - I) == True assert c4.contains(-2) == False assert c4.contains(2) == True assert c4.contains(x) == Contains(x, c4, evaluate=False) assert c4.contains(3/(1 + r**2)) == Contains( 3/(1 + r**2), c4, evaluate=False) # is in fact True raises(ValueError, lambda: ComplexRegion(r1*theta1, polar=2)) def test_symbolic_Range(): n = Symbol('n') raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) raises(ValueError, lambda: Range(n, n+1)[0]) raises(ValueError, lambda: Range(n).size) n = Symbol('n', integer=True) raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) assert Range(n, n+1)[0] == n raises(ValueError, lambda: Range(n).size) assert Range(n, n+1).size == 1 n = Symbol('n', integer=True, nonnegative=True) raises(ValueError, lambda: Range(n)[0]) raises(IndexError, lambda: Range(n, n)[0]) assert Range(n+1)[0] == 0 assert Range(n, n+1)[0] == n assert Range(n).size == n assert Range(n+1).size == n+1 assert Range(n, n+1).size == 1 n = Symbol('n', integer=True, positive=True) assert Range(n)[0] == 0 assert Range(n, n+1)[0] == n assert Range(n).size == n assert Range(n, n+1).size == 1 m = Symbol('m', integer=True, positive=True) assert Range(n, n+m)[0] == n assert Range(n, n+m).size == m assert Range(n, n+1).size == 1 assert Range(n, n+m, 2).size == floor(m/2) m = Symbol('m', integer=True, positive=True, even=True) assert Range(n, n+m, 2).size == m/2 def test_issue_18400(): n = Symbol('n', integer=True) raises(ValueError, lambda: imageset(lambda x: x*2, Range(n))) n = Symbol('n', integer=True, positive=True) # No exception assert imageset(lambda x: x*2, Range(n)) == imageset(lambda x: x*2, Range(n)) def test_ComplexRegion_intersect(): # Polar form X_axis = ComplexRegion(Interval(0, oo)*FiniteSet(0, S.Pi), polar=True) unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) upper_half_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) lower_half_disk = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) right_half_disk = ComplexRegion(Interval(0, oo)*Interval(-S.Pi/2, S.Pi/2), polar=True) first_quad_disk = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi/2), polar=True) assert upper_half_disk.intersect(unit_disk) == upper_half_unit_disk assert right_half_disk.intersect(first_quad_disk) == first_quad_disk assert upper_half_disk.intersect(right_half_disk) == first_quad_disk assert upper_half_disk.intersect(lower_half_disk) == X_axis c1 = ComplexRegion(Interval(0, 4)*Interval(0, 2*S.Pi), polar=True) assert c1.intersect(Interval(1, 5)) == Interval(1, 4) assert c1.intersect(Interval(4, 9)) == FiniteSet(4) assert c1.intersect(Interval(5, 12)) is S.EmptySet # Rectangular form X_axis = ComplexRegion(Interval(-oo, oo)*FiniteSet(0)) unit_square = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) upper_half_unit_square = ComplexRegion(Interval(-1, 1)*Interval(0, 1)) upper_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(0, oo)) lower_half_plane = ComplexRegion(Interval(-oo, oo)*Interval(-oo, 0)) right_half_plane = ComplexRegion(Interval(0, oo)*Interval(-oo, oo)) first_quad_plane = ComplexRegion(Interval(0, oo)*Interval(0, oo)) assert upper_half_plane.intersect(unit_square) == upper_half_unit_square assert right_half_plane.intersect(first_quad_plane) == first_quad_plane assert upper_half_plane.intersect(right_half_plane) == first_quad_plane assert upper_half_plane.intersect(lower_half_plane) == X_axis c1 = ComplexRegion(Interval(-5, 5)*Interval(-10, 10)) assert c1.intersect(Interval(2, 7)) == Interval(2, 5) assert c1.intersect(Interval(5, 7)) == FiniteSet(5) assert c1.intersect(Interval(6, 9)) is S.EmptySet # unevaluated object C1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) C2 = ComplexRegion(Interval(-1, 1)*Interval(-1, 1)) assert C1.intersect(C2) == Intersection(C1, C2, evaluate=False) def test_ComplexRegion_union(): # Polar form c1 = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) c2 = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) c3 = ComplexRegion(Interval(0, oo)*Interval(0, S.Pi), polar=True) c4 = ComplexRegion(Interval(0, oo)*Interval(S.Pi, 2*S.Pi), polar=True) p1 = Union(Interval(0, 1)*Interval(0, 2*S.Pi), Interval(0, 1)*Interval(0, S.Pi)) p2 = Union(Interval(0, oo)*Interval(0, S.Pi), Interval(0, oo)*Interval(S.Pi, 2*S.Pi)) assert c1.union(c2) == ComplexRegion(p1, polar=True) assert c3.union(c4) == ComplexRegion(p2, polar=True) # Rectangular form c5 = ComplexRegion(Interval(2, 5)*Interval(6, 9)) c6 = ComplexRegion(Interval(4, 6)*Interval(10, 12)) c7 = ComplexRegion(Interval(0, 10)*Interval(-10, 0)) c8 = ComplexRegion(Interval(12, 16)*Interval(14, 20)) p3 = Union(Interval(2, 5)*Interval(6, 9), Interval(4, 6)*Interval(10, 12)) p4 = Union(Interval(0, 10)*Interval(-10, 0), Interval(12, 16)*Interval(14, 20)) assert c5.union(c6) == ComplexRegion(p3) assert c7.union(c8) == ComplexRegion(p4) assert c1.union(Interval(2, 4)) == Union(c1, Interval(2, 4), evaluate=False) assert c5.union(Interval(2, 4)) == Union(c5, ComplexRegion.from_real(Interval(2, 4))) def test_ComplexRegion_from_real(): c1 = ComplexRegion(Interval(0, 1) * Interval(0, 2 * S.Pi), polar=True) raises(ValueError, lambda: c1.from_real(c1)) assert c1.from_real(Interval(-1, 1)) == ComplexRegion(Interval(-1, 1) * FiniteSet(0), False) def test_ComplexRegion_measure(): a, b = Interval(2, 5), Interval(4, 8) theta1, theta2 = Interval(0, 2*S.Pi), Interval(0, S.Pi) c1 = ComplexRegion(a*b) c2 = ComplexRegion(Union(a*theta1, b*theta2), polar=True) assert c1.measure == 12 assert c2.measure == 9*pi def test_normalize_theta_set(): # Interval assert normalize_theta_set(Interval(pi, 2*pi)) == \ Union(FiniteSet(0), Interval.Ropen(pi, 2*pi)) assert normalize_theta_set(Interval(pi*Rational(9, 2), 5*pi)) == Interval(pi/2, pi) assert normalize_theta_set(Interval(pi*Rational(-3, 2), pi/2)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval.open(pi*Rational(-3, 2), pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval.open(pi*Rational(-7, 2), pi*Rational(-3, 2))) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi/2, 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.open(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval(-4*pi, 3*pi)) == Interval.Ropen(0, 2*pi) assert normalize_theta_set(Interval(pi*Rational(-3, 2), -pi/2)) == Interval(pi/2, pi*Rational(3, 2)) assert normalize_theta_set(Interval.open(0, 2*pi)) == Interval.open(0, 2*pi) assert normalize_theta_set(Interval.Ropen(-pi/2, pi/2)) == \ Union(Interval.Ropen(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.Lopen(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.open(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval(-pi/2, pi/2)) == \ Union(Interval(0, pi/2), Interval.Ropen(pi*Rational(3, 2), 2*pi)) assert normalize_theta_set(Interval.open(4*pi, pi*Rational(9, 2))) == Interval.open(0, pi/2) assert normalize_theta_set(Interval.Lopen(4*pi, pi*Rational(9, 2))) == Interval.Lopen(0, pi/2) assert normalize_theta_set(Interval.Ropen(4*pi, pi*Rational(9, 2))) == Interval.Ropen(0, pi/2) assert normalize_theta_set(Interval.open(3*pi, 5*pi)) == \ Union(Interval.Ropen(0, pi), Interval.open(pi, 2*pi)) # FiniteSet assert normalize_theta_set(FiniteSet(0, pi, 3*pi)) == FiniteSet(0, pi) assert normalize_theta_set(FiniteSet(0, pi/2, pi, 2*pi)) == FiniteSet(0, pi/2, pi) assert normalize_theta_set(FiniteSet(0, -pi/2, -pi, -2*pi)) == FiniteSet(0, pi, pi*Rational(3, 2)) assert normalize_theta_set(FiniteSet(pi*Rational(-3, 2), pi/2)) == \ FiniteSet(pi/2) assert normalize_theta_set(FiniteSet(2*pi)) == FiniteSet(0) # Unions assert normalize_theta_set(Union(Interval(0, pi/3), Interval(pi/2, pi))) == \ Union(Interval(0, pi/3), Interval(pi/2, pi)) assert normalize_theta_set(Union(Interval(0, pi), Interval(2*pi, pi*Rational(7, 3)))) == \ Interval(0, pi) # ValueError for non-real sets raises(ValueError, lambda: normalize_theta_set(S.Complexes)) # NotImplementedError for subset of reals raises(NotImplementedError, lambda: normalize_theta_set(Interval(0, 1))) # NotImplementedError without pi as coefficient raises(NotImplementedError, lambda: normalize_theta_set(Interval(1, 2*pi))) raises(NotImplementedError, lambda: normalize_theta_set(Interval(2*pi, 10))) raises(NotImplementedError, lambda: normalize_theta_set(FiniteSet(0, 3, 3*pi))) def test_ComplexRegion_FiniteSet(): x, y, z, a, b, c = symbols('x y z a b c') # Issue #9669 assert ComplexRegion(FiniteSet(a, b, c)*FiniteSet(x, y, z)) == \ FiniteSet(a + I*x, a + I*y, a + I*z, b + I*x, b + I*y, b + I*z, c + I*x, c + I*y, c + I*z) assert ComplexRegion(FiniteSet(2)*FiniteSet(3)) == FiniteSet(2 + 3*I) def test_union_RealSubSet(): assert (S.Complexes).union(Interval(1, 2)) == S.Complexes assert (S.Complexes).union(S.Integers) == S.Complexes def test_issue_9980(): c1 = ComplexRegion(Interval(1, 2)*Interval(2, 3)) c2 = ComplexRegion(Interval(1, 5)*Interval(1, 3)) R = Union(c1, c2) assert simplify(R) == ComplexRegion(Union(Interval(1, 2)*Interval(2, 3), \ Interval(1, 5)*Interval(1, 3)), False) assert c1.func(*c1.args) == c1 assert R.func(*R.args) == R def test_issue_11732(): interval12 = Interval(1, 2) finiteset1234 = FiniteSet(1, 2, 3, 4) pointComplex = Tuple(1, 5) assert (interval12 in S.Naturals) == False assert (interval12 in S.Naturals0) == False assert (interval12 in S.Integers) == False assert (interval12 in S.Complexes) == False assert (finiteset1234 in S.Naturals) == False assert (finiteset1234 in S.Naturals0) == False assert (finiteset1234 in S.Integers) == False assert (finiteset1234 in S.Complexes) == False assert (pointComplex in S.Naturals) == False assert (pointComplex in S.Naturals0) == False assert (pointComplex in S.Integers) == False assert (pointComplex in S.Complexes) == True def test_issue_11730(): unit = Interval(0, 1) square = ComplexRegion(unit ** 2) assert Union(S.Complexes, FiniteSet(oo)) != S.Complexes assert Union(S.Complexes, FiniteSet(eye(4))) != S.Complexes assert Union(unit, square) == square assert Intersection(S.Reals, square) == unit def test_issue_11938(): unit = Interval(0, 1) ival = Interval(1, 2) cr1 = ComplexRegion(ival * unit) assert Intersection(cr1, S.Reals) == ival assert Intersection(cr1, unit) == FiniteSet(1) arg1 = Interval(0, S.Pi) arg2 = FiniteSet(S.Pi) arg3 = Interval(S.Pi / 4, 3 * S.Pi / 4) cp1 = ComplexRegion(unit * arg1, polar=True) cp2 = ComplexRegion(unit * arg2, polar=True) cp3 = ComplexRegion(unit * arg3, polar=True) assert Intersection(cp1, S.Reals) == Interval(-1, 1) assert Intersection(cp2, S.Reals) == Interval(-1, 0) assert Intersection(cp3, S.Reals) == FiniteSet(0) def test_issue_11914(): a, b = Interval(0, 1), Interval(0, pi) c, d = Interval(2, 3), Interval(pi, 3 * pi / 2) cp1 = ComplexRegion(a * b, polar=True) cp2 = ComplexRegion(c * d, polar=True) assert -3 in cp1.union(cp2) assert -3 in cp2.union(cp1) assert -5 not in cp1.union(cp2) def test_issue_9543(): assert ImageSet(Lambda(x, x**2), S.Naturals).is_subset(S.Reals) def test_issue_16871(): assert ImageSet(Lambda(x, x), FiniteSet(1)) == {1} assert ImageSet(Lambda(x, x - 3), S.Integers ).intersection(S.Integers) is S.Integers @XFAIL def test_issue_16871b(): assert ImageSet(Lambda(x, x - 3), S.Integers).is_subset(S.Integers) def test_issue_18050(): assert imageset(Lambda(x, I*x + 1), S.Integers ) == ImageSet(Lambda(x, I*x + 1), S.Integers) assert imageset(Lambda(x, 3*I*x + 4 + 8*I), S.Integers ) == ImageSet(Lambda(x, 3*I*x + 4 + 2*I), S.Integers) # no 'Mod' for next 2 tests: assert imageset(Lambda(x, 2*x + 3*I), S.Integers ) == ImageSet(Lambda(x, 2*x + 3*I), S.Integers) r = Symbol('r', positive=True) assert imageset(Lambda(x, r*x + 10), S.Integers ) == ImageSet(Lambda(x, r*x + 10), S.Integers) # reduce real part: assert imageset(Lambda(x, 3*x + 8 + 5*I), S.Integers ) == ImageSet(Lambda(x, 3*x + 2 + 5*I), S.Integers) def test_Rationals(): assert S.Integers.is_subset(S.Rationals) assert S.Naturals.is_subset(S.Rationals) assert S.Naturals0.is_subset(S.Rationals) assert S.Rationals.is_subset(S.Reals) assert S.Rationals.inf is -oo assert S.Rationals.sup is oo it = iter(S.Rationals) assert [next(it) for i in range(12)] == [ 0, 1, -1, S.Half, 2, Rational(-1, 2), -2, Rational(1, 3), 3, Rational(-1, 3), -3, Rational(2, 3)] assert Basic() not in S.Rationals assert S.Half in S.Rationals assert S.Rationals.contains(0.5) == Contains(0.5, S.Rationals, evaluate=False) assert 2 in S.Rationals r = symbols('r', rational=True) assert r in S.Rationals raises(TypeError, lambda: x in S.Rationals) # issue #18134: assert S.Rationals.boundary == S.Reals assert S.Rationals.closure == S.Reals assert S.Rationals.is_open == False assert S.Rationals.is_closed == False def test_NZQRC_unions(): # check that all trivial number set unions are simplified: nbrsets = (S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.Complexes) unions = (Union(a, b) for a in nbrsets for b in nbrsets) assert all(u.is_Union is False for u in unions) def test_imageset_intersection(): n = Dummy() s = ImageSet(Lambda(n, -I*(I*(2*pi*n - pi/4) + log(Abs(sqrt(-I))))), S.Integers) assert s.intersect(S.Reals) == ImageSet( Lambda(n, 2*pi*n + pi*Rational(7, 4)), S.Integers) def test_issue_17858(): assert 1 in Range(-oo, oo) assert 0 in Range(oo, -oo, -1) assert oo not in Range(-oo, oo) assert -oo not in Range(-oo, oo) def test_issue_17859(): r = Range(-oo,oo) raises(ValueError,lambda: r[::2]) raises(ValueError, lambda: r[::-2]) r = Range(oo,-oo,-1) raises(ValueError,lambda: r[::2]) raises(ValueError, lambda: r[::-2])
8810b5800620be8b2d4ea8426fef3bb7604efb1ed9493de77f65c638a279b0ec
from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.function import Lambda from sympy.core.numbers import (Float, I, Rational, nan, oo, pi, zoo) from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.logic.boolalg import (false, true) from sympy.matrices.dense import Matrix from sympy.polys.rootoftools import rootof from sympy.sets.contains import Contains from sympy.sets.fancysets import (ImageSet, Range) from sympy.sets.sets import (Complement, DisjointUnion, FiniteSet, Intersection, Interval, ProductSet, Set, SymmetricDifference, Union, imageset) from mpmath import mpi from sympy.core.expr import unchanged from sympy.core.relational import Eq, Ne, Le, Lt, LessThan from sympy.logic import And, Or, Xor from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy from sympy.abc import x, y, z, m, n EmptySet = S.EmptySet def test_imageset(): ints = S.Integers assert imageset(x, x - 1, S.Naturals) is S.Naturals0 assert imageset(x, x + 1, S.Naturals0) is S.Naturals assert imageset(x, abs(x), S.Naturals0) is S.Naturals0 assert imageset(x, abs(x), S.Naturals) is S.Naturals assert imageset(x, abs(x), S.Integers) is S.Naturals0 # issue 16878a r = symbols('r', real=True) assert imageset(x, (x, x), S.Reals)._contains((1, r)) == None assert imageset(x, (x, x), S.Reals)._contains((1, 2)) == False assert (r, r) in imageset(x, (x, x), S.Reals) assert 1 + I in imageset(x, x + I, S.Reals) assert {1} not in imageset(x, (x,), S.Reals) assert (1, 1) not in imageset(x, (x,), S.Reals) raises(TypeError, lambda: imageset(x, ints)) raises(ValueError, lambda: imageset(x, y, z, ints)) raises(ValueError, lambda: imageset(Lambda(x, cos(x)), y)) assert (1, 2) in imageset(Lambda((x, y), (x, y)), ints, ints) raises(ValueError, lambda: imageset(Lambda(x, x), ints, ints)) assert imageset(cos, ints) == ImageSet(Lambda(x, cos(x)), ints) def f(x): return cos(x) assert imageset(f, ints) == imageset(x, cos(x), ints) f = lambda x: cos(x) assert imageset(f, ints) == ImageSet(Lambda(x, cos(x)), ints) assert imageset(x, 1, ints) == FiniteSet(1) assert imageset(x, y, ints) == {y} assert imageset((x, y), (1, z), ints, S.Reals) == {(1, z)} clash = Symbol('x', integer=true) assert (str(imageset(lambda x: x + clash, Interval(-2, 1)).lamda.expr) in ('x0 + x', 'x + x0')) x1, x2 = symbols("x1, x2") assert imageset(lambda x, y: Add(x, y), Interval(1, 2), Interval(2, 3)).dummy_eq( ImageSet(Lambda((x1, x2), x1 + x2), Interval(1, 2), Interval(2, 3))) def test_is_empty(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_empty is False assert S.EmptySet.is_empty is True def test_is_finiteset(): for s in [S.Naturals, S.Naturals0, S.Integers, S.Rationals, S.Reals, S.UniversalSet]: assert s.is_finite_set is False assert S.EmptySet.is_finite_set is True assert FiniteSet(1, 2).is_finite_set is True assert Interval(1, 2).is_finite_set is False assert Interval(x, y).is_finite_set is None assert ProductSet(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert ProductSet(FiniteSet(1), Interval(1, 2)).is_finite_set is False assert ProductSet(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Union(Interval(0, 1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), Interval(2, 3)).is_finite_set is False assert Union(FiniteSet(1), FiniteSet(2)).is_finite_set is True assert Union(FiniteSet(1), Interval(x, y)).is_finite_set is None assert Intersection(Interval(x, y), FiniteSet(1)).is_finite_set is True assert Intersection(Interval(x, y), Interval(1, 2)).is_finite_set is None assert Intersection(FiniteSet(x), FiniteSet(y)).is_finite_set is True assert Complement(FiniteSet(1), Interval(x, y)).is_finite_set is True assert Complement(Interval(x, y), FiniteSet(1)).is_finite_set is None assert Complement(Interval(1, 2), FiniteSet(x)).is_finite_set is False assert DisjointUnion(Interval(-5, 3), FiniteSet(x, y)).is_finite_set is False assert DisjointUnion(S.EmptySet, FiniteSet(x, y), S.EmptySet).is_finite_set is True def test_deprecated_is_EmptySet(): with warns_deprecated_sympy(): S.EmptySet.is_EmptySet def test_interval_arguments(): assert Interval(0, oo) == Interval(0, oo, False, True) assert Interval(0, oo).right_open is true assert Interval(-oo, 0) == Interval(-oo, 0, True, False) assert Interval(-oo, 0).left_open is true assert Interval(oo, -oo) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(-oo, -oo) == S.EmptySet assert Interval(oo, x) == S.EmptySet assert Interval(oo, oo) == S.EmptySet assert Interval(x, -oo) == S.EmptySet assert Interval(x, x) == {x} assert isinstance(Interval(1, 1), FiniteSet) e = Sum(x, (x, 1, 3)) assert isinstance(Interval(e, e), FiniteSet) assert Interval(1, 0) == S.EmptySet assert Interval(1, 1).measure == 0 assert Interval(1, 1, False, True) == S.EmptySet assert Interval(1, 1, True, False) == S.EmptySet assert Interval(1, 1, True, True) == S.EmptySet assert isinstance(Interval(0, Symbol('a')), Interval) assert Interval(Symbol('a', positive=True), 0) == S.EmptySet raises(ValueError, lambda: Interval(0, S.ImaginaryUnit)) raises(ValueError, lambda: Interval(0, Symbol('z', extended_real=False))) raises(ValueError, lambda: Interval(x, x + S.ImaginaryUnit)) raises(NotImplementedError, lambda: Interval(0, 1, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, False, And(x, y))) raises(NotImplementedError, lambda: Interval(0, 1, z, And(x, y))) def test_interval_symbolic_end_points(): a = Symbol('a', real=True) assert Union(Interval(0, a), Interval(0, 3)).sup == Max(a, 3) assert Union(Interval(a, 0), Interval(-3, 0)).inf == Min(-3, a) assert Interval(0, a).contains(1) == LessThan(1, a) def test_interval_is_empty(): x, y = symbols('x, y') r = Symbol('r', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) nn = Symbol('nn', nonnegative=True) assert Interval(1, 2).is_empty == False assert Interval(3, 3).is_empty == False # FiniteSet assert Interval(r, r).is_empty == False # FiniteSet assert Interval(r, r + nn).is_empty == False assert Interval(x, x).is_empty == False assert Interval(1, oo).is_empty == False assert Interval(-oo, oo).is_empty == False assert Interval(-oo, 1).is_empty == False assert Interval(x, y).is_empty == None assert Interval(r, oo).is_empty == False # real implies finite assert Interval(n, 0).is_empty == False assert Interval(n, 0, left_open=True).is_empty == False assert Interval(p, 0).is_empty == True # EmptySet assert Interval(nn, 0).is_empty == None assert Interval(n, p).is_empty == False assert Interval(0, p, left_open=True).is_empty == False assert Interval(0, p, right_open=True).is_empty == False assert Interval(0, nn, left_open=True).is_empty == None assert Interval(0, nn, right_open=True).is_empty == None def test_union(): assert Union(Interval(1, 2), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 2), Interval(2, 3, True)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(2, 4)) == Interval(1, 4) assert Union(Interval(1, 2), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 3), Interval(1, 2)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(1, 2)) == \ Interval(1, 3, False, True) assert Union(Interval(1, 3), Interval(1, 2, False, True)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3)) == Interval(1, 3) assert Union(Interval(1, 2, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 2, True), Interval(1, 3, True, True)) == \ Interval(1, 3, True, True) assert Union(Interval(1, 2, True, True), Interval(1, 3, True)) == \ Interval(1, 3, True) assert Union(Interval(1, 3), Interval(2, 3)) == Interval(1, 3) assert Union(Interval(1, 3, False, True), Interval(2, 3)) == \ Interval(1, 3) assert Union(Interval(1, 2, False, True), Interval(2, 3, True)) != \ Interval(1, 3) assert Union(Interval(1, 2), S.EmptySet) == Interval(1, 2) assert Union(S.EmptySet) == S.EmptySet assert Union(Interval(0, 1), *[FiniteSet(1.0/n) for n in range(1, 10)]) == \ Interval(0, 1) # issue #18241: x = Symbol('x') assert Union(Interval(0, 1), FiniteSet(1, x)) == Union( Interval(0, 1), FiniteSet(x)) assert unchanged(Union, Interval(0, 1), FiniteSet(2, x)) assert Interval(1, 2).union(Interval(2, 3)) == \ Interval(1, 2) + Interval(2, 3) assert Interval(1, 2).union(Interval(2, 3)) == Interval(1, 3) assert Union(Set()) == Set() assert FiniteSet(1) + FiniteSet(2) + FiniteSet(3) == FiniteSet(1, 2, 3) assert FiniteSet('ham') + FiniteSet('eggs') == FiniteSet('ham', 'eggs') assert FiniteSet(1, 2, 3) + S.EmptySet == FiniteSet(1, 2, 3) assert FiniteSet(1, 2, 3) & FiniteSet(2, 3, 4) == FiniteSet(2, 3) assert FiniteSet(1, 2, 3) | FiniteSet(2, 3, 4) == FiniteSet(1, 2, 3, 4) assert FiniteSet(1, 2, 3) & S.EmptySet == S.EmptySet assert FiniteSet(1, 2, 3) | S.EmptySet == FiniteSet(1, 2, 3) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert S.EmptySet | FiniteSet(x, FiniteSet(y, z)) == \ FiniteSet(x, FiniteSet(y, z)) # Test that Intervals and FiniteSets play nicely assert Interval(1, 3) + FiniteSet(2) == Interval(1, 3) assert Interval(1, 3, True, True) + FiniteSet(3) == \ Interval(1, 3, True, False) X = Interval(1, 3) + FiniteSet(5) Y = Interval(1, 2) + FiniteSet(3) XandY = X.intersect(Y) assert 2 in X and 3 in X and 3 in XandY assert XandY.is_subset(X) and XandY.is_subset(Y) raises(TypeError, lambda: Union(1, 2, 3)) assert X.is_iterable is False # issue 7843 assert Union(S.EmptySet, FiniteSet(-sqrt(-I), sqrt(-I))) == \ FiniteSet(-sqrt(-I), sqrt(-I)) assert Union(S.Reals, S.Integers) == S.Reals def test_union_iter(): # Use Range because it is ordered u = Union(Range(3), Range(5), Range(4), evaluate=False) # Round robin assert list(u) == [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4] def test_union_is_empty(): assert (Interval(x, y) + FiniteSet(1)).is_empty == False assert (Interval(x, y) + Interval(-x, y)).is_empty == None def test_difference(): assert Interval(1, 3) - Interval(1, 2) == Interval(2, 3, True) assert Interval(1, 3) - Interval(2, 3) == Interval(1, 2, False, True) assert Interval(1, 3, True) - Interval(2, 3) == Interval(1, 2, True, True) assert Interval(1, 3, True) - Interval(2, 3, True) == \ Interval(1, 2, True, False) assert Interval(0, 2) - FiniteSet(1) == \ Union(Interval(0, 1, False, True), Interval(1, 2, True, False)) # issue #18119 assert S.Reals - FiniteSet(I) == S.Reals assert S.Reals - FiniteSet(-I, I) == S.Reals assert Interval(0, 10) - FiniteSet(-I, I) == Interval(0, 10) assert Interval(0, 10) - FiniteSet(1, I) == Union( Interval.Ropen(0, 1), Interval.Lopen(1, 10)) assert S.Reals - FiniteSet(1, 2 + I, x, y**2) == Complement( Union(Interval.open(-oo, 1), Interval.open(1, oo)), FiniteSet(x, y**2), evaluate=False) assert FiniteSet(1, 2, 3) - FiniteSet(2) == FiniteSet(1, 3) assert FiniteSet('ham', 'eggs') - FiniteSet('eggs') == FiniteSet('ham') assert FiniteSet(1, 2, 3, 4) - Interval(2, 10, True, False) == \ FiniteSet(1, 2) assert FiniteSet(1, 2, 3, 4) - S.EmptySet == FiniteSet(1, 2, 3, 4) assert Union(Interval(0, 2), FiniteSet(2, 3, 4)) - Interval(1, 3) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert -1 in S.Reals - S.Naturals def test_Complement(): A = FiniteSet(1, 3, 4) B = FiniteSet(3, 4) C = Interval(1, 3) D = Interval(1, 2) assert Complement(A, B, evaluate=False).is_iterable is True assert Complement(A, C, evaluate=False).is_iterable is True assert Complement(C, D, evaluate=False).is_iterable is None assert FiniteSet(*Complement(A, B, evaluate=False)) == FiniteSet(1) assert FiniteSet(*Complement(A, C, evaluate=False)) == FiniteSet(4) raises(TypeError, lambda: FiniteSet(*Complement(C, A, evaluate=False))) assert Complement(Interval(1, 3), Interval(1, 2)) == Interval(2, 3, True) assert Complement(FiniteSet(1, 3, 4), FiniteSet(3, 4)) == FiniteSet(1) assert Complement(Union(Interval(0, 2), FiniteSet(2, 3, 4)), Interval(1, 3)) == \ Union(Interval(0, 1, False, True), FiniteSet(4)) assert 3 not in Complement(Interval(0, 5), Interval(1, 4), evaluate=False) assert -1 in Complement(S.Reals, S.Naturals, evaluate=False) assert 1 not in Complement(S.Reals, S.Naturals, evaluate=False) assert Complement(S.Integers, S.UniversalSet) == EmptySet assert S.UniversalSet.complement(S.Integers) == EmptySet assert (0 not in S.Reals.intersect(S.Integers - FiniteSet(0))) assert S.EmptySet - S.Integers == S.EmptySet assert (S.Integers - FiniteSet(0)) - FiniteSet(1) == S.Integers - FiniteSet(0, 1) assert S.Reals - Union(S.Naturals, FiniteSet(pi)) == \ Intersection(S.Reals - S.Naturals, S.Reals - FiniteSet(pi)) # issue 12712 assert Complement(FiniteSet(x, y, 2), Interval(-10, 10)) == \ Complement(FiniteSet(x, y), Interval(-10, 10)) A = FiniteSet(*symbols('a:c')) B = FiniteSet(*symbols('d:f')) assert unchanged(Complement, ProductSet(A, A), B) A2 = ProductSet(A, A) B3 = ProductSet(B, B, B) assert A2 - B3 == A2 assert B3 - A2 == B3 def test_set_operations_nonsets(): '''Tests that e.g. FiniteSet(1) * 2 raises TypeError''' ops = [ lambda a, b: a + b, lambda a, b: a - b, lambda a, b: a * b, lambda a, b: a / b, lambda a, b: a // b, lambda a, b: a | b, lambda a, b: a & b, lambda a, b: a ^ b, # FiniteSet(1) ** 2 gives a ProductSet #lambda a, b: a ** b, ] Sx = FiniteSet(x) Sy = FiniteSet(y) sets = [ {1}, FiniteSet(1), Interval(1, 2), Union(Sx, Interval(1, 2)), Intersection(Sx, Sy), Complement(Sx, Sy), ProductSet(Sx, Sy), S.EmptySet, ] nums = [0, 1, 2, S(0), S(1), S(2)] for si in sets: for ni in nums: for op in ops: raises(TypeError, lambda : op(si, ni)) raises(TypeError, lambda : op(ni, si)) raises(TypeError, lambda: si ** object()) raises(TypeError, lambda: si ** {1}) def test_complement(): assert Complement({1, 2}, {1}) == {2} assert Interval(0, 1).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, True, True)) assert Interval(0, 1, True, False).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, True, True)) assert Interval(0, 1, False, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, oo, False, True)) assert Interval(0, 1, True, True).complement(S.Reals) == \ Union(Interval(-oo, 0, True, False), Interval(1, oo, False, True)) assert S.UniversalSet.complement(S.EmptySet) == S.EmptySet assert S.UniversalSet.complement(S.Reals) == S.EmptySet assert S.UniversalSet.complement(S.UniversalSet) == S.EmptySet assert S.EmptySet.complement(S.Reals) == S.Reals assert Union(Interval(0, 1), Interval(2, 3)).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(1, 2, True, True), Interval(3, oo, True, True)) assert FiniteSet(0).complement(S.Reals) == \ Union(Interval(-oo, 0, True, True), Interval(0, oo, True, True)) assert (FiniteSet(5) + Interval(S.NegativeInfinity, 0)).complement(S.Reals) == \ Interval(0, 5, True, True) + Interval(5, S.Infinity, True, True) assert FiniteSet(1, 2, 3).complement(S.Reals) == \ Interval(S.NegativeInfinity, 1, True, True) + \ Interval(1, 2, True, True) + Interval(2, 3, True, True) +\ Interval(3, S.Infinity, True, True) assert FiniteSet(x).complement(S.Reals) == Complement(S.Reals, FiniteSet(x)) assert FiniteSet(0, x).complement(S.Reals) == Complement(Interval(-oo, 0, True, True) + Interval(0, oo, True, True) , FiniteSet(x), evaluate=False) square = Interval(0, 1) * Interval(0, 1) notsquare = square.complement(S.Reals*S.Reals) assert all(pt in square for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any( pt in notsquare for pt in [(0, 0), (.5, .5), (1, 0), (1, 1)]) assert not any(pt in square for pt in [(-1, 0), (1.5, .5), (10, 10)]) assert all(pt in notsquare for pt in [(-1, 0), (1.5, .5), (10, 10)]) def test_intersect1(): assert all(S.Integers.intersection(i) is i for i in (S.Naturals, S.Naturals0)) assert all(i.intersection(S.Integers) is i for i in (S.Naturals, S.Naturals0)) s = S.Naturals0 assert S.Naturals.intersection(s) is S.Naturals assert s.intersection(S.Naturals) is S.Naturals x = Symbol('x') assert Interval(0, 2).intersect(Interval(1, 2)) == Interval(1, 2) assert Interval(0, 2).intersect(Interval(1, 2, True)) == \ Interval(1, 2, True) assert Interval(0, 2, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, False) assert Interval(0, 2, True, True).intersect(Interval(1, 2)) == \ Interval(1, 2, False, True) assert Interval(0, 2).intersect(Union(Interval(0, 1), Interval(2, 3))) == \ Union(Interval(0, 1), Interval(2, 2)) assert FiniteSet(1, 2).intersect(FiniteSet(1, 2, 3)) == FiniteSet(1, 2) assert FiniteSet(1, 2, x).intersect(FiniteSet(x)) == FiniteSet(x) assert FiniteSet('ham', 'eggs').intersect(FiniteSet('ham')) == \ FiniteSet('ham') assert FiniteSet(1, 2, 3, 4, 5).intersect(S.EmptySet) == S.EmptySet assert Interval(0, 5).intersect(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersect(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(0, 2)) == \ Union(Interval(0, 1), Interval(2, 2)) assert Union(Interval(0, 1), Interval(2, 3)).intersect(Interval(1, 2, True, True)) == \ S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersect(S.EmptySet) == \ S.EmptySet assert Union(Interval(0, 5), FiniteSet('ham')).intersect(FiniteSet(2, 3, 4, 5, 6)) == \ Intersection(FiniteSet(2, 3, 4, 5, 6), Union(FiniteSet('ham'), Interval(0, 5))) assert Intersection(FiniteSet(1, 2, 3), Interval(2, x), Interval(3, y)) == \ Intersection(FiniteSet(3), Interval(2, x), Interval(3, y), evaluate=False) assert Intersection(FiniteSet(1, 2), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) assert Intersection(FiniteSet(1, 2, 4), Interval(0, 3), Interval(x, y)) == \ Intersection({1, 2}, Interval(x, y), evaluate=False) # XXX: Is the real=True necessary here? # https://github.com/sympy/sympy/issues/17532 m, n = symbols('m, n', real=True) assert Intersection(FiniteSet(m), FiniteSet(m, n), Interval(m, m+1)) == \ FiniteSet(m) # issue 8217 assert Intersection(FiniteSet(x), FiniteSet(y)) == \ Intersection(FiniteSet(x), FiniteSet(y), evaluate=False) assert FiniteSet(x).intersect(S.Reals) == \ Intersection(S.Reals, FiniteSet(x), evaluate=False) # tests for the intersection alias assert Interval(0, 5).intersection(FiniteSet(1, 3)) == FiniteSet(1, 3) assert Interval(0, 1, True, True).intersection(FiniteSet(1)) == S.EmptySet assert Union(Interval(0, 1), Interval(2, 3)).intersection(Interval(1, 2)) == \ Union(Interval(1, 1), Interval(2, 2)) def test_intersection(): # iterable i = Intersection(FiniteSet(1, 2, 3), Interval(2, 5), evaluate=False) assert i.is_iterable assert set(i) == {S(2), S(3)} # challenging intervals x = Symbol('x', real=True) i = Intersection(Interval(0, 3), Interval(x, 6)) assert (5 in i) is False raises(TypeError, lambda: 2 in i) # Singleton special cases assert Intersection(Interval(0, 1), S.EmptySet) == S.EmptySet assert Intersection(Interval(-oo, oo), Interval(-oo, x)) == Interval(-oo, x) # Products line = Interval(0, 5) i = Intersection(line**2, line**3, evaluate=False) assert (2, 2) not in i assert (2, 2, 2) not in i raises(TypeError, lambda: list(i)) a = Intersection(Intersection(S.Integers, S.Naturals, evaluate=False), S.Reals, evaluate=False) assert a._argset == frozenset([Intersection(S.Naturals, S.Integers, evaluate=False), S.Reals]) assert Intersection(S.Complexes, FiniteSet(S.ComplexInfinity)) == S.EmptySet # issue 12178 assert Intersection() == S.UniversalSet # issue 16987 assert Intersection({1}, {1}, {x}) == Intersection({1}, {x}) def test_issue_9623(): n = Symbol('n') a = S.Reals b = Interval(0, oo) c = FiniteSet(n) assert Intersection(a, b, c) == Intersection(b, c) assert Intersection(Interval(1, 2), Interval(3, 4), FiniteSet(n)) == EmptySet def test_is_disjoint(): assert Interval(0, 2).is_disjoint(Interval(1, 2)) == False assert Interval(0, 2).is_disjoint(Interval(3, 4)) == True def test_ProductSet__len__(): A = FiniteSet(1, 2) B = FiniteSet(1, 2, 3) assert ProductSet(A).__len__() == 2 assert ProductSet(A).__len__() is not S(2) assert ProductSet(A, B).__len__() == 6 assert ProductSet(A, B).__len__() is not S(6) def test_ProductSet(): # ProductSet is always a set of Tuples assert ProductSet(S.Reals) == S.Reals ** 1 assert ProductSet(S.Reals, S.Reals) == S.Reals ** 2 assert ProductSet(S.Reals, S.Reals, S.Reals) == S.Reals ** 3 assert ProductSet(S.Reals) != S.Reals assert ProductSet(S.Reals, S.Reals) == S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) != S.Reals * S.Reals * S.Reals assert ProductSet(S.Reals, S.Reals, S.Reals) == (S.Reals * S.Reals * S.Reals).flatten() assert 1 not in ProductSet(S.Reals) assert (1,) in ProductSet(S.Reals) assert 1 not in ProductSet(S.Reals, S.Reals) assert (1, 2) in ProductSet(S.Reals, S.Reals) assert (1, I) not in ProductSet(S.Reals, S.Reals) assert (1, 2, 3) in ProductSet(S.Reals, S.Reals, S.Reals) assert (1, 2, 3) in S.Reals ** 3 assert (1, 2, 3) not in S.Reals * S.Reals * S.Reals assert ((1, 2), 3) in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) not in S.Reals * S.Reals * S.Reals assert (1, (2, 3)) in S.Reals * (S.Reals * S.Reals) assert ProductSet() == FiniteSet(()) assert ProductSet(S.Reals, S.EmptySet) == S.EmptySet # See GH-17458 for ni in range(5): Rn = ProductSet(*(S.Reals,) * ni) assert (1,) * ni in Rn assert 1 not in Rn assert (S.Reals * S.Reals) * S.Reals != S.Reals * (S.Reals * S.Reals) S1 = S.Reals S2 = S.Integers x1 = pi x2 = 3 assert x1 in S1 assert x2 in S2 assert (x1, x2) in S1 * S2 S3 = S1 * S2 x3 = (x1, x2) assert x3 in S3 assert (x3, x3) in S3 * S3 assert x3 + x3 not in S3 * S3 raises(ValueError, lambda: S.Reals**-1) with warns_deprecated_sympy(): ProductSet(FiniteSet(s) for s in range(2)) raises(TypeError, lambda: ProductSet(None)) S1 = FiniteSet(1, 2) S2 = FiniteSet(3, 4) S3 = ProductSet(S1, S2) assert (S3.as_relational(x, y) == And(S1.as_relational(x), S2.as_relational(y)) == And(Or(Eq(x, 1), Eq(x, 2)), Or(Eq(y, 3), Eq(y, 4)))) raises(ValueError, lambda: S3.as_relational(x)) raises(ValueError, lambda: S3.as_relational(x, 1)) raises(ValueError, lambda: ProductSet(Interval(0, 1)).as_relational(x, y)) Z2 = ProductSet(S.Integers, S.Integers) assert Z2.contains((1, 2)) is S.true assert Z2.contains((1,)) is S.false assert Z2.contains(x) == Contains(x, Z2, evaluate=False) assert Z2.contains(x).subs(x, 1) is S.false assert Z2.contains((x, 1)).subs(x, 2) is S.true assert Z2.contains((x, y)) == Contains((x, y), Z2, evaluate=False) assert unchanged(Contains, (x, y), Z2) assert Contains((1, 2), Z2) is S.true def test_ProductSet_of_single_arg_is_not_arg(): assert unchanged(ProductSet, Interval(0, 1)) assert unchanged(ProductSet, ProductSet(Interval(0, 1))) def test_ProductSet_is_empty(): assert ProductSet(S.Integers, S.Reals).is_empty == False assert ProductSet(Interval(x, 1), S.Reals).is_empty == None def test_interval_subs(): a = Symbol('a', real=True) assert Interval(0, a).subs(a, 2) == Interval(0, 2) assert Interval(a, 0).subs(a, 2) == S.EmptySet def test_interval_to_mpi(): assert Interval(0, 1).to_mpi() == mpi(0, 1) assert Interval(0, 1, True, False).to_mpi() == mpi(0, 1) assert type(Interval(0, 1).to_mpi()) == type(mpi(0, 1)) def test_set_evalf(): assert Interval(S(11)/64, S.Half).evalf() == Interval( Float('0.171875'), Float('0.5')) assert Interval(x, S.Half, right_open=True).evalf() == Interval( x, Float('0.5'), right_open=True) assert Interval(-oo, S.Half).evalf() == Interval(-oo, Float('0.5')) assert FiniteSet(2, x).evalf() == FiniteSet(Float('2.0'), x) def test_measure(): a = Symbol('a', real=True) assert Interval(1, 3).measure == 2 assert Interval(0, a).measure == a assert Interval(1, a).measure == a - 1 assert Union(Interval(1, 2), Interval(3, 4)).measure == 2 assert Union(Interval(1, 2), Interval(3, 4), FiniteSet(5, 6, 7)).measure \ == 2 assert FiniteSet(1, 2, oo, a, -oo, -5).measure == 0 assert S.EmptySet.measure == 0 square = Interval(0, 10) * Interval(0, 10) offsetsquare = Interval(5, 15) * Interval(5, 15) band = Interval(-oo, oo) * Interval(2, 4) assert square.measure == offsetsquare.measure == 100 assert (square + offsetsquare).measure == 175 # there is some overlap assert (square - offsetsquare).measure == 75 assert (square * FiniteSet(1, 2, 3)).measure == 0 assert (square.intersect(band)).measure == 20 assert (square + band).measure is oo assert (band * FiniteSet(1, 2, 3)).measure is nan def test_is_subset(): assert Interval(0, 1).is_subset(Interval(0, 2)) is True assert Interval(0, 3).is_subset(Interval(0, 2)) is False assert Interval(0, 1).is_subset(FiniteSet(0, 1)) is False assert FiniteSet(1, 2).is_subset(FiniteSet(1, 2, 3, 4)) assert FiniteSet(4, 5).is_subset(FiniteSet(1, 2, 3, 4)) is False assert FiniteSet(1).is_subset(Interval(0, 2)) assert FiniteSet(1, 2).is_subset(Interval(0, 2, True, True)) is False assert (Interval(1, 2) + FiniteSet(3)).is_subset( Interval(0, 2, False, True) + FiniteSet(2, 3)) assert Interval(3, 4).is_subset(Union(Interval(0, 1), Interval(2, 5))) is True assert Interval(3, 6).is_subset(Union(Interval(0, 1), Interval(2, 5))) is False assert FiniteSet(1, 2, 3, 4).is_subset(Interval(0, 5)) is True assert S.EmptySet.is_subset(FiniteSet(1, 2, 3)) is True assert Interval(0, 1).is_subset(S.EmptySet) is False assert S.EmptySet.is_subset(S.EmptySet) is True raises(ValueError, lambda: S.EmptySet.is_subset(1)) # tests for the issubset alias assert FiniteSet(1, 2, 3, 4).issubset(Interval(0, 5)) is True assert S.EmptySet.issubset(FiniteSet(1, 2, 3)) is True assert S.Naturals.is_subset(S.Integers) assert S.Naturals0.is_subset(S.Integers) assert FiniteSet(x).is_subset(FiniteSet(y)) is None assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x)) is True assert FiniteSet(x).is_subset(FiniteSet(y).subs(y, x+1)) is False assert Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) is False assert Interval(-2, 3).is_subset(Union(Interval(-oo, -2), Interval(3, oo))) is False n = Symbol('n', integer=True) assert Range(-3, 4, 1).is_subset(FiniteSet(-10, 10)) is False assert Range(S(10)**100).is_subset(FiniteSet(0, 1, 2)) is False assert Range(6, 0, -2).is_subset(FiniteSet(2, 4, 6)) is True assert Range(1, oo).is_subset(FiniteSet(1, 2)) is False assert Range(-oo, 1).is_subset(FiniteSet(1)) is False assert Range(3).is_subset(FiniteSet(0, 1, n)) is None assert Range(n, n + 2).is_subset(FiniteSet(n, n + 1)) is True assert Range(5).is_subset(Interval(0, 4, right_open=True)) is False #issue 19513 assert imageset(Lambda(n, 1/n), S.Integers).is_subset(S.Reals) is None def test_is_proper_subset(): assert Interval(0, 1).is_proper_subset(Interval(0, 2)) is True assert Interval(0, 3).is_proper_subset(Interval(0, 2)) is False assert S.EmptySet.is_proper_subset(FiniteSet(1, 2, 3)) is True raises(ValueError, lambda: Interval(0, 1).is_proper_subset(0)) def test_is_superset(): assert Interval(0, 1).is_superset(Interval(0, 2)) == False assert Interval(0, 3).is_superset(Interval(0, 2)) assert FiniteSet(1, 2).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(4, 5).is_superset(FiniteSet(1, 2, 3, 4)) == False assert FiniteSet(1).is_superset(Interval(0, 2)) == False assert FiniteSet(1, 2).is_superset(Interval(0, 2, True, True)) == False assert (Interval(1, 2) + FiniteSet(3)).is_superset( Interval(0, 2, False, True) + FiniteSet(2, 3)) == False assert Interval(3, 4).is_superset(Union(Interval(0, 1), Interval(2, 5))) == False assert FiniteSet(1, 2, 3, 4).is_superset(Interval(0, 5)) == False assert S.EmptySet.is_superset(FiniteSet(1, 2, 3)) == False assert Interval(0, 1).is_superset(S.EmptySet) == True assert S.EmptySet.is_superset(S.EmptySet) == True raises(ValueError, lambda: S.EmptySet.is_superset(1)) # tests for the issuperset alias assert Interval(0, 1).issuperset(S.EmptySet) == True assert S.EmptySet.issuperset(S.EmptySet) == True def test_is_proper_superset(): assert Interval(0, 1).is_proper_superset(Interval(0, 2)) is False assert Interval(0, 3).is_proper_superset(Interval(0, 2)) is True assert FiniteSet(1, 2, 3).is_proper_superset(S.EmptySet) is True raises(ValueError, lambda: Interval(0, 1).is_proper_superset(0)) def test_contains(): assert Interval(0, 2).contains(1) is S.true assert Interval(0, 2).contains(3) is S.false assert Interval(0, 2, True, False).contains(0) is S.false assert Interval(0, 2, True, False).contains(2) is S.true assert Interval(0, 2, False, True).contains(0) is S.true assert Interval(0, 2, False, True).contains(2) is S.false assert Interval(0, 2, True, True).contains(0) is S.false assert Interval(0, 2, True, True).contains(2) is S.false assert (Interval(0, 2) in Interval(0, 2)) is False assert FiniteSet(1, 2, 3).contains(2) is S.true assert FiniteSet(1, 2, Symbol('x')).contains(Symbol('x')) is S.true assert FiniteSet(y)._contains(x) is None raises(TypeError, lambda: x in FiniteSet(y)) assert FiniteSet({x, y})._contains({x}) is None assert FiniteSet({x, y}).subs(y, x)._contains({x}) is True assert FiniteSet({x, y}).subs(y, x+1)._contains({x}) is False # issue 8197 from sympy.abc import a, b assert isinstance(FiniteSet(b).contains(-a), Contains) assert isinstance(FiniteSet(b).contains(a), Contains) assert isinstance(FiniteSet(a).contains(1), Contains) raises(TypeError, lambda: 1 in FiniteSet(a)) # issue 8209 rad1 = Pow(Pow(2, Rational(1, 3)) - 1, Rational(1, 3)) rad2 = Pow(Rational(1, 9), Rational(1, 3)) - Pow(Rational(2, 9), Rational(1, 3)) + Pow(Rational(4, 9), Rational(1, 3)) s1 = FiniteSet(rad1) s2 = FiniteSet(rad2) assert s1 - s2 == S.EmptySet items = [1, 2, S.Infinity, S('ham'), -1.1] fset = FiniteSet(*items) assert all(item in fset for item in items) assert all(fset.contains(item) is S.true for item in items) assert Union(Interval(0, 1), Interval(2, 5)).contains(3) is S.true assert Union(Interval(0, 1), Interval(2, 5)).contains(6) is S.false assert Union(Interval(0, 1), FiniteSet(2, 5)).contains(3) is S.false assert S.EmptySet.contains(1) is S.false assert FiniteSet(rootof(x**3 + x - 1, 0)).contains(S.Infinity) is S.false assert rootof(x**5 + x**3 + 1, 0) in S.Reals assert not rootof(x**5 + x**3 + 1, 1) in S.Reals # non-bool results assert Union(Interval(1, 2), Interval(3, 4)).contains(x) == \ Or(And(S.One <= x, x <= 2), And(S(3) <= x, x <= 4)) assert Intersection(Interval(1, x), Interval(2, 3)).contains(y) == \ And(y <= 3, y <= x, S.One <= y, S(2) <= y) assert (S.Complexes).contains(S.ComplexInfinity) == S.false def test_interval_symbolic(): x = Symbol('x') e = Interval(0, 1) assert e.contains(x) == And(S.Zero <= x, x <= 1) raises(TypeError, lambda: x in e) e = Interval(0, 1, True, True) assert e.contains(x) == And(S.Zero < x, x < 1) c = Symbol('c', real=False) assert Interval(x, x + 1).contains(c) == False e = Symbol('e', extended_real=True) assert Interval(-oo, oo).contains(e) == And( S.NegativeInfinity < e, e < S.Infinity) def test_union_contains(): x = Symbol('x') i1 = Interval(0, 1) i2 = Interval(2, 3) i3 = Union(i1, i2) assert i3.as_relational(x) == Or(And(S.Zero <= x, x <= 1), And(S(2) <= x, x <= 3)) raises(TypeError, lambda: x in i3) e = i3.contains(x) assert e == i3.as_relational(x) assert e.subs(x, -0.5) is false assert e.subs(x, 0.5) is true assert e.subs(x, 1.5) is false assert e.subs(x, 2.5) is true assert e.subs(x, 3.5) is false U = Interval(0, 2, True, True) + Interval(10, oo) + FiniteSet(-1, 2, 5, 6) assert all(el not in U for el in [0, 4, -oo]) assert all(el in U for el in [2, 5, 10]) def test_is_number(): assert Interval(0, 1).is_number is False assert Set().is_number is False def test_Interval_is_left_unbounded(): assert Interval(3, 4).is_left_unbounded is False assert Interval(-oo, 3).is_left_unbounded is True assert Interval(Float("-inf"), 3).is_left_unbounded is True def test_Interval_is_right_unbounded(): assert Interval(3, 4).is_right_unbounded is False assert Interval(3, oo).is_right_unbounded is True assert Interval(3, Float("+inf")).is_right_unbounded is True def test_Interval_as_relational(): x = Symbol('x') assert Interval(-1, 2, False, False).as_relational(x) == \ And(Le(-1, x), Le(x, 2)) assert Interval(-1, 2, True, False).as_relational(x) == \ And(Lt(-1, x), Le(x, 2)) assert Interval(-1, 2, False, True).as_relational(x) == \ And(Le(-1, x), Lt(x, 2)) assert Interval(-1, 2, True, True).as_relational(x) == \ And(Lt(-1, x), Lt(x, 2)) assert Interval(-oo, 2, right_open=False).as_relational(x) == And(Lt(-oo, x), Le(x, 2)) assert Interval(-oo, 2, right_open=True).as_relational(x) == And(Lt(-oo, x), Lt(x, 2)) assert Interval(-2, oo, left_open=False).as_relational(x) == And(Le(-2, x), Lt(x, oo)) assert Interval(-2, oo, left_open=True).as_relational(x) == And(Lt(-2, x), Lt(x, oo)) assert Interval(-oo, oo).as_relational(x) == And(Lt(-oo, x), Lt(x, oo)) x = Symbol('x', real=True) y = Symbol('y', real=True) assert Interval(x, y).as_relational(x) == (x <= y) assert Interval(y, x).as_relational(x) == (y <= x) def test_Finite_as_relational(): x = Symbol('x') y = Symbol('y') assert FiniteSet(1, 2).as_relational(x) == Or(Eq(x, 1), Eq(x, 2)) assert FiniteSet(y, -5).as_relational(x) == Or(Eq(x, y), Eq(x, -5)) def test_Union_as_relational(): x = Symbol('x') assert (Interval(0, 1) + FiniteSet(2)).as_relational(x) == \ Or(And(Le(0, x), Le(x, 1)), Eq(x, 2)) assert (Interval(0, 1, True, True) + FiniteSet(1)).as_relational(x) == \ And(Lt(0, x), Le(x, 1)) assert Or(x < 0, x > 0).as_set().as_relational(x) == \ And((x > -oo), (x < oo), Ne(x, 0)) assert (Interval.Ropen(1, 3) + Interval.Lopen(3, 5) ).as_relational(x) == And((x > 1), (x < 5), Ne(x, 3)) def test_Intersection_as_relational(): x = Symbol('x') assert (Intersection(Interval(0, 1), FiniteSet(2), evaluate=False).as_relational(x) == And(And(Le(0, x), Le(x, 1)), Eq(x, 2))) def test_Complement_as_relational(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == \ And(Le(0, x), Le(x, 1), Ne(x, 2)) @XFAIL def test_Complement_as_relational_fail(): x = Symbol('x') expr = Complement(Interval(0, 1), FiniteSet(2), evaluate=False) # XXX This example fails because 0 <= x changes to x >= 0 # during the evaluation. assert expr.as_relational(x) == \ (0 <= x) & (x <= 1) & Ne(x, 2) def test_SymmetricDifference_as_relational(): x = Symbol('x') expr = SymmetricDifference(Interval(0, 1), FiniteSet(2), evaluate=False) assert expr.as_relational(x) == Xor(Eq(x, 2), Le(0, x) & Le(x, 1)) def test_EmptySet(): assert S.EmptySet.as_relational(Symbol('x')) is S.false assert S.EmptySet.intersect(S.UniversalSet) == S.EmptySet assert S.EmptySet.boundary == S.EmptySet def test_finite_basic(): x = Symbol('x') A = FiniteSet(1, 2, 3) B = FiniteSet(3, 4, 5) AorB = Union(A, B) AandB = A.intersect(B) assert A.is_subset(AorB) and B.is_subset(AorB) assert AandB.is_subset(A) assert AandB == FiniteSet(3) assert A.inf == 1 and A.sup == 3 assert AorB.inf == 1 and AorB.sup == 5 assert FiniteSet(x, 1, 5).sup == Max(x, 5) assert FiniteSet(x, 1, 5).inf == Min(x, 1) # issue 7335 assert FiniteSet(S.EmptySet) != S.EmptySet assert FiniteSet(FiniteSet(1, 2, 3)) != FiniteSet(1, 2, 3) assert FiniteSet((1, 2, 3)) != FiniteSet(1, 2, 3) # Ensure a variety of types can exist in a FiniteSet assert FiniteSet((1, 2), Float, A, -5, x, 'eggs', x**2, Interval) assert (A > B) is False assert (A >= B) is False assert (A < B) is False assert (A <= B) is False assert AorB > A and AorB > B assert AorB >= A and AorB >= B assert A >= A and A <= A assert A >= AandB and B >= AandB assert A > AandB and B > AandB assert FiniteSet(1.0) == FiniteSet(1) def test_product_basic(): H, T = 'H', 'T' unit_line = Interval(0, 1) d6 = FiniteSet(1, 2, 3, 4, 5, 6) d4 = FiniteSet(1, 2, 3, 4) coin = FiniteSet(H, T) square = unit_line * unit_line assert (0, 0) in square assert 0 not in square assert (H, T) in coin ** 2 assert (.5, .5, .5) in (square * unit_line).flatten() assert ((.5, .5), .5) in square * unit_line assert (H, 3, 3) in (coin * d6 * d6).flatten() assert ((H, 3), 3) in coin * d6 * d6 HH, TT = sympify(H), sympify(T) assert set(coin**2) == {(HH, HH), (HH, TT), (TT, HH), (TT, TT)} assert (d4*d4).is_subset(d6*d6) assert square.complement(Interval(-oo, oo)*Interval(-oo, oo)) == Union( (Interval(-oo, 0, True, True) + Interval(1, oo, True, True))*Interval(-oo, oo), Interval(-oo, oo)*(Interval(-oo, 0, True, True) + Interval(1, oo, True, True))) assert (Interval(-5, 5)**3).is_subset(Interval(-10, 10)**3) assert not (Interval(-10, 10)**3).is_subset(Interval(-5, 5)**3) assert not (Interval(-5, 5)**2).is_subset(Interval(-10, 10)**3) assert (Interval(.2, .5)*FiniteSet(.5)).is_subset(square) # segment in square assert len(coin*coin*coin) == 8 assert len(S.EmptySet*S.EmptySet) == 0 assert len(S.EmptySet*coin) == 0 raises(TypeError, lambda: len(coin*Interval(0, 2))) def test_real(): x = Symbol('x', real=True) I = Interval(0, 5) J = Interval(10, 20) A = FiniteSet(1, 2, 30, x, S.Pi) B = FiniteSet(-4, 0) C = FiniteSet(100) D = FiniteSet('Ham', 'Eggs') assert all(s.is_subset(S.Reals) for s in [I, J, A, B, C]) assert not D.is_subset(S.Reals) assert all((a + b).is_subset(S.Reals) for a in [I, J, A, B, C] for b in [I, J, A, B, C]) assert not any((a + D).is_subset(S.Reals) for a in [I, J, A, B, C, D]) assert not (I + A + D).is_subset(S.Reals) def test_supinf(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert (Interval(0, 1) + FiniteSet(2)).sup == 2 assert (Interval(0, 1) + FiniteSet(2)).inf == 0 assert (Interval(0, 1) + FiniteSet(x)).sup == Max(1, x) assert (Interval(0, 1) + FiniteSet(x)).inf == Min(0, x) assert FiniteSet(5, 1, x).sup == Max(5, x) assert FiniteSet(5, 1, x).inf == Min(1, x) assert FiniteSet(5, 1, x, y).sup == Max(5, x, y) assert FiniteSet(5, 1, x, y).inf == Min(1, x, y) assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).sup == \ S.Infinity assert FiniteSet(5, 1, x, y, S.Infinity, S.NegativeInfinity).inf == \ S.NegativeInfinity assert FiniteSet('Ham', 'Eggs').sup == Max('Ham', 'Eggs') def test_universalset(): U = S.UniversalSet x = Symbol('x') assert U.as_relational(x) is S.true assert U.union(Interval(2, 4)) == U assert U.intersect(Interval(2, 4)) == Interval(2, 4) assert U.measure is S.Infinity assert U.boundary == S.EmptySet assert U.contains(0) is S.true def test_Union_of_ProductSets_shares(): line = Interval(0, 2) points = FiniteSet(0, 1, 2) assert Union(line * line, line * points) == line * line def test_Interval_free_symbols(): # issue 6211 assert Interval(0, 1).free_symbols == set() x = Symbol('x', real=True) assert Interval(0, x).free_symbols == {x} def test_image_interval(): x = Symbol('x', real=True) a = Symbol('a', real=True) assert imageset(x, 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(x, 2*x, Interval(-2, 1, True, False)) == \ Interval(-4, 2, True, False) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1)) == Interval(0, 4) assert imageset(x, x**2, Interval(-2, 1, True, False)) == \ Interval(0, 4, False, True) assert imageset(x, x**2, Interval(-2, 1, True, True)) == \ Interval(0, 4, False, True) assert imageset(x, (x - 2)**2, Interval(1, 3)) == Interval(0, 1) assert imageset(x, 3*x**4 - 26*x**3 + 78*x**2 - 90*x, Interval(0, 4)) == \ Interval(-35, 0) # Multiple Maxima assert imageset(x, x + 1/x, Interval(-oo, oo)) == Interval(-oo, -2) \ + Interval(2, oo) # Single Infinite discontinuity assert imageset(x, 1/x + 1/(x-1)**2, Interval(0, 2, True, False)) == \ Interval(Rational(3, 2), oo, False) # Multiple Infinite discontinuities # Test for Python lambda assert imageset(lambda x: 2*x, Interval(-2, 1)) == Interval(-4, 2) assert imageset(Lambda(x, a*x), Interval(0, 1)) == \ ImageSet(Lambda(x, a*x), Interval(0, 1)) assert imageset(Lambda(x, sin(cos(x))), Interval(0, 1)) == \ ImageSet(Lambda(x, sin(cos(x))), Interval(0, 1)) def test_image_piecewise(): f = Piecewise((x, x <= -1), (1/x**2, x <= 5), (x**3, True)) f1 = Piecewise((0, x <= 1), (1, x <= 2), (2, True)) assert imageset(x, f, Interval(-5, 5)) == Union(Interval(-5, -1), Interval(Rational(1, 25), oo)) assert imageset(x, f1, Interval(1, 2)) == FiniteSet(0, 1) @XFAIL # See: https://github.com/sympy/sympy/pull/2723#discussion_r8659826 def test_image_Intersection(): x = Symbol('x', real=True) y = Symbol('y', real=True) assert imageset(x, x**2, Interval(-2, 0).intersect(Interval(x, y))) == \ Interval(0, 4).intersect(Interval(Min(x**2, y**2), Max(x**2, y**2))) def test_image_FiniteSet(): x = Symbol('x', real=True) assert imageset(x, 2*x, FiniteSet(1, 2, 3)) == FiniteSet(2, 4, 6) def test_image_Union(): x = Symbol('x', real=True) assert imageset(x, x**2, Interval(-2, 0) + FiniteSet(1, 2, 3)) == \ (Interval(0, 4) + FiniteSet(9)) def test_image_EmptySet(): x = Symbol('x', real=True) assert imageset(x, 2*x, S.EmptySet) == S.EmptySet def test_issue_5724_7680(): assert I not in S.Reals # issue 7680 assert Interval(-oo, oo).contains(I) is S.false def test_boundary(): assert FiniteSet(1).boundary == FiniteSet(1) assert all(Interval(0, 1, left_open, right_open).boundary == FiniteSet(0, 1) for left_open in (true, false) for right_open in (true, false)) def test_boundary_Union(): assert (Interval(0, 1) + Interval(2, 3)).boundary == FiniteSet(0, 1, 2, 3) assert ((Interval(0, 1, False, True) + Interval(1, 2, True, False)).boundary == FiniteSet(0, 1, 2)) assert (Interval(0, 1) + FiniteSet(2)).boundary == FiniteSet(0, 1, 2) assert Union(Interval(0, 10), Interval(5, 15), evaluate=False).boundary \ == FiniteSet(0, 15) assert Union(Interval(0, 10), Interval(0, 1), evaluate=False).boundary \ == FiniteSet(0, 10) assert Union(Interval(0, 10, True, True), Interval(10, 15, True, True), evaluate=False).boundary \ == FiniteSet(0, 10, 15) @XFAIL def test_union_boundary_of_joining_sets(): """ Testing the boundary of unions is a hard problem """ assert Union(Interval(0, 10), Interval(10, 15), evaluate=False).boundary \ == FiniteSet(0, 15) def test_boundary_ProductSet(): open_square = Interval(0, 1, True, True) ** 2 assert open_square.boundary == (FiniteSet(0, 1) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1)) second_square = Interval(1, 2, True, True) * Interval(0, 1, True, True) assert (open_square + second_square).boundary == ( FiniteSet(0, 1) * Interval(0, 1) + FiniteSet(1, 2) * Interval(0, 1) + Interval(0, 1) * FiniteSet(0, 1) + Interval(1, 2) * FiniteSet(0, 1)) def test_boundary_ProductSet_line(): line_in_r2 = Interval(0, 1) * FiniteSet(0) assert line_in_r2.boundary == line_in_r2 def test_is_open(): assert Interval(0, 1, False, False).is_open is False assert Interval(0, 1, True, False).is_open is False assert Interval(0, 1, True, True).is_open is True assert FiniteSet(1, 2, 3).is_open is False def test_is_closed(): assert Interval(0, 1, False, False).is_closed is True assert Interval(0, 1, True, False).is_closed is False assert FiniteSet(1, 2, 3).is_closed is True def test_closure(): assert Interval(0, 1, False, True).closure == Interval(0, 1, False, False) def test_interior(): assert Interval(0, 1, False, True).interior == Interval(0, 1, True, True) def test_issue_7841(): raises(TypeError, lambda: x in S.Reals) def test_Eq(): assert Eq(Interval(0, 1), Interval(0, 1)) assert Eq(Interval(0, 1), Interval(0, 2)) == False s1 = FiniteSet(0, 1) s2 = FiniteSet(1, 2) assert Eq(s1, s1) assert Eq(s1, s2) == False assert Eq(s1*s2, s1*s2) assert Eq(s1*s2, s2*s1) == False assert unchanged(Eq, FiniteSet({x, y}), FiniteSet({x})) assert Eq(FiniteSet({x, y}).subs(y, x), FiniteSet({x})) is S.true assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x) is S.true assert Eq(FiniteSet({x, y}).subs(y, x+1), FiniteSet({x})) is S.false assert Eq(FiniteSet({x, y}), FiniteSet({x})).subs(y, x+1) is S.false assert Eq(ProductSet({1}, {2}), Interval(1, 2)) is S.false assert Eq(ProductSet({1}), ProductSet({1}, {2})) is S.false assert Eq(FiniteSet(()), FiniteSet(1)) is S.false assert Eq(ProductSet(), FiniteSet(1)) is S.false i1 = Interval(0, 1) i2 = Interval(x, y) assert unchanged(Eq, ProductSet(i1, i1), ProductSet(i2, i2)) def test_SymmetricDifference(): A = FiniteSet(0, 1, 2, 3, 4, 5) B = FiniteSet(2, 4, 6, 8, 10) C = Interval(8, 10) assert SymmetricDifference(A, B, evaluate=False).is_iterable is True assert SymmetricDifference(A, C, evaluate=False).is_iterable is None assert FiniteSet(*SymmetricDifference(A, B, evaluate=False)) == \ FiniteSet(0, 1, 3, 5, 6, 8, 10) raises(TypeError, lambda: FiniteSet(*SymmetricDifference(A, C, evaluate=False))) assert SymmetricDifference(FiniteSet(0, 1, 2, 3, 4, 5), \ FiniteSet(2, 4, 6, 8, 10)) == FiniteSet(0, 1, 3, 5, 6, 8, 10) assert SymmetricDifference(FiniteSet(2, 3, 4), FiniteSet(2, 3, 4 ,5)) \ == FiniteSet(5) assert FiniteSet(1, 2, 3, 4, 5) ^ FiniteSet(1, 2, 5, 6) == \ FiniteSet(3, 4, 6) assert Set(S(1), S(2), S(3)) ^ Set(S(2), S(3), S(4)) == Union(Set(S(1), S(2), S(3)) - Set(S(2), S(3), S(4)), \ Set(S(2), S(3), S(4)) - Set(S(1), S(2), S(3))) assert Interval(0, 4) ^ Interval(2, 5) == Union(Interval(0, 4) - \ Interval(2, 5), Interval(2, 5) - Interval(0, 4)) def test_issue_9536(): from sympy.functions.elementary.exponential import log a = Symbol('a', real=True) assert FiniteSet(log(a)).intersect(S.Reals) == Intersection(S.Reals, FiniteSet(log(a))) def test_issue_9637(): n = Symbol('n') a = FiniteSet(n) b = FiniteSet(2, n) assert Complement(S.Reals, a) == Complement(S.Reals, a, evaluate=False) assert Complement(Interval(1, 3), a) == Complement(Interval(1, 3), a, evaluate=False) assert Complement(Interval(1, 3), b) == \ Complement(Union(Interval(1, 2, False, True), Interval(2, 3, True, False)), a) assert Complement(a, S.Reals) == Complement(a, S.Reals, evaluate=False) assert Complement(a, Interval(1, 3)) == Complement(a, Interval(1, 3), evaluate=False) def test_issue_9808(): # See https://github.com/sympy/sympy/issues/16342 assert Complement(FiniteSet(y), FiniteSet(1)) == Complement(FiniteSet(y), FiniteSet(1), evaluate=False) assert Complement(FiniteSet(1, 2, x), FiniteSet(x, y, 2, 3)) == \ Complement(FiniteSet(1), FiniteSet(y), evaluate=False) def test_issue_9956(): assert Union(Interval(-oo, oo), FiniteSet(1)) == Interval(-oo, oo) assert Interval(-oo, oo).contains(1) is S.true def test_issue_Symbol_inter(): i = Interval(0, oo) r = S.Reals mat = Matrix([0, 0, 0]) assert Intersection(r, i, FiniteSet(m), FiniteSet(m, n)) == \ Intersection(i, FiniteSet(m)) assert Intersection(FiniteSet(1, m, n), FiniteSet(m, n, 2), i) == \ Intersection(i, FiniteSet(m, n)) assert Intersection(FiniteSet(m, n, x), FiniteSet(m, z), r) == \ Intersection(Intersection({m, z}, {m, n, x}), r) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, x), r) == \ Intersection(FiniteSet(3, m, n), FiniteSet(m, n, x), r, evaluate=False) assert Intersection(FiniteSet(m, n, 3), FiniteSet(m, n, 2, 3), r) == \ Intersection(FiniteSet(3, m, n), r) assert Intersection(r, FiniteSet(mat, 2, n), FiniteSet(0, mat, n)) == \ Intersection(r, FiniteSet(n)) assert Intersection(FiniteSet(sin(x), cos(x)), FiniteSet(sin(x), cos(x), 1), r) == \ Intersection(r, FiniteSet(sin(x), cos(x))) assert Intersection(FiniteSet(x**2, 1, sin(x)), FiniteSet(x**2, 2, sin(x)), r) == \ Intersection(r, FiniteSet(x**2, sin(x))) def test_issue_11827(): assert S.Naturals0**4 def test_issue_10113(): f = x**2/(x**2 - 4) assert imageset(x, f, S.Reals) == Union(Interval(-oo, 0), Interval(1, oo, True, True)) assert imageset(x, f, Interval(-2, 2)) == Interval(-oo, 0) assert imageset(x, f, Interval(-2, 3)) == Union(Interval(-oo, 0), Interval(Rational(9, 5), oo)) def test_issue_10248(): raises( TypeError, lambda: list(Intersection(S.Reals, FiniteSet(x))) ) A = Symbol('A', real=True) assert list(Intersection(S.Reals, FiniteSet(A))) == [A] def test_issue_9447(): a = Interval(0, 1) + Interval(2, 3) assert Complement(S.UniversalSet, a) == Complement( S.UniversalSet, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) assert Complement(S.Naturals, a) == Complement( S.Naturals, Union(Interval(0, 1), Interval(2, 3)), evaluate=False) def test_issue_10337(): assert (FiniteSet(2) == 3) is False assert (FiniteSet(2) != 3) is True raises(TypeError, lambda: FiniteSet(2) < 3) raises(TypeError, lambda: FiniteSet(2) <= 3) raises(TypeError, lambda: FiniteSet(2) > 3) raises(TypeError, lambda: FiniteSet(2) >= 3) def test_issue_10326(): bad = [ EmptySet, FiniteSet(1), Interval(1, 2), S.ComplexInfinity, S.ImaginaryUnit, S.Infinity, S.NaN, S.NegativeInfinity, ] interval = Interval(0, 5) for i in bad: assert i not in interval x = Symbol('x', real=True) nr = Symbol('nr', extended_real=False) assert x + 1 in Interval(x, x + 4) assert nr not in Interval(x, x + 4) assert Interval(1, 2) in FiniteSet(Interval(0, 5), Interval(1, 2)) assert Interval(-oo, oo).contains(oo) is S.false assert Interval(-oo, oo).contains(-oo) is S.false def test_issue_2799(): U = S.UniversalSet a = Symbol('a', real=True) inf_interval = Interval(a, oo) R = S.Reals assert U + inf_interval == inf_interval + U assert U + R == R + U assert R + inf_interval == inf_interval + R def test_issue_9706(): assert Interval(-oo, 0).closure == Interval(-oo, 0, True, False) assert Interval(0, oo).closure == Interval(0, oo, False, True) assert Interval(-oo, oo).closure == Interval(-oo, oo) def test_issue_8257(): reals_plus_infinity = Union(Interval(-oo, oo), FiniteSet(oo)) reals_plus_negativeinfinity = Union(Interval(-oo, oo), FiniteSet(-oo)) assert Interval(-oo, oo) + FiniteSet(oo) == reals_plus_infinity assert FiniteSet(oo) + Interval(-oo, oo) == reals_plus_infinity assert Interval(-oo, oo) + FiniteSet(-oo) == reals_plus_negativeinfinity assert FiniteSet(-oo) + Interval(-oo, oo) == reals_plus_negativeinfinity def test_issue_10931(): assert S.Integers - S.Integers == EmptySet assert S.Integers - S.Reals == EmptySet def test_issue_11174(): soln = Intersection(Interval(-oo, oo), FiniteSet(-x), evaluate=False) assert Intersection(FiniteSet(-x), S.Reals) == soln soln = Intersection(S.Reals, FiniteSet(x), evaluate=False) assert Intersection(FiniteSet(x), S.Reals) == soln def test_issue_18505(): assert ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers).contains(0) == \ Contains(0, ImageSet(Lambda(n, sqrt(pi*n/2 - 1 + pi/2)), S.Integers)) def test_finite_set_intersection(): # The following should not produce recursion errors # Note: some of these are not completely correct. See # https://github.com/sympy/sympy/issues/16342. assert Intersection(FiniteSet(-oo, x), FiniteSet(x)) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(0, x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(-oo, x), FiniteSet(x)]) == FiniteSet(x) assert Intersection._handle_finite_sets([FiniteSet(2, 3, x, y), FiniteSet(1, 2, x)]) == \ Intersection._handle_finite_sets([FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)]) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, 3, x, y)) == \ Intersection(FiniteSet(1, 2, x), FiniteSet(2, x, y)) assert FiniteSet(1+x-y) & FiniteSet(1) == \ FiniteSet(1) & FiniteSet(1+x-y) == \ Intersection(FiniteSet(1+x-y), FiniteSet(1), evaluate=False) assert FiniteSet(1) & FiniteSet(x) == FiniteSet(x) & FiniteSet(1) == \ Intersection(FiniteSet(1), FiniteSet(x), evaluate=False) assert FiniteSet({x}) & FiniteSet({x, y}) == \ Intersection(FiniteSet({x}), FiniteSet({x, y}), evaluate=False) def test_union_intersection_constructor(): # The actual exception does not matter here, so long as these fail sets = [FiniteSet(1), FiniteSet(2)] raises(Exception, lambda: Union(sets)) raises(Exception, lambda: Intersection(sets)) raises(Exception, lambda: Union(tuple(sets))) raises(Exception, lambda: Intersection(tuple(sets))) raises(Exception, lambda: Union(i for i in sets)) raises(Exception, lambda: Intersection(i for i in sets)) # Python sets are treated the same as FiniteSet # The union of a single set (of sets) is the set (of sets) itself assert Union(set(sets)) == FiniteSet(*sets) assert Intersection(set(sets)) == FiniteSet(*sets) assert Union({1}, {2}) == FiniteSet(1, 2) assert Intersection({1, 2}, {2, 3}) == FiniteSet(2) def test_Union_contains(): assert zoo not in Union( Interval.open(-oo, 0), Interval.open(0, oo)) @XFAIL def test_issue_16878b(): # in intersection_sets for (ImageSet, Set) there is no code # that handles the base_set of S.Reals like there is # for Integers assert imageset(x, (x, x), S.Reals).is_subset(S.Reals**2) is True def test_DisjointUnion(): assert DisjointUnion(FiniteSet(1, 2, 3), FiniteSet(1, 2, 3), FiniteSet(1, 2, 3)).rewrite(Union) == (FiniteSet(1, 2, 3) * FiniteSet(0, 1, 2)) assert DisjointUnion(Interval(1, 3), Interval(2, 4)).rewrite(Union) == Union(Interval(1, 3) * FiniteSet(0), Interval(2, 4) * FiniteSet(1)) assert DisjointUnion(Interval(0, 5), Interval(0, 5)).rewrite(Union) == Union(Interval(0, 5) * FiniteSet(0), Interval(0, 5) * FiniteSet(1)) assert DisjointUnion(Interval(-1, 2), S.EmptySet, S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(Interval(-1, 2)).rewrite(Union) == Interval(-1, 2) * FiniteSet(0) assert DisjointUnion(S.EmptySet, Interval(-1, 2), S.EmptySet).rewrite(Union) == Interval(-1, 2) * FiniteSet(1) assert DisjointUnion(Interval(-oo, oo)).rewrite(Union) == Interval(-oo, oo) * FiniteSet(0) assert DisjointUnion(S.EmptySet).rewrite(Union) == S.EmptySet assert DisjointUnion().rewrite(Union) == S.EmptySet raises(TypeError, lambda: DisjointUnion(Symbol('n'))) x = Symbol("x") y = Symbol("y") z = Symbol("z") assert DisjointUnion(FiniteSet(x), FiniteSet(y, z)).rewrite(Union) == (FiniteSet(x) * FiniteSet(0)) + (FiniteSet(y, z) * FiniteSet(1)) def test_DisjointUnion_is_empty(): assert DisjointUnion(S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_empty is True assert DisjointUnion(S.EmptySet, FiniteSet(1, 2, 3)).is_empty is False def test_DisjointUnion_is_iterable(): assert DisjointUnion(S.Integers, S.Naturals, S.Rationals).is_iterable is True assert DisjointUnion(S.EmptySet, S.Reals).is_iterable is False assert DisjointUnion(FiniteSet(1, 2, 3), S.EmptySet, FiniteSet(x, y)).is_iterable is True assert DisjointUnion(S.EmptySet, S.EmptySet).is_iterable is False def test_DisjointUnion_contains(): assert (0, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (1, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 0) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 1) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (2, 2) in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 1, 2) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (0, 0.5) not in DisjointUnion(FiniteSet(0.5)) assert (0, 5) not in DisjointUnion(FiniteSet(0, 1, 2), FiniteSet(0, 1, 2), FiniteSet(0, 1, 2)) assert (x, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (z, 0) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (y, 2) in DisjointUnion(FiniteSet(x, y, z), S.EmptySet, FiniteSet(y)) assert (0.5, 0) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (0.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 0) not in DisjointUnion(Interval(0, 1), Interval(0, 2)) assert (1.5, 1) in DisjointUnion(Interval(0, 1), Interval(0, 2)) def test_DisjointUnion_iter(): D = DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z)) it = iter(D) L1 = [(x, 1), (y, 1), (z, 1)] L2 = [(3, 0), (5, 0), (7, 0), (9, 0)] nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) nxt = next(it) assert nxt in L1 L1.remove(nxt) nxt = next(it) assert nxt in L2 L2.remove(nxt) raises(StopIteration, lambda: next(it)) raises(ValueError, lambda: iter(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_DisjointUnion_len(): assert len(DisjointUnion(FiniteSet(3, 5, 7, 9), FiniteSet(x, y, z))) == 7 assert len(DisjointUnion(S.EmptySet, S.EmptySet, FiniteSet(x, y, z), S.EmptySet)) == 3 raises(ValueError, lambda: len(DisjointUnion(Interval(0, 1), S.EmptySet))) def test_issue_20089(): B = FiniteSet(FiniteSet(1, 2), FiniteSet(1)) assert 1 not in B assert 1.0 not in B assert not Eq(1, FiniteSet(1, 2)) assert FiniteSet(1) in B A = FiniteSet(1, 2) assert A in B assert B.issubset(B) assert not A.issubset(B) assert 1 in A C = FiniteSet(FiniteSet(1, 2), FiniteSet(1), 1, 2) assert A.issubset(C) assert B.issubset(C) def test_issue_19378(): a = FiniteSet(1, 2) b = ProductSet(a, a) c = FiniteSet((1, 1), (1, 2), (2, 1), (2, 2)) assert b.is_subset(c) is True d = FiniteSet(1) assert b.is_subset(d) is False assert Eq(c, b).simplify() is S.true assert Eq(a, c).simplify() is S.false assert Eq({1}, {x}).simplify() == Eq({1}, {x}) def test_intersection_symbolic(): n = Symbol('n') # These should not throw an error assert isinstance(Intersection(Range(n), Range(100)), Intersection) assert isinstance(Intersection(Range(n), Interval(1, 100)), Intersection) assert isinstance(Intersection(Range(100), Interval(1, n)), Intersection) @XFAIL def test_intersection_symbolic_failing(): n = Symbol('n', integer=True, positive=True) assert Intersection(Range(10, n), Range(4, 500, 5)) == Intersection( Range(14, n), Range(14, 500, 5)) assert Intersection(Interval(10, n), Range(4, 500, 5)) == Intersection( Interval(14, n), Range(14, 500, 5)) def test_issue_20379(): #https://github.com/sympy/sympy/issues/20379 x = pi - 3.14159265358979 assert FiniteSet(x).evalf(2) == FiniteSet(Float('3.23108914886517e-15', 2)) def test_finiteset_simplify(): S = FiniteSet(1, cos(1)**2 + sin(1)**2) assert S.simplify() == {1}
