hash
stringlengths
64
64
content
stringlengths
0
1.51M
be73f124654306fd71a55252b3439506856c2e4181a1c358a8f22c63a9a7d657
""" AST nodes specific to Fortran. The functions defined in this module allows the user to express functions such as ``dsign`` as a SymPy function for symbolic manipulation. """ from sympy.codegen.ast import ( Attribute, CodeBlock, FunctionCall, Node, none, String, Token, _mk_Tuple, Variable ) from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.numbers import Float, Integer from sympy.core.sympify import sympify from sympy.logic import true, false from sympy.utilities.iterables import iterable pure = Attribute('pure') elemental = Attribute('elemental') # (all elemental procedures are also pure) intent_in = Attribute('intent_in') intent_out = Attribute('intent_out') intent_inout = Attribute('intent_inout') allocatable = Attribute('allocatable') class Program(Token): """ Represents a 'program' block in Fortran. Examples ======== >>> from sympy.codegen.ast import Print >>> from sympy.codegen.fnodes import Program >>> prog = Program('myprogram', [Print([42])]) >>> from sympy import fcode >>> print(fcode(prog, source_format='free')) program myprogram print *, 42 end program """ __slots__ = ('name', 'body') _construct_name = String _construct_body = staticmethod(lambda body: CodeBlock(*body)) class use_rename(Token): """ Represents a renaming in a use statement in Fortran. Examples ======== >>> from sympy.codegen.fnodes import use_rename, use >>> from sympy import fcode >>> ren = use_rename("thingy", "convolution2d") >>> print(fcode(ren, source_format='free')) thingy => convolution2d >>> full = use('signallib', only=['snr', ren]) >>> print(fcode(full, source_format='free')) use signallib, only: snr, thingy => convolution2d """ __slots__ = ('local', 'original') _construct_local = String _construct_original = String def _name(arg): if hasattr(arg, 'name'): return arg.name else: return String(arg) class use(Token): """ Represents a use statement in Fortran. Examples ======== >>> from sympy.codegen.fnodes import use >>> from sympy import fcode >>> fcode(use('signallib'), source_format='free') 'use signallib' >>> fcode(use('signallib', [('metric', 'snr')]), source_format='free') 'use signallib, metric => snr' >>> fcode(use('signallib', only=['snr', 'convolution2d']), source_format='free') 'use signallib, only: snr, convolution2d' """ __slots__ = ('namespace', 'rename', 'only') defaults = {'rename': none, 'only': none} _construct_namespace = staticmethod(_name) _construct_rename = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else use_rename(*arg) for arg in args])) _construct_only = staticmethod(lambda args: Tuple(*[arg if isinstance(arg, use_rename) else _name(arg) for arg in args])) class Module(Token): """ Represents a module in Fortran. Examples ======== >>> from sympy.codegen.fnodes import Module >>> from sympy import fcode >>> print(fcode(Module('signallib', ['implicit none'], []), source_format='free')) module signallib implicit none <BLANKLINE> contains <BLANKLINE> <BLANKLINE> end module """ __slots__ = ('name', 'declarations', 'definitions') defaults = {'declarations': Tuple()} _construct_name = String _construct_declarations = staticmethod(lambda arg: CodeBlock(*arg)) _construct_definitions = staticmethod(lambda arg: CodeBlock(*arg)) class Subroutine(Node): """ Represents a subroutine in Fortran. Examples ======== >>> from sympy import fcode, symbols >>> from sympy.codegen.ast import Print >>> from sympy.codegen.fnodes import Subroutine >>> x, y = symbols('x y', real=True) >>> sub = Subroutine('mysub', [x, y], [Print([x**2 + y**2, x*y])]) >>> print(fcode(sub, source_format='free', standard=2003)) subroutine mysub(x, y) real*8 :: x real*8 :: y print *, x**2 + y**2, x*y end subroutine """ __slots__ = ('name', 'parameters', 'body', 'attrs') _construct_name = String _construct_parameters = staticmethod(lambda params: Tuple(*map(Variable.deduced, params))) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class SubroutineCall(Token): """ Represents a call to a subroutine in Fortran. Examples ======== >>> from sympy.codegen.fnodes import SubroutineCall >>> from sympy import fcode >>> fcode(SubroutineCall('mysub', 'x y'.split())) ' call mysub(x, y)' """ __slots__ = ('name', 'subroutine_args') _construct_name = staticmethod(_name) _construct_subroutine_args = staticmethod(_mk_Tuple) class Do(Token): """ Represents a Do loop in in Fortran. Examples ======== >>> from sympy import fcode, symbols >>> from sympy.codegen.ast import aug_assign, Print >>> from sympy.codegen.fnodes import Do >>> i, n = symbols('i n', integer=True) >>> r = symbols('r', real=True) >>> body = [aug_assign(r, '+', 1/i), Print([i, r])] >>> do1 = Do(body, i, 1, n) >>> print(fcode(do1, source_format='free')) do i = 1, n r = r + 1d0/i print *, i, r end do >>> do2 = Do(body, i, 1, n, 2) >>> print(fcode(do2, source_format='free')) do i = 1, n, 2 r = r + 1d0/i print *, i, r end do """ __slots__ = ('body', 'counter', 'first', 'last', 'step', 'concurrent') defaults = {'step': Integer(1), 'concurrent': false} _construct_body = staticmethod(lambda body: CodeBlock(*body)) _construct_counter = staticmethod(sympify) _construct_first = staticmethod(sympify) _construct_last = staticmethod(sympify) _construct_step = staticmethod(sympify) _construct_concurrent = staticmethod(lambda arg: true if arg else false) class ArrayConstructor(Token): """ Represents an array constructor. Examples ======== >>> from sympy import fcode >>> from sympy.codegen.fnodes import ArrayConstructor >>> ac = ArrayConstructor([1, 2, 3]) >>> fcode(ac, standard=95, source_format='free') '(/1, 2, 3/)' >>> fcode(ac, standard=2003, source_format='free') '[1, 2, 3]' """ __slots__ = ('elements',) _construct_elements = staticmethod(_mk_Tuple) class ImpliedDoLoop(Token): """ Represents an implied do loop in Fortran. Examples ======== >>> from sympy import Symbol, fcode >>> from sympy.codegen.fnodes import ImpliedDoLoop, ArrayConstructor >>> i = Symbol('i', integer=True) >>> idl = ImpliedDoLoop(i**3, i, -3, 3, 2) # -27, -1, 1, 27 >>> ac = ArrayConstructor([-28, idl, 28]) # -28, -27, -1, 1, 27, 28 >>> fcode(ac, standard=2003, source_format='free') '[-28, (i**3, i = -3, 3, 2), 28]' """ __slots__ = ('expr', 'counter', 'first', 'last', 'step') defaults = {'step': Integer(1)} _construct_expr = staticmethod(sympify) _construct_counter = staticmethod(sympify) _construct_first = staticmethod(sympify) _construct_last = staticmethod(sympify) _construct_step = staticmethod(sympify) class Extent(Basic): """ Represents a dimension extent. Examples ======== >>> from sympy.codegen.fnodes import Extent >>> e = Extent(-3, 3) # -3, -2, -1, 0, 1, 2, 3 >>> from sympy import fcode >>> fcode(e, source_format='free') '-3:3' >>> from sympy.codegen.ast import Variable, real >>> from sympy.codegen.fnodes import dimension, intent_out >>> dim = dimension(e, e) >>> arr = Variable('x', real, attrs=[dim, intent_out]) >>> fcode(arr.as_Declaration(), source_format='free', standard=2003) 'real*8, dimension(-3:3, -3:3), intent(out) :: x' """ def __new__(cls, *args): if len(args) == 2: low, high = args return Basic.__new__(cls, sympify(low), sympify(high)) elif len(args) == 0 or (len(args) == 1 and args[0] in (':', None)): return Basic.__new__(cls) # assumed shape else: raise ValueError("Expected 0 or 2 args (or one argument == None or ':')") def _sympystr(self, printer): if len(self.args) == 0: return ':' return ":".join(str(arg) for arg in self.args) assumed_extent = Extent() # or Extent(':'), Extent(None) def dimension(*args): """ Creates a 'dimension' Attribute with (up to 7) extents. Examples ======== >>> from sympy import fcode >>> from sympy.codegen.fnodes import dimension, intent_in >>> dim = dimension('2', ':') # 2 rows, runtime determined number of columns >>> from sympy.codegen.ast import Variable, integer >>> arr = Variable('a', integer, attrs=[dim, intent_in]) >>> fcode(arr.as_Declaration(), source_format='free', standard=2003) 'integer*4, dimension(2, :), intent(in) :: a' """ if len(args) > 7: raise ValueError("Fortran only supports up to 7 dimensional arrays") parameters = [] for arg in args: if isinstance(arg, Extent): parameters.append(arg) elif isinstance(arg, str): if arg == ':': parameters.append(Extent()) else: parameters.append(String(arg)) elif iterable(arg): parameters.append(Extent(*arg)) else: parameters.append(sympify(arg)) if len(args) == 0: raise ValueError("Need at least one dimension") return Attribute('dimension', parameters) assumed_size = dimension('*') def array(symbol, dim, intent=None, *, attrs=(), value=None, type=None): """ Convenience function for creating a Variable instance for a Fortran array. Parameters ========== symbol : symbol dim : Attribute or iterable If dim is an ``Attribute`` it need to have the name 'dimension'. If it is not an ``Attribute``, then it is passsed to :func:`dimension` as ``*dim`` intent : str One of: 'in', 'out', 'inout' or None \\*\\*kwargs: Keyword arguments for ``Variable`` ('type' & 'value') Examples ======== >>> from sympy import fcode >>> from sympy.codegen.ast import integer, real >>> from sympy.codegen.fnodes import array >>> arr = array('a', '*', 'in', type=integer) >>> print(fcode(arr.as_Declaration(), source_format='free', standard=2003)) integer*4, dimension(*), intent(in) :: a >>> x = array('x', [3, ':', ':'], intent='out', type=real) >>> print(fcode(x.as_Declaration(value=1), source_format='free', standard=2003)) real*8, dimension(3, :, :), intent(out) :: x = 1 """ if isinstance(dim, Attribute): if str(dim.name) != 'dimension': raise ValueError("Got an unexpected Attribute argument as dim: %s" % str(dim)) else: dim = dimension(*dim) attrs = list(attrs) + [dim] if intent is not None: if intent not in (intent_in, intent_out, intent_inout): intent = {'in': intent_in, 'out': intent_out, 'inout': intent_inout}[intent] attrs.append(intent) if type is None: return Variable.deduced(symbol, value=value, attrs=attrs) else: return Variable(symbol, type, value=value, attrs=attrs) def _printable(arg): return String(arg) if isinstance(arg, str) else sympify(arg) def allocated(array): """ Creates an AST node for a function call to Fortran's "allocated(...)" Examples ======== >>> from sympy import fcode >>> from sympy.codegen.fnodes import allocated >>> alloc = allocated('x') >>> fcode(alloc, source_format='free') 'allocated(x)' """ return FunctionCall('allocated', [_printable(array)]) def lbound(array, dim=None, kind=None): """ Creates an AST node for a function call to Fortran's "lbound(...)" Parameters ========== array : Symbol or String dim : expr kind : expr Examples ======== >>> from sympy import fcode >>> from sympy.codegen.fnodes import lbound >>> lb = lbound('arr', dim=2) >>> fcode(lb, source_format='free') 'lbound(arr, 2)' """ return FunctionCall( 'lbound', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def ubound(array, dim=None, kind=None): return FunctionCall( 'ubound', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def shape(source, kind=None): """ Creates an AST node for a function call to Fortran's "shape(...)" Parameters ========== source : Symbol or String kind : expr Examples ======== >>> from sympy import fcode >>> from sympy.codegen.fnodes import shape >>> shp = shape('x') >>> fcode(shp, source_format='free') 'shape(x)' """ return FunctionCall( 'shape', [_printable(source)] + ([_printable(kind)] if kind else []) ) def size(array, dim=None, kind=None): """ Creates an AST node for a function call to Fortran's "size(...)" Examples ======== >>> from sympy import fcode, Symbol >>> from sympy.codegen.ast import FunctionDefinition, real, Return >>> from sympy.codegen.fnodes import array, sum_, size >>> a = Symbol('a', real=True) >>> body = [Return((sum_(a**2)/size(a))**.5)] >>> arr = array(a, dim=[':'], intent='in') >>> fd = FunctionDefinition(real, 'rms', [arr], body) >>> print(fcode(fd, source_format='free', standard=2003)) real*8 function rms(a) real*8, dimension(:), intent(in) :: a rms = sqrt(sum(a**2)*1d0/size(a)) end function """ return FunctionCall( 'size', [_printable(array)] + ([_printable(dim)] if dim else []) + ([_printable(kind)] if kind else []) ) def reshape(source, shape, pad=None, order=None): """ Creates an AST node for a function call to Fortran's "reshape(...)" Parameters ========== source : Symbol or String shape : ArrayExpr """ return FunctionCall( 'reshape', [_printable(source), _printable(shape)] + ([_printable(pad)] if pad else []) + ([_printable(order)] if pad else []) ) def bind_C(name=None): """ Creates an Attribute ``bind_C`` with a name. Parameters ========== name : str Examples ======== >>> from sympy import fcode, Symbol >>> from sympy.codegen.ast import FunctionDefinition, real, Return >>> from sympy.codegen.fnodes import array, sum_, bind_C >>> a = Symbol('a', real=True) >>> s = Symbol('s', integer=True) >>> arr = array(a, dim=[s], intent='in') >>> body = [Return((sum_(a**2)/s)**.5)] >>> fd = FunctionDefinition(real, 'rms', [arr, s], body, attrs=[bind_C('rms')]) >>> print(fcode(fd, source_format='free', standard=2003)) real*8 function rms(a, s) bind(C, name="rms") real*8, dimension(s), intent(in) :: a integer*4 :: s rms = sqrt(sum(a**2)/s) end function """ return Attribute('bind_C', [String(name)] if name else []) class GoTo(Token): """ Represents a goto statement in Fortran Examples ======== >>> from sympy.codegen.fnodes import GoTo >>> go = GoTo([10, 20, 30], 'i') >>> from sympy import fcode >>> fcode(go, source_format='free') 'go to (10, 20, 30), i' """ __slots__ = ('labels', 'expr') defaults = {'expr': none} _construct_labels = staticmethod(_mk_Tuple) _construct_expr = staticmethod(sympify) class FortranReturn(Token): """ AST node explicitly mapped to a fortran "return". Explanation =========== Because a return statement in fortran is different from C, and in order to aid reuse of our codegen ASTs the ordinary ``.codegen.ast.Return`` is interpreted as assignment to the result variable of the function. If one for some reason needs to generate a fortran RETURN statement, this node should be used. Examples ======== >>> from sympy.codegen.fnodes import FortranReturn >>> from sympy import fcode >>> fcode(FortranReturn('x')) ' return x' """ __slots__ = ('return_value',) defaults = {'return_value': none} _construct_return_value = staticmethod(sympify) class FFunction(Function): _required_standard = 77 def _fcode(self, printer): name = self.__class__.__name__ if printer._settings['standard'] < self._required_standard: raise NotImplementedError("%s requires Fortran %d or newer" % (name, self._required_standard)) return '{}({})'.format(name, ', '.join(map(printer._print, self.args))) class F95Function(FFunction): _required_standard = 95 class isign(FFunction): """ Fortran sign intrinsic for integer arguments. """ nargs = 2 class dsign(FFunction): """ Fortran sign intrinsic for double precision arguments. """ nargs = 2 class cmplx(FFunction): """ Fortran complex conversion function. """ nargs = 2 # may be extended to (2, 3) at a later point class kind(FFunction): """ Fortran kind function. """ nargs = 1 class merge(F95Function): """ Fortran merge function """ nargs = 3 class _literal(Float): _token = None # type: str _decimals = None # type: int def _fcode(self, printer, *args, **kwargs): mantissa, sgnd_ex = ('%.{}e'.format(self._decimals) % self).split('e') mantissa = mantissa.strip('0').rstrip('.') ex_sgn, ex_num = sgnd_ex[0], sgnd_ex[1:].lstrip('0') ex_sgn = '' if ex_sgn == '+' else ex_sgn return (mantissa or '0') + self._token + ex_sgn + (ex_num or '0') class literal_sp(_literal): """ Fortran single precision real literal """ _token = 'e' _decimals = 9 class literal_dp(_literal): """ Fortran double precision real literal """ _token = 'd' _decimals = 17 class sum_(Token, Expr): __slots__ = ('array', 'dim', 'mask') defaults = {'dim': none, 'mask': none} _construct_array = staticmethod(sympify) _construct_dim = staticmethod(sympify) class product_(Token, Expr): __slots__ = ('array', 'dim', 'mask') defaults = {'dim': none, 'mask': none} _construct_array = staticmethod(sympify) _construct_dim = staticmethod(sympify)
8e5b43d385cb403e02b68e8c2edd2e9c360ca65245e8c2d11786b3d071dbc040
from .abstract_nodes import List as AbstractList class List(AbstractList): pass
9d50e61276ffcb62704f537178184d948707741927049245b53e0a202fb8bd5e
""" Types used to represent a full function/module as an Abstract Syntax Tree. Most types are small, and are merely used as tokens in the AST. A tree diagram has been included below to illustrate the relationships between the AST types. AST Type Tree ------------- :: *Basic* | | CodegenAST | |--->AssignmentBase | |--->Assignment | |--->AugmentedAssignment | |--->AddAugmentedAssignment | |--->SubAugmentedAssignment | |--->MulAugmentedAssignment | |--->DivAugmentedAssignment | |--->ModAugmentedAssignment | |--->CodeBlock | | |--->Token |--->Attribute |--->For |--->String | |--->QuotedString | |--->Comment |--->Type | |--->IntBaseType | | |--->_SizedIntType | | |--->SignedIntType | | |--->UnsignedIntType | |--->FloatBaseType | |--->FloatType | |--->ComplexBaseType | |--->ComplexType |--->Node | |--->Variable | | |---> Pointer | |--->FunctionPrototype | |--->FunctionDefinition |--->Element |--->Declaration |--->While |--->Scope |--->Stream |--->Print |--->FunctionCall |--->BreakToken |--->ContinueToken |--->NoneToken |--->Return Predefined types ---------------- A number of ``Type`` instances are provided in the ``sympy.codegen.ast`` module for convenience. Perhaps the two most common ones for code-generation (of numeric codes) are ``float32`` and ``float64`` (known as single and double precision respectively). There are also precision generic versions of Types (for which the codeprinters selects the underlying data type at time of printing): ``real``, ``integer``, ``complex_``, ``bool_``. The other ``Type`` instances defined are: - ``intc``: Integer type used by C's "int". - ``intp``: Integer type used by C's "unsigned". - ``int8``, ``int16``, ``int32``, ``int64``: n-bit integers. - ``uint8``, ``uint16``, ``uint32``, ``uint64``: n-bit unsigned integers. - ``float80``: known as "extended precision" on modern x86/amd64 hardware. - ``complex64``: Complex number represented by two ``float32`` numbers - ``complex128``: Complex number represented by two ``float64`` numbers Using the nodes --------------- It is possible to construct simple algorithms using the AST nodes. Let's construct a loop applying Newton's method:: >>> from sympy import symbols, cos >>> from sympy.codegen.ast import While, Assignment, aug_assign, Print >>> t, dx, x = symbols('tol delta val') >>> expr = cos(x) - x**3 >>> whl = While(abs(dx) > t, [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx), ... Print([x]) ... ]) >>> from sympy import pycode >>> py_str = pycode(whl) >>> print(py_str) while (abs(delta) > tol): delta = (val**3 - math.cos(val))/(-3*val**2 - math.sin(val)) val += delta print(val) >>> import math >>> tol, val, delta = 1e-5, 0.5, float('inf') >>> exec(py_str) 1.1121416371 0.909672693737 0.867263818209 0.865477135298 0.865474033111 >>> print('%3.1g' % (math.cos(val) - val**3)) -3e-11 If we want to generate Fortran code for the same while loop we simple call ``fcode``:: >>> from sympy import fcode >>> print(fcode(whl, standard=2003, source_format='free')) do while (abs(delta) > tol) delta = (val**3 - cos(val))/(-3*val**2 - sin(val)) val = val + delta print *, val end do There is a function constructing a loop (or a complete function) like this in :mod:`sympy.codegen.algorithms`. """ from typing import Any, Dict as tDict, List from collections import defaultdict from sympy.core.relational import (Ge, Gt, Le, Lt) from sympy.core import Symbol, Tuple, Dummy from sympy.core.basic import Basic from sympy.core.expr import Expr, Atom from sympy.core.numbers import Float, Integer, oo from sympy.core.sympify import _sympify, sympify, SympifyError from sympy.utilities.iterables import (iterable, topological_sort, numbered_symbols, filter_symbols) def _mk_Tuple(args): """ Create a SymPy Tuple object from an iterable, converting Python strings to AST strings. Parameters ========== args: iterable Arguments to :class:`sympy.Tuple`. Returns ======= sympy.Tuple """ args = [String(arg) if isinstance(arg, str) else arg for arg in args] return Tuple(*args) class CodegenAST(Basic): pass class Token(CodegenAST): """ Base class for the AST types. Explanation =========== Defining fields are set in ``__slots__``. Attributes (defined in __slots__) are only allowed to contain instances of Basic (unless atomic, see ``String``). The arguments to ``__new__()`` correspond to the attributes in the order defined in ``__slots__`. The ``defaults`` class attribute is a dictionary mapping attribute names to their default values. Subclasses should not need to override the ``__new__()`` method. They may define a class or static method named ``_construct_<attr>`` for each attribute to process the value passed to ``__new__()``. Attributes listed in the class attribute ``not_in_args`` are not passed to :class:`~.Basic`. """ __slots__ = () defaults = {} # type: tDict[str, Any] not_in_args = [] # type: List[str] indented_args = ['body'] @property def is_Atom(self): return len(self.__slots__) == 0 @classmethod def _get_constructor(cls, attr): """ Get the constructor function for an attribute by name. """ return getattr(cls, '_construct_%s' % attr, lambda x: x) @classmethod def _construct(cls, attr, arg): """ Construct an attribute value from argument passed to ``__new__()``. """ # arg may be ``NoneToken()``, so comparation is done using == instead of ``is`` operator if arg == None: return cls.defaults.get(attr, none) else: if isinstance(arg, Dummy): # SymPy's replace uses Dummy instances return arg else: return cls._get_constructor(attr)(arg) def __new__(cls, *args, **kwargs): # Pass through existing instances when given as sole argument if len(args) == 1 and not kwargs and isinstance(args[0], cls): return args[0] if len(args) > len(cls.__slots__): raise ValueError("Too many arguments (%d), expected at most %d" % (len(args), len(cls.__slots__))) attrvals = [] # Process positional arguments for attrname, argval in zip(cls.__slots__, args): if attrname in kwargs: raise TypeError('Got multiple values for attribute %r' % attrname) attrvals.append(cls._construct(attrname, argval)) # Process keyword arguments for attrname in cls.__slots__[len(args):]: if attrname in kwargs: argval = kwargs.pop(attrname) elif attrname in cls.defaults: argval = cls.defaults[attrname] else: raise TypeError('No value for %r given and attribute has no default' % attrname) attrvals.append(cls._construct(attrname, argval)) if kwargs: raise ValueError("Unknown keyword arguments: %s" % ' '.join(kwargs)) # Parent constructor basic_args = [ val for attr, val in zip(cls.__slots__, attrvals) if attr not in cls.not_in_args ] obj = CodegenAST.__new__(cls, *basic_args) # Set attributes for attr, arg in zip(cls.__slots__, attrvals): setattr(obj, attr, arg) return obj def __eq__(self, other): if not isinstance(other, self.__class__): return False for attr in self.__slots__: if getattr(self, attr) != getattr(other, attr): return False return True def _hashable_content(self): return tuple([getattr(self, attr) for attr in self.__slots__]) def __hash__(self): return super().__hash__() def _joiner(self, k, indent_level): return (',\n' + ' '*indent_level) if k in self.indented_args else ', ' def _indented(self, printer, k, v, *args, **kwargs): il = printer._context['indent_level'] def _print(arg): if isinstance(arg, Token): return printer._print(arg, *args, joiner=self._joiner(k, il), **kwargs) else: return printer._print(arg, *args, **kwargs) if isinstance(v, Tuple): joined = self._joiner(k, il).join([_print(arg) for arg in v.args]) if k in self.indented_args: return '(\n' + ' '*il + joined + ',\n' + ' '*(il - 4) + ')' else: return ('({0},)' if len(v.args) == 1 else '({0})').format(joined) else: return _print(v) def _sympyrepr(self, printer, *args, joiner=', ', **kwargs): from sympy.printing.printer import printer_context exclude = kwargs.get('exclude', ()) values = [getattr(self, k) for k in self.__slots__] indent_level = printer._context.get('indent_level', 0) arg_reprs = [] for i, (attr, value) in enumerate(zip(self.__slots__, values)): if attr in exclude: continue # Skip attributes which have the default value if attr in self.defaults and value == self.defaults[attr]: continue ilvl = indent_level + 4 if attr in self.indented_args else 0 with printer_context(printer, indent_level=ilvl): indented = self._indented(printer, attr, value, *args, **kwargs) arg_reprs.append(('{1}' if i == 0 else '{0}={1}').format(attr, indented.lstrip())) return "{}({})".format(self.__class__.__name__, joiner.join(arg_reprs)) _sympystr = _sympyrepr def __repr__(self): # sympy.core.Basic.__repr__ uses sstr from sympy.printing import srepr return srepr(self) def kwargs(self, exclude=(), apply=None): """ Get instance's attributes as dict of keyword arguments. Parameters ========== exclude : collection of str Collection of keywords to exclude. apply : callable, optional Function to apply to all values. """ kwargs = {k: getattr(self, k) for k in self.__slots__ if k not in exclude} if apply is not None: return {k: apply(v) for k, v in kwargs.items()} else: return kwargs class BreakToken(Token): """ Represents 'break' in C/Python ('exit' in Fortran). Use the premade instance ``break_`` or instantiate manually. Examples ======== >>> from sympy import ccode, fcode >>> from sympy.codegen.ast import break_ >>> ccode(break_) 'break' >>> fcode(break_, source_format='free') 'exit' """ break_ = BreakToken() class ContinueToken(Token): """ Represents 'continue' in C/Python ('cycle' in Fortran) Use the premade instance ``continue_`` or instantiate manually. Examples ======== >>> from sympy import ccode, fcode >>> from sympy.codegen.ast import continue_ >>> ccode(continue_) 'continue' >>> fcode(continue_, source_format='free') 'cycle' """ continue_ = ContinueToken() class NoneToken(Token): """ The AST equivalence of Python's NoneType The corresponding instance of Python's ``None`` is ``none``. Examples ======== >>> from sympy.codegen.ast import none, Variable >>> from sympy import pycode >>> print(pycode(Variable('x').as_Declaration(value=none))) x = None """ def __eq__(self, other): return other is None or isinstance(other, NoneToken) def _hashable_content(self): return () def __hash__(self): return super().__hash__() none = NoneToken() class AssignmentBase(CodegenAST): """ Abstract base class for Assignment and AugmentedAssignment. Attributes: =========== op : str Symbol for assignment operator, e.g. "=", "+=", etc. """ def __new__(cls, lhs, rhs): lhs = _sympify(lhs) rhs = _sympify(rhs) cls._check_args(lhs, rhs) return super().__new__(cls, lhs, rhs) @property def lhs(self): return self.args[0] @property def rhs(self): return self.args[1] @classmethod def _check_args(cls, lhs, rhs): """ Check arguments to __new__ and raise exception if any problems found. Derived classes may wish to override this. """ from sympy.matrices.expressions.matexpr import ( MatrixElement, MatrixSymbol) from sympy.tensor.indexed import Indexed # Tuple of things that can be on the lhs of an assignment assignable = (Symbol, MatrixSymbol, MatrixElement, Indexed, Element, Variable) if not isinstance(lhs, assignable): raise TypeError("Cannot assign to lhs of type %s." % type(lhs)) # Indexed types implement shape, but don't define it until later. This # causes issues in assignment validation. For now, matrices are defined # as anything with a shape that is not an Indexed lhs_is_mat = hasattr(lhs, 'shape') and not isinstance(lhs, Indexed) rhs_is_mat = hasattr(rhs, 'shape') and not isinstance(rhs, Indexed) # If lhs and rhs have same structure, then this assignment is ok if lhs_is_mat: if not rhs_is_mat: raise ValueError("Cannot assign a scalar to a matrix.") elif lhs.shape != rhs.shape: raise ValueError("Dimensions of lhs and rhs do not align.") elif rhs_is_mat and not lhs_is_mat: raise ValueError("Cannot assign a matrix to a scalar.") class Assignment(AssignmentBase): """ Represents variable assignment for code generation. Parameters ========== lhs : Expr SymPy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. rhs : Expr SymPy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols, MatrixSymbol, Matrix >>> from sympy.codegen.ast import Assignment >>> x, y, z = symbols('x, y, z') >>> Assignment(x, y) Assignment(x, y) >>> Assignment(x, 0) Assignment(x, 0) >>> A = MatrixSymbol('A', 1, 3) >>> mat = Matrix([x, y, z]).T >>> Assignment(A, mat) Assignment(A, Matrix([[x, y, z]])) >>> Assignment(A[0, 1], x) Assignment(A[0, 1], x) """ op = ':=' class AugmentedAssignment(AssignmentBase): """ Base class for augmented assignments. Attributes: =========== binop : str Symbol for binary operation being applied in the assignment, such as "+", "*", etc. """ binop = None # type: str @property def op(self): return self.binop + '=' class AddAugmentedAssignment(AugmentedAssignment): binop = '+' class SubAugmentedAssignment(AugmentedAssignment): binop = '-' class MulAugmentedAssignment(AugmentedAssignment): binop = '*' class DivAugmentedAssignment(AugmentedAssignment): binop = '/' class ModAugmentedAssignment(AugmentedAssignment): binop = '%' # Mapping from binary op strings to AugmentedAssignment subclasses augassign_classes = { cls.binop: cls for cls in [ AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment ] } def aug_assign(lhs, op, rhs): """ Create 'lhs op= rhs'. Explanation =========== Represents augmented variable assignment for code generation. This is a convenience function. You can also use the AugmentedAssignment classes directly, like AddAugmentedAssignment(x, y). Parameters ========== lhs : Expr SymPy object representing the lhs of the expression. These should be singular objects, such as one would use in writing code. Notable types include Symbol, MatrixSymbol, MatrixElement, and Indexed. Types that subclass these types are also supported. op : str Operator (+, -, /, \\*, %). rhs : Expr SymPy object representing the rhs of the expression. This can be any type, provided its shape corresponds to that of the lhs. For example, a Matrix type can be assigned to MatrixSymbol, but not to Symbol, as the dimensions will not align. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import aug_assign >>> x, y = symbols('x, y') >>> aug_assign(x, '+', y) AddAugmentedAssignment(x, y) """ if op not in augassign_classes: raise ValueError("Unrecognized operator %s" % op) return augassign_classes[op](lhs, rhs) class CodeBlock(CodegenAST): """ Represents a block of code. Explanation =========== For now only assignments are supported. This restriction will be lifted in the future. Useful attributes on this object are: ``left_hand_sides``: Tuple of left-hand sides of assignments, in order. ``left_hand_sides``: Tuple of right-hand sides of assignments, in order. ``free_symbols``: Free symbols of the expressions in the right-hand sides which do not appear in the left-hand side of an assignment. Useful methods on this object are: ``topological_sort``: Class method. Return a CodeBlock with assignments sorted so that variables are assigned before they are used. ``cse``: Return a new CodeBlock with common subexpressions eliminated and pulled out as assignments. Examples ======== >>> from sympy import symbols, ccode >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y = symbols('x y') >>> c = CodeBlock(Assignment(x, 1), Assignment(y, x + 1)) >>> print(ccode(c)) x = 1; y = x + 1; """ def __new__(cls, *args): left_hand_sides = [] right_hand_sides = [] for i in args: if isinstance(i, Assignment): lhs, rhs = i.args left_hand_sides.append(lhs) right_hand_sides.append(rhs) obj = CodegenAST.__new__(cls, *args) obj.left_hand_sides = Tuple(*left_hand_sides) obj.right_hand_sides = Tuple(*right_hand_sides) return obj def __iter__(self): return iter(self.args) def _sympyrepr(self, printer, *args, **kwargs): il = printer._context.get('indent_level', 0) joiner = ',\n' + ' '*il joined = joiner.join(map(printer._print, self.args)) return ('{}(\n'.format(' '*(il-4) + self.__class__.__name__,) + ' '*il + joined + '\n' + ' '*(il - 4) + ')') _sympystr = _sympyrepr @property def free_symbols(self): return super().free_symbols - set(self.left_hand_sides) @classmethod def topological_sort(cls, assignments): """ Return a CodeBlock with topologically sorted assignments so that variables are assigned before they are used. Examples ======== The existing order of assignments is preserved as much as possible. This function assumes that variables are assigned to only once. This is a class constructor so that the default constructor for CodeBlock can error when variables are used before they are assigned. Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> assignments = [ ... Assignment(x, y + z), ... Assignment(y, z + 1), ... Assignment(z, 2), ... ] >>> CodeBlock.topological_sort(assignments) CodeBlock( Assignment(z, 2), Assignment(y, z + 1), Assignment(x, y + z) ) """ if not all(isinstance(i, Assignment) for i in assignments): # Will support more things later raise NotImplementedError("CodeBlock.topological_sort only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in assignments): raise NotImplementedError("CodeBlock.topological_sort doesn't yet work with AugmentedAssignments") # Create a graph where the nodes are assignments and there is a directed edge # between nodes that use a variable and nodes that assign that # variable, like # [(x := 1, y := x + 1), (x := 1, z := y + z), (y := x + 1, z := y + z)] # If we then topologically sort these nodes, they will be in # assignment order, like # x := 1 # y := x + 1 # z := y + z # A = The nodes # # enumerate keeps nodes in the same order they are already in if # possible. It will also allow us to handle duplicate assignments to # the same variable when those are implemented. A = list(enumerate(assignments)) # var_map = {variable: [nodes for which this variable is assigned to]} # like {x: [(1, x := y + z), (4, x := 2 * w)], ...} var_map = defaultdict(list) for node in A: i, a = node var_map[a.lhs].append(node) # E = Edges in the graph E = [] for dst_node in A: i, a = dst_node for s in a.rhs.free_symbols: for src_node in var_map[s]: E.append((src_node, dst_node)) ordered_assignments = topological_sort([A, E]) # De-enumerate the result return cls(*[a for i, a in ordered_assignments]) def cse(self, symbols=None, optimizations=None, postprocess=None, order='canonical'): """ Return a new code block with common subexpressions eliminated. Explanation =========== See the docstring of :func:`sympy.simplify.cse_main.cse` for more information. Examples ======== >>> from sympy import symbols, sin >>> from sympy.codegen.ast import CodeBlock, Assignment >>> x, y, z = symbols('x y z') >>> c = CodeBlock( ... Assignment(x, 1), ... Assignment(y, sin(x) + 1), ... Assignment(z, sin(x) - 1), ... ) ... >>> c.cse() CodeBlock( Assignment(x, 1), Assignment(x0, sin(x)), Assignment(y, x0 + 1), Assignment(z, x0 - 1) ) """ from sympy.simplify.cse_main import cse # Check that the CodeBlock only contains assignments to unique variables if not all(isinstance(i, Assignment) for i in self.args): # Will support more things later raise NotImplementedError("CodeBlock.cse only supports Assignments") if any(isinstance(i, AugmentedAssignment) for i in self.args): raise NotImplementedError("CodeBlock.cse doesn't yet work with AugmentedAssignments") for i, lhs in enumerate(self.left_hand_sides): if lhs in self.left_hand_sides[:i]: raise NotImplementedError("Duplicate assignments to the same " "variable are not yet supported (%s)" % lhs) # Ensure new symbols for subexpressions do not conflict with existing existing_symbols = self.atoms(Symbol) if symbols is None: symbols = numbered_symbols() symbols = filter_symbols(symbols, existing_symbols) replacements, reduced_exprs = cse(list(self.right_hand_sides), symbols=symbols, optimizations=optimizations, postprocess=postprocess, order=order) new_block = [Assignment(var, expr) for var, expr in zip(self.left_hand_sides, reduced_exprs)] new_assignments = [Assignment(var, expr) for var, expr in replacements] return self.topological_sort(new_assignments + new_block) class For(Token): """Represents a 'for-loop' in the code. Expressions are of the form: "for target in iter: body..." Parameters ========== target : symbol iter : iterable body : CodeBlock or iterable ! When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Range >>> from sympy.codegen.ast import aug_assign, For >>> x, i, j, k = symbols('x i j k') >>> for_i = For(i, Range(10), [aug_assign(x, '+', i*j*k)]) >>> for_i # doctest: -NORMALIZE_WHITESPACE For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) >>> for_ji = For(j, Range(7), [for_i]) >>> for_ji # doctest: -NORMALIZE_WHITESPACE For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) >>> for_kji =For(k, Range(5), [for_ji]) >>> for_kji # doctest: -NORMALIZE_WHITESPACE For(k, iterable=Range(0, 5, 1), body=CodeBlock( For(j, iterable=Range(0, 7, 1), body=CodeBlock( For(i, iterable=Range(0, 10, 1), body=CodeBlock( AddAugmentedAssignment(x, i*j*k) )) )) )) """ __slots__ = ('target', 'iterable', 'body') _construct_target = staticmethod(_sympify) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def _construct_iterable(cls, itr): if not iterable(itr): raise TypeError("iterable must be an iterable") if isinstance(itr, list): # _sympify errors on lists because they are mutable itr = tuple(itr) return _sympify(itr) class String(Atom, Token): """ SymPy object representing a string. Atomic object which is not an expression (as opposed to Symbol). Parameters ========== text : str Examples ======== >>> from sympy.codegen.ast import String >>> f = String('foo') >>> f foo >>> str(f) 'foo' >>> f.text 'foo' >>> print(repr(f)) String('foo') """ __slots__ = ('text',) not_in_args = ['text'] is_Atom = True @classmethod def _construct_text(cls, text): if not isinstance(text, str): raise TypeError("Argument text is not a string type.") return text def _sympystr(self, printer, *args, **kwargs): return self.text def kwargs(self, exclude = (), apply = None): return {} #to be removed when Atom is given a suitable func @property def func(self): return lambda: self def _latex(self, printer): return r'\texttt{{"{}"}}'.format(self.text) class QuotedString(String): """ Represents a string which should be printed with quotes. """ class Comment(String): """ Represents a comment. """ class Node(Token): """ Subclass of Token, carrying the attribute 'attrs' (Tuple) Examples ======== >>> from sympy.codegen.ast import Node, value_const, pointer_const >>> n1 = Node([value_const]) >>> n1.attr_params('value_const') # get the parameters of attribute (by name) () >>> from sympy.codegen.fnodes import dimension >>> n2 = Node([value_const, dimension(5, 3)]) >>> n2.attr_params(value_const) # get the parameters of attribute (by Attribute instance) () >>> n2.attr_params('dimension') # get the parameters of attribute (by name) (5, 3) >>> n2.attr_params(pointer_const) is None True """ __slots__ = ('attrs',) defaults = {'attrs': Tuple()} # type: tDict[str, Any] _construct_attrs = staticmethod(_mk_Tuple) def attr_params(self, looking_for): """ Returns the parameters of the Attribute with name ``looking_for`` in self.attrs """ for attr in self.attrs: if str(attr.name) == str(looking_for): return attr.parameters class Type(Token): """ Represents a type. Explanation =========== The naming is a super-set of NumPy naming. Type has a classmethod ``from_expr`` which offer type deduction. It also has a method ``cast_check`` which casts the argument to its type, possibly raising an exception if rounding error is not within tolerances, or if the value is not representable by the underlying data type (e.g. unsigned integers). Parameters ========== name : str Name of the type, e.g. ``object``, ``int16``, ``float16`` (where the latter two would use the ``Type`` sub-classes ``IntType`` and ``FloatType`` respectively). If a ``Type`` instance is given, the said instance is returned. Examples ======== >>> from sympy.codegen.ast import Type >>> t = Type.from_expr(42) >>> t integer >>> print(repr(t)) IntBaseType(String('integer')) >>> from sympy.codegen.ast import uint8 >>> uint8.cast_check(-1) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> from sympy.codegen.ast import float32 >>> v6 = 0.123456 >>> float32.cast_check(v6) 0.123456 >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> boost_mp50 = Type('boost::multiprecision::cpp_dec_float_50') >>> from sympy import cxxcode >>> from sympy.codegen.ast import Declaration, Variable >>> cxxcode(Declaration(Variable('x', type=boost_mp50))) 'boost::multiprecision::cpp_dec_float_50 x' References ========== .. [1] https://docs.scipy.org/doc/numpy/user/basics.types.html """ __slots__ = ('name',) _construct_name = String def _sympystr(self, printer, *args, **kwargs): return str(self.name) @classmethod def from_expr(cls, expr): """ Deduces type from an expression or a ``Symbol``. Parameters ========== expr : number or SymPy object The type will be deduced from type or properties. Examples ======== >>> from sympy.codegen.ast import Type, integer, complex_ >>> Type.from_expr(2) == integer True >>> from sympy import Symbol >>> Type.from_expr(Symbol('z', complex=True)) == complex_ True >>> Type.from_expr(sum) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Could not deduce type from expr. Raises ====== ValueError when type deduction fails. """ if isinstance(expr, (float, Float)): return real if isinstance(expr, (int, Integer)) or getattr(expr, 'is_integer', False): return integer if getattr(expr, 'is_real', False): return real if isinstance(expr, complex) or getattr(expr, 'is_complex', False): return complex_ if isinstance(expr, bool) or getattr(expr, 'is_Relational', False): return bool_ else: raise ValueError("Could not deduce type from expr.") def _check(self, value): pass def cast_check(self, value, rtol=None, atol=0, precision_targets=None): """ Casts a value to the data type of the instance. Parameters ========== value : number rtol : floating point number Relative tolerance. (will be deduced if not given). atol : floating point number Absolute tolerance (in addition to ``rtol``). type_aliases : dict Maps substitutions for Type, e.g. {integer: int64, real: float32} Examples ======== >>> from sympy.codegen.ast import integer, float32, int8 >>> integer.cast_check(3.0) == 3 True >>> float32.cast_check(1e-40) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Minimum value for data type bigger than new value. >>> int8.cast_check(256) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. >>> v10 = 12345.67894 >>> float32.cast_check(v10) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float64 >>> float64.cast_check(v10) 12345.67894 >>> from sympy import Float >>> v18 = Float('0.123456789012345646') >>> float64.cast_check(v18) Traceback (most recent call last): ... ValueError: Casting gives a significantly different value. >>> from sympy.codegen.ast import float80 >>> float80.cast_check(v18) 0.123456789012345649 """ val = sympify(value) ten = Integer(10) exp10 = getattr(self, 'decimal_dig', None) if rtol is None: rtol = 1e-15 if exp10 is None else 2.0*ten**(-exp10) def tol(num): return atol + rtol*abs(num) new_val = self.cast_nocheck(value) self._check(new_val) delta = new_val - val if abs(delta) > tol(val): # rounding, e.g. int(3.5) != 3.5 raise ValueError("Casting gives a significantly different value.") return new_val def _latex(self, printer): return r"\text{{{}}}\left(\texttt{{{}}}\right)".format(self.__class__.__name__, self.name.text) class IntBaseType(Type): """ Integer base type, contains no size information. """ __slots__ = ('name',) cast_nocheck = lambda self, i: Integer(int(i)) class _SizedIntType(IntBaseType): __slots__ = ('name', 'nbits',) _construct_nbits = Integer def _check(self, value): if value < self.min: raise ValueError("Value is too small: %d < %d" % (value, self.min)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) class SignedIntType(_SizedIntType): """ Represents a signed integer type. """ @property def min(self): return -2**(self.nbits-1) @property def max(self): return 2**(self.nbits-1) - 1 class UnsignedIntType(_SizedIntType): """ Represents an unsigned integer type. """ @property def min(self): return 0 @property def max(self): return 2**self.nbits - 1 two = Integer(2) class FloatBaseType(Type): """ Represents a floating point number type. """ cast_nocheck = Float class FloatType(FloatBaseType): """ Represents a floating point type with fixed bit width. Base 2 & one sign bit is assumed. Parameters ========== name : str Name of the type. nbits : integer Number of bits used (storage). nmant : integer Number of bits used to represent the mantissa. nexp : integer Number of bits used to represent the mantissa. Examples ======== >>> from sympy import S >>> from sympy.codegen.ast import FloatType >>> half_precision = FloatType('f16', nbits=16, nmant=10, nexp=5) >>> half_precision.max 65504 >>> half_precision.tiny == S(2)**-14 True >>> half_precision.eps == S(2)**-10 True >>> half_precision.dig == 3 True >>> half_precision.decimal_dig == 5 True >>> half_precision.cast_check(1.0) 1.0 >>> half_precision.cast_check(1e5) # doctest: +ELLIPSIS Traceback (most recent call last): ... ValueError: Maximum value for data type smaller than new value. """ __slots__ = ('name', 'nbits', 'nmant', 'nexp',) _construct_nbits = _construct_nmant = _construct_nexp = Integer @property def max_exponent(self): """ The largest positive number n, such that 2**(n - 1) is a representable finite value. """ # cf. C++'s ``std::numeric_limits::max_exponent`` return two**(self.nexp - 1) @property def min_exponent(self): """ The lowest negative number n, such that 2**(n - 1) is a valid normalized number. """ # cf. C++'s ``std::numeric_limits::min_exponent`` return 3 - self.max_exponent @property def max(self): """ Maximum value representable. """ return (1 - two**-(self.nmant+1))*two**self.max_exponent @property def tiny(self): """ The minimum positive normalized value. """ # See C macros: FLT_MIN, DBL_MIN, LDBL_MIN # or C++'s ``std::numeric_limits::min`` # or numpy.finfo(dtype).tiny return two**(self.min_exponent - 1) @property def eps(self): """ Difference between 1.0 and the next representable value. """ return two**(-self.nmant) @property def dig(self): """ Number of decimal digits that are guaranteed to be preserved in text. When converting text -> float -> text, you are guaranteed that at least ``dig`` number of digits are preserved with respect to rounding or overflow. """ from sympy.functions import floor, log return floor(self.nmant * log(2)/log(10)) @property def decimal_dig(self): """ Number of digits needed to store & load without loss. Explanation =========== Number of decimal digits needed to guarantee that two consecutive conversions (float -> text -> float) to be idempotent. This is useful when one do not want to loose precision due to rounding errors when storing a floating point value as text. """ from sympy.functions import ceiling, log return ceiling((self.nmant + 1) * log(2)/log(10) + 1) def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ if value == oo: # float(oo) or oo return float(oo) elif value == -oo: # float(-oo) or -oo return float(-oo) return Float(str(sympify(value).evalf(self.decimal_dig)), self.decimal_dig) def _check(self, value): if value < -self.max: raise ValueError("Value is too small: %d < %d" % (value, -self.max)) if value > self.max: raise ValueError("Value is too big: %d > %d" % (value, self.max)) if abs(value) < self.tiny: raise ValueError("Smallest (absolute) value for data type bigger than new value.") class ComplexBaseType(FloatBaseType): def cast_nocheck(self, value): """ Casts without checking if out of bounds or subnormal. """ from sympy.functions import re, im return ( super().cast_nocheck(re(value)) + super().cast_nocheck(im(value))*1j ) def _check(self, value): from sympy.functions import re, im super()._check(re(value)) super()._check(im(value)) class ComplexType(ComplexBaseType, FloatType): """ Represents a complex floating point number. """ # NumPy types: intc = IntBaseType('intc') intp = IntBaseType('intp') int8 = SignedIntType('int8', 8) int16 = SignedIntType('int16', 16) int32 = SignedIntType('int32', 32) int64 = SignedIntType('int64', 64) uint8 = UnsignedIntType('uint8', 8) uint16 = UnsignedIntType('uint16', 16) uint32 = UnsignedIntType('uint32', 32) uint64 = UnsignedIntType('uint64', 64) float16 = FloatType('float16', 16, nexp=5, nmant=10) # IEEE 754 binary16, Half precision float32 = FloatType('float32', 32, nexp=8, nmant=23) # IEEE 754 binary32, Single precision float64 = FloatType('float64', 64, nexp=11, nmant=52) # IEEE 754 binary64, Double precision float80 = FloatType('float80', 80, nexp=15, nmant=63) # x86 extended precision (1 integer part bit), "long double" float128 = FloatType('float128', 128, nexp=15, nmant=112) # IEEE 754 binary128, Quadruple precision float256 = FloatType('float256', 256, nexp=19, nmant=236) # IEEE 754 binary256, Octuple precision complex64 = ComplexType('complex64', nbits=64, **float32.kwargs(exclude=('name', 'nbits'))) complex128 = ComplexType('complex128', nbits=128, **float64.kwargs(exclude=('name', 'nbits'))) # Generic types (precision may be chosen by code printers): untyped = Type('untyped') real = FloatBaseType('real') integer = IntBaseType('integer') complex_ = ComplexBaseType('complex') bool_ = Type('bool') class Attribute(Token): """ Attribute (possibly parametrized) For use with :class:`sympy.codegen.ast.Node` (which takes instances of ``Attribute`` as ``attrs``). Parameters ========== name : str parameters : Tuple Examples ======== >>> from sympy.codegen.ast import Attribute >>> volatile = Attribute('volatile') >>> volatile volatile >>> print(repr(volatile)) Attribute(String('volatile')) >>> a = Attribute('foo', [1, 2, 3]) >>> a foo(1, 2, 3) >>> a.parameters == (1, 2, 3) True """ __slots__ = ('name', 'parameters') defaults = {'parameters': Tuple()} _construct_name = String _construct_parameters = staticmethod(_mk_Tuple) def _sympystr(self, printer, *args, **kwargs): result = str(self.name) if self.parameters: result += '(%s)' % ', '.join(map(lambda arg: printer._print( arg, *args, **kwargs), self.parameters)) return result value_const = Attribute('value_const') pointer_const = Attribute('pointer_const') class Variable(Node): """ Represents a variable. Parameters ========== symbol : Symbol type : Type (optional) Type of the variable. attrs : iterable of Attribute instances Will be stored as a Tuple. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, float32, integer >>> x = Symbol('x') >>> v = Variable(x, type=float32) >>> v.attrs () >>> v == Variable('x') False >>> v == Variable('x', type=float32) True >>> v Variable(x, type=float32) One may also construct a ``Variable`` instance with the type deduced from assumptions about the symbol using the ``deduced`` classmethod: >>> i = Symbol('i', integer=True) >>> v = Variable.deduced(i) >>> v.type == integer True >>> v == Variable('i') False >>> from sympy.codegen.ast import value_const >>> value_const in v.attrs False >>> w = Variable('w', attrs=[value_const]) >>> w Variable(w, attrs=(value_const,)) >>> value_const in w.attrs True >>> w.as_Declaration(value=42) Declaration(Variable(w, value=42, attrs=(value_const,))) """ __slots__ = ('symbol', 'type', 'value') + Node.__slots__ defaults = Node.defaults.copy() defaults.update({'type': untyped, 'value': none}) _construct_symbol = staticmethod(sympify) _construct_value = staticmethod(sympify) @classmethod def deduced(cls, symbol, value=None, attrs=Tuple(), cast_check=True): """ Alt. constructor with type deduction from ``Type.from_expr``. Deduces type primarily from ``symbol``, secondarily from ``value``. Parameters ========== symbol : Symbol value : expr (optional) value of the variable. attrs : iterable of Attribute instances cast_check : bool Whether to apply ``Type.cast_check`` on ``value``. Examples ======== >>> from sympy import Symbol >>> from sympy.codegen.ast import Variable, complex_ >>> n = Symbol('n', integer=True) >>> str(Variable.deduced(n).type) 'integer' >>> x = Symbol('x', real=True) >>> v = Variable.deduced(x) >>> v.type real >>> z = Symbol('z', complex=True) >>> Variable.deduced(z).type == complex_ True """ if isinstance(symbol, Variable): return symbol try: type_ = Type.from_expr(symbol) except ValueError: type_ = Type.from_expr(value) if value is not None and cast_check: value = type_.cast_check(value) return cls(symbol, type=type_, value=value, attrs=attrs) def as_Declaration(self, **kwargs): """ Convenience method for creating a Declaration instance. Explanation =========== If the variable of the Declaration need to wrap a modified variable keyword arguments may be passed (overriding e.g. the ``value`` of the Variable instance). Examples ======== >>> from sympy.codegen.ast import Variable, NoneToken >>> x = Variable('x') >>> decl1 = x.as_Declaration() >>> # value is special NoneToken() which must be tested with == operator >>> decl1.variable.value is None # won't work False >>> decl1.variable.value == None # not PEP-8 compliant True >>> decl1.variable.value == NoneToken() # OK True >>> decl2 = x.as_Declaration(value=42.0) >>> decl2.variable.value == 42 True """ kw = self.kwargs() kw.update(kwargs) return Declaration(self.func(**kw)) def _relation(self, rhs, op): try: rhs = _sympify(rhs) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, rhs)) return op(self, rhs, evaluate=False) __lt__ = lambda self, other: self._relation(other, Lt) __le__ = lambda self, other: self._relation(other, Le) __ge__ = lambda self, other: self._relation(other, Ge) __gt__ = lambda self, other: self._relation(other, Gt) class Pointer(Variable): """ Represents a pointer. See ``Variable``. Examples ======== Can create instances of ``Element``: >>> from sympy import Symbol >>> from sympy.codegen.ast import Pointer >>> i = Symbol('i', integer=True) >>> p = Pointer('x') >>> p[i+1] Element(x, indices=(i + 1,)) """ def __getitem__(self, key): try: return Element(self.symbol, key) except TypeError: return Element(self.symbol, (key,)) class Element(Token): """ Element in (a possibly N-dimensional) array. Examples ======== >>> from sympy.codegen.ast import Element >>> elem = Element('x', 'ijk') >>> elem.symbol.name == 'x' True >>> elem.indices (i, j, k) >>> from sympy import ccode >>> ccode(elem) 'x[i][j][k]' >>> ccode(Element('x', 'ijk', strides='lmn', offset='o')) 'x[i*l + j*m + k*n + o]' """ __slots__ = ('symbol', 'indices', 'strides', 'offset') defaults = {'strides': none, 'offset': none} _construct_symbol = staticmethod(sympify) _construct_indices = staticmethod(lambda arg: Tuple(*arg)) _construct_strides = staticmethod(lambda arg: Tuple(*arg)) _construct_offset = staticmethod(sympify) class Declaration(Token): """ Represents a variable declaration Parameters ========== variable : Variable Examples ======== >>> from sympy.codegen.ast import Declaration, NoneToken, untyped >>> z = Declaration('z') >>> z.variable.type == untyped True >>> # value is special NoneToken() which must be tested with == operator >>> z.variable.value is None # won't work False >>> z.variable.value == None # not PEP-8 compliant True >>> z.variable.value == NoneToken() # OK True """ __slots__ = ('variable',) _construct_variable = Variable class While(Token): """ Represents a 'for-loop' in the code. Expressions are of the form: "while condition: body..." Parameters ========== condition : expression convertible to Boolean body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. Examples ======== >>> from sympy import symbols, Gt, Abs >>> from sympy.codegen import aug_assign, Assignment, While >>> x, dx = symbols('x dx') >>> expr = 1 - x**2 >>> whl = While(Gt(Abs(dx), 1e-9), [ ... Assignment(dx, -expr/expr.diff(x)), ... aug_assign(x, '+', dx) ... ]) """ __slots__ = ('condition', 'body') _construct_condition = staticmethod(lambda cond: _sympify(cond)) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Scope(Token): """ Represents a scope in the code. Parameters ========== body : CodeBlock or iterable When passed an iterable it is used to instantiate a CodeBlock. """ __slots__ = ('body',) @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) class Stream(Token): """ Represents a stream. There are two predefined Stream instances ``stdout`` & ``stderr``. Parameters ========== name : str Examples ======== >>> from sympy import Symbol >>> from sympy.printing.pycode import pycode >>> from sympy.codegen.ast import Print, stderr, QuotedString >>> print(pycode(Print(['x'], file=stderr))) print(x, file=sys.stderr) >>> x = Symbol('x') >>> print(pycode(Print([QuotedString('x')], file=stderr))) # print literally "x" print("x", file=sys.stderr) """ __slots__ = ('name',) _construct_name = String stdout = Stream('stdout') stderr = Stream('stderr') class Print(Token): """ Represents print command in the code. Parameters ========== formatstring : str *args : Basic instances (or convertible to such through sympify) Examples ======== >>> from sympy.codegen.ast import Print >>> from sympy import pycode >>> print(pycode(Print('x y'.split(), "coordinate: %12.5g %12.5g"))) print("coordinate: %12.5g %12.5g" % (x, y)) """ __slots__ = ('print_args', 'format_string', 'file') defaults = {'format_string': none, 'file': none} _construct_print_args = staticmethod(_mk_Tuple) _construct_format_string = QuotedString _construct_file = Stream class FunctionPrototype(Node): """ Represents a function prototype Allows the user to generate forward declaration in e.g. C/C++. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances attrs : iterable of Attribute instances Examples ======== >>> from sympy import symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> from sympy import ccode >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' """ __slots__ = ('return_type', 'name', 'parameters', 'attrs') _construct_return_type = Type _construct_name = String @staticmethod def _construct_parameters(args): def _var(arg): if isinstance(arg, Declaration): return arg.variable elif isinstance(arg, Variable): return arg else: return Variable.deduced(arg) return Tuple(*map(_var, args)) @classmethod def from_FunctionDefinition(cls, func_def): if not isinstance(func_def, FunctionDefinition): raise TypeError("func_def is not an instance of FunctionDefiniton") return cls(**func_def.kwargs(exclude=('body',))) class FunctionDefinition(FunctionPrototype): """ Represents a function definition in the code. Parameters ========== return_type : Type name : str parameters: iterable of Variable instances body : CodeBlock or iterable attrs : iterable of Attribute instances Examples ======== >>> from sympy import ccode, symbols >>> from sympy.codegen.ast import real, FunctionPrototype >>> x, y = symbols('x y', real=True) >>> fp = FunctionPrototype(real, 'foo', [x, y]) >>> ccode(fp) 'double foo(double x, double y)' >>> from sympy.codegen.ast import FunctionDefinition, Return >>> body = [Return(x*y)] >>> fd = FunctionDefinition.from_FunctionPrototype(fp, body) >>> print(ccode(fd)) double foo(double x, double y){ return x*y; } """ __slots__ = FunctionPrototype.__slots__[:-1] + ('body', 'attrs') @classmethod def _construct_body(cls, itr): if isinstance(itr, CodeBlock): return itr else: return CodeBlock(*itr) @classmethod def from_FunctionPrototype(cls, func_proto, body): if not isinstance(func_proto, FunctionPrototype): raise TypeError("func_proto is not an instance of FunctionPrototype") return cls(body=body, **func_proto.kwargs()) class Return(Token): """ Represents a return command in the code. Parameters ========== return : Basic Examples ======== >>> from sympy.codegen.ast import Return >>> from sympy.printing.pycode import pycode >>> from sympy import Symbol >>> x = Symbol('x') >>> print(pycode(Return(x))) return x """ __slots__ = ('return',) _construct_return=staticmethod(_sympify) class FunctionCall(Token, Expr): """ Represents a call to a function in the code. Parameters ========== name : str function_args : Tuple Examples ======== >>> from sympy.codegen.ast import FunctionCall >>> from sympy import pycode >>> fcall = FunctionCall('foo', 'bar baz'.split()) >>> print(pycode(fcall)) foo(bar, baz) """ __slots__ = ('name', 'function_args') _construct_name = String _construct_function_args = staticmethod(lambda args: Tuple(*args))
8377bc5c1eb494c939a6942196f05b2bd8699e9a285a22abc1e48c2b024b4daa
""" This file contains some classical ciphers and routines implementing a linear-feedback shift register (LFSR) and the Diffie-Hellman key exchange. .. warning:: This module is intended for educational purposes only. Do not use the functions in this module for real cryptographic applications. If you wish to encrypt real data, we recommend using something like the `cryptography <https://cryptography.io/en/latest/>`_ module. """ from string import whitespace, ascii_uppercase as uppercase, printable from functools import reduce import warnings from itertools import cycle from sympy.ntheory.generate import nextprime from sympy.core import Rational, Symbol from sympy.core.numbers import igcdex, mod_inverse, igcd from sympy.matrices import Matrix from sympy.ntheory import isprime, primitive_root, factorint from sympy.polys.domains import FF from sympy.polys.polytools import gcd, Poly from sympy.utilities.misc import as_int, filldedent, translate from sympy.utilities.iterables import uniq, multiset from sympy.core.random import _randrange, _randint class NonInvertibleCipherWarning(RuntimeWarning): """A warning raised if the cipher is not invertible.""" def __init__(self, msg): self.fullMessage = msg def __str__(self): return '\n\t' + self.fullMessage def warn(self, stacklevel=2): warnings.warn(self, stacklevel=stacklevel) def AZ(s=None): """Return the letters of ``s`` in uppercase. In case more than one string is passed, each of them will be processed and a list of upper case strings will be returned. Examples ======== >>> from sympy.crypto.crypto import AZ >>> AZ('Hello, world!') 'HELLOWORLD' >>> AZ('Hello, world!'.split()) ['HELLO', 'WORLD'] See Also ======== check_and_join """ if not s: return uppercase t = isinstance(s, str) if t: s = [s] rv = [check_and_join(i.upper().split(), uppercase, filter=True) for i in s] if t: return rv[0] return rv bifid5 = AZ().replace('J', '') bifid6 = AZ() + '0123456789' bifid10 = printable def padded_key(key, symbols): """Return a string of the distinct characters of ``symbols`` with those of ``key`` appearing first. A ValueError is raised if a) there are duplicate characters in ``symbols`` or b) there are characters in ``key`` that are not in ``symbols``. Examples ======== >>> from sympy.crypto.crypto import padded_key >>> padded_key('PUPPY', 'OPQRSTUVWXY') 'PUYOQRSTVWX' >>> padded_key('RSA', 'ARTIST') Traceback (most recent call last): ... ValueError: duplicate characters in symbols: T """ syms = list(uniq(symbols)) if len(syms) != len(symbols): extra = ''.join(sorted({ i for i in symbols if symbols.count(i) > 1})) raise ValueError('duplicate characters in symbols: %s' % extra) extra = set(key) - set(syms) if extra: raise ValueError( 'characters in key but not symbols: %s' % ''.join( sorted(extra))) key0 = ''.join(list(uniq(key))) # remove from syms characters in key0 return key0 + translate(''.join(syms), None, key0) def check_and_join(phrase, symbols=None, filter=None): """ Joins characters of ``phrase`` and if ``symbols`` is given, raises an error if any character in ``phrase`` is not in ``symbols``. Parameters ========== phrase String or list of strings to be returned as a string. symbols Iterable of characters allowed in ``phrase``. If ``symbols`` is ``None``, no checking is performed. Examples ======== >>> from sympy.crypto.crypto import check_and_join >>> check_and_join('a phrase') 'a phrase' >>> check_and_join('a phrase'.upper().split()) 'APHRASE' >>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True) 'ARAE' >>> check_and_join('a phrase!'.upper().split(), 'ARE') Traceback (most recent call last): ... ValueError: characters in phrase but not symbols: "!HPS" """ rv = ''.join(''.join(phrase)) if symbols is not None: symbols = check_and_join(symbols) missing = ''.join(list(sorted(set(rv) - set(symbols)))) if missing: if not filter: raise ValueError( 'characters in phrase but not symbols: "%s"' % missing) rv = translate(rv, None, missing) return rv def _prep(msg, key, alp, default=None): if not alp: if not default: alp = AZ() msg = AZ(msg) key = AZ(key) else: alp = default else: alp = ''.join(alp) key = check_and_join(key, alp, filter=True) msg = check_and_join(msg, alp, filter=True) return msg, key, alp def cycle_list(k, n): """ Returns the elements of the list ``range(n)`` shifted to the left by ``k`` (so the list starts with ``k`` (mod ``n``)). Examples ======== >>> from sympy.crypto.crypto import cycle_list >>> cycle_list(3, 10) [3, 4, 5, 6, 7, 8, 9, 0, 1, 2] """ k = k % n return list(range(k, n)) + list(range(k)) ######## shift cipher examples ############ def encipher_shift(msg, key, symbols=None): """ Performs shift cipher encryption on plaintext msg, and returns the ciphertext. Parameters ========== key : int The secret key. msg : str Plaintext of upper-case letters. Returns ======= str Ciphertext of upper-case letters. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' There is also a convenience function that does this with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by adding ``(k mod 26)`` to each element in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. The shift cipher is also called the Caesar cipher, after Julius Caesar, who, according to Suetonius, used it with a shift of three to protect messages of military significance. Caesar's nephew Augustus reportedly used a similar cipher, but with a right shift of 1. References ========== .. [1] https://en.wikipedia.org/wiki/Caesar_cipher .. [2] http://mathworld.wolfram.com/CaesarsMethod.html See Also ======== decipher_shift """ msg, _, A = _prep(msg, '', symbols) shift = len(A) - key % len(A) key = A[shift:] + A[:shift] return translate(msg, key, A) def decipher_shift(msg, key, symbols=None): """ Return the text by shifting the characters of ``msg`` to the left by the amount given by ``key``. Examples ======== >>> from sympy.crypto.crypto import encipher_shift, decipher_shift >>> msg = "GONAVYBEATARMY" >>> ct = encipher_shift(msg, 1); ct 'HPOBWZCFBUBSNZ' To decipher the shifted text, change the sign of the key: >>> encipher_shift(ct, -1) 'GONAVYBEATARMY' Or use this function with the original key: >>> decipher_shift(ct, 1) 'GONAVYBEATARMY' """ return encipher_shift(msg, -key, symbols) def encipher_rot13(msg, symbols=None): """ Performs the ROT13 encryption on a given plaintext ``msg``. Explanation =========== ROT13 is a substitution cipher which substitutes each letter in the plaintext message for the letter furthest away from it in the English alphabet. Equivalently, it is just a Caeser (shift) cipher with a shift key of 13 (midway point of the alphabet). References ========== .. [1] https://en.wikipedia.org/wiki/ROT13 See Also ======== decipher_rot13 encipher_shift """ return encipher_shift(msg, 13, symbols) def decipher_rot13(msg, symbols=None): """ Performs the ROT13 decryption on a given plaintext ``msg``. Explanation ============ ``decipher_rot13`` is equivalent to ``encipher_rot13`` as both ``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a key of 13 will return the same results. Nonetheless, ``decipher_rot13`` has nonetheless been explicitly defined here for consistency. Examples ======== >>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13 >>> msg = 'GONAVYBEATARMY' >>> ciphertext = encipher_rot13(msg);ciphertext 'TBANILORNGNEZL' >>> decipher_rot13(ciphertext) 'GONAVYBEATARMY' >>> encipher_rot13(msg) == decipher_rot13(msg) True >>> msg == decipher_rot13(ciphertext) True """ return decipher_shift(msg, 13, symbols) ######## affine cipher examples ############ def encipher_affine(msg, key, symbols=None, _inverse=False): r""" Performs the affine cipher encryption on plaintext ``msg``, and returns the ciphertext. Explanation =========== Encryption is based on the map `x \rightarrow ax+b` (mod `N`) where ``N`` is the number of characters in the alphabet. Decryption is based on the map `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). In particular, for the map to be invertible, we need `\mathrm{gcd}(a, N) = 1` and an error will be raised if this is not true. Parameters ========== msg : str Characters that appear in ``symbols``. a, b : int, int A pair integers, with ``gcd(a, N) = 1`` (the secret key). symbols String of characters (default = uppercase letters). When no symbols are given, ``msg`` is converted to upper case letters and all other characters are ignored. Returns ======= ct String of characters (the ciphertext message) Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L1`` of corresponding integers. 2. Compute from the list ``L1`` a new list ``L2``, given by replacing ``x`` by ``a*x + b (mod N)``, for each element ``x`` in ``L1``. 3. Compute from the list ``L2`` a string ``ct`` of corresponding letters. This is a straightforward generalization of the shift cipher with the added complexity of requiring 2 characters to be deciphered in order to recover the key. References ========== .. [1] https://en.wikipedia.org/wiki/Affine_cipher See Also ======== decipher_affine """ msg, _, A = _prep(msg, '', symbols) N = len(A) a, b = key assert gcd(a, N) == 1 if _inverse: c = mod_inverse(a, N) d = -b*c a, b = c, d B = ''.join([A[(a*i + b) % N] for i in range(N)]) return translate(msg, A, B) def decipher_affine(msg, key, symbols=None): r""" Return the deciphered text that was made from the mapping, `x \rightarrow ax+b` (mod `N`), where ``N`` is the number of characters in the alphabet. Deciphering is done by reciphering with a new key: `x \rightarrow cx+d` (mod `N`), where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`). Examples ======== >>> from sympy.crypto.crypto import encipher_affine, decipher_affine >>> msg = "GO NAVY BEAT ARMY" >>> key = (3, 1) >>> encipher_affine(msg, key) 'TROBMVENBGBALV' >>> decipher_affine(_, key) 'GONAVYBEATARMY' See Also ======== encipher_affine """ return encipher_affine(msg, key, symbols, _inverse=True) def encipher_atbash(msg, symbols=None): r""" Enciphers a given ``msg`` into its Atbash ciphertext and returns it. Explanation =========== Atbash is a substitution cipher originally used to encrypt the Hebrew alphabet. Atbash works on the principle of mapping each alphabet to its reverse / counterpart (i.e. a would map to z, b to y etc.) Atbash is functionally equivalent to the affine cipher with ``a = 25`` and ``b = 25`` See Also ======== decipher_atbash """ return encipher_affine(msg, (25, 25), symbols) def decipher_atbash(msg, symbols=None): r""" Deciphers a given ``msg`` using Atbash cipher and returns it. Explanation =========== ``decipher_atbash`` is functionally equivalent to ``encipher_atbash``. However, it has still been added as a separate function to maintain consistency. Examples ======== >>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash >>> msg = 'GONAVYBEATARMY' >>> encipher_atbash(msg) 'TLMZEBYVZGZINB' >>> decipher_atbash(msg) 'TLMZEBYVZGZINB' >>> encipher_atbash(msg) == decipher_atbash(msg) True >>> msg == encipher_atbash(encipher_atbash(msg)) True References ========== .. [1] https://en.wikipedia.org/wiki/Atbash See Also ======== encipher_atbash """ return decipher_affine(msg, (25, 25), symbols) #################### substitution cipher ########################### def encipher_substitution(msg, old, new=None): r""" Returns the ciphertext obtained by replacing each character that appears in ``old`` with the corresponding character in ``new``. If ``old`` is a mapping, then new is ignored and the replacements defined by ``old`` are used. Explanation =========== This is a more general than the affine cipher in that the key can only be recovered by determining the mapping for each symbol. Though in practice, once a few symbols are recognized the mappings for other characters can be quickly guessed. Examples ======== >>> from sympy.crypto.crypto import encipher_substitution, AZ >>> old = 'OEYAG' >>> new = '034^6' >>> msg = AZ("go navy! beat army!") >>> ct = encipher_substitution(msg, old, new); ct '60N^V4B3^T^RM4' To decrypt a substitution, reverse the last two arguments: >>> encipher_substitution(ct, new, old) 'GONAVYBEATARMY' In the special case where ``old`` and ``new`` are a permutation of order 2 (representing a transposition of characters) their order is immaterial: >>> old = 'NAVY' >>> new = 'ANYV' >>> encipher = lambda x: encipher_substitution(x, old, new) >>> encipher('NAVY') 'ANYV' >>> encipher(_) 'NAVY' The substitution cipher, in general, is a method whereby "units" (not necessarily single characters) of plaintext are replaced with ciphertext according to a regular system. >>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc'])) >>> print(encipher_substitution('abc', ords)) \97\98\99 References ========== .. [1] https://en.wikipedia.org/wiki/Substitution_cipher """ return translate(msg, old, new) ###################################################################### #################### Vigenere cipher examples ######################## ###################################################################### def encipher_vigenere(msg, key, symbols=None): """ Performs the Vigenere cipher encryption on plaintext ``msg``, and returns the ciphertext. Examples ======== >>> from sympy.crypto.crypto import encipher_vigenere, AZ >>> key = "encrypt" >>> msg = "meet me on monday" >>> encipher_vigenere(msg, key) 'QRGKKTHRZQEBPR' Section 1 of the Kryptos sculpture at the CIA headquarters uses this cipher and also changes the order of the alphabet [2]_. Here is the first line of that section of the sculpture: >>> from sympy.crypto.crypto import decipher_vigenere, padded_key >>> alp = padded_key('KRYPTOS', AZ()) >>> key = 'PALIMPSEST' >>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ' >>> decipher_vigenere(msg, key, alp) 'BETWEENSUBTLESHADINGANDTHEABSENC' Explanation =========== The Vigenere cipher is named after Blaise de Vigenere, a sixteenth century diplomat and cryptographer, by a historical accident. Vigenere actually invented a different and more complicated cipher. The so-called *Vigenere cipher* was actually invented by Giovan Batista Belaso in 1553. This cipher was used in the 1800's, for example, during the American Civil War. The Confederacy used a brass cipher disk to implement the Vigenere cipher (now on display in the NSA Museum in Fort Meade) [1]_. The Vigenere cipher is a generalization of the shift cipher. Whereas the shift cipher shifts each letter by the same amount (that amount being the key of the shift cipher) the Vigenere cipher shifts a letter by an amount determined by the key (which is a word or phrase known only to the sender and receiver). For example, if the key was a single letter, such as "C", then the so-called Vigenere cipher is actually a shift cipher with a shift of `2` (since "C" is the 2nd letter of the alphabet, if you start counting at `0`). If the key was a word with two letters, such as "CA", then the so-called Vigenere cipher will shift letters in even positions by `2` and letters in odd positions are left alone (shifted by `0`, since "A" is the 0th letter, if you start counting at `0`). ALGORITHM: INPUT: ``msg``: string of characters that appear in ``symbols`` (the plaintext) ``key``: a string of characters that appear in ``symbols`` (the secret key) ``symbols``: a string of letters defining the alphabet OUTPUT: ``ct``: string of characters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``key`` a list ``L1`` of corresponding integers. Let ``n1 = len(L1)``. 2. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 3. Break ``L2`` up sequentially into sublists of size ``n1``; the last sublist may be smaller than ``n1`` 4. For each of these sublists ``L`` of ``L2``, compute a new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)`` to the ``i``-th element in the sublist, for each ``i``. 5. Assemble these lists ``C`` by concatenation into a new list of length ``n2``. 6. Compute from the new list a string ``ct`` of corresponding letters. Once it is known that the key is, say, `n` characters long, frequency analysis can be applied to every `n`-th letter of the ciphertext to determine the plaintext. This method is called *Kasiski examination* (although it was first discovered by Babbage). If they key is as long as the message and is comprised of randomly selected characters -- a one-time pad -- the message is theoretically unbreakable. The cipher Vigenere actually discovered is an "auto-key" cipher described as follows. ALGORITHM: INPUT: ``key``: a string of letters (the secret key) ``msg``: string of letters (the plaintext message) OUTPUT: ``ct``: string of upper-case letters (the ciphertext message) STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L2`` of corresponding integers. Let ``n2 = len(L2)``. 2. Let ``n1`` be the length of the key. Append to the string ``key`` the first ``n2 - n1`` characters of the plaintext message. Compute from this string (also of length ``n2``) a list ``L1`` of integers corresponding to the letter numbers in the first step. 3. Compute a new list ``C`` given by ``C[i] = L1[i] + L2[i] (mod N)``. 4. Compute from the new list a string ``ct`` of letters corresponding to the new integers. To decipher the auto-key ciphertext, the key is used to decipher the first ``n1`` characters and then those characters become the key to decipher the next ``n1`` characters, etc...: >>> m = AZ('go navy, beat army! yes you can'); m 'GONAVYBEATARMYYESYOUCAN' >>> key = AZ('gold bug'); n1 = len(key); n2 = len(m) >>> auto_key = key + m[:n2 - n1]; auto_key 'GOLDBUGGONAVYBEATARMYYE' >>> ct = encipher_vigenere(m, auto_key); ct 'MCYDWSHKOGAMKZCELYFGAYR' >>> n1 = len(key) >>> pt = [] >>> while ct: ... part, ct = ct[:n1], ct[n1:] ... pt.append(decipher_vigenere(part, key)) ... key = pt[-1] ... >>> ''.join(pt) == m True References ========== .. [1] https://en.wikipedia.org/wiki/Vigenere_cipher .. [2] http://web.archive.org/web/20071116100808/ .. [3] http://filebox.vt.edu/users/batman/kryptos.html (short URL: https://goo.gl/ijr22d) """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} key = [map[c] for c in key] N = len(map) k = len(key) rv = [] for i, m in enumerate(msg): rv.append(A[(map[m] + key[i % k]) % N]) rv = ''.join(rv) return rv def decipher_vigenere(msg, key, symbols=None): """ Decode using the Vigenere cipher. Examples ======== >>> from sympy.crypto.crypto import decipher_vigenere >>> key = "encrypt" >>> ct = "QRGK kt HRZQE BPR" >>> decipher_vigenere(ct, key) 'MEETMEONMONDAY' """ msg, key, A = _prep(msg, key, symbols) map = {c: i for i, c in enumerate(A)} N = len(A) # normally, 26 K = [map[c] for c in key] n = len(K) C = [map[c] for c in msg] rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)]) return rv #################### Hill cipher ######################## def encipher_hill(msg, key, symbols=None, pad="Q"): r""" Return the Hill cipher encryption of ``msg``. Explanation =========== The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_, was the first polygraphic cipher in which it was practical (though barely) to operate on more than three symbols at once. The following discussion assumes an elementary knowledge of matrices. First, each letter is first encoded as a number starting with 0. Suppose your message `msg` consists of `n` capital letters, with no spaces. This may be regarded an `n`-tuple M of elements of `Z_{26}` (if the letters are those of the English alphabet). A key in the Hill cipher is a `k x k` matrix `K`, all of whose entries are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k` is one-to-one). Parameters ========== msg Plaintext message of `n` upper-case letters. key A `k \times k` invertible matrix `K`, all of whose entries are in `Z_{26}` (or whatever number of symbols are being used). pad Character (default "Q") to use to make length of text be a multiple of ``k``. Returns ======= ct Ciphertext of upper-case letters. Notes ===== ALGORITHM: STEPS: 0. Number the letters of the alphabet from 0, ..., N 1. Compute from the string ``msg`` a list ``L`` of corresponding integers. Let ``n = len(L)``. 2. Break the list ``L`` up into ``t = ceiling(n/k)`` sublists ``L_1``, ..., ``L_t`` of size ``k`` (with the last list "padded" to ensure its size is ``k``). 3. Compute new list ``C_1``, ..., ``C_t`` given by ``C[i] = K*L_i`` (arithmetic is done mod N), for each ``i``. 4. Concatenate these into a list ``C = C_1 + ... + C_t``. 5. Compute from ``C`` a string ``ct`` of corresponding letters. This has length ``k*t``. References ========== .. [1] https://en.wikipedia.org/wiki/Hill_cipher .. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet, The American Mathematical Monthly Vol.36, June-July 1929, pp.306-312. See Also ======== decipher_hill """ assert key.is_square assert len(pad) == 1 msg, pad, A = _prep(msg, pad, symbols) map = {c: i for i, c in enumerate(A)} P = [map[c] for c in msg] N = len(A) k = key.cols n = len(P) m, r = divmod(n, k) if r: P = P + [map[pad]]*(k - r) m += 1 rv = ''.join([A[c % N] for j in range(m) for c in list(key*Matrix(k, 1, [P[i] for i in range(k*j, k*(j + 1))]))]) return rv def decipher_hill(msg, key, symbols=None): """ Deciphering is the same as enciphering but using the inverse of the key matrix. Examples ======== >>> from sympy.crypto.crypto import encipher_hill, decipher_hill >>> from sympy import Matrix >>> key = Matrix([[1, 2], [3, 5]]) >>> encipher_hill("meet me on monday", key) 'UEQDUEODOCTCWQ' >>> decipher_hill(_, key) 'MEETMEONMONDAY' When the length of the plaintext (stripped of invalid characters) is not a multiple of the key dimension, extra characters will appear at the end of the enciphered and deciphered text. In order to decipher the text, those characters must be included in the text to be deciphered. In the following, the key has a dimension of 4 but the text is 2 short of being a multiple of 4 so two characters will be added. >>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0], ... [2, 2, 3, 4], [1, 1, 0, 1]]) >>> msg = "ST" >>> encipher_hill(msg, key) 'HJEB' >>> decipher_hill(_, key) 'STQQ' >>> encipher_hill(msg, key, pad="Z") 'ISPK' >>> decipher_hill(_, key) 'STZZ' If the last two characters of the ciphertext were ignored in either case, the wrong plaintext would be recovered: >>> decipher_hill("HD", key) 'ORMV' >>> decipher_hill("IS", key) 'UIKY' See Also ======== encipher_hill """ assert key.is_square msg, _, A = _prep(msg, '', symbols) map = {c: i for i, c in enumerate(A)} C = [map[c] for c in msg] N = len(A) k = key.cols n = len(C) m, r = divmod(n, k) if r: C = C + [0]*(k - r) m += 1 key_inv = key.inv_mod(N) rv = ''.join([A[p % N] for j in range(m) for p in list(key_inv*Matrix( k, 1, [C[i] for i in range(k*j, k*(j + 1))]))]) return rv #################### Bifid cipher ######################## def encipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses an `n \times n` Polybius square. Parameters ========== msg Plaintext string. key Short string for key. Duplicate characters are ignored and then it is padded with the characters in ``symbols`` that were not in the short key. symbols `n \times n` characters defining the alphabet. (default is string.printable) Returns ======= ciphertext Ciphertext using Bifid5 cipher without spaces. See Also ======== decipher_bifid, encipher_bifid5, encipher_bifid6 References ========== .. [1] https://en.wikipedia.org/wiki/Bifid_cipher """ msg, key, A = _prep(msg, key, symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the fractionalization row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)} r, c = zip(*[row_col[x] for x in msg]) rc = r + c ch = {i: ch for ch, i in row_col.items()} rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2])) return rv def decipher_bifid(msg, key, symbols=None): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `n \times n` Polybius square. Parameters ========== msg Ciphertext string. key Short string for key. Duplicate characters are ignored and then it is padded with the characters in symbols that were not in the short key. symbols `n \times n` characters defining the alphabet. (default=string.printable, a `10 \times 10` matrix) Returns ======= deciphered Deciphered text. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid, decipher_bifid, AZ) Do an encryption using the bifid5 alphabet: >>> alp = AZ().replace('J', '') >>> ct = AZ("meet me on monday!") >>> key = AZ("gold bug") >>> encipher_bifid(ct, key, alp) 'IEILHHFSTSFQYE' When entering the text or ciphertext, spaces are ignored so it can be formatted as desired. Re-entering the ciphertext from the preceding, putting 4 characters per line and padding with an extra J, does not cause problems for the deciphering: >>> decipher_bifid(''' ... IEILH ... HFSTS ... FQYEJ''', key, alp) 'MEETMEONMONDAY' When no alphabet is given, all 100 printable characters will be used: >>> key = '' >>> encipher_bifid('hello world!', key) 'bmtwmg-bIo*w' >>> decipher_bifid(_, key) 'hello world!' If the key is changed, a different encryption is obtained: >>> key = 'gold bug' >>> encipher_bifid('hello world!', 'gold_bug') 'hg2sfuei7t}w' And if the key used to decrypt the message is not exact, the original text will not be perfectly obtained: >>> decipher_bifid(_, 'gold pug') 'heldo~wor6d!' """ msg, _, A = _prep(msg, '', symbols, bifid10) long_key = ''.join(uniq(key)) or A n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) N = int(n) if len(long_key) < N**2: long_key = list(long_key) + [x for x in A if x not in long_key] # the reverse fractionalization row_col = { ch: divmod(i, N) for i, ch in enumerate(long_key)} rc = [i for c in msg for i in row_col[c]] n = len(msg) rc = zip(*(rc[:n], rc[n:])) ch = {i: ch for ch, i in row_col.items()} rv = ''.join(ch[i] for i in rc) return rv def bifid_square(key): """Return characters of ``key`` arranged in a square. Examples ======== >>> from sympy.crypto.crypto import ( ... bifid_square, AZ, padded_key, bifid5) >>> bifid_square(AZ().replace('J', '')) Matrix([ [A, B, C, D, E], [F, G, H, I, K], [L, M, N, O, P], [Q, R, S, T, U], [V, W, X, Y, Z]]) >>> bifid_square(padded_key(AZ('gold bug!'), bifid5)) Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) See Also ======== padded_key """ A = ''.join(uniq(''.join(key))) n = len(A)**.5 if n != int(n): raise ValueError( 'Length of alphabet (%s) is not a square number.' % len(A)) n = int(n) f = lambda i, j: Symbol(A[n*i + j]) rv = Matrix(n, n, f) return rv def encipher_bifid5(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. Explanation =========== This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square. The letter "J" is ignored so it must be replaced with something else (traditionally an "I") before encryption. ALGORITHM: (5x5 case) STEPS: 0. Create the `5 \times 5` Polybius square ``S`` associated to ``key`` as follows: a) moving from left-to-right, top-to-bottom, place the letters of the key into a `5 \times 5` matrix, b) if the key has less than 25 letters, add the letters of the alphabet not in the key until the `5 \times 5` square is filled. 1. Create a list ``P`` of pairs of numbers which are the coordinates in the Polybius square of the letters in ``msg``. 2. Let ``L1`` be the list of all first coordinates of ``P`` (length of ``L1 = n``), let ``L2`` be the list of all second coordinates of ``P`` (so the length of ``L2`` is also ``n``). 3. Let ``L`` be the concatenation of ``L1`` and ``L2`` (length ``L = 2*n``), except that consecutive numbers are paired ``(L[2*i], L[2*i + 1])``. You can regard ``L`` as a list of pairs of length ``n``. 4. Let ``C`` be the list of all letters which are of the form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a string, this is the ciphertext of ``msg``. Parameters ========== msg : str Plaintext string. Converted to upper case and filtered of anything but all letters except J. key Short string for key; non-alphabetic letters, J and duplicated characters are ignored and then, if the length is less than 25 characters, it is padded with other letters of the alphabet (in alphabetical order). Returns ======= ct Ciphertext (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_bifid5, decipher_bifid5) "J" will be omitted unless it is replaced with something else: >>> round_trip = lambda m, k: \ ... decipher_bifid5(encipher_bifid5(m, k), k) >>> key = 'a' >>> msg = "JOSIE" >>> round_trip(msg, key) 'OSIE' >>> round_trip(msg.replace("J", "I"), key) 'IOSIE' >>> j = "QIQ" >>> round_trip(msg.replace("J", j), key).replace(j, "J") 'JOSIE' Notes ===== The Bifid cipher was invented around 1901 by Felix Delastelle. It is a *fractional substitution* cipher, where letters are replaced by pairs of symbols from a smaller alphabet. The cipher uses a `5 \times 5` square filled with some ordering of the alphabet, except that "J" is replaced with "I" (this is a so-called Polybius square; there is a `6 \times 6` analog if you add back in "J" and also append onto the usual 26 letter alphabet, the digits 0, 1, ..., 9). According to Helen Gaines' book *Cryptanalysis*, this type of cipher was used in the field by the German Army during World War I. See Also ======== decipher_bifid5, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return encipher_bifid(msg, '', key) def decipher_bifid5(msg, key): r""" Return the Bifid cipher decryption of ``msg``. Explanation =========== This is the version of the Bifid cipher that uses the `5 \times 5` Polybius square; the letter "J" is ignored unless a ``key`` of length 25 is used. Parameters ========== msg Ciphertext string. key Short string for key; duplicated characters are ignored and if the length is less then 25 characters, it will be padded with other letters from the alphabet omitting "J". Non-alphabetic characters are ignored. Returns ======= plaintext Plaintext from Bifid5 cipher (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5 >>> key = "gold bug" >>> encipher_bifid5('meet me on friday', key) 'IEILEHFSTSFXEE' >>> encipher_bifid5('meet me on monday', key) 'IEILHHFSTSFQYE' >>> decipher_bifid5(_, key) 'MEETMEONMONDAY' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5) key = padded_key(key, bifid5) return decipher_bifid(msg, '', key) def bifid5_square(key=None): r""" 5x5 Polybius square. Produce the Polybius square for the `5 \times 5` Bifid cipher. Examples ======== >>> from sympy.crypto.crypto import bifid5_square >>> bifid5_square("gold bug") Matrix([ [G, O, L, D, B], [U, A, C, E, F], [H, I, K, M, N], [P, Q, R, S, T], [V, W, X, Y, Z]]) """ if not key: key = bifid5 else: _, key, _ = _prep('', key.upper(), None, bifid5) key = padded_key(key, bifid5) return bifid_square(key) def encipher_bifid6(msg, key): r""" Performs the Bifid cipher encryption on plaintext ``msg``, and returns the ciphertext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. Parameters ========== msg Plaintext string (digits okay). key Short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. Returns ======= ciphertext Ciphertext from Bifid cipher (all caps, no spaces). See Also ======== decipher_bifid6, encipher_bifid """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return encipher_bifid(msg, '', key) def decipher_bifid6(msg, key): r""" Performs the Bifid cipher decryption on ciphertext ``msg``, and returns the plaintext. This is the version of the Bifid cipher that uses the `6 \times 6` Polybius square. Parameters ========== msg Ciphertext string (digits okay); converted to upper case key Short string for key (digits okay). If ``key`` is less than 36 characters long, the square will be filled with letters A through Z and digits 0 through 9. All letters are converted to uppercase. Returns ======= plaintext Plaintext from Bifid cipher (all caps, no spaces). Examples ======== >>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6 >>> key = "gold bug" >>> encipher_bifid6('meet me on monday at 8am', key) 'KFKLJJHF5MMMKTFRGPL' >>> decipher_bifid6(_, key) 'MEETMEONMONDAYAT8AM' """ msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6) key = padded_key(key, bifid6) return decipher_bifid(msg, '', key) def bifid6_square(key=None): r""" 6x6 Polybius square. Produces the Polybius square for the `6 \times 6` Bifid cipher. Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9". Examples ======== >>> from sympy.crypto.crypto import bifid6_square >>> key = "gold bug" >>> bifid6_square(key) Matrix([ [G, O, L, D, B, U], [A, C, E, F, H, I], [J, K, M, N, P, Q], [R, S, T, V, W, X], [Y, Z, 0, 1, 2, 3], [4, 5, 6, 7, 8, 9]]) """ if not key: key = bifid6 else: _, key, _ = _prep('', key.upper(), None, bifid6) key = padded_key(key, bifid6) return bifid_square(key) #################### RSA ############################# def _decipher_rsa_crt(i, d, factors): """Decipher RSA using chinese remainder theorem from the information of the relatively-prime factors of the modulus. Parameters ========== i : integer Ciphertext d : integer The exponent component. factors : list of relatively-prime integers The integers given must be coprime and the product must equal the modulus component of the original RSA key. Examples ======== How to decrypt RSA with CRT: >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key >>> primes = [61, 53] >>> e = 17 >>> args = primes + [e] >>> puk = rsa_public_key(*args) >>> prk = rsa_private_key(*args) >>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt >>> msg = 65 >>> crt_primes = primes >>> encrypted = encipher_rsa(msg, puk) >>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes) >>> decrypted 65 """ from sympy.ntheory.modular import crt moduluses = [pow(i, d, p) for p in factors] result = crt(factors, moduluses) if not result: raise ValueError("CRT failed") return result[0] def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None): r"""A private subroutine to generate RSA key Parameters ========== public, private : bool, optional Flag to generate either a public key, a private key. totient : 'Euler' or 'Carmichael' Different notation used for totient. multipower : bool, optional Flag to bypass warning for multipower RSA. """ from sympy.ntheory import totient as _euler from sympy.ntheory import reduced_totient as _carmichael if len(args) < 2: return False if totient not in ('Euler', 'Carmichael'): raise ValueError( "The argument totient={} should either be " \ "'Euler', 'Carmichalel'." \ .format(totient)) if totient == 'Euler': _totient = _euler else: _totient = _carmichael if index is not None: index = as_int(index) if totient != 'Carmichael': raise ValueError( "Setting the 'index' keyword argument requires totient" "notation to be specified as 'Carmichael'.") primes, e = args[:-1], args[-1] if not all(isprime(p) for p in primes): new_primes = [] for i in primes: new_primes.extend(factorint(i, multiple=True)) primes = new_primes n = reduce(lambda i, j: i*j, primes) tally = multiset(primes) if all(v == 1 for v in tally.values()): multiple = list(tally.keys()) phi = _totient._from_distinct_primes(*multiple) else: if not multipower: NonInvertibleCipherWarning( 'Non-distinctive primes found in the factors {}. ' 'The cipher may not be decryptable for some numbers ' 'in the complete residue system Z[{}], but the cipher ' 'can still be valid if you restrict the domain to be ' 'the reduced residue system Z*[{}]. You can pass ' 'the flag multipower=True if you want to suppress this ' 'warning.' .format(primes, n, n) ).warn() phi = _totient._from_factors(tally) if igcd(e, phi) == 1: if public and not private: if isinstance(index, int): e = e % phi e += index * phi return n, e if private and not public: d = mod_inverse(e, phi) if isinstance(index, int): d += index * phi return n, d return False def rsa_public_key(*args, **kwargs): r"""Return the RSA *public key* pair, `(n, e)` Parameters ========== args : naturals If specified as `p, q, e` where `p` and `q` are distinct primes and `e` is a desired public exponent of the RSA, `n = p q` and `e` will be verified against the totient `\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient) to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`. If specified as `p_1, p_2, \dots, p_n, e` where `p_1, p_2, \dots, p_n` are specified as primes, and `e` is specified as a desired public exponent of the RSA, it will be able to form a multi-prime RSA, which is a more generalized form of the popular 2-prime RSA. It can also be possible to form a single-prime RSA by specifying the argument as `p, e`, which can be considered a trivial case of a multiprime RSA. Furthermore, it can be possible to form a multi-power RSA by specifying two or more pairs of the primes to be same. However, unlike the two-distinct prime RSA or multi-prime RSA, not every numbers in the complete residue system (`\mathbb{Z}_n`) will be decryptable since the mapping `\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}` will not be bijective. (Only except for the trivial case when `e = 1` or more generally, .. math:: e \in \left \{ 1 + k \lambda(n) \mid k \in \mathbb{Z} \land k \geq 0 \right \} when RSA reduces to the identity.) However, the RSA can still be decryptable for the numbers in the reduced residue system (`\mathbb{Z}_n^{\times}`), since the mapping `\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}` can still be bijective. If you pass a non-prime integer to the arguments `p_1, p_2, \dots, p_n`, the particular number will be prime-factored and it will become either a multi-prime RSA or a multi-power RSA in its canonical form, depending on whether the product equals its radical or not. `p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)` totient : bool, optional If ``'Euler'``, it uses Euler's totient `\phi(n)` which is :meth:`sympy.ntheory.factor_.totient` in SymPy. If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)` which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy. Unlike private key generation, this is a trivial keyword for public key generation because `\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`. index : nonnegative integer, optional Returns an arbitrary solution of a RSA public key at the index specified at `0, 1, 2, \dots`. This parameter needs to be specified along with ``totient='Carmichael'``. Similarly to the non-uniquenss of a RSA private key as described in the ``index`` parameter documentation in :meth:`rsa_private_key`, RSA public key is also not unique and there is an infinite number of RSA public exponents which can behave in the same manner. From any given RSA public exponent `e`, there are can be an another RSA public exponent `e + k \lambda(n)` where `k` is an integer, `\lambda` is a Carmichael's totient function. However, considering only the positive cases, there can be a principal solution of a RSA public exponent `e_0` in `0 < e_0 < \lambda(n)`, and all the other solutions can be canonicalzed in a form of `e_0 + k \lambda(n)`. ``index`` specifies the `k` notation to yield any possible value an RSA public key can have. An example of computing any arbitrary RSA public key: >>> from sympy.crypto.crypto import rsa_public_key >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0) (3233, 17) >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1) (3233, 797) >>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2) (3233, 1577) multipower : bool, optional Any pair of non-distinct primes found in the RSA specification will restrict the domain of the cryptosystem, as noted in the explaination of the parameter ``args``. SymPy RSA key generator may give a warning before dispatching it as a multi-power RSA, however, you can disable the warning if you pass ``True`` to this keyword. Returns ======= (n, e) : int, int `n` is a product of any arbitrary number of primes given as the argument. `e` is relatively prime (coprime) to the Euler totient `\phi(n)`. False Returned if less than two arguments are given, or `e` is not relatively prime to the modulus. Examples ======== >>> from sympy.crypto.crypto import rsa_public_key A public key of a two-prime RSA: >>> p, q, e = 3, 5, 7 >>> rsa_public_key(p, q, e) (15, 7) >>> rsa_public_key(p, q, 30) False A public key of a multiprime RSA: >>> primes = [2, 3, 5, 7, 11, 13] >>> e = 7 >>> args = primes + [e] >>> rsa_public_key(*args) (30030, 7) Notes ===== Although the RSA can be generalized over any modulus `n`, using two large primes had became the most popular specification because a product of two large primes is usually the hardest to factor relatively to the digits of `n` can have. However, it may need further understanding of the time complexities of each prime-factoring algorithms to verify the claim. See Also ======== rsa_private_key encipher_rsa decipher_rsa References ========== .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29 .. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf .. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf .. [4] http://www.itiis.org/digital-library/manuscript/1381 """ return _rsa_key(*args, public=True, private=False, **kwargs) def rsa_private_key(*args, **kwargs): r"""Return the RSA *private key* pair, `(n, d)` Parameters ========== args : naturals The keyword is identical to the ``args`` in :meth:`rsa_public_key`. totient : bool, optional If ``'Euler'``, it uses Euler's totient convention `\phi(n)` which is :meth:`sympy.ntheory.factor_.totient` in SymPy. If ``'Carmichael'``, it uses Carmichael's totient convention `\lambda(n)` which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy. There can be some output differences for private key generation as examples below. Example using Euler's totient: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Euler') (3233, 2753) Example using Carmichael's totient: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Carmichael') (3233, 413) index : nonnegative integer, optional Returns an arbitrary solution of a RSA private key at the index specified at `0, 1, 2, \dots`. This parameter needs to be specified along with ``totient='Carmichael'``. RSA private exponent is a non-unique solution of `e d \mod \lambda(n) = 1` and it is possible in any form of `d + k \lambda(n)`, where `d` is an another already-computed private exponent, and `\lambda` is a Carmichael's totient function, and `k` is any integer. However, considering only the positive cases, there can be a principal solution of a RSA private exponent `d_0` in `0 < d_0 < \lambda(n)`, and all the other solutions can be canonicalzed in a form of `d_0 + k \lambda(n)`. ``index`` specifies the `k` notation to yield any possible value an RSA private key can have. An example of computing any arbitrary RSA private key: >>> from sympy.crypto.crypto import rsa_private_key >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0) (3233, 413) >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1) (3233, 1193) >>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2) (3233, 1973) multipower : bool, optional The keyword is identical to the ``multipower`` in :meth:`rsa_public_key`. Returns ======= (n, d) : int, int `n` is a product of any arbitrary number of primes given as the argument. `d` is the inverse of `e` (mod `\phi(n)`) where `e` is the exponent given, and `\phi` is a Euler totient. False Returned if less than two arguments are given, or `e` is not relatively prime to the totient of the modulus. Examples ======== >>> from sympy.crypto.crypto import rsa_private_key A private key of a two-prime RSA: >>> p, q, e = 3, 5, 7 >>> rsa_private_key(p, q, e) (15, 7) >>> rsa_private_key(p, q, 30) False A private key of a multiprime RSA: >>> primes = [2, 3, 5, 7, 11, 13] >>> e = 7 >>> args = primes + [e] >>> rsa_private_key(*args) (30030, 823) See Also ======== rsa_public_key encipher_rsa decipher_rsa References ========== .. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29 .. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf .. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf .. [4] http://www.itiis.org/digital-library/manuscript/1381 """ return _rsa_key(*args, public=False, private=True, **kwargs) def _encipher_decipher_rsa(i, key, factors=None): n, d = key if not factors: return pow(i, d, n) def _is_coprime_set(l): is_coprime_set = True for i in range(len(l)): for j in range(i+1, len(l)): if igcd(l[i], l[j]) != 1: is_coprime_set = False break return is_coprime_set prod = reduce(lambda i, j: i*j, factors) if prod == n and _is_coprime_set(factors): return _decipher_rsa_crt(i, d, factors) return _encipher_decipher_rsa(i, key, factors=None) def encipher_rsa(i, key, factors=None): r"""Encrypt the plaintext with RSA. Parameters ========== i : integer The plaintext to be encrypted for. key : (n, e) where n, e are integers `n` is the modulus of the key and `e` is the exponent of the key. The encryption is computed by `i^e \bmod n`. The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system. factors : list of coprime integers This is identical to the keyword ``factors`` in :meth:`decipher_rsa`. Notes ===== Some specifications may make the RSA not cryptographically meaningful. For example, `0`, `1` will remain always same after taking any number of exponentiation, thus, should be avoided. Furthermore, if `i^e < n`, `i` may easily be figured out by taking `e` th root. And also, specifying the exponent as `1` or in more generalized form as `1 + k \lambda(n)` where `k` is an nonnegative integer, `\lambda` is a carmichael totient, the RSA becomes an identity mapping. Examples ======== >>> from sympy.crypto.crypto import encipher_rsa >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key Public Key Encryption: >>> p, q, e = 3, 5, 7 >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> encipher_rsa(msg, puk) 3 Private Key Encryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> msg = 12 >>> encipher_rsa(msg, prk) 3 Encryption using chinese remainder theorem: >>> encipher_rsa(msg, prk, factors=[p, q]) 3 """ return _encipher_decipher_rsa(i, key, factors=factors) def decipher_rsa(i, key, factors=None): r"""Decrypt the ciphertext with RSA. Parameters ========== i : integer The ciphertext to be decrypted for. key : (n, d) where n, d are integers `n` is the modulus of the key and `d` is the exponent of the key. The decryption is computed by `i^d \bmod n`. The key can either be a public key or a private key, however, the message encrypted by a public key can only be decrypted by a private key, and vice versa, as RSA is an asymmetric cryptography system. factors : list of coprime integers As the modulus `n` created from RSA key generation is composed of arbitrary prime factors `n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where `p_1, p_2, \dots, p_n` are distinct primes and `k_1, k_2, \dots, k_n` are positive integers, chinese remainder theorem can be used to compute `i^d \bmod n` from the fragmented modulo operations like .. math:: i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots, i^d \bmod {p_n}^{k_n} or like .. math:: i^d \bmod {p_1}^{k_1}{p_2}^{k_2}, i^d \bmod {p_3}^{k_3}, \dots , i^d \bmod {p_n}^{k_n} as long as every moduli does not share any common divisor each other. The raw primes used in generating the RSA key pair can be a good option. Note that the speed advantage of using this is only viable for very large cases (Like 2048-bit RSA keys) since the overhead of using pure Python implementation of :meth:`sympy.ntheory.modular.crt` may overcompensate the theoritical speed advantage. Notes ===== See the ``Notes`` section in the documentation of :meth:`encipher_rsa` Examples ======== >>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa >>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key Public Key Encryption and Decryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> new_msg = encipher_rsa(msg, prk) >>> new_msg 3 >>> decipher_rsa(new_msg, puk) 12 Private Key Encryption and Decryption: >>> p, q, e = 3, 5, 7 >>> prk = rsa_private_key(p, q, e) >>> puk = rsa_public_key(p, q, e) >>> msg = 12 >>> new_msg = encipher_rsa(msg, puk) >>> new_msg 3 >>> decipher_rsa(new_msg, prk) 12 Decryption using chinese remainder theorem: >>> decipher_rsa(new_msg, prk, factors=[p, q]) 12 See Also ======== encipher_rsa """ return _encipher_decipher_rsa(i, key, factors=factors) #################### kid krypto (kid RSA) ############################# def kid_rsa_public_key(a, b, A, B): r""" Kid RSA is a version of RSA useful to teach grade school children since it does not involve exponentiation. Explanation =========== Alice wants to talk to Bob. Bob generates keys as follows. Key generation: * Select positive integers `a, b, A, B` at random. * Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1)//M`. * The *public key* is `(n, e)`. Bob sends these to Alice. * The *private key* is `(n, d)`, which Bob keeps secret. Encryption: If `p` is the plaintext message then the ciphertext is `c = p e \pmod n`. Decryption: If `c` is the ciphertext message then the plaintext is `p = c d \pmod n`. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_public_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_public_key(a, b, A, B) (369, 58) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, e def kid_rsa_private_key(a, b, A, B): """ Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`, `n = (e d - 1) / M`. The *private key* is `d`, which Bob keeps secret. Examples ======== >>> from sympy.crypto.crypto import kid_rsa_private_key >>> a, b, A, B = 3, 4, 5, 6 >>> kid_rsa_private_key(a, b, A, B) (369, 70) """ M = a*b - 1 e = A*M + a d = B*M + b n = (e*d - 1)//M return n, d def encipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the public key. Examples ======== >>> from sympy.crypto.crypto import ( ... encipher_kid_rsa, kid_rsa_public_key) >>> msg = 200 >>> a, b, A, B = 3, 4, 5, 6 >>> key = kid_rsa_public_key(a, b, A, B) >>> encipher_kid_rsa(msg, key) 161 """ n, e = key return (msg*e) % n def decipher_kid_rsa(msg, key): """ Here ``msg`` is the plaintext and ``key`` is the private key. Examples ======== >>> from sympy.crypto.crypto import ( ... kid_rsa_public_key, kid_rsa_private_key, ... decipher_kid_rsa, encipher_kid_rsa) >>> a, b, A, B = 3, 4, 5, 6 >>> d = kid_rsa_private_key(a, b, A, B) >>> msg = 200 >>> pub = kid_rsa_public_key(a, b, A, B) >>> pri = kid_rsa_private_key(a, b, A, B) >>> ct = encipher_kid_rsa(msg, pub) >>> decipher_kid_rsa(ct, pri) 200 """ n, d = key return (msg*d) % n #################### Morse Code ###################################### morse_char = { ".-": "A", "-...": "B", "-.-.": "C", "-..": "D", ".": "E", "..-.": "F", "--.": "G", "....": "H", "..": "I", ".---": "J", "-.-": "K", ".-..": "L", "--": "M", "-.": "N", "---": "O", ".--.": "P", "--.-": "Q", ".-.": "R", "...": "S", "-": "T", "..-": "U", "...-": "V", ".--": "W", "-..-": "X", "-.--": "Y", "--..": "Z", "-----": "0", ".----": "1", "..---": "2", "...--": "3", "....-": "4", ".....": "5", "-....": "6", "--...": "7", "---..": "8", "----.": "9", ".-.-.-": ".", "--..--": ",", "---...": ":", "-.-.-.": ";", "..--..": "?", "-....-": "-", "..--.-": "_", "-.--.": "(", "-.--.-": ")", ".----.": "'", "-...-": "=", ".-.-.": "+", "-..-.": "/", ".--.-.": "@", "...-..-": "$", "-.-.--": "!"} char_morse = {v: k for k, v in morse_char.items()} def encode_morse(msg, sep='|', mapping=None): """ Encodes a plaintext into popular Morse Code with letters separated by ``sep`` and words by a double ``sep``. Examples ======== >>> from sympy.crypto.crypto import encode_morse >>> msg = 'ATTACK RIGHT FLANK' >>> encode_morse(msg) '.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-' References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code """ mapping = mapping or char_morse assert sep not in mapping word_sep = 2*sep mapping[" "] = word_sep suffix = msg and msg[-1] in whitespace # normalize whitespace msg = (' ' if word_sep else '').join(msg.split()) # omit unmapped chars chars = set(''.join(msg.split())) ok = set(mapping.keys()) msg = translate(msg, None, ''.join(chars - ok)) morsestring = [] words = msg.split() for word in words: morseword = [] for letter in word: morseletter = mapping[letter] morseword.append(morseletter) word = sep.join(morseword) morsestring.append(word) return word_sep.join(morsestring) + (word_sep if suffix else '') def decode_morse(msg, sep='|', mapping=None): """ Decodes a Morse Code with letters separated by ``sep`` (default is '|') and words by `word_sep` (default is '||) into plaintext. Examples ======== >>> from sympy.crypto.crypto import decode_morse >>> mc = '--|---|...-|.||.|.-|...|-' >>> decode_morse(mc) 'MOVE EAST' References ========== .. [1] https://en.wikipedia.org/wiki/Morse_code """ mapping = mapping or morse_char word_sep = 2*sep characterstring = [] words = msg.strip(word_sep).split(word_sep) for word in words: letters = word.split(sep) chars = [mapping[c] for c in letters] word = ''.join(chars) characterstring.append(word) rv = " ".join(characterstring) return rv #################### LFSRs ########################################## def lfsr_sequence(key, fill, n): r""" This function creates an LFSR sequence. Parameters ========== key : list A list of finite field elements, `[c_0, c_1, \ldots, c_k].` fill : list The list of the initial terms of the LFSR sequence, `[x_0, x_1, \ldots, x_k].` n Number of terms of the sequence that the function returns. Returns ======= L The LFSR sequence defined by `x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for `n \leq k`. Notes ===== S. Golomb [G]_ gives a list of three statistical properties a sequence of numbers `a = \{a_n\}_{n=1}^\infty`, `a_n \in \{0,1\}`, should display to be considered "random". Define the autocorrelation of `a` to be .. math:: C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}. In the case where `a` is periodic with period `P` then this reduces to .. math:: C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}. Assume `a` is periodic with period `P`. - balance: .. math:: \left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1. - low autocorrelation: .. math:: C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right. (For sequences satisfying these first two properties, it is known that `\epsilon = -1/P` must hold.) - proportional runs property: In each period, half the runs have length `1`, one-fourth have length `2`, etc. Moreover, there are as many runs of `1`'s as there are of `0`'s. Examples ======== >>> from sympy.crypto.crypto import lfsr_sequence >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> lfsr_sequence(key, fill, 10) [1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2] References ========== .. [G] Solomon Golomb, Shift register sequences, Aegean Park Press, Laguna Hills, Ca, 1967 """ if not isinstance(key, list): raise TypeError("key must be a list") if not isinstance(fill, list): raise TypeError("fill must be a list") p = key[0].mod F = FF(p) s = fill k = len(fill) L = [] for i in range(n): s0 = s[:] L.append(s[0]) s = s[1:k] x = sum([int(key[i]*s0[i]) for i in range(k)]) s.append(F(x)) return L # use [x.to_int() for x in L] for int version def lfsr_autocorrelation(L, P, k): """ This function computes the LFSR autocorrelation function. Parameters ========== L A periodic sequence of elements of `GF(2)`. L must have length larger than P. P The period of L. k : int An integer `k` (`0 < k < P`). Returns ======= autocorrelation The k-th value of the autocorrelation of the LFSR L. Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_autocorrelation) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_autocorrelation(s, 15, 7) -1/15 >>> lfsr_autocorrelation(s, 15, 0) 1 """ if not isinstance(L, list): raise TypeError("L (=%s) must be a list" % L) P = int(P) k = int(k) L0 = L[:P] # slices makes a copy L1 = L0 + L0[:k] L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)] tot = sum(L2) return Rational(tot, P) def lfsr_connection_polynomial(s): """ This function computes the LFSR connection polynomial. Parameters ========== s A sequence of elements of even length, with entries in a finite field. Returns ======= C(x) The connection polynomial of a minimal LFSR yielding s. This implements the algorithm in section 3 of J. L. Massey's article [M]_. Examples ======== >>> from sympy.crypto.crypto import ( ... lfsr_sequence, lfsr_connection_polynomial) >>> from sympy.polys.domains import FF >>> F = FF(2) >>> fill = [F(1), F(1), F(0), F(1)] >>> key = [F(1), F(0), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**4 + x + 1 >>> fill = [F(1), F(0), F(0), F(1)] >>> key = [F(1), F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(1), F(0)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x**2 + 1 >>> fill = [F(1), F(0), F(1)] >>> key = [F(1), F(0), F(1)] >>> s = lfsr_sequence(key, fill, 20) >>> lfsr_connection_polynomial(s) x**3 + x + 1 References ========== .. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding." IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127, Jan 1969. """ # Initialization: p = s[0].mod x = Symbol("x") C = 1*x**0 B = 1*x**0 m = 1 b = 1*x**0 L = 0 N = 0 while N < len(s): if L > 0: dC = Poly(C).degree() r = min(L + 1, dC + 1) coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int() for i in range(1, r)])) % p if L == 0: d = s[N].to_int()*x**0 if d == 0: m += 1 N += 1 if d > 0: if 2*L > N: C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() m += 1 N += 1 else: T = C C = (C - d*((b**(p - 2)) % p)*x**m*B).expand() L = N + 1 - L m = 1 b = d B = T N += 1 dC = Poly(C).degree() coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)] return sum([coeffsC[i] % p*x**i for i in range(dC + 1) if coeffsC[i] is not None]) #################### ElGamal ############################# def elgamal_private_key(digit=10, seed=None): r""" Return three number tuple as private key. Explanation =========== Elgamal encryption is based on the mathmatical problem called the Discrete Logarithm Problem (DLP). For example, `a^{b} \equiv c \pmod p` In general, if ``a`` and ``b`` are known, ``ct`` is easily calculated. If ``b`` is unknown, it is hard to use ``a`` and ``ct`` to get ``b``. Parameters ========== digit : int Minimum number of binary digits for key. Returns ======= tuple : (p, r, d) p = prime number. r = primitive root. d = random number. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.core.random._randrange. Examples ======== >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.ntheory import is_primitive_root, isprime >>> a, b, _ = elgamal_private_key() >>> isprime(a) True >>> is_primitive_root(b, a) True """ randrange = _randrange(seed) p = nextprime(2**digit) return p, primitive_root(p), randrange(2, p) def elgamal_public_key(key): r""" Return three number tuple as public key. Parameters ========== key : (p, r, e) Tuple generated by ``elgamal_private_key``. Returns ======= tuple : (p, r, e) `e = r**d \bmod p` `d` is a random number in private key. Examples ======== >>> from sympy.crypto.crypto import elgamal_public_key >>> elgamal_public_key((1031, 14, 636)) (1031, 14, 212) """ p, r, e = key return p, r, pow(r, e, p) def encipher_elgamal(i, key, seed=None): r""" Encrypt message with public key. Explanation =========== ``i`` is a plaintext message expressed as an integer. ``key`` is public key (p, r, e). In order to encrypt a message, a random number ``a`` in ``range(2, p)`` is generated and the encryped message is returned as `c_{1}` and `c_{2}` where: `c_{1} \equiv r^{a} \pmod p` `c_{2} \equiv m e^{a} \pmod p` Parameters ========== msg int of encoded message. key Public key. Returns ======= tuple : (c1, c2) Encipher into two number. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.core.random._randrange. Examples ======== >>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]); pri (37, 2, 3) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 36 >>> encipher_elgamal(msg, pub, seed=[3]) (8, 6) """ p, r, e = key if i < 0 or i >= p: raise ValueError( 'Message (%s) should be in range(%s)' % (i, p)) randrange = _randrange(seed) a = randrange(2, p) return pow(r, a, p), i*pow(e, a, p) % p def decipher_elgamal(msg, key): r""" Decrypt message with private key. `msg = (c_{1}, c_{2})` `key = (p, r, d)` According to extended Eucliden theorem, `u c_{1}^{d} + p n = 1` `u \equiv 1/{{c_{1}}^d} \pmod p` `u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p` `\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p` Examples ======== >>> from sympy.crypto.crypto import decipher_elgamal >>> from sympy.crypto.crypto import encipher_elgamal >>> from sympy.crypto.crypto import elgamal_private_key >>> from sympy.crypto.crypto import elgamal_public_key >>> pri = elgamal_private_key(5, seed=[3]) >>> pub = elgamal_public_key(pri); pub (37, 2, 8) >>> msg = 17 >>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg True """ p, _, d = key c1, c2 = msg u = igcdex(c1**d, p)[0] return u * c2 % p ################ Diffie-Hellman Key Exchange ######################### def dh_private_key(digit=10, seed=None): r""" Return three integer tuple as private key. Explanation =========== Diffie-Hellman key exchange is based on the mathematical problem called the Discrete Logarithm Problem (see ElGamal). Diffie-Hellman key exchange is divided into the following steps: * Alice and Bob agree on a base that consist of a prime ``p`` and a primitive root of ``p`` called ``g`` * Alice choses a number ``a`` and Bob choses a number ``b`` where ``a`` and ``b`` are random numbers in range `[2, p)`. These are their private keys. * Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends Alice `g^{b} \pmod p` * They both raise the received value to their secretly chosen number (``a`` or ``b``) and now have both as their shared key `g^{ab} \pmod p` Parameters ========== digit Minimum number of binary digits required in key. Returns ======= tuple : (p, g, a) p = prime number. g = primitive root of p. a = random number from 2 through p - 1. Notes ===== For testing purposes, the ``seed`` parameter may be set to control the output of this routine. See sympy.core.random._randrange. Examples ======== >>> from sympy.crypto.crypto import dh_private_key >>> from sympy.ntheory import isprime, is_primitive_root >>> p, g, _ = dh_private_key() >>> isprime(p) True >>> is_primitive_root(g, p) True >>> p, g, _ = dh_private_key(5) >>> isprime(p) True >>> is_primitive_root(g, p) True """ p = nextprime(2**digit) g = primitive_root(p) randrange = _randrange(seed) a = randrange(2, p) return p, g, a def dh_public_key(key): r""" Return three number tuple as public key. This is the tuple that Alice sends to Bob. Parameters ========== key : (p, g, a) A tuple generated by ``dh_private_key``. Returns ======= tuple : int, int, int A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as parameters.s Examples ======== >>> from sympy.crypto.crypto import dh_private_key, dh_public_key >>> p, g, a = dh_private_key(); >>> _p, _g, x = dh_public_key((p, g, a)) >>> p == _p and g == _g True >>> x == pow(g, a, p) True """ p, g, a = key return p, g, pow(g, a, p) def dh_shared_key(key, b): """ Return an integer that is the shared key. This is what Bob and Alice can both calculate using the public keys they received from each other and their private keys. Parameters ========== key : (p, g, x) Tuple `(p, g, x)` generated by ``dh_public_key``. b Random number in the range of `2` to `p - 1` (Chosen by second key exchange member (Bob)). Returns ======= int A shared key. Examples ======== >>> from sympy.crypto.crypto import ( ... dh_private_key, dh_public_key, dh_shared_key) >>> prk = dh_private_key(); >>> p, g, x = dh_public_key(prk); >>> sk = dh_shared_key((p, g, x), 1000) >>> sk == pow(x, 1000, p) True """ p, _, x = key if 1 >= b or b >= p: raise ValueError(filldedent(''' Value of b should be greater 1 and less than prime %s.''' % p)) return pow(x, b, p) ################ Goldwasser-Micali Encryption ######################### def _legendre(a, p): """ Returns the legendre symbol of a and p assuming that p is a prime. i.e. 1 if a is a quadratic residue mod p -1 if a is not a quadratic residue mod p 0 if a is divisible by p Parameters ========== a : int The number to test. p : prime The prime to test ``a`` against. Returns ======= int Legendre symbol (a / p). """ sig = pow(a, (p - 1)//2, p) if sig == 1: return 1 elif sig == 0: return 0 else: return -1 def _random_coprime_stream(n, seed=None): randrange = _randrange(seed) while True: y = randrange(n) if gcd(y, n) == 1: yield y def gm_private_key(p, q, a=None): r""" Check if ``p`` and ``q`` can be used as private keys for the Goldwasser-Micali encryption. The method works roughly as follows. Explanation =========== #. Pick two large primes $p$ and $q$. #. Call their product $N$. #. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$. #. For each $k$, if $b_k = 0$: let $a_k$ be a random square (quadratic residue) modulo $p q$ such that ``jacobi_symbol(a, p*q) = 1`` if $b_k = 1$: let $a_k$ be a random non-square (non-quadratic residue) modulo $p q$ such that ``jacobi_symbol(a, p*q) = 1`` returns $\left[a_1, a_2, \dots\right]$ $b_k$ can be recovered by checking whether or not $a_k$ is a residue. And from the $b_k$'s, the message can be reconstructed. The idea is that, while ``jacobi_symbol(a, p*q)`` can be easily computed (and when it is equal to $-1$ will tell you that $a$ is not a square mod $p q$), quadratic residuosity modulo a composite number is hard to compute without knowing its factorization. Moreover, approximately half the numbers coprime to $p q$ have :func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half are residues and approximately half are not. This maximizes the entropy of the code. Parameters ========== p, q, a Initialization variables. Returns ======= tuple : (p, q) The input value ``p`` and ``q``. Raises ====== ValueError If ``p`` and ``q`` are not distinct odd primes. """ if p == q: raise ValueError("expected distinct primes, " "got two copies of %i" % p) elif not isprime(p) or not isprime(q): raise ValueError("first two arguments must be prime, " "got %i of %i" % (p, q)) elif p == 2 or q == 2: raise ValueError("first two arguments must not be even, " "got %i of %i" % (p, q)) return p, q def gm_public_key(p, q, a=None, seed=None): """ Compute public keys for ``p`` and ``q``. Note that in Goldwasser-Micali Encryption, public keys are randomly selected. Parameters ========== p, q, a : int, int, int Initialization variables. Returns ======= tuple : (a, N) ``a`` is the input ``a`` if it is not ``None`` otherwise some random integer coprime to ``p`` and ``q``. ``N`` is the product of ``p`` and ``q``. """ p, q = gm_private_key(p, q) N = p * q if a is None: randrange = _randrange(seed) while True: a = randrange(N) if _legendre(a, p) == _legendre(a, q) == -1: break else: if _legendre(a, p) != -1 or _legendre(a, q) != -1: return False return (a, N) def encipher_gm(i, key, seed=None): """ Encrypt integer 'i' using public_key 'key' Note that gm uses random encryption. Parameters ========== i : int The message to encrypt. key : (a, N) The public key. Returns ======= list : list of int The randomized encrypted message. """ if i < 0: raise ValueError( "message must be a non-negative " "integer: got %d instead" % i) a, N = key bits = [] while i > 0: bits.append(i % 2) i //= 2 gen = _random_coprime_stream(N, seed) rev = reversed(bits) encode = lambda b: next(gen)**2*pow(a, b) % N return [ encode(b) for b in rev ] def decipher_gm(message, key): """ Decrypt message 'message' using public_key 'key'. Parameters ========== message : list of int The randomized encrypted message. key : (p, q) The private key. Returns ======= int The encrypted message. """ p, q = key res = lambda m, p: _legendre(m, p) > 0 bits = [res(m, p) * res(m, q) for m in message] m = 0 for b in bits: m <<= 1 m += not b return m ########### RailFence Cipher ############# def encipher_railfence(message,rails): """ Performs Railfence Encryption on plaintext and returns ciphertext Examples ======== >>> from sympy.crypto.crypto import encipher_railfence >>> message = "hello world" >>> encipher_railfence(message,3) 'horel ollwd' Parameters ========== message : string, the message to encrypt. rails : int, the number of rails. Returns ======= The Encrypted string message. References ========== .. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher """ r = list(range(rails)) p = cycle(r + r[-2:0:-1]) return ''.join(sorted(message, key=lambda i: next(p))) def decipher_railfence(ciphertext,rails): """ Decrypt the message using the given rails Examples ======== >>> from sympy.crypto.crypto import decipher_railfence >>> decipher_railfence("horel ollwd",3) 'hello world' Parameters ========== message : string, the message to encrypt. rails : int, the number of rails. Returns ======= The Decrypted string message. """ r = list(range(rails)) p = cycle(r + r[-2:0:-1]) idx = sorted(range(len(ciphertext)), key=lambda i: next(p)) res = [''] * len(ciphertext) for i, c in zip(idx, ciphertext): res[i] = c return ''.join(res) ################ Blum-Goldwasser cryptosystem ######################### def bg_private_key(p, q): """ Check if p and q can be used as private keys for the Blum-Goldwasser cryptosystem. Explanation =========== The three necessary checks for p and q to pass so that they can be used as private keys: 1. p and q must both be prime 2. p and q must be distinct 3. p and q must be congruent to 3 mod 4 Parameters ========== p, q The keys to be checked. Returns ======= p, q Input values. Raises ====== ValueError If p and q do not pass the above conditions. """ if not isprime(p) or not isprime(q): raise ValueError("the two arguments must be prime, " "got %i and %i" %(p, q)) elif p == q: raise ValueError("the two arguments must be distinct, " "got two copies of %i. " %p) elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0: raise ValueError("the two arguments must be congruent to 3 mod 4, " "got %i and %i" %(p, q)) return p, q def bg_public_key(p, q): """ Calculates public keys from private keys. Explanation =========== The function first checks the validity of private keys passed as arguments and then returns their product. Parameters ========== p, q The private keys. Returns ======= N The public key. """ p, q = bg_private_key(p, q) N = p * q return N def encipher_bg(i, key, seed=None): """ Encrypts the message using public key and seed. Explanation =========== ALGORITHM: 1. Encodes i as a string of L bits, m. 2. Select a random element r, where 1 < r < key, and computes x = r^2 mod key. 3. Use BBS pseudo-random number generator to generate L random bits, b, using the initial seed as x. 4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L. 5. x_L = x^(2^L) mod key. 6. Return (c, x_L) Parameters ========== i Message, a non-negative integer key The public key Returns ======= Tuple (encrypted_message, x_L) Raises ====== ValueError If i is negative. """ if i < 0: raise ValueError( "message must be a non-negative " "integer: got %d instead" % i) enc_msg = [] while i > 0: enc_msg.append(i % 2) i //= 2 enc_msg.reverse() L = len(enc_msg) r = _randint(seed)(2, key - 1) x = r**2 % key x_L = pow(int(x), int(2**L), int(key)) rand_bits = [] for _ in range(L): rand_bits.append(x % 2) x = x**2 % key encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)] return (encrypt_msg, x_L) def decipher_bg(message, key): """ Decrypts the message using private keys. Explanation =========== ALGORITHM: 1. Let, c be the encrypted message, y the second number received, and p and q be the private keys. 2. Compute, r_p = y^((p+1)/4 ^ L) mod p and r_q = y^((q+1)/4 ^ L) mod q. 3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N. 4. From, recompute the bits using the BBS generator, as in the encryption algorithm. 5. Compute original message by XORing c and b. Parameters ========== message Tuple of encrypted message and a non-negative integer. key Tuple of private keys. Returns ======= orig_msg The original message """ p, q = key encrypt_msg, y = message public_key = p * q L = len(encrypt_msg) p_t = ((p + 1)/4)**L q_t = ((q + 1)/4)**L r_p = pow(int(y), int(p_t), int(p)) r_q = pow(int(y), int(q_t), int(q)) x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key orig_bits = [] for _ in range(L): orig_bits.append(x % 2) x = x**2 % public_key orig_msg = 0 for (m, b) in zip(encrypt_msg, orig_bits): orig_msg = orig_msg * 2 orig_msg += (m ^ b) return orig_msg