831a4fc2fa2b7d85a8bb6bc2bbef4fefdb4179fd2ea210e65cf5e234cc7ab45d
import os from tempfile import TemporaryDirectory from sympy.concrete.summations import Sum from sympy.core.numbers import (I, oo, pi) from sympy.core.relational import Ne from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log) from sympy.functions.elementary.miscellaneous import (real_root, sqrt) from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.hyper import meijerg from sympy.integrals.integrals import Integral from sympy.logic.boolalg import And from sympy.core.singleton import S from sympy.core.sympify import sympify from sympy.external import import_module from sympy.plotting.plot import ( Plot, plot, plot_parametric, plot3d_parametric_line, plot3d, plot3d_parametric_surface) from sympy.plotting.plot import ( unset_show, plot_contour, PlotGrid, DefaultBackend, MatplotlibBackend, TextBackend, BaseBackend) from sympy.testing.pytest import skip, raises, warns from sympy.utilities import lambdify as lambdify_ unset_show() matplotlib = import_module( 'matplotlib', min_module_version='1.1.0', catch=(RuntimeError,)) class DummyBackendNotOk(BaseBackend): """ Used to verify if users can create their own backends. This backend is meant to raise NotImplementedError for methods `show`, `save`, `close`. """ pass class DummyBackendOk(BaseBackend): """ Used to verify if users can create their own backends. This backend is meant to pass all tests. """ def show(self): pass def save(self): pass def close(self): pass def test_plot_and_save_1(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') with TemporaryDirectory(prefix='sympy_') as tmpdir: ### # Examples from the 'introduction' notebook ### p = plot(x, legend=True, label='f1') p = plot(x*sin(x), x*cos(x), label='f2') p.extend(p) p[0].line_color = lambda a: a p[1].line_color = 'b' p.title = 'Big title' p.xlabel = 'the x axis' p[1].label = 'straight line' p.legend = True p.aspect_ratio = (1, 1) p.xlim = (-15, 20) filename = 'test_basic_options_and_colors.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p.extend(plot(x + 1)) p.append(plot(x + 3, x**2)[1]) filename = 'test_plot_extend_append.png' p.save(os.path.join(tmpdir, filename)) p[2] = plot(x**2, (x, -2, 3)) filename = 'test_plot_setitem.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot(sin(x), (x, -2*pi, 4*pi)) filename = 'test_line_explicit.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot(sin(x)) filename = 'test_line_default_range.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot((x**2, (x, -5, 5)), (x**3, (x, -3, 3))) filename = 'test_line_multiple_range.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() raises(ValueError, lambda: plot(x, y)) #Piecewise plots p = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1)) filename = 'test_plot_piecewise.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot(Piecewise((x, x < 1), (x**2, True)), (x, -3, 3)) filename = 'test_plot_piecewise_2.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # test issue 7471 p1 = plot(x) p2 = plot(3) p1.extend(p2) filename = 'test_horizontal_line.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # test issue 10925 f = Piecewise((-1, x < -1), (x, And(-1 <= x, x < 0)), \ (x**2, And(0 <= x, x < 1)), (x**3, x >= 1)) p = plot(f, (x, -3, 3)) filename = 'test_plot_piecewise_3.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_plot_and_save_2(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') z = Symbol('z') with TemporaryDirectory(prefix='sympy_') as tmpdir: #parametric 2d plots. #Single plot with default range. p = plot_parametric(sin(x), cos(x)) filename = 'test_parametric.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #Single plot with range. p = plot_parametric( sin(x), cos(x), (x, -5, 5), legend=True, label='parametric_plot') filename = 'test_parametric_range.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #Multiple plots with same range. p = plot_parametric((sin(x), cos(x)), (x, sin(x))) filename = 'test_parametric_multiple.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #Multiple plots with different ranges. p = plot_parametric( (sin(x), cos(x), (x, -3, 3)), (x, sin(x), (x, -5, 5))) filename = 'test_parametric_multiple_ranges.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #depth of recursion specified. p = plot_parametric(x, sin(x), depth=13) filename = 'test_recursion_depth.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #No adaptive sampling. p = plot_parametric(cos(x), sin(x), adaptive=False, nb_of_points=500) filename = 'test_adaptive.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() #3d parametric plots p = plot3d_parametric_line( sin(x), cos(x), x, legend=True, label='3d_parametric_plot') filename = 'test_3d_line.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot3d_parametric_line( (sin(x), cos(x), x, (x, -5, 5)), (cos(x), sin(x), x, (x, -3, 3))) filename = 'test_3d_line_multiple.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot3d_parametric_line(sin(x), cos(x), x, nb_of_points=30) filename = 'test_3d_line_points.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # 3d surface single plot. p = plot3d(x * y) filename = 'test_surface.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Multiple 3D plots with same range. p = plot3d(-x * y, x * y, (x, -5, 5)) filename = 'test_surface_multiple.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Multiple 3D plots with different ranges. p = plot3d( (x * y, (x, -3, 3), (y, -3, 3)), (-x * y, (x, -3, 3), (y, -3, 3))) filename = 'test_surface_multiple_ranges.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Single Parametric 3D plot p = plot3d_parametric_surface(sin(x + y), cos(x - y), x - y) filename = 'test_parametric_surface.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Multiple Parametric 3D plots. p = plot3d_parametric_surface( (x*sin(z), x*cos(z), z, (x, -5, 5), (z, -5, 5)), (sin(x + y), cos(x - y), x - y, (x, -5, 5), (y, -5, 5))) filename = 'test_parametric_surface.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Single Contour plot. p = plot_contour(sin(x)*sin(y), (x, -5, 5), (y, -5, 5)) filename = 'test_contour_plot.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Multiple Contour plots with same range. p = plot_contour(x**2 + y**2, x**3 + y**3, (x, -5, 5), (y, -5, 5)) filename = 'test_contour_plot.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # Multiple Contour plots with different range. p = plot_contour( (x**2 + y**2, (x, -5, 5), (y, -5, 5)), (x**3 + y**3, (x, -3, 3), (y, -3, 3))) filename = 'test_contour_plot.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_plot_and_save_3(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') z = Symbol('z') with TemporaryDirectory(prefix='sympy_') as tmpdir: ### # Examples from the 'colors' notebook ### p = plot(sin(x)) p[0].line_color = lambda a: a filename = 'test_colors_line_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].line_color = lambda a, b: b filename = 'test_colors_line_arity2.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot(x*sin(x), x*cos(x), (x, 0, 10)) p[0].line_color = lambda a: a filename = 'test_colors_param_line_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].line_color = lambda a, b: a filename = 'test_colors_param_line_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].line_color = lambda a, b: b filename = 'test_colors_param_line_arity2b.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot3d_parametric_line(sin(x) + 0.1*sin(x)*cos(7*x), cos(x) + 0.1*cos(x)*cos(7*x), 0.1*sin(7*x), (x, 0, 2*pi)) p[0].line_color = lambdify_(x, sin(4*x)) filename = 'test_colors_3d_line_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].line_color = lambda a, b: b filename = 'test_colors_3d_line_arity2.png' p.save(os.path.join(tmpdir, filename)) p[0].line_color = lambda a, b, c: c filename = 'test_colors_3d_line_arity3.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot3d(sin(x)*y, (x, 0, 6*pi), (y, -5, 5)) p[0].surface_color = lambda a: a filename = 'test_colors_surface_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].surface_color = lambda a, b: b filename = 'test_colors_surface_arity2.png' p.save(os.path.join(tmpdir, filename)) p[0].surface_color = lambda a, b, c: c filename = 'test_colors_surface_arity3a.png' p.save(os.path.join(tmpdir, filename)) p[0].surface_color = lambdify_((x, y, z), sqrt((x - 3*pi)**2 + y**2)) filename = 'test_colors_surface_arity3b.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot3d_parametric_surface(x * cos(4 * y), x * sin(4 * y), y, (x, -1, 1), (y, -1, 1)) p[0].surface_color = lambda a: a filename = 'test_colors_param_surf_arity1.png' p.save(os.path.join(tmpdir, filename)) p[0].surface_color = lambda a, b: a*b filename = 'test_colors_param_surf_arity2.png' p.save(os.path.join(tmpdir, filename)) p[0].surface_color = lambdify_((x, y, z), sqrt(x**2 + y**2 + z**2)) filename = 'test_colors_param_surf_arity3.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_plot_and_save_4(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') ### # Examples from the 'advanced' notebook ### # XXX: This raises the warning "The evaluation of the expression is # problematic. We are trying a failback method that may still work. Please # report this as a bug." It has to use the fallback because using evalf() # is the only way to evaluate the integral. We should perhaps just remove # that warning. with TemporaryDirectory(prefix='sympy_') as tmpdir: with warns( UserWarning, match="The evaluation of the expression is problematic"): i = Integral(log((sin(x)**2 + 1)*sqrt(x**2 + 1)), (x, 0, y)) p = plot(i, (y, 1, 5)) filename = 'test_advanced_integral.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_plot_and_save_5(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') with TemporaryDirectory(prefix='sympy_') as tmpdir: s = Sum(1/x**y, (x, 1, oo)) p = plot(s, (y, 2, 10)) filename = 'test_advanced_inf_sum.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p = plot(Sum(1/x, (x, 1, y)), (y, 2, 10), show=False) p[0].only_integers = True p[0].steps = True filename = 'test_advanced_fin_sum.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_plot_and_save_6(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') with TemporaryDirectory(prefix='sympy_') as tmpdir: filename = 'test.png' ### # Test expressions that can not be translated to np and generate complex # results. ### p = plot(sin(x) + I*cos(x)) p.save(os.path.join(tmpdir, filename)) p = plot(sqrt(sqrt(-x))) p.save(os.path.join(tmpdir, filename)) p = plot(LambertW(x)) p.save(os.path.join(tmpdir, filename)) p = plot(sqrt(LambertW(x))) p.save(os.path.join(tmpdir, filename)) #Characteristic function of a StudentT distribution with nu=10 x1 = 5 * x**2 * exp_polar(-I*pi)/2 m1 = meijerg(((1 / 2,), ()), ((5, 0, 1 / 2), ()), x1) x2 = 5*x**2 * exp_polar(I*pi)/2 m2 = meijerg(((1/2,), ()), ((5, 0, 1/2), ()), x2) expr = (m1 + m2) / (48 * pi) p = plot(expr, (x, 1e-6, 1e-2)) p.save(os.path.join(tmpdir, filename)) def test_plotgrid_and_save(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') y = Symbol('y') with TemporaryDirectory(prefix='sympy_') as tmpdir: p1 = plot(x) p2 = plot_parametric((sin(x), cos(x)), (x, sin(x)), show=False) p3 = plot_parametric( cos(x), sin(x), adaptive=False, nb_of_points=500, show=False) p4 = plot3d_parametric_line(sin(x), cos(x), x, show=False) # symmetric grid p = PlotGrid(2, 2, p1, p2, p3, p4) filename = 'test_grid1.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() # grid size greater than the number of subplots p = PlotGrid(3, 4, p1, p2, p3, p4) filename = 'test_grid2.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() p5 = plot(cos(x),(x, -pi, pi), show=False) p5[0].line_color = lambda a: a p6 = plot(Piecewise((1, x > 0), (0, True)), (x, -1, 1), show=False) p7 = plot_contour( (x**2 + y**2, (x, -5, 5), (y, -5, 5)), (x**3 + y**3, (x, -3, 3), (y, -3, 3)), show=False) # unsymmetric grid (subplots in one line) p = PlotGrid(1, 3, p5, p6, p7) filename = 'test_grid3.png' p.save(os.path.join(tmpdir, filename)) p._backend.close() def test_append_issue_7140(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p1 = plot(x) p2 = plot(x**2) plot(x + 2) # append a series p2.append(p1[0]) assert len(p2._series) == 2 with raises(TypeError): p1.append(p2) with raises(TypeError): p1.append(p2._series) def test_issue_15265(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') eqn = sin(x) p = plot(eqn, xlim=(-S.Pi, S.Pi), ylim=(-1, 1)) p._backend.close() p = plot(eqn, xlim=(-1, 1), ylim=(-S.Pi, S.Pi)) p._backend.close() p = plot(eqn, xlim=(-1, 1), ylim=(sympify('-3.14'), sympify('3.14'))) p._backend.close() p = plot(eqn, xlim=(sympify('-3.14'), sympify('3.14')), ylim=(-1, 1)) p._backend.close() raises(ValueError, lambda: plot(eqn, xlim=(-S.ImaginaryUnit, 1), ylim=(-1, 1))) raises(ValueError, lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.ImaginaryUnit))) raises(ValueError, lambda: plot(eqn, xlim=(S.NegativeInfinity, 1), ylim=(-1, 1))) raises(ValueError, lambda: plot(eqn, xlim=(-1, 1), ylim=(-1, S.Infinity))) def test_empty_Plot(): if not matplotlib: skip("Matplotlib not the default backend") # No exception showing an empty plot plot() p = Plot() p.show() def test_issue_17405(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') f = x**0.3 - 10*x**3 + x**2 p = plot(f, (x, -10, 10), show=False) # Random number of segments, probably more than 100, but we want to see # that there are segments generated, as opposed to when the bug was present assert len(p[0].get_data()[0]) >= 30 def test_logplot_PR_16796(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p = plot(x, (x, .001, 100), xscale='log', show=False) # Random number of segments, probably more than 100, but we want to see # that there are segments generated, as opposed to when the bug was present assert len(p[0].get_data()[0]) >= 30 assert p[0].end == 100.0 assert p[0].start == .001 def test_issue_16572(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p = plot(LambertW(x), show=False) # Random number of segments, probably more than 50, but we want to see # that there are segments generated, as opposed to when the bug was present assert len(p[0].get_data()[0]) >= 30 def test_issue_11865(): if not matplotlib: skip("Matplotlib not the default backend") k = Symbol('k', integer=True) f = Piecewise((-I*exp(I*pi*k)/k + I*exp(-I*pi*k)/k, Ne(k, 0)), (2*pi, True)) p = plot(f, show=False) # Random number of segments, probably more than 100, but we want to see # that there are segments generated, as opposed to when the bug was present # and that there are no exceptions. assert len(p[0].get_data()[0]) >= 30 def test_issue_11461(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p = plot(real_root((log(x/(x-2))), 3), show=False) # Random number of segments, probably more than 100, but we want to see # that there are segments generated, as opposed to when the bug was present # and that there are no exceptions. assert len(p[0].get_data()[0]) >= 30 def test_issue_11764(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p = plot_parametric(cos(x), sin(x), (x, 0, 2 * pi), aspect_ratio=(1,1), show=False) assert p.aspect_ratio == (1, 1) # Random number of segments, probably more than 100, but we want to see # that there are segments generated, as opposed to when the bug was present assert len(p[0].get_data()[0]) >= 30 def test_issue_13516(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') pm = plot(sin(x), backend="matplotlib", show=False) assert pm.backend == MatplotlibBackend assert len(pm[0].get_data()[0]) >= 30 pt = plot(sin(x), backend="text", show=False) assert pt.backend == TextBackend assert len(pt[0].get_data()[0]) >= 30 pd = plot(sin(x), backend="default", show=False) assert pd.backend == DefaultBackend assert len(pd[0].get_data()[0]) >= 30 p = plot(sin(x), show=False) assert p.backend == DefaultBackend assert len(p[0].get_data()[0]) >= 30 def test_plot_limits(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p = plot(x, x**2, (x, -10, 10)) backend = p._backend xmin, xmax = backend.ax[0].get_xlim() assert abs(xmin + 10) < 2 assert abs(xmax - 10) < 2 ymin, ymax = backend.ax[0].get_ylim() assert abs(ymin + 10) < 10 assert abs(ymax - 100) < 10 def test_plot3d_parametric_line_limits(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') v1 = (2*cos(x), 2*sin(x), 2*x, (x, -5, 5)) v2 = (sin(x), cos(x), x, (x, -5, 5)) p = plot3d_parametric_line(v1, v2) backend = p._backend xmin, xmax = backend.ax[0].get_xlim() assert abs(xmin + 2) < 1e-2 assert abs(xmax - 2) < 1e-2 ymin, ymax = backend.ax[0].get_ylim() assert abs(ymin + 2) < 1e-2 assert abs(ymax - 2) < 1e-2 zmin, zmax = backend.ax[0].get_zlim() assert abs(zmin + 10) < 1e-2 assert abs(zmax - 10) < 1e-2 p = plot3d_parametric_line(v2, v1) backend = p._backend xmin, xmax = backend.ax[0].get_xlim() assert abs(xmin + 2) < 1e-2 assert abs(xmax - 2) < 1e-2 ymin, ymax = backend.ax[0].get_ylim() assert abs(ymin + 2) < 1e-2 assert abs(ymax - 2) < 1e-2 zmin, zmax = backend.ax[0].get_zlim() assert abs(zmin + 10) < 1e-2 assert abs(zmax - 10) < 1e-2 def test_plot_size(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') p1 = plot(sin(x), backend="matplotlib", size=(8, 4)) s1 = p1._backend.fig.get_size_inches() assert (s1[0] == 8) and (s1[1] == 4) p2 = plot(sin(x), backend="matplotlib", size=(5, 10)) s2 = p2._backend.fig.get_size_inches() assert (s2[0] == 5) and (s2[1] == 10) p3 = PlotGrid(2, 1, p1, p2, size=(6, 2)) s3 = p3._backend.fig.get_size_inches() assert (s3[0] == 6) and (s3[1] == 2) with raises(ValueError): plot(sin(x), backend="matplotlib", size=(-1, 3)) def test_issue_20113(): if not matplotlib: skip("Matplotlib not the default backend") x = Symbol('x') # verify the capability to use custom backends with raises(TypeError): plot(sin(x), backend=Plot, show=False) p2 = plot(sin(x), backend=MatplotlibBackend, show=False) assert p2.backend == MatplotlibBackend assert len(p2[0].get_data()[0]) >= 30 p3 = plot(sin(x), backend=DummyBackendOk, show=False) assert p3.backend == DummyBackendOk assert len(p3[0].get_data()[0]) >= 30 # test for an improper coded backend p4 = plot(sin(x), backend=DummyBackendNotOk, show=False) assert p4.backend == DummyBackendNotOk assert len(p4[0].get_data()[0]) >= 30 with raises(NotImplementedError): p4.show() with raises(NotImplementedError): p4.save("test/path") with raises(NotImplementedError): p4._backend.close() def test_custom_coloring(): x = Symbol('x') y = Symbol('y') plot(cos(x), line_color=lambda a: a) plot(cos(x), line_color=1) plot(cos(x), line_color="r") plot_parametric(cos(x), sin(x), line_color=lambda a: a) plot_parametric(cos(x), sin(x), line_color=1) plot_parametric(cos(x), sin(x), line_color="r") plot3d_parametric_line(cos(x), sin(x), x, line_color=lambda a: a) plot3d_parametric_line(cos(x), sin(x), x, line_color=1) plot3d_parametric_line(cos(x), sin(x), x, line_color="r") plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, (x, -5, 5), (y, -5, 5), surface_color=lambda a, b: a**2 + b**2) plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, (x, -5, 5), (y, -5, 5), surface_color=1) plot3d_parametric_surface(cos(x + y), sin(x - y), x - y, (x, -5, 5), (y, -5, 5), surface_color="r") plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color=lambda a, b: a**2 + b**2) plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color=1) plot3d(x*y, (x, -5, 5), (y, -5, 5), surface_color="r")
f82c23ba9df7cad716c69e8306ab0be8e4d2f7d9ec32021354eadb0a3b921ab4
#!/usr/bin/env python """Distutils based setup script for SymPy. This uses Distutils (https://python.org/sigs/distutils-sig/) the standard python mechanism for installing packages. Optionally, you can use Setuptools (https://setuptools.readthedocs.io/en/latest/) to automatically handle dependencies. For the easiest installation just type the command (you'll probably need root privileges for that): python setup.py install This will install the library in the default location. For instructions on how to customize the install procedure read the output of: python setup.py --help install In addition, there are some other commands: python setup.py clean -> will clean all trash (*.pyc and stuff) python setup.py test -> will run the complete test suite python setup.py bench -> will run the complete benchmark suite python setup.py audit -> will run pyflakes checker on source code To get a full list of available commands, read the output of: python setup.py --help-commands Or, if all else fails, feel free to write to the sympy list at [email protected] and ask for help. """ import sys import os import shutil import glob import subprocess from distutils.command.sdist import sdist min_mpmath_version = '0.19' # This directory dir_setup = os.path.dirname(os.path.realpath(__file__)) extra_kwargs = {} try: from setuptools import setup, Command extra_kwargs['zip_safe'] = False extra_kwargs['entry_points'] = { 'console_scripts': [ 'isympy = isympy:main', ] } except ImportError: from distutils.core import setup, Command extra_kwargs['scripts'] = ['bin/isympy'] # handle mpmath deps in the hard way: from sympy.external.importtools import version_tuple try: import mpmath if version_tuple(mpmath.__version__) < version_tuple(min_mpmath_version): raise ImportError except ImportError: print("Please install the mpmath package with a version >= %s" % min_mpmath_version) sys.exit(-1) if sys.version_info < (3, 7): print("SymPy requires Python 3.7 or newer. Python %d.%d detected" % sys.version_info[:2]) sys.exit(-1) # Check that this list is uptodate against the result of the command: # python bin/generate_module_list.py modules = [ 'sympy.algebras', 'sympy.assumptions', 'sympy.assumptions.handlers', 'sympy.assumptions.predicates', 'sympy.assumptions.relation', 'sympy.benchmarks', 'sympy.calculus', 'sympy.categories', 'sympy.codegen', 'sympy.combinatorics', 'sympy.concrete', 'sympy.core', 'sympy.core.benchmarks', 'sympy.crypto', 'sympy.diffgeom', 'sympy.discrete', 'sympy.external', 'sympy.functions', 'sympy.functions.combinatorial', 'sympy.functions.elementary', 'sympy.functions.elementary.benchmarks', 'sympy.functions.special', 'sympy.functions.special.benchmarks', 'sympy.geometry', 'sympy.holonomic', 'sympy.integrals', 'sympy.integrals.benchmarks', 'sympy.integrals.rubi', 'sympy.integrals.rubi.parsetools', 'sympy.integrals.rubi.rubi_tests', 'sympy.integrals.rubi.rules', 'sympy.interactive', 'sympy.liealgebras', 'sympy.logic', 'sympy.logic.algorithms', 'sympy.logic.utilities', 'sympy.matrices', 'sympy.matrices.benchmarks', 'sympy.matrices.expressions', 'sympy.multipledispatch', 'sympy.ntheory', 'sympy.parsing', 'sympy.parsing.autolev', 'sympy.parsing.autolev._antlr', 'sympy.parsing.c', 'sympy.parsing.fortran', 'sympy.parsing.latex', 'sympy.parsing.latex._antlr', 'sympy.physics', 'sympy.physics.continuum_mechanics', 'sympy.physics.control', 'sympy.physics.hep', 'sympy.physics.mechanics', 'sympy.physics.optics', 'sympy.physics.quantum', 'sympy.physics.units', 'sympy.physics.units.definitions', 'sympy.physics.units.systems', 'sympy.physics.vector', 'sympy.plotting', 'sympy.plotting.intervalmath', 'sympy.plotting.pygletplot', 'sympy.polys', 'sympy.polys.agca', 'sympy.polys.benchmarks', 'sympy.polys.domains', 'sympy.polys.matrices', 'sympy.polys.numberfields', 'sympy.printing', 'sympy.printing.pretty', 'sympy.sandbox', 'sympy.series', 'sympy.series.benchmarks', 'sympy.sets', 'sympy.sets.handlers', 'sympy.simplify', 'sympy.solvers', 'sympy.solvers.benchmarks', 'sympy.solvers.diophantine', 'sympy.solvers.ode', 'sympy.stats', 'sympy.stats.sampling', 'sympy.strategies', 'sympy.strategies.branch', 'sympy.tensor', 'sympy.tensor.array', 'sympy.tensor.array.expressions', 'sympy.testing', 'sympy.unify', 'sympy.utilities', 'sympy.utilities._compilation', 'sympy.utilities.mathml', 'sympy.vector', ] class audit(Command): """Audits SymPy's source code for following issues: - Names which are used but not defined or used before they are defined. - Names which are redefined without having been used. """ description = "Audit SymPy source with PyFlakes" user_options = [] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): try: import pyflakes.scripts.pyflakes as flakes except ImportError: print("In order to run the audit, you need to have PyFlakes installed.") sys.exit(-1) dirs = (os.path.join(*d) for d in (m.split('.') for m in modules)) warns = 0 for dir in dirs: for filename in os.listdir(dir): if filename.endswith('.py') and filename != '__init__.py': warns += flakes.checkPath(os.path.join(dir, filename)) if warns > 0: print("Audit finished with total %d warnings" % warns) class clean(Command): """Cleans *.pyc and debian trashs, so you should get the same copy as is in the VCS. """ description = "remove build files" user_options = [("all", "a", "the same")] def initialize_options(self): self.all = None def finalize_options(self): pass def run(self): curr_dir = os.getcwd() for root, dirs, files in os.walk(dir_setup): for file in files: if file.endswith('.pyc') and os.path.isfile: os.remove(os.path.join(root, file)) os.chdir(dir_setup) names = ["python-build-stamp-2.4", "MANIFEST", "build", "dist", "doc/_build", "sample.tex"] for f in names: if os.path.isfile(f): os.remove(f) elif os.path.isdir(f): shutil.rmtree(f) for name in glob.glob(os.path.join(dir_setup, "doc", "src", "modules", "physics", "vector", "*.pdf")): if os.path.isfile(name): os.remove(name) os.chdir(curr_dir) class test_sympy(Command): """Runs all tests under the sympy/ folder """ description = "run all tests and doctests; also see bin/test and bin/doctest" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.utilities import runtests runtests.run_all_tests() class run_benchmarks(Command): """Runs all SymPy benchmarks""" description = "run all benchmarks" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass # we use py.test like architecture: # # o collector -- collects benchmarks # o runner -- executes benchmarks # o presenter -- displays benchmarks results # # this is done in sympy.utilities.benchmarking on top of py.test def run(self): from sympy.utilities import benchmarking benchmarking.main(['sympy']) class antlr(Command): """Generate code with antlr4""" description = "generate parser code from antlr grammars" user_options = [] # distutils complains if this is not here. def __init__(self, *args): self.args = args[0] # so we can pass it to other classes Command.__init__(self, *args) def initialize_options(self): # distutils wants this pass def finalize_options(self): # this too pass def run(self): from sympy.parsing.latex._build_latex_antlr import build_parser if not build_parser(): sys.exit(-1) class sdist_sympy(sdist): def run(self): # Fetch git commit hash and write down to commit_hash.txt before # shipped in tarball. commit_hash = None commit_hash_filepath = 'doc/commit_hash.txt' try: commit_hash = \ subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() print('Commit hash found : {}.'.format(commit_hash)) print('Writing it to {}.'.format(commit_hash_filepath)) except: pass if commit_hash: with open(commit_hash_filepath, 'w') as f: f.write(commit_hash) super(sdist_sympy, self).run() try: os.remove(commit_hash_filepath) print( 'Successfully removed temporary file {}.' .format(commit_hash_filepath)) except OSError as e: print("Error deleting %s - %s." % (e.filename, e.strerror)) # Check that this list is uptodate against the result of the command: # python bin/generate_test_list.py tests = [ 'sympy.algebras.tests', 'sympy.assumptions.tests', 'sympy.calculus.tests', 'sympy.categories.tests', 'sympy.codegen.tests', 'sympy.combinatorics.tests', 'sympy.concrete.tests', 'sympy.core.tests', 'sympy.crypto.tests', 'sympy.diffgeom.tests', 'sympy.discrete.tests', 'sympy.external.tests', 'sympy.functions.combinatorial.tests', 'sympy.functions.elementary.tests', 'sympy.functions.special.tests', 'sympy.geometry.tests', 'sympy.holonomic.tests', 'sympy.integrals.rubi.parsetools.tests', 'sympy.integrals.rubi.rubi_tests.tests', 'sympy.integrals.rubi.tests', 'sympy.integrals.tests', 'sympy.interactive.tests', 'sympy.liealgebras.tests', 'sympy.logic.tests', 'sympy.matrices.expressions.tests', 'sympy.matrices.tests', 'sympy.multipledispatch.tests', 'sympy.ntheory.tests', 'sympy.parsing.tests', 'sympy.physics.continuum_mechanics.tests', 'sympy.physics.control.tests', 'sympy.physics.hep.tests', 'sympy.physics.mechanics.tests', 'sympy.physics.optics.tests', 'sympy.physics.quantum.tests', 'sympy.physics.tests', 'sympy.physics.units.tests', 'sympy.physics.vector.tests', 'sympy.plotting.intervalmath.tests', 'sympy.plotting.pygletplot.tests', 'sympy.plotting.tests', 'sympy.polys.agca.tests', 'sympy.polys.domains.tests', 'sympy.polys.matrices.tests', 'sympy.polys.numberfields.tests', 'sympy.polys.tests', 'sympy.printing.pretty.tests', 'sympy.printing.tests', 'sympy.sandbox.tests', 'sympy.series.tests', 'sympy.sets.tests', 'sympy.simplify.tests', 'sympy.solvers.diophantine.tests', 'sympy.solvers.ode.tests', 'sympy.solvers.tests', 'sympy.stats.sampling.tests', 'sympy.stats.tests', 'sympy.strategies.branch.tests', 'sympy.strategies.tests', 'sympy.tensor.array.expressions.tests', 'sympy.tensor.array.tests', 'sympy.tensor.tests', 'sympy.testing.tests', 'sympy.unify.tests', 'sympy.utilities._compilation.tests', 'sympy.utilities.tests', 'sympy.vector.tests', ] with open(os.path.join(dir_setup, 'sympy', 'release.py')) as f: # Defines __version__ exec(f.read()) if __name__ == '__main__': setup(name='sympy', version=__version__, description='Computer algebra system (CAS) in Python', author='SymPy development team', author_email='[email protected]', license='BSD', keywords="Math CAS", url='https://sympy.org', py_modules=['isympy'], packages=['sympy'] + modules + tests, ext_modules=[], package_data={ 'sympy.utilities.mathml': ['data/*.xsl'], 'sympy.logic.benchmarks': ['input/*.cnf'], 'sympy.parsing.autolev': [ '*.g4', 'test-examples/*.al', 'test-examples/*.py', 'test-examples/pydy-example-repo/*.al', 'test-examples/pydy-example-repo/*.py', 'test-examples/README.txt', ], 'sympy.parsing.latex': ['*.txt', '*.g4'], 'sympy.integrals.rubi.parsetools': ['header.py.txt'], 'sympy.plotting.tests': ['test_region_*.png'], }, data_files=[('share/man/man1', ['doc/man/isympy.1'])], cmdclass={'test': test_sympy, 'bench': run_benchmarks, 'clean': clean, 'audit': audit, 'antlr': antlr, 'sdist': sdist_sympy, }, python_requires='>=3.7', classifiers=[ 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Mathematics', 'Topic :: Scientific/Engineering :: Physics', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', ], install_requires=[ 'mpmath>=%s' % min_mpmath_version, ], **extra_kwargs )
f0b129fa8ad93769fc898003a3dc738ae9f25e1e42770c595c9a5ddad758df51
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A tool to generate AUTHORS. We started tracking authors before moving to git, so we have to do some manual rearrangement of the git history authors in order to get the order in AUTHORS. bin/mailmap_check.py should be run before committing the results. See here for instructions on using this script: https://github.com/sympy/sympy/wiki/Development-workflow#update-mailmap """ from __future__ import unicode_literals from __future__ import print_function import sys import os from pathlib import Path from subprocess import run, PIPE from collections import OrderedDict, defaultdict from argparse import ArgumentParser if sys.version_info < (3, 7): sys.exit("This script requires Python 3.7 or newer") def sympy_dir(): return Path(__file__).resolve().parent.parent # put sympy on the path sys.path.insert(0, str(sympy_dir())) import sympy from sympy.utilities.misc import filldedent from sympy.external.importtools import version_tuple def main(*args): parser = ArgumentParser(description='Update the .mailmap and/or AUTHORS files') parser.add_argument('--update-authors', action='store_true', help=filldedent(""" Also update the AUTHORS file. Note that it should only necessary for the release manager to do this as part of the release process for SymPy.""")) args = parser.parse_args(args) if not check_git_version(): return 1 # find who git knows ahout try: git_people = get_authors_from_git() except AssertionError as msg: print(red(msg)) return 1 lines_mailmap = read_lines(mailmap_path()) def key(line): # return lower case first address on line or # raise an error if not an entry if '#' in line: line = line.split('#')[0] L, R = line.count("<"), line.count(">") assert L == R and L in (1, 2) return line.split(">", 1)[0].split("<")[1].lower() who = OrderedDict() for i, line in enumerate(lines_mailmap): try: who.setdefault(key(line), []).append(line) except AssertionError: who[i] = [line] problems = False missing = False ambiguous = False dups = defaultdict(list) for person in git_people: email = key(person) dups[email].append(person) if email not in who: print(red("This author is not included in the .mailmap file:")) print(person) missing = True elif not any(p.startswith(person) for p in who[email]): print(red("Ambiguous names in .mailmap")) print(red("This email address appears for multiple entries:")) print('Person:', person) print('Mailmap entries:') for line in who[email]: print(line) ambiguous = True if missing: print(red(filldedent(""" The .mailmap file needs to be updated because there are commits with unrecognised author/email metadata. """))) problems = True if ambiguous: print(red(filldedent(""" Lines should be added to .mailmap to indicate the correct name and email aliases for all commits. """))) problems = True for email, commitauthors in dups.items(): if len(commitauthors) > 2: print(red(filldedent(""" The following commits are recorded with different metadata but the same/ambiguous email address. The .mailmap file will need to be updated."""))) for author in commitauthors: print(author) problems = True lines_mailmap_sorted = sort_lines_mailmap(lines_mailmap) write_lines(mailmap_path(), lines_mailmap_sorted) if lines_mailmap_sorted != lines_mailmap: problems = True print(red("The mailmap file was reordered")) if problems: print(red(filldedent(""" For instructions on updating the .mailmap file see: https://github.com/sympy/sympy/wiki/Development-workflow#update-mailmap"""))) else: print(green("No changes needed in .mailmap")) # Check if changes to AUTHORS file are also needed lines_authors = make_authors_file_lines(git_people) old_lines_authors = read_lines(authors_path()) update_authors_file(lines_authors, old_lines_authors, args.update_authors) return int(problems) def update_authors_file(lines, old_lines, update_yesno): if old_lines == lines: print(green('No changes needed in AUTHORS.')) return 0 # Actually write changes to the file? if update_yesno: write_lines(authors_path(), lines) print(red("Changes were made in the authors file")) # check for new additions new_authors = [] for i in sorted(set(lines) - set(old_lines)): try: author_name(i) new_authors.append(i) except AssertionError: continue if new_authors: if update_yesno: print(yellow("The following authors were added to AUTHORS.")) else: print(green(filldedent(""" The following authors will be added to the AUTHORS file at the time of the next SymPy release."""))) print() for i in sorted(new_authors, key=lambda x: x.lower()): print('\t%s' % i) def check_git_version(): # check git version minimal = '1.8.4.2' git_ver = run(['git', '--version'], stdout=PIPE, encoding='utf-8').stdout[12:] if version_tuple(git_ver) < version_tuple(minimal): print(yellow("Please use a git version >= %s" % minimal)) return False else: return True def authors_path(): return sympy_dir() / 'AUTHORS' def mailmap_path(): return sympy_dir() / '.mailmap' def red(text): return "\033[31m%s\033[0m" % text def yellow(text): return "\033[33m%s\033[0m" % text def green(text): return "\033[32m%s\033[0m" % text def author_name(line): assert line.count("<") == line.count(">") == 1 assert line.endswith(">") return line.split("<", 1)[0].strip() def get_authors_from_git(): git_command = ["git", "log", "--topo-order", "--reverse", "--format=%aN <%aE>"] git_people = run(git_command, stdout=PIPE, encoding='utf-8').stdout.strip().split("\n") # remove duplicates, keeping the original order git_people = list(OrderedDict.fromkeys(git_people)) # Do the few changes necessary in order to reproduce AUTHORS: def move(l, i1, i2, who): x = l.pop(i1) # this will fail if the .mailmap is not right assert who == author_name(x), \ '%s was not found at line %i' % (who, i1) l.insert(i2, x) move(git_people, 2, 0, 'Ondřej Čertík') move(git_people, 42, 1, 'Fabian Pedregosa') move(git_people, 22, 2, 'Jurjen N.E. Bos') git_people.insert(4, "*Marc-Etienne M.Leveille <[email protected]>") move(git_people, 10, 5, 'Brian Jorgensen') git_people.insert(11, "*Ulrich Hecht <[email protected]>") # this will fail if the .mailmap is not right assert 'Kirill Smelkov' == author_name(git_people.pop(12) ), 'Kirill Smelkov was not found at line 12' move(git_people, 12, 32, 'Sebastian Krämer') move(git_people, 227, 35, 'Case Van Horsen') git_people.insert(43, "*Dan <[email protected]>") move(git_people, 57, 59, 'Aaron Meurer') move(git_people, 58, 57, 'Andrew Docherty') move(git_people, 67, 66, 'Chris Smith') move(git_people, 79, 76, 'Kevin Goodsell') git_people.insert(84, "*Chu-Ching Huang <[email protected]>") move(git_people, 93, 92, 'James Pearson') # this will fail if the .mailmap is not right assert 'Sergey B Kirpichev' == author_name(git_people.pop(226) ), 'Sergey B Kirpichev was not found at line 226.' index = git_people.index( "azure-pipelines[bot] " + "<azure-pipelines[bot]@users.noreply.github.com>") git_people.pop(index) index = git_people.index( "whitesource-bolt-for-github[bot] " + "<whitesource-bolt-for-github[bot]@users.noreply.github.com>") git_people.pop(index) return git_people def make_authors_file_lines(git_people): # define new lines for the file header = filldedent(""" All people who contributed to SymPy by sending at least a patch or more (in the order of the date of their first contribution), except those who explicitly didn't want to be mentioned. People with a * next to their names are not found in the metadata of the git history. This file is generated automatically by running `./bin/authors_update.py`. """).lstrip() header_extra = f"There are a total of {len(git_people)} authors.""" lines = header.splitlines() lines.append('') lines.append(header_extra) lines.append('') lines.extend(git_people) return lines def sort_lines_mailmap(lines): for n, line in enumerate(lines): if not line.startswith('#'): header_end = n break header = lines[:header_end] mailmap_lines = lines[header_end:] return header + sorted(mailmap_lines) def read_lines(path): with open(path) as fin: return [line.strip() for line in fin.readlines()] def write_lines(path, lines): with open(path, 'w') as fout: fout.write('\n'.join(lines)) fout.write('\n') if __name__ == "__main__": import sys sys.exit(main(*sys.argv[1:]))
3f589029f5e5ec8bade99e58f7b4261abfd4aa2019eaa47e7a844cb5869c19f0
""" This module exports all latin and greek letters as Symbols, so you can conveniently do >>> from sympy.abc import x, y instead of the slightly more clunky-looking >>> from sympy import symbols >>> x, y = symbols('x y') Caveats ======= 1. As of the time of writing this, the names ``O``, ``S``, ``I``, ``N``, ``E``, and ``Q`` are colliding with names defined in SymPy. If you import them from both ``sympy.abc`` and ``sympy``, the second import will "win". This is an issue only for * imports, which should only be used for short-lived code such as interactive sessions and throwaway scripts that do not survive until the next SymPy upgrade, where ``sympy`` may contain a different set of names. 2. This module does not define symbol names on demand, i.e. ``from sympy.abc import foo`` will be reported as an error because ``sympy.abc`` does not contain the name ``foo``. To get a symbol named ``foo``, you still need to use ``Symbol('foo')`` or ``symbols('foo')``. You can freely mix usage of ``sympy.abc`` and ``Symbol``/``symbols``, though sticking with one and only one way to get the symbols does tend to make the code more readable. The module also defines some special names to help detect which names clash with the default SymPy namespace. ``_clash1`` defines all the single letter variables that clash with SymPy objects; ``_clash2`` defines the multi-letter clashing symbols; and ``_clash`` is the union of both. These can be passed for ``locals`` during sympification if one desires Symbols rather than the non-Symbol objects for those names. Examples ======== >>> from sympy import S >>> from sympy.abc import _clash1, _clash2, _clash >>> S("Q & C", locals=_clash1) C & Q >>> S('pi(x)', locals=_clash2) pi(x) >>> S('pi(C, Q)', locals=_clash) pi(C, Q) """ from typing import Any, Dict as tDict import string from .core import Symbol, symbols from .core.alphabets import greeks from sympy.parsing.sympy_parser import null ##### Symbol definitions ##### # Implementation note: The easiest way to avoid typos in the symbols() # parameter is to copy it from the left-hand side of the assignment. a, b, c, d, e, f, g, h, i, j = symbols('a, b, c, d, e, f, g, h, i, j') k, l, m, n, o, p, q, r, s, t = symbols('k, l, m, n, o, p, q, r, s, t') u, v, w, x, y, z = symbols('u, v, w, x, y, z') A, B, C, D, E, F, G, H, I, J = symbols('A, B, C, D, E, F, G, H, I, J') K, L, M, N, O, P, Q, R, S, T = symbols('K, L, M, N, O, P, Q, R, S, T') U, V, W, X, Y, Z = symbols('U, V, W, X, Y, Z') alpha, beta, gamma, delta = symbols('alpha, beta, gamma, delta') epsilon, zeta, eta, theta = symbols('epsilon, zeta, eta, theta') iota, kappa, lamda, mu = symbols('iota, kappa, lamda, mu') nu, xi, omicron, pi = symbols('nu, xi, omicron, pi') rho, sigma, tau, upsilon = symbols('rho, sigma, tau, upsilon') phi, chi, psi, omega = symbols('phi, chi, psi, omega') ##### Clashing-symbols diagnostics ##### # We want to know which names in SymPy collide with those in here. # This is mostly for diagnosing SymPy's namespace during SymPy development. _latin = list(string.ascii_letters) # QOSINE should not be imported as they clash; gamma, pi and zeta clash, too _greek = list(greeks) # make a copy, so we can mutate it # Note: We import lamda since lambda is a reserved keyword in Python _greek.remove("lambda") _greek.append("lamda") ns: tDict[str, Any] = {} exec('from sympy import *', ns) _clash1: tDict[str, Any] = {} _clash2: tDict[str, Any] = {} while ns: _k, _ = ns.popitem() if _k in _greek: _clash2[_k] = null _greek.remove(_k) elif _k in _latin: _clash1[_k] = null _latin.remove(_k) _clash = {} _clash.update(_clash1) _clash.update(_clash2) del _latin, _greek, Symbol, _k, null
c9c4bf20298628fd5b77622b945e19bca4bd723fccf0644ed15c1cd204eeb9bd
# # SymPy documentation build configuration file, created by # sphinx-quickstart.py on Sat Mar 22 19:34:32 2008. # # This file is execfile()d with the current directory set to its containing dir. # # The contents of this file are pickled, so don't put values in the namespace # that aren't pickleable (module imports are okay, they're removed automatically). # # All configuration values have a default value; values that are commented out # serve to show the default value. import sys import inspect import os import subprocess from datetime import datetime # Make sure we import sympy from git sys.path.insert(0, os.path.abspath('../..')) import sympy # If your extensions are in another directory, add it here. sys.path = ['ext'] + sys.path # General configuration # --------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.addons.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode', 'sphinx_math_dollar', 'sphinx.ext.mathjax', 'numpydoc', 'sympylive', 'sphinx_reredirects', 'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive', 'myst_parser' ] redirects = { "install.rst": "guides/getting_started/install.html", "documentation-style-guide.rst": "guides/contributing/documentation-style-guide.html", "gotchas.rst": "explanation/gotchas.html", "special_topics/classification.rst": "explanation/classification.html", "special_topics/finite_diff_derivatives.rst": "explanation/finite_diff_derivatives.html", "special_topics/intro.rst": "explanation/index.html", "special_topics/index.rst": "explanation/index.html", "modules/index.rst": "reference/public/index.html", "modules/physics/index.rst": "reference/physics/index.html", } # Use this to use pngmath instead #extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ] # Enable warnings for all bad cross references. These are turned into errors # with the -W flag in the Makefile. nitpicky = True nitpick_ignore = [ ('py:class', 'sympy.logic.boolalg.Boolean') ] # To stop docstrings inheritance. autodoc_inherit_docstrings = False # See https://www.sympy.org/sphinx-math-dollar/ mathjax3_config = { "tex": { "inlineMath": [['\\(', '\\)']], "displayMath": [["\\[", "\\]"]], } } # Myst configuration (for .md files). See # https://myst-parser.readthedocs.io/en/latest/syntax/optional.html myst_enable_extensions = ["dollarmath", "linkify"] myst_heading_anchors = 2 # myst_update_mathjax = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The master toctree document. master_doc = 'index' suppress_warnings = ['ref.citation', 'ref.footnote'] # General substitutions. project = 'SymPy' copyright = '{} SymPy Development Team'.format(datetime.utcnow().year) # The default replacements for |version| and |release|, also used in various # other places throughout the built documents. # # The short X.Y version. version = sympy.__version__ # The full version, including alpha/beta/rc tags. release = version # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. #unused_docs = [] # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # Don't show the source code hyperlinks when using matplotlib plot directive. plot_html_show_source_link = False # Options for HTML output # ----------------------- # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. html_style = 'default.css' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # was classic html_theme = "classic" html_logo = '_static/sympylogo.png' html_favicon = '../_build/logo/sympy-notailtext-favicon.ico' # See http://www.sphinx-doc.org/en/master/theming.html#builtin-themes # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Content template for the index page. #html_index = '' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_use_modindex = True html_domain_indices = ['py-modindex'] # If true, the reST sources are included in the HTML build as _sources/<name>. #html_copy_source = True # Output file base name for HTML help builder. htmlhelp_basename = 'SymPydoc' language = 'en' # Options for LaTeX output # ------------------------ # The paper size ('letter' or 'a4'). #latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). #latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, document class [howto/manual], toctree_only). # toctree_only is set to True so that the start file document itself is not included in the # output, only the documents referenced by it via TOC trees. The extra stuff in the master # document is intended to show up in the HTML, but doesn't really belong in the LaTeX output. latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation', 'SymPy Development Team', 'manual', True)] # Additional stuff for the LaTeX preamble. # Tweaked to work with XeTeX. latex_elements = { 'babel': '', 'fontenc': r''' % Define version of \LaTeX that is usable in math mode \let\OldLaTeX\LaTeX \renewcommand{\LaTeX}{\text{\OldLaTeX}} \usepackage{bm} \usepackage{amssymb} \usepackage{fontspec} \usepackage[english]{babel} \defaultfontfeatures{Mapping=tex-text} \setmainfont{DejaVu Serif} \setsansfont{DejaVu Sans} \setmonofont{DejaVu Sans Mono} ''', 'fontpkg': '', 'inputenc': '', 'utf8extra': '', 'preamble': r''' ''' } # SymPy logo on title page html_logo = '_static/sympylogo.png' latex_logo = '_static/sympylogo_big.png' # Documents to append as an appendix to all manuals. #latex_appendices = [] # Show page numbers next to internal references latex_show_pagerefs = True # We use False otherwise the module index gets generated twice. latex_use_modindex = False default_role = 'math' pngmath_divpng_args = ['-gamma 1.5', '-D 110'] # Note, this is ignored by the mathjax extension # Any \newcommand should be defined in the file pngmath_latex_preamble = '\\usepackage{amsmath}\n' \ '\\usepackage{bm}\n' \ '\\usepackage{amsfonts}\n' \ '\\usepackage{amssymb}\n' \ '\\setlength{\\parindent}{0pt}\n' texinfo_documents = [ (master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team', 'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1), ] # Use svg for graphviz graphviz_output_format = 'svg' # Requried for linkcode extension. # Get commit hash from the external file. commit_hash_filepath = '../commit_hash.txt' commit_hash = None if os.path.isfile(commit_hash_filepath): with open(commit_hash_filepath) as f: commit_hash = f.readline() # Get commit hash from the external file. if not commit_hash: try: commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD']) commit_hash = commit_hash.decode('ascii') commit_hash = commit_hash.rstrip() except: import warnings warnings.warn( "Failed to get the git commit hash as the command " \ "'git rev-parse HEAD' is not working. The commit hash will be " \ "assumed as the SymPy master, but the lines may be misleading " \ "or nonexistent as it is not the correct branch the doc is " \ "built with. Check your installation of 'git' if you want to " \ "resolve this warning.") commit_hash = 'master' fork = 'sympy' blobpath = \ "https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash) def linkcode_resolve(domain, info): """Determine the URL corresponding to Python object.""" if domain != 'py': return modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except Exception: return # strip decorators, which would resolve to the source of the decorator # possibly an upstream bug in getsourcefile, bpo-1764286 try: unwrap = inspect.unwrap except AttributeError: pass else: obj = unwrap(obj) try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: return try: source, lineno = inspect.getsourcelines(obj) except Exception: lineno = None if lineno: linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__)) return blobpath + fn + linespec
b103de241b7e9ee0d7c41cd26d30ee18b7d62b1a3afe10f802c1223a9a44e5e9
import random import itertools from typing import (Sequence as tSequence, Union as tUnion, List as tList, Tuple as tTuple, Set as tSet) from sympy.concrete.summations import Sum from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import (Function, Lambda) from sympy.core.mul import Mul from sympy.core.numbers import (Integer, Rational, igcd, oo, pi) from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.gamma_functions import gamma from sympy.logic.boolalg import (And, Not, Or) from sympy.matrices.common import NonSquareMatrixError from sympy.matrices.dense import (Matrix, eye, ones, zeros) from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.special import Identity from sympy.matrices.immutable import ImmutableMatrix from sympy.sets.conditionset import ConditionSet from sympy.sets.contains import Contains from sympy.sets.fancysets import Range from sympy.sets.sets import (FiniteSet, Intersection, Interval, Set, Union) from sympy.solvers.solveset import linsolve from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.core.relational import Relational from sympy.logic.boolalg import Boolean from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import strongly_connected_components from sympy.stats.joint_rv import JointDistribution from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.rv import (RandomIndexedSymbol, random_symbols, RandomSymbol, _symbol_converter, _value_check, pspace, given, dependent, is_random, sample_iter, Distribution, Density) from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.symbolic_probability import Probability, Expectation from sympy.stats.frv_types import Bernoulli, BernoulliDistribution, FiniteRV from sympy.stats.drv_types import Poisson, PoissonDistribution from sympy.stats.crv_types import Normal, NormalDistribution, Gamma, GammaDistribution from sympy.core.sympify import _sympify, sympify EmptySet = S.EmptySet __all__ = [ 'StochasticProcess', 'DiscreteTimeStochasticProcess', 'DiscreteMarkovChain', 'TransitionMatrixOf', 'StochasticStateSpaceOf', 'GeneratorMatrixOf', 'ContinuousMarkovChain', 'BernoulliProcess', 'PoissonProcess', 'WienerProcess', 'GammaProcess' ] @is_random.register(Indexed) def _(x): return is_random(x.base) @is_random.register(RandomIndexedSymbol) # type: ignore def _(x): return True def _set_converter(itr): """ Helper function for converting list/tuple/set to Set. If parameter is not an instance of list/tuple/set then no operation is performed. Returns ======= Set The argument converted to Set. Raises ====== TypeError If the argument is not an instance of list/tuple/set. """ if isinstance(itr, (list, tuple, set)): itr = FiniteSet(*itr) if not isinstance(itr, Set): raise TypeError("%s is not an instance of list/tuple/set."%(itr)) return itr def _state_converter(itr: tSequence) -> tUnion[Tuple, Range]: """ Helper function for converting list/tuple/set/Range/Tuple/FiniteSet to tuple/Range. """ itr_ret: tUnion[Tuple, Range] if isinstance(itr, (Tuple, set, FiniteSet)): itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) elif isinstance(itr, (list, tuple)): # check if states are unique if len(set(itr)) != len(itr): raise ValueError('The state space must have unique elements.') itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) elif isinstance(itr, Range): # the only ordered set in SymPy I know of # try to convert to tuple try: itr_ret = Tuple(*(sympify(i) if isinstance(i, str) else i for i in itr)) except (TypeError, ValueError): itr_ret = itr else: raise TypeError("%s is not an instance of list/tuple/set/Range/Tuple/FiniteSet." % (itr)) return itr_ret def _sym_sympify(arg): """ Converts an arbitrary expression to a type that can be used inside SymPy. As generally strings are unwise to use in the expressions, it returns the Symbol of argument if the string type argument is passed. Parameters ========= arg: The parameter to be converted to be used in SymPy. Returns ======= The converted parameter. """ if isinstance(arg, str): return Symbol(arg) else: return _sympify(arg) def _matrix_checks(matrix): if not isinstance(matrix, (Matrix, MatrixSymbol, ImmutableMatrix)): raise TypeError("Transition probabilities either should " "be a Matrix or a MatrixSymbol.") if matrix.shape[0] != matrix.shape[1]: raise NonSquareMatrixError("%s is not a square matrix"%(matrix)) if isinstance(matrix, Matrix): matrix = ImmutableMatrix(matrix.tolist()) return matrix class StochasticProcess(Basic): """ Base class for all the stochastic processes whether discrete or continuous. Parameters ========== sym: Symbol or str state_space: Set The state space of the stochastic process, by default S.Reals. For discrete sets it is zero indexed. See Also ======== DiscreteTimeStochasticProcess """ index_set = S.Reals def __new__(cls, sym, state_space=S.Reals, **kwargs): sym = _symbol_converter(sym) state_space = _set_converter(state_space) return Basic.__new__(cls, sym, state_space) @property def symbol(self): return self.args[0] @property def state_space(self) -> tUnion[FiniteSet, Range]: if not isinstance(self.args[1], (FiniteSet, Range)): assert isinstance(self.args[1], Tuple) return FiniteSet(*self.args[1]) return self.args[1] def _deprecation_warn_distribution(self): SymPyDeprecationWarning( feature="Calling distribution with RandomIndexedSymbol", useinstead="distribution with just timestamp as argument", issue=20078, deprecated_since_version="1.7.1" ).warn() def distribution(self, key=None): if key is None: self._deprecation_warn_distribution() return Distribution() def density(self, x): return Density() def __call__(self, time): """ Overridden in ContinuousTimeStochasticProcess. """ raise NotImplementedError("Use [] for indexing discrete time stochastic process.") def __getitem__(self, time): """ Overridden in DiscreteTimeStochasticProcess. """ raise NotImplementedError("Use () for indexing continuous time stochastic process.") def probability(self, condition): raise NotImplementedError() def joint_distribution(self, *args): """ Computes the joint distribution of the random indexed variables. Parameters ========== args: iterable The finite list of random indexed variables/the key of a stochastic process whose joint distribution has to be computed. Returns ======= JointDistribution The joint distribution of the list of random indexed variables. An unevaluated object is returned if it is not possible to compute the joint distribution. Raises ====== ValueError: When the arguments passed are not of type RandomIndexSymbol or Number. """ args = list(args) for i, arg in enumerate(args): if S(arg).is_Number: if self.index_set.is_subset(S.Integers): args[i] = self.__getitem__(arg) else: args[i] = self.__call__(arg) elif not isinstance(arg, RandomIndexedSymbol): raise ValueError("Expected a RandomIndexedSymbol or " "key not %s"%(type(arg))) if args[0].pspace.distribution == Distribution(): return JointDistribution(*args) density = Lambda(tuple(args), expr=Mul.fromiter(arg.pspace.process.density(arg) for arg in args)) return JointDistributionHandmade(density) def expectation(self, condition, given_condition): raise NotImplementedError("Abstract method for expectation queries.") def sample(self): raise NotImplementedError("Abstract method for sampling queries.") class DiscreteTimeStochasticProcess(StochasticProcess): """ Base class for all discrete stochastic processes. """ def __getitem__(self, time): """ For indexing discrete time stochastic processes. Returns ======= RandomIndexedSymbol """ time = sympify(time) if not time.is_symbol and time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) idx_obj = Indexed(self.symbol, time) pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time)) return RandomIndexedSymbol(idx_obj, pspace_obj) class ContinuousTimeStochasticProcess(StochasticProcess): """ Base class for all continuous time stochastic process. """ def __call__(self, time): """ For indexing continuous time stochastic processes. Returns ======= RandomIndexedSymbol """ time = sympify(time) if not time.is_symbol and time not in self.index_set: raise IndexError("%s is not in the index set of %s"%(time, self.symbol)) func_obj = Function(self.symbol)(time) pspace_obj = StochasticPSpace(self.symbol, self, self.distribution(time)) return RandomIndexedSymbol(func_obj, pspace_obj) class TransitionMatrixOf(Boolean): """ Assumes that the matrix is the transition matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, DiscreteMarkovChain): raise ValueError("Currently only DiscreteMarkovChain " "support TransitionMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) process = property(lambda self: self.args[0]) matrix = property(lambda self: self.args[1]) class GeneratorMatrixOf(TransitionMatrixOf): """ Assumes that the matrix is the generator matrix of the process. """ def __new__(cls, process, matrix): if not isinstance(process, ContinuousMarkovChain): raise ValueError("Currently only ContinuousMarkovChain " "support GeneratorMatrixOf.") matrix = _matrix_checks(matrix) return Basic.__new__(cls, process, matrix) class StochasticStateSpaceOf(Boolean): def __new__(cls, process, state_space): if not isinstance(process, (DiscreteMarkovChain, ContinuousMarkovChain)): raise ValueError("Currently only DiscreteMarkovChain and ContinuousMarkovChain " "support StochasticStateSpaceOf.") state_space = _state_converter(state_space) if isinstance(state_space, Range): ss_size = ceiling((state_space.stop - state_space.start) / state_space.step) else: ss_size = len(state_space) state_index = Range(ss_size) return Basic.__new__(cls, process, state_index) process = property(lambda self: self.args[0]) state_index = property(lambda self: self.args[1]) class MarkovProcess(StochasticProcess): """ Contains methods that handle queries common to Markov processes. """ @property def number_of_states(self) -> tUnion[Integer, Symbol]: """ The number of states in the Markov Chain. """ return _sympify(self.args[2].shape[0]) # type: ignore @property def _state_index(self): """ Returns state index as Range. """ return self.args[1] @classmethod def _sanity_checks(cls, state_space, trans_probs): # Try to never have None as state_space or trans_probs. # This helps a lot if we get it done at the start. if (state_space is None) and (trans_probs is None): _n = Dummy('n', integer=True, nonnegative=True) state_space = _state_converter(Range(_n)) trans_probs = _matrix_checks(MatrixSymbol('_T', _n, _n)) elif state_space is None: trans_probs = _matrix_checks(trans_probs) state_space = _state_converter(Range(trans_probs.shape[0])) elif trans_probs is None: state_space = _state_converter(state_space) if isinstance(state_space, Range): _n = ceiling((state_space.stop - state_space.start) / state_space.step) else: _n = len(state_space) trans_probs = MatrixSymbol('_T', _n, _n) else: state_space = _state_converter(state_space) trans_probs = _matrix_checks(trans_probs) # Range object doesn't want to give a symbolic size # so we do it ourselves. if isinstance(state_space, Range): ss_size = ceiling((state_space.stop - state_space.start) / state_space.step) else: ss_size = len(state_space) if ss_size != trans_probs.shape[0]: raise ValueError('The size of the state space and the number of ' 'rows of the transition matrix must be the same.') return state_space, trans_probs def _extract_information(self, given_condition): """ Helper function to extract information, like, transition matrix/generator matrix, state space, etc. """ if isinstance(self, DiscreteMarkovChain): trans_probs = self.transition_probabilities state_index = self._state_index elif isinstance(self, ContinuousMarkovChain): trans_probs = self.generator_matrix state_index = self._state_index if isinstance(given_condition, And): gcs = given_condition.args given_condition = S.true for gc in gcs: if isinstance(gc, TransitionMatrixOf): trans_probs = gc.matrix if isinstance(gc, StochasticStateSpaceOf): state_index = gc.state_index if isinstance(gc, Relational): given_condition = given_condition & gc if isinstance(given_condition, TransitionMatrixOf): trans_probs = given_condition.matrix given_condition = S.true if isinstance(given_condition, StochasticStateSpaceOf): state_index = given_condition.state_index given_condition = S.true return trans_probs, state_index, given_condition def _check_trans_probs(self, trans_probs, row_sum=1): """ Helper function for checking the validity of transition probabilities. """ if not isinstance(trans_probs, MatrixSymbol): rows = trans_probs.tolist() for row in rows: if (sum(row) - row_sum) != 0: raise ValueError("Values in a row must sum to %s. " "If you are using Float or floats then please use Rational."%(row_sum)) def _work_out_state_index(self, state_index, given_condition, trans_probs): """ Helper function to extract state space if there is a random symbol in the given condition. """ # if given condition is None, then there is no need to work out # state_space from random variables if given_condition != None: rand_var = list(given_condition.atoms(RandomSymbol) - given_condition.atoms(RandomIndexedSymbol)) if len(rand_var) == 1: state_index = rand_var[0].pspace.set # `not None` is `True`. So the old test fails for symbolic sizes. # Need to build the statement differently. sym_cond = not self.number_of_states.is_Integer cond1 = not sym_cond and len(state_index) != trans_probs.shape[0] if cond1: raise ValueError("state space is not compatible with the transition probabilities.") if not isinstance(trans_probs.shape[0], Symbol): state_index = FiniteSet(*[i for i in range(trans_probs.shape[0])]) return state_index @cacheit def _preprocess(self, given_condition, evaluate): """ Helper function for pre-processing the information. """ is_insufficient = False if not evaluate: # avoid pre-processing if the result is not to be evaluated return (True, None, None, None) # extracting transition matrix and state space trans_probs, state_index, given_condition = self._extract_information(given_condition) # given_condition does not have sufficient information # for computations if trans_probs is None or \ given_condition is None: is_insufficient = True else: # checking transition probabilities if isinstance(self, DiscreteMarkovChain): self._check_trans_probs(trans_probs, row_sum=1) elif isinstance(self, ContinuousMarkovChain): self._check_trans_probs(trans_probs, row_sum=0) # working out state space state_index = self._work_out_state_index(state_index, given_condition, trans_probs) return is_insufficient, trans_probs, state_index, given_condition def replace_with_index(self, condition): if isinstance(condition, Relational): lhs, rhs = condition.lhs, condition.rhs if not isinstance(lhs, RandomIndexedSymbol): lhs, rhs = rhs, lhs condition = type(condition)(self.index_of.get(lhs, lhs), self.index_of.get(rhs, rhs)) return condition def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Handles probability queries for Markov process. Parameters ========== condition: Relational given_condition: Relational/And Returns ======= Probability If the information is not sufficient. Expr In all other cases. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_index, new_given_condition = \ self._preprocess(given_condition, evaluate) rv = list(condition.atoms(RandomIndexedSymbol)) symbolic = False for sym in rv: if sym.key.is_symbol: symbolic = True break if check: return Probability(condition, new_given_condition) if isinstance(self, ContinuousMarkovChain): trans_probs = self.transition_probabilities(mat) elif isinstance(self, DiscreteMarkovChain): trans_probs = mat condition = self.replace_with_index(condition) given_condition = self.replace_with_index(given_condition) new_given_condition = self.replace_with_index(new_given_condition) if isinstance(condition, Relational): if isinstance(new_given_condition, And): gcs = new_given_condition.args else: gcs = (new_given_condition, ) min_key_rv = list(new_given_condition.atoms(RandomIndexedSymbol)) if len(min_key_rv): min_key_rv = min_key_rv[0] for r in rv: if min_key_rv.key.is_symbol or r.key.is_symbol: continue if min_key_rv.key > r.key: return Probability(condition) else: min_key_rv = None return Probability(condition) if symbolic: return self._symbolic_probability(condition, new_given_condition, rv, min_key_rv) if len(rv) > 1: rv[0] = condition.lhs rv[1] = condition.rhs if rv[0].key < rv[1].key: rv[0], rv[1] = rv[1], rv[0] if isinstance(condition, Gt): condition = Lt(condition.lhs, condition.rhs) elif isinstance(condition, Lt): condition = Gt(condition.lhs, condition.rhs) elif isinstance(condition, Ge): condition = Le(condition.lhs, condition.rhs) elif isinstance(condition, Le): condition = Ge(condition.lhs, condition.rhs) s = Rational(0, 1) n = len(self.state_space) if isinstance(condition, (Eq, Ne)): for i in range(0, n): s += self.probability(Eq(rv[0], i), Eq(rv[1], i)) * self.probability(Eq(rv[1], i), new_given_condition) return s if isinstance(condition, Eq) else 1 - s else: upper = 0 greater = False if isinstance(condition, (Ge, Lt)): upper = 1 if isinstance(condition, (Ge, Gt)): greater = True for i in range(0, n): if i <= n//2: for j in range(0, i + upper): s += self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition) else: s += self.probability(Eq(rv[0], i), new_given_condition) for j in range(i + upper, n): s -= self.probability(Eq(rv[0], i), Eq(rv[1], j)) * self.probability(Eq(rv[1], j), new_given_condition) return s if greater else 1 - s rv = rv[0] states = condition.as_set() prob, gstate = dict(), None for gc in gcs: if gc.has(min_key_rv): if gc.has(Probability): p, gp = (gc.rhs, gc.lhs) if isinstance(gc.lhs, Probability) \ else (gc.lhs, gc.rhs) gr = gp.args[0] gset = Intersection(gr.as_set(), state_index) gstate = list(gset)[0] prob[gset] = p else: _, gstate = (gc.lhs.key, gc.rhs) if isinstance(gc.lhs, RandomIndexedSymbol) \ else (gc.rhs.key, gc.lhs) if not all(k in self.index_set for k in (rv.key, min_key_rv.key)): raise IndexError("The timestamps of the process are not in it's index set.") states = Intersection(states, state_index) if not isinstance(self.number_of_states, Symbol) else states for state in Union(states, FiniteSet(gstate)): if not state.is_Integer or Ge(state, mat.shape[0]) is True: raise IndexError("No information is available for (%s, %s) in " "transition probabilities of shape, (%s, %s). " "State space is zero indexed." %(gstate, state, mat.shape[0], mat.shape[1])) if prob: gstates = Union(*prob.keys()) if len(gstates) == 1: gstate = list(gstates)[0] gprob = list(prob.values())[0] prob[gstates] = gprob elif len(gstates) == len(state_index) - 1: gstate = list(state_index - gstates)[0] gprob = S.One - sum(prob.values()) prob[state_index - gstates] = gprob else: raise ValueError("Conflicting information.") else: gprob = S.One if min_key_rv == rv: return sum([prob[FiniteSet(state)] for state in states]) if isinstance(self, ContinuousMarkovChain): return gprob * sum([trans_probs(rv.key - min_key_rv.key).__getitem__((gstate, state)) for state in states]) if isinstance(self, DiscreteMarkovChain): return gprob * sum([(trans_probs**(rv.key - min_key_rv.key)).__getitem__((gstate, state)) for state in states]) if isinstance(condition, Not): expr = condition.args[0] return S.One - self.probability(expr, given_condition, evaluate, **kwargs) if isinstance(condition, And): compute_later, state2cond, conds = [], dict(), condition.args for expr in conds: if isinstance(expr, Relational): ris = list(expr.atoms(RandomIndexedSymbol))[0] if state2cond.get(ris, None) is None: state2cond[ris] = S.true state2cond[ris] &= expr else: compute_later.append(expr) ris = [] for ri in state2cond: ris.append(ri) cset = Intersection(state2cond[ri].as_set(), state_index) if len(cset) == 0: return S.Zero state2cond[ri] = cset.as_relational(ri) sorted_ris = sorted(ris, key=lambda ri: ri.key) prod = self.probability(state2cond[sorted_ris[0]], given_condition, evaluate, **kwargs) for i in range(1, len(sorted_ris)): ri, prev_ri = sorted_ris[i], sorted_ris[i-1] if not isinstance(state2cond[ri], Eq): raise ValueError("The process is in multiple states at %s, unable to determine the probability."%(ri)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) prod *= self.probability(state2cond[ri], state2cond[prev_ri] & mat_of & StochasticStateSpaceOf(self, state_index), evaluate, **kwargs) for expr in compute_later: prod *= self.probability(expr, given_condition, evaluate, **kwargs) return prod if isinstance(condition, Or): return sum([self.probability(expr, given_condition, evaluate, **kwargs) for expr in condition.args]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(condition, given_condition)) def _symbolic_probability(self, condition, new_given_condition, rv, min_key_rv): #Function to calculate probability for queries with symbols if isinstance(condition, Relational): curr_state = new_given_condition.rhs if isinstance(new_given_condition.lhs, RandomIndexedSymbol) \ else new_given_condition.lhs next_state = condition.rhs if isinstance(condition.lhs, RandomIndexedSymbol) \ else condition.lhs if isinstance(condition, (Eq, Ne)): if isinstance(self, DiscreteMarkovChain): P = self.transition_probabilities**(rv[0].key - min_key_rv.key) else: P = exp(self.generator_matrix*(rv[0].key - min_key_rv.key)) prob = P[curr_state, next_state] if isinstance(condition, Eq) else 1 - P[curr_state, next_state] return Piecewise((prob, rv[0].key > min_key_rv.key), (Probability(condition), True)) else: upper = 1 greater = False if isinstance(condition, (Ge, Lt)): upper = 0 if isinstance(condition, (Ge, Gt)): greater = True k = Dummy('k') condition = Eq(condition.lhs, k) if isinstance(condition.lhs, RandomIndexedSymbol)\ else Eq(condition.rhs, k) total = Sum(self.probability(condition, new_given_condition), (k, next_state + upper, self.state_space._sup)) return Piecewise((total, rv[0].key > min_key_rv.key), (Probability(condition), True)) if greater\ else Piecewise((1 - total, rv[0].key > min_key_rv.key), (Probability(condition), True)) else: return Probability(condition, new_given_condition) def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Handles expectation queries for markov process. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation Unevaluated object if computations cannot be done due to insufficient information. Expr In all other cases when the computations are successful. Note ==== Any information passed at the time of query overrides any information passed at the time of object creation like transition probabilities, state space. Pass the transition matrix using TransitionMatrixOf, generator matrix using GeneratorMatrixOf and state space using StochasticStateSpaceOf in given_condition using & or And. """ check, mat, state_index, condition = \ self._preprocess(condition, evaluate) if check: return Expectation(expr, condition) rvs = random_symbols(expr) if isinstance(expr, Expr) and isinstance(condition, Eq) \ and len(rvs) == 1: # handle queries similar to E(f(X[i]), Eq(X[i-m], <some-state>)) condition=self.replace_with_index(condition) state_index=self.replace_with_index(state_index) rv = list(rvs)[0] lhsg, rhsg = condition.lhs, condition.rhs if not isinstance(lhsg, RandomIndexedSymbol): lhsg, rhsg = (rhsg, lhsg) if rhsg not in state_index: raise ValueError("%s state is not in the state space."%(rhsg)) if rv.key < lhsg.key: raise ValueError("Incorrect given condition is given, expectation " "time %s < time %s"%(rv.key, rv.key)) mat_of = TransitionMatrixOf(self, mat) if isinstance(self, DiscreteMarkovChain) else GeneratorMatrixOf(self, mat) cond = condition & mat_of & \ StochasticStateSpaceOf(self, state_index) func = lambda s: self.probability(Eq(rv, s), cond) * expr.subs(rv, self._state_index[s]) return sum([func(s) for s in state_index]) raise NotImplementedError("Mechanism for handling (%s, %s) queries hasn't been " "implemented yet."%(expr, condition)) class DiscreteMarkovChain(DiscreteTimeStochasticProcess, MarkovProcess): """ Represents a finite discrete time-homogeneous Markov chain. This type of Markov Chain can be uniquely characterised by its (ordered) state space and its one-step transition probability matrix. Parameters ========== sym: The name given to the Markov Chain state_space: Optional, by default, Range(n) trans_probs: Optional, by default, MatrixSymbol('_T', n, n) Examples ======== >>> from sympy.stats import DiscreteMarkovChain, TransitionMatrixOf, P, E >>> from sympy import Matrix, MatrixSymbol, Eq, symbols >>> T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> YS = DiscreteMarkovChain("Y") >>> Y.state_space {0, 1, 2} >>> Y.transition_probabilities Matrix([ [0.5, 0.2, 0.3], [0.2, 0.5, 0.3], [0.2, 0.3, 0.5]]) >>> TS = MatrixSymbol('T', 3, 3) >>> P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TS)) T[0, 2]*T[1, 0] + T[1, 1]*T[1, 2] + T[1, 2]*T[2, 2] >>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) 0.36 Probabilities will be calculated based on indexes rather than state names. For example, with the Sunny-Cloudy-Rainy model with string state names: >>> from sympy.core.symbol import Str >>> Y = DiscreteMarkovChain("Y", [Str('Sunny'), Str('Cloudy'), Str('Rainy')], T) >>> P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) 0.36 This gives the same answer as the ``[0, 1, 2]`` state space. Currently, there is no support for state names within probability and expectation statements. Here is a work-around using ``Str``: >>> P(Eq(Str('Rainy'), Y[3]), Eq(Y[1], Str('Cloudy'))).round(2) 0.36 Symbol state names can also be used: >>> sunny, cloudy, rainy = symbols('Sunny, Cloudy, Rainy') >>> Y = DiscreteMarkovChain("Y", [sunny, cloudy, rainy], T) >>> P(Eq(Y[3], rainy), Eq(Y[1], cloudy)).round(2) 0.36 Expectations will be calculated as follows: >>> E(Y[3], Eq(Y[1], cloudy)) 0.38*Cloudy + 0.36*Rainy + 0.26*Sunny Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the transition matrix to avoid errors. >>> from sympy import Gt, Le, Rational >>> T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> P(Eq(Y[3], Y[1]), Eq(Y[0], 0)).round(3) 0.409 >>> P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) 0.36 >>> P(Le(Y[15], Y[10]), Eq(Y[8], 2)).round(7) 0.6963328 Symbolic probability queries are also supported >>> from sympy import symbols, Matrix, Rational, Eq, Gt >>> from sympy.stats import P, DiscreteMarkovChain >>> a, b, c, d = symbols('a b c d') >>> T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]]) >>> Y = DiscreteMarkovChain("Y", [0, 1, 2], T) >>> query = P(Eq(Y[a], b), Eq(Y[c], d)) >>> query.subs({a:10, b:2, c:5, d:1}).round(4) 0.3096 >>> P(Eq(Y[10], 2), Eq(Y[5], 1)).evalf().round(4) 0.3096 >>> query_gt = P(Gt(Y[a], b), Eq(Y[c], d)) >>> query_gt.subs({a:21, b:0, c:5, d:0}).evalf().round(5) 0.64705 >>> P(Gt(Y[21], 0), Eq(Y[5], 0)).round(5) 0.64705 There is limited support for arbitrarily sized states: >>> n = symbols('n', nonnegative=True, integer=True) >>> T = MatrixSymbol('T', n, n) >>> Y = DiscreteMarkovChain("Y", trans_probs=T) >>> Y.state_space Range(0, n, 1) >>> query = P(Eq(Y[a], b), Eq(Y[c], d)) >>> query.subs({a:10, b:2, c:5, d:1}) (T**5)[1, 2] References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Discrete-time_Markov_chain .. [2] https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf """ index_set = S.Naturals0 def __new__(cls, sym, state_space=None, trans_probs=None): sym = _symbol_converter(sym) state_space, trans_probs = MarkovProcess._sanity_checks(state_space, trans_probs) obj = Basic.__new__(cls, sym, state_space, trans_probs) # type: ignore indices = dict() if isinstance(obj.number_of_states, Integer): for index, state in enumerate(obj._state_index): indices[state] = index obj.index_of = indices return obj @property def transition_probabilities(self): """ Transition probabilities of discrete Markov chain, either an instance of Matrix or MatrixSymbol. """ return self.args[2] def communication_classes(self) -> tList[tTuple[tList[Basic], Boolean, Integer]]: """ Returns the list of communication classes that partition the states of the markov chain. A communication class is defined to be a set of states such that every state in that set is reachable from every other state in that set. Due to its properties this forms a class in the mathematical sense. Communication classes are also known as recurrence classes. Returns ======= classes The ``classes`` are a list of tuples. Each tuple represents a single communication class with its properties. The first element in the tuple is the list of states in the class, the second element is whether the class is recurrent and the third element is the period of the communication class. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix >>> T = Matrix([[0, 1, 0], ... [1, 0, 0], ... [1, 0, 0]]) >>> X = DiscreteMarkovChain('X', [1, 2, 3], T) >>> classes = X.communication_classes() >>> for states, is_recurrent, period in classes: ... states, is_recurrent, period ([1, 2], True, 2) ([3], False, 1) From this we can see that states ``1`` and ``2`` communicate, are recurrent and have a period of 2. We can also see state ``3`` is transient with a period of 1. Notes ===== The algorithm used is of order ``O(n**2)`` where ``n`` is the number of states in the markov chain. It uses Tarjan's algorithm to find the classes themselves and then it uses a breadth-first search algorithm to find each class's periodicity. Most of the algorithm's components approach ``O(n)`` as the matrix becomes more and more sparse. References ========== .. [1] http://www.columbia.edu/~ww2040/4701Sum07/4701-06-Notes-MCII.pdf .. [2] http://cecas.clemson.edu/~shierd/Shier/markov.pdf .. [3] https://ujcontent.uj.ac.za/vital/access/services/Download/uj:7506/CONTENT1 .. [4] https://www.mathworks.com/help/econ/dtmc.classify.html """ n = self.number_of_states T = self.transition_probabilities if isinstance(T, MatrixSymbol): raise NotImplementedError("Cannot perform the operation with a symbolic matrix.") # begin Tarjan's algorithm V = Range(n) # don't use state names. Rather use state # indexes since we use them for matrix # indexing here and later onward E = [(i, j) for i in V for j in V if T[i, j] != 0] classes = strongly_connected_components((V, E)) # end Tarjan's algorithm recurrence = [] periods = [] for class_ in classes: # begin recurrent check (similar to self._check_trans_probs()) submatrix = T[class_, class_] # get the submatrix with those states is_recurrent = S.true rows = submatrix.tolist() for row in rows: if (sum(row) - 1) != 0: is_recurrent = S.false break recurrence.append(is_recurrent) # end recurrent check # begin breadth-first search non_tree_edge_values: tSet[int] = set() visited = {class_[0]} newly_visited = {class_[0]} level = {class_[0]: 0} current_level = 0 done = False # imitate a do-while loop while not done: # runs at most len(class_) times done = len(visited) == len(class_) current_level += 1 # this loop and the while loop above run a combined len(class_) number of times. # so this triple nested loop runs through each of the n states once. for i in newly_visited: # the loop below runs len(class_) number of times # complexity is around about O(n * avg(len(class_))) newly_visited = {j for j in class_ if T[i, j] != 0} new_tree_edges = newly_visited.difference(visited) for j in new_tree_edges: level[j] = current_level new_non_tree_edges = newly_visited.intersection(visited) new_non_tree_edge_values = {level[i]-level[j]+1 for j in new_non_tree_edges} non_tree_edge_values = non_tree_edge_values.union(new_non_tree_edge_values) visited = visited.union(new_tree_edges) # igcd needs at least 2 arguments positive_ntev = {val_e for val_e in non_tree_edge_values if val_e > 0} if len(positive_ntev) == 0: periods.append(len(class_)) elif len(positive_ntev) == 1: periods.append(positive_ntev.pop()) else: periods.append(igcd(*positive_ntev)) # end breadth-first search # convert back to the user's state names classes = [[_sympify(self._state_index[i]) for i in class_] for class_ in classes] return list(zip(classes, recurrence, map(Integer,periods))) def fundamental_matrix(self): """ Each entry fundamental matrix can be interpreted as the expected number of times the chains is in state j if it started in state i. References ========== .. [1] https://lips.cs.princeton.edu/the-fundamental-matrix-of-a-finite-markov-chain/ """ _, _, _, Q = self.decompose() if Q.shape[0] > 0: # if non-ergodic I = eye(Q.shape[0]) if (I - Q).det() == 0: raise ValueError("The fundamental matrix doesn't exist.") return (I - Q).inv().as_immutable() else: # if ergodic P = self.transition_probabilities I = eye(P.shape[0]) w = self.fixed_row_vector() W = Matrix([list(w) for i in range(0, P.shape[0])]) if (I - P + W).det() == 0: raise ValueError("The fundamental matrix doesn't exist.") return (I - P + W).inv().as_immutable() def absorbing_probabilities(self): """ Computes the absorbing probabilities, i.e., the ij-th entry of the matrix denotes the probability of Markov chain being absorbed in state j starting from state i. """ _, _, R, _ = self.decompose() N = self.fundamental_matrix() if R is None or N is None: return None return N*R def absorbing_probabilites(self): SymPyDeprecationWarning( feature="absorbing_probabilites", useinstead="absorbing_probabilities", issue=20042, deprecated_since_version="1.7" ).warn() return self.absorbing_probabilities() def is_regular(self): tuples = self.communication_classes() if len(tuples) == 0: return S.false # not defined for a 0x0 matrix classes, _, periods = list(zip(*tuples)) return And(len(classes) == 1, periods[0] == 1) def is_ergodic(self): tuples = self.communication_classes() if len(tuples) == 0: return S.false # not defined for a 0x0 matrix classes, _, _ = list(zip(*tuples)) return S(len(classes) == 1) def is_absorbing_state(self, state): trans_probs = self.transition_probabilities if isinstance(trans_probs, ImmutableMatrix) and \ state < trans_probs.shape[0]: return S(trans_probs[state, state]) is S.One def is_absorbing_chain(self): states, A, B, C = self.decompose() r = A.shape[0] return And(r > 0, A == Identity(r).as_explicit()) def stationary_distribution(self, condition_set=False) -> tUnion[ImmutableMatrix, ConditionSet, Lambda]: r""" The stationary distribution is any row vector, p, that solves p = pP, is row stochastic and each element in p must be nonnegative. That means in matrix form: :math:`(P-I)^T p^T = 0` and :math:`(1, \dots, 1) p = 1` where ``P`` is the one-step transition matrix. All time-homogeneous Markov Chains with a finite state space have at least one stationary distribution. In addition, if a finite time-homogeneous Markov Chain is irreducible, the stationary distribution is unique. Parameters ========== condition_set : bool If the chain has a symbolic size or transition matrix, it will return a ``Lambda`` if ``False`` and return a ``ConditionSet`` if ``True``. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S An irreducible Markov Chain >>> T = Matrix([[S(1)/2, S(1)/2, 0], ... [S(4)/5, S(1)/5, 0], ... [1, 0, 0]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> X.stationary_distribution() Matrix([[8/13, 5/13, 0]]) A reducible Markov Chain >>> T = Matrix([[S(1)/2, S(1)/2, 0], ... [S(4)/5, S(1)/5, 0], ... [0, 0, 1]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> X.stationary_distribution() Matrix([[8/13 - 8*tau0/13, 5/13 - 5*tau0/13, tau0]]) >>> Y = DiscreteMarkovChain('Y') >>> Y.stationary_distribution() Lambda((wm, _T), Eq(wm*_T, wm)) >>> Y.stationary_distribution(condition_set=True) ConditionSet(wm, Eq(wm*_T, wm)) References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_2_6_stationary_and_limiting_distributions.php .. [2] https://galton.uchicago.edu/~yibi/teaching/stat317/2014/Lectures/Lecture4_6up.pdf See Also ======== sympy.stats.DiscreteMarkovChain.limiting_distribution """ trans_probs = self.transition_probabilities n = self.number_of_states if n == 0: return ImmutableMatrix(Matrix([[]])) # symbolic matrix version if isinstance(trans_probs, MatrixSymbol): wm = MatrixSymbol('wm', 1, n) if condition_set: return ConditionSet(wm, Eq(wm * trans_probs, wm)) else: return Lambda((wm, trans_probs), Eq(wm * trans_probs, wm)) # numeric matrix version a = Matrix(trans_probs - Identity(n)).T a[0, 0:n] = ones(1, n) # type: ignore b = zeros(n, 1) b[0, 0] = 1 soln = list(linsolve((a, b)))[0] return ImmutableMatrix([[sol for sol in soln]]) def fixed_row_vector(self): """ A wrapper for ``stationary_distribution()``. """ return self.stationary_distribution() @property def limiting_distribution(self): """ The fixed row vector is the limiting distribution of a discrete Markov chain. """ return self.fixed_row_vector() def decompose(self) -> tTuple[tList[Basic], ImmutableMatrix, ImmutableMatrix, ImmutableMatrix]: """ Decomposes the transition matrix into submatrices with special properties. The transition matrix can be decomposed into 4 submatrices: - A - the submatrix from recurrent states to recurrent states. - B - the submatrix from transient to recurrent states. - C - the submatrix from transient to transient states. - O - the submatrix of zeros for recurrent to transient states. Returns ======= states, A, B, C ``states`` - a list of state names with the first being the recurrent states and the last being the transient states in the order of the row names of A and then the row names of C. ``A`` - the submatrix from recurrent states to recurrent states. ``B`` - the submatrix from transient to recurrent states. ``C`` - the submatrix from transient to transient states. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S One can decompose this chain for example: >>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0], ... [S(2)/5, S(1)/5, S(2)/5, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, S(1)/2, S(1)/2, 0], ... [S(1)/2, 0, 0, 0, S(1)/2]]) >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> states, A, B, C = X.decompose() >>> states [2, 0, 1, 3, 4] >>> A # recurrent to recurrent Matrix([[1]]) >>> B # transient to recurrent Matrix([ [ 0], [2/5], [1/2], [ 0]]) >>> C # transient to transient Matrix([ [1/2, 1/2, 0, 0], [2/5, 1/5, 0, 0], [ 0, 0, 1/2, 0], [1/2, 0, 0, 1/2]]) This means that state 2 is the only absorbing state (since A is a 1x1 matrix). B is a 4x1 matrix since the 4 remaining transient states all merge into reccurent state 2. And C is the 4x4 matrix that shows how the transient states 0, 1, 3, 4 all interact. See Also ======== sympy.stats.DiscreteMarkovChain.communication_classes sympy.stats.DiscreteMarkovChain.canonical_form References ========== .. [1] https://en.wikipedia.org/wiki/Absorbing_Markov_chain .. [2] http://people.brandeis.edu/~igusa/Math56aS08/Math56a_S08_notes015.pdf """ trans_probs = self.transition_probabilities classes = self.communication_classes() r_states = [] t_states = [] for states, recurrent, period in classes: if recurrent: r_states += states else: t_states += states states = r_states + t_states indexes = [self.index_of[state] for state in states] # type: ignore A = Matrix(len(r_states), len(r_states), lambda i, j: trans_probs[indexes[i], indexes[j]]) B = Matrix(len(t_states), len(r_states), lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[j]]) C = Matrix(len(t_states), len(t_states), lambda i, j: trans_probs[indexes[len(r_states) + i], indexes[len(r_states) + j]]) return states, A.as_immutable(), B.as_immutable(), C.as_immutable() def canonical_form(self) -> tTuple[tList[Basic], ImmutableMatrix]: """ Reorders the one-step transition matrix so that recurrent states appear first and transient states appear last. Other representations include inserting transient states first and recurrent states last. Returns ======= states, P_new ``states`` is the list that describes the order of the new states in the matrix so that the ith element in ``states`` is the state of the ith row of A. ``P_new`` is the new transition matrix in canonical form. Examples ======== >>> from sympy.stats import DiscreteMarkovChain >>> from sympy import Matrix, S You can convert your chain into canonical form: >>> T = Matrix([[S(1)/2, S(1)/2, 0, 0, 0], ... [S(2)/5, S(1)/5, S(2)/5, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, S(1)/2, S(1)/2, 0], ... [S(1)/2, 0, 0, 0, S(1)/2]]) >>> X = DiscreteMarkovChain('X', list(range(1, 6)), trans_probs=T) >>> states, new_matrix = X.canonical_form() >>> states [3, 1, 2, 4, 5] >>> new_matrix Matrix([ [ 1, 0, 0, 0, 0], [ 0, 1/2, 1/2, 0, 0], [2/5, 2/5, 1/5, 0, 0], [1/2, 0, 0, 1/2, 0], [ 0, 1/2, 0, 0, 1/2]]) The new states are [3, 1, 2, 4, 5] and you can create a new chain with this and its canonical form will remain the same (since it is already in canonical form). >>> X = DiscreteMarkovChain('X', states, new_matrix) >>> states, new_matrix = X.canonical_form() >>> states [3, 1, 2, 4, 5] >>> new_matrix Matrix([ [ 1, 0, 0, 0, 0], [ 0, 1/2, 1/2, 0, 0], [2/5, 2/5, 1/5, 0, 0], [1/2, 0, 0, 1/2, 0], [ 0, 1/2, 0, 0, 1/2]]) This is not limited to absorbing chains: >>> T = Matrix([[0, 5, 5, 0, 0], ... [0, 0, 0, 10, 0], ... [5, 0, 5, 0, 0], ... [0, 10, 0, 0, 0], ... [0, 3, 0, 3, 4]])/10 >>> X = DiscreteMarkovChain('X', trans_probs=T) >>> states, new_matrix = X.canonical_form() >>> states [1, 3, 0, 2, 4] >>> new_matrix Matrix([ [ 0, 1, 0, 0, 0], [ 1, 0, 0, 0, 0], [ 1/2, 0, 0, 1/2, 0], [ 0, 0, 1/2, 1/2, 0], [3/10, 3/10, 0, 0, 2/5]]) See Also ======== sympy.stats.DiscreteMarkovChain.communication_classes sympy.stats.DiscreteMarkovChain.decompose References ========== .. [1] https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316887.app1 .. [2] http://www.columbia.edu/~ww2040/6711F12/lect1023big.pdf """ states, A, B, C = self.decompose() O = zeros(A.shape[0], C.shape[1]) return states, BlockMatrix([[A, O], [B, C]]).as_explicit() def sample(self): """ Returns ======= sample: iterator object iterator object containing the sample """ if not isinstance(self.transition_probabilities, (Matrix, ImmutableMatrix)): raise ValueError("Transition Matrix must be provided for sampling") Tlist = self.transition_probabilities.tolist() samps = [random.choice(list(self.state_space))] yield samps[0] time = 1 densities = {} for state in self.state_space: states = list(self.state_space) densities[state] = {states[i]: Tlist[state][i] for i in range(len(states))} while time < S.Infinity: samps.append((next(sample_iter(FiniteRV("_", densities[samps[time - 1]]))))) yield samps[time] time += 1 class ContinuousMarkovChain(ContinuousTimeStochasticProcess, MarkovProcess): """ Represents continuous time Markov chain. Parameters ========== sym: Symbol/str state_space: Set Optional, by default, S.Reals gen_mat: Matrix/ImmutableMatrix/MatrixSymbol Optional, by default, None Examples ======== >>> from sympy.stats import ContinuousMarkovChain, P >>> from sympy import Matrix, S, Eq, Gt >>> G = Matrix([[-S(1), S(1)], [S(1), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1], gen_mat=G) >>> C.limiting_distribution() Matrix([[1/2, 1/2]]) >>> C.state_space {0, 1} >>> C.generator_matrix Matrix([ [-1, 1], [ 1, -1]]) Probability queries are supported >>> P(Eq(C(1.96), 0), Eq(C(0.78), 1)).round(5) 0.45279 >>> P(Gt(C(1.7), 0), Eq(C(0.82), 1)).round(5) 0.58602 Probability of expressions with multiple RandomIndexedSymbols can also be calculated provided there is only 1 RandomIndexedSymbol in the given condition. It is always better to use Rational instead of floating point numbers for the probabilities in the generator matrix to avoid errors. >>> from sympy import Gt, Le, Rational >>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) >>> P(Eq(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5) 0.37933 >>> P(Gt(C(3.92), C(1.75)), Eq(C(0.46), 0)).round(5) 0.34211 >>> P(Le(C(1.57), C(3.14)), Eq(C(1.22), 1)).round(4) 0.7143 Symbolic probability queries are also supported >>> from sympy import S, symbols, Matrix, Rational, Eq, Gt >>> from sympy.stats import P, ContinuousMarkovChain >>> a,b,c,d = symbols('a b c d') >>> G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) >>> C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) >>> query = P(Eq(C(a), b), Eq(C(c), d)) >>> query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) 0.4002723175 >>> P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10) 0.4002723175 >>> query_gt = P(Gt(C(a), b), Eq(C(c), d)) >>> query_gt.subs({a:43.2, b:0, c:3.29, d:2}).evalf().round(10) 0.6832579186 >>> P(Gt(C(43.2), 0), Eq(C(3.29), 2)).round(10) 0.6832579186 References ========== .. [1] https://en.wikipedia.org/wiki/Markov_chain#Continuous-time_Markov_chain .. [2] http://u.math.biu.ac.il/~amirgi/CTMCnotes.pdf """ index_set = S.Reals def __new__(cls, sym, state_space=None, gen_mat=None): sym = _symbol_converter(sym) state_space, gen_mat = MarkovProcess._sanity_checks(state_space, gen_mat) obj = Basic.__new__(cls, sym, state_space, gen_mat) indices = dict() if isinstance(obj.number_of_states, Integer): for index, state in enumerate(obj.state_space): indices[state] = index obj.index_of = indices return obj @property def generator_matrix(self): return self.args[2] @cacheit def transition_probabilities(self, gen_mat=None): t = Dummy('t') if isinstance(gen_mat, (Matrix, ImmutableMatrix)) and \ gen_mat.is_diagonalizable(): # for faster computation use diagonalized generator matrix Q, D = gen_mat.diagonalize() return Lambda(t, Q*exp(t*D)*Q.inv()) if gen_mat != None: return Lambda(t, exp(t*gen_mat)) def limiting_distribution(self): gen_mat = self.generator_matrix if gen_mat is None: return None if isinstance(gen_mat, MatrixSymbol): wm = MatrixSymbol('wm', 1, gen_mat.shape[0]) return Lambda((wm, gen_mat), Eq(wm*gen_mat, wm)) w = IndexedBase('w') wi = [w[i] for i in range(gen_mat.shape[0])] wm = Matrix([wi]) eqs = (wm*gen_mat).tolist()[0] eqs.append(sum(wi) - 1) soln = list(linsolve(eqs, wi))[0] return ImmutableMatrix([[sol for sol in soln]]) class BernoulliProcess(DiscreteTimeStochasticProcess): """ The Bernoulli process consists of repeated independent Bernoulli process trials with the same parameter `p`. It's assumed that the probability `p` applies to every trial and that the outcomes of each trial are independent of all the rest. Therefore Bernoulli Processs is Discrete State and Discrete Time Stochastic Process. Parameters ========== sym: Symbol/str success: Integer/str The event which is considered to be success, by default is 1. failure: Integer/str The event which is considered to be failure, by default is 0. p: Real Number between 0 and 1 Represents the probability of getting success. Examples ======== >>> from sympy.stats import BernoulliProcess, P, E >>> from sympy import Eq, Gt >>> B = BernoulliProcess("B", p=0.7, success=1, failure=0) >>> B.state_space {0, 1} >>> (B.p).round(2) 0.70 >>> B.success 1 >>> B.failure 0 >>> X = B[1] + B[2] + B[3] >>> P(Eq(X, 0)).round(2) 0.03 >>> P(Eq(X, 2)).round(2) 0.44 >>> P(Eq(X, 4)).round(2) 0 >>> P(Gt(X, 1)).round(2) 0.78 >>> P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) 0.04 >>> B.joint_distribution(B[1], B[2]) JointDistributionHandmade(Lambda((B[1], B[2]), Piecewise((0.7, Eq(B[1], 1)), (0.3, Eq(B[1], 0)), (0, True))*Piecewise((0.7, Eq(B[2], 1)), (0.3, Eq(B[2], 0)), (0, True)))) >>> E(2*B[1] + B[2]).round(2) 2.10 >>> P(B[1] < 1).round(2) 0.30 References ========== .. [1] https://en.wikipedia.org/wiki/Bernoulli_process .. [2] https://mathcs.clarku.edu/~djoyce/ma217/bernoulli.pdf """ index_set = S.Naturals0 def __new__(cls, sym, p, success=1, failure=0): _value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.') sym = _symbol_converter(sym) p = _sympify(p) success = _sym_sympify(success) failure = _sym_sympify(failure) return Basic.__new__(cls, sym, p, success, failure) @property def symbol(self): return self.args[0] @property def p(self): return self.args[1] @property def success(self): return self.args[2] @property def failure(self): return self.args[3] @property def state_space(self): return _set_converter([self.success, self.failure]) def distribution(self, key=None): if key is None: self._deprecation_warn_distribution() return BernoulliDistribution(self.p) return BernoulliDistribution(self.p, self.success, self.failure) def simple_rv(self, rv): return Bernoulli(rv.name, p=self.p, succ=self.success, fail=self.failure) def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Computes expectation. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation of the RandomIndexedSymbol. """ return _SubstituteRV._expectation(expr, condition, evaluate, **kwargs) def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Computes probability. Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational/And The given conditions under which computations should be done. Returns ======= Probability of the condition. """ return _SubstituteRV._probability(condition, given_condition, evaluate, **kwargs) def density(self, x): return Piecewise((self.p, Eq(x, self.success)), (1 - self.p, Eq(x, self.failure)), (S.Zero, True)) class _SubstituteRV: """ Internal class to handle the queries of expectation and probability by substitution. """ @staticmethod def _rvindexed_subs(expr, condition=None): """ Substitutes the RandomIndexedSymbol with the RandomSymbol with same name, distribution and probability as RandomIndexedSymbol. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. """ rvs_expr = random_symbols(expr) if len(rvs_expr) != 0: swapdict_expr = {} for rv in rvs_expr: if isinstance(rv, RandomIndexedSymbol): newrv = rv.pspace.process.simple_rv(rv) # substitute with equivalent simple rv swapdict_expr[rv] = newrv expr = expr.subs(swapdict_expr) rvs_cond = random_symbols(condition) if len(rvs_cond)!=0: swapdict_cond = {} for rv in rvs_cond: if isinstance(rv, RandomIndexedSymbol): newrv = rv.pspace.process.simple_rv(rv) swapdict_cond[rv] = newrv condition = condition.subs(swapdict_cond) return expr, condition @classmethod def _expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Internal method for computing expectation of indexed RV. Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Logic The given conditions under which computations should be done. Returns ======= Expectation of the RandomIndexedSymbol. """ new_expr, new_condition = self._rvindexed_subs(expr, condition) if not is_random(new_expr): return new_expr new_pspace = pspace(new_expr) if new_condition is not None: new_expr = given(new_expr, new_condition) if new_expr.is_Add: # As E is Linear return Add(*[new_pspace.compute_expectation( expr=arg, evaluate=evaluate, **kwargs) for arg in new_expr.args]) return new_pspace.compute_expectation( new_expr, evaluate=evaluate, **kwargs) @classmethod def _probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Internal method for computing probability of indexed RV Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational/And The given conditions under which computations should be done. Returns ======= Probability of the condition. """ new_condition, new_givencondition = self._rvindexed_subs(condition, given_condition) if isinstance(new_givencondition, RandomSymbol): condrv = random_symbols(new_condition) if len(condrv) == 1 and condrv[0] == new_givencondition: return BernoulliDistribution(self._probability(new_condition), 0, 1) if any(dependent(rv, new_givencondition) for rv in condrv): return Probability(new_condition, new_givencondition) else: return self._probability(new_condition) if new_givencondition is not None and \ not isinstance(new_givencondition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (new_givencondition)) if new_givencondition == False or new_condition == False: return S.Zero if new_condition == True: return S.One if not isinstance(new_condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (new_condition)) if new_givencondition is not None: # If there is a condition # Recompute on new conditional expr return self._probability(given(new_condition, new_givencondition, **kwargs), **kwargs) result = pspace(new_condition).probability(new_condition, **kwargs) if evaluate and hasattr(result, 'doit'): return result.doit() else: return result def get_timerv_swaps(expr, condition): """ Finds the appropriate interval for each time stamp in expr by parsing the given condition and returns intervals for each timestamp and dictionary that maps variable time-stamped Random Indexed Symbol to its corresponding Random Indexed variable with fixed time stamp. Parameters ========== expr: SymPy Expression Expression containing Random Indexed Symbols with variable time stamps condition: Relational/Boolean Expression Expression containing time bounds of variable time stamps in expr Examples ======== >>> from sympy.stats.stochastic_process_types import get_timerv_swaps, PoissonProcess >>> from sympy import symbols, Contains, Interval >>> x, t, d = symbols('x t d', positive=True) >>> X = PoissonProcess("X", 3) >>> get_timerv_swaps(x*X(t), Contains(t, Interval.Lopen(0, 1))) ([Interval.Lopen(0, 1)], {X(t): X(1)}) >>> get_timerv_swaps((X(t)**2 + X(d)**2), Contains(t, Interval.Lopen(0, 1)) ... & Contains(d, Interval.Ropen(1, 4))) # doctest: +SKIP ([Interval.Ropen(1, 4), Interval.Lopen(0, 1)], {X(d): X(3), X(t): X(1)}) Returns ======= intervals: list List of Intervals/FiniteSet on which each time stamp is defined rv_swap: dict Dictionary mapping variable time Random Indexed Symbol to constant time Random Indexed Variable """ if not isinstance(condition, (Relational, Boolean)): raise ValueError("%s is not a relational or combination of relationals" % (condition)) expr_syms = list(expr.atoms(RandomIndexedSymbol)) if isinstance(condition, (And, Or)): given_cond_args = condition.args else: # single condition given_cond_args = (condition, ) rv_swap = {} intervals = [] for expr_sym in expr_syms: for arg in given_cond_args: if arg.has(expr_sym.key) and isinstance(expr_sym.key, Symbol): intv = _set_converter(arg.args[1]) diff_key = intv._sup - intv._inf if diff_key == oo: raise ValueError("%s should have finite bounds" % str(expr_sym.name)) elif diff_key == S.Zero: # has singleton set diff_key = intv._sup rv_swap[expr_sym] = expr_sym.subs({expr_sym.key: diff_key}) intervals.append(intv) return intervals, rv_swap class CountingProcess(ContinuousTimeStochasticProcess): """ This class handles the common methods of the Counting Processes such as Poisson, Wiener and Gamma Processes """ index_set = _set_converter(Interval(0, oo)) @property def symbol(self): return self.args[0] def expectation(self, expr, condition=None, evaluate=True, **kwargs): """ Computes expectation Parameters ========== expr: RandomIndexedSymbol, Relational, Logic Condition for which expectation has to be computed. Must contain a RandomIndexedSymbol of the process. condition: Relational, Boolean The given conditions under which computations should be done, i.e, the intervals on which each variable time stamp in expr is defined Returns ======= Expectation of the given expr """ if condition is not None: intervals, rv_swap = get_timerv_swaps(expr, condition) # they are independent when they have non-overlapping intervals if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet for intv_comb in itertools.combinations(intervals, 2)): if expr.is_Add: return Add.fromiter(self.expectation(arg, condition) for arg in expr.args) expr = expr.subs(rv_swap) else: return Expectation(expr, condition) return _SubstituteRV._expectation(expr, evaluate=evaluate, **kwargs) def _solve_argwith_tworvs(self, arg): if arg.args[0].key >= arg.args[1].key or isinstance(arg, Eq): diff_key = abs(arg.args[0].key - arg.args[1].key) rv = arg.args[0] arg = arg.__class__(rv.pspace.process(diff_key), 0) else: diff_key = arg.args[1].key - arg.args[0].key rv = arg.args[1] arg = arg.__class__(rv.pspace.process(diff_key), 0) return arg def _solve_numerical(self, condition, given_condition=None): if isinstance(condition, And): args_list = list(condition.args) else: args_list = [condition] if given_condition is not None: if isinstance(given_condition, And): args_list.extend(list(given_condition.args)) else: args_list.extend([given_condition]) # sort the args based on timestamp to get the independent increments in # each segment using all the condition args as well as given_condition args args_list = sorted(args_list, key=lambda x: x.args[0].key) result = [] cond_args = list(condition.args) if isinstance(condition, And) else [condition] if args_list[0] in cond_args and not (is_random(args_list[0].args[0]) and is_random(args_list[0].args[1])): result.append(_SubstituteRV._probability(args_list[0])) if is_random(args_list[0].args[0]) and is_random(args_list[0].args[1]): arg = self._solve_argwith_tworvs(args_list[0]) result.append(_SubstituteRV._probability(arg)) for i in range(len(args_list) - 1): curr, nex = args_list[i], args_list[i + 1] diff_key = nex.args[0].key - curr.args[0].key working_set = curr.args[0].pspace.process.state_space if curr.args[1] > nex.args[1]: #impossible condition so return 0 result.append(0) break if isinstance(curr, Eq): working_set = Intersection(working_set, Interval.Lopen(curr.args[1], oo)) else: working_set = Intersection(working_set, curr.as_set()) if isinstance(nex, Eq): working_set = Intersection(working_set, Interval(-oo, nex.args[1])) else: working_set = Intersection(working_set, nex.as_set()) if working_set == EmptySet: rv = Eq(curr.args[0].pspace.process(diff_key), 0) result.append(_SubstituteRV._probability(rv)) else: if working_set.is_finite_set: if isinstance(curr, Eq) and isinstance(nex, Eq): rv = Eq(curr.args[0].pspace.process(diff_key), len(working_set)) result.append(_SubstituteRV._probability(rv)) elif isinstance(curr, Eq) ^ isinstance(nex, Eq): result.append(Add.fromiter(_SubstituteRV._probability(Eq( curr.args[0].pspace.process(diff_key), x)) for x in range(len(working_set)))) else: n = len(working_set) result.append(Add.fromiter((n - x)*_SubstituteRV._probability(Eq( curr.args[0].pspace.process(diff_key), x)) for x in range(n))) else: result.append(_SubstituteRV._probability( curr.args[0].pspace.process(diff_key) <= working_set._sup - working_set._inf)) return Mul.fromiter(result) def probability(self, condition, given_condition=None, evaluate=True, **kwargs): """ Computes probability. Parameters ========== condition: Relational Condition for which probability has to be computed. Must contain a RandomIndexedSymbol of the process. given_condition: Relational, Boolean The given conditions under which computations should be done, i.e, the intervals on which each variable time stamp in expr is defined Returns ======= Probability of the condition """ check_numeric = True if isinstance(condition, (And, Or)): cond_args = condition.args else: cond_args = (condition, ) # check that condition args are numeric or not if not all(arg.args[0].key.is_number for arg in cond_args): check_numeric = False if given_condition is not None: check_given_numeric = True if isinstance(given_condition, (And, Or)): given_cond_args = given_condition.args else: given_cond_args = (given_condition, ) # check that given condition args are numeric or not if given_condition.has(Contains): check_given_numeric = False # Handle numerical queries if check_numeric and check_given_numeric: res = [] if isinstance(condition, Or): res.append(Add.fromiter(self._solve_numerical(arg, given_condition) for arg in condition.args)) if isinstance(given_condition, Or): res.append(Add.fromiter(self._solve_numerical(condition, arg) for arg in given_condition.args)) if res: return Add.fromiter(res) return self._solve_numerical(condition, given_condition) # No numeric queries, go by Contains?... then check that all the # given condition are in form of `Contains` if not all(arg.has(Contains) for arg in given_cond_args): raise ValueError("If given condition is passed with `Contains`, then " "please pass the evaluated condition with its corresponding information " "in terms of intervals of each time stamp to be passed in given condition.") intervals, rv_swap = get_timerv_swaps(condition, given_condition) # they are independent when they have non-overlapping intervals if len(intervals) == 1 or all(Intersection(*intv_comb) == EmptySet for intv_comb in itertools.combinations(intervals, 2)): if isinstance(condition, And): return Mul.fromiter(self.probability(arg, given_condition) for arg in condition.args) elif isinstance(condition, Or): return Add.fromiter(self.probability(arg, given_condition) for arg in condition.args) condition = condition.subs(rv_swap) else: return Probability(condition, given_condition) if check_numeric: return self._solve_numerical(condition) return _SubstituteRV._probability(condition, evaluate=evaluate, **kwargs) class PoissonProcess(CountingProcess): """ The Poisson process is a counting process. It is usually used in scenarios where we are counting the occurrences of certain events that appear to happen at a certain rate, but completely at random. Parameters ========== sym: Symbol/str lamda: Positive number Rate of the process, ``lamda > 0`` Examples ======== >>> from sympy.stats import PoissonProcess, P, E >>> from sympy import symbols, Eq, Ne, Contains, Interval >>> X = PoissonProcess("X", lamda=3) >>> X.state_space Naturals0 >>> X.lamda 3 >>> t1, t2 = symbols('t1 t2', positive=True) >>> P(X(t1) < 4) (9*t1**3/2 + 9*t1**2/2 + 3*t1 + 1)*exp(-3*t1) >>> P(Eq(X(t1), 2) | Ne(X(t1), 4), Contains(t1, Interval.Ropen(2, 4))) 1 - 36*exp(-6) >>> P(Eq(X(t1), 2) & Eq(X(t2), 3), Contains(t1, Interval.Lopen(0, 2)) ... & Contains(t2, Interval.Lopen(2, 4))) 648*exp(-12) >>> E(X(t1)) 3*t1 >>> E(X(t1)**2 + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) ... & Contains(t2, Interval.Lopen(1, 2))) 18 >>> P(X(3) < 1, Eq(X(1), 0)) exp(-6) >>> P(Eq(X(4), 3), Eq(X(2), 3)) exp(-6) >>> P(X(2) <= 3, X(1) > 1) 5*exp(-3) Merging two Poisson Processes >>> Y = PoissonProcess("Y", lamda=4) >>> Z = X + Y >>> Z.lamda 7 Splitting a Poisson Process into two independent Poisson Processes >>> N, M = Z.split(l1=2, l2=5) >>> N.lamda, M.lamda (2, 5) References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_0_0_intro.php .. [2] https://en.wikipedia.org/wiki/Poisson_point_process """ def __new__(cls, sym, lamda): _value_check(lamda > 0, 'lamda should be a positive number.') sym = _symbol_converter(sym) lamda = _sympify(lamda) return Basic.__new__(cls, sym, lamda) @property def lamda(self): return self.args[1] @property def state_space(self): return S.Naturals0 def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return PoissonDistribution(self.lamda*key.key) return PoissonDistribution(self.lamda*key) def density(self, x): return (self.lamda*x.key)**x / factorial(x) * exp(-(self.lamda*x.key)) def simple_rv(self, rv): return Poisson(rv.name, lamda=self.lamda*rv.key) def __add__(self, other): if not isinstance(other, PoissonProcess): raise ValueError("Only instances of Poisson Process can be merged") return PoissonProcess(Dummy(self.symbol.name + other.symbol.name), self.lamda + other.lamda) def split(self, l1, l2): if _sympify(l1 + l2) != self.lamda: raise ValueError("Sum of l1 and l2 should be %s" % str(self.lamda)) return PoissonProcess(Dummy("l1"), l1), PoissonProcess(Dummy("l2"), l2) class WienerProcess(CountingProcess): """ The Wiener process is a real valued continuous-time stochastic process. In physics it is used to study Brownian motion and therefore also known as Brownian Motion. Parameters ========== sym: Symbol/str Examples ======== >>> from sympy.stats import WienerProcess, P, E >>> from sympy import symbols, Contains, Interval >>> X = WienerProcess("X") >>> X.state_space Reals >>> t1, t2 = symbols('t1 t2', positive=True) >>> P(X(t1) < 7).simplify() erf(7*sqrt(2)/(2*sqrt(t1)))/2 + 1/2 >>> P((X(t1) > 2) | (X(t1) < 4), Contains(t1, Interval.Ropen(2, 4))).simplify() -erf(1)/2 + erf(2)/2 + 1 >>> E(X(t1)) 0 >>> E(X(t1) + 2*X(t2), Contains(t1, Interval.Lopen(0, 1)) ... & Contains(t2, Interval.Lopen(1, 2))) 0 References ========== .. [1] https://www.probabilitycourse.com/chapter11/11_4_0_brownian_motion_wiener_process.php .. [2] https://en.wikipedia.org/wiki/Wiener_process """ def __new__(cls, sym): sym = _symbol_converter(sym) return Basic.__new__(cls, sym) @property def state_space(self): return S.Reals def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return NormalDistribution(0, sqrt(key.key)) return NormalDistribution(0, sqrt(key)) def density(self, x): return exp(-x**2/(2*x.key)) / (sqrt(2*pi)*sqrt(x.key)) def simple_rv(self, rv): return Normal(rv.name, 0, sqrt(rv.key)) class GammaProcess(CountingProcess): """ A Gamma process is a random process with independent gamma distributed increments. It is a pure-jump increasing Levy process. Parameters ========== sym: Symbol/str lamda: Positive number Jump size of the process, ``lamda > 0`` gamma: Positive number Rate of jump arrivals, ``gamma > 0`` Examples ======== >>> from sympy.stats import GammaProcess, E, P, variance >>> from sympy import symbols, Contains, Interval, Not >>> t, d, x, l, g = symbols('t d x l g', positive=True) >>> X = GammaProcess("X", l, g) >>> E(X(t)) g*t/l >>> variance(X(t)).simplify() g*t/l**2 >>> X = GammaProcess('X', 1, 2) >>> P(X(t) < 1).simplify() lowergamma(2*t, 1)/gamma(2*t) >>> P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & ... Contains(d, Interval.Lopen(7, 8))).simplify() -4*exp(-3) + 472*exp(-8)/3 + 1 >>> E(X(2) + x*E(X(5))) 10*x + 4 References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_process """ def __new__(cls, sym, lamda, gamma): _value_check(lamda > 0, 'lamda should be a positive number') _value_check(gamma > 0, 'gamma should be a positive number') sym = _symbol_converter(sym) gamma = _sympify(gamma) lamda = _sympify(lamda) return Basic.__new__(cls, sym, lamda, gamma) @property def lamda(self): return self.args[1] @property def gamma(self): return self.args[2] @property def state_space(self): return _set_converter(Interval(0, oo)) def distribution(self, key): if isinstance(key, RandomIndexedSymbol): self._deprecation_warn_distribution() return GammaDistribution(self.gamma*key.key, 1/self.lamda) return GammaDistribution(self.gamma*key, 1/self.lamda) def density(self, x): k = self.gamma*x.key theta = 1/self.lamda return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k) def simple_rv(self, rv): return Gamma(rv.name, self.gamma*rv.key, 1/self.lamda)
d5e59ee019303254e4353ae167fedfe176401e056c9721b1b706418e1705dfa8
""" Generating and counting primes. """ import random from bisect import bisect from itertools import count # Using arrays for sieving instead of lists greatly reduces # memory consumption from array import array as _array from sympy.core.function import Function from sympy.core.singleton import S from .primetest import isprime from sympy.utilities.misc import as_int def _azeros(n): return _array('l', [0]*n) def _aset(*v): return _array('l', v) def _arange(a, b): return _array('l', range(a, b)) class Sieve: """An infinite list of prime numbers, implemented as a dynamically growing sieve of Eratosthenes. When a lookup is requested involving an odd number that has not been sieved, the sieve is automatically extended up to that number. Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> 25 in sieve False >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) """ # data shared (and updated) by all Sieve instances def __init__(self): self._n = 6 self._list = _aset(2, 3, 5, 7, 11, 13) # primes self._tlist = _aset(0, 1, 1, 2, 2, 4) # totient self._mlist = _aset(0, 1, -1, -1, 0, -1) # mobius assert all(len(i) == self._n for i in (self._list, self._tlist, self._mlist)) def __repr__(self): return ("<%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i\n" "%s sieve (%i): %i, %i, %i, ... %i, %i>") % ( 'prime', len(self._list), self._list[0], self._list[1], self._list[2], self._list[-2], self._list[-1], 'totient', len(self._tlist), self._tlist[0], self._tlist[1], self._tlist[2], self._tlist[-2], self._tlist[-1], 'mobius', len(self._mlist), self._mlist[0], self._mlist[1], self._mlist[2], self._mlist[-2], self._mlist[-1]) def _reset(self, prime=None, totient=None, mobius=None): """Reset all caches (default). To reset one or more set the desired keyword to True.""" if all(i is None for i in (prime, totient, mobius)): prime = totient = mobius = True if prime: self._list = self._list[:self._n] if totient: self._tlist = self._tlist[:self._n] if mobius: self._mlist = self._mlist[:self._n] def extend(self, n): """Grow the sieve to cover all primes <= n (a real number). Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend(30) >>> sieve[10] == 29 True """ n = int(n) if n <= self._list[-1]: return # We need to sieve against all bases up to sqrt(n). # This is a recursive call that will do nothing if there are enough # known bases already. maxbase = int(n**0.5) + 1 self.extend(maxbase) # Create a new sieve starting from sqrt(n) begin = self._list[-1] + 1 newsieve = _arange(begin, n + 1) # Now eliminate all multiples of primes in [2, sqrt(n)] for p in self.primerange(maxbase): # Start counting at a multiple of p, offsetting # the index to account for the new sieve's base index startindex = (-begin) % p for i in range(startindex, len(newsieve), p): newsieve[i] = 0 # Merge the sieves self._list += _array('l', [x for x in newsieve if x]) def extend_to_no(self, i): """Extend to include the ith prime number. Parameters ========== i : integer Examples ======== >>> from sympy import sieve >>> sieve._reset() # this line for doctest only >>> sieve.extend_to_no(9) >>> sieve._list array('l', [2, 3, 5, 7, 11, 13, 17, 19, 23]) Notes ===== The list is extended by 50% if it is too short, so it is likely that it will be longer than requested. """ i = as_int(i) while len(self._list) < i: self.extend(int(self._list[-1] * 1.5)) def primerange(self, a, b=None): """Generate all prime numbers in the range [2, a) or [a, b). Examples ======== >>> from sympy import sieve, prime All primes less than 19: >>> print([i for i in sieve.primerange(19)]) [2, 3, 5, 7, 11, 13, 17] All primes greater than or equal to 7 and less than 19: >>> print([i for i in sieve.primerange(7, 19)]) [7, 11, 13, 17] All primes through the 10th prime >>> list(sieve.primerange(prime(10) + 1)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not if b is None: b = as_int(ceiling(a)) a = 2 else: a = max(2, as_int(ceiling(a))) b = as_int(ceiling(b)) if a >= b: return self.extend(b) i = self.search(a)[1] maxi = len(self._list) + 1 while i < maxi: p = self._list[i - 1] if p < b: yield p i += 1 else: return def totientrange(self, a, b): """Generate all totient numbers for the range [a, b). Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.totientrange(7, 18)]) [6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._tlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._tlist[i] else: self._tlist += _arange(n, b) for i in range(1, n): ti = self._tlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._tlist[j] -= ti if i >= a: yield ti for i in range(n, b): ti = self._tlist[i] for j in range(2 * i, b, i): self._tlist[j] -= ti if i >= a: yield ti def mobiusrange(self, a, b): """Generate all mobius numbers for the range [a, b). Parameters ========== a : integer First number in range b : integer First number outside of range Examples ======== >>> from sympy import sieve >>> print([i for i in sieve.mobiusrange(7, 18)]) [-1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1] """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = max(1, as_int(ceiling(a))) b = as_int(ceiling(b)) n = len(self._mlist) if a >= b: return elif b <= n: for i in range(a, b): yield self._mlist[i] else: self._mlist += _azeros(b - n) for i in range(1, n): mi = self._mlist[i] startindex = (n + i - 1) // i * i for j in range(startindex, b, i): self._mlist[j] -= mi if i >= a: yield mi for i in range(n, b): mi = self._mlist[i] for j in range(2 * i, b, i): self._mlist[j] -= mi if i >= a: yield mi def search(self, n): """Return the indices i, j of the primes that bound n. If n is prime then i == j. Although n can be an expression, if ceiling cannot convert it to an integer then an n error will be raised. Examples ======== >>> from sympy import sieve >>> sieve.search(25) (9, 10) >>> sieve.search(23) (9, 9) """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not test = as_int(ceiling(n)) n = as_int(n) if n < 2: raise ValueError("n should be >= 2 but got: %s" % n) if n > self._list[-1]: self.extend(n) b = bisect(self._list, n) if self._list[b - 1] == test: return b, b else: return b, b + 1 def __contains__(self, n): try: n = as_int(n) assert n >= 2 except (ValueError, AssertionError): return False if n % 2 == 0: return n == 2 a, b = self.search(n) return a == b def __iter__(self): for n in count(1): yield self[n] def __getitem__(self, n): """Return the nth prime number""" if isinstance(n, slice): self.extend_to_no(n.stop) # Python 2.7 slices have 0 instead of None for start, so # we can't default to 1. start = n.start if n.start is not None else 0 if start < 1: # sieve[:5] would be empty (starting at -1), let's # just be explicit and raise. raise IndexError("Sieve indices start at 1.") return self._list[start - 1:n.stop - 1:n.step] else: if n < 1: # offset is one, so forbid explicit access to sieve[0] # (would surprisingly return the last one). raise IndexError("Sieve indices start at 1.") n = as_int(n) self.extend_to_no(n) return self._list[n - 1] # Generate a global object for repeated use in trial division etc sieve = Sieve() def prime(nth): r""" Return the nth prime, with the primes indexed as prime(1) = 2, prime(2) = 3, etc.... The nth prime is approximately $n\log(n)$. Logarithmic integral of $x$ is a pretty nice approximation for number of primes $\le x$, i.e. li(x) ~ pi(x) In fact, for the numbers we are concerned about( x<1e11 ), li(x) - pi(x) < 50000 Also, li(x) > pi(x) can be safely assumed for the numbers which can be evaluated by this function. Here, we find the least integer m such that li(m) > n using binary search. Now pi(m-1) < li(m-1) <= n, We find pi(m - 1) using primepi function. Starting from m, we have to find n - pi(m-1) more primes. For the inputs this implementation can handle, we will have to test primality for at max about 10**5 numbers, to get our answer. Examples ======== >>> from sympy import prime >>> prime(10) 29 >>> prime(1) 2 >>> prime(100000) 1299709 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number_theorem#Table_of_.CF.80.28x.29.2C_x_.2F_log_x.2C_and_li.28x.29 .. [2] https://en.wikipedia.org/wiki/Prime_number_theorem#Approximations_for_the_nth_prime_number .. [3] https://en.wikipedia.org/wiki/Skewes%27_number """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; prime(1) == 2") if n <= len(sieve._list): return sieve[n] from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 2 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if li(mid) > n: b = mid else: a = mid + 1 n_primes = primepi(a - 1) while n_primes < n: if isprime(a): n_primes += 1 a += 1 return a - 1 class primepi(Function): r""" Represents the prime counting function pi(n) = the number of prime numbers less than or equal to n. Algorithm Description: In sieve method, we remove all multiples of prime p except p itself. Let phi(i,j) be the number of integers 2 <= k <= i which remain after sieving from primes less than or equal to j. Clearly, pi(n) = phi(n, sqrt(n)) If j is not a prime, phi(i,j) = phi(i, j - 1) if j is a prime, We remove all numbers(except j) whose smallest prime factor is j. Let $x= j \times a$ be such a number, where $2 \le a \le i / j$ Now, after sieving from primes $\le j - 1$, a must remain (because x, and hence a has no prime factor $\le j - 1$) Clearly, there are phi(i / j, j - 1) such a which remain on sieving from primes $\le j - 1$ Now, if a is a prime less than equal to j - 1, $x= j \times a$ has smallest prime factor = a, and has already been removed(by sieving from a). So, we don't need to remove it again. (Note: there will be pi(j - 1) such x) Thus, number of x, that will be removed are: phi(i / j, j - 1) - phi(j - 1, j - 1) (Note that pi(j - 1) = phi(j - 1, j - 1)) $\Rightarrow$ phi(i,j) = phi(i, j - 1) - phi(i / j, j - 1) + phi(j - 1, j - 1) So,following recursion is used and implemented as dp: phi(a, b) = phi(a, b - 1), if b is not a prime phi(a, b) = phi(a, b-1)-phi(a / b, b-1) + phi(b-1, b-1), if b is prime Clearly a is always of the form floor(n / k), which can take at most $2\sqrt{n}$ values. Two arrays arr1,arr2 are maintained arr1[i] = phi(i, j), arr2[i] = phi(n // i, j) Finally the answer is arr2[1] Examples ======== >>> from sympy import primepi, prime, prevprime, isprime >>> primepi(25) 9 So there are 9 primes less than or equal to 25. Is 25 prime? >>> isprime(25) False It isn't. So the first prime less than 25 must be the 9th prime: >>> prevprime(25) == prime(9) True See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime """ @classmethod def eval(cls, n): if n is S.Infinity: return S.Infinity if n is S.NegativeInfinity: return S.Zero try: n = int(n) except TypeError: if n.is_real == False or n is S.NaN: raise ValueError("n must be real") return if n < 2: return S.Zero if n <= sieve._list[-1]: return S(sieve.search(n)[0]) lim = int(n ** 0.5) lim -= 1 lim = max(lim, 0) while lim * lim <= n: lim += 1 lim -= 1 arr1 = [0] * (lim + 1) arr2 = [0] * (lim + 1) for i in range(1, lim + 1): arr1[i] = i - 1 arr2[i] = n // i - 1 for i in range(2, lim + 1): # Presently, arr1[k]=phi(k,i - 1), # arr2[k] = phi(n // k,i - 1) if arr1[i] == arr1[i - 1]: continue p = arr1[i - 1] for j in range(1, min(n // (i * i), lim) + 1): st = i * j if st <= lim: arr2[j] -= arr2[st] - p else: arr2[j] -= arr1[n // st] - p lim2 = min(lim, i * i - 1) for j in range(lim, lim2, -1): arr1[j] -= arr1[j // i] - p return S(arr2[1]) def nextprime(n, ith=1): """ Return the ith prime greater than n. i must be an integer. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import nextprime >>> [(i, nextprime(i)) for i in range(10, 15)] [(10, 11), (11, 13), (12, 13), (13, 17), (14, 17)] >>> nextprime(2, ith=2) # the 2nd prime after 2 5 See Also ======== prevprime : Return the largest prime smaller than n primerange : Generate all primes in a given range """ n = int(n) i = as_int(ith) if i > 1: pr = n j = 1 while 1: pr = nextprime(pr) j += 1 if j > i: break return pr if n < 2: return 2 if n < 7: return {2: 3, 3: 5, 4: 5, 5: 7, 6: 7}[n] if n <= sieve._list[-2]: l, u = sieve.search(n) if l == u: return sieve[u + 1] else: return sieve[u] nn = 6*(n//6) if nn == n: n += 1 if isprime(n): return n n += 4 elif n - nn == 5: n += 2 if isprime(n): return n n += 4 else: n = nn + 5 while 1: if isprime(n): return n n += 2 if isprime(n): return n n += 4 def prevprime(n): """ Return the largest prime smaller than n. Notes ===== Potential primes are located at 6*j +/- 1. This property is used during searching. >>> from sympy import prevprime >>> [(i, prevprime(i)) for i in range(10, 15)] [(10, 7), (11, 7), (12, 11), (13, 11), (14, 13)] See Also ======== nextprime : Return the ith prime greater than n primerange : Generates all primes in a given range """ from sympy.functions.elementary.integers import ceiling # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not n = as_int(ceiling(n)) if n < 3: raise ValueError("no preceding primes") if n < 8: return {3: 2, 4: 3, 5: 3, 6: 5, 7: 5}[n] if n <= sieve._list[-1]: l, u = sieve.search(n) if l == u: return sieve[l-1] else: return sieve[l] nn = 6*(n//6) if n - nn <= 1: n = nn - 1 if isprime(n): return n n -= 4 else: n = nn + 1 while 1: if isprime(n): return n n -= 2 if isprime(n): return n n -= 4 def primerange(a, b=None): """ Generate a list of all prime numbers in the range [2, a), or [a, b). If the range exists in the default sieve, the values will be returned from there; otherwise values will be returned but will not modify the sieve. Examples ======== >>> from sympy import primerange, prime All primes less than 19: >>> list(primerange(19)) [2, 3, 5, 7, 11, 13, 17] All primes greater than or equal to 7 and less than 19: >>> list(primerange(7, 19)) [7, 11, 13, 17] All primes through the 10th prime >>> list(primerange(prime(10) + 1)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] The Sieve method, primerange, is generally faster but it will occupy more memory as the sieve stores values. The default instance of Sieve, named sieve, can be used: >>> from sympy import sieve >>> list(sieve.primerange(1, 30)) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] Notes ===== Some famous conjectures about the occurrence of primes in a given range are [1]: - Twin primes: though often not, the following will give 2 primes an infinite number of times: primerange(6*n - 1, 6*n + 2) - Legendre's: the following always yields at least one prime primerange(n**2, (n+1)**2+1) - Bertrand's (proven): there is always a prime in the range primerange(n, 2*n) - Brocard's: there are at least four primes in the range primerange(prime(n)**2, prime(n+1)**2) The average gap between primes is log(n) [2]; the gap between primes can be arbitrarily large since sequences of composite numbers are arbitrarily large, e.g. the numbers in the sequence n! + 2, n! + 3 ... n! + n are all composite. See Also ======== prime : Return the nth prime nextprime : Return the ith prime greater than n prevprime : Return the largest prime smaller than n randprime : Returns a random prime in a given range primorial : Returns the product of primes based on condition Sieve.primerange : return range from already computed primes or extend the sieve to contain the requested range. References ========== .. [1] https://en.wikipedia.org/wiki/Prime_number .. [2] http://primes.utm.edu/notes/gaps.html """ from sympy.functions.elementary.integers import ceiling if b is None: a, b = 2, a if a >= b: return # if we already have the range, return it if b <= sieve._list[-1]: yield from sieve.primerange(a, b) return # otherwise compute, without storing, the desired range. # wrapping ceiling in as_int will raise an error if there was a problem # determining whether the expression was exactly an integer or not a = as_int(ceiling(a)) - 1 b = as_int(ceiling(b)) while 1: a = nextprime(a) if a < b: yield a else: return def randprime(a, b): """ Return a random prime number in the range [a, b). Bertrand's postulate assures that randprime(a, 2*a) will always succeed for a > 1. Examples ======== >>> from sympy import randprime, isprime >>> randprime(1, 30) #doctest: +SKIP 13 >>> isprime(randprime(1, 30)) True See Also ======== primerange : Generate all primes in a given range References ========== .. [1] https://en.wikipedia.org/wiki/Bertrand's_postulate """ if a >= b: return a, b = map(int, (a, b)) n = random.randint(a - 1, b) p = nextprime(n) if p >= b: p = prevprime(b) if p < a: raise ValueError("no primes exist in the specified range") return p def primorial(n, nth=True): """ Returns the product of the first n primes (default) or the primes less than or equal to n (when ``nth=False``). Examples ======== >>> from sympy.ntheory.generate import primorial, primerange >>> from sympy import factorint, Mul, primefactors, sqrt >>> primorial(4) # the first 4 primes are 2, 3, 5, 7 210 >>> primorial(4, nth=False) # primes <= 4 are 2 and 3 6 >>> primorial(1) 2 >>> primorial(1, nth=False) 1 >>> primorial(sqrt(101), nth=False) 210 One can argue that the primes are infinite since if you take a set of primes and multiply them together (e.g. the primorial) and then add or subtract 1, the result cannot be divided by any of the original factors, hence either 1 or more new primes must divide this product of primes. In this case, the number itself is a new prime: >>> factorint(primorial(4) + 1) {211: 1} In this case two new primes are the factors: >>> factorint(primorial(4) - 1) {11: 1, 19: 1} Here, some primes smaller and larger than the primes multiplied together are obtained: >>> p = list(primerange(10, 20)) >>> sorted(set(primefactors(Mul(*p) + 1)).difference(set(p))) [2, 5, 31, 149] See Also ======== primerange : Generate all primes in a given range """ if nth: n = as_int(n) else: n = int(n) if n < 1: raise ValueError("primorial argument must be >= 1") p = 1 if nth: for i in range(1, n + 1): p *= prime(i) else: for i in primerange(2, n + 1): p *= i return p def cycle_length(f, x0, nmax=None, values=False): """For a given iterated sequence, return a generator that gives the length of the iterated cycle (lambda) and the length of terms before the cycle begins (mu); if ``values`` is True then the terms of the sequence will be returned instead. The sequence is started with value ``x0``. Note: more than the first lambda + mu terms may be returned and this is the cost of cycle detection with Brent's method; there are, however, generally less terms calculated than would have been calculated if the proper ending point were determined, e.g. by using Floyd's method. >>> from sympy.ntheory.generate import cycle_length This will yield successive values of i <-- func(i): >>> def iter(func, i): ... while 1: ... ii = func(i) ... yield ii ... i = ii ... A function is defined: >>> func = lambda i: (i**2 + 1) % 51 and given a seed of 4 and the mu and lambda terms calculated: >>> next(cycle_length(func, 4)) (6, 2) We can see what is meant by looking at the output: >>> n = cycle_length(func, 4, values=True) >>> list(ni for ni in n) [17, 35, 2, 5, 26, 14, 44, 50, 2, 5, 26, 14] There are 6 repeating values after the first 2. If a sequence is suspected of being longer than you might wish, ``nmax`` can be used to exit early (and mu will be returned as None): >>> next(cycle_length(func, 4, nmax = 4)) (4, None) >>> [ni for ni in cycle_length(func, 4, nmax = 4, values=True)] [17, 35, 2, 5] Code modified from: https://en.wikipedia.org/wiki/Cycle_detection. """ nmax = int(nmax or 0) # main phase: search successive powers of two power = lam = 1 tortoise, hare = x0, f(x0) # f(x0) is the element/node next to x0. i = 0 while tortoise != hare and (not nmax or i < nmax): i += 1 if power == lam: # time to start a new power of two? tortoise = hare power *= 2 lam = 0 if values: yield hare hare = f(hare) lam += 1 if nmax and i == nmax: if values: return else: yield nmax, None return if not values: # Find the position of the first repetition of length lambda mu = 0 tortoise = hare = x0 for i in range(lam): hare = f(hare) while tortoise != hare: tortoise = f(tortoise) hare = f(hare) mu += 1 if mu: mu -= 1 yield lam, mu def composite(nth): """ Return the nth composite number, with the composite numbers indexed as composite(1) = 4, composite(2) = 6, etc.... Examples ======== >>> from sympy import composite >>> composite(36) 52 >>> composite(1) 4 >>> composite(17737) 20000 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range primepi : Return the number of primes less than or equal to n prime : Return the nth prime compositepi : Return the number of positive composite numbers less than or equal to n """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; composite(1) == 4") composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] if n <= 10: return composite_arr[n - 1] a, b = 4, sieve._list[-1] if n <= b - primepi(b) - 1: while a < b - 1: mid = (a + b) >> 1 if mid - primepi(mid) - 1 > n: b = mid else: a = mid if isprime(a): a -= 1 return a from sympy.functions.special.error_functions import li from sympy.functions.elementary.exponential import log a = 4 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if mid - li(mid) - 1 > n: b = mid else: a = mid + 1 n_composites = a - primepi(a) - 1 while n_composites > n: if not isprime(a): n_composites -= 1 a -= 1 if isprime(a): a -= 1 return a def compositepi(n): """ Return the number of positive composite numbers less than or equal to n. The first positive composite is 4, i.e. compositepi(4) = 1. Examples ======== >>> from sympy import compositepi >>> compositepi(25) 15 >>> compositepi(1000) 831 See Also ======== sympy.ntheory.primetest.isprime : Test if n is prime primerange : Generate all primes in a given range prime : Return the nth prime primepi : Return the number of primes less than or equal to n composite : Return the nth composite number """ n = int(n) if n < 4: return 0 return n - primepi(n) - 1