c0cd4838f60e5af47eba6081441a8c6d27de68fb6ea1338784f3af8b6a0d6c79
"""Module for querying SymPy objects about assumptions.""" from sympy.assumptions.assume import (global_assumptions, Predicate, AppliedPredicate) from sympy.assumptions.cnf import CNF, EncodedCNF, Literal from sympy.core import sympify from sympy.core.kind import BooleanKind from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le from sympy.logic.inference import satisfiable from sympy.utilities.decorator import memoize_property from sympy.utilities.exceptions import SymPyDeprecationWarning # Memoization is necessary for the properties of AssumptionKeys to # ensure that only one object of Predicate objects are created. # This is because assumption handlers are registered on those objects. class AssumptionKeys: """ This class contains all the supported keys by ``ask``. It should be accessed via the instance ``sympy.Q``. """ # DO NOT add methods or properties other than predicate keys. # SAT solver checks the properties of Q and use them to compute the # fact system. Non-predicate attributes will break this. @memoize_property def hermitian(self): from .handlers.sets import HermitianPredicate return HermitianPredicate() @memoize_property def antihermitian(self): from .handlers.sets import AntihermitianPredicate return AntihermitianPredicate() @memoize_property def real(self): from .handlers.sets import RealPredicate return RealPredicate() @memoize_property def extended_real(self): from .handlers.sets import ExtendedRealPredicate return ExtendedRealPredicate() @memoize_property def imaginary(self): from .handlers.sets import ImaginaryPredicate return ImaginaryPredicate() @memoize_property def complex(self): from .handlers.sets import ComplexPredicate return ComplexPredicate() @memoize_property def algebraic(self): from .handlers.sets import AlgebraicPredicate return AlgebraicPredicate() @memoize_property def transcendental(self): from .predicates.sets import TranscendentalPredicate return TranscendentalPredicate() @memoize_property def integer(self): from .handlers.sets import IntegerPredicate return IntegerPredicate() @memoize_property def rational(self): from .handlers.sets import RationalPredicate return RationalPredicate() @memoize_property def irrational(self): from .handlers.sets import IrrationalPredicate return IrrationalPredicate() @memoize_property def finite(self): from .handlers.calculus import FinitePredicate return FinitePredicate() @memoize_property def infinite(self): from .handlers.calculus import InfinitePredicate return InfinitePredicate() @memoize_property def positive_infinite(self): from .handlers.calculus import PositiveInfinitePredicate return PositiveInfinitePredicate() @memoize_property def negative_infinite(self): from .handlers.calculus import NegativeInfinitePredicate return NegativeInfinitePredicate() @memoize_property def positive(self): from .handlers.order import PositivePredicate return PositivePredicate() @memoize_property def negative(self): from .handlers.order import NegativePredicate return NegativePredicate() @memoize_property def zero(self): from .handlers.order import ZeroPredicate return ZeroPredicate() @memoize_property def extended_positive(self): from .handlers.order import ExtendedPositivePredicate return ExtendedPositivePredicate() @memoize_property def extended_negative(self): from .handlers.order import ExtendedNegativePredicate return ExtendedNegativePredicate() @memoize_property def nonzero(self): from .handlers.order import NonZeroPredicate return NonZeroPredicate() @memoize_property def nonpositive(self): from .handlers.order import NonPositivePredicate return NonPositivePredicate() @memoize_property def nonnegative(self): from .handlers.order import NonNegativePredicate return NonNegativePredicate() @memoize_property def extended_nonzero(self): from .handlers.order import ExtendedNonZeroPredicate return ExtendedNonZeroPredicate() @memoize_property def extended_nonpositive(self): from .handlers.order import ExtendedNonPositivePredicate return ExtendedNonPositivePredicate() @memoize_property def extended_nonnegative(self): from .handlers.order import ExtendedNonNegativePredicate return ExtendedNonNegativePredicate() @memoize_property def even(self): from .handlers.ntheory import EvenPredicate return EvenPredicate() @memoize_property def odd(self): from .handlers.ntheory import OddPredicate return OddPredicate() @memoize_property def prime(self): from .handlers.ntheory import PrimePredicate return PrimePredicate() @memoize_property def composite(self): from .handlers.ntheory import CompositePredicate return CompositePredicate() @memoize_property def commutative(self): from .handlers.common import CommutativePredicate return CommutativePredicate() @memoize_property def is_true(self): from .handlers.common import IsTruePredicate return IsTruePredicate() @memoize_property def symmetric(self): from .handlers.matrices import SymmetricPredicate return SymmetricPredicate() @memoize_property def invertible(self): from .handlers.matrices import InvertiblePredicate return InvertiblePredicate() @memoize_property def orthogonal(self): from .handlers.matrices import OrthogonalPredicate return OrthogonalPredicate() @memoize_property def unitary(self): from .handlers.matrices import UnitaryPredicate return UnitaryPredicate() @memoize_property def positive_definite(self): from .handlers.matrices import PositiveDefinitePredicate return PositiveDefinitePredicate() @memoize_property def upper_triangular(self): from .handlers.matrices import UpperTriangularPredicate return UpperTriangularPredicate() @memoize_property def lower_triangular(self): from .handlers.matrices import LowerTriangularPredicate return LowerTriangularPredicate() @memoize_property def diagonal(self): from .handlers.matrices import DiagonalPredicate return DiagonalPredicate() @memoize_property def fullrank(self): from .handlers.matrices import FullRankPredicate return FullRankPredicate() @memoize_property def square(self): from .handlers.matrices import SquarePredicate return SquarePredicate() @memoize_property def integer_elements(self): from .handlers.matrices import IntegerElementsPredicate return IntegerElementsPredicate() @memoize_property def real_elements(self): from .handlers.matrices import RealElementsPredicate return RealElementsPredicate() @memoize_property def complex_elements(self): from .handlers.matrices import ComplexElementsPredicate return ComplexElementsPredicate() @memoize_property def singular(self): from .predicates.matrices import SingularPredicate return SingularPredicate() @memoize_property def normal(self): from .predicates.matrices import NormalPredicate return NormalPredicate() @memoize_property def triangular(self): from .predicates.matrices import TriangularPredicate return TriangularPredicate() @memoize_property def unit_triangular(self): from .predicates.matrices import UnitTriangularPredicate return UnitTriangularPredicate() @memoize_property def eq(self): from .relation.equality import EqualityPredicate return EqualityPredicate() @memoize_property def ne(self): from .relation.equality import UnequalityPredicate return UnequalityPredicate() @memoize_property def gt(self): from .relation.equality import StrictGreaterThanPredicate return StrictGreaterThanPredicate() @memoize_property def ge(self): from .relation.equality import GreaterThanPredicate return GreaterThanPredicate() @memoize_property def lt(self): from .relation.equality import StrictLessThanPredicate return StrictLessThanPredicate() @memoize_property def le(self): from .relation.equality import LessThanPredicate return LessThanPredicate() Q = AssumptionKeys() def _extract_all_facts(assump, exprs): """ Extract all relevant assumptions from *assump* with respect to given *exprs*. Parameters ========== assump : sympy.assumptions.cnf.CNF exprs : tuple of expressions Returns ======= sympy.assumptions.cnf.CNF Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.ask import _extract_all_facts >>> from sympy.abc import x, y >>> assump = CNF.from_prop(Q.positive(x) & Q.integer(y)) >>> exprs = (x,) >>> cnf = _extract_all_facts(assump, exprs) >>> cnf.clauses {frozenset({Literal(Q.positive, False)})} """ facts = set() for clause in assump.clauses: args = [] for literal in clause: if isinstance(literal.lit, AppliedPredicate) and len(literal.lit.arguments) == 1: if literal.lit.arg in exprs: # Add literal if it has matching in it args.append(Literal(literal.lit.function, literal.is_Not)) else: # If any of the literals doesn't have matching expr don't add the whole clause. break else: if args: facts.add(frozenset(args)) return CNF(facts) def ask(proposition, assumptions=True, context=global_assumptions): """ Function to evaluate the proposition with assumptions. Explanation =========== This function evaluates the proposition to ``True`` or ``False`` if the truth value can be determined. If not, it returns ``None``. It should be discerned from :func:`~.refine()` which, when applied to a proposition, simplifies the argument to symbolic ``Boolean`` instead of Python built-in ``True``, ``False`` or ``None``. **Syntax** * ask(proposition) Evaluate the *proposition* in global assumption context. * ask(proposition, assumptions) Evaluate the *proposition* with respect to *assumptions* in global assumption context. Parameters ========== proposition : Any boolean expression. Proposition which will be evaluated to boolean value. If this is not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``. assumptions : Any boolean expression, optional. Local assumptions to evaluate the *proposition*. context : AssumptionsContext, optional. Default assumptions to evaluate the *proposition*. By default, this is ``sympy.assumptions.global_assumptions`` variable. Returns ======= ``True``, ``False``, or ``None`` Raises ====== TypeError : *proposition* or *assumptions* is not valid logical expression. ValueError : assumptions are inconsistent. Examples ======== >>> from sympy import ask, Q, pi >>> from sympy.abc import x, y >>> ask(Q.rational(pi)) False >>> ask(Q.even(x*y), Q.even(x) & Q.integer(y)) True >>> ask(Q.prime(4*x), Q.integer(x)) False If the truth value cannot be determined, ``None`` will be returned. >>> print(ask(Q.odd(3*x))) # cannot determine unless we know x None ``ValueError`` is raised if assumptions are inconsistent. >>> ask(Q.integer(x), Q.even(x) & Q.odd(x)) Traceback (most recent call last): ... ValueError: inconsistent assumptions Q.even(x) & Q.odd(x) Notes ===== Relations in assumptions are not implemented (yet), so the following will not give a meaningful result. >>> ask(Q.positive(x), x > 0) It is however a work in progress. See Also ======== sympy.assumptions.refine.refine : Simplification using assumptions. Proposition is not reduced to ``None`` if the truth value cannot be determined. """ from sympy.assumptions.satask import satask proposition = sympify(proposition) assumptions = sympify(assumptions) if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind: raise TypeError("proposition must be a valid logical expression") if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind: raise TypeError("assumptions must be a valid logical expression") binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le} if isinstance(proposition, AppliedPredicate): key, args = proposition.function, proposition.arguments elif proposition.func in binrelpreds: key, args = binrelpreds[type(proposition)], proposition.args else: key, args = Q.is_true, (proposition,) # convert local and global assumptions to CNF assump_cnf = CNF.from_prop(assumptions) assump_cnf.extend(context) # extract the relevant facts from assumptions with respect to args local_facts = _extract_all_facts(assump_cnf, args) # convert default facts and assumed facts to encoded CNF known_facts_cnf = get_all_known_facts() enc_cnf = EncodedCNF() enc_cnf.from_cnf(CNF(known_facts_cnf)) enc_cnf.add_from_cnf(local_facts) # check the satisfiability of given assumptions if local_facts.clauses and satisfiable(enc_cnf) is False: raise ValueError("inconsistent assumptions %s" % assumptions) # quick computation for single fact res = _ask_single_fact(key, local_facts) if res is not None: return res # direct resolution method, no logic res = key(*args)._eval_ask(assumptions) if res is not None: return bool(res) # using satask (still costly) res = satask(proposition, assumptions=assumptions, context=context) return res def _ask_single_fact(key, local_facts): """ Compute the truth value of single predicate using assumptions. Parameters ========== key : sympy.assumptions.assume.Predicate Proposition predicate. local_facts : sympy.assumptions.cnf.CNF Local assumption in CNF form. Returns ======= ``True``, ``False`` or ``None`` Examples ======== >>> from sympy import Q >>> from sympy.assumptions.cnf import CNF >>> from sympy.assumptions.ask import _ask_single_fact If prerequisite of proposition is rejected by the assumption, return ``False``. >>> key, assump = Q.zero, ~Q.zero >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False >>> key, assump = Q.zero, ~Q.even >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False If assumption implies the proposition, return ``True``. >>> key, assump = Q.even, Q.zero >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) True If proposition rejects the assumption, return ``False``. >>> key, assump = Q.even, Q.odd >>> local_facts = CNF.from_prop(assump) >>> _ask_single_fact(key, local_facts) False """ if local_facts.clauses: known_facts_dict = get_known_facts_dict() if len(local_facts.clauses) == 1: cl, = local_facts.clauses if len(cl) == 1: f, = cl prop_facts = known_facts_dict.get(key, None) prop_req = prop_facts[0] if prop_facts is not None else set() if f.is_Not and f.arg in prop_req: # the prerequisite of proposition is rejected return False for clause in local_facts.clauses: if len(clause) == 1: f, = clause prop_facts = known_facts_dict.get(f.arg, None) if not f.is_Not else None if prop_facts is None: continue prop_req, prop_rej = prop_facts if key in prop_req: # assumption implies the proposition return True elif key in prop_rej: # proposition rejects the assumption return False return None def register_handler(key, handler): """ Register a handler in the ask system. key must be a string and handler a class inheriting from AskHandler. .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="register_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name Qkey = getattr(Q, key, None) if Qkey is not None: Qkey.add_handler(handler) else: setattr(Q, key, Predicate(key, handlers=[handler])) def remove_handler(key, handler): """ Removes a handler from the ask system. Same syntax as register_handler .. deprecated:: 1.8. Use multipledispatch handler instead. See :obj:`~.Predicate`. """ SymPyDeprecationWarning( feature="remove_handler() function", useinstead="multipledispatch handler of Predicate", issue=20873, deprecated_since_version="1.8" ).warn() if isinstance(key, Predicate): key = key.name.name getattr(Q, key).remove_handler(handler) from sympy.assumptions.ask_generated import (get_all_known_facts, get_known_facts_dict)
073ddb36f33047fbbb93ae8e06b08df1202a923361d140b7f305505ab6af5325
from collections import defaultdict from sympy.assumptions.ask import Q from sympy.core import (Add, Mul, Pow, Number, NumberSymbol, Symbol) from sympy.core.numbers import ImaginaryUnit from sympy.functions.elementary.complexes import Abs from sympy.logic.boolalg import (Equivalent, And, Or, Implies) from sympy.matrices.expressions import MatMul # APIs here may be subject to change ### Helper functions ### def allargs(symbol, fact, expr): """ Apply all arguments of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import allargs >>> from sympy.abc import x, y >>> allargs(x, Q.negative(x) | Q.positive(x), x*y) (Q.negative(x) | Q.positive(x)) & (Q.negative(y) | Q.positive(y)) """ return And(*[fact.subs(symbol, arg) for arg in expr.args]) def anyarg(symbol, fact, expr): """ Apply any argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import anyarg >>> from sympy.abc import x, y >>> anyarg(x, Q.negative(x) & Q.positive(x), x*y) (Q.negative(x) & Q.positive(x)) | (Q.negative(y) & Q.positive(y)) """ return Or(*[fact.subs(symbol, arg) for arg in expr.args]) def exactlyonearg(symbol, fact, expr): """ Apply exactly one argument of the expression to the fact structure. Parameters ========== symbol : Symbol A placeholder symbol. fact : Boolean Resulting ``Boolean`` expression. expr : Expr Examples ======== >>> from sympy import Q >>> from sympy.assumptions.sathandlers import exactlyonearg >>> from sympy.abc import x, y >>> exactlyonearg(x, Q.positive(x), x*y) (Q.positive(x) & ~Q.positive(y)) | (Q.positive(y) & ~Q.positive(x)) """ pred_args = [fact.subs(symbol, arg) for arg in expr.args] res = Or(*[And(pred_args[i], *[~lit for lit in pred_args[:i] + pred_args[i+1:]]) for i in range(len(pred_args))]) return res ### Fact registry ### class ClassFactRegistry: """ Register handlers against classes. Explanation =========== ``register`` method registers the handler function for a class. Here, handler function should return a single fact. ``multiregister`` method registers the handler function for multiple classes. Here, handler function should return a container of multiple facts. ``registry(expr)`` returns a set of facts for *expr*. Examples ======== Here, we register the facts for ``Abs``. >>> from sympy import Abs, Equivalent, Q >>> from sympy.assumptions.sathandlers import ClassFactRegistry >>> reg = ClassFactRegistry() >>> @reg.register(Abs) ... def f1(expr): ... return Q.nonnegative(expr) >>> @reg.register(Abs) ... def f2(expr): ... arg = expr.args[0] ... return Equivalent(~Q.zero(arg), ~Q.zero(expr)) Calling the registry with expression returns the defined facts for the expression. >>> from sympy.abc import x >>> reg(Abs(x)) {Q.nonnegative(Abs(x)), Equivalent(~Q.zero(x), ~Q.zero(Abs(x)))} Multiple facts can be registered at once by ``multiregister`` method. >>> reg2 = ClassFactRegistry() >>> @reg2.multiregister(Abs) ... def _(expr): ... arg = expr.args[0] ... return [Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr)] >>> reg2(Abs(x)) {Implies(Q.even(x), Q.even(Abs(x))), Implies(Q.odd(x), Q.odd(Abs(x)))} """ def __init__(self): self.singlefacts = defaultdict(frozenset) self.multifacts = defaultdict(frozenset) def register(self, cls): def _(func): self.singlefacts[cls] |= {func} return func return _ def multiregister(self, *classes): def _(func): for cls in classes: self.multifacts[cls] |= {func} return func return _ def __getitem__(self, key): ret1 = self.singlefacts[key] for k in self.singlefacts: if issubclass(key, k): ret1 |= self.singlefacts[k] ret2 = self.multifacts[key] for k in self.multifacts: if issubclass(key, k): ret2 |= self.multifacts[k] return ret1, ret2 def __call__(self, expr): ret = set() handlers1, handlers2 = self[type(expr)] for h in handlers1: ret.add(h(expr)) for h in handlers2: ret.update(h(expr)) return ret class_fact_registry = ClassFactRegistry() ### Class fact registration ### x = Symbol('x') ## Abs ## @class_fact_registry.multiregister(Abs) # type: ignore def _(expr): arg = expr.args[0] return [Q.nonnegative(expr), Equivalent(~Q.zero(arg), ~Q.zero(expr)), Q.even(arg) >> Q.even(expr), Q.odd(arg) >> Q.odd(expr), Q.integer(arg) >> Q.integer(expr), ] ### Add ## @class_fact_registry.multiregister(Add) # type: ignore def _(expr): return [allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.negative(x), expr) >> Q.negative(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.integer(x), expr) >> ~Q.integer(expr), ] @class_fact_registry.register(Add) # type: ignore def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) ### Mul ### @class_fact_registry.multiregister(Mul) # type: ignore def _(expr): return [Equivalent(Q.zero(expr), anyarg(x, Q.zero(x), expr)), allargs(x, Q.positive(x), expr) >> Q.positive(expr), allargs(x, Q.real(x), expr) >> Q.real(expr), allargs(x, Q.rational(x), expr) >> Q.rational(expr), allargs(x, Q.integer(x), expr) >> Q.integer(expr), exactlyonearg(x, ~Q.rational(x), expr) >> ~Q.integer(expr), allargs(x, Q.commutative(x), expr) >> Q.commutative(expr), ] @class_fact_registry.register(Mul) # type: ignore def _(expr): # Implicitly assumes Mul has more than one arg # Would be allargs(x, Q.prime(x) | Q.composite(x)) except 1 is composite # More advanced prime assumptions will require inequalities, as 1 provides # a corner case. allargs_prime = allargs(x, Q.prime(x), expr) return Implies(allargs_prime, ~Q.prime(expr)) @class_fact_registry.register(Mul) # type: ignore def _(expr): # General Case: Odd number of imaginary args implies mul is imaginary(To be implemented) allargs_imag_or_real = allargs(x, Q.imaginary(x) | Q.real(x), expr) onearg_imaginary = exactlyonearg(x, Q.imaginary(x), expr) return Implies(allargs_imag_or_real, Implies(onearg_imaginary, Q.imaginary(expr))) @class_fact_registry.register(Mul) # type: ignore def _(expr): allargs_real = allargs(x, Q.real(x), expr) onearg_irrational = exactlyonearg(x, Q.irrational(x), expr) return Implies(allargs_real, Implies(onearg_irrational, Q.irrational(expr))) @class_fact_registry.register(Mul) # type: ignore def _(expr): # Including the integer qualification means we don't need to add any facts # for odd, since the assumptions already know that every integer is # exactly one of even or odd. allargs_integer = allargs(x, Q.integer(x), expr) anyarg_even = anyarg(x, Q.even(x), expr) return Implies(allargs_integer, Equivalent(anyarg_even, Q.even(expr))) ### MatMul ### @class_fact_registry.register(MatMul) # type: ignore def _(expr): allargs_square = allargs(x, Q.square(x), expr) allargs_invertible = allargs(x, Q.invertible(x), expr) return Implies(allargs_square, Equivalent(Q.invertible(expr), allargs_invertible)) ### Pow ### @class_fact_registry.multiregister(Pow) # type: ignore def _(expr): base, exp = expr.base, expr.exp return [ (Q.real(base) & Q.even(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonnegative(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonnegative(expr), (Q.nonpositive(base) & Q.odd(exp) & Q.nonnegative(exp)) >> Q.nonpositive(expr), Equivalent(Q.zero(expr), Q.zero(base) & Q.positive(exp)) ] ### Numbers ### _old_assump_getters = { Q.positive: lambda o: o.is_positive, Q.zero: lambda o: o.is_zero, Q.negative: lambda o: o.is_negative, Q.rational: lambda o: o.is_rational, Q.irrational: lambda o: o.is_irrational, Q.even: lambda o: o.is_even, Q.odd: lambda o: o.is_odd, Q.imaginary: lambda o: o.is_imaginary, Q.prime: lambda o: o.is_prime, Q.composite: lambda o: o.is_composite, } @class_fact_registry.multiregister(Number, NumberSymbol, ImaginaryUnit) # type: ignore def _(expr): ret = [] for p, getter in _old_assump_getters.items(): pred = p(expr) prop = getter(expr) if prop is not None: ret.append(Equivalent(pred, prop)) return ret
5ec84fc8fc0d4eed5dce9e5afd3d9e52628381b1ba2daff729fddbb758418ffb
from sympy.core.add import Add from sympy.core.exprtools import factor_terms from sympy.core.function import expand_log, _mexpand from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sorting import ordered from sympy.core.symbol import Dummy from sympy.functions.elementary.exponential import (LambertW, exp, log) from sympy.functions.elementary.miscellaneous import root from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly, factor from sympy.simplify.simplify import separatevars from sympy.simplify.radsimp import collect from sympy.simplify.simplify import powsimp from sympy.solvers.solvers import solve, _invert from sympy.utilities.iterables import uniq def _filtered_gens(poly, symbol): """process the generators of ``poly``, returning the set of generators that have ``symbol``. If there are two generators that are inverses of each other, prefer the one that has no denominator. Examples ======== >>> from sympy.solvers.bivariate import _filtered_gens >>> from sympy import Poly, exp >>> from sympy.abc import x >>> _filtered_gens(Poly(x + 1/x + exp(x)), x) {x, exp(x)} """ gens = {g for g in poly.gens if symbol in g.free_symbols} for g in list(gens): ag = 1/g if g in gens and ag in gens: if ag.as_numer_denom()[1] is not S.One: g = ag gens.remove(g) return gens def _mostfunc(lhs, func, X=None): """Returns the term in lhs which contains the most of the func-type things e.g. log(log(x)) wins over log(x) if both terms appear. ``func`` can be a function (exp, log, etc...) or any other SymPy object, like Pow. If ``X`` is not ``None``, then the function returns the term composed with the most ``func`` having the specified variable. Examples ======== >>> from sympy.solvers.bivariate import _mostfunc >>> from sympy.functions.elementary.exponential import exp >>> from sympy.abc import x, y >>> _mostfunc(exp(x) + exp(exp(x) + 2), exp) exp(exp(x) + 2) >>> _mostfunc(exp(x) + exp(exp(y) + 2), exp) exp(exp(y) + 2) >>> _mostfunc(exp(x) + exp(exp(y) + 2), exp, x) exp(x) >>> _mostfunc(x, exp, x) is None True >>> _mostfunc(exp(x) + exp(x*y), exp, x) exp(x) """ fterms = [tmp for tmp in lhs.atoms(func) if (not X or X.is_Symbol and X in tmp.free_symbols or not X.is_Symbol and tmp.has(X))] if len(fterms) == 1: return fterms[0] elif fterms: return max(list(ordered(fterms)), key=lambda x: x.count(func)) return None def _linab(arg, symbol): """Return ``a, b, X`` assuming ``arg`` can be written as ``a*X + b`` where ``X`` is a symbol-dependent factor and ``a`` and ``b`` are independent of ``symbol``. Examples ======== >>> from sympy.functions.elementary.exponential import exp >>> from sympy.solvers.bivariate import _linab >>> from sympy.abc import x, y >>> from sympy import S >>> _linab(S(2), x) (2, 0, 1) >>> _linab(2*x, x) (2, 0, x) >>> _linab(y + y*x + 2*x, x) (y + 2, y, x) >>> _linab(3 + 2*exp(x), x) (2, 3, exp(x)) """ arg = factor_terms(arg.expand()) ind, dep = arg.as_independent(symbol) if arg.is_Mul and dep.is_Add: a, b, x = _linab(dep, symbol) return ind*a, ind*b, x if not arg.is_Add: b = 0 a, x = ind, dep else: b = ind a, x = separatevars(dep).as_independent(symbol, as_Add=False) if x.could_extract_minus_sign(): a = -a x = -x return a, b, x def _lambert(eq, x): """ Given an expression assumed to be in the form ``F(X, a..f) = a*log(b*X + c) + d*X + f = 0`` where X = g(x) and x = g^-1(X), return the Lambert solution, ``x = g^-1(-c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(-f/a)))``. """ eq = _mexpand(expand_log(eq)) mainlog = _mostfunc(eq, log, x) if not mainlog: return [] # violated assumptions other = eq.subs(mainlog, 0) if isinstance(-other, log): eq = (eq - other).subs(mainlog, mainlog.args[0]) mainlog = mainlog.args[0] if not isinstance(mainlog, log): return [] # violated assumptions other = -(-other).args[0] eq += other if x not in other.free_symbols: return [] # violated assumptions d, f, X2 = _linab(other, x) logterm = collect(eq - other, mainlog) a = logterm.as_coefficient(mainlog) if a is None or x in a.free_symbols: return [] # violated assumptions logarg = mainlog.args[0] b, c, X1 = _linab(logarg, x) if X1 != X2: return [] # violated assumptions # invert the generator X1 so we have x(u) u = Dummy('rhs') xusolns = solve(X1 - u, x) # There are infinitely many branches for LambertW # but only branches for k = -1 and 0 might be real. The k = 0 # branch is real and the k = -1 branch is real if the LambertW argumen # in in range [-1/e, 0]. Since `solve` does not return infinite # solutions we will only include the -1 branch if it tests as real. # Otherwise, inclusion of any LambertW in the solution indicates to # the user that there are imaginary solutions corresponding to # different k values. lambert_real_branches = [-1, 0] sol = [] # solution of the given Lambert equation is like # sol = -c/b + (a/d)*LambertW(arg, k), # where arg = d/(a*b)*exp((c*d-b*f)/a/b) and k in lambert_real_branches. # Instead of considering the single arg, `d/(a*b)*exp((c*d-b*f)/a/b)`, # the individual `p` roots obtained when writing `exp((c*d-b*f)/a/b)` # as `exp(A/p) = exp(A)**(1/p)`, where `p` is an Integer, are used. # calculating args for LambertW num, den = ((c*d-b*f)/a/b).as_numer_denom() p, den = den.as_coeff_Mul() e = exp(num/den) t = Dummy('t') args = [d/(a*b)*t for t in roots(t**p - e, t).keys()] # calculating solutions from args for arg in args: for k in lambert_real_branches: w = LambertW(arg, k) if k and not w.is_real: continue rhs = -c/b + (a/d)*w for xu in xusolns: sol.append(xu.subs(u, rhs)) return sol def _solve_lambert(f, symbol, gens): """Return solution to ``f`` if it is a Lambert-type expression else raise NotImplementedError. For ``f(X, a..f) = a*log(b*X + c) + d*X - f = 0`` the solution for ``X`` is ``X = -c/b + (a/d)*W(d/(a*b)*exp(c*d/a/b)*exp(f/a))``. There are a variety of forms for `f(X, a..f)` as enumerated below: 1a1) if B**B = R for R not in [0, 1] (since those cases would already be solved before getting here) then log of both sides gives log(B) + log(log(B)) = log(log(R)) and X = log(B), a = 1, b = 1, c = 0, d = 1, f = log(log(R)) 1a2) if B*(b*log(B) + c)**a = R then log of both sides gives log(B) + a*log(b*log(B) + c) = log(R) and X = log(B), d=1, f=log(R) 1b) if a*log(b*B + c) + d*B = R and X = B, f = R 2a) if (b*B + c)*exp(d*B + g) = R then log of both sides gives log(b*B + c) + d*B + g = log(R) and X = B, a = 1, f = log(R) - g 2b) if g*exp(d*B + h) - b*B = c then the log form is log(g) + d*B + h - log(b*B + c) = 0 and X = B, a = -1, f = -h - log(g) 3) if d*p**(a*B + g) - b*B = c then the log form is log(d) + (a*B + g)*log(p) - log(b*B + c) = 0 and X = B, a = -1, d = a*log(p), f = -log(d) - g*log(p) """ def _solve_even_degree_expr(expr, t, symbol): """Return the unique solutions of equations derived from ``expr`` by replacing ``t`` with ``+/- symbol``. Parameters ========== expr : Expr The expression which includes a dummy variable t to be replaced with +symbol and -symbol. symbol : Symbol The symbol for which a solution is being sought. Returns ======= List of unique solution of the two equations generated by replacing ``t`` with positive and negative ``symbol``. Notes ===== If ``expr = 2*log(t) + x/2` then solutions for ``2*log(x) + x/2 = 0`` and ``2*log(-x) + x/2 = 0`` are returned by this function. Though this may seem counter-intuitive, one must note that the ``expr`` being solved here has been derived from a different expression. For an expression like ``eq = x**2*g(x) = 1``, if we take the log of both sides we obtain ``log(x**2) + log(g(x)) = 0``. If x is positive then this simplifies to ``2*log(x) + log(g(x)) = 0``; the Lambert-solving routines will return solutions for this, but we must also consider the solutions for ``2*log(-x) + log(g(x))`` since those must also be a solution of ``eq`` which has the same value when the ``x`` in ``x**2`` is negated. If `g(x)` does not have even powers of symbol then we do not want to replace the ``x`` there with ``-x``. So the role of the ``t`` in the expression received by this function is to mark where ``+/-x`` should be inserted before obtaining the Lambert solutions. """ nlhs, plhs = [ expr.xreplace({t: sgn*symbol}) for sgn in (-1, 1)] sols = _solve_lambert(nlhs, symbol, gens) if plhs != nlhs: sols.extend(_solve_lambert(plhs, symbol, gens)) # uniq is needed for a case like # 2*log(t) - log(-z**2) + log(z + log(x) + log(z)) # where subtituting t with +/-x gives all the same solution; # uniq, rather than list(set()), is used to maintain canonical # order return list(uniq(sols)) nrhs, lhs = f.as_independent(symbol, as_Add=True) rhs = -nrhs lamcheck = [tmp for tmp in gens if (tmp.func in [exp, log] or (tmp.is_Pow and symbol in tmp.exp.free_symbols))] if not lamcheck: raise NotImplementedError() if lhs.is_Add or lhs.is_Mul: # replacing all even_degrees of symbol with dummy variable t # since these will need special handling; non-Add/Mul do not # need this handling t = Dummy('t', **symbol.assumptions0) lhs = lhs.replace( lambda i: # find symbol**even i.is_Pow and i.base == symbol and i.exp.is_even, lambda i: # replace t**even t**i.exp) if lhs.is_Add and lhs.has(t): t_indep = lhs.subs(t, 0) t_term = lhs - t_indep _rhs = rhs - t_indep if not t_term.is_Add and _rhs and not ( t_term.has(S.ComplexInfinity, S.NaN)): eq = expand_log(log(t_term) - log(_rhs)) return _solve_even_degree_expr(eq, t, symbol) elif lhs.is_Mul and rhs: # this needs to happen whether t is present or not lhs = expand_log(log(lhs), force=True) rhs = log(rhs) if lhs.has(t) and lhs.is_Add: # it expanded from Mul to Add eq = lhs - rhs return _solve_even_degree_expr(eq, t, symbol) # restore symbol in lhs lhs = lhs.xreplace({t: symbol}) lhs = powsimp(factor(lhs, deep=True)) # make sure we have inverted as completely as possible r = Dummy() i, lhs = _invert(lhs - r, symbol) rhs = i.xreplace({r: rhs}) # For the first forms: # # 1a1) B**B = R will arrive here as B*log(B) = log(R) # lhs is Mul so take log of both sides: # log(B) + log(log(B)) = log(log(R)) # 1a2) B*(b*log(B) + c)**a = R will arrive unchanged so # lhs is Mul, so take log of both sides: # log(B) + a*log(b*log(B) + c) = log(R) # 1b) d*log(a*B + b) + c*B = R will arrive unchanged so # lhs is Add, so isolate c*B and expand log of both sides: # log(c) + log(B) = log(R - d*log(a*B + b)) soln = [] if not soln: mainlog = _mostfunc(lhs, log, symbol) if mainlog: if lhs.is_Mul and rhs != 0: soln = _lambert(log(lhs) - log(rhs), symbol) elif lhs.is_Add: other = lhs.subs(mainlog, 0) if other and not other.is_Add and [ tmp for tmp in other.atoms(Pow) if symbol in tmp.free_symbols]: if not rhs: diff = log(other) - log(other - lhs) else: diff = log(lhs - other) - log(rhs - other) soln = _lambert(expand_log(diff), symbol) else: #it's ready to go soln = _lambert(lhs - rhs, symbol) # For the next forms, # # collect on main exp # 2a) (b*B + c)*exp(d*B + g) = R # lhs is mul, so take log of both sides: # log(b*B + c) + d*B = log(R) - g # 2b) g*exp(d*B + h) - b*B = R # lhs is add, so add b*B to both sides, # take the log of both sides and rearrange to give # log(R + b*B) - d*B = log(g) + h if not soln: mainexp = _mostfunc(lhs, exp, symbol) if mainexp: lhs = collect(lhs, mainexp) if lhs.is_Mul and rhs != 0: soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainexp-containing term to rhs other = lhs.subs(mainexp, 0) mainterm = lhs - other rhs = rhs - other if (mainterm.could_extract_minus_sign() and rhs.could_extract_minus_sign()): mainterm *= -1 rhs *= -1 diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) # For the last form: # # 3) d*p**(a*B + g) - b*B = c # collect on main pow, add b*B to both sides, # take log of both sides and rearrange to give # a*B*log(p) - log(b*B + c) = -log(d) - g*log(p) if not soln: mainpow = _mostfunc(lhs, Pow, symbol) if mainpow and symbol in mainpow.exp.free_symbols: lhs = collect(lhs, mainpow) if lhs.is_Mul and rhs != 0: # b*B = 0 soln = _lambert(expand_log(log(lhs) - log(rhs)), symbol) elif lhs.is_Add: # move all but mainpow-containing term to rhs other = lhs.subs(mainpow, 0) mainterm = lhs - other rhs = rhs - other diff = log(mainterm) - log(rhs) soln = _lambert(expand_log(diff), symbol) if not soln: raise NotImplementedError('%s does not appear to have a solution in ' 'terms of LambertW' % f) return list(ordered(soln)) def bivariate_type(f, x, y, *, first=True): """Given an expression, f, 3 tests will be done to see what type of composite bivariate it might be, options for u(x, y) are:: x*y x+y x*y+x x*y+y If it matches one of these types, ``u(x, y)``, ``P(u)`` and dummy variable ``u`` will be returned. Solving ``P(u)`` for ``u`` and equating the solutions to ``u(x, y)`` and then solving for ``x`` or ``y`` is equivalent to solving the original expression for ``x`` or ``y``. If ``x`` and ``y`` represent two functions in the same variable, e.g. ``x = g(t)`` and ``y = h(t)``, then if ``u(x, y) - p`` can be solved for ``t`` then these represent the solutions to ``P(u) = 0`` when ``p`` are the solutions of ``P(u) = 0``. Only positive values of ``u`` are considered. Examples ======== >>> from sympy.solvers.solvers import solve >>> from sympy.solvers.bivariate import bivariate_type >>> from sympy.abc import x, y >>> eq = (x**2 - 3).subs(x, x + y) >>> bivariate_type(eq, x, y) (x + y, _u**2 - 3, _u) >>> uxy, pu, u = _ >>> usol = solve(pu, u); usol [sqrt(3)] >>> [solve(uxy - s) for s in solve(pu, u)] [[{x: -y + sqrt(3)}]] >>> all(eq.subs(s).equals(0) for sol in _ for s in sol) True """ u = Dummy('u', positive=True) if first: p = Poly(f, x, y) f = p.as_expr() _x = Dummy() _y = Dummy() rv = bivariate_type(Poly(f.subs({x: _x, y: _y}), _x, _y), _x, _y, first=False) if rv: reps = {_x: x, _y: y} return rv[0].xreplace(reps), rv[1].xreplace(reps), rv[2] return p = f f = p.as_expr() # f(x*y) args = Add.make_args(p.as_expr()) new = [] for a in args: a = _mexpand(a.subs(x, u/y)) free = a.free_symbols if x in free or y in free: break new.append(a) else: return x*y, Add(*new), u def ok(f, v, c): new = _mexpand(f.subs(v, c)) free = new.free_symbols return None if (x in free or y in free) else new # f(a*x + b*y) new = [] d = p.degree(x) if p.degree(y) == d: a = root(p.coeff_monomial(x**d), d) b = root(p.coeff_monomial(y**d), d) new = ok(f, x, (u - b*y)/a) if new is not None: return a*x + b*y, new, u # f(a*x*y + b*y) new = [] d = p.degree(x) if p.degree(y) == d: for itry in range(2): a = root(p.coeff_monomial(x**d*y**d), d) b = root(p.coeff_monomial(y**d), d) new = ok(f, x, (u - b*y)/a/y) if new is not None: return a*x*y + b*y, new, u x, y = y, x
d8c1ca881fe1098642f7548a41298bf5b7aab781c14f3fda57a4e5596a2503c0
from sympy.core import (Function, Pow, sympify, Expr) from sympy.core.relational import Relational from sympy.core.singleton import S from sympy.polys import Poly, decompose from sympy.utilities.misc import func_name def decompogen(f, symbol): """ Computes General functional decomposition of ``f``. Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``, where:: f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n)) Note: This is a General decomposition function. It also decomposes Polynomials. For only Polynomial decomposition see ``decompose`` in polys. Examples ======== >>> from sympy.abc import x >>> from sympy import decompogen, sqrt, sin, cos >>> decompogen(sin(cos(x)), x) [sin(x), cos(x)] >>> decompogen(sin(x)**2 + sin(x) + 1, x) [x**2 + x + 1, sin(x)] >>> decompogen(sqrt(6*x**2 - 5), x) [sqrt(x), 6*x**2 - 5] >>> decompogen(sin(sqrt(cos(x**2 + 1))), x) [sin(x), sqrt(x), cos(x), x**2 + 1] >>> decompogen(x**4 + 2*x**3 - x - 1, x) [x**2 - x - 1, x**2 + x] """ f = sympify(f) if not isinstance(f, Expr) or isinstance(f, Relational): raise TypeError('expecting Expr but got: `%s`' % func_name(f)) if symbol not in f.free_symbols: return [f] result = [] # ===== Simple Functions ===== # if isinstance(f, (Function, Pow)): if f.is_Pow and f.base == S.Exp1: arg = f.exp else: arg = f.args[0] if arg == symbol: return [f] result += [f.subs(arg, symbol)] + decompogen(arg, symbol) return result # ===== Convert to Polynomial ===== # fp = Poly(f) gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens)) if len(gens) == 1 and gens[0] != symbol: f1 = f.subs(gens[0], symbol) f2 = gens[0] result += [f1] + decompogen(f2, symbol) return result # ===== Polynomial decompose() ====== # try: result += decompose(f) return result except ValueError: return [f] def compogen(g_s, symbol): """ Returns the composition of functions. Given a list of functions ``g_s``, returns their composition ``f``, where: f = g_1 o g_2 o .. o g_n Note: This is a General composition function. It also composes Polynomials. For only Polynomial composition see ``compose`` in polys. Examples ======== >>> from sympy.solvers.decompogen import compogen >>> from sympy.abc import x >>> from sympy import sqrt, sin, cos >>> compogen([sin(x), cos(x)], x) sin(cos(x)) >>> compogen([x**2 + x + 1, sin(x)], x) sin(x)**2 + sin(x) + 1 >>> compogen([sqrt(x), 6*x**2 - 5], x) sqrt(6*x**2 - 5) >>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x) sin(sqrt(cos(x**2 + 1))) >>> compogen([x**2 - x - 1, x**2 + x], x) -x**2 - x + (x**2 + x)**2 - 1 """ if len(g_s) == 1: return g_s[0] foo = g_s[0].subs(symbol, g_s[1]) if len(g_s) == 2: return foo return compogen([foo] + g_s[2:], symbol)
2b4383b046f25d8a8d06a6d25b2481644ddf30cccd20fb2977167c2cf9ed5a53
""" This module contains functions to: - solve a single equation for a single variable, in any domain either real or complex. - solve a single transcendental equation for a single variable in any domain either real or complex. (currently supports solving in real domain only) - solve a system of linear equations with N variables and M equations. - solve a system of Non Linear Equations with N variables and M equations """ from sympy.core.sympify import sympify from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul, Equality, Add) from sympy.core.containers import Tuple from sympy.core.function import (Lambda, expand_complex, AppliedUndef, expand_log, _mexpand, expand_trig) from sympy.core.mod import Mod from sympy.core.numbers import igcd, I, Number, Rational, oo, ilcm from sympy.core.power import integer_log from sympy.core.relational import Eq, Ne, Relational from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Symbol, _uniquely_named_symbol from sympy.core.sympify import _sympify from sympy.simplify.simplify import simplify, fraction, trigsimp from sympy.simplify import powdenest, logcombine from sympy.functions import (log, Abs, tan, cot, sin, cos, sec, csc, exp, acos, asin, acsc, asec, arg, piecewise_fold, Piecewise) from sympy.functions.elementary.complexes import re, im from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.functions.elementary.miscellaneous import real_root from sympy.logic.boolalg import And, BooleanTrue from sympy.sets import (FiniteSet, imageset, Interval, Intersection, Union, ConditionSet, ImageSet, Complement, Contains) from sympy.sets.sets import Set, ProductSet from sympy.matrices import Matrix, MatrixBase from sympy.ntheory import totient from sympy.ntheory.factor_ import divisors from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod from sympy.polys import (roots, Poly, degree, together, PolynomialError, RootOf, factor, lcm, gcd) from sympy.polys.polyerrors import CoercionFailed from sympy.polys.polytools import invert from sympy.polys.solvers import (sympy_eqs_to_ring, solve_lin_sys, PolyNonlinearError) from sympy.polys.matrices.linsolve import _linsolve from sympy.solvers.solvers import (checksol, denoms, unrad, _simple_dens, recast_to_symbols) from sympy.solvers.polysys import solve_poly_system from sympy.utilities import filldedent from sympy.utilities.iterables import (numbered_symbols, has_dups, is_sequence) from sympy.calculus.util import periodicity, continuous_domain, function_range from types import GeneratorType from collections import defaultdict class NonlinearError(ValueError): """Raised when unexpectedly encountering nonlinear equations""" pass _rc = Dummy("R", real=True), Dummy("C", complex=True) def _masked(f, *atoms): """Return ``f``, with all objects given by ``atoms`` replaced with Dummy symbols, ``d``, and the list of replacements, ``(d, e)``, where ``e`` is an object of type given by ``atoms`` in which any other instances of atoms have been recursively replaced with Dummy symbols, too. The tuples are ordered so that if they are applied in sequence, the origin ``f`` will be restored. Examples ======== >>> from sympy import cos >>> from sympy.abc import x >>> from sympy.solvers.solveset import _masked >>> f = cos(cos(x) + 1) >>> f, reps = _masked(cos(1 + cos(x)), cos) >>> f _a1 >>> reps [(_a1, cos(_a0 + 1)), (_a0, cos(x))] >>> for d, e in reps: ... f = f.xreplace({d: e}) >>> f cos(cos(x) + 1) """ sym = numbered_symbols('a', cls=Dummy, real=True) mask = [] for a in ordered(f.atoms(*atoms)): for i in mask: a = a.replace(*i) mask.append((a, next(sym))) for i, (o, n) in enumerate(mask): f = f.replace(o, n) mask[i] = (n, o) mask = list(reversed(mask)) return f, mask def _invert(f_x, y, x, domain=S.Complexes): r""" Reduce the complex valued equation $f(x) = y$ to a set of equations $$\left\{g(x) = h_1(y),\ g(x) = h_2(y),\ \dots,\ g(x) = h_n(y) \right\}$$ where $g(x)$ is a simpler function than $f(x)$. The return value is a tuple $(g(x), \mathrm{set}_h)$, where $g(x)$ is a function of $x$ and $\mathrm{set}_h$ is the set of function $\left\{h_1(y), h_2(y), \dots, h_n(y)\right\}$. Here, $y$ is not necessarily a symbol. $\mathrm{set}_h$ contains the functions, along with the information about the domain in which they are valid, through set operations. For instance, if :math:`y = |x| - n` is inverted in the real domain, then $\mathrm{set}_h$ is not simply $\{-n, n\}$ as the nature of `n` is unknown; rather, it is: $$ \left(\left[0, \infty\right) \cap \left\{n\right\}\right) \cup \left(\left(-\infty, 0\right] \cap \left\{- n\right\}\right)$$ By default, the complex domain is used which means that inverting even seemingly simple functions like $\exp(x)$ will give very different results from those obtained in the real domain. (In the case of $\exp(x)$, the inversion via $\log$ is multi-valued in the complex domain, having infinitely many branches.) If you are working with real values only (or you are not sure which function to use) you should probably set the domain to ``S.Reals`` (or use ``invert_real`` which does that automatically). Examples ======== >>> from sympy.solvers.solveset import invert_complex, invert_real >>> from sympy.abc import x, y >>> from sympy import exp When does exp(x) == y? >>> invert_complex(exp(x), y, x) (x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers)) >>> invert_real(exp(x), y, x) (x, Intersection({log(y)}, Reals)) When does exp(x) == 1? >>> invert_complex(exp(x), 1, x) (x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers)) >>> invert_real(exp(x), 1, x) (x, {0}) See Also ======== invert_real, invert_complex """ x = sympify(x) if not x.is_Symbol: raise ValueError("x must be a symbol") f_x = sympify(f_x) if x not in f_x.free_symbols: raise ValueError("Inverse of constant function doesn't exist") y = sympify(y) if x in y.free_symbols: raise ValueError("y should be independent of x ") if domain.is_subset(S.Reals): x1, s = _invert_real(f_x, FiniteSet(y), x) else: x1, s = _invert_complex(f_x, FiniteSet(y), x) if not isinstance(s, FiniteSet) or x1 != x: return x1, s # Avoid adding gratuitous intersections with S.Complexes. Actual # conditions should be handled by the respective inverters. if domain is S.Complexes: return x1, s else: return x1, s.intersection(domain) invert_complex = _invert def invert_real(f_x, y, x): """ Inverts a real-valued function. Same as :func:`invert_complex`, but sets the domain to ``S.Reals`` before inverting. """ return _invert(f_x, y, x, S.Reals) def _invert_real(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol or g_ys is S.EmptySet: return (f, g_ys) n = Dummy('n', real=True) if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1): return _invert_real(f.exp, imageset(Lambda(n, log(n)), g_ys), symbol) if hasattr(f, 'inverse') and f.inverse() is not None and not isinstance(f, ( TrigonometricFunction, HyperbolicFunction, )): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_real(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, Abs): return _invert_abs(f.args[0], g_ys, symbol) if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if not expo_has_sym: if expo.is_rational: num, den = expo.as_numer_denom() if den % 2 == 0 and num % 2 == 1 and den.is_zero is False: root = Lambda(n, real_root(n, expo)) g_ys_pos = g_ys & Interval(0, oo) res = imageset(root, g_ys_pos) base_positive = solveset(base >= 0, symbol, S.Reals) _inv, _set = _invert_real(base, res, symbol) return (_inv, _set.intersect(base_positive)) if den % 2 == 1: root = Lambda(n, real_root(n, expo)) res = imageset(root, g_ys) if num % 2 == 0: neg_res = imageset(Lambda(n, -n), res) return _invert_real(base, res + neg_res, symbol) if num % 2 == 1: return _invert_real(base, res, symbol) elif expo.is_irrational: root = Lambda(n, real_root(n, expo)) g_ys_pos = g_ys & Interval(0, oo) res = imageset(root, g_ys_pos) return _invert_real(base, res, symbol) else: # indeterminate exponent, e.g. Float or parity of # num, den of rational could not be determined pass # use default return if not base_has_sym: rhs = g_ys.args[0] if base.is_positive: return _invert_real(expo, imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol) elif base.is_negative: s, b = integer_log(rhs, base) if b: return _invert_real(expo, FiniteSet(s), symbol) else: return (expo, S.EmptySet) elif base.is_zero: one = Eq(rhs, 1) if one == S.true: # special case: 0**x - 1 return _invert_real(expo, FiniteSet(0), symbol) elif one == S.false: return (expo, S.EmptySet) if isinstance(f, TrigonometricFunction): if isinstance(g_ys, FiniteSet): def inv(trig): if isinstance(trig, (sin, csc)): F = asin if isinstance(trig, sin) else acsc return (lambda a: n*pi + S.NegativeOne**n*F(a),) if isinstance(trig, (cos, sec)): F = acos if isinstance(trig, cos) else asec return ( lambda a: 2*n*pi + F(a), lambda a: 2*n*pi - F(a),) if isinstance(trig, (tan, cot)): return (lambda a: n*pi + trig.inverse()(a),) n = Dummy('n', integer=True) invs = S.EmptySet for L in inv(f): invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys]) return _invert_real(f.args[0], invs, symbol) return (f, g_ys) def _invert_complex(f, g_ys, symbol): """Helper function for _invert.""" if f == symbol or g_ys is S.EmptySet: return (f, g_ys) n = Dummy('n') if f.is_Add: # f = g + h g, h = f.as_independent(symbol) if g is not S.Zero: return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol) if f.is_Mul: # f = g*h g, h = f.as_independent(symbol) if g is not S.One: if g in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}: return (h, S.EmptySet) return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol) if f.is_Pow: base, expo = f.args # special case: g**r = 0 # Could be improved like `_invert_real` to handle more general cases. if expo.is_Rational and g_ys == FiniteSet(0): if expo.is_positive: return _invert_complex(base, g_ys, symbol) if hasattr(f, 'inverse') and f.inverse() is not None and \ not isinstance(f, TrigonometricFunction) and \ not isinstance(f, HyperbolicFunction) and \ not isinstance(f, exp): if len(f.args) > 1: raise ValueError("Only functions with one argument are supported.") return _invert_complex(f.args[0], imageset(Lambda(n, f.inverse()(n)), g_ys), symbol) if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1): if isinstance(g_ys, ImageSet): # can solve upto `(d*exp(exp(...(exp(a*x + b))...) + c)` format. # Further can be improved to `(d*exp(exp(...(exp(a*x**n + b*x**(n-1) + ... + f))...) + c)`. g_ys_expr = g_ys.lamda.expr g_ys_vars = g_ys.lamda.variables k = Dummy('k{}'.format(len(g_ys_vars))) g_ys_vars_1 = (k,) + g_ys_vars exp_invs = Union(*[imageset(Lambda((g_ys_vars_1,), (I*(2*k*pi + arg(g_ys_expr)) + log(Abs(g_ys_expr)))), S.Integers**(len(g_ys_vars_1)))]) return _invert_complex(f.exp, exp_invs, symbol) elif isinstance(g_ys, FiniteSet): exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) + log(Abs(g_y))), S.Integers) for g_y in g_ys if g_y != 0]) return _invert_complex(f.exp, exp_invs, symbol) return (f, g_ys) def _invert_abs(f, g_ys, symbol): """Helper function for inverting absolute value functions. Returns the complete result of inverting an absolute value function along with the conditions which must also be satisfied. If it is certain that all these conditions are met, a :class:`~.FiniteSet` of all possible solutions is returned. If any condition cannot be satisfied, an :class:`~.EmptySet` is returned. Otherwise, a :class:`~.ConditionSet` of the solutions, with all the required conditions specified, is returned. """ if not g_ys.is_FiniteSet: # this could be used for FiniteSet, but the # results are more compact if they aren't, e.g. # ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs # Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n})) # for the solution of abs(x) - n pos = Intersection(g_ys, Interval(0, S.Infinity)) parg = _invert_real(f, pos, symbol) narg = _invert_real(-f, pos, symbol) if parg[0] != narg[0]: raise NotImplementedError return parg[0], Union(narg[1], parg[1]) # check conditions: all these must be true. If any are unknown # then return them as conditions which must be satisfied unknown = [] for a in g_ys.args: ok = a.is_nonnegative if a.is_Number else a.is_positive if ok is None: unknown.append(a) elif not ok: return symbol, S.EmptySet if unknown: conditions = And(*[Contains(i, Interval(0, oo)) for i in unknown]) else: conditions = True n = Dummy('n', real=True) # this is slightly different than above: instead of solving # +/-f on positive values, here we solve for f on +/- g_ys g_x, values = _invert_real(f, Union( imageset(Lambda(n, n), g_ys), imageset(Lambda(n, -n), g_ys)), symbol) return g_x, ConditionSet(g_x, conditions, values) def domain_check(f, symbol, p): """Returns False if point p is infinite or any subexpression of f is infinite or becomes so after replacing symbol with p. If none of these conditions is met then True will be returned. Examples ======== >>> from sympy import Mul, oo >>> from sympy.abc import x >>> from sympy.solvers.solveset import domain_check >>> g = 1/(1 + (1/(x + 1))**2) >>> domain_check(g, x, -1) False >>> domain_check(x**2, x, 0) True >>> domain_check(1/x, x, oo) False * The function relies on the assumption that the original form of the equation has not been changed by automatic simplification. >>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1 True * To deal with automatic evaluations use evaluate=False: >>> domain_check(Mul(x, 1/x, evaluate=False), x, 0) False """ f, p = sympify(f), sympify(p) if p.is_infinite: return False return _domain_check(f, symbol, p) def _domain_check(f, symbol, p): # helper for domain check if f.is_Atom and f.is_finite: return True elif f.subs(symbol, p).is_infinite: return False elif isinstance(f, Piecewise): # Check the cases of the Piecewise in turn. There might be invalid # expressions in later cases that don't apply e.g. # solveset(Piecewise((0, Eq(x, 0)), (1/x, True)), x) for expr, cond in f.args: condsubs = cond.subs(symbol, p) if condsubs is S.false: continue elif condsubs is S.true: return _domain_check(expr, symbol, p) else: # We don't know which case of the Piecewise holds. On this # basis we cannot decide whether any solution is in or out of # the domain. Ideally this function would allow returning a # symbolic condition for the validity of the solution that # could be handled in the calling code. In the mean time we'll # give this particular solution the benefit of the doubt and # let it pass. return True else: # TODO : We should not blindly recurse through all args of arbitrary expressions like this return all(_domain_check(g, symbol, p) for g in f.args) def _is_finite_with_finite_vars(f, domain=S.Complexes): """ Return True if the given expression is finite. For symbols that do not assign a value for `complex` and/or `real`, the domain will be used to assign a value; symbols that do not assign a value for `finite` will be made finite. All other assumptions are left unmodified. """ def assumptions(s): A = s.assumptions0 A.setdefault('finite', A.get('finite', True)) if domain.is_subset(S.Reals): # if this gets set it will make complex=True, too A.setdefault('real', True) else: # don't change 'real' because being complex implies # nothing about being real A.setdefault('complex', True) return A reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols} return f.xreplace(reps).is_finite def _is_function_class_equation(func_class, f, symbol): """ Tests whether the equation is an equation of the given function class. The given equation belongs to the given function class if it is comprised of functions of the function class which are multiplied by or added to expressions independent of the symbol. In addition, the arguments of all such functions must be linear in the symbol as well. Examples ======== >>> from sympy.solvers.solveset import _is_function_class_equation >>> from sympy import tan, sin, tanh, sinh, exp >>> from sympy.abc import x >>> from sympy.functions.elementary.trigonometric import (TrigonometricFunction, ... HyperbolicFunction) >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x) True >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x) False >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x) True >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x) True """ if f.is_Mul or f.is_Add: return all(_is_function_class_equation(func_class, arg, symbol) for arg in f.args) if f.is_Pow: if not f.exp.has(symbol): return _is_function_class_equation(func_class, f.base, symbol) else: return False if not f.has(symbol): return True if isinstance(f, func_class): try: g = Poly(f.args[0], symbol) return g.degree() <= 1 except PolynomialError: return False else: return False def _solve_as_rational(f, symbol, domain): """ solve rational functions""" f = together(_mexpand(f, recursive=True), deep=True) g, h = fraction(f) if not h.has(symbol): try: return _solve_as_poly(g, symbol, domain) except NotImplementedError: # The polynomial formed from g could end up having # coefficients in a ring over which finding roots # isn't implemented yet, e.g. ZZ[a] for some symbol a return ConditionSet(symbol, Eq(f, 0), domain) except CoercionFailed: # contained oo, zoo or nan return S.EmptySet else: valid_solns = _solveset(g, symbol, domain) invalid_solns = _solveset(h, symbol, domain) return valid_solns - invalid_solns class _SolveTrig1Error(Exception): """Raised when _solve_trig1 heuristics do not apply""" def _solve_trig(f, symbol, domain): """Function to call other helpers to solve trigonometric equations """ sol = None try: sol = _solve_trig1(f, symbol, domain) except _SolveTrig1Error: try: sol = _solve_trig2(f, symbol, domain) except ValueError: raise NotImplementedError(filldedent(''' Solution to this kind of trigonometric equations is yet to be implemented''')) return sol def _solve_trig1(f, symbol, domain): """Primary solver for trigonometric and hyperbolic equations Returns either the solution set as a ConditionSet (auto-evaluated to a union of ImageSets if no variables besides 'symbol' are involved) or raises _SolveTrig1Error if f == 0 cannot be solved. Notes ===== Algorithm: 1. Do a change of variable x -> mu*x in arguments to trigonometric and hyperbolic functions, in order to reduce them to small integers. (This step is crucial to keep the degrees of the polynomials of step 4 low.) 2. Rewrite trigonometric/hyperbolic functions as exponentials. 3. Proceed to a 2nd change of variable, replacing exp(I*x) or exp(x) by y. 4. Solve the resulting rational equation. 5. Use invert_complex or invert_real to return to the original variable. 6. If the coefficients of 'symbol' were symbolic in nature, add the necessary consistency conditions in a ConditionSet. """ # Prepare change of variable x = Dummy('x') if _is_function_class_equation(HyperbolicFunction, f, symbol): cov = exp(x) inverter = invert_real if domain.is_subset(S.Reals) else invert_complex else: cov = exp(I*x) inverter = invert_complex f = trigsimp(f) f_original = f trig_functions = f.atoms(TrigonometricFunction, HyperbolicFunction) trig_arguments = [e.args[0] for e in trig_functions] # trigsimp may have reduced the equation to an expression # that is independent of 'symbol' (e.g. cos**2+sin**2) if not any(a.has(symbol) for a in trig_arguments): return solveset(f_original, symbol, domain) denominators = [] numerators = [] for ar in trig_arguments: try: poly_ar = Poly(ar, symbol) except PolynomialError: raise _SolveTrig1Error("trig argument is not a polynomial") if poly_ar.degree() > 1: # degree >1 still bad raise _SolveTrig1Error("degree of variable must not exceed one") if poly_ar.degree() == 0: # degree 0, don't care continue c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol' numerators.append(fraction(c)[0]) denominators.append(fraction(c)[1]) mu = lcm(denominators)/gcd(numerators) f = f.subs(symbol, mu*x) f = f.rewrite(exp) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(cov, y), h.subs(cov, y) if g.has(x) or h.has(x): raise _SolveTrig1Error("change of variable not possible") solns = solveset_complex(g, y) - solveset_complex(h, y) if isinstance(solns, ConditionSet): raise _SolveTrig1Error("polynomial has ConditionSet solution") if isinstance(solns, FiniteSet): if any(isinstance(s, RootOf) for s in solns): raise _SolveTrig1Error("polynomial results in RootOf object") # revert the change of variable cov = cov.subs(x, symbol/mu) result = Union(*[inverter(cov, s, symbol)[1] for s in solns]) # In case of symbolic coefficients, the solution set is only valid # if numerator and denominator of mu are non-zero. if mu.has(Symbol): syms = (mu).atoms(Symbol) munum, muden = fraction(mu) condnum = munum.as_independent(*syms, as_Add=False)[1] condden = muden.as_independent(*syms, as_Add=False)[1] cond = And(Ne(condnum, 0), Ne(condden, 0)) else: cond = True # Actual conditions are returned as part of the ConditionSet. Adding an # intersection with C would only complicate some solution sets due to # current limitations of intersection code. (e.g. #19154) if domain is S.Complexes: # This is a slight abuse of ConditionSet. Ideally this should # be some kind of "PiecewiseSet". (See #19507 discussion) return ConditionSet(symbol, cond, result) else: return ConditionSet(symbol, cond, Intersection(result, domain)) elif solns is S.EmptySet: return S.EmptySet else: raise _SolveTrig1Error("polynomial solutions must form FiniteSet") def _solve_trig2(f, symbol, domain): """Secondary helper to solve trigonometric equations, called when first helper fails """ f = trigsimp(f) f_original = f trig_functions = f.atoms(sin, cos, tan, sec, cot, csc) trig_arguments = [e.args[0] for e in trig_functions] denominators = [] numerators = [] # todo: This solver can be extended to hyperbolics if the # analogous change of variable to tanh (instead of tan) # is used. if not trig_functions: return ConditionSet(symbol, Eq(f_original, 0), domain) # todo: The pre-processing below (extraction of numerators, denominators, # gcd, lcm, mu, etc.) should be updated to the enhanced version in # _solve_trig1. (See #19507) for ar in trig_arguments: try: poly_ar = Poly(ar, symbol) except PolynomialError: raise ValueError("give up, we cannot solve if this is not a polynomial in x") if poly_ar.degree() > 1: # degree >1 still bad raise ValueError("degree of variable inside polynomial should not exceed one") if poly_ar.degree() == 0: # degree 0, don't care continue c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol' try: numerators.append(Rational(c).p) denominators.append(Rational(c).q) except TypeError: return ConditionSet(symbol, Eq(f_original, 0), domain) x = Dummy('x') # ilcm() and igcd() require more than one argument if len(numerators) > 1: mu = Rational(2)*ilcm(*denominators)/igcd(*numerators) else: assert len(numerators) == 1 mu = Rational(2)*denominators[0]/numerators[0] f = f.subs(symbol, mu*x) f = f.rewrite(tan) f = expand_trig(f) f = together(f) g, h = fraction(f) y = Dummy('y') g, h = g.expand(), h.expand() g, h = g.subs(tan(x), y), h.subs(tan(x), y) if g.has(x) or h.has(x): return ConditionSet(symbol, Eq(f_original, 0), domain) solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals) if isinstance(solns, FiniteSet): result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1] for s in solns]) dsol = invert_real(tan(symbol/mu), oo, symbol)[1] if degree(h) > degree(g): # If degree(denom)>degree(num) then there result = Union(result, dsol) # would be another sol at Lim(denom-->oo) return Intersection(result, domain) elif solns is S.EmptySet: return S.EmptySet else: return ConditionSet(symbol, Eq(f_original, 0), S.Reals) def _solve_as_poly(f, symbol, domain=S.Complexes): """ Solve the equation using polynomial techniques if it already is a polynomial equation or, with a change of variables, can be made so. """ result = None if f.is_polynomial(symbol): solns = roots(f, symbol, cubics=True, quartics=True, quintics=True, domain='EX') num_roots = sum(solns.values()) if degree(f, symbol) <= num_roots: result = FiniteSet(*solns.keys()) else: poly = Poly(f, symbol) solns = poly.all_roots() if poly.degree() <= len(solns): result = FiniteSet(*solns) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: poly = Poly(f) if poly is None: result = ConditionSet(symbol, Eq(f, 0), domain) gens = [g for g in poly.gens if g.has(symbol)] if len(gens) == 1: poly = Poly(poly, gens[0]) gen = poly.gen deg = poly.degree() poly = Poly(poly.as_expr(), poly.gen, composite=True) poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True, quintics=True).keys()) if len(poly_solns) < deg: result = ConditionSet(symbol, Eq(f, 0), domain) if gen != symbol: y = Dummy('y') inverter = invert_real if domain.is_subset(S.Reals) else invert_complex lhs, rhs_s = inverter(gen, y, symbol) if lhs == symbol: result = Union(*[rhs_s.subs(y, s) for s in poly_solns]) else: result = ConditionSet(symbol, Eq(f, 0), domain) else: result = ConditionSet(symbol, Eq(f, 0), domain) if result is not None: if isinstance(result, FiniteSet): # this is to simplify solutions like -sqrt(-I) to sqrt(2)/2 # - sqrt(2)*I/2. We are not expanding for solution with symbols # or undefined functions because that makes the solution more complicated. # For example, expand_complex(a) returns re(a) + I*im(a) if all(s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf) for s in result): s = Dummy('s') result = imageset(Lambda(s, expand_complex(s)), result) if isinstance(result, FiniteSet) and domain != S.Complexes: # Avoid adding gratuitous intersections with S.Complexes. Actual # conditions should be handled elsewhere. result = result.intersection(domain) return result else: return ConditionSet(symbol, Eq(f, 0), domain) def _solve_radical(f, unradf, symbol, solveset_solver): """ Helper function to solve equations with radicals """ res = unradf eq, cov = res if res else (f, []) if not cov: result = solveset_solver(eq, symbol) - \ Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)]) else: y, yeq = cov if not solveset_solver(y - I, y): yreal = Dummy('yreal', real=True) yeq = yeq.xreplace({y: yreal}) eq = eq.xreplace({y: yreal}) y = yreal g_y_s = solveset_solver(yeq, symbol) f_y_sols = solveset_solver(eq, y) result = Union(*[imageset(Lambda(y, g_y), f_y_sols) for g_y in g_y_s]) if not isinstance(result, FiniteSet): solution_set = result else: f_set = [] # solutions for FiniteSet c_set = [] # solutions for ConditionSet for s in result: if checksol(f, symbol, s): f_set.append(s) else: c_set.append(s) solution_set = FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set)) return solution_set def _solve_abs(f, symbol, domain): """ Helper function to solve equation involving absolute value function """ if not domain.is_subset(S.Reals): raise ValueError(filldedent(''' Absolute values cannot be inverted in the complex domain.''')) p, q, r = Wild('p'), Wild('q'), Wild('r') pattern_match = f.match(p*Abs(q) + r) or {} f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)] if not (f_p.is_zero or f_q.is_zero): domain = continuous_domain(f_q, symbol, domain) from .inequalities import solve_univariate_inequality q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol, relational=False, domain=domain, continuous=True) q_neg_cond = q_pos_cond.complement(domain) sols_q_pos = solveset_real(f_p*f_q + f_r, symbol).intersect(q_pos_cond) sols_q_neg = solveset_real(f_p*(-f_q) + f_r, symbol).intersect(q_neg_cond) return Union(sols_q_pos, sols_q_neg) else: return ConditionSet(symbol, Eq(f, 0), domain) def solve_decomposition(f, symbol, domain): """ Function to solve equations via the principle of "Decomposition and Rewriting". Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S >>> from sympy.solvers.solveset import solve_decomposition as sd >>> x = Symbol('x') >>> f1 = exp(2*x) - 3*exp(x) + 2 >>> sd(f1, x, S.Reals) {0, log(2)} >>> f2 = sin(x)**2 + 2*sin(x) + 1 >>> pprint(sd(f2, x, S.Reals), use_unicode=False) 3*pi {2*n*pi + ---- | n in Integers} 2 >>> f3 = sin(x + 2) >>> pprint(sd(f3, x, S.Reals), use_unicode=False) {2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers} """ from sympy.solvers.decompogen import decompogen # decompose the given function g_s = decompogen(f, symbol) # `y_s` represents the set of values for which the function `g` is to be # solved. # `solutions` represent the solutions of the equations `g = y_s` or # `g = 0` depending on the type of `y_s`. # As we are interested in solving the equation: f = 0 y_s = FiniteSet(0) for g in g_s: frange = function_range(g, symbol, domain) y_s = Intersection(frange, y_s) result = S.EmptySet if isinstance(y_s, FiniteSet): for y in y_s: solutions = solveset(Eq(g, y), symbol, domain) if not isinstance(solutions, ConditionSet): result += solutions else: if isinstance(y_s, ImageSet): iter_iset = (y_s,) elif isinstance(y_s, Union): iter_iset = y_s.args elif y_s is S.EmptySet: # y_s is not in the range of g in g_s, so no solution exists #in the given domain return S.EmptySet for iset in iter_iset: new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain) dummy_var = tuple(iset.lamda.expr.free_symbols)[0] (base_set,) = iset.base_sets if isinstance(new_solutions, FiniteSet): new_exprs = new_solutions elif isinstance(new_solutions, Intersection): if isinstance(new_solutions.args[1], FiniteSet): new_exprs = new_solutions.args[1] for new_expr in new_exprs: result += ImageSet(Lambda(dummy_var, new_expr), base_set) if result is S.EmptySet: return ConditionSet(symbol, Eq(f, 0), domain) y_s = result return y_s def _solveset(f, symbol, domain, _check=False): """Helper for solveset to return a result from an expression that has already been sympify'ed and is known to contain the given symbol.""" # _check controls whether the answer is checked or not from sympy.simplify.simplify import signsimp if isinstance(f, BooleanTrue): return domain orig_f = f if f.is_Mul: coeff, f = f.as_independent(symbol, as_Add=False) if coeff in {S.ComplexInfinity, S.NegativeInfinity, S.Infinity}: f = together(orig_f) elif f.is_Add: a, h = f.as_independent(symbol) m, h = h.as_independent(symbol, as_Add=False) if m not in {S.ComplexInfinity, S.Zero, S.Infinity, S.NegativeInfinity}: f = a/m + h # XXX condition `m != 0` should be added to soln # assign the solvers to use solver = lambda f, x, domain=domain: _solveset(f, x, domain) inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain) result = S.EmptySet if f.expand().is_zero: return domain elif not f.has(symbol): return S.EmptySet elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain) for m in f.args): # if f(x) and g(x) are both finite we can say that the solution of # f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in # general. g(x) can grow to infinitely large for the values where # f(x) == 0. To be sure that we are not silently allowing any # wrong solutions we are using this technique only if both f and g are # finite for a finite input. result = Union(*[solver(m, symbol) for m in f.args]) elif _is_function_class_equation(TrigonometricFunction, f, symbol) or \ _is_function_class_equation(HyperbolicFunction, f, symbol): result = _solve_trig(f, symbol, domain) elif isinstance(f, arg): a = f.args[0] result = Intersection(_solveset(re(a) > 0, symbol, domain), _solveset(im(a), symbol, domain)) elif f.is_Piecewise: expr_set_pairs = f.as_expr_set_pairs(domain) for (expr, in_set) in expr_set_pairs: if in_set.is_Relational: in_set = in_set.as_set() solns = solver(expr, symbol, in_set) result += solns elif isinstance(f, Eq): result = solver(Add(f.lhs, - f.rhs, evaluate=False), symbol, domain) elif f.is_Relational: from .inequalities import solve_univariate_inequality try: result = solve_univariate_inequality( f, symbol, domain=domain, relational=False) except NotImplementedError: result = ConditionSet(symbol, f, domain) return result elif _is_modular(f, symbol): result = _solve_modular(f, symbol, domain) else: lhs, rhs_s = inverter(f, 0, symbol) if lhs == symbol: # do some very minimal simplification since # repeated inversion may have left the result # in a state that other solvers (e.g. poly) # would have simplified; this is done here # rather than in the inverter since here it # is only done once whereas there it would # be repeated for each step of the inversion if isinstance(rhs_s, FiniteSet): rhs_s = FiniteSet(*[Mul(* signsimp(i).as_content_primitive()) for i in rhs_s]) result = rhs_s elif isinstance(rhs_s, FiniteSet): for equation in [lhs - rhs for rhs in rhs_s]: if equation == f: u = unrad(f, symbol) if u: result += _solve_radical(equation, u, symbol, solver) elif equation.has(Abs): result += _solve_abs(f, symbol, domain) else: result_rational = _solve_as_rational(equation, symbol, domain) if not isinstance(result_rational, ConditionSet): result += result_rational else: # may be a transcendental type equation t_result = _transolve(equation, symbol, domain) if isinstance(t_result, ConditionSet): # might need factoring; this is expensive so we # have delayed until now. To avoid recursion # errors look for a non-trivial factoring into # a product of symbol dependent terms; I think # that something that factors as a Pow would # have already been recognized by now. factored = equation.factor() if factored.is_Mul and equation != factored: _, dep = factored.as_independent(symbol) if not dep.is_Add: # non-trivial factoring of equation # but use form with constants # in case they need special handling t_result = solver(factored, symbol) result += t_result else: result += solver(equation, symbol) elif rhs_s is not S.EmptySet: result = ConditionSet(symbol, Eq(f, 0), domain) if isinstance(result, ConditionSet): if isinstance(f, Expr): num, den = f.as_numer_denom() if den.has(symbol): _result = _solveset(num, symbol, domain) if not isinstance(_result, ConditionSet): singularities = _solveset(den, symbol, domain) result = _result - singularities if _check: if isinstance(result, ConditionSet): # it wasn't solved or has enumerated all conditions # -- leave it alone return result # whittle away all but the symbol-containing core # to use this for testing if isinstance(orig_f, Expr): fx = orig_f.as_independent(symbol, as_Add=True)[1] fx = fx.as_independent(symbol, as_Add=False)[1] else: fx = orig_f if isinstance(result, FiniteSet): # check the result for invalid solutions result = FiniteSet(*[s for s in result if isinstance(s, RootOf) or domain_check(fx, symbol, s)]) return result def _is_modular(f, symbol): """ Helper function to check below mentioned types of modular equations. ``A - Mod(B, C) = 0`` A -> This can or cannot be a function of symbol. B -> This is surely a function of symbol. C -> It is an integer. Parameters ========== f : Expr The equation to be checked. symbol : Symbol The concerned variable for which the equation is to be checked. Examples ======== >>> from sympy import symbols, exp, Mod >>> from sympy.solvers.solveset import _is_modular as check >>> x, y = symbols('x y') >>> check(Mod(x, 3) - 1, x) True >>> check(Mod(x, 3) - 1, y) False >>> check(Mod(x, 3)**2 - 5, x) False >>> check(Mod(x, 3)**2 - y, x) False >>> check(exp(Mod(x, 3)) - 1, x) False >>> check(Mod(3, y) - 1, y) False """ if not f.has(Mod): return False # extract modterms from f. modterms = list(f.atoms(Mod)) return (len(modterms) == 1 and # only one Mod should be present modterms[0].args[0].has(symbol) and # B-> function of symbol modterms[0].args[1].is_integer and # C-> to be an integer. any(isinstance(term, Mod) for term in list(_term_factors(f))) # free from other funcs ) def _invert_modular(modterm, rhs, n, symbol): """ Helper function to invert modular equation. ``Mod(a, m) - rhs = 0`` Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)). More simplified form will be returned if possible. If it is not invertible then (modterm, rhs) is returned. The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``: 1. If a is symbol then m*n + rhs is the required solution. 2. If a is an instance of ``Add`` then we try to find two symbol independent parts of a and the symbol independent part gets tranferred to the other side and again the ``_invert_modular`` is called on the symbol dependent part. 3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate out the symbol dependent and symbol independent parts and transfer the symbol independent part to the rhs with the help of invert and again the ``_invert_modular`` is called on the symbol dependent part. 4. If a is an instance of ``Pow`` then two cases arise as following: - If a is of type (symbol_indep)**(symbol_dep) then the remainder is evaluated with the help of discrete_log function and then the least period is being found out with the help of totient function. period*n + remainder is the required solution in this case. For reference: (https://en.wikipedia.org/wiki/Euler's_theorem) - If a is of type (symbol_dep)**(symbol_indep) then we try to find all primitive solutions list with the help of nthroot_mod function. m*n + rem is the general solution where rem belongs to solutions list from nthroot_mod function. Parameters ========== modterm, rhs : Expr The modular equation to be inverted, ``modterm - rhs = 0`` symbol : Symbol The variable in the equation to be inverted. n : Dummy Dummy variable for output g_n. Returns ======= A tuple (f_x, g_n) is being returned where f_x is modular independent function of symbol and g_n being set of values f_x can have. Examples ======== >>> from sympy import symbols, exp, Mod, Dummy, S >>> from sympy.solvers.solveset import _invert_modular as invert_modular >>> x, y = symbols('x y') >>> n = Dummy('n') >>> invert_modular(Mod(exp(x), 7), S(5), n, x) (Mod(exp(x), 7), 5) >>> invert_modular(Mod(x, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 5), Integers)) >>> invert_modular(Mod(3*x + 8, 7), S(5), n, x) (x, ImageSet(Lambda(_n, 7*_n + 6), Integers)) >>> invert_modular(Mod(x**4, 7), S(5), n, x) (x, EmptySet) >>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x) (x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0)) """ a, m = modterm.args if rhs.is_real is False or any(term.is_real is False for term in list(_term_factors(a))): # Check for complex arguments return modterm, rhs if abs(rhs) >= abs(m): # if rhs has value greater than value of m. return symbol, S.EmptySet if a == symbol: return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers) if a.is_Add: # g + h = a g, h = a.as_independent(symbol) if g is not S.Zero: x_indep_term = rhs - Mod(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Mul: # g*h = a g, h = a.as_independent(symbol) if g is not S.One: x_indep_term = rhs*invert(g, m) return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol) if a.is_Pow: # base**expo = a base, expo = a.args if expo.has(symbol) and not base.has(symbol): # remainder -> solution independent of n of equation. # m, rhs are made coprime by dividing igcd(m, rhs) try: remainder = discrete_log(m / igcd(m, rhs), rhs, a.base) except ValueError: # log does not exist return modterm, rhs # period -> coefficient of n in the solution and also referred as # the least period of expo in which it is repeats itself. # (a**(totient(m)) - 1) divides m. Here is link of theorem: # (https://en.wikipedia.org/wiki/Euler's_theorem) period = totient(m) for p in divisors(period): # there might a lesser period exist than totient(m). if pow(a.base, p, m / igcd(m, a.base)) == 1: period = p break # recursion is not applied here since _invert_modular is currently # not smart enough to handle infinite rhs as here expo has infinite # rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0). return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0) elif base.has(symbol) and not expo.has(symbol): try: remainder_list = nthroot_mod(rhs, expo, m, all_roots=True) if remainder_list == []: return symbol, S.EmptySet except (ValueError, NotImplementedError): return modterm, rhs g_n = S.EmptySet for rem in remainder_list: g_n += ImageSet(Lambda(n, m*n + rem), S.Integers) return base, g_n return modterm, rhs def _solve_modular(f, symbol, domain): r""" Helper function for solving modular equations of type ``A - Mod(B, C) = 0``, where A can or cannot be a function of symbol, B is surely a function of symbol and C is an integer. Currently ``_solve_modular`` is only able to solve cases where A is not a function of symbol. Parameters ========== f : Expr The modular equation to be solved, ``f = 0`` symbol : Symbol The variable in the equation to be solved. domain : Set A set over which the equation is solved. It has to be a subset of Integers. Returns ======= A set of integer solutions satisfying the given modular equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy.solvers.solveset import _solve_modular as solve_modulo >>> from sympy import S, Symbol, sin, Intersection, Interval, Mod >>> x = Symbol('x') >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers) ImageSet(Lambda(_n, 7*_n + 5), Integers) >>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers. ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals) >>> solve_modulo(-7 + Mod(x, 5), x, S.Integers) EmptySet >>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers) ImageSet(Lambda(_n, 6*_n + 2), Naturals0) >>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers) >>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100))) Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1)) """ # extract modterm and g_y from f unsolved_result = ConditionSet(symbol, Eq(f, 0), domain) modterm = list(f.atoms(Mod))[0] rhs = -S.One*(f.subs(modterm, S.Zero)) if f.as_coefficients_dict()[modterm].is_negative: # checks if coefficient of modterm is negative in main equation. rhs *= -S.One if not domain.is_subset(S.Integers): return unsolved_result if rhs.has(symbol): # TODO Case: A-> function of symbol, can be extended here # in future. return unsolved_result n = Dummy('n', integer=True) f_x, g_n = _invert_modular(modterm, rhs, n, symbol) if f_x == modterm and g_n == rhs: return unsolved_result if f_x == symbol: if domain is not S.Integers: return domain.intersect(g_n) return g_n if isinstance(g_n, ImageSet): lamda_expr = g_n.lamda.expr lamda_vars = g_n.lamda.variables base_sets = g_n.base_sets sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers) if isinstance(sol_set, FiniteSet): tmp_sol = S.EmptySet for sol in sol_set: tmp_sol += ImageSet(Lambda(lamda_vars, sol), *base_sets) sol_set = tmp_sol else: sol_set = ImageSet(Lambda(lamda_vars, sol_set), *base_sets) return domain.intersect(sol_set) return unsolved_result def _term_factors(f): """ Iterator to get the factors of all terms present in the given equation. Parameters ========== f : Expr Equation that needs to be addressed Returns ======= Factors of all terms present in the equation. Examples ======== >>> from sympy import symbols >>> from sympy.solvers.solveset import _term_factors >>> x = symbols('x') >>> list(_term_factors(-2 - x**2 + x*(x + 1))) [-2, -1, x**2, x, x + 1] """ for add_arg in Add.make_args(f): yield from Mul.make_args(add_arg) def _solve_exponential(lhs, rhs, symbol, domain): r""" Helper function for solving (supported) exponential equations. Exponential equations are the sum of (currently) at most two terms with one or both of them having a power with a symbol-dependent exponent. For example .. math:: 5^{2x + 3} - 5^{3x - 1} .. math:: 4^{5 - 9x} - e^{2 - x} Parameters ========== lhs, rhs : Expr The exponential equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable or if the assumptions are not properly defined, in that case a different style of ``ConditionSet`` is returned having the solution(s) of the equation with the desired assumptions. Examples ======== >>> from sympy.solvers.solveset import _solve_exponential as solve_expo >>> from sympy import symbols, S >>> x = symbols('x', real=True) >>> a, b = symbols('a b') >>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals) >>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions ConditionSet(x, (a > 0) & (b > 0), {0}) >>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals) {-3*log(2)/(-2*log(3) + log(2))} >>> solve_expo(2**x - 4**x, 0, x, S.Reals) {0} * Proof of correctness of the method The logarithm function is the inverse of the exponential function. The defining relation between exponentiation and logarithm is: .. math:: {\log_b x} = y \enspace if \enspace b^y = x Therefore if we are given an equation with exponent terms, we can convert every term to its corresponding logarithmic form. This is achieved by taking logarithms and expanding the equation using logarithmic identities so that it can easily be handled by ``solveset``. For example: .. math:: 3^{2x} = 2^{x + 3} Taking log both sides will reduce the equation to .. math:: (2x)\log(3) = (x + 3)\log(2) This form can be easily handed by ``solveset``. """ unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) newlhs = powdenest(lhs) if lhs != newlhs: # it may also be advantageous to factor the new expr neweq = factor(newlhs - rhs) if neweq != (lhs - rhs): return _solveset(neweq, symbol, domain) # try again with _solveset if not (isinstance(lhs, Add) and len(lhs.args) == 2): # solving for the sum of more than two powers is possible # but not yet implemented return unsolved_result if rhs != 0: return unsolved_result a, b = list(ordered(lhs.args)) a_term = a.as_independent(symbol)[1] b_term = b.as_independent(symbol)[1] a_base, a_exp = a_term.as_base_exp() b_base, b_exp = b_term.as_base_exp() if domain.is_subset(S.Reals): conditions = And( a_base > 0, b_base > 0, Eq(im(a_exp), 0), Eq(im(b_exp), 0)) else: conditions = And( Ne(a_base, 0), Ne(b_base, 0)) L, R = map(lambda i: expand_log(log(i), force=True), (a, -b)) solutions = _solveset(L - R, symbol, domain) return ConditionSet(symbol, conditions, solutions) def _is_exponential(f, symbol): r""" Return ``True`` if one or more terms contain ``symbol`` only in exponents, else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Examples ======== >>> from sympy import symbols, cos, exp >>> from sympy.solvers.solveset import _is_exponential as check >>> x, y = symbols('x y') >>> check(y, y) False >>> check(x**y - 1, y) True >>> check(x**y*2**y - 1, y) True >>> check(exp(x + 3) + 3**x, x) True >>> check(cos(2**x), x) False * Philosophy behind the helper The function extracts each term of the equation and checks if it is of exponential form w.r.t ``symbol``. """ rv = False for expr_arg in _term_factors(f): if symbol not in expr_arg.free_symbols: continue if (isinstance(expr_arg, Pow) and symbol not in expr_arg.base.free_symbols or isinstance(expr_arg, exp)): rv = True # symbol in exponent else: return False # dependent on symbol in non-exponential way return rv def _solve_logarithm(lhs, rhs, symbol, domain): r""" Helper to solve logarithmic equations which are reducible to a single instance of `\log`. Logarithmic equations are (currently) the equations that contains `\log` terms which can be reduced to a single `\log` term or a constant using various logarithmic identities. For example: .. math:: \log(x) + \log(x - 4) can be reduced to: .. math:: \log(x(x - 4)) Parameters ========== lhs, rhs : Expr The logarithmic equation to be solved, `lhs = rhs` symbol : Symbol The variable in which the equation is solved domain : Set A set over which the equation is solved. Returns ======= A set of solutions satisfying the given equation. A ``ConditionSet`` if the equation is unsolvable. Examples ======== >>> from sympy import symbols, log, S >>> from sympy.solvers.solveset import _solve_logarithm as solve_log >>> x = symbols('x') >>> f = log(x - 3) + log(x + 3) >>> solve_log(f, 0, x, S.Reals) {-sqrt(10), sqrt(10)} * Proof of correctness A logarithm is another way to write exponent and is defined by .. math:: {\log_b x} = y \enspace if \enspace b^y = x When one side of the equation contains a single logarithm, the equation can be solved by rewriting the equation as an equivalent exponential equation as defined above. But if one side contains more than one logarithm, we need to use the properties of logarithm to condense it into a single logarithm. Take for example .. math:: \log(2x) - 15 = 0 contains single logarithm, therefore we can directly rewrite it to exponential form as .. math:: x = \frac{e^{15}}{2} But if the equation has more than one logarithm as .. math:: \log(x - 3) + \log(x + 3) = 0 we use logarithmic identities to convert it into a reduced form Using, .. math:: \log(a) + \log(b) = \log(ab) the equation becomes, .. math:: \log((x - 3)(x + 3)) This equation contains one logarithm and can be solved by rewriting to exponents. """ new_lhs = logcombine(lhs, force=True) new_f = new_lhs - rhs return _solveset(new_f, symbol, domain) def _is_logarithmic(f, symbol): r""" Return ``True`` if the equation is in the form `a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Returns ======= ``True`` if the equation is logarithmic otherwise ``False``. Examples ======== >>> from sympy import symbols, tan, log >>> from sympy.solvers.solveset import _is_logarithmic as check >>> x, y = symbols('x y') >>> check(log(x + 2) - log(x + 3), x) True >>> check(tan(log(2*x)), x) False >>> check(x*log(x), x) False >>> check(x + log(x), x) False >>> check(y + log(x), x) True * Philosophy behind the helper The function extracts each term and checks whether it is logarithmic w.r.t ``symbol``. """ rv = False for term in Add.make_args(f): saw_log = False for term_arg in Mul.make_args(term): if symbol not in term_arg.free_symbols: continue if isinstance(term_arg, log): if saw_log: return False # more than one log in term saw_log = True else: return False # dependent on symbol in non-log way if saw_log: rv = True return rv def _is_lambert(f, symbol): r""" If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called. Explanation =========== Quick check for cases that the Lambert solver might be able to handle. 1. Equations containing more than two operands and `symbol`s involving any of `Pow`, `exp`, `HyperbolicFunction`,`TrigonometricFunction`, `log` terms. 2. In `Pow`, `exp` the exponent should have `symbol` whereas for `HyperbolicFunction`,`TrigonometricFunction`, `log` should contain `symbol`. 3. For `HyperbolicFunction`,`TrigonometricFunction` the number of trigonometric functions in equation should be less than number of symbols. (since `A*cos(x) + B*sin(x) - c` is not the Lambert type). Some forms of lambert equations are: 1. X**X = C 2. X*(B*log(X) + D)**A = C 3. A*log(B*X + A) + d*X = C 4. (B*X + A)*exp(d*X + g) = C 5. g*exp(B*X + h) - B*X = C 6. A*D**(E*X + g) - B*X = C 7. A*cos(X) + B*sin(X) - D*X = C 8. A*cosh(X) + B*sinh(X) - D*X = C Where X is any variable, A, B, C, D, E are any constants, g, h are linear functions or log terms. Parameters ========== f : Expr The equation to be checked symbol : Symbol The variable in which the equation is checked Returns ======= If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called. Examples ======== >>> from sympy.solvers.solveset import _is_lambert >>> from sympy import symbols, cosh, sinh, log >>> x = symbols('x') >>> _is_lambert(3*log(x) - x*log(3), x) True >>> _is_lambert(log(log(x - 3)) + log(x-3), x) True >>> _is_lambert(cosh(x) - sinh(x), x) False >>> _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) True See Also ======== _solve_lambert """ term_factors = list(_term_factors(f.expand())) # total number of symbols in equation no_of_symbols = len([arg for arg in term_factors if arg.has(symbol)]) # total number of trigonometric terms in equation no_of_trig = len([arg for arg in term_factors \ if arg.has(HyperbolicFunction, TrigonometricFunction)]) if f.is_Add and no_of_symbols >= 2: # `log`, `HyperbolicFunction`, `TrigonometricFunction` should have symbols # and no_of_trig < no_of_symbols lambert_funcs = (log, HyperbolicFunction, TrigonometricFunction) if any(isinstance(arg, lambert_funcs)\ for arg in term_factors if arg.has(symbol)): if no_of_trig < no_of_symbols: return True # here, `Pow`, `exp` exponent should have symbols elif any(isinstance(arg, (Pow, exp)) \ for arg in term_factors if (arg.as_base_exp()[1]).has(symbol)): return True return False def _transolve(f, symbol, domain): r""" Function to solve transcendental equations. It is a helper to ``solveset`` and should be used internally. ``_transolve`` currently supports the following class of equations: - Exponential equations - Logarithmic equations Parameters ========== f : Any transcendental equation that needs to be solved. This needs to be an expression, which is assumed to be equal to ``0``. symbol : The variable for which the equation is solved. This needs to be of class ``Symbol``. domain : A set over which the equation is solved. This needs to be of class ``Set``. Returns ======= Set A set of values for ``symbol`` for which ``f`` is equal to zero. An ``EmptySet`` is returned if ``f`` does not have solutions in respective domain. A ``ConditionSet`` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. How to use ``_transolve`` ========================= ``_transolve`` should not be used as an independent function, because it assumes that the equation (``f``) and the ``symbol`` comes from ``solveset`` and might have undergone a few modification(s). To use ``_transolve`` as an independent function the equation (``f``) and the ``symbol`` should be passed as they would have been by ``solveset``. Examples ======== >>> from sympy.solvers.solveset import _transolve as transolve >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy import symbols, S, pprint >>> x = symbols('x', real=True) # assumption added >>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals) {-(log(3) + 3*log(5))/(-log(5) + 2*log(3))} How ``_transolve`` works ======================== ``_transolve`` uses two types of helper functions to solve equations of a particular class: Identifying helpers: To determine whether a given equation belongs to a certain class of equation or not. Returns either ``True`` or ``False``. Solving helpers: Once an equation is identified, a corresponding helper either solves the equation or returns a form of the equation that ``solveset`` might better be able to handle. * Philosophy behind the module The purpose of ``_transolve`` is to take equations which are not already polynomial in their generator(s) and to either recast them as such through a valid transformation or to solve them outright. A pair of helper functions for each class of supported transcendental functions are employed for this purpose. One identifies the transcendental form of an equation and the other either solves it or recasts it into a tractable form that can be solved by ``solveset``. For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0` can be transformed to `\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0` (under certain assumptions) and this can be solved with ``solveset`` if `f(x)` and `g(x)` are in polynomial form. How ``_transolve`` is better than ``_tsolve`` ============================================= 1) Better output ``_transolve`` provides expressions in a more simplified form. Consider a simple exponential equation >>> f = 3**(2*x) - 2**(x + 3) >>> pprint(transolve(f, x, S.Reals), use_unicode=False) -3*log(2) {------------------} -2*log(3) + log(2) >>> pprint(tsolve(f, x), use_unicode=False) / 3 \ | --------| | log(2/9)| [-log\2 /] 2) Extensible The API of ``_transolve`` is designed such that it is easily extensible, i.e. the code that solves a given class of equations is encapsulated in a helper and not mixed in with the code of ``_transolve`` itself. 3) Modular ``_transolve`` is designed to be modular i.e, for every class of equation a separate helper for identification and solving is implemented. This makes it easy to change or modify any of the method implemented directly in the helpers without interfering with the actual structure of the API. 4) Faster Computation Solving equation via ``_transolve`` is much faster as compared to ``_tsolve``. In ``solve``, attempts are made computing every possibility to get the solutions. This series of attempts makes solving a bit slow. In ``_transolve``, computation begins only after a particular type of equation is identified. How to add new class of equations ================================= Adding a new class of equation solver is a three-step procedure: - Identify the type of the equations Determine the type of the class of equations to which they belong: it could be of ``Add``, ``Pow``, etc. types. Separate internal functions are used for each type. Write identification and solving helpers and use them from within the routine for the given type of equation (after adding it, if necessary). Something like: .. code-block:: python def add_type(lhs, rhs, x): .... if _is_exponential(lhs, x): new_eq = _solve_exponential(lhs, rhs, x) .... rhs, lhs = eq.as_independent(x) if lhs.is_Add: result = add_type(lhs, rhs, x) - Define the identification helper. - Define the solving helper. Apart from this, a few other things needs to be taken care while adding an equation solver: - Naming conventions: Name of the identification helper should be as ``_is_class`` where class will be the name or abbreviation of the class of equation. The solving helper will be named as ``_solve_class``. For example: for exponential equations it becomes ``_is_exponential`` and ``_solve_expo``. - The identifying helpers should take two input parameters, the equation to be checked and the variable for which a solution is being sought, while solving helpers would require an additional domain parameter. - Be sure to consider corner cases. - Add tests for each helper. - Add a docstring to your helper that describes the method implemented. The documentation of the helpers should identify: - the purpose of the helper, - the method used to identify and solve the equation, - a proof of correctness - the return values of the helpers """ def add_type(lhs, rhs, symbol, domain): """ Helper for ``_transolve`` to handle equations of ``Add`` type, i.e. equations taking the form as ``a*f(x) + b*g(x) + .... = c``. For example: 4**x + 8**x = 0 """ result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain) # check if it is exponential type equation if _is_exponential(lhs, symbol): result = _solve_exponential(lhs, rhs, symbol, domain) # check if it is logarithmic type equation elif _is_logarithmic(lhs, symbol): result = _solve_logarithm(lhs, rhs, symbol, domain) return result result = ConditionSet(symbol, Eq(f, 0), domain) # invert_complex handles the call to the desired inverter based # on the domain specified. lhs, rhs_s = invert_complex(f, 0, symbol, domain) if isinstance(rhs_s, FiniteSet): assert (len(rhs_s.args)) == 1 rhs = rhs_s.args[0] if lhs.is_Add: result = add_type(lhs, rhs, symbol, domain) else: result = rhs_s return result def solveset(f, symbol=None, domain=S.Complexes): r"""Solves a given inequality or equation with set as output Parameters ========== f : Expr or a relational. The target equation or inequality symbol : Symbol The variable for which the equation is solved domain : Set The domain over which the equation is solved Returns ======= Set A set of values for `symbol` for which `f` is True or is equal to zero. An :class:`~.EmptySet` is returned if `f` is False or nonzero. A :class:`~.ConditionSet` is returned as unsolved object if algorithms to evaluate complete solution are not yet implemented. ``solveset`` claims to be complete in the solution set that it returns. Raises ====== NotImplementedError The algorithms to solve inequalities in complex domain are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report to the github issue tracker. Notes ===== Python interprets 0 and 1 as False and True, respectively, but in this function they refer to solutions of an expression. So 0 and 1 return the domain and EmptySet, respectively, while True and False return the opposite (as they are assumed to be solutions of relational expressions). See Also ======== solveset_real: solver for real domain solveset_complex: solver for complex domain Examples ======== >>> from sympy import exp, sin, Symbol, pprint, S, Eq >>> from sympy.solvers.solveset import solveset, solveset_real * The default domain is complex. Not specifying a domain will lead to the solving of the equation in the complex domain (and this is not affected by the assumptions on the symbol): >>> x = Symbol('x') >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} >>> x = Symbol('x', real=True) >>> pprint(solveset(exp(x) - 1, x), use_unicode=False) {2*n*I*pi | n in Integers} * If you want to use ``solveset`` to solve the equation in the real domain, provide a real domain. (Using ``solveset_real`` does this automatically.) >>> R = S.Reals >>> x = Symbol('x') >>> solveset(exp(x) - 1, x, R) {0} >>> solveset_real(exp(x) - 1, x) {0} The solution is unaffected by assumptions on the symbol: >>> p = Symbol('p', positive=True) >>> pprint(solveset(p**2 - 4)) {-2, 2} When a :class:`~.ConditionSet` is returned, symbols with assumptions that would alter the set are replaced with more generic symbols: >>> i = Symbol('i', imaginary=True) >>> solveset(Eq(i**2 + i*sin(i), 1), i, domain=S.Reals) ConditionSet(_R, Eq(_R**2 + _R*sin(_R) - 1, 0), Reals) * Inequalities can be solved over the real domain only. Use of a complex domain leads to a NotImplementedError. >>> solveset(exp(x) > 1, x, R) Interval.open(0, oo) """ f = sympify(f) symbol = sympify(symbol) if f is S.true: return domain if f is S.false: return S.EmptySet if not isinstance(f, (Expr, Relational, Number)): raise ValueError("%s is not a valid SymPy expression" % f) if not isinstance(symbol, (Expr, Relational)) and symbol is not None: raise ValueError("%s is not a valid SymPy symbol" % (symbol,)) if not isinstance(domain, Set): raise ValueError("%s is not a valid domain" %(domain)) free_symbols = f.free_symbols if f.has(Piecewise): f = piecewise_fold(f) if symbol is None and not free_symbols: b = Eq(f, 0) if b is S.true: return domain elif b is S.false: return S.EmptySet else: raise NotImplementedError(filldedent(''' relationship between value and 0 is unknown: %s''' % b)) if symbol is None: if len(free_symbols) == 1: symbol = free_symbols.pop() elif free_symbols: raise ValueError(filldedent(''' The independent variable must be specified for a multivariate equation.''')) elif not isinstance(symbol, Symbol): f, s, swap = recast_to_symbols([f], [symbol]) # the xreplace will be needed if a ConditionSet is returned return solveset(f[0], s[0], domain).xreplace(swap) # solveset should ignore assumptions on symbols if symbol not in _rc: x = _rc[0] if domain.is_subset(S.Reals) else _rc[1] rv = solveset(f.xreplace({symbol: x}), x, domain) # try to use the original symbol if possible try: _rv = rv.xreplace({x: symbol}) except TypeError: _rv = rv if rv.dummy_eq(_rv): rv = _rv return rv # Abs has its own handling method which avoids the # rewriting property that the first piece of abs(x) # is for x >= 0 and the 2nd piece for x < 0 -- solutions # can look better if the 2nd condition is x <= 0. Since # the solution is a set, duplication of results is not # an issue, e.g. {y, -y} when y is 0 will be {0} f, mask = _masked(f, Abs) f = f.rewrite(Piecewise) # everything that's not an Abs for d, e in mask: # everything *in* an Abs e = e.func(e.args[0].rewrite(Piecewise)) f = f.xreplace({d: e}) f = piecewise_fold(f) return _solveset(f, symbol, domain, _check=True) def solveset_real(f, symbol): return solveset(f, symbol, S.Reals) def solveset_complex(f, symbol): return solveset(f, symbol, S.Complexes) def _solveset_multi(eqs, syms, domains): '''Basic implementation of a multivariate solveset. For internal use (not ready for public consumption)''' rep = {} for sym, dom in zip(syms, domains): if dom is S.Reals: rep[sym] = Symbol(sym.name, real=True) eqs = [eq.subs(rep) for eq in eqs] syms = [sym.subs(rep) for sym in syms] syms = tuple(syms) if len(eqs) == 0: return ProductSet(*domains) if len(syms) == 1: sym = syms[0] domain = domains[0] solsets = [solveset(eq, sym, domain) for eq in eqs] solset = Intersection(*solsets) return ImageSet(Lambda((sym,), (sym,)), solset).doit() eqs = sorted(eqs, key=lambda eq: len(eq.free_symbols & set(syms))) for n in range(len(eqs)): sols = [] all_handled = True for sym in syms: if sym not in eqs[n].free_symbols: continue sol = solveset(eqs[n], sym, domains[syms.index(sym)]) if isinstance(sol, FiniteSet): i = syms.index(sym) symsp = syms[:i] + syms[i+1:] domainsp = domains[:i] + domains[i+1:] eqsp = eqs[:n] + eqs[n+1:] for s in sol: eqsp_sub = [eq.subs(sym, s) for eq in eqsp] sol_others = _solveset_multi(eqsp_sub, symsp, domainsp) fun = Lambda((symsp,), symsp[:i] + (s,) + symsp[i:]) sols.append(ImageSet(fun, sol_others).doit()) else: all_handled = False if all_handled: return Union(*sols) def solvify(f, symbol, domain): """Solves an equation using solveset and returns the solution in accordance with the `solve` output API. Returns ======= We classify the output based on the type of solution returned by `solveset`. Solution | Output ---------------------------------------- FiniteSet | list ImageSet, | list (if `f` is periodic) Union | Union | list (with FiniteSet) EmptySet | empty list Others | None Raises ====== NotImplementedError A ConditionSet is the input. Examples ======== >>> from sympy.solvers.solveset import solvify >>> from sympy.abc import x >>> from sympy import S, tan, sin, exp >>> solvify(x**2 - 9, x, S.Reals) [-3, 3] >>> solvify(sin(x) - 1, x, S.Reals) [pi/2] >>> solvify(tan(x), x, S.Reals) [0] >>> solvify(exp(x) - 1, x, S.Complexes) >>> solvify(exp(x) - 1, x, S.Reals) [0] """ solution_set = solveset(f, symbol, domain) result = None if solution_set is S.EmptySet: result = [] elif isinstance(solution_set, ConditionSet): raise NotImplementedError('solveset is unable to solve this equation.') elif isinstance(solution_set, FiniteSet): result = list(solution_set) else: period = periodicity(f, symbol) if period is not None: solutions = S.EmptySet iter_solutions = () if isinstance(solution_set, ImageSet): iter_solutions = (solution_set,) elif isinstance(solution_set, Union): if all(isinstance(i, ImageSet) for i in solution_set.args): iter_solutions = solution_set.args for solution in iter_solutions: solutions += solution.intersect(Interval(0, period, False, True)) if isinstance(solutions, FiniteSet): result = list(solutions) else: solution = solution_set.intersect(domain) if isinstance(solution, Union): # concerned about only FiniteSet with Union but not about ImageSet # if required could be extend if any(isinstance(i, FiniteSet) for i in solution.args): result = [sol for soln in solution.args \ for sol in soln.args if isinstance(soln,FiniteSet)] else: return None elif isinstance(solution, FiniteSet): result += solution return result ############################################################################### ################################ LINSOLVE ##################################### ############################################################################### def linear_coeffs(eq, *syms, **_kw): """Return a list whose elements are the coefficients of the corresponding symbols in the sum of terms in ``eq``. The additive constant is returned as the last element of the list. Raises ====== NonlinearError The equation contains a nonlinear term Examples ======== >>> from sympy.solvers.solveset import linear_coeffs >>> from sympy.abc import x, y, z >>> linear_coeffs(3*x + 2*y - 1, x, y) [3, 2, -1] It is not necessary to expand the expression: >>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x) [3*y*z + 1, y*(2*z + 3)] But if there are nonlinear or cross terms -- even if they would cancel after simplification -- an error is raised so the situation does not pass silently past the caller's attention: >>> eq = 1/x*(x - 1) + 1/x >>> linear_coeffs(eq.expand(), x) [0, 1] >>> linear_coeffs(eq, x) Traceback (most recent call last): ... NonlinearError: nonlinear term encountered: 1/x >>> linear_coeffs(x*(y + 1) - x*y, x, y) Traceback (most recent call last): ... NonlinearError: nonlinear term encountered: x*(y + 1) """ from sympy.core.traversal import iterfreeargs d = defaultdict(list) eq = _sympify(eq) symset = set(syms) if len(symset) != len(syms): raise ValueError('duplicate symbols given') has = set(iterfreeargs(eq)) & symset if not has: return [S.Zero]*len(syms) + [eq] c, terms = eq.as_coeff_add(*has) d[0].extend(Add.make_args(c)) for t in terms: m, f = t.as_coeff_mul(*has) if len(f) != 1: break f = f[0] if f in symset: d[f].append(m) elif f.is_Add: d1 = linear_coeffs(f, *has, **{'dict': True}) d[0].append(m*d1.pop(0)) for xf, vf in d1.items(): d[xf].append(m*vf) else: break else: for k, v in d.items(): d[k] = Add(*v) if not _kw: return [d.get(s, S.Zero) for s in syms]+ [d[0]] return d # default is still list but this won't matter raise NonlinearError('nonlinear term encountered: %s' % t) def linear_eq_to_matrix(equations, *symbols): r""" Converts a given System of Equations into Matrix form. Here `equations` must be a linear system of equations in `symbols`. Element ``M[i, j]`` corresponds to the coefficient of the jth symbol in the ith equation. The Matrix form corresponds to the augmented matrix form. For example: .. math:: 4x + 2y + 3z = 1 .. math:: 3x + y + z = -6 .. math:: 2x + 4y + 9z = 2 This system will return $A$ and $b$ as: $$ A = \left[\begin{array}{ccc} 4 & 2 & 3 \\ 3 & 1 & 1 \\ 2 & 4 & 9 \end{array}\right] \ \ b = \left[\begin{array}{c} 1 \\ -6 \\ 2 \end{array}\right] $$ The only simplification performed is to convert ``Eq(a, b)`` $\Rightarrow a - b$. Raises ====== NonlinearError The equations contain a nonlinear term. ValueError The symbols are not given or are not unique. Examples ======== >>> from sympy import linear_eq_to_matrix, symbols >>> c, x, y, z = symbols('c, x, y, z') The coefficients (numerical or symbolic) of the symbols will be returned as matrices: >>> eqns = [c*x + z - 1 - c, y + z, x - y] >>> A, b = linear_eq_to_matrix(eqns, [x, y, z]) >>> A Matrix([ [c, 0, 1], [0, 1, 1], [1, -1, 0]]) >>> b Matrix([ [c + 1], [ 0], [ 0]]) This routine does not simplify expressions and will raise an error if nonlinearity is encountered: >>> eqns = [ ... (x**2 - 3*x)/(x - 3) - 3, ... y**2 - 3*y - y*(y - 4) + x - 4] >>> linear_eq_to_matrix(eqns, [x, y]) Traceback (most recent call last): ... NonlinearError: The term (x**2 - 3*x)/(x - 3) is nonlinear in {x, y} Simplifying these equations will discard the removable singularity in the first, reveal the linear structure of the second: >>> [e.simplify() for e in eqns] [x - 3, x + y - 4] Any such simplification needed to eliminate nonlinear terms must be done before calling this routine. """ if not symbols: raise ValueError(filldedent(''' Symbols must be given, for which coefficients are to be found. ''')) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] for i in symbols: if not isinstance(i, Symbol): raise ValueError(filldedent(''' Expecting a Symbol but got %s ''' % i)) if has_dups(symbols): raise ValueError('Symbols must be unique') equations = sympify(equations) if isinstance(equations, MatrixBase): equations = list(equations) elif isinstance(equations, (Expr, Eq)): equations = [equations] elif not is_sequence(equations): raise ValueError(filldedent(''' Equation(s) must be given as a sequence, Expr, Eq or Matrix. ''')) A, b = [], [] for i, f in enumerate(equations): if isinstance(f, Equality): f = f.rewrite(Add, evaluate=False) coeff_list = linear_coeffs(f, *symbols) b.append(-coeff_list.pop()) A.append(coeff_list) A, b = map(Matrix, (A, b)) return A, b def linsolve(system, *symbols): r""" Solve system of $N$ linear equations with $M$ variables; both underdetermined and overdetermined systems are supported. The possible number of solutions is zero, one or infinite. Zero solutions throws a ValueError, whereas infinite solutions are represented parametrically in terms of the given symbols. For unique solution a :class:`~.FiniteSet` of ordered tuples is returned. All standard input formats are supported: For the given set of equations, the respective input types are given below: .. math:: 3x + 2y - z = 1 .. math:: 2x - 2y + 4z = -2 .. math:: 2x - y + 2z = 0 * Augmented matrix form, ``system`` given below: $$ \text{system} = \left[{array}{cccc} 3 & 2 & -1 & 1\\ 2 & -2 & 4 & -2\\ 2 & -1 & 2 & 0 \end{array}\right] $$ :: system = Matrix([[3, 2, -1, 1], [2, -2, 4, -2], [2, -1, 2, 0]]) * List of equations form :: system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z] * Input $A$ and $b$ in matrix form (from $Ax = b$) are given as: $$ A = \left[\begin{array}{ccc} 3 & 2 & -1 \\ 2 & -2 & 4 \\ 2 & -1 & 2 \end{array}\right] \ \ b = \left[\begin{array}{c} 1 \\ -2 \\ 0 \end{array}\right] $$ :: A = Matrix([[3, 2, -1], [2, -2, 4], [2, -1, 2]]) b = Matrix([[1], [-2], [0]]) system = (A, b) Symbols can always be passed but are actually only needed when 1) a system of equations is being passed and 2) the system is passed as an underdetermined matrix and one wants to control the name of the free variables in the result. An error is raised if no symbols are used for case 1, but if no symbols are provided for case 2, internally generated symbols will be provided. When providing symbols for case 2, there should be at least as many symbols are there are columns in matrix A. The algorithm used here is Gauss-Jordan elimination, which results, after elimination, in a row echelon form matrix. Returns ======= A FiniteSet containing an ordered tuple of values for the unknowns for which the `system` has a solution. (Wrapping the tuple in FiniteSet is used to maintain a consistent output format throughout solveset.) Returns EmptySet, if the linear system is inconsistent. Raises ====== ValueError The input is not valid. The symbols are not given. Examples ======== >>> from sympy import Matrix, linsolve, symbols >>> x, y, z = symbols("x, y, z") >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b = Matrix([3, 6, 9]) >>> A Matrix([ [1, 2, 3], [4, 5, 6], [7, 8, 10]]) >>> b Matrix([ [3], [6], [9]]) >>> linsolve((A, b), [x, y, z]) {(-1, 2, 0)} * Parametric Solution: In case the system is underdetermined, the function will return a parametric solution in terms of the given symbols. Those that are free will be returned unchanged. e.g. in the system below, `z` is returned as the solution for variable z; it can take on any value. >>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> b = Matrix([3, 6, 9]) >>> linsolve((A, b), x, y, z) {(z - 1, 2 - 2*z, z)} If no symbols are given, internally generated symbols will be used. The ``tau0`` in the third position indicates (as before) that the third variable -- whatever it is named -- can take on any value: >>> linsolve((A, b)) {(tau0 - 1, 2 - 2*tau0, tau0)} * List of equations as input >>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z] >>> linsolve(Eqns, x, y, z) {(1, -2, -2)} * Augmented matrix as input >>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> aug Matrix([ [2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]]) >>> linsolve(aug, x, y, z) {(3/10, 2/5, 0)} * Solve for symbolic coefficients >>> a, b, c, d, e, f = symbols('a, b, c, d, e, f') >>> eqns = [a*x + b*y - c, d*x + e*y - f] >>> linsolve(eqns, x, y) {((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))} * A degenerate system returns solution as set of given symbols. >>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0])) >>> linsolve(system, x, y) {(x, y)} * For an empty system linsolve returns empty set >>> linsolve([], x) EmptySet * An error is raised if, after expansion, any nonlinearity is detected: >>> linsolve([x*(1/x - 1), (y - 1)**2 - y**2 + 1], x, y) {(1, 1)} >>> linsolve([x**2 - 1], x) Traceback (most recent call last): ... NonlinearError: nonlinear term encountered: x**2 """ if not system: return S.EmptySet # If second argument is an iterable if symbols and hasattr(symbols[0], '__iter__'): symbols = symbols[0] sym_gen = isinstance(symbols, GeneratorType) b = None # if we don't get b the input was bad # unpack system if hasattr(system, '__iter__'): # 1). (A, b) if len(system) == 2 and isinstance(system[0], MatrixBase): A, b = system # 2). (eq1, eq2, ...) if not isinstance(system[0], MatrixBase): if sym_gen or not symbols: raise ValueError(filldedent(''' When passing a system of equations, the explicit symbols for which a solution is being sought must be given as a sequence, too. ''')) # # Pass to the sparse solver implemented in polys. It is important # that we do not attempt to convert the equations to a matrix # because that would be very inefficient for large sparse systems # of equations. # eqs = system eqs = [sympify(eq) for eq in eqs] try: sol = _linsolve(eqs, symbols) except PolyNonlinearError as exc: # e.g. cos(x) contains an element of the set of generators raise NonlinearError(str(exc)) if sol is None: return S.EmptySet sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols))) return sol elif isinstance(system, MatrixBase) and not ( symbols and not isinstance(symbols, GeneratorType) and isinstance(symbols[0], MatrixBase)): # 3). A augmented with b A, b = system[:, :-1], system[:, -1:] if b is None: raise ValueError("Invalid arguments") if sym_gen: symbols = [next(symbols) for i in range(A.cols)] if any(set(symbols) & (A.free_symbols | b.free_symbols)): raise ValueError(filldedent(''' At least one of the symbols provided already appears in the system to be solved. One way to avoid this is to use Dummy symbols in the generator, e.g. numbered_symbols('%s', cls=Dummy) ''' % symbols[0].name.rstrip('1234567890'))) if not symbols: symbols = [Dummy() for _ in range(A.cols)] name = _uniquely_named_symbol('tau', (A, b), compare=lambda i: str(i).rstrip('1234567890')).name gen = numbered_symbols(name) else: gen = None # This is just a wrapper for solve_lin_sys eqs = [] rows = A.tolist() for rowi, bi in zip(rows, b): terms = [elem * sym for elem, sym in zip(rowi, symbols) if elem] terms.append(-bi) eqs.append(Add(*terms)) eqs, ring = sympy_eqs_to_ring(eqs, symbols) sol = solve_lin_sys(eqs, ring, _raw=False) if sol is None: return S.EmptySet #sol = {sym:val for sym, val in sol.items() if sym != val} sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols))) if gen is not None: solsym = sol.free_symbols rep = {sym: next(gen) for sym in symbols if sym in solsym} sol = sol.subs(rep) return sol ############################################################################## # ------------------------------nonlinsolve ---------------------------------# ############################################################################## def _return_conditionset(eqs, symbols): # return conditionset eqs = (Eq(lhs, 0) for lhs in eqs) condition_set = ConditionSet( Tuple(*symbols), And(*eqs), S.Complexes**len(symbols)) return condition_set def substitution(system, symbols, result=[{}], known_symbols=[], exclude=[], all_symbols=None): r""" Solves the `system` using substitution method. It is used in :func:`~.nonlinsolve`. This will be called from :func:`~.nonlinsolve` when any equation(s) is non polynomial equation. Parameters ========== system : list of equations The target system of equations symbols : list of symbols to be solved. The variable(s) for which the system is solved known_symbols : list of solved symbols Values are known for these variable(s) result : An empty list or list of dict If No symbol values is known then empty list otherwise symbol as keys and corresponding value in dict. exclude : Set of expression. Mostly denominator expression(s) of the equations of the system. Final solution should not satisfy these expressions. all_symbols : known_symbols + symbols(unsolved). Returns ======= A FiniteSet of ordered tuple of values of `all_symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `all_symbols`. If parameter `all_symbols` is None then same as symbols present in the parameter `symbols`. Please note that general FiniteSet is unordered, the solution returned here is not simply a FiniteSet of solutions, rather it is a FiniteSet of ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of solutions, which is ordered, & hence the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper `{}` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not :class:`~.Symbol` type. Examples ======== >>> from sympy import symbols, substitution >>> x, y = symbols('x, y', real=True) >>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y]) {(-1, 1)} * When you want a soln not satisfying $x + 1 = 0$ >>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x]) EmptySet >>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x]) {(1, -1)} >>> substitution([x + y - 1, y - x**2 + 5], [x, y]) {(-3, 4), (2, -1)} * Returns both real and complex solution >>> x, y, z = symbols('x, y, z') >>> from sympy import exp, sin >>> substitution([exp(x) - sin(y), y**2 - 4], [x, y]) {(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)} >>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)] >>> substitution(eqs, [y, z]) {(-log(3), -sqrt(-exp(2*x) - sin(log(3)))), (-log(3), sqrt(-exp(2*x) - sin(log(3)))), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)), (ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers), ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))} """ if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if not is_sequence(symbols): msg = ('symbols should be given as a sequence, e.g. a list.' 'Not type %s: %s') raise TypeError(filldedent(msg % (type(symbols), symbols))) if not getattr(symbols[0], 'is_Symbol', False): msg = ('Iterable of symbols must be given as ' 'second argument, not type %s: %s') raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0]))) # By default `all_symbols` will be same as `symbols` if all_symbols is None: all_symbols = symbols old_result = result # storing complements and intersection for particular symbol complements = {} intersections = {} # when total_solveset_call equals total_conditionset # it means that solveset failed to solve all eqs. total_conditionset = -1 total_solveset_call = -1 def _unsolved_syms(eq, sort=False): """Returns the unsolved symbol present in the equation `eq`. """ free = eq.free_symbols unsolved = (free - set(known_symbols)) & set(all_symbols) if sort: unsolved = list(unsolved) unsolved.sort(key=default_sort_key) return unsolved # end of _unsolved_syms() # sort such that equation with the fewest potential symbols is first. # means eq with less number of variable first in the list. eqs_in_better_order = list( ordered(system, lambda _: len(_unsolved_syms(_)))) def add_intersection_complement(result, intersection_dict, complement_dict): # If solveset has returned some intersection/complement # for any symbol, it will be added in the final solution. final_result = [] for res in result: res_copy = res for key_res, value_res in res.items(): intersect_set, complement_set = None, None for key_sym, value_sym in intersection_dict.items(): if key_sym == key_res: intersect_set = value_sym for key_sym, value_sym in complement_dict.items(): if key_sym == key_res: complement_set = value_sym if intersect_set or complement_set: new_value = FiniteSet(value_res) if intersect_set and intersect_set != S.Complexes: new_value = Intersection(new_value, intersect_set) if complement_set: new_value = Complement(new_value, complement_set) if new_value is S.EmptySet: res_copy = None break elif new_value.is_FiniteSet and len(new_value) == 1: res_copy[key_res] = set(new_value).pop() else: res_copy[key_res] = new_value if res_copy is not None: final_result.append(res_copy) return final_result # end of def add_intersection_complement() def _extract_main_soln(sym, sol, soln_imageset): """Separate the Complements, Intersections, ImageSet lambda expr and its base_set. This function returns the unmasks sol from different classes of sets and also returns the appended ImageSet elements in a soln_imageset (dict: where key as unmasked element and value as ImageSet). """ # if there is union, then need to check # Complement, Intersection, Imageset. # Order should not be changed. if isinstance(sol, ConditionSet): # extracts any solution in ConditionSet sol = sol.base_set if isinstance(sol, Complement): # extract solution and complement complements[sym] = sol.args[1] sol = sol.args[0] # complement will be added at the end # using `add_intersection_complement` method # if there is union of Imageset or other in soln. # no testcase is written for this if block if isinstance(sol, Union): sol_args = sol.args sol = S.EmptySet # We need in sequence so append finteset elements # and then imageset or other. for sol_arg2 in sol_args: if isinstance(sol_arg2, FiniteSet): sol += sol_arg2 else: # ImageSet, Intersection, complement then # append them directly sol += FiniteSet(sol_arg2) if isinstance(sol, Intersection): # Interval/Set will be at 0th index always if sol.args[0] not in (S.Reals, S.Complexes): # Sometimes solveset returns soln with intersection # S.Reals or S.Complexes. We don't consider that # intersection. intersections[sym] = sol.args[0] sol = sol.args[1] # after intersection and complement Imageset should # be checked. if isinstance(sol, ImageSet): soln_imagest = sol expr2 = sol.lamda.expr sol = FiniteSet(expr2) soln_imageset[expr2] = soln_imagest if not isinstance(sol, FiniteSet): sol = FiniteSet(sol) return sol, soln_imageset # end of def _extract_main_soln() # helper function for _append_new_soln def _check_exclude(rnew, imgset_yes): rnew_ = rnew if imgset_yes: # replace all dummy variables (Imageset lambda variables) # with zero before `checksol`. Considering fundamental soln # for `checksol`. rnew_copy = rnew.copy() dummy_n = imgset_yes[0] for key_res, value_res in rnew_copy.items(): rnew_copy[key_res] = value_res.subs(dummy_n, 0) rnew_ = rnew_copy # satisfy_exclude == true if it satisfies the expr of `exclude` list. try: # something like : `Mod(-log(3), 2*I*pi)` can't be # simplified right now, so `checksol` returns `TypeError`. # when this issue is fixed this try block should be # removed. Mod(-log(3), 2*I*pi) == -log(3) satisfy_exclude = any( checksol(d, rnew_) for d in exclude) except TypeError: satisfy_exclude = None return satisfy_exclude # end of def _check_exclude() # helper function for _append_new_soln def _restore_imgset(rnew, original_imageset, newresult): restore_sym = set(rnew.keys()) & \ set(original_imageset.keys()) for key_sym in restore_sym: img = original_imageset[key_sym] rnew[key_sym] = img if rnew not in newresult: newresult.append(rnew) # end of def _restore_imgset() def _append_eq(eq, result, res, delete_soln, n=None): u = Dummy('u') if n: eq = eq.subs(n, 0) satisfy = eq if eq in (True, False) else checksol(u, u, eq, minimal=True) if satisfy is False: delete_soln = True res = {} else: result.append(res) return result, res, delete_soln def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult, eq=None): """If `rnew` (A dict <symbol: soln>) contains valid soln append it to `newresult` list. `imgset_yes` is (base, dummy_var) if there was imageset in previously calculated result(otherwise empty tuple). `original_imageset` is dict of imageset expr and imageset from this result. `soln_imageset` dict of imageset expr and imageset of new soln. """ satisfy_exclude = _check_exclude(rnew, imgset_yes) delete_soln = False # soln should not satisfy expr present in `exclude` list. if not satisfy_exclude: local_n = None # if it is imageset if imgset_yes: local_n = imgset_yes[0] base = imgset_yes[1] if sym and sol: # when `sym` and `sol` is `None` means no new # soln. In that case we will append rnew directly after # substituting original imagesets in rnew values if present # (second last line of this function using _restore_imgset) dummy_list = list(sol.atoms(Dummy)) # use one dummy `n` which is in # previous imageset local_n_list = [ local_n for i in range( 0, len(dummy_list))] dummy_zip = zip(dummy_list, local_n_list) lam = Lambda(local_n, sol.subs(dummy_zip)) rnew[sym] = ImageSet(lam, base) if eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln, local_n) elif eq is not None: newresult, rnew, delete_soln = _append_eq( eq, newresult, rnew, delete_soln) elif sol in soln_imageset.keys(): rnew[sym] = soln_imageset[sol] # restore original imageset _restore_imgset(rnew, original_imageset, newresult) else: newresult.append(rnew) elif satisfy_exclude: delete_soln = True rnew = {} _restore_imgset(rnew, original_imageset, newresult) return newresult, delete_soln # end of def _append_new_soln() def _new_order_result(result, eq): # separate first, second priority. `res` that makes `eq` value equals # to zero, should be used first then other result(second priority). # If it is not done then we may miss some soln. first_priority = [] second_priority = [] for res in result: if not any(isinstance(val, ImageSet) for val in res.values()): if eq.subs(res) == 0: first_priority.append(res) else: second_priority.append(res) if first_priority or second_priority: return first_priority + second_priority return result def _solve_using_known_values(result, solver): """Solves the system using already known solution (result contains the dict <symbol: value>). solver is :func:`~.solveset_complex` or :func:`~.solveset_real`. """ # stores imageset <expr: imageset(Lambda(n, expr), base)>. soln_imageset = {} total_solvest_call = 0 total_conditionst = 0 # sort such that equation with the fewest potential symbols is first. # means eq with less variable first for index, eq in enumerate(eqs_in_better_order): newresult = [] original_imageset = {} # if imageset expr is used to solve other symbol imgset_yes = False result = _new_order_result(result, eq) for res in result: got_symbol = set() # symbols solved in one iteration # find the imageset and use its expr. for key_res, value_res in res.items(): if isinstance(value_res, ImageSet): res[key_res] = value_res.lamda.expr original_imageset[key_res] = value_res dummy_n = value_res.lamda.expr.atoms(Dummy).pop() (base,) = value_res.base_sets imgset_yes = (dummy_n, base) # update eq with everything that is known so far eq2 = eq.subs(res).expand() unsolved_syms = _unsolved_syms(eq2, sort=True) if not unsolved_syms: if res: newresult, delete_res = _append_new_soln( res, None, None, imgset_yes, soln_imageset, original_imageset, newresult, eq2) if delete_res: # `delete_res` is true, means substituting `res` in # eq2 doesn't return `zero` or deleting the `res` # (a soln) since it staisfies expr of `exclude` # list. result.remove(res) continue # skip as it's independent of desired symbols depen1, depen2 = (eq2.rewrite(Add)).as_independent(*unsolved_syms) if (depen1.has(Abs) or depen2.has(Abs)) and solver == solveset_complex: # Absolute values cannot be inverted in the # complex domain continue soln_imageset = {} for sym in unsolved_syms: not_solvable = False try: soln = solver(eq2, sym) total_solvest_call += 1 soln_new = S.EmptySet if isinstance(soln, Complement): # separate solution and complement complements[sym] = soln.args[1] soln = soln.args[0] # complement will be added at the end if isinstance(soln, Intersection): # Interval will be at 0th index always if soln.args[0] != Interval(-oo, oo): # sometimes solveset returns soln # with intersection S.Reals, to confirm that # soln is in domain=S.Reals intersections[sym] = soln.args[0] soln_new += soln.args[1] soln = soln_new if soln_new else soln if index > 0 and solver == solveset_real: # one symbol's real soln, another symbol may have # corresponding complex soln. if not isinstance(soln, (ImageSet, ConditionSet)): soln += solveset_complex(eq2, sym) # might give ValueError with Abs except (NotImplementedError, ValueError): # If solveset is not able to solve equation `eq2`. Next # time we may get soln using next equation `eq2` continue if isinstance(soln, ConditionSet): if soln.base_set in (S.Reals, S.Complexes): soln = S.EmptySet # don't do `continue` we may get soln # in terms of other symbol(s) not_solvable = True total_conditionst += 1 else: soln = soln.base_set if soln is not S.EmptySet: soln, soln_imageset = _extract_main_soln( sym, soln, soln_imageset) for sol in soln: # sol is not a `Union` since we checked it # before this loop sol, soln_imageset = _extract_main_soln( sym, sol, soln_imageset) sol = set(sol).pop() free = sol.free_symbols if got_symbol and any( ss in free for ss in got_symbol ): # sol depends on previously solved symbols # then continue continue rnew = res.copy() # put each solution in res and append the new result # in the new result list (solution for symbol `s`) # along with old results. for k, v in res.items(): if isinstance(v, Expr) and isinstance(sol, Expr): # if any unsolved symbol is present # Then subs known value rnew[k] = v.subs(sym, sol) # and add this new solution if sol in soln_imageset.keys(): # replace all lambda variables with 0. imgst = soln_imageset[sol] rnew[sym] = imgst.lamda( *[0 for i in range(0, len( imgst.lamda.variables))]) else: rnew[sym] = sol newresult, delete_res = _append_new_soln( rnew, sym, sol, imgset_yes, soln_imageset, original_imageset, newresult) if delete_res: # deleting the `res` (a soln) since it staisfies # eq of `exclude` list result.remove(res) # solution got for sym if not not_solvable: got_symbol.add(sym) # next time use this new soln if newresult: result = newresult return result, total_solvest_call, total_conditionst # end def _solve_using_know_values() new_result_real, solve_call1, cnd_call1 = _solve_using_known_values( old_result, solveset_real) new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values( old_result, solveset_complex) # If total_solveset_call is equal to total_conditionset # then solveset failed to solve all of the equations. # In this case we return a ConditionSet here. total_conditionset += (cnd_call1 + cnd_call2) total_solveset_call += (solve_call1 + solve_call2) if total_conditionset == total_solveset_call and total_solveset_call != -1: return _return_conditionset(eqs_in_better_order, all_symbols) # don't keep duplicate solutions filtered_complex = [] for i in list(new_result_complex): for j in list(new_result_real): if i.keys() != j.keys(): continue if all(a.dummy_eq(b) for a, b in zip(i.values(), j.values()) \ if type(a) != int or type(b) != int): break else: filtered_complex.append(i) # overall result result = new_result_real + filtered_complex result_all_variables = [] result_infinite = [] for res in result: if not res: # means {None : None} continue # If length < len(all_symbols) means infinite soln. # Some or all the soln is dependent on 1 symbol. # eg. {x: y+2} then final soln {x: y+2, y: y} if len(res) < len(all_symbols): solved_symbols = res.keys() unsolved = list(filter( lambda x: x not in solved_symbols, all_symbols)) for unsolved_sym in unsolved: res[unsolved_sym] = unsolved_sym result_infinite.append(res) if res not in result_all_variables: result_all_variables.append(res) if result_infinite: # we have general soln # eg : [{x: -1, y : 1}, {x : -y, y: y}] then # return [{x : -y, y : y}] result_all_variables = result_infinite if intersections or complements: result_all_variables = add_intersection_complement( result_all_variables, intersections, complements) # convert to ordered tuple result = S.EmptySet for r in result_all_variables: temp = [r[symb] for symb in all_symbols] result += FiniteSet(tuple(temp)) return result # end of def substitution() def _solveset_work(system, symbols): soln = solveset(system[0], symbols[0]) if isinstance(soln, FiniteSet): _soln = FiniteSet(*[tuple((s,)) for s in soln]) return _soln else: return FiniteSet(tuple(FiniteSet(soln))) def _handle_positive_dimensional(polys, symbols, denominators): from sympy.polys.polytools import groebner # substitution method where new system is groebner basis of the system _symbols = list(symbols) _symbols.sort(key=default_sort_key) basis = groebner(polys, _symbols, polys=True) new_system = [] for poly_eq in basis: new_system.append(poly_eq.as_expr()) result = [{}] result = substitution( new_system, symbols, result, [], denominators) return result # end of def _handle_positive_dimensional() def _handle_zero_dimensional(polys, symbols, system): # solve 0 dimensional poly system using `solve_poly_system` result = solve_poly_system(polys, *symbols) # May be some extra soln is added because # we used `unrad` in `_separate_poly_nonpoly`, so # need to check and remove if it is not a soln. result_update = S.EmptySet for res in result: dict_sym_value = dict(list(zip(symbols, res))) if all(checksol(eq, dict_sym_value) for eq in system): result_update += FiniteSet(res) return result_update # end of def _handle_zero_dimensional() def _separate_poly_nonpoly(system, symbols): polys = [] polys_expr = [] nonpolys = [] denominators = set() poly = None for eq in system: # Store denom expressions that contain symbols denominators.update(_simple_dens(eq, symbols)) # Convert equality to expression if isinstance(eq, Equality): eq = eq.rewrite(Add) # try to remove sqrt and rational power without_radicals = unrad(simplify(eq), *symbols) if without_radicals: eq_unrad, cov = without_radicals if not cov: eq = eq_unrad if isinstance(eq, Expr): eq = eq.as_numer_denom()[0] poly = eq.as_poly(*symbols, extension=True) elif simplify(eq).is_number: continue if poly is not None: polys.append(poly) polys_expr.append(poly.as_expr()) else: nonpolys.append(eq) return polys, polys_expr, nonpolys, denominators # end of def _separate_poly_nonpoly() def nonlinsolve(system, *symbols): r""" Solve system of $N$ nonlinear equations with $M$ variables, which means both under and overdetermined systems are supported. Positive dimensional system is also supported (A system with infinitely many solutions is said to be positive-dimensional). In a positive dimensional system the solution will be dependent on at least one symbol. Returns both real solution and complex solution (if they exist). The possible number of solutions is zero, one or infinite. Parameters ========== system : list of equations The target system of equations symbols : list of Symbols symbols should be given as a sequence eg. list Returns ======= A :class:`~.FiniteSet` of ordered tuple of values of `symbols` for which the `system` has solution. Order of values in the tuple is same as symbols present in the parameter `symbols`. Please note that general :class:`~.FiniteSet` is unordered, the solution returned here is not simply a :class:`~.FiniteSet` of solutions, rather it is a :class:`~.FiniteSet` of ordered tuple, i.e. the first and only argument to :class:`~.FiniteSet` is a tuple of solutions, which is ordered, and, hence ,the returned solution is ordered. Also note that solution could also have been returned as an ordered tuple, FiniteSet is just a wrapper ``{}`` around the tuple. It has no other significance except for the fact it is just used to maintain a consistent output format throughout the solveset. For the given set of equations, the respective input types are given below: .. math:: xy - 1 = 0 .. math:: 4x^2 + y^2 - 5 = 0 :: system = [x*y - 1, 4*x**2 + y**2 - 5] symbols = [x, y] Raises ====== ValueError The input is not valid. The symbols are not given. AttributeError The input symbols are not `Symbol` type. Examples ======== >>> from sympy import symbols, nonlinsolve >>> x, y, z = symbols('x, y, z', real=True) >>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y]) {(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)} 1. Positive dimensional system and complements: >>> from sympy import pprint >>> from sympy.polys.polytools import is_zero_dimensional >>> a, b, c, d = symbols('a, b, c, d', extended_real=True) >>> eq1 = a + b + c + d >>> eq2 = a*b + b*c + c*d + d*a >>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b >>> eq4 = a*b*c*d - 1 >>> system = [eq1, eq2, eq3, eq4] >>> is_zero_dimensional(system) False >>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False) -1 1 1 -1 {(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})} d d d d >>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y]) {(2 - y, y)} 2. If some of the equations are non-polynomial then `nonlinsolve` will call the ``substitution`` function and return real and complex solutions, if present. >>> from sympy import exp, sin >>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y]) {(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2), (ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)} 3. If system is non-linear polynomial and zero-dimensional then it returns both solution (real and complex solutions, if present) using :func:`~.solve_poly_system`: >>> from sympy import sqrt >>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y]) {(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)} 4. ``nonlinsolve`` can solve some linear (zero or positive dimensional) system (because it uses the :func:`sympy.polys.polytools.groebner` function to get the groebner basis and then uses the ``substitution`` function basis as the new `system`). But it is not recommended to solve linear system using ``nonlinsolve``, because :func:`~.linsolve` is better for general linear systems. >>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9, y + z - 4], [x, y, z]) {(3*z - 5, 4 - z, z)} 5. System having polynomial equations and only real solution is solved using :func:`~.solve_poly_system`: >>> e1 = sqrt(x**2 + y**2) - 10 >>> e2 = sqrt(y**2 + (-x + 10)**2) - 3 >>> nonlinsolve((e1, e2), (x, y)) {(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y]) {(1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))} >>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x]) {(2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))} 6. It is better to use symbols instead of trigonometric functions or :class:`~.Function`. For example, replace $\sin(x)$ with a symbol, replace $f(x)$ with a symbol and so on. Get a solution from ``nonlinsolve`` and then use :func:`~.solveset` to get the value of $x$. How nonlinsolve is better than old solver ``_solve_system`` : ============================================================= 1. A positive dimensional system solver: nonlinsolve can return solution for positive dimensional system. It finds the Groebner Basis of the positive dimensional system(calling it as basis) then we can start solving equation(having least number of variable first in the basis) using solveset and substituting that solved solutions into other equation(of basis) to get solution in terms of minimum variables. Here the important thing is how we are substituting the known values and in which equations. 2. Real and complex solutions: nonlinsolve returns both real and complex solution. If all the equations in the system are polynomial then using :func:`~.solve_poly_system` both real and complex solution is returned. If all the equations in the system are not polynomial equation then goes to ``substitution`` method with this polynomial and non polynomial equation(s), to solve for unsolved variables. Here to solve for particular variable solveset_real and solveset_complex is used. For both real and complex solution ``_solve_using_know_values`` is used inside ``substitution`` (``substitution`` will be called when any non-polynomial equation is present). If a solution is valid its general solution is added to the final result. 3. :class:`~.Complement` and :class:`~.Intersection` will be added: nonlinsolve maintains dict for complements and intersections. If solveset find complements or/and intersections with any interval or set during the execution of ``substitution`` function, then complement or/and intersection for that variable is added before returning final solution. """ from sympy.polys.polytools import is_zero_dimensional if not system: return S.EmptySet if not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise ValueError(filldedent(msg)) if hasattr(symbols[0], '__iter__'): symbols = symbols[0] if not is_sequence(symbols) or not symbols: msg = ('Symbols must be given, for which solution of the ' 'system is to be found.') raise IndexError(filldedent(msg)) system, symbols, swap = recast_to_symbols(system, symbols) if swap: soln = nonlinsolve(system, symbols) return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln]) if len(system) == 1 and len(symbols) == 1: return _solveset_work(system, symbols) # main code of def nonlinsolve() starts from here polys, polys_expr, nonpolys, denominators = _separate_poly_nonpoly( system, symbols) if len(symbols) == len(polys): # If all the equations in the system are poly if is_zero_dimensional(polys, symbols): # finite number of soln (Zero dimensional system) try: return _handle_zero_dimensional(polys, symbols, system) except NotImplementedError: # Right now it doesn't fail for any polynomial system of # equation. If `solve_poly_system` fails then `substitution` # method will handle it. result = substitution( polys_expr, symbols, exclude=denominators) return result # positive dimensional system res = _handle_positive_dimensional(polys, symbols, denominators) if res is S.EmptySet and any(not p.domain.is_Exact for p in polys): raise NotImplementedError("Equation not in exact domain. Try converting to rational") else: return res else: # If all the equations are not polynomial. # Use `substitution` method for the system result = substitution( polys_expr + nonpolys, symbols, exclude=denominators) return result
ddc178c1910b0218fe690eb9a096b2e8c82c8c29c63340cc5c2d64992768d5cd
"""Solvers of systems of polynomial equations. """ from sympy.core import S from sympy.core.sorting import default_sort_key from sympy.polys import Poly, groebner, roots from sympy.polys.polytools import parallel_poly_from_expr from sympy.polys.polyerrors import (ComputationFailed, PolificationFailed, CoercionFailed) from sympy.simplify import rcollect from sympy.utilities import postfixes from sympy.utilities.misc import filldedent class SolveFailed(Exception): """Raised when solver's conditions weren't met. """ def solve_poly_system(seq, *gens, **args): """ Solve a system of polynomial equations. Parameters ========== seq: a list/tuple/set Listing all the equations that are needed to be solved gens: generators generators of the equations in seq for which we want the solutions args: Keyword arguments Special options for solving the equations Returns ======= List[Tuple] A List of tuples. Solutions for symbols that satisfy the equations listed in seq Examples ======== >>> from sympy import solve_poly_system >>> from sympy.abc import x, y >>> solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) [(0, 0), (2, -sqrt(2)), (2, sqrt(2))] """ try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('solve_poly_system', len(seq), exc) if len(polys) == len(opt.gens) == 2: f, g = polys if all(i <= 2 for i in f.degree_list() + g.degree_list()): try: return solve_biquadratic(f, g, opt) except SolveFailed: pass return solve_generic(polys, opt) def solve_biquadratic(f, g, opt): """Solve a system of two bivariate quadratic polynomial equations. Parameters ========== f: a single Expr or Poly First equation g: a single Expr or Poly Second Equation opt: an Options object For specifying keyword arguments and generators Returns ======= List[Tuple] A List of tuples. Solutions for symbols that satisfy the equations listed in seq. Examples ======== >>> from sympy.polys import Options, Poly >>> from sympy.abc import x, y >>> from sympy.solvers.polysys import solve_biquadratic >>> NewOption = Options((x, y), {'domain': 'ZZ'}) >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ') >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ') >>> solve_biquadratic(a, b, NewOption) [(1/3, 3), (41/27, 11/9)] >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ') >>> b = Poly(-y + x - 4, y, x, domain='ZZ') >>> solve_biquadratic(a, b, NewOption) [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \ sqrt(29)/2)] """ G = groebner([f, g]) if len(G) == 1 and G[0].is_ground: return None if len(G) != 2: raise SolveFailed x, y = opt.gens p, q = G if not p.gcd(q).is_ground: # not 0-dimensional raise SolveFailed p = Poly(p, x, expand=False) p_roots = [rcollect(expr, y) for expr in roots(p).keys()] q = q.ltrim(-1) q_roots = list(roots(q).keys()) solutions = [] for q_root in q_roots: for p_root in p_roots: solution = (p_root.subs(y, q_root), q_root) solutions.append(solution) return sorted(solutions, key=default_sort_key) def solve_generic(polys, opt): """ Solve a generic system of polynomial equations. Returns all possible solutions over C[x_1, x_2, ..., x_m] of a set F = { f_1, f_2, ..., f_n } of polynomial equations, using Groebner basis approach. For now only zero-dimensional systems are supported, which means F can have at most a finite number of solutions. The algorithm works by the fact that, supposing G is the basis of F with respect to an elimination order (here lexicographic order is used), G and F generate the same ideal, they have the same set of solutions. By the elimination property, if G is a reduced, zero-dimensional Groebner basis, then there exists an univariate polynomial in G (in its last variable). This can be solved by computing its roots. Substituting all computed roots for the last (eliminated) variable in other elements of G, new polynomial system is generated. Applying the above procedure recursively, a finite number of solutions can be found. The ability of finding all solutions by this procedure depends on the root finding algorithms. If no solutions were found, it means only that roots() failed, but the system is solvable. To overcome this difficulty use numerical algorithms instead. Parameters ========== polys: a list/tuple/set Listing all the polynomial equations that are needed to be solved opt: an Options object For specifying keyword arguments and generators Returns ======= List[Tuple] A List of tuples. Solutions for symbols that satisfy the equations listed in seq References ========== .. [Buchberger01] B. Buchberger, Groebner Bases: A Short Introduction for Systems Theorists, In: R. Moreno-Diaz, B. Buchberger, J.L. Freire, Proceedings of EUROCAST'01, February, 2001 .. [Cox97] D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer, Second Edition, 1997, pp. 112 Examples ======== >>> from sympy.polys import Poly, Options >>> from sympy.solvers.polysys import solve_generic >>> from sympy.abc import x, y >>> NewOption = Options((x, y), {'domain': 'ZZ'}) >>> a = Poly(x - y + 5, x, y, domain='ZZ') >>> b = Poly(x + y - 3, x, y, domain='ZZ') >>> solve_generic([a, b], NewOption) [(-1, 4)] >>> a = Poly(x - 2*y + 5, x, y, domain='ZZ') >>> b = Poly(2*x - y - 3, x, y, domain='ZZ') >>> solve_generic([a, b], NewOption) [(11/3, 13/3)] >>> a = Poly(x**2 + y, x, y, domain='ZZ') >>> b = Poly(x + y*4, x, y, domain='ZZ') >>> solve_generic([a, b], NewOption) [(0, 0), (1/4, -1/16)] """ def _is_univariate(f): """Returns True if 'f' is univariate in its last variable. """ for monom in f.monoms(): if any(monom[:-1]): return False return True def _subs_root(f, gen, zero): """Replace generator with a root so that the result is nice. """ p = f.as_expr({gen: zero}) if f.degree(gen) >= 2: p = p.expand(deep=False) return p def _solve_reduced_system(system, gens, entry=False): """Recursively solves reduced polynomial systems. """ if len(system) == len(gens) == 1: zeros = list(roots(system[0], gens[-1]).keys()) return [(zero,) for zero in zeros] basis = groebner(system, gens, polys=True) if len(basis) == 1 and basis[0].is_ground: if not entry: return [] else: return None univariate = list(filter(_is_univariate, basis)) if len(basis) < len(gens): raise NotImplementedError(filldedent(''' only zero-dimensional systems supported (finite number of solutions) ''')) if len(univariate) == 1: f = univariate.pop() else: raise NotImplementedError(filldedent(''' only zero-dimensional systems supported (finite number of solutions) ''')) gens = f.gens gen = gens[-1] zeros = list(roots(f.ltrim(gen)).keys()) if not zeros: return [] if len(basis) == 1: return [(zero,) for zero in zeros] solutions = [] for zero in zeros: new_system = [] new_gens = gens[:-1] for b in basis[:-1]: eq = _subs_root(b, gen, zero) if eq is not S.Zero: new_system.append(eq) for solution in _solve_reduced_system(new_system, new_gens): solutions.append(solution + (zero,)) if solutions and len(solutions[0]) != len(gens): raise NotImplementedError(filldedent(''' only zero-dimensional systems supported (finite number of solutions) ''')) return solutions try: result = _solve_reduced_system(polys, opt.gens, entry=True) except CoercionFailed: raise NotImplementedError if result is not None: return sorted(result, key=default_sort_key) else: return None def solve_triangulated(polys, *gens, **args): """ Solve a polynomial system using Gianni-Kalkbrenner algorithm. The algorithm proceeds by computing one Groebner basis in the ground domain and then by iteratively computing polynomial factorizations in appropriately constructed algebraic extensions of the ground domain. Parameters ========== polys: a list/tuple/set Listing all the equations that are needed to be solved gens: generators generators of the equations in polys for which we want the solutions args: Keyword arguments Special options for solving the equations Returns ======= List[Tuple] A List of tuples. Solutions for symbols that satisfy the equations listed in polys Examples ======== >>> from sympy import solve_triangulated >>> from sympy.abc import x, y, z >>> F = [x**2 + y + z - 1, x + y**2 + z - 1, x + y + z**2 - 1] >>> solve_triangulated(F, x, y, z) [(0, 0, 1), (0, 1, 0), (1, 0, 0)] References ========== 1. Patrizia Gianni, Teo Mora, Algebraic Solution of System of Polynomial Equations using Groebner Bases, AAECC-5 on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, LNCS 356 247--257, 1989 """ G = groebner(polys, gens, polys=True) G = list(reversed(G)) domain = args.get('domain') if domain is not None: for i, g in enumerate(G): G[i] = g.set_domain(domain) f, G = G[0].ltrim(-1), G[1:] dom = f.get_domain() zeros = f.ground_roots() solutions = set() for zero in zeros: solutions.add(((zero,), dom)) var_seq = reversed(gens[:-1]) vars_seq = postfixes(gens[1:]) for var, vars in zip(var_seq, vars_seq): _solutions = set() for values, dom in solutions: H, mapping = [], list(zip(vars, values)) for g in G: _vars = (var,) + vars if g.has_only_gens(*_vars) and g.degree(var) != 0: h = g.ltrim(var).eval(dict(mapping)) if g.degree(var) == h.degree(): H.append(h) p = min(H, key=lambda h: h.degree()) zeros = p.ground_roots() for zero in zeros: if not zero.is_Rational: dom_zero = dom.algebraic_field(zero) else: dom_zero = dom _solutions.add(((zero,) + values, dom_zero)) solutions = _solutions solutions = list(solutions) for i, (solution, _) in enumerate(solutions): solutions[i] = solution return sorted(solutions, key=default_sort_key)
5f47da838cada1a33337871c1ff1cbf89825ea28dc4ad0629a0e2ab3c422969f
"""Tools for solving inequalities and systems of inequalities. """ from sympy.calculus.util import (continuous_domain, periodicity, function_range) from sympy.core import Symbol, Dummy, sympify from sympy.core.exprtools import factor_terms from sympy.core.relational import Relational, Eq, Ge, Lt from sympy.sets.sets import Interval, FiniteSet, Union, Intersection from sympy.core.singleton import S from sympy.core.function import expand_mul from sympy.functions.elementary.complexes import im, Abs from sympy.logic import And from sympy.polys import Poly, PolynomialError, parallel_poly_from_expr from sympy.polys.polyutils import _nsort from sympy.solvers.solveset import solvify, solveset from sympy.utilities.iterables import sift, iterable from sympy.utilities.misc import filldedent def solve_poly_inequality(poly, rel): """Solve a polynomial inequality with rational coefficients. Examples ======== >>> from sympy import solve_poly_inequality, Poly >>> from sympy.abc import x >>> solve_poly_inequality(Poly(x, x, domain='ZZ'), '==') [{0}] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '!=') [Interval.open(-oo, -1), Interval.open(-1, 1), Interval.open(1, oo)] >>> solve_poly_inequality(Poly(x**2 - 1, x, domain='ZZ'), '==') [{-1}, {1}] See Also ======== solve_poly_inequalities """ if not isinstance(poly, Poly): raise ValueError( 'For efficiency reasons, `poly` should be a Poly instance') if poly.as_expr().is_number: t = Relational(poly.as_expr(), 0, rel) if t is S.true: return [S.Reals] elif t is S.false: return [S.EmptySet] else: raise NotImplementedError( "could not determine truth value of %s" % t) reals, intervals = poly.real_roots(multiple=False), [] if rel == '==': for root, _ in reals: interval = Interval(root, root) intervals.append(interval) elif rel == '!=': left = S.NegativeInfinity for right, _ in reals + [(S.Infinity, 1)]: interval = Interval(left, right, True, True) intervals.append(interval) left = right else: if poly.LC() > 0: sign = +1 else: sign = -1 eq_sign, equal = None, False if rel == '>': eq_sign = +1 elif rel == '<': eq_sign = -1 elif rel == '>=': eq_sign, equal = +1, True elif rel == '<=': eq_sign, equal = -1, True else: raise ValueError("'%s' is not a valid relation" % rel) right, right_open = S.Infinity, True for left, multiplicity in reversed(reals): if multiplicity % 2: if sign == eq_sign: intervals.insert( 0, Interval(left, right, not equal, right_open)) sign, right, right_open = -sign, left, not equal else: if sign == eq_sign and not equal: intervals.insert( 0, Interval(left, right, True, right_open)) right, right_open = left, True elif sign != eq_sign and equal: intervals.insert(0, Interval(left, left)) if sign == eq_sign: intervals.insert( 0, Interval(S.NegativeInfinity, right, True, right_open)) return intervals def solve_poly_inequalities(polys): """Solve polynomial inequalities with rational coefficients. Examples ======== >>> from sympy.solvers.inequalities import solve_poly_inequalities >>> from sympy.polys import Poly >>> from sympy.abc import x >>> solve_poly_inequalities((( ... Poly(x**2 - 3), ">"), ( ... Poly(-x**2 + 1), ">"))) Union(Interval.open(-oo, -sqrt(3)), Interval.open(-1, 1), Interval.open(sqrt(3), oo)) """ return Union(*[s for p in polys for s in solve_poly_inequality(*p)]) def solve_rational_inequalities(eqs): """Solve a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy.abc import x >>> from sympy import solve_rational_inequalities, Poly >>> solve_rational_inequalities([[ ... ((Poly(-x + 1), Poly(1, x)), '>='), ... ((Poly(-x + 1), Poly(1, x)), '<=')]]) {1} >>> solve_rational_inequalities([[ ... ((Poly(x), Poly(1, x)), '!='), ... ((Poly(-x + 1), Poly(1, x)), '>=')]]) Union(Interval.open(-oo, 0), Interval.Lopen(0, 1)) See Also ======== solve_poly_inequality """ result = S.EmptySet for _eqs in eqs: if not _eqs: continue global_intervals = [Interval(S.NegativeInfinity, S.Infinity)] for (numer, denom), rel in _eqs: numer_intervals = solve_poly_inequality(numer*denom, rel) denom_intervals = solve_poly_inequality(denom, '==') intervals = [] for numer_interval in numer_intervals: for global_interval in global_intervals: interval = numer_interval.intersect(global_interval) if interval is not S.EmptySet: intervals.append(interval) global_intervals = intervals intervals = [] for global_interval in global_intervals: for denom_interval in denom_intervals: global_interval -= denom_interval if global_interval is not S.EmptySet: intervals.append(global_interval) global_intervals = intervals if not global_intervals: break for interval in global_intervals: result = result.union(interval) return result def reduce_rational_inequalities(exprs, gen, relational=True): """Reduce a system of rational inequalities with rational coefficients. Examples ======== >>> from sympy import Symbol >>> from sympy.solvers.inequalities import reduce_rational_inequalities >>> x = Symbol('x', real=True) >>> reduce_rational_inequalities([[x**2 <= 0]], x) Eq(x, 0) >>> reduce_rational_inequalities([[x + 2 > 0]], x) -2 < x >>> reduce_rational_inequalities([[(x + 2, ">")]], x) -2 < x >>> reduce_rational_inequalities([[x + 2]], x) Eq(x, -2) This function find the non-infinite solution set so if the unknown symbol is declared as extended real rather than real then the result may include finiteness conditions: >>> y = Symbol('y', extended_real=True) >>> reduce_rational_inequalities([[y + 2 > 0]], y) (-2 < y) & (y < oo) """ exact = True eqs = [] solution = S.Reals if exprs else S.EmptySet for _exprs in exprs: _eqs = [] for expr in _exprs: if isinstance(expr, tuple): expr, rel = expr else: if expr.is_Relational: expr, rel = expr.lhs - expr.rhs, expr.rel_op else: expr, rel = expr, '==' if expr is S.true: numer, denom, rel = S.Zero, S.One, '==' elif expr is S.false: numer, denom, rel = S.One, S.One, '==' else: numer, denom = expr.together().as_numer_denom() try: (numer, denom), opt = parallel_poly_from_expr( (numer, denom), gen) except PolynomialError: raise PolynomialError(filldedent(''' only polynomials and rational functions are supported in this context. ''')) if not opt.domain.is_Exact: numer, denom, exact = numer.to_exact(), denom.to_exact(), False domain = opt.domain.get_exact() if not (domain.is_ZZ or domain.is_QQ): expr = numer/denom expr = Relational(expr, 0, rel) solution &= solve_univariate_inequality(expr, gen, relational=False) else: _eqs.append(((numer, denom), rel)) if _eqs: eqs.append(_eqs) if eqs: solution &= solve_rational_inequalities(eqs) exclude = solve_rational_inequalities([[((d, d.one), '==') for i in eqs for ((n, d), _) in i if d.has(gen)]]) solution -= exclude if not exact and solution: solution = solution.evalf() if relational: solution = solution.as_relational(gen) return solution def reduce_abs_inequality(expr, rel, gen): """Reduce an inequality with nested absolute values. Examples ======== >>> from sympy import reduce_abs_inequality, Abs, Symbol >>> x = Symbol('x', real=True) >>> reduce_abs_inequality(Abs(x - 5) - 3, '<', x) (2 < x) & (x < 8) >>> reduce_abs_inequality(Abs(x + 2)*3 - 13, '<', x) (-19/3 < x) & (x < 7/3) See Also ======== reduce_abs_inequalities """ if gen.is_extended_real is False: raise TypeError(filldedent(''' Cannot solve inequalities with absolute values containing non-real variables. ''')) def _bottom_up_scan(expr): exprs = [] if expr.is_Add or expr.is_Mul: op = expr.func for arg in expr.args: _exprs = _bottom_up_scan(arg) if not exprs: exprs = _exprs else: args = [] for expr, conds in exprs: for _expr, _conds in _exprs: args.append((op(expr, _expr), conds + _conds)) exprs = args elif expr.is_Pow: n = expr.exp if not n.is_Integer: raise ValueError("Only Integer Powers are allowed on Abs.") _exprs = _bottom_up_scan(expr.base) for expr, conds in _exprs: exprs.append((expr**n, conds)) elif isinstance(expr, Abs): _exprs = _bottom_up_scan(expr.args[0]) for expr, conds in _exprs: exprs.append(( expr, conds + [Ge(expr, 0)])) exprs.append((-expr, conds + [Lt(expr, 0)])) else: exprs = [(expr, [])] return exprs exprs = _bottom_up_scan(expr) mapping = {'<': '>', '<=': '>='} inequalities = [] for expr, conds in exprs: if rel not in mapping.keys(): expr = Relational( expr, 0, rel) else: expr = Relational(-expr, 0, mapping[rel]) inequalities.append([expr] + conds) return reduce_rational_inequalities(inequalities, gen) def reduce_abs_inequalities(exprs, gen): """Reduce a system of inequalities with nested absolute values. Examples ======== >>> from sympy import reduce_abs_inequalities, Abs, Symbol >>> x = Symbol('x', extended_real=True) >>> reduce_abs_inequalities([(Abs(3*x - 5) - 7, '<'), ... (Abs(x + 25) - 13, '>')], x) (-2/3 < x) & (x < 4) & (((-oo < x) & (x < -38)) | ((-12 < x) & (x < oo))) >>> reduce_abs_inequalities([(Abs(x - 4) + Abs(3*x - 5) - 7, '<')], x) (1/2 < x) & (x < 4) See Also ======== reduce_abs_inequality """ return And(*[ reduce_abs_inequality(expr, rel, gen) for expr, rel in exprs ]) def solve_univariate_inequality(expr, gen, relational=True, domain=S.Reals, continuous=False): """Solves a real univariate inequality. Parameters ========== expr : Relational The target inequality gen : Symbol The variable for which the inequality is solved relational : bool A Relational type output is expected or not domain : Set The domain over which the equation is solved continuous: bool True if expr is known to be continuous over the given domain (and so continuous_domain() doesn't need to be called on it) Raises ====== NotImplementedError The solution of the inequality cannot be determined due to limitation in :func:`sympy.solvers.solveset.solvify`. Notes ===== Currently, we cannot solve all the inequalities due to limitations in :func:`sympy.solvers.solveset.solvify`. Also, the solution returned for trigonometric inequalities are restricted in its periodic interval. See Also ======== sympy.solvers.solveset.solvify: solver returning solveset solutions with solve's output API Examples ======== >>> from sympy import solve_univariate_inequality, Symbol, sin, Interval, S >>> x = Symbol('x') >>> solve_univariate_inequality(x**2 >= 4, x) ((2 <= x) & (x < oo)) | ((-oo < x) & (x <= -2)) >>> solve_univariate_inequality(x**2 >= 4, x, relational=False) Union(Interval(-oo, -2), Interval(2, oo)) >>> domain = Interval(0, S.Infinity) >>> solve_univariate_inequality(x**2 >= 4, x, False, domain) Interval(2, oo) >>> solve_univariate_inequality(sin(x) > 0, x, relational=False) Interval.open(0, pi) """ from sympy.solvers.solvers import denoms if domain.is_subset(S.Reals) is False: raise NotImplementedError(filldedent(''' Inequalities in the complex domain are not supported. Try the real domain by setting domain=S.Reals''')) elif domain is not S.Reals: rv = solve_univariate_inequality( expr, gen, relational=False, continuous=continuous).intersection(domain) if relational: rv = rv.as_relational(gen) return rv else: pass # continue with attempt to solve in Real domain # This keeps the function independent of the assumptions about `gen`. # `solveset` makes sure this function is called only when the domain is # real. _gen = gen _domain = domain if gen.is_extended_real is False: rv = S.EmptySet return rv if not relational else rv.as_relational(_gen) elif gen.is_extended_real is None: gen = Dummy('gen', extended_real=True) try: expr = expr.xreplace({_gen: gen}) except TypeError: raise TypeError(filldedent(''' When gen is real, the relational has a complex part which leads to an invalid comparison like I < 0. ''')) rv = None if expr is S.true: rv = domain elif expr is S.false: rv = S.EmptySet else: e = expr.lhs - expr.rhs period = periodicity(e, gen) if period == S.Zero: e = expand_mul(e) const = expr.func(e, 0) if const is S.true: rv = domain elif const is S.false: rv = S.EmptySet elif period is not None: frange = function_range(e, gen, domain) rel = expr.rel_op if rel in ('<', '<='): if expr.func(frange.sup, 0): rv = domain elif not expr.func(frange.inf, 0): rv = S.EmptySet elif rel in ('>', '>='): if expr.func(frange.inf, 0): rv = domain elif not expr.func(frange.sup, 0): rv = S.EmptySet inf, sup = domain.inf, domain.sup if sup - inf is S.Infinity: domain = Interval(0, period, False, True).intersect(_domain) _domain = domain if rv is None: n, d = e.as_numer_denom() try: if gen not in n.free_symbols and len(e.free_symbols) > 1: raise ValueError # this might raise ValueError on its own # or it might give None... solns = solvify(e, gen, domain) if solns is None: # in which case we raise ValueError raise ValueError except (ValueError, NotImplementedError): # replace gen with generic x since it's # univariate anyway raise NotImplementedError(filldedent(''' The inequality, %s, cannot be solved using solve_univariate_inequality. ''' % expr.subs(gen, Symbol('x')))) expanded_e = expand_mul(e) def valid(x): # this is used to see if gen=x satisfies the # relational by substituting it into the # expanded form and testing against 0, e.g. # if expr = x*(x + 1) < 2 then e = x*(x + 1) - 2 # and expanded_e = x**2 + x - 2; the test is # whether a given value of x satisfies # x**2 + x - 2 < 0 # # expanded_e, expr and gen used from enclosing scope v = expanded_e.subs(gen, expand_mul(x)) try: r = expr.func(v, 0) except TypeError: r = S.false if r in (S.true, S.false): return r if v.is_extended_real is False: return S.false else: v = v.n(2) if v.is_comparable: return expr.func(v, 0) # not comparable or couldn't be evaluated raise NotImplementedError( 'relationship did not evaluate: %s' % r) singularities = [] for d in denoms(expr, gen): singularities.extend(solvify(d, gen, domain)) if not continuous: domain = continuous_domain(expanded_e, gen, domain) include_x = '=' in expr.rel_op and expr.rel_op != '!=' try: discontinuities = set(domain.boundary - FiniteSet(domain.inf, domain.sup)) # remove points that are not between inf and sup of domain critical_points = FiniteSet(*(solns + singularities + list( discontinuities))).intersection( Interval(domain.inf, domain.sup, domain.inf not in domain, domain.sup not in domain)) if all(r.is_number for r in critical_points): reals = _nsort(critical_points, separated=True)[0] else: sifted = sift(critical_points, lambda x: x.is_extended_real) if sifted[None]: # there were some roots that weren't known # to be real raise NotImplementedError try: reals = sifted[True] if len(reals) > 1: reals = list(sorted(reals)) except TypeError: raise NotImplementedError except NotImplementedError: raise NotImplementedError('sorting of these roots is not supported') # If expr contains imaginary coefficients, only take real # values of x for which the imaginary part is 0 make_real = S.Reals if im(expanded_e) != S.Zero: check = True im_sol = FiniteSet() try: a = solveset(im(expanded_e), gen, domain) if not isinstance(a, Interval): for z in a: if z not in singularities and valid(z) and z.is_extended_real: im_sol += FiniteSet(z) else: start, end = a.inf, a.sup for z in _nsort(critical_points + FiniteSet(end)): valid_start = valid(start) if start != end: valid_z = valid(z) pt = _pt(start, z) if pt not in singularities and pt.is_extended_real and valid(pt): if valid_start and valid_z: im_sol += Interval(start, z) elif valid_start: im_sol += Interval.Ropen(start, z) elif valid_z: im_sol += Interval.Lopen(start, z) else: im_sol += Interval.open(start, z) start = z for s in singularities: im_sol -= FiniteSet(s) except (TypeError): im_sol = S.Reals check = False if im_sol is S.EmptySet: raise ValueError(filldedent(''' %s contains imaginary parts which cannot be made 0 for any value of %s satisfying the inequality, leading to relations like I < 0. ''' % (expr.subs(gen, _gen), _gen))) make_real = make_real.intersect(im_sol) sol_sets = [S.EmptySet] start = domain.inf if start in domain and valid(start) and start.is_finite: sol_sets.append(FiniteSet(start)) for x in reals: end = x if valid(_pt(start, end)): sol_sets.append(Interval(start, end, True, True)) if x in singularities: singularities.remove(x) else: if x in discontinuities: discontinuities.remove(x) _valid = valid(x) else: # it's a solution _valid = include_x if _valid: sol_sets.append(FiniteSet(x)) start = end end = domain.sup if end in domain and valid(end) and end.is_finite: sol_sets.append(FiniteSet(end)) if valid(_pt(start, end)): sol_sets.append(Interval.open(start, end)) if im(expanded_e) != S.Zero and check: rv = (make_real).intersect(_domain) else: rv = Intersection( (Union(*sol_sets)), make_real, _domain).subs(gen, _gen) return rv if not relational else rv.as_relational(_gen) def _pt(start, end): """Return a point between start and end""" if not start.is_infinite and not end.is_infinite: pt = (start + end)/2 elif start.is_infinite and end.is_infinite: pt = S.Zero else: if (start.is_infinite and start.is_extended_positive is None or end.is_infinite and end.is_extended_positive is None): raise ValueError('cannot proceed with unsigned infinite values') if (end.is_infinite and end.is_extended_negative or start.is_infinite and start.is_extended_positive): start, end = end, start # if possible, use a multiple of self which has # better behavior when checking assumptions than # an expression obtained by adding or subtracting 1 if end.is_infinite: if start.is_extended_positive: pt = start*2 elif start.is_extended_negative: pt = start*S.Half else: pt = start + 1 elif start.is_infinite: if end.is_extended_positive: pt = end*S.Half elif end.is_extended_negative: pt = end*2 else: pt = end - 1 return pt def _solve_inequality(ie, s, linear=False): """Return the inequality with s isolated on the left, if possible. If the relationship is non-linear, a solution involving And or Or may be returned. False or True are returned if the relationship is never True or always True, respectively. If `linear` is True (default is False) an `s`-dependent expression will be isolated on the left, if possible but it will not be solved for `s` unless the expression is linear in `s`. Furthermore, only "safe" operations which do not change the sense of the relationship are applied: no division by an unsigned value is attempted unless the relationship involves Eq or Ne and no division by a value not known to be nonzero is ever attempted. Examples ======== >>> from sympy import Eq, Symbol >>> from sympy.solvers.inequalities import _solve_inequality as f >>> from sympy.abc import x, y For linear expressions, the symbol can be isolated: >>> f(x - 2 < 0, x) x < 2 >>> f(-x - 6 < x, x) x > -3 Sometimes nonlinear relationships will be False >>> f(x**2 + 4 < 0, x) False Or they may involve more than one region of values: >>> f(x**2 - 4 < 0, x) (-2 < x) & (x < 2) To restrict the solution to a relational, set linear=True and only the x-dependent portion will be isolated on the left: >>> f(x**2 - 4 < 0, x, linear=True) x**2 < 4 Division of only nonzero quantities is allowed, so x cannot be isolated by dividing by y: >>> y.is_nonzero is None # it is unknown whether it is 0 or not True >>> f(x*y < 1, x) x*y < 1 And while an equality (or inequality) still holds after dividing by a non-zero quantity >>> nz = Symbol('nz', nonzero=True) >>> f(Eq(x*nz, 1), x) Eq(x, 1/nz) the sign must be known for other inequalities involving > or <: >>> f(x*nz <= 1, x) nz*x <= 1 >>> p = Symbol('p', positive=True) >>> f(x*p <= 1, x) x <= 1/p When there are denominators in the original expression that are removed by expansion, conditions for them will be returned as part of the result: >>> f(x < x*(2/x - 1), x) (x < 1) & Ne(x, 0) """ from sympy.solvers.solvers import denoms if s not in ie.free_symbols: return ie if ie.rhs == s: ie = ie.reversed if ie.lhs == s and s not in ie.rhs.free_symbols: return ie def classify(ie, s, i): # return True or False if ie evaluates when substituting s with # i else None (if unevaluated) or NaN (when there is an error # in evaluating) try: v = ie.subs(s, i) if v is S.NaN: return v elif v not in (True, False): return return v except TypeError: return S.NaN rv = None oo = S.Infinity expr = ie.lhs - ie.rhs try: p = Poly(expr, s) if p.degree() == 0: rv = ie.func(p.as_expr(), 0) elif not linear and p.degree() > 1: # handle in except clause raise NotImplementedError except (PolynomialError, NotImplementedError): if not linear: try: rv = reduce_rational_inequalities([[ie]], s) except PolynomialError: rv = solve_univariate_inequality(ie, s) # remove restrictions wrt +/-oo that may have been # applied when using sets to simplify the relationship okoo = classify(ie, s, oo) if okoo is S.true and classify(rv, s, oo) is S.false: rv = rv.subs(s < oo, True) oknoo = classify(ie, s, -oo) if (oknoo is S.true and classify(rv, s, -oo) is S.false): rv = rv.subs(-oo < s, True) rv = rv.subs(s > -oo, True) if rv is S.true: rv = (s <= oo) if okoo is S.true else (s < oo) if oknoo is not S.true: rv = And(-oo < s, rv) else: p = Poly(expr) conds = [] if rv is None: e = p.as_expr() # this is in expanded form # Do a safe inversion of e, moving non-s terms # to the rhs and dividing by a nonzero factor if # the relational is Eq/Ne; for other relationals # the sign must also be positive or negative rhs = 0 b, ax = e.as_independent(s, as_Add=True) e -= b rhs -= b ef = factor_terms(e) a, e = ef.as_independent(s, as_Add=False) if (a.is_zero != False or # don't divide by potential 0 a.is_negative == a.is_positive is None and # if sign is not known then ie.rel_op not in ('!=', '==')): # reject if not Eq/Ne e = ef a = S.One rhs /= a if a.is_positive: rv = ie.func(e, rhs) else: rv = ie.reversed.func(e, rhs) # return conditions under which the value is # valid, too. beginning_denoms = denoms(ie.lhs) | denoms(ie.rhs) current_denoms = denoms(rv) for d in beginning_denoms - current_denoms: c = _solve_inequality(Eq(d, 0), s, linear=linear) if isinstance(c, Eq) and c.lhs == s: if classify(rv, s, c.rhs) is S.true: # rv is permitting this value but it shouldn't conds.append(~c) for i in (-oo, oo): if (classify(rv, s, i) is S.true and classify(ie, s, i) is not S.true): conds.append(s < i if i is oo else i < s) conds.append(rv) return And(*conds) def _reduce_inequalities(inequalities, symbols): # helper for reduce_inequalities poly_part, abs_part = {}, {} other = [] for inequality in inequalities: expr, rel = inequality.lhs, inequality.rel_op # rhs is 0 # check for gens using atoms which is more strict than free_symbols to # guard against EX domain which won't be handled by # reduce_rational_inequalities gens = expr.atoms(Symbol) if len(gens) == 1: gen = gens.pop() else: common = expr.free_symbols & symbols if len(common) == 1: gen = common.pop() other.append(_solve_inequality(Relational(expr, 0, rel), gen)) continue else: raise NotImplementedError(filldedent(''' inequality has more than one symbol of interest. ''')) if expr.is_polynomial(gen): poly_part.setdefault(gen, []).append((expr, rel)) else: components = expr.find(lambda u: u.has(gen) and ( u.is_Function or u.is_Pow and not u.exp.is_Integer)) if components and all(isinstance(i, Abs) for i in components): abs_part.setdefault(gen, []).append((expr, rel)) else: other.append(_solve_inequality(Relational(expr, 0, rel), gen)) poly_reduced = [] abs_reduced = [] for gen, exprs in poly_part.items(): poly_reduced.append(reduce_rational_inequalities([exprs], gen)) for gen, exprs in abs_part.items(): abs_reduced.append(reduce_abs_inequalities(exprs, gen)) return And(*(poly_reduced + abs_reduced + other)) def reduce_inequalities(inequalities, symbols=[]): """Reduce a system of inequalities with rational coefficients. Examples ======== >>> from sympy.abc import x, y >>> from sympy import reduce_inequalities >>> reduce_inequalities(0 <= x + 3, []) (-3 <= x) & (x < oo) >>> reduce_inequalities(0 <= x + y*2 - 1, [x]) (x < oo) & (x >= 1 - 2*y) """ if not iterable(inequalities): inequalities = [inequalities] inequalities = [sympify(i) for i in inequalities] gens = set().union(*[i.free_symbols for i in inequalities]) if not iterable(symbols): symbols = [symbols] symbols = (set(symbols) or gens) & gens if any(i.is_extended_real is False for i in symbols): raise TypeError(filldedent(''' inequalities cannot contain symbols that are not real. ''')) # make vanilla symbol real recast = {i: Dummy(i.name, extended_real=True) for i in gens if i.is_extended_real is None} inequalities = [i.xreplace(recast) for i in inequalities] symbols = {i.xreplace(recast) for i in symbols} # prefilter keep = [] for i in inequalities: if isinstance(i, Relational): i = i.func(i.lhs.as_expr() - i.rhs.as_expr(), 0) elif i not in (True, False): i = Eq(i, 0) if i == True: continue elif i == False: return S.false if i.lhs.is_number: raise NotImplementedError( "could not determine truth value of %s" % i) keep.append(i) inequalities = keep del keep # solve system rv = _reduce_inequalities(inequalities, symbols) # restore original symbols and return return rv.xreplace({v: k for k, v in recast.items()})
d03705e97a6f4419de411bd687c8882727c788d578e0384b9b9b7b4aa6edfd20
""" This module contain solvers for all kinds of equations: - algebraic or transcendental, use solve() - recurrence, use rsolve() - differential, use dsolve() - nonlinear (numerically), use nsolve() (you will need a good starting point) """ from sympy.core import (S, Add, Symbol, Dummy, Expr, Mul) from sympy.core.assumptions import check_assumptions from sympy.core.exprtools import factor_terms from sympy.core.function import (expand_mul, expand_log, Derivative, AppliedUndef, UndefinedFunction, nfloat, Function, expand_power_exp, _mexpand, expand, expand_func) from sympy.core.logic import fuzzy_not from sympy.core.numbers import ilcm, Float, Rational from sympy.core.power import integer_log, Pow from sympy.core.relational import Relational, Eq, Ne from sympy.core.sorting import ordered, default_sort_key from sympy.core.sympify import sympify from sympy.core.traversal import preorder_traversal from sympy.logic.boolalg import And, Or, BooleanAtom from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan, Abs, re, im, arg, sqrt, atan2) from sympy.functions.combinatorial.factorials import binomial from sympy.functions.elementary.trigonometric import (TrigonometricFunction, HyperbolicFunction) from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise from sympy.ntheory.factor_ import divisors from sympy.simplify import (simplify, collect, powsimp, posify, # type: ignore powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction, separatevars) from sympy.simplify.sqrtdenest import sqrt_depth from sympy.simplify.fu import TR1, TR2i from sympy.matrices.common import NonInvertibleMatrixError from sympy.matrices import Matrix, zeros from sympy.polys import roots, cancel, factor, Poly from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError from sympy.polys.solvers import sympy_eqs_to_ring, solve_lin_sys from sympy.utilities.lambdify import lambdify from sympy.utilities.misc import filldedent, debug from sympy.utilities.iterables import (connected_components, generate_bell, uniq, iterable, is_sequence, subsets) from sympy.utilities.decorator import conserve_mpmath_dps from mpmath import findroot from sympy.solvers.polysys import solve_poly_system from types import GeneratorType from collections import defaultdict from itertools import product import warnings def recast_to_symbols(eqs, symbols): """ Return (e, s, d) where e and s are versions of *eqs* and *symbols* in which any non-Symbol objects in *symbols* have been replaced with generic Dummy symbols and d is a dictionary that can be used to restore the original expressions. Examples ======== >>> from sympy.solvers.solvers import recast_to_symbols >>> from sympy import symbols, Function >>> x, y = symbols('x y') >>> fx = Function('f')(x) >>> eqs, syms = [fx + 1, x, y], [fx, y] >>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d) ([_X0 + 1, x, y], [_X0, y], {_X0: f(x)}) The original equations and symbols can be restored using d: >>> assert [i.xreplace(d) for i in eqs] == eqs >>> assert [d.get(i, i) for i in s] == syms """ if not iterable(eqs) and iterable(symbols): raise ValueError('Both eqs and symbols must be iterable') new_symbols = list(symbols) swap_sym = {} for i, s in enumerate(symbols): if not isinstance(s, Symbol) and s not in swap_sym: swap_sym[s] = Dummy('X%d' % i) new_symbols[i] = swap_sym[s] new_f = [] for i in eqs: isubs = getattr(i, 'subs', None) if isubs is not None: new_f.append(isubs(swap_sym)) else: new_f.append(i) swap_sym = {v: k for k, v in swap_sym.items()} return new_f, new_symbols, swap_sym def _ispow(e): """Return True if e is a Pow or is exp.""" return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp)) def _simple_dens(f, symbols): # when checking if a denominator is zero, we can just check the # base of powers with nonzero exponents since if the base is zero # the power will be zero, too. To keep it simple and fast, we # limit simplification to exponents that are Numbers dens = set() for d in denoms(f, symbols): if d.is_Pow and d.exp.is_Number: if d.exp.is_zero: continue # foo**0 is never 0 d = d.base dens.add(d) return dens def denoms(eq, *symbols): """ Return (recursively) set of all denominators that appear in *eq* that contain any symbol in *symbols*; if *symbols* are not provided then all denominators will be returned. Examples ======== >>> from sympy.solvers.solvers import denoms >>> from sympy.abc import x, y, z >>> denoms(x/y) {y} >>> denoms(x/(y*z)) {y, z} >>> denoms(3/x + y/z) {x, z} >>> denoms(x/2 + y/z) {2, z} If *symbols* are provided then only denominators containing those symbols will be returned: >>> denoms(1/x + 1/y + 1/z, y, z) {y, z} """ pot = preorder_traversal(eq) dens = set() for p in pot: # Here p might be Tuple or Relational # Expr subtrees (e.g. lhs and rhs) will be traversed after by pot if not isinstance(p, Expr): continue den = denom(p) if den is S.One: continue for d in Mul.make_args(den): dens.add(d) if not symbols: return dens elif len(symbols) == 1: if iterable(symbols[0]): symbols = symbols[0] rv = [] for d in dens: free = d.free_symbols if any(s in free for s in symbols): rv.append(d) return set(rv) def checksol(f, symbol, sol=None, **flags): """ Checks whether sol is a solution of equation f == 0. Explanation =========== Input can be either a single symbol and corresponding value or a dictionary of symbols and values. When given as a dictionary and flag ``simplify=True``, the values in the dictionary will be simplified. *f* can be a single equation or an iterable of equations. A solution must satisfy all equations in *f* to be considered valid; if a solution does not satisfy any equation, False is returned; if one or more checks are inconclusive (and none are False) then None is returned. Examples ======== >>> from sympy import symbols >>> from sympy.solvers import checksol >>> x, y = symbols('x,y') >>> checksol(x**4 - 1, x, 1) True >>> checksol(x**4 - 1, x, 0) False >>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4}) True To check if an expression is zero using ``checksol()``, pass it as *f* and send an empty dictionary for *symbol*: >>> checksol(x**2 + x - x*(x + 1), {}) True None is returned if ``checksol()`` could not conclude. flags: 'numerical=True (default)' do a fast numerical check if ``f`` has only one symbol. 'minimal=True (default is False)' a very fast, minimal testing. 'warn=True (default is False)' show a warning if checksol() could not conclude. 'simplify=True (default)' simplify solution before substituting into function and simplify the function before trying specific simplifications 'force=True (default is False)' make positive all symbols without assumptions regarding sign. """ from sympy.physics.units import Unit minimal = flags.get('minimal', False) if sol is not None: sol = {symbol: sol} elif isinstance(symbol, dict): sol = symbol else: msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)' raise ValueError(msg % (symbol, sol)) if iterable(f): if not f: raise ValueError('no functions to check') rv = True for fi in f: check = checksol(fi, sol, **flags) if check: continue if check is False: return False rv = None # don't return, wait to see if there's a False return rv if isinstance(f, Poly): f = f.as_expr() elif isinstance(f, (Eq, Ne)): if f.rhs in (S.true, S.false): f = f.reversed B, E = f.args if isinstance(B, BooleanAtom): f = f.subs(sol) if not f.is_Boolean: return else: f = f.rewrite(Add, evaluate=False) if isinstance(f, BooleanAtom): return bool(f) elif not f.is_Relational and not f: return True if sol and not f.free_symbols & set(sol.keys()): # if f(y) == 0, x=3 does not set f(y) to zero...nor does it not return None illegal = {S.NaN, S.ComplexInfinity, S.Infinity, S.NegativeInfinity} if any(sympify(v).atoms() & illegal for k, v in sol.items()): return False was = f attempt = -1 numerical = flags.get('numerical', True) while 1: attempt += 1 if attempt == 0: val = f.subs(sol) if isinstance(val, Mul): val = val.as_independent(Unit)[0] if val.atoms() & illegal: return False elif attempt == 1: if not val.is_number: if not val.is_constant(*list(sol.keys()), simplify=not minimal): return False # there are free symbols -- simple expansion might work _, val = val.as_content_primitive() val = _mexpand(val.as_numer_denom()[0], recursive=True) elif attempt == 2: if minimal: return if flags.get('simplify', True): for k in sol: sol[k] = simplify(sol[k]) # start over without the failed expanded form, possibly # with a simplified solution val = simplify(f.subs(sol)) if flags.get('force', True): val, reps = posify(val) # expansion may work now, so try again and check exval = _mexpand(val, recursive=True) if exval.is_number: # we can decide now val = exval else: # if there are no radicals and no functions then this can't be # zero anymore -- can it? pot = preorder_traversal(expand_mul(val)) seen = set() saw_pow_func = False for p in pot: if p in seen: continue seen.add(p) if p.is_Pow and not p.exp.is_Integer: saw_pow_func = True elif p.is_Function: saw_pow_func = True elif isinstance(p, UndefinedFunction): saw_pow_func = True if saw_pow_func: break if saw_pow_func is False: return False if flags.get('force', True): # don't do a zero check with the positive assumptions in place val = val.subs(reps) nz = fuzzy_not(val.is_zero) if nz is not None: # issue 5673: nz may be True even when False # so these are just hacks to keep a false positive # from being returned # HACK 1: LambertW (issue 5673) if val.is_number and val.has(LambertW): # don't eval this to verify solution since if we got here, # numerical must be False return None # add other HACKs here if necessary, otherwise we assume # the nz value is correct return not nz break if val == was: continue elif val.is_Rational: return val == 0 if numerical and val.is_number: return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true was = val if flags.get('warn', False): warnings.warn("\n\tWarning: could not verify solution %s." % sol) # returns None if it can't conclude # TODO: improve solution testing def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Explanation =========== Currently supported: - polynomial - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions Examples ======== The output varies according to the input and can be seen by example: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') Boolean or univariate Relational: >>> solve(x < 3) (-oo < x) & (x < 3) To always get a list of solution mappings, use flag dict=True: >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 To get a list of *symbols* and set of solution(s) use flag set=True: >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) Single expression and single symbol that is in the expression: >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) Single expression with no symbol that is in the expression: >>> solve(3, x) [] >>> solve(x - 3, y) [] Single expression with no symbol given. In this case, all free *symbols* will be selected as potential *symbols* to solve for. If the equation is univariate then a list of solutions is returned; otherwise - as is the case when *symbols* are given as an iterable of length greater than 1 - a list of mappings will be returned: >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] When an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save you from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method: >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a symbol implicitly, use implicit=True: >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * If you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use ``dsolve``. Single expression and more than one symbol: * When there is a linear solution: >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * When undetermined coefficients are identified: * That are linear: >>> solve((a + b)*x - b + 2, a, b) {a: -2, b: 2} * That are nonlinear: >>> solve((a + b)*x - b**2 + 2, a, b, set=True) ([a, b], {(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}) * If there is no linear solution, then the first successful attempt for a nonlinear solution will be returned: >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] Iterable of one or more of the above: * Involving relationals or bools: >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * When the system is linear: * With a solution: >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: 2 - 5*y, z: 21*y - 6} * Without a solution: >>> solve([x + 3, x - 3]) [] * When the system is not linear: >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * If no *symbols* are given, all free *symbols* will be selected and a list of mappings returned: >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * If any equation does not depend on the symbol(s) given, it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest: >>> solve([x - y, y - 3], x) {x: y} **Additional Examples** ``solve()`` with check=True (default) will run through the symbol tags to elimate unwanted solutions. If no assumptions are included, all possible solutions will be returned: >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag, only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions are not checked when ``solve()`` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions, then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False, then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since $\sin(x)/x$ has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 **Disabling High-Order Explicit Solutions** When solving polynomial expressions, you might not want explicit solutions (which can be quite long). If the expression is univariate, ``CRootOf`` instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] **Solving Equations Involving Radicals** Because of SymPy's use of the principle root, some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example, there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*x**5 - 7*x**3 + 1, 1)**15, CRootOf(7*x**5 - 7*x**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so ``real_root`` must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The ``solve`` function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function ``unrad``, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the solution can only be verified with ``expr1``: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] Parameters ========== f : - a single Expr or Poly that must be zero - an Equality - a Relational expression - a Boolean - iterable of one or more of the above symbols : (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols (e.g., ``solve(f, x, y)``) - ordered iterable of symbols (e.g., ``solve(f, [x, y])``) flags : dict=True (default is False) Return list (perhaps empty) of solution mappings. set=True (default is False) Return list of symbols and set of tuple(s) of solution(s). exclude=[] (default) Do not try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. check=True (default) If False, do not do any testing of solutions. This can be useful if you want to include solutions that make any denominator zero. numerical=True (default) Do a fast numerical check if *f* has only one symbol. minimal=True (default is False) A very fast, minimal testing. warn=True (default is False) Show a warning if ``checksol()`` could not conclude. simplify=True (default) Simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero. force=True (default is False) Make positive all symbols without assumptions regarding sign. rational=True (default) Recast Floats as Rational; if this option is not used, the system containing Floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. manual=True (default is False) Do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually." implicit=True (default is False) Allows ``solve`` to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, ect. particular=True (default is False) Instructs ``solve`` to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive. quick=True (default is False) When using particular=True, use a fast heuristic to find a solution with many zeros (instead of using the very slow method guaranteed to find the largest number of zeros possible). cubics=True (default) Return explicit solutions when cubic expressions are encountered. When False, quartics and quintics are disabled, too. quartics=True (default) Return explicit solutions when quartic expressions are encountered. When False, quintics are disabled, too. quintics=True (default) Return explicit solutions (if possible) when quintic expressions are encountered. See Also ======== rsolve: For solving recurrence relationships dsolve: For solving differential equations """ from .inequalities import reduce_inequalities # set solver types explicitly; as soon as one is False # all the rest will be False ########################################################################### hints = ('cubics', 'quartics', 'quintics') default = True for k in hints: default = flags.setdefault(k, bool(flags.get(k, default))) # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) ordered_symbols = (symbols and symbols[0] and (isinstance(symbols[0], Symbol) or is_sequence(symbols[0], include=GeneratorType) ) ) f, symbols = (_sympified_list(w) for w in [f, symbols]) if isinstance(f, list): f = [s for s in f if s is not S.true and s is not True] implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper symbols = list(symbols) ordered_symbols = False elif len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] # remove symbols the user is not interested in exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Eq, Ne)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: L, R = fi.args if isinstance(R, BooleanAtom): L, R = R, L if isinstance(L, BooleanAtom): if isinstance(fi, Ne): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \ (len(w.free_symbols & set(symbols)) > 0), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_extended_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- if any(isinstance(fi, (bool, BooleanAtom)) for fi in f): if flags.get('set', False): return [], set() return [] for i, fi in enumerate(f): # Abs while True: was = fi fi = fi.replace(Abs, lambda arg: separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols) else Abs(arg)) if was == fi: break for e in fi.find(Abs): if e.has(*symbols): raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % e) # arg fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan)) # save changes f[i] = fi # see if re(s) or im(s) appear freim = [fi for fi in f if fi.has(re, im)] if freim: irf = [] for s in symbols: if s.is_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in freim): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: for i, fi in enumerate(f): f[i] = fi.xreplace({s: rhs}) f.append(s - rhs) symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- symbols = list(uniq(symbols)) if not ordered_symbols: # we do this to make the results returned canonical in case f # contains a system of nonlinear equations; all other cases should # be unambiguous symbols = sorted(symbols, key=default_sort_key) # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # this is needed in the next two events symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.free_symbols & symset: ok = True else: if fi.is_number: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif p not in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any(_has_piecewise(a) for a in e.args) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) else: solution = _solve_system(f, symbols, **flags) # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return {k: v.subs(non_inverts) for k, v in solution.items()} for i in range(1): if isinstance(solution, dict): solution = _do_dict(solution) break elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] break elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] break else: solution = [v.subs(non_inverts) for v in solution] break elif not solution: break else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in solution.items()} elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in sol.items()} # undo the dictionary solutions returned when the system was only partially # solved with poly-system if all symbols are present if ( not flags.get('dict', False) and solution and ordered_symbols and not isinstance(solution, dict) and all(isinstance(sol, dict) for sol in solution) ): solution = [tuple([r.get(s, s) for s in symbols]) for r in solution] # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) cannot be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if not as_set and isinstance(solution, list): # Make sure that a list of solutions is ordered in a canonical way. solution.sort(key=default_sort_key) if not as_dict and not as_set: return solution or [] # return a list of mappings or [] if not solution: solution = [] else: if isinstance(solution, dict): solution = [solution] elif iterable(solution[0]): solution = [dict(list(zip(symbols, s))) for s in solution] elif isinstance(solution[0], dict): pass else: if len(symbols) != 1: raise ValueError("Length should be 1") solution = [{symbols[0]: s} for s in solution] if as_dict: return solution assert as_set if not solution: return [], set() k = list(ordered(solution[0].keys())) return k, {tuple([s[ki] for ki in k]) for s in solution} def _solve(f, *symbols, **flags): """ Return a checked solution for *f* in terms of one or more of the symbols. A list should be returned except for the case when a linear undetermined-coefficients equation is encountered (in which case a dictionary is returned). If no method is implemented to solve the equation, a NotImplementedError will be raised. In the case that conversion of an expression to a Poly gives None a ValueError will be raised. """ not_impl_msg = "No algorithms are implemented to solve equation %s" if len(symbols) != 1: soln = None free = f.free_symbols ex = free - set(symbols) if len(ex) != 1: ind, dep = f.as_independent(*symbols) ex = ind.free_symbols & dep.free_symbols if len(ex) == 1: ex = ex.pop() try: # soln may come back as dict, list of dicts or tuples, or # tuple of symbol list and set of solution tuples soln = solve_undetermined_coeffs(f, symbols, ex, **flags) except NotImplementedError: pass if soln: if flags.get('simplify', True): if isinstance(soln, dict): for k in soln: soln[k] = simplify(soln[k]) elif isinstance(soln, list): if isinstance(soln[0], dict): for d in soln: for k in d: d[k] = simplify(d[k]) elif isinstance(soln[0], tuple): soln = [tuple(simplify(i) for i in j) for j in soln] else: raise TypeError('unrecognized args in list') elif isinstance(soln, tuple): sym, sols = soln soln = sym, {tuple(simplify(i) for i in j) for j in sols} else: raise TypeError('unrecognized solution type') return soln # find first successful solution failed = [] got_s = set() result = [] for s in symbols: xi, v = solve_linear(f, symbols=[s]) if xi == s: # no need to check but we should simplify if desired if flags.get('simplify', True): v = simplify(v) vfree = v.free_symbols if got_s and any(ss in vfree for ss in got_s): # sol depends on previously solved symbols: discard it continue got_s.add(xi) result.append({xi: v}) elif xi: # there might be a non-linear solution if xi is not 0 failed.append(s) if not failed: return result for s in failed: try: soln = _solve(f, s, **flags) for sol in soln: if got_s and any(ss in sol.free_symbols for ss in got_s): # sol depends on previously solved symbols: discard it continue got_s.add(s) result.append({s: sol}) except NotImplementedError: continue if got_s: return result else: raise NotImplementedError(not_impl_msg % f) symbol = symbols[0] #expand binomials only if it has the unknown symbol f = f.replace(lambda e: isinstance(e, binomial) and e.has(symbol), lambda e: expand_func(e)) # /!\ capture this flag then set it to False so that no checking in # recursive calls will be done; only the final answer is checked flags['check'] = checkdens = check = flags.pop('check', True) # build up solutions if f is a Mul if f.is_Mul: result = set() for m in f.args: if m in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}: result = set() break soln = _solve(m, symbol, **flags) result.update(set(soln)) result = list(result) if check: # all solutions have been checked but now we must # check that the solutions do not set denominators # in any factor to zero dens = flags.get('_denominators', _simple_dens(f, symbols)) result = [s for s in result if not any(checksol(den, {symbol: s}, **flags) for den in dens)] # set flags for quick exit at end; solutions for each # factor were already checked and simplified check = False flags['simplify'] = False elif f.is_Piecewise: result = set() for i, (expr, cond) in enumerate(f.args): if expr.is_zero: raise NotImplementedError( 'solve cannot represent interval solutions') candidates = _solve(expr, symbol, **flags) # the explicit condition for this expr is the current cond # and none of the previous conditions args = [~c for _, c in f.args[:i]] + [cond] cond = And(*args) for candidate in candidates: if candidate in result: # an unconditional value was already there continue try: v = cond.subs(symbol, candidate) _eval_simplify = getattr(v, '_eval_simplify', None) if _eval_simplify is not None: # unconditionally take the simpification of v v = _eval_simplify(ratio=2, measure=lambda x: 1) except TypeError: # incompatible type with condition(s) continue if v == False: continue if v == True: result.add(candidate) else: result.add(Piecewise( (candidate, v), (S.NaN, True))) # set flags for quick exit at end; solutions for each # piece were already checked and simplified check = False flags['simplify'] = False else: # first see if it really depends on symbol and whether there # is only a linear solution f_num, sol = solve_linear(f, symbols=symbols) if f_num.is_zero or sol is S.NaN: return [] elif f_num.is_Symbol: # no need to check but simplify if desired if flags.get('simplify', True): sol = simplify(sol) return [sol] poly = None # check for a single Add generator if not f_num.is_Add: add_args = [i for i in f_num.atoms(Add) if symbol in i.free_symbols] if len(add_args) == 1: gen = add_args[0] spart = gen.as_independent(symbol)[1].as_base_exp()[0] if spart == symbol: try: poly = Poly(f_num, spart) except PolynomialError: pass result = False # no solution was obtained msg = '' # there is no failure message # Poly is generally robust enough to convert anything to # a polynomial and tell us the different generators that it # contains, so we will inspect the generators identified by # polys to figure out what to do. # try to identify a single generator that will allow us to solve this # as a polynomial, followed (perhaps) by a change of variables if the # generator is not a symbol try: if poly is None: poly = Poly(f_num) if poly is None: raise ValueError('could not convert %s to Poly' % f_num) except GeneratorsNeeded: simplified_f = simplify(f_num) if simplified_f != f_num: return _solve(simplified_f, symbol, **flags) raise ValueError('expression appears to be a constant') gens = [g for g in poly.gens if g.has(symbol)] def _as_base_q(x): """Return (b**e, q) for x = b**(p*e/q) where p/q is the leading Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3) """ b, e = x.as_base_exp() if e.is_Rational: return b, e.q if not e.is_Mul: return x, 1 c, ee = e.as_coeff_Mul() if c.is_Rational and c is not S.One: # c could be a Float return b**ee, c.q return x, 1 if len(gens) > 1: # If there is more than one generator, it could be that the # generators have the same base but different powers, e.g. # >>> Poly(exp(x) + 1/exp(x)) # Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ') # # If unrad was not disabled then there should be no rational # exponents appearing as in # >>> Poly(sqrt(x) + sqrt(sqrt(x))) # Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ') bases, qs = list(zip(*[_as_base_q(g) for g in gens])) bases = set(bases) if len(bases) > 1 or not all(q == 1 for q in qs): funcs = {b for b in bases if b.is_Function} trig = {_ for _ in funcs if isinstance(_, TrigonometricFunction)} other = funcs - trig if not other and len(funcs.intersection(trig)) > 1: newf = None if f_num.is_Add and len(f_num.args) == 2: # check for sin(x)**p = cos(x)**p _args = f_num.args t = a, b = [i.atoms(Function).intersection( trig) for i in _args] if all(len(i) == 1 for i in t): a, b = [i.pop() for i in t] if isinstance(a, cos): a, b = b, a _args = _args[::-1] if isinstance(a, sin) and isinstance(b, cos ) and a.args[0] == b.args[0]: # sin(x) + cos(x) = 0 -> tan(x) + 1 = 0 newf, _d = (TR2i(_args[0]/_args[1]) + 1 ).as_numer_denom() if not _d.is_Number: newf = None if newf is None: newf = TR1(f_num).rewrite(tan) if newf != f_num: # don't check the rewritten form --check # solutions in the un-rewritten form below flags['check'] = False result = _solve(newf, symbol, **flags) flags['check'] = check # just a simple case - see if replacement of single function # clears all symbol-dependent functions, e.g. # log(x) - log(log(x) - 1) - 3 can be solved even though it has # two generators. if result is False and funcs: funcs = list(ordered(funcs)) # put shallowest function first f1 = funcs[0] t = Dummy('t') # perform the substitution ftry = f_num.subs(f1, t) # if no Functions left, we can proceed with usual solve if not ftry.has(symbol): cv_sols = _solve(ftry, t, **flags) cv_inv = _solve(t - f1, symbol, **flags)[0] sols = list() for sol in cv_sols: sols.append(cv_inv.subs(t, sol)) result = list(ordered(sols)) if result is False: msg = 'multiple generators %s' % gens else: # e.g. case where gens are exp(x), exp(-x) u = bases.pop() t = Dummy('t') inv = _solve(u - t, symbol, **flags) if isinstance(u, (Pow, exp)): # this will be resolved by factor in _tsolve but we might # as well try a simple expansion here to get things in # order so something like the following will work now without # having to factor: # # >>> eq = (exp(I*(-x-2))+exp(I*(x+2))) # >>> eq.subs(exp(x),y) # fails # exp(I*(-x - 2)) + exp(I*(x + 2)) # >>> eq.expand().subs(exp(x),y) # works # y**I*exp(2*I) + y**(-I)*exp(-2*I) def _expand(p): b, e = p.as_base_exp() e = expand_mul(e) return expand_power_exp(b**e) ftry = f_num.replace( lambda w: w.is_Pow or isinstance(w, exp), _expand).subs(u, t) if not ftry.has(symbol): soln = _solve(ftry, t, **flags) sols = list() for sol in soln: for i in inv: sols.append(i.subs(t, sol)) result = list(ordered(sols)) elif len(gens) == 1: # There is only one generator that we are interested in, but # there may have been more than one generator identified by # polys (e.g. for symbols other than the one we are interested # in) so recast the poly in terms of our generator of interest. # Also use composite=True with f_num since Poly won't update # poly as documented in issue 8810. poly = Poly(f_num, gens[0], composite=True) # if we aren't on the tsolve-pass, use roots if not flags.pop('tsolve', False): soln = None deg = poly.degree() flags['tsolve'] = True hints = ('cubics', 'quartics', 'quintics') solvers = {h: flags.get(h) for h in hints} soln = roots(poly, **solvers) if sum(soln.values()) < deg: # e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 + # 5000*x**2 + 6250*x + 3189) -> {} # so all_roots is used and RootOf instances are # returned *unless* the system is multivariate # or high-order EX domain. try: soln = poly.all_roots() except NotImplementedError: if not flags.get('incomplete', True): raise NotImplementedError( filldedent(''' Neither high-order multivariate polynomials nor sorting of EX-domain polynomials is supported. If you want to see any results, pass keyword incomplete=True to solve; to see numerical values of roots for univariate expressions, use nroots. ''')) else: pass else: soln = list(soln.keys()) if soln is not None: u = poly.gen if u != symbol: try: t = Dummy('t') iv = _solve(u - t, symbol, **flags) soln = list(ordered({i.subs(t, s) for i in iv for s in soln})) except NotImplementedError: # perhaps _tsolve can handle f_num soln = None else: check = False # only dens need to be checked if soln is not None: if len(soln) > 2: # if the flag wasn't set then unset it since high-order # results are quite long. Perhaps one could base this # decision on a certain critical length of the # roots. In addition, wester test M2 has an expression # whose roots can be shown to be real with the # unsimplified form of the solution whereas only one of # the simplified forms appears to be real. flags['simplify'] = flags.get('simplify', False) result = soln # fallback if above fails # ----------------------- if result is False: # try unrad if flags.pop('_unrad', True): try: u = unrad(f_num, symbol) except (ValueError, NotImplementedError): u = False if u: eq, cov = u if cov: isym, ieq = cov inv = _solve(ieq, symbol, **flags)[0] rv = {inv.subs(isym, xi) for xi in _solve(eq, isym, **flags)} else: try: rv = set(_solve(eq, symbol, **flags)) except NotImplementedError: rv = None if rv is not None: result = list(ordered(rv)) # if the flag wasn't set then unset it since unrad results # can be quite long or of very high order flags['simplify'] = flags.get('simplify', False) else: pass # for coverage # try _tsolve if result is False: flags.pop('tsolve', None) # allow tsolve to be used on next pass try: soln = _tsolve(f_num, symbol, **flags) if soln is not None: result = soln except PolynomialError: pass # ----------- end of fallback ---------------------------- if result is False: raise NotImplementedError('\n'.join([msg, not_impl_msg % f])) if flags.get('simplify', True): result = list(map(simplify, result)) # we just simplified the solution so we now set the flag to # False so the simplification doesn't happen again in checksol() flags['simplify'] = False if checkdens: # reject any result that makes any denom. affirmatively 0; # if in doubt, keep it dens = _simple_dens(f, symbols) result = [s for s in result if not any(checksol(d, {symbol: s}, **flags) for d in dens)] if check: # keep only results if the check is not False result = [r for r in result if checksol(f_num, {symbol: r}, **flags) is not False] return result def _solve_system(exprs, symbols, **flags): if not exprs: return [] if flags.pop('_split', True): # Split the system into connected components V = exprs symsset = set(symbols) exprsyms = {e: e.free_symbols & symsset for e in exprs} E = [] sym_indices = {sym: i for i, sym in enumerate(symbols)} for n, e1 in enumerate(exprs): for e2 in exprs[:n]: # Equations are connected if they share a symbol if exprsyms[e1] & exprsyms[e2]: E.append((e1, e2)) G = V, E subexprs = connected_components(G) if len(subexprs) > 1: subsols = [] for subexpr in subexprs: subsyms = set() for e in subexpr: subsyms |= exprsyms[e] subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x])) flags['_split'] = False # skip split step subsol = _solve_system(subexpr, subsyms, **flags) if not isinstance(subsol, list): subsol = [subsol] subsols.append(subsol) # Full solution is cartesion product of subsystems sols = [] for soldicts in product(*subsols): sols.append(dict(item for sd in soldicts for item in sd.items())) # Return a list with one dict as just the dict if len(sols) == 1: return sols[0] return sols polys = [] dens = set() failed = [] result = False linear = False manual = flags.get('manual', False) checkdens = check = flags.get('check', True) for j, g in enumerate(exprs): dens.update(_simple_dens(g, symbols)) i, d = _invert(g, *symbols) g = d - i g = g.as_numer_denom()[0] if manual: failed.append(g) continue poly = g.as_poly(*symbols, extension=True) if poly is not None: polys.append(poly) else: failed.append(g) if not polys: solved_syms = [] else: if all(p.is_linear for p in polys): n, m = len(polys), len(symbols) matrix = zeros(n, m + 1) for i, poly in enumerate(polys): for monom, coeff in poly.terms(): try: j = monom.index(1) matrix[i, j] = coeff except ValueError: matrix[i, m] = -coeff # returns a dictionary ({symbols: values}) or None if flags.pop('particular', False): result = minsolve_linear_system(matrix, *symbols, **flags) else: result = solve_linear_system(matrix, *symbols, **flags) if failed: if result: solved_syms = list(result.keys()) else: solved_syms = [] else: linear = True else: if len(symbols) > len(polys): free = set().union(*[p.free_symbols for p in polys]) free = list(ordered(free.intersection(symbols))) got_s = set() result = [] for syms in subsets(free, len(polys)): try: # returns [] or list of tuples of solutions for syms res = solve_poly_system(polys, *syms) if res: for r in res: skip = False for r1 in r: if got_s and any(ss in r1.free_symbols for ss in got_s): # sol depends on previously # solved symbols: discard it skip = True if not skip: got_s.update(syms) result.extend([dict(list(zip(syms, r)))]) except NotImplementedError: pass if got_s: solved_syms = list(got_s) else: raise NotImplementedError('no valid subset found') else: try: result = solve_poly_system(polys, *symbols) if result: solved_syms = symbols # we don't know here if the symbols provided # were given or not, so let solve resolve that. # A list of dictionaries is going to always be # returned from here. result = [dict(list(zip(solved_syms, r))) for r in result] except NotImplementedError: failed.extend([g.as_expr() for g in polys]) solved_syms = [] result = None if result: if isinstance(result, dict): result = [result] else: result = [{}] if failed: # For each failed equation, see if we can solve for one of the # remaining symbols from that equation. If so, we update the # solution set and continue with the next failed equation, # repeating until we are done or we get an equation that can't # be solved. def _ok_syms(e, sort=False): rv = (e.free_symbols - solved_syms) & legal # Solve first for symbols that have lower degree in the equation. # Ideally we want to solve firstly for symbols that appear linearly # with rational coefficients e.g. if e = x*y + z then we should # solve for z first. def key(sym): ep = e.as_poly(sym) if ep is None: complexity = (S.Infinity, S.Infinity, S.Infinity) else: coeff_syms = ep.LC().free_symbols complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms)) return complexity + (default_sort_key(sym),) if sort: rv = sorted(rv, key=key) return rv solved_syms = set(solved_syms) # set of symbols we have solved for legal = set(symbols) # what we are interested in # sort so equation with the fewest potential symbols is first u = Dummy() # used in solution checking for eq in ordered(failed, lambda _: len(_ok_syms(_))): newresult = [] bad_results = [] got_s = set() hit = False for r in result: # update eq with everything that is known so far eq2 = eq.subs(r) # if check is True then we see if it satisfies this # equation, otherwise we just accept it if check and r: b = checksol(u, u, eq2, minimal=True) if b is not None: # this solution is sufficient to know whether # it is valid or not so we either accept or # reject it, then continue if b: newresult.append(r) else: bad_results.append(r) continue # search for a symbol amongst those available that # can be solved for ok_syms = _ok_syms(eq2, sort=True) if not ok_syms: if r: newresult.append(r) break # skip as it's independent of desired symbols for s in ok_syms: try: soln = _solve(eq2, s, **flags) except NotImplementedError: continue # put each solution in r and append the now-expanded # result in the new result list; use copy since the # solution for s in being added in-place for sol in soln: if got_s and any(ss in sol.free_symbols for ss in got_s): # sol depends on previously solved symbols: discard it continue rnew = r.copy() for k, v in r.items(): rnew[k] = v.subs(s, sol) # and add this new solution rnew[s] = sol # check that it is independent of previous solutions iset = set(rnew.items()) for i in newresult: if len(i) < len(iset) and not set(i.items()) - iset: # this is a superset of a known solution that # is smaller break else: # keep it newresult.append(rnew) hit = True got_s.add(s) if not hit: raise NotImplementedError('could not solve %s' % eq2) else: result = newresult for b in bad_results: if b in result: result.remove(b) default_simplify = bool(failed) # rely on system-solvers to simplify if flags.get('simplify', default_simplify): for r in result: for k in r: r[k] = simplify(r[k]) flags['simplify'] = False # don't need to do so in checksol now if checkdens: result = [r for r in result if not any(checksol(d, r, **flags) for d in dens)] if check and not linear: result = [r for r in result if not any(checksol(e, r, **flags) is False for e in exprs)] result = [r for r in result if r] if linear and result: result = result[0] return result def solve_linear(lhs, rhs=0, symbols=[], exclude=[]): r""" Return a tuple derived from ``f = lhs - rhs`` that is one of the following: ``(0, 1)``, ``(0, 0)``, ``(symbol, solution)``, ``(n, d)``. Explanation =========== ``(0, 1)`` meaning that ``f`` is independent of the symbols in *symbols* that are not in *exclude*. ``(0, 0)`` meaning that there is no solution to the equation amongst the symbols given. If the first element of the tuple is not zero, then the function is guaranteed to be dependent on a symbol in *symbols*. ``(symbol, solution)`` where symbol appears linearly in the numerator of ``f``, is in *symbols* (if given), and is not in *exclude* (if given). No simplification is done to ``f`` other than a ``mul=True`` expansion, so the solution will correspond strictly to a unique solution. ``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f`` when the numerator was not linear in any symbol of interest; ``n`` will never be a symbol unless a solution for that symbol was found (in which case the second element is the solution, not the denominator). Examples ======== >>> from sympy import cancel, Pow ``f`` is independent of the symbols in *symbols* that are not in *exclude*: >>> from sympy import cos, sin, solve_linear >>> from sympy.abc import x, y, z >>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 >>> solve_linear(eq) (0, 1) >>> eq = cos(x)**2 + sin(x)**2 # = 1 >>> solve_linear(eq) (0, 1) >>> solve_linear(x, exclude=[x]) (0, 1) The variable ``x`` appears as a linear variable in each of the following: >>> solve_linear(x + y**2) (x, -y**2) >>> solve_linear(1/x - y**2) (x, y**(-2)) When not linear in ``x`` or ``y`` then the numerator and denominator are returned: >>> solve_linear(x**2/y**2 - 3) (x**2 - 3*y**2, y**2) If the numerator of the expression is a symbol, then ``(0, 0)`` is returned if the solution for that symbol would have set any denominator to 0: >>> eq = 1/(1/x - 2) >>> eq.as_numer_denom() (x, 1 - 2*x) >>> solve_linear(eq) (0, 0) But automatic rewriting may cause a symbol in the denominator to appear in the numerator so a solution will be returned: >>> (1/x)**-1 x >>> solve_linear((1/x)**-1) (x, 0) Use an unevaluated expression to avoid this: >>> solve_linear(Pow(1/x, -1, evaluate=False)) (0, 0) If ``x`` is allowed to cancel in the following expression, then it appears to be linear in ``x``, but this sort of cancellation is not done by ``solve_linear`` so the solution will always satisfy the original expression without causing a division by zero error. >>> eq = x**2*(1/x - z**2/x) >>> solve_linear(cancel(eq)) (x, 0) >>> solve_linear(eq) (x**2*(1 - z**2), x) A list of symbols for which a solution is desired may be given: >>> solve_linear(x + y + z, symbols=[y]) (y, -x - z) A list of symbols to ignore may also be given: >>> solve_linear(x + y + z, exclude=[x]) (y, -x - z) (A solution for ``y`` is obtained because it is the first variable from the canonically sorted list of symbols that had a linear solution.) """ if isinstance(lhs, Eq): if rhs: raise ValueError(filldedent(''' If lhs is an Equality, rhs must be 0 but was %s''' % rhs)) rhs = lhs.rhs lhs = lhs.lhs dens = None eq = lhs - rhs n, d = eq.as_numer_denom() if not n: return S.Zero, S.One free = n.free_symbols if not symbols: symbols = free else: bad = [s for s in symbols if not s.is_Symbol] if bad: if len(bad) == 1: bad = bad[0] if len(symbols) == 1: eg = 'solve(%s, %s)' % (eq, symbols[0]) else: eg = 'solve(%s, *%s)' % (eq, list(symbols)) raise ValueError(filldedent(''' solve_linear only handles symbols, not %s. To isolate non-symbols use solve, e.g. >>> %s <<<. ''' % (bad, eg))) symbols = free.intersection(symbols) symbols = symbols.difference(exclude) if not symbols: return S.Zero, S.One from sympy.integrals.integrals import Integral # derivatives are easy to do but tricky to analyze to see if they # are going to disallow a linear solution, so for simplicity we # just evaluate the ones that have the symbols of interest derivs = defaultdict(list) for der in n.atoms(Derivative): csym = der.free_symbols & symbols for c in csym: derivs[c].append(der) all_zero = True for xi in sorted(symbols, key=default_sort_key): # canonical order # if there are derivatives in this var, calculate them now if isinstance(derivs[xi], list): derivs[xi] = {der: der.doit() for der in derivs[xi]} newn = n.subs(derivs[xi]) dnewn_dxi = newn.diff(xi) # dnewn_dxi can be nonzero if it survives differentation by any # of its free symbols free = dnewn_dxi.free_symbols if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free) or free == symbols): all_zero = False if dnewn_dxi is S.NaN: break if xi not in dnewn_dxi.free_symbols: vi = -1/dnewn_dxi*(newn.subs(xi, 0)) if dens is None: dens = _simple_dens(eq, symbols) if not any(checksol(di, {xi: vi}, minimal=True) is True for di in dens): # simplify any trivial integral irep = [(i, i.doit()) for i in vi.atoms(Integral) if i.function.is_number] # do a slight bit of simplification vi = expand_mul(vi.subs(irep)) return xi, vi if all_zero: return S.Zero, S.One if n.is_Symbol: # no solution for this symbol was found return S.Zero, S.Zero return n, d def minsolve_linear_system(system, *symbols, **flags): r""" Find a particular solution to a linear system. Explanation =========== In particular, try to find a solution with the minimal possible number of non-zero variables using a naive algorithm with exponential complexity. If ``quick=True``, a heuristic is used. """ quick = flags.get('quick', False) # Check if there are any non-zero solutions at all s0 = solve_linear_system(system, *symbols, **flags) if not s0 or all(v == 0 for v in s0.values()): return s0 if quick: # We just solve the system and try to heuristically find a nice # solution. s = solve_linear_system(system, *symbols) def update(determined, solution): delete = [] for k, v in solution.items(): solution[k] = v.subs(determined) if not solution[k].free_symbols: delete.append(k) determined[k] = solution[k] for k in delete: del solution[k] determined = {} update(determined, s) while s: # NOTE sort by default_sort_key to get deterministic result k = max((k for k in s.values()), key=lambda x: (len(x.free_symbols), default_sort_key(x))) x = max(k.free_symbols, key=default_sort_key) if len(k.free_symbols) != 1: determined[x] = S.Zero else: val = solve(k)[0] if val == 0 and all(v.subs(x, val) == 0 for v in s.values()): determined[x] = S.One else: determined[x] = val update(determined, s) return determined else: # We try to select n variables which we want to be non-zero. # All others will be assumed zero. We try to solve the modified system. # If there is a non-trivial solution, just set the free variables to # one. If we do this for increasing n, trying all combinations of # variables, we will find an optimal solution. # We speed up slightly by starting at one less than the number of # variables the quick method manages. from itertools import combinations N = len(symbols) bestsol = minsolve_linear_system(system, *symbols, quick=True) n0 = len([x for x in bestsol.values() if x != 0]) for n in range(n0 - 1, 1, -1): debug('minsolve: %s' % n) thissol = None for nonzeros in combinations(list(range(N)), n): subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T s = solve_linear_system(subm, *[symbols[i] for i in nonzeros]) if s and not all(v == 0 for v in s.values()): subs = [(symbols[v], S.One) for v in nonzeros] for k, v in s.items(): s[k] = v.subs(subs) for sym in symbols: if sym not in s: if symbols.index(sym) in nonzeros: s[sym] = S.One else: s[sym] = S.Zero thissol = s break if thissol is None: break bestsol = thissol return bestsol def solve_linear_system(system, *symbols, **flags): r""" Solve system of $N$ linear equations with $M$ variables, which means both under- and overdetermined systems are supported. Explanation =========== The possible number of solutions is zero, one, or infinite. Respectively, this procedure will return None or a dictionary with solutions. In the case of underdetermined systems, all arbitrary parameters are skipped. This may cause a situation in which an empty dictionary is returned. In that case, all symbols can be assigned arbitrary values. Input to this function is a $N\times M + 1$ matrix, which means it has to be in augmented form. If you prefer to enter $N$ equations and $M$ unknowns then use ``solve(Neqs, *Msymbols)`` instead. Note: a local copy of the matrix is made by this routine so the matrix that is passed will not be modified. The algorithm used here is fraction-free Gaussian elimination, which results, after elimination, in an upper-triangular matrix. Then solutions are found using back-substitution. This approach is more efficient and compact than the Gauss-Jordan method. Examples ======== >>> from sympy import Matrix, solve_linear_system >>> from sympy.abc import x, y Solve the following system:: x + 4 y == 2 -2 x + y == 14 >>> system = Matrix(( (1, 4, 2), (-2, 1, 14))) >>> solve_linear_system(system, x, y) {x: -6, y: 2} A degenerate system returns an empty dictionary: >>> system = Matrix(( (0,0,0), (0,0,0) )) >>> solve_linear_system(system, x, y) {} """ assert system.shape[1] == len(symbols) + 1 # This is just a wrapper for solve_lin_sys eqs = list(system * Matrix(symbols + (-1,))) eqs, ring = sympy_eqs_to_ring(eqs, symbols) sol = solve_lin_sys(eqs, ring, _raw=False) if sol is not None: sol = {sym:val for sym, val in sol.items() if sym != val} return sol def solve_undetermined_coeffs(equ, coeffs, sym, **flags): r""" Solve equation of a type $p(x; a_1, \ldots, a_k) = q(x)$ where both $p$ and $q$ are univariate polynomials that depend on $k$ parameters. Explanation =========== The result of this function is a dictionary with symbolic values of those parameters with respect to coefficients in $q$. This function accepts both equations class instances and ordinary SymPy expressions. Specification of parameters and variables is obligatory for efficiency and simplicity reasons. Examples ======== >>> from sympy import Eq >>> from sympy.abc import a, b, c, x >>> from sympy.solvers import solve_undetermined_coeffs >>> solve_undetermined_coeffs(Eq(2*a*x + a+b, x), [a, b], x) {a: 1/2, b: -1/2} >>> solve_undetermined_coeffs(Eq(a*c*x + a+b, x), [a, b], x) {a: 1/c, b: -1/c} """ if isinstance(equ, Eq): # got equation, so move all the # terms to the left hand side equ = equ.lhs - equ.rhs equ = cancel(equ).as_numer_denom()[0] system = list(collect(equ.expand(), sym, evaluate=False).values()) if not any(equ.has(sym) for equ in system): # consecutive powers in the input expressions have # been successfully collected, so solve remaining # system using Gaussian elimination algorithm return solve(system, *coeffs, **flags) else: return None # no solutions def solve_linear_system_LU(matrix, syms): """ Solves the augmented matrix system using ``LUsolve`` and returns a dictionary in which solutions are keyed to the symbols of *syms* as ordered. Explanation =========== The matrix must be invertible. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x, y, z >>> from sympy.solvers.solvers import solve_linear_system_LU >>> solve_linear_system_LU(Matrix([ ... [1, 2, 0, 1], ... [3, 2, 2, 1], ... [2, 0, 0, 1]]), [x, y, z]) {x: 1/2, y: 1/4, z: -1/2} See Also ======== LUsolve """ if matrix.rows != matrix.cols - 1: raise ValueError("Rows should be equal to columns - 1") A = matrix[:matrix.rows, :matrix.rows] b = matrix[:, matrix.cols - 1:] soln = A.LUsolve(b) solutions = {} for i in range(soln.rows): solutions[syms[i]] = soln[i, 0] return solutions def det_perm(M): """ Return the determinant of *M* by using permutations to select factors. Explanation =========== For sizes larger than 8 the number of permutations becomes prohibitively large, or if there are no symbols in the matrix, it is better to use the standard determinant routines (e.g., ``M.det()``.) See Also ======== det_minor det_quick """ args = [] s = True n = M.rows list_ = M.flat() for perm in generate_bell(n): fac = [] idx = 0 for j in perm: fac.append(list_[idx + j]) idx += n term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7 args.append(term if s else -term) s = not s return Add(*args) def det_minor(M): """ Return the ``det(M)`` computed from minors without introducing new nesting in products. See Also ======== det_perm det_quick """ n = M.rows if n == 2: return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1] else: return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in Add.make_args(det_minor(M.minor_submatrix(0, i)))]) if M[0, i] else S.Zero for i in range(n)]) def det_quick(M, method=None): """ Return ``det(M)`` assuming that either there are lots of zeros or the size of the matrix is small. If this assumption is not met, then the normal Matrix.det function will be used with method = ``method``. See Also ======== det_minor det_perm """ if any(i.has(Symbol) for i in M): if M.rows < 8 and all(i.has(Symbol) for i in M): return det_perm(M) return det_minor(M) else: return M.det(method=method) if method else M.det() def inv_quick(M): """Return the inverse of ``M``, assuming that either there are lots of zeros or the size of the matrix is small. """ if not all(i.is_Number for i in M): if not any(i.is_Number for i in M): det = lambda _: det_perm(_) else: det = lambda _: det_minor(_) else: return M.inv() n = M.rows d = det(M) if d == S.Zero: raise NonInvertibleMatrixError("Matrix det == 0; not invertible") ret = zeros(n) s1 = -1 for i in range(n): s = s1 = -s1 for j in range(n): di = det(M.minor_submatrix(i, j)) ret[j, i] = s*di/d s = -s return ret # these are functions that have multiple inverse values per period multi_inverses = { sin: lambda x: (asin(x), S.Pi - asin(x)), cos: lambda x: (acos(x), 2*S.Pi - acos(x)), } def _tsolve(eq, sym, **flags): """ Helper for ``_solve`` that solves a transcendental equation with respect to the given symbol. Various equations containing powers and logarithms, can be solved. There is currently no guarantee that all solutions will be returned or that a real solution will be favored over a complex one. Either a list of potential solutions will be returned or None will be returned (in the case that no method was known to get a solution for the equation). All other errors (like the inability to cast an expression as a Poly) are unhandled. Examples ======== >>> from sympy import log >>> from sympy.solvers.solvers import _tsolve as tsolve >>> from sympy.abc import x >>> tsolve(3**(2*x + 5) - 4, x) [-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)] >>> tsolve(log(x) + 2*x, x) [LambertW(2)/2] """ if 'tsolve_saw' not in flags: flags['tsolve_saw'] = [] if eq in flags['tsolve_saw']: return None else: flags['tsolve_saw'].append(eq) rhs, lhs = _invert(eq, sym) if lhs == sym: return [rhs] try: if lhs.is_Add: # it's time to try factoring; powdenest is used # to try get powers in standard form for better factoring f = factor(powdenest(lhs - rhs)) if f.is_Mul: return _solve(f, sym, **flags) if rhs: f = logcombine(lhs, force=flags.get('force', True)) if f.count(log) != lhs.count(log): if isinstance(f, log): return _solve(f.args[0] - exp(rhs), sym, **flags) return _tsolve(f - rhs, sym, **flags) elif lhs.is_Pow: if lhs.exp.is_Integer: if lhs - rhs != eq: return _solve(lhs - rhs, sym, **flags) if sym not in lhs.exp.free_symbols: return _solve(lhs.base - rhs**(1/lhs.exp), sym, **flags) # _tsolve calls this with Dummy before passing the actual number in. if any(t.is_Dummy for t in rhs.free_symbols): raise NotImplementedError # _tsolve will call here again... # a ** g(x) == 0 if not rhs: # f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at # the same place sol_base = _solve(lhs.base, sym, **flags) return [s for s in sol_base if lhs.exp.subs(sym, s) != 0] # a ** g(x) == b if not lhs.base.has(sym): if lhs.base == 0: return _solve(lhs.exp, sym, **flags) if rhs != 0 else [] # Gets most solutions... if lhs.base == rhs.as_base_exp()[0]: # handles case when bases are equal sol = _solve(lhs.exp - rhs.as_base_exp()[1], sym, **flags) else: # handles cases when bases are not equal and exp # may or may not be equal sol = _solve(exp(log(lhs.base)*lhs.exp)-exp(log(rhs)), sym, **flags) # Check for duplicate solutions def equal(expr1, expr2): _ = Dummy() eq = checksol(expr1 - _, _, expr2) if eq is None: if nsimplify(expr1) != nsimplify(expr2): return False # they might be coincidentally the same # so check more rigorously eq = expr1.equals(expr2) return eq # Guess a rational exponent e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base))) e_rat = simplify(posify(e_rat)[0]) n, d = fraction(e_rat) if expand(lhs.base**n - rhs**d) == 0: sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)] sol.extend(_solve(lhs.exp - e_rat, sym, **flags)) return list(ordered(set(sol))) # f(x) ** g(x) == c else: sol = [] logform = lhs.exp*log(lhs.base) - log(rhs) if logform != lhs - rhs: try: sol.extend(_solve(logform, sym, **flags)) except NotImplementedError: pass # Collect possible solutions and check with substitution later. check = [] if rhs == 1: # f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1 check.extend(_solve(lhs.exp, sym, **flags)) check.extend(_solve(lhs.base - 1, sym, **flags)) check.extend(_solve(lhs.base + 1, sym, **flags)) elif rhs.is_Rational: for d in (i for i in divisors(abs(rhs.p)) if i != 1): e, t = integer_log(rhs.p, d) if not t: continue # rhs.p != d**b for s in divisors(abs(rhs.q)): if s**e== rhs.q: r = Rational(d, s) check.extend(_solve(lhs.base - r, sym, **flags)) check.extend(_solve(lhs.base + r, sym, **flags)) check.extend(_solve(lhs.exp - e, sym, **flags)) elif rhs.is_irrational: b_l, e_l = lhs.base.as_base_exp() n, d = (e_l*lhs.exp).as_numer_denom() b, e = sqrtdenest(rhs).as_base_exp() check = [sqrtdenest(i) for i in (_solve(lhs.base - b, sym, **flags))] check.extend([sqrtdenest(i) for i in (_solve(lhs.exp - e, sym, **flags))]) if e_l*d != 1: check.extend(_solve(b_l**n - rhs**(e_l*d), sym, **flags)) for s in check: ok = checksol(eq, sym, s) if ok is None: ok = eq.subs(sym, s).equals(0) if ok: sol.append(s) return list(ordered(set(sol))) elif lhs.is_Function and len(lhs.args) == 1: if lhs.func in multi_inverses: # sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3)) soln = [] for i in multi_inverses[type(lhs)](rhs): soln.extend(_solve(lhs.args[0] - i, sym, **flags)) return list(ordered(soln)) elif lhs.func == LambertW: return _solve(lhs.args[0] - rhs*exp(rhs), sym, **flags) rewrite = lhs.rewrite(exp) if rewrite != lhs: return _solve(rewrite - rhs, sym, **flags) except NotImplementedError: pass # maybe it is a lambert pattern if flags.pop('bivariate', True): # lambert forms may need some help being recognized, e.g. changing # 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1 # to 2**(3*x) + (x*log(2) + 1)**3 g = _filtered_gens(eq.as_poly(), sym) up_or_log = set() for gi in g: if isinstance(gi, (exp, log)) or (gi.is_Pow and gi.base == S.Exp1): up_or_log.add(gi) elif gi.is_Pow: gisimp = powdenest(expand_power_exp(gi)) if gisimp.is_Pow and sym in gisimp.exp.free_symbols: up_or_log.add(gi) eq_down = expand_log(expand_power_exp(eq)).subs( dict(list(zip(up_or_log, [0]*len(up_or_log))))) eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down)) rhs, lhs = _invert(eq, sym) if lhs.has(sym): try: poly = lhs.as_poly() g = _filtered_gens(poly, sym) _eq = lhs - rhs sols = _solve_lambert(_eq, sym, g) # use a simplified form if it satisfies eq # and has fewer operations for n, s in enumerate(sols): ns = nsimplify(s) if ns != s and ns.count_ops() <= s.count_ops(): ok = checksol(_eq, sym, ns) if ok is None: ok = _eq.subs(sym, ns).equals(0) if ok: sols[n] = ns return sols except NotImplementedError: # maybe it's a convoluted function if len(g) == 2: try: gpu = bivariate_type(lhs - rhs, *g) if gpu is None: raise NotImplementedError g, p, u = gpu flags['bivariate'] = False inversion = _tsolve(g - u, sym, **flags) if inversion: sol = _solve(p, u, **flags) return list(ordered({i.subs(u, s) for i in inversion for s in sol})) except NotImplementedError: pass else: pass if flags.pop('force', True): flags['force'] = False pos, reps = posify(lhs - rhs) if rhs == S.ComplexInfinity: return [] for u, s in reps.items(): if s == sym: break else: u = sym if pos.has(u): try: soln = _solve(pos, u, **flags) return list(ordered([s.subs(reps) for s in soln])) except NotImplementedError: pass else: pass # here for coverage return # here for coverage # TODO: option for calculating J numerically @conserve_mpmath_dps def nsolve(*args, dict=False, **kwargs): r""" Solve a nonlinear equation system numerically: ``nsolve(f, [args,] x0, modules=['mpmath'], **kwargs)``. Explanation =========== ``f`` is a vector function of symbolic expressions representing the system. *args* are the variables. If there is only one variable, this argument can be omitted. ``x0`` is a starting vector close to a solution. Use the modules keyword to specify which modules should be used to evaluate the function and the Jacobian matrix. Make sure to use a module that supports matrices. For more information on the syntax, please see the docstring of ``lambdify``. If the keyword arguments contain ``dict=True`` (default is False) ``nsolve`` will return a list (perhaps empty) of solution mappings. This might be especially useful if you want to use ``nsolve`` as a fallback to solve since using the dict argument for both methods produces return values of consistent type structure. Please note: to keep this consistent with ``solve``, the solution will be returned in a list even though ``nsolve`` (currently at least) only finds one solution at a time. Overdetermined systems are supported. Examples ======== >>> from sympy import Symbol, nsolve >>> import mpmath >>> mpmath.mp.dps = 15 >>> x1 = Symbol('x1') >>> x2 = Symbol('x2') >>> f1 = 3 * x1**2 - 2 * x2**2 - 1 >>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8 >>> print(nsolve((f1, f2), (x1, x2), (-1, 1))) Matrix([[-1.19287309935246], [1.27844411169911]]) For one-dimensional functions the syntax is simplified: >>> from sympy import sin, nsolve >>> from sympy.abc import x >>> nsolve(sin(x), x, 2) 3.14159265358979 >>> nsolve(sin(x), 2) 3.14159265358979 To solve with higher precision than the default, use the prec argument: >>> from sympy import cos >>> nsolve(cos(x) - x, 1) 0.739085133215161 >>> nsolve(cos(x) - x, 1, prec=50) 0.73908513321516064165531208767387340401341175890076 >>> cos(_) 0.73908513321516064165531208767387340401341175890076 To solve for complex roots of real functions, a nonreal initial point must be specified: >>> from sympy import I >>> nsolve(x**2 + 2, I) 1.4142135623731*I ``mpmath.findroot`` is used and you can find their more extensive documentation, especially concerning keyword parameters and available solvers. Note, however, that functions which are very steep near the root, the verification of the solution may fail. In this case you should use the flag ``verify=False`` and independently verify the solution. >>> from sympy import cos, cosh >>> f = cos(x)*cosh(x) - 1 >>> nsolve(f, 3.14*100) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19) >>> ans = nsolve(f, 3.14*100, verify=False); ans 312.588469032184 >>> f.subs(x, ans).n(2) 2.1e+121 >>> (f/f.diff(x)).subs(x, ans).n(2) 7.4e-15 One might safely skip the verification if bounds of the root are known and a bisection method is used: >>> bounds = lambda i: (3.14*i, 3.14*(i + 1)) >>> nsolve(f, bounds(100), solver='bisect', verify=False) 315.730061685774 Alternatively, a function may be better behaved when the denominator is ignored. Since this is not always the case, however, the decision of what function to use is left to the discretion of the user. >>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100 >>> nsolve(eq, 0.46) Traceback (most recent call last): ... ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19) Try another starting point or tweak arguments. >>> nsolve(eq.as_numer_denom()[0], 0.46) 0.46792545969349058 """ # there are several other SymPy functions that use method= so # guard against that here if 'method' in kwargs: raise ValueError(filldedent(''' Keyword "method" should not be used in this context. When using some mpmath solvers directly, the keyword "method" is used, but when using nsolve (and findroot) the keyword to use is "solver".''')) if 'prec' in kwargs: import mpmath mpmath.mp.dps = kwargs.pop('prec') # keyword argument to return result as a dictionary as_dict = dict from builtins import dict # to unhide the builtin # interpret arguments if len(args) == 3: f = args[0] fargs = args[1] x0 = args[2] if iterable(fargs) and iterable(x0): if len(x0) != len(fargs): raise TypeError('nsolve expected exactly %i guess vectors, got %i' % (len(fargs), len(x0))) elif len(args) == 2: f = args[0] fargs = None x0 = args[1] if iterable(f): raise TypeError('nsolve expected 3 arguments, got 2') elif len(args) < 2: raise TypeError('nsolve expected at least 2 arguments, got %i' % len(args)) else: raise TypeError('nsolve expected at most 3 arguments, got %i' % len(args)) modules = kwargs.get('modules', ['mpmath']) if iterable(f): f = list(f) for i, fi in enumerate(f): if isinstance(fi, Eq): f[i] = fi.lhs - fi.rhs f = Matrix(f).T if iterable(x0): x0 = list(x0) if not isinstance(f, Matrix): # assume it's a SymPy expression if isinstance(f, Eq): f = f.lhs - f.rhs syms = f.free_symbols if fargs is None: fargs = syms.copy().pop() if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)): raise ValueError(filldedent(''' expected a one-dimensional and numerical function''')) # the function is much better behaved if there is no denominator # but sending the numerator is left to the user since sometimes # the function is better behaved when the denominator is present # e.g., issue 11768 f = lambdify(fargs, f, modules) x = sympify(findroot(f, x0, **kwargs)) if as_dict: return [{fargs: x}] return x if len(fargs) > f.cols: raise NotImplementedError(filldedent(''' need at least as many equations as variables''')) verbose = kwargs.get('verbose', False) if verbose: print('f(x):') print(f) # derive Jacobian J = f.jacobian(fargs) if verbose: print('J(x):') print(J) # create functions f = lambdify(fargs, f.T, modules) J = lambdify(fargs, J, modules) # solve the system numerically x = findroot(f, x0, J=J, **kwargs) if as_dict: return [dict(zip(fargs, [sympify(xi) for xi in x]))] return Matrix(x) def _invert(eq, *symbols, **kwargs): """ Return tuple (i, d) where ``i`` is independent of *symbols* and ``d`` contains symbols. Explanation =========== ``i`` and ``d`` are obtained after recursively using algebraic inversion until an uninvertible ``d`` remains. If there are no free symbols then ``d`` will be zero. Some (but not necessarily all) solutions to the expression ``i - d`` will be related to the solutions of the original expression. Examples ======== >>> from sympy.solvers.solvers import _invert as invert >>> from sympy import sqrt, cos >>> from sympy.abc import x, y >>> invert(x - 3) (3, x) >>> invert(3) (3, 0) >>> invert(2*cos(x) - 1) (1/2, cos(x)) >>> invert(sqrt(x) - 3) (3, sqrt(x)) >>> invert(sqrt(x) + y, x) (-y, sqrt(x)) >>> invert(sqrt(x) + y, y) (-sqrt(x), y) >>> invert(sqrt(x) + y, x, y) (0, sqrt(x) + y) If there is more than one symbol in a power's base and the exponent is not an Integer, then the principal root will be used for the inversion: >>> invert(sqrt(x + y) - 2) (4, x + y) >>> invert(sqrt(x + y) - 2) (4, x + y) If the exponent is an Integer, setting ``integer_power`` to True will force the principal root to be selected: >>> invert(x**2 - 4, integer_power=True) (2, x) """ eq = sympify(eq) if eq.args: # make sure we are working with flat eq eq = eq.func(*eq.args) free = eq.free_symbols if not symbols: symbols = free if not free & set(symbols): return eq, S.Zero dointpow = bool(kwargs.get('integer_power', False)) lhs = eq rhs = S.Zero while True: was = lhs while True: indep, dep = lhs.as_independent(*symbols) # dep + indep == rhs if lhs.is_Add: # this indicates we have done it all if indep.is_zero: break lhs = dep rhs -= indep # dep * indep == rhs else: # this indicates we have done it all if indep is S.One: break lhs = dep rhs /= indep # collect like-terms in symbols if lhs.is_Add: terms = {} for a in lhs.args: i, d = a.as_independent(*symbols) terms.setdefault(d, []).append(i) if any(len(v) > 1 for v in terms.values()): args = [] for d, i in terms.items(): if len(i) > 1: args.append(Add(*i)*d) else: args.append(i[0]*d) lhs = Add(*args) # if it's a two-term Add with rhs = 0 and two powers we can get the # dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3 if lhs.is_Add and not rhs and len(lhs.args) == 2 and \ not lhs.is_polynomial(*symbols): a, b = ordered(lhs.args) ai, ad = a.as_independent(*symbols) bi, bd = b.as_independent(*symbols) if any(_ispow(i) for i in (ad, bd)): a_base, a_exp = ad.as_base_exp() b_base, b_exp = bd.as_base_exp() if a_base == b_base: # a = -b lhs = powsimp(powdenest(ad/bd)) rhs = -bi/ai else: rat = ad/bd _lhs = powsimp(ad/bd) if _lhs != rat: lhs = _lhs rhs = -bi/ai elif ai == -bi: if isinstance(ad, Function) and ad.func == bd.func: if len(ad.args) == len(bd.args) == 1: lhs = ad.args[0] - bd.args[0] elif len(ad.args) == len(bd.args): # should be able to solve # f(x, y) - f(2 - x, 0) == 0 -> x == 1 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') elif lhs.is_Mul and any(_ispow(a) for a in lhs.args): lhs = powsimp(powdenest(lhs)) if lhs.is_Function: if hasattr(lhs, 'inverse') and lhs.inverse() is not None and len(lhs.args) == 1: # -1 # f(x) = g -> x = f (g) # # /!\ inverse should not be defined if there are multiple values # for the function -- these are handled in _tsolve # rhs = lhs.inverse()(rhs) lhs = lhs.args[0] elif isinstance(lhs, atan2): y, x = lhs.args lhs = 2*atan(y/(sqrt(x**2 + y**2) + x)) elif lhs.func == rhs.func: if len(lhs.args) == len(rhs.args) == 1: lhs = lhs.args[0] rhs = rhs.args[0] elif len(lhs.args) == len(rhs.args): # should be able to solve # f(x, y) == f(2, 3) -> x == 2 # f(x, x + y) == f(2, 3) -> x == 2 raise NotImplementedError( 'equal function with more than 1 argument') else: raise ValueError( 'function with different numbers of args') if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0: lhs = 1/lhs rhs = 1/rhs # base**a = b -> base = b**(1/a) if # a is an Integer and dointpow=True (this gives real branch of root) # a is not an Integer and the equation is multivariate and the # base has more than 1 symbol in it # The rationale for this is that right now the multi-system solvers # doesn't try to resolve generators to see, for example, if the whole # system is written in terms of sqrt(x + y) so it will just fail, so we # do that step here. if lhs.is_Pow and ( lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1): rhs = rhs**(1/lhs.exp) lhs = lhs.base if lhs == was: break return rhs, lhs def unrad(eq, *syms, **flags): """ Remove radicals with symbolic arguments and return (eq, cov), None, or raise an error. Explanation =========== None is returned if there are no radicals to remove. NotImplementedError is raised if there are radicals and they cannot be removed or if the relationship between the original symbols and the change of variable needed to rewrite the system as a polynomial cannot be solved. Otherwise the tuple, ``(eq, cov)``, is returned where: *eq*, ``cov`` *eq* is an equation without radicals (in the symbol(s) of interest) whose solutions are a superset of the solutions to the original expression. *eq* might be rewritten in terms of a new variable; the relationship to the original variables is given by ``cov`` which is a list containing ``v`` and ``v**p - b`` where ``p`` is the power needed to clear the radical and ``b`` is the radical now expressed as a polynomial in the symbols of interest. For example, for sqrt(2 - x) the tuple would be ``(c, c**2 - 2 + x)``. The solutions of *eq* will contain solutions to the original equation (if there are any). *syms* An iterable of symbols which, if provided, will limit the focus of radical removal: only radicals with one or more of the symbols of interest will be cleared. All free symbols are used if *syms* is not set. *flags* are used internally for communication during recursive calls. Two options are also recognized: ``take``, when defined, is interpreted as a single-argument function that returns True if a given Pow should be handled. Radicals can be removed from an expression if: * All bases of the radicals are the same; a change of variables is done in this case. * If all radicals appear in one term of the expression. * There are only four terms with sqrt() factors or there are less than four terms having sqrt() factors. * There are only two terms with radicals. Examples ======== >>> from sympy.solvers.solvers import unrad >>> from sympy.abc import x >>> from sympy import sqrt, Rational, root >>> unrad(sqrt(x)*x**Rational(1, 3) + 2) (x**5 - 64, []) >>> unrad(sqrt(x) + root(x + 1, 3)) (-x**3 + x**2 + 2*x + 1, []) >>> eq = sqrt(x) + root(x, 3) - 2 >>> unrad(eq) (_p**3 + _p**2 - 2, [_p, _p**6 - x]) """ uflags = dict(check=False, simplify=False) def _cov(p, e): if cov: # XXX - uncovered oldp, olde = cov if Poly(e, p).degree(p) in (1, 2): cov[:] = [p, olde.subs(oldp, _solve(e, p, **uflags)[0])] else: raise NotImplementedError else: cov[:] = [p, e] def _canonical(eq, cov): if cov: # change symbol to vanilla so no solutions are eliminated p, e = cov rep = {p: Dummy(p.name)} eq = eq.xreplace(rep) cov = [p.xreplace(rep), e.xreplace(rep)] # remove constants and powers of factors since these don't change # the location of the root; XXX should factor or factor_terms be used? eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True) if eq.is_Mul: args = [] for f in eq.args: if f.is_number: continue if f.is_Pow: args.append(f.base) else: args.append(f) eq = Mul(*args) # leave as Mul for more efficient solving # make the sign canonical margs = list(Mul.make_args(eq)) changed = False for i, m in enumerate(margs): if m.could_extract_minus_sign(): margs[i] = -m changed = True if changed: eq = Mul(*margs, evaluate=False) return eq, cov def _Q(pow): # return leading Rational of denominator of Pow's exponent c = pow.as_base_exp()[1].as_coeff_Mul()[0] if not c.is_Rational: return S.One return c.q # define the _take method that will determine whether a term is of interest def _take(d): # return True if coefficient of any factor's exponent's den is not 1 for pow in Mul.make_args(d): if not pow.is_Pow: continue if _Q(pow) == 1: continue if pow.free_symbols & syms: return True return False _take = flags.setdefault('_take', _take) if isinstance(eq, Eq): eq = eq.lhs - eq.rhs # XXX legacy Eq as Eqn support elif not isinstance(eq, Expr): return cov, nwas, rpt = [flags.setdefault(k, v) for k, v in sorted(dict(cov=[], n=None, rpt=0).items())] # preconditioning eq = powdenest(factor_terms(eq, radical=True, clear=True)) eq = eq.as_numer_denom()[0] eq = _mexpand(eq, recursive=True) if eq.is_number: return # see if there are radicals in symbols of interest syms = set(syms) or eq.free_symbols # _take uses this poly = eq.as_poly() gens = [g for g in poly.gens if _take(g)] if not gens: return # recast poly in terms of eigen-gens poly = eq.as_poly(*gens) # - an exponent has a symbol of interest (don't handle) if any(g.exp.has(*syms) for g in gens): return def _rads_bases_lcm(poly): # if all the bases are the same or all the radicals are in one # term, `lcm` will be the lcm of the denominators of the # exponents of the radicals lcm = 1 rads = set() bases = set() for g in poly.gens: q = _Q(g) if q != 1: rads.add(g) lcm = ilcm(lcm, q) bases.add(g.base) return rads, bases, lcm rads, bases, lcm = _rads_bases_lcm(poly) covsym = Dummy('p', nonnegative=True) # only keep in syms symbols that actually appear in radicals; # and update gens newsyms = set() for r in rads: newsyms.update(syms & r.free_symbols) if newsyms != syms: syms = newsyms # get terms together that have common generators drad = dict(list(zip(rads, list(range(len(rads)))))) rterms = {(): []} args = Add.make_args(poly.as_expr()) for t in args: if _take(t): common = set(t.as_poly().gens).intersection(rads) key = tuple(sorted([drad[i] for i in common])) else: key = () rterms.setdefault(key, []).append(t) others = Add(*rterms.pop(())) rterms = [Add(*rterms[k]) for k in rterms.keys()] # the output will depend on the order terms are processed, so # make it canonical quickly rterms = list(reversed(list(ordered(rterms)))) ok = False # we don't have a solution yet depth = sqrt_depth(eq) if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2): eq = rterms[0]**lcm - ((-others)**lcm) ok = True else: if len(rterms) == 1 and rterms[0].is_Add: rterms = list(rterms[0].args) if len(bases) == 1: b = bases.pop() if len(syms) > 1: x = b.free_symbols else: x = syms x = list(ordered(x))[0] try: inv = _solve(covsym**lcm - b, x, **uflags) if not inv: raise NotImplementedError eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0]) _cov(covsym, covsym**lcm - b) return _canonical(eq, cov) except NotImplementedError: pass if len(rterms) == 2: if not others: eq = rterms[0]**lcm - (-rterms[1])**lcm ok = True elif not log(lcm, 2).is_Integer: # the lcm-is-power-of-two case is handled below r0, r1 = rterms if flags.get('_reverse', False): r1, r0 = r0, r1 i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly()) i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly()) for reverse in range(2): if reverse: i0, i1 = i1, i0 r0, r1 = r1, r0 _rads1, _, lcm1 = i1 _rads1 = Mul(*_rads1) t1 = _rads1**lcm1 c = covsym**lcm1 - t1 for x in syms: try: sol = _solve(c, x, **uflags) if not sol: raise NotImplementedError neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \ others tmp = unrad(neweq, covsym) if tmp: eq, newcov = tmp if newcov: newp, newc = newcov _cov(newp, c.subs(covsym, _solve(newc, covsym, **uflags)[0])) else: _cov(covsym, c) else: eq = neweq _cov(covsym, c) ok = True break except NotImplementedError: if reverse: raise NotImplementedError( 'no successful change of variable found') else: pass if ok: break elif len(rterms) == 3: # two cube roots and another with order less than 5 # (so an analytical solution can be found) or a base # that matches one of the cube root bases info = [_rads_bases_lcm(i.as_poly()) for i in rterms] RAD = 0 BASES = 1 LCM = 2 if info[0][LCM] != 3: info.append(info.pop(0)) rterms.append(rterms.pop(0)) elif info[1][LCM] != 3: info.append(info.pop(1)) rterms.append(rterms.pop(1)) if info[0][LCM] == info[1][LCM] == 3: if info[1][BASES] != info[2][BASES]: info[0], info[1] = info[1], info[0] rterms[0], rterms[1] = rterms[1], rterms[0] if info[1][BASES] == info[2][BASES]: eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3 ok = True elif info[2][LCM] < 5: # a*root(A, 3) + b*root(B, 3) + others = c a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB'] # zz represents the unraded expression into which the # specifics for this case are substituted zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 - 3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 + 3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 - 63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 - 21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d + 45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 - 18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 + 9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 + 3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 - 60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 + 3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 - 126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 - 9*c*d**8 + d**9) def _t(i): b = Mul(*info[i][RAD]) return cancel(rterms[i]/b), Mul(*info[i][BASES]) aa, AA = _t(0) bb, BB = _t(1) cc = -rterms[2] dd = others eq = zz.xreplace(dict(zip( (a, A, b, B, c, d), (aa, AA, bb, BB, cc, dd)))) ok = True # handle power-of-2 cases if not ok: if log(lcm, 2).is_Integer and (not others and len(rterms) == 4 or len(rterms) < 4): def _norm2(a, b): return a**2 + b**2 + 2*a*b if len(rterms) == 4: # (r0+r1)**2 - (r2+r3)**2 r0, r1, r2, r3 = rterms eq = _norm2(r0, r1) - _norm2(r2, r3) ok = True elif len(rterms) == 3: # (r1+r2)**2 - (r0+others)**2 r0, r1, r2 = rterms eq = _norm2(r1, r2) - _norm2(r0, others) ok = True elif len(rterms) == 2: # r0**2 - (r1+others)**2 r0, r1 = rterms eq = r0**2 - _norm2(r1, others) ok = True new_depth = sqrt_depth(eq) if ok else depth rpt += 1 # XXX how many repeats with others unchanging is enough? if not ok or ( nwas is not None and len(rterms) == nwas and new_depth is not None and new_depth == depth and rpt > 3): raise NotImplementedError('Cannot remove all radicals') flags.update(dict(cov=cov, n=len(rterms), rpt=rpt)) neq = unrad(eq, *syms, **flags) if neq: eq, cov = neq eq, cov = _canonical(eq, cov) return eq, cov # Delayed imports from sympy.solvers.bivariate import ( bivariate_type, _solve_lambert, _filtered_gens)
da5e1a8793b6f171a15870f04ea767b3a074bc728d9f957eca79e26881ee4c4d
from sympy.core import Atom, Basic class CartanType_generator(Basic): """ Constructor for actually creating things """ def __call__(self, *args): c = args[0] if isinstance(c, list): letter, n = c[0], int(c[1]) elif isinstance(c, str): letter, n = c[0], int(c[1:]) else: raise TypeError("Argument must be a string (e.g. 'A3') or a list (e.g. ['A', 3])") if n < 0: raise ValueError("Lie algebra rank cannot be negative") if letter == "A": from . import type_a return type_a.TypeA(n) if letter == "B": from . import type_b return type_b.TypeB(n) if letter == "C": from . import type_c return type_c.TypeC(n) if letter == "D": from . import type_d return type_d.TypeD(n) if letter == "E": if n >= 6 and n <= 8: from . import type_e return type_e.TypeE(n) if letter == "F": if n == 4: from . import type_f return type_f.TypeF(n) if letter == "G": if n == 2: from . import type_g return type_g.TypeG(n) CartanType = CartanType_generator() class Standard_Cartan(Atom): """ Concrete base class for Cartan types such as A4, etc """ def __new__(cls, series, n): obj = Basic.__new__(cls) obj.n = n obj.series = series return obj def rank(self): """ Returns the rank of the Lie algebra """ return self.n def series(self): """ Returns the type of the Lie algebra """ return self.series
53341279dc836e25d173dfd424db7ab1f50afd6a0f14b278d9366f49e899621d
from .cartan_type import CartanType from sympy.core.basic import Atom class RootSystem(Atom): """Represent the root system of a simple Lie algebra Every simple Lie algebra has a unique root system. To find the root system, we first consider the Cartan subalgebra of g, which is the maximal abelian subalgebra, and consider the adjoint action of g on this subalgebra. There is a root system associated with this action. Now, a root system over a vector space V is a set of finite vectors Phi (called roots), which satisfy: 1. The roots span V 2. The only scalar multiples of x in Phi are x and -x 3. For every x in Phi, the set Phi is closed under reflection through the hyperplane perpendicular to x. 4. If x and y are roots in Phi, then the projection of y onto the line through x is a half-integral multiple of x. Now, there is a subset of Phi, which we will call Delta, such that: 1. Delta is a basis of V 2. Each root x in Phi can be written x = sum k_y y for y in Delta The elements of Delta are called the simple roots. Therefore, we see that the simple roots span the root space of a given simple Lie algebra. References ========== .. [1] https://en.wikipedia.org/wiki/Root_system .. [2] Lie Algebras and Representation Theory - Humphreys """ def __new__(cls, cartantype): """Create a new RootSystem object This method assigns an attribute called cartan_type to each instance of a RootSystem object. When an instance of RootSystem is called, it needs an argument, which should be an instance of a simple Lie algebra. We then take the CartanType of this argument and set it as the cartan_type attribute of the RootSystem instance. """ obj = Atom.__new__(cls) obj.cartan_type = CartanType(cartantype) return obj def simple_roots(self): """Generate the simple roots of the Lie algebra The rank of the Lie algebra determines the number of simple roots that it has. This method obtains the rank of the Lie algebra, and then uses the simple_root method from the Lie algebra classes to generate all the simple roots. Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> roots = c.simple_roots() >>> roots {1: [1, -1, 0, 0], 2: [0, 1, -1, 0], 3: [0, 0, 1, -1]} """ n = self.cartan_type.rank() roots = {} for i in range(1, n+1): root = self.cartan_type.simple_root(i) roots[i] = root return roots def all_roots(self): """Generate all the roots of a given root system The result is a dictionary where the keys are integer numbers. It generates the roots by getting the dictionary of all positive roots from the bases classes, and then taking each root, and multiplying it by -1 and adding it to the dictionary. In this way all the negative roots are generated. """ alpha = self.cartan_type.positive_roots() keys = list(alpha.keys()) k = max(keys) for val in keys: k += 1 root = alpha[val] newroot = [-x for x in root] alpha[k] = newroot return alpha def root_space(self): """Return the span of the simple roots The root space is the vector space spanned by the simple roots, i.e. it is a vector space with a distinguished basis, the simple roots. This method returns a string that represents the root space as the span of the simple roots, alpha[1],...., alpha[n]. Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> c.root_space() 'alpha[1] + alpha[2] + alpha[3]' """ n = self.cartan_type.rank() rs = " + ".join("alpha["+str(i) +"]" for i in range(1, n+1)) return rs def add_simple_roots(self, root1, root2): """Add two simple roots together The function takes as input two integers, root1 and root2. It then uses these integers as keys in the dictionary of simple roots, and gets the corresponding simple roots, and then adds them together. Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> newroot = c.add_simple_roots(1, 2) >>> newroot [1, 0, -1, 0] """ alpha = self.simple_roots() if root1 > len(alpha) or root2 > len(alpha): raise ValueError("You've used a root that doesn't exist!") a1 = alpha[root1] a2 = alpha[root2] newroot = [] length = len(a1) for i in range(length): newroot.append(a1[i] + a2[i]) return newroot def add_as_roots(self, root1, root2): """Add two roots together if and only if their sum is also a root It takes as input two vectors which should be roots. It then computes their sum and checks if it is in the list of all possible roots. If it is, it returns the sum. Otherwise it returns a string saying that the sum is not a root. Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> c.add_as_roots([1, 0, -1, 0], [0, 0, 1, -1]) [1, 0, 0, -1] >>> c.add_as_roots([1, -1, 0, 0], [0, 0, -1, 1]) 'The sum of these two roots is not a root' """ alpha = self.all_roots() newroot = [] for entry in range(len(root1)): newroot.append(root1[entry] + root2[entry]) if newroot in alpha.values(): return newroot else: return "The sum of these two roots is not a root" def cartan_matrix(self): """Cartan matrix of Lie algebra associated with this root system Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> c.cartan_matrix() Matrix([ [ 2, -1, 0], [-1, 2, -1], [ 0, -1, 2]]) """ return self.cartan_type.cartan_matrix() def dynkin_diagram(self): """Dynkin diagram of the Lie algebra associated with this root system Examples ======== >>> from sympy.liealgebras.root_system import RootSystem >>> c = RootSystem("A3") >>> print(c.dynkin_diagram()) 0---0---0 1 2 3 """ return self.cartan_type.dynkin_diagram()
e58140f2a0b81960ccd162cd47fe95829b8d1590dfc8303b7c116305c65a2e00
# -*- coding: utf-8 -*- from .cartan_type import CartanType from mpmath import fac from sympy.core.backend import Matrix, eye, Rational, igcd from sympy.core.basic import Atom class WeylGroup(Atom): """ For each semisimple Lie group, we have a Weyl group. It is a subgroup of the isometry group of the root system. Specifically, it's the subgroup that is generated by reflections through the hyperplanes orthogonal to the roots. Therefore, Weyl groups are reflection groups, and so a Weyl group is a finite Coxeter group. """ def __new__(cls, cartantype): obj = Atom.__new__(cls) obj.cartan_type = CartanType(cartantype) return obj def generators(self): """ This method creates the generating reflections of the Weyl group for a given Lie algebra. For a Lie algebra of rank n, there are n different generating reflections. This function returns them as a list. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> c = WeylGroup("F4") >>> c.generators() ['r1', 'r2', 'r3', 'r4'] """ n = self.cartan_type.rank() generators = [] for i in range(1, n+1): reflection = "r"+str(i) generators.append(reflection) return generators def group_order(self): """ This method returns the order of the Weyl group. For types A, B, C, D, and E the order depends on the rank of the Lie algebra. For types F and G, the order is fixed. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> c = WeylGroup("D4") >>> c.group_order() 192.0 """ n = self.cartan_type.rank() if self.cartan_type.series == "A": return fac(n+1) if self.cartan_type.series in ("B", "C"): return fac(n)*(2**n) if self.cartan_type.series == "D": return fac(n)*(2**(n-1)) if self.cartan_type.series == "E": if n == 6: return 51840 if n == 7: return 2903040 if n == 8: return 696729600 if self.cartan_type.series == "F": return 1152 if self.cartan_type.series == "G": return 12 def group_name(self): """ This method returns some general information about the Weyl group for a given Lie algebra. It returns the name of the group and the elements it acts on, if relevant. """ n = self.cartan_type.rank() if self.cartan_type.series == "A": return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements." if self.cartan_type.series in ("B", "C"): return "The hyperoctahedral group acting on " + str(2*n) + " elements." if self.cartan_type.series == "D": return "The symmetry group of the " + str(n) + "-dimensional demihypercube." if self.cartan_type.series == "E": if n == 6: return "The symmetry group of the 6-polytope." if n == 7: return "The symmetry group of the 7-polytope." if n == 8: return "The symmetry group of the 8-polytope." if self.cartan_type.series == "F": return "The symmetry group of the 24-cell, or icositetrachoron." if self.cartan_type.series == "G": return "D6, the dihedral group of order 12, and symmetry group of the hexagon." def element_order(self, weylelt): """ This method returns the order of a given Weyl group element, which should be specified by the user in the form of products of the generating reflections, i.e. of the form r1*r2 etc. For types A-F, this method current works by taking the matrix form of the specified element, and then finding what power of the matrix is the identity. It then returns this power. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> b = WeylGroup("B4") >>> b.element_order('r1*r4*r2') 4 """ n = self.cartan_type.rank() if self.cartan_type.series == "A": a = self.matrix_form(weylelt) order = 1 while a != eye(n+1): a *= self.matrix_form(weylelt) order += 1 return order if self.cartan_type.series == "D": a = self.matrix_form(weylelt) order = 1 while a != eye(n): a *= self.matrix_form(weylelt) order += 1 return order if self.cartan_type.series == "E": a = self.matrix_form(weylelt) order = 1 while a != eye(8): a *= self.matrix_form(weylelt) order += 1 return order if self.cartan_type.series == "G": elts = list(weylelt) reflections = elts[1::3] m = self.delete_doubles(reflections) while self.delete_doubles(m) != m: m = self.delete_doubles(m) reflections = m if len(reflections) % 2 == 1: return 2 elif len(reflections) == 0: return 1 else: if len(reflections) == 1: return 2 else: m = len(reflections) // 2 lcm = (6 * m)/ igcd(m, 6) order = lcm / m return order if self.cartan_type.series == 'F': a = self.matrix_form(weylelt) order = 1 while a != eye(4): a *= self.matrix_form(weylelt) order += 1 return order if self.cartan_type.series in ("B", "C"): a = self.matrix_form(weylelt) order = 1 while a != eye(n): a *= self.matrix_form(weylelt) order += 1 return order def delete_doubles(self, reflections): """ This is a helper method for determining the order of an element in the Weyl group of G2. It takes a Weyl element and if repeated simple reflections in it, it deletes them. """ counter = 0 copy = list(reflections) for elt in copy: if counter < len(copy)-1: if copy[counter + 1] == elt: del copy[counter] del copy[counter] counter += 1 return copy def matrix_form(self, weylelt): """ This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is a reflection of some type, there is a corresponding matrix representation. This method uses the standard representation for all the generating reflections. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> f = WeylGroup("F4") >>> f.matrix_form('r2*r3') Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]]) """ elts = list(weylelt) reflections = elts[1::3] n = self.cartan_type.rank() if self.cartan_type.series == 'A': matrixform = eye(n+1) for elt in reflections: a = int(elt) mat = eye(n+1) mat[a-1, a-1] = 0 mat[a-1, a] = 1 mat[a, a-1] = 1 mat[a, a] = 0 matrixform *= mat return matrixform if self.cartan_type.series == 'D': matrixform = eye(n) for elt in reflections: a = int(elt) mat = eye(n) if a < n: mat[a-1, a-1] = 0 mat[a-1, a] = 1 mat[a, a-1] = 1 mat[a, a] = 0 matrixform *= mat else: mat[n-2, n-1] = -1 mat[n-2, n-2] = 0 mat[n-1, n-2] = -1 mat[n-1, n-1] = 0 matrixform *= mat return matrixform if self.cartan_type.series == 'G': matrixform = eye(3) for elt in reflections: a = int(elt) if a == 1: gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) matrixform *= gen1 else: gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)], [Rational(2, 3), Rational(-1, 3), Rational(2, 3)], [Rational(-1, 3), Rational(2, 3), Rational(2, 3)]]) matrixform *= gen2 return matrixform if self.cartan_type.series == 'F': matrixform = eye(4) for elt in reflections: a = int(elt) if a == 1: mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) matrixform *= mat elif a == 2: mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) matrixform *= mat elif a == 3: mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) matrixform *= mat else: mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)], [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)], [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)], [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]]) matrixform *= mat return matrixform if self.cartan_type.series == 'E': matrixform = eye(8) for elt in reflections: a = int(elt) if a == 1: mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)], [Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)], [Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]]) matrixform *= mat elif a == 2: mat = eye(8) mat[0, 0] = 0 mat[0, 1] = -1 mat[1, 0] = -1 mat[1, 1] = 0 matrixform *= mat else: mat = eye(8) mat[a-3, a-3] = 0 mat[a-3, a-2] = 1 mat[a-2, a-3] = 1 mat[a-2, a-2] = 0 matrixform *= mat return matrixform if self.cartan_type.series in ("B", "C"): matrixform = eye(n) for elt in reflections: a = int(elt) mat = eye(n) if a == 1: mat[0, 0] = -1 matrixform *= mat else: mat[a - 2, a - 2] = 0 mat[a-2, a-1] = 1 mat[a - 1, a - 2] = 1 mat[a -1, a - 1] = 0 matrixform *= mat return matrixform def coxeter_diagram(self): """ This method returns the Coxeter diagram corresponding to a Weyl group. The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram by deleting all arrows; the Coxeter diagram is the undirected graph. The vertices of the Coxeter diagram represent the generating reflections of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order $m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order $m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there are three edges, the order $m(i, j)$ is 6. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> c = WeylGroup("B3") >>> print(c.coxeter_diagram()) 0---0===0 1 2 3 """ n = self.cartan_type.rank() if self.cartan_type.series in ("A", "D", "E"): return self.cartan_type.dynkin_diagram() if self.cartan_type.series in ("B", "C"): diag = "---".join("0" for i in range(1, n)) + "===0\n" diag += " ".join(str(i) for i in range(1, n+1)) return diag if self.cartan_type.series == "F": diag = "0---0===0---0\n" diag += " ".join(str(i) for i in range(1, 5)) return diag if self.cartan_type.series == "G": diag = "0≡≡≡0\n1 2" return diag
8e58b900008a7af44e08720fae147d280d714acb2beb5cd8a6b35aae19997073
"""Calculus-related methods.""" from .euler import euler_equations from .singularities import (singularities, is_increasing, is_strictly_increasing, is_decreasing, is_strictly_decreasing, is_monotonic) from .finite_diff import finite_diff_weights, apply_finite_diff, as_finite_diff, differentiate_finite from .util import (periodicity, not_empty_in, is_convex, stationary_points, minimum, maximum) from .accumulationbounds import AccumBounds __all__ = [ 'euler_equations', 'singularities', 'is_increasing', 'is_strictly_increasing', 'is_decreasing', 'is_strictly_decreasing', 'is_monotonic', 'finite_diff_weights', 'apply_finite_diff', 'as_finite_diff', 'differentiate_finite', 'periodicity', 'not_empty_in', 'is_convex', 'stationary_points', 'minimum', 'maximum', 'AccumBounds' ]
42d4d4612774cb7471dc02f2be8e57883b53de1daba36e48557ae14c21633313
from sympy.core import Add, Mul, Pow, S from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.numbers import _sympifyit, oo, zoo from sympy.core.relational import is_le, is_lt, is_ge, is_gt from sympy.core.sympify import _sympify from sympy.functions.elementary.miscellaneous import Min, Max from sympy.logic.boolalg import And from sympy.multipledispatch import dispatch from sympy.series.order import Order from sympy.sets.sets import FiniteSet class AccumulationBounds(Expr): r""" # Note AccumulationBounds has an alias: AccumBounds AccumulationBounds represent an interval `[a, b]`, which is always closed at the ends. Here `a` and `b` can be any value from extended real numbers. The intended meaning of AccummulationBounds is to give an approximate location of the accumulation points of a real function at a limit point. Let `a` and `b` be reals such that `a \le b`. `\left\langle a, b\right\rangle = \{x \in \mathbb{R} \mid a \le x \le b\}` `\left\langle -\infty, b\right\rangle = \{x \in \mathbb{R} \mid x \le b\} \cup \{-\infty, \infty\}` `\left\langle a, \infty \right\rangle = \{x \in \mathbb{R} \mid a \le x\} \cup \{-\infty, \infty\}` `\left\langle -\infty, \infty \right\rangle = \mathbb{R} \cup \{-\infty, \infty\}` ``oo`` and ``-oo`` are added to the second and third definition respectively, since if either ``-oo`` or ``oo`` is an argument, then the other one should be included (though not as an end point). This is forced, since we have, for example, ``1/AccumBounds(0, 1) = AccumBounds(1, oo)``, and the limit at `0` is not one-sided. As `x` tends to `0-`, then `1/x \rightarrow -\infty`, so `-\infty` should be interpreted as belonging to ``AccumBounds(1, oo)`` though it need not appear explicitly. In many cases it suffices to know that the limit set is bounded. However, in some other cases more exact information could be useful. For example, all accumulation values of `\cos(x) + 1` are non-negative. (``AccumBounds(-1, 1) + 1 = AccumBounds(0, 2)``) A AccumulationBounds object is defined to be real AccumulationBounds, if its end points are finite reals. Let `X`, `Y` be real AccumulationBounds, then their sum, difference, product are defined to be the following sets: `X + Y = \{ x+y \mid x \in X \cap y \in Y\}` `X - Y = \{ x-y \mid x \in X \cap y \in Y\}` `X \times Y = \{ x \times y \mid x \in X \cap y \in Y\}` When an AccumBounds is raised to a negative power, if 0 is contained between the bounds then an infinite range is returned, otherwise if an endpoint is 0 then a semi-infinite range with consistent sign will be returned. AccumBounds in expressions behave a lot like Intervals but the semantics are not necessarily the same. Division (or exponentiation to a negative integer power) could be handled with *intervals* by returning a union of the results obtained after splitting the bounds between negatives and positives, but that is not done with AccumBounds. In addition, bounds are assumed to be independent of each other; if the same bound is used in more than one place in an expression, the result may not be the supremum or infimum of the expression (see below). Finally, when a boundary is ``1``, exponentiation to the power of ``oo`` yields ``oo``, neither ``1`` nor ``nan``. Examples ======== >>> from sympy import AccumBounds, sin, exp, log, pi, E, S, oo >>> from sympy.abc import x >>> AccumBounds(0, 1) + AccumBounds(1, 2) AccumBounds(1, 3) >>> AccumBounds(0, 1) - AccumBounds(0, 2) AccumBounds(-2, 1) >>> AccumBounds(-2, 3)*AccumBounds(-1, 1) AccumBounds(-3, 3) >>> AccumBounds(1, 2)*AccumBounds(3, 5) AccumBounds(3, 10) The exponentiation of AccumulationBounds is defined as follows: If 0 does not belong to `X` or `n > 0` then `X^n = \{ x^n \mid x \in X\}` >>> AccumBounds(1, 4)**(S(1)/2) AccumBounds(1, 2) otherwise, an infinite or semi-infinite result is obtained: >>> 1/AccumBounds(-1, 1) AccumBounds(-oo, oo) >>> 1/AccumBounds(0, 2) AccumBounds(1/2, oo) >>> 1/AccumBounds(-oo, 0) AccumBounds(-oo, 0) A boundary of 1 will always generate all nonnegatives: >>> AccumBounds(1, 2)**oo AccumBounds(0, oo) >>> AccumBounds(0, 1)**oo AccumBounds(0, oo) If the exponent is itself an AccumulationBounds or is not an integer then unevaluated results will be returned unless the base values are positive: >>> AccumBounds(2, 3)**AccumBounds(-1, 2) AccumBounds(1/3, 9) >>> AccumBounds(-2, 3)**AccumBounds(-1, 2) AccumBounds(-2, 3)**AccumBounds(-1, 2) >>> AccumBounds(-2, -1)**(S(1)/2) sqrt(AccumBounds(-2, -1)) Note: `\left\langle a, b\right\rangle^2` is not same as `\left\langle a, b\right\rangle \times \left\langle a, b\right\rangle` >>> AccumBounds(-1, 1)**2 AccumBounds(0, 1) >>> AccumBounds(1, 3) < 4 True >>> AccumBounds(1, 3) < -1 False Some elementary functions can also take AccumulationBounds as input. A function `f` evaluated for some real AccumulationBounds `\left\langle a, b \right\rangle` is defined as `f(\left\langle a, b\right\rangle) = \{ f(x) \mid a \le x \le b \}` >>> sin(AccumBounds(pi/6, pi/3)) AccumBounds(1/2, sqrt(3)/2) >>> exp(AccumBounds(0, 1)) AccumBounds(1, E) >>> log(AccumBounds(1, E)) AccumBounds(0, 1) Some symbol in an expression can be substituted for a AccumulationBounds object. But it doesn't necessarily evaluate the AccumulationBounds for that expression. The same expression can be evaluated to different values depending upon the form it is used for substitution since each instance of an AccumulationBounds is considered independent. For example: >>> (x**2 + 2*x + 1).subs(x, AccumBounds(-1, 1)) AccumBounds(-1, 4) >>> ((x + 1)**2).subs(x, AccumBounds(-1, 1)) AccumBounds(0, 4) References ========== .. [1] https://en.wikipedia.org/wiki/Interval_arithmetic .. [2] http://fab.cba.mit.edu/classes/S62.12/docs/Hickey_interval.pdf Notes ===== Do not use ``AccumulationBounds`` for floating point interval arithmetic calculations, use ``mpmath.iv`` instead. """ is_extended_real = True is_number = False def __new__(cls, min, max): min = _sympify(min) max = _sympify(max) # Only allow real intervals (use symbols with 'is_extended_real=True'). if not min.is_extended_real or not max.is_extended_real: raise ValueError("Only real AccumulationBounds are supported") if max == min: return max # Make sure that the created AccumBounds object will be valid. if max.is_number and min.is_number: bad = max.is_comparable and min.is_comparable and max < min else: bad = (max - min).is_extended_negative if bad: raise ValueError( "Lower limit should be smaller than upper limit") return Basic.__new__(cls, min, max) # setting the operation priority _op_priority = 11.0 def _eval_is_real(self): if self.min.is_real and self.max.is_real: return True @property def min(self): """ Returns the minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).min 1 """ return self.args[0] @property def max(self): """ Returns the maximum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).max 3 """ return self.args[1] @property def delta(self): """ Returns the difference of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).delta 2 """ return self.max - self.min @property def mid(self): """ Returns the mean of maximum possible value attained by AccumulationBounds object and minimum possible value attained by AccumulationBounds object. Examples ======== >>> from sympy import AccumBounds >>> AccumBounds(1, 3).mid 2 """ return (self.min + self.max) / 2 @_sympifyit('other', NotImplemented) def _eval_power(self, other): return self.__pow__(other) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, other.min), Add(self.max, other.max)) if other is S.Infinity and self.min is S.NegativeInfinity or \ other is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: if self.min is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif self.min is S.NegativeInfinity: return AccumBounds(-oo, self.max + other) elif self.max is S.Infinity: return AccumBounds(self.min + other, oo) else: return AccumBounds(Add(self.min, other), Add(self.max, other)) return Add(self, other, evaluate=False) return NotImplemented __radd__ = __add__ def __neg__(self): return AccumBounds(-self.max, -self.min) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): return AccumBounds( Add(self.min, -other.max), Add(self.max, -other.min)) if other is S.NegativeInfinity and self.min is S.NegativeInfinity or \ other is S.Infinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif other.is_extended_real: if self.min is S.NegativeInfinity and self.max is S.Infinity: return AccumBounds(-oo, oo) elif self.min is S.NegativeInfinity: return AccumBounds(-oo, self.max - other) elif self.max is S.Infinity: return AccumBounds(self.min - other, oo) else: return AccumBounds( Add(self.min, -other), Add(self.max, -other)) return Add(self, -other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rsub__(self, other): return self.__neg__() + other @_sympifyit('other', NotImplemented) def __mul__(self, other): if self.args == (-oo, oo): return self if isinstance(other, Expr): if isinstance(other, AccumBounds): if other.args == (-oo, oo): return other v = set() for a in self.args: vi = other*a for i in vi.args or (vi,): v.add(i) return AccumBounds(Min(*v), Max(*v)) if other is S.Infinity: if self.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero: return AccumBounds(-oo, 0) if other is S.NegativeInfinity: if self.min.is_zero: return AccumBounds(-oo, 0) if self.max.is_zero: return AccumBounds(0, oo) if other.is_extended_real: if other.is_zero: if self.max is S.Infinity: return AccumBounds(0, oo) if self.min is S.NegativeInfinity: return AccumBounds(-oo, 0) return S.Zero if other.is_extended_positive: return AccumBounds( Mul(self.min, other), Mul(self.max, other)) elif other.is_extended_negative: return AccumBounds( Mul(self.max, other), Mul(self.min, other)) if isinstance(other, Order): return other return Mul(self, other, evaluate=False) return NotImplemented __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Expr): if isinstance(other, AccumBounds): if other.min.is_positive or other.max.is_negative: return self * AccumBounds(1/other.max, 1/other.min) if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative and other.min.is_extended_nonpositive and other.max.is_extended_nonnegative): if self.min.is_zero and other.min.is_zero: return AccumBounds(0, oo) if self.max.is_zero and other.min.is_zero: return AccumBounds(-oo, 0) return AccumBounds(-oo, oo) if self.max.is_extended_negative: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(self.max / other.min, oo) if other.max.is_extended_positive: # if we were dealing with intervals we would return # Union(Interval(-oo, self.max/other.max), # Interval(self.max/other.min, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(-oo, self.max / other.max) if self.min.is_extended_positive: if other.min.is_extended_negative: if other.max.is_zero: return AccumBounds(-oo, self.min / other.min) if other.max.is_extended_positive: # if we were dealing with intervals we would return # Union(Interval(-oo, self.min/other.min), # Interval(self.min/other.max, oo)) return AccumBounds(-oo, oo) if other.min.is_zero and other.max.is_extended_positive: return AccumBounds(self.min / other.max, oo) elif other.is_extended_real: if other in (S.Infinity, S.NegativeInfinity): if self == AccumBounds(-oo, oo): return AccumBounds(-oo, oo) if self.max is S.Infinity: return AccumBounds(Min(0, other), Max(0, other)) if self.min is S.NegativeInfinity: return AccumBounds(Min(0, -other), Max(0, -other)) if other.is_extended_positive: return AccumBounds(self.min / other, self.max / other) elif other.is_extended_negative: return AccumBounds(self.max / other, self.min / other) if (1 / other) is S.ComplexInfinity: return Mul(self, 1 / other, evaluate=False) else: return Mul(self, 1 / other) return NotImplemented @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if isinstance(other, Expr): if other.is_extended_real: if other.is_zero: return S.Zero if (self.min.is_extended_nonpositive and self.max.is_extended_nonnegative): if self.min.is_zero: if other.is_extended_positive: return AccumBounds(Mul(other, 1 / self.max), oo) if other.is_extended_negative: return AccumBounds(-oo, Mul(other, 1 / self.max)) if self.max.is_zero: if other.is_extended_positive: return AccumBounds(-oo, Mul(other, 1 / self.min)) if other.is_extended_negative: return AccumBounds(Mul(other, 1 / self.min), oo) return AccumBounds(-oo, oo) else: return AccumBounds(Min(other / self.min, other / self.max), Max(other / self.min, other / self.max)) return Mul(other, 1 / self, evaluate=False) else: return NotImplemented @_sympifyit('other', NotImplemented) def __pow__(self, other): if isinstance(other, Expr): if other is S.Infinity: if self.min.is_extended_nonnegative: if self.max < 1: return S.Zero if self.min > 1: return S.Infinity return AccumBounds(0, oo) elif self.max.is_extended_negative: if self.min > -1: return S.Zero if self.max < -1: return zoo return S.NaN else: if self.min > -1: if self.max < 1: return S.Zero return AccumBounds(0, oo) return AccumBounds(-oo, oo) if other is S.NegativeInfinity: return (1/self)**oo # generically true if (self.max - self.min).is_nonnegative: # well defined if self.min.is_nonnegative: # no 0 to worry about if other.is_nonnegative: # no infinity to worry about return self.func(self.min**other, self.max**other) if other.is_zero: return S.One # x**0 = 1 if other.is_Integer or other.is_integer: if self.min.is_extended_positive: return AccumBounds( Min(self.min**other, self.max**other), Max(self.min**other, self.max**other)) elif self.max.is_extended_negative: return AccumBounds( Min(self.max**other, self.min**other), Max(self.max**other, self.min**other)) if other % 2 == 0: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(self.min**other, oo) return AccumBounds(0, oo) return AccumBounds( S.Zero, Max(self.min**other, self.max**other)) elif other % 2 == 1: if other.is_extended_negative: if self.min.is_zero: return AccumBounds(self.max**other, oo) if self.max.is_zero: return AccumBounds(-oo, self.min**other) return AccumBounds(-oo, oo) return AccumBounds(self.min**other, self.max**other) # non-integer exponent # 0**neg or neg**frac yields complex if (other.is_number or other.is_rational) and ( self.min.is_extended_nonnegative or ( other.is_extended_nonnegative and self.min.is_extended_nonnegative)): num, den = other.as_numer_denom() if num is S.One: return AccumBounds(*[i**(1/den) for i in self.args]) elif den is not S.One: # e.g. if other is not Float return (self**num)**(1/den) # ok for non-negative base if isinstance(other, AccumBounds): if (self.min.is_extended_positive or self.min.is_extended_nonnegative and other.min.is_extended_nonnegative): p = [self**i for i in other.args] if not any(i.is_Pow for i in p): a = [j for i in p for j in i.args or (i,)] try: return self.func(min(a), max(a)) except TypeError: # can't sort pass return Pow(self, other, evaluate=False) return NotImplemented @_sympifyit('other', NotImplemented) def __rpow__(self, other): if other.is_real and other.is_extended_nonnegative and ( self.max - self.min).is_extended_positive: if other is S.One: return S.One if other.is_extended_positive: a, b = [other**i for i in self.args] if min(a, b) != a: a, b = b, a return self.func(a, b) if other.is_zero: if self.min.is_zero: return self.func(0, 1) if self.min.is_extended_positive: return S.Zero return Pow(other, self, evaluate=False) def __abs__(self): if self.max.is_extended_negative: return self.__neg__() elif self.min.is_extended_negative: return AccumBounds(S.Zero, Max(abs(self.min), self.max)) else: return self def __contains__(self, other): """ Returns ``True`` if other is contained in self, where other belongs to extended real numbers, ``False`` if not contained, otherwise TypeError is raised. Examples ======== >>> from sympy import AccumBounds, oo >>> 1 in AccumBounds(-1, 3) True -oo and oo go together as limits (in AccumulationBounds). >>> -oo in AccumBounds(1, oo) True >>> oo in AccumBounds(-oo, 0) True """ other = _sympify(other) if other in (S.Infinity, S.NegativeInfinity): if self.min is S.NegativeInfinity or self.max is S.Infinity: return True return False rv = And(self.min <= other, self.max >= other) if rv not in (True, False): raise TypeError("input failed to evaluate") return rv def intersection(self, other): """ Returns the intersection of 'self' and 'other'. Here other can be an instance of :py:class:`~.FiniteSet` or AccumulationBounds. Parameters ========== other: AccumulationBounds Another AccumulationBounds object with which the intersection has to be computed. Returns ======= AccumulationBounds Intersection of ``self`` and ``other``. Examples ======== >>> from sympy import AccumBounds, FiniteSet >>> AccumBounds(1, 3).intersection(AccumBounds(2, 4)) AccumBounds(2, 3) >>> AccumBounds(1, 3).intersection(AccumBounds(4, 6)) EmptySet >>> AccumBounds(1, 4).intersection(FiniteSet(1, 2, 5)) {1, 2} """ if not isinstance(other, (AccumBounds, FiniteSet)): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if isinstance(other, FiniteSet): fin_set = S.EmptySet for i in other: if i in self: fin_set = fin_set + FiniteSet(i) return fin_set if self.max < other.min or self.min > other.max: return S.EmptySet if self.min <= other.min: if self.max <= other.max: return AccumBounds(other.min, self.max) if self.max > other.max: return other if other.min <= self.min: if other.max < self.max: return AccumBounds(self.min, other.max) if other.max > self.max: return self def union(self, other): # TODO : Devise a better method for Union of AccumBounds # this method is not actually correct and # can be made better if not isinstance(other, AccumBounds): raise TypeError( "Input must be AccumulationBounds or FiniteSet object") if self.min <= other.min and self.max >= other.min: return AccumBounds(self.min, Max(self.max, other.max)) if other.min <= self.min and other.max >= self.min: return AccumBounds(other.min, Max(self.max, other.max)) @dispatch(AccumulationBounds, AccumulationBounds) # type: ignore # noqa:F811 def _eval_is_le(lhs, rhs): # noqa:F811 if is_le(lhs.max, rhs.min): return True if is_gt(lhs.min, rhs.max): return False @dispatch(AccumulationBounds, Basic) # type: ignore # noqa:F811 def _eval_is_le(lhs, rhs): # noqa: F811 """ Returns ``True `` if range of values attained by ``lhs`` AccumulationBounds object is greater than the range of values attained by ``rhs``, where ``rhs`` may be any value of type AccumulationBounds object or extended real number value, ``False`` if ``rhs`` satisfies the same property, else an unevaluated :py:class:`~.Relational`. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) > AccumBounds(4, oo) False >>> AccumBounds(1, 4) > AccumBounds(3, 4) AccumBounds(1, 4) > AccumBounds(3, 4) >>> AccumBounds(1, oo) > -1 True """ if not rhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(rhs), rhs)) elif rhs.is_comparable: if is_le(lhs.max, rhs): return True if is_gt(lhs.min, rhs): return False @dispatch(AccumulationBounds, AccumulationBounds) def _eval_is_ge(lhs, rhs): # noqa:F811 if is_ge(lhs.min, rhs.max): return True if is_lt(lhs.max, rhs.min): return False @dispatch(AccumulationBounds, Expr) # type:ignore def _eval_is_ge(lhs, rhs): # noqa: F811 """ Returns ``True`` if range of values attained by ``lhs`` AccumulationBounds object is less that the range of values attained by ``rhs``, where other may be any value of type AccumulationBounds object or extended real number value, ``False`` if ``rhs`` satisfies the same property, else an unevaluated :py:class:`~.Relational`. Examples ======== >>> from sympy import AccumBounds, oo >>> AccumBounds(1, 3) >= AccumBounds(4, oo) False >>> AccumBounds(1, 4) >= AccumBounds(3, 4) AccumBounds(1, 4) >= AccumBounds(3, 4) >>> AccumBounds(1, oo) >= 1 True """ if not rhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(rhs), rhs)) elif rhs.is_comparable: if is_ge(lhs.min, rhs): return True if is_lt(lhs.max, rhs): return False @dispatch(Expr, AccumulationBounds) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 if not lhs.is_extended_real: raise TypeError( "Invalid comparison of %s %s" % (type(lhs), lhs)) elif lhs.is_comparable: if is_le(rhs.max, lhs): return True if is_gt(rhs.min, lhs): return False @dispatch(AccumulationBounds, AccumulationBounds) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 if is_ge(lhs.min, rhs.max): return True if is_lt(lhs.max, rhs.min): return False # setting an alias for AccumulationBounds AccumBounds = AccumulationBounds
3466431e8831864ee263a0d413c45537eea099123b28eb0ef188d82601fbd668
""" Singularities ============= This module implements algorithms for finding singularities for a function and identifying types of functions. The differential calculus methods in this module include methods to identify the following function types in the given ``Interval``: - Increasing - Strictly Increasing - Decreasing - Strictly Decreasing - Monotonic """ from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.exponential import log from sympy.functions.elementary.trigonometric import sec, csc, cot, tan, cos from sympy.utilities.misc import filldedent def singularities(expression, symbol, domain=None): """ Find singularities of a given function. Parameters ========== expression : Expr The target function in which singularities need to be found. symbol : Symbol The symbol over the values of which the singularity in expression in being searched for. Returns ======= Set A set of values for ``symbol`` for which ``expression`` has a singularity. An ``EmptySet`` is returned if ``expression`` has no singularities for any given value of ``Symbol``. Raises ====== NotImplementedError Methods for determining the singularities of this function have not been developed. Notes ===== This function does not find non-isolated singularities nor does it find branch points of the expression. Currently supported functions are: - univariate continuous (real or complex) functions References ========== .. [1] https://en.wikipedia.org/wiki/Mathematical_singularity Examples ======== >>> from sympy import singularities, Symbol, log >>> x = Symbol('x', real=True) >>> y = Symbol('y', real=False) >>> singularities(x**2 + x + 1, x) EmptySet >>> singularities(1/(x + 1), x) {-1} >>> singularities(1/(y**2 + 1), y) {-I, I} >>> singularities(1/(y**3 + 1), y) {-1, 1/2 - sqrt(3)*I/2, 1/2 + sqrt(3)*I/2} >>> singularities(log(x), x) {0} """ from sympy.solvers.solveset import solveset if domain is None: domain = S.Reals if symbol.is_real else S.Complexes try: sings = S.EmptySet for i in expression.rewrite([sec, csc, cot, tan], cos).atoms(Pow): if i.exp.is_infinite: raise NotImplementedError if i.exp.is_negative: sings += solveset(i.base, symbol, domain) for i in expression.atoms(log): sings += solveset(i.args[0], symbol, domain) return sings except NotImplementedError: raise NotImplementedError(filldedent(''' Methods for determining the singularities of this function have not been developed.''')) ########################################################################### # DIFFERENTIAL CALCULUS METHODS # ########################################################################### def monotonicity_helper(expression, predicate, interval=S.Reals, symbol=None): """ Helper function for functions checking function monotonicity. Parameters ========== expression : Expr The target function which is being checked predicate : function The property being tested for. The function takes in an integer and returns a boolean. The integer input is the derivative and the boolean result should be true if the property is being held, and false otherwise. interval : Set, optional The range of values in which we are testing, defaults to all reals. symbol : Symbol, optional The symbol present in expression which gets varied over the given range. It returns a boolean indicating whether the interval in which the function's derivative satisfies given predicate is a superset of the given interval. Returns ======= Boolean True if ``predicate`` is true for all the derivatives when ``symbol`` is varied in ``range``, False otherwise. """ from sympy.solvers.solveset import solveset expression = sympify(expression) free = expression.free_symbols if symbol is None: if len(free) > 1: raise NotImplementedError( 'The function has not yet been implemented' ' for all multivariate expressions.' ) variable = symbol or (free.pop() if free else Symbol('x')) derivative = expression.diff(variable) predicate_interval = solveset(predicate(derivative), variable, S.Reals) return interval.is_subset(predicate_interval) def is_increasing(expression, interval=S.Reals, symbol=None): """ Return whether the function is increasing in the given interval. Parameters ========== expression : Expr The target function which is being checked. interval : Set, optional The range of values in which we are testing (defaults to set of all real numbers). symbol : Symbol, optional The symbol present in expression which gets varied over the given range. Returns ======= Boolean True if ``expression`` is increasing (either strictly increasing or constant) in the given ``interval``, False otherwise. Examples ======== >>> from sympy import is_increasing >>> from sympy.abc import x, y >>> from sympy import S, Interval, oo >>> is_increasing(x**3 - 3*x**2 + 4*x, S.Reals) True >>> is_increasing(-x**2, Interval(-oo, 0)) True >>> is_increasing(-x**2, Interval(0, oo)) False >>> is_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval(-2, 3)) False >>> is_increasing(x**2 + y, Interval(1, 2), x) True """ return monotonicity_helper(expression, lambda x: x >= 0, interval, symbol) def is_strictly_increasing(expression, interval=S.Reals, symbol=None): """ Return whether the function is strictly increasing in the given interval. Parameters ========== expression : Expr The target function which is being checked. interval : Set, optional The range of values in which we are testing (defaults to set of all real numbers). symbol : Symbol, optional The symbol present in expression which gets varied over the given range. Returns ======= Boolean True if ``expression`` is strictly increasing in the given ``interval``, False otherwise. Examples ======== >>> from sympy import is_strictly_increasing >>> from sympy.abc import x, y >>> from sympy import Interval, oo >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Ropen(-oo, -2)) True >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.Lopen(3, oo)) True >>> is_strictly_increasing(4*x**3 - 6*x**2 - 72*x + 30, Interval.open(-2, 3)) False >>> is_strictly_increasing(-x**2, Interval(0, oo)) False >>> is_strictly_increasing(-x**2 + y, Interval(-oo, 0), x) False """ return monotonicity_helper(expression, lambda x: x > 0, interval, symbol) def is_decreasing(expression, interval=S.Reals, symbol=None): """ Return whether the function is decreasing in the given interval. Parameters ========== expression : Expr The target function which is being checked. interval : Set, optional The range of values in which we are testing (defaults to set of all real numbers). symbol : Symbol, optional The symbol present in expression which gets varied over the given range. Returns ======= Boolean True if ``expression`` is decreasing (either strictly decreasing or constant) in the given ``interval``, False otherwise. Examples ======== >>> from sympy import is_decreasing >>> from sympy.abc import x, y >>> from sympy import S, Interval, oo >>> is_decreasing(1/(x**2 - 3*x), Interval.open(1.5, 3)) True >>> is_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) True >>> is_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2)) False >>> is_decreasing(-x**2, Interval(-oo, 0)) False >>> is_decreasing(-x**2 + y, Interval(-oo, 0), x) False """ return monotonicity_helper(expression, lambda x: x <= 0, interval, symbol) def is_strictly_decreasing(expression, interval=S.Reals, symbol=None): """ Return whether the function is strictly decreasing in the given interval. Parameters ========== expression : Expr The target function which is being checked. interval : Set, optional The range of values in which we are testing (defaults to set of all real numbers). symbol : Symbol, optional The symbol present in expression which gets varied over the given range. Returns ======= Boolean True if ``expression`` is strictly decreasing in the given ``interval``, False otherwise. Examples ======== >>> from sympy import is_strictly_decreasing >>> from sympy.abc import x, y >>> from sympy import S, Interval, oo >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Lopen(3, oo)) True >>> is_strictly_decreasing(1/(x**2 - 3*x), Interval.Ropen(-oo, S(3)/2)) False >>> is_strictly_decreasing(-x**2, Interval(-oo, 0)) False >>> is_strictly_decreasing(-x**2 + y, Interval(-oo, 0), x) False """ return monotonicity_helper(expression, lambda x: x < 0, interval, symbol) def is_monotonic(expression, interval=S.Reals, symbol=None): """ Return whether the function is monotonic in the given interval. Parameters ========== expression : Expr The target function which is being checked. interval : Set, optional The range of values in which we are testing (defaults to set of all real numbers). symbol : Symbol, optional The symbol present in expression which gets varied over the given range. Returns ======= Boolean True if ``expression`` is monotonic in the given ``interval``, False otherwise. Raises ====== NotImplementedError Monotonicity check has not been implemented for the queried function. Examples ======== >>> from sympy import is_monotonic >>> from sympy.abc import x, y >>> from sympy import S, Interval, oo >>> is_monotonic(1/(x**2 - 3*x), Interval.open(1.5, 3)) True >>> is_monotonic(1/(x**2 - 3*x), Interval.Lopen(3, oo)) True >>> is_monotonic(x**3 - 3*x**2 + 4*x, S.Reals) True >>> is_monotonic(-x**2, S.Reals) False >>> is_monotonic(x**2 + y + 1, Interval(1, 2), x) True """ from sympy.solvers.solveset import solveset expression = sympify(expression) free = expression.free_symbols if symbol is None and len(free) > 1: raise NotImplementedError( 'is_monotonic has not yet been implemented' ' for all multivariate expressions.' ) variable = symbol or (free.pop() if free else Symbol('x')) turning_points = solveset(expression.diff(variable), variable, interval) return interval.intersection(turning_points) is S.EmptySet
b57da958ab0b4ff2520648cc6ed2bb373c607039086308a26c773ef7cea87306
from .accumulationbounds import AccumBounds, AccumulationBounds # noqa: F401 from .singularities import singularities from sympy.core import Pow, S from sympy.core.function import diff, expand_mul from sympy.core.kind import NumberKind from sympy.core.mod import Mod from sympy.core.relational import Relational from sympy.core.symbol import Symbol, Dummy from sympy.core.sympify import _sympify from sympy.functions.elementary.complexes import Abs, im, re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import ( TrigonometricFunction, sin, cos, csc, sec) from sympy.polys.polytools import degree, lcm_list from sympy.sets.sets import (Interval, Intersection, FiniteSet, Union, Complement) from sympy.sets.fancysets import ImageSet from sympy.simplify.simplify import simplify from sympy.utilities import filldedent from sympy.utilities.iterables import iterable def continuous_domain(f, symbol, domain): """ Returns the intervals in the given domain for which the function is continuous. This method is limited by the ability to determine the various singularities and discontinuities of the given function. Parameters ========== f : :py:class:`~.Expr` The concerned function. symbol : :py:class:`~.Symbol` The variable for which the intervals are to be determined. domain : :py:class:`~.Interval` The domain over which the continuity of the symbol has to be checked. Examples ======== >>> from sympy import Interval, Symbol, S, tan, log, pi, sqrt >>> from sympy.calculus.util import continuous_domain >>> x = Symbol('x') >>> continuous_domain(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> continuous_domain(tan(x), x, Interval(0, pi)) Union(Interval.Ropen(0, pi/2), Interval.Lopen(pi/2, pi)) >>> continuous_domain(sqrt(x - 2), x, Interval(-5, 5)) Interval(2, 5) >>> continuous_domain(log(2*x - 1), x, S.Reals) Interval.open(1/2, oo) Returns ======= :py:class:`~.Interval` Union of all intervals where the function is continuous. Raises ====== NotImplementedError If the method to determine continuity of such a function has not yet been developed. """ from sympy.solvers.inequalities import solve_univariate_inequality if domain.is_subset(S.Reals): constrained_interval = domain for atom in f.atoms(Pow): den = atom.exp.as_numer_denom()[1] if den.is_even and den.is_nonzero: constraint = solve_univariate_inequality(atom.base >= 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) for atom in f.atoms(log): constraint = solve_univariate_inequality(atom.args[0] > 0, symbol).as_set() constrained_interval = Intersection(constraint, constrained_interval) return constrained_interval - singularities(f, symbol, domain) def function_range(f, symbol, domain): """ Finds the range of a function in a given domain. This method is limited by the ability to determine the singularities and determine limits. Parameters ========== f : :py:class:`~.Expr` The concerned function. symbol : :py:class:`~.Symbol` The variable for which the range of function is to be determined. domain : :py:class:`~.Interval` The domain under which the range of the function has to be found. Examples ======== >>> from sympy import Interval, Symbol, S, exp, log, pi, sqrt, sin, tan >>> from sympy.calculus.util import function_range >>> x = Symbol('x') >>> function_range(sin(x), x, Interval(0, 2*pi)) Interval(-1, 1) >>> function_range(tan(x), x, Interval(-pi/2, pi/2)) Interval(-oo, oo) >>> function_range(1/x, x, S.Reals) Union(Interval.open(-oo, 0), Interval.open(0, oo)) >>> function_range(exp(x), x, S.Reals) Interval.open(0, oo) >>> function_range(log(x), x, S.Reals) Interval(-oo, oo) >>> function_range(sqrt(x), x, Interval(-5, 9)) Interval(0, 3) Returns ======= :py:class:`~.Interval` Union of all ranges for all intervals under domain where function is continuous. Raises ====== NotImplementedError If any of the intervals, in the given domain, for which function is continuous are not finite or real, OR if the critical points of the function on the domain cannot be found. """ if domain is S.EmptySet: return S.EmptySet period = periodicity(f, symbol) if period == S.Zero: # the expression is constant wrt symbol return FiniteSet(f.expand()) from sympy.series.limits import limit from sympy.solvers.solveset import solveset if period is not None: if isinstance(domain, Interval): if (domain.inf - domain.sup).is_infinite: domain = Interval(0, period) elif isinstance(domain, Union): for sub_dom in domain.args: if isinstance(sub_dom, Interval) and \ ((sub_dom.inf - sub_dom.sup).is_infinite): domain = Interval(0, period) intervals = continuous_domain(f, symbol, domain) range_int = S.EmptySet if isinstance(intervals,(Interval, FiniteSet)): interval_iter = (intervals,) elif isinstance(intervals, Union): interval_iter = intervals.args else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) for interval in interval_iter: if isinstance(interval, FiniteSet): for singleton in interval: if singleton in domain: range_int += FiniteSet(f.subs(symbol, singleton)) elif isinstance(interval, Interval): vals = S.EmptySet critical_points = S.EmptySet critical_values = S.EmptySet bounds = ((interval.left_open, interval.inf, '+'), (interval.right_open, interval.sup, '-')) for is_open, limit_point, direction in bounds: if is_open: critical_values += FiniteSet(limit(f, symbol, limit_point, direction)) vals += critical_values else: vals += FiniteSet(f.subs(symbol, limit_point)) solution = solveset(f.diff(symbol), symbol, interval) if not iterable(solution): raise NotImplementedError( 'Unable to find critical points for {}'.format(f)) if isinstance(solution, ImageSet): raise NotImplementedError( 'Infinite number of critical points for {}'.format(f)) critical_points += solution for critical_point in critical_points: vals += FiniteSet(f.subs(symbol, critical_point)) left_open, right_open = False, False if critical_values is not S.EmptySet: if critical_values.inf == vals.inf: left_open = True if critical_values.sup == vals.sup: right_open = True range_int += Interval(vals.inf, vals.sup, left_open, right_open) else: raise NotImplementedError(filldedent(''' Unable to find range for the given domain. ''')) return range_int def not_empty_in(finset_intersection, *syms): """ Finds the domain of the functions in ``finset_intersection`` in which the ``finite_set`` is not-empty Parameters ========== finset_intersection : Intersection of FiniteSet The unevaluated intersection of FiniteSet containing real-valued functions with Union of Sets syms : Tuple of symbols Symbol for which domain is to be found Raises ====== NotImplementedError The algorithms to find the non-emptiness of the given FiniteSet are not yet implemented. ValueError The input is not valid. RuntimeError It is a bug, please report it to the github issue tracker (https://github.com/sympy/sympy/issues). Examples ======== >>> from sympy import FiniteSet, Interval, not_empty_in, oo >>> from sympy.abc import x >>> not_empty_in(FiniteSet(x/2).intersect(Interval(0, 1)), x) Interval(0, 2) >>> not_empty_in(FiniteSet(x, x**2).intersect(Interval(1, 2)), x) Union(Interval(1, 2), Interval(-sqrt(2), -1)) >>> not_empty_in(FiniteSet(x**2/(x + 2)).intersect(Interval(1, oo)), x) Union(Interval.Lopen(-2, -1), Interval(2, oo)) """ # TODO: handle piecewise defined functions # TODO: handle transcendental functions # TODO: handle multivariate functions if len(syms) == 0: raise ValueError("One or more symbols must be given in syms.") if finset_intersection is S.EmptySet: return S.EmptySet if isinstance(finset_intersection, Union): elm_in_sets = finset_intersection.args[0] return Union(not_empty_in(finset_intersection.args[1], *syms), elm_in_sets) if isinstance(finset_intersection, FiniteSet): finite_set = finset_intersection _sets = S.Reals else: finite_set = finset_intersection.args[1] _sets = finset_intersection.args[0] if not isinstance(finite_set, FiniteSet): raise ValueError('A FiniteSet must be given, not %s: %s' % (type(finite_set), finite_set)) if len(syms) == 1: symb = syms[0] else: raise NotImplementedError('more than one variables %s not handled' % (syms,)) def elm_domain(expr, intrvl): """ Finds the domain of an expression in any given interval """ from sympy.solvers.solveset import solveset _start = intrvl.start _end = intrvl.end _singularities = solveset(expr.as_numer_denom()[1], symb, domain=S.Reals) if intrvl.right_open: if _end is S.Infinity: _domain1 = S.Reals else: _domain1 = solveset(expr < _end, symb, domain=S.Reals) else: _domain1 = solveset(expr <= _end, symb, domain=S.Reals) if intrvl.left_open: if _start is S.NegativeInfinity: _domain2 = S.Reals else: _domain2 = solveset(expr > _start, symb, domain=S.Reals) else: _domain2 = solveset(expr >= _start, symb, domain=S.Reals) # domain in the interval expr_with_sing = Intersection(_domain1, _domain2) expr_domain = Complement(expr_with_sing, _singularities) return expr_domain if isinstance(_sets, Interval): return Union(*[elm_domain(element, _sets) for element in finite_set]) if isinstance(_sets, Union): _domain = S.EmptySet for intrvl in _sets.args: _domain_element = Union(*[elm_domain(element, intrvl) for element in finite_set]) _domain = Union(_domain, _domain_element) return _domain def periodicity(f, symbol, check=False): """ Tests the given function for periodicity in the given symbol. Parameters ========== f : :py:class:`~.Expr`. The concerned function. symbol : :py:class:`~.Symbol` The variable for which the period is to be determined. check : bool, optional The flag to verify whether the value being returned is a period or not. Returns ======= period The period of the function is returned. ``None`` is returned when the function is aperiodic or has a complex period. The value of $0$ is returned as the period of a constant function. Raises ====== NotImplementedError The value of the period computed cannot be verified. Notes ===== Currently, we do not support functions with a complex period. The period of functions having complex periodic values such as ``exp``, ``sinh`` is evaluated to ``None``. The value returned might not be the "fundamental" period of the given function i.e. it may not be the smallest periodic value of the function. The verification of the period through the ``check`` flag is not reliable due to internal simplification of the given expression. Hence, it is set to ``False`` by default. Examples ======== >>> from sympy import periodicity, Symbol, sin, cos, tan, exp >>> x = Symbol('x') >>> f = sin(x) + sin(2*x) + sin(3*x) >>> periodicity(f, x) 2*pi >>> periodicity(sin(x)*cos(x), x) pi >>> periodicity(exp(tan(2*x) - 1), x) pi/2 >>> periodicity(sin(4*x)**cos(2*x), x) pi >>> periodicity(exp(x), x) """ if symbol.kind is not NumberKind: raise NotImplementedError("Cannot use symbol of kind %s" % symbol.kind) temp = Dummy('x', real=True) f = f.subs(symbol, temp) symbol = temp def _check(orig_f, period): '''Return the checked period or raise an error.''' new_f = orig_f.subs(symbol, symbol + period) if new_f.equals(orig_f): return period else: raise NotImplementedError(filldedent(''' The period of the given function cannot be verified. When `%s` was replaced with `%s + %s` in `%s`, the result was `%s` which was not recognized as being the same as the original function. So either the period was wrong or the two forms were not recognized as being equal. Set check=False to obtain the value.''' % (symbol, symbol, period, orig_f, new_f))) orig_f = f period = None if isinstance(f, Relational): f = f.lhs - f.rhs f = simplify(f) if symbol not in f.free_symbols: return S.Zero if isinstance(f, TrigonometricFunction): try: period = f.period(symbol) except NotImplementedError: pass if isinstance(f, Abs): arg = f.args[0] if isinstance(arg, (sec, csc, cos)): # all but tan and cot might have a # a period that is half as large # so recast as sin arg = sin(arg.args[0]) period = periodicity(arg, symbol) if period is not None and isinstance(arg, sin): # the argument of Abs was a trigonometric other than # cot or tan; test to see if the half-period # is valid. Abs(arg) has behaviour equivalent to # orig_f, so use that for test: orig_f = Abs(arg) try: return _check(orig_f, period/2) except NotImplementedError as err: if check: raise NotImplementedError(err) # else let new orig_f and period be # checked below if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1): f = Pow(S.Exp1, expand_mul(f.exp)) if im(f) != 0: period_real = periodicity(re(f), symbol) period_imag = periodicity(im(f), symbol) if period_real is not None and period_imag is not None: period = lcim([period_real, period_imag]) if f.is_Pow and f.base != S.Exp1: base, expo = f.args base_has_sym = base.has(symbol) expo_has_sym = expo.has(symbol) if base_has_sym and not expo_has_sym: period = periodicity(base, symbol) elif expo_has_sym and not base_has_sym: period = periodicity(expo, symbol) else: period = _periodicity(f.args, symbol) elif f.is_Mul: coeff, g = f.as_independent(symbol, as_Add=False) if isinstance(g, TrigonometricFunction) or coeff is not S.One: period = periodicity(g, symbol) else: period = _periodicity(g.args, symbol) elif f.is_Add: k, g = f.as_independent(symbol) if k is not S.Zero: return periodicity(g, symbol) period = _periodicity(g.args, symbol) elif isinstance(f, Mod): a, n = f.args if a == symbol: period = n elif isinstance(a, TrigonometricFunction): period = periodicity(a, symbol) #check if 'f' is linear in 'symbol' elif (a.is_polynomial(symbol) and degree(a, symbol) == 1 and symbol not in n.free_symbols): period = Abs(n / a.diff(symbol)) elif isinstance(f, Piecewise): pass # not handling Piecewise yet as the return type is not favorable elif period is None: from sympy.solvers.decompogen import compogen, decompogen g_s = decompogen(f, symbol) num_of_gs = len(g_s) if num_of_gs > 1: for index, g in enumerate(reversed(g_s)): start_index = num_of_gs - 1 - index g = compogen(g_s[start_index:], symbol) if g not in (orig_f, f): # Fix for issue 12620 period = periodicity(g, symbol) if period is not None: break if period is not None: if check: return _check(orig_f, period) return period return None def _periodicity(args, symbol): """ Helper for `periodicity` to find the period of a list of simpler functions. It uses the `lcim` method to find the least common period of all the functions. Parameters ========== args : Tuple of :py:class:`~.Symbol` All the symbols present in a function. symbol : :py:class:`~.Symbol` The symbol over which the function is to be evaluated. Returns ======= period The least common period of the function for all the symbols of the function. ``None`` if for at least one of the symbols the function is aperiodic. """ periods = [] for f in args: period = periodicity(f, symbol) if period is None: return None if period is not S.Zero: periods.append(period) if len(periods) > 1: return lcim(periods) if periods: return periods[0] def lcim(numbers): """Returns the least common integral multiple of a list of numbers. The numbers can be rational or irrational or a mixture of both. `None` is returned for incommensurable numbers. Parameters ========== numbers : list Numbers (rational and/or irrational) for which lcim is to be found. Returns ======= number lcim if it exists, otherwise ``None`` for incommensurable numbers. Examples ======== >>> from sympy.calculus.util import lcim >>> from sympy import S, pi >>> lcim([S(1)/2, S(3)/4, S(5)/6]) 15/2 >>> lcim([2*pi, 3*pi, pi, pi/2]) 6*pi >>> lcim([S(1), 2*pi]) """ result = None if all(num.is_irrational for num in numbers): factorized_nums = list(map(lambda num: num.factor(), numbers)) factors_num = list( map(lambda num: num.as_coeff_Mul(), factorized_nums)) term = factors_num[0][1] if all(factor == term for coeff, factor in factors_num): common_term = term coeffs = [coeff for coeff, factor in factors_num] result = lcm_list(coeffs) * common_term elif all(num.is_rational for num in numbers): result = lcm_list(numbers) else: pass return result def is_convex(f, *syms, domain=S.Reals): r"""Determines the convexity of the function passed in the argument. Parameters ========== f : :py:class:`~.Expr` The concerned function. syms : Tuple of :py:class:`~.Symbol` The variables with respect to which the convexity is to be determined. domain : :py:class:`~.Interval`, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= bool The method returns ``True`` if the function is convex otherwise it returns ``False``. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass `\log(f)` as concerned function. To determine logartihmic concavity of a function pass `-\log(f)` as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import is_convex, symbols, exp, oo, Interval >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") from sympy.solvers.inequalities import solve_univariate_inequality f = _sympify(f) var = syms[0] condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True def stationary_points(f, symbol, domain=S.Reals): """ Returns the stationary points of a function (where derivative of the function is 0) in the given domain. Parameters ========== f : :py:class:`~.Expr` The concerned function. symbol : :py:class:`~.Symbol` The variable for which the stationary points are to be determined. domain : :py:class:`~.Interval` The domain over which the stationary points have to be checked. If unspecified, ``S.Reals`` will be the default domain. Returns ======= Set A set of stationary points for the function. If there are no stationary point, an :py:class:`~.EmptySet` is returned. Examples ======== >>> from sympy import Interval, Symbol, S, sin, pi, pprint, stationary_points >>> x = Symbol('x') >>> stationary_points(1/x, x, S.Reals) EmptySet >>> pprint(stationary_points(sin(x), x), use_unicode=False) pi 3*pi {2*n*pi + -- | n in Integers} U {2*n*pi + ---- | n in Integers} 2 2 >>> stationary_points(sin(x),x, Interval(0, 4*pi)) {pi/2, 3*pi/2, 5*pi/2, 7*pi/2} """ from sympy.solvers.solveset import solveset if domain is S.EmptySet: return S.EmptySet domain = continuous_domain(f, symbol, domain) set = solveset(diff(f, symbol), symbol, domain) return set def maximum(f, symbol, domain=S.Reals): """ Returns the maximum value of a function in the given domain. Parameters ========== f : :py:class:`~.Expr` The concerned function. symbol : :py:class:`~.Symbol` The variable for maximum value needs to be determined. domain : :py:class:`~.Interval` The domain over which the maximum have to be checked. If unspecified, then the global maximum is returned. Returns ======= number Maximum value of the function in given domain. Examples ======== >>> from sympy import Interval, Symbol, S, sin, cos, pi, maximum >>> x = Symbol('x') >>> f = -x**2 + 2*x + 5 >>> maximum(f, x, S.Reals) 6 >>> maximum(sin(x), x, Interval(-pi, pi/4)) sqrt(2)/2 >>> maximum(sin(x)*cos(x), x) 1/2 """ if isinstance(symbol, Symbol): if domain is S.EmptySet: raise ValueError("Maximum value not defined for empty domain.") return function_range(f, symbol, domain).sup else: raise ValueError("%s is not a valid symbol." % symbol) def minimum(f, symbol, domain=S.Reals): """ Returns the minimum value of a function in the given domain. Parameters ========== f : :py:class:`~.Expr` The concerned function. symbol : :py:class:`~.Symbol` The variable for minimum value needs to be determined. domain : :py:class:`~.Interval` The domain over which the minimum have to be checked. If unspecified, then the global minimum is returned. Returns ======= number Minimum value of the function in the given domain. Examples ======== >>> from sympy import Interval, Symbol, S, sin, cos, minimum >>> x = Symbol('x') >>> f = x**2 + 2*x + 5 >>> minimum(f, x, S.Reals) 4 >>> minimum(sin(x), x, Interval(2, 3)) sin(3) >>> minimum(sin(x)*cos(x), x) -1/2 """ if isinstance(symbol, Symbol): if domain is S.EmptySet: raise ValueError("Minimum value not defined for empty domain.") return function_range(f, symbol, domain).inf else: raise ValueError("%s is not a valid symbol." % symbol)
a0b0129860a0fc070f09800451dcfb0719a042bddb834e275d6346a25b5493a9
""" The objects in this module allow the usage of the MatchPy pattern matching library on SymPy expressions. """ import re from typing import List, Callable from sympy.core.sympify import _sympify from sympy.external import import_module from sympy.functions import (log, sin, cos, tan, cot, csc, sec, erf, gamma, uppergamma) from sympy.functions.elementary.hyperbolic import acosh, asinh, atanh, acoth, acsch, asech, cosh, sinh, tanh, coth, sech, csch from sympy.functions.elementary.trigonometric import atan, acsc, asin, acot, acos, asec from sympy.functions.special.error_functions import fresnelc, fresnels, erfc, erfi, Ei from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.expr import Expr from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.relational import (Equality, Unequality) from sympy.core.symbol import Symbol from sympy.functions.elementary.exponential import exp from sympy.integrals.integrals import Integral from sympy.printing.repr import srepr from sympy.utilities.decorator import doctest_depends_on matchpy = import_module("matchpy") if matchpy: from matchpy import Operation, CommutativeOperation, AssociativeOperation, OneIdentityOperation from matchpy.expressions.functions import op_iter, create_operation_expression, op_len Operation.register(Integral) Operation.register(Pow) OneIdentityOperation.register(Pow) Operation.register(Add) OneIdentityOperation.register(Add) CommutativeOperation.register(Add) AssociativeOperation.register(Add) Operation.register(Mul) OneIdentityOperation.register(Mul) CommutativeOperation.register(Mul) AssociativeOperation.register(Mul) Operation.register(Equality) CommutativeOperation.register(Equality) Operation.register(Unequality) CommutativeOperation.register(Unequality) Operation.register(exp) Operation.register(log) Operation.register(gamma) Operation.register(uppergamma) Operation.register(fresnels) Operation.register(fresnelc) Operation.register(erf) Operation.register(Ei) Operation.register(erfc) Operation.register(erfi) Operation.register(sin) Operation.register(cos) Operation.register(tan) Operation.register(cot) Operation.register(csc) Operation.register(sec) Operation.register(sinh) Operation.register(cosh) Operation.register(tanh) Operation.register(coth) Operation.register(csch) Operation.register(sech) Operation.register(asin) Operation.register(acos) Operation.register(atan) Operation.register(acot) Operation.register(acsc) Operation.register(asec) Operation.register(asinh) Operation.register(acosh) Operation.register(atanh) Operation.register(acoth) Operation.register(acsch) Operation.register(asech) @op_iter.register(Integral) # type: ignore def _(operation): return iter((operation._args[0],) + operation._args[1]) @op_iter.register(Basic) # type: ignore def _(operation): return iter(operation._args) @op_len.register(Integral) # type: ignore def _(operation): return 1 + len(operation._args[1]) @op_len.register(Basic) # type: ignore def _(operation): return len(operation._args) @create_operation_expression.register(Basic) def sympy_op_factory(old_operation, new_operands, variable_name=True): return type(old_operation)(*new_operands) if matchpy: from matchpy import Wildcard else: class Wildcard: # type: ignore def __init__(self, min_length, fixed_size, variable_name, optional): self.min_count = min_length self.fixed_size = fixed_size self.variable_name = variable_name self.optional = optional @doctest_depends_on(modules=('matchpy',)) class _WildAbstract(Wildcard, Symbol): min_length: int # abstract field required in subclasses fixed_size: bool # abstract field required in subclasses def __init__(self, variable_name=None, optional=None, **assumptions): min_length = self.min_length fixed_size = self.fixed_size if optional is not None: optional = _sympify(optional) Wildcard.__init__(self, min_length, fixed_size, str(variable_name), optional) def __new__(cls, variable_name=None, optional=None, **assumptions): cls._sanitize(assumptions, cls) return _WildAbstract.__xnew__(cls, variable_name, optional, **assumptions) def __getnewargs__(self): return self.min_count, self.fixed_size, self.variable_name, self.optional @staticmethod def __xnew__(cls, variable_name=None, optional=None, **assumptions): obj = Symbol.__xnew__(cls, variable_name, **assumptions) return obj def _hashable_content(self): if self.optional: return super()._hashable_content() + (self.min_count, self.fixed_size, self.variable_name, self.optional) else: return super()._hashable_content() + (self.min_count, self.fixed_size, self.variable_name) def __copy__(self) -> '_WildAbstract': return type(self)(variable_name=self.variable_name, optional=self.optional) def __repr__(self): return str(self) def __str__(self): return self.name @doctest_depends_on(modules=('matchpy',)) class WildDot(_WildAbstract): min_length = 1 fixed_size = True @doctest_depends_on(modules=('matchpy',)) class WildPlus(_WildAbstract): min_length = 1 fixed_size = False @doctest_depends_on(modules=('matchpy',)) class WildStar(_WildAbstract): min_length = 0 fixed_size = False def _get_srepr(expr): s = srepr(expr) s = re.sub(r"WildDot\('(\w+)'\)", r"\1", s) s = re.sub(r"WildPlus\('(\w+)'\)", r"*\1", s) s = re.sub(r"WildStar\('(\w+)'\)", r"*\1", s) return s @doctest_depends_on(modules=('matchpy',)) class Replacer: """ Replacer object to perform multiple pattern matching and subexpression replacements in SymPy expressions. Examples ======== Example to construct a simple first degree equation solver: >>> from sympy.utilities.matchpy_connector import WildDot, Replacer >>> from sympy import Equality, Symbol >>> x = Symbol("x") >>> a_ = WildDot("a_", optional=1) >>> b_ = WildDot("b_", optional=0) The lines above have defined two wildcards, ``a_`` and ``b_``, the coefficients of the equation `a x + b = 0`. The optional values specified indicate which expression to return in case no match is found, they are necessary in equations like `a x = 0` and `x + b = 0`. Create two constraints to make sure that ``a_`` and ``b_`` will not match any expression containing ``x``: >>> from matchpy import CustomConstraint >>> free_x_a = CustomConstraint(lambda a_: not a_.has(x)) >>> free_x_b = CustomConstraint(lambda b_: not b_.has(x)) Now create the rule replacer with the constraints: >>> replacer = Replacer(common_constraints=[free_x_a, free_x_b]) Add the matching rule: >>> replacer.add(Equality(a_*x + b_, 0), -b_/a_) Let's try it: >>> replacer.replace(Equality(3*x + 4, 0)) -4/3 Notice that it will not match equations expressed with other patterns: >>> eq = Equality(3*x, 4) >>> replacer.replace(eq) Eq(3*x, 4) In order to extend the matching patterns, define another one (we also need to clear the cache, because the previous result has already been memorized and the pattern matcher will not iterate again if given the same expression) >>> replacer.add(Equality(a_*x, b_), b_/a_) >>> replacer._replacer.matcher.clear() >>> replacer.replace(eq) 4/3 """ def __init__(self, common_constraints: list = []): self._replacer = matchpy.ManyToOneReplacer() self._common_constraint = common_constraints def _get_lambda(self, lambda_str: str) -> Callable[..., Expr]: exec("from sympy import *") return eval(lambda_str, locals()) def _get_custom_constraint(self, constraint_expr: Expr, condition_template: str) -> Callable[..., Expr]: wilds = list(map(lambda x: x.name, constraint_expr.atoms(_WildAbstract))) lambdaargs = ', '.join(wilds) fullexpr = _get_srepr(constraint_expr) condition = condition_template.format(fullexpr) return matchpy.CustomConstraint( self._get_lambda(f"lambda {lambdaargs}: ({condition})")) def _get_custom_constraint_nonfalse(self, constraint_expr: Expr) -> Callable[..., Expr]: return self._get_custom_constraint(constraint_expr, "({}) != False") def _get_custom_constraint_true(self, constraint_expr: Expr) -> Callable[..., Expr]: return self._get_custom_constraint(constraint_expr, "({}) == True") def add(self, expr: Expr, result: Expr, conditions_true: List[Expr] = [], conditions_nonfalse: List[Expr] = []) -> None: expr = _sympify(expr) result = _sympify(result) lambda_str = f"lambda {', '.join(map(lambda x: x.name, expr.atoms(_WildAbstract)))}: {_get_srepr(result)}" lambda_expr = self._get_lambda(lambda_str) constraints = self._common_constraint[:] constraint_conditions_true = [ self._get_custom_constraint_true(cond) for cond in conditions_true] constraint_conditions_nonfalse = [ self._get_custom_constraint_nonfalse(cond) for cond in conditions_nonfalse] constraints.extend(constraint_conditions_true) constraints.extend(constraint_conditions_nonfalse) self._replacer.add( matchpy.ReplacementRule(matchpy.Pattern(expr, *constraints), lambda_expr)) def replace(self, expr: Expr) -> Expr: return self._replacer.replace(expr)
0d4b5060e3642675a353616f01bbf1b913241a65e92cc79a88e707ed1f4eb3da
"""Simple tools for timing functions' execution, when IPython is not available. """ import timeit import math _scales = [1e0, 1e3, 1e6, 1e9] _units = ['s', 'ms', '\N{GREEK SMALL LETTER MU}s', 'ns'] def timed(func, setup="pass", limit=None): """Adaptively measure execution time of a function. """ timer = timeit.Timer(func, setup=setup) repeat, number = 3, 1 for i in range(1, 10): if timer.timeit(number) >= 0.2: break elif limit is not None and number >= limit: break else: number *= 10 time = min(timer.repeat(repeat, number)) / number if time > 0.0: order = min(-int(math.floor(math.log10(time)) // 3), 3) else: order = 3 return (number, time, time*_scales[order], _units[order]) # Code for doing inline timings of recursive algorithms. def __do_timings(): import os res = os.getenv('SYMPY_TIMINGS', '') res = [x.strip() for x in res.split(',')] return set(res) _do_timings = __do_timings() _timestack = None def _print_timestack(stack, level=1): print('-'*level, '%.2f %s%s' % (stack[2], stack[0], stack[3])) for s in stack[1]: _print_timestack(s, level + 1) def timethis(name): def decorator(func): global _do_timings if name not in _do_timings: return func def wrapper(*args, **kwargs): from time import time global _timestack oldtimestack = _timestack _timestack = [func.func_name, [], 0, args] t1 = time() r = func(*args, **kwargs) t2 = time() _timestack[2] = t2 - t1 if oldtimestack is not None: oldtimestack[1].append(_timestack) _timestack = oldtimestack else: _print_timestack(_timestack) _timestack = None return r return wrapper return decorator