2701b8379dd57d5d06167cdf69e3326d416b3907dad005dacc582e385fa4b8b9
""" Integer factorization """ from collections import defaultdict import random import math from sympy.core import sympify from sympy.core.containers import Dict from sympy.core.evalf import bitcount from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.logic import fuzzy_and from sympy.core.mul import Mul, prod from sympy.core.numbers import igcd, ilcm, Rational, Integer from sympy.core.power import integer_nthroot, Pow, integer_log from sympy.core.singleton import S from sympy.external.gmpy import SYMPY_INTS from .primetest import isprime from .generate import sieve, primerange, nextprime from .digits import digits from sympy.utilities.iterables import flatten from sympy.utilities.misc import as_int, filldedent from .ecm import _ecm_one_factor # Note: This list should be updated whenever new Mersenne primes are found. # Refer: https://www.mersenne.org/ MERSENNE_PRIME_EXPONENTS = (2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011, 24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161, 74207281, 77232917, 82589933) # compute more when needed for i in Mersenne prime exponents PERFECT = [6] # 2**(i-1)*(2**i-1) MERSENNES = [3] # 2**i - 1 def _ismersenneprime(n): global MERSENNES j = len(MERSENNES) while n > MERSENNES[-1] and j < len(MERSENNE_PRIME_EXPONENTS): # conservatively grow the list MERSENNES.append(2**MERSENNE_PRIME_EXPONENTS[j] - 1) j += 1 return n in MERSENNES def _isperfect(n): global PERFECT if n % 2 == 0: j = len(PERFECT) while n > PERFECT[-1] and j < len(MERSENNE_PRIME_EXPONENTS): # conservatively grow the list t = 2**(MERSENNE_PRIME_EXPONENTS[j] - 1) PERFECT.append(t*(2*t - 1)) j += 1 return n in PERFECT small_trailing = [0] * 256 for j in range(1,8): small_trailing[1<<j::1<<(j+1)] = [j] * (1<<(7-j)) def smoothness(n): """ Return the B-smooth and B-power smooth values of n. The smoothness of n is the largest prime factor of n; the power- smoothness is the largest divisor raised to its multiplicity. Examples ======== >>> from sympy.ntheory.factor_ import smoothness >>> smoothness(2**7*3**2) (3, 128) >>> smoothness(2**4*13) (13, 16) >>> smoothness(2) (2, 2) See Also ======== factorint, smoothness_p """ if n == 1: return (1, 1) # not prime, but otherwise this causes headaches facs = factorint(n) return max(facs), max(m**facs[m] for m in facs) def smoothness_p(n, m=-1, power=0, visual=None): """ Return a list of [m, (p, (M, sm(p + m), psm(p + m)))...] where: 1. p**M is the base-p divisor of n 2. sm(p + m) is the smoothness of p + m (m = -1 by default) 3. psm(p + m) is the power smoothness of p + m The list is sorted according to smoothness (default) or by power smoothness if power=1. The smoothness of the numbers to the left (m = -1) or right (m = 1) of a factor govern the results that are obtained from the p +/- 1 type factoring methods. >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> smoothness_p(10431, m=1) (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) >>> smoothness_p(10431) (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) >>> smoothness_p(10431, power=1) (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) If visual=True then an annotated string will be returned: >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 This string can also be generated directly from a factorization dictionary and vice versa: >>> factorint(17*9) {3: 2, 17: 1} >>> smoothness_p(_) 'p**i=3**2 has p-1 B=2, B-pow=2\\np**i=17**1 has p-1 B=2, B-pow=16' >>> smoothness_p(_) {3: 2, 17: 1} The table of the output logic is: ====== ====== ======= ======= | Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict str tuple str str str tuple dict tuple str tuple str n str tuple tuple mul str tuple tuple ====== ====== ======= ======= See Also ======== factorint, smoothness """ # visual must be True, False or other (stored as None) if visual in (1, 0): visual = bool(visual) elif visual not in (True, False): visual = None if isinstance(n, str): if visual: return n d = {} for li in n.splitlines(): k, v = [int(i) for i in li.split('has')[0].split('=')[1].split('**')] d[k] = v if visual is not True and visual is not False: return d return smoothness_p(d, visual=False) elif not isinstance(n, tuple): facs = factorint(n, visual=False) if power: k = -1 else: k = 1 if isinstance(n, tuple): rv = n else: rv = (m, sorted([(f, tuple([M] + list(smoothness(f + m)))) for f, M in [i for i in facs.items()]], key=lambda x: (x[1][k], x[0]))) if visual is False or (visual is not True) and (type(n) in [int, Mul]): return rv lines = [] for dat in rv[1]: dat = flatten(dat) dat.insert(2, m) lines.append('p**i=%i**%i has p%+i B=%i, B-pow=%i' % tuple(dat)) return '\n'.join(lines) def trailing(n): """Count the number of trailing zero digits in the binary representation of n, i.e. determine the largest power of 2 that divides n. Examples ======== >>> from sympy import trailing >>> trailing(128) 7 >>> trailing(63) 0 """ n = abs(int(n)) if not n: return 0 low_byte = n & 0xff if low_byte: return small_trailing[low_byte] # 2**m is quick for z up through 2**30 z = bitcount(n) - 1 if isinstance(z, SYMPY_INTS): if n == 1 << z: return z if z < 300: # fixed 8-byte reduction t = 8 n >>= 8 while not n & 0xff: n >>= 8 t += 8 return t + small_trailing[n & 0xff] # binary reduction important when there might be a large # number of trailing 0s t = 0 p = 8 while not n & 1: while not n & ((1 << p) - 1): n >>= p t += p p *= 2 p //= 2 return t def multiplicity(p, n): """ Find the greatest integer m such that p**m divides n. Examples ======== >>> from sympy import multiplicity, Rational >>> [multiplicity(5, n) for n in [8, 5, 25, 125, 250]] [0, 1, 2, 3, 3] >>> multiplicity(3, Rational(1, 9)) -2 Note: when checking for the multiplicity of a number in a large factorial it is most efficient to send it as an unevaluated factorial or to call ``multiplicity_in_factorial`` directly: >>> from sympy.ntheory import multiplicity_in_factorial >>> from sympy import factorial >>> p = factorial(25) >>> n = 2**100 >>> nfac = factorial(n, evaluate=False) >>> multiplicity(p, nfac) 52818775009509558395695966887 >>> _ == multiplicity_in_factorial(p, n) True """ from sympy.functions.combinatorial.factorials import factorial try: p, n = as_int(p), as_int(n) except ValueError: if all(isinstance(i, (SYMPY_INTS, Rational)) for i in (p, n)): p = Rational(p) n = Rational(n) if p.q == 1: if n.p == 1: return -multiplicity(p.p, n.q) return multiplicity(p.p, n.p) - multiplicity(p.p, n.q) elif p.p == 1: return multiplicity(p.q, n.q) else: like = min( multiplicity(p.p, n.p), multiplicity(p.q, n.q)) cross = min( multiplicity(p.q, n.p), multiplicity(p.p, n.q)) return like - cross elif (isinstance(p, (SYMPY_INTS, Integer)) and isinstance(n, factorial) and isinstance(n.args[0], Integer) and n.args[0] >= 0): return multiplicity_in_factorial(p, n.args[0]) raise ValueError('expecting ints or fractions, got %s and %s' % (p, n)) if n == 0: raise ValueError('no such integer exists: multiplicity of %s is not-defined' %(n)) if p == 2: return trailing(n) if p < 2: raise ValueError('p must be an integer, 2 or larger, but got %s' % p) if p == n: return 1 m = 0 n, rem = divmod(n, p) while not rem: m += 1 if m > 5: # The multiplicity could be very large. Better # to increment in powers of two e = 2 while 1: ppow = p**e if ppow < n: nnew, rem = divmod(n, ppow) if not rem: m += e e *= 2 n = nnew continue return m + multiplicity(p, n) n, rem = divmod(n, p) return m def multiplicity_in_factorial(p, n): """return the largest integer ``m`` such that ``p**m`` divides ``n!`` without calculating the factorial of ``n``. Examples ======== >>> from sympy.ntheory import multiplicity_in_factorial >>> from sympy import factorial >>> multiplicity_in_factorial(2, 3) 1 An instructive use of this is to tell how many trailing zeros a given factorial has. For example, there are 6 in 25!: >>> factorial(25) 15511210043330985984000000 >>> multiplicity_in_factorial(10, 25) 6 For large factorials, it is much faster/feasible to use this function rather than computing the actual factorial: >>> multiplicity_in_factorial(factorial(25), 2**100) 52818775009509558395695966887 """ p, n = as_int(p), as_int(n) if p <= 0: raise ValueError('expecting positive integer got %s' % p ) if n < 0: raise ValueError('expecting non-negative integer got %s' % n ) factors = factorint(p) # keep only the largest of a given multiplicity since those # of a given multiplicity will be goverened by the behavior # of the largest factor test = defaultdict(int) for k, v in factors.items(): test[v] = max(k, test[v]) keep = set(test.values()) # remove others from factors for k in list(factors.keys()): if k not in keep: factors.pop(k) mp = S.Infinity for i in factors: # multiplicity of i in n! is mi = (n - (sum(digits(n, i)) - i))//(i - 1) # multiplicity of p in n! depends on multiplicity # of prime `i` in p, so we floor divide by factors[i] # and keep it if smaller than the multiplicity of p # seen so far mp = min(mp, mi//factors[i]) return mp def perfect_power(n, candidates=None, big=True, factor=True): """ Return ``(b, e)`` such that ``n`` == ``b**e`` if ``n`` is a unique perfect power with ``e > 1``, else ``False`` (e.g. 1 is not a perfect power). A ValueError is raised if ``n`` is not Rational. By default, the base is recursively decomposed and the exponents collected so the largest possible ``e`` is sought. If ``big=False`` then the smallest possible ``e`` (thus prime) will be chosen. If ``factor=True`` then simultaneous factorization of ``n`` is attempted since finding a factor indicates the only possible root for ``n``. This is True by default since only a few small factors will be tested in the course of searching for the perfect power. The use of ``candidates`` is primarily for internal use; if provided, False will be returned if ``n`` cannot be written as a power with one of the candidates as an exponent and factoring (beyond testing for a factor of 2) will not be attempted. Examples ======== >>> from sympy import perfect_power, Rational >>> perfect_power(16) (2, 4) >>> perfect_power(16, big=False) (4, 2) Negative numbers can only have odd perfect powers: >>> perfect_power(-4) False >>> perfect_power(-8) (-2, 3) Rationals are also recognized: >>> perfect_power(Rational(1, 2)**3) (1/2, 3) >>> perfect_power(Rational(-3, 2)**3) (-3/2, 3) Notes ===== To know whether an integer is a perfect power of 2 use >>> is2pow = lambda n: bool(n and not n & (n - 1)) >>> [(i, is2pow(i)) for i in range(5)] [(0, False), (1, True), (2, True), (3, False), (4, True)] It is not necessary to provide ``candidates``. When provided it will be assumed that they are ints. The first one that is larger than the computed maximum possible exponent will signal failure for the routine. >>> perfect_power(3**8, [9]) False >>> perfect_power(3**8, [2, 4, 8]) (3, 8) >>> perfect_power(3**8, [4, 8], big=False) (9, 4) See Also ======== sympy.core.power.integer_nthroot sympy.ntheory.primetest.is_square """ if isinstance(n, Rational) and not n.is_Integer: p, q = n.as_numer_denom() if p is S.One: pp = perfect_power(q) if pp: pp = (n.func(1, pp[0]), pp[1]) else: pp = perfect_power(p) if pp: num, e = pp pq = perfect_power(q, [e]) if pq: den, _ = pq pp = n.func(num, den), e return pp n = as_int(n) if n < 0: pp = perfect_power(-n) if pp: b, e = pp if e % 2: return -b, e return False if n <= 3: # no unique exponent for 0, 1 # 2 and 3 have exponents of 1 return False logn = math.log(n, 2) max_possible = int(logn) + 2 # only check values less than this not_square = n % 10 in [2, 3, 7, 8] # squares cannot end in 2, 3, 7, 8 min_possible = 2 + not_square if not candidates: candidates = primerange(min_possible, max_possible) else: candidates = sorted([i for i in candidates if min_possible <= i < max_possible]) if n%2 == 0: e = trailing(n) candidates = [i for i in candidates if e%i == 0] if big: candidates = reversed(candidates) for e in candidates: r, ok = integer_nthroot(n, e) if ok: return (r, e) return False def _factors(): rv = 2 + n % 2 while True: yield rv rv = nextprime(rv) for fac, e in zip(_factors(), candidates): # see if there is a factor present if factor and n % fac == 0: # find what the potential power is if fac == 2: e = trailing(n) else: e = multiplicity(fac, n) # if it's a trivial power we are done if e == 1: return False # maybe the e-th root of n is exact r, exact = integer_nthroot(n, e) if not exact: # Having a factor, we know that e is the maximal # possible value for a root of n. # If n = fac**e*m can be written as a perfect # power then see if m can be written as r**E where # gcd(e, E) != 1 so n = (fac**(e//E)*r)**E m = n//fac**e rE = perfect_power(m, candidates=divisors(e, generator=True)) if not rE: return False else: r, E = rE r, e = fac**(e//E)*r, E if not big: e0 = primefactors(e) if e0[0] != e: r, e = r**(e//e0[0]), e0[0] return r, e # Weed out downright impossible candidates if logn/e < 40: b = 2.0**(logn/e) if abs(int(b + 0.5) - b) > 0.01: continue # now see if the plausible e makes a perfect power r, exact = integer_nthroot(n, e) if exact: if big: m = perfect_power(r, big=big, factor=factor) if m: r, e = m[0], e*m[1] return int(r), e return False def pollard_rho(n, s=2, a=1, retries=5, seed=1234, max_steps=None, F=None): r""" Use Pollard's rho method to try to extract a nontrivial factor of ``n``. The returned factor may be a composite number. If no factor is found, ``None`` is returned. The algorithm generates pseudo-random values of x with a generator function, replacing x with F(x). If F is not supplied then the function x**2 + ``a`` is used. The first value supplied to F(x) is ``s``. Upon failure (if ``retries`` is > 0) a new ``a`` and ``s`` will be supplied; the ``a`` will be ignored if F was supplied. The sequence of numbers generated by such functions generally have a a lead-up to some number and then loop around back to that number and begin to repeat the sequence, e.g. 1, 2, 3, 4, 5, 3, 4, 5 -- this leader and loop look a bit like the Greek letter rho, and thus the name, 'rho'. For a given function, very different leader-loop values can be obtained so it is a good idea to allow for retries: >>> from sympy.ntheory.generate import cycle_length >>> n = 16843009 >>> F = lambda x:(2048*pow(x, 2, n) + 32767) % n >>> for s in range(5): ... print('loop length = %4i; leader length = %3i' % next(cycle_length(F, s))) ... loop length = 2489; leader length = 42 loop length = 78; leader length = 120 loop length = 1482; leader length = 99 loop length = 1482; leader length = 285 loop length = 1482; leader length = 100 Here is an explicit example where there is a two element leadup to a sequence of 3 numbers (11, 14, 4) that then repeat: >>> x=2 >>> for i in range(9): ... x=(x**2+12)%17 ... print(x) ... 16 13 11 14 4 11 14 4 11 >>> next(cycle_length(lambda x: (x**2+12)%17, 2)) (3, 2) >>> list(cycle_length(lambda x: (x**2+12)%17, 2, values=True)) [16, 13, 11, 14, 4] Instead of checking the differences of all generated values for a gcd with n, only the kth and 2*kth numbers are checked, e.g. 1st and 2nd, 2nd and 4th, 3rd and 6th until it has been detected that the loop has been traversed. Loops may be many thousands of steps long before rho finds a factor or reports failure. If ``max_steps`` is specified, the iteration is cancelled with a failure after the specified number of steps. Examples ======== >>> from sympy import pollard_rho >>> n=16843009 >>> F=lambda x:(2048*pow(x,2,n) + 32767) % n >>> pollard_rho(n, F=F) 257 Use the default setting with a bad value of ``a`` and no retries: >>> pollard_rho(n, a=n-2, retries=0) If retries is > 0 then perhaps the problem will correct itself when new values are generated for a: >>> pollard_rho(n, a=n-2, retries=1) 257 References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 229-231 """ n = int(n) if n < 5: raise ValueError('pollard_rho should receive n > 4') prng = random.Random(seed + retries) V = s for i in range(retries + 1): U = V if not F: F = lambda x: (pow(x, 2, n) + a) % n j = 0 while 1: if max_steps and (j > max_steps): break j += 1 U = F(U) V = F(F(V)) # V is 2x further along than U g = igcd(U - V, n) if g == 1: continue if g == n: break return int(g) V = prng.randint(0, n - 1) a = prng.randint(1, n - 3) # for x**2 + a, a%n should not be 0 or -2 F = None return None def pollard_pm1(n, B=10, a=2, retries=0, seed=1234): """ Use Pollard's p-1 method to try to extract a nontrivial factor of ``n``. Either a divisor (perhaps composite) or ``None`` is returned. The value of ``a`` is the base that is used in the test gcd(a**M - 1, n). The default is 2. If ``retries`` > 0 then if no factor is found after the first attempt, a new ``a`` will be generated randomly (using the ``seed``) and the process repeated. Note: the value of M is lcm(1..B) = reduce(ilcm, range(2, B + 1)). A search is made for factors next to even numbers having a power smoothness less than ``B``. Choosing a larger B increases the likelihood of finding a larger factor but takes longer. Whether a factor of n is found or not depends on ``a`` and the power smoothness of the even number just less than the factor p (hence the name p - 1). Although some discussion of what constitutes a good ``a`` some descriptions are hard to interpret. At the modular.math site referenced below it is stated that if gcd(a**M - 1, n) = N then a**M % q**r is 1 for every prime power divisor of N. But consider the following: >>> from sympy.ntheory.factor_ import smoothness_p, pollard_pm1 >>> n=257*1009 >>> smoothness_p(n) (-1, [(257, (1, 2, 256)), (1009, (1, 7, 16))]) So we should (and can) find a root with B=16: >>> pollard_pm1(n, B=16, a=3) 1009 If we attempt to increase B to 256 we find that it doesn't work: >>> pollard_pm1(n, B=256) >>> But if the value of ``a`` is changed we find that only multiples of 257 work, e.g.: >>> pollard_pm1(n, B=256, a=257) 1009 Checking different ``a`` values shows that all the ones that didn't work had a gcd value not equal to ``n`` but equal to one of the factors: >>> from sympy import ilcm, igcd, factorint, Pow >>> M = 1 >>> for i in range(2, 256): ... M = ilcm(M, i) ... >>> set([igcd(pow(a, M, n) - 1, n) for a in range(2, 256) if ... igcd(pow(a, M, n) - 1, n) != n]) {1009} But does aM % d for every divisor of n give 1? >>> aM = pow(255, M, n) >>> [(d, aM%Pow(*d.args)) for d in factorint(n, visual=True).args] [(257**1, 1), (1009**1, 1)] No, only one of them. So perhaps the principle is that a root will be found for a given value of B provided that: 1) the power smoothness of the p - 1 value next to the root does not exceed B 2) a**M % p != 1 for any of the divisors of n. By trying more than one ``a`` it is possible that one of them will yield a factor. Examples ======== With the default smoothness bound, this number cannot be cracked: >>> from sympy.ntheory import pollard_pm1 >>> pollard_pm1(21477639576571) Increasing the smoothness bound helps: >>> pollard_pm1(21477639576571, B=2000) 4410317 Looking at the smoothness of the factors of this number we find: >>> from sympy.ntheory.factor_ import smoothness_p, factorint >>> print(smoothness_p(21477639576571, visual=1)) p**i=4410317**1 has p-1 B=1787, B-pow=1787 p**i=4869863**1 has p-1 B=2434931, B-pow=2434931 The B and B-pow are the same for the p - 1 factorizations of the divisors because those factorizations had a very large prime factor: >>> factorint(4410317 - 1) {2: 2, 617: 1, 1787: 1} >>> factorint(4869863-1) {2: 1, 2434931: 1} Note that until B reaches the B-pow value of 1787, the number is not cracked; >>> pollard_pm1(21477639576571, B=1786) >>> pollard_pm1(21477639576571, B=1787) 4410317 The B value has to do with the factors of the number next to the divisor, not the divisors themselves. A worst case scenario is that the number next to the factor p has a large prime divisisor or is a perfect power. If these conditions apply then the power-smoothness will be about p/2 or p. The more realistic is that there will be a large prime factor next to p requiring a B value on the order of p/2. Although primes may have been searched for up to this level, the p/2 is a factor of p - 1, something that we do not know. The modular.math reference below states that 15% of numbers in the range of 10**15 to 15**15 + 10**4 are 10**6 power smooth so a B of 10**6 will fail 85% of the time in that range. From 10**8 to 10**8 + 10**3 the percentages are nearly reversed...but in that range the simple trial division is quite fast. References ========== .. [1] Richard Crandall & Carl Pomerance (2005), "Prime Numbers: A Computational Perspective", Springer, 2nd edition, 236-238 .. [2] http://modular.math.washington.edu/edu/2007/spring/ent/ent-html/node81.html .. [3] https://www.cs.toronto.edu/~yuvalf/Factorization.pdf """ n = int(n) if n < 4 or B < 3: raise ValueError('pollard_pm1 should receive n > 3 and B > 2') prng = random.Random(seed + B) # computing a**lcm(1,2,3,..B) % n for B > 2 # it looks weird, but it's right: primes run [2, B] # and the answer's not right until the loop is done. for i in range(retries + 1): aM = a for p in sieve.primerange(2, B + 1): e = int(math.log(B, p)) aM = pow(aM, pow(p, e), n) g = igcd(aM - 1, n) if 1 < g < n: return int(g) # get a new a: # since the exponent, lcm(1..B), is even, if we allow 'a' to be 'n-1' # then (n - 1)**even % n will be 1 which will give a g of 0 and 1 will # give a zero, too, so we set the range as [2, n-2]. Some references # say 'a' should be coprime to n, but either will detect factors. a = prng.randint(2, n - 2) def _trial(factors, n, candidates, verbose=False): """ Helper function for integer factorization. Trial factors ``n` against all integers given in the sequence ``candidates`` and updates the dict ``factors`` in-place. Returns the reduced value of ``n`` and a flag indicating whether any factors were found. """ if verbose: factors0 = list(factors.keys()) nfactors = len(factors) for d in candidates: if n % d == 0: m = multiplicity(d, n) n //= d**m factors[d] = m if verbose: for k in sorted(set(factors).difference(set(factors0))): print(factor_msg % (k, factors[k])) return int(n), len(factors) != nfactors def _check_termination(factors, n, limitp1, use_trial, use_rho, use_pm1, verbose): """ Helper function for integer factorization. Checks if ``n`` is a prime or a perfect power, and in those cases updates the factorization and raises ``StopIteration``. """ if verbose: print('Check for termination') # since we've already been factoring there is no need to do # simultaneous factoring with the power check p = perfect_power(n, factor=False) if p is not False: base, exp = p if limitp1: limit = limitp1 - 1 else: limit = limitp1 facs = factorint(base, limit, use_trial, use_rho, use_pm1, verbose=False) for b, e in facs.items(): if verbose: print(factor_msg % (b, e)) factors[b] = exp*e raise StopIteration if isprime(n): factors[int(n)] = 1 raise StopIteration if n == 1: raise StopIteration trial_int_msg = "Trial division with ints [%i ... %i] and fail_max=%i" trial_msg = "Trial division with primes [%i ... %i]" rho_msg = "Pollard's rho with retries %i, max_steps %i and seed %i" pm1_msg = "Pollard's p-1 with smoothness bound %i and seed %i" ecm_msg = "Elliptic Curve with B1 bound %i, B2 bound %i, num_curves %i" factor_msg = '\t%i ** %i' fermat_msg = 'Close factors satisying Fermat condition found.' complete_msg = 'Factorization is complete.' def _factorint_small(factors, n, limit, fail_max): """ Return the value of n and either a 0 (indicating that factorization up to the limit was complete) or else the next near-prime that would have been tested. Factoring stops if there are fail_max unsuccessful tests in a row. If factors of n were found they will be in the factors dictionary as {factor: multiplicity} and the returned value of n will have had those factors removed. The factors dictionary is modified in-place. """ def done(n, d): """return n, d if the sqrt(n) wasn't reached yet, else n, 0 indicating that factoring is done. """ if d*d <= n: return n, d return n, 0 d = 2 m = trailing(n) if m: factors[d] = m n >>= m d = 3 if limit < d: if n > 1: factors[n] = 1 return done(n, d) # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m # when d*d exceeds maxx or n we are done; if limit**2 is greater # than n then maxx is set to zero so the value of n will flag the finish if limit*limit > n: maxx = 0 else: maxx = limit*limit dd = maxx or n d = 5 fails = 0 while fails < fail_max: if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 d += 2 if d*d > dd: break # d = 6*i - 1 # reduce m = 0 while n % d == 0: n //= d m += 1 if m == 20: mm = multiplicity(d, n) m += mm n //= d**mm break if m: factors[d] = m dd = maxx or n fails = 0 else: fails += 1 # d = 6*(i + 1) - 1 d += 4 return done(n, d) def factorint(n, limit=None, use_trial=True, use_rho=True, use_pm1=True, use_ecm=True, verbose=False, visual=None, multiple=False): r""" Given a positive integer ``n``, ``factorint(n)`` returns a dict containing the prime factors of ``n`` as keys and their respective multiplicities as values. For example: >>> from sympy.ntheory import factorint >>> factorint(2000) # 2000 = (2**4) * (5**3) {2: 4, 5: 3} >>> factorint(65537) # This number is prime {65537: 1} For input less than 2, factorint behaves as follows: - ``factorint(1)`` returns the empty factorization, ``{}`` - ``factorint(0)`` returns ``{0:1}`` - ``factorint(-n)`` adds ``-1:1`` to the factors and then factors ``n`` Partial Factorization: If ``limit`` (> 3) is specified, the search is stopped after performing trial division up to (and including) the limit (or taking a corresponding number of rho/p-1 steps). This is useful if one has a large number and only is interested in finding small factors (if any). Note that setting a limit does not prevent larger factors from being found early; it simply means that the largest factor may be composite. Since checking for perfect power is relatively cheap, it is done regardless of the limit setting. This number, for example, has two small factors and a huge semi-prime factor that cannot be reduced easily: >>> from sympy.ntheory import isprime >>> a = 1407633717262338957430697921446883 >>> f = factorint(a, limit=10000) >>> f == {991: 1, int(202916782076162456022877024859): 1, 7: 1} True >>> isprime(max(f)) False This number has a small factor and a residual perfect power whose base is greater than the limit: >>> factorint(3*101**7, limit=5) {3: 1, 101: 7} List of Factors: If ``multiple`` is set to ``True`` then a list containing the prime factors including multiplicities is returned. >>> factorint(24, multiple=True) [2, 2, 2, 3] Visual Factorization: If ``visual`` is set to ``True``, then it will return a visual factorization of the integer. For example: >>> from sympy import pprint >>> pprint(factorint(4200, visual=True)) 3 1 2 1 2 *3 *5 *7 Note that this is achieved by using the evaluate=False flag in Mul and Pow. If you do other manipulations with an expression where evaluate=False, it may evaluate. Therefore, you should use the visual option only for visualization, and use the normal dictionary returned by visual=False if you want to perform operations on the factors. You can easily switch between the two forms by sending them back to factorint: >>> from sympy import Mul >>> regular = factorint(1764); regular {2: 2, 3: 2, 7: 2} >>> pprint(factorint(regular)) 2 2 2 2 *3 *7 >>> visual = factorint(1764, visual=True); pprint(visual) 2 2 2 2 *3 *7 >>> print(factorint(visual)) {2: 2, 3: 2, 7: 2} If you want to send a number to be factored in a partially factored form you can do so with a dictionary or unevaluated expression: >>> factorint(factorint({4: 2, 12: 3})) # twice to toggle to dict form {2: 10, 3: 3} >>> factorint(Mul(4, 12, evaluate=False)) {2: 4, 3: 1} The table of the output logic is: ====== ====== ======= ======= Visual ------ ---------------------- Input True False other ====== ====== ======= ======= dict mul dict mul n mul dict dict mul mul dict dict ====== ====== ======= ======= Notes ===== Algorithm: The function switches between multiple algorithms. Trial division quickly finds small factors (of the order 1-5 digits), and finds all large factors if given enough time. The Pollard rho and p-1 algorithms are used to find large factors ahead of time; they will often find factors of the order of 10 digits within a few seconds: >>> factors = factorint(12345678910111213141516) >>> for base, exp in sorted(factors.items()): ... print('%s %s' % (base, exp)) ... 2 2 2507191691 1 1231026625769 1 Any of these methods can optionally be disabled with the following boolean parameters: - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method ``factorint`` also periodically checks if the remaining part is a prime number or a perfect power, and in those cases stops. For unevaluated factorial, it uses Legendre's formula(theorem). If ``verbose`` is set to ``True``, detailed progress is printed. See Also ======== smoothness, smoothness_p, divisors """ if isinstance(n, Dict): n = dict(n) if multiple: fac = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p in sorted(fac)), []) return factorlist factordict = {} if visual and not isinstance(n, (Mul, dict)): factordict = factorint(n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) elif isinstance(n, Mul): factordict = {int(k): int(v) for k, v in n.as_powers_dict().items()} elif isinstance(n, dict): factordict = n if factordict and isinstance(n, (Mul, dict)): # check it for key in list(factordict.keys()): if isprime(key): continue e = factordict.pop(key) d = factorint(key, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) for k, v in d.items(): if k in factordict: factordict[k] += v*e else: factordict[k] = v*e if visual or (type(n) is dict and visual is not True and visual is not False): if factordict == {}: return S.One if -1 in factordict: factordict.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(factordict.items())]) return Mul(*args, evaluate=False) elif isinstance(n, (dict, Mul)): return factordict assert use_trial or use_rho or use_pm1 or use_ecm from sympy.functions.combinatorial.factorials import factorial if isinstance(n, factorial): x = as_int(n.args[0]) if x >= 20: factors = {} m = 2 # to initialize the if condition below for p in sieve.primerange(2, x + 1): if m > 1: m, q = 0, x // p while q != 0: m += q q //= p factors[p] = m if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if verbose: print(complete_msg) return factors else: # if n < 20!, direct computation is faster # since it uses a lookup table n = n.func(x) n = as_int(n) if limit: limit = int(limit) use_ecm = False # special cases if n < 0: factors = factorint( -n, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False) factors[-1] = 1 return factors if limit and limit < 2: if n == 1: return {} return {n: 1} elif n < 10: # doing this we are assured of getting a limit > 2 # when we have to compute it later return [{0: 1}, {}, {2: 1}, {3: 1}, {2: 2}, {5: 1}, {2: 1, 3: 1}, {7: 1}, {2: 3}, {3: 2}][n] factors = {} # do simplistic factorization if verbose: sn = str(n) if len(sn) > 50: print('Factoring %s' % sn[:5] + \ '..(%i other digits)..' % (len(sn) - 10) + sn[-5:]) else: print('Factoring', n) if use_trial: # this is the preliminary factorization for small factors small = 2**15 fail_max = 600 small = min(small, limit or small) if verbose: print(trial_int_msg % (2, small, fail_max)) n, next_p = _factorint_small(factors, n, small, fail_max) else: next_p = 2 if factors and verbose: for k in sorted(factors): print(factor_msg % (k, factors[k])) if next_p == 0: if n > 1: factors[int(n)] = 1 if verbose: print(complete_msg) return factors # continue with more advanced factorization methods # first check if the simplistic run didn't finish # because of the limit and check for a perfect # power before exiting try: if limit and next_p > limit: if verbose: print('Exceeded limit:', limit) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) if n > 1: factors[int(n)] = 1 return factors else: # Before quitting (or continuing on)... # ...do a Fermat test since it's so easy and we need the # square root anyway. Finding 2 factors is easy if they are # "close enough." This is the big root equivalent of dividing by # 2, 3, 5. sqrt_n = integer_nthroot(n, 2)[0] a = sqrt_n + 1 a2 = a**2 b2 = a2 - n for i in range(3): b, fermat = integer_nthroot(b2, 2) if fermat: break b2 += 2*a + 1 # equiv to (a + 1)**2 - n a += 1 if fermat: if verbose: print(fermat_msg) if limit: limit -= 1 for r in [a - b, a + b]: facs = factorint(r, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose) for k, v in facs.items(): factors[k] = factors.get(k, 0) + v raise StopIteration # ...see if factorization can be terminated _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors # these are the limits for trial division which will # be attempted in parallel with pollard methods low, high = next_p, 2*next_p limit = limit or sqrt_n # add 1 to make sure limit is reached in primerange calls limit += 1 iteration = 0 while 1: try: high_ = high if limit < high_: high_ = limit # Trial division if use_trial: if verbose: print(trial_msg % (low, high_)) ps = sieve.primerange(low, high_) n, found_trial = _trial(factors, n, ps, verbose) if found_trial: _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) else: found_trial = False if high > limit: if verbose: print('Exceeded limit:', limit) if n > 1: factors[int(n)] = 1 raise StopIteration # Only used advanced methods when no small factors were found if not found_trial: if (use_pm1 or use_rho): high_root = max(int(math.log(high_**0.7)), low, 3) # Pollard p-1 if use_pm1: if verbose: print(pm1_msg % (high_root, high_)) c = pollard_pm1(n, B=high_root, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) # Pollard rho if use_rho: max_steps = high_root if verbose: print(rho_msg % (1, max_steps, high_)) c = pollard_rho(n, retries=1, max_steps=max_steps, seed=high_) if c: # factor it and let _trial do the update ps = factorint(c, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except StopIteration: if verbose: print(complete_msg) return factors #Use subexponential algorithms if use_ecm #Use pollard algorithms for finding small factors for 3 iterations #if after small factors the number of digits of n is >= 20 then use ecm iteration += 1 if use_ecm and iteration >= 3 and len(str(n)) >= 25: break low, high = high, high*2 B1 = 10000 B2 = 100*B1 num_curves = 50 while(1): if verbose: print(ecm_msg % (B1, B2, num_curves)) while(1): try: factor = _ecm_one_factor(n, B1, B2, num_curves) ps = factorint(factor, limit=limit - 1, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, use_ecm=use_ecm, verbose=verbose) n, _ = _trial(factors, n, ps, verbose=False) _check_termination(factors, n, limit, use_trial, use_rho, use_pm1, verbose) except ValueError: break except StopIteration: if verbose: print(complete_msg) return factors B1 *= 5 B2 = 100*B1 num_curves *= 4 def factorrat(rat, limit=None, use_trial=True, use_rho=True, use_pm1=True, verbose=False, visual=None, multiple=False): r""" Given a Rational ``r``, ``factorrat(r)`` returns a dict containing the prime factors of ``r`` as keys and their respective multiplicities as values. For example: >>> from sympy import factorrat, S >>> factorrat(S(8)/9) # 8/9 = (2**3) * (3**-2) {2: 3, 3: -2} >>> factorrat(S(-1)/987) # -1/789 = -1 * (3**-1) * (7**-1) * (47**-1) {-1: 1, 3: -1, 7: -1, 47: -1} Please see the docstring for ``factorint`` for detailed explanations and examples of the following keywords: - ``limit``: Integer limit up to which trial division is done - ``use_trial``: Toggle use of trial division - ``use_rho``: Toggle use of Pollard's rho method - ``use_pm1``: Toggle use of Pollard's p-1 method - ``verbose``: Toggle detailed printing of progress - ``multiple``: Toggle returning a list of factors or dict - ``visual``: Toggle product form of output """ if multiple: fac = factorrat(rat, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose, visual=False, multiple=False) factorlist = sum(([p] * fac[p] if fac[p] > 0 else [S.One/p]*(-fac[p]) for p, _ in sorted(fac.items(), key=lambda elem: elem[0] if elem[1] > 0 else 1/elem[0])), []) return factorlist f = factorint(rat.p, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() f = defaultdict(int, f) for p, e in factorint(rat.q, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).items(): f[p] += -e if len(f) > 1 and 1 in f: del f[1] if not visual: return dict(f) else: if -1 in f: f.pop(-1) args = [S.NegativeOne] else: args = [] args.extend([Pow(*i, evaluate=False) for i in sorted(f.items())]) return Mul(*args, evaluate=False) def primefactors(n, limit=None, verbose=False): """Return a sorted list of n's prime factors, ignoring multiplicity and any composite factor that remains if the limit was set too low for complete factorization. Unlike factorint(), primefactors() does not return -1 or 0. Examples ======== >>> from sympy.ntheory import primefactors, factorint, isprime >>> primefactors(6) [2, 3] >>> primefactors(-5) [5] >>> sorted(factorint(123456).items()) [(2, 6), (3, 1), (643, 1)] >>> primefactors(123456) [2, 3, 643] >>> sorted(factorint(10000000001, limit=200).items()) [(101, 1), (99009901, 1)] >>> isprime(99009901) False >>> primefactors(10000000001, limit=300) [101] See Also ======== divisors """ n = int(n) factors = sorted(factorint(n, limit=limit, verbose=verbose).keys()) s = [f for f in factors[:-1:] if f not in [-1, 0, 1]] if factors and isprime(factors[-1]): s += [factors[-1]] return s def _divisors(n, proper=False): """Helper function for divisors which generates the divisors.""" factordict = factorint(n) ps = sorted(factordict.keys()) def rec_gen(n=0): if n == len(ps): yield 1 else: pows = [1] for j in range(factordict[ps[n]]): pows.append(pows[-1] * ps[n]) for q in rec_gen(n + 1): for p in pows: yield p * q if proper: for p in rec_gen(): if p != n: yield p else: yield from rec_gen() def divisors(n, generator=False, proper=False): r""" Return all divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of divisors of n can be quite large if there are many prime factors (counting repeated factors). If only the number of factors is desired use divisor_count(n). Examples ======== >>> from sympy import divisors, divisor_count >>> divisors(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> divisor_count(24) 8 >>> list(divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60, 120] Notes ===== This is a slightly modified version of Tim Peters referenced at: https://stackoverflow.com/questions/1010381/python-factorization See Also ======== primefactors, factorint, divisor_count """ n = as_int(abs(n)) if isprime(n): if proper: return [1] return [1, n] if n == 1: if proper: return [] return [1] if n == 0: return [] rv = _divisors(n, proper) if not generator: return sorted(rv) return rv def divisor_count(n, modulus=1, proper=False): """ Return the number of divisors of ``n``. If ``modulus`` is not 1 then only those that are divisible by ``modulus`` are counted. If ``proper`` is True then the divisor of ``n`` will not be counted. Examples ======== >>> from sympy import divisor_count >>> divisor_count(6) 4 >>> divisor_count(6, 2) 2 >>> divisor_count(6, proper=True) 3 See Also ======== factorint, divisors, totient, proper_divisor_count """ if not modulus: return 0 elif modulus != 1: n, r = divmod(n, modulus) if r: return 0 if n == 0: return 0 n = Mul(*[v + 1 for k, v in factorint(n).items() if k > 1]) if n and proper: n -= 1 return n def proper_divisors(n, generator=False): """ Return all divisors of n except n, sorted by default. If generator is ``True`` an unordered generator is returned. Examples ======== >>> from sympy import proper_divisors, proper_divisor_count >>> proper_divisors(24) [1, 2, 3, 4, 6, 8, 12] >>> proper_divisor_count(24) 7 >>> list(proper_divisors(120, generator=True)) [1, 2, 4, 8, 3, 6, 12, 24, 5, 10, 20, 40, 15, 30, 60] See Also ======== factorint, divisors, proper_divisor_count """ return divisors(n, generator=generator, proper=True) def proper_divisor_count(n, modulus=1): """ Return the number of proper divisors of ``n``. Examples ======== >>> from sympy import proper_divisor_count >>> proper_divisor_count(6) 3 >>> proper_divisor_count(6, modulus=2) 1 See Also ======== divisors, proper_divisors, divisor_count """ return divisor_count(n, modulus=modulus, proper=True) def _udivisors(n): """Helper function for udivisors which generates the unitary divisors.""" factorpows = [p**e for p, e in factorint(n).items()] for i in range(2**len(factorpows)): d, j, k = 1, i, 0 while j: if (j & 1): d *= factorpows[k] j >>= 1 k += 1 yield d def udivisors(n, generator=False): r""" Return all unitary divisors of n sorted from 1..n by default. If generator is ``True`` an unordered generator is returned. The number of unitary divisors of n can be quite large if there are many prime factors. If only the number of unitary divisors is desired use udivisor_count(n). Examples ======== >>> from sympy.ntheory.factor_ import udivisors, udivisor_count >>> udivisors(15) [1, 3, 5, 15] >>> udivisor_count(15) 4 >>> sorted(udivisors(120, generator=True)) [1, 3, 5, 8, 15, 24, 40, 120] See Also ======== primefactors, factorint, divisors, divisor_count, udivisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Unitary_divisor .. [2] http://mathworld.wolfram.com/UnitaryDivisor.html """ n = as_int(abs(n)) if isprime(n): return [1, n] if n == 1: return [1] if n == 0: return [] rv = _udivisors(n) if not generator: return sorted(rv) return rv def udivisor_count(n): """ Return the number of unitary divisors of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import udivisor_count >>> udivisor_count(120) 8 See Also ======== factorint, divisors, udivisors, divisor_count, totient References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ if n == 0: return 0 return 2**len([p for p in factorint(n) if p > 1]) def _antidivisors(n): """Helper function for antidivisors which generates the antidivisors.""" for d in _divisors(n): y = 2*d if n > y and n % y: yield y for d in _divisors(2*n-1): if n > d >= 2 and n % d: yield d for d in _divisors(2*n+1): if n > d >= 2 and n % d: yield d def antidivisors(n, generator=False): r""" Return all antidivisors of n sorted from 1..n by default. Antidivisors [1]_ of n are numbers that do not divide n by the largest possible margin. If generator is True an unordered generator is returned. Examples ======== >>> from sympy.ntheory.factor_ import antidivisors >>> antidivisors(24) [7, 16] >>> sorted(antidivisors(128, generator=True)) [3, 5, 15, 17, 51, 85] See Also ======== primefactors, factorint, divisors, divisor_count, antidivisor_count References ========== .. [1] definition is described in https://oeis.org/A066272/a066272a.html """ n = as_int(abs(n)) if n <= 2: return [] rv = _antidivisors(n) if not generator: return sorted(rv) return rv def antidivisor_count(n): """ Return the number of antidivisors [1]_ of ``n``. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory.factor_ import antidivisor_count >>> antidivisor_count(13) 4 >>> antidivisor_count(27) 5 See Also ======== factorint, divisors, antidivisors, divisor_count, totient References ========== .. [1] formula from https://oeis.org/A066272 """ n = as_int(abs(n)) if n <= 2: return 0 return divisor_count(2*n - 1) + divisor_count(2*n + 1) + \ divisor_count(n) - divisor_count(n, 2) - 5 class totient(Function): r""" Calculate the Euler totient function phi(n) ``totient(n)`` or `\phi(n)` is the number of positive integers `\leq` n that are relatively prime to n. Parameters ========== n : integer Examples ======== >>> from sympy.ntheory import totient >>> totient(1) 1 >>> totient(25) 20 >>> totient(45) == totient(5)*totient(9) True See Also ======== divisor_count References ========== .. [1] https://en.wikipedia.org/wiki/Euler%27s_totient_function .. [2] http://mathworld.wolfram.com/TotientFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) elif not isinstance(n, Expr) or (n.is_integer is False) or (n.is_positive is False): raise ValueError("n must be a positive integer") def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_distinct_primes(5, 7) 24 """ from functools import reduce return reduce(lambda i, j: i * (j-1), args, 1) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors Examples ======== >>> from sympy.ntheory.factor_ import totient >>> totient._from_factors({5: 2}) 20 """ t = 1 for p, k in factors.items(): t *= (p - 1) * p**(k - 1) return t class reduced_totient(Function): r""" Calculate the Carmichael reduced totient function lambda(n) ``reduced_totient(n)`` or `\lambda(n)` is the smallest m > 0 such that `k^m \equiv 1 \mod n` for all k relatively prime to n. Examples ======== >>> from sympy.ntheory import reduced_totient >>> reduced_totient(1) 1 >>> reduced_totient(8) 2 >>> reduced_totient(30) 4 See Also ======== totient References ========== .. [1] https://en.wikipedia.org/wiki/Carmichael_function .. [2] http://mathworld.wolfram.com/CarmichaelFunction.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n < 1: raise ValueError("n must be a positive integer") factors = factorint(n) return cls._from_factors(factors) @classmethod def _from_factors(self, factors): """Subroutine to compute totient from already-computed factors """ t = 1 for p, k in factors.items(): if p == 2 and k > 2: t = ilcm(t, 2**(k - 2)) else: t = ilcm(t, (p - 1) * p**(k - 1)) return t @classmethod def _from_distinct_primes(self, *args): """Subroutine to compute totient from the list of assumed distinct primes """ args = [p - 1 for p in args] return ilcm(*args) def _eval_is_integer(self): return fuzzy_and([self.args[0].is_integer, self.args[0].is_positive]) class divisor_sigma(Function): r""" Calculate the divisor function `\sigma_k(n)` for positive integer n ``divisor_sigma(n, k)`` is equal to ``sum([x**k for x in divisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k(n) = \prod_{i=1}^\omega (1+p_i^k+p_i^{2k}+\cdots + p_i^{m_ik}). Parameters ========== n : integer k : integer, optional power of divisors in the sum for k = 0, 1: ``divisor_sigma(n, 0)`` is equal to ``divisor_count(n)`` ``divisor_sigma(n, 1)`` is equal to ``sum(divisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory import divisor_sigma >>> divisor_sigma(18, 0) 6 >>> divisor_sigma(39, 1) 56 >>> divisor_sigma(12, 2) 210 >>> divisor_sigma(37) 38 See Also ======== divisor_count, totient, divisors, factorint References ========== .. [1] https://en.wikipedia.org/wiki/Divisor_function """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") elif k.is_Integer: k = int(k) return Integer(prod( (p**(k*(e + 1)) - 1)//(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items())) else: return Mul(*[(p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1 for p, e in factorint(n).items()]) if n.is_integer: # symbolic case args = [] for p, e in (_.as_base_exp() for _ in Mul.make_args(n)): if p.is_prime and e.is_positive: args.append((p**(k*(e + 1)) - 1)/(p**k - 1) if k != 0 else e + 1) else: return return Mul(*args) def core(n, t=2): r""" Calculate core(n, t) = `core_t(n)` of a positive integer n ``core_2(n)`` is equal to the squarefree part of n If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: core_t(n) = \prod_{i=1}^\omega p_i^{m_i \mod t}. Parameters ========== n : integer t : integer core(n, t) calculates the t-th power free part of n ``core(n, 2)`` is the squarefree part of ``n`` ``core(n, 3)`` is the cubefree part of ``n`` Default for t is 2. Examples ======== >>> from sympy.ntheory.factor_ import core >>> core(24, 2) 6 >>> core(9424, 3) 1178 >>> core(379238) 379238 >>> core(15**11, 10) 15 See Also ======== factorint, sympy.solvers.diophantine.diophantine.square_factor References ========== .. [1] https://en.wikipedia.org/wiki/Square-free_integer#Squarefree_core """ n = as_int(n) t = as_int(t) if n <= 0: raise ValueError("n must be a positive integer") elif t <= 1: raise ValueError("t must be >= 2") else: y = 1 for p, e in factorint(n).items(): y *= p**(e % t) return y class udivisor_sigma(Function): r""" Calculate the unitary divisor function `\sigma_k^*(n)` for positive integer n ``udivisor_sigma(n, k)`` is equal to ``sum([x**k for x in udivisors(n)])`` If n's prime factorization is: .. math :: n = \prod_{i=1}^\omega p_i^{m_i}, then .. math :: \sigma_k^*(n) = \prod_{i=1}^\omega (1+ p_i^{m_ik}). Parameters ========== k : power of divisors in the sum for k = 0, 1: ``udivisor_sigma(n, 0)`` is equal to ``udivisor_count(n)`` ``udivisor_sigma(n, 1)`` is equal to ``sum(udivisors(n))`` Default for k is 1. Examples ======== >>> from sympy.ntheory.factor_ import udivisor_sigma >>> udivisor_sigma(18, 0) 4 >>> udivisor_sigma(74, 1) 114 >>> udivisor_sigma(36, 3) 47450 >>> udivisor_sigma(111) 152 See Also ======== divisor_count, totient, divisors, udivisors, udivisor_count, divisor_sigma, factorint References ========== .. [1] http://mathworld.wolfram.com/UnitaryDivisorFunction.html """ @classmethod def eval(cls, n, k=1): n = sympify(n) k = sympify(k) if n.is_prime: return 1 + n**k if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return Mul(*[1+p**(k*e) for p, e in factorint(n).items()]) class primenu(Function): r""" Calculate the number of distinct prime factors for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primenu(n)`` or `\nu(n)` is: .. math :: \nu(n) = k. Examples ======== >>> from sympy.ntheory.factor_ import primenu >>> primenu(1) 0 >>> primenu(30) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return len(factorint(n).keys()) class primeomega(Function): r""" Calculate the number of prime factors counting multiplicities for a positive integer n. If n's prime factorization is: .. math :: n = \prod_{i=1}^k p_i^{m_i}, then ``primeomega(n)`` or `\Omega(n)` is: .. math :: \Omega(n) = \sum_{i=1}^k m_i. Examples ======== >>> from sympy.ntheory.factor_ import primeomega >>> primeomega(1) 0 >>> primeomega(20) 3 See Also ======== factorint References ========== .. [1] http://mathworld.wolfram.com/PrimeFactor.html """ @classmethod def eval(cls, n): n = sympify(n) if n.is_Integer: if n <= 0: raise ValueError("n must be a positive integer") else: return sum(factorint(n).values()) def mersenne_prime_exponent(nth): """Returns the exponent ``i`` for the nth Mersenne prime (which has the form `2^i - 1`). Examples ======== >>> from sympy.ntheory.factor_ import mersenne_prime_exponent >>> mersenne_prime_exponent(1) 2 >>> mersenne_prime_exponent(20) 4423 """ n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; mersenne_prime_exponent(1) == 2") if n > 51: raise ValueError("There are only 51 perfect numbers; nth must be less than or equal to 51") return MERSENNE_PRIME_EXPONENTS[n - 1] def is_perfect(n): """Returns True if ``n`` is a perfect number, else False. A perfect number is equal to the sum of its positive, proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_perfect, divisors, divisor_sigma >>> is_perfect(20) False >>> is_perfect(6) True >>> 6 == divisor_sigma(6) - 6 == sum(divisors(6)[:-1]) True References ========== .. [1] http://mathworld.wolfram.com/PerfectNumber.html .. [2] https://en.wikipedia.org/wiki/Perfect_number """ n = as_int(n) if _isperfect(n): return True # all perfect numbers for Mersenne primes with exponents # less than or equal to 43112609 are known iknow = MERSENNE_PRIME_EXPONENTS.index(43112609) if iknow <= len(PERFECT) - 1 and n <= PERFECT[iknow]: # there may be gaps between this and larger known values # so only conclude in the range for which all values # are known return False if n%2 == 0: last2 = n % 100 if last2 != 28 and last2 % 10 != 6: return False r, b = integer_nthroot(1 + 8*n, 2) if not b: return False m, x = divmod(1 + r, 4) if x: return False e, b = integer_log(m, 2) if not b: return False else: if n < 10**2000: # http://www.lirmm.fr/~ochem/opn/ return False if n % 105 == 0: # not divis by 105 return False if not any(n%m == r for m, r in [(12, 1), (468, 117), (324, 81)]): return False # there are many criteria that the factor structure of n # must meet; since we will have to factor it to test the # structure we will have the factors and can then check # to see whether it is a perfect number or not. So we # skip the structure checks and go straight to the final # test below. rv = divisor_sigma(n) - n if rv == n: if n%2 == 0: raise ValueError(filldedent(''' This even number is perfect and is associated with a Mersenne Prime, 2^%s - 1. It should be added to SymPy.''' % (e + 1))) else: raise ValueError(filldedent('''In 1888, Sylvester stated: " ...a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number] -- its escape, so to say, from the complex web of conditions which hem it in on all sides -- would be little short of a miracle." I guess SymPy just found that miracle and it factors like this: %s''' % factorint(n))) def is_mersenne_prime(n): """Returns True if ``n`` is a Mersenne prime, else False. A Mersenne prime is a prime number having the form `2^i - 1`. Examples ======== >>> from sympy.ntheory.factor_ import is_mersenne_prime >>> is_mersenne_prime(6) False >>> is_mersenne_prime(127) True References ========== .. [1] http://mathworld.wolfram.com/MersennePrime.html """ n = as_int(n) if _ismersenneprime(n): return True if not isprime(n): return False r, b = integer_log(n + 1, 2) if not b: return False raise ValueError(filldedent(''' This Mersenne Prime, 2^%s - 1, should be added to SymPy's known values.''' % r)) def abundance(n): """Returns the difference between the sum of the positive proper divisors of a number and the number. Examples ======== >>> from sympy.ntheory import abundance, is_perfect, is_abundant >>> abundance(6) 0 >>> is_perfect(6) True >>> abundance(10) -2 >>> is_abundant(10) False """ return divisor_sigma(n, 1) - 2 * n def is_abundant(n): """Returns True if ``n`` is an abundant number, else False. A abundant number is smaller than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_abundant >>> is_abundant(20) True >>> is_abundant(15) False References ========== .. [1] http://mathworld.wolfram.com/AbundantNumber.html """ n = as_int(n) if is_perfect(n): return False return n % 6 == 0 or bool(abundance(n) > 0) def is_deficient(n): """Returns True if ``n`` is a deficient number, else False. A deficient number is greater than the sum of its positive proper divisors. Examples ======== >>> from sympy.ntheory.factor_ import is_deficient >>> is_deficient(20) False >>> is_deficient(15) True References ========== .. [1] http://mathworld.wolfram.com/DeficientNumber.html """ n = as_int(n) if is_perfect(n): return False return bool(abundance(n) < 0) def is_amicable(m, n): """Returns True if the numbers `m` and `n` are "amicable", else False. Amicable numbers are two different numbers so related that the sum of the proper divisors of each is equal to that of the other. Examples ======== >>> from sympy.ntheory.factor_ import is_amicable, divisor_sigma >>> is_amicable(220, 284) True >>> divisor_sigma(220) == divisor_sigma(284) True References ========== .. [1] https://en.wikipedia.org/wiki/Amicable_numbers """ if m == n: return False a, b = map(lambda i: divisor_sigma(i), (m, n)) return a == b == (m + n) def dra(n, b): """ Returns the additive digital root of a natural number ``n`` in base ``b`` which is a single digit value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. Examples ======== >>> from sympy.ntheory.factor_ import dra >>> dra(3110, 12) 8 References ========== .. [1] https://en.wikipedia.org/wiki/Digital_root """ num = abs(as_int(n)) b = as_int(b) if b <= 1: raise ValueError("Base should be an integer greater than 1") if num == 0: return 0 return (1 + (num - 1) % (b - 1)) def drm(n, b): """ Returns the multiplicative digital root of a natural number ``n`` in a given base ``b`` which is a single digit value obtained by an iterative process of multiplying digits, on each iteration using the result from the previous iteration to compute the digit multiplication. Examples ======== >>> from sympy.ntheory.factor_ import drm >>> drm(9876, 10) 0 >>> drm(49, 10) 8 References ========== .. [1] http://mathworld.wolfram.com/MultiplicativeDigitalRoot.html """ n = abs(as_int(n)) b = as_int(b) if b <= 1: raise ValueError("Base should be an integer greater than 1") while n > b: mul = 1 while n > 1: n, r = divmod(n, b) if r == 0: return 0 mul *= r n = mul return n
ca5fff2e0ca3013af8ea6e51462a2f4c7dfe33981e92bc7d334bfe0ff99ae72e
from mpmath.libmp import (fzero, from_int, from_rational, fone, fhalf, bitcount, to_int, to_str, mpf_mul, mpf_div, mpf_sub, mpf_add, mpf_sqrt, mpf_pi, mpf_cosh_sinh, mpf_cos, mpf_sin) from sympy.core.numbers import igcd from .residue_ntheory import (_sqrt_mod_prime_power, legendre_symbol, jacobi_symbol, is_quad_residue) import math def _pre(): maxn = 10**5 global _factor global _totient _factor = [0]*maxn _totient = [1]*maxn lim = int(maxn**0.5) + 5 for i in range(2, lim): if _factor[i] == 0: for j in range(i*i, maxn, i): if _factor[j] == 0: _factor[j] = i for i in range(2, maxn): if _factor[i] == 0: _factor[i] = i _totient[i] = i-1 continue x = _factor[i] y = i//x if y % x == 0: _totient[i] = _totient[y]*x else: _totient[i] = _totient[y]*(x - 1) def _a(n, k, prec): """ Compute the inner sum in HRR formula [1]_ References ========== .. [1] http://msp.org/pjm/1956/6-1/pjm-v6-n1-p18-p.pdf """ if k == 1: return fone k1 = k e = 0 p = _factor[k] while k1 % p == 0: k1 //= p e += 1 k2 = k//k1 # k2 = p^e v = 1 - 24*n pi = mpf_pi(prec) if k1 == 1: # k = p^e if p == 2: mod = 8*k v = mod + v % mod v = (v*pow(9, k - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 2, e + 3)[0] arg = mpf_div(mpf_mul( from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int((-1)**e*jacobi_symbol(m - 1, m)), mpf_sqrt(from_int(k), prec), prec), mpf_sin(arg, prec), prec) if p == 3: mod = 3*k v = mod + v % mod if e > 1: v = (v*pow(64, k//3 - 1, mod)) % mod m = _sqrt_mod_prime_power(v, 3, e + 1)[0] arg = mpf_div(mpf_mul(from_int(4*m), pi, prec), from_int(mod), prec) return mpf_mul(mpf_mul( from_int(2*(-1)**(e + 1)*legendre_symbol(m, 3)), mpf_sqrt(from_int(k//3), prec), prec), mpf_sin(arg, prec), prec) v = k + v % k if v % p == 0: if e == 1: return mpf_mul( from_int(jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec) return fzero if not is_quad_residue(v, p): return fzero _phi = p**(e - 1)*(p - 1) v = (v*pow(576, _phi - 1, k)) m = _sqrt_mod_prime_power(v, p, e)[0] arg = mpf_div( mpf_mul(from_int(4*m), pi, prec), from_int(k), prec) return mpf_mul(mpf_mul( from_int(2*jacobi_symbol(3, k)), mpf_sqrt(from_int(k), prec), prec), mpf_cos(arg, prec), prec) if p != 2 or e >= 3: d1, d2 = igcd(k1, 24), igcd(k2, 24) e = 24//(d1*d2) n1 = ((d2*e*n + (k2**2 - 1)//d1)* pow(e*k2*k2*d2, _totient[k1] - 1, k1)) % k1 n2 = ((d1*e*n + (k1**2 - 1)//d2)* pow(e*k1*k1*d1, _totient[k2] - 1, k2)) % k2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) if e == 2: n1 = ((8*n + 5)*pow(128, _totient[k1] - 1, k1)) % k1 n2 = (4 + ((n - 2 - (k1**2 - 1)//8)*(k1**2)) % 4) % 4 return mpf_mul(mpf_mul( from_int(-1), _a(n1, k1, prec), prec), _a(n2, k2, prec)) n1 = ((8*n + 1)*pow(32, _totient[k1] - 1, k1)) % k1 n2 = (2 + (n - (k1**2 - 1)//8) % 2) % 2 return mpf_mul(_a(n1, k1, prec), _a(n2, k2, prec), prec) def _d(n, j, prec, sq23pi, sqrt8): """ Compute the sinh term in the outer sum of the HRR formula. The constants sqrt(2/3*pi) and sqrt(8) must be precomputed. """ j = from_int(j) pi = mpf_pi(prec) a = mpf_div(sq23pi, j, prec) b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec) c = mpf_sqrt(b, prec) ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec) D = mpf_div( mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec) E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec) return mpf_mul(D, E) def npartitions(n, verbose=False): """ Calculate the partition function P(n), i.e. the number of ways that n can be written as a sum of positive integers. P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_. The correctness of this implementation has been tested through $10^10$. Examples ======== >>> from sympy.ntheory import npartitions >>> npartitions(25) 1958 References ========== .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html """ n = int(n) if n < 0: return 0 if n <= 5: return [1, 1, 2, 3, 5, 7][n] if '_factor' not in globals(): _pre() # Estimate number of bits in p(n). This formula could be tidied pbits = int(( math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \ math.log(10, 2) prec = p = int(pbits*1.1 + 100) s = fzero M = max(6, int(0.24*n**0.5 + 4)) if M > 10**5: raise ValueError("Input too big") # Corresponds to n > 1.7e11 sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p) sqrt8 = mpf_sqrt(from_int(8), p) for q in range(1, M): a = _a(n, q, p) d = _d(n, q, p, sq23pi, sqrt8) s = mpf_add(s, mpf_mul(a, d), prec) if verbose: print("step", q, "of", M, to_str(a, 10), to_str(d, 10)) # On average, the terms decrease rapidly in magnitude. # Dynamically reducing the precision greatly improves # performance. p = bitcount(abs(to_int(d))) + 50 return int(to_int(mpf_add(s, fhalf, prec))) __all__ = ['npartitions']
7a6a98e38be43defbc204b90a35e82e058de7ea4c064857bd361e4720b181c15