7122a741b5cf5b5a7dcf28048396ed4c4ea85b769cfeaea106c5aed3f4fde5b1
from collections import defaultdict, OrderedDict from itertools import ( combinations, combinations_with_replacement, permutations, product ) # For backwards compatibility from itertools import product as cartes # noqa: F401 from operator import gt # this is the logical location of these functions # from sympy.core.compatibility import ordered # from sympy.core.compatibility import default_sort_key # noqa: F401 from sympy.utilities.misc import as_int from sympy.utilities.enumerative import ( multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser) from sympy.utilities.decorator import deprecated def is_palindromic(s, i=0, j=None): """return True if the sequence is the same from left to right as it is from right to left in the whole sequence (default) or in the Python slice ``s[i: j]``; else False. Examples ======== >>> from sympy.utilities.iterables import is_palindromic >>> is_palindromic([1, 0, 1]) True >>> is_palindromic('abcbb') False >>> is_palindromic('abcbb', 1) False Normal Python slicing is performed in place so there is no need to create a slice of the sequence for testing: >>> is_palindromic('abcbb', 1, -1) True >>> is_palindromic('abcbb', -4, -1) True See Also ======== sympy.ntheory.digits.is_palindromic: tests integers """ i, j, _ = slice(i, j).indices(len(s)) m = (j - i)//2 # if length is odd, middle element will be ignored return all(s[i + k] == s[j - 1 - k] for k in range(m)) def flatten(iterable, levels=None, cls=None): # noqa: F811 """ Recursively denest iterable containers. >>> from sympy.utilities.iterables import flatten >>> flatten([1, 2, 3]) [1, 2, 3] >>> flatten([1, 2, [3]]) [1, 2, 3] >>> flatten([1, [2, 3], [4, 5]]) [1, 2, 3, 4, 5] >>> flatten([1.0, 2, (1, None)]) [1.0, 2, 1, None] If you want to denest only a specified number of levels of nested containers, then set ``levels`` flag to the desired number of levels:: >>> ls = [[(-2, -1), (1, 2)], [(0, 0)]] >>> flatten(ls, levels=1) [(-2, -1), (1, 2), (0, 0)] If cls argument is specified, it will only flatten instances of that class, for example: >>> from sympy.core import Basic >>> class MyOp(Basic): ... pass ... >>> flatten([MyOp(1, MyOp(2, 3))], cls=MyOp) [1, 2, 3] adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks """ from sympy.tensor.array import NDimArray if levels is not None: if not levels: return iterable elif levels > 0: levels -= 1 else: raise ValueError( "expected non-negative number of levels, got %s" % levels) if cls is None: reducible = lambda x: is_sequence(x, set) else: reducible = lambda x: isinstance(x, cls) result = [] for el in iterable: if reducible(el): if hasattr(el, 'args') and not isinstance(el, NDimArray): el = el.args result.extend(flatten(el, levels=levels, cls=cls)) else: result.append(el) return result def unflatten(iter, n=2): """Group ``iter`` into tuples of length ``n``. Raise an error if the length of ``iter`` is not a multiple of ``n``. """ if n < 1 or len(iter) % n: raise ValueError('iter length is not a multiple of %i' % n) return list(zip(*(iter[i::n] for i in range(n)))) def reshape(seq, how): """Reshape the sequence according to the template in ``how``. Examples ======== >>> from sympy.utilities import reshape >>> seq = list(range(1, 9)) >>> reshape(seq, [4]) # lists of 4 [[1, 2, 3, 4], [5, 6, 7, 8]] >>> reshape(seq, (4,)) # tuples of 4 [(1, 2, 3, 4), (5, 6, 7, 8)] >>> reshape(seq, (2, 2)) # tuples of 4 [(1, 2, 3, 4), (5, 6, 7, 8)] >>> reshape(seq, (2, [2])) # (i, i, [i, i]) [(1, 2, [3, 4]), (5, 6, [7, 8])] >>> reshape(seq, ((2,), [2])) # etc.... [((1, 2), [3, 4]), ((5, 6), [7, 8])] >>> reshape(seq, (1, [2], 1)) [(1, [2, 3], 4), (5, [6, 7], 8)] >>> reshape(tuple(seq), ([[1], 1, (2,)],)) (([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],)) >>> reshape(tuple(seq), ([1], 1, (2,))) (([1], 2, (3, 4)), ([5], 6, (7, 8))) >>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)]) [[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]] """ m = sum(flatten(how)) n, rem = divmod(len(seq), m) if m < 0 or rem: raise ValueError('template must sum to positive number ' 'that divides the length of the sequence') i = 0 container = type(how) rv = [None]*n for k in range(len(rv)): rv[k] = [] for hi in how: if type(hi) is int: rv[k].extend(seq[i: i + hi]) i += hi else: n = sum(flatten(hi)) hi_type = type(hi) rv[k].append(hi_type(reshape(seq[i: i + n], hi)[0])) i += n rv[k] = container(rv[k]) return type(seq)(rv) def group(seq, multiple=True): """ Splits a sequence into a list of lists of equal, adjacent elements. Examples ======== >>> from sympy.utilities.iterables import group >>> group([1, 1, 1, 2, 2, 3]) [[1, 1, 1], [2, 2], [3]] >>> group([1, 1, 1, 2, 2, 3], multiple=False) [(1, 3), (2, 2), (3, 1)] >>> group([1, 1, 3, 2, 2, 1], multiple=False) [(1, 2), (3, 1), (2, 2), (1, 1)] See Also ======== multiset """ if not seq: return [] current, groups = [seq[0]], [] for elem in seq[1:]: if elem == current[-1]: current.append(elem) else: groups.append(current) current = [elem] groups.append(current) if multiple: return groups for i, current in enumerate(groups): groups[i] = (current[0], len(current)) return groups def _iproduct2(iterable1, iterable2): '''Cartesian product of two possibly infinite iterables''' it1 = iter(iterable1) it2 = iter(iterable2) elems1 = [] elems2 = [] sentinel = object() def append(it, elems): e = next(it, sentinel) if e is not sentinel: elems.append(e) n = 0 append(it1, elems1) append(it2, elems2) while n <= len(elems1) + len(elems2): for m in range(n-len(elems1)+1, len(elems2)): yield (elems1[n-m], elems2[m]) n += 1 append(it1, elems1) append(it2, elems2) def iproduct(*iterables): ''' Cartesian product of iterables. Generator of the cartesian product of iterables. This is analogous to itertools.product except that it works with infinite iterables and will yield any item from the infinite product eventually. Examples ======== >>> from sympy.utilities.iterables import iproduct >>> sorted(iproduct([1,2], [3,4])) [(1, 3), (1, 4), (2, 3), (2, 4)] With an infinite iterator: >>> from sympy import S >>> (3,) in iproduct(S.Integers) True >>> (3, 4) in iproduct(S.Integers, S.Integers) True .. seealso:: `itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_ ''' if len(iterables) == 0: yield () return elif len(iterables) == 1: for e in iterables[0]: yield (e,) elif len(iterables) == 2: yield from _iproduct2(*iterables) else: first, others = iterables[0], iterables[1:] for ef, eo in _iproduct2(first, iproduct(*others)): yield (ef,) + eo def multiset(seq): """Return the hashable sequence in multiset form with values being the multiplicity of the item in the sequence. Examples ======== >>> from sympy.utilities.iterables import multiset >>> multiset('mississippi') {'i': 4, 'm': 1, 'p': 2, 's': 4} See Also ======== group """ rv = defaultdict(int) for s in seq: rv[s] += 1 return dict(rv) def ibin(n, bits=None, str=False): """Return a list of length ``bits`` corresponding to the binary value of ``n`` with small bits to the right (last). If bits is omitted, the length will be the number required to represent ``n``. If the bits are desired in reversed order, use the ``[::-1]`` slice of the returned list. If a sequence of all bits-length lists starting from ``[0, 0,..., 0]`` through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g. ``'all'``. If the bit *string* is desired pass ``str=True``. Examples ======== >>> from sympy.utilities.iterables import ibin >>> ibin(2) [1, 0] >>> ibin(2, 4) [0, 0, 1, 0] If all lists corresponding to 0 to 2**n - 1, pass a non-integer for bits: >>> bits = 2 >>> for i in ibin(2, 'all'): ... print(i) (0, 0) (0, 1) (1, 0) (1, 1) If a bit string is desired of a given length, use str=True: >>> n = 123 >>> bits = 10 >>> ibin(n, bits, str=True) '0001111011' >>> ibin(n, bits, str=True)[::-1] # small bits left '1101111000' >>> list(ibin(3, 'all', str=True)) ['000', '001', '010', '011', '100', '101', '110', '111'] """ if n < 0: raise ValueError("negative numbers are not allowed") n = as_int(n) if bits is None: bits = 0 else: try: bits = as_int(bits) except ValueError: bits = -1 else: if n.bit_length() > bits: raise ValueError( "`bits` must be >= {}".format(n.bit_length())) if not str: if bits >= 0: return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")] else: return variations(list(range(2)), n, repetition=True) else: if bits >= 0: return bin(n)[2:].rjust(bits, "0") else: return (bin(i)[2:].rjust(n, "0") for i in range(2**n)) def variations(seq, n, repetition=False): r"""Returns a generator of the n-sized variations of ``seq`` (size N). ``repetition`` controls whether items in ``seq`` can appear more than once; Examples ======== ``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without repetition of ``seq``'s elements: >>> from sympy.utilities.iterables import variations >>> list(variations([1, 2], 2)) [(1, 2), (2, 1)] ``variations(seq, n, True)`` will return the `N^n` permutations obtained by allowing repetition of elements: >>> list(variations([1, 2], 2, repetition=True)) [(1, 1), (1, 2), (2, 1), (2, 2)] If you ask for more items than are in the set you get the empty set unless you allow repetitions: >>> list(variations([0, 1], 3, repetition=False)) [] >>> list(variations([0, 1], 3, repetition=True))[:4] [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)] .. seealso:: `itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_, `itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_ """ if not repetition: seq = tuple(seq) if len(seq) < n: return yield from permutations(seq, n) else: if n == 0: yield () else: yield from product(seq, repeat=n) def subsets(seq, k=None, repetition=False): r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``. A `k`-subset of an `n`-element set is any subset of length exactly `k`. The number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``, whereas there are `2^n` subsets all together. If `k` is ``None`` then all `2^n` subsets will be returned from shortest to longest. Examples ======== >>> from sympy.utilities.iterables import subsets ``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations) without repetition, i.e. once an item has been removed, it can no longer be "taken": >>> list(subsets([1, 2], 2)) [(1, 2)] >>> list(subsets([1, 2])) [(), (1,), (2,), (1, 2)] >>> list(subsets([1, 2, 3], 2)) [(1, 2), (1, 3), (2, 3)] ``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}` combinations *with* repetition: >>> list(subsets([1, 2], 2, repetition=True)) [(1, 1), (1, 2), (2, 2)] If you ask for more items than are in the set you get the empty set unless you allow repetitions: >>> list(subsets([0, 1], 3, repetition=False)) [] >>> list(subsets([0, 1], 3, repetition=True)) [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)] """ if k is None: for k in range(len(seq) + 1): yield from subsets(seq, k, repetition) else: if not repetition: yield from combinations(seq, k) else: yield from combinations_with_replacement(seq, k) def filter_symbols(iterator, exclude): """ Only yield elements from `iterator` that do not occur in `exclude`. Parameters ========== iterator : iterable iterator to take elements from exclude : iterable elements to exclude Returns ======= iterator : iterator filtered iterator """ exclude = set(exclude) for s in iterator: if s not in exclude: yield s def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions): """ Generate an infinite stream of Symbols consisting of a prefix and increasing subscripts provided that they do not occur in ``exclude``. Parameters ========== prefix : str, optional The prefix to use. By default, this function will generate symbols of the form "x0", "x1", etc. cls : class, optional The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``. start : int, optional The start number. By default, it is 0. Returns ======= sym : Symbol The subscripted symbols. """ exclude = set(exclude or []) if cls is None: # We can't just make the default cls=Symbol because it isn't # imported yet. from sympy.core import Symbol cls = Symbol while True: name = '%s%s' % (prefix, start) s = cls(name, *args, **assumptions) if s not in exclude: yield s start += 1 def capture(func): """Return the printed output of func(). ``func`` should be a function without arguments that produces output with print statements. >>> from sympy.utilities.iterables import capture >>> from sympy import pprint >>> from sympy.abc import x >>> def foo(): ... print('hello world!') ... >>> 'hello' in capture(foo) # foo, not foo() True >>> capture(lambda: pprint(2/x)) '2\\n-\\nx\\n' """ from io import StringIO import sys stdout = sys.stdout sys.stdout = file = StringIO() try: func() finally: sys.stdout = stdout return file.getvalue() def sift(seq, keyfunc, binary=False): """ Sift the sequence, ``seq`` according to ``keyfunc``. Returns ======= When ``binary`` is ``False`` (default), the output is a dictionary where elements of ``seq`` are stored in a list keyed to the value of keyfunc for that element. If ``binary`` is True then a tuple with lists ``T`` and ``F`` are returned where ``T`` is a list containing elements of seq for which ``keyfunc`` was ``True`` and ``F`` containing those elements for which ``keyfunc`` was ``False``; a ValueError is raised if the ``keyfunc`` is not binary. Examples ======== >>> from sympy.utilities import sift >>> from sympy.abc import x, y >>> from sympy import sqrt, exp, pi, Tuple >>> sift(range(5), lambda x: x % 2) {0: [0, 2, 4], 1: [1, 3]} sift() returns a defaultdict() object, so any key that has no matches will give []. >>> sift([x], lambda x: x.is_commutative) {True: [x]} >>> _[False] [] Sometimes you will not know how many keys you will get: >>> sift([sqrt(x), exp(x), (y**x)**2], ... lambda x: x.as_base_exp()[0]) {E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]} Sometimes you expect the results to be binary; the results can be unpacked by setting ``binary`` to True: >>> sift(range(4), lambda x: x % 2, binary=True) ([1, 3], [0, 2]) >>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True) ([1], [pi]) A ValueError is raised if the predicate was not actually binary (which is a good test for the logic where sifting is used and binary results were expected): >>> unknown = exp(1) - pi # the rationality of this is unknown >>> args = Tuple(1, pi, unknown) >>> sift(args, lambda x: x.is_rational, binary=True) Traceback (most recent call last): ... ValueError: keyfunc gave non-binary output The non-binary sifting shows that there were 3 keys generated: >>> set(sift(args, lambda x: x.is_rational).keys()) {None, False, True} If you need to sort the sifted items it might be better to use ``ordered`` which can economically apply multiple sort keys to a sequence while sorting. See Also ======== ordered """ if not binary: m = defaultdict(list) for i in seq: m[keyfunc(i)].append(i) return m sift = F, T = [], [] for i in seq: try: sift[keyfunc(i)].append(i) except (IndexError, TypeError): raise ValueError('keyfunc gave non-binary output') return T, F def take(iter, n): """Return ``n`` items from ``iter`` iterator. """ return [ value for _, value in zip(range(n), iter) ] def dict_merge(*dicts): """Merge dictionaries into a single dictionary. """ merged = {} for dict in dicts: merged.update(dict) return merged def common_prefix(*seqs): """Return the subsequence that is a common start of sequences in ``seqs``. >>> from sympy.utilities.iterables import common_prefix >>> common_prefix(list(range(3))) [0, 1, 2] >>> common_prefix(list(range(3)), list(range(4))) [0, 1, 2] >>> common_prefix([1, 2, 3], [1, 2, 5]) [1, 2] >>> common_prefix([1, 2, 3], [1, 3, 5]) [1] """ if not all(seqs): return [] elif len(seqs) == 1: return seqs[0] i = 0 for i in range(min(len(s) for s in seqs)): if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))): break else: i += 1 return seqs[0][:i] def common_suffix(*seqs): """Return the subsequence that is a common ending of sequences in ``seqs``. >>> from sympy.utilities.iterables import common_suffix >>> common_suffix(list(range(3))) [0, 1, 2] >>> common_suffix(list(range(3)), list(range(4))) [] >>> common_suffix([1, 2, 3], [9, 2, 3]) [2, 3] >>> common_suffix([1, 2, 3], [9, 7, 3]) [3] """ if not all(seqs): return [] elif len(seqs) == 1: return seqs[0] i = 0 for i in range(-1, -min(len(s) for s in seqs) - 1, -1): if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))): break else: i -= 1 if i == -1: return [] else: return seqs[0][i + 1:] def prefixes(seq): """ Generate all prefixes of a sequence. Examples ======== >>> from sympy.utilities.iterables import prefixes >>> list(prefixes([1,2,3,4])) [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]] """ n = len(seq) for i in range(n): yield seq[:i + 1] def postfixes(seq): """ Generate all postfixes of a sequence. Examples ======== >>> from sympy.utilities.iterables import postfixes >>> list(postfixes([1,2,3,4])) [[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]] """ n = len(seq) for i in range(n): yield seq[n - i - 1:] def topological_sort(graph, key=None): r""" Topological sort of graph's vertices. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph to be sorted topologically. key : callable[T] (optional) Ordering key for vertices on the same level. By default the natural (e.g. lexicographic) ordering is used (in this case the base type must implement ordering relations). Examples ======== Consider a graph:: +---+ +---+ +---+ | 7 |\ | 5 | | 3 | +---+ \ +---+ +---+ | _\___/ ____ _/ | | / \___/ \ / | V V V V | +----+ +---+ | | 11 | | 8 | | +----+ +---+ | | | \____ ___/ _ | | \ \ / / \ | V \ V V / V V +---+ \ +---+ | +----+ | 2 | | | 9 | | | 10 | +---+ | +---+ | +----+ \________/ where vertices are integers. This graph can be encoded using elementary Python's data structures as follows:: >>> V = [2, 3, 5, 7, 8, 9, 10, 11] >>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10), ... (11, 2), (11, 9), (11, 10), (8, 9)] To compute a topological sort for graph ``(V, E)`` issue:: >>> from sympy.utilities.iterables import topological_sort >>> topological_sort((V, E)) [3, 5, 7, 8, 11, 2, 9, 10] If specific tie breaking approach is needed, use ``key`` parameter:: >>> topological_sort((V, E), key=lambda v: -v) [7, 5, 11, 3, 10, 8, 9, 2] Only acyclic graphs can be sorted. If the input graph has a cycle, then ``ValueError`` will be raised:: >>> topological_sort((V, E + [(10, 7)])) Traceback (most recent call last): ... ValueError: cycle detected References ========== .. [1] https://en.wikipedia.org/wiki/Topological_sorting """ V, E = graph L = [] S = set(V) E = list(E) for v, u in E: S.discard(u) if key is None: key = lambda value: value S = sorted(S, key=key, reverse=True) while S: node = S.pop() L.append(node) for u, v in list(E): if u == node: E.remove((u, v)) for _u, _v in E: if v == _v: break else: kv = key(v) for i, s in enumerate(S): ks = key(s) if kv > ks: S.insert(i, v) break else: S.append(v) if E: raise ValueError("cycle detected") else: return L def strongly_connected_components(G): r""" Strongly connected components of a directed graph in reverse topological order. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph whose strongly connected components are to be found. Examples ======== Consider a directed graph (in dot notation):: digraph { A -> B A -> C B -> C C -> B B -> D } .. graphviz:: digraph { A -> B A -> C B -> C C -> B B -> D } where vertices are the letters A, B, C and D. This graph can be encoded using Python's elementary data structures as follows:: >>> V = ['A', 'B', 'C', 'D'] >>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')] The strongly connected components of this graph can be computed as >>> from sympy.utilities.iterables import strongly_connected_components >>> strongly_connected_components((V, E)) [['D'], ['B', 'C'], ['A']] This also gives the components in reverse topological order. Since the subgraph containing B and C has a cycle they must be together in a strongly connected component. A and D are connected to the rest of the graph but not in a cyclic manner so they appear as their own strongly connected components. Notes ===== The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices. This function uses Tarjan's algorithm to compute the strongly connected components in `O(|V|+|E|)` (linear) time. References ========== .. [1] https://en.wikipedia.org/wiki/Strongly_connected_component .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm See Also ======== sympy.utilities.iterables.connected_components """ # Map from a vertex to its neighbours V, E = G Gmap = {vi: [] for vi in V} for v1, v2 in E: Gmap[v1].append(v2) return _strongly_connected_components(V, Gmap) def _strongly_connected_components(V, Gmap): """More efficient internal routine for strongly_connected_components""" # # Here V is an iterable of vertices and Gmap is a dict mapping each vertex # to a list of neighbours e.g.: # # V = [0, 1, 2, 3] # Gmap = {0: [2, 3], 1: [0]} # # For a large graph these data structures can often be created more # efficiently then those expected by strongly_connected_components() which # in this case would be # # V = [0, 1, 2, 3] # Gmap = [(0, 2), (0, 3), (1, 0)] # # XXX: Maybe this should be the recommended function to use instead... # # Non-recursive Tarjan's algorithm: lowlink = {} indices = {} stack = OrderedDict() callstack = [] components = [] nomore = object() def start(v): index = len(stack) indices[v] = lowlink[v] = index stack[v] = None callstack.append((v, iter(Gmap[v]))) def finish(v1): # Finished a component? if lowlink[v1] == indices[v1]: component = [stack.popitem()[0]] while component[-1] is not v1: component.append(stack.popitem()[0]) components.append(component[::-1]) v2, _ = callstack.pop() if callstack: v1, _ = callstack[-1] lowlink[v1] = min(lowlink[v1], lowlink[v2]) for v in V: if v in indices: continue start(v) while callstack: v1, it1 = callstack[-1] v2 = next(it1, nomore) # Finished children of v1? if v2 is nomore: finish(v1) # Recurse on v2 elif v2 not in indices: start(v2) elif v2 in stack: lowlink[v1] = min(lowlink[v1], indices[v2]) # Reverse topological sort order: return components def connected_components(G): r""" Connected components of an undirected graph or weakly connected components of a directed graph. Parameters ========== graph : tuple[list, list[tuple[T, T]] A tuple consisting of a list of vertices and a list of edges of a graph whose connected components are to be found. Examples ======== Given an undirected graph:: graph { A -- B C -- D } .. graphviz:: graph { A -- B C -- D } We can find the connected components using this function if we include each edge in both directions:: >>> from sympy.utilities.iterables import connected_components >>> V = ['A', 'B', 'C', 'D'] >>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')] >>> connected_components((V, E)) [['A', 'B'], ['C', 'D']] The weakly connected components of a directed graph can found the same way. Notes ===== The vertices of the graph must be hashable for the data structures used. If the vertices are unhashable replace them with integer indices. This function uses Tarjan's algorithm to compute the connected components in `O(|V|+|E|)` (linear) time. References ========== .. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory) .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm See Also ======== sympy.utilities.iterables.strongly_connected_components """ # Duplicate edges both ways so that the graph is effectively undirected # and return the strongly connected components: V, E = G E_undirected = [] for v1, v2 in E: E_undirected.extend([(v1, v2), (v2, v1)]) return strongly_connected_components((V, E_undirected)) def rotate_left(x, y): """ Left rotates a list x by the number of steps specified in y. Examples ======== >>> from sympy.utilities.iterables import rotate_left >>> a = [0, 1, 2] >>> rotate_left(a, 1) [1, 2, 0] """ if len(x) == 0: return [] y = y % len(x) return x[y:] + x[:y] def rotate_right(x, y): """ Right rotates a list x by the number of steps specified in y. Examples ======== >>> from sympy.utilities.iterables import rotate_right >>> a = [0, 1, 2] >>> rotate_right(a, 1) [2, 0, 1] """ if len(x) == 0: return [] y = len(x) - y % len(x) return x[y:] + x[:y] def least_rotation(x, key=None): ''' Returns the number of steps of left rotation required to obtain lexicographically minimal string/list/tuple, etc. Examples ======== >>> from sympy.utilities.iterables import least_rotation, rotate_left >>> a = [3, 1, 5, 1, 2] >>> least_rotation(a) 3 >>> rotate_left(a, _) [1, 2, 3, 1, 5] References ========== .. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation ''' from sympy.functions.elementary.miscellaneous import Id if key is None: key = Id S = x + x # Concatenate string to it self to avoid modular arithmetic f = [-1] * len(S) # Failure function k = 0 # Least rotation of string found so far for j in range(1,len(S)): sj = S[j] i = f[j-k-1] while i != -1 and sj != S[k+i+1]: if key(sj) < key(S[k+i+1]): k = j-i-1 i = f[i] if sj != S[k+i+1]: if key(sj) < key(S[k]): k = j f[j-k] = -1 else: f[j-k] = i+1 return k def multiset_combinations(m, n, g=None): """ Return the unique combinations of size ``n`` from multiset ``m``. Examples ======== >>> from sympy.utilities.iterables import multiset_combinations >>> from itertools import combinations >>> [''.join(i) for i in multiset_combinations('baby', 3)] ['abb', 'aby', 'bby'] >>> def count(f, s): return len(list(f(s, 3))) The number of combinations depends on the number of letters; the number of unique combinations depends on how the letters are repeated. >>> s1 = 'abracadabra' >>> s2 = 'banana tree' >>> count(combinations, s1), count(multiset_combinations, s1) (165, 23) >>> count(combinations, s2), count(multiset_combinations, s2) (165, 54) """ from sympy.core.sorting import ordered if g is None: if type(m) is dict: if any(as_int(v) < 0 for v in m.values()): raise ValueError('counts cannot be negative') N = sum(m.values()) if n > N: return g = [[k, m[k]] for k in ordered(m)] else: m = list(m) N = len(m) if n > N: return try: m = multiset(m) g = [(k, m[k]) for k in ordered(m)] except TypeError: m = list(ordered(m)) g = [list(i) for i in group(m, multiple=False)] del m else: # not checking counts since g is intended for internal use N = sum(v for k, v in g) if n > N or not n: yield [] else: for i, (k, v) in enumerate(g): if v >= n: yield [k]*n v = n - 1 for v in range(min(n, v), 0, -1): for j in multiset_combinations(None, n - v, g[i + 1:]): rv = [k]*v + j if len(rv) == n: yield rv def multiset_permutations(m, size=None, g=None): """ Return the unique permutations of multiset ``m``. Examples ======== >>> from sympy.utilities.iterables import multiset_permutations >>> from sympy import factorial >>> [''.join(i) for i in multiset_permutations('aab')] ['aab', 'aba', 'baa'] >>> factorial(len('banana')) 720 >>> len(list(multiset_permutations('banana'))) 60 """ from sympy.core.sorting import ordered if g is None: if type(m) is dict: if any(as_int(v) < 0 for v in m.values()): raise ValueError('counts cannot be negative') g = [[k, m[k]] for k in ordered(m)] else: m = list(ordered(m)) g = [list(i) for i in group(m, multiple=False)] del m do = [gi for gi in g if gi[1] > 0] SUM = sum([gi[1] for gi in do]) if not do or size is not None and (size > SUM or size < 1): if not do and size is None or size == 0: yield [] return elif size == 1: for k, v in do: yield [k] elif len(do) == 1: k, v = do[0] v = v if size is None else (size if size <= v else 0) yield [k for i in range(v)] elif all(v == 1 for k, v in do): for p in permutations([k for k, v in do], size): yield list(p) else: size = size if size is not None else SUM for i, (k, v) in enumerate(do): do[i][1] -= 1 for j in multiset_permutations(None, size - 1, do): if j: yield [k] + j do[i][1] += 1 def _partition(seq, vector, m=None): """ Return the partition of seq as specified by the partition vector. Examples ======== >>> from sympy.utilities.iterables import _partition >>> _partition('abcde', [1, 0, 1, 2, 0]) [['b', 'e'], ['a', 'c'], ['d']] Specifying the number of bins in the partition is optional: >>> _partition('abcde', [1, 0, 1, 2, 0], 3) [['b', 'e'], ['a', 'c'], ['d']] The output of _set_partitions can be passed as follows: >>> output = (3, [1, 0, 1, 2, 0]) >>> _partition('abcde', *output) [['b', 'e'], ['a', 'c'], ['d']] See Also ======== combinatorics.partitions.Partition.from_rgs """ if m is None: m = max(vector) + 1 elif type(vector) is int: # entered as m, vector vector, m = m, vector p = [[] for i in range(m)] for i, v in enumerate(vector): p[v].append(seq[i]) return p def _set_partitions(n): """Cycle through all partions of n elements, yielding the current number of partitions, ``m``, and a mutable list, ``q`` such that element[i] is in part q[i] of the partition. NOTE: ``q`` is modified in place and generally should not be changed between function calls. Examples ======== >>> from sympy.utilities.iterables import _set_partitions, _partition >>> for m, q in _set_partitions(3): ... print('%s %s %s' % (m, q, _partition('abc', q, m))) 1 [0, 0, 0] [['a', 'b', 'c']] 2 [0, 0, 1] [['a', 'b'], ['c']] 2 [0, 1, 0] [['a', 'c'], ['b']] 2 [0, 1, 1] [['a'], ['b', 'c']] 3 [0, 1, 2] [['a'], ['b'], ['c']] Notes ===== This algorithm is similar to, and solves the same problem as, Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer Programming. Knuth uses the term "restricted growth string" where this code refers to a "partition vector". In each case, the meaning is the same: the value in the ith element of the vector specifies to which part the ith set element is to be assigned. At the lowest level, this code implements an n-digit big-endian counter (stored in the array q) which is incremented (with carries) to get the next partition in the sequence. A special twist is that a digit is constrained to be at most one greater than the maximum of all the digits to the left of it. The array p maintains this maximum, so that the code can efficiently decide when a digit can be incremented in place or whether it needs to be reset to 0 and trigger a carry to the next digit. The enumeration starts with all the digits 0 (which corresponds to all the set elements being assigned to the same 0th part), and ends with 0123...n, which corresponds to each set element being assigned to a different, singleton, part. This routine was rewritten to use 0-based lists while trying to preserve the beauty and efficiency of the original algorithm. References ========== .. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms, 2nd Ed, p 91, algorithm "nexequ". Available online from https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed November 17, 2012). """ p = [0]*n q = [0]*n nc = 1 yield nc, q while nc != n: m = n while 1: m -= 1 i = q[m] if p[i] != 1: break q[m] = 0 i += 1 q[m] = i m += 1 nc += m - n p[0] += n - m if i == nc: p[nc] = 0 nc += 1 p[i - 1] -= 1 p[i] += 1 yield nc, q def multiset_partitions(multiset, m=None): """ Return unique partitions of the given multiset (in list form). If ``m`` is None, all multisets will be returned, otherwise only partitions with ``m`` parts will be returned. If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1] will be supplied. Examples ======== >>> from sympy.utilities.iterables import multiset_partitions >>> list(multiset_partitions([1, 2, 3, 4], 2)) [[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]], [[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]], [[1], [2, 3, 4]]] >>> list(multiset_partitions([1, 2, 3, 4], 1)) [[[1, 2, 3, 4]]] Only unique partitions are returned and these will be returned in a canonical order regardless of the order of the input: >>> a = [1, 2, 2, 1] >>> ans = list(multiset_partitions(a, 2)) >>> a.sort() >>> list(multiset_partitions(a, 2)) == ans True >>> a = range(3, 1, -1) >>> (list(multiset_partitions(a)) == ... list(multiset_partitions(sorted(a)))) True If m is omitted then all partitions will be returned: >>> list(multiset_partitions([1, 1, 2])) [[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]] >>> list(multiset_partitions([1]*3)) [[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]] Counting ======== The number of partitions of a set is given by the bell number: >>> from sympy import bell >>> len(list(multiset_partitions(5))) == bell(5) == 52 True The number of partitions of length k from a set of size n is given by the Stirling Number of the 2nd kind: >>> from sympy.functions.combinatorial.numbers import stirling >>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15 True These comments on counting apply to *sets*, not multisets. Notes ===== When all the elements are the same in the multiset, the order of the returned partitions is determined by the ``partitions`` routine. If one is counting partitions then it is better to use the ``nT`` function. See Also ======== partitions sympy.combinatorics.partitions.Partition sympy.combinatorics.partitions.IntegerPartition sympy.functions.combinatorial.numbers.nT """ # This function looks at the supplied input and dispatches to # several special-case routines as they apply. if type(multiset) is int: n = multiset if m and m > n: return multiset = list(range(n)) if m == 1: yield [multiset[:]] return # If m is not None, it can sometimes be faster to use # MultisetPartitionTraverser.enum_range() even for inputs # which are sets. Since the _set_partitions code is quite # fast, this is only advantageous when the overall set # partitions outnumber those with the desired number of parts # by a large factor. (At least 60.) Such a switch is not # currently implemented. for nc, q in _set_partitions(n): if m is None or nc == m: rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(multiset[i]) yield rv return if len(multiset) == 1 and isinstance(multiset, str): multiset = [multiset] if not has_variety(multiset): # Only one component, repeated n times. The resulting # partitions correspond to partitions of integer n. n = len(multiset) if m and m > n: return if m == 1: yield [multiset[:]] return x = multiset[:1] for size, p in partitions(n, m, size=True): if m is None or size == m: rv = [] for k in sorted(p): rv.extend([x*k]*p[k]) yield rv else: from sympy.core.sorting import ordered multiset = list(ordered(multiset)) n = len(multiset) if m and m > n: return if m == 1: yield [multiset[:]] return # Split the information of the multiset into two lists - # one of the elements themselves, and one (of the same length) # giving the number of repeats for the corresponding element. elements, multiplicities = zip(*group(multiset, False)) if len(elements) < len(multiset): # General case - multiset with more than one distinct element # and at least one element repeated more than once. if m: mpt = MultisetPartitionTraverser() for state in mpt.enum_range(multiplicities, m-1, m): yield list_visitor(state, elements) else: for state in multiset_partitions_taocp(multiplicities): yield list_visitor(state, elements) else: # Set partitions case - no repeated elements. Pretty much # same as int argument case above, with same possible, but # currently unimplemented optimization for some cases when # m is not None for nc, q in _set_partitions(n): if m is None or nc == m: rv = [[] for i in range(nc)] for i in range(n): rv[q[i]].append(i) yield [[multiset[j] for j in i] for i in rv] def partitions(n, m=None, k=None, size=False): """Generate all partitions of positive integer, n. Parameters ========== m : integer (default gives partitions of all sizes) limits number of parts in partition (mnemonic: m, maximum parts) k : integer (default gives partitions number from 1 through n) limits the numbers that are kept in the partition (mnemonic: k, keys) size : bool (default False, only partition is returned) when ``True`` then (M, P) is returned where M is the sum of the multiplicities and P is the generated partition. Each partition is represented as a dictionary, mapping an integer to the number of copies of that integer in the partition. For example, the first partition of 4 returned is {4: 1}, "4: one of them". Examples ======== >>> from sympy.utilities.iterables import partitions The numbers appearing in the partition (the key of the returned dict) are limited with k: >>> for p in partitions(6, k=2): # doctest: +SKIP ... print(p) {2: 3} {1: 2, 2: 2} {1: 4, 2: 1} {1: 6} The maximum number of parts in the partition (the sum of the values in the returned dict) are limited with m (default value, None, gives partitions from 1 through n): >>> for p in partitions(6, m=2): # doctest: +SKIP ... print(p) ... {6: 1} {1: 1, 5: 1} {2: 1, 4: 1} {3: 2} References ========== .. [1] modified from Tim Peter's version to allow for k and m values: http://code.activestate.com/recipes/218332-generator-for-integer-partitions/ See Also ======== sympy.combinatorics.partitions.Partition sympy.combinatorics.partitions.IntegerPartition """ if (n <= 0 or m is not None and m < 1 or k is not None and k < 1 or m and k and m*k < n): # the empty set is the only way to handle these inputs # and returning {} to represent it is consistent with # the counting convention, e.g. nT(0) == 1. if size: yield 0, {} else: yield {} return if m is None: m = n else: m = min(m, n) k = min(k or n, n) n, m, k = as_int(n), as_int(m), as_int(k) q, r = divmod(n, k) ms = {k: q} keys = [k] # ms.keys(), from largest to smallest if r: ms[r] = 1 keys.append(r) room = m - q - bool(r) if size: yield sum(ms.values()), ms.copy() else: yield ms.copy() while keys != [1]: # Reuse any 1's. if keys[-1] == 1: del keys[-1] reuse = ms.pop(1) room += reuse else: reuse = 0 while 1: # Let i be the smallest key larger than 1. Reuse one # instance of i. i = keys[-1] newcount = ms[i] = ms[i] - 1 reuse += i if newcount == 0: del keys[-1], ms[i] room += 1 # Break the remainder into pieces of size i-1. i -= 1 q, r = divmod(reuse, i) need = q + bool(r) if need > room: if not keys: return continue ms[i] = q keys.append(i) if r: ms[r] = 1 keys.append(r) break room -= need if size: yield sum(ms.values()), ms.copy() else: yield ms.copy() def ordered_partitions(n, m=None, sort=True): """Generates ordered partitions of integer ``n``. Parameters ========== m : integer (default None) The default value gives partitions of all sizes else only those with size m. In addition, if ``m`` is not None then partitions are generated *in place* (see examples). sort : bool (default True) Controls whether partitions are returned in sorted order when ``m`` is not None; when False, the partitions are returned as fast as possible with elements sorted, but when m|n the partitions will not be in ascending lexicographical order. Examples ======== >>> from sympy.utilities.iterables import ordered_partitions All partitions of 5 in ascending lexicographical: >>> for p in ordered_partitions(5): ... print(p) [1, 1, 1, 1, 1] [1, 1, 1, 2] [1, 1, 3] [1, 2, 2] [1, 4] [2, 3] [5] Only partitions of 5 with two parts: >>> for p in ordered_partitions(5, 2): ... print(p) [1, 4] [2, 3] When ``m`` is given, a given list objects will be used more than once for speed reasons so you will not see the correct partitions unless you make a copy of each as it is generated: >>> [p for p in ordered_partitions(7, 3)] [[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]] >>> [list(p) for p in ordered_partitions(7, 3)] [[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]] When ``n`` is a multiple of ``m``, the elements are still sorted but the partitions themselves will be *unordered* if sort is False; the default is to return them in ascending lexicographical order. >>> for p in ordered_partitions(6, 2): ... print(p) [1, 5] [2, 4] [3, 3] But if speed is more important than ordering, sort can be set to False: >>> for p in ordered_partitions(6, 2, sort=False): ... print(p) [1, 5] [3, 3] [2, 4] References ========== .. [1] Generating Integer Partitions, [online], Available: https://jeromekelleher.net/generating-integer-partitions.html .. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All Partitions: A Comparison Of Two Encodings", [online], Available: https://arxiv.org/pdf/0909.2331v2.pdf """ if n < 1 or m is not None and m < 1: # the empty set is the only way to handle these inputs # and returning {} to represent it is consistent with # the counting convention, e.g. nT(0) == 1. yield [] return if m is None: # The list `a`'s leading elements contain the partition in which # y is the biggest element and x is either the same as y or the # 2nd largest element; v and w are adjacent element indices # to which x and y are being assigned, respectively. a = [1]*n y = -1 v = n while v > 0: v -= 1 x = a[v] + 1 while y >= 2 * x: a[v] = x y -= x v += 1 w = v + 1 while x <= y: a[v] = x a[w] = y yield a[:w + 1] x += 1 y -= 1 a[v] = x + y y = a[v] - 1 yield a[:w] elif m == 1: yield [n] elif n == m: yield [1]*n else: # recursively generate partitions of size m for b in range(1, n//m + 1): a = [b]*m x = n - b*m if not x: if sort: yield a elif not sort and x <= m: for ax in ordered_partitions(x, sort=False): mi = len(ax) a[-mi:] = [i + b for i in ax] yield a a[-mi:] = [b]*mi else: for mi in range(1, m): for ax in ordered_partitions(x, mi, sort=True): a[-mi:] = [i + b for i in ax] yield a a[-mi:] = [b]*mi def binary_partitions(n): """ Generates the binary partition of n. A binary partition consists only of numbers that are powers of two. Each step reduces a `2^{k+1}` to `2^k` and `2^k`. Thus 16 is converted to 8 and 8. Examples ======== >>> from sympy.utilities.iterables import binary_partitions >>> for i in binary_partitions(5): ... print(i) ... [4, 1] [2, 2, 1] [2, 1, 1, 1] [1, 1, 1, 1, 1] References ========== .. [1] TAOCP 4, section 7.2.1.5, problem 64 """ from math import ceil, log power = int(2**(ceil(log(n, 2)))) acc = 0 partition = [] while power: if acc + power <= n: partition.append(power) acc += power power >>= 1 last_num = len(partition) - 1 - (n & 1) while last_num >= 0: yield partition if partition[last_num] == 2: partition[last_num] = 1 partition.append(1) last_num -= 1 continue partition.append(1) partition[last_num] >>= 1 x = partition[last_num + 1] = partition[last_num] last_num += 1 while x > 1: if x <= len(partition) - last_num - 1: del partition[-x + 1:] last_num += 1 partition[last_num] = x else: x >>= 1 yield [1]*n def has_dups(seq): """Return True if there are any duplicate elements in ``seq``. Examples ======== >>> from sympy.utilities.iterables import has_dups >>> from sympy import Dict, Set >>> has_dups((1, 2, 1)) True >>> has_dups(range(3)) False >>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict())) True """ from sympy.core.containers import Dict from sympy.sets.sets import Set if isinstance(seq, (dict, set, Dict, Set)): return False unique = set() return any(True for s in seq if s in unique or unique.add(s)) def has_variety(seq): """Return True if there are any different elements in ``seq``. Examples ======== >>> from sympy.utilities.iterables import has_variety >>> has_variety((1, 2, 1)) True >>> has_variety((1, 1, 1)) False """ for i, s in enumerate(seq): if i == 0: sentinel = s else: if s != sentinel: return True return False def uniq(seq, result=None): """ Yield unique elements from ``seq`` as an iterator. The second parameter ``result`` is used internally; it is not necessary to pass anything for this. Note: changing the sequence during iteration will raise a RuntimeError if the size of the sequence is known; if you pass an iterator and advance the iterator you will change the output of this routine but there will be no warning. Examples ======== >>> from sympy.utilities.iterables import uniq >>> dat = [1, 4, 1, 5, 4, 2, 1, 2] >>> type(uniq(dat)) in (list, tuple) False >>> list(uniq(dat)) [1, 4, 5, 2] >>> list(uniq(x for x in dat)) [1, 4, 5, 2] >>> list(uniq([[1], [2, 1], [1]])) [[1], [2, 1]] """ try: n = len(seq) except TypeError: n = None def check(): # check that size of seq did not change during iteration; # if n == None the object won't support size changing, e.g. # an iterator can't be changed if n is not None and len(seq) != n: raise RuntimeError('sequence changed size during iteration') try: seen = set() result = result or [] for i, s in enumerate(seq): if not (s in seen or seen.add(s)): yield s check() except TypeError: if s not in result: yield s check() result.append(s) if hasattr(seq, '__getitem__'): yield from uniq(seq[i + 1:], result) else: yield from uniq(seq, result) def generate_bell(n): """Return permutations of [0, 1, ..., n - 1] such that each permutation differs from the last by the exchange of a single pair of neighbors. The ``n!`` permutations are returned as an iterator. In order to obtain the next permutation from a random starting permutation, use the ``next_trotterjohnson`` method of the Permutation class (which generates the same sequence in a different manner). Examples ======== >>> from itertools import permutations >>> from sympy.utilities.iterables import generate_bell >>> from sympy import zeros, Matrix This is the sort of permutation used in the ringing of physical bells, and does not produce permutations in lexicographical order. Rather, the permutations differ from each other by exactly one inversion, and the position at which the swapping occurs varies periodically in a simple fashion. Consider the first few permutations of 4 elements generated by ``permutations`` and ``generate_bell``: >>> list(permutations(range(4)))[:5] [(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)] >>> list(generate_bell(4))[:5] [(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)] Notice how the 2nd and 3rd lexicographical permutations have 3 elements out of place whereas each "bell" permutation always has only two elements out of place relative to the previous permutation (and so the signature (+/-1) of a permutation is opposite of the signature of the previous permutation). How the position of inversion varies across the elements can be seen by tracing out where the largest number appears in the permutations: >>> m = zeros(4, 24) >>> for i, p in enumerate(generate_bell(4)): ... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero >>> m.print_nonzero('X') [XXX XXXXXX XXXXXX XXX] [XX XX XXXX XX XXXX XX XX] [X XXXX XX XXXX XX XXXX X] [ XXXXXX XXXXXX XXXXXX ] See Also ======== sympy.combinatorics.permutations.Permutation.next_trotterjohnson References ========== .. [1] https://en.wikipedia.org/wiki/Method_ringing .. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018 .. [3] http://programminggeeks.com/bell-algorithm-for-permutation/ .. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm .. [5] Generating involutions, derangements, and relatives by ECO Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010 """ n = as_int(n) if n < 1: raise ValueError('n must be a positive integer') if n == 1: yield (0,) elif n == 2: yield (0, 1) yield (1, 0) elif n == 3: yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)] else: m = n - 1 op = [0] + [-1]*m l = list(range(n)) while True: yield tuple(l) # find biggest element with op big = None, -1 # idx, value for i in range(n): if op[i] and l[i] > big[1]: big = i, l[i] i, _ = big if i is None: break # there are no ops left # swap it with neighbor in the indicated direction j = i + op[i] l[i], l[j] = l[j], l[i] op[i], op[j] = op[j], op[i] # if it landed at the end or if the neighbor in the same # direction is bigger then turn off op if j == 0 or j == m or l[j + op[j]] > l[j]: op[j] = 0 # any element bigger to the left gets +1 op for i in range(j): if l[i] > l[j]: op[i] = 1 # any element bigger to the right gets -1 op for i in range(j + 1, n): if l[i] > l[j]: op[i] = -1 def generate_involutions(n): """ Generates involutions. An involution is a permutation that when multiplied by itself equals the identity permutation. In this implementation the involutions are generated using Fixed Points. Alternatively, an involution can be considered as a permutation that does not contain any cycles with a length that is greater than two. Examples ======== >>> from sympy.utilities.iterables import generate_involutions >>> list(generate_involutions(3)) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)] >>> len(list(generate_involutions(4))) 10 References ========== .. [1] http://mathworld.wolfram.com/PermutationInvolution.html """ idx = list(range(n)) for p in permutations(idx): for i in idx: if p[p[i]] != i: break else: yield p def multiset_derangements(s): """Generate derangements of the elements of s *in place*. Examples ======== >>> from sympy.utilities.iterables import multiset_derangements, uniq Because the derangements of multisets (not sets) are generated in place, copies of the return value must be made if a collection of derangements is desired or else all values will be the same: >>> list(uniq([i for i in multiset_derangements('1233')])) [['3', '3', '2', '1']] >>> [i.copy() for i in multiset_derangements('1233')] [['3', '3', '1', '2'], ['3', '3', '2', '1']] """ ms = multiset(s) mx = max(ms.values()) n = len(s) # special cases # 0) impossible case if mx*2 > n: return # 1) singletons if len(ms) == n: for p in generate_derangements(s): yield p return for M in ms: if ms[M] == mx: break inonM = [i for i in range(n) if s[i] != M] iM = [i for i in range(n) if s[i] == M] rv = [None]*n # 2) half are the same if 2*mx == n: for i in inonM: rv[i] = M for p in multiset_permutations([s[i] for i in inonM]): for i, pi in zip(iM, p): rv[i] = pi yield rv return # 3) single repeat covers all but 1 of the non-repeats if n - 2*mx == 1 and len(ms.values()) - 1 == n - mx: for i in range(len(inonM)): i1 = inonM[i] ifill = inonM[:i] + inonM[i+1:] for j in ifill: rv[j] = M rv[i1] = s[i1] for p in permutations([s[j] for j in ifill]): for j, pi in zip(iM, p): rv[j] = pi for j in iM: rv[j], rv[i1] = rv[i1], rv[j] yield rv i1 = j return def finish_derangements(): """Place the last two elements into the partially completed derangement, and yield the results. In non-recursive version, this will be inlined, but a little easier to understand as a function for now. """ a = take[1][0] # penultimate element a_ct = take[1][1] b = take[0][0] # last element to be placed b_ct = take[0][1] # split the indexes of the not-already-assigned elemements of rv into # three categories forced_a = [] # positions which must have an a forced_b = [] # positions which must have a b open_free = [] # positions which could take either for i in range(len(s)): if rv[i] is None: if s[i] == a: forced_b.append(i) elif s[i] == b: forced_a.append(i) else: open_free.append(i) if len(forced_a) > a_ct or len(forced_b) > b_ct: # No derangement possible return for i in forced_a: rv[i] = a for i in forced_b: rv[i] = b for a_place in subsets(open_free, a_ct - len(forced_a)): for a_pos in a_place: rv[a_pos] = a for i in open_free: if rv[i] is None: # anything not in the subset is set to b rv[i] = b yield rv # Clean up/undo the final placements for i in open_free: rv[i] = None # additional cleanup - clear forced_a, forced_b for i in forced_a: rv[i] = None for i in forced_b: rv[i] = None def iopen(v): return [i for i in range(n) if rv[i] is None and s[i] != v] def do(j): if j == -1: yield rv else: M, mx = take[j] for i in subsets(iopen(M), mx): for ii in i: rv[ii] = M yield from do(j - 1) for ii in i: rv[ii] = None take = sorted(ms.items(), key=lambda x:(x[1], x[0])) yield from do(len(take) - 1) def random_derangement(t, choice=None, strict=True): """Return a list of elements in which none are in the same positions as they were originally. If an element fills more than half of the positions then an error will be raised since no derangement is possible. To obtain a derangement of as many items as possible--with some of the most numerous remaining in their original positions--pass `strict=False`. To produce a pseudorandom derangment, pass a pseudorandom selector like `choice` (see below). Examples ======== >>> from sympy.utilities.iterables import random_derangement >>> t = 'SymPy: a CAS in pure Python' >>> d = random_derangement(t) >>> all(i != j for i, j in zip(d, t)) True A predictable result can be obtained by using a pseudorandom generator for the choice: >>> from sympy.core.random import seed, choice as c >>> seed(1) >>> d = [''.join(random_derangement(t, c)) for i in range(5)] >>> assert len(set(d)) != 1 # we got different values By reseeding, the same sequence can be obtained: >>> seed(1) >>> d2 = [''.join(random_derangement(t, c)) for i in range(5)] >>> assert d == d2 """ if choice is None: import secrets choice = secrets.choice def shuffle(rv): '''Knuth shuffle''' for i in range(len(rv) - 1, 0, -1): x = choice(rv[:i + 1]) j = rv.index(x) rv[i], rv[j] = rv[j], rv[i] def pick(rv, n): '''shuffle rv and return the first n values ''' shuffle(rv) return rv[:n] ms = multiset(t) tot = len(t) ms = sorted(ms.items(), key=lambda x: x[1]) # if there are not enough spaces for the most # plentiful element to move to then some of them # will have to stay in place M, mx = ms[-1] n = len(t) xs = 2*mx - tot if xs > 0: if strict: raise ValueError('no derangement possible') opts = [i for (i, c) in enumerate(t) if c == ms[-1][0]] pick(opts, xs) stay = sorted(opts[:xs]) rv = list(t) for i in reversed(stay): rv.pop(i) rv = random_derangement(rv, choice) for i in stay: rv.insert(i, ms[-1][0]) return ''.join(rv) if type(t) is str else rv # the normal derangement calculated from here if n == len(ms): # approx 1/3 will succeed rv = list(t) while True: shuffle(rv) if all(i != j for i,j in zip(rv, t)): break else: # general case rv = [None]*n while True: j = 0 while j > -len(ms): # do most numerous first j -= 1 e, c = ms[j] opts = [i for i in range(n) if rv[i] is None and t[i] != e] if len(opts) < c: for i in range(n): rv[i] = None break # try again pick(opts, c) for i in range(c): rv[opts[i]] = e else: return rv return rv def generate_derangements(perm): """ Routine to generate unique derangements or sets or multisets. Examples ======== >>> from sympy.utilities.iterables import generate_derangements >>> list(generate_derangements([0, 1, 2])) [[1, 2, 0], [2, 0, 1]] >>> list(generate_derangements([0, 1, 2, 3])) [[1, 0, 3, 2], [1, 2, 3, 0], [1, 3, 0, 2], [2, 0, 3, 1], \ [2, 3, 0, 1], [2, 3, 1, 0], [3, 0, 1, 2], [3, 2, 0, 1], \ [3, 2, 1, 0]] >>> list(generate_derangements([0, 1, 1])) [] See Also ======== sympy.functions.combinatorial.factorials.subfactorial """ if not has_dups(perm): s = perm if len(perm) == 2: yield [s[1],s[0]] return if len(perm) == 3: yield [s[1],s[2],s[0]] yield [s[2],s[0],s[1]] return for p in permutations(s): if not any(i == j for i, j in zip(p, s)): yield list(p) else: for p in multiset_derangements(perm): yield list(p) def necklaces(n, k, free=False): """ A routine to generate necklaces that may (free=True) or may not (free=False) be turned over to be viewed. The "necklaces" returned are comprised of ``n`` integers (beads) with ``k`` different values (colors). Only unique necklaces are returned. Examples ======== >>> from sympy.utilities.iterables import necklaces, bracelets >>> def show(s, i): ... return ''.join(s[j] for j in i) The "unrestricted necklace" is sometimes also referred to as a "bracelet" (an object that can be turned over, a sequence that can be reversed) and the term "necklace" is used to imply a sequence that cannot be reversed. So ACB == ABC for a bracelet (rotate and reverse) while the two are different for a necklace since rotation alone cannot make the two sequences the same. (mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.) >>> B = [show('ABC', i) for i in bracelets(3, 3)] >>> N = [show('ABC', i) for i in necklaces(3, 3)] >>> set(N) - set(B) {'ACB'} >>> list(necklaces(4, 2)) [(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)] >>> [show('.o', i) for i in bracelets(4, 2)] ['....', '...o', '..oo', '.o.o', '.ooo', 'oooo'] References ========== .. [1] http://mathworld.wolfram.com/Necklace.html """ return uniq(minlex(i, directed=not free) for i in variations(list(range(k)), n, repetition=True)) def bracelets(n, k): """Wrapper to necklaces to return a free (unrestricted) necklace.""" return necklaces(n, k, free=True) def generate_oriented_forest(n): """ This algorithm generates oriented forests. An oriented graph is a directed graph having no symmetric pair of directed edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can also be described as a disjoint union of trees, which are graphs in which any two vertices are connected by exactly one simple path. Examples ======== >>> from sympy.utilities.iterables import generate_oriented_forest >>> list(generate_oriented_forest(4)) [[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \ [0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]] References ========== .. [1] T. Beyer and S.M. Hedetniemi: constant time generation of rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980 .. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python """ P = list(range(-1, n)) while True: yield P[1:] if P[n] > 0: P[n] = P[P[n]] else: for p in range(n - 1, 0, -1): if P[p] != 0: target = P[p] - 1 for q in range(p - 1, 0, -1): if P[q] == target: break offset = p - q for i in range(p, n + 1): P[i] = P[i - offset] break else: break def minlex(seq, directed=True, key=None): r""" Return the rotation of the sequence in which the lexically smallest elements appear first, e.g. `cba \rightarrow acb`. The sequence returned is a tuple, unless the input sequence is a string in which case a string is returned. If ``directed`` is False then the smaller of the sequence and the reversed sequence is returned, e.g. `cba \rightarrow abc`. If ``key`` is not None then it is used to extract a comparison key from each element in iterable. Examples ======== >>> from sympy.combinatorics.polyhedron import minlex >>> minlex((1, 2, 0)) (0, 1, 2) >>> minlex((1, 0, 2)) (0, 2, 1) >>> minlex((1, 0, 2), directed=False) (0, 1, 2) >>> minlex('11010011000', directed=True) '00011010011' >>> minlex('11010011000', directed=False) '00011001011' >>> minlex(('bb', 'aaa', 'c', 'a')) ('a', 'bb', 'aaa', 'c') >>> minlex(('bb', 'aaa', 'c', 'a'), key=len) ('c', 'a', 'bb', 'aaa') """ from sympy.functions.elementary.miscellaneous import Id if key is None: key = Id best = rotate_left(seq, least_rotation(seq, key=key)) if not directed: rseq = seq[::-1] rbest = rotate_left(rseq, least_rotation(rseq, key=key)) best = min(best, rbest, key=key) # Convert to tuple, unless we started with a string. return tuple(best) if not isinstance(seq, str) else best def runs(seq, op=gt): """Group the sequence into lists in which successive elements all compare the same with the comparison operator, ``op``: op(seq[i + 1], seq[i]) is True from all elements in a run. Examples ======== >>> from sympy.utilities.iterables import runs >>> from operator import ge >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2]) [[0, 1, 2], [2], [1, 4], [3], [2], [2]] >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge) [[0, 1, 2, 2], [1, 4], [3], [2, 2]] """ cycles = [] seq = iter(seq) try: run = [next(seq)] except StopIteration: return [] while True: try: ei = next(seq) except StopIteration: break if op(ei, run[-1]): run.append(ei) continue else: cycles.append(run) run = [ei] if run: cycles.append(run) return cycles def kbins(l, k, ordered=None): """ Return sequence ``l`` partitioned into ``k`` bins. Examples ======== >>> from __future__ import print_function The default is to give the items in the same order, but grouped into k partitions without any reordering: >>> from sympy.utilities.iterables import kbins >>> for p in kbins(list(range(5)), 2): ... print(p) ... [[0], [1, 2, 3, 4]] [[0, 1], [2, 3, 4]] [[0, 1, 2], [3, 4]] [[0, 1, 2, 3], [4]] The ``ordered`` flag is either None (to give the simple partition of the elements) or is a 2 digit integer indicating whether the order of the bins and the order of the items in the bins matters. Given:: A = [[0], [1, 2]] B = [[1, 2], [0]] C = [[2, 1], [0]] D = [[0], [2, 1]] the following values for ``ordered`` have the shown meanings:: 00 means A == B == C == D 01 means A == B 10 means A == D 11 means A == A >>> for ordered_flag in [None, 0, 1, 10, 11]: ... print('ordered = %s' % ordered_flag) ... for p in kbins(list(range(3)), 2, ordered=ordered_flag): ... print(' %s' % p) ... ordered = None [[0], [1, 2]] [[0, 1], [2]] ordered = 0 [[0, 1], [2]] [[0, 2], [1]] [[0], [1, 2]] ordered = 1 [[0], [1, 2]] [[0], [2, 1]] [[1], [0, 2]] [[1], [2, 0]] [[2], [0, 1]] [[2], [1, 0]] ordered = 10 [[0, 1], [2]] [[2], [0, 1]] [[0, 2], [1]] [[1], [0, 2]] [[0], [1, 2]] [[1, 2], [0]] ordered = 11 [[0], [1, 2]] [[0, 1], [2]] [[0], [2, 1]] [[0, 2], [1]] [[1], [0, 2]] [[1, 0], [2]] [[1], [2, 0]] [[1, 2], [0]] [[2], [0, 1]] [[2, 0], [1]] [[2], [1, 0]] [[2, 1], [0]] See Also ======== partitions, multiset_partitions """ def partition(lista, bins): # EnricoGiampieri's partition generator from # https://stackoverflow.com/questions/13131491/ # partition-n-items-into-k-bins-in-python-lazily if len(lista) == 1 or bins == 1: yield [lista] elif len(lista) > 1 and bins > 1: for i in range(1, len(lista)): for part in partition(lista[i:], bins - 1): if len([lista[:i]] + part) == bins: yield [lista[:i]] + part if ordered is None: yield from partition(l, k) elif ordered == 11: for pl in multiset_permutations(l): pl = list(pl) yield from partition(pl, k) elif ordered == 00: yield from multiset_partitions(l, k) elif ordered == 10: for p in multiset_partitions(l, k): for perm in permutations(p): yield list(perm) elif ordered == 1: for kgot, p in partitions(len(l), k, size=True): if kgot != k: continue for li in multiset_permutations(l): rv = [] i = j = 0 li = list(li) for size, multiplicity in sorted(p.items()): for m in range(multiplicity): j = i + size rv.append(li[i: j]) i = j yield rv else: raise ValueError( 'ordered must be one of 00, 01, 10 or 11, not %s' % ordered) def permute_signs(t): """Return iterator in which the signs of non-zero elements of t are permuted. Examples ======== >>> from sympy.utilities.iterables import permute_signs >>> list(permute_signs((0, 1, 2))) [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)] """ for signs in product(*[(1, -1)]*(len(t) - t.count(0))): signs = list(signs) yield type(t)([i*signs.pop() if i else i for i in t]) def signed_permutations(t): """Return iterator in which the signs of non-zero elements of t and the order of the elements are permuted. Examples ======== >>> from sympy.utilities.iterables import signed_permutations >>> list(signed_permutations((0, 1, 2))) [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1), (0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2), (1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0), (-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1), (2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)] """ return (type(t)(i) for j in permutations(t) for i in permute_signs(j)) def rotations(s, dir=1): """Return a generator giving the items in s as list where each subsequent list has the items rotated to the left (default) or right (dir=-1) relative to the previous list. Examples ======== >>> from sympy.utilities.iterables import rotations >>> list(rotations([1,2,3])) [[1, 2, 3], [2, 3, 1], [3, 1, 2]] >>> list(rotations([1,2,3], -1)) [[1, 2, 3], [3, 1, 2], [2, 3, 1]] """ seq = list(s) for i in range(len(seq)): yield seq seq = rotate_left(seq, dir) def roundrobin(*iterables): """roundrobin recipe taken from itertools documentation: https://docs.python.org/2/library/itertools.html#recipes roundrobin('ABC', 'D', 'EF') --> A D E B F C Recipe credited to George Sakkis """ import itertools nexts = itertools.cycle(iter(it).__next__ for it in iterables) pending = len(iterables) while pending: try: for nxt in nexts: yield nxt() except StopIteration: pending -= 1 nexts = itertools.cycle(itertools.islice(nexts, pending)) class NotIterable: """ Use this as mixin when creating a class which is not supposed to return true when iterable() is called on its instances because calling list() on the instance, for example, would result in an infinite loop. """ pass def iterable(i, exclude=(str, dict, NotIterable)): """ Return a boolean indicating whether ``i`` is SymPy iterable. True also indicates that the iterator is finite, e.g. you can call list(...) on the instance. When SymPy is working with iterables, it is almost always assuming that the iterable is not a string or a mapping, so those are excluded by default. If you want a pure Python definition, make exclude=None. To exclude multiple items, pass them as a tuple. You can also set the _iterable attribute to True or False on your class, which will override the checks here, including the exclude test. As a rule of thumb, some SymPy functions use this to check if they should recursively map over an object. If an object is technically iterable in the Python sense but does not desire this behavior (e.g., because its iteration is not finite, or because iteration might induce an unwanted computation), it should disable it by setting the _iterable attribute to False. See also: is_sequence Examples ======== >>> from sympy.utilities.iterables import iterable >>> from sympy import Tuple >>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1] >>> for i in things: ... print('%s %s' % (iterable(i), type(i))) True <... 'list'> True <... 'tuple'> True <... 'set'> True <class 'sympy.core.containers.Tuple'> True <... 'generator'> False <... 'dict'> False <... 'str'> False <... 'int'> >>> iterable({}, exclude=None) True >>> iterable({}, exclude=str) True >>> iterable("no", exclude=str) False """ if hasattr(i, '_iterable'): return i._iterable try: iter(i) except TypeError: return False if exclude: return not isinstance(i, exclude) return True def is_sequence(i, include=None): """ Return a boolean indicating whether ``i`` is a sequence in the SymPy sense. If anything that fails the test below should be included as being a sequence for your application, set 'include' to that object's type; multiple types should be passed as a tuple of types. Note: although generators can generate a sequence, they often need special handling to make sure their elements are captured before the generator is exhausted, so these are not included by default in the definition of a sequence. See also: iterable Examples ======== >>> from sympy.utilities.iterables import is_sequence >>> from types import GeneratorType >>> is_sequence([]) True >>> is_sequence(set()) False >>> is_sequence('abc') False >>> is_sequence('abc', include=str) True >>> generator = (c for c in 'abc') >>> is_sequence(generator) False >>> is_sequence(generator, include=(str, GeneratorType)) True """ return (hasattr(i, '__getitem__') and iterable(i) or bool(include) and isinstance(i, include)) @deprecated(useinstead="sympy.core.traversal.postorder_traversal", deprecated_since_version="1.10", issue=22288) def postorder_traversal(node, keys=None): from sympy.core.traversal import postorder_traversal as _postorder_traversal return _postorder_traversal(node, keys=keys) @deprecated(useinstead="sympy.interactive.traversal.interactive_traversal", issue=22288, deprecated_since_version="1.10") def interactive_traversal(expr): from sympy.interactive.traversal import interactive_traversal as _interactive_traversal return _interactive_traversal(expr)
2506ff01987fce94a1e2eae2a4a7f13d5e95938de37b1beef7d730871e5afadb
from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning( feature="Import sympy.utilities.randtest", useinstead="Import from sympy.core.random", issue=18095, deprecated_since_version="1.6").warn() from sympy.core.random import * # noqa:F401
dc0cd22d0ff1dfaa9112d67d655015107045ae56710c6d4140135a2fe4308d78
""" Python code printers This module contains Python code printers for plain Python as well as NumPy & SciPy enabled code. """ from collections import defaultdict from itertools import chain from sympy.core import S from .precedence import precedence from .codeprinter import CodePrinter _kw_py2and3 = { 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield', 'None' # 'None' is actually not in Python 2's keyword.kwlist } _kw_only_py2 = {'exec', 'print'} _kw_only_py3 = {'False', 'nonlocal', 'True'} _known_functions = { 'Abs': 'abs', } _known_functions_math = { 'acos': 'acos', 'acosh': 'acosh', 'asin': 'asin', 'asinh': 'asinh', 'atan': 'atan', 'atan2': 'atan2', 'atanh': 'atanh', 'ceiling': 'ceil', 'cos': 'cos', 'cosh': 'cosh', 'erf': 'erf', 'erfc': 'erfc', 'exp': 'exp', 'expm1': 'expm1', 'factorial': 'factorial', 'floor': 'floor', 'gamma': 'gamma', 'hypot': 'hypot', 'loggamma': 'lgamma', 'log': 'log', 'ln': 'log', 'log10': 'log10', 'log1p': 'log1p', 'log2': 'log2', 'sin': 'sin', 'sinh': 'sinh', 'Sqrt': 'sqrt', 'tan': 'tan', 'tanh': 'tanh' } # Not used from ``math``: [copysign isclose isfinite isinf isnan ldexp frexp pow modf # radians trunc fmod fsum gcd degrees fabs] _known_constants_math = { 'Exp1': 'e', 'Pi': 'pi', 'E': 'e' # Only in Python >= 3.5: # 'Infinity': 'inf', # 'NaN': 'nan' } def _print_known_func(self, expr): known = self.known_functions[expr.__class__.__name__] return '{name}({args})'.format(name=self._module_format(known), args=', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_known_const(self, expr): known = self.known_constants[expr.__class__.__name__] return self._module_format(known) class AbstractPythonCodePrinter(CodePrinter): printmethod = "_pythoncode" language = "Python" reserved_words = _kw_py2and3.union(_kw_only_py3) modules = None # initialized to a set in __init__ tab = ' ' _kf = dict(chain( _known_functions.items(), [(k, 'math.' + v) for k, v in _known_functions_math.items()] )) _kc = {k: 'math.'+v for k, v in _known_constants_math.items()} _operators = {'and': 'and', 'or': 'or', 'not': 'not'} _default_settings = dict( CodePrinter._default_settings, user_functions={}, precision=17, inline=True, fully_qualified_modules=True, contract=False, standard='python3', ) def __init__(self, settings=None): super().__init__(settings) # Python standard handler std = self._settings['standard'] if std is None: import sys std = 'python{}'.format(sys.version_info.major) if std not in ('python2', 'python3'): raise ValueError('Unrecognized Python standard : {}'.format(std)) self.standard = std self.module_imports = defaultdict(set) # Known functions and constants handler self.known_functions = dict(self._kf, **(settings or {}).get( 'user_functions', {})) self.known_constants = dict(self._kc, **(settings or {}).get( 'user_constants', {})) def _declare_number_const(self, name, value): return "%s = %s" % (name, value) def _module_format(self, fqn, register=True): parts = fqn.split('.') if register and len(parts) > 1: self.module_imports['.'.join(parts[:-1])].add(parts[-1]) if self._settings['fully_qualified_modules']: return fqn else: return fqn.split('(')[0].split('[')[0].split('.')[-1] def _format_code(self, lines): return lines def _get_statement(self, codestring): return "{}".format(codestring) def _get_comment(self, text): return " # {}".format(text) def _expand_fold_binary_op(self, op, args): """ This method expands a fold on binary operations. ``functools.reduce`` is an example of a folded operation. For example, the expression `A + B + C + D` is folded into `((A + B) + C) + D` """ if len(args) == 1: return self._print(args[0]) else: return "%s(%s, %s)" % ( self._module_format(op), self._expand_fold_binary_op(op, args[:-1]), self._print(args[-1]), ) def _expand_reduce_binary_op(self, op, args): """ This method expands a reductin on binary operations. Notice: this is NOT the same as ``functools.reduce``. For example, the expression `A + B + C + D` is reduced into: `(A + B) + (C + D)` """ if len(args) == 1: return self._print(args[0]) else: N = len(args) Nhalf = N // 2 return "%s(%s, %s)" % ( self._module_format(op), self._expand_reduce_binary_op(args[:Nhalf]), self._expand_reduce_binary_op(args[Nhalf:]), ) def _get_einsum_string(self, subranks, contraction_indices): letters = self._get_letter_generator_for_einsum() contraction_string = "" counter = 0 d = {j: min(i) for i in contraction_indices for j in i} indices = [] for rank_arg in subranks: lindices = [] for i in range(rank_arg): if counter in d: lindices.append(d[counter]) else: lindices.append(counter) counter += 1 indices.append(lindices) mapping = {} letters_free = [] letters_dum = [] for i in indices: for j in i: if j not in mapping: l = next(letters) mapping[j] = l else: l = mapping[j] contraction_string += l if j in d: if l not in letters_dum: letters_dum.append(l) else: letters_free.append(l) contraction_string += "," contraction_string = contraction_string[:-1] return contraction_string, letters_free, letters_dum def _print_NaN(self, expr): return "float('nan')" def _print_Infinity(self, expr): return "float('inf')" def _print_NegativeInfinity(self, expr): return "float('-inf')" def _print_ComplexInfinity(self, expr): return self._print_NaN(expr) def _print_Mod(self, expr): PREC = precedence(expr) return ('{} % {}'.format(*map(lambda x: self.parenthesize(x, PREC), expr.args))) def _print_Piecewise(self, expr): result = [] i = 0 for arg in expr.args: e = arg.expr c = arg.cond if i == 0: result.append('(') result.append('(') result.append(self._print(e)) result.append(')') result.append(' if ') result.append(self._print(c)) result.append(' else ') i += 1 result = result[:-1] if result[-1] == 'True': result = result[:-2] result.append(')') else: result.append(' else None)') return ''.join(result) def _print_Relational(self, expr): "Relational printer for Equality and Unequality" op = { '==' :'equal', '!=' :'not_equal', '<' :'less', '<=' :'less_equal', '>' :'greater', '>=' :'greater_equal', } if expr.rel_op in op: lhs = self._print(expr.lhs) rhs = self._print(expr.rhs) return '({lhs} {op} {rhs})'.format(op=expr.rel_op, lhs=lhs, rhs=rhs) return super()._print_Relational(expr) def _print_ITE(self, expr): from sympy.functions.elementary.piecewise import Piecewise return self._print(expr.rewrite(Piecewise)) def _print_Sum(self, expr): loops = ( 'for {i} in range({a}, {b}+1)'.format( i=self._print(i), a=self._print(a), b=self._print(b)) for i, a, b in expr.limits) return '(builtins.sum({function} {loops}))'.format( function=self._print(expr.function), loops=' '.join(loops)) def _print_ImaginaryUnit(self, expr): return '1j' def _print_KroneckerDelta(self, expr): a, b = expr.args return '(1 if {a} == {b} else 0)'.format( a = self._print(a), b = self._print(b) ) def _print_MatrixBase(self, expr): name = expr.__class__.__name__ func = self.known_functions.get(name, name) return "%s(%s)" % (func, self._print(expr.tolist())) _print_SparseRepMatrix = \ _print_MutableSparseMatrix = \ _print_ImmutableSparseMatrix = \ _print_Matrix = \ _print_DenseMatrix = \ _print_MutableDenseMatrix = \ _print_ImmutableMatrix = \ _print_ImmutableDenseMatrix = \ lambda self, expr: self._print_MatrixBase(expr) def _indent_codestring(self, codestring): return '\n'.join([self.tab + line for line in codestring.split('\n')]) def _print_FunctionDefinition(self, fd): body = '\n'.join(map(lambda arg: self._print(arg), fd.body)) return "def {name}({parameters}):\n{body}".format( name=self._print(fd.name), parameters=', '.join([self._print(var.symbol) for var in fd.parameters]), body=self._indent_codestring(body) ) def _print_While(self, whl): body = '\n'.join(map(lambda arg: self._print(arg), whl.body)) return "while {cond}:\n{body}".format( cond=self._print(whl.condition), body=self._indent_codestring(body) ) def _print_Declaration(self, decl): return '%s = %s' % ( self._print(decl.variable.symbol), self._print(decl.variable.value) ) def _print_Return(self, ret): arg, = ret.args return 'return %s' % self._print(arg) def _print_Print(self, prnt): print_args = ', '.join(map(lambda arg: self._print(arg), prnt.print_args)) if prnt.format_string != None: # Must be '!= None', cannot be 'is not None' print_args = '{} % ({})'.format( self._print(prnt.format_string), print_args) if prnt.file != None: # Must be '!= None', cannot be 'is not None' print_args += ', file=%s' % self._print(prnt.file) if self.standard == 'python2': return 'print %s' % print_args return 'print(%s)' % print_args def _print_Stream(self, strm): if str(strm.name) == 'stdout': return self._module_format('sys.stdout') elif str(strm.name) == 'stderr': return self._module_format('sys.stderr') else: return self._print(strm.name) def _print_NoneToken(self, arg): return 'None' def _hprint_Pow(self, expr, rational=False, sqrt='math.sqrt'): """Printing helper function for ``Pow`` Notes ===== This only preprocesses the ``sqrt`` as math formatter Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.pycode import PythonCodePrinter >>> from sympy.abc import x Python code printer automatically looks up ``math.sqrt``. >>> printer = PythonCodePrinter({'standard':'python3'}) >>> printer._hprint_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._hprint_Pow(sqrt(x), rational=False) 'math.sqrt(x)' >>> printer._hprint_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._hprint_Pow(1/sqrt(x), rational=False) '1/math.sqrt(x)' Using sqrt from numpy or mpmath >>> printer._hprint_Pow(sqrt(x), sqrt='numpy.sqrt') 'numpy.sqrt(x)' >>> printer._hprint_Pow(sqrt(x), sqrt='mpmath.sqrt') 'mpmath.sqrt(x)' See Also ======== sympy.printing.str.StrPrinter._print_Pow """ PREC = precedence(expr) if expr.exp == S.Half and not rational: func = self._module_format(sqrt) arg = self._print(expr.base) return '{func}({arg})'.format(func=func, arg=arg) if expr.is_commutative: if -expr.exp is S.Half and not rational: func = self._module_format(sqrt) num = self._print(S.One) arg = self._print(expr.base) return "{num}/{func}({arg})".format( num=num, func=func, arg=arg) base_str = self.parenthesize(expr.base, PREC, strict=False) exp_str = self.parenthesize(expr.exp, PREC, strict=False) return "{}**{}".format(base_str, exp_str) class PythonCodePrinter(AbstractPythonCodePrinter): def _print_sign(self, e): return '(0.0 if {e} == 0 else {f}(1, {e}))'.format( f=self._module_format('math.copysign'), e=self._print(e.args[0])) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_Indexed(self, expr): base = expr.args[0] index = expr.args[1:] return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index])) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational) def _print_Rational(self, expr): if self.standard == 'python2': return '{}./{}.'.format(expr.p, expr.q) return '{}/{}'.format(expr.p, expr.q) def _print_Half(self, expr): return self._print_Rational(expr) def _print_frac(self, expr): from sympy.core.mod import Mod return self._print_Mod(Mod(expr.args[0], 1)) def _print_Symbol(self, expr): name = super()._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] elif '{' in name: # Remove curly braces from subscripted variables return name.replace('{', '').replace('}', '') else: return name _print_lowergamma = CodePrinter._print_not_supported _print_uppergamma = CodePrinter._print_not_supported _print_fresnelc = CodePrinter._print_not_supported _print_fresnels = CodePrinter._print_not_supported for k in PythonCodePrinter._kf: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_math: setattr(PythonCodePrinter, '_print_%s' % k, _print_known_const) def pycode(expr, **settings): """ Converts an expr to a string of Python code Parameters ========== expr : Expr A SymPy expression. fully_qualified_modules : bool Whether or not to write out full module names of functions (``math.sin`` vs. ``sin``). default: ``True``. standard : str or None, optional If 'python2', Python 2 sematics will be used. If 'python3', Python 3 sematics will be used. If None, the standard will be automatically detected. Default is 'python3'. And this parameter may be removed in the future. Examples ======== >>> from sympy import tan, Symbol >>> from sympy.printing.pycode import pycode >>> pycode(tan(Symbol('x')) + 1) 'math.tan(x) + 1' """ return PythonCodePrinter(settings).doprint(expr) _not_in_mpmath = 'log1p log2'.split() _in_mpmath = [(k, v) for k, v in _known_functions_math.items() if k not in _not_in_mpmath] _known_functions_mpmath = dict(_in_mpmath, **{ 'beta': 'beta', 'frac': 'frac', 'fresnelc': 'fresnelc', 'fresnels': 'fresnels', 'sign': 'sign', 'loggamma': 'loggamma', 'hyper': 'hyper', 'meijerg': 'meijerg', 'besselj': 'besselj', 'bessely': 'bessely', 'besseli': 'besseli', 'besselk': 'besselk', }) _known_constants_mpmath = { 'Exp1': 'e', 'Pi': 'pi', 'GoldenRatio': 'phi', 'EulerGamma': 'euler', 'Catalan': 'catalan', 'NaN': 'nan', 'Infinity': 'inf', 'NegativeInfinity': 'ninf' } def _unpack_integral_limits(integral_expr): """ helper function for _print_Integral that - accepts an Integral expression - returns a tuple of - a list variables of integration - a list of tuples of the upper and lower limits of integration """ integration_vars = [] limits = [] for integration_range in integral_expr.limits: if len(integration_range) == 3: integration_var, lower_limit, upper_limit = integration_range else: raise NotImplementedError("Only definite integrals are supported") integration_vars.append(integration_var) limits.append((lower_limit, upper_limit)) return integration_vars, limits class MpmathPrinter(PythonCodePrinter): """ Lambda printer for mpmath which maintains precision for floats """ printmethod = "_mpmathcode" language = "Python with mpmath" _kf = dict(chain( _known_functions.items(), [(k, 'mpmath.' + v) for k, v in _known_functions_mpmath.items()] )) _kc = {k: 'mpmath.'+v for k, v in _known_constants_mpmath.items()} def _print_Float(self, e): # XXX: This does not handle setting mpmath.mp.dps. It is assumed that # the caller of the lambdified function will have set it to sufficient # precision to match the Floats in the expression. # Remove 'mpz' if gmpy is installed. args = str(tuple(map(int, e._mpf_))) return '{func}({args})'.format(func=self._module_format('mpmath.mpf'), args=args) def _print_Rational(self, e): return "{func}({p})/{func}({q})".format( func=self._module_format('mpmath.mpf'), q=self._print(e.q), p=self._print(e.p) ) def _print_Half(self, e): return self._print_Rational(e) def _print_uppergamma(self, e): return "{}({}, {}, {})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1]), self._module_format('mpmath.inf')) def _print_lowergamma(self, e): return "{}({}, 0, {})".format( self._module_format('mpmath.gammainc'), self._print(e.args[0]), self._print(e.args[1])) def _print_log2(self, e): return '{0}({1})/{0}(2)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_log1p(self, e): return '{}({}+1)'.format( self._module_format('mpmath.log'), self._print(e.args[0])) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='mpmath.sqrt') def _print_Integral(self, e): integration_vars, limits = _unpack_integral_limits(e) return "{}(lambda {}: {}, {})".format( self._module_format("mpmath.quad"), ", ".join(map(self._print, integration_vars)), self._print(e.args[0]), ", ".join("(%s, %s)" % tuple(map(self._print, l)) for l in limits)) for k in MpmathPrinter._kf: setattr(MpmathPrinter, '_print_%s' % k, _print_known_func) for k in _known_constants_mpmath: setattr(MpmathPrinter, '_print_%s' % k, _print_known_const) class SymPyPrinter(AbstractPythonCodePrinter): language = "Python with SymPy" def _print_Function(self, expr): mod = expr.func.__module__ or '' return '%s(%s)' % (self._module_format(mod + ('.' if mod else '') + expr.func.__name__), ', '.join(map(lambda arg: self._print(arg), expr.args))) def _print_Pow(self, expr, rational=False): return self._hprint_Pow(expr, rational=rational, sqrt='sympy.sqrt')
47d4807070d9232ca74a6ec00adbe2c9a9f14c8330ed528289eabd2ff521dc22
""" A Printer for generating readable representation of most SymPy classes. """ from typing import Any, Dict as tDict from sympy.core import S, Rational, Pow, Basic, Mul, Number from sympy.core.mul import _keep_coeff from sympy.core.relational import Relational from sympy.core.sorting import default_sort_key from sympy.core.sympify import SympifyError from sympy.sets.sets import FiniteSet from sympy.utilities.iterables import sift from .precedence import precedence, PRECEDENCE from .printer import Printer, print_function from mpmath.libmp import prec_to_dps, to_str as mlib_to_str class StrPrinter(Printer): printmethod = "_sympystr" _default_settings = { "order": None, "full_prec": "auto", "sympy_integers": False, "abbrev": False, "perm_cyclic": True, "min": None, "max": None, } # type: tDict[str, Any] _relationals = dict() # type: tDict[str, str] def parenthesize(self, item, level, strict=False): if (precedence(item) < level) or ((not strict) and precedence(item) <= level): return "(%s)" % self._print(item) else: return self._print(item) def stringify(self, args, sep, level=0): return sep.join([self.parenthesize(item, level) for item in args]) def emptyPrinter(self, expr): if isinstance(expr, str): return expr elif isinstance(expr, Basic): return repr(expr) else: return str(expr) def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) PREC = precedence(expr) l = [] for term in terms: t = self._print(term) if t.startswith('-'): sign = "-" t = t[1:] else: sign = "+" if precedence(term) < PREC: l.extend([sign, "(%s)" % t]) else: l.extend([sign, t]) sign = l.pop(0) if sign == '+': sign = "" return sign + ' '.join(l) def _print_BooleanTrue(self, expr): return "True" def _print_BooleanFalse(self, expr): return "False" def _print_Not(self, expr): return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"])) def _print_And(self, expr): args = list(expr.args) for j, i in enumerate(args): if isinstance(i, Relational) and ( i.canonical.rhs is S.NegativeInfinity): args.insert(0, args.pop(j)) return self.stringify(args, " & ", PRECEDENCE["BitwiseAnd"]) def _print_Or(self, expr): return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"]) def _print_Xor(self, expr): return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"]) def _print_AppliedPredicate(self, expr): return '%s(%s)' % ( self._print(expr.function), self.stringify(expr.arguments, ", ")) def _print_Basic(self, expr): l = [self._print(o) for o in expr.args] return expr.__class__.__name__ + "(%s)" % ", ".join(l) def _print_BlockMatrix(self, B): if B.blocks.shape == (1, 1): self._print(B.blocks[0, 0]) return self._print(B.blocks) def _print_Catalan(self, expr): return 'Catalan' def _print_ComplexInfinity(self, expr): return 'zoo' def _print_ConditionSet(self, s): args = tuple([self._print(i) for i in (s.sym, s.condition)]) if s.base_set is S.UniversalSet: return 'ConditionSet(%s, %s)' % args args += (self._print(s.base_set),) return 'ConditionSet(%s, %s, %s)' % args def _print_Derivative(self, expr): dexpr = expr.expr dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count] return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars)) def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: item = "%s: %s" % (self._print(key), self._print(d[key])) items.append(item) return "{%s}" % ", ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return 'Domain: ' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('Domain: ' + self._print(d.symbols) + ' in ' + self._print(d.set)) else: return 'Domain on ' + self._print(d.symbols) def _print_Dummy(self, expr): return '_' + expr.name def _print_EulerGamma(self, expr): return 'EulerGamma' def _print_Exp1(self, expr): return 'E' def _print_ExprCondPair(self, expr): return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond)) def _print_Function(self, expr): return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ") def _print_GoldenRatio(self, expr): return 'GoldenRatio' def _print_Heaviside(self, expr): # Same as _print_Function but uses pargs to suppress default 1/2 for # 2nd args return expr.func.__name__ + "(%s)" % self.stringify(expr.pargs, ", ") def _print_TribonacciConstant(self, expr): return 'TribonacciConstant' def _print_ImaginaryUnit(self, expr): return 'I' def _print_Infinity(self, expr): return 'oo' def _print_Integral(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Integral(%s, %s)' % (self._print(expr.function), L) def _print_Interval(self, i): fin = 'Interval{m}({a}, {b})' a, b, l, r = i.args if a.is_infinite and b.is_infinite: m = '' elif a.is_infinite and not r: m = '' elif b.is_infinite and not l: m = '' elif not l and not r: m = '' elif l and r: m = '.open' elif l: m = '.Lopen' else: m = '.Ropen' return fin.format(**{'a': a, 'b': b, 'm': m}) def _print_AccumulationBounds(self, i): return "AccumBounds(%s, %s)" % (self._print(i.min), self._print(i.max)) def _print_Inverse(self, I): return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"]) def _print_Lambda(self, obj): expr = obj.expr sig = obj.signature if len(sig) == 1 and sig[0].is_symbol: sig = sig[0] return "Lambda(%s, %s)" % (self._print(sig), self._print(expr)) def _print_LatticeOp(self, expr): args = sorted(expr.args, key=default_sort_key) return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args) def _print_Limit(self, expr): e, z, z0, dir = expr.args if str(dir) == "+": return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0))) else: return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print, (e, z, z0, dir))) def _print_list(self, expr): return "[%s]" % self.stringify(expr, ", ") def _print_List(self, expr): return self._print_list(expr) def _print_MatrixBase(self, expr): return expr._format_str(self) def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \ + '[%s, %s]' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def strslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = '' if x[1] == dim: x[1] = '' return ':'.join(map(lambda arg: self._print(arg), x)) return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' + strslice(expr.rowslice, expr.parent.rows) + ', ' + strslice(expr.colslice, expr.parent.cols) + ']') def _print_DeferredVector(self, expr): return expr.name def _print_Mul(self, expr): prec = precedence(expr) # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. args = expr.args if args[0] is S.One or any( isinstance(a, Number) or a.is_Pow and all(ai.is_Integer for ai in a.args) for a in args[1:]): d, n = sift(args, lambda x: isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0), binary=True) for i, di in enumerate(d): if di.exp.is_Number: e = -di.exp else: dargs = list(di.exp.args) dargs[0] = -dargs[0] e = Mul._from_args(dargs) d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base pre = [] # don't parenthesize first factor if negative if n and n[0].could_extract_minus_sign(): pre = [str(n.pop(0))] nfactors = pre + [self.parenthesize(a, prec, strict=False) for a in n] if not nfactors: nfactors = ['1'] # don't parenthesize first of denominator unless singleton if len(d) > 1 and d[0].could_extract_minus_sign(): pre = [str(d.pop(0))] else: pre = [] dfactors = pre + [self.parenthesize(a, prec, strict=False) for a in d] n = '*'.join(nfactors) d = '*'.join(dfactors) if len(dfactors) > 1: return '%s/(%s)' % (n, d) elif dfactors: return '%s/%s' % (n, d) return n c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator def apow(i): b, e = i.as_base_exp() eargs = list(Mul.make_args(e)) if eargs[0] is S.NegativeOne: eargs = eargs[1:] else: eargs[0] = -eargs[0] e = Mul._from_args(eargs) if isinstance(i, Pow): return i.func(b, e, evaluate=False) return i.func(e, evaluate=False) for item in args: if (item.is_commutative and isinstance(item, Pow) and bool(item.exp.as_coeff_Mul()[0] < 0)): if item.exp is not S.NegativeOne: b.append(apow(item)) else: if (len(item.args[0].args) != 1 and isinstance(item.base, (Mul, Pow))): # To avoid situations like #14160 pow_paren.append(item) b.append(item.base) elif item.is_Rational and item is not S.Infinity: if item.p != 1: a.append(Rational(item.p)) if item.q != 1: b.append(Rational(item.q)) else: a.append(item) a = a or [S.One] a_str = [self.parenthesize(x, prec, strict=False) for x in a] b_str = [self.parenthesize(x, prec, strict=False) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_MatMul(self, expr): c, m = expr.as_coeff_mmul() sign = "" if c.is_number: re, im = c.as_real_imag() if im.is_zero and re.is_negative: expr = _keep_coeff(-c, m) sign = "-" elif re.is_zero and im.is_negative: expr = _keep_coeff(-c, m) sign = "-" return sign + '*'.join( [self.parenthesize(arg, precedence(expr)) for arg in expr.args] ) def _print_ElementwiseApplyFunction(self, expr): return "{}.({})".format( expr.function, self._print(expr.expr), ) def _print_NaN(self, expr): return 'nan' def _print_NegativeInfinity(self, expr): return '-oo' def _print_Order(self, expr): if not expr.variables or all(p is S.Zero for p in expr.point): if len(expr.variables) <= 1: return 'O(%s)' % self._print(expr.expr) else: return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0) else: return 'O(%s)' % self.stringify(expr.args, ', ', 0) def _print_Ordinal(self, expr): return expr.__str__() def _print_Cycle(self, expr): return expr.__str__() def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation, Cycle from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: if not expr.size: return '()' # before taking Cycle notation, see if the last element is # a singleton and move it to the head of the string s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):] last = s.rfind('(') if not last == 0 and ',' not in s[last:]: s = s[last:] + s[:last] s = s.replace(',', '') return s else: s = expr.support() if not s: if expr.size < 5: return 'Permutation(%s)' % self._print(expr.array_form) return 'Permutation([], size=%s)' % self._print(expr.size) trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size) use = full = self._print(expr.array_form) if len(trim) < len(full): use = trim return 'Permutation(%s)' % use def _print_Subs(self, obj): expr, old, new = obj.args if len(obj.point) == 1: old = old[0] new = new[0] return "Subs(%s, %s, %s)" % ( self._print(expr), self._print(old), self._print(new)) def _print_TensorIndex(self, expr): return expr._print() def _print_TensorHead(self, expr): return expr._print() def _print_Tensor(self, expr): return expr._print() def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "*".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): return expr._print() def _print_ArraySymbol(self, expr): return self._print(expr.name) def _print_ArrayElement(self, expr): return "%s[%s]" % ( self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([self._print(i) for i in expr.indices])) def _print_PermutationGroup(self, expr): p = [' %s' % self._print(a) for a in expr.args] return 'PermutationGroup([\n%s])' % ',\n'.join(p) def _print_Pi(self, expr): return 'pi' def _print_PolyRing(self, ring): return "Polynomial ring in %s over %s with %s order" % \ (", ".join(map(lambda rs: self._print(rs), ring.symbols)), self._print(ring.domain), self._print(ring.order)) def _print_FracField(self, field): return "Rational function field in %s over %s with %s order" % \ (", ".join(map(lambda fs: self._print(fs), field.symbols)), self._print(field.domain), self._print(field.order)) def _print_FreeGroupElement(self, elm): return elm.__str__() def _print_GaussianElement(self, poly): return "(%s + %s*I)" % (poly.x, poly.y) def _print_PolyElement(self, poly): return poly.str(self, PRECEDENCE, "%s**%s", "*") def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True) denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True) return numer + "/" + denom def _print_Poly(self, expr): ATOM_PREC = PRECEDENCE["Atom"] - 1 terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ] for monom, coeff in expr.terms(): s_monom = [] for i, e in enumerate(monom): if e > 0: if e == 1: s_monom.append(gens[i]) else: s_monom.append(gens[i] + "**%d" % e) s_monom = "*".join(s_monom) if coeff.is_Add: if s_monom: s_coeff = "(" + self._print(coeff) + ")" else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + "*" + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ('-', '+'): modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] format = expr.__class__.__name__ + "(%s, %s" from sympy.polys.polyerrors import PolynomialError try: format += ", modulus=%s" % expr.get_modulus() except PolynomialError: format += ", domain='%s'" % expr.get_domain() format += ")" for index, item in enumerate(gens): if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"): gens[index] = item[1:len(item) - 1] return format % (' '.join(terms), ', '.join(gens)) def _print_UniversalSet(self, p): return 'UniversalSet' def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr, rational=False): """Printing helper function for ``Pow`` Parameters ========== rational : bool, optional If ``True``, it will not attempt printing ``sqrt(x)`` or ``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)`` instead. See examples for additional details Examples ======== >>> from sympy.functions import sqrt >>> from sympy.printing.str import StrPrinter >>> from sympy.abc import x How ``rational`` keyword works with ``sqrt``: >>> printer = StrPrinter() >>> printer._print_Pow(sqrt(x), rational=True) 'x**(1/2)' >>> printer._print_Pow(sqrt(x), rational=False) 'sqrt(x)' >>> printer._print_Pow(1/sqrt(x), rational=True) 'x**(-1/2)' >>> printer._print_Pow(1/sqrt(x), rational=False) '1/sqrt(x)' Notes ===== ``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy, so there is no need of defining a separate printer for ``sqrt``. Instead, it should be handled here as well. """ PREC = precedence(expr) if expr.exp is S.Half and not rational: return "sqrt(%s)" % self._print(expr.base) if expr.is_commutative: if -expr.exp is S.Half and not rational: # Note: Don't test "expr.exp == -S.Half" here, because that will # match -0.5, which we don't want. return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base))) if expr.exp is -S.One: # Similarly to the S.Half case, don't test with "==" here. return '%s/%s' % (self._print(S.One), self.parenthesize(expr.base, PREC, strict=False)) e = self.parenthesize(expr.exp, PREC, strict=False) if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1: # the parenthesized exp should be '(Rational(a, b))' so strip parens, # but just check to be sure. if e.startswith('(Rational'): return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1]) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_MatPow(self, expr): PREC = precedence(expr) return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), self.parenthesize(expr.exp, PREC, strict=False)) def _print_Integer(self, expr): if self._settings.get("sympy_integers", False): return "S(%s)" % (expr) return str(expr.p) def _print_Integers(self, expr): return 'Integers' def _print_Naturals(self, expr): return 'Naturals' def _print_Naturals0(self, expr): return 'Naturals0' def _print_Rationals(self, expr): return 'Rationals' def _print_Reals(self, expr): return 'Reals' def _print_Complexes(self, expr): return 'Complexes' def _print_EmptySet(self, expr): return 'EmptySet' def _print_EmptySequence(self, expr): return 'EmptySequence' def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_Rational(self, expr): if expr.q == 1: return str(expr.p) else: if self._settings.get("sympy_integers", False): return "S(%s)/%s" % (expr.p, expr.q) return "%s/%s" % (expr.p, expr.q) def _print_PythonRational(self, expr): if expr.q == 1: return str(expr.p) else: return "%d/%d" % (expr.p, expr.q) def _print_Fraction(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_mpq(self, expr): if expr.denominator == 1: return str(expr.numerator) else: return "%s/%s" % (expr.numerator, expr.denominator) def _print_Float(self, expr): prec = expr._prec if prec < 5: dps = 0 else: dps = prec_to_dps(expr._prec) if self._settings["full_prec"] is True: strip = False elif self._settings["full_prec"] is False: strip = True elif self._settings["full_prec"] == "auto": strip = self._print_level > 1 low = self._settings["min"] if "min" in self._settings else None high = self._settings["max"] if "max" in self._settings else None rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) if rv.startswith('-.0'): rv = '-0.' + rv[3:] elif rv.startswith('.0'): rv = '0.' + rv[2:] if rv.startswith('+'): # e.g., +inf -> inf rv = rv[1:] return rv def _print_Relational(self, expr): charmap = { "==": "Eq", "!=": "Ne", ":=": "Assignment", '+=': "AddAugmentedAssignment", "-=": "SubAugmentedAssignment", "*=": "MulAugmentedAssignment", "/=": "DivAugmentedAssignment", "%=": "ModAugmentedAssignment", } if expr.rel_op in charmap: return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs), self._print(expr.rhs)) return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)), self._relationals.get(expr.rel_op) or expr.rel_op, self.parenthesize(expr.rhs, precedence(expr))) def _print_ComplexRootOf(self, expr): return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'), expr.index) def _print_RootSum(self, expr): args = [self._print_Add(expr.expr, order='lex')] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) return "RootSum(%s)" % ", ".join(args) def _print_GroebnerBasis(self, basis): cls = basis.__class__.__name__ exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs] exprs = "[%s]" % ", ".join(exprs) gens = [ self._print(gen) for gen in basis.gens ] domain = "domain='%s'" % self._print(basis.domain) order = "order='%s'" % self._print(basis.order) args = [exprs] + gens + [domain, order] return "%s(%s)" % (cls, ", ".join(args)) def _print_set(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if not args: return "set()" return '{%s}' % args def _print_FiniteSet(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(item) for item in items) if any(item.has(FiniteSet) for item in items): return 'FiniteSet({})'.format(args) return '{{{}}}'.format(args) def _print_Partition(self, s): items = sorted(s, key=default_sort_key) args = ', '.join(self._print(arg) for arg in items) return 'Partition({})'.format(args) def _print_frozenset(self, s): if not s: return "frozenset()" return "frozenset(%s)" % self._print_set(s) def _print_Sum(self, expr): def _xab_tostr(xab): if len(xab) == 1: return self._print(xab[0]) else: return self._print((xab[0],) + tuple(xab[1:])) L = ', '.join([_xab_tostr(l) for l in expr.limits]) return 'Sum(%s, %s)' % (self._print(expr.function), L) def _print_Symbol(self, expr): return expr.name _print_MatrixSymbol = _print_Symbol _print_RandomSymbol = _print_Symbol def _print_Identity(self, expr): return "I" def _print_ZeroMatrix(self, expr): return "0" def _print_OneMatrix(self, expr): return "1" def _print_Predicate(self, expr): return "Q.%s" % expr.name def _print_str(self, expr): return str(expr) def _print_tuple(self, expr): if len(expr) == 1: return "(%s,)" % self._print(expr[0]) else: return "(%s)" % self.stringify(expr, ", ") def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_Transpose(self, T): return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"]) def _print_Uniform(self, expr): return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b)) def _print_Quantity(self, expr): if self._settings.get("abbrev", False): return "%s" % expr.abbrev return "%s" % expr.name def _print_Quaternion(self, expr): s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_Dimension(self, expr): return str(expr) def _print_Wild(self, expr): return expr.name + '_' def _print_WildFunction(self, expr): return expr.name + '_' def _print_WildDot(self, expr): return expr.name def _print_WildPlus(self, expr): return expr.name def _print_WildStar(self, expr): return expr.name def _print_Zero(self, expr): if self._settings.get("sympy_integers", False): return "S(0)" return "0" def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass cls = p.__class__.__name__ rep = self._print(p.rep) dom = self._print(p.dom) ring = self._print(p.ring) return "%s(%s, %s, %s)" % (cls, rep, dom, ring) def _print_DMF(self, expr): return self._print_DMP(expr) def _print_Object(self, obj): return 'Object("%s")' % obj.name def _print_IdentityMorphism(self, morphism): return 'IdentityMorphism(%s)' % morphism.domain def _print_NamedMorphism(self, morphism): return 'NamedMorphism(%s, %s, "%s")' % \ (morphism.domain, morphism.codomain, morphism.name) def _print_Category(self, category): return 'Category("%s")' % category.name def _print_Manifold(self, manifold): return manifold.name.name def _print_Patch(self, patch): return patch.name.name def _print_CoordSystem(self, coords): return coords.name.name def _print_BaseScalarField(self, field): return field._coord_sys.symbols[field._index].name def _print_BaseVectorField(self, field): return 'e_%s' % field._coord_sys.symbols[field._index].name def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): return 'd%s' % field._coord_sys.symbols[field._index].name else: return 'd(%s)' % self._print(field) def _print_Tr(self, expr): #TODO : Handle indices return "%s(%s)" % ("Tr", self._print(expr.args[0])) def _print_Str(self, s): return self._print(s.name) def _print_AppliedBinaryRelation(self, expr): rel = expr.function return '%s(%s, %s)' % (self._print(rel), self._print(expr.lhs), self._print(expr.rhs)) @print_function(StrPrinter) def sstr(expr, **settings): """Returns the expression as a string. For large expressions where speed is a concern, use the setting order='none'. If abbrev=True setting is used then units are printed in abbreviated form. Examples ======== >>> from sympy import symbols, Eq, sstr >>> a, b = symbols('a b') >>> sstr(Eq(a + b, 0)) 'Eq(a + b, 0)' """ p = StrPrinter(settings) s = p.doprint(expr) return s class StrReprPrinter(StrPrinter): """(internal) -- see sstrrepr""" def _print_str(self, s): return repr(s) def _print_Str(self, s): # Str does not to be printed same as str here return "%s(%s)" % (s.__class__.__name__, self._print(s.name)) @print_function(StrReprPrinter) def sstrrepr(expr, **settings): """return expr in mixed str/repr form i.e. strings are returned in repr form with quotes, and everything else is returned in str form. This function could be useful for hooking into sys.displayhook """ p = StrReprPrinter(settings) s = p.doprint(expr) return s
c638d0b454cd39e593a3242d0916b800f627a13d626e2cc187da8c0fa4b4220f
""" A Printer which converts an expression into its LaTeX equivalent. """ from typing import Any, Dict as tDict import itertools from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol from sympy.core.alphabets import greeks from sympy.core.containers import Tuple from sympy.core.function import AppliedUndef, Derivative from sympy.core.operations import AssocOp from sympy.core.power import Pow from sympy.core.sorting import default_sort_key from sympy.core.sympify import SympifyError from sympy.logic.boolalg import true # sympy.printing imports from sympy.printing.precedence import precedence_traditional from sympy.printing.printer import Printer, print_function from sympy.printing.conventions import split_super_sub, requires_partial from sympy.printing.precedence import precedence, PRECEDENCE from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str from sympy.utilities.iterables import has_variety import re # Hand-picked functions which can be used directly in both LaTeX and MathJax # Complete list at # https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands # This variable only contains those functions which SymPy uses. accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec', 'csc', 'cot', 'coth', 're', 'im', 'frac', 'root', 'arg', ] tex_greek_dictionary = { 'Alpha': 'A', 'Beta': 'B', 'Gamma': r'\Gamma', 'Delta': r'\Delta', 'Epsilon': 'E', 'Zeta': 'Z', 'Eta': 'H', 'Theta': r'\Theta', 'Iota': 'I', 'Kappa': 'K', 'Lambda': r'\Lambda', 'Mu': 'M', 'Nu': 'N', 'Xi': r'\Xi', 'omicron': 'o', 'Omicron': 'O', 'Pi': r'\Pi', 'Rho': 'P', 'Sigma': r'\Sigma', 'Tau': 'T', 'Upsilon': r'\Upsilon', 'Phi': r'\Phi', 'Chi': 'X', 'Psi': r'\Psi', 'Omega': r'\Omega', 'lamda': r'\lambda', 'Lamda': r'\Lambda', 'khi': r'\chi', 'Khi': r'X', 'varepsilon': r'\varepsilon', 'varkappa': r'\varkappa', 'varphi': r'\varphi', 'varpi': r'\varpi', 'varrho': r'\varrho', 'varsigma': r'\varsigma', 'vartheta': r'\vartheta', } other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar', 'hslash', 'mho', 'wp'} # Variable name modifiers modifier_dict = { # Accents 'mathring': lambda s: r'\mathring{'+s+r'}', 'ddddot': lambda s: r'\ddddot{'+s+r'}', 'dddot': lambda s: r'\dddot{'+s+r'}', 'ddot': lambda s: r'\ddot{'+s+r'}', 'dot': lambda s: r'\dot{'+s+r'}', 'check': lambda s: r'\check{'+s+r'}', 'breve': lambda s: r'\breve{'+s+r'}', 'acute': lambda s: r'\acute{'+s+r'}', 'grave': lambda s: r'\grave{'+s+r'}', 'tilde': lambda s: r'\tilde{'+s+r'}', 'hat': lambda s: r'\hat{'+s+r'}', 'bar': lambda s: r'\bar{'+s+r'}', 'vec': lambda s: r'\vec{'+s+r'}', 'prime': lambda s: "{"+s+"}'", 'prm': lambda s: "{"+s+"}'", # Faces 'bold': lambda s: r'\boldsymbol{'+s+r'}', 'bm': lambda s: r'\boldsymbol{'+s+r'}', 'cal': lambda s: r'\mathcal{'+s+r'}', 'scr': lambda s: r'\mathscr{'+s+r'}', 'frak': lambda s: r'\mathfrak{'+s+r'}', # Brackets 'norm': lambda s: r'\left\|{'+s+r'}\right\|', 'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle', 'abs': lambda s: r'\left|{'+s+r'}\right|', 'mag': lambda s: r'\left|{'+s+r'}\right|', } greek_letters_set = frozenset(greeks) _between_two_numbers_p = ( re.compile(r'[0-9][} ]*$'), # search re.compile(r'[0-9]'), # match ) def latex_escape(s): """ Escape a string such that latex interprets it as plaintext. We cannot use verbatim easily with mathjax, so escaping is easier. Rules from https://tex.stackexchange.com/a/34586/41112. """ s = s.replace('\\', r'\textbackslash') for c in '&%$#_{}': s = s.replace(c, '\\' + c) s = s.replace('~', r'\textasciitilde') s = s.replace('^', r'\textasciicircum') return s class LatexPrinter(Printer): printmethod = "_latex" _default_settings = { "full_prec": False, "fold_frac_powers": False, "fold_func_brackets": False, "fold_short_frac": None, "inv_trig_style": "abbreviated", "itex": False, "ln_notation": False, "long_frac_ratio": None, "mat_delim": "[", "mat_str": None, "mode": "plain", "mul_symbol": None, "order": None, "symbol_names": {}, "root_notation": True, "mat_symbol_style": "plain", "imaginary_unit": "i", "gothic_re_im": False, "decimal_separator": "period", "perm_cyclic": True, "parenthesize_super": True, "min": None, "max": None, } # type: tDict[str, Any] def __init__(self, settings=None): Printer.__init__(self, settings) if 'mode' in self._settings: valid_modes = ['inline', 'plain', 'equation', 'equation*'] if self._settings['mode'] not in valid_modes: raise ValueError("'mode' must be one of 'inline', 'plain', " "'equation' or 'equation*'") if self._settings['fold_short_frac'] is None and \ self._settings['mode'] == 'inline': self._settings['fold_short_frac'] = True mul_symbol_table = { None: r" ", "ldot": r" \,.\, ", "dot": r" \cdot ", "times": r" \times " } try: self._settings['mul_symbol_latex'] = \ mul_symbol_table[self._settings['mul_symbol']] except KeyError: self._settings['mul_symbol_latex'] = \ self._settings['mul_symbol'] try: self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table[self._settings['mul_symbol'] or 'dot'] except KeyError: if (self._settings['mul_symbol'].strip() in ['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']): self._settings['mul_symbol_latex_numbers'] = \ mul_symbol_table['dot'] else: self._settings['mul_symbol_latex_numbers'] = \ self._settings['mul_symbol'] self._delim_dict = {'(': ')', '[': ']'} imaginary_unit_table = { None: r"i", "i": r"i", "ri": r"\mathrm{i}", "ti": r"\text{i}", "j": r"j", "rj": r"\mathrm{j}", "tj": r"\text{j}", } try: self._settings['imaginary_unit_latex'] = \ imaginary_unit_table[self._settings['imaginary_unit']] except KeyError: self._settings['imaginary_unit_latex'] = \ self._settings['imaginary_unit'] def _add_parens(self, s): return r"\left({}\right)".format(s) # TODO: merge this with the above, which requires a lot of test changes def _add_parens_lspace(self, s): return r"\left( {}\right)".format(s) def parenthesize(self, item, level, is_neg=False, strict=False): prec_val = precedence_traditional(item) if is_neg and strict: return self._add_parens(self._print(item)) if (prec_val < level) or ((not strict) and prec_val <= level): return self._add_parens(self._print(item)) else: return self._print(item) def parenthesize_super(self, s): """ Protect superscripts in s If the parenthesize_super option is set, protect with parentheses, else wrap in braces. """ if "^" in s: if self._settings['parenthesize_super']: return self._add_parens(s) else: return "{{{}}}".format(s) return s def doprint(self, expr): tex = Printer.doprint(self, expr) if self._settings['mode'] == 'plain': return tex elif self._settings['mode'] == 'inline': return r"$%s$" % tex elif self._settings['itex']: return r"$$%s$$" % tex else: env_str = self._settings['mode'] return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str) def _needs_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed, False otherwise. For example: a + b => True; a => False; 10 => False; -10 => True. """ return not ((expr.is_Integer and expr.is_nonnegative) or (expr.is_Atom and (expr is not S.NegativeOne and expr.is_Rational is False))) def _needs_function_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when passed as an argument to a function, False otherwise. This is a more liberal version of _needs_brackets, in that many expressions which need to be wrapped in brackets when added/subtracted/raised to a power do not need them when passed to a function. Such an example is a*b. """ if not self._needs_brackets(expr): return False else: # Muls of the form a*b*c... can be folded if expr.is_Mul and not self._mul_is_clean(expr): return True # Pows which don't need brackets can be folded elif expr.is_Pow and not self._pow_is_clean(expr): return True # Add and Function always need brackets elif expr.is_Add or expr.is_Function: return True else: return False def _needs_mul_brackets(self, expr, first=False, last=False): """ Returns True if the expression needs to be wrapped in brackets when printed as part of a Mul, False otherwise. This is True for Add, but also for some container objects that would not need brackets when appearing last in a Mul, e.g. an Integral. ``last=True`` specifies that this expr is the last to appear in a Mul. ``first=True`` specifies that this expr is the first to appear in a Mul. """ from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.integrals.integrals import Integral if expr.is_Mul: if not first and expr.could_extract_minus_sign(): return True elif precedence_traditional(expr) < PRECEDENCE["Mul"]: return True elif expr.is_Relational: return True if expr.is_Piecewise: return True if any(expr.has(x) for x in (Mod,)): return True if (not last and any(expr.has(x) for x in (Integral, Product, Sum))): return True return False def _needs_add_brackets(self, expr): """ Returns True if the expression needs to be wrapped in brackets when printed as part of an Add, False otherwise. This is False for most things. """ if expr.is_Relational: return True if any(expr.has(x) for x in (Mod,)): return True if expr.is_Add: return True return False def _mul_is_clean(self, expr): for arg in expr.args: if arg.is_Function: return False return True def _pow_is_clean(self, expr): return not self._needs_brackets(expr.base) def _do_exponent(self, expr, exp): if exp is not None: return r"\left(%s\right)^{%s}" % (expr, exp) else: return expr def _print_Basic(self, expr): ls = [self._print(o) for o in expr.args] return self._deal_with_super_sub(expr.__class__.__name__) + \ r"\left(%s\right)" % ", ".join(ls) def _print_bool(self, e): return r"\text{%s}" % e _print_BooleanTrue = _print_bool _print_BooleanFalse = _print_bool def _print_NoneType(self, e): return r"\text{%s}" % e def _print_Add(self, expr, order=None): terms = self._as_ordered_terms(expr, order=order) tex = "" for i, term in enumerate(terms): if i == 0: pass elif term.could_extract_minus_sign(): tex += " - " term = -term else: tex += " + " term_tex = self._print(term) if self._needs_add_brackets(term): term_tex = r"\left(%s\right)" % term_tex tex += term_tex return tex def _print_Cycle(self, expr): from sympy.combinatorics.permutations import Permutation if expr.size == 0: return r"\left( \right)" expr = Permutation(expr) expr_perm = expr.cyclic_form siz = expr.size if expr.array_form[-1] == siz - 1: expr_perm = expr_perm + [[siz - 1]] term_tex = '' for i in expr_perm: term_tex += str(i).replace(',', r"\;") term_tex = term_tex.replace('[', r"\left( ") term_tex = term_tex.replace(']', r"\right)") return term_tex def _print_Permutation(self, expr): from sympy.combinatorics.permutations import Permutation from sympy.utilities.exceptions import SymPyDeprecationWarning perm_cyclic = Permutation.print_cyclic if perm_cyclic is not None: SymPyDeprecationWarning( feature="Permutation.print_cyclic = {}".format(perm_cyclic), useinstead="init_printing(perm_cyclic={})" .format(perm_cyclic), issue=15201, deprecated_since_version="1.6").warn() else: perm_cyclic = self._settings.get("perm_cyclic", True) if perm_cyclic: return self._print_Cycle(expr) if expr.size == 0: return r"\left( \right)" lower = [self._print(arg) for arg in expr.array_form] upper = [self._print(arg) for arg in range(len(lower))] row1 = " & ".join(upper) row2 = " & ".join(lower) mat = r" \\ ".join((row1, row2)) return r"\begin{pmatrix} %s \end{pmatrix}" % mat def _print_AppliedPermutation(self, expr): perm, var = expr.args return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var)) def _print_Float(self, expr): # Based off of that in StrPrinter dps = prec_to_dps(expr._prec) strip = False if self._settings['full_prec'] else True low = self._settings["min"] if "min" in self._settings else None high = self._settings["max"] if "max" in self._settings else None str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high) # Must always have a mul symbol (as 2.5 10^{20} just looks odd) # thus we use the number separator separator = self._settings['mul_symbol_latex_numbers'] if 'e' in str_real: (mant, exp) = str_real.split('e') if exp[0] == '+': exp = exp[1:] if self._settings['decimal_separator'] == 'comma': mant = mant.replace('.','{,}') return r"%s%s10^{%s}" % (mant, separator, exp) elif str_real == "+inf": return r"\infty" elif str_real == "-inf": return r"- \infty" else: if self._settings['decimal_separator'] == 'comma': str_real = str_real.replace('.','{,}') return str_real def _print_Cross(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Curl(self, expr): vec = expr._expr return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Divergence(self, expr): vec = expr._expr return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul']) def _print_Dot(self, expr): vec1 = expr._expr1 vec2 = expr._expr2 return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']), self.parenthesize(vec2, PRECEDENCE['Mul'])) def _print_Gradient(self, expr): func = expr._expr return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Laplacian(self, expr): func = expr._expr return r"\triangle %s" % self.parenthesize(func, PRECEDENCE['Mul']) def _print_Mul(self, expr): from sympy.physics.units import Quantity from sympy.simplify import fraction separator = self._settings['mul_symbol_latex'] numbersep = self._settings['mul_symbol_latex_numbers'] def convert(expr): if not expr.is_Mul: return str(self._print(expr)) else: if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: args = list(expr.args) # If quantities are present append them at the back args = sorted(args, key=lambda x: isinstance(x, Quantity) or (isinstance(x, Pow) and isinstance(x.base, Quantity))) return convert_args(args) def convert_args(args): _tex = last_term_tex = "" for i, term in enumerate(args): term_tex = self._print(term) if self._needs_mul_brackets(term, first=(i == 0), last=(i == len(args) - 1)): term_tex = r"\left(%s\right)" % term_tex if _between_two_numbers_p[0].search(last_term_tex) and \ _between_two_numbers_p[1].match(str(term)): # between two numbers _tex += numbersep elif _tex: _tex += separator _tex += term_tex last_term_tex = term_tex return _tex # Check for unevaluated Mul. In this case we need to make sure the # identities are visible, multiple Rational factors are not combined # etc so we display in a straight-forward form that fully preserves all # args and their order. # XXX: _print_Pow calls this routine with instances of Pow... if isinstance(expr, Mul): args = expr.args if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]): return convert_args(args) include_parens = False if expr.could_extract_minus_sign(): expr = -expr tex = "- " if expr.is_Add: tex += "(" include_parens = True else: tex = "" numer, denom = fraction(expr, exact=True) if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args: # use the original expression here, since fraction() may have # altered it when producing numer and denom tex += convert(expr) else: snumer = convert(numer) sdenom = convert(denom) ldenom = len(sdenom.split()) ratio = self._settings['long_frac_ratio'] if self._settings['fold_short_frac'] and ldenom <= 2 and \ "^" not in sdenom: # handle short fractions if self._needs_mul_brackets(numer, last=False): tex += r"\left(%s\right) / %s" % (snumer, sdenom) else: tex += r"%s / %s" % (snumer, sdenom) elif ratio is not None and \ len(snumer.split()) > ratio*ldenom: # handle long fractions if self._needs_mul_brackets(numer, last=True): tex += r"\frac{1}{%s}%s\left(%s\right)" \ % (sdenom, separator, snumer) elif numer.is_Mul: # split a long numerator a = S.One b = S.One for x in numer.args: if self._needs_mul_brackets(x, last=False) or \ len(convert(a*x).split()) > ratio*ldenom or \ (b.is_commutative is x.is_commutative is False): b *= x else: a *= x if self._needs_mul_brackets(b, last=True): tex += r"\frac{%s}{%s}%s\left(%s\right)" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{%s}{%s}%s%s" \ % (convert(a), sdenom, separator, convert(b)) else: tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer) else: tex += r"\frac{%s}{%s}" % (snumer, sdenom) if include_parens: tex += ")" return tex def _print_AlgebraicNumber(self, expr): if expr.is_aliased: return self._print(expr.as_poly().as_expr()) else: return self._print(expr.as_expr()) def _print_Pow(self, expr): # Treat x**Rational(1,n) as special case if expr.exp.is_Rational and abs(expr.exp.p) == 1 and expr.exp.q != 1 \ and self._settings['root_notation']: base = self._print(expr.base) expq = expr.exp.q if expq == 2: tex = r"\sqrt{%s}" % base elif self._settings['itex']: tex = r"\root{%d}{%s}" % (expq, base) else: tex = r"\sqrt[%d]{%s}" % (expq, base) if expr.exp.is_negative: return r"\frac{1}{%s}" % tex else: return tex elif self._settings['fold_frac_powers'] \ and expr.exp.is_Rational \ and expr.exp.q != 1: base = self.parenthesize(expr.base, PRECEDENCE['Pow']) p, q = expr.exp.p, expr.exp.q # issue #12886: add parentheses for superscripts raised to powers if expr.base.is_Symbol: base = self.parenthesize_super(base) if expr.base.is_Function: return self._print(expr.base, exp="%s/%s" % (p, q)) return r"%s^{%s/%s}" % (base, p, q) elif expr.exp.is_Rational and expr.exp.is_negative and \ expr.base.is_commutative: # special case for 1^(-x), issue 9216 if expr.base == 1: return r"%s^{%s}" % (expr.base, expr.exp) # special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252 if expr.base.is_Rational and \ expr.base.p*expr.base.q == abs(expr.base.q): if expr.exp == -1: return r"\frac{1}{\frac{%s}{%s}}" % (expr.base.p, expr.base.q) else: return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (expr.base.p, expr.base.q, abs(expr.exp)) # things like 1/x return self._print_Mul(expr) else: if expr.base.is_Function: return self._print(expr.base, exp=self._print(expr.exp)) else: tex = r"%s^{%s}" return self._helper_print_standard_power(expr, tex) def _helper_print_standard_power(self, expr, template): exp = self._print(expr.exp) # issue #12886: add parentheses around superscripts raised # to powers base = self.parenthesize(expr.base, PRECEDENCE['Pow']) if expr.base.is_Symbol: base = self.parenthesize_super(base) elif (isinstance(expr.base, Derivative) and base.startswith(r'\left(') and re.match(r'\\left\(\\d?d?dot', base) and base.endswith(r'\right)')): # don't use parentheses around dotted derivative base = base[6: -7] # remove outermost added parens return template % (base, exp) def _print_UnevaluatedExpr(self, expr): return self._print(expr.args[0]) def _print_Sum(self, expr): if len(expr.limits) == 1: tex = r"\sum_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\sum_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_Product(self, expr): if len(expr.limits) == 1: tex = r"\prod_{%s=%s}^{%s} " % \ tuple([self._print(i) for i in expr.limits[0]]) else: def _format_ineq(l): return r"%s \leq %s \leq %s" % \ tuple([self._print(s) for s in (l[1], l[0], l[2])]) tex = r"\prod_{\substack{%s}} " % \ str.join('\\\\', [_format_ineq(l) for l in expr.limits]) if isinstance(expr.function, Add): tex += r"\left(%s\right)" % self._print(expr.function) else: tex += self._print(expr.function) return tex def _print_BasisDependent(self, expr): from sympy.vector import Vector o1 = [] if expr == expr.zero: return expr.zero._latex_form if isinstance(expr, Vector): items = expr.separate().items() else: items = [(0, expr)] for system, vect in items: inneritems = list(vect.components.items()) inneritems.sort(key=lambda x: x[0].__str__()) for k, v in inneritems: if v == 1: o1.append(' + ' + k._latex_form) elif v == -1: o1.append(' - ' + k._latex_form) else: arg_str = '(' + self._print(v) + ')' o1.append(' + ' + arg_str + k._latex_form) outstr = (''.join(o1)) if outstr[1] != '-': outstr = outstr[3:] else: outstr = outstr[1:] return outstr def _print_Indexed(self, expr): tex_base = self._print(expr.base) tex = '{'+tex_base+'}'+'_{%s}' % ','.join( map(self._print, expr.indices)) return tex def _print_IndexedBase(self, expr): return self._print(expr.label) def _print_Derivative(self, expr): if requires_partial(expr.expr): diff_symbol = r'\partial' else: diff_symbol = r'd' tex = "" dim = 0 for x, num in reversed(expr.variable_count): dim += num if num == 1: tex += r"%s %s" % (diff_symbol, self._print(x)) else: tex += r"%s %s^{%s}" % (diff_symbol, self.parenthesize_super(self._print(x)), self._print(num)) if dim == 1: tex = r"\frac{%s}{%s}" % (diff_symbol, tex) else: tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex) if any(i.could_extract_minus_sign() for i in expr.args): return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], is_neg=True, strict=True)) return r"%s %s" % (tex, self.parenthesize(expr.expr, PRECEDENCE["Mul"], is_neg=False, strict=True)) def _print_Subs(self, subs): expr, old, new = subs.args latex_expr = self._print(expr) latex_old = (self._print(e) for e in old) latex_new = (self._print(e) for e in new) latex_subs = r'\\ '.join( e[0] + '=' + e[1] for e in zip(latex_old, latex_new)) return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr, latex_subs) def _print_Integral(self, expr): tex, symbols = "", [] # Only up to \iiiint exists if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits): # Use len(expr.limits)-1 so that syntax highlighters don't think # \" is an escaped quote tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt" symbols = [r"\, d%s" % self._print(symbol[0]) for symbol in expr.limits] else: for lim in reversed(expr.limits): symbol = lim[0] tex += r"\int" if len(lim) > 1: if self._settings['mode'] != 'inline' \ and not self._settings['itex']: tex += r"\limits" if len(lim) == 3: tex += "_{%s}^{%s}" % (self._print(lim[1]), self._print(lim[2])) if len(lim) == 2: tex += "^{%s}" % (self._print(lim[1])) symbols.insert(0, r"\, d%s" % self._print(symbol)) return r"%s %s%s" % (tex, self.parenthesize(expr.function, PRECEDENCE["Mul"], is_neg=any(i.could_extract_minus_sign() for i in expr.args), strict=True), "".join(symbols)) def _print_Limit(self, expr): e, z, z0, dir = expr.args tex = r"\lim_{%s \to " % self._print(z) if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity): tex += r"%s}" % self._print(z0) else: tex += r"%s^%s}" % (self._print(z0), self._print(dir)) if isinstance(e, AssocOp): return r"%s\left(%s\right)" % (tex, self._print(e)) else: return r"%s %s" % (tex, self._print(e)) def _hprint_Function(self, func): r''' Logic to decide how to render a function to latex - if it is a recognized latex name, use the appropriate latex command - if it is a single letter, just use that letter - if it is a longer name, then put \operatorname{} around it and be mindful of undercores in the name ''' func = self._deal_with_super_sub(func) if func in accepted_latex_functions: name = r"\%s" % func elif len(func) == 1 or func.startswith('\\'): name = func else: name = r"\operatorname{%s}" % func return name def _print_Function(self, expr, exp=None): r''' Render functions to LaTeX, handling functions that LaTeX knows about e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...). For single-letter function names, render them as regular LaTeX math symbols. For multi-letter function names that LaTeX does not know about, (e.g., Li, sech) use \operatorname{} so that the function name is rendered in Roman font and LaTeX handles spacing properly. expr is the expression involving the function exp is an exponent ''' func = expr.func.__name__ if hasattr(self, '_print_' + func) and \ not isinstance(expr, AppliedUndef): return getattr(self, '_print_' + func)(expr, exp) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = [ "asin", "acos", "atan", "acsc", "asec", "acot", "asinh", "acosh", "atanh", "acsch", "asech", "acoth", ] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: if func in accepted_latex_functions: name = r"\%s^{-1}" % func else: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: func_tex = self._hprint_Function(func) func_tex = self.parenthesize_super(func_tex) name = r'%s^{%s}' % (func_tex, exp) else: name = self._hprint_Function(func) if can_fold_brackets: if func in accepted_latex_functions: # Wrap argument safely to avoid parse-time conflicts # with the function name itself name += r" {%s}" else: name += r"%s" else: name += r"{\left(%s \right)}" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_UndefinedFunction(self, expr): return self._hprint_Function(str(expr)) def _print_ElementwiseApplyFunction(self, expr): return r"{%s}_{\circ}\left({%s}\right)" % ( self._print(expr.function), self._print(expr.expr), ) @property def _special_function_classes(self): from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.functions.special.gamma_functions import gamma, lowergamma from sympy.functions.special.beta_functions import beta from sympy.functions.special.delta_functions import DiracDelta from sympy.functions.special.error_functions import Chi return {KroneckerDelta: r'\delta', gamma: r'\Gamma', lowergamma: r'\gamma', beta: r'\operatorname{B}', DiracDelta: r'\delta', Chi: r'\operatorname{Chi}'} def _print_FunctionClass(self, expr): for cls in self._special_function_classes: if issubclass(expr, cls) and expr.__name__ == cls.__name__: return self._special_function_classes[cls] return self._hprint_Function(str(expr)) def _print_Lambda(self, expr): symbols, expr = expr.args if len(symbols) == 1: symbols = self._print(symbols[0]) else: symbols = self._print(tuple(symbols)) tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr)) return tex def _print_IdentityFunction(self, expr): return r"\left( x \mapsto x \right)" def _hprint_variadic_function(self, expr, exp=None): args = sorted(expr.args, key=default_sort_key) texargs = [r"%s" % self._print(symbol) for symbol in args] tex = r"\%s\left(%s\right)" % (str(expr.func).lower(), ", ".join(texargs)) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Min = _print_Max = _hprint_variadic_function def _print_floor(self, expr, exp=None): tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_ceiling(self, expr, exp=None): tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_log(self, expr, exp=None): if not self._settings["ln_notation"]: tex = r"\log{\left(%s \right)}" % self._print(expr.args[0]) else: tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_Abs(self, expr, exp=None): tex = r"\left|{%s}\right|" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex _print_Determinant = _print_Abs def _print_re(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_im(self, expr, exp=None): if self._settings['gothic_re_im']: tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom']) else: tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom'])) return self._do_exponent(tex, exp) def _print_Not(self, e): from sympy.logic.boolalg import (Equivalent, Implies) if isinstance(e.args[0], Equivalent): return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow") if isinstance(e.args[0], Implies): return self._print_Implies(e.args[0], r"\not\Rightarrow") if (e.args[0].is_Boolean): return r"\neg \left(%s\right)" % self._print(e.args[0]) else: return r"\neg %s" % self._print(e.args[0]) def _print_LogOp(self, args, char): arg = args[0] if arg.is_Boolean and not arg.is_Not: tex = r"\left(%s\right)" % self._print(arg) else: tex = r"%s" % self._print(arg) for arg in args[1:]: if arg.is_Boolean and not arg.is_Not: tex += r" %s \left(%s\right)" % (char, self._print(arg)) else: tex += r" %s %s" % (char, self._print(arg)) return tex def _print_And(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\wedge") def _print_Or(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\vee") def _print_Xor(self, e): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, r"\veebar") def _print_Implies(self, e, altchar=None): return self._print_LogOp(e.args, altchar or r"\Rightarrow") def _print_Equivalent(self, e, altchar=None): args = sorted(e.args, key=default_sort_key) return self._print_LogOp(args, altchar or r"\Leftrightarrow") def _print_conjugate(self, expr, exp=None): tex = r"\overline{%s}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_polar_lift(self, expr, exp=None): func = r"\operatorname{polar\_lift}" arg = r"{\left(%s \right)}" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (func, exp, arg) else: return r"%s%s" % (func, arg) def _print_ExpBase(self, expr, exp=None): # TODO should exp_polar be printed differently? # what about exp_polar(0), exp_polar(1)? tex = r"e^{%s}" % self._print(expr.args[0]) return self._do_exponent(tex, exp) def _print_Exp1(self, expr, exp=None): return "e" def _print_elliptic_k(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"K^{%s}%s" % (exp, tex) else: return r"K%s" % tex def _print_elliptic_f(self, expr, exp=None): tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"F^{%s}%s" % (exp, tex) else: return r"F%s" % tex def _print_elliptic_e(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"E^{%s}%s" % (exp, tex) else: return r"E%s" % tex def _print_elliptic_pi(self, expr, exp=None): if len(expr.args) == 3: tex = r"\left(%s; %s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1]), self._print(expr.args[2])) else: tex = r"\left(%s\middle| %s\right)" % \ (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Pi^{%s}%s" % (exp, tex) else: return r"\Pi%s" % tex def _print_beta(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\operatorname{B}^{%s}%s" % (exp, tex) else: return r"\operatorname{B}%s" % tex def _print_betainc(self, expr, exp=None, operator='B'): largs = [self._print(arg) for arg in expr.args] tex = r"\left(%s, %s\right)" % (largs[0], largs[1]) if exp is not None: return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex) else: return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex) def _print_betainc_regularized(self, expr, exp=None): return self._print_betainc(expr, exp, operator='I') def _print_uppergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\Gamma^{%s}%s" % (exp, tex) else: return r"\Gamma%s" % tex def _print_lowergamma(self, expr, exp=None): tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"\gamma^{%s}%s" % (exp, tex) else: return r"\gamma%s" % tex def _hprint_one_arg_func(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (self._print(expr.func), exp, tex) else: return r"%s%s" % (self._print(expr.func), tex) _print_gamma = _hprint_one_arg_func def _print_Chi(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\operatorname{Chi}^{%s}%s" % (exp, tex) else: return r"\operatorname{Chi}%s" % tex def _print_expint(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[1]) nu = self._print(expr.args[0]) if exp is not None: return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex) else: return r"\operatorname{E}_{%s}%s" % (nu, tex) def _print_fresnels(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"S^{%s}%s" % (exp, tex) else: return r"S%s" % tex def _print_fresnelc(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"C^{%s}%s" % (exp, tex) else: return r"C%s" % tex def _print_subfactorial(self, expr, exp=None): tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"\left(%s\right)^{%s}" % (tex, exp) else: return tex def _print_factorial(self, expr, exp=None): tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_factorial2(self, expr, exp=None): tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"]) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_binomial(self, expr, exp=None): tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]), self._print(expr.args[1])) if exp is not None: return r"%s^{%s}" % (tex, exp) else: return tex def _print_RisingFactorial(self, expr, exp=None): n, k = expr.args base = r"%s" % self.parenthesize(n, PRECEDENCE['Func']) tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k)) return self._do_exponent(tex, exp) def _print_FallingFactorial(self, expr, exp=None): n, k = expr.args sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func']) tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub) return self._do_exponent(tex, exp) def _hprint_BesselBase(self, expr, exp, sym): tex = r"%s" % (sym) need_exp = False if exp is not None: if tex.find('^') == -1: tex = r"%s^{%s}" % (tex, exp) else: need_exp = True tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order), self._print(expr.argument)) if need_exp: tex = self._do_exponent(tex, exp) return tex def _hprint_vec(self, vec): if not vec: return "" s = "" for i in vec[:-1]: s += "%s, " % self._print(i) s += self._print(vec[-1]) return s def _print_besselj(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'J') def _print_besseli(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'I') def _print_besselk(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'K') def _print_bessely(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'Y') def _print_yn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'y') def _print_jn(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'j') def _print_hankel1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(1)}') def _print_hankel2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'H^{(2)}') def _print_hn1(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(1)}') def _print_hn2(self, expr, exp=None): return self._hprint_BesselBase(expr, exp, 'h^{(2)}') def _hprint_airy(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"%s^{%s}%s" % (notation, exp, tex) else: return r"%s%s" % (notation, tex) def _hprint_airy_prime(self, expr, exp=None, notation=""): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"{%s^\prime}^{%s}%s" % (notation, exp, tex) else: return r"%s^\prime%s" % (notation, tex) def _print_airyai(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Ai') def _print_airybi(self, expr, exp=None): return self._hprint_airy(expr, exp, 'Bi') def _print_airyaiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Ai') def _print_airybiprime(self, expr, exp=None): return self._hprint_airy_prime(expr, exp, 'Bi') def _print_hyper(self, expr, exp=None): tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \ r"\middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._hprint_vec(expr.ap), self._hprint_vec(expr.bq), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, exp) return tex def _print_meijerg(self, expr, exp=None): tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \ r"%s & %s \end{matrix} \middle| {%s} \right)}" % \ (self._print(len(expr.ap)), self._print(len(expr.bq)), self._print(len(expr.bm)), self._print(len(expr.an)), self._hprint_vec(expr.an), self._hprint_vec(expr.aother), self._hprint_vec(expr.bm), self._hprint_vec(expr.bother), self._print(expr.argument)) if exp is not None: tex = r"{%s}^{%s}" % (tex, exp) return tex def _print_dirichlet_eta(self, expr, exp=None): tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\eta^{%s}%s" % (exp, tex) return r"\eta%s" % tex def _print_zeta(self, expr, exp=None): if len(expr.args) == 2: tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args)) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\zeta^{%s}%s" % (exp, tex) return r"\zeta%s" % tex def _print_stieltjes(self, expr, exp=None): if len(expr.args) == 2: tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args)) else: tex = r"_{%s}" % self._print(expr.args[0]) if exp is not None: return r"\gamma%s^{%s}" % (tex, exp) return r"\gamma%s" % tex def _print_lerchphi(self, expr, exp=None): tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args)) if exp is None: return r"\Phi%s" % tex return r"\Phi^{%s}%s" % (exp, tex) def _print_polylog(self, expr, exp=None): s, z = map(self._print, expr.args) tex = r"\left(%s\right)" % z if exp is None: return r"\operatorname{Li}_{%s}%s" % (s, tex) return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex) def _print_jacobi(self, expr, exp=None): n, a, b, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_gegenbauer(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_chebyshevt(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"T_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_chebyshevu(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"U_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_legendre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"P_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_assoc_legendre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_hermite(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"H_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_laguerre(self, expr, exp=None): n, x = map(self._print, expr.args) tex = r"L_{%s}\left(%s\right)" % (n, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_assoc_laguerre(self, expr, exp=None): n, a, x = map(self._print, expr.args) tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_Ynm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def _print_Znm(self, expr, exp=None): n, m, theta, phi = map(self._print, expr.args) tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi) if exp is not None: tex = r"\left(" + tex + r"\right)^{%s}" % (exp) return tex def __print_mathieu_functions(self, character, args, prime=False, exp=None): a, q, z = map(self._print, args) sup = r"^{\prime}" if prime else "" exp = "" if not exp else "^{%s}" % exp return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp) def _print_mathieuc(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, exp=exp) def _print_mathieus(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, exp=exp) def _print_mathieucprime(self, expr, exp=None): return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp) def _print_mathieusprime(self, expr, exp=None): return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp) def _print_Rational(self, expr): if expr.q != 1: sign = "" p = expr.p if expr.p < 0: sign = "- " p = -p if self._settings['fold_short_frac']: return r"%s%d / %d" % (sign, p, expr.q) return r"%s\frac{%d}{%d}" % (sign, p, expr.q) else: return self._print(expr.p) def _print_Order(self, expr): s = self._print(expr.expr) if expr.point and any(p != S.Zero for p in expr.point) or \ len(expr.variables) > 1: s += '; ' if len(expr.variables) > 1: s += self._print(expr.variables) elif expr.variables: s += self._print(expr.variables[0]) s += r'\rightarrow ' if len(expr.point) > 1: s += self._print(expr.point) else: s += self._print(expr.point[0]) return r"O\left(%s\right)" % s def _print_Symbol(self, expr, style='plain'): if expr in self._settings['symbol_names']: return self._settings['symbol_names'][expr] return self._deal_with_super_sub(expr.name, style=style) _print_RandomSymbol = _print_Symbol def _deal_with_super_sub(self, string, style='plain'): if '{' in string: name, supers, subs = string, [], [] else: name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] # apply the style only to the name if style == 'bold': name = "\\mathbf{{{}}}".format(name) # glue all items together: if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Relational(self, expr): if self._settings['itex']: gt = r"\gt" lt = r"\lt" else: gt = ">" lt = "<" charmap = { "==": "=", ">": gt, "<": lt, ">=": r"\geq", "<=": r"\leq", "!=": r"\neq", } return "%s %s %s" % (self._print(expr.lhs), charmap[expr.rel_op], self._print(expr.rhs)) def _print_Piecewise(self, expr): ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c)) for e, c in expr.args[:-1]] if expr.args[-1].cond == true: ecpairs.append(r"%s & \text{otherwise}" % self._print(expr.args[-1].expr)) else: ecpairs.append(r"%s & \text{for}\: %s" % (self._print(expr.args[-1].expr), self._print(expr.args[-1].cond))) tex = r"\begin{cases} %s \end{cases}" return tex % r" \\".join(ecpairs) def _print_MatrixBase(self, expr): lines = [] for line in range(expr.rows): # horrible, should be 'rows' lines.append(" & ".join([self._print(i) for i in expr[line, :]])) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.cols <= 10) is True: mat_str = 'matrix' else: mat_str = 'array' out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' out_str = out_str.replace('%MATSTR%', mat_str) if mat_str == 'array': out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s') if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] out_str = r'\left' + left_delim + out_str + \ r'\right' + right_delim return out_str % r"\\".join(lines) def _print_MatrixElement(self, expr): return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\ + '_{%s, %s}' % (self._print(expr.i), self._print(expr.j)) def _print_MatrixSlice(self, expr): def latexslice(x, dim): x = list(x) if x[2] == 1: del x[2] if x[0] == 0: x[0] = None if x[1] == dim: x[1] = None return ':'.join(self._print(xi) if xi is not None else '' for xi in x) return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' + latexslice(expr.rowslice, expr.parent.rows) + ', ' + latexslice(expr.colslice, expr.parent.cols) + r'\right]') def _print_BlockMatrix(self, expr): return self._print(expr.blocks) def _print_Transpose(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{T}" % self._print(mat) else: return "%s^{T}" % self.parenthesize(mat, precedence_traditional(expr), True) def _print_Trace(self, expr): mat = expr.arg return r"\operatorname{tr}\left(%s \right)" % self._print(mat) def _print_Adjoint(self, expr): mat = expr.arg from sympy.matrices import MatrixSymbol if not isinstance(mat, MatrixSymbol): return r"\left(%s\right)^{\dagger}" % self._print(mat) else: return r"%s^{\dagger}" % self._print(mat) def _print_MatMul(self, expr): from sympy.matrices.expressions.matmul import MatMul parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) args = expr.args if isinstance(args[0], Mul): args = args[0].as_ordered_factors() + list(args[1:]) else: args = list(args) if isinstance(expr, MatMul) and expr.could_extract_minus_sign(): if args[0] == -1: args = args[1:] else: args[0] = -args[0] return '- ' + ' '.join(map(parens, args)) else: return ' '.join(map(parens, args)) def _print_Mod(self, expr, exp=None): if exp is not None: return r'\left(%s \bmod %s\right)^{%s}' % \ (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self.parenthesize(expr.args[1], PRECEDENCE['Mul'], strict=True), exp) return r'%s \bmod %s' % (self.parenthesize(expr.args[0], PRECEDENCE['Mul'], strict=True), self.parenthesize(expr.args[1], PRECEDENCE['Mul'], strict=True)) def _print_HadamardProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \circ '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_HadamardPower(self, expr): if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]: template = r"%s^{\circ \left({%s}\right)}" else: template = r"%s^{\circ {%s}}" return self._helper_print_standard_power(expr, template) def _print_KroneckerProduct(self, expr): args = expr.args prec = PRECEDENCE['Pow'] parens = self.parenthesize return r' \otimes '.join( map(lambda arg: parens(arg, prec, strict=True), args)) def _print_MatPow(self, expr): base, exp = expr.base, expr.exp from sympy.matrices import MatrixSymbol if not isinstance(base, MatrixSymbol): return "\\left(%s\\right)^{%s}" % (self._print(base), self._print(exp)) else: return "%s^{%s}" % (self._print(base), self._print(exp)) def _print_MatrixSymbol(self, expr): return self._print_Symbol(expr, style=self._settings[ 'mat_symbol_style']) def _print_ZeroMatrix(self, Z): return "0" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{0}" def _print_OneMatrix(self, O): return "1" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{1}" def _print_Identity(self, I): return r"\mathbb{I}" if self._settings[ 'mat_symbol_style'] == 'plain' else r"\mathbf{I}" def _print_PermutationMatrix(self, P): perm_str = self._print(P.args[0]) return "P_{%s}" % perm_str def _print_NDimArray(self, expr): if expr.rank() == 0: return self._print(expr[()]) mat_str = self._settings['mat_str'] if mat_str is None: if self._settings['mode'] == 'inline': mat_str = 'smallmatrix' else: if (expr.rank() == 0) or (expr.shape[-1] <= 10): mat_str = 'matrix' else: mat_str = 'array' block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}' block_str = block_str.replace('%MATSTR%', mat_str) if self._settings['mat_delim']: left_delim = self._settings['mat_delim'] right_delim = self._delim_dict[left_delim] block_str = r'\left' + left_delim + block_str + \ r'\right' + right_delim if expr.rank() == 0: return block_str % "" level_str = [[]] + [[] for i in range(expr.rank())] shape_ranges = [list(range(i)) for i in expr.shape] for outer_i in itertools.product(*shape_ranges): level_str[-1].append(self._print(expr[outer_i])) even = True for back_outer_i in range(expr.rank()-1, -1, -1): if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]: break if even: level_str[back_outer_i].append( r" & ".join(level_str[back_outer_i+1])) else: level_str[back_outer_i].append( block_str % (r"\\".join(level_str[back_outer_i+1]))) if len(level_str[back_outer_i+1]) == 1: level_str[back_outer_i][-1] = r"\left[" + \ level_str[back_outer_i][-1] + r"\right]" even = not even level_str[back_outer_i+1] = [] out_str = level_str[0][0] if expr.rank() % 2 == 1: out_str = block_str % out_str return out_str def _printer_tensor_indices(self, name, indices, index_map={}): out_str = self._print(name) last_valence = None prev_map = None for index in indices: new_valence = index.is_up if ((index in index_map) or prev_map) and \ last_valence == new_valence: out_str += "," if last_valence != new_valence: if last_valence is not None: out_str += "}" if index.is_up: out_str += "{}^{" else: out_str += "{}_{" out_str += self._print(index.args[0]) if index in index_map: out_str += "=" out_str += self._print(index_map[index]) prev_map = True else: prev_map = False last_valence = new_valence if last_valence is not None: out_str += "}" return out_str def _print_Tensor(self, expr): name = expr.args[0].args[0] indices = expr.get_indices() return self._printer_tensor_indices(name, indices) def _print_TensorElement(self, expr): name = expr.expr.args[0].args[0] indices = expr.expr.get_indices() index_map = expr.index_map return self._printer_tensor_indices(name, indices, index_map) def _print_TensMul(self, expr): # prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)" sign, args = expr._get_args_for_traditional_printer() return sign + "".join( [self.parenthesize(arg, precedence(expr)) for arg in args] ) def _print_TensAdd(self, expr): a = [] args = expr.args for x in args: a.append(self.parenthesize(x, precedence(expr))) a.sort() s = ' + '.join(a) s = s.replace('+ -', '- ') return s def _print_TensorIndex(self, expr): return "{}%s{%s}" % ( "^" if expr.is_up else "_", self._print(expr.args[0]) ) def _print_PartialDerivative(self, expr): if len(expr.variables) == 1: return r"\frac{\partial}{\partial {%s}}{%s}" % ( self._print(expr.variables[0]), self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) ) else: return r"\frac{\partial^{%s}}{%s}{%s}" % ( len(expr.variables), " ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]), self.parenthesize(expr.expr, PRECEDENCE["Mul"], False) ) def _print_ArraySymbol(self, expr): return self._print(expr.name) def _print_ArrayElement(self, expr): return "{{%s}_{%s}}" % ( self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([f"{self._print(i)}" for i in expr.indices])) def _print_UniversalSet(self, expr): return r"\mathbb{U}" def _print_frac(self, expr, exp=None): if exp is None: return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0]) else: return r"\operatorname{frac}{\left(%s\right)}^{%s}" % ( self._print(expr.args[0]), exp) def _print_tuple(self, expr): if self._settings['decimal_separator'] == 'comma': sep = ";" elif self._settings['decimal_separator'] == 'period': sep = "," else: raise ValueError('Unknown Decimal Separator') if len(expr) == 1: # 1-tuple needs a trailing separator return self._add_parens_lspace(self._print(expr[0]) + sep) else: return self._add_parens_lspace( (sep + r" \ ").join([self._print(i) for i in expr])) def _print_TensorProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \otimes '.join(elements) def _print_WedgeProduct(self, expr): elements = [self._print(a) for a in expr.args] return r' \wedge '.join(elements) def _print_Tuple(self, expr): return self._print_tuple(expr) def _print_list(self, expr): if self._settings['decimal_separator'] == 'comma': return r"\left[ %s\right]" % \ r"; \ ".join([self._print(i) for i in expr]) elif self._settings['decimal_separator'] == 'period': return r"\left[ %s\right]" % \ r", \ ".join([self._print(i) for i in expr]) else: raise ValueError('Unknown Decimal Separator') def _print_dict(self, d): keys = sorted(d.keys(), key=default_sort_key) items = [] for key in keys: val = d[key] items.append("%s : %s" % (self._print(key), self._print(val))) return r"\left\{ %s\right\}" % r", \ ".join(items) def _print_Dict(self, expr): return self._print_dict(expr) def _print_DiracDelta(self, expr, exp=None): if len(expr.args) == 1 or expr.args[1] == 0: tex = r"\delta\left(%s\right)" % self._print(expr.args[0]) else: tex = r"\delta^{\left( %s \right)}\left( %s \right)" % ( self._print(expr.args[1]), self._print(expr.args[0])) if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_SingularityFunction(self, expr, exp=None): shift = self._print(expr.args[0] - expr.args[1]) power = self._print(expr.args[2]) tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power) if exp is not None: tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp) return tex def _print_Heaviside(self, expr, exp=None): pargs = ', '.join(self._print(arg) for arg in expr.pargs) tex = r"\theta\left(%s\right)" % pargs if exp: tex = r"\left(%s\right)^{%s}" % (tex, exp) return tex def _print_KroneckerDelta(self, expr, exp=None): i = self._print(expr.args[0]) j = self._print(expr.args[1]) if expr.args[0].is_Atom and expr.args[1].is_Atom: tex = r'\delta_{%s %s}' % (i, j) else: tex = r'\delta_{%s, %s}' % (i, j) if exp is not None: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_LeviCivita(self, expr, exp=None): indices = map(self._print, expr.args) if all(x.is_Atom for x in expr.args): tex = r'\varepsilon_{%s}' % " ".join(indices) else: tex = r'\varepsilon_{%s}' % ", ".join(indices) if exp: tex = r'\left(%s\right)^{%s}' % (tex, exp) return tex def _print_RandomDomain(self, d): if hasattr(d, 'as_boolean'): return '\\text{Domain: }' + self._print(d.as_boolean()) elif hasattr(d, 'set'): return ('\\text{Domain: }' + self._print(d.symbols) + ' \\in ' + self._print(d.set)) elif hasattr(d, 'symbols'): return '\\text{Domain on }' + self._print(d.symbols) else: return self._print(None) def _print_FiniteSet(self, s): items = sorted(s.args, key=default_sort_key) return self._print_set(items) def _print_set(self, s): items = sorted(s, key=default_sort_key) if self._settings['decimal_separator'] == 'comma': items = "; ".join(map(self._print, items)) elif self._settings['decimal_separator'] == 'period': items = ", ".join(map(self._print, items)) else: raise ValueError('Unknown Decimal Separator') return r"\left\{%s\right\}" % items _print_frozenset = _print_set def _print_Range(self, s): def _print_symbolic_range(): # Symbolic Range that cannot be resolved if s.args[0] == 0: if s.args[2] == 1: cont = self._print(s.args[1]) else: cont = ", ".join(self._print(arg) for arg in s.args) else: if s.args[2] == 1: cont = ", ".join(self._print(arg) for arg in s.args[:2]) else: cont = ", ".join(self._print(arg) for arg in s.args) return(f"\\text{{Range}}\\left({cont}\\right)") dots = object() if s.start.is_infinite and s.stop.is_infinite: if s.step.is_positive: printset = dots, -1, 0, 1, dots else: printset = dots, 1, 0, -1, dots elif s.start.is_infinite: printset = dots, s[-1] - s.step, s[-1] elif s.stop.is_infinite: it = iter(s) printset = next(it), next(it), dots elif s.is_empty is not None: if (s.size < 4) == True: printset = tuple(s) elif s.is_iterable: it = iter(s) printset = next(it), next(it), dots, s[-1] else: return _print_symbolic_range() else: return _print_symbolic_range() return (r"\left\{" + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + r"\right\}") def __print_number_polynomial(self, expr, letter, exp=None): if len(expr.args) == 2: if exp is not None: return r"%s_{%s}^{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), exp, self._print(expr.args[1])) return r"%s_{%s}\left(%s\right)" % (letter, self._print(expr.args[0]), self._print(expr.args[1])) tex = r"%s_{%s}" % (letter, self._print(expr.args[0])) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_bernoulli(self, expr, exp=None): return self.__print_number_polynomial(expr, "B", exp) def _print_bell(self, expr, exp=None): if len(expr.args) == 3: tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]), self._print(expr.args[1])) tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for el in expr.args[2]) if exp is not None: tex = r"%s^{%s}%s" % (tex1, exp, tex2) else: tex = tex1 + tex2 return tex return self.__print_number_polynomial(expr, "B", exp) def _print_fibonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "F", exp) def _print_lucas(self, expr, exp=None): tex = r"L_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_tribonacci(self, expr, exp=None): return self.__print_number_polynomial(expr, "T", exp) def _print_SeqFormula(self, s): dots = object() if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0: return r"\left\{%s\right\}_{%s=%s}^{%s}" % ( self._print(s.formula), self._print(s.variables[0]), self._print(s.start), self._print(s.stop) ) if s.start is S.NegativeInfinity: stop = s.stop printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2), s.coeff(stop - 1), s.coeff(stop)) elif s.stop is S.Infinity or s.length > 4: printset = s[:4] printset.append(dots) else: printset = tuple(s) return (r"\left[" + r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) + r"\right]") _print_SeqPer = _print_SeqFormula _print_SeqAdd = _print_SeqFormula _print_SeqMul = _print_SeqFormula def _print_Interval(self, i): if i.start == i.end: return r"\left\{%s\right\}" % self._print(i.start) else: if i.left_open: left = '(' else: left = '[' if i.right_open: right = ')' else: right = ']' return r"\left%s%s, %s\right%s" % \ (left, self._print(i.start), self._print(i.end), right) def _print_AccumulationBounds(self, i): return r"\left\langle %s, %s\right\rangle" % \ (self._print(i.min), self._print(i.max)) def _print_Union(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cup ".join(args_str) def _print_Complement(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \setminus ".join(args_str) def _print_Intersection(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \cap ".join(args_str) def _print_SymmetricDifference(self, u): prec = precedence_traditional(u) args_str = [self.parenthesize(i, prec) for i in u.args] return r" \triangle ".join(args_str) def _print_ProductSet(self, p): prec = precedence_traditional(p) if len(p.sets) >= 1 and not has_variety(p.sets): return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets) return r" \times ".join( self.parenthesize(set, prec) for set in p.sets) def _print_EmptySet(self, e): return r"\emptyset" def _print_Naturals(self, n): return r"\mathbb{N}" def _print_Naturals0(self, n): return r"\mathbb{N}_0" def _print_Integers(self, i): return r"\mathbb{Z}" def _print_Rationals(self, i): return r"\mathbb{Q}" def _print_Reals(self, i): return r"\mathbb{R}" def _print_Complexes(self, i): return r"\mathbb{C}" def _print_ImageSet(self, s): expr = s.lamda.expr sig = s.lamda.signature xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets)) xinys = r", ".join(r"%s \in %s" % xy for xy in xys) return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys) def _print_ConditionSet(self, s): vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)]) if s.base_set is S.UniversalSet: return r"\left\{%s\; \middle|\; %s \right\}" % \ (vars_print, self._print(s.condition)) return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % ( vars_print, vars_print, self._print(s.base_set), self._print(s.condition)) def _print_ComplexRegion(self, s): vars_print = ', '.join([self._print(var) for var in s.variables]) return r"\left\{%s\; \middle|\; %s \in %s \right\}" % ( self._print(s.expr), vars_print, self._print(s.sets)) def _print_Contains(self, e): return r"%s \in %s" % tuple(self._print(a) for a in e.args) def _print_FourierSeries(self, s): return self._print_Add(s.truncate()) + r' + \ldots' def _print_FormalPowerSeries(self, s): return self._print_Add(s.infinite) def _print_FiniteField(self, expr): return r"\mathbb{F}_{%s}" % expr.mod def _print_IntegerRing(self, expr): return r"\mathbb{Z}" def _print_RationalField(self, expr): return r"\mathbb{Q}" def _print_RealField(self, expr): return r"\mathbb{R}" def _print_ComplexField(self, expr): return r"\mathbb{C}" def _print_PolynomialRing(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left[%s\right]" % (domain, symbols) def _print_FractionField(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) return r"%s\left(%s\right)" % (domain, symbols) def _print_PolynomialRingBase(self, expr): domain = self._print(expr.domain) symbols = ", ".join(map(self._print, expr.symbols)) inv = "" if not expr.is_Poly: inv = r"S_<^{-1}" return r"%s%s\left[%s\right]" % (inv, domain, symbols) def _print_Poly(self, poly): cls = poly.__class__.__name__ terms = [] for monom, coeff in poly.terms(): s_monom = '' for i, exp in enumerate(monom): if exp > 0: if exp == 1: s_monom += self._print(poly.gens[i]) else: s_monom += self._print(pow(poly.gens[i], exp)) if coeff.is_Add: if s_monom: s_coeff = r"\left(%s\right)" % self._print(coeff) else: s_coeff = self._print(coeff) else: if s_monom: if coeff is S.One: terms.extend(['+', s_monom]) continue if coeff is S.NegativeOne: terms.extend(['-', s_monom]) continue s_coeff = self._print(coeff) if not s_monom: s_term = s_coeff else: s_term = s_coeff + " " + s_monom if s_term.startswith('-'): terms.extend(['-', s_term[1:]]) else: terms.extend(['+', s_term]) if terms[0] in ('-', '+'): modifier = terms.pop(0) if modifier == '-': terms[0] = '-' + terms[0] expr = ' '.join(terms) gens = list(map(self._print, poly.gens)) domain = "domain=%s" % self._print(poly.get_domain()) args = ", ".join([expr] + gens + [domain]) if cls in accepted_latex_functions: tex = r"\%s {\left(%s \right)}" % (cls, args) else: tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args) return tex def _print_ComplexRootOf(self, root): cls = root.__class__.__name__ if cls == "ComplexRootOf": cls = "CRootOf" expr = self._print(root.expr) index = root.index if cls in accepted_latex_functions: return r"\%s {\left(%s, %d\right)}" % (cls, expr, index) else: return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr, index) def _print_RootSum(self, expr): cls = expr.__class__.__name__ args = [self._print(expr.expr)] if expr.fun is not S.IdentityFunction: args.append(self._print(expr.fun)) if cls in accepted_latex_functions: return r"\%s {\left(%s\right)}" % (cls, ", ".join(args)) else: return r"\operatorname{%s} {\left(%s\right)}" % (cls, ", ".join(args)) def _print_PolyElement(self, poly): mul_symbol = self._settings['mul_symbol_latex'] return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol) def _print_FracElement(self, frac): if frac.denom == 1: return self._print(frac.numer) else: numer = self._print(frac.numer) denom = self._print(frac.denom) return r"\frac{%s}{%s}" % (numer, denom) def _print_euler(self, expr, exp=None): m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args tex = r"E_{%s}" % self._print(m) if exp is not None: tex = r"%s^{%s}" % (tex, exp) if x is not None: tex = r"%s\left(%s\right)" % (tex, self._print(x)) return tex def _print_catalan(self, expr, exp=None): tex = r"C_{%s}" % self._print(expr.args[0]) if exp is not None: tex = r"%s^{%s}" % (tex, exp) return tex def _print_UnifiedTransform(self, expr, s, inverse=False): return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2])) def _print_MellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M') def _print_InverseMellinTransform(self, expr): return self._print_UnifiedTransform(expr, 'M', True) def _print_LaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L') def _print_InverseLaplaceTransform(self, expr): return self._print_UnifiedTransform(expr, 'L', True) def _print_FourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F') def _print_InverseFourierTransform(self, expr): return self._print_UnifiedTransform(expr, 'F', True) def _print_SineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN') def _print_InverseSineTransform(self, expr): return self._print_UnifiedTransform(expr, 'SIN', True) def _print_CosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS') def _print_InverseCosineTransform(self, expr): return self._print_UnifiedTransform(expr, 'COS', True) def _print_DMP(self, p): try: if p.ring is not None: # TODO incorporate order return self._print(p.ring.to_sympy(p)) except SympifyError: pass return self._print(repr(p)) def _print_DMF(self, p): return self._print_DMP(p) def _print_Object(self, object): return self._print(Symbol(object.name)) def _print_LambertW(self, expr, exp=None): arg0 = self._print(expr.args[0]) exp = r"^{%s}" % (exp,) if exp is not None else "" if len(expr.args) == 1: result = r"W%s\left(%s\right)" % (exp, arg0) else: arg1 = self._print(expr.args[1]) result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0) return result def _print_Expectation(self, expr): return r"\operatorname{{E}}\left[{}\right]".format(self._print(expr.args[0])) def _print_Variance(self, expr): return r"\operatorname{{Var}}\left({}\right)".format(self._print(expr.args[0])) def _print_Covariance(self, expr): return r"\operatorname{{Cov}}\left({}\right)".format(", ".join(self._print(arg) for arg in expr.args)) def _print_Probability(self, expr): return r"\operatorname{{P}}\left({}\right)".format(self._print(expr.args[0])) def _print_Morphism(self, morphism): domain = self._print(morphism.domain) codomain = self._print(morphism.codomain) return "%s\\rightarrow %s" % (domain, codomain) def _print_TransferFunction(self, expr): num, den = self._print(expr.num), self._print(expr.den) return r"\frac{%s}{%s}" % (num, den) def _print_Series(self, expr): args = list(expr.args) parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) return ' '.join(map(parens, args)) def _print_MIMOSeries(self, expr): from sympy.physics.control.lti import MIMOParallel args = list(expr.args)[::-1] parens = lambda x: self.parenthesize(x, precedence_traditional(expr), False) if isinstance(x, MIMOParallel) else self._print(x) return r"\cdot".join(map(parens, args)) def _print_Parallel(self, expr): return ' + '.join(map(self._print, expr.args)) def _print_MIMOParallel(self, expr): return ' + '.join(map(self._print, expr.args)) def _print_Feedback(self, expr): from sympy.physics.control import TransferFunction, Series num, tf = expr.sys1, TransferFunction(1, 1, expr.var) num_arg_list = list(num.args) if isinstance(num, Series) else [num] den_arg_list = list(expr.sys2.args) if \ isinstance(expr.sys2, Series) else [expr.sys2] den_term_1 = tf if isinstance(num, Series) and isinstance(expr.sys2, Series): den_term_2 = Series(*num_arg_list, *den_arg_list) elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction): if expr.sys2 == tf: den_term_2 = Series(*num_arg_list) else: den_term_2 = tf, Series(*num_arg_list, expr.sys2) elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series): if num == tf: den_term_2 = Series(*den_arg_list) else: den_term_2 = Series(num, *den_arg_list) else: if num == tf: den_term_2 = Series(*den_arg_list) elif expr.sys2 == tf: den_term_2 = Series(*num_arg_list) else: den_term_2 = Series(*num_arg_list, *den_arg_list) numer = self._print(num) denom_1 = self._print(den_term_1) denom_2 = self._print(den_term_2) _sign = "+" if expr.sign == -1 else "-" return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2) def _print_MIMOFeedback(self, expr): from sympy.physics.control import MIMOSeries inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1)) sys1 = self._print(expr.sys1) _sign = "+" if expr.sign == -1 else "-" return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1) def _print_TransferFunctionMatrix(self, expr): mat = self._print(expr._expr_mat) return r"%s_\tau" % mat def _print_DFT(self, expr): return r"\text{{{}}}_{{{}}}".format(expr.__class__.__name__, expr.n) _print_IDFT = _print_DFT def _print_NamedMorphism(self, morphism): pretty_name = self._print(Symbol(morphism.name)) pretty_morphism = self._print_Morphism(morphism) return "%s:%s" % (pretty_name, pretty_morphism) def _print_IdentityMorphism(self, morphism): from sympy.categories import NamedMorphism return self._print_NamedMorphism(NamedMorphism( morphism.domain, morphism.codomain, "id")) def _print_CompositeMorphism(self, morphism): # All components of the morphism have names and it is thus # possible to build the name of the composite. component_names_list = [self._print(Symbol(component.name)) for component in morphism.components] component_names_list.reverse() component_names = "\\circ ".join(component_names_list) + ":" pretty_morphism = self._print_Morphism(morphism) return component_names + pretty_morphism def _print_Category(self, morphism): return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name))) def _print_Diagram(self, diagram): if not diagram.premises: # This is an empty diagram. return self._print(S.EmptySet) latex_result = self._print(diagram.premises) if diagram.conclusions: latex_result += "\\Longrightarrow %s" % \ self._print(diagram.conclusions) return latex_result def _print_DiagramGrid(self, grid): latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width) for i in range(grid.height): for j in range(grid.width): if grid[i, j]: latex_result += latex(grid[i, j]) latex_result += " " if j != grid.width - 1: latex_result += "& " if i != grid.height - 1: latex_result += "\\\\" latex_result += "\n" latex_result += "\\end{array}\n" return latex_result def _print_FreeModule(self, M): return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank)) def _print_FreeModuleElement(self, m): # Print as row vector for convenience, for now. return r"\left[ {} \right]".format(",".join( '{' + self._print(x) + '}' for x in m)) def _print_SubModule(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for x in m.gens)) def _print_ModuleImplementedIdeal(self, m): return r"\left\langle {} \right\rangle".format(",".join( '{' + self._print(x) + '}' for [x] in m._module.gens)) def _print_Quaternion(self, expr): # TODO: This expression is potentially confusing, # shall we print it as `Quaternion( ... )`? s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args] a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")] return " + ".join(a) def _print_QuotientRing(self, R): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(R.ring), self._print(R.base_ideal)) def _print_QuotientRingElement(self, x): return r"{{{}}} + {{{}}}".format(self._print(x.data), self._print(x.ring.base_ideal)) def _print_QuotientModuleElement(self, m): return r"{{{}}} + {{{}}}".format(self._print(m.data), self._print(m.module.killed_module)) def _print_QuotientModule(self, M): # TODO nicer fractions for few generators... return r"\frac{{{}}}{{{}}}".format(self._print(M.base), self._print(M.killed_module)) def _print_MatrixHomomorphism(self, h): return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()), self._print(h.domain), self._print(h.codomain)) def _print_Manifold(self, manifold): string = manifold.name.name if '{' in string: name, supers, subs = string, [], [] else: name, supers, subs = split_super_sub(string) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] name = r'\text{%s}' % name if supers: name += "^{%s}" % " ".join(supers) if subs: name += "_{%s}" % " ".join(subs) return name def _print_Patch(self, patch): return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold)) def _print_CoordSystem(self, coordsys): return r'\text{%s}^{\text{%s}}_{%s}' % ( self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold) ) def _print_CovarDerivativeOp(self, cvd): return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt) def _print_BaseScalarField(self, field): string = field._coord_sys.symbols[field._index].name return r'\mathbf{{{}}}'.format(self._print(Symbol(string))) def _print_BaseVectorField(self, field): string = field._coord_sys.symbols[field._index].name return r'\partial_{{{}}}'.format(self._print(Symbol(string))) def _print_Differential(self, diff): field = diff._form_field if hasattr(field, '_coord_sys'): string = field._coord_sys.symbols[field._index].name return r'\operatorname{{d}}{}'.format(self._print(Symbol(string))) else: string = self._print(field) return r'\operatorname{{d}}\left({}\right)'.format(string) def _print_Tr(self, p): # TODO: Handle indices contents = self._print(p.args[0]) return r'\operatorname{{tr}}\left({}\right)'.format(contents) def _print_totient(self, expr, exp=None): if exp is not None: return r'\left(\phi\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\phi\left(%s\right)' % self._print(expr.args[0]) def _print_reduced_totient(self, expr, exp=None): if exp is not None: return r'\left(\lambda\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\lambda\left(%s\right)' % self._print(expr.args[0]) def _print_divisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^{%s}%s" % (exp, tex) return r"\sigma%s" % tex def _print_udivisor_sigma(self, expr, exp=None): if len(expr.args) == 2: tex = r"_%s\left(%s\right)" % tuple(map(self._print, (expr.args[1], expr.args[0]))) else: tex = r"\left(%s\right)" % self._print(expr.args[0]) if exp is not None: return r"\sigma^*^{%s}%s" % (exp, tex) return r"\sigma^*%s" % tex def _print_primenu(self, expr, exp=None): if exp is not None: return r'\left(\nu\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\nu\left(%s\right)' % self._print(expr.args[0]) def _print_primeomega(self, expr, exp=None): if exp is not None: return r'\left(\Omega\left(%s\right)\right)^{%s}' % \ (self._print(expr.args[0]), exp) return r'\Omega\left(%s\right)' % self._print(expr.args[0]) def _print_Str(self, s): return str(s.name) def _print_float(self, expr): return self._print(Float(expr)) def _print_int(self, expr): return str(expr) def _print_mpz(self, expr): return str(expr) def _print_mpq(self, expr): return str(expr) def _print_Predicate(self, expr): return str(expr) def _print_AppliedPredicate(self, expr): pred = expr.function args = expr.arguments pred_latex = self._print(pred) args_latex = ', '.join([self._print(a) for a in args]) return '%s(%s)' % (pred_latex, args_latex) def emptyPrinter(self, expr): # default to just printing as monospace, like would normally be shown s = super().emptyPrinter(expr) return r"\mathtt{\text{%s}}" % latex_escape(s) def translate(s): r''' Check for a modifier ending the string. If present, convert the modifier to latex and translate the rest recursively. Given a description of a Greek letter or other special character, return the appropriate latex. Let everything else pass as given. >>> from sympy.printing.latex import translate >>> translate('alphahatdotprime') "{\\dot{\\hat{\\alpha}}}'" ''' # Process the rest tex = tex_greek_dictionary.get(s) if tex: return tex elif s.lower() in greek_letters_set: return "\\" + s.lower() elif s in other_symbols: return "\\" + s else: # Process modifiers, if any, and recurse for key in sorted(modifier_dict.keys(), key=len, reverse=True): if s.lower().endswith(key) and len(s) > len(key): return modifier_dict[key](translate(s[:-len(key)])) return s @print_function(LatexPrinter) def latex(expr, **settings): r"""Convert the given expression to LaTeX string representation. Parameters ========== full_prec: boolean, optional If set to True, a floating point number is printed with full precision. fold_frac_powers : boolean, optional Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers. fold_func_brackets : boolean, optional Fold function brackets where applicable. fold_short_frac : boolean, optional Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is simple enough (at most two terms and no powers). The default value is ``True`` for inline mode, ``False`` otherwise. inv_trig_style : string, optional How inverse trig functions should be displayed. Can be one of ``abbreviated``, ``full``, or ``power``. Defaults to ``abbreviated``. itex : boolean, optional Specifies if itex-specific syntax is used, including emitting ``$$...$$``. ln_notation : boolean, optional If set to ``True``, ``\ln`` is used instead of default ``\log``. long_frac_ratio : float or None, optional The allowed ratio of the width of the numerator to the width of the denominator before the printer breaks off long fractions. If ``None`` (the default value), long fractions are not broken up. mat_delim : string, optional The delimiter to wrap around matrices. Can be one of ``[``, ``(``, or the empty string. Defaults to ``[``. mat_str : string, optional Which matrix environment string to emit. ``smallmatrix``, ``matrix``, ``array``, etc. Defaults to ``smallmatrix`` for inline mode, ``matrix`` for matrices of no more than 10 columns, and ``array`` otherwise. mode: string, optional Specifies how the generated code will be delimited. ``mode`` can be one of ``plain``, ``inline``, ``equation`` or ``equation*``. If ``mode`` is set to ``plain``, then the resulting code will not be delimited at all (this is the default). If ``mode`` is set to ``inline`` then inline LaTeX ``$...$`` will be used. If ``mode`` is set to ``equation`` or ``equation*``, the resulting code will be enclosed in the ``equation`` or ``equation*`` environment (remember to import ``amsmath`` for ``equation*``), unless the ``itex`` option is set. In the latter case, the ``$$...$$`` syntax is used. mul_symbol : string or None, optional The symbol to use for multiplication. Can be one of ``None``, ``ldot``, ``dot``, or ``times``. order: string, optional Any of the supported monomial orderings (currently ``lex``, ``grlex``, or ``grevlex``), ``old``, and ``none``. This parameter does nothing for Mul objects. Setting order to ``old`` uses the compatibility ordering for Add defined in Printer. For very large expressions, set the ``order`` keyword to ``none`` if speed is a concern. symbol_names : dictionary of strings mapped to symbols, optional Dictionary of symbols and the custom strings they should be emitted as. root_notation : boolean, optional If set to ``False``, exponents of the form 1/n are printed in fractonal form. Default is ``True``, to print exponent in root form. mat_symbol_style : string, optional Can be either ``plain`` (default) or ``bold``. If set to ``bold``, a MatrixSymbol A will be printed as ``\mathbf{A}``, otherwise as ``A``. imaginary_unit : string, optional String to use for the imaginary unit. Defined options are "i" (default) and "j". Adding "r" or "t" in front gives ``\mathrm`` or ``\text``, so "ri" leads to ``\mathrm{i}`` which gives `\mathrm{i}`. gothic_re_im : boolean, optional If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively. The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`. decimal_separator : string, optional Specifies what separator to use to separate the whole and fractional parts of a floating point number as in `2.5` for the default, ``period`` or `2{,}5` when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when ``comma`` is chosen and [1,2,3] for when ``period`` is chosen. parenthesize_super : boolean, optional If set to ``False``, superscripted expressions will not be parenthesized when powered. Default is ``True``, which parenthesizes the expression when powered. min: Integer or None, optional Sets the lower bound for the exponent to print floating point numbers in fixed-point format. max: Integer or None, optional Sets the upper bound for the exponent to print floating point numbers in fixed-point format. Notes ===== Not using a print statement for printing, results in double backslashes for latex commands since that's the way Python escapes backslashes in strings. >>> from sympy import latex, Rational >>> from sympy.abc import tau >>> latex((2*tau)**Rational(7,2)) '8 \\sqrt{2} \\tau^{\\frac{7}{2}}' >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} Examples ======== >>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log >>> from sympy.abc import x, y, mu, r, tau Basic usage: >>> print(latex((2*tau)**Rational(7,2))) 8 \sqrt{2} \tau^{\frac{7}{2}} ``mode`` and ``itex`` options: >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ >>> print(latex((2*mu)**Rational(7,2), mode='plain')) 8 \sqrt{2} \mu^{\frac{7}{2}} >>> print(latex((2*tau)**Rational(7,2), mode='inline')) $8 \sqrt{2} \tau^{7 / 2}$ >>> print(latex((2*mu)**Rational(7,2), mode='equation*')) \begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*} >>> print(latex((2*mu)**Rational(7,2), mode='equation')) \begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation} >>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True)) $$8 \sqrt{2} \mu^{\frac{7}{2}}$$ Fraction options: >>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True)) 8 \sqrt{2} \tau^{7/2} >>> print(latex((2*tau)**sin(Rational(7,2)))) \left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}} >>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True)) \left(2 \tau\right)^{\sin {\frac{7}{2}}} >>> print(latex(3*x**2/y)) \frac{3 x^{2}}{y} >>> print(latex(3*x**2/y, fold_short_frac=True)) 3 x^{2} / y >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2)) \frac{\int r\, dr}{2 \pi} >>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0)) \frac{1}{2 \pi} \int r\, dr Multiplication options: >>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times")) \left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}} Trig options: >>> print(latex(asin(Rational(7,2)))) \operatorname{asin}{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="full")) \arcsin{\left(\frac{7}{2} \right)} >>> print(latex(asin(Rational(7,2)), inv_trig_style="power")) \sin^{-1}{\left(\frac{7}{2} \right)} Matrix options: >>> print(latex(Matrix(2, 1, [x, y]))) \left[\begin{matrix}x\\y\end{matrix}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array")) \left[\begin{array}{c}x\\y\end{array}\right] >>> print(latex(Matrix(2, 1, [x, y]), mat_delim="(")) \left(\begin{matrix}x\\y\end{matrix}\right) Custom printing of symbols: >>> print(latex(x**2, symbol_names={x: 'x_i'})) x_i^{2} Logarithms: >>> print(latex(log(10))) \log{\left(10 \right)} >>> print(latex(log(10), ln_notation=True)) \ln{\left(10 \right)} ``latex()`` also supports the builtin container types :class:`list`, :class:`tuple`, and :class:`dict`: >>> print(latex([2/x, y], mode='inline')) $\left[ 2 / x, \ y\right]$ Unsupported types are rendered as monospaced plaintext: >>> print(latex(int)) \mathtt{\text{<class 'int'>}} >>> print(latex("plain % text")) \mathtt{\text{plain \% text}} See :ref:`printer_method_example` for an example of how to override this behavior for your own types by implementing ``_latex``. .. versionchanged:: 1.7.0 Unsupported types no longer have their ``str`` representation treated as valid latex. """ return LatexPrinter(settings).doprint(expr) def print_latex(expr, **settings): """Prints LaTeX representation of the given expression. Takes the same settings as ``latex()``.""" print(latex(expr, **settings)) def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings): r""" This function generates a LaTeX equation with a multiline right-hand side in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment. Parameters ========== lhs : Expr Left-hand side of equation rhs : Expr Right-hand side of equation terms_per_line : integer, optional Number of terms per line to print. Default is 1. environment : "string", optional Which LaTeX wnvironment to use for the output. Options are "align*" (default), "eqnarray", and "IEEEeqnarray". use_dots : boolean, optional If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``. Examples ======== >>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I >>> x, y, alpha = symbols('x y alpha') >>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y)) >>> print(multiline_latex(x, expr)) \begin{align*} x = & e^{i \alpha} \\ & + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using at most two terms per line: >>> print(multiline_latex(x, expr, 2)) \begin{align*} x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\ & - \cos{\left(\log{\left(y \right)} \right)} \end{align*} Using ``eqnarray`` and dots: >>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True)) \begin{eqnarray} x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{eqnarray} Using ``IEEEeqnarray``: >>> print(multiline_latex(x, expr, environment="IEEEeqnarray")) \begin{IEEEeqnarray}{rCl} x & = & e^{i \alpha} \nonumber\\ & & + \sin{\left(\alpha y \right)} \nonumber\\ & & - \cos{\left(\log{\left(y \right)} \right)} \end{IEEEeqnarray} Notes ===== All optional parameters from ``latex`` can also be used. """ # Based on code from https://github.com/sympy/sympy/issues/3001 l = LatexPrinter(**settings) if environment == "eqnarray": result = r'\begin{eqnarray}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{eqnarray}' doubleet = True elif environment == "IEEEeqnarray": result = r'\begin{IEEEeqnarray}{rCl}' + '\n' first_term = '& = &' nonumber = r'\nonumber' end_term = '\n\\end{IEEEeqnarray}' doubleet = True elif environment == "align*": result = r'\begin{align*}' + '\n' first_term = '= &' nonumber = '' end_term = '\n\\end{align*}' doubleet = False else: raise ValueError("Unknown environment: {}".format(environment)) dots = '' if use_dots: dots=r'\dots' terms = rhs.as_ordered_terms() n_terms = len(terms) term_count = 1 for i in range(n_terms): term = terms[i] term_start = '' term_end = '' sign = '+' if term_count > terms_per_line: if doubleet: term_start = '& & ' else: term_start = '& ' term_count = 1 if term_count == terms_per_line: # End of line if i < n_terms-1: # There are terms remaining term_end = dots + nonumber + r'\\' + '\n' else: term_end = '' if term.as_ordered_factors()[0] == -1: term = -1*term sign = r'-' if i == 0: # beginning if sign == '+': sign = '' result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs), first_term, sign, l.doprint(term), term_end) else: result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign, l.doprint(term), term_end) term_count += 1 result += end_term return result
94eaee867004d59d38cbaeec70a6cbb0526c568bfe255bd1b6bbb70c0ded9810
from sympy.core.containers import Tuple from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.core.sympify import SympifyError from types import FunctionType class TableForm: r""" Create a nice table representation of data. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> print(t) 5 7 4 2 10 3 You can use the SymPy's printing system to produce tables in any format (ascii, latex, html, ...). >>> print(t.as_latex()) \begin{tabular}{l l} $5$ & $7$ \\ $4$ & $2$ \\ $10$ & $3$ \\ \end{tabular} """ def __init__(self, data, **kwarg): """ Creates a TableForm. Parameters: data ... 2D data to be put into the table; data can be given as a Matrix headings ... gives the labels for rows and columns: Can be a single argument that applies to both dimensions: - None ... no labels - "automatic" ... labels are 1, 2, 3, ... Can be a list of labels for rows and columns: The labels for each dimension can be given as None, "automatic", or [l1, l2, ...] e.g. ["automatic", None] will number the rows [default: None] alignments ... alignment of the columns with: - "left" or "<" - "center" or "^" - "right" or ">" When given as a single value, the value is used for all columns. The row headings (if given) will be right justified unless an explicit alignment is given for it and all other columns. [default: "left"] formats ... a list of format strings or functions that accept 3 arguments (entry, row number, col number) and return a string for the table entry. (If a function returns None then the _print method will be used.) wipe_zeros ... Don't show zeros in the table. [default: True] pad ... the string to use to indicate a missing value (e.g. elements that are None or those that are missing from the end of a row (i.e. any row that is shorter than the rest is assumed to have missing values). When None, nothing will be shown for values that are missing from the end of a row; values that are None, however, will be shown. [default: None] Examples ======== >>> from sympy import TableForm, Symbol >>> TableForm([[5, 7], [4, 2], [10, 3]]) 5 7 4 2 10 3 >>> TableForm([list('.'*i) for i in range(1, 4)], headings='automatic') | 1 2 3 --------- 1 | . 2 | . . 3 | . . . >>> TableForm([[Symbol('.'*(j if not i%2 else 1)) for i in range(3)] ... for j in range(4)], alignments='rcl') . . . . .. . .. ... . ... """ from sympy.matrices.dense import Matrix # We only support 2D data. Check the consistency: if isinstance(data, Matrix): data = data.tolist() _h = len(data) # fill out any short lines pad = kwarg.get('pad', None) ok_None = False if pad is None: pad = " " ok_None = True pad = Symbol(pad) _w = max(len(line) for line in data) for i, line in enumerate(data): if len(line) != _w: line.extend([pad]*(_w - len(line))) for j, lj in enumerate(line): if lj is None: if not ok_None: lj = pad else: try: lj = S(lj) except SympifyError: lj = Symbol(str(lj)) line[j] = lj data[i] = line _lines = Tuple(*[Tuple(*d) for d in data]) headings = kwarg.get("headings", [None, None]) if headings == "automatic": _headings = [range(1, _h + 1), range(1, _w + 1)] else: h1, h2 = headings if h1 == "automatic": h1 = range(1, _h + 1) if h2 == "automatic": h2 = range(1, _w + 1) _headings = [h1, h2] allow = ('l', 'r', 'c') alignments = kwarg.get("alignments", "l") def _std_align(a): a = a.strip().lower() if len(a) > 1: return {'left': 'l', 'right': 'r', 'center': 'c'}.get(a, a) else: return {'<': 'l', '>': 'r', '^': 'c'}.get(a, a) std_align = _std_align(alignments) if std_align in allow: _alignments = [std_align]*_w else: _alignments = [] for a in alignments: std_align = _std_align(a) _alignments.append(std_align) if std_align not in ('l', 'r', 'c'): raise ValueError('alignment "%s" unrecognized' % alignments) if _headings[0] and len(_alignments) == _w + 1: _head_align = _alignments[0] _alignments = _alignments[1:] else: _head_align = 'r' if len(_alignments) != _w: raise ValueError( 'wrong number of alignments: expected %s but got %s' % (_w, len(_alignments))) _column_formats = kwarg.get("formats", [None]*_w) _wipe_zeros = kwarg.get("wipe_zeros", True) self._w = _w self._h = _h self._lines = _lines self._headings = _headings self._head_align = _head_align self._alignments = _alignments self._column_formats = _column_formats self._wipe_zeros = _wipe_zeros def __repr__(self): from .str import sstr return sstr(self, order=None) def __str__(self): from .str import sstr return sstr(self, order=None) def as_matrix(self): """Returns the data of the table in Matrix form. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]], headings='automatic') >>> t | 1 2 -------- 1 | 5 7 2 | 4 2 3 | 10 3 >>> t.as_matrix() Matrix([ [ 5, 7], [ 4, 2], [10, 3]]) """ from sympy.matrices.dense import Matrix return Matrix(self._lines) def as_str(self): # XXX obsolete ? return str(self) def as_latex(self): from .latex import latex return latex(self) def _sympystr(self, p): """ Returns the string representation of 'self'. Examples ======== >>> from sympy import TableForm >>> t = TableForm([[5, 7], [4, 2], [10, 3]]) >>> s = t.as_str() """ column_widths = [0] * self._w lines = [] for line in self._lines: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(line[i]) if self._wipe_zeros and (s == "0"): s = " " w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) lines.append(new_line) # Check heading: if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] _head_width = max([len(x) for x in self._headings[0]]) if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: s = str(self._headings[1][i]) w = len(s) if w > column_widths[i]: column_widths[i] = w new_line.append(s) self._headings[1] = new_line format_str = [] def _align(align, w): return '%%%s%ss' % ( ("-" if align == "l" else ""), str(w)) format_str = [_align(align, w) for align, w in zip(self._alignments, column_widths)] if self._headings[0]: format_str.insert(0, _align(self._head_align, _head_width)) format_str.insert(1, '|') format_str = ' '.join(format_str) + '\n' s = [] if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = format_str % tuple(d) s.append(first_line) s.append("-" * (len(first_line) - 1) + "\n") for i, line in enumerate(lines): d = [l if self._alignments[j] != 'c' else l.center(column_widths[j]) for j, l in enumerate(line)] if self._headings[0]: l = self._headings[0][i] l = (l if self._head_align != 'c' else l.center(_head_width)) d = [l] + d s.append(format_str % tuple(d)) return ''.join(s)[:-1] # don't include trailing newline def _latex(self, printer): """ Returns the string representation of 'self'. """ # Check heading: if self._headings[1]: new_line = [] for i in range(self._w): # Format the item somehow if needed: new_line.append(str(self._headings[1][i])) self._headings[1] = new_line alignments = [] if self._headings[0]: self._headings[0] = [str(x) for x in self._headings[0]] alignments = [self._head_align] alignments.extend(self._alignments) s = r"\begin{tabular}{" + " ".join(alignments) + "}\n" if self._headings[1]: d = self._headings[1] if self._headings[0]: d = [""] + d first_line = " & ".join(d) + r" \\" + "\n" s += first_line s += r"\hline" + "\n" for i, line in enumerate(self._lines): d = [] for j, x in enumerate(line): if self._wipe_zeros and (x in (0, "0")): d.append(" ") continue f = self._column_formats[j] if f: if isinstance(f, FunctionType): v = f(x, i, j) if v is None: v = printer._print(x) else: v = f % x d.append(v) else: v = printer._print(x) d.append("$%s$" % v) if self._headings[0]: d = [self._headings[0][i]] + d s += " & ".join(d) + r" \\" + "\n" s += r"\end{tabular}" return s
02a5fdbb7db36d5431c24a760aecdc642a1ff91171c8a10a30bc1a0af166b011
from typing import Any, Dict as tDict, Set as tSet, Tuple as tTuple from functools import wraps from sympy.core import Add, Expr, Mul, Pow, S, sympify, Float from sympy.core.basic import Basic from sympy.core.expr import UnevaluatedExpr from sympy.core.function import Lambda from sympy.core.mul import _keep_coeff from sympy.core.sorting import default_sort_key from sympy.core.symbol import Symbol from sympy.functions.elementary.complexes import re from sympy.printing.str import StrPrinter from sympy.printing.precedence import precedence, PRECEDENCE class requires: """ Decorator for registering requirements on print methods. """ def __init__(self, **kwargs): self._req = kwargs def __call__(self, method): def _method_wrapper(self_, *args, **kwargs): for k, v in self._req.items(): getattr(self_, k).update(v) return method(self_, *args, **kwargs) return wraps(method)(_method_wrapper) class AssignmentError(Exception): """ Raised if an assignment variable for a loop is missing. """ pass def _convert_python_lists(arg): if isinstance(arg, list): from sympy.codegen.abstract_nodes import List return List(*(_convert_python_lists(e) for e in arg)) elif isinstance(arg, tuple): return tuple(_convert_python_lists(e) for e in arg) else: return arg class CodePrinter(StrPrinter): """ The base class for code-printing subclasses. """ _operators = { 'and': '&&', 'or': '||', 'not': '!', } _default_settings = { 'order': None, 'full_prec': 'auto', 'error_on_reserved': False, 'reserved_word_suffix': '_', 'human': True, 'inline': False, 'allow_unknown_functions': False, } # type: tDict[str, Any] # Functions which are "simple" to rewrite to other functions that # may be supported # function_to_rewrite : (function_to_rewrite_to, iterable_with_other_functions_required) _rewriteable_functions = { 'catalan': ('gamma', []), 'fibonacci': ('sqrt', []), 'lucas': ('sqrt', []), 'beta': ('gamma', []), 'sinc': ('sin', ['Piecewise']), 'Mod': ('floor', []), 'factorial': ('gamma', []), 'factorial2': ('gamma', ['Piecewise']), 'subfactorial': ('uppergamma', []), 'RisingFactorial': ('gamma', ['Piecewise']), 'FallingFactorial': ('gamma', ['Piecewise']), 'binomial': ('gamma', []), 'frac': ('floor', []), 'Max': ('Piecewise', []), 'Min': ('Piecewise', []), 'Heaviside': ('Piecewise', []), 'erf2': ('erf', []), 'erfc': ('erf', []), 'Li': ('li', []), 'Ei': ('li', []), 'dirichlet_eta': ('zeta', []), 'riemann_xi': ('zeta', ['gamma']), } def __init__(self, settings=None): super().__init__(settings=settings) if not hasattr(self, 'reserved_words'): self.reserved_words = set() def _handle_UnevaluatedExpr(self, expr): return expr.replace(re, lambda arg: arg if isinstance( arg, UnevaluatedExpr) and arg.args[0].is_real else re(arg)) def doprint(self, expr, assign_to=None): """ Print the expression as code. Parameters ---------- expr : Expression The expression to be printed. assign_to : Symbol, string, MatrixSymbol, list of strings or Symbols (optional) If provided, the printed code will set the expression to a variable or multiple variables with the name or names given in ``assign_to``. """ from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.codegen.ast import CodeBlock, Assignment def _handle_assign_to(expr, assign_to): if assign_to is None: return sympify(expr) if isinstance(assign_to, (list, tuple)): if len(expr) != len(assign_to): raise ValueError('Failed to assign an expression of length {} to {} variables'.format(len(expr), len(assign_to))) return CodeBlock(*[_handle_assign_to(lhs, rhs) for lhs, rhs in zip(expr, assign_to)]) if isinstance(assign_to, str): if expr.is_Matrix: assign_to = MatrixSymbol(assign_to, *expr.shape) else: assign_to = Symbol(assign_to) elif not isinstance(assign_to, Basic): raise TypeError("{} cannot assign to object of type {}".format( type(self).__name__, type(assign_to))) return Assignment(assign_to, expr) expr = _convert_python_lists(expr) expr = _handle_assign_to(expr, assign_to) # Remove re(...) nodes due to UnevaluatedExpr.is_real always is None: expr = self._handle_UnevaluatedExpr(expr) # keep a set of expressions that are not strictly translatable to Code # and number constants that must be declared and initialized self._not_supported = set() self._number_symbols = set() # type: tSet[tTuple[Expr, Float]] lines = self._print(expr).splitlines() # format the output if self._settings["human"]: frontlines = [] if self._not_supported: frontlines.append(self._get_comment( "Not supported in {}:".format(self.language))) for expr in sorted(self._not_supported, key=str): frontlines.append(self._get_comment(type(expr).__name__)) for name, value in sorted(self._number_symbols, key=str): frontlines.append(self._declare_number_const(name, value)) lines = frontlines + lines lines = self._format_code(lines) result = "\n".join(lines) else: lines = self._format_code(lines) num_syms = {(k, self._print(v)) for k, v in self._number_symbols} result = (num_syms, self._not_supported, "\n".join(lines)) self._not_supported = set() self._number_symbols = set() return result def _doprint_loops(self, expr, assign_to=None): # Here we print an expression that contains Indexed objects, they # correspond to arrays in the generated code. The low-level implementation # involves looping over array elements and possibly storing results in temporary # variables or accumulate it in the assign_to object. if self._settings.get('contract', True): from sympy.tensor import get_contraction_structure # Setup loops over non-dummy indices -- all terms need these indices = self._get_expression_indices(expr, assign_to) # Setup loops over dummy indices -- each term needs separate treatment dummies = get_contraction_structure(expr) else: indices = [] dummies = {None: (expr,)} openloop, closeloop = self._get_loop_opening_ending(indices) # terms with no summations first if None in dummies: text = StrPrinter.doprint(self, Add(*dummies[None])) else: # If all terms have summations we must initialize array to Zero text = StrPrinter.doprint(self, 0) # skip redundant assignments (where lhs == rhs) lhs_printed = self._print(assign_to) lines = [] if text != lhs_printed: lines.extend(openloop) if assign_to is not None: text = self._get_statement("%s = %s" % (lhs_printed, text)) lines.append(text) lines.extend(closeloop) # then terms with summations for d in dummies: if isinstance(d, tuple): indices = self._sort_optimized(d, expr) openloop_d, closeloop_d = self._get_loop_opening_ending( indices) for term in dummies[d]: if term in dummies and not ([list(f.keys()) for f in dummies[term]] == [[None] for f in dummies[term]]): # If one factor in the term has it's own internal # contractions, those must be computed first. # (temporary variables?) raise NotImplementedError( "FIXME: no support for contractions in factor yet") else: # We need the lhs expression as an accumulator for # the loops, i.e # # for (int d=0; d < dim; d++){ # lhs[] = lhs[] + term[][d] # } ^.................. the accumulator # # We check if the expression already contains the # lhs, and raise an exception if it does, as that # syntax is currently undefined. FIXME: What would be # a good interpretation? if assign_to is None: raise AssignmentError( "need assignment variable for loops") if term.has(assign_to): raise ValueError("FIXME: lhs present in rhs,\ this is undefined in CodePrinter") lines.extend(openloop) lines.extend(openloop_d) text = "%s = %s" % (lhs_printed, StrPrinter.doprint( self, assign_to + term)) lines.append(self._get_statement(text)) lines.extend(closeloop_d) lines.extend(closeloop) return "\n".join(lines) def _get_expression_indices(self, expr, assign_to): from sympy.tensor import get_indices rinds, junk = get_indices(expr) linds, junk = get_indices(assign_to) # support broadcast of scalar if linds and not rinds: rinds = linds if rinds != linds: raise ValueError("lhs indices must match non-dummy" " rhs indices in %s" % expr) return self._sort_optimized(rinds, assign_to) def _sort_optimized(self, indices, expr): from sympy.tensor.indexed import Indexed if not indices: return [] # determine optimized loop order by giving a score to each index # the index with the highest score are put in the innermost loop. score_table = {} for i in indices: score_table[i] = 0 arrays = expr.atoms(Indexed) for arr in arrays: for p, ind in enumerate(arr.indices): try: score_table[ind] += self._rate_index_position(p) except KeyError: pass return sorted(indices, key=lambda x: score_table[x]) def _rate_index_position(self, p): """function to calculate score based on position among indices This method is used to sort loops in an optimized order, see CodePrinter._sort_optimized() """ raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_statement(self, codestring): """Formats a codestring with the proper line ending.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_comment(self, text): """Formats a text string as a comment.""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _declare_number_const(self, name, value): """Declare a numeric constant at the top of a function""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _format_code(self, lines): """Take in a list of lines of code, and format them accordingly. This may include indenting, wrapping long lines, etc...""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _get_loop_opening_ending(self, indices): """Returns a tuple (open_lines, close_lines) containing lists of codelines""" raise NotImplementedError("This function must be implemented by " "subclass of CodePrinter.") def _print_Dummy(self, expr): if expr.name.startswith('Dummy_'): return '_' + expr.name else: return '%s_%d' % (expr.name, expr.dummy_index) def _print_CodeBlock(self, expr): return '\n'.join([self._print(i) for i in expr.args]) def _print_String(self, string): return str(string) def _print_QuotedString(self, arg): return '"%s"' % arg.text def _print_Comment(self, string): return self._get_comment(str(string)) def _print_Assignment(self, expr): from sympy.codegen.ast import Assignment from sympy.functions.elementary.piecewise import Piecewise from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.tensor.indexed import IndexedBase lhs = expr.lhs rhs = expr.rhs # We special case assignments that take multiple lines if isinstance(expr.rhs, Piecewise): # Here we modify Piecewise so each expression is now # an Assignment, and then continue on the print. expressions = [] conditions = [] for (e, c) in rhs.args: expressions.append(Assignment(lhs, e)) conditions.append(c) temp = Piecewise(*zip(expressions, conditions)) return self._print(temp) elif isinstance(lhs, MatrixSymbol): # Here we form an Assignment for each element in the array, # printing each one. lines = [] for (i, j) in self._traverse_matrix_indices(lhs): temp = Assignment(lhs[i, j], rhs[i, j]) code0 = self._print(temp) lines.append(code0) return "\n".join(lines) elif self._settings.get("contract", False) and (lhs.has(IndexedBase) or rhs.has(IndexedBase)): # Here we check if there is looping to be done, and if so # print the required loops. return self._doprint_loops(rhs, lhs) else: lhs_code = self._print(lhs) rhs_code = self._print(rhs) return self._get_statement("%s = %s" % (lhs_code, rhs_code)) def _print_AugmentedAssignment(self, expr): lhs_code = self._print(expr.lhs) rhs_code = self._print(expr.rhs) return self._get_statement("{} {} {}".format( *map(lambda arg: self._print(arg), [lhs_code, expr.op, rhs_code]))) def _print_FunctionCall(self, expr): return '%s(%s)' % ( expr.name, ', '.join(map(lambda arg: self._print(arg), expr.function_args))) def _print_Variable(self, expr): return self._print(expr.symbol) def _print_Symbol(self, expr): name = super()._print_Symbol(expr) if name in self.reserved_words: if self._settings['error_on_reserved']: msg = ('This expression includes the symbol "{}" which is a ' 'reserved keyword in this language.') raise ValueError(msg.format(name)) return name + self._settings['reserved_word_suffix'] else: return name def _can_print(self, name): """ Check if function ``name`` is either a known function or has its own printing method. Used to check if rewriting is possible.""" return name in self.known_functions or getattr(self, '_print_{}'.format(name), False) def _print_Function(self, expr): if expr.func.__name__ in self.known_functions: cond_func = self.known_functions[expr.func.__name__] func = None if isinstance(cond_func, str): func = cond_func else: for cond, func in cond_func: if cond(*expr.args): break if func is not None: try: return func(*[self.parenthesize(item, 0) for item in expr.args]) except TypeError: return "%s(%s)" % (func, self.stringify(expr.args, ", ")) elif hasattr(expr, '_imp_') and isinstance(expr._imp_, Lambda): # inlined function return self._print(expr._imp_(*expr.args)) elif expr.func.__name__ in self._rewriteable_functions: # Simple rewrite to supported function possible target_f, required_fs = self._rewriteable_functions[expr.func.__name__] if self._can_print(target_f) and all(self._can_print(f) for f in required_fs): return self._print(expr.rewrite(target_f)) if expr.is_Function and self._settings.get('allow_unknown_functions', False): return '%s(%s)' % (self._print(expr.func), ', '.join(map(self._print, expr.args))) else: return self._print_not_supported(expr) _print_Expr = _print_Function # Don't inherit the str-printer method for Heaviside to the code printers _print_Heaviside = None def _print_NumberSymbol(self, expr): if self._settings.get("inline", False): return self._print(Float(expr.evalf(self._settings["precision"]))) else: # A Number symbol that is not implemented here or with _printmethod # is registered and evaluated self._number_symbols.add((expr, Float(expr.evalf(self._settings["precision"])))) return str(expr) def _print_Catalan(self, expr): return self._print_NumberSymbol(expr) def _print_EulerGamma(self, expr): return self._print_NumberSymbol(expr) def _print_GoldenRatio(self, expr): return self._print_NumberSymbol(expr) def _print_TribonacciConstant(self, expr): return self._print_NumberSymbol(expr) def _print_Exp1(self, expr): return self._print_NumberSymbol(expr) def _print_Pi(self, expr): return self._print_NumberSymbol(expr) def _print_And(self, expr): PREC = precedence(expr) return (" %s " % self._operators['and']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Or(self, expr): PREC = precedence(expr) return (" %s " % self._operators['or']).join(self.parenthesize(a, PREC) for a in sorted(expr.args, key=default_sort_key)) def _print_Xor(self, expr): if self._operators.get('xor') is None: return self._print(expr.to_nnf()) PREC = precedence(expr) return (" %s " % self._operators['xor']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Equivalent(self, expr): if self._operators.get('equivalent') is None: return self._print(expr.to_nnf()) PREC = precedence(expr) return (" %s " % self._operators['equivalent']).join(self.parenthesize(a, PREC) for a in expr.args) def _print_Not(self, expr): PREC = precedence(expr) return self._operators['not'] + self.parenthesize(expr.args[0], PREC) def _print_BooleanFunction(self, expr): return self._print(expr.to_nnf()) def _print_Mul(self, expr): prec = precedence(expr) c, e = expr.as_coeff_Mul() if c < 0: expr = _keep_coeff(-c, e) sign = "-" else: sign = "" a = [] # items in the numerator b = [] # items that are in the denominator (if any) pow_paren = [] # Will collect all pow with more than one base element and exp = -1 if self.order not in ('old', 'none'): args = expr.as_ordered_factors() else: # use make_args in case expr was something like -x -> x args = Mul.make_args(expr) # Gather args for numerator/denominator for item in args: if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative: if item.exp != -1: b.append(Pow(item.base, -item.exp, evaluate=False)) else: if len(item.args[0].args) != 1 and isinstance(item.base, Mul): # To avoid situations like #14160 pow_paren.append(item) b.append(Pow(item.base, -item.exp)) else: a.append(item) a = a or [S.One] if len(a) == 1 and sign == "-": # Unary minus does not have a SymPy class, and hence there's no # precedence weight associated with it, Python's unary minus has # an operator precedence between multiplication and exponentiation, # so we use this to compute a weight. a_str = [self.parenthesize(a[0], 0.5*(PRECEDENCE["Pow"]+PRECEDENCE["Mul"]))] else: a_str = [self.parenthesize(x, prec) for x in a] b_str = [self.parenthesize(x, prec) for x in b] # To parenthesize Pow with exp = -1 and having more than one Symbol for item in pow_paren: if item.base in b: b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)] if not b: return sign + '*'.join(a_str) elif len(b) == 1: return sign + '*'.join(a_str) + "/" + b_str[0] else: return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str) def _print_not_supported(self, expr): try: self._not_supported.add(expr) except TypeError: # not hashable pass return self.emptyPrinter(expr) # The following can not be simply translated into C or Fortran _print_Basic = _print_not_supported _print_ComplexInfinity = _print_not_supported _print_Derivative = _print_not_supported _print_ExprCondPair = _print_not_supported _print_GeometryEntity = _print_not_supported _print_Infinity = _print_not_supported _print_Integral = _print_not_supported _print_Interval = _print_not_supported _print_AccumulationBounds = _print_not_supported _print_Limit = _print_not_supported _print_MatrixBase = _print_not_supported _print_DeferredVector = _print_not_supported _print_NaN = _print_not_supported _print_NegativeInfinity = _print_not_supported _print_Order = _print_not_supported _print_RootOf = _print_not_supported _print_RootsOf = _print_not_supported _print_RootSum = _print_not_supported _print_Uniform = _print_not_supported _print_Unit = _print_not_supported _print_Wild = _print_not_supported _print_WildFunction = _print_not_supported _print_Relational = _print_not_supported # Code printer functions. These are included in this file so that they can be # imported in the top-level __init__.py without importing the sympy.codegen # module. def ccode(expr, assign_to=None, standard='c99', **settings): """Converts an expr to a string of c code Parameters ========== expr : Expr A SymPy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. standard : str, optional String specifying the standard. If your compiler supports a more modern standard you may set this to 'c99' to allow the printer to use more math functions. [default='c89']. precision : integer, optional The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where the keys are string representations of either ``FunctionClass`` or ``UndefinedFunction`` instances and the values are their desired C string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)] or [(argument_test, cfunction_formater)]. See below for examples. dereference : iterable, optional An iterable of symbols that should be dereferenced in the printed code expression. These would be values passed by address to the function. For example, if ``dereference=[a]``, the resulting code would print ``(*a)`` instead of ``a``. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. Examples ======== >>> from sympy import ccode, symbols, Rational, sin, ceiling, Abs, Function >>> x, tau = symbols("x, tau") >>> expr = (2*tau)**Rational(7, 2) >>> ccode(expr) '8*M_SQRT2*pow(tau, 7.0/2.0)' >>> ccode(expr, math_macros={}) '8*sqrt(2)*pow(tau, 7.0/2.0)' >>> ccode(sin(x), assign_to="s") 's = sin(x);' >>> from sympy.codegen.ast import real, float80 >>> ccode(expr, type_aliases={real: float80}) '8*M_SQRT2l*powl(tau, 7.0L/2.0L)' Simple custom printing can be defined for certain types by passing a dictionary of {"type" : "function"} to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "Abs": [(lambda x: not x.is_integer, "fabs"), ... (lambda x: x.is_integer, "ABS")], ... "func": "f" ... } >>> func = Function('func') >>> ccode(func(Abs(x) + ceiling(x)), standard='C89', user_functions=custom_functions) 'f(fabs(x) + CEIL(x))' or if the C-function takes a subset of the original arguments: >>> ccode(2**x + 3**x, standard='C99', user_functions={'Pow': [ ... (lambda b, e: b == 2, lambda b, e: 'exp2(%s)' % e), ... (lambda b, e: b != 2, 'pow')]}) 'exp2(x) + pow(3, x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(ccode(expr, tau, standard='C89')) if (x > 0) { tau = x + 1; } else { tau = x; } Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> ccode(e.rhs, assign_to=e.lhs, contract=False, standard='C89') 'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(ccode(mat, A, standard='C89')) A[0] = pow(x, 2); if (x > 0) { A[1] = x + 1; } else { A[1] = x; } A[2] = sin(x); """ from sympy.printing.c import c_code_printers return c_code_printers[standard.lower()](settings).doprint(expr, assign_to) def print_ccode(expr, **settings): """Prints C representation of the given expression.""" print(ccode(expr, **settings)) def fcode(expr, assign_to=None, **settings): """Converts an expr to a string of fortran code Parameters ========== expr : Expr A SymPy expression to be converted. assign_to : optional When given, the argument is used as the name of the variable to which the expression is assigned. Can be a string, ``Symbol``, ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of line-wrapping, or for expressions that generate multi-line statements. precision : integer, optional DEPRECATED. Use type_mappings instead. The precision for numbers such as pi [default=17]. user_functions : dict, optional A dictionary where keys are ``FunctionClass`` instances and values are their string representations. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. See below for examples. human : bool, optional If True, the result is a single string that may contain some constant declarations for the number symbols. If False, the same information is returned in a tuple of (symbols_to_declare, not_supported_functions, code_text). [default=True]. contract: bool, optional If True, ``Indexed`` instances are assumed to obey tensor contraction rules and the corresponding nested loops over indices are generated. Setting contract=False will not generate loops, instead the user is responsible to provide values for the indices in the code. [default=True]. source_format : optional The source format can be either 'fixed' or 'free'. [default='fixed'] standard : integer, optional The Fortran standard to be followed. This is specified as an integer. Acceptable standards are 66, 77, 90, 95, 2003, and 2008. Default is 77. Note that currently the only distinction internally is between standards before 95, and those 95 and after. This may change later as more features are added. name_mangling : bool, optional If True, then the variables that would become identical in case-insensitive Fortran are mangled by appending different number of ``_`` at the end. If False, SymPy Will not interfere with naming of variables. [default=True] Examples ======== >>> from sympy import fcode, symbols, Rational, sin, ceiling, floor >>> x, tau = symbols("x, tau") >>> fcode((2*tau)**Rational(7, 2)) ' 8*sqrt(2.0d0)*tau**(7.0d0/2.0d0)' >>> fcode(sin(x), assign_to="s") ' s = sin(x)' Custom printing can be defined for certain types by passing a dictionary of "type" : "function" to the ``user_functions`` kwarg. Alternatively, the dictionary value can be a list of tuples i.e. [(argument_test, cfunction_string)]. >>> custom_functions = { ... "ceiling": "CEIL", ... "floor": [(lambda x: not x.is_integer, "FLOOR1"), ... (lambda x: x.is_integer, "FLOOR2")] ... } >>> fcode(floor(x) + ceiling(x), user_functions=custom_functions) ' CEIL(x) + FLOOR1(x)' ``Piecewise`` expressions are converted into conditionals. If an ``assign_to`` variable is provided an if statement is created, otherwise the ternary operator is used. Note that if the ``Piecewise`` lacks a default term, represented by ``(expr, True)`` then an error will be thrown. This is to prevent generating an expression that may not evaluate to anything. >>> from sympy import Piecewise >>> expr = Piecewise((x + 1, x > 0), (x, True)) >>> print(fcode(expr, tau)) if (x > 0) then tau = x + 1 else tau = x end if Support for loops is provided through ``Indexed`` types. With ``contract=True`` these expressions will be turned into loops, whereas ``contract=False`` will just print the assignment expression that should be looped over: >>> from sympy import Eq, IndexedBase, Idx >>> len_y = 5 >>> y = IndexedBase('y', shape=(len_y,)) >>> t = IndexedBase('t', shape=(len_y,)) >>> Dy = IndexedBase('Dy', shape=(len_y-1,)) >>> i = Idx('i', len_y-1) >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i])) >>> fcode(e.rhs, assign_to=e.lhs, contract=False) ' Dy(i) = (y(i + 1) - y(i))/(t(i + 1) - t(i))' Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions must be provided to ``assign_to``. Note that any expression that can be generated normally can also exist inside a Matrix: >>> from sympy import Matrix, MatrixSymbol >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)]) >>> A = MatrixSymbol('A', 3, 1) >>> print(fcode(mat, A)) A(1, 1) = x**2 if (x > 0) then A(2, 1) = x + 1 else A(2, 1) = x end if A(3, 1) = sin(x) """ from sympy.printing.fortran import FCodePrinter return FCodePrinter(settings).doprint(expr, assign_to) def print_fcode(expr, **settings): """Prints the Fortran representation of the given expression. See fcode for the meaning of the optional arguments. """ print(fcode(expr, **settings)) def cxxcode(expr, assign_to=None, standard='c++11', **settings): """ C++ equivalent of :func:`~.ccode`. """ from sympy.printing.cxx import cxx_code_printers return cxx_code_printers[standard.lower()](settings).doprint(expr, assign_to)
b0971458961a597e35119564854999aa92c0d884dc614eb941dd542995cc745a
import keyword as kw import sympy from .repr import ReprPrinter from .str import StrPrinter # A list of classes that should be printed using StrPrinter STRPRINT = ("Add", "Infinity", "Integer", "Mul", "NegativeInfinity", "Pow", "Zero") class PythonPrinter(ReprPrinter, StrPrinter): """A printer which converts an expression into its Python interpretation.""" def __init__(self, settings=None): super().__init__(settings) self.symbols = [] self.functions = [] # Create print methods for classes that should use StrPrinter instead # of ReprPrinter. for name in STRPRINT: f_name = "_print_%s" % name f = getattr(StrPrinter, f_name) setattr(PythonPrinter, f_name, f) def _print_Function(self, expr): func = expr.func.__name__ if not hasattr(sympy, func) and func not in self.functions: self.functions.append(func) return StrPrinter._print_Function(self, expr) # procedure (!) for defining symbols which have be defined in print_python() def _print_Symbol(self, expr): symbol = self._str(expr) if symbol not in self.symbols: self.symbols.append(symbol) return StrPrinter._print_Symbol(self, expr) def _print_module(self, expr): raise ValueError('Modules in the expression are unacceptable') def python(expr, **settings): """Return Python interpretation of passed expression (can be passed to the exec() function without any modifications)""" printer = PythonPrinter(settings) exprp = printer.doprint(expr) result = '' # Returning found symbols and functions renamings = {} for symbolname in printer.symbols: # Remove curly braces from subscripted variables if '{' in symbolname: newsymbolname = symbolname.replace('{', '').replace('}', '') renamings[sympy.Symbol(symbolname)] = newsymbolname else: newsymbolname = symbolname # Escape symbol names that are reserved Python keywords if kw.iskeyword(newsymbolname): while True: newsymbolname += "_" if (newsymbolname not in printer.symbols and newsymbolname not in printer.functions): renamings[sympy.Symbol( symbolname)] = sympy.Symbol(newsymbolname) break result += newsymbolname + ' = Symbol(\'' + symbolname + '\')\n' for functionname in printer.functions: newfunctionname = functionname # Escape function names that are reserved Python keywords if kw.iskeyword(newfunctionname): while True: newfunctionname += "_" if (newfunctionname not in printer.symbols and newfunctionname not in printer.functions): renamings[sympy.Function( functionname)] = sympy.Function(newfunctionname) break result += newfunctionname + ' = Function(\'' + functionname + '\')\n' if renamings: exprp = expr.subs(renamings) result += 'e = ' + printer._str(exprp) return result def print_python(expr, **settings): """Print output of python() function""" print(python(expr, **settings))
3245a1d7270d5f16788b7e88c5fd865a01b9cd2c444b7cd360e5c1a1dd989050