from sympy.core.random import randrange, choice from math import log from sympy.ntheory import primefactors from sympy.core.symbol import Symbol from sympy.ntheory.factor_ import (factorint, multiplicity) from sympy.combinatorics import Permutation from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert, _af_rmul, _af_rmuln, _af_pow, Cycle) from sympy.combinatorics.util import (_check_cycles_alt_sym, _distribute_gens_by_base, _orbits_transversals_from_bsgs, _handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr, _strip, _strip_af) from sympy.core import Basic from sympy.functions.combinatorial.factorials import factorial from sympy.ntheory import sieve from sympy.utilities.iterables import has_variety, is_sequence, uniq from sympy.core.random import _randrange from itertools import islice from sympy.core.sympify import _sympify rmul = Permutation.rmul_with_af _af_new = Permutation._af_new class PermutationGroup(Basic): r"""The class defining a Permutation group. Explanation =========== ``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group generated by the list of permutations. This group can be supplied to Polyhedron if one desires to decorate the elements to which the indices of the permutation refer. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.polyhedron import Polyhedron >>> from sympy.combinatorics.perm_groups import PermutationGroup The permutations corresponding to motion of the front, right and bottom face of a $2 \times 2$ Rubik's cube are defined: >>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5) >>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9) >>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21) These are passed as permutations to PermutationGroup: >>> G = PermutationGroup(F, R, D) >>> G.order() 3674160 The group can be supplied to a Polyhedron in order to track the objects being moved. An example involving the $2 \times 2$ Rubik's cube is given there, but here is a simple demonstration: >>> a = Permutation(2, 1) >>> b = Permutation(1, 0) >>> G = PermutationGroup(a, b) >>> P = Polyhedron(list('ABC'), pgroup=G) >>> P.corners (A, B, C) >>> P.rotate(0) # apply permutation 0 >>> P.corners (A, C, B) >>> P.reset() >>> P.corners (A, B, C) Or one can make a permutation as a product of selected permutations and apply them to an iterable directly: >>> P10 = G.make_perm([0, 1]) >>> P10('ABC') ['C', 'A', 'B'] See Also ======== sympy.combinatorics.polyhedron.Polyhedron, sympy.combinatorics.permutations.Permutation References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" .. [2] Seress, A. "Permutation Group Algorithms" .. [3] https://en.wikipedia.org/wiki/Schreier_vector .. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm .. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray, Alice C.Niemeyer, and E.A.O'Brien. "Generating Random Elements of a Finite Group" .. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29 .. [7] http://www.algorithmist.com/index.php/Union_Find .. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups .. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29 .. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer .. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup .. [12] https://en.wikipedia.org/wiki/Nilpotent_group .. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf .. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf """ is_group = True def __new__(cls, *args, dups=True, **kwargs): """The default constructor. Accepts Cycle and Permutation forms. Removes duplicates unless ``dups`` keyword is ``False``. """ if not args: args = [Permutation()] else: args = list(args[0] if is_sequence(args[0]) else args) if not args: args = [Permutation()] if any(isinstance(a, Cycle) for a in args): args = [Permutation(a) for a in args] if has_variety(a.size for a in args): degree = kwargs.pop('degree', None) if degree is None: degree = max(a.size for a in args) for i in range(len(args)): if args[i].size != degree: args[i] = Permutation(args[i], size=degree) if dups: args = list(uniq([_af_new(list(a)) for a in args])) if len(args) > 1: args = [g for g in args if not g.is_identity] return Basic.__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): self._generators = list(self.args) self._order = None self._center = [] self._is_abelian = None self._is_transitive = None self._is_sym = None self._is_alt = None self._is_primitive = None self._is_nilpotent = None self._is_solvable = None self._is_trivial = None self._transitivity_degree = None self._max_div = None self._is_perfect = None self._is_cyclic = None self._r = len(self._generators) self._degree = self._generators[0].size # these attributes are assigned after running schreier_sims self._base = [] self._strong_gens = [] self._strong_gens_slp = [] self._basic_orbits = [] self._transversals = [] self._transversal_slp = [] # these attributes are assigned after running _random_pr_init self._random_gens = [] # finite presentation of the group as an instance of `FpGroup` self._fp_presentation = None def __getitem__(self, i): return self._generators[i] def __contains__(self, i): """Return ``True`` if *i* is contained in PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = Permutation(1, 2, 3) >>> Permutation(3) in PermutationGroup(p) True """ if not isinstance(i, Permutation): raise TypeError("A PermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return self.contains(i) def __len__(self): return len(self._generators) def equals(self, other): """Return ``True`` if PermutationGroup generated by elements in the group are same i.e they represent the same PermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G = PermutationGroup([p, p**2]) >>> H = PermutationGroup([p**2, p]) >>> G.generators == H.generators False >>> G.equals(H) True """ if not isinstance(other, PermutationGroup): return False set_self_gens = set(self.generators) set_other_gens = set(other.generators) # before reaching the general case there are also certain # optimisation and obvious cases requiring less or no actual # computation. if set_self_gens == set_other_gens: return True # in the most general case it will check that each generator of # one group belongs to the other PermutationGroup and vice-versa for gen1 in set_self_gens: if not other.contains(gen1): return False for gen2 in set_other_gens: if not self.contains(gen2): return False return True def __mul__(self, other): """ Return the direct product of two permutation groups as a permutation group. Explanation =========== This implementation realizes the direct product by shifting the index set for the generators of the second group: so if we have ``G`` acting on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on ``n1 + n2`` points. Examples ======== >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(5) >>> H = G*G >>> H PermutationGroup([ (9)(0 1 2 3 4), (5 6 7 8 9)]) >>> H.order() 25 """ if isinstance(other, Permutation): return Coset(other, self, dir='+') gens1 = [perm._array_form for perm in self.generators] gens2 = [perm._array_form for perm in other.generators] n1 = self._degree n2 = other._degree start = list(range(n1)) end = list(range(n1, n1 + n2)) for i in range(len(gens2)): gens2[i] = [x + n1 for x in gens2[i]] gens2 = [start + gen for gen in gens2] gens1 = [gen + end for gen in gens1] together = gens1 + gens2 gens = [_af_new(x) for x in together] return PermutationGroup(gens) def _random_pr_init(self, r, n, _random_prec_n=None): r"""Initialize random generators for the product replacement algorithm. Explanation =========== The implementation uses a modification of the original product replacement algorithm due to Leedham-Green, as described in [1], pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical analysis of the original product replacement algorithm, and [4]. The product replacement algorithm is used for producing random, uniformly distributed elements of a group `G` with a set of generators `S`. For the initialization ``_random_pr_init``, a list ``R`` of `\max\{r, |S|\}` group generators is created as the attribute ``G._random_gens``, repeating elements of `S` if necessary, and the identity element of `G` is appended to ``R`` - we shall refer to this last element as the accumulator. Then the function ``random_pr()`` is called ``n`` times, randomizing the list ``R`` while preserving the generation of `G` by ``R``. The function ``random_pr()`` itself takes two random elements ``g, h`` among all elements of ``R`` but the accumulator and replaces ``g`` with a randomly chosen element from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied by whatever ``g`` was replaced by. The new value of the accumulator is then returned by ``random_pr()``. The elements returned will eventually (for ``n`` large enough) become uniformly distributed across `G` ([5]). For practical purposes however, the values ``n = 50, r = 11`` are suggested in [1]. Notes ===== THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute self._random_gens See Also ======== random_pr """ deg = self.degree random_gens = [x._array_form for x in self.generators] k = len(random_gens) if k < r: for i in range(k, r): random_gens.append(random_gens[i - k]) acc = list(range(deg)) random_gens.append(acc) self._random_gens = random_gens # handle randomized input for testing purposes if _random_prec_n is None: for i in range(n): self.random_pr() else: for i in range(n): self.random_pr(_random_prec=_random_prec_n[i]) def _union_find_merge(self, first, second, ranks, parents, not_rep): """Merges two classes in a union-find data structure. Explanation =========== Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. The class merging process uses union by rank as an optimization. ([7]) Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, the list of class sizes, ``ranks``, and the list of elements that are not representatives, ``not_rep``, are changed due to class merging. See Also ======== minimal_block, _union_find_rep References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep_first = self._union_find_rep(first, parents) rep_second = self._union_find_rep(second, parents) if rep_first != rep_second: # union by rank if ranks[rep_first] >= ranks[rep_second]: new_1, new_2 = rep_first, rep_second else: new_1, new_2 = rep_second, rep_first total_rank = ranks[new_1] + ranks[new_2] if total_rank > self.max_div: return -1 parents[new_2] = new_1 ranks[new_1] = total_rank not_rep.append(new_2) return 1 return 0 def _union_find_rep(self, num, parents): """Find representative of a class in a union-find data structure. Explanation =========== Used in the implementation of Atkinson's algorithm as suggested in [1], pp. 83-87. After the representative of the class to which ``num`` belongs is found, path compression is performed as an optimization ([7]). Notes ===== THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives, ``parents``, is altered due to path compression. See Also ======== minimal_block, _union_find_merge References ========== .. [1] Holt, D., Eick, B., O'Brien, E. "Handbook of computational group theory" .. [7] http://www.algorithmist.com/index.php/Union_Find """ rep, parent = num, parents[num] while parent != rep: rep = parent parent = parents[rep] # path compression temp, parent = num, parents[num] while parent != rep: parents[temp] = rep temp = parent parent = parents[temp] return rep @property def base(self): r"""Return a base from the Schreier-Sims algorithm. Explanation =========== For a permutation group `G`, a base is a sequence of points `B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart from the identity fixes all the points in `B`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. An alternative way to think of `B` is that it gives the indices of the stabilizer cosets that contain more than the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)]) >>> G.base [0, 2] See Also ======== strong_gens, basic_transversals, basic_orbits, basic_stabilizers """ if self._base == []: self.schreier_sims() return self._base def baseswap(self, base, strong_gens, pos, randomized=False, transversals=None, basic_orbits=None, strong_gens_distr=None): r"""Swap two consecutive base points in base and strong generating set. Explanation =========== If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`, where `i` is given by ``pos``, and a strong generating set relative to that base. The original base and strong generating set are not modified. The randomized version (default) is of Las Vegas type. Parameters ========== base, strong_gens The base and strong generating set. pos The position at which swapping is performed. randomized A switch between randomized and deterministic version. transversals The transversals for the basic orbits, if known. basic_orbits The basic orbits, if known. strong_gens_distr The strong generators distributed by basic stabilizers, if known. Returns ======= (base, strong_gens) ``base`` is the new base, and ``strong_gens`` is a generating set relative to it. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> S = SymmetricGroup(4) >>> S.schreier_sims() >>> S.base [0, 1, 2] >>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False) >>> base, gens ([0, 2, 1], [(0 1 2 3), (3)(0 1), (1 3 2), (2 3), (1 3)]) check that base, gens is a BSGS >>> S1 = PermutationGroup(gens) >>> _verify_bsgs(S1, base, gens) True See Also ======== schreier_sims Notes ===== The deterministic version of the algorithm is discussed in [1], pp. 102-103; the randomized version is discussed in [1], p.103, and [2], p.98. It is of Las Vegas type. Notice that [1] contains a mistake in the pseudocode and discussion of BASESWAP: on line 3 of the pseudocode, `|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by `|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the discussion of the algorithm. """ # construct the basic orbits, generators for the stabilizer chain # and transversal elements from whatever was provided transversals, basic_orbits, strong_gens_distr = \ _handle_precomputed_bsgs(base, strong_gens, transversals, basic_orbits, strong_gens_distr) base_len = len(base) degree = self.degree # size of orbit of base[pos] under the stabilizer we seek to insert # in the stabilizer chain at position pos + 1 size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \ //len(_orbit(degree, strong_gens_distr[pos], base[pos + 1])) # initialize the wanted stabilizer by a subgroup if pos + 2 > base_len - 1: T = [] else: T = strong_gens_distr[pos + 2][:] # randomized version if randomized is True: stab_pos = PermutationGroup(strong_gens_distr[pos]) schreier_vector = stab_pos.schreier_vector(base[pos + 1]) # add random elements of the stabilizer until they generate it while len(_orbit(degree, T, base[pos])) != size: new = stab_pos.random_stab(base[pos + 1], schreier_vector=schreier_vector) T.append(new) # deterministic version else: Gamma = set(basic_orbits[pos]) Gamma.remove(base[pos]) if base[pos + 1] in Gamma: Gamma.remove(base[pos + 1]) # add elements of the stabilizer until they generate it by # ruling out member of the basic orbit of base[pos] along the way while len(_orbit(degree, T, base[pos])) != size: gamma = next(iter(Gamma)) x = transversals[pos][gamma] temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1]) if temp not in basic_orbits[pos + 1]: Gamma = Gamma - _orbit(degree, T, gamma) else: y = transversals[pos + 1][temp] el = rmul(x, y) if el(base[pos]) not in _orbit(degree, T, base[pos]): T.append(el) Gamma = Gamma - _orbit(degree, T, base[pos]) # build the new base and strong generating set strong_gens_new_distr = strong_gens_distr[:] strong_gens_new_distr[pos + 1] = T base_new = base[:] base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos] strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr) for gen in T: if gen not in strong_gens_new: strong_gens_new.append(gen) return base_new, strong_gens_new @property def basic_orbits(self): r""" Return the basic orbits relative to a base and strong generating set. Explanation =========== If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and `G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer (so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(4) >>> S.basic_orbits [[0, 1, 2, 3], [1, 2, 3], [2, 3]] See Also ======== base, strong_gens, basic_transversals, basic_stabilizers """ if self._basic_orbits == []: self.schreier_sims() return self._basic_orbits @property def basic_stabilizers(self): r""" Return a chain of stabilizers relative to a base and strong generating set. Explanation =========== The ``i``-th basic stabilizer `G^{(i)}` relative to a base `(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more information, see [1], pp. 87-89. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.schreier_sims() >>> A.base [0, 1] >>> for g in A.basic_stabilizers: ... print(g) ... PermutationGroup([ (3)(0 1 2), (1 2 3)]) PermutationGroup([ (1 2 3)]) See Also ======== base, strong_gens, basic_orbits, basic_transversals """ if self._transversals == []: self.schreier_sims() strong_gens = self._strong_gens base = self._base if not base: # e.g. if self is trivial return [] strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_stabilizers = [] for gens in strong_gens_distr: basic_stabilizers.append(PermutationGroup(gens)) return basic_stabilizers @property def basic_transversals(self): """ Return basic transversals relative to a base and strong generating set. Explanation =========== The basic transversals are transversals of the basic orbits. They are provided as a list of dictionaries, each dictionary having keys - the elements of one of the basic orbits, and values - the corresponding transversal elements. See [1], pp. 87-89 for more information. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> A = AlternatingGroup(4) >>> A.basic_transversals [{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}] See Also ======== strong_gens, base, basic_orbits, basic_stabilizers """ if self._transversals == []: self.schreier_sims() return self._transversals def composition_series(self): r""" Return the composition series for a group as a list of permutation groups. Explanation =========== The composition series for a group `G` is defined as a subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition series is a subnormal series such that each factor group `H(i+1) / H(i)` is simple. A subnormal series is a composition series only if it is of maximum length. The algorithm works as follows: Starting with the derived series the idea is to fill the gap between `G = der[i]` and `H = der[i+1]` for each `i` independently. Since, all subgroups of the abelian group `G/H` are normal so, first step is to take the generators `g` of `G` and add them to generators of `H` one by one. The factor groups formed are not simple in general. Each group is obtained from the previous one by adding one generator `g`, if the previous group is denoted by `H` then the next group `K` is generated by `g` and `H`. The factor group `K/H` is cyclic and it's order is `K.order()//G.order()`. The series is then extended between `K` and `H` by groups generated by powers of `g` and `H`. The series formed is then prepended to the already existing series. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import CyclicGroup >>> S = SymmetricGroup(12) >>> G = S.sylow_subgroup(2) >>> C = G.composition_series() >>> [H.order() for H in C] [1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] >>> G = S.sylow_subgroup(3) >>> C = G.composition_series() >>> [H.order() for H in C] [243, 81, 27, 9, 3, 1] >>> G = CyclicGroup(12) >>> C = G.composition_series() >>> [H.order() for H in C] [12, 6, 3, 1] """ der = self.derived_series() if not all(g.is_identity for g in der[-1].generators): raise NotImplementedError('Group should be solvable') series = [] for i in range(len(der)-1): H = der[i+1] up_seg = [] for g in der[i].generators: K = PermutationGroup([g] + H.generators) order = K.order() // H.order() down_seg = [] for p, e in factorint(order).items(): for _ in range(e): down_seg.append(PermutationGroup([g] + H.generators)) g = g**p up_seg = down_seg + up_seg H = K up_seg[0] = der[i] series.extend(up_seg) series.append(der[-1]) return series def coset_transversal(self, H): """Return a transversal of the right cosets of self by its subgroup H using the second method described in [1], Subsection 4.6.7 """ if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") if H.order() == 1: return self._elements self._schreier_sims(base=H.base) # make G.base an extension of H.base base = self.base base_ordering = _base_ordering(base, self.degree) identity = Permutation(self.degree - 1) transversals = self.basic_transversals[:] # transversals is a list of dictionaries. Get rid of the keys # so that it is a list of lists and sort each list in # the increasing order of base[l]^x for l, t in enumerate(transversals): transversals[l] = sorted(t.values(), key = lambda x: base_ordering[base[l]^x]) orbits = H.basic_orbits h_stabs = H.basic_stabilizers g_stabs = self.basic_stabilizers indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)] # T^(l) should be a right transversal of H^(l) in G^(l) for # 1<=l<=len(base). While H^(l) is the trivial group, T^(l) # contains all the elements of G^(l) so we might just as well # start with l = len(h_stabs)-1 if len(g_stabs) > len(h_stabs): T = g_stabs[len(h_stabs)]._elements else: T = [identity] l = len(h_stabs)-1 t_len = len(T) while l > -1: T_next = [] for u in transversals[l]: if u == identity: continue b = base_ordering[base[l]^u] for t in T: p = t*u if all(base_ordering[h^p] >= b for h in orbits[l]): T_next.append(p) if t_len + len(T_next) == indices[l]: break if t_len + len(T_next) == indices[l]: break T += T_next t_len += len(T_next) l -= 1 T.remove(identity) T = [identity] + T return T def _coset_representative(self, g, H): """Return the representative of Hg from the transversal that would be computed by ``self.coset_transversal(H)``. """ if H.order() == 1: return g # The base of self must be an extension of H.base. if not(self.base[:len(H.base)] == H.base): self._schreier_sims(base=H.base) orbits = H.basic_orbits[:] h_transversals = [list(_.values()) for _ in H.basic_transversals] transversals = [list(_.values()) for _ in self.basic_transversals] base = self.base base_ordering = _base_ordering(base, self.degree) def step(l, x): gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0] i = [base[l]^h for h in h_transversals[l]].index(gamma) x = h_transversals[l][i]*x if l < len(orbits)-1: for u in transversals[l]: if base[l]^u == base[l]^x: break x = step(l+1, x*u**-1)*u return x return step(0, g) def coset_table(self, H): """Return the standardised (right) coset table of self in H as a list of lists. """ # Maybe this should be made to return an instance of CosetTable # from fp_groups.py but the class would need to be changed first # to be compatible with PermutationGroups from itertools import chain, product if not H.is_subgroup(self): raise ValueError("The argument must be a subgroup") T = self.coset_transversal(H) n = len(T) A = list(chain.from_iterable((gen, gen**-1) for gen in self.generators)) table = [] for i in range(n): row = [self._coset_representative(T[i]*x, H) for x in A] row = [T.index(r) for r in row] table.append(row) # standardize (this is the same as the algorithm used in coset_table) # If CosetTable is made compatible with PermutationGroups, this # should be replaced by table.standardize() A = range(len(A)) gamma = 1 for alpha, a in product(range(n), A): beta = table[alpha][a] if beta >= gamma: if beta > gamma: for x in A: z = table[gamma][x] table[gamma][x] = table[beta][x] table[beta][x] = z for i in range(n): if table[i][x] == beta: table[i][x] = gamma elif table[i][x] == gamma: table[i][x] = beta gamma += 1 if gamma >= n-1: return table def center(self): r""" Return the center of a permutation group. Explanation =========== The center for a group `G` is defined as `Z(G) = \{z\in G | \forall g\in G, zg = gz \}`, the set of elements of `G` that commute with all elements of `G`. It is equal to the centralizer of `G` inside `G`, and is naturally a subgroup of `G` ([9]). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> G = D.center() >>> G.order() 2 See Also ======== centralizer Notes ===== This is a naive implementation that is a straightforward application of ``.centralizer()`` """ return self.centralizer(self) def centralizer(self, other): r""" Return the centralizer of a group/set/element. Explanation =========== The centralizer of a set of permutations ``S`` inside a group ``G`` is the set of elements of ``G`` that commute with all elements of ``S``:: `C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10]) Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of the full symmetric group, we allow for ``S`` to have elements outside ``G``. It is naturally a subgroup of ``G``; the centralizer of a permutation group is equal to the centralizer of any set of generators for that group, since any element commuting with the generators commutes with any product of the generators. Parameters ========== other a permutation group/list of permutations/single permutation Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> S = SymmetricGroup(6) >>> C = CyclicGroup(6) >>> H = S.centralizer(C) >>> H.is_subgroup(C) True See Also ======== subgroup_search Notes ===== The implementation is an application of ``.subgroup_search()`` with tests using a specific base for the group ``G``. """ if hasattr(other, 'generators'): if other.is_trivial or self.is_trivial: return self degree = self.degree identity = _af_new(list(range(degree))) orbits = other.orbits() num_orbits = len(orbits) orbits.sort(key=lambda x: -len(x)) long_base = [] orbit_reps = [None]*num_orbits orbit_reps_indices = [None]*num_orbits orbit_descr = [None]*degree for i in range(num_orbits): orbit = list(orbits[i]) orbit_reps[i] = orbit[0] orbit_reps_indices[i] = len(long_base) for point in orbit: orbit_descr[point] = i long_base = long_base + orbit base, strong_gens = self.schreier_sims_incremental(base=long_base) strong_gens_distr = _distribute_gens_by_base(base, strong_gens) i = 0 for i in range(len(base)): if strong_gens_distr[i] == [identity]: break base = base[:i] base_len = i for j in range(num_orbits): if base[base_len - 1] in orbits[j]: break rel_orbits = orbits[: j + 1] num_rel_orbits = len(rel_orbits) transversals = [None]*num_rel_orbits for j in range(num_rel_orbits): rep = orbit_reps[j] transversals[j] = dict( other.orbit_transversal(rep, pairs=True)) trivial_test = lambda x: True tests = [None]*base_len for l in range(base_len): if base[l] in orbit_reps: tests[l] = trivial_test else: def test(computed_words, l=l): g = computed_words[l] rep_orb_index = orbit_descr[base[l]] rep = orbit_reps[rep_orb_index] im = g._array_form[base[l]] im_rep = g._array_form[rep] tr_el = transversals[rep_orb_index][base[l]] # using the definition of transversal, # base[l]^g = rep^(tr_el*g); # if g belongs to the centralizer, then # base[l]^g = (rep^g)^tr_el return im == tr_el._array_form[im_rep] tests[l] = test def prop(g): return [rmul(g, gen) for gen in other.generators] == \ [rmul(gen, g) for gen in other.generators] return self.subgroup_search(prop, base=base, strong_gens=strong_gens, tests=tests) elif hasattr(other, '__getitem__'): gens = list(other) return self.centralizer(PermutationGroup(gens)) elif hasattr(other, 'array_form'): return self.centralizer(PermutationGroup([other])) def commutator(self, G, H): """ Return the commutator of two subgroups. Explanation =========== For a permutation group ``K`` and subgroups ``G``, ``H``, the commutator of ``G`` and ``H`` is defined as the group generated by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and ``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> S = SymmetricGroup(5) >>> A = AlternatingGroup(5) >>> G = S.commutator(S, A) >>> G.is_subgroup(A) True See Also ======== derived_subgroup Notes ===== The commutator of two subgroups `H, G` is equal to the normal closure of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h` a generator of `H` and `g` a generator of `G` ([1], p.28) """ ggens = G.generators hgens = H.generators commutators = [] for ggen in ggens: for hgen in hgens: commutator = rmul(hgen, ggen, ~hgen, ~ggen) if commutator not in commutators: commutators.append(commutator) res = self.normal_closure(commutators) return res def coset_factor(self, g, factor_index=False): """Return ``G``'s (self's) coset factorization of ``g`` Explanation =========== If ``g`` is an element of ``G`` then it can be written as the product of permutations drawn from the Schreier-Sims coset decomposition, The permutations returned in ``f`` are those for which the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)`` and ``B = G.base``. f[i] is one of the permutations in ``self._basic_orbits[i]``. If factor_index==True, returns a tuple ``[b[0],..,b[n]]``, where ``b[i]`` belongs to ``self._basic_orbits[i]`` Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) Define g: >>> g = Permutation(7)(1, 2, 4)(3, 6, 5) Confirm that it is an element of G: >>> G.contains(g) True Thus, it can be written as a product of factors (up to 3) drawn from u. See below that a factor from u1 and u2 and the Identity permutation have been used: >>> f = G.coset_factor(g) >>> f[2]*f[1]*f[0] == g True >>> f1 = G.coset_factor(g, True); f1 [0, 4, 4] >>> tr = G.basic_transversals >>> f[0] == tr[0][f1[0]] True If g is not an element of G then [] is returned: >>> c = Permutation(5, 6, 7) >>> G.coset_factor(c) [] See Also ======== sympy.combinatorics.util._strip """ if isinstance(g, (Cycle, Permutation)): g = g.list() if len(g) != self._degree: # this could either adjust the size or return [] immediately # but we don't choose between the two and just signal a possible # error raise ValueError('g should be the same size as permutations of G') I = list(range(self._degree)) basic_orbits = self.basic_orbits transversals = self._transversals factors = [] base = self.base h = g for i in range(len(base)): beta = h[base[i]] if beta == base[i]: factors.append(beta) continue if beta not in basic_orbits[i]: return [] u = transversals[i][beta]._array_form h = _af_rmul(_af_invert(u), h) factors.append(beta) if h != I: return [] if factor_index: return factors tr = self.basic_transversals factors = [tr[i][factors[i]] for i in range(len(base))] return factors def generator_product(self, g, original=False): r''' Return a list of strong generators `[s1, \dots, sn]` s.t `g = sn \times \dots \times s1`. If ``original=True``, make the list contain only the original group generators ''' product = [] if g.is_identity: return [] if g in self.strong_gens: if not original or g in self.generators: return [g] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) return product elif g**-1 in self.strong_gens: g = g**-1 if not original or g in self.generators: return [g**-1] else: slp = self._strong_gens_slp[g] for s in slp: product.extend(self.generator_product(s, original=True)) l = len(product) product = [product[l-i-1]**-1 for i in range(l)] return product f = self.coset_factor(g, True) for i, j in enumerate(f): slp = self._transversal_slp[i][j] for s in slp: if not original: product.append(self.strong_gens[s]) else: s = self.strong_gens[s] product.extend(self.generator_product(s, original=True)) return product def coset_rank(self, g): """rank using Schreier-Sims representation. Explanation =========== The coset rank of ``g`` is the ordering number in which it appears in the lexicographic listing according to the coset decomposition The ordering is the same as in G.generate(method='coset'). If ``g`` does not belong to the group it returns None. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5) >>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6) >>> G = PermutationGroup([a, b]) >>> c = Permutation(7)(2, 4)(3, 5) >>> G.coset_rank(c) 16 >>> G.coset_unrank(16) (7)(2 4)(3 5) See Also ======== coset_factor """ factors = self.coset_factor(g, True) if not factors: return None rank = 0 b = 1 transversals = self._transversals base = self._base basic_orbits = self._basic_orbits for i in range(len(base)): k = factors[i] j = basic_orbits[i].index(k) rank += b*j b = b*len(transversals[i]) return rank def coset_unrank(self, rank, af=False): """unrank using Schreier-Sims representation coset_unrank is the inverse operation of coset_rank if 0 <= rank < order; otherwise it returns None. """ if rank < 0 or rank >= self.order(): return None base = self.base transversals = self.basic_transversals basic_orbits = self.basic_orbits m = len(base) v = [0]*m for i in range(m): rank, c = divmod(rank, len(transversals[i])) v[i] = basic_orbits[i][c] a = [transversals[i][v[i]]._array_form for i in range(m)] h = _af_rmuln(*a) if af: return h else: return _af_new(h) @property def degree(self): """Returns the size of the permutations in the group. Explanation =========== The number of permutations comprising the group is given by ``len(group)``; the number of permutations that can be generated by the group is given by ``group.order()``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] See Also ======== order """ return self._degree @property def identity(self): ''' Return the identity element of the permutation group. ''' return _af_new(list(range(self.degree))) @property def elements(self): """Returns all the elements of the permutation group as a set Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p.elements {(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)} """ return set(self._elements) @property def _elements(self): """Returns all the elements of the permutation group as a list Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2)) >>> p._elements [(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)] """ return list(islice(self.generate(), None)) def derived_series(self): r"""Return the derived series for the group. Explanation =========== The derived series for a group `G` is defined as `G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`, i.e. `G_i` is the derived subgroup of `G_{i-1}`, for `i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some `k\in\mathbb{N}`, the series terminates. Returns ======= A list of permutation groups containing the members of the derived series in the order `G = G_0, G_1, G_2, \ldots`. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup, DihedralGroup) >>> A = AlternatingGroup(5) >>> len(A.derived_series()) 1 >>> S = SymmetricGroup(4) >>> len(S.derived_series()) 4 >>> S.derived_series()[1].is_subgroup(AlternatingGroup(4)) True >>> S.derived_series()[2].is_subgroup(DihedralGroup(2)) True See Also ======== derived_subgroup """ res = [self] current = self nxt = self.derived_subgroup() while not current.is_subgroup(nxt): res.append(nxt) current = nxt nxt = nxt.derived_subgroup() return res def derived_subgroup(self): r"""Compute the derived subgroup. Explanation =========== The derived subgroup, or commutator subgroup is the subgroup generated by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is equal to the normal closure of the set of commutators of the generators ([1], p.28, [11]). Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2, 4, 3]) >>> b = Permutation([0, 1, 3, 2, 4]) >>> G = PermutationGroup([a, b]) >>> C = G.derived_subgroup() >>> list(C.generate(af=True)) [[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]] See Also ======== derived_series """ r = self._r gens = [p._array_form for p in self.generators] set_commutators = set() degree = self._degree rng = list(range(degree)) for i in range(r): for j in range(r): p1 = gens[i] p2 = gens[j] c = list(range(degree)) for k in rng: c[p2[p1[k]]] = p1[p2[k]] ct = tuple(c) if ct not in set_commutators: set_commutators.add(ct) cms = [_af_new(p) for p in set_commutators] G2 = self.normal_closure(cms) return G2 def generate(self, method="coset", af=False): """Return iterator to generate the elements of the group. Explanation =========== Iteration is done with one of these methods:: method='coset' using the Schreier-Sims coset representation method='dimino' using the Dimino method If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import PermutationGroup >>> from sympy.combinatorics.polyhedron import tetrahedron The permutation group given in the tetrahedron object is also true groups: >>> G = tetrahedron.pgroup >>> G.is_group True Also the group generated by the permutations in the tetrahedron pgroup -- even the first two -- is a proper group: >>> H = PermutationGroup(G[0], G[1]) >>> J = PermutationGroup(list(H.generate())); J PermutationGroup([ (0 1)(2 3), (1 2 3), (1 3 2), (0 3 1), (0 2 3), (0 3)(1 2), (0 1 3), (3)(0 2 1), (0 3 2), (3)(0 1 2), (0 2)(1 3)]) >>> _.is_group True """ if method == "coset": return self.generate_schreier_sims(af) elif method == "dimino": return self.generate_dimino(af) else: raise NotImplementedError('No generation defined for %s' % method) def generate_dimino(self, af=False): """Yield group elements using Dimino's algorithm. If ``af == True`` it yields the array form of the permutations. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_dimino(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1], [0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]] References ========== .. [1] The Implementation of Various Algorithms for Permutation Groups in the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis """ idn = list(range(self.degree)) order = 0 element_list = [idn] set_element_list = {tuple(idn)} if af: yield idn else: yield _af_new(idn) gens = [p._array_form for p in self.generators] for i in range(len(gens)): # D elements of the subgroup G_i generated by gens[:i] D = element_list[:] N = [idn] while N: A = N N = [] for a in A: for g in gens[:i + 1]: ag = _af_rmul(a, g) if tuple(ag) not in set_element_list: # produce G_i*g for d in D: order += 1 ap = _af_rmul(d, ag) if af: yield ap else: p = _af_new(ap) yield p element_list.append(ap) set_element_list.add(tuple(ap)) N.append(ap) self._order = len(element_list) def generate_schreier_sims(self, af=False): """Yield group elements using the Schreier-Sims representation in coset_rank order If ``af = True`` it yields the array form of the permutations Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([0, 2, 3, 1]) >>> g = PermutationGroup([a, b]) >>> list(g.generate_schreier_sims(af=True)) [[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1], [0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]] """ n = self._degree u = self.basic_transversals basic_orbits = self._basic_orbits if len(u) == 0: for x in self.generators: if af: yield x._array_form else: yield x return if len(u) == 1: for i in basic_orbits[0]: if af: yield u[0][i]._array_form else: yield u[0][i] return u = list(reversed(u)) basic_orbits = basic_orbits[::-1] # stg stack of group elements stg = [list(range(n))] posmax = [len(x) for x in u] n1 = len(posmax) - 1 pos = [0]*n1 h = 0 while 1: # backtrack when finished iterating over coset if pos[h] >= posmax[h]: if h == 0: return pos[h] = 0 h -= 1 stg.pop() continue p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1]) pos[h] += 1 stg.append(p) h += 1 if h == n1: if af: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) yield p else: for i in basic_orbits[-1]: p = _af_rmul(u[-1][i]._array_form, stg[-1]) p1 = _af_new(p) yield p1 stg.pop() h -= 1 @property def generators(self): """Returns the generators of the group. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.generators [(1 2), (2)(0 1)] """ return self._generators def contains(self, g, strict=True): """Test if permutation ``g`` belong to self, ``G``. Explanation =========== If ``g`` is an element of ``G`` it can be written as a product of factors drawn from the cosets of ``G``'s stabilizers. To see if ``g`` is one of the actual generators defining the group use ``G.has(g)``. If ``strict`` is not ``True``, ``g`` will be resized, if necessary, to match the size of permutations in ``self``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 2) >>> b = Permutation(2, 3, 1) >>> G = PermutationGroup(a, b, degree=5) >>> G.contains(G[0]) # trivial check True >>> elem = Permutation([[2, 3]], size=5) >>> G.contains(elem) True >>> G.contains(Permutation(4)(0, 1, 2, 3)) False If strict is False, a permutation will be resized, if necessary: >>> H = PermutationGroup(Permutation(5)) >>> H.contains(Permutation(3)) False >>> H.contains(Permutation(3), strict=False) True To test if a given permutation is present in the group: >>> elem in G.generators False >>> G.has(elem) False See Also ======== coset_factor, sympy.core.basic.Basic.has, __contains__ """ if not isinstance(g, Permutation): return False if g.size != self.degree: if strict: return False g = Permutation(g, size=self.degree) if g in self.generators: return True return bool(self.coset_factor(g.array_form, True)) @property def is_perfect(self): """Return ``True`` if the group is perfect. A group is perfect if it equals to its derived subgroup. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3)(4,5) >>> b = Permutation(1,2,3,4,5) >>> G = PermutationGroup([a, b]) >>> G.is_perfect False """ if self._is_perfect is None: self._is_perfect = self.equals(self.derived_subgroup()) return self._is_perfect @property def is_abelian(self): """Test if the group is Abelian. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.is_abelian False >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_abelian True """ if self._is_abelian is not None: return self._is_abelian self._is_abelian = True gens = [p._array_form for p in self.generators] for x in gens: for y in gens: if y <= x: continue if not _af_commutes_with(x, y): self._is_abelian = False return False return True def abelian_invariants(self): """ Returns the abelian invariants for the given group. Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to the direct product of finitely many nontrivial cyclic groups of prime-power order. Explanation =========== The prime-powers that occur as the orders of the factors are uniquely determined by G. More precisely, the primes that occur in the orders of the factors in any such decomposition of ``G`` are exactly the primes that divide ``|G|`` and for any such prime ``p``, if the orders of the factors that are p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, then the orders of the factors that are p-groups in any such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``. The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken for all primes that divide ``|G|`` are called the invariants of the nontrivial group ``G`` as suggested in ([14], p. 542). Notes ===== We adopt the convention that the invariants of a trivial group are []. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.abelian_invariants() [2] >>> from sympy.combinatorics.named_groups import CyclicGroup >>> G = CyclicGroup(7) >>> G.abelian_invariants() [7] """ if self.is_trivial: return [] gns = self.generators inv = [] G = self H = G.derived_subgroup() Hgens = H.generators for p in primefactors(G.order()): ranks = [] while True: pows = [] for g in gns: elm = g**p if not H.contains(elm): pows.append(elm) K = PermutationGroup(Hgens + pows) if pows else H r = G.order()//K.order() G = K gns = pows if r == 1: break ranks.append(multiplicity(p, r)) if ranks: pows = [1]*ranks[0] for i in ranks: for j in range(0, i): pows[j] = pows[j]*p inv.extend(pows) inv.sort() return inv def is_elementary(self, p): """Return ``True`` if the group is elementary abelian. An elementary abelian group is a finite abelian group, where every nontrivial element has order `p`, where `p` is a prime. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> G = PermutationGroup([a]) >>> G.is_elementary(2) True >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([3, 1, 2, 0]) >>> G = PermutationGroup([a, b]) >>> G.is_elementary(2) True >>> G.is_elementary(3) False """ return self.is_abelian and all(g.order() == p for g in self.generators) def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False): """A naive test using the group order.""" if only_sym and only_alt: raise ValueError( "Both {} and {} cannot be set to True" .format(only_sym, only_alt)) n = self.degree sym_order = 1 for i in range(2, n+1): sym_order *= i order = self.order() if order == sym_order: self._is_sym = True self._is_alt = False if only_alt: return False return True elif 2*order == sym_order: self._is_sym = False self._is_alt = True if only_sym: return False return True return False def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None): """A test using monte-carlo algorithm. Parameters ========== eps : float, optional The criterion for the incorrect ``False`` return. perms : list[Permutation], optional If explicitly given, it tests over the given candidats for testing. If ``None``, it randomly computes ``N_eps`` and chooses ``N_eps`` sample of the permutation from the group. See Also ======== _check_cycles_alt_sym """ if perms is None: n = self.degree if n < 17: c_n = 0.34 else: c_n = 0.57 d_n = (c_n*log(2))/log(n) N_eps = int(-log(eps)/d_n) perms = (self.random_pr() for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) for perm in perms: if _check_cycles_alt_sym(perm): return True return False def is_alt_sym(self, eps=0.05, _random_prec=None): r"""Monte Carlo test for the symmetric/alternating group for degrees >= 8. Explanation =========== More specifically, it is one-sided Monte Carlo with the answer True (i.e., G is symmetric/alternating) guaranteed to be correct, and the answer False being incorrect with probability eps. For degree < 8, the order of the group is checked so the test is deterministic. Notes ===== The algorithm itself uses some nontrivial results from group theory and number theory: 1) If a transitive group ``G`` of degree ``n`` contains an element with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the symmetric or alternating group ([1], pp. 81-82) 2) The proportion of elements in the symmetric/alternating group having the property described in 1) is approximately `\log(2)/\log(n)` ([1], p.82; [2], pp. 226-227). The helper function ``_check_cycles_alt_sym`` is used to go over the cycles in a permutation and look for ones satisfying 1). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_alt_sym() False See Also ======== _check_cycles_alt_sym """ if _random_prec is not None: N_eps = _random_prec['N_eps'] perms= (_random_prec[i] for i in range(N_eps)) return self._eval_is_alt_sym_monte_carlo(perms=perms) if self._is_sym or self._is_alt: return True if self._is_sym is False and self._is_alt is False: return False n = self.degree if n < 8: return self._eval_is_alt_sym_naive() elif self.is_transitive(): return self._eval_is_alt_sym_monte_carlo(eps=eps) self._is_sym, self._is_alt = False, False return False @property def is_nilpotent(self): """Test if the group is nilpotent. Explanation =========== A group `G` is nilpotent if it has a central series of finite length. Alternatively, `G` is nilpotent if its lower central series terminates with the trivial group. Every nilpotent group is also solvable ([1], p.29, [12]). Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) >>> C = CyclicGroup(6) >>> C.is_nilpotent True >>> S = SymmetricGroup(5) >>> S.is_nilpotent False See Also ======== lower_central_series, is_solvable """ if self._is_nilpotent is None: lcs = self.lower_central_series() terminator = lcs[len(lcs) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True self._is_nilpotent = True return True else: self._is_nilpotent = False return False else: return self._is_nilpotent def is_normal(self, gr, strict=True): """Test if ``G=self`` is a normal subgroup of ``gr``. Explanation =========== G is normal in gr if for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G It is sufficient to check this for each g1 in gr.generators and g2 in G.generators. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G1 = PermutationGroup([a, Permutation([2, 0, 1])]) >>> G1.is_normal(G) True """ if not self.is_subgroup(gr, strict=strict): return False d_self = self.degree d_gr = gr.degree if self.is_trivial and (d_self == d_gr or not strict): return True if self._is_abelian: return True new_self = self.copy() if not strict and d_self != d_gr: if d_self < d_gr: new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)]) else: gr = PermGroup(gr.generators + [Permutation(d_self - 1)]) gens2 = [p._array_form for p in new_self.generators] gens1 = [p._array_form for p in gr.generators] for g1 in gens1: for g2 in gens2: p = _af_rmuln(g1, g2, _af_invert(g1)) if not new_self.coset_factor(p, True): return False return True def is_primitive(self, randomized=True): r"""Test if a group is primitive. Explanation =========== A permutation group ``G`` acting on a set ``S`` is called primitive if ``S`` contains no nontrivial block under the action of ``G`` (a block is nontrivial if its cardinality is more than ``1``). Notes ===== The algorithm is described in [1], p.83, and uses the function minimal_block to search for blocks of the form `\{0, k\}` for ``k`` ranging over representatives for the orbits of `G_0`, the stabilizer of ``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree of the group, and will perform badly if `G_0` is small. There are two implementations offered: one finds `G_0` deterministically using the function ``stabilizer``, and the other (default) produces random elements of `G_0` using ``random_stab``, hoping that they generate a subgroup of `G_0` with not too many more orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed by the ``randomized`` flag. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.is_primitive() False See Also ======== minimal_block, random_stab """ if self._is_primitive is not None: return self._is_primitive if self.is_transitive() is False: return False if randomized: random_stab_gens = [] v = self.schreier_vector(0) for _ in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0 and any(e != 0 for e in self.minimal_block([0, x])): self._is_primitive = False return False self._is_primitive = True return True def minimal_blocks(self, randomized=True): ''' For a transitive group, return the list of all minimal block systems. If a group is intransitive, return `False`. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.named_groups import DihedralGroup >>> DihedralGroup(6).minimal_blocks() [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] >>> G = PermutationGroup(Permutation(1,2,5)) >>> G.minimal_blocks() False See Also ======== minimal_block, is_transitive, is_primitive ''' def _number_blocks(blocks): # number the blocks of a block system # in order and return the number of # blocks and the tuple with the # reordering n = len(blocks) appeared = {} m = 0 b = [None]*n for i in range(n): if blocks[i] not in appeared: appeared[blocks[i]] = m b[i] = m m += 1 else: b[i] = appeared[blocks[i]] return tuple(b), m if not self.is_transitive(): return False blocks = [] num_blocks = [] rep_blocks = [] if randomized: random_stab_gens = [] v = self.schreier_vector(0) for i in range(len(self)): random_stab_gens.append(self.random_stab(0, v)) stab = PermutationGroup(random_stab_gens) else: stab = self.stabilizer(0) orbits = stab.orbits() for orb in orbits: x = orb.pop() if x != 0: block = self.minimal_block([0, x]) num_block, _ = _number_blocks(block) # a representative block (containing 0) rep = {j for j in range(self.degree) if num_block[j] == 0} # check if the system is minimal with # respect to the already discovere ones minimal = True blocks_remove_mask = [False] * len(blocks) for i, r in enumerate(rep_blocks): if len(r) > len(rep) and rep.issubset(r): # i-th block system is not minimal blocks_remove_mask[i] = True elif len(r) < len(rep) and r.issubset(rep): # the system being checked is not minimal minimal = False break # remove non-minimal representative blocks blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]] num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]] rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]] if minimal and num_block not in num_blocks: blocks.append(block) num_blocks.append(num_block) rep_blocks.append(rep) return blocks @property def is_solvable(self): """Test if the group is solvable. ``G`` is solvable if its derived series terminates with the trivial group ([1], p.29). Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(3) >>> S.is_solvable True See Also ======== is_nilpotent, derived_series """ if self._is_solvable is None: if self.order() % 2 != 0: return True ds = self.derived_series() terminator = ds[len(ds) - 1] gens = terminator.generators degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in gens): self._is_solvable = True return True else: self._is_solvable = False return False else: return self._is_solvable def is_subgroup(self, G, strict=True): """Return ``True`` if all elements of ``self`` belong to ``G``. If ``strict`` is ``False`` then if ``self``'s degree is smaller than ``G``'s, the elements will be resized to have the same degree. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup) Testing is strict by default: the degree of each group must be the same: >>> p = Permutation(0, 1, 2, 3, 4, 5) >>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)]) >>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)]) >>> G3 = PermutationGroup([p, p**2]) >>> assert G1.order() == G2.order() == G3.order() == 6 >>> G1.is_subgroup(G2) True >>> G1.is_subgroup(G3) False >>> G3.is_subgroup(PermutationGroup(G3[1])) False >>> G3.is_subgroup(PermutationGroup(G3[0])) True To ignore the size, set ``strict`` to ``False``: >>> S3 = SymmetricGroup(3) >>> S5 = SymmetricGroup(5) >>> S3.is_subgroup(S5, strict=False) True >>> C7 = CyclicGroup(7) >>> G = S5*C7 >>> S5.is_subgroup(G, False) True >>> C7.is_subgroup(G, 0) False """ if isinstance(G, SymmetricPermutationGroup): if self.degree != G.degree: return False return True if not isinstance(G, PermutationGroup): return False if self == G or self.generators[0]==Permutation(): return True if G.order() % self.order() != 0: return False if self.degree == G.degree or \ (self.degree < G.degree and not strict): gens = self.generators else: return False return all(G.contains(g, strict=strict) for g in gens) @property def is_polycyclic(self): """Return ``True`` if a group is polycyclic. A group is polycyclic if it has a subnormal series with cyclic factors. For finite groups, this is the same as if the group is solvable. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G = PermutationGroup([a, b]) >>> G.is_polycyclic True """ return self.is_solvable def is_transitive(self, strict=True): """Test if the group is transitive. Explanation =========== A group is transitive if it has a single orbit. If ``strict`` is ``False`` the group is transitive if it has a single orbit of length different from 1. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1, 3]) >>> b = Permutation([2, 0, 1, 3]) >>> G1 = PermutationGroup([a, b]) >>> G1.is_transitive() False >>> G1.is_transitive(strict=False) True >>> c = Permutation([2, 3, 0, 1]) >>> G2 = PermutationGroup([a, c]) >>> G2.is_transitive() True >>> d = Permutation([1, 0, 2, 3]) >>> e = Permutation([0, 1, 3, 2]) >>> G3 = PermutationGroup([d, e]) >>> G3.is_transitive() or G3.is_transitive(strict=False) False """ if self._is_transitive: # strict or not, if True then True return self._is_transitive if strict: if self._is_transitive is not None: # we only store strict=True return self._is_transitive ans = len(self.orbit(0)) == self.degree self._is_transitive = ans return ans got_orb = False for x in self.orbits(): if len(x) > 1: if got_orb: return False got_orb = True return got_orb @property def is_trivial(self): """Test if the group is the trivial group. This is true if the group contains only the identity permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 1, 2])]) >>> G.is_trivial True """ if self._is_trivial is None: self._is_trivial = len(self) == 1 and self[0].is_Identity return self._is_trivial def lower_central_series(self): r"""Return the lower central series for the group. The lower central series for a group `G` is the series `G = G_0 > G_1 > G_2 > \ldots` where `G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the commutator of `G` and the previous term in `G1` ([1], p.29). Returns ======= A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots` Examples ======== >>> from sympy.combinatorics.named_groups import (AlternatingGroup, ... DihedralGroup) >>> A = AlternatingGroup(4) >>> len(A.lower_central_series()) 2 >>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2)) True See Also ======== commutator, derived_series """ res = [self] current = self nxt = self.commutator(self, current) while not current.is_subgroup(nxt): res.append(nxt) current = nxt nxt = self.commutator(self, current) return res @property def max_div(self): """Maximum proper divisor of the degree of a permutation group. Explanation =========== Obviously, this is the degree divided by its minimal proper divisor (larger than ``1``, if one exists). As it is guaranteed to be prime, the ``sieve`` from ``sympy.ntheory`` is used. This function is also used as an optimization tool for the functions ``minimal_block`` and ``_union_find_merge``. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup([Permutation([0, 2, 1, 3])]) >>> G.max_div 2 See Also ======== minimal_block, _union_find_merge """ if self._max_div is not None: return self._max_div n = self.degree if n == 1: return 1 for x in sieve: if n % x == 0: d = n//x self._max_div = d return d def minimal_block(self, points): r"""For a transitive group, finds the block system generated by ``points``. Explanation =========== If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S`` is called a block under the action of ``G`` if for all ``g`` in ``G`` we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no common points (``g`` moves ``B`` entirely). ([1], p.23; [6]). The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G`` partition the set ``S`` and this set of translates is known as a block system. Moreover, we obviously have that all blocks in the partition have the same size, hence the block size divides ``|S|`` ([1], p.23). A ``G``-congruence is an equivalence relation ``~`` on the set ``S`` such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``. For a transitive group, the equivalence classes of a ``G``-congruence and the blocks of a block system are the same thing ([1], p.23). The algorithm below checks the group for transitivity, and then finds the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2), ..., (p_0,p_{k-1})`` which is the same as finding the maximal block system (i.e., the one with minimum block size) such that ``p_0, ..., p_{k-1}`` are in the same block ([1], p.83). It is an implementation of Atkinson's algorithm, as suggested in [1], and manipulates an equivalence relation on the set ``S`` using a union-find data structure. The running time is just above `O(|points||S|)`. ([1], pp. 83-87; [7]). Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(10) >>> D.minimal_block([0, 5]) [0, 1, 2, 3, 4, 0, 1, 2, 3, 4] >>> D.minimal_block([0, 1]) [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] See Also ======== _union_find_rep, _union_find_merge, is_transitive, is_primitive """ if not self.is_transitive(): return False n = self.degree gens = self.generators # initialize the list of equivalence class representatives parents = list(range(n)) ranks = [1]*n not_rep = [] k = len(points) # the block size must divide the degree of the group if k > self.max_div: return [0]*n for i in range(k - 1): parents[points[i + 1]] = points[0] not_rep.append(points[i + 1]) ranks[points[0]] = k i = 0 len_not_rep = k - 1 while i < len_not_rep: gamma = not_rep[i] i += 1 for gen in gens: # find has side effects: performs path compression on the list # of representatives delta = self._union_find_rep(gamma, parents) # union has side effects: performs union by rank on the list # of representatives temp = self._union_find_merge(gen(gamma), gen(delta), ranks, parents, not_rep) if temp == -1: return [0]*n len_not_rep += temp for i in range(n): # force path compression to get the final state of the equivalence # relation self._union_find_rep(i, parents) # rewrite result so that block representatives are minimal new_reps = {} return [new_reps.setdefault(r, i) for i, r in enumerate(parents)] def conjugacy_class(self, x): r"""Return the conjugacy class of an element in the group. Explanation =========== The conjugacy class of an element ``g`` in a group ``G`` is the set of elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which ``g = xax^{-1}`` for some ``a`` in ``G``. Note that conjugacy is an equivalence relation, and therefore that conjugacy classes are partitions of ``G``. For a list of all the conjugacy classes of the group, use the conjugacy_classes() method. In a permutation group, each conjugacy class corresponds to a particular `cycle structure': for example, in ``S_3``, the conjugacy classes are: * the identity class, ``{()}`` * all transpositions, ``{(1 2), (1 3), (2 3)}`` * all 3-cycles, ``{(1 2 3), (1 3 2)}`` Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S3 = SymmetricGroup(3) >>> S3.conjugacy_class(Permutation(0, 1, 2)) {(0 1 2), (0 2 1)} Notes ===== This procedure computes the conjugacy class directly by finding the orbit of the element under conjugation in G. This algorithm is only feasible for permutation groups of relatively small order, but is like the orbit() function itself in that respect. """ # Ref: "Computing the conjugacy classes of finite groups"; Butler, G. # Groups '93 Galway/St Andrews; edited by Campbell, C. M. new_class = {x} last_iteration = new_class while len(last_iteration) > 0: this_iteration = set() for y in last_iteration: for s in self.generators: conjugated = s * y * (~s) if conjugated not in new_class: this_iteration.add(conjugated) new_class.update(last_iteration) last_iteration = this_iteration return new_class def conjugacy_classes(self): r"""Return the conjugacy classes of the group. Explanation =========== As described in the documentation for the .conjugacy_class() function, conjugacy is an equivalence relation on a group G which partitions the set of elements. This method returns a list of all these conjugacy classes of G. Examples ======== >>> from sympy.combinatorics import SymmetricGroup >>> SymmetricGroup(3).conjugacy_classes() [{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}] """ identity = _af_new(list(range(self.degree))) known_elements = {identity} classes = [known_elements.copy()] for x in self.generate(): if x not in known_elements: new_class = self.conjugacy_class(x) classes.append(new_class) known_elements.update(new_class) return classes def normal_closure(self, other, k=10): r"""Return the normal closure of a subgroup/set of permutations. Explanation =========== If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G`` is defined as the intersection of all normal subgroups of ``G`` that contain ``A`` ([1], p.14). Alternatively, it is the group generated by the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a generator of the subgroup ``\left\langle S\right\rangle`` generated by ``S`` (for some chosen generating set for ``\left\langle S\right\rangle``) ([1], p.73). Parameters ========== other a subgroup/list of permutations/single permutation k an implementation-specific parameter that determines the number of conjugates that are adjoined to ``other`` at once Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... CyclicGroup, AlternatingGroup) >>> S = SymmetricGroup(5) >>> C = CyclicGroup(5) >>> G = S.normal_closure(C) >>> G.order() 60 >>> G.is_subgroup(AlternatingGroup(5)) True See Also ======== commutator, derived_subgroup, random_pr Notes ===== The algorithm is described in [1], pp. 73-74; it makes use of the generation of random elements for permutation groups by the product replacement algorithm. """ if hasattr(other, 'generators'): degree = self.degree identity = _af_new(list(range(degree))) if all(g == identity for g in other.generators): return other Z = PermutationGroup(other.generators[:]) base, strong_gens = Z.schreier_sims_incremental() strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) self._random_pr_init(r=10, n=20) _loop = True while _loop: Z._random_pr_init(r=10, n=10) for _ in range(k): g = self.random_pr() h = Z.random_pr() conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: gens = Z.generators gens.append(conj) Z = PermutationGroup(gens) strong_gens.append(conj) temp_base, temp_strong_gens = \ Z.schreier_sims_incremental(base, strong_gens) base, strong_gens = temp_base, temp_strong_gens strong_gens_distr = \ _distribute_gens_by_base(base, strong_gens) basic_orbits, basic_transversals = \ _orbits_transversals_from_bsgs(base, strong_gens_distr) _loop = False for g in self.generators: for h in Z.generators: conj = h^g res = _strip(conj, base, basic_orbits, basic_transversals) if res[0] != identity or res[1] != len(base) + 1: _loop = True break if _loop: break return Z elif hasattr(other, '__getitem__'): return self.normal_closure(PermutationGroup(other)) elif hasattr(other, 'array_form'): return self.normal_closure(PermutationGroup([other])) def orbit(self, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. Explanation =========== The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> G.orbit(0) {0, 1, 2} >>> G.orbit([0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit_transversal """ return _orbit(self.degree, self.generators, alpha, action) def orbit_rep(self, alpha, beta, schreier_vector=None): """Return a group element which sends ``alpha`` to ``beta``. Explanation =========== If ``beta`` is not in the orbit of ``alpha``, the function returns ``False``. This implementation makes use of the schreier vector. For a proof of correctness, see [1], p.80 Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> G = AlternatingGroup(5) >>> G.orbit_rep(0, 4) (0 4 1 2 3) See Also ======== schreier_vector """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if schreier_vector[beta] is None: return False k = schreier_vector[beta] gens = [x._array_form for x in self.generators] a = [] while k != -1: a.append(gens[k]) beta = gens[k].index(beta) # beta = (~gens[k])(beta) k = schreier_vector[beta] if a: return _af_new(_af_rmuln(*a)) else: return _af_new(list(range(self._degree))) def orbit_transversal(self, alpha, pairs=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. Explanation =========== For a permutation group `G`, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.orbit_transversal(0) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] See Also ======== orbit """ return _orbit_transversal(self._degree, self.generators, alpha, pairs) def orbits(self, rep=False): """Return the orbits of ``self``, ordered according to lowest element in each orbit. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1, 5)(2, 3)(4, 0, 6) >>> b = Permutation(1, 5)(3, 4)(2, 6, 0) >>> G = PermutationGroup([a, b]) >>> G.orbits() [{0, 2, 3, 4, 6}, {1, 5}] """ return _orbits(self._degree, self._generators) def order(self): """Return the order of the group: the number of permutations that can be generated from elements of the group. The number of permutations comprising the group is given by ``len(group)``; the length of each permutation in the group is given by ``group.size``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([1, 0, 2]) >>> G = PermutationGroup([a]) >>> G.degree 3 >>> len(G) 1 >>> G.order() 2 >>> list(G.generate()) [(2), (2)(0 1)] >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.order() 6 See Also ======== degree """ if self._order is not None: return self._order if self._is_sym: n = self._degree self._order = factorial(n) return self._order if self._is_alt: n = self._degree self._order = factorial(n)/2 return self._order basic_transversals = self.basic_transversals m = 1 for x in basic_transversals: m *= len(x) self._order = m return m def index(self, H): """ Returns the index of a permutation group. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation(1,2,3) >>> b =Permutation(3) >>> G = PermutationGroup([a]) >>> H = PermutationGroup([b]) >>> G.index(H) 3 """ if H.is_subgroup(self): return self.order()//H.order() @property def is_symmetric(self): """Return ``True`` if the group is symmetric. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> g = SymmetricGroup(5) >>> g.is_symmetric True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3)) >>> g.is_symmetric True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_sym = self._is_sym if _is_sym is not None: return _is_sym n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if any(g.is_odd for g in self.generators): self._is_sym, self._is_alt = True, False return True self._is_sym, self._is_alt = False, True return False return self._eval_is_alt_sym_naive(only_sym=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_sym=True) @property def is_alternating(self): """Return ``True`` if the group is alternating. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> g = AlternatingGroup(5) >>> g.is_alternating True >>> from sympy.combinatorics import Permutation, PermutationGroup >>> g = PermutationGroup( ... Permutation(0, 1, 2, 3, 4), ... Permutation(2, 3, 4)) >>> g.is_alternating True Notes ===== This uses a naive test involving the computation of the full group order. If you need more quicker taxonomy for large groups, you can use :meth:`PermutationGroup.is_alt_sym`. However, :meth:`PermutationGroup.is_alt_sym` may not be accurate and is not able to distinguish between an alternating group and a symmetric group. See Also ======== is_alt_sym """ _is_alt = self._is_alt if _is_alt is not None: return _is_alt n = self.degree if n >= 8: if self.is_transitive(): _is_alt_sym = self._eval_is_alt_sym_monte_carlo() if _is_alt_sym: if all(g.is_even for g in self.generators): self._is_sym, self._is_alt = False, True return True self._is_sym, self._is_alt = True, False return False return self._eval_is_alt_sym_naive(only_alt=True) self._is_sym, self._is_alt = False, False return False return self._eval_is_alt_sym_naive(only_alt=True) @classmethod def _distinct_primes_lemma(cls, primes): """Subroutine to test if there is only one cyclic group for the order.""" primes = sorted(primes) l = len(primes) for i in range(l): for j in range(i+1, l): if primes[j] % primes[i] == 1: return None return True @property def is_cyclic(self): r""" Return ``True`` if the group is Cyclic. Examples ======== >>> from sympy.combinatorics.named_groups import AbelianGroup >>> G = AbelianGroup(3, 4) >>> G.is_cyclic True >>> G = AbelianGroup(4, 4) >>> G.is_cyclic False Notes ===== If the order of a group $n$ can be factored into the distinct primes $p_1, p_2, \dots , p_s$ and if .. math:: \forall i, j \in \{1, 2, \dots, s \}: p_i \not \equiv 1 \pmod {p_j} holds true, there is only one group of the order $n$ which is a cyclic group [1]_. This is a generalization of the lemma that the group of order $15, 35, \dots$ are cyclic. And also, these additional lemmas can be used to test if a group is cyclic if the order of the group is already found. - If the group is abelian and the order of the group is square-free, the group is cyclic. - If the order of the group is less than $6$ and is not $4$, the group is cyclic. - If the order of the group is prime, the group is cyclic. References ========== .. [1] 1978: John S. Rose: A Course on Group Theory, Introduction to Finite Group Theory: 1.4 """ if self._is_cyclic is not None: return self._is_cyclic if len(self.generators) == 1: self._is_cyclic = True self._is_abelian = True return True if self._is_abelian is False: self._is_cyclic = False return False order = self.order() if order < 6: self._is_abelian = True if order != 4: self._is_cyclic = True return True factors = factorint(order) if all(v == 1 for v in factors.values()): if self._is_abelian: self._is_cyclic = True return True primes = list(factors.keys()) if PermutationGroup._distinct_primes_lemma(primes) is True: self._is_cyclic = True self._is_abelian = True return True for p in factors: pgens = [] for g in self.generators: pgens.append(g**p) if self.index(self.subgroup(pgens)) != p: self._is_cyclic = False return False self._is_cyclic = True self._is_abelian = True return True def pointwise_stabilizer(self, points, incremental=True): r"""Return the pointwise stabilizer for a set of points. Explanation =========== For a permutation group `G` and a set of points `\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of `p_1, p_2, \ldots, p_k` is defined as `G_{p_1,\ldots, p_k} = \{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20). It is a subgroup of `G`. Examples ======== >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(7) >>> Stab = S.pointwise_stabilizer([2, 3, 5]) >>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5)) True See Also ======== stabilizer, schreier_sims_incremental Notes ===== When incremental == True, rather than the obvious implementation using successive calls to ``.stabilizer()``, this uses the incremental Schreier-Sims algorithm to obtain a base with starting segment - the given points. """ if incremental: base, strong_gens = self.schreier_sims_incremental(base=points) stab_gens = [] degree = self.degree for gen in strong_gens: if [gen(point) for point in points] == points: stab_gens.append(gen) if not stab_gens: stab_gens = _af_new(list(range(degree))) return PermutationGroup(stab_gens) else: gens = self._generators degree = self.degree for x in points: gens = _stabilizer(degree, gens, x) return PermutationGroup(gens) def make_perm(self, n, seed=None): """ Multiply ``n`` randomly selected permutations from pgroup together, starting with the identity permutation. If ``n`` is a list of integers, those integers will be used to select the permutations and they will be applied in L to R order: make_perm((A, B, C)) will give CBA(I) where I is the identity permutation. ``seed`` is used to set the seed for the random selection of permutations from pgroup. If this is a list of integers, the corresponding permutations from pgroup will be selected in the order give. This is mainly used for testing purposes. Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])] >>> G = PermutationGroup([a, b]) >>> G.make_perm(1, [0]) (0 1)(2 3) >>> G.make_perm(3, [0, 1, 0]) (0 2 3 1) >>> G.make_perm([0, 1, 0]) (0 2 3 1) See Also ======== random """ if is_sequence(n): if seed is not None: raise ValueError('If n is a sequence, seed should be None') n, seed = len(n), n else: try: n = int(n) except TypeError: raise ValueError('n must be an integer or a sequence.') randomrange = _randrange(seed) # start with the identity permutation result = Permutation(list(range(self.degree))) m = len(self) for _ in range(n): p = self[randomrange(m)] result = rmul(result, p) return result def random(self, af=False): """Return a random group element """ rank = randrange(self.order()) return self.coset_unrank(rank, af) def random_pr(self, gen_count=11, iterations=50, _random_prec=None): """Return a random group element using product replacement. Explanation =========== For the details of the product replacement algorithm, see ``_random_pr_init`` In ``random_pr`` the actual 'product replacement' is performed. Notice that if the attribute ``_random_gens`` is empty, it needs to be initialized by ``_random_pr_init``. See Also ======== _random_pr_init """ if self._random_gens == []: self._random_pr_init(gen_count, iterations) random_gens = self._random_gens r = len(random_gens) - 1 # handle randomized input for testing purposes if _random_prec is None: s = randrange(r) t = randrange(r - 1) if t == s: t = r - 1 x = choice([1, 2]) e = choice([-1, 1]) else: s = _random_prec['s'] t = _random_prec['t'] if t == s: t = r - 1 x = _random_prec['x'] e = _random_prec['e'] if x == 1: random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e)) random_gens[r] = _af_rmul(random_gens[r], random_gens[s]) else: random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s]) random_gens[r] = _af_rmul(random_gens[s], random_gens[r]) return _af_new(random_gens[r]) def random_stab(self, alpha, schreier_vector=None, _random_prec=None): """Random element from the stabilizer of ``alpha``. The schreier vector for ``alpha`` is an optional argument used for speeding up repeated calls. The algorithm is described in [1], p.81 See Also ======== random_pr, orbit_rep """ if schreier_vector is None: schreier_vector = self.schreier_vector(alpha) if _random_prec is None: rand = self.random_pr() else: rand = _random_prec['rand'] beta = rand(alpha) h = self.orbit_rep(alpha, beta, schreier_vector) return rmul(~h, rand) def schreier_sims(self): """Schreier-Sims algorithm. Explanation =========== It computes the generators of the chain of stabilizers `G > G_{b_1} > .. > G_{b1,..,b_r} > 1` in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`, and the corresponding ``s`` cosets. An element of the group can be written as the product `h_1*..*h_s`. We use the incremental Schreier-Sims algorithm. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_sims() >>> G.basic_transversals [{0: (2)(0 1), 1: (2), 2: (1 2)}, {0: (2), 2: (0 2)}] """ if self._transversals: return self._schreier_sims() return def _schreier_sims(self, base=None): schreier = self.schreier_sims_incremental(base=base, slp_dict=True) base, strong_gens = schreier[:2] self._base = base self._strong_gens = strong_gens self._strong_gens_slp = schreier[2] if not base: self._transversals = [] self._basic_orbits = [] return strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\ strong_gens_distr, slp=True) # rewrite the indices stored in slps in terms of strong_gens for i, slp in enumerate(slps): gens = strong_gens_distr[i] for k in slp: slp[k] = [strong_gens.index(gens[s]) for s in slp[k]] self._transversals = transversals self._basic_orbits = [sorted(x) for x in basic_orbits] self._transversal_slp = slps def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False): """Extend a sequence of points and generating set to a base and strong generating set. Parameters ========== base The sequence of points to be extended to a base. Optional parameter with default value ``[]``. gens The generating set to be extended to a strong generating set relative to the base obtained. Optional parameter with default value ``self.generators``. slp_dict If `True`, return a dictionary `{g: gens}` for each strong generator `g` where `gens` is a list of strong generators coming before `g` in `strong_gens`, such that the product of the elements of `gens` is equal to `g`. Returns ======= (base, strong_gens) ``base`` is the base obtained, and ``strong_gens`` is the strong generating set relative to it. The original parameters ``base``, ``gens`` remain unchanged. Examples ======== >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> from sympy.combinatorics.testutil import _verify_bsgs >>> A = AlternatingGroup(7) >>> base = [2, 3] >>> seq = [2, 3] >>> base, strong_gens = A.schreier_sims_incremental(base=seq) >>> _verify_bsgs(A, base, strong_gens) True >>> base[:2] [2, 3] Notes ===== This version of the Schreier-Sims algorithm runs in polynomial time. There are certain assumptions in the implementation - if the trivial group is provided, ``base`` and ``gens`` are returned immediately, as any sequence of points is a base for the trivial group. If the identity is present in the generators ``gens``, it is removed as it is a redundant generator. The implementation is described in [1], pp. 90-93. See Also ======== schreier_sims, schreier_sims_random """ if base is None: base = [] if gens is None: gens = self.generators[:] degree = self.degree id_af = list(range(degree)) # handle the trivial group if len(gens) == 1 and gens[0].is_Identity: if slp_dict: return base, gens, {gens[0]: [gens[0]]} return base, gens # prevent side effects _base, _gens = base[:], gens[:] # remove the identity as a generator _gens = [x for x in _gens if not x.is_Identity] # make sure no generator fixes all base points for gen in _gens: if all(x == gen._array_form[x] for x in _base): for new in id_af: if gen._array_form[new] != new: break else: assert None # can this ever happen? _base.append(new) # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(_base, _gens) strong_gens_slp = [] # initialize the basic stabilizers, basic orbits and basic transversals orbs = {} transversals = {} slps = {} base_len = len(_base) for i in range(base_len): transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i], _base[i], pairs=True, af=True, slp=True) transversals[i] = dict(transversals[i]) orbs[i] = list(transversals[i].keys()) # main loop: amend the stabilizer chain until we have generators # for all stabilizers i = base_len - 1 while i >= 0: # this flag is used to continue with the main loop from inside # a nested loop continue_i = False # test the generators for being a strong generating set db = {} for beta, u_beta in list(transversals[i].items()): for j, gen in enumerate(strong_gens_distr[i]): gb = gen._array_form[beta] u1 = transversals[i][gb] g1 = _af_rmul(gen._array_form, u_beta) slp = [(i, g) for g in slps[i][beta]] slp = [(i, j)] + slp if g1 != u1: # test if the schreier generator is in the i+1-th # would-be basic stabilizer y = True try: u1_inv = db[gb] except KeyError: u1_inv = db[gb] = _af_invert(u1) schreier_gen = _af_rmul(u1_inv, g1) u1_inv_slp = slps[i][gb][:] u1_inv_slp.reverse() u1_inv_slp = [(i, (g,)) for g in u1_inv_slp] slp = u1_inv_slp + slp h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps) if j <= base_len: # new strong generator h at level j y = False elif h: # h fixes all base points y = False moved = 0 while h[moved] == moved: moved += 1 _base.append(moved) base_len += 1 strong_gens_distr.append([]) if y is False: # if a new strong generator is found, update the # data structures and start over h = _af_new(h) strong_gens_slp.append((h, slp)) for l in range(i + 1, j): strong_gens_distr[l].append(h) transversals[l], slps[l] =\ _orbit_transversal(degree, strong_gens_distr[l], _base[l], pairs=True, af=True, slp=True) transversals[l] = dict(transversals[l]) orbs[l] = list(transversals[l].keys()) i = j - 1 # continue main loop using the flag continue_i = True if continue_i is True: break if continue_i is True: break if continue_i is True: continue i -= 1 strong_gens = _gens[:] if slp_dict: # create the list of the strong generators strong_gens and # rewrite the indices of strong_gens_slp in terms of the # elements of strong_gens for k, slp in strong_gens_slp: strong_gens.append(k) for i in range(len(slp)): s = slp[i] if isinstance(s[1], tuple): slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1 else: slp[i] = strong_gens_distr[s[0]][s[1]] strong_gens_slp = dict(strong_gens_slp) # add the original generators for g in _gens: strong_gens_slp[g] = [g] return (_base, strong_gens, strong_gens_slp) strong_gens.extend([k for k, _ in strong_gens_slp]) return _base, strong_gens def schreier_sims_random(self, base=None, gens=None, consec_succ=10, _random_prec=None): r"""Randomized Schreier-Sims algorithm. Explanation =========== The randomized Schreier-Sims algorithm takes the sequence ``base`` and the generating set ``gens``, and extends ``base`` to a base, and ``gens`` to a strong generating set relative to that base with probability of a wrong answer at most `2^{-consec\_succ}`, provided the random generators are sufficiently random. Parameters ========== base The sequence to be extended to a base. gens The generating set to be extended to a strong generating set. consec_succ The parameter defining the probability of a wrong answer. _random_prec An internal parameter used for testing purposes. Returns ======= (base, strong_gens) ``base`` is the base and ``strong_gens`` is the strong generating set relative to it. Examples ======== >>> from sympy.combinatorics.testutil import _verify_bsgs >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> S = SymmetricGroup(5) >>> base, strong_gens = S.schreier_sims_random(consec_succ=5) >>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP True Notes ===== The algorithm is described in detail in [1], pp. 97-98. It extends the orbits ``orbs`` and the permutation groups ``stabs`` to basic orbits and basic stabilizers for the base and strong generating set produced in the end. The idea of the extension process is to "sift" random group elements through the stabilizer chain and amend the stabilizers/orbits along the way when a sift is not successful. The helper function ``_strip`` is used to attempt to decompose a random group element according to the current state of the stabilizer chain and report whether the element was fully decomposed (successful sift) or not (unsuccessful sift). In the latter case, the level at which the sift failed is reported and used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly. The halting condition is for ``consec_succ`` consecutive successful sifts to pass. This makes sure that the current ``base`` and ``gens`` form a BSGS with probability at least `1 - 1/\text{consec\_succ}`. See Also ======== schreier_sims """ if base is None: base = [] if gens is None: gens = self.generators base_len = len(base) n = self.degree # make sure no generator fixes all base points for gen in gens: if all(gen(x) == x for x in base): new = 0 while gen._array_form[new] == new: new += 1 base.append(new) base_len += 1 # distribute generators according to basic stabilizers strong_gens_distr = _distribute_gens_by_base(base, gens) # initialize the basic stabilizers, basic transversals and basic orbits transversals = {} orbs = {} for i in range(base_len): transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i], base[i], pairs=True)) orbs[i] = list(transversals[i].keys()) # initialize the number of consecutive elements sifted c = 0 # start sifting random elements while the number of consecutive sifts # is less than consec_succ while c < consec_succ: if _random_prec is None: g = self.random_pr() else: g = _random_prec['g'].pop() h, j = _strip(g, base, orbs, transversals) y = True # determine whether a new base point is needed if j <= base_len: y = False elif not h.is_Identity: y = False moved = 0 while h(moved) == moved: moved += 1 base.append(moved) base_len += 1 strong_gens_distr.append([]) # if the element doesn't sift, amend the strong generators and # associated stabilizers and orbits if y is False: for l in range(1, j): strong_gens_distr[l].append(h) transversals[l] = dict(_orbit_transversal(n, strong_gens_distr[l], base[l], pairs=True)) orbs[l] = list(transversals[l].keys()) c = 0 else: c += 1 # build the strong generating set strong_gens = strong_gens_distr[0][:] for gen in strong_gens_distr[1]: if gen not in strong_gens: strong_gens.append(gen) return base, strong_gens def schreier_vector(self, alpha): """Computes the schreier vector for ``alpha``. Explanation =========== The Schreier vector efficiently stores information about the orbit of ``alpha``. It can later be used to quickly obtain elements of the group that send ``alpha`` to a particular element in the orbit. Notice that the Schreier vector depends on the order in which the group generators are listed. For a definition, see [3]. Since list indices start from zero, we adopt the convention to use "None" instead of 0 to signify that an element doesn't belong to the orbit. For the algorithm and its correctness, see [2], pp.78-80. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([2, 4, 6, 3, 1, 5, 0]) >>> b = Permutation([0, 1, 3, 5, 4, 6, 2]) >>> G = PermutationGroup([a, b]) >>> G.schreier_vector(0) [-1, None, 0, 1, None, 1, 0] See Also ======== orbit """ n = self.degree v = [None]*n v[alpha] = -1 orb = [alpha] used = [False]*n used[alpha] = True gens = self.generators r = len(gens) for b in orb: for i in range(r): temp = gens[i]._array_form[b] if used[temp] is False: orb.append(temp) used[temp] = True v[temp] = i return v def stabilizer(self, alpha): r"""Return the stabilizer subgroup of ``alpha``. Explanation =========== The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> G.stabilizer(5) PermutationGroup([ (5)(0 4)(1 3)]) See Also ======== orbit """ return PermGroup(_stabilizer(self._degree, self._generators, alpha)) @property def strong_gens(self): r"""Return a strong generating set from the Schreier-Sims algorithm. Explanation =========== A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group `G` is a strong generating set relative to the sequence of points (referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for `1 \leq i \leq k` we have that the intersection of the pointwise stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and strong generating set and their applications are discussed in depth in [1], pp. 87-89 and [2], pp. 55-57. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> D = DihedralGroup(4) >>> D.strong_gens [(0 1 2 3), (0 3)(1 2), (1 3)] >>> D.base [0, 1] See Also ======== base, basic_transversals, basic_orbits, basic_stabilizers """ if self._strong_gens == []: self.schreier_sims() return self._strong_gens def subgroup(self, gens): """ Return the subgroup generated by `gens` which is a list of elements of the group """ if not all(g in self for g in gens): raise ValueError("The group doesn't contain the supplied generators") G = PermutationGroup(gens) return G def subgroup_search(self, prop, base=None, strong_gens=None, tests=None, init_subgroup=None): """Find the subgroup of all elements satisfying the property ``prop``. Explanation =========== This is done by a depth-first search with respect to base images that uses several tests to prune the search tree. Parameters ========== prop The property to be used. Has to be callable on group elements and always return ``True`` or ``False``. It is assumed that all group elements satisfying ``prop`` indeed form a subgroup. base A base for the supergroup. strong_gens A strong generating set for the supergroup. tests A list of callables of length equal to the length of ``base``. These are used to rule out group elements by partial base images, so that ``tests[l](g)`` returns False if the element ``g`` is known not to satisfy prop base on where g sends the first ``l + 1`` base points. init_subgroup if a subgroup of the sought group is known in advance, it can be passed to the function as this parameter. Returns ======= res The subgroup of all elements satisfying ``prop``. The generating set for this group is guaranteed to be a strong generating set relative to the base ``base``. Examples ======== >>> from sympy.combinatorics.named_groups import (SymmetricGroup, ... AlternatingGroup) >>> from sympy.combinatorics.testutil import _verify_bsgs >>> S = SymmetricGroup(7) >>> prop_even = lambda x: x.is_even >>> base, strong_gens = S.schreier_sims_incremental() >>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens) >>> G.is_subgroup(AlternatingGroup(7)) True >>> _verify_bsgs(G, base, G.generators) True Notes ===== This function is extremely lengthy and complicated and will require some careful attention. The implementation is described in [1], pp. 114-117, and the comments for the code here follow the lines of the pseudocode in the book for clarity. The complexity is exponential in general, since the search process by itself visits all members of the supergroup. However, there are a lot of tests which are used to prune the search tree, and users can define their own tests via the ``tests`` parameter, so in practice, and for some computations, it's not terrible. A crucial part in the procedure is the frequent base change performed (this is line 11 in the pseudocode) in order to obtain a new basic stabilizer. The book mentiones that this can be done by using ``.baseswap(...)``, however the current implementation uses a more straightforward way to find the next basic stabilizer - calling the function ``.stabilizer(...)`` on the previous basic stabilizer. """ # initialize BSGS and basic group properties def get_reps(orbits): # get the minimal element in the base ordering return [min(orbit, key = lambda x: base_ordering[x]) \ for orbit in orbits] def update_nu(l): temp_index = len(basic_orbits[l]) + 1 -\ len(res_basic_orbits_init_base[l]) # this corresponds to the element larger than all points if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] if base is None: base, strong_gens = self.schreier_sims_incremental() base_len = len(base) degree = self.degree identity = _af_new(list(range(degree))) base_ordering = _base_ordering(base, degree) # add an element larger than all points base_ordering.append(degree) # add an element smaller than all points base_ordering.append(-1) # compute BSGS-related structures strong_gens_distr = _distribute_gens_by_base(base, strong_gens) basic_orbits, transversals = _orbits_transversals_from_bsgs(base, strong_gens_distr) # handle subgroup initialization and tests if init_subgroup is None: init_subgroup = PermutationGroup([identity]) if tests is None: trivial_test = lambda x: True tests = [] for i in range(base_len): tests.append(trivial_test) # line 1: more initializations. res = init_subgroup f = base_len - 1 l = base_len - 1 # line 2: set the base for K to the base for G res_base = base[:] # line 3: compute BSGS and related structures for K res_base, res_strong_gens = res.schreier_sims_incremental( base=res_base) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_generators = res.generators res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i])\ for i in range(base_len)] # initialize orbit representatives orbit_reps = [None]*base_len # line 4: orbit representatives for f-th basic stabilizer of K orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(orbits) # line 5: remove the base point from the representatives to avoid # getting the identity element as a generator for K orbit_reps[f].remove(base[f]) # line 6: more initializations c = [0]*base_len u = [identity]*base_len sorted_orbits = [None]*base_len for i in range(base_len): sorted_orbits[i] = basic_orbits[i][:] sorted_orbits[i].sort(key=lambda point: base_ordering[point]) # line 7: initializations mu = [None]*base_len nu = [None]*base_len # this corresponds to the element smaller than all points mu[l] = degree + 1 update_nu(l) # initialize computed words computed_words = [identity]*base_len # line 8: main loop while True: # apply all the tests while l < base_len - 1 and \ computed_words[l](base[l]) in orbit_reps[l] and \ base_ordering[mu[l]] < \ base_ordering[computed_words[l](base[l])] < \ base_ordering[nu[l]] and \ tests[l](computed_words): # line 11: change the (partial) base of K new_point = computed_words[l](base[l]) res_base[l] = new_point new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l], new_point) res_strong_gens_distr[l + 1] = new_stab_gens # line 12: calculate minimal orbit representatives for the # l+1-th basic stabilizer orbits = _orbits(degree, new_stab_gens) orbit_reps[l + 1] = get_reps(orbits) # line 13: amend sorted orbits l += 1 temp_orbit = [computed_words[l - 1](point) for point in basic_orbits[l]] temp_orbit.sort(key=lambda point: base_ordering[point]) sorted_orbits[l] = temp_orbit # lines 14 and 15: update variables used minimality tests new_mu = degree + 1 for i in range(l): if base[l] in res_basic_orbits_init_base[i]: candidate = computed_words[i](base[i]) if base_ordering[candidate] > base_ordering[new_mu]: new_mu = candidate mu[l] = new_mu update_nu(l) # line 16: determine the new transversal element c[l] = 0 temp_point = sorted_orbits[l][c[l]] gamma = computed_words[l - 1]._array_form.index(temp_point) u[l] = transversals[l][gamma] # update computed words computed_words[l] = rmul(computed_words[l - 1], u[l]) # lines 17 & 18: apply the tests to the group element found g = computed_words[l] temp_point = g(base[l]) if l == base_len - 1 and \ base_ordering[mu[l]] < \ base_ordering[temp_point] < base_ordering[nu[l]] and \ temp_point in orbit_reps[l] and \ tests[l](computed_words) and \ prop(g): # line 19: reset the base of K res_generators.append(g) res_base = base[:] # line 20: recalculate basic orbits (and transversals) res_strong_gens.append(g) res_strong_gens_distr = _distribute_gens_by_base(res_base, res_strong_gens) res_basic_orbits_init_base = \ [_orbit(degree, res_strong_gens_distr[i], res_base[i]) \ for i in range(base_len)] # line 21: recalculate orbit representatives # line 22: reset the search depth orbit_reps[f] = get_reps(orbits) l = f # line 23: go up the tree until in the first branch not fully # searched while l >= 0 and c[l] == len(basic_orbits[l]) - 1: l = l - 1 # line 24: if the entire tree is traversed, return K if l == -1: return PermutationGroup(res_generators) # lines 25-27: update orbit representatives if l < f: # line 26 f = l c[l] = 0 # line 27 temp_orbits = _orbits(degree, res_strong_gens_distr[f]) orbit_reps[f] = get_reps(temp_orbits) # line 28: update variables used for minimality testing mu[l] = degree + 1 temp_index = len(basic_orbits[l]) + 1 - \ len(res_basic_orbits_init_base[l]) if temp_index >= len(sorted_orbits[l]): nu[l] = base_ordering[degree] else: nu[l] = sorted_orbits[l][temp_index] # line 29: set the next element from the current branch and update # accordingly c[l] += 1 if l == 0: gamma = sorted_orbits[l][c[l]] else: gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]]) u[l] = transversals[l][gamma] if l == 0: computed_words[l] = u[l] else: computed_words[l] = rmul(computed_words[l - 1], u[l]) @property def transitivity_degree(self): r"""Compute the degree of transitivity of the group. Explanation =========== A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is ``k``-fold transitive, if, for any `k` points `(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points `(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that `g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k` The degree of transitivity of `G` is the maximum ``k`` such that `G` is ``k``-fold transitive. ([8]) Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 2, 0]) >>> b = Permutation([1, 0, 2]) >>> G = PermutationGroup([a, b]) >>> G.transitivity_degree 3 See Also ======== is_transitive, orbit """ if self._transitivity_degree is None: n = self.degree G = self # if G is k-transitive, a tuple (a_0,..,a_k) # can be brought to (b_0,...,b_(k-1), b_k) # where b_0,...,b_(k-1) are fixed points; # consider the group G_k which stabilizes b_0,...,b_(k-1) # if G_k is transitive on the subset excluding b_0,...,b_(k-1) # then G is (k+1)-transitive for i in range(n): orb = G.orbit(i) if len(orb) != n - i: self._transitivity_degree = i return i G = G.stabilizer(i) self._transitivity_degree = n return n else: return self._transitivity_degree def _p_elements_group(self, p): ''' For an abelian p-group, return the subgroup consisting of all elements of order p (and the identity) ''' gens = self.generators[:] gens = sorted(gens, key=lambda x: x.order(), reverse=True) gens_p = [g**(g.order()/p) for g in gens] gens_r = [] for i in range(len(gens)): x = gens[i] x_order = x.order() # x_p has order p x_p = x**(x_order/p) if i > 0: P = PermutationGroup(gens_p[:i]) else: P = PermutationGroup(self.identity) if x**(x_order/p) not in P: gens_r.append(x**(x_order/p)) else: # replace x by an element of order (x.order()/p) # so that gens still generates G g = P.generator_product(x_p, original=True) for s in g: x = x*s**-1 x_order = x_order/p # insert x to gens so that the sorting is preserved del gens[i] del gens_p[i] j = i - 1 while j < len(gens) and gens[j].order() >= x_order: j += 1 gens = gens[:j] + [x] + gens[j:] gens_p = gens_p[:j] + [x] + gens_p[j:] return PermutationGroup(gens_r) def _sylow_alt_sym(self, p): ''' Return a p-Sylow subgroup of a symmetric or an alternating group. Explanation =========== The algorithm for this is hinted at in [1], Chapter 4, Exercise 4. For Sym(n) with n = p^i, the idea is as follows. Partition the interval [0..n-1] into p equal parts, each of length p^(i-1): [0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1]. Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup of ``self``) acting on each of the parts. Call the subgroups P_1, P_2...P_p. The generators for the subgroups P_2...P_p can be obtained from those of P_1 by applying a "shifting" permutation to them, that is, a permutation mapping [0..p^(i-1)-1] to the second part (the other parts are obtained by using the shift multiple times). The union of this permutation and the generators of P_1 is a p-Sylow subgroup of ``self``. For n not equal to a power of p, partition [0..n-1] in accordance with how n would be written in base p. E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup, take the union of the generators for each of the parts. For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)} from the first part, {(8 9)} from the second part and nothing from the third. This gives 4 generators in total, and the subgroup they generate is p-Sylow. Alternating groups are treated the same except when p=2. In this case, (0 1)(s s+1) should be added for an appropriate s (the start of a part) for each part in the partitions. See Also ======== sylow_subgroup, is_alt_sym ''' n = self.degree gens = [] identity = Permutation(n-1) # the case of 2-sylow subgroups of alternating groups # needs special treatment alt = p == 2 and all(g.is_even for g in self.generators) # find the presentation of n in base p coeffs = [] m = n while m > 0: coeffs.append(m % p) m = m // p power = len(coeffs)-1 # for a symmetric group, gens[:i] is the generating # set for a p-Sylow subgroup on [0..p**(i-1)-1]. For # alternating groups, the same is given by gens[:2*(i-1)] for i in range(1, power+1): if i == 1 and alt: # (0 1) shouldn't be added for alternating groups continue gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)]) gens.append(identity*gen) if alt: gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen gens.append(gen) # the first point in the current part (see the algorithm # description in the docstring) start = 0 while power > 0: a = coeffs[power] # make the permutation shifting the start of the first # part ([0..p^i-1] for some i) to the current one for _ in range(a): shift = Permutation() if start > 0: for i in range(p**power): shift = shift(i, start + i) if alt: gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift gens.append(gen) j = 2*(power - 1) else: j = power for i, gen in enumerate(gens[:j]): if alt and i % 2 == 1: continue # shift the generator to the start of the # partition part gen = shift*gen*shift gens.append(gen) start += p**power power = power-1 return gens def sylow_subgroup(self, p): ''' Return a p-Sylow subgroup of the group. The algorithm is described in [1], Chapter 4, Section 7 Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.named_groups import SymmetricGroup >>> from sympy.combinatorics.named_groups import AlternatingGroup >>> D = DihedralGroup(6) >>> S = D.sylow_subgroup(2) >>> S.order() 4 >>> G = SymmetricGroup(6) >>> S = G.sylow_subgroup(5) >>> S.order() 5 >>> G1 = AlternatingGroup(3) >>> G2 = AlternatingGroup(5) >>> G3 = AlternatingGroup(9) >>> S1 = G1.sylow_subgroup(3) >>> S2 = G2.sylow_subgroup(3) >>> S3 = G3.sylow_subgroup(3) >>> len1 = len(S1.lower_central_series()) >>> len2 = len(S2.lower_central_series()) >>> len3 = len(S3.lower_central_series()) >>> len1 == len2 True >>> len1 < len3 True ''' from sympy.combinatorics.homomorphisms import ( orbit_homomorphism, block_homomorphism) from sympy.ntheory.primetest import isprime if not isprime(p): raise ValueError("p must be a prime") def is_p_group(G): # check if the order of G is a power of p # and return the power m = G.order() n = 0 while m % p == 0: m = m/p n += 1 if m == 1: return True, n return False, n def _sylow_reduce(mu, nu): # reduction based on two homomorphisms # mu and nu with trivially intersecting # kernels Q = mu.image().sylow_subgroup(p) Q = mu.invert_subgroup(Q) nu = nu.restrict_to(Q) R = nu.image().sylow_subgroup(p) return nu.invert_subgroup(R) order = self.order() if order % p != 0: return PermutationGroup([self.identity]) p_group, n = is_p_group(self) if p_group: return self if self.is_alt_sym(): return PermutationGroup(self._sylow_alt_sym(p)) # if there is a non-trivial orbit with size not divisible # by p, the sylow subgroup is contained in its stabilizer # (by orbit-stabilizer theorem) orbits = self.orbits() non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1] if non_p_orbits: G = self.stabilizer(list(non_p_orbits[0]).pop()) return G.sylow_subgroup(p) if not self.is_transitive(): # apply _sylow_reduce to orbit actions orbits = sorted(orbits, key=len) omega1 = orbits.pop() omega2 = orbits[0].union(*orbits) mu = orbit_homomorphism(self, omega1) nu = orbit_homomorphism(self, omega2) return _sylow_reduce(mu, nu) blocks = self.minimal_blocks() if len(blocks) > 1: # apply _sylow_reduce to block system actions mu = block_homomorphism(self, blocks[0]) nu = block_homomorphism(self, blocks[1]) return _sylow_reduce(mu, nu) elif len(blocks) == 1: block = list(blocks)[0] if any(e != 0 for e in block): # self is imprimitive mu = block_homomorphism(self, block) if not is_p_group(mu.image())[0]: S = mu.image().sylow_subgroup(p) return mu.invert_subgroup(S).sylow_subgroup(p) # find an element of order p g = self.random() g_order = g.order() while g_order % p != 0 or g_order == 0: g = self.random() g_order = g.order() g = g**(g_order // p) if order % p**2 != 0: return PermutationGroup(g) C = self.centralizer(g) while C.order() % p**n != 0: S = C.sylow_subgroup(p) s_order = S.order() Z = S.center() P = Z._p_elements_group(p) h = P.random() C_h = self.centralizer(h) while C_h.order() % p*s_order != 0: h = P.random() C_h = self.centralizer(h) C = C_h return C.sylow_subgroup(p) def _block_verify(self, L, alpha): delta = sorted(list(self.orbit(alpha))) # p[i] will be the number of the block # delta[i] belongs to p = [-1]*len(delta) blocks = [-1]*len(delta) B = [[]] # future list of blocks u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i] t = L.orbit_transversal(alpha, pairs=True) for a, beta in t: B[0].append(a) i_a = delta.index(a) p[i_a] = 0 blocks[i_a] = alpha u[i_a] = beta rho = 0 m = 0 # number of blocks - 1 while rho <= m: beta = B[rho][0] for g in self.generators: d = beta^g i_d = delta.index(d) sigma = p[i_d] if sigma < 0: # define a new block m += 1 sigma = m u[i_d] = u[delta.index(beta)]*g p[i_d] = sigma rep = d blocks[i_d] = rep newb = [rep] for gamma in B[rho][1:]: i_gamma = delta.index(gamma) d = gamma^g i_d = delta.index(d) if p[i_d] < 0: u[i_d] = u[i_gamma]*g p[i_d] = sigma blocks[i_d] = rep newb.append(d) else: # B[rho] is not a block s = u[i_gamma]*g*u[i_d]**(-1) return False, s B.append(newb) else: for h in B[rho][1:]: if h^g not in B[sigma]: # B[rho] is not a block s = u[delta.index(beta)]*g*u[i_d]**(-1) return False, s rho += 1 return True, blocks def _verify(H, K, phi, z, alpha): ''' Return a list of relators ``rels`` in generators ``gens`_h` that are mapped to ``H.generators`` by ``phi`` so that given a finite presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h`` <gens_h | rels_k + rels> is a finite presentation of ``H``. Explanation =========== ``H`` should be generated by the union of ``K.generators`` and ``z`` (a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a canonical injection from a free group into a permutation group containing ``H``. The algorithm is described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.homomorphisms import homomorphism >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5)) >>> K = PermutationGroup(Permutation(5)(0, 2)) >>> F = free_group("x_0 x_1")[0] >>> gens = F.generators >>> phi = homomorphism(F, H, F.generators, H.generators) >>> rels_k = [gens[0]**2] # relators for presentation of K >>> z= Permutation(1, 5) >>> check, rels_h = H._verify(K, phi, z, 1) >>> check True >>> rels = rels_k + rels_h >>> G = FpGroup(F, rels) # presentation of H >>> G.order() == H.order() True See also ======== strong_presentation, presentation, stabilizer ''' orbit = H.orbit(alpha) beta = alpha^(z**-1) K_beta = K.stabilizer(beta) # orbit representatives of K_beta gammas = [alpha, beta] orbits = list({tuple(K_beta.orbit(o)) for o in orbit}) orbit_reps = [orb[0] for orb in orbits] for rep in orbit_reps: if rep not in gammas: gammas.append(rep) # orbit transversal of K betas = [alpha, beta] transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)} for s, g in K.orbit_transversal(beta, pairs=True): if s not in transversal: transversal[s] = transversal[beta]*phi.invert(g) union = K.orbit(alpha).union(K.orbit(beta)) while (len(union) < len(orbit)): for gamma in gammas: if gamma in union: r = gamma^z if r not in union: betas.append(r) transversal[r] = transversal[gamma]*phi.invert(z) for s, g in K.orbit_transversal(r, pairs=True): if s not in transversal: transversal[s] = transversal[r]*phi.invert(g) union = union.union(K.orbit(r)) break # compute relators rels = [] for b in betas: k_gens = K.stabilizer(b).generators for y in k_gens: new_rel = transversal[b] gens = K.generator_product(y, original=True) for g in gens[::-1]: new_rel = new_rel*phi.invert(g) new_rel = new_rel*transversal[b]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) for gamma in gammas: new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1 perm = phi(new_rel) try: gens = K.generator_product(perm, original=True) except ValueError: return False, perm for g in gens: new_rel = new_rel*phi.invert(g)**-1 if new_rel not in rels: rels.append(new_rel) return True, rels def strong_presentation(self): ''' Return a strong finite presentation of group. The generators of the returned group are in the same order as the strong generators of group. The algorithm is based on Sims' Verify algorithm described in [1], Chapter 6. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> P = DihedralGroup(4) >>> G = P.strong_presentation() >>> P.order() == G.order() True See Also ======== presentation, _verify ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import (block_homomorphism, homomorphism, GroupHomomorphism) strong_gens = self.strong_gens[:] stabs = self.basic_stabilizers[:] base = self.base[:] # injection from a free group on len(strong_gens) # generators into G gen_syms = [('x_%d'%i) for i in range(len(strong_gens))] F = free_group(', '.join(gen_syms))[0] phi = homomorphism(F, self, F.generators, strong_gens) H = PermutationGroup(self.identity) while stabs: alpha = base.pop() K = H H = stabs.pop() new_gens = [g for g in H.generators if g not in K] if K.order() == 1: z = new_gens.pop() rels = [F.generators[-1]**z.order()] intermediate_gens = [z] K = PermutationGroup(intermediate_gens) # add generators one at a time building up from K to H while new_gens: z = new_gens.pop() intermediate_gens = [z] + intermediate_gens K_s = PermutationGroup(intermediate_gens) orbit = K_s.orbit(alpha) orbit_k = K.orbit(alpha) # split into cases based on the orbit of K_s if orbit_k == orbit: if z in K: rel = phi.invert(z) perm = z else: t = K.orbit_rep(alpha, alpha^z) rel = phi.invert(z)*phi.invert(t)**-1 perm = z*t**-1 for g in K.generator_product(perm, original=True): rel = rel*phi.invert(g)**-1 new_rels = [rel] elif len(orbit_k) == 1: # `success` is always true because `strong_gens` # and `base` are already a verified BSGS. Later # this could be changed to start with a randomly # generated (potential) BSGS, and then new elements # would have to be appended to it when `success` # is false. success, new_rels = K_s._verify(K, phi, z, alpha) else: # K.orbit(alpha) should be a block # under the action of K_s on K_s.orbit(alpha) check, block = K_s._block_verify(K, alpha) if check: # apply _verify to the action of K_s # on the block system; for convenience, # add the blocks as additional points # that K_s should act on t = block_homomorphism(K_s, block) m = t.codomain.degree # number of blocks d = K_s.degree # conjugating with p will shift # permutations in t.image() to # higher numbers, e.g. # p*(0 1)*p = (m m+1) p = Permutation() for i in range(m): p *= Permutation(i, i+d) t_img = t.images # combine generators of K_s with their # action on the block system images = {g: g*p*t_img[g]*p for g in t_img} for g in self.strong_gens[:-len(K_s.generators)]: images[g] = g K_s_act = PermutationGroup(list(images.values())) f = GroupHomomorphism(self, K_s_act, images) K_act = PermutationGroup([f(g) for g in K.generators]) success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d) for n in new_rels: if n not in rels: rels.append(n) K = K_s group = FpGroup(F, rels) return simplify_presentation(group) def presentation(self, eliminate_gens=True): ''' Return an `FpGroup` presentation of the group. The algorithm is described in [1], Chapter 6.1. ''' from sympy.combinatorics.fp_groups import (FpGroup, simplify_presentation) from sympy.combinatorics.coset_table import CosetTable from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.homomorphisms import homomorphism from itertools import product if self._fp_presentation: return self._fp_presentation def _factor_group_by_rels(G, rels): if isinstance(G, FpGroup): rels.extend(G.relators) return FpGroup(G.free_group, list(set(rels))) return FpGroup(G, rels) gens = self.generators len_g = len(gens) if len_g == 1: order = gens[0].order() # handle the trivial group if order == 1: return free_group([])[0] F, x = free_group('x') return FpGroup(F, [x**order]) if self.order() > 20: half_gens = self.generators[0:(len_g+1)//2] else: half_gens = [] H = PermutationGroup(half_gens) H_p = H.presentation() len_h = len(H_p.generators) C = self.coset_table(H) n = len(C) # subgroup index gen_syms = [('x_%d'%i) for i in range(len(gens))] F = free_group(', '.join(gen_syms))[0] # mapping generators of H_p to those of F images = [F.generators[i] for i in range(len_h)] R = homomorphism(H_p, F, H_p.generators, images, check=False) # rewrite relators rels = R(H_p.relators) G_p = FpGroup(F, rels) # injective homomorphism from G_p into self T = homomorphism(G_p, self, G_p.generators, gens) C_p = CosetTable(G_p, []) C_p.table = [[None]*(2*len_g) for i in range(n)] # initiate the coset transversal transversal = [None]*n transversal[0] = G_p.identity # fill in the coset table as much as possible for i in range(2*len_h): C_p.table[0][i] = 0 gamma = 1 for alpha, x in product(range(0, n), range(2*len_g)): beta = C[alpha][x] if beta == gamma: gen = G_p.generators[x//2]**((-1)**(x % 2)) transversal[beta] = transversal[alpha]*gen C_p.table[alpha][x] = beta C_p.table[beta][x + (-1)**(x % 2)] = alpha gamma += 1 if gamma == n: break C_p.p = list(range(n)) beta = x = 0 while not C_p.is_complete(): # find the first undefined entry while C_p.table[beta][x] == C[beta][x]: x = (x + 1) % (2*len_g) if x == 0: beta = (beta + 1) % n # define a new relator gen = G_p.generators[x//2]**((-1)**(x % 2)) new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1 perm = T(new_rel) nxt = G_p.identity for s in H.generator_product(perm, original=True): nxt = nxt*T.invert(s)**-1 new_rel = new_rel*nxt # continue coset enumeration G_p = _factor_group_by_rels(G_p, [new_rel]) C_p.scan_and_fill(0, new_rel) C_p = G_p.coset_enumeration([], strategy="coset_table", draft=C_p, max_cosets=n, incomplete=True) self._fp_presentation = simplify_presentation(G_p) return self._fp_presentation def polycyclic_group(self): """ Return the PolycyclicGroup instance with below parameters: Explanation =========== * ``pc_sequence`` : Polycyclic sequence is formed by collecting all the missing generators between the adjacent groups in the derived series of given permutation group. * ``pc_series`` : Polycyclic series is formed by adding all the missing generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents the derived series. * ``relative_order`` : A list, computed by the ratio of adjacent groups in pc_series. """ from sympy.combinatorics.pc_groups import PolycyclicGroup if not self.is_polycyclic: raise ValueError("The group must be solvable") der = self.derived_series() pc_series = [] pc_sequence = [] relative_order = [] pc_series.append(der[-1]) der.reverse() for i in range(len(der)-1): H = der[i] for g in der[i+1].generators: if g not in H: H = PermutationGroup([g] + H.generators) pc_series.insert(0, H) pc_sequence.insert(0, g) G1 = pc_series[0].order() G2 = pc_series[1].order() relative_order.insert(0, G1 // G2) return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None) def _orbit(degree, generators, alpha, action='tuples'): r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set. Explanation =========== The time complexity of the algorithm used here is `O(|Orb|*r)` where `|Orb|` is the size of the orbit and ``r`` is the number of generators of the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21. Here alpha can be a single point, or a list of points. If alpha is a single point, the ordinary orbit is computed. if alpha is a list of points, there are three available options: 'union' - computes the union of the orbits of the points in the list 'tuples' - computes the orbit of the list interpreted as an ordered tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) ) 'sets' - computes the orbit of the list interpreted as a sets Examples ======== >>> from sympy.combinatorics import Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup, _orbit >>> a = Permutation([1, 2, 0, 4, 5, 6, 3]) >>> G = PermutationGroup([a]) >>> _orbit(G.degree, G.generators, 0) {0, 1, 2} >>> _orbit(G.degree, G.generators, [0, 4], 'union') {0, 1, 2, 3, 4, 5, 6} See Also ======== orbit, orbit_transversal """ if not hasattr(alpha, '__getitem__'): alpha = [alpha] gens = [x._array_form for x in generators] if len(alpha) == 1 or action == 'union': orb = alpha used = [False]*degree for el in alpha: used[el] = True for b in orb: for gen in gens: temp = gen[b] if used[temp] == False: orb.append(temp) used[temp] = True return set(orb) elif action == 'tuples': alpha = tuple(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = tuple([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return set(orb) elif action == 'sets': alpha = frozenset(alpha) orb = [alpha] used = {alpha} for b in orb: for gen in gens: temp = frozenset([gen[x] for x in b]) if temp not in used: orb.append(temp) used.add(temp) return {tuple(x) for x in orb} def _orbits(degree, generators): """Compute the orbits of G. If ``rep=False`` it returns a list of sets else it returns a list of representatives of the orbits Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy.combinatorics.perm_groups import _orbits >>> a = Permutation([0, 2, 1]) >>> b = Permutation([1, 0, 2]) >>> _orbits(a.size, [a, b]) [{0, 1, 2}] """ orbs = [] sorted_I = list(range(degree)) I = set(sorted_I) while I: i = sorted_I[0] orb = _orbit(degree, generators, i) orbs.append(orb) # remove all indices that are in this orbit I -= orb sorted_I = [i for i in sorted_I if i not in orb] return orbs def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False): r"""Computes a transversal for the orbit of ``alpha`` as a set. Explanation =========== generators generators of the group ``G`` For a permutation group ``G``, a transversal for the orbit `Orb = \{g(\alpha) | g \in G\}` is a set `\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`. Note that there may be more than one possible transversal. If ``pairs`` is set to ``True``, it returns the list of pairs `(\beta, g_\beta)`. For a proof of correctness, see [1], p.79 if ``af`` is ``True``, the transversal elements are given in array form. If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned for `\beta \in Orb` where `slp_beta` is a list of indices of the generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]` `g_\beta = generators[i_n] \times \dots \times generators[i_1]`. Examples ======== >>> from sympy.combinatorics.named_groups import DihedralGroup >>> from sympy.combinatorics.perm_groups import _orbit_transversal >>> G = DihedralGroup(6) >>> _orbit_transversal(G.degree, G.generators, 0, False) [(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)] """ tr = [(alpha, list(range(degree)))] slp_dict = {alpha: []} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] for x, px in tr: px_slp = slp_dict[x] for gen in gens: temp = gen[x] if used[temp] == False: slp_dict[temp] = [gens.index(gen)] + px_slp tr.append((temp, _af_rmul(gen, px))) used[temp] = True if pairs: if not af: tr = [(x, _af_new(y)) for x, y in tr] if not slp: return tr return tr, slp_dict if af: tr = [y for _, y in tr] if not slp: return tr return tr, slp_dict tr = [_af_new(y) for _, y in tr] if not slp: return tr return tr, slp_dict def _stabilizer(degree, generators, alpha): r"""Return the stabilizer subgroup of ``alpha``. Explanation =========== The stabilizer of `\alpha` is the group `G_\alpha = \{g \in G | g(\alpha) = \alpha\}`. For a proof of correctness, see [1], p.79. degree : degree of G generators : generators of G Examples ======== >>> from sympy.combinatorics.perm_groups import _stabilizer >>> from sympy.combinatorics.named_groups import DihedralGroup >>> G = DihedralGroup(6) >>> _stabilizer(G.degree, G.generators, 5) [(5)(0 4)(1 3), (5)] See Also ======== orbit """ orb = [alpha] table = {alpha: list(range(degree))} table_inv = {alpha: list(range(degree))} used = [False]*degree used[alpha] = True gens = [x._array_form for x in generators] stab_gens = [] for b in orb: for gen in gens: temp = gen[b] if used[temp] is False: gen_temp = _af_rmul(gen, table[b]) orb.append(temp) table[temp] = gen_temp table_inv[temp] = _af_invert(gen_temp) used[temp] = True else: schreier_gen = _af_rmuln(table_inv[temp], gen, table[b]) if schreier_gen not in stab_gens: stab_gens.append(schreier_gen) return [_af_new(x) for x in stab_gens] PermGroup = PermutationGroup class SymmetricPermutationGroup(Basic): """ The class defining the lazy form of SymmetricGroup. deg : int """ def __new__(cls, deg): deg = _sympify(deg) obj = Basic.__new__(cls, deg) return obj def __init__(self, *args, **kwargs): self._deg = self.args[0] self._order = None def __contains__(self, i): """Return ``True`` if *i* is contained in SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> Permutation(1, 2, 3) in G True """ if not isinstance(i, Permutation): raise TypeError("A SymmetricPermutationGroup contains only Permutations as " "elements, not elements of type %s" % type(i)) return i.size == self.degree def order(self): """ Return the order of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.order() 24 """ if self._order is not None: return self._order n = self._deg self._order = factorial(n) return self._order @property def degree(self): """ Return the degree of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.degree 4 """ return self._deg @property def identity(self): ''' Return the identity element of the SymmetricPermutationGroup. Examples ======== >>> from sympy.combinatorics import SymmetricPermutationGroup >>> G = SymmetricPermutationGroup(4) >>> G.identity() (3) ''' return _af_new(list(range(self._deg))) class Coset(Basic): """A left coset of a permutation group with respect to an element. Parameters ========== g : Permutation H : PermutationGroup dir : "+" or "-", If not specified by default it will be "+" here ``dir`` specified the type of coset "+" represent the right coset and "-" represent the left coset. G : PermutationGroup, optional The group which contains *H* as its subgroup and *g* as its element. If not specified, it would automatically become a symmetric group ``SymmetricPermutationGroup(g.size)`` and ``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree`` are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup used for representation purpose. """ def __new__(cls, g, H, G=None, dir="+"): g = _sympify(g) if not isinstance(g, Permutation): raise NotImplementedError H = _sympify(H) if not isinstance(H, PermutationGroup): raise NotImplementedError if G is not None: G = _sympify(G) if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)): raise NotImplementedError if not H.is_subgroup(G): raise ValueError("{} must be a subgroup of {}.".format(H, G)) if g not in G: raise ValueError("{} must be an element of {}.".format(g, G)) else: g_size = g.size h_degree = H.degree if g_size != h_degree: raise ValueError( "The size of the permutation {} and the degree of " "the permutation group {} should be matching " .format(g, H)) G = SymmetricPermutationGroup(g.size) if isinstance(dir, str): dir = Symbol(dir) elif not isinstance(dir, Symbol): raise TypeError("dir must be of type basestring or " "Symbol, not %s" % type(dir)) if str(dir) not in ('+', '-'): raise ValueError("dir must be one of '+' or '-' not %s" % dir) obj = Basic.__new__(cls, g, H, G, dir) return obj def __init__(self, *args, **kwargs): self._dir = self.args[3] @property def is_left_coset(self): """ Check if the coset is left coset that is ``gH``. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup, Coset >>> a = Permutation(1, 2) >>> b = Permutation(0, 1) >>> G = PermutationGroup([a, b]) >>> cst = Coset(a, G, dir="-") >>> cst.is_left_coset True """ return str(self._dir) == '-' @property def is_right_coset(self): """ Check if the coset is right coset that is ``Hg``. Examples ======== >>> from sympy.combinatorics import Permutation, PermutationGroup, Coset >>> a = Permutation(1, 2) >>> b = Permutation(0, 1) >>> G = PermutationGroup([a, b]) >>> cst = Coset(a, G, dir="+") >>> cst.is_right_coset True """ return str(self._dir) == '+' def as_list(self): """ Return all the elements of coset in the form of list. """ g = self.args[0] H = self.args[1] cst = [] if str(self._dir) == '+': for h in H.elements: cst.append(h*g) else: for h in H.elements: cst.append(g*h) return cst
9c39d28a1f1bdab2e4819f1f9f1c98a0ba951f95a10586ffeaa9936f47ced21a
import random from collections import defaultdict from collections.abc import Iterable from functools import reduce from sympy.core.parameters import global_parameters from sympy.core.basic import Atom from sympy.core.expr import Expr from sympy.core.numbers import Integer from sympy.core.sympify import _sympify from sympy.matrices import zeros from sympy.polys.polytools import lcm from sympy.utilities.iterables import (flatten, has_variety, minlex, has_dups, runs, is_sequence) from sympy.utilities.misc import as_int from mpmath.libmp.libintmath import ifac from sympy.multipledispatch import dispatch def _af_rmul(a, b): """ Return the product b*a; input and output are array forms. The ith value is a[b[i]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a) >>> b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmuln """ return [a[i] for i in b] def _af_rmuln(*abc): """ Given [a, b, c, ...] return the product of ...*c*b*a using array forms. The ith value is a[b[c[i]]]. Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> _af_rmul(a, b) [1, 2, 0] >>> [a[b[i]] for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] See Also ======== rmul, _af_rmul """ a = abc m = len(a) if m == 3: p0, p1, p2 = a return [p0[p1[i]] for i in p2] if m == 4: p0, p1, p2, p3 = a return [p0[p1[p2[i]]] for i in p3] if m == 5: p0, p1, p2, p3, p4 = a return [p0[p1[p2[p3[i]]]] for i in p4] if m == 6: p0, p1, p2, p3, p4, p5 = a return [p0[p1[p2[p3[p4[i]]]]] for i in p5] if m == 7: p0, p1, p2, p3, p4, p5, p6 = a return [p0[p1[p2[p3[p4[p5[i]]]]]] for i in p6] if m == 8: p0, p1, p2, p3, p4, p5, p6, p7 = a return [p0[p1[p2[p3[p4[p5[p6[i]]]]]]] for i in p7] if m == 1: return a[0][:] if m == 2: a, b = a return [a[i] for i in b] if m == 0: raise ValueError("String must not be empty") p0 = _af_rmuln(*a[:m//2]) p1 = _af_rmuln(*a[m//2:]) return [p0[i] for i in p1] def _af_parity(pi): """ Computes the parity of a permutation in array form. Explanation =========== The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that x > y but p[x] < p[y]. Examples ======== >>> from sympy.combinatorics.permutations import _af_parity >>> _af_parity([0, 1, 2, 3]) 0 >>> _af_parity([3, 2, 0, 1]) 1 See Also ======== Permutation """ n = len(pi) a = [0] * n c = 0 for j in range(n): if a[j] == 0: c += 1 a[j] = 1 i = j while pi[i] != j: i = pi[i] a[i] = 1 return (n - c) % 2 def _af_invert(a): """ Finds the inverse, ~A, of a permutation, A, given in array form. Examples ======== >>> from sympy.combinatorics.permutations import _af_invert, _af_rmul >>> A = [1, 2, 0, 3] >>> _af_invert(A) [2, 0, 1, 3] >>> _af_rmul(_, A) [0, 1, 2, 3] See Also ======== Permutation, __invert__ """ inv_form = [0] * len(a) for i, ai in enumerate(a): inv_form[ai] = i return inv_form def _af_pow(a, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation, _af_pow >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> _af_pow(p._array_form, 4) [0, 1, 2, 3] """ if n == 0: return list(range(len(a))) if n < 0: return _af_pow(_af_invert(a), -n) if n == 1: return a[:] elif n == 2: b = [a[i] for i in a] elif n == 3: b = [a[a[i]] for i in a] elif n == 4: b = [a[a[a[i]]] for i in a] else: # use binary multiplication b = list(range(len(a))) while 1: if n & 1: b = [b[i] for i in a] n -= 1 if not n: break if n % 4 == 0: a = [a[a[a[i]]] for i in a] n = n // 4 elif n % 2 == 0: a = [a[i] for i in a] n = n // 2 return b def _af_commutes_with(a, b): """ Checks if the two permutations with array forms given by ``a`` and ``b`` commute. Examples ======== >>> from sympy.combinatorics.permutations import _af_commutes_with >>> _af_commutes_with([1, 2, 0], [0, 2, 1]) False See Also ======== Permutation, commutes_with """ return not any(a[b[i]] != b[a[i]] for i in range(len(a) - 1)) class Cycle(dict): """ Wrapper around dict which provides the functionality of a disjoint cycle. Explanation =========== A cycle shows the rule to use to move subsets of elements to obtain a permutation. The Cycle class is more flexible than Permutation in that 1) all elements need not be present in order to investigate how multiple cycles act in sequence and 2) it can contain singletons: >>> from sympy.combinatorics.permutations import Perm, Cycle A Cycle will automatically parse a cycle given as a tuple on the rhs: >>> Cycle(1, 2)(2, 3) (1 3 2) The identity cycle, Cycle(), can be used to start a product: >>> Cycle()(1, 2)(2, 3) (1 3 2) The array form of a Cycle can be obtained by calling the list method (or passing it to the list function) and all elements from 0 will be shown: >>> a = Cycle(1, 2) >>> a.list() [0, 2, 1] >>> list(a) [0, 2, 1] If a larger (or smaller) range is desired use the list method and provide the desired size -- but the Cycle cannot be truncated to a size smaller than the largest element that is out of place: >>> b = Cycle(2, 4)(1, 2)(3, 1, 4)(1, 3) >>> b.list() [0, 2, 1, 3, 4] >>> b.list(b.size + 1) [0, 2, 1, 3, 4, 5] >>> b.list(-1) [0, 2, 1] Singletons are not shown when printing with one exception: the largest element is always shown -- as a singleton if necessary: >>> Cycle(1, 4, 10)(4, 5) (1 5 4 10) >>> Cycle(1, 2)(4)(5)(10) (1 2)(10) The array form can be used to instantiate a Permutation so other properties of the permutation can be investigated: >>> Perm(Cycle(1, 2)(3, 4).list()).transpositions() [(1, 2), (3, 4)] Notes ===== The underlying structure of the Cycle is a dictionary and although the __iter__ method has been redefined to give the array form of the cycle, the underlying dictionary items are still available with the such methods as items(): >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] See Also ======== Permutation """ def __missing__(self, arg): """Enter arg into dictionary and return arg.""" return as_int(arg) def __iter__(self): yield from self.list() def __call__(self, *other): """Return product of cycles processed from R to L. Examples ======== >>> from sympy.combinatorics.permutations import Cycle as C >>> C(1, 2)(2, 3) (1 3 2) An instance of a Cycle will automatically parse list-like objects and Permutations that are on the right. It is more flexible than the Permutation in that all elements need not be present: >>> a = C(1, 2) >>> a(2, 3) (1 3 2) >>> a(2, 3)(4, 5) (1 3 2)(4 5) """ rv = Cycle(*other) for k, v in zip(list(self.keys()), [rv[self[k]] for k in self.keys()]): rv[k] = v return rv def list(self, size=None): """Return the cycles as an explicit list starting from 0 up to the greater of the largest value in the cycles and size. Truncation of trailing unmoved items will occur when size is less than the maximum element in the cycle; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> p = Cycle(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Cycle(2, 4)(1, 2, 4).list(-1) [0, 2, 1] """ if not self and size is None: raise ValueError('must give size for empty Cycle') if size is not None: big = max([i for i in self.keys() if self[i] != i] + [0]) size = max(size, big + 1) else: size = self.size return [self[i] for i in range(size)] def __repr__(self): """We want it to print as a Cycle, not as a dict. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> print(_) (1 2) >>> list(Cycle(1, 2).items()) [(1, 2), (2, 1)] """ if not self: return 'Cycle()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big return 'Cycle%s' % s def __str__(self): """We want it to be printed in a Cycle notation with no comma in-between. Examples ======== >>> from sympy.combinatorics import Cycle >>> Cycle(1, 2) (1 2) >>> Cycle(1, 2, 4)(5, 6) (1 2 4)(5 6) """ if not self: return '()' cycles = Permutation(self).cyclic_form s = ''.join(str(tuple(c)) for c in cycles) big = self.size - 1 if not any(i == big for c in cycles for i in c): s += '(%s)' % big s = s.replace(',', '') return s def __init__(self, *args): """Load up a Cycle instance with the values for the cycle. Examples ======== >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2, 6) (1 2 6) """ if not args: return if len(args) == 1: if isinstance(args[0], Permutation): for c in args[0].cyclic_form: self.update(self(*c)) return elif isinstance(args[0], Cycle): for k, v in args[0].items(): self[k] = v return args = [as_int(a) for a in args] if any(i < 0 for i in args): raise ValueError('negative integers are not allowed in a cycle.') if has_dups(args): raise ValueError('All elements must be unique in a cycle.') for i in range(-len(args), 0): self[args[i]] = args[i + 1] @property def size(self): if not self: return 0 return max(self.keys()) + 1 def copy(self): return Cycle(self) class Permutation(Atom): r""" A permutation, alternatively known as an 'arrangement number' or 'ordering' is an arrangement of the elements of an ordered list into a one-to-one mapping with itself. The permutation of a given arrangement is given by indicating the positions of the elements after re-arrangement [2]_. For example, if one started with elements ``[x, y, a, b]`` (in that order) and they were reordered as ``[x, y, b, a]`` then the permutation would be ``[0, 1, 3, 2]``. Notice that (in SymPy) the first element is always referred to as 0 and the permutation uses the indices of the elements in the original ordering, not the elements ``(a, b, ...)`` themselves. >>> from sympy.combinatorics import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) Permutations Notation ===================== Permutations are commonly represented in disjoint cycle or array forms. Array Notation and 2-line Form ------------------------------------ In the 2-line form, the elements and their final positions are shown as a matrix with 2 rows: [0 1 2 ... n-1] [p(0) p(1) p(2) ... p(n-1)] Since the first line is always ``range(n)``, where n is the size of p, it is sufficient to represent the permutation by the second line, referred to as the "array form" of the permutation. This is entered in brackets as the argument to the Permutation class: >>> p = Permutation([0, 2, 1]); p Permutation([0, 2, 1]) Given i in range(p.size), the permutation maps i to i^p >>> [i^p for i in range(p.size)] [0, 2, 1] The composite of two permutations p*q means first apply p, then q, so i^(p*q) = (i^p)^q which is i^p^q according to Python precedence rules: >>> q = Permutation([2, 1, 0]) >>> [i^p^q for i in range(3)] [2, 0, 1] >>> [i^(p*q) for i in range(3)] [2, 0, 1] One can use also the notation p(i) = i^p, but then the composition rule is (p*q)(i) = q(p(i)), not p(q(i)): >>> [(p*q)(i) for i in range(p.size)] [2, 0, 1] >>> [q(p(i)) for i in range(p.size)] [2, 0, 1] >>> [p(q(i)) for i in range(p.size)] [1, 2, 0] Disjoint Cycle Notation ----------------------- In disjoint cycle notation, only the elements that have shifted are indicated. For example, [1, 3, 2, 0] can be represented as (0, 1, 3)(2). This can be understood from the 2 line format of the given permutation. In the 2-line form, [0 1 2 3] [1 3 2 0] The element in the 0th position is 1, so 0 -> 1. The element in the 1st position is three, so 1 -> 3. And the element in the third position is again 0, so 3 -> 0. Thus, 0 -> 1 -> 3 -> 0, and 2 -> 2. Thus, this can be represented as 2 cycles: (0, 1, 3)(2). In common notation, singular cycles are not explicitly written as they can be inferred implicitly. Only the relative ordering of elements in a cycle matter: >>> Permutation(1,2,3) == Permutation(2,3,1) == Permutation(3,1,2) True The disjoint cycle notation is convenient when representing permutations that have several cycles in them: >>> Permutation(1, 2)(3, 5) == Permutation([[1, 2], [3, 5]]) True It also provides some economy in entry when computing products of permutations that are written in disjoint cycle notation: >>> Permutation(1, 2)(1, 3)(2, 3) Permutation([0, 3, 2, 1]) >>> _ == Permutation([[1, 2]])*Permutation([[1, 3]])*Permutation([[2, 3]]) True Caution: when the cycles have common elements between them then the order in which the permutations are applied matters. This module applies the permutations from *left to right*. >>> Permutation(1, 2)(2, 3) == Permutation([(1, 2), (2, 3)]) True >>> Permutation(1, 2)(2, 3).list() [0, 3, 1, 2] In the above case, (1,2) is computed before (2,3). As 0 -> 0, 0 -> 0, element in position 0 is 0. As 1 -> 2, 2 -> 3, element in position 1 is 3. As 2 -> 1, 1 -> 1, element in position 2 is 1. As 3 -> 3, 3 -> 2, element in position 3 is 2. If the first and second elements had been swapped first, followed by the swapping of the second and third, the result would have been [0, 2, 3, 1]. If, you want to apply the cycles in the conventional right to left order, call the function with arguments in reverse order as demonstrated below: >>> Permutation([(1, 2), (2, 3)][::-1]).list() [0, 2, 3, 1] Entering a singleton in a permutation is a way to indicate the size of the permutation. The ``size`` keyword can also be used. Array-form entry: >>> Permutation([[1, 2], [9]]) Permutation([0, 2, 1], size=10) >>> Permutation([[1, 2]], size=10) Permutation([0, 2, 1], size=10) Cyclic-form entry: >>> Permutation(1, 2, size=10) Permutation([0, 2, 1], size=10) >>> Permutation(9)(1, 2) Permutation([0, 2, 1], size=10) Caution: no singleton containing an element larger than the largest in any previous cycle can be entered. This is an important difference in how Permutation and Cycle handle the ``__call__`` syntax. A singleton argument at the start of a Permutation performs instantiation of the Permutation and is permitted: >>> Permutation(5) Permutation([], size=6) A singleton entered after instantiation is a call to the permutation -- a function call -- and if the argument is out of range it will trigger an error. For this reason, it is better to start the cycle with the singleton: The following fails because there is no element 3: >>> Permutation(1, 2)(3) Traceback (most recent call last): ... IndexError: list index out of range This is ok: only the call to an out of range singleton is prohibited; otherwise the permutation autosizes: >>> Permutation(3)(1, 2) Permutation([0, 2, 1, 3]) >>> Permutation(1, 2)(3, 4) == Permutation(3, 4)(1, 2) True Equality testing ---------------- The array forms must be the same in order for permutations to be equal: >>> Permutation([1, 0, 2, 3]) == Permutation([1, 0]) False Identity Permutation -------------------- The identity permutation is a permutation in which no element is out of place. It can be entered in a variety of ways. All the following create an identity permutation of size 4: >>> I = Permutation([0, 1, 2, 3]) >>> all(p == I for p in [ ... Permutation(3), ... Permutation(range(4)), ... Permutation([], size=4), ... Permutation(size=4)]) True Watch out for entering the range *inside* a set of brackets (which is cycle notation): >>> I == Permutation([range(4)]) False Permutation Printing ==================== There are a few things to note about how Permutations are printed. 1) If you prefer one form (array or cycle) over another, you can set ``init_printing`` with the ``perm_cyclic`` flag. >>> from sympy import init_printing >>> p = Permutation(1, 2)(4, 5)(3, 4) >>> p Permutation([0, 2, 1, 4, 5, 3]) >>> init_printing(perm_cyclic=True, pretty_print=False) >>> p (1 2)(3 4 5) 2) Regardless of the setting, a list of elements in the array for cyclic form can be obtained and either of those can be copied and supplied as the argument to Permutation: >>> p.array_form [0, 2, 1, 4, 5, 3] >>> p.cyclic_form [[1, 2], [3, 4, 5]] >>> Permutation(_) == p True 3) Printing is economical in that as little as possible is printed while retaining all information about the size of the permutation: >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation([1, 0, 2, 3]) Permutation([1, 0, 2, 3]) >>> Permutation([1, 0, 2, 3], size=20) Permutation([1, 0], size=20) >>> Permutation([1, 0, 2, 4, 3, 5, 6], size=20) Permutation([1, 0, 2, 4, 3], size=20) >>> p = Permutation([1, 0, 2, 3]) >>> init_printing(perm_cyclic=True, pretty_print=False) >>> p (3)(0 1) >>> init_printing(perm_cyclic=False, pretty_print=False) The 2 was not printed but it is still there as can be seen with the array_form and size methods: >>> p.array_form [1, 0, 2, 3] >>> p.size 4 Short introduction to other methods =================================== The permutation can act as a bijective function, telling what element is located at a given position >>> q = Permutation([5, 2, 3, 4, 1, 0]) >>> q.array_form[1] # the hard way 2 >>> q(1) # the easy way 2 >>> {i: q(i) for i in range(q.size)} # showing the bijection {0: 5, 1: 2, 2: 3, 3: 4, 4: 1, 5: 0} The full cyclic form (including singletons) can be obtained: >>> p.full_cyclic_form [[0, 1], [2], [3]] Any permutation can be factored into transpositions of pairs of elements: >>> Permutation([[1, 2], [3, 4, 5]]).transpositions() [(1, 2), (3, 5), (3, 4)] >>> Permutation.rmul(*[Permutation([ti], size=6) for ti in _]).cyclic_form [[1, 2], [3, 4, 5]] The number of permutations on a set of n elements is given by n! and is called the cardinality. >>> p.size 4 >>> p.cardinality 24 A given permutation has a rank among all the possible permutations of the same elements, but what that rank is depends on how the permutations are enumerated. (There are a number of different methods of doing so.) The lexicographic rank is given by the rank method and this rank is used to increment a permutation with addition/subtraction: >>> p.rank() 6 >>> p + 1 Permutation([1, 0, 3, 2]) >>> p.next_lex() Permutation([1, 0, 3, 2]) >>> _.rank() 7 >>> p.unrank_lex(p.size, rank=7) Permutation([1, 0, 3, 2]) The product of two permutations p and q is defined as their composition as functions, (p*q)(i) = q(p(i)) [6]_. >>> p = Permutation([1, 0, 2, 3]) >>> q = Permutation([2, 3, 1, 0]) >>> list(q*p) [2, 3, 0, 1] >>> list(p*q) [3, 2, 1, 0] >>> [q(p(i)) for i in range(p.size)] [3, 2, 1, 0] The permutation can be 'applied' to any list-like object, not only Permutations: >>> p(['zero', 'one', 'four', 'two']) ['one', 'zero', 'four', 'two'] >>> p('zo42') ['o', 'z', '4', '2'] If you have a list of arbitrary elements, the corresponding permutation can be found with the from_sequence method: >>> Permutation.from_sequence('SymPy') Permutation([1, 3, 2, 0, 4]) Checking if a Permutation is contained in a Group ================================================= Generally if you have a group of permutations G on n symbols, and you're checking if a permutation on less than n symbols is part of that group, the check will fail. Here is an example for n=5 and we check if the cycle (1,2,3) is in G: >>> from sympy import init_printing >>> init_printing(perm_cyclic=True, pretty_print=False) >>> from sympy.combinatorics import Cycle, Permutation >>> from sympy.combinatorics.perm_groups import PermutationGroup >>> G = PermutationGroup(Cycle(2, 3)(4, 5), Cycle(1, 2, 3, 4, 5)) >>> p1 = Permutation(Cycle(2, 5, 3)) >>> p2 = Permutation(Cycle(1, 2, 3)) >>> a1 = Permutation(Cycle(1, 2, 3).list(6)) >>> a2 = Permutation(Cycle(1, 2, 3)(5)) >>> a3 = Permutation(Cycle(1, 2, 3),size=6) >>> for p in [p1,p2,a1,a2,a3]: p, G.contains(p) ((2 5 3), True) ((1 2 3), False) ((5)(1 2 3), True) ((5)(1 2 3), True) ((5)(1 2 3), True) The check for p2 above will fail. Checking if p1 is in G works because SymPy knows G is a group on 5 symbols, and p1 is also on 5 symbols (its largest element is 5). For ``a1``, the ``.list(6)`` call will extend the permutation to 5 symbols, so the test will work as well. In the case of ``a2`` the permutation is being extended to 5 symbols by using a singleton, and in the case of ``a3`` it's extended through the constructor argument ``size=6``. There is another way to do this, which is to tell the ``contains`` method that the number of symbols the group is on doesn't need to match perfectly the number of symbols for the permutation: >>> G.contains(p2,strict=False) True This can be via the ``strict`` argument to the ``contains`` method, and SymPy will try to extend the permutation on its own and then perform the containment check. See Also ======== Cycle References ========== .. [1] Skiena, S. 'Permutations.' 1.1 in Implementing Discrete Mathematics Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 3-16, 1990. .. [2] Knuth, D. E. The Art of Computer Programming, Vol. 4: Combinatorial Algorithms, 1st ed. Reading, MA: Addison-Wesley, 2011. .. [3] Wendy Myrvold and Frank Ruskey. 2001. Ranking and unranking permutations in linear time. Inf. Process. Lett. 79, 6 (September 2001), 281-284. DOI=10.1016/S0020-0190(01)00141-7 .. [4] D. L. Kreher, D. R. Stinson 'Combinatorial Algorithms' CRC Press, 1999 .. [5] Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994. .. [6] https://en.wikipedia.org/wiki/Permutation#Product_and_inverse .. [7] https://en.wikipedia.org/wiki/Lehmer_code """ is_Permutation = True _array_form = None _cyclic_form = None _cycle_structure = None _size = None _rank = None def __new__(cls, *args, size=None, **kwargs): """ Constructor for the Permutation object from a list or a list of lists in which all elements of the permutation may appear only once. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) Permutations entered in array-form are left unaltered: >>> Permutation([0, 2, 1]) Permutation([0, 2, 1]) Permutations entered in cyclic form are converted to array form; singletons need not be entered, but can be entered to indicate the largest element: >>> Permutation([[4, 5, 6], [0, 1]]) Permutation([1, 0, 2, 3, 5, 6, 4]) >>> Permutation([[4, 5, 6], [0, 1], [19]]) Permutation([1, 0, 2, 3, 5, 6, 4], size=20) All manipulation of permutations assumes that the smallest element is 0 (in keeping with 0-based indexing in Python) so if the 0 is missing when entering a permutation in array form, an error will be raised: >>> Permutation([2, 1]) Traceback (most recent call last): ... ValueError: Integers 0 through 2 must be present. If a permutation is entered in cyclic form, it can be entered without singletons and the ``size`` specified so those values can be filled in, otherwise the array form will only extend to the maximum value in the cycles: >>> Permutation([[1, 4], [3, 5, 2]], size=10) Permutation([0, 4, 3, 5, 1, 2], size=10) >>> _.array_form [0, 4, 3, 5, 1, 2, 6, 7, 8, 9] """ if size is not None: size = int(size) #a) () #b) (1) = identity #c) (1, 2) = cycle #d) ([1, 2, 3]) = array form #e) ([[1, 2]]) = cyclic form #f) (Cycle) = conversion to permutation #g) (Permutation) = adjust size or return copy ok = True if not args: # a return cls._af_new(list(range(size or 0))) elif len(args) > 1: # c return cls._af_new(Cycle(*args).list(size)) if len(args) == 1: a = args[0] if isinstance(a, cls): # g if size is None or size == a.size: return a return cls(a.array_form, size=size) if isinstance(a, Cycle): # f return cls._af_new(a.list(size)) if not is_sequence(a): # b if size is not None and a + 1 > size: raise ValueError('size is too small when max is %s' % a) return cls._af_new(list(range(a + 1))) if has_variety(is_sequence(ai) for ai in a): ok = False else: ok = False if not ok: raise ValueError("Permutation argument must be a list of ints, " "a list of lists, Permutation or Cycle.") # safe to assume args are valid; this also makes a copy # of the args args = list(args[0]) is_cycle = args and is_sequence(args[0]) if is_cycle: # e args = [[int(i) for i in c] for c in args] else: # d args = [int(i) for i in args] # if there are n elements present, 0, 1, ..., n-1 should be present # unless a cycle notation has been provided. A 0 will be added # for convenience in case one wants to enter permutations where # counting starts from 1. temp = flatten(args) if has_dups(temp) and not is_cycle: raise ValueError('there were repeated elements.') temp = set(temp) if not is_cycle: if temp != set(range(len(temp))): raise ValueError('Integers 0 through %s must be present.' % max(temp)) if size is not None and temp and max(temp) + 1 > size: raise ValueError('max element should not exceed %s' % (size - 1)) if is_cycle: # it's not necessarily canonical so we won't store # it -- use the array form instead c = Cycle() for ci in args: c = c(*ci) aform = c.list() else: aform = list(args) if size and size > len(aform): # don't allow for truncation of permutation which # might split a cycle and lead to an invalid aform # but do allow the permutation size to be increased aform.extend(list(range(len(aform), size))) return cls._af_new(aform) @classmethod def _af_new(cls, perm): """A method to produce a Permutation object from a list; the list is bound to the _array_form attribute, so it must not be modified; this method is meant for internal use only; the list ``a`` is supposed to be generated as a temporary value in a method, so p = Perm._af_new(a) is the only object to hold a reference to ``a``:: Examples ======== >>> from sympy.combinatorics.permutations import Perm >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> a = [2, 1, 3, 0] >>> p = Perm._af_new(a) >>> p Permutation([2, 1, 3, 0]) """ p = super().__new__(cls) p._array_form = perm p._size = len(perm) return p def _hashable_content(self): # the array_form (a list) is the Permutation arg, so we need to # return a tuple, instead return tuple(self.array_form) @property def array_form(self): """ Return a copy of the attribute _array_form Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> Permutation([[2, 0, 3, 1]]).array_form [3, 2, 0, 1] >>> Permutation([2, 0, 3, 1]).array_form [2, 0, 3, 1] >>> Permutation([[1, 2], [4, 5]]).array_form [0, 2, 1, 3, 5, 4] """ return self._array_form[:] def list(self, size=None): """Return the permutation as an explicit list, possibly trimming unmoved elements if size is less than the maximum element in the permutation; if this is desired, setting ``size=-1`` will guarantee such trimming. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation(2, 3)(4, 5) >>> p.list() [0, 1, 3, 2, 5, 4] >>> p.list(10) [0, 1, 3, 2, 5, 4, 6, 7, 8, 9] Passing a length too small will trim trailing, unchanged elements in the permutation: >>> Permutation(2, 4)(1, 2, 4).list(-1) [0, 2, 1] >>> Permutation(3).list(-1) [] """ if not self and size is None: raise ValueError('must give size for empty Cycle') rv = self.array_form if size is not None: if size > self.size: rv.extend(list(range(self.size, size))) else: # find first value from rhs where rv[i] != i i = self.size - 1 while rv: if rv[-1] != i: break rv.pop() i -= 1 return rv @property def cyclic_form(self): """ This is used to convert to the cyclic notation from the canonical notation. Singletons are omitted. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2]) >>> p.cyclic_form [[1, 3, 2]] >>> Permutation([1, 0, 2, 4, 3, 5]).cyclic_form [[0, 1], [3, 4]] See Also ======== array_form, full_cyclic_form """ if self._cyclic_form is not None: return list(self._cyclic_form) array_form = self.array_form unchecked = [True] * len(array_form) cyclic_form = [] for i in range(len(array_form)): if unchecked[i]: cycle = [] cycle.append(i) unchecked[i] = False j = i while unchecked[array_form[j]]: j = array_form[j] cycle.append(j) unchecked[j] = False if len(cycle) > 1: cyclic_form.append(cycle) assert cycle == list(minlex(cycle)) cyclic_form.sort() self._cyclic_form = cyclic_form[:] return cyclic_form @property def full_cyclic_form(self): """Return permutation in cyclic form including singletons. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation([0, 2, 1]).full_cyclic_form [[0], [1, 2]] """ need = set(range(self.size)) - set(flatten(self.cyclic_form)) rv = self.cyclic_form + [[i] for i in need] rv.sort() return rv @property def size(self): """ Returns the number of elements in the permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([[3, 2], [0, 1]]).size 4 See Also ======== cardinality, length, order, rank """ return self._size def support(self): """Return the elements in permutation, P, for which P[i] != i. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation([[3, 2], [0, 1], [4]]) >>> p.array_form [1, 0, 3, 2, 4] >>> p.support() [0, 1, 2, 3] """ a = self.array_form return [i for i, e in enumerate(a) if a[i] != i] def __add__(self, other): """Return permutation that is other higher in rank than self. The rank is the lexicographical rank, with the identity permutation having rank of 0. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> I = Permutation([0, 1, 2, 3]) >>> a = Permutation([2, 1, 3, 0]) >>> I + a.rank() == a True See Also ======== __sub__, inversion_vector """ rank = (self.rank() + other) % self.cardinality rv = self.unrank_lex(self.size, rank) rv._rank = rank return rv def __sub__(self, other): """Return the permutation that is other lower in rank than self. See Also ======== __add__ """ return self.__add__(-other) @staticmethod def rmul(*args): """ Return product of Permutations [a, b, c, ...] as the Permutation whose ith value is a(b(c(i))). a, b, c, ... can be Permutation objects or tuples. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(Permutation.rmul(a, b)) [1, 2, 0] >>> [a(b(i)) for i in range(3)] [1, 2, 0] This handles the operands in reverse order compared to the ``*`` operator: >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] Notes ===== All items in the sequence will be parsed by Permutation as necessary as long as the first item is a Permutation: >>> Permutation.rmul(a, [0, 2, 1]) == Permutation.rmul(a, b) True The reverse order of arguments will raise a TypeError. """ rv = args[0] for i in range(1, len(args)): rv = args[i]*rv return rv @classmethod def rmul_with_af(cls, *args): """ same as rmul, but the elements of args are Permutation objects which have _array_form """ a = [x._array_form for x in args] rv = cls._af_new(_af_rmuln(*a)) return rv def mul_inv(self, other): """ other*~self, self and other have _array_form """ a = _af_invert(self._array_form) b = other._array_form return self._af_new(_af_rmul(a, b)) def __rmul__(self, other): """This is needed to coerce other to Permutation in rmul.""" cls = type(self) return cls(other)*self def __mul__(self, other): """ Return the product a*b as a Permutation; the ith value is b(a(i)). Examples ======== >>> from sympy.combinatorics.permutations import _af_rmul, Permutation >>> a, b = [1, 0, 2], [0, 2, 1] >>> a = Permutation(a); b = Permutation(b) >>> list(a*b) [2, 0, 1] >>> [b(a(i)) for i in range(3)] [2, 0, 1] This handles operands in reverse order compared to _af_rmul and rmul: >>> al = list(a); bl = list(b) >>> _af_rmul(al, bl) [1, 2, 0] >>> [al[bl[i]] for i in range(3)] [1, 2, 0] It is acceptable for the arrays to have different lengths; the shorter one will be padded to match the longer one: >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> b*Permutation([1, 0]) Permutation([1, 2, 0]) >>> Permutation([1, 0])*b Permutation([2, 0, 1]) It is also acceptable to allow coercion to handle conversion of a single list to the left of a Permutation: >>> [0, 1]*a # no change: 2-element identity Permutation([1, 0, 2]) >>> [[0, 1]]*a # exchange first two elements Permutation([0, 1, 2]) You cannot use more than 1 cycle notation in a product of cycles since coercion can only handle one argument to the left. To handle multiple cycles it is convenient to use Cycle instead of Permutation: >>> [[1, 2]]*[[2, 3]]*Permutation([]) # doctest: +SKIP >>> from sympy.combinatorics.permutations import Cycle >>> Cycle(1, 2)(2, 3) (1 3 2) """ from sympy.combinatorics.perm_groups import PermutationGroup, Coset if isinstance(other, PermutationGroup): return Coset(self, other, dir='-') a = self.array_form # __rmul__ makes sure the other is a Permutation b = other.array_form if not b: perm = a else: b.extend(list(range(len(b), len(a)))) perm = [b[i] for i in a] + b[len(a):] return self._af_new(perm) def commutes_with(self, other): """ Checks if the elements are commuting. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> a = Permutation([1, 4, 3, 0, 2, 5]) >>> b = Permutation([0, 1, 2, 3, 4, 5]) >>> a.commutes_with(b) True >>> b = Permutation([2, 3, 5, 4, 1, 0]) >>> a.commutes_with(b) False """ a = self.array_form b = other.array_form return _af_commutes_with(a, b) def __pow__(self, n): """ Routine for finding powers of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([2, 0, 3, 1]) >>> p.order() 4 >>> p**4 Permutation([0, 1, 2, 3]) """ if isinstance(n, Permutation): raise NotImplementedError( 'p**p is not defined; do you mean p^p (conjugate)?') n = int(n) return self._af_new(_af_pow(self.array_form, n)) def __rxor__(self, i): """Return self(i) when ``i`` is an int. Examples ======== >>> from sympy.combinatorics import Permutation >>> p = Permutation(1, 2, 9) >>> 2^p == p(2) == 9 True """ if int(i) == i: return self(i) else: raise NotImplementedError( "i^p = p(i) when i is an integer, not %s." % i) def __xor__(self, h): """Return the conjugate permutation ``~h*self*h` `. Explanation =========== If ``a`` and ``b`` are conjugates, ``a = h*b*~h`` and ``b = ~h*a*h`` and both have the same cycle structure. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation(1, 2, 9) >>> q = Permutation(6, 9, 8) >>> p*q != q*p True Calculate and check properties of the conjugate: >>> c = p^q >>> c == ~q*p*q and p == q*c*~q True The expression q^p^r is equivalent to q^(p*r): >>> r = Permutation(9)(4, 6, 8) >>> q^p^r == q^(p*r) True If the term to the left of the conjugate operator, i, is an integer then this is interpreted as selecting the ith element from the permutation to the right: >>> all(i^p == p(i) for i in range(p.size)) True Note that the * operator as higher precedence than the ^ operator: >>> q^r*p^r == q^(r*p)^r == Permutation(9)(1, 6, 4) True Notes ===== In Python the precedence rule is p^q^r = (p^q)^r which differs in general from p^(q^r) >>> q^p^r (9)(1 4 8) >>> q^(p^r) (9)(1 8 6) For a given r and p, both of the following are conjugates of p: ~r*p*r and r*p*~r. But these are not necessarily the same: >>> ~r*p*r == r*p*~r True >>> p = Permutation(1, 2, 9)(5, 6) >>> ~r*p*r == r*p*~r False The conjugate ~r*p*r was chosen so that ``p^q^r`` would be equivalent to ``p^(q*r)`` rather than ``p^(r*q)``. To obtain r*p*~r, pass ~r to this method: >>> p^~r == r*p*~r True """ if self.size != h.size: raise ValueError("The permutations must be of equal size.") a = [None]*self.size h = h._array_form p = self._array_form for i in range(self.size): a[h[i]] = h[p[i]] return self._af_new(a) def transpositions(self): """ Return the permutation decomposed into a list of transpositions. Explanation =========== It is always possible to express a permutation as the product of transpositions, see [1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[1, 2, 3], [0, 4, 5, 6, 7]]) >>> t = p.transpositions() >>> t [(0, 7), (0, 6), (0, 5), (0, 4), (1, 3), (1, 2)] >>> print(''.join(str(c) for c in t)) (0, 7)(0, 6)(0, 5)(0, 4)(1, 3)(1, 2) >>> Permutation.rmul(*[Permutation([ti], size=p.size) for ti in t]) == p True References ========== .. [1] https://en.wikipedia.org/wiki/Transposition_%28mathematics%29#Properties """ a = self.cyclic_form res = [] for x in a: nx = len(x) if nx == 2: res.append(tuple(x)) elif nx > 2: first = x[0] for y in x[nx - 1:0:-1]: res.append((first, y)) return res @classmethod def from_sequence(self, i, key=None): """Return the permutation needed to obtain ``i`` from the sorted elements of ``i``. If custom sorting is desired, a key can be given. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.from_sequence('SymPy') (4)(0 1 3) >>> _(sorted("SymPy")) ['S', 'y', 'm', 'P', 'y'] >>> Permutation.from_sequence('SymPy', key=lambda x: x.lower()) (4)(0 2)(1 3) """ ic = list(zip(i, list(range(len(i))))) if key: ic.sort(key=lambda x: key(x[0])) else: ic.sort() return ~Permutation([i[1] for i in ic]) def __invert__(self): """ Return the inverse of the permutation. A permutation multiplied by its inverse is the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([[2, 0], [3, 1]]) >>> ~p Permutation([2, 3, 0, 1]) >>> _ == p**-1 True >>> p*~p == ~p*p == Permutation([0, 1, 2, 3]) True """ return self._af_new(_af_invert(self._array_form)) def __iter__(self): """Yield elements from array form. Examples ======== >>> from sympy.combinatorics import Permutation >>> list(Permutation(range(3))) [0, 1, 2] """ yield from self.array_form def __repr__(self): from sympy.printing.repr import srepr return srepr(self) def __call__(self, *i): """ Allows applying a permutation instance as a bijective function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([[2, 0], [3, 1]]) >>> p.array_form [2, 3, 0, 1] >>> [p(i) for i in range(4)] [2, 3, 0, 1] If an array is given then the permutation selects the items from the array (i.e. the permutation is applied to the array): >>> from sympy.abc import x >>> p([x, 1, 0, x**2]) [0, x**2, x, 1] """ # list indices can be Integer or int; leave this # as it is (don't test or convert it) because this # gets called a lot and should be fast if len(i) == 1: i = i[0] if not isinstance(i, Iterable): i = as_int(i) if i < 0 or i > self.size: raise TypeError( "{} should be an integer between 0 and {}" .format(i, self.size-1)) return self._array_form[i] # P([a, b, c]) if len(i) != self.size: raise TypeError( "{} should have the length {}.".format(i, self.size)) return [i[j] for j in self._array_form] # P(1, 2, 3) return self*Permutation(Cycle(*i), size=self.size) def atoms(self): """ Returns all the elements of a permutation Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2, 3, 4, 5]).atoms() {0, 1, 2, 3, 4, 5} >>> Permutation([[0, 1], [2, 3], [4, 5]]).atoms() {0, 1, 2, 3, 4, 5} """ return set(self.array_form) def apply(self, i): r"""Apply the permutation to an expression. Parameters ========== i : Expr It should be an integer between $0$ and $n-1$ where $n$ is the size of the permutation. If it is a symbol or a symbolic expression that can have integer values, an ``AppliedPermutation`` object will be returned which can represent an unevaluated function. Notes ===== Any permutation can be defined as a bijective function $\sigma : \{ 0, 1, \dots, n-1 \} \rightarrow \{ 0, 1, \dots, n-1 \}$ where $n$ denotes the size of the permutation. The definition may even be extended for any set with distinctive elements, such that the permutation can even be applied for real numbers or such, however, it is not implemented for now for computational reasons and the integrity with the group theory module. This function is similar to the ``__call__`` magic, however, ``__call__`` magic already has some other applications like permuting an array or attatching new cycles, which would not always be mathematically consistent. This also guarantees that the return type is a SymPy integer, which guarantees the safety to use assumptions. """ i = _sympify(i) if i.is_integer is False: raise NotImplementedError("{} should be an integer.".format(i)) n = self.size if (i < 0) == True or (i >= n) == True: raise NotImplementedError( "{} should be an integer between 0 and {}".format(i, n-1)) if i.is_Integer: return Integer(self._array_form[i]) return AppliedPermutation(self, i) def next_lex(self): """ Returns the next permutation in lexicographical order. If self is the last permutation in lexicographical order it returns None. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 3, 1, 0]) >>> p = Permutation([2, 3, 1, 0]); p.rank() 17 >>> p = p.next_lex(); p.rank() 18 See Also ======== rank, unrank_lex """ perm = self.array_form[:] n = len(perm) i = n - 2 while perm[i + 1] < perm[i]: i -= 1 if i == -1: return None else: j = n - 1 while perm[j] < perm[i]: j -= 1 perm[j], perm[i] = perm[i], perm[j] i += 1 j = n - 1 while i < j: perm[j], perm[i] = perm[i], perm[j] i += 1 j -= 1 return self._af_new(perm) @classmethod def unrank_nonlex(self, n, r): """ This is a linear time unranking algorithm that does not respect lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.unrank_nonlex(4, 5) Permutation([2, 0, 3, 1]) >>> Permutation.unrank_nonlex(4, -1) Permutation([0, 1, 2, 3]) See Also ======== next_nonlex, rank_nonlex """ def _unrank1(n, r, a): if n > 0: a[n - 1], a[r % n] = a[r % n], a[n - 1] _unrank1(n - 1, r//n, a) id_perm = list(range(n)) n = int(n) r = r % ifac(n) _unrank1(n, r, id_perm) return self._af_new(id_perm) def rank_nonlex(self, inv_perm=None): """ This is a linear time ranking algorithm that does not enforce lexicographic order [3]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_nonlex() 23 See Also ======== next_nonlex, unrank_nonlex """ def _rank1(n, perm, inv_perm): if n == 1: return 0 s = perm[n - 1] t = inv_perm[n - 1] perm[n - 1], perm[t] = perm[t], s inv_perm[n - 1], inv_perm[s] = inv_perm[s], t return s + n*_rank1(n - 1, perm, inv_perm) if inv_perm is None: inv_perm = (~self).array_form if not inv_perm: return 0 perm = self.array_form[:] r = _rank1(len(perm), perm, inv_perm) return r def next_nonlex(self): """ Returns the next permutation in nonlex order [3]. If self is the last permutation in this order it returns None. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([2, 0, 3, 1]); p.rank_nonlex() 5 >>> p = p.next_nonlex(); p Permutation([3, 0, 1, 2]) >>> p.rank_nonlex() 6 See Also ======== rank_nonlex, unrank_nonlex """ r = self.rank_nonlex() if r == ifac(self.size) - 1: return None return self.unrank_nonlex(self.size, r + 1) def rank(self): """ Returns the lexicographic rank of the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank() 0 >>> p = Permutation([3, 2, 1, 0]) >>> p.rank() 23 See Also ======== next_lex, unrank_lex, cardinality, length, order, size """ if self._rank is not None: return self._rank rank = 0 rho = self.array_form[:] n = self.size - 1 size = n + 1 psize = int(ifac(n)) for j in range(size - 1): rank += rho[j]*psize for i in range(j + 1, size): if rho[i] > rho[j]: rho[i] -= 1 psize //= n n -= 1 self._rank = rank return rank @property def cardinality(self): """ Returns the number of all possible permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.cardinality 24 See Also ======== length, order, rank, size """ return int(ifac(self.size)) def parity(self): """ Computes the parity of a permutation. Explanation =========== The parity of a permutation reflects the parity of the number of inversions in the permutation, i.e., the number of pairs of x and y such that ``x > y`` but ``p[x] < p[y]``. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.parity() 0 >>> p = Permutation([3, 2, 0, 1]) >>> p.parity() 1 See Also ======== _af_parity """ if self._cyclic_form is not None: return (self.size - self.cycles) % 2 return _af_parity(self.array_form) @property def is_even(self): """ Checks if a permutation is even. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_even True >>> p = Permutation([3, 2, 1, 0]) >>> p.is_even True See Also ======== is_odd """ return not self.is_odd @property def is_odd(self): """ Checks if a permutation is odd. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.is_odd False >>> p = Permutation([3, 2, 0, 1]) >>> p.is_odd True See Also ======== is_even """ return bool(self.parity() % 2) @property def is_Singleton(self): """ Checks to see if the permutation contains only one number and is thus the only possible permutation of this set of numbers Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0]).is_Singleton True >>> Permutation([0, 1]).is_Singleton False See Also ======== is_Empty """ return self.size == 1 @property def is_Empty(self): """ Checks to see if the permutation is a set with zero elements Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([]).is_Empty True >>> Permutation([0]).is_Empty False See Also ======== is_Singleton """ return self.size == 0 @property def is_identity(self): return self.is_Identity @property def is_Identity(self): """ Returns True if the Permutation is an identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([]) >>> p.is_Identity True >>> p = Permutation([[0], [1], [2]]) >>> p.is_Identity True >>> p = Permutation([0, 1, 2]) >>> p.is_Identity True >>> p = Permutation([0, 2, 1]) >>> p.is_Identity False See Also ======== order """ af = self.array_form return not af or all(i == af[i] for i in range(self.size)) def ascents(self): """ Returns the positions of ascents in a permutation, ie, the location where p[i] < p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.ascents() [1, 2] See Also ======== descents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] < a[i + 1]] return pos def descents(self): """ Returns the positions of descents in a permutation, ie, the location where p[i] > p[i+1] Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 0, 1, 3, 2]) >>> p.descents() [0, 3] See Also ======== ascents, inversions, min, max """ a = self.array_form pos = [i for i in range(len(a) - 1) if a[i] > a[i + 1]] return pos def max(self): """ The maximum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([1, 0, 2, 3, 4]) >>> p.max() 1 See Also ======== min, descents, ascents, inversions """ max = 0 a = self.array_form for i in range(len(a)): if a[i] != i and a[i] > max: max = a[i] return max def min(self): """ The minimum element moved by the permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 4, 3, 2]) >>> p.min() 2 See Also ======== max, descents, ascents, inversions """ a = self.array_form min = len(a) for i in range(len(a)): if a[i] != i and a[i] < min: min = a[i] return min def inversions(self): """ Computes the number of inversions of a permutation. Explanation =========== An inversion is where i > j but p[i] < p[j]. For small length of p, it iterates over all i and j values and calculates the number of inversions. For large length of p, it uses a variation of merge sort to calculate the number of inversions. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3, 4, 5]) >>> p.inversions() 0 >>> Permutation([3, 2, 1, 0]).inversions() 6 See Also ======== descents, ascents, min, max References ========== .. [1] http://www.cp.eng.chula.ac.th/~piak/teaching/algo/algo2008/count-inv.htm """ inversions = 0 a = self.array_form n = len(a) if n < 130: for i in range(n - 1): b = a[i] for c in a[i + 1:]: if b > c: inversions += 1 else: k = 1 right = 0 arr = a[:] temp = a[:] while k < n: i = 0 while i + k < n: right = i + k * 2 - 1 if right >= n: right = n - 1 inversions += _merge(arr, temp, i, i + k, right) i = i + k * 2 k = k * 2 return inversions def commutator(self, x): """Return the commutator of ``self`` and ``x``: ``~x*~self*x*self`` If f and g are part of a group, G, then the commutator of f and g is the group identity iff f and g commute, i.e. fg == gf. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([0, 2, 3, 1]) >>> x = Permutation([2, 0, 3, 1]) >>> c = p.commutator(x); c Permutation([2, 1, 3, 0]) >>> c == ~x*~p*x*p True >>> I = Permutation(3) >>> p = [I + i for i in range(6)] >>> for i in range(len(p)): ... for j in range(len(p)): ... c = p[i].commutator(p[j]) ... if p[i]*p[j] == p[j]*p[i]: ... assert c == I ... else: ... assert c != I ... References ========== .. [1] https://en.wikipedia.org/wiki/Commutator """ a = self.array_form b = x.array_form n = len(a) if len(b) != n: raise ValueError("The permutations must be of equal size.") inva = [None]*n for i in range(n): inva[a[i]] = i invb = [None]*n for i in range(n): invb[b[i]] = i return self._af_new([a[b[inva[i]]] for i in invb]) def signature(self): """ Gives the signature of the permutation needed to place the elements of the permutation in canonical order. The signature is calculated as (-1)^<number of inversions> Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2]) >>> p.inversions() 0 >>> p.signature() 1 >>> q = Permutation([0,2,1]) >>> q.inversions() 1 >>> q.signature() -1 See Also ======== inversions """ if self.is_even: return 1 return -1 def order(self): """ Computes the order of a permutation. When the permutation is raised to the power of its order it equals the identity permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([3, 1, 5, 2, 4, 0]) >>> p.order() 4 >>> (p**(p.order())) Permutation([], size=6) See Also ======== identity, cardinality, length, rank, size """ return reduce(lcm, [len(cycle) for cycle in self.cyclic_form], 1) def length(self): """ Returns the number of integers moved by a permutation. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 3, 2, 1]).length() 2 >>> Permutation([[0, 1], [2, 3]]).length() 4 See Also ======== min, max, support, cardinality, order, rank, size """ return len(self.support()) @property def cycle_structure(self): """Return the cycle structure of the permutation as a dictionary indicating the multiplicity of each cycle length. Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation(3).cycle_structure {1: 4} >>> Permutation(0, 4, 3)(1, 2)(5, 6).cycle_structure {2: 2, 3: 1} """ if self._cycle_structure: rv = self._cycle_structure else: rv = defaultdict(int) singletons = self.size for c in self.cyclic_form: rv[len(c)] += 1 singletons -= len(c) if singletons: rv[1] = singletons self._cycle_structure = rv return dict(rv) # make a copy @property def cycles(self): """ Returns the number of cycles contained in the permutation (including singletons). Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation([0, 1, 2]).cycles 3 >>> Permutation([0, 1, 2]).full_cyclic_form [[0], [1], [2]] >>> Permutation(0, 1)(2, 3).cycles 2 See Also ======== sympy.functions.combinatorial.numbers.stirling """ return len(self.full_cyclic_form) def index(self): """ Returns the index of a permutation. The index of a permutation is the sum of all subscripts j such that p[j] is greater than p[j+1]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([3, 0, 2, 1, 4]) >>> p.index() 2 """ a = self.array_form return sum([j for j in range(len(a) - 1) if a[j] > a[j + 1]]) def runs(self): """ Returns the runs of a permutation. An ascending sequence in a permutation is called a run [5]. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 5, 7, 3, 6, 0, 1, 4, 8]) >>> p.runs() [[2, 5, 7], [3, 6], [0, 1, 4, 8]] >>> q = Permutation([1,3,2,0]) >>> q.runs() [[1, 3], [2], [0]] """ return runs(self.array_form) def inversion_vector(self): """Return the inversion vector of the permutation. The inversion vector consists of elements whose value indicates the number of elements in the permutation that are lesser than it and lie on its right hand side. The inversion vector is the same as the Lehmer encoding of a permutation. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([4, 8, 0, 7, 1, 5, 3, 6, 2]) >>> p.inversion_vector() [4, 7, 0, 5, 0, 2, 1, 1] >>> p = Permutation([3, 2, 1, 0]) >>> p.inversion_vector() [3, 2, 1] The inversion vector increases lexicographically with the rank of the permutation, the -ith element cycling through 0..i. >>> p = Permutation(2) >>> while p: ... print('%s %s %s' % (p, p.inversion_vector(), p.rank())) ... p = p.next_lex() (2) [0, 0] 0 (1 2) [0, 1] 1 (2)(0 1) [1, 0] 2 (0 1 2) [1, 1] 3 (0 2 1) [2, 0] 4 (0 2) [2, 1] 5 See Also ======== from_inversion_vector """ self_array_form = self.array_form n = len(self_array_form) inversion_vector = [0] * (n - 1) for i in range(n - 1): val = 0 for j in range(i + 1, n): if self_array_form[j] < self_array_form[i]: val += 1 inversion_vector[i] = val return inversion_vector def rank_trotterjohnson(self): """ Returns the Trotter Johnson rank, which we get from the minimal change algorithm. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 1, 2, 3]) >>> p.rank_trotterjohnson() 0 >>> p = Permutation([0, 2, 1, 3]) >>> p.rank_trotterjohnson() 7 See Also ======== unrank_trotterjohnson, next_trotterjohnson """ if self.array_form == [] or self.is_Identity: return 0 if self.array_form == [1, 0]: return 1 perm = self.array_form n = self.size rank = 0 for j in range(1, n): k = 1 i = 0 while perm[i] != j: if perm[i] < j: k += 1 i += 1 j1 = j + 1 if rank % 2 == 0: rank = j1*rank + j1 - k else: rank = j1*rank + k - 1 return rank @classmethod def unrank_trotterjohnson(cls, size, rank): """ Trotter Johnson permutation unranking. See [4] section 2.4. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.unrank_trotterjohnson(5, 10) Permutation([0, 3, 1, 2, 4]) See Also ======== rank_trotterjohnson, next_trotterjohnson """ perm = [0]*size r2 = 0 n = ifac(size) pj = 1 for j in range(2, size + 1): pj *= j r1 = (rank * pj) // n k = r1 - j*r2 if r2 % 2 == 0: for i in range(j - 1, j - k - 1, -1): perm[i] = perm[i - 1] perm[j - k - 1] = j - 1 else: for i in range(j - 1, k, -1): perm[i] = perm[i - 1] perm[k] = j - 1 r2 = r1 return cls._af_new(perm) def next_trotterjohnson(self): """ Returns the next permutation in Trotter-Johnson order. If self is the last permutation it returns None. See [4] section 2.4. If it is desired to generate all such permutations, they can be generated in order more quickly with the ``generate_bell`` function. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation([3, 0, 2, 1]) >>> p.rank_trotterjohnson() 4 >>> p = p.next_trotterjohnson(); p Permutation([0, 3, 2, 1]) >>> p.rank_trotterjohnson() 5 See Also ======== rank_trotterjohnson, unrank_trotterjohnson, sympy.utilities.iterables.generate_bell """ pi = self.array_form[:] n = len(pi) st = 0 rho = pi[:] done = False m = n-1 while m > 0 and not done: d = rho.index(m) for i in range(d, m): rho[i] = rho[i + 1] par = _af_parity(rho[:m]) if par == 1: if d == m: m -= 1 else: pi[st + d], pi[st + d + 1] = pi[st + d + 1], pi[st + d] done = True else: if d == 0: m -= 1 st += 1 else: pi[st + d], pi[st + d - 1] = pi[st + d - 1], pi[st + d] done = True if m == 0: return None return self._af_new(pi) def get_precedence_matrix(self): """ Gets the precedence matrix. This is used for computing the distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> p = Permutation.josephus(3, 6, 1) >>> p Permutation([2, 5, 3, 1, 4, 0]) >>> p.get_precedence_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0], [1, 1, 0, 1, 1, 1], [1, 1, 0, 0, 1, 0], [1, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0]]) See Also ======== get_precedence_distance, get_adjacency_matrix, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(m.rows): for j in range(i + 1, m.cols): m[perm[i], perm[j]] = 1 return m def get_precedence_distance(self, other): """ Computes the precedence distance between two permutations. Explanation =========== Suppose p and p' represent n jobs. The precedence metric counts the number of times a job j is preceded by job i in both p and p'. This metric is commutative. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([2, 0, 4, 3, 1]) >>> q = Permutation([3, 1, 2, 4, 0]) >>> p.get_precedence_distance(q) 7 >>> q.get_precedence_distance(p) 7 See Also ======== get_precedence_matrix, get_adjacency_matrix, get_adjacency_distance """ if self.size != other.size: raise ValueError("The permutations must be of equal size.") self_prec_mat = self.get_precedence_matrix() other_prec_mat = other.get_precedence_matrix() n_prec = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_prec_mat[i, j] * other_prec_mat[i, j] == 1: n_prec += 1 d = self.size * (self.size - 1)//2 - n_prec return d def get_adjacency_matrix(self): """ Computes the adjacency matrix of a permutation. Explanation =========== If job i is adjacent to job j in a permutation p then we set m[i, j] = 1 where m is the adjacency matrix of p. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation.josephus(3, 6, 1) >>> p.get_adjacency_matrix() Matrix([ [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]) >>> q = Permutation([0, 1, 2, 3]) >>> q.get_adjacency_matrix() Matrix([ [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_distance """ m = zeros(self.size) perm = self.array_form for i in range(self.size - 1): m[perm[i], perm[i + 1]] = 1 return m def get_adjacency_distance(self, other): """ Computes the adjacency distance between two permutations. Explanation =========== This metric counts the number of times a pair i,j of jobs is adjacent in both p and p'. If n_adj is this quantity then the adjacency distance is n - n_adj - 1 [1] [1] Reeves, Colin R. Landscapes, Operators and Heuristic search, Annals of Operational Research, 86, pp 473-490. (1999) Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> p.get_adjacency_distance(q) 3 >>> r = Permutation([0, 2, 1, 4, 3]) >>> p.get_adjacency_distance(r) 4 See Also ======== get_precedence_matrix, get_precedence_distance, get_adjacency_matrix """ if self.size != other.size: raise ValueError("The permutations must be of the same size.") self_adj_mat = self.get_adjacency_matrix() other_adj_mat = other.get_adjacency_matrix() n_adj = 0 for i in range(self.size): for j in range(self.size): if i == j: continue if self_adj_mat[i, j] * other_adj_mat[i, j] == 1: n_adj += 1 d = self.size - n_adj - 1 return d def get_positional_distance(self, other): """ Computes the positional distance between two permutations. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> p = Permutation([0, 3, 1, 2, 4]) >>> q = Permutation.josephus(4, 5, 2) >>> r = Permutation([3, 1, 4, 0, 2]) >>> p.get_positional_distance(q) 12 >>> p.get_positional_distance(r) 12 See Also ======== get_precedence_distance, get_adjacency_distance """ a = self.array_form b = other.array_form if len(a) != len(b): raise ValueError("The permutations must be of the same size.") return sum([abs(a[i] - b[i]) for i in range(len(a))]) @classmethod def josephus(cls, m, n, s=1): """Return as a permutation the shuffling of range(n) using the Josephus scheme in which every m-th item is selected until all have been chosen. The returned permutation has elements listed by the order in which they were selected. The parameter ``s`` stops the selection process when there are ``s`` items remaining and these are selected by continuing the selection, counting by 1 rather than by ``m``. Consider selecting every 3rd item from 6 until only 2 remain:: choices chosen ======== ====== 012345 01 345 2 01 34 25 01 4 253 0 4 2531 0 25314 253140 Examples ======== >>> from sympy.combinatorics import Permutation >>> Permutation.josephus(3, 6, 2).array_form [2, 5, 3, 1, 4, 0] References ========== .. [1] https://en.wikipedia.org/wiki/Flavius_Josephus .. [2] https://en.wikipedia.org/wiki/Josephus_problem .. [3] http://www.wou.edu/~burtonl/josephus.html """ from collections import deque m -= 1 Q = deque(list(range(n))) perm = [] while len(Q) > max(s, 1): for dp in range(m): Q.append(Q.popleft()) perm.append(Q.popleft()) perm.extend(list(Q)) return cls(perm) @classmethod def from_inversion_vector(cls, inversion): """ Calculates the permutation from the inversion vector. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> Permutation.from_inversion_vector([3, 2, 1, 0, 0]) Permutation([3, 2, 1, 0, 4, 5]) """ size = len(inversion) N = list(range(size + 1)) perm = [] try: for k in range(size): val = N[inversion[k]] perm.append(val) N.remove(val) except IndexError: raise ValueError("The inversion vector is not valid.") perm.extend(N) return cls._af_new(perm) @classmethod def random(cls, n): """ Generates a random permutation of length ``n``. Uses the underlying Python pseudo-random number generator. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> Permutation.random(2) in (Permutation([1, 0]), Permutation([0, 1])) True """ perm_array = list(range(n)) random.shuffle(perm_array) return cls._af_new(perm_array) @classmethod def unrank_lex(cls, size, rank): """ Lexicographic permutation unranking. Examples ======== >>> from sympy.combinatorics.permutations import Permutation >>> from sympy import init_printing >>> init_printing(perm_cyclic=False, pretty_print=False) >>> a = Permutation.unrank_lex(5, 10) >>> a.rank() 10 >>> a Permutation([0, 2, 4, 1, 3]) See Also ======== rank, next_lex """ perm_array = [0] * size psize = 1 for i in range(size): new_psize = psize*(i + 1) d = (rank % new_psize) // psize rank -= d*psize perm_array[size - i - 1] = d for j in range(size - i, size): if perm_array[j] > d - 1: perm_array[j] += 1 psize = new_psize return cls._af_new(perm_array) def resize(self, n): """Resize the permutation to the new size ``n``. Parameters ========== n : int The new size of the permutation. Raises ====== ValueError If the permutation cannot be resized to the given size. This may only happen when resized to a smaller size than the original. Examples ======== >>> from sympy.combinatorics.permutations import Permutation Increasing the size of a permutation: >>> p = Permutation(0, 1, 2) >>> p = p.resize(5) >>> p (4)(0 1 2) Decreasing the size of the permutation: >>> p = p.resize(4) >>> p (3)(0 1 2) If resizing to the specific size breaks the cycles: >>> p.resize(2) Traceback (most recent call last): ... ValueError: The permutation cannot be resized to 2 because the cycle (0, 1, 2) may break. """ aform = self.array_form l = len(aform) if n > l: aform += list(range(l, n)) return Permutation._af_new(aform) elif n < l: cyclic_form = self.full_cyclic_form new_cyclic_form = [] for cycle in cyclic_form: cycle_min = min(cycle) cycle_max = max(cycle) if cycle_min <= n-1: if cycle_max > n-1: raise ValueError( "The permutation cannot be resized to {} " "because the cycle {} may break." .format(n, tuple(cycle))) new_cyclic_form.append(cycle) return Permutation(new_cyclic_form) return self # XXX Deprecated flag print_cyclic = None def _merge(arr, temp, left, mid, right): """ Merges two sorted arrays and calculates the inversion count. Helper function for calculating inversions. This method is for internal use only. """ i = k = left j = mid inv_count = 0 while i < mid and j <= right: if arr[i] < arr[j]: temp[k] = arr[i] k += 1 i += 1 else: temp[k] = arr[j] k += 1 j += 1 inv_count += (mid -i) while i < mid: temp[k] = arr[i] k += 1 i += 1 if j <= right: k += right - j + 1 j += right - j + 1 arr[left:k + 1] = temp[left:k + 1] else: arr[left:right + 1] = temp[left:right + 1] return inv_count Perm = Permutation _af_new = Perm._af_new class AppliedPermutation(Expr): """A permutation applied to a symbolic variable. Parameters ========== perm : Permutation x : Expr Examples ======== >>> from sympy import Symbol >>> from sympy.combinatorics import Permutation Creating a symbolic permutation function application: >>> x = Symbol('x') >>> p = Permutation(0, 1, 2) >>> p.apply(x) AppliedPermutation((0 1 2), x) >>> _.subs(x, 1) 2 """ def __new__(cls, perm, x, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate perm = _sympify(perm) x = _sympify(x) if not isinstance(perm, Permutation): raise ValueError("{} must be a Permutation instance." .format(perm)) if evaluate: if x.is_Integer: return perm.apply(x) obj = super().__new__(cls, perm, x) return obj @dispatch(Permutation, Permutation) def _eval_is_eq(lhs, rhs): if lhs._size != rhs._size: return None return lhs._array_form == rhs._array_form
60508fdfd14fd506b17bbe424581427227886eb3747a61daef395d55855ced63
from typing import Tuple as tTuple from sympy.calculus.singularities import is_decreasing from sympy.calculus.accumulationbounds import AccumulationBounds from .expr_with_intlimits import ExprWithIntLimits from .expr_with_limits import AddWithLimits from .gosper import gosper_sum from sympy.core.expr import Expr from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.function import Derivative, expand from sympy.core.mul import Mul from sympy.core.numbers import Float from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.sorting import ordered from sympy.core.symbol import Dummy, Wild, Symbol, symbols from sympy.functions.combinatorial.factorials import factorial from sympy.functions.combinatorial.numbers import bernoulli, harmonic from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import cot, csc from sympy.functions.special.hyper import hyper from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.zeta_functions import zeta from sympy.integrals.integrals import Integral from sympy.logic.boolalg import And from sympy.polys.partfrac import apart from sympy.polys.polyerrors import PolynomialError, PolificationFailed from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor from sympy.polys.rationaltools import together from sympy.series.limitseq import limit_seq from sympy.series.order import O from sympy.series.residues import residue from sympy.sets.sets import FiniteSet, Interval from sympy.simplify.combsimp import combsimp from sympy.simplify.hyperexpand import hyperexpand from sympy.simplify.powsimp import powsimp from sympy.simplify.radsimp import denom, fraction from sympy.simplify.simplify import (factor_sum, sum_combine, simplify, nsimplify, hypersimp) from sympy.solvers.solvers import solve from sympy.solvers.solveset import solveset from sympy.utilities.iterables import sift import itertools class Sum(AddWithLimits, ExprWithIntLimits): r""" Represents unevaluated summation. Explanation =========== ``Sum`` represents a finite or infinite series, with the first argument being the general form of terms in the series, and the second argument being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking all integer values from ``start`` through ``end``. In accordance with long-standing mathematical convention, the end term is included in the summation. Finite sums =========== For finite sums (and sums with symbolic limits assumed to be finite) we follow the summation convention described by Karr [1], especially definition 3 of section 1.4. The sum: .. math:: \sum_{m \leq i < n} f(i) has *the obvious meaning* for `m < n`, namely: .. math:: \sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1) with the upper limit value `f(n)` excluded. The sum over an empty set is zero if and only if `m = n`: .. math:: \sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n Finally, for all other sums over empty sets we assume the following definition: .. math:: \sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n It is important to note that Karr defines all sums with the upper limit being exclusive. This is in contrast to the usual mathematical notation, but does not affect the summation convention. Indeed we have: .. math:: \sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i) where the difference in notation is intentional to emphasize the meaning, with limits typeset on the top being inclusive. Examples ======== >>> from sympy.abc import i, k, m, n, x >>> from sympy import Sum, factorial, oo, IndexedBase, Function >>> Sum(k, (k, 1, m)) Sum(k, (k, 1, m)) >>> Sum(k, (k, 1, m)).doit() m**2/2 + m/2 >>> Sum(k**2, (k, 1, m)) Sum(k**2, (k, 1, m)) >>> Sum(k**2, (k, 1, m)).doit() m**3/3 + m**2/2 + m/6 >>> Sum(x**k, (k, 0, oo)) Sum(x**k, (k, 0, oo)) >>> Sum(x**k, (k, 0, oo)).doit() Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True)) >>> Sum(x**k/factorial(k), (k, 0, oo)).doit() exp(x) Here are examples to do summation with symbolic indices. You can use either Function of IndexedBase classes: >>> f = Function('f') >>> Sum(f(n), (n, 0, 3)).doit() f(0) + f(1) + f(2) + f(3) >>> Sum(f(n), (n, 0, oo)).doit() Sum(f(n), (n, 0, oo)) >>> f = IndexedBase('f') >>> Sum(f[n]**2, (n, 0, 3)).doit() f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2 An example showing that the symbolic result of a summation is still valid for seemingly nonsensical values of the limits. Then the Karr convention allows us to give a perfectly valid interpretation to those sums by interchanging the limits according to the above rules: >>> S = Sum(i, (i, 1, n)).doit() >>> S n**2/2 + n/2 >>> S.subs(n, -4) 6 >>> Sum(i, (i, 1, -4)).doit() 6 >>> Sum(-i, (i, -3, 0)).doit() 6 An explicit example of the Karr summation convention: >>> S1 = Sum(i**2, (i, m, m+n-1)).doit() >>> S1 m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6 >>> S2 = Sum(i**2, (i, m+n, m-1)).doit() >>> S2 -m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6 >>> S1 + S2 0 >>> S3 = Sum(i, (i, m, m-1)).doit() >>> S3 0 See Also ======== summation Product, sympy.concrete.products.product References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 .. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation .. [3] https://en.wikipedia.org/wiki/Empty_sum """ __slots__ = ('is_commutative',) limits: tTuple[tTuple[Symbol, Expr, Expr]] def __new__(cls, function, *symbols, **assumptions): obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) if not hasattr(obj, 'limits'): return obj if any(len(l) != 3 or None in l for l in obj.limits): raise ValueError('Sum requires values for lower and upper bounds.') return obj def _eval_is_zero(self): # a Sum is only zero if its function is zero or if all terms # cancel out. This only answers whether the summand is zero; if # not then None is returned since we don't analyze whether all # terms cancel out. if self.function.is_zero or self.has_empty_sequence: return True def _eval_is_extended_real(self): if self.has_empty_sequence: return True return self.function.is_extended_real def _eval_is_positive(self): if self.has_finite_limits and self.has_reversed_limits is False: return self.function.is_positive def _eval_is_negative(self): if self.has_finite_limits and self.has_reversed_limits is False: return self.function.is_negative def _eval_is_finite(self): if self.has_finite_limits and self.function.is_finite: return True def doit(self, **hints): if hints.get('deep', True): f = self.function.doit(**hints) else: f = self.function # first make sure any definite limits have summation # variables with matching assumptions reps = {} for xab in self.limits: d = _dummy_with_inherited_properties_concrete(xab) if d: reps[xab[0]] = d if reps: undo = {v: k for k, v in reps.items()} did = self.xreplace(reps).doit(**hints) if isinstance(did, tuple): # when separate=True did = tuple([i.xreplace(undo) for i in did]) elif did is not None: did = did.xreplace(undo) else: did = self return did if self.function.is_Matrix: expanded = self.expand() if self != expanded: return expanded.doit() return _eval_matrix_sum(self) for n, limit in enumerate(self.limits): i, a, b = limit dif = b - a if dif == -1: # Any summation over an empty set is zero return S.Zero if dif.is_integer and dif.is_negative: a, b = b + 1, a - 1 f = -f newf = eval_sum(f, (i, a, b)) if newf is None: if f == self.function: zeta_function = self.eval_zeta_function(f, (i, a, b)) if zeta_function is not None: return zeta_function return self else: return self.func(f, *self.limits[n:]) f = newf if hints.get('deep', True): # eval_sum could return partially unevaluated # result with Piecewise. In this case we won't # doit() recursively. if not isinstance(f, Piecewise): return f.doit(**hints) return f def eval_zeta_function(self, f, limits): """ Check whether the function matches with the zeta function. If it matches, then return a `Piecewise` expression because zeta function does not converge unless `s > 1` and `q > 0` """ i, a, b = limits w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i]) result = f.match((w * i + y) ** (-z)) if result is not None and b is S.Infinity: coeff = 1 / result[w] ** result[z] s = result[z] q = result[y] / result[w] + a return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True)) def _eval_derivative(self, x): """ Differentiate wrt x as long as x is not in the free symbols of any of the upper or lower limits. Explanation =========== Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a` since the value of the sum is discontinuous in `a`. In a case involving a limit variable, the unevaluated derivative is returned. """ # diff already confirmed that x is in the free symbols of self, but we # don't want to differentiate wrt any free symbol in the upper or lower # limits # XXX remove this test for free_symbols when the default _eval_derivative is in if isinstance(x, Symbol) and x not in self.free_symbols: return S.Zero # get limits and the function f, limits = self.function, list(self.limits) limit = limits.pop(-1) if limits: # f is the argument to a Sum f = self.func(f, *limits) _, a, b = limit if x in a.free_symbols or x in b.free_symbols: return None df = Derivative(f, x, evaluate=True) rv = self.func(df, limit) return rv def _eval_difference_delta(self, n, step): k, _, upper = self.args[-1] new_upper = upper.subs(n, n + step) if len(self.args) == 2: f = self.args[0] else: f = self.func(*self.args[:-1]) return Sum(f, (k, upper + 1, new_upper)).doit() def _eval_simplify(self, **kwargs): # split the function into adds terms = Add.make_args(expand(self.function)) s_t = [] # Sum Terms o_t = [] # Other Terms for term in terms: if term.has(Sum): # if there is an embedded sum here # it is of the form x * (Sum(whatever)) # hence we make a Mul out of it, and simplify all interior sum terms subterms = Mul.make_args(expand(term)) out_terms = [] for subterm in subterms: # go through each term if isinstance(subterm, Sum): # if it's a sum, simplify it out_terms.append(subterm._eval_simplify()) else: # otherwise, add it as is out_terms.append(subterm) # turn it back into a Mul s_t.append(Mul(*out_terms)) else: o_t.append(term) # next try to combine any interior sums for further simplification result = Add(sum_combine(s_t), *o_t) return factor_sum(result, limits=self.limits) def is_convergent(self): r""" Checks for the convergence of a Sum. Explanation =========== We divide the study of convergence of infinite sums and products in two parts. First Part: One part is the question whether all the terms are well defined, i.e., they are finite in a sum and also non-zero in a product. Zero is the analogy of (minus) infinity in products as :math:`e^{-\infty} = 0`. Second Part: The second part is the question of convergence after infinities, and zeros in products, have been omitted assuming that their number is finite. This means that we only consider the tail of the sum or product, starting from some point after which all terms are well defined. For example, in a sum of the form: .. math:: \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b} where a and b are numbers. The routine will return true, even if there are infinities in the term sequence (at most two). An analogous product would be: .. math:: \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}} This is how convergence is interpreted. It is concerned with what happens at the limit. Finding the bad terms is another independent matter. Note: It is responsibility of user to see that the sum or product is well defined. There are various tests employed to check the convergence like divergence test, root test, integral test, alternating series test, comparison tests, Dirichlet tests. It returns true if Sum is convergent and false if divergent and NotImplementedError if it cannot be checked. References ========== .. [1] https://en.wikipedia.org/wiki/Convergence_tests Examples ======== >>> from sympy import factorial, S, Sum, Symbol, oo >>> n = Symbol('n', integer=True) >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent() True >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent() False >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent() False >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent() True See Also ======== Sum.is_absolutely_convergent() sympy.concrete.products.Product.is_convergent() """ p, q, r = symbols('p q r', cls=Wild) sym = self.limits[0][0] lower_limit = self.limits[0][1] upper_limit = self.limits[0][2] sequence_term = self.function.simplify() if len(sequence_term.free_symbols) > 1: raise NotImplementedError("convergence checking for more than one symbol " "containing series is not handled") if lower_limit.is_finite and upper_limit.is_finite: return S.true # transform sym -> -sym and swap the upper_limit = S.Infinity # and lower_limit = - upper_limit if lower_limit is S.NegativeInfinity: if upper_limit is S.Infinity: return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \ Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent() sequence_term = simplify(sequence_term.xreplace({sym: -sym})) lower_limit = -upper_limit upper_limit = S.Infinity sym_ = Dummy(sym.name, integer=True, positive=True) sequence_term = sequence_term.xreplace({sym: sym_}) sym = sym_ interval = Interval(lower_limit, upper_limit) # Piecewise function handle if sequence_term.is_Piecewise: for func, cond in sequence_term.args: # see if it represents something going to oo if cond == True or cond.as_set().sup is S.Infinity: s = Sum(func, (sym, lower_limit, upper_limit)) return s.is_convergent() return S.true ### -------- Divergence test ----------- ### try: lim_val = limit_seq(sequence_term, sym) if lim_val is not None and lim_val.is_zero is False: return S.false except NotImplementedError: pass try: lim_val_abs = limit_seq(abs(sequence_term), sym) if lim_val_abs is not None and lim_val_abs.is_zero is False: return S.false except NotImplementedError: pass order = O(sequence_term, (sym, S.Infinity)) ### --------- p-series test (1/n**p) ---------- ### p_series_test = order.expr.match(sym**p) if p_series_test is not None: if p_series_test[p] < -1: return S.true if p_series_test[p] >= -1: return S.false ### ------------- comparison test ------------- ### # 1/(n**p*log(n)**q*log(log(n))**r) comparison n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r)) if n_log_test is not None: if (n_log_test[p] > 1 or (n_log_test[p] == 1 and n_log_test[q] > 1) or (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)): return S.true return S.false ### ------------- Limit comparison test -----------### # (1/n) comparison try: lim_comp = limit_seq(sym*sequence_term, sym) if lim_comp is not None and lim_comp.is_number and lim_comp > 0: return S.false except NotImplementedError: pass ### ----------- ratio test ---------------- ### next_sequence_term = sequence_term.xreplace({sym: sym + 1}) ratio = combsimp(powsimp(next_sequence_term/sequence_term)) try: lim_ratio = limit_seq(ratio, sym) if lim_ratio is not None and lim_ratio.is_number: if abs(lim_ratio) > 1: return S.false if abs(lim_ratio) < 1: return S.true except NotImplementedError: lim_ratio = None ### ---------- Raabe's test -------------- ### if lim_ratio == 1: # ratio test inconclusive test_val = sym*(sequence_term/ sequence_term.subs(sym, sym + 1) - 1) test_val = test_val.gammasimp() try: lim_val = limit_seq(test_val, sym) if lim_val is not None and lim_val.is_number: if lim_val > 1: return S.true if lim_val < 1: return S.false except NotImplementedError: pass ### ----------- root test ---------------- ### # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity) try: lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym) if lim_evaluated is not None and lim_evaluated.is_number: if lim_evaluated < 1: return S.true if lim_evaluated > 1: return S.false except NotImplementedError: pass ### ------------- alternating series test ----------- ### dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q) if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval): return S.true ### ------------- integral test -------------- ### check_interval = None maxima = solveset(sequence_term.diff(sym), sym, interval) if not maxima: check_interval = interval elif isinstance(maxima, FiniteSet) and maxima.sup.is_number: check_interval = Interval(maxima.sup, interval.sup) if (check_interval is not None and (is_decreasing(sequence_term, check_interval) or is_decreasing(-sequence_term, check_interval))): integral_val = Integral( sequence_term, (sym, lower_limit, upper_limit)) try: integral_val_evaluated = integral_val.doit() if integral_val_evaluated.is_number: return S(integral_val_evaluated.is_finite) except NotImplementedError: pass ### ----- Dirichlet and bounded times convergent tests ----- ### # TODO # # Dirichlet_test # https://en.wikipedia.org/wiki/Dirichlet%27s_test # # Bounded times convergent test # It is based on comparison theorems for series. # In particular, if the general term of a series can # be written as a product of two terms a_n and b_n # and if a_n is bounded and if Sum(b_n) is absolutely # convergent, then the original series Sum(a_n * b_n) # is absolutely convergent and so convergent. # # The following code can grows like 2**n where n is the # number of args in order.expr # Possibly combined with the potentially slow checks # inside the loop, could make this test extremely slow # for larger summation expressions. if order.expr.is_Mul: args = order.expr.args argset = set(args) ### -------------- Dirichlet tests -------------- ### m = Dummy('m', integer=True) def _dirichlet_test(g_n): try: ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m) if ing_val is not None and ing_val.is_finite: return S.true except NotImplementedError: pass ### -------- bounded times convergent test ---------### def _bounded_convergent_test(g1_n, g2_n): try: lim_val = limit_seq(g1_n, sym) if lim_val is not None and (lim_val.is_finite or ( isinstance(lim_val, AccumulationBounds) and (lim_val.max - lim_val.min).is_finite)): if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent(): return S.true except NotImplementedError: pass for n in range(1, len(argset)): for a_tuple in itertools.combinations(args, n): b_set = argset - set(a_tuple) a_n = Mul(*a_tuple) b_n = Mul(*b_set) if is_decreasing(a_n, interval): dirich = _dirichlet_test(b_n) if dirich is not None: return dirich bc_test = _bounded_convergent_test(a_n, b_n) if bc_test is not None: return bc_test _sym = self.limits[0][0] sequence_term = sequence_term.xreplace({sym: _sym}) raise NotImplementedError("The algorithm to find the Sum convergence of %s " "is not yet implemented" % (sequence_term)) def is_absolutely_convergent(self): """ Checks for the absolute convergence of an infinite series. Same as checking convergence of absolute value of sequence_term of an infinite series. References ========== .. [1] https://en.wikipedia.org/wiki/Absolute_convergence Examples ======== >>> from sympy import Sum, Symbol, oo >>> n = Symbol('n', integer=True) >>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent() False >>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent() True See Also ======== Sum.is_convergent() """ return Sum(abs(self.function), self.limits).is_convergent() def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True): """ Return an Euler-Maclaurin approximation of self, where m is the number of leading terms to sum directly and n is the number of terms in the tail. With m = n = 0, this is simply the corresponding integral plus a first-order endpoint correction. Returns (s, e) where s is the Euler-Maclaurin approximation and e is the estimated error (taken to be the magnitude of the first omitted term in the tail): >>> from sympy.abc import k, a, b >>> from sympy import Sum >>> Sum(1/k, (k, 2, 5)).doit().evalf() 1.28333333333333 >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin() >>> s -log(2) + 7/20 + log(5) >>> from sympy import sstr >>> print(sstr((s.evalf(), e.evalf()), full_prec=True)) (1.26629073187415, 0.0175000000000000) The endpoints may be symbolic: >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin() >>> s -log(a) + log(b) + 1/(2*b) + 1/(2*a) >>> e Abs(1/(12*b**2) - 1/(12*a**2)) If the function is a polynomial of degree at most 2n+1, the Euler-Maclaurin formula becomes exact (and e = 0 is returned): >>> Sum(k, (k, 2, b)).euler_maclaurin() (b**2/2 + b/2 - 1, 0) >>> Sum(k, (k, 2, b)).doit() b**2/2 + b/2 - 1 With a nonzero eps specified, the summation is ended as soon as the remainder term is less than the epsilon. """ m = int(m) n = int(n) f = self.function if len(self.limits) != 1: raise ValueError("More than 1 limit") i, a, b = self.limits[0] if (a > b) == True: if a - b == 1: return S.Zero, S.Zero a, b = b + 1, a - 1 f = -f s = S.Zero if m: if b.is_Integer and a.is_Integer: m = min(m, b - a + 1) if not eps or f.is_polynomial(i): for k in range(m): s += f.subs(i, a + k) else: term = f.subs(i, a) if term: test = abs(term.evalf(3)) < eps if test == True: return s, abs(term) elif not (test == False): # a symbolic Relational class, can't go further return term, S.Zero s += term for k in range(1, m): term = f.subs(i, a + k) if abs(term.evalf(3)) < eps and term != 0: return s, abs(term) s += term if b - a + 1 == m: return s, S.Zero a += m x = Dummy('x') I = Integral(f.subs(i, x), (x, a, b)) if eval_integral: I = I.doit() s += I def fpoint(expr): if b is S.Infinity: return expr.subs(i, a), 0 return expr.subs(i, a), expr.subs(i, b) fa, fb = fpoint(f) iterm = (fa + fb)/2 g = f.diff(i) for k in range(1, n + 2): ga, gb = fpoint(g) term = bernoulli(2*k)/factorial(2*k)*(gb - ga) if k > n: break if eps and term: term_evalf = term.evalf(3) if term_evalf is S.NaN: return S.NaN, S.NaN if abs(term_evalf) < eps: break s += term g = g.diff(i, 2, simplify=False) return s + iterm, abs(term) def reverse_order(self, *indices): """ Reverse the order of a limit in a Sum. Explanation =========== ``reverse_order(self, *indices)`` reverses some limits in the expression ``self`` which can be either a ``Sum`` or a ``Product``. The selectors in the argument ``indices`` specify some indices whose limits get reversed. These selectors are either variable names or numerical indices counted starting from the inner-most limit tuple. Examples ======== >>> from sympy import Sum >>> from sympy.abc import x, y, a, b, c, d >>> Sum(x, (x, 0, 3)).reverse_order(x) Sum(-x, (x, 4, -1)) >>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y) Sum(x*y, (x, 6, 0), (y, 7, -1)) >>> Sum(x, (x, a, b)).reverse_order(x) Sum(-x, (x, b + 1, a - 1)) >>> Sum(x, (x, a, b)).reverse_order(0) Sum(-x, (x, b + 1, a - 1)) While one should prefer variable names when specifying which limits to reverse, the index counting notation comes in handy in case there are several symbols with the same name. >>> S = Sum(x**2, (x, a, b), (x, c, d)) >>> S Sum(x**2, (x, a, b), (x, c, d)) >>> S0 = S.reverse_order(0) >>> S0 Sum(-x**2, (x, b + 1, a - 1), (x, c, d)) >>> S1 = S0.reverse_order(1) >>> S1 Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1)) Of course we can mix both notations: >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) Sum(x*y, (x, b + 1, a - 1), (y, 6, 1)) See Also ======== sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit, sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder References ========== .