""" Integral Transforms """ from functools import reduce, wraps from itertools import repeat from sympy.core import S, pi, I from sympy.core.add import Add from sympy.core.function import (AppliedUndef, count_ops, Derivative, expand, expand_complex, expand_mul, Function, Lambda, WildFunction) from sympy.core.mul import Mul from sympy.core.numbers import igcd, ilcm from sympy.core.relational import _canonical, Ge, Gt, Lt, Unequality, Eq from sympy.core.sorting import default_sort_key, ordered from sympy.core.symbol import Dummy, symbols, Wild from sympy.core.traversal import postorder_traversal from sympy.functions.combinatorial.factorials import factorial, rf from sympy.functions.elementary.complexes import (re, arg, Abs, polar_lift, periodic_argument) from sympy.functions.elementary.exponential import exp, log, exp_polar from sympy.functions.elementary.hyperbolic import cosh, coth, sinh, tanh, asinh from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import Max, Min, sqrt from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from sympy.functions.elementary.trigonometric import cos, cot, sin, tan, atan from sympy.functions.special.bessel import besseli, besselj, besselk, bessely from sympy.functions.special.delta_functions import DiracDelta, Heaviside from sympy.functions.special.error_functions import erf, erfc, Ei from sympy.functions.special.gamma_functions import digamma, gamma, lowergamma from sympy.functions.special.hyper import meijerg from sympy.integrals import integrate, Integral from sympy.integrals.meijerint import _dummy from sympy.logic.boolalg import to_cnf, conjuncts, disjuncts, Or, And from sympy.matrices.matrices import MatrixBase from sympy.polys.matrices.linsolve import _lin_eq2dict, PolyNonlinearError from sympy.polys.polyroots import roots from sympy.polys.polytools import factor, Poly from sympy.polys.rationaltools import together from sympy.polys.rootoftools import CRootOf, RootSum from sympy.simplify import simplify, hyperexpand from sympy.simplify.powsimp import powdenest from sympy.solvers.inequalities import _solve_inequality from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable from sympy.utilities.misc import debug ########################################################################## # Helpers / Utilities ########################################################################## class IntegralTransformError(NotImplementedError): """ Exception raised in relation to problems computing transforms. Explanation =========== This class is mostly used internally; if integrals cannot be computed objects representing unevaluated transforms are usually returned. The hint ``needeval=True`` can be used to disable returning transform objects, and instead raise this exception if an integral cannot be computed. """ def __init__(self, transform, function, msg): super().__init__( "%s Transform could not be computed: %s." % (transform, msg)) self.function = function class IntegralTransform(Function): """ Base class for integral transforms. Explanation =========== This class represents unevaluated transforms. To implement a concrete transform, derive from this class and implement the ``_compute_transform(f, x, s, **hints)`` and ``_as_integral(f, x, s)`` functions. If the transform cannot be computed, raise :obj:`IntegralTransformError`. Also set ``cls._name``. For instance, >>> from sympy.integrals.transforms import LaplaceTransform >>> LaplaceTransform._name 'Laplace' Implement ``self._collapse_extra`` if your function returns more than just a number and possibly a convergence condition. """ @property def function(self): """ The function to be transformed. """ return self.args[0] @property def function_variable(self): """ The dependent variable of the function to be transformed. """ return self.args[1] @property def transform_variable(self): """ The independent transform variable. """ return self.args[2] @property def free_symbols(self): """ This method returns the symbols that will exist when the transform is evaluated. """ return self.function.free_symbols.union({self.transform_variable}) \ - {self.function_variable} def _compute_transform(self, f, x, s, **hints): raise NotImplementedError def _as_integral(self, f, x, s): raise NotImplementedError def _collapse_extra(self, extra): cond = And(*extra) if cond == False: raise IntegralTransformError(self.__class__.name, None, '') return cond def _try_directly(self, **hints): T = None try_directly = not any(func.has(self.function_variable) for func in self.function.atoms(AppliedUndef)) if try_directly: try: T = self._compute_transform(self.function, self.function_variable, self.transform_variable, **hints) except IntegralTransformError: T = None fn = self.function if not fn.is_Add: fn = expand_mul(fn) return fn, T def doit(self, **hints): """ Try to evaluate the transform in closed form. Explanation =========== This general function handles linearity, but apart from that leaves pretty much everything to _compute_transform. Standard hints are the following: - ``simplify``: whether or not to simplify the result - ``noconds``: if True, do not return convergence conditions - ``needeval``: if True, raise IntegralTransformError instead of returning IntegralTransform objects The default values of these hints depend on the concrete transform, usually the default is ``(simplify, noconds, needeval) = (True, False, False)``. """ needeval = hints.pop('needeval', False) simplify = hints.pop('simplify', True) hints['simplify'] = simplify fn, T = self._try_directly(**hints) if T is not None: return T if fn.is_Add: hints['needeval'] = needeval res = [self.__class__(*([x] + list(self.args[1:]))).doit(**hints) for x in fn.args] extra = [] ress = [] for x in res: if not isinstance(x, tuple): x = [x] ress.append(x[0]) if len(x) == 2: # only a condition extra.append(x[1]) elif len(x) > 2: # some region parameters and a condition (Mellin, Laplace) extra += [x[1:]] if simplify==True: res = Add(*ress).simplify() else: res = Add(*ress) if not extra: return res try: extra = self._collapse_extra(extra) if iterable(extra): return tuple([res]) + tuple(extra) else: return (res, extra) except IntegralTransformError: pass if needeval: raise IntegralTransformError( self.__class__._name, self.function, 'needeval') # TODO handle derivatives etc # pull out constant coefficients coeff, rest = fn.as_coeff_mul(self.function_variable) return coeff*self.__class__(*([Mul(*rest)] + list(self.args[1:]))) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable) def _eval_rewrite_as_Integral(self, *args, **kwargs): return self.as_integral def _simplify(expr, doit): if doit: return simplify(powdenest(piecewise_fold(expr), polar=True)) return expr def _noconds_(default): """ This is a decorator generator for dropping convergence conditions. Explanation =========== Suppose you define a function ``transform(*args)`` which returns a tuple of the form ``(result, cond1, cond2, ...)``. Decorating it ``@_noconds_(default)`` will add a new keyword argument ``noconds`` to it. If ``noconds=True``, the return value will be altered to be only ``result``, whereas if ``noconds=False`` the return value will not be altered. The default value of the ``noconds`` keyword will be ``default`` (i.e. the argument of this function). """ def make_wrapper(func): @wraps(func) def wrapper(*args, noconds=default, **kwargs): res = func(*args, **kwargs) if noconds: return res[0] return res return wrapper return make_wrapper _noconds = _noconds_(False) ########################################################################## # Mellin Transform ########################################################################## def _default_integrator(f, x): return integrate(f, (x, S.Zero, S.Infinity)) @_noconds def _mellin_transform(f, x, s_, integrator=_default_integrator, simplify=True): """ Backend function to compute Mellin transforms. """ # We use a fresh dummy, because assumptions on s might drop conditions on # convergence of the integral. s = _dummy('s', 'mellin-transform', f) F = integrator(x**(s - 1) * f, x) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), (S.NegativeInfinity, S.Infinity), S.true if not F.is_Piecewise: # XXX can this work if integration gives continuous result now? raise IntegralTransformError('Mellin', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Mellin', f, 'integral in unexpected form') def process_conds(cond): """ Turn ``cond`` into a strip (a, b), and auxiliary conditions. """ a = S.NegativeInfinity b = S.Infinity aux = S.true conds = conjuncts(to_cnf(cond)) t = Dummy('t', real=True) for c in conds: a_ = S.Infinity b_ = S.NegativeInfinity aux_ = [] for d in disjuncts(c): d_ = d.replace( re, lambda x: x.as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: b_ = Max(soln.gts, b_) else: a_ = Min(soln.lts, a_) if a_ is not S.Infinity and a_ != b: a = Max(a_, a) elif b_ is not S.NegativeInfinity and b_ != a: b = Min(b_, b) else: aux = And(aux, Or(*aux_)) return a, b, aux conds = [process_conds(c) for c in disjuncts(cond)] conds = [x for x in conds if x[2] != False] conds.sort(key=lambda x: (x[0] - x[1], count_ops(x[2]))) if not conds: raise IntegralTransformError('Mellin', f, 'no convergence found') a, b, aux = conds[0] return _simplify(F.subs(s, s_), simplify), (a, b), aux class MellinTransform(IntegralTransform): """ Class representing unevaluated Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Mellin transforms, see the :func:`mellin_transform` docstring. """ _name = 'Mellin' def _compute_transform(self, f, x, s, **hints): return _mellin_transform(f, x, s, **hints) def _as_integral(self, f, x, s): return Integral(f*x**(s - 1), (x, S.Zero, S.Infinity)) def _collapse_extra(self, extra): a = [] b = [] cond = [] for (sa, sb), c in extra: a += [sa] b += [sb] cond += [c] res = (Max(*a), Min(*b)), And(*cond) if (res[0][0] >= res[0][1]) == True or res[1] == False: raise IntegralTransformError( 'Mellin', None, 'no combined convergence.') return res def mellin_transform(f, x, s, **hints): r""" Compute the Mellin transform `F(s)` of `f(x)`, .. math :: F(s) = \int_0^\infty x^{s-1} f(x) \mathrm{d}x. For all "sensible" functions, this converges absolutely in a strip `a < \operatorname{Re}(s) < b`. Explanation =========== The Mellin transform is related via change of variables to the Fourier transform, and also to the (bilateral) Laplace transform. This function returns ``(F, (a, b), cond)`` where ``F`` is the Mellin transform of ``f``, ``(a, b)`` is the fundamental strip (as above), and ``cond`` are auxiliary convergence conditions. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`MellinTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=False``, then only `F` will be returned (i.e. not ``cond``, and also not the strip ``(a, b)``). Examples ======== >>> from sympy.integrals.transforms import mellin_transform >>> from sympy import exp >>> from sympy.abc import x, s >>> mellin_transform(exp(-x), x, s) (gamma(s), (0, oo), True) See Also ======== inverse_mellin_transform, laplace_transform, fourier_transform hankel_transform, inverse_hankel_transform """ return MellinTransform(f, x, s).doit(**hints) def _rewrite_sin(m_n, s, a, b): """ Re-write the sine function ``sin(m*s + n)`` as gamma functions, compatible with the strip (a, b). Return ``(gamma1, gamma2, fac)`` so that ``f == fac/(gamma1 * gamma2)``. Examples ======== >>> from sympy.integrals.transforms import _rewrite_sin >>> from sympy import pi, S >>> from sympy.abc import s >>> _rewrite_sin((pi, 0), s, 0, 1) (gamma(s), gamma(1 - s), pi) >>> _rewrite_sin((pi, 0), s, 1, 0) (gamma(s - 1), gamma(2 - s), -pi) >>> _rewrite_sin((pi, 0), s, -1, 0) (gamma(s + 1), gamma(-s), -pi) >>> _rewrite_sin((pi, pi/2), s, S(1)/2, S(3)/2) (gamma(s - 1/2), gamma(3/2 - s), -pi) >>> _rewrite_sin((pi, pi), s, 0, 1) (gamma(s), gamma(1 - s), -pi) >>> _rewrite_sin((2*pi, 0), s, 0, S(1)/2) (gamma(2*s), gamma(1 - 2*s), pi) >>> _rewrite_sin((2*pi, 0), s, S(1)/2, 1) (gamma(2*s - 1), gamma(2 - 2*s), -pi) """ # (This is a separate function because it is moderately complicated, # and I want to doctest it.) # We want to use pi/sin(pi*x) = gamma(x)*gamma(1-x). # But there is one comlication: the gamma functions determine the # inegration contour in the definition of the G-function. Usually # it would not matter if this is slightly shifted, unless this way # we create an undefined function! # So we try to write this in such a way that the gammas are # eminently on the right side of the strip. m, n = m_n m = expand_mul(m/pi) n = expand_mul(n/pi) r = ceiling(-m*a - n.as_real_imag()[0]) # Don't use re(n), does not expand return gamma(m*s + n + r), gamma(1 - n - r - m*s), (-1)**r*pi class MellinTransformStripError(ValueError): """ Exception raised by _rewrite_gamma. Mainly for internal use. """ pass def _rewrite_gamma(f, s, a, b): """ Try to rewrite the product f(s) as a product of gamma functions, so that the inverse Mellin transform of f can be expressed as a meijer G function. Explanation =========== Return (an, ap), (bm, bq), arg, exp, fac such that G((an, ap), (bm, bq), arg/z**exp)*fac is the inverse Mellin transform of f(s). Raises IntegralTransformError or MellinTransformStripError on failure. It is asserted that f has no poles in the fundamental strip designated by (a, b). One of a and b is allowed to be None. The fundamental strip is important, because it determines the inversion contour. This function can handle exponentials, linear factors, trigonometric functions. This is a helper function for inverse_mellin_transform that will not attempt any transformations on f. Examples ======== >>> from sympy.integrals.transforms import _rewrite_gamma >>> from sympy.abc import s >>> from sympy import oo >>> _rewrite_gamma(s*(s+3)*(s-1), s, -oo, oo) (([], [-3, 0, 1]), ([-2, 1, 2], []), 1, 1, -1) >>> _rewrite_gamma((s-1)**2, s, -oo, oo) (([], [1, 1]), ([2, 2], []), 1, 1, 1) Importance of the fundamental strip: >>> _rewrite_gamma(1/s, s, 0, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, None, oo) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, 0, None) (([1], []), ([], [0]), 1, 1, 1) >>> _rewrite_gamma(1/s, s, -oo, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, None, 0) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(1/s, s, -oo, None) (([], [1]), ([0], []), 1, 1, -1) >>> _rewrite_gamma(2**(-s+3), s, -oo, oo) (([], []), ([], []), 1/2, 1, 8) """ # Our strategy will be as follows: # 1) Guess a constant c such that the inversion integral should be # performed wrt s'=c*s (instead of plain s). Write s for s'. # 2) Process all factors, rewrite them independently as gamma functions in # argument s, or exponentials of s. # 3) Try to transform all gamma functions s.t. they have argument # a+s or a-s. # 4) Check that the resulting G function parameters are valid. # 5) Combine all the exponentials. a_, b_ = S([a, b]) def left(c, is_numer): """ Decide whether pole at c lies to the left of the fundamental strip. """ # heuristically, this is the best chance for us to solve the inequalities c = expand(re(c)) if a_ is None and b_ is S.Infinity: return True if a_ is None: return c < b_ if b_ is None: return c <= a_ if (c >= b_) == True: return False if (c <= a_) == True: return True if is_numer: return None if a_.free_symbols or b_.free_symbols or c.free_symbols: return None # XXX #raise IntegralTransformError('Inverse Mellin', f, # 'Could not determine position of singularity %s' # ' relative to fundamental strip' % c) raise MellinTransformStripError('Pole inside critical strip?') # 1) s_multipliers = [] for g in f.atoms(gamma): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff] for g in f.atoms(sin, cos, tan, cot): if not g.has(s): continue arg = g.args[0] if arg.is_Add: arg = arg.as_independent(s)[1] coeff, _ = arg.as_coeff_mul(s) s_multipliers += [coeff/pi] s_multipliers = [Abs(x) if x.is_extended_real else x for x in s_multipliers] common_coefficient = S.One for x in s_multipliers: if not x.is_Rational: common_coefficient = x break s_multipliers = [x/common_coefficient for x in s_multipliers] if not (all(x.is_Rational for x in s_multipliers) and common_coefficient.is_extended_real): raise IntegralTransformError("Gamma", None, "Nonrational multiplier") s_multiplier = common_coefficient/reduce(ilcm, [S(x.q) for x in s_multipliers], S.One) if s_multiplier == common_coefficient: if len(s_multipliers) == 0: s_multiplier = common_coefficient else: s_multiplier = common_coefficient \ *reduce(igcd, [S(x.p) for x in s_multipliers]) f = f.subs(s, s/s_multiplier) fac = S.One/s_multiplier exponent = S.One/s_multiplier if a_ is not None: a_ *= s_multiplier if b_ is not None: b_ *= s_multiplier # 2) numer, denom = f.as_numer_denom() numer = Mul.make_args(numer) denom = Mul.make_args(denom) args = list(zip(numer, repeat(True))) + list(zip(denom, repeat(False))) facs = [] dfacs = [] # *_gammas will contain pairs (a, c) representing Gamma(a*s + c) numer_gammas = [] denom_gammas = [] # exponentials will contain bases for exponentials of s exponentials = [] def exception(fact): return IntegralTransformError("Inverse Mellin", f, "Unrecognised form '%s'." % fact) while args: fact, is_numer = args.pop() if is_numer: ugammas, lgammas = numer_gammas, denom_gammas ufacs = facs else: ugammas, lgammas = denom_gammas, numer_gammas ufacs = dfacs def linear_arg(arg): """ Test if arg is of form a*s+b, raise exception if not. """ if not arg.is_polynomial(s): raise exception(fact) p = Poly(arg, s) if p.degree() != 1: raise exception(fact) return p.all_coeffs() # constants if not fact.has(s): ufacs += [fact] # exponentials elif fact.is_Pow or isinstance(fact, exp): if fact.is_Pow: base = fact.base exp_ = fact.exp else: base = exp_polar(1) exp_ = fact.exp if exp_.is_Integer: cond = is_numer if exp_ < 0: cond = not cond args += [(base, cond)]*Abs(exp_) continue elif not base.has(s): a, b = linear_arg(exp_) if not is_numer: base = 1/base exponentials += [base**a] facs += [base**b] else: raise exception(fact) # linear factors elif fact.is_polynomial(s): p = Poly(fact, s) if p.degree() != 1: # We completely factor the poly. For this we need the roots. # Now roots() only works in some cases (low degree), and CRootOf # only works without parameters. So try both... coeff = p.LT()[1] rs = roots(p, s) if len(rs) != p.degree(): rs = CRootOf.all_roots(p) ufacs += [coeff] args += [(s - c, is_numer) for c in rs] continue a, c = p.all_coeffs() ufacs += [a] c /= -a # Now need to convert s - c if left(c, is_numer): ugammas += [(S.One, -c + 1)] lgammas += [(S.One, -c)] else: ufacs += [-1] ugammas += [(S.NegativeOne, c + 1)] lgammas += [(S.NegativeOne, c)] elif isinstance(fact, gamma): a, b = linear_arg(fact.args[0]) if is_numer: if (a > 0 and (left(-b/a, is_numer) == False)) or \ (a < 0 and (left(-b/a, is_numer) == True)): raise NotImplementedError( 'Gammas partially over the strip.') ugammas += [(a, b)] elif isinstance(fact, sin): # We try to re-write all trigs as gammas. This is not in # general the best strategy, since sometimes this is impossible, # but rewriting as exponentials would work. However trig functions # in inverse mellin transforms usually all come from simplifying # gamma terms, so this should work. a = fact.args[0] if is_numer: # No problem with the poles. gamma1, gamma2, fac_ = gamma(a/pi), gamma(1 - a/pi), pi else: gamma1, gamma2, fac_ = _rewrite_sin(linear_arg(a), s, a_, b_) args += [(gamma1, not is_numer), (gamma2, not is_numer)] ufacs += [fac_] elif isinstance(fact, tan): a = fact.args[0] args += [(sin(a, evaluate=False), is_numer), (sin(pi/2 - a, evaluate=False), not is_numer)] elif isinstance(fact, cos): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer)] elif isinstance(fact, cot): a = fact.args[0] args += [(sin(pi/2 - a, evaluate=False), is_numer), (sin(a, evaluate=False), not is_numer)] else: raise exception(fact) fac *= Mul(*facs)/Mul(*dfacs) # 3) an, ap, bm, bq = [], [], [], [] for gammas, plus, minus, is_numer in [(numer_gammas, an, bm, True), (denom_gammas, bq, ap, False)]: while gammas: a, c = gammas.pop() if a != -1 and a != +1: # We use the gamma function multiplication theorem. p = Abs(S(a)) newa = a/p newc = c/p if not a.is_Integer: raise TypeError("a is not an integer") for k in range(p): gammas += [(newa, newc + k/p)] if is_numer: fac *= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**a] else: fac /= (2*pi)**((1 - p)/2) * p**(c - S.Half) exponentials += [p**(-a)] continue if a == +1: plus.append(1 - c) else: minus.append(c) # 4) # TODO # 5) arg = Mul(*exponentials) # for testability, sort the arguments an.sort(key=default_sort_key) ap.sort(key=default_sort_key) bm.sort(key=default_sort_key) bq.sort(key=default_sort_key) return (an, ap), (bm, bq), arg, exponent, fac @_noconds_(True) def _inverse_mellin_transform(F, s, x_, strip, as_meijerg=False): """ A helper for the real inverse_mellin_transform function, this one here assumes x to be real and positive. """ x = _dummy('t', 'inverse-mellin-transform', F, positive=True) # Actually, we won't try integration at all. Instead we use the definition # of the Meijer G function as a fairly general inverse mellin transform. F = F.rewrite(gamma) for g in [factor(F), expand_mul(F), expand(F)]: if g.is_Add: # do all terms separately ress = [_inverse_mellin_transform(G, s, x, strip, as_meijerg, noconds=False) for G in g.args] conds = [p[1] for p in ress] ress = [p[0] for p in ress] res = Add(*ress) if not as_meijerg: res = factor(res, gens=res.atoms(Heaviside)) return res.subs(x, x_), And(*conds) try: a, b, C, e, fac = _rewrite_gamma(g, s, strip[0], strip[1]) except IntegralTransformError: continue try: G = meijerg(a, b, C/x**e) except ValueError: continue if as_meijerg: h = G else: try: h = hyperexpand(G) except NotImplementedError: raise IntegralTransformError( 'Inverse Mellin', F, 'Could not calculate integral') if h.is_Piecewise and len(h.args) == 3: # XXX we break modularity here! h = Heaviside(x - Abs(C))*h.args[0].args[0] \ + Heaviside(Abs(C) - x)*h.args[1].args[0] # We must ensure that the integral along the line we want converges, # and return that value. # See [L], 5.2 cond = [Abs(arg(G.argument)) < G.delta*pi] # Note: we allow ">=" here, this corresponds to convergence if we let # limits go to oo symmetrically. ">" corresponds to absolute convergence. cond += [And(Or(len(G.ap) != len(G.bq), 0 >= re(G.nu) + 1), Abs(arg(G.argument)) == G.delta*pi)] cond = Or(*cond) if cond == False: raise IntegralTransformError( 'Inverse Mellin', F, 'does not converge') return (h*fac).subs(x, x_), cond raise IntegralTransformError('Inverse Mellin', F, '') _allowed = None class InverseMellinTransform(IntegralTransform): """ Class representing unevaluated inverse Mellin transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Mellin transforms, see the :func:`inverse_mellin_transform` docstring. """ _name = 'Inverse Mellin' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, a, b, **opts): if a is None: a = InverseMellinTransform._none_sentinel if b is None: b = InverseMellinTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, a, b, **opts) @property def fundamental_strip(self): a, b = self.args[3], self.args[4] if a is InverseMellinTransform._none_sentinel: a = None if b is InverseMellinTransform._none_sentinel: b = None return a, b def _compute_transform(self, F, s, x, **hints): # IntegralTransform's doit will cause this hint to exist, but # InverseMellinTransform should ignore it hints.pop('simplify', True) global _allowed if _allowed is None: _allowed = { exp, gamma, sin, cos, tan, cot, cosh, sinh, tanh, coth, factorial, rf} for f in postorder_traversal(F): if f.is_Function and f.has(s) and f.func not in _allowed: raise IntegralTransformError('Inverse Mellin', F, 'Component %s not recognised.' % f) strip = self.fundamental_strip return _inverse_mellin_transform(F, s, x, strip, **hints) def _as_integral(self, F, s, x): c = self.__class__._c return Integral(F*x**(-s), (s, c - S.ImaginaryUnit*S.Infinity, c + S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit) def inverse_mellin_transform(F, s, x, strip, **hints): r""" Compute the inverse Mellin transform of `F(s)` over the fundamental strip given by ``strip=(a, b)``. Explanation =========== This can be defined as .. math:: f(x) = \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty} x^{-s} F(s) \mathrm{d}s, for any `c` in the fundamental strip. Under certain regularity conditions on `F` and/or `f`, this recovers `f` from its Mellin transform `F` (and vice versa), for positive real `x`. One of `a` or `b` may be passed as ``None``; a suitable `c` will be inferred. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseMellinTransform` object. Note that this function will assume x to be positive and real, regardless of the SymPy assumptions! For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy.integrals.transforms import inverse_mellin_transform >>> from sympy import oo, gamma >>> from sympy.abc import x, s >>> inverse_mellin_transform(gamma(s), s, x, (0, oo)) exp(-x) The fundamental strip matters: >>> f = 1/(s**2 - 1) >>> inverse_mellin_transform(f, s, x, (-oo, -1)) x*(1 - 1/x**2)*Heaviside(x - 1)/2 >>> inverse_mellin_transform(f, s, x, (-1, 1)) -x*Heaviside(1 - x)/2 - Heaviside(x - 1)/(2*x) >>> inverse_mellin_transform(f, s, x, (1, oo)) (1/2 - x**2/2)*Heaviside(1 - x)/x See Also ======== mellin_transform hankel_transform, inverse_hankel_transform """ return InverseMellinTransform(F, s, x, strip[0], strip[1]).doit(**hints) ########################################################################## # Laplace Transform ########################################################################## def _simplifyconds(expr, s, a): r""" Naively simplify some conditions occurring in ``expr``, given that `\operatorname{Re}(s) > a`. Examples ======== >>> from sympy.integrals.transforms import _simplifyconds as simp >>> from sympy.abc import x >>> from sympy import sympify as S >>> simp(abs(x**2) < 1, x, 1) False >>> simp(abs(x**2) < 1, x, 2) False >>> simp(abs(x**2) < 1, x, 0) Abs(x**2) < 1 >>> simp(abs(1/x**2) < 1, x, 1) True >>> simp(S(1) < abs(x), x, 1) True >>> simp(S(1) < abs(1/x), x, 1) False >>> from sympy import Ne >>> simp(Ne(1, x**3), x, 1) True >>> simp(Ne(1, x**3), x, 2) True >>> simp(Ne(1, x**3), x, 0) Ne(1, x**3) """ def power(ex): if ex == s: return 1 if ex.is_Pow and ex.base == s: return ex.exp return None def bigger(ex1, ex2): """ Return True only if |ex1| > |ex2|, False only if |ex1| < |ex2|. Else return None. """ if ex1.has(s) and ex2.has(s): return None if isinstance(ex1, Abs): ex1 = ex1.args[0] if isinstance(ex2, Abs): ex2 = ex2.args[0] if ex1.has(s): return bigger(1/ex2, 1/ex1) n = power(ex2) if n is None: return None try: if n > 0 and (Abs(ex1) <= Abs(a)**n) == True: return False if n < 0 and (Abs(ex1) >= Abs(a)**n) == True: return True except TypeError: pass def replie(x, y): """ simplify x < y """ if not (x.is_positive or isinstance(x, Abs)) \ or not (y.is_positive or isinstance(y, Abs)): return (x < y) r = bigger(x, y) if r is not None: return not r return (x < y) def replue(x, y): b = bigger(x, y) if b in (True, False): return True return Unequality(x, y) def repl(ex, *args): if ex in (True, False): return bool(ex) return ex.replace(*args) from sympy.simplify.radsimp import collect_abs expr = collect_abs(expr) expr = repl(expr, Lt, replie) expr = repl(expr, Gt, lambda x, y: replie(y, x)) expr = repl(expr, Unequality, replue) return S(expr) def expand_dirac_delta(expr): """ Expand an expression involving DiractDelta to get it as a linear combination of DiracDelta functions. """ return _lin_eq2dict(expr, expr.atoms(DiracDelta)) @_noconds def _laplace_transform(f, t, s_, simplify=True): """ The backend function for Laplace transforms. This backend assumes that the frontend has already split sums such that `f` is to an addition anymore. """ s = Dummy('s') a = Wild('a', exclude=[t]) deltazero = [] deltanonzero = [] try: integratable, deltadict = expand_dirac_delta(f) except PolyNonlinearError: raise IntegralTransformError( 'Laplace', f, 'could not expand DiracDelta expressions') for dirac_func, dirac_coeff in deltadict.items(): p = dirac_func.match(DiracDelta(a*t)) if p: deltazero.append(dirac_coeff.subs(t,0)/p[a]) else: if dirac_func.args[0].subs(t,0).is_zero: raise IntegralTransformError('Laplace', f,\ 'not implemented yet.') else: deltanonzero.append(dirac_func*dirac_coeff) F = Add(integrate(exp(-s*t) * Add(integratable, *deltanonzero), (t, S.Zero, S.Infinity)), Add(*deltazero)) if not F.has(Integral): return _simplify(F.subs(s, s_), simplify), S.NegativeInfinity, S.true if not F.is_Piecewise: raise IntegralTransformError( 'Laplace', f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError( 'Laplace', f, 'integral in unexpected form') def process_conds(conds): """ Turn ``conds`` into a strip and auxiliary conditions. """ a = S.NegativeInfinity aux = S.true conds = conjuncts(to_cnf(conds)) p, q, w1, w2, w3, w4, w5 = symbols( 'p q w1 w2 w3 w4 w5', cls=Wild, exclude=[s]) patterns = ( p*Abs(arg((s + w3)*q)) < w2, p*Abs(arg((s + w3)*q)) <= w2, Abs(periodic_argument((s + w3)**p*q, w1)) < w2, Abs(periodic_argument((s + w3)**p*q, w1)) <= w2, Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) < w2, Abs(periodic_argument((polar_lift(s + w3))**p*q, w1)) <= w2) for c in conds: a_ = S.Infinity aux_ = [] for d in disjuncts(c): if d.is_Relational and s in d.rhs.free_symbols: d = d.reversed if d.is_Relational and isinstance(d, (Ge, Gt)): d = d.reversedsign for pat in patterns: m = d.match(pat) if m: break if m: if m[q].is_positive and m[w2]/m[p] == pi/2: d = -re(s + m[w3]) < 0 m = d.match(p - cos(w1*Abs(arg(s*w5))*w2)*Abs(s**w3)**w4 < 0) if not m: m = d.match( cos(p - Abs(periodic_argument(s**w1*w5, q))*w2)*Abs(s**w3)**w4 < 0) if not m: m = d.match( p - cos(Abs(periodic_argument(polar_lift(s)**w1*w5, q))*w2 )*Abs(s**w3)**w4 < 0) if m and all(m[wild].is_positive for wild in [w1, w2, w3, w4, w5]): d = re(s) > m[p] d_ = d.replace( re, lambda x: x.expand().as_real_imag()[0]).subs(re(s), t) if not d.is_Relational or \ d.rel_op in ('==', '!=') \ or d_.has(s) or not d_.has(t): aux_ += [d] continue soln = _solve_inequality(d_, t) if not soln.is_Relational or \ soln.rel_op in ('==', '!='): aux_ += [d] continue if soln.lts == t: raise IntegralTransformError('Laplace', f, 'convergence not in half-plane?') else: a_ = Min(soln.lts, a_) if a_ is not S.Infinity: a = Max(a_, a) else: aux = And(aux, Or(*aux_)) return a, aux.canonical if aux.is_Relational else aux conds = [process_conds(c) for c in disjuncts(cond)] conds2 = [x for x in conds if x[1] != False and x[0] is not S.NegativeInfinity] if not conds2: conds2 = [x for x in conds if x[1] != False] conds = list(ordered(conds2)) def cnt(expr): if expr in (True, False): return 0 return expr.count_ops() conds.sort(key=lambda x: (-x[0], cnt(x[1]))) if not conds: raise IntegralTransformError('Laplace', f, 'no convergence found') a, aux = conds[0] # XXX is [0] always the right one? def sbs(expr): return expr.subs(s, s_) if simplify: F = _simplifyconds(F, s, a) aux = _simplifyconds(aux, s, a) return _simplify(F.subs(s, s_), simplify), sbs(a), _canonical(sbs(aux)) def _laplace_deep_collect(f, t): """ This is an internal helper function that traverses through the epression tree of `f(t)` and collects arguments. The purpose of it is that anything like `f(w*t-1*t-c)` will be written as `f((w-1)*t-c)` such that it can match `f(a*t+b)`. """ func = f.func args = list(f.args) if len(f.args) == 0: return f else: for k in range(len(args)): args[k] = _laplace_deep_collect(args[k], t) if func.is_Add: return func(*args).collect(t) else: return func(*args) def _laplace_build_rules(t, s): """ This is an internal helper function that returns the table of Laplace transfrom rules in terms of the time variable `t` and the frequency variable `s`. It is used by `_laplace_apply_rules`. """ a = Wild('a', exclude=[t]) b = Wild('b', exclude=[t]) n = Wild('n', exclude=[t]) tau = Wild('tau', exclude=[t]) omega = Wild('omega', exclude=[t]) dco = lambda f: _laplace_deep_collect(f,t) laplace_transform_rules = [ # ( time domain, # laplace domain, # condition, convergence plane, preparation function ) # # Catch constant (would otherwise be treated by 2.12) (a, a/s, S.true, S.Zero, dco), # DiracDelta rules (DiracDelta(a*t-b), exp(-s*b/a)/Abs(a), Or(And(a>0, b>=0), And(a<0, b<=0)), S.Zero, dco), (DiracDelta(a*t-b), S(0), Or(And(a<0, b>=0), And(a>0, b<=0)), S.Zero, dco), # Rules from http://eqworld.ipmnet.ru/en/auxiliary/inttrans/ # 2.1 (1, 1/s, S.true, S.Zero, dco), # 2.2 expressed in terms of Heaviside (Heaviside(a*t-b), exp(-s*b/a)/s, And(a>0, b>0), S.Zero, dco), (Heaviside(a*t-b), (1-exp(-s*b/a))/s, And(a<0, b<0), S.Zero, dco), (Heaviside(a*t-b), 1/s, And(a>0, b<=0), S.Zero, dco), (Heaviside(a*t-b), 0, And(a<0, b>0), S.Zero, dco), # 2.3 (t, 1/s**2, S.true, S.Zero, dco), # 2.4 (1/(a*t+b), -exp(-b/a*s)*Ei(-b/a*s)/a, a>0, S.Zero, dco), # 2.5 and 2.6 are covered by 2.11 # 2.7 (1/sqrt(a*t+b), sqrt(a*pi/s)*exp(b/a*s)*erfc(sqrt(b/a*s))/a, a>0, S.Zero, dco), # 2.8 (sqrt(t)/(t+b), sqrt(pi/s)-pi*sqrt(b)*exp(b*s)*erfc(sqrt(b*s)), S.true, S.Zero, dco), # 2.9 ((a*t+b)**(-S(3)/2), 2*b**(-S(1)/2)-2*(pi*s/a)**(S(1)/2)*exp(b/a*s)*erfc(sqrt(b/a*s))/a, a>0, S.Zero, dco), # 2.10 (t**(S(1)/2)*(t+a)**(-1), (pi/s)**(S(1)/2)-pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)), S.true, S.Zero, dco), # 2.11 (1/(a*sqrt(t) + t**(3/2)), pi*a**(S(1)/2)*exp(a*s)*erfc(sqrt(a*s)), S.true, S.Zero, dco), # 2.12 (t**n, gamma(n+1)/s**(n+1), n>-1, S.Zero, dco), # 2.13 ((a*t+b)**n, lowergamma(n+1, b/a*s)*exp(-b/a*s)/s**(n+1)/a, And(n>-1, a>0), S.Zero, dco), # 2.14 (t**n/(t+a), a**n*gamma(n+1)*lowergamma(-n,a*s), n>-1, S.Zero, dco), # 3.1 (exp(a*t-tau), exp(-tau)/(s-a), S.true, a, dco), # 3.2 (t*exp(a*t-tau), exp(-tau)/(s-a)**2, S.true, a, dco), # 3.3 (t**n*exp(a*t), gamma(n+1)/(s-a)**(n+1), n>-1, a, dco), # 3.4 and 3.5 cannot be covered here because they are # sums and only the individual sum terms will get here. # 3.6 (exp(-a*t**2), sqrt(pi/4/a)*exp(s**2/4/a)*erfc(s/sqrt(4*a)), a>0, S.Zero, dco), # 3.7 (t*exp(-a*t**2), 1/(2*a)-2/sqrt(pi)/(4*a)**(S(3)/2)*s*erfc(s/sqrt(4*a)), S.true, S.Zero, dco), # 3.8 (exp(-a/t), 2*sqrt(a/s)*besselk(1, 2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.9 (sqrt(t)*exp(-a/t), S(1)/2*sqrt(pi/s**3)*(1+2*sqrt(a*s))*exp(-2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.10 (exp(-a/t)/sqrt(t), sqrt(pi/s)*exp(-2*sqrt(a*s)), a>=0, S.Zero, dco), # 3.11 (exp(-a/t)/(t*sqrt(t)), sqrt(pi/a)*exp(-2*sqrt(a*s)), a>0, S.Zero, dco), # 3.12 (t**n*exp(-a/t), 2*(a/s)**((n+1)/2)*besselk(n+1, 2*sqrt(a*s)), a>0, S.Zero, dco), # 3.13 (exp(-2*sqrt(a*t)), s**(-1)-sqrt(pi*a)*s**(-S(3)/2)*exp(a/s)*erfc(sqrt(a/s)), S.true, S.Zero, dco), # 3.14 (exp(-2*sqrt(a*t))/sqrt(t), (pi/s)**(S(1)/2)*exp(a/s)*erfc(sqrt(a/s)), S.true, S.Zero, dco), # 4.1 (sinh(a*t), a/(s**2-a**2), S.true, Abs(a), dco), # 4.2 (sinh(a*t)**2, 2*a**2/(s**3-4*a**2*s**2), S.true, Abs(2*a), dco), # 4.3 (sinh(a*t)/t, log((s+a)/(s-a))/2, S.true, a, dco), # 4.4 (t**n*sinh(a*t), gamma(n+1)/2*((s-a)**(-n-1)-(s+a)**(-n-1)), n>-2, Abs(a), dco), # 4.5 (sinh(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(a/s), S.true, S.Zero, dco), # 4.6 (sqrt(t)*sinh(2*sqrt(a*t)), pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s)*erf(sqrt(a/s))-a**(S(1)/2)*s**(-2), S.true, S.Zero, dco), # 4.7 (sinh(2*sqrt(a*t))/sqrt(t), pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s)*erf(sqrt(a/s)), S.true, S.Zero, dco), # 4.8 (sinh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)-1), S.true, S.Zero, dco), # 4.9 (cosh(a*t), s/(s**2-a**2), S.true, Abs(a), dco), # 4.10 (cosh(a*t)**2, (s**2-2*a**2)/(s**3-4*a**2*s**2), S.true, Abs(2*a), dco), # 4.11 (t**n*cosh(a*t), gamma(n+1)/2*((s-a)**(-n-1)+(s+a)**(-n-1)), n>-1, Abs(a), dco), # 4.12 (cosh(2*sqrt(a*t)), 1/s+sqrt(pi*a)/s/sqrt(s)*exp(a/s)*erf(sqrt(a/s)), S.true, S.Zero, dco), # 4.13 (sqrt(t)*cosh(2*sqrt(a*t)), pi**(S(1)/2)*s**(-S(5)/2)*(s/2+a)*exp(a/s), S.true, S.Zero, dco), # 4.14 (cosh(2*sqrt(a*t))/sqrt(t), pi**(S(1)/2)*s**(-S(1)/2)*exp(a/s), S.true, S.Zero, dco), # 4.15 (cosh(sqrt(a*t))**2/sqrt(t), pi**(S(1)/2)/2*s**(-S(1)/2)*(exp(a/s)+1), S.true, S.Zero, dco), # 5.1 (log(a*t), -log(s/a+S.EulerGamma)/s, a>0, S.Zero, dco), # 5.2 (log(1+a*t), -exp(s/a)/s*Ei(-s/a), S.true, S.Zero, dco), # 5.3 (log(a*t+b), (log(b)-exp(s/b/a)/s*a*Ei(-s/b))/s*a, a>0, S.Zero, dco), # 5.4 is covered by 5.7 # 5.5 (log(t)/sqrt(t), -sqrt(pi/s)*(log(4*s)+S.EulerGamma), S.true, S.Zero, dco), # 5.6 is covered by 5.7 # 5.7 (t**n*log(t), gamma(n+1)*s**(-n-1)*(digamma(n+1)-log(s)), n>-1, S.Zero, dco), # 5.8 (log(a*t)**2, ((log(s/a)+S.EulerGamma)**2+pi**2/6)/s, a>0, S.Zero, dco), # 5.9 (exp(-a*t)*log(t), -(log(s+a)+S.EulerGamma)/(s+a), S.true, -a, dco), # 6.1 (sin(omega*t), omega/(s**2+omega**2), S.true, S.Zero, dco), # 6.2 (Abs(sin(omega*t)), omega/(s**2+omega**2)*coth(pi*s/2/omega), omega>0, S.Zero, dco), # 6.3 and 6.4 are covered by 1.8 # 6.5 is covered by 1.8 together with 2.5 # 6.6 (sin(omega*t)/t, atan(omega/s), S.true, S.Zero, dco), # 6.7 (sin(omega*t)**2/t, log(1+4*omega**2/s**2)/4, S.true, S.Zero, dco), # 6.8 (sin(omega*t)**2/t**2, omega*atan(2*omega/s)-s*log(1+4*omega**2/s**2)/4, S.true, S.Zero, dco), # 6.9 (sin(2*sqrt(a*t)), sqrt(pi*a)/s/sqrt(s)*exp(-a/s), a>0, S.Zero, dco), # 6.10 (sin(2*sqrt(a*t))/t, pi*erf(sqrt(a/s)), a>0, S.Zero, dco), # 6.11 (cos(omega*t), s/(s**2+omega**2), S.true, S.Zero, dco), # 6.12 (cos(omega*t)**2, (s**2+2*omega**2)/(s**2+4*omega**2)/s, S.true, S.Zero, dco), # 6.13 is covered by 1.9 together with 2.5 # 6.14 and 6.15 cannot be done with this method, the respective sum # parts do not converge. Solve elsewhere if really needed. # 6.16 (sqrt(t)*cos(2*sqrt(a*t)), sqrt(pi)/2*s**(-S(5)/2)*(s-2*a)*exp(-a/s), a>0, S.Zero, dco), # 6.17 (cos(2*sqrt(a*t))/sqrt(t), sqrt(pi/s)*exp(-a/s), a>0, S.Zero, dco), # 6.18 (sin(a*t)*sin(b*t), 2*a*b*s/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.19 (cos(a*t)*sin(b*t), b*(s**2-a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.20 (cos(a*t)*cos(b*t), s*(s**2+a**2+b**2)/(s**2+(a+b)**2)/(s**2+(a-b)**2), S.true, S.Zero, dco), # 6.21 (exp(b*t)*sin(a*t), a/((s-b)**2+a**2), S.true, b, dco), # 6.22 (exp(b*t)*cos(a*t), (s-b)/((s-b)**2+a**2), S.true, b, dco), # 7.1 (erf(a*t), exp(s**2/(2*a)**2)*erfc(s/(2*a))/s, a>0, S.Zero, dco), # 7.2 (erf(sqrt(a*t)), sqrt(a)/sqrt(s+a)/s, a>0, S.Zero, dco), # 7.3 (exp(a*t)*erf(sqrt(a*t)), sqrt(a)/sqrt(s)/(s-a), a>0, a, dco), # 7.4 (erf(sqrt(a/t)/2), (1-exp(-sqrt(a*s)))/s, a>0, S.Zero, dco), # 7.5 (erfc(sqrt(a*t)), (sqrt(s+a)-sqrt(a))/sqrt(s+a)/s, a>0, S.Zero, dco), # 7.6 (exp(a*t)*erfc(sqrt(a*t)), 1/(s+sqrt(a*s)), a>0, S.Zero, dco), # 7.7 (erfc(sqrt(a/t)/2), exp(-sqrt(a*s))/s, a>0, S.Zero, dco), # 8.1, 8.2 (besselj(n, a*t), a**n/(sqrt(s**2+a**2)*(s+sqrt(s**2+a**2))**n), And(a>0, n>-1), S.Zero, dco), # 8.3, 8.4 (t**b*besselj(n, a*t), 2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2+a**2)**(-n-S.Half), And(And(a>0, n>-S.Half), Eq(b, n)), S.Zero, dco), # 8.5 (t**b*besselj(n, a*t), 2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2+a**2)**(-n-S(3)/2), And(And(a>0, n>-1), Eq(b, n+1)), S.Zero, dco), # 8.6 (besselj(0, 2*sqrt(a*t)), exp(-a/s)/s, a>0, S.Zero, dco), # 8.7, 8.8 (t**(b)*besselj(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(-a/s), And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco), # 8.9 (besselj(0, a*sqrt(t**2+b*t)), exp(b*s-b*sqrt(s**2+a**2))/sqrt(s**2+a**2), b>0, S.Zero, dco), # 8.10, 8.11 (besseli(n, a*t), a**n/(sqrt(s**2-a**2)*(s+sqrt(s**2-a**2))**n), And(a>0, n>-1), Abs(a), dco), # 8.12 (t**b*besseli(n, a*t), 2**n/sqrt(pi)*gamma(n+S.Half)*a**n*(s**2-a**2)**(-n-S.Half), And(And(a>0, n>-S.Half), Eq(b, n)), Abs(a), dco), # 8.13 (t**b*besseli(n, a*t), 2**(n+1)/sqrt(pi)*gamma(n+S(3)/2)*a**n*s*(s**2-a**2)**(-n-S(3)/2), And(And(a>0, n>-1), Eq(b, n+1)), Abs(a), dco), # 8.15, 8.16 (t**(b)*besseli(n, 2*sqrt(a*t)), a**(n/2)*s**(-n-1)*exp(a/s), And(And(a>0, n>-1), Eq(b, n*S.Half)), S.Zero, dco), # 8.17 (bessely(0, a*t), -2/pi*asinh(s/a)/sqrt(s**2+a**2), a>0, S.Zero, dco), # 8.18 (besselk(0, a*t), (log(s+sqrt(s**2-a**2)))/(sqrt(s**2-a**2)), a>0, Abs(a), dco) ] return laplace_transform_rules def _laplace_cr(f, a, c, **hints): """ Internal helper function that will return `(f, a, c)` unless `**hints` contains `noconds=True`, in which case it will only return `f`. """ conds = not hints.get('noconds', False) if conds: return f, a, c else: return f def _laplace_rule_timescale(f, t, s, doit=True, **hints): r""" This internal helper function tries to apply the time-scaling rule of the Laplace transform and returns `None` if it cannot do it. Time-scaling means the following: if $F(s)$ is the Laplace transform of, $f(t)$, then, for any $a>0$, the Laplace transform of $f(at)$ will be $\frac1a F(\frac{s}{a})$. This scaling will also affect the transform's convergence plane. """ _simplify = hints.pop('simplify', True) b = Wild('b', exclude=[t]) g = WildFunction('g', nargs=1) k, func = f.as_independent(t, as_Add=False) ma1 = func.match(g) if ma1: arg = ma1[g].args[0].collect(t) ma2 = arg.match(b*t) if ma2 and ma2[b]>0: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: amplitude and time scaling (1.1, 1.2)') if ma2[b]==1: if doit==True and not any(func.has(t) for func in ma1[g].atoms(AppliedUndef)): return k*_laplace_transform(ma1[g].func(t), t, s, simplify=_simplify) else: return k*LaplaceTransform(ma1[g].func(t), t, s, **hints) else: L = _laplace_apply_rules(ma1[g].func(t), t, s/ma2[b], doit=doit, **hints) try: r, p, c = L return (k/ma2[b]*r, p, c) except TypeError: return k/ma2[b]*L return None def _laplace_rule_heaviside(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing the `Heaviside` function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) b = Wild('b', exclude=[t]) y = Wild('y') g = WildFunction('g', nargs=1) k, func = f.as_independent(t, as_Add=False) ma1 = func.match(Heaviside(y)*g) if ma1: ma2 = ma1[y].match(t-a) ma3 = ma1[g].args[0].collect(t).match(t-b) if ma2 and ma2[a]>0 and ma3 and ma2[a]==ma3[b]: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s, %s )'%(f, ma1, ma2, ma3)) debug(' rule: time shift (1.3)') L = _laplace_apply_rules(ma1[g].func(t), t, s, doit=doit, **hints) try: r, p, c = L return (k*exp(-ma2[a]*s)*r, p, c) except TypeError: return k*exp(-ma2[a]*s)*L return None def _laplace_rule_exp(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing the `exp` function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) ma1 = func.match(exp(y)*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with exp (1.5)') L = _laplace_apply_rules(ma1[z], t, s-ma2[a], doit=doit, **hints) try: r, p, c = L return (r, p+ma2[a], c) except TypeError: return L return None def _laplace_rule_trig(f, t, s, doit=True, **hints): """ This internal helper function tries to transform a product containing a trigonometric function (`sin`, `cos`, `sinh`, `cosh`, ) and returns `None` if it cannot do it. """ _simplify = hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') z = Wild('z') k, func = f.as_independent(t, as_Add=False) # All of the rules have a very similar form: trig(y)*z is matched, and then # two copies of the Laplace transform of z are shifted in the s Domain # and added with a weight; see rules 1.6 to 1.9 in # http://eqworld.ipmnet.ru/en/auxiliary/inttrans/laplace1.pdf # The parameters in the tuples are (fm, nu, s1, s2, sd): # fm: Function to match # nu: Number of the rule, for debug purposes # s1: weight of the sum, 'I' for sin and '1' for all others # s2: sign of the second copy of the Laplace transform of z # sd: shift direction; shift along real or imaginary axis if `1` or `I` trigrules = [(sinh(y), '1.6', 1, -1, 1), (cosh(y), '1.7', 1, 1, 1), (sin(y), '1.8', -I, -1, I), (cos(y), '1.9', 1, 1, I)] for trigrule in trigrules: fm, nu, s1, s2, sd = trigrule ma1 = func.match(fm*z) if ma1: ma2 = ma1[y].collect(t).match(a*t) if ma2: debug('_laplace_apply_rules match:') debug(' f: %s ( %s, %s )'%(f, ma1, ma2)) debug(' rule: multiply with %s (%s)'%(fm.func, nu)) L = _laplace_apply_rules(ma1[z], t, s, doit=doit, **hints) try: r, p, c = L # The convergence plane changes only if the shift has been # done along the real axis: if sd==1: cp_shift = Abs(ma2[a]) else: cp_shift = 0 return ((s1*(r.subs(s, s-sd*ma2[a])+\ s2*r.subs(s, s+sd*ma2[a]))).simplify()/2, p+cp_shift, c) except TypeError: if doit==True and _simplify==True: return (s1*(L.subs(s, s-sd*ma2[a])+\ s2*L.subs(s, s+sd*ma2[a]))).simplify()/2 else: return (s1*(L.subs(s, s-sd*ma2[a])+\ s2*L.subs(s, s+sd*ma2[a])))/2 return None def _laplace_rule_diff(f, t, s, doit=True, **hints): """ This internal helper function tries to transform an expression containing a derivative of an undefined function and returns `None` if it cannot do it. """ hints.pop('simplify', True) a = Wild('a', exclude=[t]) y = Wild('y') n = Wild('n', exclude=[t]) g = WildFunction('g', nargs=1) ma1 = f.match(a*Derivative(g, (t, n))) if ma1 and ma1[g].args[0] == t and ma1[n].is_integer: debug('_laplace_apply_rules match:') debug(' f: %s'%(f,)) debug(' rule: time derivative (1.11, 1.12)') d = [] for k in range(ma1[n]): if k==0: y = ma1[g].func(t).subs(t, 0) else: y = Derivative(ma1[g].func(t), (t, k)).subs(t, 0) d.append(s**(ma1[n]-k-1)*y) r = s**ma1[n]*_laplace_apply_rules(ma1[g].func(t), t, s, doit=doit, **hints) return r - Add(*d) return None def _laplace_apply_rules(f, t, s, doit=True, **hints): """ Helper function for the class LaplaceTransform. This function does a Laplace transform based on rules and, after applying the rules, hands the rest over to `_laplace_transform`, which will attempt to integrate. If it is called with `doit=False`, then it will instead return `LaplaceTransform` objects. """ k, func = f.as_independent(t, as_Add=False) simple_rules = _laplace_build_rules(t, s) for t_dom, s_dom, check, plane, prep in simple_rules: ma = prep(func).match(t_dom) if ma: debug('_laplace_apply_rules match:') debug(' f: %s'%(func,)) debug(' rule: %s o---o %s'%(t_dom, s_dom)) try: debug(' try %s'%(check,)) c = check.xreplace(ma) debug(' check %s -> %s'%(check, c)) if c==True: return _laplace_cr(k*s_dom.xreplace(ma), plane.xreplace(ma), S.true, **hints) except Exception: debug('_laplace_apply_rules did not match.') if f.has(DiracDelta): return None prog_rules = [_laplace_rule_timescale, _laplace_rule_heaviside, _laplace_rule_exp, _laplace_rule_trig, _laplace_rule_diff] for p_rule in prog_rules: LT = p_rule(f, t, s, doit=doit, **hints) if LT is not None: return LT return None class LaplaceTransform(IntegralTransform): """ Class representing unevaluated Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Laplace transforms, see the :func:`laplace_transform` docstring. """ _name = 'Laplace' def _compute_transform(self, f, t, s, **hints): LT = _laplace_apply_rules(f, t, s, **hints) if LT is None: _simplify = hints.pop('simplify', True) debug('_laplace_apply_rules could not match function %s'%(f,)) debug(' hints: %s'%(hints,)) return _laplace_transform(f, t, s, simplify=_simplify, **hints) else: return LT def _as_integral(self, f, t, s): return Integral(f*exp(-s*t), (t, S.Zero, S.Infinity)) def _collapse_extra(self, extra): conds = [] planes = [] for plane, cond in extra: conds.append(cond) planes.append(plane) cond = And(*conds) plane = Max(*planes) if cond == False: raise IntegralTransformError( 'Laplace', None, 'No combined convergence.') return plane, cond def _try_directly(self, **hints): fn = self.function debug('----> _try_directly: %s'%(fn, )) t_ = self.function_variable s_ = self.transform_variable LT = None if not fn.is_Add: fn = expand_mul(fn) try: LT = self._compute_transform(fn, t_, s_, **hints) except IntegralTransformError: LT = None return fn, LT def laplace_transform(f, t, s, legacy_matrix=True, **hints): r""" Compute the Laplace Transform `F(s)` of `f(t)`, .. math :: F(s) = \int_{0^{-}}^\infty e^{-st} f(t) \mathrm{d}t. Explanation =========== For all sensible functions, this converges absolutely in a half-plane .. math :: a < \operatorname{Re}(s) This function returns ``(F, a, cond)`` where ``F`` is the Laplace transform of ``f``, `a` is the half-plane of convergence, and `cond` are auxiliary convergence conditions. The implementation is rule-based, and if you are interested in which rules are applied, and whether integration is attemped, you can switch debug information on by setting `sympy.SYMPY_DEBUG=True`. The lower bound is `0-`, meaning that this bound should be approached from the lower side. This is only necessary if distributions are involved. At present, it is only done if `f(t)` contains ``DiracDelta``, in which case the Laplace transform is computed implicitly as .. math :: F(s) = \lim_{\tau\to 0^{-}} \int_{\tau}^\infty e^{-st} f(t) \mathrm{d}t by applying rules. If the integral cannot be fully computed in closed form, this function returns an unevaluated :class:`LaplaceTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. If ``noconds=True``, only `F` will be returned (i.e. not ``cond``, and also not the plane ``a``). .. deprecated:: 1.9 Legacy behavior for matrices where ``laplace_transform`` with ``noconds=False`` (the default) returns a Matrix whose elements are tuples. The behavior of ``laplace_transform`` for matrices will change in a future release of SymPy to return a tuple of the transformed Matrix and the convergence conditions for the matrix as a whole. Use ``legacy_matrix=False`` to enable the new behavior. Examples ======== >>> from sympy.integrals.transforms import laplace_transform >>> from sympy.abc import t, s, a >>> from sympy.functions import DiracDelta, exp >>> laplace_transform(t**4, t, s) (24/s**5, 0, True) >>> laplace_transform(DiracDelta(t)-a*exp(-a*t),t,s) (s/(a + s), Max(0, -a), True) See Also ======== inverse_laplace_transform, mellin_transform, fourier_transform hankel_transform, inverse_hankel_transform """ debug('\n***** laplace_transform(%s, %s, %s)'%(f, t, s)) if isinstance(f, MatrixBase) and hasattr(f, 'applyfunc'): conds = not hints.get('noconds', False) if conds and legacy_matrix: SymPyDeprecationWarning( feature="laplace_transform of a Matrix with noconds=False (default)", useinstead="the option legacy_matrix=False to get the new behaviour", issue=21504, deprecated_since_version="1.9" ).warn() return f.applyfunc(lambda fij: laplace_transform(fij, t, s, **hints)) else: elements_trans = [laplace_transform(fij, t, s, **hints) for fij in f] if conds: elements, avals, conditions = zip(*elements_trans) f_laplace = type(f)(*f.shape, elements) return f_laplace, Max(*avals), And(*conditions) else: return type(f)(*f.shape, elements_trans) return LaplaceTransform(f, t, s).doit(**hints) @_noconds_(True) def _inverse_laplace_transform(F, s, t_, plane, simplify=True): """ The backend function for inverse Laplace transforms. """ from sympy.integrals.meijerint import meijerint_inversion, _get_coeff_exp # There are two strategies we can try: # 1) Use inverse mellin transforms - related by a simple change of variables. # 2) Use the inversion integral. t = Dummy('t', real=True) def pw_simp(*args): """ Simplify a piecewise expression from hyperexpand. """ # XXX we break modularity here! if len(args) != 3: return Piecewise(*args) arg = args[2].args[0].argument coeff, exponent = _get_coeff_exp(arg, t) e1 = args[0].args[0] e2 = args[1].args[0] return Heaviside(1/Abs(coeff) - t**exponent)*e1 \ + Heaviside(t**exponent - 1/Abs(coeff))*e2 if F.is_rational_function(s): F = F.apart(s) if F.is_Add: f = Add(*[_inverse_laplace_transform(X, s, t, plane, simplify)\ for X in F.args]) return _simplify(f.subs(t, t_), simplify), True try: f, cond = inverse_mellin_transform(F, s, exp(-t), (None, S.Infinity), needeval=True, noconds=False) except IntegralTransformError: f = None if f is None: f = meijerint_inversion(F, s, t) if f is None: raise IntegralTransformError('Inverse Laplace', f, '') if f.is_Piecewise: f, cond = f.args[0] if f.has(Integral): raise IntegralTransformError('Inverse Laplace', f, 'inversion integral of unrecognised form.') else: cond = S.true f = f.replace(Piecewise, pw_simp) if f.is_Piecewise: # many of the functions called below can't work with piecewise # (b/c it has a bool in args) return f.subs(t, t_), cond u = Dummy('u') def simp_heaviside(arg, H0=S.Half): a = arg.subs(exp(-t), u) if a.has(t): return Heaviside(arg, H0) rel = _solve_inequality(a > 0, u) if rel.lts == u: k = log(rel.gts) return Heaviside(t + k, H0) else: k = log(rel.lts) return Heaviside(-(t + k), H0) f = f.replace(Heaviside, simp_heaviside) def simp_exp(arg): return expand_complex(exp(arg)) f = f.replace(exp, simp_exp) # TODO it would be nice to fix cosh and sinh ... simplify messes these # exponentials up return _simplify(f.subs(t, t_), simplify), cond class InverseLaplaceTransform(IntegralTransform): """ Class representing unevaluated inverse Laplace transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Laplace transforms, see the :func:`inverse_laplace_transform` docstring. """ _name = 'Inverse Laplace' _none_sentinel = Dummy('None') _c = Dummy('c') def __new__(cls, F, s, x, plane, **opts): if plane is None: plane = InverseLaplaceTransform._none_sentinel return IntegralTransform.__new__(cls, F, s, x, plane, **opts) @property def fundamental_plane(self): plane = self.args[3] if plane is InverseLaplaceTransform._none_sentinel: plane = None return plane def _compute_transform(self, F, s, t, **hints): return _inverse_laplace_transform(F, s, t, self.fundamental_plane, **hints) def _as_integral(self, F, s, t): c = self.__class__._c return Integral(exp(s*t)*F, (s, c - S.ImaginaryUnit*S.Infinity, c + S.ImaginaryUnit*S.Infinity))/(2*S.Pi*S.ImaginaryUnit) def inverse_laplace_transform(F, s, t, plane=None, **hints): r""" Compute the inverse Laplace transform of `F(s)`, defined as .. math :: f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{st} F(s) \mathrm{d}s, for `c` so large that `F(s)` has no singularites in the half-plane `\operatorname{Re}(s) > c-\epsilon`. Explanation =========== The plane can be specified by argument ``plane``, but will be inferred if passed as None. Under certain regularity conditions, this recovers `f(t)` from its Laplace Transform `F(s)`, for non-negative `t`, and vice versa. If the integral cannot be computed in closed form, this function returns an unevaluated :class:`InverseLaplaceTransform` object. Note that this function will always assume `t` to be real, regardless of the SymPy assumption on `t`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Examples ======== >>> from sympy.integrals.transforms import inverse_laplace_transform >>> from sympy import exp, Symbol >>> from sympy.abc import s, t >>> a = Symbol('a', positive=True) >>> inverse_laplace_transform(exp(-a*s)/s, s, t) Heaviside(-a + t) See Also ======== laplace_transform, _fast_inverse_laplace hankel_transform, inverse_hankel_transform """ if isinstance(F, MatrixBase) and hasattr(F, 'applyfunc'): return F.applyfunc(lambda Fij: inverse_laplace_transform(Fij, s, t, plane, **hints)) return InverseLaplaceTransform(F, s, t, plane).doit(**hints) def _fast_inverse_laplace(e, s, t): """Fast inverse Laplace transform of rational function including RootSum""" a, b, n = symbols('a, b, n', cls=Wild, exclude=[s]) def _ilt(e): if not e.has(s): return e elif e.is_Add: return _ilt_add(e) elif e.is_Mul: return _ilt_mul(e) elif e.is_Pow: return _ilt_pow(e) elif isinstance(e, RootSum): return _ilt_rootsum(e) else: raise NotImplementedError def _ilt_add(e): return e.func(*map(_ilt, e.args)) def _ilt_mul(e): coeff, expr = e.as_independent(s) if expr.is_Mul: raise NotImplementedError return coeff * _ilt(expr) def _ilt_pow(e): match = e.match((a*s + b)**n) if match is not None: nm, am, bm = match[n], match[a], match[b] if nm.is_Integer and nm < 0: return t**(-nm-1)*exp(-(bm/am)*t)/(am**-nm*gamma(-nm)) if nm == 1: return exp(-(bm/am)*t) / am raise NotImplementedError def _ilt_rootsum(e): expr = e.fun.expr [variable] = e.fun.variables return RootSum(e.poly, Lambda(variable, together(_ilt(expr)))) return _ilt(e) ########################################################################## # Fourier Transform ########################################################################## @_noconds_(True) def _fourier_transform(f, x, k, a, b, name, simplify=True): r""" Compute a general Fourier-type transform .. math:: F(k) = a \int_{-\infty}^{\infty} e^{bixk} f(x)\, dx. For suitable choice of *a* and *b*, this reduces to the standard Fourier and inverse Fourier transforms. """ F = integrate(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true integral_f = integrate(f, (x, S.NegativeInfinity, S.Infinity)) if integral_f in (S.NegativeInfinity, S.Infinity, S.NaN) or integral_f.has(Integral): raise IntegralTransformError(name, f, 'function not integrable on real axis') if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class FourierTypeTransform(IntegralTransform): """ Base class for Fourier transforms.""" def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _fourier_transform(f, x, k, self.a(), self.b(), self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() return Integral(a*f*exp(b*S.ImaginaryUnit*x*k), (x, S.NegativeInfinity, S.Infinity)) class FourierTransform(FourierTypeTransform): """ Class representing unevaluated Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Fourier transforms, see the :func:`fourier_transform` docstring. """ _name = 'Fourier' def a(self): return 1 def b(self): return -2*S.Pi def fourier_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency Fourier transform of ``f``, defined as .. math:: F(k) = \int_{-\infty}^\infty f(x) e^{-2\pi i x k} \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`FourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import fourier_transform, exp >>> from sympy.abc import x, k >>> fourier_transform(exp(-x**2), x, k) sqrt(pi)*exp(-pi**2*k**2) >>> fourier_transform(exp(-x**2), x, k, noconds=False) (sqrt(pi)*exp(-pi**2*k**2), True) See Also ======== inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return FourierTransform(f, x, k).doit(**hints) class InverseFourierTransform(FourierTypeTransform): """ Class representing unevaluated inverse Fourier transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Fourier transforms, see the :func:`inverse_fourier_transform` docstring. """ _name = 'Inverse Fourier' def a(self): return 1 def b(self): return 2*S.Pi def inverse_fourier_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse Fourier transform of `F`, defined as .. math:: f(x) = \int_{-\infty}^\infty F(k) e^{2\pi i x k} \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseFourierTransform` object. For other Fourier transform conventions, see the function :func:`sympy.integrals.transforms._fourier_transform`. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_fourier_transform, exp, sqrt, pi >>> from sympy.abc import x, k >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x) exp(-x**2) >>> inverse_fourier_transform(sqrt(pi)*exp(-(pi*k)**2), k, x, noconds=False) (exp(-x**2), True) See Also ======== fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseFourierTransform(F, k, x).doit(**hints) ########################################################################## # Fourier Sine and Cosine Transform ########################################################################## @_noconds_(True) def _sine_cosine_transform(f, x, k, a, b, K, name, simplify=True): """ Compute a general sine or cosine-type transform F(k) = a int_0^oo b*sin(x*k) f(x) dx. F(k) = a int_0^oo b*cos(x*k) f(x) dx. For suitable choice of a and b, this reduces to the standard sine/cosine and inverse sine/cosine transforms. """ F = integrate(a*f*K(b*x*k), (x, S.Zero, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class SineCosineTypeTransform(IntegralTransform): """ Base class for sine and cosine transforms. Specify cls._kern. """ def a(self): raise NotImplementedError( "Class %s must implement a(self) but does not" % self.__class__) def b(self): raise NotImplementedError( "Class %s must implement b(self) but does not" % self.__class__) def _compute_transform(self, f, x, k, **hints): return _sine_cosine_transform(f, x, k, self.a(), self.b(), self.__class__._kern, self.__class__._name, **hints) def _as_integral(self, f, x, k): a = self.a() b = self.b() K = self.__class__._kern return Integral(a*f*K(b*x*k), (x, S.Zero, S.Infinity)) class SineTransform(SineCosineTypeTransform): """ Class representing unevaluated sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute sine transforms, see the :func:`sine_transform` docstring. """ _name = 'Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def sine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency sine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \sin(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`SineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import sine_transform, exp >>> from sympy.abc import x, k, a >>> sine_transform(x*exp(-a*x**2), x, k) sqrt(2)*k*exp(-k**2/(4*a))/(4*a**(3/2)) >>> sine_transform(x**(-a), x, k) 2**(1/2 - a)*k**(a - 1)*gamma(1 - a/2)/gamma(a/2 + 1/2) See Also ======== fourier_transform, inverse_fourier_transform inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return SineTransform(f, x, k).doit(**hints) class InverseSineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse sine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse sine transforms, see the :func:`inverse_sine_transform` docstring. """ _name = 'Inverse Sine' _kern = sin def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def inverse_sine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse sine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \sin(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseSineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_sine_transform, exp, sqrt, gamma >>> from sympy.abc import x, k, a >>> inverse_sine_transform(2**((1-2*a)/2)*k**(a - 1)* ... gamma(-a/2 + 1)/gamma((a+1)/2), k, x) x**(-a) >>> inverse_sine_transform(sqrt(2)*k*exp(-k**2/(4*a))/(4*sqrt(a)**3), k, x) x*exp(-a*x**2) See Also ======== fourier_transform, inverse_fourier_transform sine_transform cosine_transform, inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseSineTransform(F, k, x).doit(**hints) class CosineTransform(SineCosineTypeTransform): """ Class representing unevaluated cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute cosine transforms, see the :func:`cosine_transform` docstring. """ _name = 'Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def cosine_transform(f, x, k, **hints): r""" Compute the unitary, ordinary-frequency cosine transform of `f`, defined as .. math:: F(k) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty f(x) \cos(2\pi x k) \mathrm{d} x. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`CosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import cosine_transform, exp, sqrt, cos >>> from sympy.abc import x, k, a >>> cosine_transform(exp(-a*x), x, k) sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)) >>> cosine_transform(exp(-a*sqrt(x))*cos(a*sqrt(x)), x, k) a*exp(-a**2/(2*k))/(2*k**(3/2)) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform inverse_cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return CosineTransform(f, x, k).doit(**hints) class InverseCosineTransform(SineCosineTypeTransform): """ Class representing unevaluated inverse cosine transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse cosine transforms, see the :func:`inverse_cosine_transform` docstring. """ _name = 'Inverse Cosine' _kern = cos def a(self): return sqrt(2)/sqrt(pi) def b(self): return S.One def inverse_cosine_transform(F, k, x, **hints): r""" Compute the unitary, ordinary-frequency inverse cosine transform of `F`, defined as .. math:: f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^\infty F(k) \cos(2\pi x k) \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseCosineTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import inverse_cosine_transform, sqrt, pi >>> from sympy.abc import x, k, a >>> inverse_cosine_transform(sqrt(2)*a/(sqrt(pi)*(a**2 + k**2)), k, x) exp(-a*x) >>> inverse_cosine_transform(1/sqrt(k), k, x) 1/sqrt(x) See Also ======== fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform cosine_transform hankel_transform, inverse_hankel_transform mellin_transform, laplace_transform """ return InverseCosineTransform(F, k, x).doit(**hints) ########################################################################## # Hankel Transform ########################################################################## @_noconds_(True) def _hankel_transform(f, r, k, nu, name, simplify=True): r""" Compute a general Hankel transform .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. """ F = integrate(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity)) if not F.has(Integral): return _simplify(F, simplify), S.true if not F.is_Piecewise: raise IntegralTransformError(name, f, 'could not compute integral') F, cond = F.args[0] if F.has(Integral): raise IntegralTransformError(name, f, 'integral in unexpected form') return _simplify(F, simplify), cond class HankelTypeTransform(IntegralTransform): """ Base class for Hankel transforms. """ def doit(self, **hints): return self._compute_transform(self.function, self.function_variable, self.transform_variable, self.args[3], **hints) def _compute_transform(self, f, r, k, nu, **hints): return _hankel_transform(f, r, k, nu, self._name, **hints) def _as_integral(self, f, r, k, nu): return Integral(f*besselj(nu, k*r)*r, (r, S.Zero, S.Infinity)) @property def as_integral(self): return self._as_integral(self.function, self.function_variable, self.transform_variable, self.args[3]) class HankelTransform(HankelTypeTransform): """ Class representing unevaluated Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute Hankel transforms, see the :func:`hankel_transform` docstring. """ _name = 'Hankel' def hankel_transform(f, r, k, nu, **hints): r""" Compute the Hankel transform of `f`, defined as .. math:: F_\nu(k) = \int_{0}^\infty f(r) J_\nu(k r) r \mathrm{d} r. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`HankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform inverse_hankel_transform mellin_transform, laplace_transform """ return HankelTransform(f, r, k, nu).doit(**hints) class InverseHankelTransform(HankelTypeTransform): """ Class representing unevaluated inverse Hankel transforms. For usage of this class, see the :class:`IntegralTransform` docstring. For how to compute inverse Hankel transforms, see the :func:`inverse_hankel_transform` docstring. """ _name = 'Inverse Hankel' def inverse_hankel_transform(F, k, r, nu, **hints): r""" Compute the inverse Hankel transform of `F` defined as .. math:: f(r) = \int_{0}^\infty F_\nu(k) J_\nu(k r) k \mathrm{d} k. Explanation =========== If the transform cannot be computed in closed form, this function returns an unevaluated :class:`InverseHankelTransform` object. For a description of possible hints, refer to the docstring of :func:`sympy.integrals.transforms.IntegralTransform.doit`. Note that for this transform, by default ``noconds=True``. Examples ======== >>> from sympy import hankel_transform, inverse_hankel_transform >>> from sympy import exp >>> from sympy.abc import r, k, m, nu, a >>> ht = hankel_transform(1/r**m, r, k, nu) >>> ht 2*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/(2**m*gamma(m/2 + nu/2)) >>> inverse_hankel_transform(ht, k, r, nu) r**(-m) >>> ht = hankel_transform(exp(-a*r), r, k, 0) >>> ht a/(k**3*(a**2/k**2 + 1)**(3/2)) >>> inverse_hankel_transform(ht, k, r, 0) exp(-a*r) See Also ======== fourier_transform, inverse_fourier_transform sine_transform, inverse_sine_transform cosine_transform, inverse_cosine_transform hankel_transform mellin_transform, laplace_transform """ return InverseHankelTransform(F, k, r, nu).doit(**hints)
904c3d998cff92eff633d372fb584c1bb82435cbf35c21cc55ac4e6af1b6b7e3
from typing import Tuple as tTuple from sympy.concrete.expr_with_limits import AddWithLimits from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.exprtools import factor_terms from sympy.core.function import diff from sympy.core.logic import fuzzy_bool from sympy.core.mul import Mul from sympy.core.numbers import oo, pi from sympy.core.relational import Ne from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, Wild) from sympy.core.sympify import sympify from sympy.functions import Piecewise, sqrt, piecewise_fold, tan, cot, atan from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.complexes import Abs, sign from sympy.functions.elementary.miscellaneous import Min, Max from .rationaltools import ratint from sympy.matrices import MatrixBase from sympy.polys import Poly, PolynomialError from sympy.series.formal import FormalPowerSeries from sympy.series.limits import limit from sympy.series.order import Order from sympy.simplify.fu import sincos_to_sum from sympy.simplify.simplify import simplify from sympy.solvers.solvers import solve, posify from sympy.tensor.functions import shape from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import is_sequence from sympy.utilities.misc import filldedent class Integral(AddWithLimits): """Represents unevaluated integral.""" __slots__ = ('is_commutative',) args: tTuple[Expr, Tuple] def __new__(cls, function, *symbols, **assumptions): """Create an unevaluated integral. Explanation =========== Arguments are an integrand followed by one or more limits. If no limits are given and there is only one free symbol in the expression, that symbol will be used, otherwise an error will be raised. >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x) Integral(x, x) >>> Integral(y) Integral(y, y) When limits are provided, they are interpreted as follows (using ``x`` as though it were the variable of integration): (x,) or x - indefinite integral (x, a) - "evaluate at" integral is an abstract antiderivative (x, a, b) - definite integral The ``as_dummy`` method can be used to see which symbols cannot be targeted by subs: those with a prepended underscore cannot be changed with ``subs``. (Also, the integration variables themselves -- the first element of a limit -- can never be changed by subs.) >>> i = Integral(x, x) >>> at = Integral(x, (x, x)) >>> i.as_dummy() Integral(x, x) >>> at.as_dummy() Integral(_0, (_0, x)) """ #This will help other classes define their own definitions #of behaviour with Integral. if hasattr(function, '_eval_Integral'): return function._eval_Integral(*symbols, **assumptions) if isinstance(function, Poly): SymPyDeprecationWarning( feature="Using integrate/Integral with Poly", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or integrate methods of Poly").warn() obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions) return obj def __getnewargs__(self): return (self.function,) + tuple([tuple(xab) for xab in self.limits]) @property def free_symbols(self): """ This method returns the symbols that will exist when the integral is evaluated. This is useful if one is trying to determine whether an integral depends on a certain symbol or not. Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> Integral(x, (x, y, 1)).free_symbols {y} See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.function sympy.concrete.expr_with_limits.ExprWithLimits.limits sympy.concrete.expr_with_limits.ExprWithLimits.variables """ return AddWithLimits.free_symbols.fget(self) def _eval_is_zero(self): # This is a very naive and quick test, not intended to do the integral to # answer whether it is zero or not, e.g. Integral(sin(x), (x, 0, 2*pi)) # is zero but this routine should return None for that case. But, like # Mul, there are trivial situations for which the integral will be # zero so we check for those. if self.function.is_zero: return True got_none = False for l in self.limits: if len(l) == 3: z = (l[1] == l[2]) or (l[1] - l[2]).is_zero if z: return True elif z is None: got_none = True free = self.function.free_symbols for xab in self.limits: if len(xab) == 1: free.add(xab[0]) continue if len(xab) == 2 and xab[0] not in free: if xab[1].is_zero: return True elif xab[1].is_zero is None: got_none = True # take integration symbol out of free since it will be replaced # with the free symbols in the limits free.discard(xab[0]) # add in the new symbols for i in xab[1:]: free.update(i.free_symbols) if self.function.is_zero is False and got_none is False: return False def transform(self, x, u): r""" Performs a change of variables from `x` to `u` using the relationship given by `x` and `u` which will define the transformations `f` and `F` (which are inverses of each other) as follows: 1) If `x` is a Symbol (which is a variable of integration) then `u` will be interpreted as some function, f(u), with inverse F(u). This, in effect, just makes the substitution of x with f(x). 2) If `u` is a Symbol then `x` will be interpreted as some function, F(x), with inverse f(u). This is commonly referred to as u-substitution. Once f and F have been identified, the transformation is made as follows: .. math:: \int_a^b x \mathrm{d}x \rightarrow \int_{F(a)}^{F(b)} f(x) \frac{\mathrm{d}}{\mathrm{d}x} where `F(x)` is the inverse of `f(x)` and the limits and integrand have been corrected so as to retain the same value after integration. Notes ===== The mappings, F(x) or f(u), must lead to a unique integral. Linear or rational linear expression, ``2*x``, ``1/x`` and ``sqrt(x)``, will always work; quadratic expressions like ``x**2 - 1`` are acceptable as long as the resulting integrand does not depend on the sign of the solutions (see examples). The integral will be returned unchanged if ``x`` is not a variable of integration. ``x`` must be (or contain) only one of of the integration variables. If ``u`` has more than one free symbol then it should be sent as a tuple (``u``, ``uvar``) where ``uvar`` identifies which variable is replacing the integration variable. XXX can it contain another integration variable? Examples ======== >>> from sympy.abc import a, x, u >>> from sympy import Integral, cos, sqrt >>> i = Integral(x*cos(x**2 - 1), (x, 0, 1)) transform can change the variable of integration >>> i.transform(x, u) Integral(u*cos(u**2 - 1), (u, 0, 1)) transform can perform u-substitution as long as a unique integrand is obtained: >>> i.transform(x**2 - 1, u) Integral(cos(u)/2, (u, -1, 0)) This attempt fails because x = +/-sqrt(u + 1) and the sign does not cancel out of the integrand: >>> Integral(cos(x**2 - 1), (x, 0, 1)).transform(x**2 - 1, u) Traceback (most recent call last): ... ValueError: The mapping between F(x) and f(u) did not give a unique integrand. transform can do a substitution. Here, the previous result is transformed back into the original expression using "u-substitution": >>> ui = _ >>> _.transform(sqrt(u + 1), x) == i True We can accomplish the same with a regular substitution: >>> ui.transform(u, x**2 - 1) == i True If the `x` does not contain a symbol of integration then the integral will be returned unchanged. Integral `i` does not have an integration variable `a` so no change is made: >>> i.transform(a, x) == i True When `u` has more than one free symbol the symbol that is replacing `x` must be identified by passing `u` as a tuple: >>> Integral(x, (x, 0, 1)).transform(x, (u + a, u)) Integral(a + u, (u, -a, 1 - a)) >>> Integral(x, (x, 0, 1)).transform(x, (u + a, a)) Integral(a + u, (a, -u, 1 - u)) See Also ======== sympy.concrete.expr_with_limits.ExprWithLimits.variables : Lists the integration variables as_dummy : Replace integration variables with dummy ones """ d = Dummy('d') xfree = x.free_symbols.intersection(self.variables) if len(xfree) > 1: raise ValueError( 'F(x) can only contain one of: %s' % self.variables) xvar = xfree.pop() if xfree else d if xvar not in self.variables: return self u = sympify(u) if isinstance(u, Expr): ufree = u.free_symbols if len(ufree) == 0: raise ValueError(filldedent(''' f(u) cannot be a constant''')) if len(ufree) > 1: raise ValueError(filldedent(''' When f(u) has more than one free symbol, the one replacing x must be identified: pass f(u) as (f(u), u)''')) uvar = ufree.pop() else: u, uvar = u if uvar not in u.free_symbols: raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) where symbol identified a free symbol in expr, but symbol is not in expr's free symbols.''')) if not isinstance(uvar, Symbol): # This probably never evaluates to True raise ValueError(filldedent(''' Expecting a tuple (expr, symbol) but didn't get a symbol; got %s''' % uvar)) if x.is_Symbol and u.is_Symbol: return self.xreplace({x: u}) if not x.is_Symbol and not u.is_Symbol: raise ValueError('either x or u must be a symbol') if uvar == xvar: return self.transform(x, (u.subs(uvar, d), d)).xreplace({d: uvar}) if uvar in self.limits: raise ValueError(filldedent(''' u must contain the same variable as in x or a variable that is not already an integration variable''')) if not x.is_Symbol: F = [x.subs(xvar, d)] soln = solve(u - x, xvar, check=False) if not soln: raise ValueError('no solution for solve(F(x) - f(u), x)') f = [fi.subs(uvar, d) for fi in soln] else: f = [u.subs(uvar, d)] pdiff, reps = posify(u - x) puvar = uvar.subs([(v, k) for k, v in reps.items()]) soln = [s.subs(reps) for s in solve(pdiff, puvar)] if not soln: raise ValueError('no solution for solve(F(x) - f(u), u)') F = [fi.subs(xvar, d) for fi in soln] newfuncs = {(self.function.subs(xvar, fi)*fi.diff(d) ).subs(d, uvar) for fi in f} if len(newfuncs) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique integrand.''')) newfunc = newfuncs.pop() def _calc_limit_1(F, a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ wok = F.subs(d, a) if wok is S.NaN or wok.is_finite is False and a.is_finite: return limit(sign(b)*F, d, a) return wok def _calc_limit(a, b): """ replace d with a, using subs if possible, otherwise limit where sign of b is considered """ avals = list({_calc_limit_1(Fi, a, b) for Fi in F}) if len(avals) > 1: raise ValueError(filldedent(''' The mapping between F(x) and f(u) did not give a unique limit.''')) return avals[0] newlimits = [] for xab in self.limits: sym = xab[0] if sym == xvar: if len(xab) == 3: a, b = xab[1:] a, b = _calc_limit(a, b), _calc_limit(b, a) if fuzzy_bool(a - b > 0): a, b = b, a newfunc = -newfunc newlimits.append((uvar, a, b)) elif len(xab) == 2: a = _calc_limit(xab[1], 1) newlimits.append((uvar, a)) else: newlimits.append(uvar) else: newlimits.append(xab) return self.func(newfunc, *newlimits) def doit(self, **hints): """ Perform the integration using any hints given. Examples ======== >>> from sympy import Piecewise, S >>> from sympy.abc import x, t >>> p = x**2 + Piecewise((0, x/t < 0), (1, True)) >>> p.integrate((t, S(4)/5, 1), (x, -1, 1)) 1/3 See Also ======== sympy.integrals.trigonometry.trigintegrate sympy.integrals.heurisch.heurisch sympy.integrals.rationaltools.ratint as_sum : Approximate the integral using a sum """ if not hints.get('integrals', True): return self deep = hints.get('deep', True) meijerg = hints.get('meijerg', None) conds = hints.get('conds', 'piecewise') risch = hints.get('risch', None) heurisch = hints.get('heurisch', None) manual = hints.get('manual', None) if len(list(filter(None, (manual, meijerg, risch, heurisch)))) > 1: raise ValueError("At most one of manual, meijerg, risch, heurisch can be True") elif manual: meijerg = risch = heurisch = False elif meijerg: manual = risch = heurisch = False elif risch: manual = meijerg = heurisch = False elif heurisch: manual = meijerg = risch = False eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) if conds not in ('separate', 'piecewise', 'none'): raise ValueError('conds must be one of "separate", "piecewise", ' '"none", got: %s' % conds) if risch and any(len(xab) > 1 for xab in self.limits): raise ValueError('risch=True is only allowed for indefinite integrals.') # check for the trivial zero if self.is_zero: return S.Zero # hacks to handle integrals of # nested summations from sympy.concrete.summations import Sum if isinstance(self.function, Sum): if any(v in self.function.limits[0] for v in self.variables): raise ValueError('Limit of the sum cannot be an integration variable.') if any(l.is_infinite for l in self.function.limits[0][1:]): return self _i = self _sum = self.function return _sum.func(_i.func(_sum.function, *_i.limits).doit(), *_sum.limits).doit() # now compute and check the function function = self.function if deep: function = function.doit(**hints) if function.is_zero: return S.Zero # hacks to handle special cases if isinstance(function, MatrixBase): return function.applyfunc( lambda f: self.func(f, self.limits).doit(**hints)) if isinstance(function, FormalPowerSeries): if len(self.limits) > 1: raise NotImplementedError xab = self.limits[0] if len(xab) > 1: return function.integrate(xab, **eval_kwargs) else: return function.integrate(xab[0], **eval_kwargs) # There is no trivial answer and special handling # is done so continue # first make sure any definite limits have integration # variables with matching assumptions reps = {} for xab in self.limits: if len(xab) != 3: # it makes sense to just make # all x real but in practice with the # current state of integration...this # doesn't work out well # x = xab[0] # if x not in reps and not x.is_real: # reps[x] = Dummy(real=True) continue x, a, b = xab l = (a, b) if all(i.is_nonnegative for i in l) and not x.is_nonnegative: d = Dummy(positive=True) elif all(i.is_nonpositive for i in l) and not x.is_nonpositive: d = Dummy(negative=True) elif all(i.is_real for i in l) and not x.is_real: d = Dummy(real=True) else: d = None if d: reps[x] = d if reps: undo = {v: k for k, v in reps.items()} did = self.xreplace(reps).doit(**hints) if isinstance(did, tuple): # when separate=True did = tuple([i.xreplace(undo) for i in did]) else: did = did.xreplace(undo) return did # continue with existing assumptions undone_limits = [] # ulj = free symbols of any undone limits' upper and lower limits ulj = set() for xab in self.limits: # compute uli, the free symbols in the # Upper and Lower limits of limit I if len(xab) == 1: uli = set(xab[:1]) elif len(xab) == 2: uli = xab[1].free_symbols elif len(xab) == 3: uli = xab[1].free_symbols.union(xab[2].free_symbols) # this integral can be done as long as there is no blocking # limit that has been undone. An undone limit is blocking if # it contains an integration variable that is in this limit's # upper or lower free symbols or vice versa if xab[0] in ulj or any(v[0] in uli for v in undone_limits): undone_limits.append(xab) ulj.update(uli) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue if function.has(Abs, sign) and ( (len(xab) < 3 and all(x.is_extended_real for x in xab)) or (len(xab) == 3 and all(x.is_extended_real and not x.is_infinite for x in xab[1:]))): # some improper integrals are better off with Abs xr = Dummy("xr", real=True) function = (function.xreplace({xab[0]: xr}) .rewrite(Piecewise).xreplace({xr: xab[0]})) elif function.has(Min, Max): function = function.rewrite(Piecewise) if (function.has(Piecewise) and not isinstance(function, Piecewise)): function = piecewise_fold(function) if isinstance(function, Piecewise): if len(xab) == 1: antideriv = function._eval_integral(xab[0], **eval_kwargs) else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) else: # There are a number of tradeoffs in using the # Meijer G method. It can sometimes be a lot faster # than other methods, and sometimes slower. And # there are certain types of integrals for which it # is more likely to work than others. These # heuristics are incorporated in deciding what # integration methods to try, in what order. See the # integrate() docstring for details. def try_meijerg(function, xab): ret = None if len(xab) == 3 and meijerg is not False: x, a, b = xab try: res = meijerint_definite(function, x, a, b) except NotImplementedError: _debug('NotImplementedError ' 'from meijerint_definite') res = None if res is not None: f, cond = res if conds == 'piecewise': u = self.func(function, (x, a, b)) # if Piecewise modifies cond too # much it may not be recognized by # _condsimp pattern matching so just # turn off all evaluation return Piecewise((f, cond), (u, True), evaluate=False) elif conds == 'separate': if len(self.limits) != 1: raise ValueError(filldedent(''' conds=separate not supported in multiple integrals''')) ret = f, cond else: ret = f return ret meijerg1 = meijerg if (meijerg is not False and len(xab) == 3 and xab[1].is_extended_real and xab[2].is_extended_real and not function.is_Poly and (xab[1].has(oo, -oo) or xab[2].has(oo, -oo))): ret = try_meijerg(function, xab) if ret is not None: function = ret continue meijerg1 = False # If the special meijerg code did not succeed in # finding a definite integral, then the code using # meijerint_indefinite will not either (it might # find an antiderivative, but the answer is likely # to be nonsensical). Thus if we are requested to # only use Meijer G-function methods, we give up at # this stage. Otherwise we just disable G-function # methods. if meijerg1 is False and meijerg is True: antideriv = None else: antideriv = self._eval_integral( function, xab[0], **eval_kwargs) if antideriv is None and meijerg is True: ret = try_meijerg(function, xab) if ret is not None: function = ret continue final = hints.get('final', True) # dotit may be iterated but floor terms making atan and acot # continous should only be added in the final round if (final and not isinstance(antideriv, Integral) and antideriv is not None): for atan_term in antideriv.atoms(atan): atan_arg = atan_term.args[0] # Checking `atan_arg` to be linear combination of `tan` or `cot` for tan_part in atan_arg.atoms(tan): x1 = Dummy('x1') tan_exp1 = atan_arg.subs(tan_part, x1) # The coefficient of `tan` should be constant coeff = tan_exp1.diff(x1) if x1 not in coeff.free_symbols: a = tan_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a-pi/2)/pi))) for cot_part in atan_arg.atoms(cot): x1 = Dummy('x1') cot_exp1 = atan_arg.subs(cot_part, x1) # The coefficient of `cot` should be constant coeff = cot_exp1.diff(x1) if x1 not in coeff.free_symbols: a = cot_part.args[0] antideriv = antideriv.subs(atan_term, Add(atan_term, sign(coeff)*pi*floor((a)/pi))) if antideriv is None: undone_limits.append(xab) function = self.func(*([function] + [xab])).factor() factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function continue else: if len(xab) == 1: function = antideriv else: if len(xab) == 3: x, a, b = xab elif len(xab) == 2: x, b = xab a = None else: raise NotImplementedError if deep: if isinstance(a, Basic): a = a.doit(**hints) if isinstance(b, Basic): b = b.doit(**hints) if antideriv.is_Poly: gens = list(antideriv.gens) gens.remove(x) antideriv = antideriv.as_expr() function = antideriv._eval_interval(x, a, b) function = Poly(function, *gens) else: def is_indef_int(g, x): return (isinstance(g, Integral) and any(i == (x,) for i in g.limits)) def eval_factored(f, x, a, b): # _eval_interval for integrals with # (constant) factors # a single indefinite integral is assumed args = [] for g in Mul.make_args(f): if is_indef_int(g, x): args.append(g._eval_interval(x, a, b)) else: args.append(g) return Mul(*args) integrals, others, piecewises = [], [], [] for f in Add.make_args(antideriv): if any(is_indef_int(g, x) for g in Mul.make_args(f)): integrals.append(f) elif any(isinstance(g, Piecewise) for g in Mul.make_args(f)): piecewises.append(piecewise_fold(f)) else: others.append(f) uneval = Add(*[eval_factored(f, x, a, b) for f in integrals]) try: evalued = Add(*others)._eval_interval(x, a, b) evalued_pw = piecewise_fold(Add(*piecewises))._eval_interval(x, a, b) function = uneval + evalued + evalued_pw except NotImplementedError: # This can happen if _eval_interval depends in a # complicated way on limits that cannot be computed undone_limits.append(xab) function = self.func(*([function] + [xab])) factored_function = function.factor() if not isinstance(factored_function, Integral): function = factored_function return function def _eval_derivative(self, sym): """Evaluate the derivative of the current Integral object by differentiating under the integral sign [1], using the Fundamental Theorem of Calculus [2] when possible. Explanation =========== Whenever an Integral is encountered that is equivalent to zero or has an integrand that is independent of the variable of integration those integrals are performed. All others are returned as Integral instances which can be resolved with doit() (provided they are integrable). References ========== .. [1] https://en.wikipedia.org/wiki/Differentiation_under_the_integral_sign .. [2] https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus Examples ======== >>> from sympy import Integral >>> from sympy.abc import x, y >>> i = Integral(x + y, y, (y, 1, x)) >>> i.diff(x) Integral(x + y, (y, x)) + Integral(1, y, (y, 1, x)) >>> i.doit().diff(x) == i.diff(x).doit() True >>> i.diff(y) 0 The previous must be true since there is no y in the evaluated integral: >>> i.free_symbols {x} >>> i.doit() 2*x**3/3 - x/2 - 1/6 """ # differentiate under the integral sign; we do not # check for regularity conditions (TODO), see issue 4215 # get limits and the function f, limits = self.function, list(self.limits) # the order matters if variables of integration appear in the limits # so work our way in from the outside to the inside. limit = limits.pop(-1) if len(limit) == 3: x, a, b = limit elif len(limit) == 2: x, b = limit a = None else: a = b = None x = limit[0] if limits: # f is the argument to an integral f = self.func(f, *tuple(limits)) # assemble the pieces def _do(f, ab): dab_dsym = diff(ab, sym) if not dab_dsym: return S.Zero if isinstance(f, Integral): limits = [(x, x) if (len(l) == 1 and l[0] == x) else l for l in f.limits] f = self.func(f.function, *limits) return f.subs(x, ab)*dab_dsym rv = S.Zero if b is not None: rv += _do(f, b) if a is not None: rv -= _do(f, a) if len(limit) == 1 and sym == x: # the dummy variable *is* also the real-world variable arg = f rv += arg else: # the dummy variable might match sym but it's # only a dummy and the actual variable is determined # by the limits, so mask off the variable of integration # while differentiating u = Dummy('u') arg = f.subs(x, u).diff(sym).subs(u, x) if arg: rv += self.func(arg, (x, a, b)) return rv def _eval_integral(self, f, x, meijerg=None, risch=None, manual=None, heurisch=None, conds='piecewise',final=None): """ Calculate the anti-derivative to the function f(x). Explanation =========== The following algorithms are applied (roughly in this order): 1. Simple heuristics (based on pattern matching and integral table): - most frequently used functions (e.g. polynomials, products of trig functions) 2. Integration of rational functions: - A complete algorithm for integrating rational functions is implemented (the Lazard-Rioboo-Trager algorithm). The algorithm also uses the partial fraction decomposition algorithm implemented in apart() as a preprocessor to make this process faster. Note that the integral of a rational function is always elementary, but in general, it may include a RootSum. 3. Full Risch algorithm: - The Risch algorithm is a complete decision procedure for integrating elementary functions, which means that given any elementary function, it will either compute an elementary antiderivative, or else prove that none exists. Currently, part of transcendental case is implemented, meaning elementary integrals containing exponentials, logarithms, and (soon!) trigonometric functions can be computed. The algebraic case, e.g., functions containing roots, is much more difficult and is not implemented yet. - If the routine fails (because the integrand is not elementary, or because a case is not implemented yet), it continues on to the next algorithms below. If the routine proves that the integrals is nonelementary, it still moves on to the algorithms below, because we might be able to find a closed-form solution in terms of special functions. If risch=True, however, it will stop here. 4. The Meijer G-Function algorithm: - This algorithm works by first rewriting the integrand in terms of very general Meijer G-Function (meijerg in SymPy), integrating it, and then rewriting the result back, if possible. This algorithm is particularly powerful for definite integrals (which is actually part of a different method of Integral), since it can compute closed-form solutions of definite integrals even when no closed-form indefinite integral exists. But it also is capable of computing many indefinite integrals as well. - Another advantage of this method is that it can use some results about the Meijer G-Function to give a result in terms of a Piecewise expression, which allows to express conditionally convergent integrals. - Setting meijerg=True will cause integrate() to use only this method. 5. The "manual integration" algorithm: - This algorithm tries to mimic how a person would find an antiderivative by hand, for example by looking for a substitution or applying integration by parts. This algorithm does not handle as many integrands but can return results in a more familiar form. - Sometimes this algorithm can evaluate parts of an integral; in this case integrate() will try to evaluate the rest of the integrand using the other methods here. - Setting manual=True will cause integrate() to use only this method. 6. The Heuristic Risch algorithm: - This is a heuristic version of the Risch algorithm, meaning that it is not deterministic. This is tried as a last resort because it can be very slow. It is still used because not enough of the full Risch algorithm is implemented, so that there are still some integrals that can only be computed using this method. The goal is to implement enough of the Risch and Meijer G-function methods so that this can be deleted. Setting heurisch=True will cause integrate() to use only this method. Set heurisch=False to not use it. """ from sympy.integrals.risch import risch_integrate, NonElementaryIntegral from sympy.integrals.manualintegrate import manualintegrate if risch: try: return risch_integrate(f, x, conds=conds) except NotImplementedError: return None if manual: try: result = manualintegrate(f, x) if result is not None and result.func != Integral: return result except (ValueError, PolynomialError): pass eval_kwargs = dict(meijerg=meijerg, risch=risch, manual=manual, heurisch=heurisch, conds=conds) # if it is a poly(x) then let the polynomial integrate itself (fast) # # It is important to make this check first, otherwise the other code # will return a SymPy expression instead of a Polynomial. # # see Polynomial for details. if isinstance(f, Poly) and not (manual or meijerg or risch): SymPyDeprecationWarning( feature="Using integrate/Integral with Poly", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or integrate methods of Poly").warn() return f.integrate(x) # Piecewise antiderivatives need to call special integrate. if isinstance(f, Piecewise): return f.piecewise_integrate(x, **eval_kwargs) # let's cut it short if `f` does not depend on `x`; if # x is only a dummy, that will be handled below if not f.has(x): return f*x # try to convert to poly(x) and then integrate if successful (fast) poly = f.as_poly(x) if poly is not None and not (manual or meijerg or risch): return poly.integrate().as_expr() if risch is not False: try: result, i = risch_integrate(f, x, separate_integral=True, conds=conds) except NotImplementedError: pass else: if i: # There was a nonelementary integral. Try integrating it. # if no part of the NonElementaryIntegral is integrated by # the Risch algorithm, then use the original function to # integrate, instead of re-written one if result == 0: return NonElementaryIntegral(f, x).doit(risch=False) else: return result + i.doit(risch=False) else: return result # since Integral(f=g1+g2+...) == Integral(g1) + Integral(g2) + ... # we are going to handle Add terms separately, # if `f` is not Add -- we only have one term # Note that in general, this is a bad idea, because Integral(g1) + # Integral(g2) might not be computable, even if Integral(g1 + g2) is. # For example, Integral(x**x + x**x*log(x)). But many heuristics only # work term-wise. So we compute this step last, after trying # risch_integrate. We also try risch_integrate again in this loop, # because maybe the integral is a sum of an elementary part and a # nonelementary part (like erf(x) + exp(x)). risch_integrate() is # quite fast, so this is acceptable. parts = [] args = Add.make_args(f) for g in args: coeff, g = g.as_independent(x) # g(x) = const if g is S.One and not meijerg: parts.append(coeff*x) continue # g(x) = expr + O(x**n) order_term = g.getO() if order_term is not None: h = self._eval_integral(g.removeO(), x, **eval_kwargs) if h is not None: h_order_expr = self._eval_integral(order_term.expr, x, **eval_kwargs) if h_order_expr is not None: h_order_term = order_term.func( h_order_expr, *order_term.variables) parts.append(coeff*(h + h_order_term)) continue # NOTE: if there is O(x**n) and we fail to integrate then # there is no point in trying other methods because they # will fail, too. return None # c # g(x) = (a*x+b) if g.is_Pow and not g.exp.has(x) and not meijerg: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) M = g.base.match(a*x + b) if M is not None: if g.exp == -1: h = log(g.base) elif conds != 'piecewise': h = g.base**(g.exp + 1) / (g.exp + 1) else: h1 = log(g.base) h2 = g.base**(g.exp + 1) / (g.exp + 1) h = Piecewise((h2, Ne(g.exp, -1)), (h1, True)) parts.append(coeff * h / M[a]) continue # poly(x) # g(x) = ------- # poly(x) if g.is_rational_function(x) and not (manual or meijerg or risch): parts.append(coeff * ratint(g, x)) continue if not (manual or meijerg or risch): # g(x) = Mul(trig) h = trigintegrate(g, x, conds=conds) if h is not None: parts.append(coeff * h) continue # g(x) has at least a DiracDelta term h = deltaintegrate(g, x) if h is not None: parts.append(coeff * h) continue from .singularityfunctions import singularityintegrate # g(x) has at least a Singularity Function term h = singularityintegrate(g, x) if h is not None: parts.append(coeff * h) continue # Try risch again. if risch is not False: try: h, i = risch_integrate(g, x, separate_integral=True, conds=conds) except NotImplementedError: h = None else: if i: h = h + i.doit(risch=False) parts.append(coeff*h) continue # fall back to heurisch if heurisch is not False: from sympy.integrals.heurisch import (heurisch as heurisch_, heurisch_wrapper) try: if conds == 'piecewise': h = heurisch_wrapper(g, x, hints=[]) else: h = heurisch_(g, x, hints=[]) except PolynomialError: # XXX: this exception means there is a bug in the # implementation of heuristic Risch integration # algorithm. h = None else: h = None if meijerg is not False and h is None: # rewrite using G functions try: h = meijerint_indefinite(g, x) except NotImplementedError: _debug('NotImplementedError from meijerint_definite') if h is not None: parts.append(coeff * h) continue if h is None and manual is not False: try: result = manualintegrate(g, x) if result is not None and not isinstance(result, Integral): if result.has(Integral) and not manual: # Try to have other algorithms do the integrals # manualintegrate can't handle, # unless we were asked to use manual only. # Keep the rest of eval_kwargs in case another # method was set to False already new_eval_kwargs = eval_kwargs new_eval_kwargs["manual"] = False new_eval_kwargs["final"] = False result = result.func(*[ arg.doit(**new_eval_kwargs) if arg.has(Integral) else arg for arg in result.args ]).expand(multinomial=False, log=False, power_exp=False, power_base=False) if not result.has(Integral): parts.append(coeff * result) continue except (ValueError, PolynomialError): # can't handle some SymPy expressions pass # if we failed maybe it was because we had # a product that could have been expanded, # so let's try an expansion of the whole # thing before giving up; we don't try this # at the outset because there are things # that cannot be solved unless they are # NOT expanded e.g., x**x*(1+log(x)). There # should probably be a checker somewhere in this # routine to look for such cases and try to do # collection on the expressions if they are already # in an expanded form if not h and len(args) == 1: f = sincos_to_sum(f).expand(mul=True, deep=False) if f.is_Add: # Note: risch will be identical on the expanded # expression, but maybe it will be able to pick out parts, # like x*(exp(x) + erf(x)). return self._eval_integral(f, x, **eval_kwargs) if h is not None: parts.append(coeff * h) else: return None return Add(*parts) def _eval_lseries(self, x, logx=None, cdir=0): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break for term in expr.function.lseries(symb, logx): yield integrate(term, *expr.limits) def _eval_nseries(self, x, n, logx=None, cdir=0): expr = self.as_dummy() symb = x for l in expr.limits: if x in l[1:]: symb = l[0] break terms, order = expr.function.nseries( x=symb, n=n, logx=logx).as_coeff_add(Order) order = [o.subs(symb, x) for o in order] return integrate(terms, *expr.limits) + Add(*order)*x def _eval_as_leading_term(self, x, logx=None, cdir=0): series_gen = self.args[0].lseries(x) for leading_term in series_gen: if leading_term != 0: break return integrate(leading_term, *self.args[1:]) def _eval_simplify(self, **kwargs): expr = factor_terms(self) if isinstance(expr, Integral): return expr.func(*[simplify(i, **kwargs) for i in expr.args]) return expr.simplify(**kwargs) def as_sum(self, n=None, method="midpoint", evaluate=True): """ Approximates a definite integral by a sum. Parameters ========== n : The number of subintervals to use, optional. method : One of: 'left', 'right', 'midpoint', 'trapezoid'. evaluate : bool If False, returns an unevaluated Sum expression. The default is True, evaluate the sum. Notes ===== These methods of approximate integration are described in [1]. Examples ======== >>> from sympy import sin, sqrt >>> from sympy.abc import x, n >>> from sympy.integrals import Integral >>> e = Integral(sin(x), (x, 3, 7)) >>> e Integral(sin(x), (x, 3, 7)) For demonstration purposes, this interval will only be split into 2 regions, bounded by [3, 5] and [5, 7]. The left-hand rule uses function evaluations at the left of each interval: >>> e.as_sum(2, 'left') 2*sin(5) + 2*sin(3) The midpoint rule uses evaluations at the center of each interval: >>> e.as_sum(2, 'midpoint') 2*sin(4) + 2*sin(6) The right-hand rule uses function evaluations at the right of each interval: >>> e.as_sum(2, 'right') 2*sin(5) + 2*sin(7) The trapezoid rule uses function evaluations on both sides of the intervals. This is equivalent to taking the average of the left and right hand rule results: >>> e.as_sum(2, 'trapezoid') 2*sin(5) + sin(3) + sin(7) >>> (e.as_sum(2, 'left') + e.as_sum(2, 'right'))/2 == _ True Here, the discontinuity at x = 0 can be avoided by using the midpoint or right-hand method: >>> e = Integral(1/sqrt(x), (x, 0, 1)) >>> e.as_sum(5).n(4) 1.730 >>> e.as_sum(10).n(4) 1.809 >>> e.doit().n(4) # the actual value is 2 2.000 The left- or trapezoid method will encounter the discontinuity and return infinity: >>> e.as_sum(5, 'left') zoo The number of intervals can be symbolic. If omitted, a dummy symbol will be used for it. >>> e = Integral(x**2, (x, 0, 2)) >>> e.as_sum(n, 'right').expand() 8/3 + 4/n + 4/(3*n**2) This shows that the midpoint rule is more accurate, as its error term decays as the square of n: >>> e.as_sum(method='midpoint').expand() 8/3 - 2/(3*_n**2) A symbolic sum is returned with evaluate=False: >>> e.as_sum(n, 'midpoint', evaluate=False) 2*Sum((2*_k/n - 1/n)**2, (_k, 1, n))/n See Also ======== Integral.doit : Perform the integration using any hints References ========== .. [1] https://en.wikipedia.org/wiki/Riemann_sum#Methods """ from sympy.concrete.summations import Sum limits = self.limits if len(limits) > 1: raise NotImplementedError( "Multidimensional midpoint rule not implemented yet") else: limit = limits[0] if (len(limit) != 3 or limit[1].is_finite is False or limit[2].is_finite is False): raise ValueError("Expecting a definite integral over " "a finite interval.") if n is None: n = Dummy('n', integer=True, positive=True) else: n = sympify(n) if (n.is_positive is False or n.is_integer is False or n.is_finite is False): raise ValueError("n must be a positive integer, got %s" % n) x, a, b = limit dx = (b - a)/n k = Dummy('k', integer=True, positive=True) f = self.function if method == "left": result = dx*Sum(f.subs(x, a + (k-1)*dx), (k, 1, n)) elif method == "right": result = dx*Sum(f.subs(x, a + k*dx), (k, 1, n)) elif method == "midpoint": result = dx*Sum(f.subs(x, a + k*dx - dx/2), (k, 1, n)) elif method == "trapezoid": result = dx*((f.subs(x, a) + f.subs(x, b))/2 + Sum(f.subs(x, a + k*dx), (k, 1, n - 1))) else: raise ValueError("Unknown method %s" % method) return result.doit() if evaluate else result def principal_value(self, **kwargs): """ Compute the Cauchy Principal Value of the definite integral of a real function in the given interval on the real axis. Explanation =========== In mathematics, the Cauchy principal value, is a method for assigning values to certain improper integrals which would otherwise be undefined. Examples ======== >>> from sympy import oo >>> from sympy.integrals.integrals import Integral >>> from sympy.abc import x >>> Integral(x+1, (x, -oo, oo)).principal_value() oo >>> f = 1 / (x**3) >>> Integral(f, (x, -oo, oo)).principal_value() 0 >>> Integral(f, (x, -10, 10)).principal_value() 0 >>> Integral(f, (x, -10, oo)).principal_value() + Integral(f, (x, -oo, 10)).principal_value() 0 References ========== .. [1] https://en.wikipedia.org/wiki/Cauchy_principal_value .. [2] http://mathworld.wolfram.com/CauchyPrincipalValue.html """ if len(self.limits) != 1 or len(list(self.limits[0])) != 3: raise ValueError("You need to insert a variable, lower_limit, and upper_limit correctly to calculate " "cauchy's principal value") x, a, b = self.limits[0] if not (a.is_comparable and b.is_comparable and a <= b): raise ValueError("The lower_limit must be smaller than or equal to the upper_limit to calculate " "cauchy's principal value. Also, a and b need to be comparable.") if a == b: return S.Zero from sympy.calculus.singularities import singularities r = Dummy('r') f = self.function singularities_list = [s for s in singularities(f, x) if s.is_comparable and a <= s <= b] for i in singularities_list: if i in (a, b): raise ValueError( 'The principal value is not defined in the given interval due to singularity at %d.' % (i)) F = integrate(f, x, **kwargs) if F.has(Integral): return self if a is -oo and b is oo: I = limit(F - F.subs(x, -x), x, oo) else: I = limit(F, x, b, '-') - limit(F, x, a, '+') for s in singularities_list: I += limit(((F.subs(x, s - r)) - F.subs(x, s + r)), r, 0, '+') return I def integrate(*args, meijerg=None, conds='piecewise', risch=None, heurisch=None, manual=None, **kwargs): """integrate(f, var, ...) Explanation =========== Compute definite or indefinite integral of one or more variables using Risch-Norman algorithm and table lookup. This procedure is able to handle elementary algebraic and transcendental functions and also a huge class of special functions, including Airy, Bessel, Whittaker and Lambert. var can be: - a symbol -- indefinite integration - a tuple (symbol, a) -- indefinite integration with result given with `a` replacing `symbol` - a tuple (symbol, a, b) -- definite integration Several variables can be specified, in which case the result is multiple integration. (If var is omitted and the integrand is univariate, the indefinite integral in that variable will be performed.) Indefinite integrals are returned without terms that are independent of the integration variables. (see examples) Definite improper integrals often entail delicate convergence conditions. Pass conds='piecewise', 'separate' or 'none' to have these returned, respectively, as a Piecewise function, as a separate result (i.e. result will be a tuple), or not at all (default is 'piecewise'). **Strategy** SymPy uses various approaches to definite integration. One method is to find an antiderivative for the integrand, and then use the fundamental theorem of calculus. Various functions are implemented to integrate polynomial, rational and trigonometric functions, and integrands containing DiracDelta terms. SymPy also implements the part of the Risch algorithm, which is a decision procedure for integrating elementary functions, i.e., the algorithm can either find an elementary antiderivative, or prove that one does not exist. There is also a (very successful, albeit somewhat slow) general implementation of the heuristic Risch algorithm. This algorithm will eventually be phased out as more of the full Risch algorithm is implemented. See the docstring of Integral._eval_integral() for more details on computing the antiderivative using algebraic methods. The option risch=True can be used to use only the (full) Risch algorithm. This is useful if you want to know if an elementary function has an elementary antiderivative. If the indefinite Integral returned by this function is an instance of NonElementaryIntegral, that means that the Risch algorithm has proven that integral to be non-elementary. Note that by default, additional methods (such as the Meijer G method outlined below) are tried on these integrals, as they may be expressible in terms of special functions, so if you only care about elementary answers, use risch=True. Also note that an unevaluated Integral returned by this function is not necessarily a NonElementaryIntegral, even with risch=True, as it may just be an indication that the particular part of the Risch algorithm needed to integrate that function is not yet implemented. Another family of strategies comes from re-writing the integrand in terms of so-called Meijer G-functions. Indefinite integrals of a single G-function can always be computed, and the definite integral of a product of two G-functions can be computed from zero to infinity. Various strategies are implemented to rewrite integrands as G-functions, and use this information to compute integrals (see the ``meijerint`` module). The option manual=True can be used to use only an algorithm that tries to mimic integration by hand. This algorithm does not handle as many integrands as the other algorithms implemented but may return results in a more familiar form. The ``manualintegrate`` module has functions that return the steps used (see the module docstring for more information). In general, the algebraic methods work best for computing antiderivatives of (possibly complicated) combinations of elementary functions. The G-function methods work best for computing definite integrals from zero to infinity of moderately complicated combinations of special functions, or indefinite integrals of very simple combinations of special functions. The strategy employed by the integration code is as follows: - If computing a definite integral, and both limits are real, and at least one limit is +- oo, try the G-function method of definite integration first. - Try to find an antiderivative, using all available methods, ordered by performance (that is try fastest method first, slowest last; in particular polynomial integration is tried first, Meijer G-functions second to last, and heuristic Risch last). - If still not successful, try G-functions irrespective of the limits. The option meijerg=True, False, None can be used to, respectively: always use G-function methods and no others, never use G-function methods, or use all available methods (in order as described above). It defaults to None. Examples ======== >>> from sympy import integrate, log, exp, oo >>> from sympy.abc import a, x, y >>> integrate(x*y, x) x**2*y/2 >>> integrate(log(x), x) x*log(x) - x >>> integrate(log(x), (x, 1, a)) a*log(a) - a + 1 >>> integrate(x) x**2/2 Terms that are independent of x are dropped by indefinite integration: >>> from sympy import sqrt >>> integrate(sqrt(1 + x), (x, 0, x)) 2*(x + 1)**(3/2)/3 - 2/3 >>> integrate(sqrt(1 + x), x) 2*(x + 1)**(3/2)/3 >>> integrate(x*y) Traceback (most recent call last): ... ValueError: specify integration variables to integrate x*y Note that ``integrate(x)`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. >>> integrate(x**a*exp(-x), (x, 0, oo)) # same as conds='piecewise' Piecewise((gamma(a + 1), re(a) > -1), (Integral(x**a*exp(-x), (x, 0, oo)), True)) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='none') gamma(a + 1) >>> integrate(x**a*exp(-x), (x, 0, oo), conds='separate') (gamma(a + 1), re(a) > -1) See Also ======== Integral, Integral.doit """ doit_flags = { 'deep': False, 'meijerg': meijerg, 'conds': conds, 'risch': risch, 'heurisch': heurisch, 'manual': manual } integral = Integral(*args, **kwargs) if isinstance(integral, Integral): return integral.doit(**doit_flags) else: new_args = [a.doit(**doit_flags) if isinstance(a, Integral) else a for a in integral.args] return integral.func(*new_args) def line_integrate(field, curve, vars): """line_integrate(field, Curve, variables) Compute the line integral. Examples ======== >>> from sympy import Curve, line_integrate, E, ln >>> from sympy.abc import x, y, t >>> C = Curve([E**t + 1, E**t - 1], (t, 0, ln(2))) >>> line_integrate(x + y, C, [x, y]) 3*sqrt(2) See Also ======== sympy.integrals.integrals.integrate, Integral """ from sympy.geometry import Curve F = sympify(field) if not F: raise ValueError( "Expecting function specifying field as first argument.") if not isinstance(curve, Curve): raise ValueError("Expecting Curve entity as second argument.") if not is_sequence(vars): raise ValueError("Expecting ordered iterable for variables.") if len(curve.functions) != len(vars): raise ValueError("Field variable size does not match curve dimension.") if curve.parameter in vars: raise ValueError("Curve parameter clashes with field parameters.") # Calculate derivatives for line parameter functions # F(r) -> F(r(t)) and finally F(r(t)*r'(t)) Ft = F dldt = 0 for i, var in enumerate(vars): _f = curve.functions[i] _dn = diff(_f, curve.parameter) # ...arc length dldt = dldt + (_dn * _dn) Ft = Ft.subs(var, _f) Ft = Ft * sqrt(dldt) integral = Integral(Ft, curve.limits).doit(deep=False) return integral ### Property function dispatching ### @shape.register(Integral) def _(expr): return shape(expr.function) # Delayed imports from .deltafunctions import deltaintegrate from .meijerint import meijerint_definite, meijerint_indefinite, _debug from .trigonometry import trigintegrate
ff589a2efd147351a7b043da1d74eabc71ab9d46699b509129276792e3696932
from typing import Dict as tDict, List from itertools import permutations from functools import reduce from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.mul import Mul from sympy.core.symbol import Wild, Dummy, Symbol from sympy.core.basic import sympify from sympy.core.numbers import Rational, pi, I from sympy.core.relational import Eq, Ne from sympy.core.singleton import S from sympy.core.sorting import ordered from sympy.core.traversal import iterfreeargs from sympy.functions import exp, sin, cos, tan, cot, asin, atan from sympy.functions import log, sinh, cosh, tanh, coth, asinh, acosh from sympy.functions import sqrt, erf, erfi, li, Ei from sympy.functions import besselj, bessely, besseli, besselk from sympy.functions import hankel1, hankel2, jn, yn from sympy.functions.elementary.complexes import Abs, re, im, sign, arg from sympy.functions.elementary.exponential import LambertW from sympy.functions.elementary.integers import floor, ceiling from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.delta_functions import Heaviside, DiracDelta from sympy.simplify.radsimp import collect from sympy.logic.boolalg import And, Or from sympy.utilities.iterables import uniq from sympy.polys import quo, gcd, lcm, factor_list, cancel, PolynomialError from sympy.polys.monomials import itermonomials from sympy.polys.polyroots import root_factors from sympy.polys.rings import PolyRing from sympy.polys.solvers import solve_lin_sys from sympy.polys.constructor import construct_domain from sympy.integrals.integrals import integrate def components(f, x): """ Returns a set of all functional components of the given expression which includes symbols, function applications and compositions and non-integer powers. Fractional powers are collected with minimal, positive exponents. Examples ======== >>> from sympy import cos, sin >>> from sympy.abc import x >>> from sympy.integrals.heurisch import components >>> components(sin(x)*cos(x)**2, x) {x, sin(x), cos(x)} See Also ======== heurisch """ result = set() if f.has_free(x): if f.is_symbol and f.is_commutative: result.add(f) elif f.is_Function or f.is_Derivative: for g in f.args: result |= components(g, x) result.add(f) elif f.is_Pow: result |= components(f.base, x) if not f.exp.is_Integer: if f.exp.is_Rational: result.add(f.base**Rational(1, f.exp.q)) else: result |= components(f.exp, x) | {f} else: for g in f.args: result |= components(g, x) return result # name -> [] of symbols _symbols_cache = {} # type: tDict[str, List[Dummy]] # NB @cacheit is not convenient here def _symbols(name, n): """get vector of symbols local to this module""" try: lsyms = _symbols_cache[name] except KeyError: lsyms = [] _symbols_cache[name] = lsyms while len(lsyms) < n: lsyms.append( Dummy('%s%i' % (name, len(lsyms))) ) return lsyms[:n] def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ A wrapper around the heurisch integration algorithm. Explanation =========== This method takes the result from heurisch and checks for poles in the denominator. For each of these poles, the integral is reevaluated, and the final integration result is given in terms of a Piecewise. Examples ======== >>> from sympy import cos, symbols >>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper >>> n, x = symbols('n x') >>> heurisch(cos(n*x), x) sin(n*x)/n >>> heurisch_wrapper(cos(n*x), x) Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True)) See Also ======== heurisch """ from sympy.solvers.solvers import solve, denoms f = sympify(f) if not f.has_free(x): return f*x res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) if not isinstance(res, Basic): return res # We consider each denominator in the expression, and try to find # cases where one or more symbolic denominator might be zero. The # conditions for these cases are stored in the list slns. slns = [] for d in denoms(res): try: slns += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass if not slns: return res slns = list(uniq(slns)) # Remove the solutions corresponding to poles in the original expression. slns0 = [] for d in denoms(f): try: slns0 += solve(d, dict=True, exclude=(x,)) except NotImplementedError: pass slns = [s for s in slns if s not in slns0] if not slns: return res if len(slns) > 1: eqs = [] for sub_dict in slns: eqs.extend([Eq(key, value) for key, value in sub_dict.items()]) slns = solve(eqs, dict=True, exclude=(x,)) + slns # For each case listed in the list slns, we reevaluate the integral. pairs = [] for sub_dict in slns: expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch) cond = And(*[Eq(key, value) for key, value in sub_dict.items()]) generic = Or(*[Ne(key, value) for key, value in sub_dict.items()]) if expr is None: expr = integrate(f.subs(sub_dict),x) pairs.append((expr, cond)) # If there is one condition, put the generic case first. Otherwise, # doing so may lead to longer Piecewise formulas if len(pairs) == 1: pairs = [(heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), generic), (pairs[0][0], True)] else: pairs.append((heurisch(f, x, rewrite, hints, mappings, retries, degree_offset, unnecessary_permutations, _try_heurisch), True)) return Piecewise(*pairs) class BesselTable: """ Derivatives of Bessel functions of orders n and n-1 in terms of each other. See the docstring of DiffCache. """ def __init__(self): self.table = {} self.n = Dummy('n') self.z = Dummy('z') self._create_table() def _create_table(t): table, n, z = t.table, t.n, t.z for f in (besselj, bessely, hankel1, hankel2): table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) f = besseli table[f] = (f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z + f(n, z)) f = besselk table[f] = (-f(n-1, z) - n*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) for f in (jn, yn): table[f] = (f(n-1, z) - (n+1)*f(n, z)/z, (n-1)*f(n-1, z)/z - f(n, z)) def diffs(t, f, n, z): if f in t.table: diff0, diff1 = t.table[f] repl = [(t.n, n), (t.z, z)] return (diff0.subs(repl), diff1.subs(repl)) def has(t, f): return f in t.table _bessel_table = None class DiffCache: """ Store for derivatives of expressions. Explanation =========== The standard form of the derivative of a Bessel function of order n contains two Bessel functions of orders n-1 and n+1, respectively. Such forms cannot be used in parallel Risch algorithm, because there is a linear recurrence relation between the three functions while the algorithm expects that functions and derivatives are represented in terms of algebraically independent transcendentals. The solution is to take two of the functions, e.g., those of orders n and n-1, and to express the derivatives in terms of the pair. To guarantee that the proper form is used the two derivatives are cached as soon as one is encountered. Derivatives of other functions are also cached at no extra cost. All derivatives are with respect to the same variable `x`. """ def __init__(self, x): self.cache = {} self.x = x global _bessel_table if not _bessel_table: _bessel_table = BesselTable() def get_diff(self, f): cache = self.cache if f in cache: pass elif (not hasattr(f, 'func') or not _bessel_table.has(f.func)): cache[f] = cancel(f.diff(self.x)) else: n, z = f.args d0, d1 = _bessel_table.diffs(f.func, n, z) dz = self.get_diff(z) cache[f] = d0*dz cache[f.func(n-1, z)] = d1*dz return cache[f] def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3, degree_offset=0, unnecessary_permutations=None, _try_heurisch=None): """ Compute indefinite integral using heuristic Risch algorithm. Explanation =========== This is a heuristic approach to indefinite integration in finite terms using the extended heuristic (parallel) Risch algorithm, based on Manuel Bronstein's "Poor Man's Integrator". The algorithm supports various classes of functions including transcendental elementary or special functions like Airy, Bessel, Whittaker and Lambert. Note that this algorithm is not a decision procedure. If it isn't able to compute the antiderivative for a given function, then this is not a proof that such a functions does not exist. One should use recursive Risch algorithm in such case. It's an open question if this algorithm can be made a full decision procedure. This is an internal integrator procedure. You should use top level 'integrate' function in most cases, as this procedure needs some preprocessing steps and otherwise may fail. Specification ============= heurisch(f, x, rewrite=False, hints=None) where f : expression x : symbol rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh' hints -> a list of functions that may appear in anti-derivate - hints = None --> no suggestions at all - hints = [ ] --> try to figure out - hints = [f1, ..., fn] --> we know better Examples ======== >>> from sympy import tan >>> from sympy.integrals.heurisch import heurisch >>> from sympy.abc import x, y >>> heurisch(y*tan(x), x) y*log(tan(x)**2 + 1)/2 See Manuel Bronstein's "Poor Man's Integrator": References ========== .. [1] http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html For more information on the implemented algorithm refer to: .. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration Method and its Implementation in Maple, Proceedings of ISSAC'89, ACM Press, 212-217. .. [3] J. H. Davenport, On the Parallel Risch Algorithm (I), Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157. .. [4] J. H. Davenport, On the Parallel Risch Algorithm (III): Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6. .. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch Algorithm (II), ACM Transactions on Mathematical Software 11 (1985), 356-362. See Also ======== sympy.integrals.integrals.Integral.doit sympy.integrals.integrals.Integral sympy.integrals.heurisch.components """ f = sympify(f) # There are some functions that Heurisch cannot currently handle, # so do not even try. # Set _try_heurisch=True to skip this check if _try_heurisch is not True: if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg): return if not f.has_free(x): return f*x if not f.is_Add: indep, f = f.as_independent(x) else: indep = S.One rewritables = { (sin, cos, cot): tan, (sinh, cosh, coth): tanh, } if rewrite: for candidates, rule in rewritables.items(): f = f.rewrite(candidates, rule) else: for candidates in rewritables.keys(): if f.has(*candidates): break else: rewrite = True terms = components(f, x) if hints is not None: if not hints: a = Wild('a', exclude=[x]) b = Wild('b', exclude=[x]) c = Wild('c', exclude=[x]) for g in set(terms): # using copy of terms if g.is_Function: if isinstance(g, li): M = g.args[0].match(a*x**b) if M is not None: terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) ) #terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) ) elif isinstance(g, exp): M = g.args[0].match(a*x**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*x)) else: # M[a].is_negative or unknown terms.add(erf(sqrt(-M[a])*x)) M = g.args[0].match(a*x**2 + b*x + c) if M is not None: if M[a].is_positive: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a])))) elif M[a].is_negative: terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))* erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a])))) M = g.args[0].match(a*log(x)**2) if M is not None: if M[a].is_positive: terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a])))) if M[a].is_negative: terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a])))) elif g.is_Pow: if g.exp.is_Rational and g.exp.q == 2: M = g.base.match(a*x**2 + b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(asinh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(asin(sqrt(-M[a]/M[b])*x)) M = g.base.match(a*x**2 - b) if M is not None and M[b].is_positive: if M[a].is_positive: terms.add(acosh(sqrt(M[a]/M[b])*x)) elif M[a].is_negative: terms.add(-M[b]/2*sqrt(-M[a])* atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b]))) else: terms |= set(hints) dcache = DiffCache(x) for g in set(terms): # using copy of terms terms |= components(dcache.get_diff(g), x) # TODO: caching is significant factor for why permutations work at all. Change this. V = _symbols('x', len(terms)) # sort mapping expressions from largest to smallest (last is always x). mapping = list(reversed(list(zip(*ordered( # [(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) # rev_mapping = {v: k for k, v in mapping} # if mappings is None: # # optimizing the number of permutations of mapping # assert mapping[-1][0] == x # if not, find it and correct this comment unnecessary_permutations = [mapping.pop(-1)] mappings = permutations(mapping) else: unnecessary_permutations = unnecessary_permutations or [] def _substitute(expr): return expr.subs(mapping) for mapping in mappings: mapping = list(mapping) mapping = mapping + unnecessary_permutations diffs = [ _substitute(dcache.get_diff(g)) for g in terms ] denoms = [ g.as_numer_denom()[1] for g in diffs ] if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V): denom = reduce(lambda p, q: lcm(p, q, *V), denoms) break else: if not rewrite: result = heurisch(f, x, rewrite=True, hints=hints, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None numers = [ cancel(denom*g) for g in diffs ] def _derivation(h): return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ]) def _deflation(p): for y in V: if not p.has(y): continue if _derivation(p) is not S.Zero: c, q = p.as_poly(y).primitive() return _deflation(c)*gcd(q, q.diff(y)).as_expr() return p def _splitter(p): for y in V: if not p.has(y): continue if _derivation(y) is not S.Zero: c, q = p.as_poly(y).primitive() q = q.as_expr() h = gcd(q, _derivation(q), y) s = quo(h, gcd(q, q.diff(y), y), y) c_split = _splitter(c) if s.as_poly(y).degree() == 0: return (c_split[0], q * c_split[1]) q_split = _splitter(cancel(q / s)) return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1]) return (S.One, p) special = {} for term in terms: if term.is_Function: if isinstance(term, tan): special[1 + _substitute(term)**2] = False elif isinstance(term, tanh): special[1 + _substitute(term)] = False special[1 - _substitute(term)] = False elif isinstance(term, LambertW): special[_substitute(term)] = True F = _substitute(f) P, Q = F.as_numer_denom() u_split = _splitter(denom) v_split = _splitter(Q) polys = set(list(v_split) + [ u_split[0] ] + list(special.keys())) s = u_split[0] * Mul(*[ k for k, v in special.items() if v ]) polified = [ p.as_poly(*V) for p in [s, P, Q] ] if None in polified: return None #--- definitions for _integrate a, b, c = [ p.total_degree() for p in polified ] poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr() def _exponent(g): if g.is_Pow: if g.exp.is_Rational and g.exp.q != 1: if g.exp.p > 0: return g.exp.p + g.exp.q - 1 else: return abs(g.exp.p + g.exp.q) else: return 1 elif not g.is_Atom and g.args: return max([ _exponent(h) for h in g.args ]) else: return 1 A, B = _exponent(f), a + max(b, c) if A > 1 and B > 1: monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset))) else: monoms = tuple(ordered(itermonomials(V, A + B + degree_offset))) poly_coeffs = _symbols('A', len(monoms)) poly_part = Add(*[ poly_coeffs[i]*monomial for i, monomial in enumerate(monoms) ]) reducibles = set() for poly in ordered(polys): coeff, factors = factor_list(poly, *V) reducibles.add(coeff) for fact, mul in factors: reducibles.add(fact) def _integrate(field=None): atans = set() pairs = set() if field == 'Q': irreducibles = set(reducibles) else: setV = set(V) irreducibles = set() for poly in ordered(reducibles): zV = setV & set(iterfreeargs(poly)) for z in ordered(zV): s = set(root_factors(poly, z, filter=field)) irreducibles |= s break log_part, atan_part = [], [] for poly in ordered(irreducibles): m = collect(poly, I, evaluate=False) y = m.get(I, S.Zero) if y: x = m.get(S.One, S.Zero) if x.has(I) or y.has(I): continue # nontrivial x + I*y pairs.add((x, y)) irreducibles.remove(poly) while pairs: x, y = pairs.pop() if (x, -y) in pairs: pairs.remove((x, -y)) # Choosing b with no minus sign if y.could_extract_minus_sign(): y = -y irreducibles.add(x*x + y*y) atans.add(atan(x/y)) else: irreducibles.add(x + I*y) B = _symbols('B', len(irreducibles)) C = _symbols('C', len(atans)) # Note: the ordering matters here for poly, b in reversed(list(zip(ordered(irreducibles), B))): if poly.has(*V): poly_coeffs.append(b) log_part.append(b * log(poly)) for poly, c in reversed(list(zip(ordered(atans), C))): if poly.has(*V): poly_coeffs.append(c) atan_part.append(c * poly) # TODO: Currently it's better to use symbolic expressions here instead # of rational functions, because it's simpler and FracElement doesn't # give big speed improvement yet. This is because cancellation is slow # due to slow polynomial GCD algorithms. If this gets improved then # revise this code. candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part) h = F - _derivation(candidate) / denom raw_numer = h.as_numer_denom()[0] # Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field # that we have to determine. We can't use simply atoms() because log(3), # sqrt(y) and similar expressions can appear, leading to non-trivial # domains. syms = set(poly_coeffs) | set(V) non_syms = set() def find_non_syms(expr): if expr.is_Integer or expr.is_Rational: pass # ignore trivial numbers elif expr in syms: pass # ignore variables elif not expr.has_free(*syms): non_syms.add(expr) elif expr.is_Add or expr.is_Mul or expr.is_Pow: list(map(find_non_syms, expr.args)) else: # TODO: Non-polynomial expression. This should have been # filtered out at an earlier stage. raise PolynomialError try: find_non_syms(raw_numer) except PolynomialError: return None else: ground, _ = construct_domain(non_syms, field=True) coeff_ring = PolyRing(poly_coeffs, ground) ring = PolyRing(V, coeff_ring) try: numer = ring.from_expr(raw_numer) except ValueError: raise PolynomialError solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False) if solution is None: return None else: return candidate.xreplace(solution).xreplace( dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs)))) if all(isinstance(_, Symbol) for _ in V): more_free = F.free_symbols - set(V) else: Fd = F.as_dummy() more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V))) ).free_symbols & Fd.free_symbols if not more_free: # all free generators are identified in V solution = _integrate('Q') if solution is None: solution = _integrate() else: solution = _integrate() if solution is not None: antideriv = solution.subs(rev_mapping) antideriv = cancel(antideriv).expand() if antideriv.is_Add: antideriv = antideriv.as_independent(x)[1] return indep*antideriv else: if retries >= 0: result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations) if result is not None: return indep*result return None