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM, Volume 28 Issue 2, April 1981, Pages 305-350 http://dl.acm.org/citation.cfm?doid=322248.322255 """ l_indices = list(indices) for i, indx in enumerate(l_indices): if not isinstance(indx, int): l_indices[i] = self.index(indx) e = 1 limits = [] for i, limit in enumerate(self.limits): l = limit if i in l_indices: e = -e l = (limit[0], limit[2] + 1, limit[1] - 1) limits.append(l) return Sum(e * self.function, *limits) def _eval_rewrite_as_Product(self, *args, **kwargs): from sympy.concrete.products import Product if self.function.is_extended_real: return log(Product(exp(self.function), *self.limits)) def summation(f, *symbols, **kwargs): r""" Compute the summation of f with respect to symbols. Explanation =========== The notation for symbols is similar to the notation used in Integral. summation(f, (i, a, b)) computes the sum of f with respect to i from a to b, i.e., :: b ____ \ ` summation(f, (i, a, b)) = ) f /___, i = a If it cannot compute the sum, it returns an unevaluated Sum object. Repeated sums can be computed by introducing additional symbols tuples:: Examples ======== >>> from sympy import summation, oo, symbols, log >>> i, n, m = symbols('i n m', integer=True) >>> summation(2*i - 1, (i, 1, n)) n**2 >>> summation(1/2**i, (i, 0, oo)) 2 >>> summation(1/log(n)**n, (n, 2, oo)) Sum(log(n)**(-n), (n, 2, oo)) >>> summation(i, (i, 0, n), (n, 0, m)) m**3/6 + m**2/2 + m/3 >>> from sympy.abc import x >>> from sympy import factorial >>> summation(x**n/factorial(n), (n, 0, oo)) exp(x) See Also ======== Sum Product, sympy.concrete.products.product """ return Sum(f, *symbols, **kwargs).doit(deep=False) def telescopic_direct(L, R, n, limits): """ Returns the direct summation of the terms of a telescopic sum Explanation =========== L is the term with lower index R is the term with higher index n difference between the indexes of L and R Examples ======== >>> from sympy.concrete.summations import telescopic_direct >>> from sympy.abc import k, a, b >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b)) -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a """ (i, a, b) = limits s = 0 for m in range(n): s += L.subs(i, a + m) + R.subs(i, b - m) return s def telescopic(L, R, limits): ''' Tries to perform the summation using the telescopic property. Return None if not possible. ''' (i, a, b) = limits if L.is_Add or R.is_Add: return None # We want to solve(L.subs(i, i + m) + R, m) # First we try a simple match since this does things that # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails k = Wild("k") sol = (-R).match(L.subs(i, i + k)) s = None if sol and k in sol: s = sol[k] if not (s.is_Integer and L.subs(i, i + s) == -R): # sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x})) s = None # But there are things that match doesn't do that solve # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1 if s is None: m = Dummy('m') try: sol = solve(L.subs(i, i + m) + R, m) or [] except NotImplementedError: return None sol = [si for si in sol if si.is_Integer and (L.subs(i, i + si) + R).expand().is_zero] if len(sol) != 1: return None s = sol[0] if s < 0: return telescopic_direct(R, L, abs(s), (i, a, b)) elif s > 0: return telescopic_direct(L, R, s, (i, a, b)) def eval_sum(f, limits): (i, a, b) = limits if f.is_zero: return S.Zero if i not in f.free_symbols: return f*(b - a + 1) if a == b: return f.subs(i, a) if isinstance(f, Piecewise): if not any(i in arg.args[1].free_symbols for arg in f.args): # Piecewise conditions do not depend on the dummy summation variable, # therefore we can fold: Sum(Piecewise((e, c), ...), limits) # --> Piecewise((Sum(e, limits), c), ...) newargs = [] for arg in f.args: newexpr = eval_sum(arg.expr, limits) if newexpr is None: return None newargs.append((newexpr, arg.cond)) return f.func(*newargs) if f.has(KroneckerDelta): from .delta import deltasummation, _has_simple_delta f = f.replace( lambda x: isinstance(x, Sum), lambda x: x.factor() ) if _has_simple_delta(f, limits[0]): return deltasummation(f, limits) dif = b - a definite = dif.is_Integer # Doing it directly may be faster if there are very few terms. if definite and (dif < 100): return eval_sum_direct(f, (i, a, b)) if isinstance(f, Piecewise): return None # Try to do it symbolically. Even when the number of terms is known, # this can save time when b-a is big. # We should try to transform to partial fractions value = eval_sum_symbolic(f.expand(), (i, a, b)) if value is not None: return value # Do it directly if definite: return eval_sum_direct(f, (i, a, b)) def eval_sum_direct(expr, limits): """ Evaluate expression directly, but perform some simple checks first to possibly result in a smaller expression and faster execution. """ (i, a, b) = limits dif = b - a # Linearity if expr.is_Mul: # Try factor out everything not including i without_i, with_i = expr.as_independent(i) if without_i != 1: s = eval_sum_direct(with_i, (i, a, b)) if s: r = without_i*s if r is not S.NaN: return r else: # Try term by term L, R = expr.as_two_terms() if not L.has(i): sR = eval_sum_direct(R, (i, a, b)) if sR: return L*sR if not R.has(i): sL = eval_sum_direct(L, (i, a, b)) if sL: return sL*R try: expr = apart(expr, i) # see if it becomes an Add except PolynomialError: pass if expr.is_Add: # Try factor out everything not including i without_i, with_i = expr.as_independent(i) if without_i != 0: s = eval_sum_direct(with_i, (i, a, b)) if s: r = without_i*(dif + 1) + s if r is not S.NaN: return r else: # Try term by term L, R = expr.as_two_terms() lsum = eval_sum_direct(L, (i, a, b)) rsum = eval_sum_direct(R, (i, a, b)) if None not in (lsum, rsum): r = lsum + rsum if r is not S.NaN: return r return Add(*[expr.subs(i, a + j) for j in range(dif + 1)]) def eval_sum_symbolic(f, limits): f_orig = f (i, a, b) = limits if not f.has(i): return f*(b - a + 1) # Linearity if f.is_Mul: # Try factor out everything not including i without_i, with_i = f.as_independent(i) if without_i != 1: s = eval_sum_symbolic(with_i, (i, a, b)) if s: r = without_i*s if r is not S.NaN: return r else: # Try term by term L, R = f.as_two_terms() if not L.has(i): sR = eval_sum_symbolic(R, (i, a, b)) if sR: return L*sR if not R.has(i): sL = eval_sum_symbolic(L, (i, a, b)) if sL: return sL*R try: f = apart(f, i) # see if it becomes an Add except PolynomialError: pass if f.is_Add: L, R = f.as_two_terms() lrsum = telescopic(L, R, (i, a, b)) if lrsum: return lrsum # Try factor out everything not including i without_i, with_i = f.as_independent(i) if without_i != 0: s = eval_sum_symbolic(with_i, (i, a, b)) if s: r = without_i*(b - a + 1) + s if r is not S.NaN: return r else: # Try term by term lsum = eval_sum_symbolic(L, (i, a, b)) rsum = eval_sum_symbolic(R, (i, a, b)) if None not in (lsum, rsum): r = lsum + rsum if r is not S.NaN: return r # Polynomial terms with Faulhaber's formula n = Wild('n') result = f.match(i**n) if result is not None: n = result[n] if n.is_Integer: if n >= 0: if (b is S.Infinity and a is not S.NegativeInfinity) or \ (a is S.NegativeInfinity and b is not S.Infinity): return S.Infinity return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand() elif a.is_Integer and a >= 1: if n == -1: return harmonic(b) - harmonic(a - 1) else: return harmonic(b, abs(n)) - harmonic(a - 1, abs(n)) if not (a.has(S.Infinity, S.NegativeInfinity) or b.has(S.Infinity, S.NegativeInfinity)): # Geometric terms c1 = Wild('c1', exclude=[i]) c2 = Wild('c2', exclude=[i]) c3 = Wild('c3', exclude=[i]) wexp = Wild('wexp') # Here we first attempt powsimp on f for easier matching with the # exponential pattern, and attempt expansion on the exponent for easier # matching with the linear pattern. e = f.powsimp().match(c1 ** wexp) if e is not None: e_exp = e.pop(wexp).expand().match(c2*i + c3) if e_exp is not None: e.update(e_exp) p = (c1**c3).subs(e) q = (c1**c2).subs(e) r = p*(q**a - q**(b + 1))/(1 - q) l = p*(b - a + 1) return Piecewise((l, Eq(q, S.One)), (r, True)) r = gosper_sum(f, (i, a, b)) if isinstance(r, (Mul,Add)): non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols den = denom(together(r)) den_sym = non_limit & den.free_symbols args = [] for v in ordered(den_sym): try: s = solve(den, v) m = Eq(v, s[0]) if s else S.false if m != False: args.append((Sum(f_orig.subs(*m.args), limits).doit(), m)) break except NotImplementedError: continue args.append((r, True)) return Piecewise(*args) if r not in (None, S.NaN): return r h = eval_sum_hyper(f_orig, (i, a, b)) if h is not None: return h r = eval_sum_residue(f_orig, (i, a, b)) if r is not None: return r factored = f_orig.factor() if factored != f_orig: return eval_sum_symbolic(factored, (i, a, b)) def _eval_sum_hyper(f, i, a): """ Returns (res, cond). Sums from a to oo. """ if a != 0: return _eval_sum_hyper(f.subs(i, i + a), i, 0) if f.subs(i, 0) == 0: if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0: return S.Zero, True return _eval_sum_hyper(f.subs(i, i + 1), i, 0) hs = hypersimp(f, i) if hs is None: return None if isinstance(hs, Float): hs = nsimplify(hs) numer, denom = fraction(factor(hs)) top, topl = numer.as_coeff_mul(i) bot, botl = denom.as_coeff_mul(i) ab = [top, bot] factors = [topl, botl] params = [[], []] for k in range(2): for fac in factors[k]: mul = 1 if fac.is_Pow: mul = fac.exp fac = fac.base if not mul.is_Integer: return None p = Poly(fac, i) if p.degree() != 1: return None m, n = p.all_coeffs() ab[k] *= m**mul params[k] += [n/m]*mul # Add "1" to numerator parameters, to account for implicit n! in # hypergeometric series. ap = params[0] + [1] bq = params[1] x = ab[0]/ab[1] h = hyper(ap, bq, x) f = combsimp(f) return f.subs(i, 0)*hyperexpand(h), h.convergence_statement def eval_sum_hyper(f, i_a_b): i, a, b = i_a_b if (b - a).is_Integer: # We are never going to do better than doing the sum in the obvious way return None old_sum = Sum(f, (i, a, b)) if b != S.Infinity: if a is S.NegativeInfinity: res = _eval_sum_hyper(f.subs(i, -i), i, -b) if res is not None: return Piecewise(res, (old_sum, True)) else: res1 = _eval_sum_hyper(f, i, a) res2 = _eval_sum_hyper(f, i, b + 1) if res1 is None or res2 is None: return None (res1, cond1), (res2, cond2) = res1, res2 cond = And(cond1, cond2) if cond == False: return None return Piecewise((res1 - res2, cond), (old_sum, True)) if a is S.NegativeInfinity: res1 = _eval_sum_hyper(f.subs(i, -i), i, 1) res2 = _eval_sum_hyper(f, i, 0) if res1 is None or res2 is None: return None res1, cond1 = res1 res2, cond2 = res2 cond = And(cond1, cond2) if cond == False or cond.as_set() == S.EmptySet: return None return Piecewise((res1 + res2, cond), (old_sum, True)) # Now b == oo, a != -oo res = _eval_sum_hyper(f, i, a) if res is not None: r, c = res if c == False: if r.is_number: f = f.subs(i, Dummy('i', integer=True, positive=True) + a) if f.is_positive or f.is_zero: return S.Infinity elif f.is_negative: return S.NegativeInfinity return None return Piecewise(res, (old_sum, True)) def eval_sum_residue(f, i_a_b): r"""Compute the infinite summation with residues Notes ===== If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$, some infinite summations can be computed by the following residue evaluations. .. math:: \sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} = -\pi \sum_{\alpha|g(\alpha)=0} \text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha) .. math:: \sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} = -\pi \sum_{\alpha|g(\alpha)=0} \text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha) Examples ======== >>> from sympy import Sum, oo, Symbol >>> x = Symbol('x') Doubly infinite series of rational functions. >>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit() pi/tanh(pi) Doubly infinite alternating series of rational functions. >>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit() pi/sinh(pi) Infinite series of even rational functions. >>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit() 1/2 + pi/(2*tanh(pi)) Infinite series of alternating even rational functions. >>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit() pi/(2*sinh(pi)) + 1/2 This also have heuristics to transform arbitrarily shifted summand or arbitrarily shifted summation range to the canonical problem the formula can handle. >>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit() 1/2 + pi/(2*tanh(pi)) >>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit() 1/2 + pi/(2*tanh(pi)) >>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit() -1/2 + pi/(2*tanh(pi)) >>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit() -1 + pi/(2*tanh(pi)) References ========== .. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf .. [#] Asmar N.H., Grafakos L. (2018) Residue Theory. In: Complex Analysis with Applications. Undergraduate Texts in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-94063-2_5 """ i, a, b = i_a_b def is_even_function(numer, denom): """Test if the rational function is an even function""" numer_even = all(i % 2 == 0 for (i,) in numer.monoms()) denom_even = all(i % 2 == 0 for (i,) in denom.monoms()) numer_odd = all(i % 2 == 1 for (i,) in numer.monoms()) denom_odd = all(i % 2 == 1 for (i,) in denom.monoms()) return (numer_even and denom_even) or (numer_odd and denom_odd) def match_rational(f, i): numer, denom = f.as_numer_denom() try: (numer, denom), opt = parallel_poly_from_expr((numer, denom), i) except (PolificationFailed, PolynomialError): return None return numer, denom def get_poles(denom): roots = denom.sqf_part().all_roots() roots = sift(roots, lambda x: x.is_integer) if None in roots: return None int_roots, nonint_roots = roots[True], roots[False] return int_roots, nonint_roots def get_shift(denom): n = denom.degree(i) a = denom.coeff_monomial(i**n) b = denom.coeff_monomial(i**(n-1)) shift = - b / a / n return shift def get_residue_factor(numer, denom, alternating): if not alternating: residue_factor = (numer.as_expr() / denom.as_expr()) * cot(S.Pi * i) else: residue_factor = (numer.as_expr() / denom.as_expr()) * csc(S.Pi * i) return residue_factor # We don't know how to deal with symbolic constants in summand if f.free_symbols - set([i]): return None if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)): return None if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)): return None # Quick exit heuristic for the sums which doesn't have infinite range if a != S.NegativeInfinity and b != S.Infinity: return None match = match_rational(f, i) if match: alternating = False numer, denom = match else: match = match_rational(f / S.NegativeOne**i, i) if match: alternating = True numer, denom = match else: return None if denom.degree(i) - numer.degree(i) < 2: return None if (a, b) == (S.NegativeInfinity, S.Infinity): poles = get_poles(denom) if poles is None: return None int_roots, nonint_roots = poles if int_roots: return None residue_factor = get_residue_factor(numer, denom, alternating) residues = [residue(residue_factor, i, root) for root in nonint_roots] return -S.Pi * sum(residues) if not (a.is_finite and b is S.Infinity): return None if not is_even_function(numer, denom): # Try shifting summation and check if the summand can be made # and even function from the origin. # Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s)) shift = get_shift(denom) if not shift.is_Integer: return None if shift == 0: return None numer = numer.shift(shift) denom = denom.shift(shift) if not is_even_function(numer, denom): return None if alternating: f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr()) else: f = numer.as_expr() / denom.as_expr() return eval_sum_residue(f, (i, a-shift, b-shift)) poles = get_poles(denom) if poles is None: return None int_roots, nonint_roots = poles if int_roots: int_roots = [int(root) for root in int_roots] int_roots_max = max(int_roots) int_roots_min = min(int_roots) # Integer valued poles must be next to each other # and also symmetric from origin (Because the function is even) if not len(int_roots) == int_roots_max - int_roots_min + 1: return None # Check whether the summation indices contain poles if a <= max(int_roots): return None residue_factor = get_residue_factor(numer, denom, alternating) residues = [residue(residue_factor, i, root) for root in int_roots + nonint_roots] full_sum = -S.Pi * sum(residues) if not int_roots: # Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation # at the origin. half_sum = (full_sum + f.xreplace({i: 0})) / 2 # Add and subtract extraneous evaluations extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)] extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))] result = half_sum + sum(extraneous_neg) - sum(extraneous_pos) return result # Compute Sum(f, (i, min(poles) + 1, oo)) half_sum = full_sum / 2 # Subtract extraneous evaluations extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))] result = half_sum - sum(extraneous) return result def _eval_matrix_sum(expression): f = expression.function for n, limit in enumerate(expression.limits): i, a, b = limit dif = b - a if dif.is_Integer: if (dif < 0) == True: a, b = b + 1, a - 1 f = -f newf = eval_sum_direct(f, (i, a, b)) if newf is not None: return newf.doit() def _dummy_with_inherited_properties_concrete(limits): """ Return a Dummy symbol that inherits as many assumptions as possible from the provided symbol and limits. If the symbol already has all True assumption shared by the limits then return None. """ x, a, b = limits l = [a, b] assumptions_to_consider = ['extended_nonnegative', 'nonnegative', 'extended_nonpositive', 'nonpositive', 'extended_positive', 'positive', 'extended_negative', 'negative', 'integer', 'rational', 'finite', 'zero', 'real', 'extended_real'] assumptions_to_keep = {} assumptions_to_add = {} for assum in assumptions_to_consider: assum_true = x._assumptions.get(assum, None) if assum_true: assumptions_to_keep[assum] = True elif all(getattr(i, 'is_' + assum) for i in l): assumptions_to_add[assum] = True if assumptions_to_add: assumptions_to_keep.update(assumptions_to_add) return Dummy('d', **assumptions_to_keep)
640c55b35137f10963960933086b6de1e44bb1a70a82b2c8d2136fa96dd502c7
from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.decorators import call_highest_priority from sympy.core.parameters import global_parameters from sympy.core.function import AppliedUndef from sympy.core.mul import Mul from sympy.core.numbers import Integer from sympy.core.relational import Eq from sympy.core.singleton import S, Singleton from sympy.core.sorting import ordered from sympy.core.symbol import Dummy, Symbol, Wild from sympy.core.sympify import sympify from sympy.polys import lcm, factor from sympy.sets.sets import Interval, Intersection from sympy.simplify import simplify from sympy.tensor.indexed import Idx from sympy.utilities.iterables import flatten, is_sequence, iterable from sympy.core.function import expand ############################################################################### # SEQUENCES # ############################################################################### class SeqBase(Basic): """Base class for sequences""" is_commutative = True _op_priority = 15 @staticmethod def _start_key(expr): """Return start (if possible) else S.Infinity. adapted from Set._infimum_key """ try: start = expr.start except (NotImplementedError, AttributeError, ValueError): start = S.Infinity return start def _intersect_interval(self, other): """Returns start and stop. Takes intersection over the two intervals. """ interval = Intersection(self.interval, other.interval) return interval.inf, interval.sup @property def gen(self): """Returns the generator for the sequence""" raise NotImplementedError("(%s).gen" % self) @property def interval(self): """The interval on which the sequence is defined""" raise NotImplementedError("(%s).interval" % self) @property def start(self): """The starting point of the sequence. This point is included""" raise NotImplementedError("(%s).start" % self) @property def stop(self): """The ending point of the sequence. This point is included""" raise NotImplementedError("(%s).stop" % self) @property def length(self): """Length of the sequence""" raise NotImplementedError("(%s).length" % self) @property def variables(self): """Returns a tuple of variables that are bounded""" return () @property def free_symbols(self): """ This method returns the symbols in the object, excluding those that take on a specific value (i.e. the dummy symbols). Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n, m >>> SeqFormula(m*n**2, (n, 0, 5)).free_symbols {m} """ return ({j for i in self.args for j in i.free_symbols .difference(self.variables)}) @cacheit def coeff(self, pt): """Returns the coefficient at point pt""" if pt < self.start or pt > self.stop: raise IndexError("Index %s out of bounds %s" % (pt, self.interval)) return self._eval_coeff(pt) def _eval_coeff(self, pt): raise NotImplementedError("The _eval_coeff method should be added to" "%s to return coefficient so it is available" "when coeff calls it." % self.func) def _ith_point(self, i): """Returns the i'th point of a sequence. Explanation =========== If start point is negative infinity, point is returned from the end. Assumes the first point to be indexed zero. Examples ========= >>> from sympy import oo >>> from sympy.series.sequences import SeqPer bounded >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(0) -10 >>> SeqPer((1, 2, 3), (-10, 10))._ith_point(5) -5 End is at infinity >>> SeqPer((1, 2, 3), (0, oo))._ith_point(5) 5 Starts at negative infinity >>> SeqPer((1, 2, 3), (-oo, 0))._ith_point(5) -5 """ if self.start is S.NegativeInfinity: initial = self.stop else: initial = self.start if self.start is S.NegativeInfinity: step = -1 else: step = 1 return initial + i*step def _add(self, other): """ Should only be used internally. Explanation =========== self._add(other) returns a new, term-wise added sequence if self knows how to add with other, otherwise it returns ``None``. ``other`` should only be a sequence object. Used within :class:`SeqAdd` class. """ return None def _mul(self, other): """ Should only be used internally. Explanation =========== self._mul(other) returns a new, term-wise multiplied sequence if self knows how to multiply with other, otherwise it returns ``None``. ``other`` should only be a sequence object. Used within :class:`SeqMul` class. """ return None def coeff_mul(self, other): """ Should be used when ``other`` is not a sequence. Should be defined to define custom behaviour. Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2).coeff_mul(2) SeqFormula(2*n**2, (n, 0, oo)) Notes ===== '*' defines multiplication of sequences with sequences only. """ return Mul(self, other) def __add__(self, other): """Returns the term-wise addition of 'self' and 'other'. ``other`` should be a sequence. Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) + SeqFormula(n**3) SeqFormula(n**3 + n**2, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot add sequence and %s' % type(other)) return SeqAdd(self, other) @call_highest_priority('__add__') def __radd__(self, other): return self + other def __sub__(self, other): """Returns the term-wise subtraction of ``self`` and ``other``. ``other`` should be a sequence. Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) - (SeqFormula(n)) SeqFormula(n**2 - n, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot subtract sequence and %s' % type(other)) return SeqAdd(self, -other) @call_highest_priority('__sub__') def __rsub__(self, other): return (-self) + other def __neg__(self): """Negates the sequence. Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n >>> -SeqFormula(n**2) SeqFormula(-n**2, (n, 0, oo)) """ return self.coeff_mul(-1) def __mul__(self, other): """Returns the term-wise multiplication of 'self' and 'other'. ``other`` should be a sequence. For ``other`` not being a sequence see :func:`coeff_mul` method. Examples ======== >>> from sympy import SeqFormula >>> from sympy.abc import n >>> SeqFormula(n**2) * (SeqFormula(n)) SeqFormula(n**3, (n, 0, oo)) """ if not isinstance(other, SeqBase): raise TypeError('cannot multiply sequence and %s' % type(other)) return SeqMul(self, other) @call_highest_priority('__mul__') def __rmul__(self, other): return self * other def __iter__(self): for i in range(self.length): pt = self._ith_point(i) yield self.coeff(pt) def __getitem__(self, index): if isinstance(index, int): index = self._ith_point(index) return self.coeff(index) elif isinstance(index, slice): start, stop = index.start, index.stop if start is None: start = 0 if stop is None: stop = self.length return [self.coeff(self._ith_point(i)) for i in range(start, stop, index.step or 1)] def find_linear_recurrence(self,n,d=None,gfvar=None): r""" Finds the shortest linear recurrence that satisfies the first n terms of sequence of order `\leq` ``n/2`` if possible. If ``d`` is specified, find shortest linear recurrence of order `\leq` min(d, n/2) if possible. Returns list of coefficients ``[b(1), b(2), ...]`` corresponding to the recurrence relation ``x(n) = b(1)*x(n-1) + b(2)*x(n-2) + ...`` Returns ``[]`` if no recurrence is found. If gfvar is specified, also returns ordinary generating function as a function of gfvar. Examples ======== >>> from sympy import sequence, sqrt, oo, lucas >>> from sympy.abc import n, x, y >>> sequence(n**2).find_linear_recurrence(10, 2) [] >>> sequence(n**2).find_linear_recurrence(10) [3, -3, 1] >>> sequence(2**n).find_linear_recurrence(10) [2] >>> sequence(23*n**4+91*n**2).find_linear_recurrence(10) [5, -10, 10, -5, 1] >>> sequence(sqrt(5)*(((1 + sqrt(5))/2)**n - (-(1 + sqrt(5))/2)**(-n))/5).find_linear_recurrence(10) [1, 1] >>> sequence(x+y*(-2)**(-n), (n, 0, oo)).find_linear_recurrence(30) [1/2, 1/2] >>> sequence(3*5**n + 12).find_linear_recurrence(20,gfvar=x) ([6, -5], 3*(5 - 21*x)/((x - 1)*(5*x - 1))) >>> sequence(lucas(n)).find_linear_recurrence(15,gfvar=x) ([1, 1], (x - 2)/(x**2 + x - 1)) """ from sympy.matrices import Matrix x = [simplify(expand(t)) for t in self[:n]] lx = len(x) if d is None: r = lx//2 else: r = min(d,lx//2) coeffs = [] for l in range(1, r+1): l2 = 2*l mlist = [] for k in range(l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m.det() != 0: y = simplify(m.LUsolve(Matrix(x[l:l2]))) if lx == l2: coeffs = flatten(y[::-1]) break mlist = [] for k in range(l,lx-l): mlist.append(x[k:k+l]) m = Matrix(mlist) if m*y == Matrix(x[l2:]): coeffs = flatten(y[::-1]) break if gfvar is None: return coeffs else: l = len(coeffs) if l == 0: return [], None else: n, d = x[l-1]*gfvar**(l-1), 1 - coeffs[l-1]*gfvar**l for i in range(l-1): n += x[i]*gfvar**i for j in range(l-i-1): n -= coeffs[i]*x[j]*gfvar**(i+j+1) d -= coeffs[i]*gfvar**(i+1) return coeffs, simplify(factor(n)/factor(d)) class EmptySequence(SeqBase, metaclass=Singleton): """Represents an empty sequence. The empty sequence is also available as a singleton as ``S.EmptySequence``. Examples ======== >>> from sympy import EmptySequence, SeqPer >>> from sympy.abc import x >>> EmptySequence EmptySequence >>> SeqPer((1, 2), (x, 0, 10)) + EmptySequence SeqPer((1, 2), (x, 0, 10)) >>> SeqPer((1, 2)) * EmptySequence EmptySequence >>> EmptySequence.coeff_mul(-1) EmptySequence """ @property def interval(self): return S.EmptySet @property def length(self): return S.Zero def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" return self def __iter__(self): return iter([]) class SeqExpr(SeqBase): """Sequence expression class. Various sequences should inherit from this class. Examples ======== >>> from sympy.series.sequences import SeqExpr >>> from sympy.abc import x >>> from sympy.core.containers import Tuple >>> s = SeqExpr(Tuple(1, 2, 3), Tuple(x, 0, 10)) >>> s.gen (1, 2, 3) >>> s.interval Interval(0, 10) >>> s.length 11 See Also ======== sympy.series.sequences.SeqPer sympy.series.sequences.SeqFormula """ @property def gen(self): return self.args[0] @property def interval(self): return Interval(self.args[1][1], self.args[1][2]) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return self.stop - self.start + 1 @property def variables(self): return (self.args[1][0],) class SeqPer(SeqExpr): """ Represents a periodic sequence. The elements are repeated after a given period. Examples ======== >>> from sympy import SeqPer, oo >>> from sympy.abc import k >>> s = SeqPer((1, 2, 3), (0, 5)) >>> s.periodical (1, 2, 3) >>> s.period 3 For value at a particular point >>> s.coeff(3) 1 supports slicing >>> s[:] [1, 2, 3, 1, 2, 3] iterable >>> list(s) [1, 2, 3, 1, 2, 3] sequence starts from negative infinity >>> SeqPer((1, 2, 3), (-oo, 0))[0:6] [1, 2, 3, 1, 2, 3] Periodic formulas >>> SeqPer((k, k**2, k**3), (k, 0, oo))[0:6] [0, 1, 8, 3, 16, 125] See Also ======== sympy.series.sequences.SeqFormula """ def __new__(cls, periodical, limits=None): periodical = sympify(periodical) def _find_x(periodical): free = periodical.free_symbols if len(periodical.free_symbols) == 1: return free.pop() else: return Dummy('k') x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(periodical), 0, S.Infinity if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(periodical) start, stop = limits if not isinstance(x, (Symbol, Idx)) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) if start is S.NegativeInfinity and stop is S.Infinity: raise ValueError("Both the start and end value" "cannot be unbounded") limits = sympify((x, start, stop)) if is_sequence(periodical, Tuple): periodical = sympify(tuple(flatten(periodical))) else: raise ValueError("invalid period %s should be something " "like e.g (1, 2) " % periodical) if Interval(limits[1], limits[2]) is S.EmptySet: return S.EmptySequence return Basic.__new__(cls, periodical, limits) @property def period(self): return len(self.gen) @property def periodical(self): return self.gen def _eval_coeff(self, pt): if self.start is S.NegativeInfinity: idx = (self.stop - pt) % self.period else: idx = (pt - self.start) % self.period return self.periodical[idx].subs(self.variables[0], pt) def _add(self, other): """See docstring of SeqBase._add""" if isinstance(other, SeqPer): per1, lper1 = self.periodical, self.period per2, lper2 = other.periodical, other.period per_length = lcm(lper1, lper2) new_per = [] for x in range(per_length): ele1 = per1[x % lper1] ele2 = per2[x % lper2] new_per.append(ele1 + ele2) start, stop = self._intersect_interval(other) return SeqPer(new_per, (self.variables[0], start, stop)) def _mul(self, other): """See docstring of SeqBase._mul""" if isinstance(other, SeqPer): per1, lper1 = self.periodical, self.period per2, lper2 = other.periodical, other.period per_length = lcm(lper1, lper2) new_per = [] for x in range(per_length): ele1 = per1[x % lper1] ele2 = per2[x % lper2] new_per.append(ele1 * ele2) start, stop = self._intersect_interval(other) return SeqPer(new_per, (self.variables[0], start, stop)) def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" coeff = sympify(coeff) per = [x * coeff for x in self.periodical] return SeqPer(per, self.args[1]) class SeqFormula(SeqExpr): """ Represents sequence based on a formula. Elements are generated using a formula. Examples ======== >>> from sympy import SeqFormula, oo, Symbol >>> n = Symbol('n') >>> s = SeqFormula(n**2, (n, 0, 5)) >>> s.formula n**2 For value at a particular point >>> s.coeff(3) 9 supports slicing >>> s[:] [0, 1, 4, 9, 16, 25] iterable >>> list(s) [0, 1, 4, 9, 16, 25] sequence starts from negative infinity >>> SeqFormula(n**2, (-oo, 0))[0:6] [0, 1, 4, 9, 16, 25] See Also ======== sympy.series.sequences.SeqPer """ def __new__(cls, formula, limits=None): formula = sympify(formula) def _find_x(formula): free = formula.free_symbols if len(free) == 1: return free.pop() elif not free: return Dummy('k') else: raise ValueError( " specify dummy variables for %s. If the formula contains" " more than one free symbol, a dummy variable should be" " supplied explicitly e.g., SeqFormula(m*n**2, (n, 0, 5))" % formula) x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(formula), 0, S.Infinity if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(formula) start, stop = limits if not isinstance(x, (Symbol, Idx)) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) if start is S.NegativeInfinity and stop is S.Infinity: raise ValueError("Both the start and end value " "cannot be unbounded") limits = sympify((x, start, stop)) if Interval(limits[1], limits[2]) is S.EmptySet: return S.EmptySequence return Basic.__new__(cls, formula, limits) @property def formula(self): return self.gen def _eval_coeff(self, pt): d = self.variables[0] return self.formula.subs(d, pt) def _add(self, other): """See docstring of SeqBase._add""" if isinstance(other, SeqFormula): form1, v1 = self.formula, self.variables[0] form2, v2 = other.formula, other.variables[0] formula = form1 + form2.subs(v2, v1) start, stop = self._intersect_interval(other) return SeqFormula(formula, (v1, start, stop)) def _mul(self, other): """See docstring of SeqBase._mul""" if isinstance(other, SeqFormula): form1, v1 = self.formula, self.variables[0] form2, v2 = other.formula, other.variables[0] formula = form1 * form2.subs(v2, v1) start, stop = self._intersect_interval(other) return SeqFormula(formula, (v1, start, stop)) def coeff_mul(self, coeff): """See docstring of SeqBase.coeff_mul""" coeff = sympify(coeff) formula = self.formula * coeff return SeqFormula(formula, self.args[1]) def expand(self, *args, **kwargs): return SeqFormula(expand(self.formula, *args, **kwargs), self.args[1]) class RecursiveSeq(SeqBase): """ A finite degree recursive sequence. Explanation =========== That is, a sequence a(n) that depends on a fixed, finite number of its previous values. The general form is a(n) = f(a(n - 1), a(n - 2), ..., a(n - d)) for some fixed, positive integer d, where f is some function defined by a SymPy expression. Parameters ========== recurrence : SymPy expression defining recurrence This is *not* an equality, only the expression that the nth term is equal to. For example, if :code:`a(n) = f(a(n - 1), ..., a(n - d))`, then the expression should be :code:`f(a(n - 1), ..., a(n - d))`. yn : applied undefined function Represents the nth term of the sequence as e.g. :code:`y(n)` where :code:`y` is an undefined function and `n` is the sequence index. n : symbolic argument The name of the variable that the recurrence is in, e.g., :code:`n` if the recurrence function is :code:`y(n)`. initial : iterable with length equal to the degree of the recurrence The initial values of the recurrence. start : start value of sequence (inclusive) Examples ======== >>> from sympy import Function, symbols >>> from sympy.series.sequences import RecursiveSeq >>> y = Function("y") >>> n = symbols("n") >>> fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1]) >>> fib.coeff(3) # Value at a particular point 2 >>> fib[:6] # supports slicing [0, 1, 1, 2, 3, 5] >>> fib.recurrence # inspect recurrence Eq(y(n), y(n - 2) + y(n - 1)) >>> fib.degree # automatically determine degree 2 >>> for x in zip(range(10), fib): # supports iteration ... print(x) (0, 0) (1, 1) (2, 1) (3, 2) (4, 3) (5, 5) (6, 8) (7, 13) (8, 21) (9, 34) See Also ======== sympy.series.sequences.SeqFormula """ def __new__(cls, recurrence, yn, n, initial=None, start=0): if not isinstance(yn, AppliedUndef): raise TypeError("recurrence sequence must be an applied undefined function" ", found `{}`".format(yn)) if not isinstance(n, Basic) or not n.is_symbol: raise TypeError("recurrence variable must be a symbol" ", found `{}`".format(n)) if yn.args != (n,): raise TypeError("recurrence sequence does not match symbol") y = yn.func k = Wild("k", exclude=(n,)) degree = 0 # Find all applications of y in the recurrence and check that: # 1. The function y is only being used with a single argument; and # 2. All arguments are n + k for constant negative integers k. prev_ys = recurrence.find(y) for prev_y in prev_ys: if len(prev_y.args) != 1: raise TypeError("Recurrence should be in a single variable") shift = prev_y.args[0].match(n + k)[k] if not (shift.is_constant() and shift.is_integer and shift < 0): raise TypeError("Recurrence should have constant," " negative, integer shifts" " (found {})".format(prev_y)) if -shift > degree: degree = -shift if not initial: initial = [Dummy("c_{}".format(k)) for k in range(degree)] if len(initial) != degree: raise ValueError("Number of initial terms must equal degree") degree = Integer(degree) start = sympify(start) initial = Tuple(*(sympify(x) for x in initial)) seq = Basic.__new__(cls, recurrence, yn, n, initial, start) seq.cache = {y(start + k): init for k, init in enumerate(initial)} seq.degree = degree return seq @property def _recurrence(self): """Equation defining recurrence.""" return self.args[0] @property def recurrence(self): """Equation defining recurrence.""" return Eq(self.yn, self.args[0]) @property def yn(self): """Applied function representing the nth term""" return self.args[1] @property def y(self): """Undefined function for the nth term of the sequence""" return self.yn.func @property def n(self): """Sequence index symbol""" return self.args[2] @property def initial(self): """The initial values of the sequence""" return self.args[3] @property def start(self): """The starting point of the sequence. This point is included""" return self.args[4] @property def stop(self): """The ending point of the sequence. (oo)""" return S.Infinity @property def interval(self): """Interval on which sequence is defined.""" return (self.start, S.Infinity) def _eval_coeff(self, index): if index - self.start < len(self.cache): return self.cache[self.y(index)] for current in range(len(self.cache), index + 1): # Use xreplace over subs for performance. # See issue #10697. seq_index = self.start + current current_recurrence = self._recurrence.xreplace({self.n: seq_index}) new_term = current_recurrence.xreplace(self.cache) self.cache[self.y(seq_index)] = new_term return self.cache[self.y(self.start + current)] def __iter__(self): index = self.start while True: yield self._eval_coeff(index) index += 1 def sequence(seq, limits=None): """ Returns appropriate sequence object. Explanation =========== If ``seq`` is a SymPy sequence, returns :class:`SeqPer` object otherwise returns :class:`SeqFormula` object. Examples ======== >>> from sympy import sequence >>> from sympy.abc import n >>> sequence(n**2, (n, 0, 5)) SeqFormula(n**2, (n, 0, 5)) >>> sequence((1, 2, 3), (n, 0, 5)) SeqPer((1, 2, 3), (n, 0, 5)) See Also ======== sympy.series.sequences.SeqPer sympy.series.sequences.SeqFormula """ seq = sympify(seq) if is_sequence(seq, Tuple): return SeqPer(seq, limits) else: return SeqFormula(seq, limits) ############################################################################### # OPERATIONS # ############################################################################### class SeqExprOp(SeqBase): """ Base class for operations on sequences. Examples ======== >>> from sympy.series.sequences import SeqExprOp, sequence >>> from sympy.abc import n >>> s1 = sequence(n**2, (n, 0, 10)) >>> s2 = sequence((1, 2, 3), (n, 5, 10)) >>> s = SeqExprOp(s1, s2) >>> s.gen (n**2, (1, 2, 3)) >>> s.interval Interval(5, 10) >>> s.length 6 See Also ======== sympy.series.sequences.SeqAdd sympy.series.sequences.SeqMul """ @property def gen(self): """Generator for the sequence. returns a tuple of generators of all the argument sequences. """ return tuple(a.gen for a in self.args) @property def interval(self): """Sequence is defined on the intersection of all the intervals of respective sequences """ return Intersection(*(a.interval for a in self.args)) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def variables(self): """Cumulative of all the bound variables""" return tuple(flatten([a.variables for a in self.args])) @property def length(self): return self.stop - self.start + 1 class SeqAdd(SeqExprOp): """Represents term-wise addition of sequences. Rules: * The interval on which sequence is defined is the intersection of respective intervals of sequences. * Anything + :class:`EmptySequence` remains unchanged. * Other rules are defined in ``_add`` methods of sequence classes. Examples ======== >>> from sympy import EmptySequence, oo, SeqAdd, SeqPer, SeqFormula >>> from sympy.abc import n >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), EmptySequence) SeqPer((1, 2), (n, 0, oo)) >>> SeqAdd(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10))) EmptySequence >>> SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2, (n, 0, oo))) SeqAdd(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) >>> SeqAdd(SeqFormula(n**3), SeqFormula(n**2)) SeqFormula(n**3 + n**2, (n, 0, oo)) See Also ======== sympy.series.sequences.SeqMul """ def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs args = list(args) # adapted from sympy.sets.sets.Union def _flatten(arg): if isinstance(arg, SeqBase): if isinstance(arg, SeqAdd): return sum(map(_flatten, arg.args), []) else: return [arg] if iterable(arg): return sum(map(_flatten, arg), []) raise TypeError("Input must be Sequences or " " iterables of Sequences") args = _flatten(args) args = [a for a in args if a is not S.EmptySequence] # Addition of no sequences is EmptySequence if not args: return S.EmptySequence if Intersection(*(a.interval for a in args)) is S.EmptySet: return S.EmptySequence # reduce using known rules if evaluate: return SeqAdd.reduce(args) args = list(ordered(args, SeqBase._start_key)) return Basic.__new__(cls, *args) @staticmethod def reduce(args): """Simplify :class:`SeqAdd` using known rules. Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent. Notes ===== adapted from ``Union.reduce`` """ new_args = True while new_args: for id1, s in enumerate(args): new_args = False for id2, t in enumerate(args): if id1 == id2: continue new_seq = s._add(t) # This returns None if s does not know how to add # with t. Returns the newly added sequence otherwise if new_seq is not None: new_args = [a for a in args if a not in (s, t)] new_args.append(new_seq) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return SeqAdd(args, evaluate=False) def _eval_coeff(self, pt): """adds up the coefficients of all the sequences at point pt""" return sum(a.coeff(pt) for a in self.args) class SeqMul(SeqExprOp): r"""Represents term-wise multiplication of sequences. Explanation =========== Handles multiplication of sequences only. For multiplication with other objects see :func:`SeqBase.coeff_mul`. Rules: * The interval on which sequence is defined is the intersection of respective intervals of sequences. * Anything \* :class:`EmptySequence` returns :class:`EmptySequence`. * Other rules are defined in ``_mul`` methods of sequence classes. Examples ======== >>> from sympy import EmptySequence, oo, SeqMul, SeqPer, SeqFormula >>> from sympy.abc import n >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), EmptySequence) EmptySequence >>> SeqMul(SeqPer((1, 2), (n, 0, 5)), SeqPer((1, 2), (n, 6, 10))) EmptySequence >>> SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqFormula(n**2)) SeqMul(SeqFormula(n**2, (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) >>> SeqMul(SeqFormula(n**3), SeqFormula(n**2)) SeqFormula(n**5, (n, 0, oo)) See Also ======== sympy.series.sequences.SeqAdd """ def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs args = list(args) # adapted from sympy.sets.sets.Union def _flatten(arg): if isinstance(arg, SeqBase): if isinstance(arg, SeqMul): return sum(map(_flatten, arg.args), []) else: return [arg] elif iterable(arg): return sum(map(_flatten, arg), []) raise TypeError("Input must be Sequences or " " iterables of Sequences") args = _flatten(args) # Multiplication of no sequences is EmptySequence if not args: return S.EmptySequence if Intersection(*(a.interval for a in args)) is S.EmptySet: return S.EmptySequence # reduce using known rules if evaluate: return SeqMul.reduce(args) args = list(ordered(args, SeqBase._start_key)) return Basic.__new__(cls, *args) @staticmethod def reduce(args): """Simplify a :class:`SeqMul` using known rules. Explanation =========== Iterates through all pairs and ask the constituent sequences if they can simplify themselves with any other constituent. Notes ===== adapted from ``Union.reduce`` """ new_args = True while new_args: for id1, s in enumerate(args): new_args = False for id2, t in enumerate(args): if id1 == id2: continue new_seq = s._mul(t) # This returns None if s does not know how to multiply # with t. Returns the newly multiplied sequence otherwise if new_seq is not None: new_args = [a for a in args if a not in (s, t)] new_args.append(new_seq) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return SeqMul(args, evaluate=False) def _eval_coeff(self, pt): """multiplies the coefficients of all the sequences at point pt""" val = 1 for a in self.args: val *= a.coeff(pt) return val
306cc97e8dd7b75b38d42bc99f8e159a2c5c92650597a73bbc269c1296749cc3
"""Fourier Series""" from sympy.core.numbers import (oo, pi) from sympy.core.symbol import Wild from sympy.core.expr import Expr from sympy.core.add import Add from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.trigonometric import sin, cos, sinc from sympy.series.series_class import SeriesBase from sympy.series.sequences import SeqFormula from sympy.sets.sets import Interval from sympy.simplify.fu import TR2, TR1, TR10, sincos_to_sum from sympy.utilities.iterables import is_sequence def fourier_cos_seq(func, limits, n): """Returns the cos sequence in a Fourier series""" from sympy.integrals import integrate x, L = limits[0], limits[2] - limits[1] cos_term = cos(2*n*pi*x / L) formula = 2 * cos_term * integrate(func * cos_term, limits) / L a0 = formula.subs(n, S.Zero) / 2 return a0, SeqFormula(2 * cos_term * integrate(func * cos_term, limits) / L, (n, 1, oo)) def fourier_sin_seq(func, limits, n): """Returns the sin sequence in a Fourier series""" from sympy.integrals import integrate x, L = limits[0], limits[2] - limits[1] sin_term = sin(2*n*pi*x / L) return SeqFormula(2 * sin_term * integrate(func * sin_term, limits) / L, (n, 1, oo)) def _process_limits(func, limits): """ Limits should be of the form (x, start, stop). x should be a symbol. Both start and stop should be bounded. Explanation =========== * If x is not given, x is determined from func. * If limits is None. Limit of the form (x, -pi, pi) is returned. Examples ======== >>> from sympy.series.fourier import _process_limits as pari >>> from sympy.abc import x >>> pari(x**2, (x, -2, 2)) (x, -2, 2) >>> pari(x**2, (-2, 2)) (x, -2, 2) >>> pari(x**2, None) (x, -pi, pi) """ def _find_x(func): free = func.free_symbols if len(free) == 1: return free.pop() elif not free: return Dummy('k') else: raise ValueError( " specify dummy variables for %s. If the function contains" " more than one free symbol, a dummy variable should be" " supplied explicitly e.g. FourierSeries(m*n**2, (n, -pi, pi))" % func) x, start, stop = None, None, None if limits is None: x, start, stop = _find_x(func), -pi, pi if is_sequence(limits, Tuple): if len(limits) == 3: x, start, stop = limits elif len(limits) == 2: x = _find_x(func) start, stop = limits if not isinstance(x, Symbol) or start is None or stop is None: raise ValueError('Invalid limits given: %s' % str(limits)) unbounded = [S.NegativeInfinity, S.Infinity] if start in unbounded or stop in unbounded: raise ValueError("Both the start and end value should be bounded") return sympify((x, start, stop)) def finite_check(f, x, L): def check_fx(exprs, x): return x not in exprs.free_symbols def check_sincos(_expr, x, L): if isinstance(_expr, (sin, cos)): sincos_args = _expr.args[0] if sincos_args.match(a*(pi/L)*x + b) is not None: return True else: return False _expr = sincos_to_sum(TR2(TR1(f))) add_coeff = _expr.as_coeff_add() a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k != S.Zero, ]) b = Wild('b', properties=[lambda k: x not in k.free_symbols, ]) for s in add_coeff[1]: mul_coeffs = s.as_coeff_mul()[1] for t in mul_coeffs: if not (check_fx(t, x) or check_sincos(t, x, L)): return False, f return True, _expr class FourierSeries(SeriesBase): r"""Represents Fourier sine/cosine series. Explanation =========== This class only represents a fourier series. No computation is performed. For how to compute Fourier series, see the :func:`fourier_series` docstring. See Also ======== sympy.series.fourier.fourier_series """ def __new__(cls, *args): args = map(sympify, args) return Expr.__new__(cls, *args) @property def function(self): return self.args[0] @property def x(self): return self.args[1][0] @property def period(self): return (self.args[1][1], self.args[1][2]) @property def a0(self): return self.args[2][0] @property def an(self): return self.args[2][1] @property def bn(self): return self.args[2][2] @property def interval(self): return Interval(0, oo) @property def start(self): return self.interval.inf @property def stop(self): return self.interval.sup @property def length(self): return oo @property def L(self): return abs(self.period[1] - self.period[0]) / 2 def _eval_subs(self, old, new): x = self.x if old.has(x): return self def truncate(self, n=3): """ Return the first n nonzero terms of the series. If ``n`` is None return an iterator. Parameters ========== n : int or None Amount of non-zero terms in approximation or None. Returns ======= Expr or iterator : Approximation of function expanded into Fourier series. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x, (x, -pi, pi)) >>> s.truncate(4) 2*sin(x) - sin(2*x) + 2*sin(3*x)/3 - sin(4*x)/2 See Also ======== sympy.series.fourier.FourierSeries.sigma_approximation """ if n is None: return iter(self) terms = [] for t in self: if len(terms) == n: break if t is not S.Zero: terms.append(t) return Add(*terms) def sigma_approximation(self, n=3): r""" Return :math:`\sigma`-approximation of Fourier series with respect to order n. Explanation =========== Sigma approximation adjusts a Fourier summation to eliminate the Gibbs phenomenon which would otherwise occur at discontinuities. A sigma-approximated summation for a Fourier series of a T-periodical function can be written as .. math:: s(\theta) = \frac{1}{2} a_0 + \sum _{k=1}^{m-1} \operatorname{sinc} \Bigl( \frac{k}{m} \Bigr) \cdot \left[ a_k \cos \Bigl( \frac{2\pi k}{T} \theta \Bigr) + b_k \sin \Bigl( \frac{2\pi k}{T} \theta \Bigr) \right], where :math:`a_0, a_k, b_k, k=1,\ldots,{m-1}` are standard Fourier series coefficients and :math:`\operatorname{sinc} \Bigl( \frac{k}{m} \Bigr)` is a Lanczos :math:`\sigma` factor (expressed in terms of normalized :math:`\operatorname{sinc}` function). Parameters ========== n : int Highest order of the terms taken into account in approximation. Returns ======= Expr : Sigma approximation of function expanded into Fourier series. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x, (x, -pi, pi)) >>> s.sigma_approximation(4) 2*sin(x)*sinc(pi/4) - 2*sin(2*x)/pi + 2*sin(3*x)*sinc(3*pi/4)/3 See Also ======== sympy.series.fourier.FourierSeries.truncate Notes ===== The behaviour of :meth:`~sympy.series.fourier.FourierSeries.sigma_approximation` is different from :meth:`~sympy.series.fourier.FourierSeries.truncate` - it takes all nonzero terms of degree smaller than n, rather than first n nonzero ones. References ========== .. [1] https://en.wikipedia.org/wiki/Gibbs_phenomenon .. [2] https://en.wikipedia.org/wiki/Sigma_approximation """ terms = [sinc(pi * i / n) * t for i, t in enumerate(self[:n]) if t is not S.Zero] return Add(*terms) def shift(self, s): """ Shift the function by a term independent of x. Explanation =========== f(x) -> f(x) + s This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.shift(1).truncate() -4*cos(x) + cos(2*x) + 1 + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) a0 = self.a0 + s sfunc = self.function + s return self.func(sfunc, self.args[1], (a0, self.an, self.bn)) def shiftx(self, s): """ Shift x by a term independent of x. Explanation =========== f(x) -> f(x + s) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.shiftx(1).truncate() -4*cos(x + 1) + cos(2*x + 2) + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.subs(x, x + s) bn = self.bn.subs(x, x + s) sfunc = self.function.subs(x, x + s) return self.func(sfunc, self.args[1], (self.a0, an, bn)) def scale(self, s): """ Scale the function by a term independent of x. Explanation =========== f(x) -> s * f(x) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.scale(2).truncate() -8*cos(x) + 2*cos(2*x) + 2*pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.coeff_mul(s) bn = self.bn.coeff_mul(s) a0 = self.a0 * s sfunc = self.args[0] * s return self.func(sfunc, self.args[1], (a0, an, bn)) def scalex(self, s): """ Scale x by a term independent of x. Explanation =========== f(x) -> f(s*x) This is fast, if Fourier series of f(x) is already computed. Examples ======== >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> s = fourier_series(x**2, (x, -pi, pi)) >>> s.scalex(2).truncate() -4*cos(2*x) + cos(4*x) + pi**2/3 """ s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) an = self.an.subs(x, x * s) bn = self.bn.subs(x, x * s) sfunc = self.function.subs(x, x * s) return self.func(sfunc, self.args[1], (self.a0, an, bn)) def _eval_as_leading_term(self, x, logx=None, cdir=0): for t in self: if t is not S.Zero: return t def _eval_term(self, pt): if pt == 0: return self.a0 return self.an.coeff(pt) + self.bn.coeff(pt) def __neg__(self): return self.scale(-1) def __add__(self, other): if isinstance(other, FourierSeries): if self.period != other.period: raise ValueError("Both the series should have same periods") x, y = self.x, other.x function = self.function + other.function.subs(y, x) if self.x not in function.free_symbols: return function an = self.an + other.an bn = self.bn + other.bn a0 = self.a0 + other.a0 return self.func(function, self.args[1], (a0, an, bn)) return Add(self, other) def __sub__(self, other): return self.__add__(-other) class FiniteFourierSeries(FourierSeries): r"""Represents Finite Fourier sine/cosine series. For how to compute Fourier series, see the :func:`fourier_series` docstring. Parameters ========== f : Expr Expression for finding fourier_series limits : ( x, start, stop) x is the independent variable for the expression f (start, stop) is the period of the fourier series exprs: (a0, an, bn) or Expr a0 is the constant term a0 of the fourier series an is a dictionary of coefficients of cos terms an[k] = coefficient of cos(pi*(k/L)*x) bn is a dictionary of coefficients of sin terms bn[k] = coefficient of sin(pi*(k/L)*x) or exprs can be an expression to be converted to fourier form Methods ======= This class is an extension of FourierSeries class. Please refer to sympy.series.fourier.FourierSeries for further information. See Also ======== sympy.series.fourier.FourierSeries sympy.series.fourier.fourier_series """ def __new__(cls, f, limits, exprs): f = sympify(f) limits = sympify(limits) exprs = sympify(exprs) if not (isinstance(exprs, Tuple) and len(exprs) == 3): # exprs is not of form (a0, an, bn) # Converts the expression to fourier form c, e = exprs.as_coeff_add() rexpr = c + Add(*[TR10(i) for i in e]) a0, exp_ls = rexpr.expand(trig=False, power_base=False, power_exp=False, log=False).as_coeff_add() x = limits[0] L = abs(limits[2] - limits[1]) / 2 a = Wild('a', properties=[lambda k: k.is_Integer, lambda k: k is not S.Zero, ]) b = Wild('b', properties=[lambda k: x not in k.free_symbols, ]) an = dict() bn = dict() # separates the coefficients of sin and cos terms in dictionaries an, and bn for p in exp_ls: t = p.match(b * cos(a * (pi / L) * x)) q = p.match(b * sin(a * (pi / L) * x)) if t: an[t[a]] = t[b] + an.get(t[a], S.Zero) elif q: bn[q[a]] = q[b] + bn.get(q[a], S.Zero) else: a0 += p exprs = Tuple(a0, an, bn) return Expr.__new__(cls, f, limits, exprs) @property def interval(self): _length = 1 if self.a0 else 0 _length += max(set(self.an.keys()).union(set(self.bn.keys()))) + 1 return Interval(0, _length) @property def length(self): return self.stop - self.start def shiftx(self, s): s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) _expr = self.truncate().subs(x, x + s) sfunc = self.function.subs(x, x + s) return self.func(sfunc, self.args[1], _expr) def scale(self, s): s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) _expr = self.truncate() * s sfunc = self.function * s return self.func(sfunc, self.args[1], _expr) def scalex(self, s): s, x = sympify(s), self.x if x in s.free_symbols: raise ValueError("'%s' should be independent of %s" % (s, x)) _expr = self.truncate().subs(x, x * s) sfunc = self.function.subs(x, x * s) return self.func(sfunc, self.args[1], _expr) def _eval_term(self, pt): if pt == 0: return self.a0 _term = self.an.get(pt, S.Zero) * cos(pt * (pi / self.L) * self.x) \ + self.bn.get(pt, S.Zero) * sin(pt * (pi / self.L) * self.x) return _term def __add__(self, other): if isinstance(other, FourierSeries): return other.__add__(fourier_series(self.function, self.args[1],\ finite=False)) elif isinstance(other, FiniteFourierSeries): if self.period != other.period: raise ValueError("Both the series should have same periods") x, y = self.x, other.x function = self.function + other.function.subs(y, x) if self.x not in function.free_symbols: return function return fourier_series(function, limits=self.args[1]) def fourier_series(f, limits=None, finite=True): r"""Computes the Fourier trigonometric series expansion. Explanation =========== Fourier trigonometric series of $f(x)$ over the interval $(a, b)$ is defined as: .. math:: \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{2n \pi x}{L}) + b_n \sin(\frac{2n \pi x}{L})) where the coefficients are: .. math:: L = b - a .. math:: a_0 = \frac{2}{L} \int_{a}^{b}{f(x) dx} .. math:: a_n = \frac{2}{L} \int_{a}^{b}{f(x) \cos(\frac{2n \pi x}{L}) dx} .. math:: b_n = \frac{2}{L} \int_{a}^{b}{f(x) \sin(\frac{2n \pi x}{L}) dx} The condition whether the function $f(x)$ given should be periodic or not is more than necessary, because it is sufficient to consider the series to be converging to $f(x)$ only in the given interval, not throughout the whole real line. This also brings a lot of ease for the computation because you don't have to make $f(x)$ artificially periodic by wrapping it with piecewise, modulo operations, but you can shape the function to look like the desired periodic function only in the interval $(a, b)$, and the computed series will automatically become the series of the periodic version of $f(x)$. This property is illustrated in the examples section below. Parameters ========== limits : (sym, start, end), optional *sym* denotes the symbol the series is computed with respect to. *start* and *end* denotes the start and the end of the interval where the fourier series converges to the given function. Default range is specified as $-\pi$ and $\pi$. Returns ======= FourierSeries A symbolic object representing the Fourier trigonometric series. Examples ======== Computing the Fourier series of $f(x) = x^2$: >>> from sympy import fourier_series, pi >>> from sympy.abc import x >>> f = x**2 >>> s = fourier_series(f, (x, -pi, pi)) >>> s1 = s.truncate(n=3) >>> s1 -4*cos(x) + cos(2*x) + pi**2/3 Shifting of the Fourier series: >>> s.shift(1).truncate() -4*cos(x) + cos(2*x) + 1 + pi**2/3 >>> s.shiftx(1).truncate() -4*cos(x + 1) + cos(2*x + 2) + pi**2/3 Scaling of the Fourier series: >>> s.scale(2).truncate() -8*cos(x) + 2*cos(2*x) + 2*pi**2/3 >>> s.scalex(2).truncate() -4*cos(2*x) + cos(4*x) + pi**2/3 Computing the Fourier series of $f(x) = x$: This illustrates how truncating to the higher order gives better convergence. .. plot:: :context: reset :format: doctest :include-source: True >>> from sympy import fourier_series, pi, plot >>> from sympy.abc import x >>> f = x >>> s = fourier_series(f, (x, -pi, pi)) >>> s1 = s.truncate(n = 3) >>> s2 = s.truncate(n = 5) >>> s3 = s.truncate(n = 7) >>> p = plot(f, s1, s2, s3, (x, -pi, pi), show=False, legend=True) >>> p[0].line_color = (0, 0, 0) >>> p[0].label = 'x' >>> p[1].line_color = (0.7, 0.7, 0.7) >>> p[1].label = 'n=3' >>> p[2].line_color = (0.5, 0.5, 0.5) >>> p[2].label = 'n=5' >>> p[3].line_color = (0.3, 0.3, 0.3) >>> p[3].label = 'n=7' >>> p.show() This illustrates how the series converges to different sawtooth waves if the different ranges are specified. .. plot:: :context: close-figs :format: doctest :include-source: True >>> s1 = fourier_series(x, (x, -1, 1)).truncate(10) >>> s2 = fourier_series(x, (x, -pi, pi)).truncate(10) >>> s3 = fourier_series(x, (x, 0, 1)).truncate(10) >>> p = plot(x, s1, s2, s3, (x, -5, 5), show=False, legend=True) >>> p[0].line_color = (0, 0, 0) >>> p[0].label = 'x' >>> p[1].line_color = (0.7, 0.7, 0.7) >>> p[1].label = '[-1, 1]' >>> p[2].line_color = (0.5, 0.5, 0.5) >>> p[2].label = '[-pi, pi]' >>> p[3].line_color = (0.3, 0.3, 0.3) >>> p[3].label = '[0, 1]' >>> p.show() Notes ===== Computing Fourier series can be slow due to the integration required in computing an, bn. It is faster to compute Fourier series of a function by using shifting and scaling on an already computed Fourier series rather than computing again. e.g. If the Fourier series of ``x**2`` is known the Fourier series of ``x**2 - 1`` can be found by shifting by ``-1``. See Also ======== sympy.series.fourier.FourierSeries References ========== .. [1] https://mathworld.wolfram.com/FourierSeries.html """ f = sympify(f) limits = _process_limits(f, limits) x = limits[0] if x not in f.free_symbols: return f if finite: L = abs(limits[2] - limits[1]) / 2 is_finite, res_f = finite_check(f, x, L) if is_finite: return FiniteFourierSeries(f, limits, res_f) n = Dummy('n') center = (limits[1] + limits[2]) / 2 if center.is_zero: neg_f = f.subs(x, -x) if f == neg_f: a0, an = fourier_cos_seq(f, limits, n) bn = SeqFormula(0, (1, oo)) return FourierSeries(f, limits, (a0, an, bn)) elif f == -neg_f: a0 = S.Zero an = SeqFormula(0, (1, oo)) bn = fourier_sin_seq(f, limits, n) return FourierSeries(f, limits, (a0, an, bn)) a0, an = fourier_cos_seq(f, limits, n) bn = fourier_sin_seq(f, limits, n) return FourierSeries(f, limits, (a0, an, bn))