06b63167070381285e6f0ff928a6418c02efdbe5e86bf2779c5032176ae460b0
"""Base class for all the objects in SymPy""" from collections import defaultdict from collections.abc import Mapping from itertools import chain, zip_longest from typing import Set, Tuple from .assumptions import ManagedProperties from .cache import cacheit from .core import BasicMeta from .sympify import _sympify, sympify, SympifyError from .sorting import ordered from .kind import Kind, UndefinedKind from ._print_helpers import Printable from sympy.utilities.decorator import deprecated from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable, numbered_symbols, NotIterable from sympy.utilities.misc import filldedent, func_name from inspect import getmro def as_Basic(expr): """Return expr as a Basic instance using strict sympify or raise a TypeError; this is just a wrapper to _sympify, raising a TypeError instead of a SympifyError.""" try: return _sympify(expr) except SympifyError: raise TypeError( 'Argument must be a Basic object, not `%s`' % func_name( expr)) class Basic(Printable, metaclass=ManagedProperties): """ Base class for all SymPy objects. Notes and conventions ===================== 1) Always use ``.args``, when accessing parameters of some instance: >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y 2) Never use internal methods or variables (the ones prefixed with ``_``): >>> cot(x)._args # do not use this, use cot(x).args instead (x,) 3) By "SymPy object" we mean something that can be returned by ``sympify``. But not all objects one encounters using SymPy are subclasses of Basic. For example, mutable objects are not: >>> from sympy import Basic, Matrix, sympify >>> A = Matrix([[1, 2], [3, 4]]).as_mutable() >>> isinstance(A, Basic) False >>> B = sympify(A) >>> isinstance(B, Basic) True """ __slots__ = ('_mhash', # hash value '_args', # arguments '_assumptions' ) _args: 'Tuple[Basic, ...]' # To be overridden with True in the appropriate subclasses is_number = False is_Atom = False is_Symbol = False is_symbol = False is_Indexed = False is_Dummy = False is_Wild = False is_Function = False is_Add = False is_Mul = False is_Pow = False is_Number = False is_Float = False is_Rational = False is_Integer = False is_NumberSymbol = False is_Order = False is_Derivative = False is_Piecewise = False is_Poly = False is_AlgebraicNumber = False is_Relational = False is_Equality = False is_Boolean = False is_Not = False is_Matrix = False is_Vector = False is_Point = False is_MatAdd = False is_MatMul = False kind: Kind = UndefinedKind def __new__(cls, *args): obj = object.__new__(cls) obj._assumptions = cls.default_assumptions obj._mhash = None # will be set by __hash__ method. obj._args = args # all items in args must be Basic objects return obj def copy(self): return self.func(*self.args) def __getnewargs__(self): return self.args def __getstate__(self): return None def __reduce_ex__(self, protocol): if protocol < 2: msg = "Only pickle protocol 2 or higher is supported by SymPy" raise NotImplementedError(msg) return super().__reduce_ex__(protocol) def __hash__(self): # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args @property def assumptions0(self): """ Return object `type` assumptions. For example: Symbol('x', real=True) Symbol('x', integer=True) are different objects. In other words, besides Python type (Symbol in this case), the initial assumptions are also forming their typeinfo. Examples ======== >>> from sympy import Symbol >>> from sympy.abc import x >>> x.assumptions0 {'commutative': True} >>> x = Symbol("x", positive=True) >>> x.assumptions0 {'commutative': True, 'complex': True, 'extended_negative': False, 'extended_nonnegative': True, 'extended_nonpositive': False, 'extended_nonzero': True, 'extended_positive': True, 'extended_real': True, 'finite': True, 'hermitian': True, 'imaginary': False, 'infinite': False, 'negative': False, 'nonnegative': True, 'nonpositive': False, 'nonzero': True, 'positive': True, 'real': True, 'zero': False} """ return {} def compare(self, other): """ Return -1, 0, 1 if the object is smaller, equal, or greater than other. Not in the mathematical sense. If the object is of a different type from the "other" then their classes are ordered according to the sorted_classes list. Examples ======== >>> from sympy.abc import x, y >>> x.compare(y) -1 >>> x.compare(x) 0 >>> y.compare(x) 1 """ # all redefinitions of __cmp__ method should start with the # following lines: if self is other: return 0 n1 = self.__class__ n2 = other.__class__ c = (n1 > n2) - (n1 < n2) if c: return c # st = self._hashable_content() ot = other._hashable_content() c = (len(st) > len(ot)) - (len(st) < len(ot)) if c: return c for l, r in zip(st, ot): l = Basic(*l) if isinstance(l, frozenset) else l r = Basic(*r) if isinstance(r, frozenset) else r if isinstance(l, Basic): c = l.compare(r) else: c = (l > r) - (l < r) if c: return c return 0 @staticmethod def _compare_pretty(a, b): from sympy.series.order import Order if isinstance(a, Order) and not isinstance(b, Order): return 1 if not isinstance(a, Order) and isinstance(b, Order): return -1 if a.is_Rational and b.is_Rational: l = a.p * b.q r = b.p * a.q return (l > r) - (l < r) else: from .symbol import Wild p1, p2, p3 = Wild("p1"), Wild("p2"), Wild("p3") r_a = a.match(p1 * p2**p3) if r_a and p3 in r_a: a3 = r_a[p3] r_b = b.match(p1 * p2**p3) if r_b and p3 in r_b: b3 = r_b[p3] c = Basic.compare(a3, b3) if c != 0: return c return Basic.compare(a, b) @classmethod def fromiter(cls, args, **assumptions): """ Create a new object from an iterable. This is a convenience function that allows one to create objects from any iterable, without having to convert to a list or tuple first. Examples ======== >>> from sympy import Tuple >>> Tuple.fromiter(i for i in range(5)) (0, 1, 2, 3, 4) """ return cls(*tuple(args), **assumptions) @classmethod def class_key(cls): """Nice order of classes. """ return 5, 0, cls.__name__ @cacheit def sort_key(self, order=None): """ Return a sort key. Examples ======== >>> from sympy import S, I >>> sorted([S(1)/2, I, -I], key=lambda x: x.sort_key()) [1/2, -I, I] >>> S("[x, 1/x, 1/x**2, x**2, x**(1/2), x**(1/4), x**(3/2)]") [x, 1/x, x**(-2), x**2, sqrt(x), x**(1/4), x**(3/2)] >>> sorted(_, key=lambda x: x.sort_key()) [x**(-2), 1/x, x**(1/4), sqrt(x), x, x**(3/2), x**2] """ # XXX: remove this when issue 5169 is fixed def inner_key(arg): if isinstance(arg, Basic): return arg.sort_key(order) else: return arg args = self._sorted_args args = len(args), tuple([inner_key(arg) for arg in args]) return self.class_key(), args, S.One.sort_key(), S.One def __eq__(self, other): """Return a boolean indicating whether a == b on the basis of their symbolic trees. This is the same as a.compare(b) == 0 but faster. Notes ===== If a class that overrides __eq__() needs to retain the implementation of __hash__() from a parent class, the interpreter must be told this explicitly by setting __hash__ : Callable[[object], int] = <ParentClass>.__hash__. Otherwise the inheritance of __hash__() will be blocked, just as if __hash__ had been explicitly set to None. References ========== from http://docs.python.org/dev/reference/datamodel.html#object.__hash__ """ if self is other: return True if not isinstance(other, Basic): if iterable(other, exclude=(str, NotIterable) ) and not hasattr(other, '_sympy_'): # XXX iterable self should have it's own __eq__ # method if the path gives a false negative # comparison return False try: other = _sympify(other) except (SympifyError, SyntaxError): return NotImplemented if type(self) != type(other): return NotImplemented return self._hashable_content() == other._hashable_content() def __ne__(self, other): """``a != b`` -> Compare two symbolic trees and see whether they are different this is the same as: ``a.compare(b) != 0`` but faster """ return not self == other def dummy_eq(self, other, symbol=None): """ Compare two expressions and handle dummy symbols. Examples ======== >>> from sympy import Dummy >>> from sympy.abc import x, y >>> u = Dummy('u') >>> (u**2 + 1).dummy_eq(x**2 + 1) True >>> (u**2 + 1) == (x**2 + 1) False >>> (u**2 + y).dummy_eq(x**2 + y, x) True >>> (u**2 + y).dummy_eq(x**2 + y, y) False """ s = self.as_dummy() o = _sympify(other) o = o.as_dummy() dummy_symbols = [i for i in s.free_symbols if i.is_Dummy] if len(dummy_symbols) == 1: dummy = dummy_symbols.pop() else: return s == o if symbol is None: symbols = o.free_symbols if len(symbols) == 1: symbol = symbols.pop() else: return s == o tmp = dummy.__class__() return s.xreplace({dummy: tmp}) == o.xreplace({symbol: tmp}) def atoms(self, *types): """Returns the atoms that form the current object. By default, only objects that are truly atomic and cannot be divided into smaller pieces are returned: symbols, numbers, and number symbols like I and pi. It is possible to request atoms of any type, however, as demonstrated below. Examples ======== >>> from sympy import I, pi, sin >>> from sympy.abc import x, y >>> (1 + x + 2*sin(y + I*pi)).atoms() {1, 2, I, pi, x, y} If one or more types are given, the results will contain only those types of atoms. >>> from sympy import Number, NumberSymbol, Symbol >>> (1 + x + 2*sin(y + I*pi)).atoms(Symbol) {x, y} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number) {1, 2} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol) {1, 2, pi} >>> (1 + x + 2*sin(y + I*pi)).atoms(Number, NumberSymbol, I) {1, 2, I, pi} Note that I (imaginary unit) and zoo (complex infinity) are special types of number symbols and are not part of the NumberSymbol class. The type can be given implicitly, too: >>> (1 + x + 2*sin(y + I*pi)).atoms(x) # x is a Symbol {x, y} Be careful to check your assumptions when using the implicit option since ``S(1).is_Integer = True`` but ``type(S(1))`` is ``One``, a special type of SymPy atom, while ``type(S(2))`` is type ``Integer`` and will find all integers in an expression: >>> from sympy import S >>> (1 + x + 2*sin(y + I*pi)).atoms(S(1)) {1} >>> (1 + x + 2*sin(y + I*pi)).atoms(S(2)) {1, 2} Finally, arguments to atoms() can select more than atomic atoms: any SymPy type (loaded in core/__init__.py) can be listed as an argument and those types of "atoms" as found in scanning the arguments of the expression recursively: >>> from sympy import Function, Mul >>> from sympy.core.function import AppliedUndef >>> f = Function('f') >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(Function) {f(x), sin(y + I*pi)} >>> (1 + f(x) + 2*sin(y + I*pi)).atoms(AppliedUndef) {f(x)} >>> (1 + x + 2*sin(y + I*pi)).atoms(Mul) {I*pi, 2*sin(y + I*pi)} """ if types: types = tuple( [t if isinstance(t, type) else type(t) for t in types]) nodes = _preorder_traversal(self) if types: result = {node for node in nodes if isinstance(node, types)} else: result = {node for node in nodes if not node.args} return result @property def free_symbols(self) -> 'Set[Basic]': """Return from the atoms of self those which are free symbols. For most expressions, all symbols are free symbols. For some classes this is not true. e.g. Integrals use Symbols for the dummy variables which are bound variables, so Integral has a method to return all symbols except those. Derivative keeps track of symbols with respect to which it will perform a derivative; those are bound variables, too, so it has its own free_symbols method. Any other method that uses bound variables should implement a free_symbols method.""" empty: 'Set[Basic]' = set() return empty.union(*(a.free_symbols for a in self.args)) @property def expr_free_symbols(self): SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return set() def as_dummy(self): """Return the expression with any objects having structurally bound symbols replaced with unique, canonical symbols within the object in which they appear and having only the default assumption for commutativity being True. When applied to a symbol a new symbol having only the same commutativity will be returned. Examples ======== >>> from sympy import Integral, Symbol >>> from sympy.abc import x >>> r = Symbol('r', real=True) >>> Integral(r, (r, x)).as_dummy() Integral(_0, (_0, x)) >>> _.variables[0].is_real is None True >>> r.as_dummy() _r Notes ===== Any object that has structurally bound variables should have a property, `bound_symbols` that returns those symbols appearing in the object. """ from .symbol import Dummy, Symbol def can(x): # mask free that shadow bound free = x.free_symbols bound = set(x.bound_symbols) d = {i: Dummy() for i in bound & free} x = x.subs(d) # replace bound with canonical names x = x.xreplace(x.canonical_variables) # return after undoing masking return x.xreplace({v: k for k, v in d.items()}) if not self.has(Symbol): return self return self.replace( lambda x: hasattr(x, 'bound_symbols'), can, simultaneous=False) @property def canonical_variables(self): """Return a dictionary mapping any variable defined in ``self.bound_symbols`` to Symbols that do not clash with any free symbols in the expression. Examples ======== >>> from sympy import Lambda >>> from sympy.abc import x >>> Lambda(x, 2*x).canonical_variables {x: _0} """ if not hasattr(self, 'bound_symbols'): return {} dums = numbered_symbols('_') reps = {} # watch out for free symbol that are not in bound symbols; # those that are in bound symbols are about to get changed bound = self.bound_symbols names = {i.name for i in self.free_symbols - set(bound)} for b in bound: d = next(dums) if b.is_Symbol: while d.name in names: d = next(dums) reps[b] = d return reps def rcall(self, *args): """Apply on the argument recursively through the expression tree. This method is used to simulate a common abuse of notation for operators. For instance, in SymPy the following will not work: ``(x+Lambda(y, 2*y))(z) == x+2*z``, however, you can use: >>> from sympy import Lambda >>> from sympy.abc import x, y, z >>> (x + Lambda(y, 2*y)).rcall(z) x + 2*z """ return Basic._recursive_call(self, args) @staticmethod def _recursive_call(expr_to_call, on_args): """Helper for rcall method.""" from .symbol import Symbol def the_call_method_is_overridden(expr): for cls in getmro(type(expr)): if '__call__' in cls.__dict__: return cls != Basic if callable(expr_to_call) and the_call_method_is_overridden(expr_to_call): if isinstance(expr_to_call, Symbol): # XXX When you call a Symbol it is return expr_to_call # transformed into an UndefFunction else: return expr_to_call(*on_args) elif expr_to_call.args: args = [Basic._recursive_call( sub, on_args) for sub in expr_to_call.args] return type(expr_to_call)(*args) else: return expr_to_call def is_hypergeometric(self, k): from sympy.simplify.simplify import hypersimp from sympy.functions.elementary.piecewise import Piecewise if self.has(Piecewise): return None return hypersimp(self, k) is not None @property def is_comparable(self): """Return True if self can be computed to a real number (or already is a real number) with precision, else False. Examples ======== >>> from sympy import exp_polar, pi, I >>> (I*exp_polar(I*pi/2)).is_comparable True >>> (I*exp_polar(I*pi*2)).is_comparable False A False result does not mean that `self` cannot be rewritten into a form that would be comparable. For example, the difference computed below is zero but without simplification it does not evaluate to a zero with precision: >>> e = 2**pi*(1 + 2**pi) >>> dif = e - e.expand() >>> dif.is_comparable False >>> dif.n(2)._prec 1 """ is_extended_real = self.is_extended_real if is_extended_real is False: return False if not self.is_number: return False # don't re-eval numbers that are already evaluated since # this will create spurious precision n, i = [p.evalf(2) if not p.is_Number else p for p in self.as_real_imag()] if not (i.is_Number and n.is_Number): return False if i: # if _prec = 1 we can't decide and if not, # the answer is False because numbers with # imaginary parts can't be compared # so return False return False else: return n._prec != 1 @property def func(self): """ The top-level function in an expression. The following should hold for all objects:: >> x == x.func(*x.args) Examples ======== >>> from sympy.abc import x >>> a = 2*x >>> a.func <class 'sympy.core.mul.Mul'> >>> a.args (2, x) >>> a.func(*a.args) 2*x >>> a == a.func(*a.args) True """ return self.__class__ @property def args(self) -> 'Tuple[Basic, ...]': """Returns a tuple of arguments of 'self'. Examples ======== >>> from sympy import cot >>> from sympy.abc import x, y >>> cot(x).args (x,) >>> cot(x).args[0] x >>> (x*y).args (x, y) >>> (x*y).args[1] y Notes ===== Never use self._args, always use self.args. Only use _args in __new__ when creating a new function. Don't override .args() from Basic (so that it's easy to change the interface in the future if needed). """ return self._args @property def _sorted_args(self): """ The same as ``args``. Derived classes which do not fix an order on their arguments should override this method to produce the sorted representation. """ return self.args def as_content_primitive(self, radical=False, clear=True): """A stub to allow Basic args (like Tuple) to be skipped when computing the content and primitive components of an expression. See Also ======== sympy.core.expr.Expr.as_content_primitive """ return S.One, self def subs(self, *args, **kwargs): """ Substitutes old for new in an expression after sympifying args. `args` is either: - two arguments, e.g. foo.subs(old, new) - one iterable argument, e.g. foo.subs(iterable). The iterable may be o an iterable container with (old, new) pairs. In this case the replacements are processed in the order given with successive patterns possibly affecting replacements already made. o a dict or set whose key/value items correspond to old/new pairs. In this case the old/new pairs will be sorted by op count and in case of a tie, by number of args and the default_sort_key. The resulting sorted list is then processed as an iterable container (see previous). If the keyword ``simultaneous`` is True, the subexpressions will not be evaluated until all the substitutions have been made. Examples ======== >>> from sympy import pi, exp, limit, oo >>> from sympy.abc import x, y >>> (1 + x*y).subs(x, pi) pi*y + 1 >>> (1 + x*y).subs({x:pi, y:2}) 1 + 2*pi >>> (1 + x*y).subs([(x, pi), (y, 2)]) 1 + 2*pi >>> reps = [(y, x**2), (x, 2)] >>> (x + y).subs(reps) 6 >>> (x + y).subs(reversed(reps)) x**2 + 2 >>> (x**2 + x**4).subs(x**2, y) y**2 + y To replace only the x**2 but not the x**4, use xreplace: >>> (x**2 + x**4).xreplace({x**2: y}) x**4 + y To delay evaluation until all substitutions have been made, set the keyword ``simultaneous`` to True: >>> (x/y).subs([(x, 0), (y, 0)]) 0 >>> (x/y).subs([(x, 0), (y, 0)], simultaneous=True) nan This has the added feature of not allowing subsequent substitutions to affect those already made: >>> ((x + y)/y).subs({x + y: y, y: x + y}) 1 >>> ((x + y)/y).subs({x + y: y, y: x + y}, simultaneous=True) y/(x + y) In order to obtain a canonical result, unordered iterables are sorted by count_op length, number of arguments and by the default_sort_key to break any ties. All other iterables are left unsorted. >>> from sympy import sqrt, sin, cos >>> from sympy.abc import a, b, c, d, e >>> A = (sqrt(sin(2*x)), a) >>> B = (sin(2*x), b) >>> C = (cos(2*x), c) >>> D = (x, d) >>> E = (exp(x), e) >>> expr = sqrt(sin(2*x))*sin(exp(x)*x)*cos(2*x) + sin(2*x) >>> expr.subs(dict([A, B, C, D, E])) a*c*sin(d*e) + b The resulting expression represents a literal replacement of the old arguments with the new arguments. This may not reflect the limiting behavior of the expression: >>> (x**3 - 3*x).subs({x: oo}) nan >>> limit(x**3 - 3*x, x, oo) oo If the substitution will be followed by numerical evaluation, it is better to pass the substitution to evalf as >>> (1/x).evalf(subs={x: 3.0}, n=21) 0.333333333333333333333 rather than >>> (1/x).subs({x: 3.0}).evalf(21) 0.333333333333333314830 as the former will ensure that the desired level of precision is obtained. See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements xreplace: exact node replacement in expr tree; also capable of using matching rules sympy.core.evalf.EvalfMixin.evalf: calculates the given formula to a desired level of precision """ from .containers import Dict from .symbol import Dummy, Symbol from sympy.polys.polyutils import illegal unordered = False if len(args) == 1: sequence = args[0] if isinstance(sequence, set): unordered = True elif isinstance(sequence, (Dict, Mapping)): unordered = True sequence = sequence.items() elif not iterable(sequence): raise ValueError(filldedent(""" When a single argument is passed to subs it should be a dictionary of old: new pairs or an iterable of (old, new) tuples.""")) elif len(args) == 2: sequence = [args] else: raise ValueError("subs accepts either 1 or 2 arguments") sequence = list(sequence) for i, s in enumerate(sequence): if isinstance(s[0], str): # when old is a string we prefer Symbol s = Symbol(s[0]), s[1] try: s = [sympify(_, strict=not isinstance(_, (str, type))) for _ in s] except SympifyError: # if it can't be sympified, skip it sequence[i] = None continue # skip if there is no change sequence[i] = None if _aresame(*s) else tuple(s) sequence = list(filter(None, sequence)) simultaneous = kwargs.pop('simultaneous', False) if unordered: from .sorting import _nodes, default_sort_key sequence = dict(sequence) # order so more complex items are first and items # of identical complexity are ordered so # f(x) < f(y) < x < y # \___ 2 __/ \_1_/ <- number of nodes # # For more complex ordering use an unordered sequence. k = list(ordered(sequence, default=False, keys=( lambda x: -_nodes(x), default_sort_key, ))) sequence = [(k, sequence[k]) for k in k] # do infinities first if not simultaneous: redo = [] for i in range(len(sequence)): if sequence[i][1] in illegal: # nan, zoo and +/-oo redo.append(i) for i in reversed(redo): sequence.insert(0, sequence.pop(i)) if simultaneous: # XXX should this be the default for dict subs? reps = {} rv = self kwargs['hack2'] = True m = Dummy('subs_m') for old, new in sequence: com = new.is_commutative if com is None: com = True d = Dummy('subs_d', commutative=com) # using d*m so Subs will be used on dummy variables # in things like Derivative(f(x, y), x) in which x # is both free and bound rv = rv._subs(old, d*m, **kwargs) if not isinstance(rv, Basic): break reps[d] = new reps[m] = S.One # get rid of m return rv.xreplace(reps) else: rv = self for old, new in sequence: rv = rv._subs(old, new, **kwargs) if not isinstance(rv, Basic): break return rv @cacheit def _subs(self, old, new, **hints): """Substitutes an expression old -> new. If self is not equal to old then _eval_subs is called. If _eval_subs doesn't want to make any special replacement then a None is received which indicates that the fallback should be applied wherein a search for replacements is made amongst the arguments of self. >>> from sympy import Add >>> from sympy.abc import x, y, z Examples ======== Add's _eval_subs knows how to target x + y in the following so it makes the change: >>> (x + y + z).subs(x + y, 1) z + 1 Add's _eval_subs doesn't need to know how to find x + y in the following: >>> Add._eval_subs(z*(x + y) + 3, x + y, 1) is None True The returned None will cause the fallback routine to traverse the args and pass the z*(x + y) arg to Mul where the change will take place and the substitution will succeed: >>> (z*(x + y) + 3).subs(x + y, 1) z + 3 ** Developers Notes ** An _eval_subs routine for a class should be written if: 1) any arguments are not instances of Basic (e.g. bool, tuple); 2) some arguments should not be targeted (as in integration variables); 3) if there is something other than a literal replacement that should be attempted (as in Piecewise where the condition may be updated without doing a replacement). If it is overridden, here are some special cases that might arise: 1) If it turns out that no special change was made and all the original sub-arguments should be checked for replacements then None should be returned. 2) If it is necessary to do substitutions on a portion of the expression then _subs should be called. _subs will handle the case of any sub-expression being equal to old (which usually would not be the case) while its fallback will handle the recursion into the sub-arguments. For example, after Add's _eval_subs removes some matching terms it must process the remaining terms so it calls _subs on each of the un-matched terms and then adds them onto the terms previously obtained. 3) If the initial expression should remain unchanged then the original expression should be returned. (Whenever an expression is returned, modified or not, no further substitution of old -> new is attempted.) Sum's _eval_subs routine uses this strategy when a substitution is attempted on any of its summation variables. """ def fallback(self, old, new): """ Try to replace old with new in any of self's arguments. """ hit = False args = list(self.args) for i, arg in enumerate(args): if not hasattr(arg, '_eval_subs'): continue arg = arg._subs(old, new, **hints) if not _aresame(arg, args[i]): hit = True args[i] = arg if hit: rv = self.func(*args) hack2 = hints.get('hack2', False) if hack2 and self.is_Mul and not rv.is_Mul: # 2-arg hack coeff = S.One nonnumber = [] for i in args: if i.is_Number: coeff *= i else: nonnumber.append(i) nonnumber = self.func(*nonnumber) if coeff is S.One: return nonnumber else: return self.func(coeff, nonnumber, evaluate=False) return rv return self if _aresame(self, old): return new rv = self._eval_subs(old, new) if rv is None: rv = fallback(self, old, new) return rv def _eval_subs(self, old, new): """Override this stub if you want to do anything more than attempt a replacement of old with new in the arguments of self. See also ======== _subs """ return None def xreplace(self, rule): """ Replace occurrences of objects within the expression. Parameters ========== rule : dict-like Expresses a replacement rule Returns ======= xreplace : the result of the replacement Examples ======== >>> from sympy import symbols, pi, exp >>> x, y, z = symbols('x y z') >>> (1 + x*y).xreplace({x: pi}) pi*y + 1 >>> (1 + x*y).xreplace({x: pi, y: 2}) 1 + 2*pi Replacements occur only if an entire node in the expression tree is matched: >>> (x*y + z).xreplace({x*y: pi}) z + pi >>> (x*y*z).xreplace({x*y: pi}) x*y*z >>> (2*x).xreplace({2*x: y, x: z}) y >>> (2*2*x).xreplace({2*x: y, x: z}) 4*z >>> (x + y + 2).xreplace({x + y: 2}) x + y + 2 >>> (x + 2 + exp(x + 2)).xreplace({x + 2: y}) x + exp(y) + 2 xreplace doesn't differentiate between free and bound symbols. In the following, subs(x, y) would not change x since it is a bound symbol, but xreplace does: >>> from sympy import Integral >>> Integral(x, (x, 1, 2*x)).xreplace({x: y}) Integral(y, (y, 1, 2*y)) Trying to replace x with an expression raises an error: >>> Integral(x, (x, 1, 2*x)).xreplace({x: 2*y}) # doctest: +SKIP ValueError: Invalid limits given: ((2*y, 1, 4*y),) See Also ======== replace: replacement capable of doing wildcard-like matching, parsing of match, and conditional replacements subs: substitution of subexpressions as defined by the objects themselves. """ value, _ = self._xreplace(rule) return value def _xreplace(self, rule): """ Helper for xreplace. Tracks whether a replacement actually occurred. """ if self in rule: return rule[self], True elif rule: args = [] changed = False for a in self.args: _xreplace = getattr(a, '_xreplace', None) if _xreplace is not None: a_xr = _xreplace(rule) args.append(a_xr[0]) changed |= a_xr[1] else: args.append(a) args = tuple(args) if changed: return self.func(*args), True return self, False @cacheit def has(self, *patterns): """ Test whether any subexpression matches any of the patterns. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y, z >>> (x**2 + sin(x*y)).has(z) False >>> (x**2 + sin(x*y)).has(x, y, z) True >>> x.has(x) True Note ``has`` is a structural algorithm with no knowledge of mathematics. Consider the following half-open interval: >>> from sympy import Interval >>> i = Interval.Lopen(0, 5); i Interval.Lopen(0, 5) >>> i.args (0, 5, True, False) >>> i.has(4) # there is no "4" in the arguments False >>> i.has(0) # there *is* a "0" in the arguments True Instead, use ``contains`` to determine whether a number is in the interval or not: >>> i.contains(4) True >>> i.contains(0) False Note that ``expr.has(*patterns)`` is exactly equivalent to ``any(expr.has(p) for p in patterns)``. In particular, ``False`` is returned when the list of patterns is empty. >>> x.has() False """ return self._has(iterargs, *patterns) @cacheit def has_free(self, *patterns): """return True if self has object(s) ``x`` as a free expression else False. Examples ======== >>> from sympy import Integral, Function >>> from sympy.abc import x, y >>> f = Function('f') >>> g = Function('g') >>> expr = Integral(f(x), (f(x), 1, g(y))) >>> expr.free_symbols {y} >>> expr.has_free(g(y)) True >>> expr.has_free(*(x, f(x))) False This works for subexpressions and types, too: >>> expr.has_free(g) True >>> (x + y + 1).has_free(y + 1) True """ return self._has(iterfreeargs, *patterns) def _has(self, iterargs, *patterns): # separate out types and unhashable objects type_set = set() # only types p_set = set() # hashable non-types for p in patterns: if isinstance(p, BasicMeta): type_set.add(p) continue if not isinstance(p, Basic): try: p = _sympify(p) except SympifyError: continue # Basic won't have this in it p_set.add(p) # fails if object defines __eq__ but # doesn't define __hash__ types = tuple(type_set) # for i in iterargs(self): # if i in p_set: # <--- here, too return True if isinstance(i, types): return True # use matcher if defined, e.g. operations defines # matcher that checks for exact subset containment, # (x + y + 1).has(x + 1) -> True for i in p_set - type_set: # types don't have matchers if not hasattr(i, '_has_matcher'): continue match = i._has_matcher() if any(match(arg) for arg in iterargs(self)): return True # no success return False def replace(self, query, value, map=False, simultaneous=True, exact=None): """ Replace matching subexpressions of ``self`` with ``value``. If ``map = True`` then also return the mapping {old: new} where ``old`` was a sub-expression found with query and ``new`` is the replacement value for it. If the expression itself doesn't match the query, then the returned value will be ``self.xreplace(map)`` otherwise it should be ``self.subs(ordered(map.items()))``. Traverses an expression tree and performs replacement of matching subexpressions from the bottom to the top of the tree. The default approach is to do the replacement in a simultaneous fashion so changes made are targeted only once. If this is not desired or causes problems, ``simultaneous`` can be set to False. In addition, if an expression containing more than one Wild symbol is being used to match subexpressions and the ``exact`` flag is None it will be set to True so the match will only succeed if all non-zero values are received for each Wild that appears in the match pattern. Setting this to False accepts a match of 0; while setting it True accepts all matches that have a 0 in them. See example below for cautions. The list of possible combinations of queries and replacement values is listed below: Examples ======== Initial setup >>> from sympy import log, sin, cos, tan, Wild, Mul, Add >>> from sympy.abc import x, y >>> f = log(sin(x)) + tan(sin(x**2)) 1.1. type -> type obj.replace(type, newtype) When object of type ``type`` is found, replace it with the result of passing its argument(s) to ``newtype``. >>> f.replace(sin, cos) log(cos(x)) + tan(cos(x**2)) >>> sin(x).replace(sin, cos, map=True) (cos(x), {sin(x): cos(x)}) >>> (x*y).replace(Mul, Add) x + y 1.2. type -> func obj.replace(type, func) When object of type ``type`` is found, apply ``func`` to its argument(s). ``func`` must be written to handle the number of arguments of ``type``. >>> f.replace(sin, lambda arg: sin(2*arg)) log(sin(2*x)) + tan(sin(2*x**2)) >>> (x*y).replace(Mul, lambda *args: sin(2*Mul(*args))) sin(2*x*y) 2.1. pattern -> expr obj.replace(pattern(wild), expr(wild)) Replace subexpressions matching ``pattern`` with the expression written in terms of the Wild symbols in ``pattern``. >>> a, b = map(Wild, 'ab') >>> f.replace(sin(a), tan(a)) log(tan(x)) + tan(tan(x**2)) >>> f.replace(sin(a), tan(a/2)) log(tan(x/2)) + tan(tan(x**2/2)) >>> f.replace(sin(a), a) log(x) + tan(x**2) >>> (x*y).replace(a*x, a) y Matching is exact by default when more than one Wild symbol is used: matching fails unless the match gives non-zero values for all Wild symbols: >>> (2*x + y).replace(a*x + b, b - a) y - 2 >>> (2*x).replace(a*x + b, b - a) 2*x When set to False, the results may be non-intuitive: >>> (2*x).replace(a*x + b, b - a, exact=False) 2/x 2.2. pattern -> func obj.replace(pattern(wild), lambda wild: expr(wild)) All behavior is the same as in 2.1 but now a function in terms of pattern variables is used rather than an expression: >>> f.replace(sin(a), lambda a: sin(2*a)) log(sin(2*x)) + tan(sin(2*x**2)) 3.1. func -> func obj.replace(filter, func) Replace subexpression ``e`` with ``func(e)`` if ``filter(e)`` is True. >>> g = 2*sin(x**3) >>> g.replace(lambda expr: expr.is_Number, lambda expr: expr**2) 4*sin(x**9) The expression itself is also targeted by the query but is done in such a fashion that changes are not made twice. >>> e = x*(x*y + 1) >>> e.replace(lambda x: x.is_Mul, lambda x: 2*x) 2*x*(2*x*y + 1) When matching a single symbol, `exact` will default to True, but this may or may not be the behavior that is desired: Here, we want `exact=False`: >>> from sympy import Function >>> f = Function('f') >>> e = f(1) + f(0) >>> q = f(a), lambda a: f(a + 1) >>> e.replace(*q, exact=False) f(1) + f(2) >>> e.replace(*q, exact=True) f(0) + f(2) But here, the nature of matching makes selecting the right setting tricky: >>> e = x**(1 + y) >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**(1 + y)).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(-x - y + 1) >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=False) x >>> (x**y).replace(x**(1 + a), lambda a: x**-a, exact=True) x**(1 - y) It is probably better to use a different form of the query that describes the target expression more precisely: >>> (1 + x**(1 + y)).replace( ... lambda x: x.is_Pow and x.exp.is_Add and x.exp.args[0] == 1, ... lambda x: x.base**(1 - (x.exp - 1))) ... x**(1 - y) + 1 See Also ======== subs: substitution of subexpressions as defined by the objects themselves. xreplace: exact node replacement in expr tree; also capable of using matching rules """ try: query = _sympify(query) except SympifyError: pass try: value = _sympify(value) except SympifyError: pass if isinstance(query, type): _query = lambda expr: isinstance(expr, query) if isinstance(value, type): _value = lambda expr, result: value(*expr.args) elif callable(value): _value = lambda expr, result: value(*expr.args) else: raise TypeError( "given a type, replace() expects another " "type or a callable") elif isinstance(query, Basic): _query = lambda expr: expr.match(query) if exact is None: from .symbol import Wild exact = (len(query.atoms(Wild)) > 1) if isinstance(value, Basic): if exact: _value = lambda expr, result: (value.subs(result) if all(result.values()) else expr) else: _value = lambda expr, result: value.subs(result) elif callable(value): # match dictionary keys get the trailing underscore stripped # from them and are then passed as keywords to the callable; # if ``exact`` is True, only accept match if there are no null # values amongst those matched. if exact: _value = lambda expr, result: (value(** {str(k)[:-1]: v for k, v in result.items()}) if all(val for val in result.values()) else expr) else: _value = lambda expr, result: value(** {str(k)[:-1]: v for k, v in result.items()}) else: raise TypeError( "given an expression, replace() expects " "another expression or a callable") elif callable(query): _query = query if callable(value): _value = lambda expr, result: value(expr) else: raise TypeError( "given a callable, replace() expects " "another callable") else: raise TypeError( "first argument to replace() must be a " "type, an expression or a callable") def walk(rv, F): """Apply ``F`` to args and then to result. """ args = getattr(rv, 'args', None) if args is not None: if args: newargs = tuple([walk(a, F) for a in args]) if args != newargs: rv = rv.func(*newargs) if simultaneous: # if rv is something that was already # matched (that was changed) then skip # applying F again for i, e in enumerate(args): if rv == e and e != newargs[i]: return rv rv = F(rv) return rv mapping = {} # changes that took place def rec_replace(expr): result = _query(expr) if result or result == {}: v = _value(expr, result) if v is not None and v != expr: if map: mapping[expr] = v expr = v return expr rv = walk(self, rec_replace) return (rv, mapping) if map else rv def find(self, query, group=False): """Find all subexpressions matching a query. """ query = _make_find_query(query) results = list(filter(query, _preorder_traversal(self))) if not group: return set(results) else: groups = {} for result in results: if result in groups: groups[result] += 1 else: groups[result] = 1 return groups def count(self, query): """Count the number of matching subexpressions. """ query = _make_find_query(query) return sum(bool(query(sub)) for sub in _preorder_traversal(self)) def matches(self, expr, repl_dict=None, old=False): """ Helper method for match() that looks for a match between Wild symbols in self and expressions in expr. Examples ======== >>> from sympy import symbols, Wild, Basic >>> a, b, c = symbols('a b c') >>> x = Wild('x') >>> Basic(a + x, x).matches(Basic(a + b, c)) is None True >>> Basic(a + x, x).matches(Basic(a + b + c, b + c)) {x_: b + c} """ expr = sympify(expr) if not isinstance(expr, self.__class__): return None if repl_dict is None: repl_dict = dict() else: repl_dict = repl_dict.copy() if self == expr: return repl_dict if len(self.args) != len(expr.args): return None d = repl_dict # already a copy for arg, other_arg in zip(self.args, expr.args): if arg == other_arg: continue if arg.is_Relational: try: d = arg.xreplace(d).matches(other_arg, d, old=old) except TypeError: # Should be InvalidComparisonError when introduced d = None else: d = arg.xreplace(d).matches(other_arg, d, old=old) if d is None: return None return d def match(self, pattern, old=False): """ Pattern matching. Wild symbols match all. Return ``None`` when expression (self) does not match with pattern. Otherwise return a dictionary such that:: pattern.xreplace(self.match(pattern)) == self Examples ======== >>> from sympy import Wild, Sum >>> from sympy.abc import x, y >>> p = Wild("p") >>> q = Wild("q") >>> r = Wild("r") >>> e = (x+y)**(x+y) >>> e.match(p**p) {p_: x + y} >>> e.match(p**q) {p_: x + y, q_: x + y} >>> e = (2*x)**2 >>> e.match(p*q**r) {p_: 4, q_: x, r_: 2} >>> (p*q**r).xreplace(e.match(p*q**r)) 4*x**2 Structurally bound symbols are ignored during matching: >>> Sum(x, (x, 1, 2)).match(Sum(y, (y, 1, p))) {p_: 2} But they can be identified if desired: >>> Sum(x, (x, 1, 2)).match(Sum(q, (q, 1, p))) {p_: 2, q_: x} The ``old`` flag will give the old-style pattern matching where expressions and patterns are essentially solved to give the match. Both of the following give None unless ``old=True``: >>> (x - 2).match(p - x, old=True) {p_: 2*x - 2} >>> (2/x).match(p*x, old=True) {p_: 2/x**2} """ pattern = sympify(pattern) # match non-bound symbols canonical = lambda x: x if x.is_Symbol else x.as_dummy() m = canonical(pattern).matches(canonical(self), old=old) if m is None: return m from .symbol import Wild from .function import WildFunction wild = pattern.atoms(Wild, WildFunction) # sanity check if set(m) - wild: raise ValueError(filldedent(''' Some `matches` routine did not use a copy of repl_dict and injected unexpected symbols. Report this as an error at https://github.com/sympy/sympy/issues''')) # now see if bound symbols were requested bwild = wild - set(m) if not bwild: return m # replace free-Wild symbols in pattern with match result # so they will match but not be in the next match wpat = pattern.xreplace(m) # identify remaining bound wild w = wpat.matches(self, old=old) # add them to m if w: m.update(w) # done return m def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def doit(self, **hints): """Evaluate objects that are not evaluated by default like limits, integrals, sums and products. All objects of this kind will be evaluated recursively, unless some species were excluded via 'hints' or unless the 'deep' hint was set to 'False'. >>> from sympy import Integral >>> from sympy.abc import x >>> 2*Integral(x, x) 2*Integral(x, x) >>> (2*Integral(x, x)).doit() x**2 >>> (2*Integral(x, x)).doit(deep=False) 2*Integral(x, x) """ if hints.get('deep', True): terms = [term.doit(**hints) if isinstance(term, Basic) else term for term in self.args] return self.func(*terms) else: return self def simplify(self, **kwargs): """See the simplify function in sympy.simplify""" from sympy.simplify.simplify import simplify return simplify(self, **kwargs) def refine(self, assumption=True): """See the refine function in sympy.assumptions""" from sympy.assumptions.refine import refine return refine(self, assumption) def _eval_derivative_n_times(self, s, n): # This is the default evaluator for derivatives (as called by `diff` # and `Derivative`), it will attempt a loop to derive the expression # `n` times by calling the corresponding `_eval_derivative` method, # while leaving the derivative unevaluated if `n` is symbolic. This # method should be overridden if the object has a closed form for its # symbolic n-th derivative. from .numbers import Integer if isinstance(n, (int, Integer)): obj = self for i in range(n): obj2 = obj._eval_derivative(s) if obj == obj2 or obj2 is None: break obj = obj2 return obj2 else: return None def rewrite(self, *args, deep=True, **hints): """ Rewrite *self* using a defined rule. Rewriting transforms an expression to another, which is mathematically equivalent but structurally different. For example you can rewrite trigonometric functions as complex exponentials or combinatorial functions as gamma function. This method takes a *pattern* and a *rule* as positional arguments. *pattern* is optional parameter which defines the types of expressions that will be transformed. If it is not passed, all possible expressions will be rewritten. *rule* defines how the expression will be rewritten. Parameters ========== args : *rule*, or *pattern* and *rule*. - *pattern* is a type or an iterable of types. - *rule* can be any object. deep : bool, optional. If ``True``, subexpressions are recursively transformed. Default is ``True``. Examples ======== If *pattern* is unspecified, all possible expressions are transformed. >>> from sympy import cos, sin, exp, I >>> from sympy.abc import x >>> expr = cos(x) + I*sin(x) >>> expr.rewrite(exp) exp(I*x) Pattern can be a type or an iterable of types. >>> expr.rewrite(sin, exp) exp(I*x)/2 + cos(x) - exp(-I*x)/2 >>> expr.rewrite([cos,], exp) exp(I*x)/2 + I*sin(x) + exp(-I*x)/2 >>> expr.rewrite([cos, sin], exp) exp(I*x) Rewriting behavior can be implemented by defining ``_eval_rewrite()`` method. >>> from sympy import Expr, sqrt, pi >>> class MySin(Expr): ... def _eval_rewrite(self, rule, args, **hints): ... x, = args ... if rule == cos: ... return cos(pi/2 - x, evaluate=False) ... if rule == sqrt: ... return sqrt(1 - cos(x)**2) >>> MySin(MySin(x)).rewrite(cos) cos(-cos(-x + pi/2) + pi/2) >>> MySin(x).rewrite(sqrt) sqrt(1 - cos(x)**2) Defining ``_eval_rewrite_as_[...]()`` method is supported for backwards compatibility reason. This may be removed in the future and using it is discouraged. >>> class MySin(Expr): ... def _eval_rewrite_as_cos(self, *args, **hints): ... x, = args ... return cos(pi/2 - x, evaluate=False) >>> MySin(x).rewrite(cos) cos(-x + pi/2) """ if not args: return self hints.update(deep=deep) pattern = args[:-1] rule = args[-1] # support old design by _eval_rewrite_as_[...] method if isinstance(rule, str): method = "_eval_rewrite_as_%s" % rule elif hasattr(rule, "__name__"): # rule is class or function clsname = rule.__name__ method = "_eval_rewrite_as_%s" % clsname else: # rule is instance clsname = rule.__class__.__name__ method = "_eval_rewrite_as_%s" % clsname if pattern: if iterable(pattern[0]): pattern = pattern[0] pattern = tuple(p for p in pattern if self.has(p)) if not pattern: return self # hereafter, empty pattern is interpreted as all pattern. return self._rewrite(pattern, rule, method, **hints) def _rewrite(self, pattern, rule, method, **hints): deep = hints.pop('deep', True) if deep: args = [a._rewrite(pattern, rule, method, **hints) for a in self.args] else: args = self.args if not pattern or any(isinstance(self, p) for p in pattern): meth = getattr(self, method, None) if meth is not None: rewritten = meth(*args, **hints) else: rewritten = self._eval_rewrite(rule, args, **hints) if rewritten is not None: return rewritten if not args: return self return self.func(*args) def _eval_rewrite(self, rule, args, **hints): return None _constructor_postprocessor_mapping = {} # type: ignore @classmethod def _exec_constructor_postprocessors(cls, obj): # WARNING: This API is experimental. # This is an experimental API that introduces constructor # postprosessors for SymPy Core elements. If an argument of a SymPy # expression has a `_constructor_postprocessor_mapping` attribute, it will # be interpreted as a dictionary containing lists of postprocessing # functions for matching expression node names. clsname = obj.__class__.__name__ postprocessors = defaultdict(list) for i in obj.args: try: postprocessor_mappings = ( Basic._constructor_postprocessor_mapping[cls].items() for cls in type(i).mro() if cls in Basic._constructor_postprocessor_mapping ) for k, v in chain.from_iterable(postprocessor_mappings): postprocessors[k].extend([j for j in v if j not in postprocessors[k]]) except TypeError: pass for f in postprocessors.get(clsname, []): obj = f(obj) return obj def _sage_(self): """ Convert *self* to a symbolic expression of SageMath. This version of the method is merely a placeholder. """ old_method = self._sage_ from sage.interfaces.sympy import sympy_init sympy_init() # may monkey-patch _sage_ method into self's class or superclasses if old_method == self._sage_: raise NotImplementedError('conversion to SageMath is not implemented') else: # call the freshly monkey-patched method return self._sage_() def could_extract_minus_sign(self): return False # see Expr.could_extract_minus_sign class Atom(Basic): """ A parent class for atomic things. An atom is an expression with no subexpressions. Examples ======== Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_Atom = True __slots__ = () def matches(self, expr, repl_dict=None, old=False): if self == expr: if repl_dict is None: return dict() return repl_dict.copy() def xreplace(self, rule, hack2=False): return rule.get(self, self) def doit(self, **hints): return self @classmethod def class_key(cls): return 2, 0, cls.__name__ @cacheit def sort_key(self, order=None): return self.class_key(), (1, (str(self),)), S.One.sort_key(), S.One def _eval_simplify(self, **kwargs): return self @property def _sorted_args(self): # this is here as a safeguard against accidentally using _sorted_args # on Atoms -- they cannot be rebuilt as atom.func(*atom._sorted_args) # since there are no args. So the calling routine should be checking # to see that this property is not called for Atoms. raise AttributeError('Atoms have no args. It might be necessary' ' to make a check for Atoms in the calling code.') def _aresame(a, b): """Return True if a and b are structurally the same, else False. Examples ======== In SymPy (as in Python) two numbers compare the same if they have the same underlying base-2 representation even though they may not be the same type: >>> from sympy import S >>> 2.0 == S(2) True >>> 0.5 == S.Half True This routine was written to provide a query for such cases that would give false when the types do not match: >>> from sympy.core.basic import _aresame >>> _aresame(S(2.0), S(2)) False """ from .numbers import Number from .function import AppliedUndef, UndefinedFunction as UndefFunc if isinstance(a, Number) and isinstance(b, Number): return a == b and a.__class__ == b.__class__ for i, j in zip_longest(_preorder_traversal(a), _preorder_traversal(b)): if i != j or type(i) != type(j): if ((isinstance(i, UndefFunc) and isinstance(j, UndefFunc)) or (isinstance(i, AppliedUndef) and isinstance(j, AppliedUndef))): if i.class_key() != j.class_key(): return False else: return False return True def _ne(a, b): # use this as a second test after `a != b` if you want to make # sure that things are truly equal, e.g. # a, b = 0.5, S.Half # a !=b or _ne(a, b) -> True from .numbers import Number # 0.5 == S.Half if isinstance(a, Number) and isinstance(b, Number): return a.__class__ != b.__class__ def _atomic(e, recursive=False): """Return atom-like quantities as far as substitution is concerned: Derivatives, Functions and Symbols. Don't return any 'atoms' that are inside such quantities unless they also appear outside, too, unless `recursive` is True. Examples ======== >>> from sympy import Derivative, Function, cos >>> from sympy.abc import x, y >>> from sympy.core.basic import _atomic >>> f = Function('f') >>> _atomic(x + y) {x, y} >>> _atomic(x + f(y)) {x, f(y)} >>> _atomic(Derivative(f(x), x) + cos(x) + y) {y, cos(x), Derivative(f(x), x)} """ pot = _preorder_traversal(e) seen = set() if isinstance(e, Basic): free = getattr(e, "free_symbols", None) if free is None: return {e} else: return set() from .symbol import Symbol from .function import Derivative, Function atoms = set() for p in pot: if p in seen: pot.skip() continue seen.add(p) if isinstance(p, Symbol) and p in free: atoms.add(p) elif isinstance(p, (Derivative, Function)): if not recursive: pot.skip() atoms.add(p) return atoms def _make_find_query(query): """Convert the argument of Basic.find() into a callable""" try: query = _sympify(query) except SympifyError: pass if isinstance(query, type): return lambda expr: isinstance(expr, query) elif isinstance(query, Basic): return lambda expr: expr.match(query) is not None return query # Delayed to avoid cyclic import from .singleton import S from .traversal import (preorder_traversal as _preorder_traversal, iterargs, iterfreeargs) preorder_traversal = deprecated( useinstead="sympy.core.traversal.preorder_traversal", deprecated_since_version="1.10", issue=22288)(_preorder_traversal)
67cef720dc569c7bbefa767fe872621054b1b995d6bdf56ce3219c6153fd069f
from typing import Callable, Tuple as tTuple from math import log as _log, sqrt as _sqrt from itertools import product from .sympify import _sympify from .cache import cacheit from .singleton import S from .expr import Expr from .evalf import PrecisionExhausted from .function import (expand_complex, expand_multinomial, expand_mul, _mexpand, PoleError) from .logic import fuzzy_bool, fuzzy_not, fuzzy_and, fuzzy_or from .parameters import global_parameters from .relational import is_gt, is_lt from .kind import NumberKind, UndefinedKind from sympy.external.gmpy import HAS_GMPY, gmpy from sympy.utilities.iterables import sift from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import as_int from sympy.multipledispatch import Dispatcher from mpmath.libmp import sqrtrem as mpmath_sqrtrem def isqrt(n): """Return the largest integer less than or equal to sqrt(n).""" if n < 0: raise ValueError("n must be nonnegative") n = int(n) # Fast path: with IEEE 754 binary64 floats and a correctly-rounded # math.sqrt, int(math.sqrt(n)) works for any integer n satisfying 0 <= n < # 4503599761588224 = 2**52 + 2**27. But Python doesn't guarantee either # IEEE 754 format floats *or* correct rounding of math.sqrt, so check the # answer and fall back to the slow method if necessary. if n < 4503599761588224: s = int(_sqrt(n)) if 0 <= n - s*s <= 2*s: return s return integer_nthroot(n, 2)[0] def integer_nthroot(y, n): """ Return a tuple containing x = floor(y**(1/n)) and a boolean indicating whether the result is exact (that is, whether x**n == y). Examples ======== >>> from sympy import integer_nthroot >>> integer_nthroot(16, 2) (4, True) >>> integer_nthroot(26, 2) (5, False) To simply determine if a number is a perfect square, the is_square function should be used: >>> from sympy.ntheory.primetest import is_square >>> is_square(26) False See Also ======== sympy.ntheory.primetest.is_square integer_log """ y, n = as_int(y), as_int(n) if y < 0: raise ValueError("y must be nonnegative") if n < 1: raise ValueError("n must be positive") if HAS_GMPY and n < 2**63: # Currently it works only for n < 2**63, else it produces TypeError # sympy issue: https://github.com/sympy/sympy/issues/18374 # gmpy2 issue: https://github.com/aleaxit/gmpy/issues/257 if HAS_GMPY >= 2: x, t = gmpy.iroot(y, n) else: x, t = gmpy.root(y, n) return as_int(x), bool(t) return _integer_nthroot_python(y, n) def _integer_nthroot_python(y, n): if y in (0, 1): return y, True if n == 1: return y, True if n == 2: x, rem = mpmath_sqrtrem(y) return int(x), not rem if n > y: return 1, False # Get initial estimate for Newton's method. Care must be taken to # avoid overflow try: guess = int(y**(1./n) + 0.5) except OverflowError: exp = _log(y, 2)/n if exp > 53: shift = int(exp - 53) guess = int(2.0**(exp - shift) + 1) << shift else: guess = int(2.0**exp) if guess > 2**50: # Newton iteration xprev, x = -1, guess while 1: t = x**(n - 1) xprev, x = x, ((n - 1)*x + y//t)//n if abs(x - xprev) < 2: break else: x = guess # Compensate t = x**n while t < y: x += 1 t = x**n while t > y: x -= 1 t = x**n return int(x), t == y # int converts long to int if possible def integer_log(y, x): r""" Returns ``(e, bool)`` where e is the largest nonnegative integer such that :math:`|y| \geq |x^e|` and ``bool`` is True if $y = x^e$. Examples ======== >>> from sympy import integer_log >>> integer_log(125, 5) (3, True) >>> integer_log(17, 9) (1, False) >>> integer_log(4, -2) (2, True) >>> integer_log(-125,-5) (3, True) See Also ======== integer_nthroot sympy.ntheory.primetest.is_square sympy.ntheory.factor_.multiplicity sympy.ntheory.factor_.perfect_power """ if x == 1: raise ValueError('x cannot take value as 1') if y == 0: raise ValueError('y cannot take value as 0') if x in (-2, 2): x = int(x) y = as_int(y) e = y.bit_length() - 1 return e, x**e == y if x < 0: n, b = integer_log(y if y > 0 else -y, -x) return n, b and bool(n % 2 if y < 0 else not n % 2) x = as_int(x) y = as_int(y) r = e = 0 while y >= x: d = x m = 1 while y >= d: y, rem = divmod(y, d) r = r or rem e += m if y > d: d *= d m *= 2 return e, r == 0 and y == 1 class Pow(Expr): """ Defines the expression x**y as "x raised to a power y" Singleton definitions involving (0, 1, -1, oo, -oo, I, -I): +--------------+---------+-----------------------------------------------+ | expr | value | reason | +==============+=========+===============================================+ | z**0 | 1 | Although arguments over 0**0 exist, see [2]. | +--------------+---------+-----------------------------------------------+ | z**1 | z | | +--------------+---------+-----------------------------------------------+ | (-oo)**(-1) | 0 | | +--------------+---------+-----------------------------------------------+ | (-1)**-1 | -1 | | +--------------+---------+-----------------------------------------------+ | S.Zero**-1 | zoo | This is not strictly true, as 0**-1 may be | | | | undefined, but is convenient in some contexts | | | | where the base is assumed to be positive. | +--------------+---------+-----------------------------------------------+ | 1**-1 | 1 | | +--------------+---------+-----------------------------------------------+ | oo**-1 | 0 | | +--------------+---------+-----------------------------------------------+ | 0**oo | 0 | Because for all complex numbers z near | | | | 0, z**oo -> 0. | +--------------+---------+-----------------------------------------------+ | 0**-oo | zoo | This is not strictly true, as 0**oo may be | | | | oscillating between positive and negative | | | | values or rotating in the complex plane. | | | | It is convenient, however, when the base | | | | is positive. | +--------------+---------+-----------------------------------------------+ | 1**oo | nan | Because there are various cases where | | 1**-oo | | lim(x(t),t)=1, lim(y(t),t)=oo (or -oo), | | | | but lim( x(t)**y(t), t) != 1. See [3]. | +--------------+---------+-----------------------------------------------+ | b**zoo | nan | Because b**z has no limit as z -> zoo | +--------------+---------+-----------------------------------------------+ | (-1)**oo | nan | Because of oscillations in the limit. | | (-1)**(-oo) | | | +--------------+---------+-----------------------------------------------+ | oo**oo | oo | | +--------------+---------+-----------------------------------------------+ | oo**-oo | 0 | | +--------------+---------+-----------------------------------------------+ | (-oo)**oo | nan | | | (-oo)**-oo | | | +--------------+---------+-----------------------------------------------+ | oo**I | nan | oo**e could probably be best thought of as | | (-oo)**I | | the limit of x**e for real x as x tends to | | | | oo. If e is I, then the limit does not exist | | | | and nan is used to indicate that. | +--------------+---------+-----------------------------------------------+ | oo**(1+I) | zoo | If the real part of e is positive, then the | | (-oo)**(1+I) | | limit of abs(x**e) is oo. So the limit value | | | | is zoo. | +--------------+---------+-----------------------------------------------+ | oo**(-1+I) | 0 | If the real part of e is negative, then the | | -oo**(-1+I) | | limit is 0. | +--------------+---------+-----------------------------------------------+ Because symbolic computations are more flexible than floating point calculations and we prefer to never return an incorrect answer, we choose not to conform to all IEEE 754 conventions. This helps us avoid extra test-case code in the calculation of limits. See Also ======== sympy.core.numbers.Infinity sympy.core.numbers.NegativeInfinity sympy.core.numbers.NaN References ========== .. [1] https://en.wikipedia.org/wiki/Exponentiation .. [2] https://en.wikipedia.org/wiki/Exponentiation#Zero_to_the_power_of_zero .. [3] https://en.wikipedia.org/wiki/Indeterminate_forms """ is_Pow = True __slots__ = ('is_commutative',) args: tTuple[Expr, Expr] @cacheit def __new__(cls, b, e, evaluate=None): if evaluate is None: evaluate = global_parameters.evaluate from sympy.functions.elementary.exponential import exp_polar b = _sympify(b) e = _sympify(e) # XXX: This can be removed when non-Expr args are disallowed rather # than deprecated. from .relational import Relational if isinstance(b, Relational) or isinstance(e, Relational): raise TypeError('Relational cannot be used in Pow') # XXX: This should raise TypeError once deprecation period is over: if not (isinstance(b, Expr) and isinstance(e, Expr)): SymPyDeprecationWarning( feature="Pow with non-Expr args", useinstead="Expr args", issue=19445, deprecated_since_version="1.7" ).warn() if evaluate: if e is S.ComplexInfinity: return S.NaN if e is S.Infinity: if is_gt(b, S.One): return S.Infinity if is_gt(b, S.NegativeOne) and is_lt(b, S.One): return S.Zero if is_lt(b, S.NegativeOne): if b.is_finite: return S.ComplexInfinity if b.is_finite is False: return S.NaN if e is S.Zero: return S.One elif e is S.One: return b elif e == -1 and not b: return S.ComplexInfinity elif e.__class__.__name__ == "AccumulationBounds": if b == S.Exp1: from sympy.calculus.accumulationbounds import AccumBounds return AccumBounds(Pow(b, e.min), Pow(b, e.max)) # autosimplification if base is a number and exp odd/even # if base is Number then the base will end up positive; we # do not do this with arbitrary expressions since symbolic # cancellation might occur as in (x - 1)/(1 - x) -> -1. If # we returned Piecewise((-1, Ne(x, 1))) for such cases then # we could do this...but we don't elif (e.is_Symbol and e.is_integer or e.is_Integer ) and (b.is_number and b.is_Mul or b.is_Number ) and b.could_extract_minus_sign(): if e.is_even: b = -b elif e.is_odd: return -Pow(-b, e) if S.NaN in (b, e): # XXX S.NaN**x -> S.NaN under assumption that x != 0 return S.NaN elif b is S.One: if abs(e).is_infinite: return S.NaN return S.One else: # recognize base as E if not e.is_Atom and b is not S.Exp1 and not isinstance(b, exp_polar): from .exprtools import factor_terms from sympy.functions.elementary.exponential import log from sympy.simplify.radsimp import fraction c, ex = factor_terms(e, sign=False).as_coeff_Mul() num, den = fraction(ex) if isinstance(den, log) and den.args[0] == b: return S.Exp1**(c*num) elif den.is_Add: from sympy.functions.elementary.complexes import sign, im s = sign(im(b)) if s.is_Number and s and den == \ log(-factor_terms(b, sign=False)) + s*S.ImaginaryUnit*S.Pi: return S.Exp1**(c*num) obj = b._eval_power(e) if obj is not None: return obj obj = Expr.__new__(cls, b, e) obj = cls._exec_constructor_postprocessors(obj) if not isinstance(obj, Pow): return obj obj.is_commutative = (b.is_commutative and e.is_commutative) return obj def inverse(self, argindex=1): if self.base == S.Exp1: from sympy.functions.elementary.exponential import log return log return None @property def base(self): return self._args[0] @property def exp(self): return self._args[1] @property def kind(self): if self.exp.kind is NumberKind: return self.base.kind else: return UndefinedKind @classmethod def class_key(cls): return 3, 2, cls.__name__ def _eval_refine(self, assumptions): from sympy.assumptions.ask import ask, Q b, e = self.as_base_exp() if ask(Q.integer(e), assumptions) and b.could_extract_minus_sign(): if ask(Q.even(e), assumptions): return Pow(-b, e) elif ask(Q.odd(e), assumptions): return -Pow(-b, e) def _eval_power(self, other): b, e = self.as_base_exp() if b is S.NaN: return (b**e)**other # let __new__ handle it s = None if other.is_integer: s = 1 elif b.is_polar: # e.g. exp_polar, besselj, var('p', polar=True)... s = 1 elif e.is_extended_real is not None: from sympy.functions.elementary.complexes import arg, im, re, sign from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import floor # helper functions =========================== def _half(e): """Return True if the exponent has a literal 2 as the denominator, else None.""" if getattr(e, 'q', None) == 2: return True n, d = e.as_numer_denom() if n.is_integer and d == 2: return True def _n2(e): """Return ``e`` evaluated to a Number with 2 significant digits, else None.""" try: rv = e.evalf(2, strict=True) if rv.is_Number: return rv except PrecisionExhausted: pass # =================================================== if e.is_extended_real: # we need _half(other) with constant floor or # floor(S.Half - e*arg(b)/2/pi) == 0 # handle -1 as special case if e == -1: # floor arg. is 1/2 + arg(b)/2/pi if _half(other): if b.is_negative is True: return S.NegativeOne**other*Pow(-b, e*other) elif b.is_negative is False: # XXX ok if im(b) != 0? return Pow(b, -other) elif e.is_even: if b.is_extended_real: b = abs(b) if b.is_imaginary: b = abs(im(b))*S.ImaginaryUnit if (abs(e) < 1) == True or e == 1: s = 1 # floor = 0 elif b.is_extended_nonnegative: s = 1 # floor = 0 elif re(b).is_extended_nonnegative and (abs(e) < 2) == True: s = 1 # floor = 0 elif fuzzy_not(im(b).is_zero) and abs(e) == 2: s = 1 # floor = 0 elif _half(other): s = exp(2*S.Pi*S.ImaginaryUnit*other*floor( S.Half - e*arg(b)/(2*S.Pi))) if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None else: # e.is_extended_real is False requires: # _half(other) with constant floor or # floor(S.Half - im(e*log(b))/2/pi) == 0 try: s = exp(2*S.ImaginaryUnit*S.Pi*other* floor(S.Half - im(e*log(b))/2/S.Pi)) # be careful to test that s is -1 or 1 b/c sign(I) == I: # so check that s is real if s.is_extended_real and _n2(sign(s) - s) == 0: s = sign(s) else: s = None except PrecisionExhausted: s = None if s is not None: return s*Pow(b, e*other) def _eval_Mod(self, q): r"""A dispatched function to compute `b^e \bmod q`, dispatched by ``Mod``. Notes ===== Algorithms: 1. For unevaluated integer power, use built-in ``pow`` function with 3 arguments, if powers are not too large wrt base. 2. For very large powers, use totient reduction if e >= lg(m). Bound on m, is for safe factorization memory wise ie m^(1/4). For pollard-rho to be faster than built-in pow lg(e) > m^(1/4) check is added. 3. For any unevaluated power found in `b` or `e`, the step 2 will be recursed down to the base and the exponent such that the `b \bmod q` becomes the new base and ``\phi(q) + e \bmod \phi(q)`` becomes the new exponent, and then the computation for the reduced expression can be done. """ base, exp = self.base, self.exp if exp.is_integer and exp.is_positive: if q.is_integer and base % q == 0: return S.Zero from sympy.ntheory.factor_ import totient if base.is_Integer and exp.is_Integer and q.is_Integer: b, e, m = int(base), int(exp), int(q) mb = m.bit_length() if mb <= 80 and e >= mb and e.bit_length()**4 >= m: phi = totient(m) return Integer(pow(b, phi + e%phi, m)) return Integer(pow(b, e, m)) from .mod import Mod if isinstance(base, Pow) and base.is_integer and base.is_number: base = Mod(base, q) return Mod(Pow(base, exp, evaluate=False), q) if isinstance(exp, Pow) and exp.is_integer and exp.is_number: bit_length = int(q).bit_length() # XXX Mod-Pow actually attempts to do a hanging evaluation # if this dispatched function returns None. # May need some fixes in the dispatcher itself. if bit_length <= 80: phi = totient(q) exp = phi + Mod(exp, phi) return Mod(Pow(base, exp, evaluate=False), q) def _eval_is_even(self): if self.exp.is_integer and self.exp.is_positive: return self.base.is_even def _eval_is_negative(self): ext_neg = Pow._eval_is_extended_negative(self) if ext_neg is True: return self.is_finite return ext_neg def _eval_is_positive(self): ext_pos = Pow._eval_is_extended_positive(self) if ext_pos is True: return self.is_finite return ext_pos def _eval_is_extended_positive(self): if self.base == self.exp: if self.base.is_extended_nonnegative: return True elif self.base.is_positive: if self.exp.is_real: return True elif self.base.is_extended_negative: if self.exp.is_even: return True if self.exp.is_odd: return False elif self.base.is_zero: if self.exp.is_extended_real: return self.exp.is_zero elif self.base.is_extended_nonpositive: if self.exp.is_odd: return False elif self.base.is_imaginary: if self.exp.is_integer: m = self.exp % 4 if m.is_zero: return True if m.is_integer and m.is_zero is False: return False if self.exp.is_imaginary: from sympy.functions.elementary.exponential import log return log(self.base).is_imaginary def _eval_is_extended_negative(self): if self.exp is S.Half: if self.base.is_complex or self.base.is_extended_real: return False if self.base.is_extended_negative: if self.exp.is_odd and self.base.is_finite: return True if self.exp.is_even: return False elif self.base.is_extended_positive: if self.exp.is_extended_real: return False elif self.base.is_zero: if self.exp.is_extended_real: return False elif self.base.is_extended_nonnegative: if self.exp.is_extended_nonnegative: return False elif self.base.is_extended_nonpositive: if self.exp.is_even: return False elif self.base.is_extended_real: if self.exp.is_even: return False def _eval_is_zero(self): if self.base.is_zero: if self.exp.is_extended_positive: return True elif self.exp.is_extended_nonpositive: return False elif self.base == S.Exp1: return self.exp is S.NegativeInfinity elif self.base.is_zero is False: if self.base.is_finite and self.exp.is_finite: return False elif self.exp.is_negative: return self.base.is_infinite elif self.exp.is_nonnegative: return False elif self.exp.is_infinite and self.exp.is_extended_real: if (1 - abs(self.base)).is_extended_positive: return self.exp.is_extended_positive elif (1 - abs(self.base)).is_extended_negative: return self.exp.is_extended_negative elif self.base.is_finite and self.exp.is_negative: # when self.base.is_zero is None return False def _eval_is_integer(self): b, e = self.args if b.is_rational: if b.is_integer is False and e.is_positive: return False # rat**nonneg if b.is_integer and e.is_integer: if b is S.NegativeOne: return True if e.is_nonnegative or e.is_positive: return True if b.is_integer and e.is_negative and (e.is_finite or e.is_integer): if fuzzy_not((b - 1).is_zero) and fuzzy_not((b + 1).is_zero): return False if b.is_Number and e.is_Number: check = self.func(*self.args) return check.is_Integer if e.is_negative and b.is_positive and (b - 1).is_positive: return False if e.is_negative and b.is_negative and (b + 1).is_negative: return False def _eval_is_extended_real(self): if self.base is S.Exp1: if self.exp.is_extended_real: return True elif self.exp.is_imaginary: return (2*S.ImaginaryUnit*self.exp/S.Pi).is_even from sympy.functions.elementary.exponential import log, exp real_b = self.base.is_extended_real if real_b is None: if self.base.func == exp and self.base.exp.is_imaginary: return self.exp.is_imaginary if self.base.func == Pow and self.base.base is S.Exp1 and self.base.exp.is_imaginary: return self.exp.is_imaginary return real_e = self.exp.is_extended_real if real_e is None: return if real_b and real_e: if self.base.is_extended_positive: return True elif self.base.is_extended_nonnegative and self.exp.is_extended_nonnegative: return True elif self.exp.is_integer and self.base.is_extended_nonzero: return True elif self.exp.is_integer and self.exp.is_nonnegative: return True elif self.base.is_extended_negative: if self.exp.is_Rational: return False if real_e and self.exp.is_extended_negative and self.base.is_zero is False: return Pow(self.base, -self.exp).is_extended_real im_b = self.base.is_imaginary im_e = self.exp.is_imaginary if im_b: if self.exp.is_integer: if self.exp.is_even: return True elif self.exp.is_odd: return False elif im_e and log(self.base).is_imaginary: return True elif self.exp.is_Add: c, a = self.exp.as_coeff_Add() if c and c.is_Integer: return Mul( self.base**c, self.base**a, evaluate=False).is_extended_real elif self.base in (-S.ImaginaryUnit, S.ImaginaryUnit): if (self.exp/2).is_integer is False: return False if real_b and im_e: if self.base is S.NegativeOne: return True c = self.exp.coeff(S.ImaginaryUnit) if c: if self.base.is_rational and c.is_rational: if self.base.is_nonzero and (self.base - 1).is_nonzero and c.is_nonzero: return False ok = (c*log(self.base)/S.Pi).is_integer if ok is not None: return ok if real_b is False: # we already know it's not imag from sympy.functions.elementary.complexes import arg i = arg(self.base)*self.exp/S.Pi if i.is_complex: # finite return i.is_integer def _eval_is_complex(self): if self.base == S.Exp1: return fuzzy_or([self.exp.is_complex, self.exp.is_extended_negative]) if all(a.is_complex for a in self.args) and self._eval_is_finite(): return True def _eval_is_imaginary(self): if self.base.is_imaginary: if self.exp.is_integer: odd = self.exp.is_odd if odd is not None: return odd return if self.base == S.Exp1: f = 2 * self.exp / (S.Pi*S.ImaginaryUnit) # exp(pi*integer) = 1 or -1, so not imaginary if f.is_even: return False # exp(pi*integer + pi/2) = I or -I, so it is imaginary if f.is_odd: return True return None if self.exp.is_imaginary: from sympy.functions.elementary.exponential import log imlog = log(self.base).is_imaginary if imlog is not None: return False # I**i -> real; (2*I)**i -> complex ==> not imaginary if self.base.is_extended_real and self.exp.is_extended_real: if self.base.is_positive: return False else: rat = self.exp.is_rational if not rat: return rat if self.exp.is_integer: return False else: half = (2*self.exp).is_integer if half: return self.base.is_negative return half if self.base.is_extended_real is False: # we already know it's not imag from sympy.functions.elementary.complexes import arg i = arg(self.base)*self.exp/S.Pi isodd = (2*i).is_odd if isodd is not None: return isodd def _eval_is_odd(self): if self.exp.is_integer: if self.exp.is_positive: return self.base.is_odd elif self.exp.is_nonnegative and self.base.is_odd: return True elif self.base is S.NegativeOne: return True def _eval_is_finite(self): if self.exp.is_negative: if self.base.is_zero: return False if self.base.is_infinite or self.base.is_nonzero: return True c1 = self.base.is_finite if c1 is None: return c2 = self.exp.is_finite if c2 is None: return if c1 and c2: if self.exp.is_nonnegative or fuzzy_not(self.base.is_zero): return True def _eval_is_prime(self): ''' An integer raised to the n(>=2)-th power cannot be a prime. ''' if self.base.is_integer and self.exp.is_integer and (self.exp - 1).is_positive: return False def _eval_is_composite(self): """ A power is composite if both base and exponent are greater than 1 """ if (self.base.is_integer and self.exp.is_integer and ((self.base - 1).is_positive and (self.exp - 1).is_positive or (self.base + 1).is_negative and self.exp.is_positive and self.exp.is_even)): return True def _eval_is_polar(self): return self.base.is_polar def _eval_subs(self, old, new): from sympy.calculus.accumulationbounds import AccumBounds if isinstance(self.exp, AccumBounds): b = self.base.subs(old, new) e = self.exp.subs(old, new) if isinstance(e, AccumBounds): return e.__rpow__(b) return self.func(b, e) from sympy.functions.elementary.exponential import exp, log def _check(ct1, ct2, old): """Return (bool, pow, remainder_pow) where, if bool is True, then the exponent of Pow `old` will combine with `pow` so the substitution is valid, otherwise bool will be False. For noncommutative objects, `pow` will be an integer, and a factor `Pow(old.base, remainder_pow)` needs to be included. If there is no such factor, None is returned. For commutative objects, remainder_pow is always None. cti are the coefficient and terms of an exponent of self or old In this _eval_subs routine a change like (b**(2*x)).subs(b**x, y) will give y**2 since (b**x)**2 == b**(2*x); if that equality does not hold then the substitution should not occur so `bool` will be False. """ coeff1, terms1 = ct1 coeff2, terms2 = ct2 if terms1 == terms2: if old.is_commutative: # Allow fractional powers for commutative objects pow = coeff1/coeff2 try: as_int(pow, strict=False) combines = True except ValueError: b, e = old.as_base_exp() # These conditions ensure that (b**e)**f == b**(e*f) for any f combines = b.is_positive and e.is_real or b.is_nonnegative and e.is_nonnegative return combines, pow, None else: # With noncommutative symbols, substitute only integer powers if not isinstance(terms1, tuple): terms1 = (terms1,) if not all(term.is_integer for term in terms1): return False, None, None try: # Round pow toward zero pow, remainder = divmod(as_int(coeff1), as_int(coeff2)) if pow < 0 and remainder != 0: pow += 1 remainder -= as_int(coeff2) if remainder == 0: remainder_pow = None else: remainder_pow = Mul(remainder, *terms1) return True, pow, remainder_pow except ValueError: # Can't substitute pass return False, None, None if old == self.base or (old == exp and self.base == S.Exp1): if new.is_Function and isinstance(new, Callable): return new(self.exp._subs(old, new)) else: return new**self.exp._subs(old, new) # issue 10829: (4**x - 3*y + 2).subs(2**x, y) -> y**2 - 3*y + 2 if isinstance(old, self.func) and self.exp == old.exp: l = log(self.base, old.base) if l.is_Number: return Pow(new, l) if isinstance(old, self.func) and self.base == old.base: if self.exp.is_Add is False: ct1 = self.exp.as_independent(Symbol, as_Add=False) ct2 = old.exp.as_independent(Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: # issue 5180: (x**(6*y)).subs(x**(3*y),z)->z**2 result = self.func(new, pow) if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result else: # b**(6*x + a).subs(b**(3*x), y) -> y**2 * b**a # exp(exp(x) + exp(x**2)).subs(exp(exp(x)), w) -> w * exp(exp(x**2)) oarg = old.exp new_l = [] o_al = [] ct2 = oarg.as_coeff_mul() for a in self.exp.args: newa = a._subs(old, new) ct1 = newa.as_coeff_mul() ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: new_l.append(new**pow) if remainder_pow is not None: o_al.append(remainder_pow) continue elif not old.is_commutative and not newa.is_integer: # If any term in the exponent is non-integer, # we do not do any substitutions in the noncommutative case return o_al.append(newa) if new_l: expo = Add(*o_al) new_l.append(Pow(self.base, expo, evaluate=False) if expo != 1 else self.base) return Mul(*new_l) if (isinstance(old, exp) or (old.is_Pow and old.base is S.Exp1)) and self.exp.is_extended_real and self.base.is_positive: ct1 = old.exp.as_independent(Symbol, as_Add=False) ct2 = (self.exp*log(self.base)).as_independent( Symbol, as_Add=False) ok, pow, remainder_pow = _check(ct1, ct2, old) if ok: result = self.func(new, pow) # (2**x).subs(exp(x*log(2)), z) -> z if remainder_pow is not None: result = Mul(result, Pow(old.base, remainder_pow)) return result def as_base_exp(self): """Return base and exp of self. Explanation =========== If base is 1/Integer, then return Integer, -exp. If this extra processing is not needed, the base and exp properties will give the raw arguments Examples ======== >>> from sympy import Pow, S >>> p = Pow(S.Half, 2, evaluate=False) >>> p.as_base_exp() (2, -2) >>> p.args (1/2, 2) """ b, e = self.args if b.is_Rational and b.p == 1 and b.q != 1: return Integer(b.q), -e return b, e def _eval_adjoint(self): from sympy.functions.elementary.complexes import adjoint i, p = self.exp.is_integer, self.base.is_positive if i: return adjoint(self.base)**self.exp if p: return self.base**adjoint(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return adjoint(expanded) def _eval_conjugate(self): from sympy.functions.elementary.complexes import conjugate as c i, p = self.exp.is_integer, self.base.is_positive if i: return c(self.base)**self.exp if p: return self.base**c(self.exp) if i is False and p is False: expanded = expand_complex(self) if expanded != self: return c(expanded) if self.is_extended_real: return self def _eval_transpose(self): from sympy.functions.elementary.complexes import transpose if self.base == S.Exp1: return self.func(S.Exp1, self.exp.transpose()) i, p = self.exp.is_integer, (self.base.is_complex or self.base.is_infinite) if p: return self.base**self.exp if i: return transpose(self.base)**self.exp if i is False and p is False: expanded = expand_complex(self) if expanded != self: return transpose(expanded) def _eval_expand_power_exp(self, **hints): """a**(n + m) -> a**n*a**m""" b = self.base e = self.exp if b == S.Exp1: from sympy.concrete.summations import Sum if isinstance(e, Sum) and e.is_commutative: from sympy.concrete.products import Product return Product(self.func(b, e.function), *e.limits) if e.is_Add and e.is_commutative: expr = [] for x in e.args: expr.append(self.func(b, x)) return Mul(*expr) return self.func(b, e) def _eval_expand_power_base(self, **hints): """(a*b)**n -> a**n * b**n""" force = hints.get('force', False) b = self.base e = self.exp if not b.is_Mul: return self cargs, nc = b.args_cnc(split_1=False) # expand each term - this is top-level-only # expansion but we have to watch out for things # that don't have an _eval_expand method if nc: nc = [i._eval_expand_power_base(**hints) if hasattr(i, '_eval_expand_power_base') else i for i in nc] if e.is_Integer: if e.is_positive: rv = Mul(*nc*e) else: rv = Mul(*[i**-1 for i in nc[::-1]]*-e) if cargs: rv *= Mul(*cargs)**e return rv if not cargs: return self.func(Mul(*nc), e, evaluate=False) nc = [Mul(*nc)] # sift the commutative bases other, maybe_real = sift(cargs, lambda x: x.is_extended_real is False, binary=True) def pred(x): if x is S.ImaginaryUnit: return S.ImaginaryUnit polar = x.is_polar if polar: return True if polar is None: return fuzzy_bool(x.is_extended_nonnegative) sifted = sift(maybe_real, pred) nonneg = sifted[True] other += sifted[None] neg = sifted[False] imag = sifted[S.ImaginaryUnit] if imag: I = S.ImaginaryUnit i = len(imag) % 4 if i == 0: pass elif i == 1: other.append(I) elif i == 2: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) else: if neg: nonn = -neg.pop() if nonn is not S.One: nonneg.append(nonn) else: neg.append(S.NegativeOne) other.append(I) del imag # bring out the bases that can be separated from the base if force or e.is_integer: # treat all commutatives the same and put nc in other cargs = nonneg + neg + other other = nc else: # this is just like what is happening automatically, except # that now we are doing it for an arbitrary exponent for which # no automatic expansion is done assert not e.is_Integer # handle negatives by making them all positive and putting # the residual -1 in other if len(neg) > 1: o = S.One if not other and neg[0].is_Number: o *= neg.pop(0) if len(neg) % 2: o = -o for n in neg: nonneg.append(-n) if o is not S.One: other.append(o) elif neg and other: if neg[0].is_Number and neg[0] is not S.NegativeOne: other.append(S.NegativeOne) nonneg.append(-neg[0]) else: other.extend(neg) else: other.extend(neg) del neg cargs = nonneg other += nc rv = S.One if cargs: if e.is_Rational: npow, cargs = sift(cargs, lambda x: x.is_Pow and x.exp.is_Rational and x.base.is_number, binary=True) rv = Mul(*[self.func(b.func(*b.args), e) for b in npow]) rv *= Mul(*[self.func(b, e, evaluate=False) for b in cargs]) if other: rv *= self.func(Mul(*other), e, evaluate=False) return rv def _eval_expand_multinomial(self, **hints): """(a + b + ..)**n -> a**n + n*a**(n-1)*b + .., n is nonzero integer""" base, exp = self.args result = self if exp.is_Rational and exp.p > 0 and base.is_Add: if not exp.is_Integer: n = Integer(exp.p // exp.q) if not n: return result else: radical, result = self.func(base, exp - n), [] expanded_base_n = self.func(base, n) if expanded_base_n.is_Pow: expanded_base_n = \ expanded_base_n._eval_expand_multinomial() for term in Add.make_args(expanded_base_n): result.append(term*radical) return Add(*result) n = int(exp) if base.is_commutative: order_terms, other_terms = [], [] for b in base.args: if b.is_Order: order_terms.append(b) else: other_terms.append(b) if order_terms: # (f(x) + O(x^n))^m -> f(x)^m + m*f(x)^{m-1} *O(x^n) f = Add(*other_terms) o = Add(*order_terms) if n == 2: return expand_multinomial(f**n, deep=False) + n*f*o else: g = expand_multinomial(f**(n - 1), deep=False) return expand_mul(f*g, deep=False) + n*g*o if base.is_number: # Efficiently expand expressions of the form (a + b*I)**n # where 'a' and 'b' are real numbers and 'n' is integer. a, b = base.as_real_imag() if a.is_Rational and b.is_Rational: if not a.is_Integer: if not b.is_Integer: k = self.func(a.q * b.q, n) a, b = a.p*b.q, a.q*b.p else: k = self.func(a.q, n) a, b = a.p, a.q*b elif not b.is_Integer: k = self.func(b.q, n) a, b = a*b.q, b.p else: k = 1 a, b, c, d = int(a), int(b), 1, 0 while n: if n & 1: c, d = a*c - b*d, b*c + a*d n -= 1 a, b = a*a - b*b, 2*a*b n //= 2 I = S.ImaginaryUnit if k == 1: return c + I*d else: return Integer(c)/k + I*d/k p = other_terms # (x + y)**3 -> x**3 + 3*x**2*y + 3*x*y**2 + y**3 # in this particular example: # p = [x,y]; n = 3 # so now it's easy to get the correct result -- we get the # coefficients first: from sympy.ntheory.multinomial import multinomial_coefficients from sympy.polys.polyutils import basic_from_dict expansion_dict = multinomial_coefficients(len(p), n) # in our example: {(3, 0): 1, (1, 2): 3, (0, 3): 1, (2, 1): 3} # and now construct the expression. return basic_from_dict(expansion_dict, *p) else: if n == 2: return Add(*[f*g for f in base.args for g in base.args]) else: multi = (base**(n - 1))._eval_expand_multinomial() if multi.is_Add: return Add(*[f*g for f in base.args for g in multi.args]) else: # XXX can this ever happen if base was an Add? return Add(*[f*multi for f in base.args]) elif (exp.is_Rational and exp.p < 0 and base.is_Add and abs(exp.p) > exp.q): return 1 / self.func(base, -exp)._eval_expand_multinomial() elif exp.is_Add and base.is_Number: # a + b a b # n --> n n, where n, a, b are Numbers coeff, tail = S.One, S.Zero for term in exp.args: if term.is_Number: coeff *= self.func(base, term) else: tail += term return coeff * self.func(base, tail) else: return result def as_real_imag(self, deep=True, **hints): if self.exp.is_Integer: from sympy.polys.polytools import poly exp = self.exp re_e, im_e = self.base.as_real_imag(deep=deep) if not im_e: return self, S.Zero a, b = symbols('a b', cls=Dummy) if exp >= 0: if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial(self.base**exp) if expr != self: return expr.as_real_imag() expr = poly( (a + b)**exp) # a = re, b = im; expr = (a + b*I)**exp else: mag = re_e**2 + im_e**2 re_e, im_e = re_e/mag, -im_e/mag if re_e.is_Number and im_e.is_Number: # We can be more efficient in this case expr = expand_multinomial((re_e + im_e*S.ImaginaryUnit)**-exp) if expr != self: return expr.as_real_imag() expr = poly((a + b)**-exp) # Terms with even b powers will be real r = [i for i in expr.terms() if not i[0][1] % 2] re_part = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) # Terms with odd b powers will be imaginary r = [i for i in expr.terms() if i[0][1] % 4 == 1] im_part1 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) r = [i for i in expr.terms() if i[0][1] % 4 == 3] im_part3 = Add(*[cc*a**aa*b**bb for (aa, bb), cc in r]) return (re_part.subs({a: re_e, b: S.ImaginaryUnit*im_e}), im_part1.subs({a: re_e, b: im_e}) + im_part3.subs({a: re_e, b: -im_e})) from sympy.functions.elementary.trigonometric import atan2, cos, sin if self.exp.is_Rational: re_e, im_e = self.base.as_real_imag(deep=deep) if im_e.is_zero and self.exp is S.Half: if re_e.is_extended_nonnegative: return self, S.Zero if re_e.is_extended_nonpositive: return S.Zero, (-self.base)**self.exp # XXX: This is not totally correct since for x**(p/q) with # x being imaginary there are actually q roots, but # only a single one is returned from here. r = self.func(self.func(re_e, 2) + self.func(im_e, 2), S.Half) t = atan2(im_e, re_e) rp, tp = self.func(r, self.exp), t*self.exp return rp*cos(tp), rp*sin(tp) elif self.base is S.Exp1: from sympy.functions.elementary.exponential import exp re_e, im_e = self.exp.as_real_imag() if deep: re_e = re_e.expand(deep, **hints) im_e = im_e.expand(deep, **hints) c, s = cos(im_e), sin(im_e) return exp(re_e)*c, exp(re_e)*s else: from sympy.functions.elementary.complexes import im, re if deep: hints['complex'] = False expanded = self.expand(deep, **hints) if hints.get('ignore') == expanded: return None else: return (re(expanded), im(expanded)) else: return re(self), im(self) def _eval_derivative(self, s): from sympy.functions.elementary.exponential import log dbase = self.base.diff(s) dexp = self.exp.diff(s) return self * (dexp * log(self.base) + dbase * self.exp/self.base) def _eval_evalf(self, prec): base, exp = self.as_base_exp() if base == S.Exp1: # Use mpmath function associated to class "exp": from sympy.functions.elementary.exponential import exp as exp_function return exp_function(self.exp, evaluate=False)._eval_evalf(prec) base = base._evalf(prec) if not exp.is_Integer: exp = exp._evalf(prec) if exp.is_negative and base.is_number and base.is_extended_real is False: base = base.conjugate() / (base * base.conjugate())._evalf(prec) exp = -exp return self.func(base, exp).expand() return self.func(base, exp) def _eval_is_polynomial(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return bool(self.base._eval_is_polynomial(syms) and self.exp.is_Integer and (self.exp >= 0)) else: return True def _eval_is_rational(self): # The evaluation of self.func below can be very expensive in the case # of integer**integer if the exponent is large. We should try to exit # before that if possible: if (self.exp.is_integer and self.base.is_rational and fuzzy_not(fuzzy_and([self.exp.is_negative, self.base.is_zero]))): return True p = self.func(*self.as_base_exp()) # in case it's unevaluated if not p.is_Pow: return p.is_rational b, e = p.as_base_exp() if e.is_Rational and b.is_Rational: # we didn't check that e is not an Integer # because Rational**Integer autosimplifies return False if e.is_integer: if b.is_rational: if fuzzy_not(b.is_zero) or e.is_nonnegative: return True if b == e: # always rational, even for 0**0 return True elif b.is_irrational: return e.is_zero if b is S.Exp1: if e.is_rational and e.is_nonzero: return False def _eval_is_algebraic(self): def _is_one(expr): try: return (expr - 1).is_zero except ValueError: # when the operation is not allowed return False if self.base.is_zero or _is_one(self.base): return True elif self.base is S.Exp1: s = self.func(*self.args) if s.func == self.func: if self.exp.is_nonzero: if self.exp.is_algebraic: return False elif (self.exp/S.Pi).is_rational: return False elif (self.exp/(S.ImaginaryUnit*S.Pi)).is_rational: return True else: return s.is_algebraic elif self.exp.is_rational: if self.base.is_algebraic is False: return self.exp.is_zero if self.base.is_zero is False: if self.exp.is_nonzero: return self.base.is_algebraic elif self.base.is_algebraic: return True if self.exp.is_positive: return self.base.is_algebraic elif self.base.is_algebraic and self.exp.is_algebraic: if ((fuzzy_not(self.base.is_zero) and fuzzy_not(_is_one(self.base))) or self.base.is_integer is False or self.base.is_irrational): return self.exp.is_rational def _eval_is_rational_function(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_rational_function(syms) and \ self.exp.is_Integer else: return True def _eval_is_meromorphic(self, x, a): # f**g is meromorphic if g is an integer and f is meromorphic. # E**(log(f)*g) is meromorphic if log(f)*g is meromorphic # and finite. base_merom = self.base._eval_is_meromorphic(x, a) exp_integer = self.exp.is_Integer if exp_integer: return base_merom exp_merom = self.exp._eval_is_meromorphic(x, a) if base_merom is False: # f**g = E**(log(f)*g) may be meromorphic if the # singularities of log(f) and g cancel each other, # for example, if g = 1/log(f). Hence, return False if exp_merom else None elif base_merom is None: return None b = self.base.subs(x, a) # b is extended complex as base is meromorphic. # log(base) is finite and meromorphic when b != 0, zoo. b_zero = b.is_zero if b_zero: log_defined = False else: log_defined = fuzzy_and((b.is_finite, fuzzy_not(b_zero))) if log_defined is False: # zero or pole of base return exp_integer # False or None elif log_defined is None: return None if not exp_merom: return exp_merom # False or None return self.exp.subs(x, a).is_finite def _eval_is_algebraic_expr(self, syms): if self.exp.has(*syms): return False if self.base.has(*syms): return self.base._eval_is_algebraic_expr(syms) and \ self.exp.is_Rational else: return True def _eval_rewrite_as_exp(self, base, expo, **kwargs): from sympy.functions.elementary.exponential import exp, log if base.is_zero or base.has(exp) or expo.has(exp): return base**expo if base.has(Symbol): # delay evaluation if expo is non symbolic # (as exp(x*log(5)) automatically reduces to x**5) if global_parameters.exp_is_pow: return Pow(S.Exp1, log(base)*expo, evaluate=expo.has(Symbol)) else: return exp(log(base)*expo, evaluate=expo.has(Symbol)) else: from sympy.functions.elementary.complexes import arg, Abs return exp((log(Abs(base)) + S.ImaginaryUnit*arg(base))*expo) def as_numer_denom(self): if not self.is_commutative: return self, S.One base, exp = self.as_base_exp() n, d = base.as_numer_denom() # this should be the same as ExpBase.as_numer_denom wrt # exponent handling neg_exp = exp.is_negative if exp.is_Mul and not neg_exp and not exp.is_positive: neg_exp = exp.could_extract_minus_sign() int_exp = exp.is_integer # the denominator cannot be separated from the numerator if # its sign is unknown unless the exponent is an integer, e.g. # sqrt(a/b) != sqrt(a)/sqrt(b) when a=1 and b=-1. But if the # denominator is negative the numerator and denominator can # be negated and the denominator (now positive) separated. if not (d.is_extended_real or int_exp): n = base d = S.One dnonpos = d.is_nonpositive if dnonpos: n, d = -n, -d elif dnonpos is None and not int_exp: n = base d = S.One if neg_exp: n, d = d, n exp = -exp if exp.is_infinite: if n is S.One and d is not S.One: return n, self.func(d, exp) if n is not S.One and d is S.One: return self.func(n, exp), d return self.func(n, exp), self.func(d, exp) def matches(self, expr, repl_dict=None, old=False): expr = _sympify(expr) if repl_dict is None: repl_dict = dict() # special case, pattern = 1 and expr.exp can match to 0 if expr is S.One: d = self.exp.matches(S.Zero, repl_dict) if d is not None: return d # make sure the expression to be matched is an Expr if not isinstance(expr, Expr): return None b, e = expr.as_base_exp() # special case number sb, se = self.as_base_exp() if sb.is_Symbol and se.is_Integer and expr: if e.is_rational: return sb.matches(b**(e/se), repl_dict) return sb.matches(expr**(1/se), repl_dict) d = repl_dict.copy() d = self.base.matches(b, d) if d is None: return None d = self.exp.xreplace(d).matches(e, d) if d is None: return Expr.matches(self, expr, repl_dict) return d def _eval_nseries(self, x, n, logx, cdir=0): # NOTE! This function is an important part of the gruntz algorithm # for computing limits. It has to return a generalized power # series with coefficients in C(log, log(x)). In more detail: # It has to return an expression # c_0*x**e_0 + c_1*x**e_1 + ... (finitely many terms) # where e_i are numbers (not necessarily integers) and c_i are # expressions involving only numbers, the log function, and log(x). # The series expansion of b**e is computed as follows: # 1) We express b as f*(1 + g) where f is the leading term of b. # g has order O(x**d) where d is strictly positive. # 2) Then b**e = (f**e)*((1 + g)**e). # (1 + g)**e is computed using binomial series. from sympy.functions.elementary.exponential import exp, log from sympy.series.limits import limit from sympy.series.order import Order if self.base is S.Exp1: e_series = self.exp.nseries(x, n=n, logx=logx) if e_series.is_Order: return 1 + e_series e0 = limit(e_series.removeO(), x, 0) if e0 is S.NegativeInfinity: return Order(x**n, x) if e0 is S.Infinity: return self t = e_series - e0 exp_series = term = exp(e0) # series of exp(e0 + t) in t for i in range(1, n): term *= t/i term = term.nseries(x, n=n, logx=logx) exp_series += term exp_series += Order(t**n, x) from sympy.simplify.powsimp import powsimp return powsimp(exp_series, deep=True, combine='exp') from sympy.simplify.powsimp import powdenest self = powdenest(self, force=True).trigsimp() b, e = self.as_base_exp() if e.has(S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.NaN): raise PoleError() if e.has(x): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) if logx is not None and b.has(log): from .symbol import Wild c, ex = symbols('c, ex', cls=Wild, exclude=[x]) b = b.replace(log(c*x**ex), log(c) + ex*logx) self = b**e b = b.removeO() try: from sympy.functions.special.gamma_functions import polygamma if b.has(polygamma, S.EulerGamma) and logx is not None: raise ValueError() _, m = b.leadterm(x) except (ValueError, NotImplementedError, PoleError): b = b._eval_nseries(x, n=max(2, n), logx=logx, cdir=cdir).removeO() if b.has(S.NaN, S.ComplexInfinity): raise NotImplementedError() _, m = b.leadterm(x) if e.has(log): from sympy.simplify.simplify import logcombine e = logcombine(e).cancel() if not (m.is_zero or e.is_number and e.is_real): return exp(e*log(b))._eval_nseries(x, n=n, logx=logx, cdir=cdir) f = b.as_leading_term(x, logx=logx) g = (b/f - S.One).cancel(expand=False) if not m.is_number: raise NotImplementedError() maxpow = n - m*e if maxpow.is_negative: return Order(x**(m*e), x) if g.is_zero: r = f**e if r != self: r += Order(x**n, x) return r def coeff_exp(term, x): coeff, exp = S.One, S.Zero for factor in Mul.make_args(term): if factor.has(x): base, exp = factor.as_base_exp() if base != x: try: return term.leadterm(x) except ValueError: return term, S.Zero else: coeff *= factor return coeff, exp def mul(d1, d2): res = {} for e1, e2 in product(d1, d2): ex = e1 + e2 if ex < maxpow: res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2] return res try: _, d = g.leadterm(x) except (ValueError, NotImplementedError): if limit(g/x**maxpow, x, 0) == 0: # g has higher order zero return f**e + e*f**e*g # first term of binomial series else: raise NotImplementedError() if not d.is_positive: g = g.simplify() _, d = g.leadterm(x) if not d.is_positive: raise NotImplementedError() from sympy.functions.elementary.integers import ceiling gpoly = g._eval_nseries(x, n=ceiling(maxpow), logx=logx, cdir=cdir).removeO() gterms = {} for term in Add.make_args(gpoly): co1, e1 = coeff_exp(term, x) gterms[e1] = gterms.get(e1, S.Zero) + co1 k = S.One terms = {S.Zero: S.One} tk = gterms from sympy.functions.combinatorial.factorials import factorial, ff while (k*d - maxpow).is_negative: coeff = ff(e, k)/factorial(k) for ex in tk: terms[ex] = terms.get(ex, S.Zero) + coeff*tk[ex] tk = mul(tk, gterms) k += S.One from sympy.functions.elementary.complexes import im if (not e.is_integer and m.is_zero and f.is_real and f.is_negative and im((b - f).dir(x, cdir)).is_negative): inco, inex = coeff_exp(f**e*exp(-2*e*S.Pi*S.ImaginaryUnit), x) else: inco, inex = coeff_exp(f**e, x) res = S.Zero for e1 in terms: ex = e1 + inex res += terms[e1]*inco*x**(ex) if not (e.is_integer and e.is_positive and (e*d - n).is_nonpositive and res == _mexpand(self)): res += Order(x**n, x) return res def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.functions.elementary.exponential import exp, log e = self.exp b = self.base if self.base is S.Exp1: arg = e.as_leading_term(x, logx=logx) arg0 = arg.subs(x, 0) if arg0 is S.NaN: arg0 = arg.limit(x, 0) if arg0.is_infinite is False: return S.Exp1**arg0 raise PoleError("Cannot expand %s around 0" % (self)) elif e.has(x): lt = exp(e * log(b)) try: lt = lt.as_leading_term(x, logx=logx, cdir=cdir) except PoleError: pass return lt else: from sympy.functions.elementary.complexes import im f = b.as_leading_term(x, logx=logx, cdir=cdir) if (not e.is_integer and f.is_constant() and f.is_real and f.is_negative and im((b - f).dir(x, cdir)).is_negative): return self.func(f, e) * exp(-2 * e * S.Pi * S.ImaginaryUnit) return self.func(f, e) @cacheit def _taylor_term(self, n, x, *previous_terms): # of (1 + x)**e from sympy.functions.combinatorial.factorials import binomial return binomial(self.exp, n) * self.func(x, n) def taylor_term(self, n, x, *previous_terms): if self.base is not S.Exp1: return super().taylor_term(n, x, *previous_terms) if n < 0: return S.Zero if n == 0: return S.One from .sympify import sympify x = sympify(x) if previous_terms: p = previous_terms[-1] if p is not None: return p * x / n from sympy.functions.combinatorial.factorials import factorial return x**n/factorial(n) def _eval_rewrite_as_sin(self, base, exp): if self.base is S.Exp1: from sympy.functions.elementary.trigonometric import sin return sin(S.ImaginaryUnit*self.exp + S.Pi/2) - S.ImaginaryUnit*sin(S.ImaginaryUnit*self.exp) def _eval_rewrite_as_cos(self, base, exp): if self.base is S.Exp1: from sympy.functions.elementary.trigonometric import cos return cos(S.ImaginaryUnit*self.exp) + S.ImaginaryUnit*cos(S.ImaginaryUnit*self.exp + S.Pi/2) def _eval_rewrite_as_tanh(self, base, exp): if self.base is S.Exp1: from sympy.functions.elementary.trigonometric import tanh return (1 + tanh(self.exp/2))/(1 - tanh(self.exp/2)) def _eval_rewrite_as_sqrt(self, base, exp, **kwargs): from sympy.functions.elementary.trigonometric import sin, cos if base is not S.Exp1: return None if exp.is_Mul: coeff = exp.coeff(S.Pi * S.ImaginaryUnit) if coeff and coeff.is_number: cosine, sine = cos(S.Pi*coeff), sin(S.Pi*coeff) if not isinstance(cosine, cos) and not isinstance (sine, sin): return cosine + S.ImaginaryUnit*sine def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> sqrt(4 + 4*sqrt(2)).as_content_primitive() (2, sqrt(1 + sqrt(2))) >>> sqrt(3 + 3*sqrt(2)).as_content_primitive() (1, sqrt(3)*sqrt(1 + sqrt(2))) >>> from sympy import expand_power_base, powsimp, Mul >>> from sympy.abc import x, y >>> ((2*x + 2)**2).as_content_primitive() (4, (x + 1)**2) >>> (4**((1 + y)/2)).as_content_primitive() (2, 4**(y/2)) >>> (3**((1 + y)/2)).as_content_primitive() (1, 3**((y + 1)/2)) >>> (3**((5 + y)/2)).as_content_primitive() (9, 3**((y + 1)/2)) >>> eq = 3**(2 + 2*x) >>> powsimp(eq) == eq True >>> eq.as_content_primitive() (9, 3**(2*x)) >>> powsimp(Mul(*_)) 3**(2*x + 2) >>> eq = (2 + 2*x)**y >>> s = expand_power_base(eq); s.is_Mul, s (False, (2*x + 2)**y) >>> eq.as_content_primitive() (1, (2*(x + 1))**y) >>> s = expand_power_base(_[1]); s.is_Mul, s (True, 2**y*(x + 1)**y) See docstring of Expr.as_content_primitive for more examples. """ b, e = self.as_base_exp() b = _keep_coeff(*b.as_content_primitive(radical=radical, clear=clear)) ce, pe = e.as_content_primitive(radical=radical, clear=clear) if b.is_Rational: #e #= ce*pe #= ce*(h + t) #= ce*h + ce*t #=> self #= b**(ce*h)*b**(ce*t) #= b**(cehp/cehq)*b**(ce*t) #= b**(iceh + r/cehq)*b**(ce*t) #= b**(iceh)*b**(r/cehq)*b**(ce*t) #= b**(iceh)*b**(ce*t + r/cehq) h, t = pe.as_coeff_Add() if h.is_Rational and b != S.Zero: ceh = ce*h c = self.func(b, ceh) r = S.Zero if not c.is_Rational: iceh, r = divmod(ceh.p, ceh.q) c = self.func(b, iceh) return c, self.func(b, _keep_coeff(ce, t + r/ce/ceh.q)) e = _keep_coeff(ce, pe) # b**e = (h*t)**e = h**e*t**e = c*m*t**e if e.is_Rational and b.is_Mul: h, t = b.as_content_primitive(radical=radical, clear=clear) # h is positive c, m = self.func(h, e).as_coeff_Mul() # so c is positive m, me = m.as_base_exp() if m is S.One or me == e: # probably always true # return the following, not return c, m*Pow(t, e) # which would change Pow into Mul; we let SymPy # decide what to do by using the unevaluated Mul, e.g # should it stay as sqrt(2 + 2*sqrt(5)) or become # sqrt(2)*sqrt(1 + sqrt(5)) return c, self.func(_keep_coeff(m, t), e) return S.One, self.func(b, e) def is_constant(self, *wrt, **flags): expr = self if flags.get('simplify', True): expr = expr.simplify() b, e = expr.as_base_exp() bz = b.equals(0) if bz: # recalculate with assumptions in case it's unevaluated new = b**e if new != expr: return new.is_constant() econ = e.is_constant(*wrt) bcon = b.is_constant(*wrt) if bcon: if econ: return True bz = b.equals(0) if bz is False: return False elif bcon is None: return None return e.equals(0) def _eval_difference_delta(self, n, step): b, e = self.args if e.has(n) and not b.has(n): new_e = e.subs(n, n + step) return (b**(new_e - e) - 1) * self power = Dispatcher('power') power.add((object, object), Pow) from .add import Add from .numbers import Integer from .mul import Mul, _keep_coeff from .symbol import Symbol, Dummy, symbols
c2e2713e0a67c5a17c17f308e21422230e39d6642ace8c02c22c2b9c7fab69eb
""" This module contains the machinery handling assumptions. Do also consider the guide :ref:`assumptions`. All symbolic objects have assumption attributes that can be accessed via ``.is_<assumption name>`` attribute. Assumptions determine certain properties of symbolic objects and can have 3 possible values: ``True``, ``False``, ``None``. ``True`` is returned if the object has the property and ``False`` is returned if it does not or cannot (i.e. does not make sense): >>> from sympy import I >>> I.is_algebraic True >>> I.is_real False >>> I.is_prime False When the property cannot be determined (or when a method is not implemented) ``None`` will be returned. For example, a generic symbol, ``x``, may or may not be positive so a value of ``None`` is returned for ``x.is_positive``. By default, all symbolic values are in the largest set in the given context without specifying the property. For example, a symbol that has a property being integer, is also real, complex, etc. Here follows a list of possible assumption names: .. glossary:: commutative object commutes with any other object with respect to multiplication operation. See [12]_. complex object can have only values from the set of complex numbers. See [13]_. imaginary object value is a number that can be written as a real number multiplied by the imaginary unit ``I``. See [3]_. Please note that ``0`` is not considered to be an imaginary number, see `issue #7649 <https://github.com/sympy/sympy/issues/7649>`_. real object can have only values from the set of real numbers. extended_real object can have only values from the set of real numbers, ``oo`` and ``-oo``. integer object can have only values from the set of integers. odd even object can have only values from the set of odd (even) integers [2]_. prime object is a natural number greater than 1 that has no positive divisors other than 1 and itself. See [6]_. composite object is a positive integer that has at least one positive divisor other than 1 or the number itself. See [4]_. zero object has the value of 0. nonzero object is a real number that is not zero. rational object can have only values from the set of rationals. algebraic object can have only values from the set of algebraic numbers [11]_. transcendental object can have only values from the set of transcendental numbers [10]_. irrational object value cannot be represented exactly by :class:`~.Rational`, see [5]_. finite infinite object absolute value is bounded (arbitrarily large). See [7]_, [8]_, [9]_. negative nonnegative object can have only negative (nonnegative) values [1]_. positive nonpositive object can have only positive (nonpositive) values. extended_negative extended_nonnegative extended_positive extended_nonpositive extended_nonzero as without the extended part, but also including infinity with corresponding sign, e.g., extended_positive includes ``oo`` hermitian antihermitian object belongs to the field of Hermitian (antihermitian) operators. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x', real=True); x x >>> x.is_real True >>> x.is_complex True See Also ======== .. seealso:: :py:class:`sympy.core.numbers.ImaginaryUnit` :py:class:`sympy.core.numbers.Zero` :py:class:`sympy.core.numbers.One` :py:class:`sympy.core.numbers.Infinity` :py:class:`sympy.core.numbers.NegativeInfinity` :py:class:`sympy.core.numbers.ComplexInfinity` Notes ===== The fully-resolved assumptions for any SymPy expression can be obtained as follows: >>> from sympy.core.assumptions import assumptions >>> x = Symbol('x',positive=True) >>> assumptions(x + I) {'commutative': True, 'complex': True, 'composite': False, 'even': False, 'extended_negative': False, 'extended_nonnegative': False, 'extended_nonpositive': False, 'extended_nonzero': False, 'extended_positive': False, 'extended_real': False, 'finite': True, 'imaginary': False, 'infinite': False, 'integer': False, 'irrational': False, 'negative': False, 'noninteger': False, 'nonnegative': False, 'nonpositive': False, 'nonzero': False, 'odd': False, 'positive': False, 'prime': False, 'rational': False, 'real': False, 'zero': False} Developers Notes ================ The current (and possibly incomplete) values are stored in the ``obj._assumptions dictionary``; queries to getter methods (with property decorators) or attributes of objects/classes will return values and update the dictionary. >>> eq = x**2 + I >>> eq._assumptions {} >>> eq.is_finite True >>> eq._assumptions {'finite': True, 'infinite': False} For a :class:`~.Symbol`, there are two locations for assumptions that may be of interest. The ``assumptions0`` attribute gives the full set of assumptions derived from a given set of initial assumptions. The latter assumptions are stored as ``Symbol._assumptions.generator`` >>> Symbol('x', prime=True, even=True)._assumptions.generator {'even': True, 'prime': True} The ``generator`` is not necessarily canonical nor is it filtered in any way: it records the assumptions used to instantiate a Symbol and (for storage purposes) represents a more compact representation of the assumptions needed to recreate the full set in ``Symbol.assumptions0``. References ========== .. [1] https://en.wikipedia.org/wiki/Negative_number .. [2] https://en.wikipedia.org/wiki/Parity_%28mathematics%29 .. [3] https://en.wikipedia.org/wiki/Imaginary_number .. [4] https://en.wikipedia.org/wiki/Composite_number .. [5] https://en.wikipedia.org/wiki/Irrational_number .. [6] https://en.wikipedia.org/wiki/Prime_number .. [7] https://en.wikipedia.org/wiki/Finite .. [8] https://docs.python.org/3/library/math.html#math.isfinite .. [9] http://docs.scipy.org/doc/numpy/reference/generated/numpy.isfinite.html .. [10] https://en.wikipedia.org/wiki/Transcendental_number .. [11] https://en.wikipedia.org/wiki/Algebraic_number .. [12] https://en.wikipedia.org/wiki/Commutative_property .. [13] https://en.wikipedia.org/wiki/Complex_number """ from .facts import FactRules, FactKB, InconsistentAssumptions from .core import BasicMeta from .sympify import sympify from sympy.core.random import shuffle _assume_rules = FactRules([ 'integer -> rational', 'rational -> real', 'rational -> algebraic', 'algebraic -> complex', 'transcendental == complex & !algebraic', 'real -> hermitian', 'imaginary -> complex', 'imaginary -> antihermitian', 'extended_real -> commutative', 'complex -> commutative', 'complex -> finite', 'odd == integer & !even', 'even == integer & !odd', 'real -> complex', 'extended_real -> real | infinite', 'real == extended_real & finite', 'extended_real == extended_negative | zero | extended_positive', 'extended_negative == extended_nonpositive & extended_nonzero', 'extended_positive == extended_nonnegative & extended_nonzero', 'extended_nonpositive == extended_real & !extended_positive', 'extended_nonnegative == extended_real & !extended_negative', 'real == negative | zero | positive', 'negative == nonpositive & nonzero', 'positive == nonnegative & nonzero', 'nonpositive == real & !positive', 'nonnegative == real & !negative', 'positive == extended_positive & finite', 'negative == extended_negative & finite', 'nonpositive == extended_nonpositive & finite', 'nonnegative == extended_nonnegative & finite', 'nonzero == extended_nonzero & finite', 'zero -> even & finite', 'zero == extended_nonnegative & extended_nonpositive', 'zero == nonnegative & nonpositive', 'nonzero -> real', 'prime -> integer & positive', 'composite -> integer & positive & !prime', '!composite -> !positive | !even | prime', 'irrational == real & !rational', 'imaginary -> !extended_real', 'infinite == !finite', 'noninteger == extended_real & !integer', 'extended_nonzero == extended_real & !zero', ]) _assume_defined = _assume_rules.defined_facts.copy() _assume_defined.add('polar') _assume_defined = frozenset(_assume_defined) def assumptions(expr, _check=None): """return the T/F assumptions of ``expr``""" n = sympify(expr) if n.is_Symbol: rv = n.assumptions0 # are any important ones missing? if _check is not None: rv = {k: rv[k] for k in set(rv) & set(_check)} return rv rv = {} for k in _assume_defined if _check is None else _check: v = getattr(n, 'is_{}'.format(k)) if v is not None: rv[k] = v return rv def common_assumptions(exprs, check=None): """return those assumptions which have the same True or False value for all the given expressions. Examples ======== >>> from sympy.core import common_assumptions >>> from sympy import oo, pi, sqrt >>> common_assumptions([-4, 0, sqrt(2), 2, pi, oo]) {'commutative': True, 'composite': False, 'extended_real': True, 'imaginary': False, 'odd': False} By default, all assumptions are tested; pass an iterable of the assumptions to limit those that are reported: >>> common_assumptions([0, 1, 2], ['positive', 'integer']) {'integer': True} """ check = _assume_defined if check is None else set(check) if not check or not exprs: return {} # get all assumptions for each assume = [assumptions(i, _check=check) for i in sympify(exprs)] # focus on those of interest that are True for i, e in enumerate(assume): assume[i] = {k: e[k] for k in set(e) & check} # what assumptions are in common? common = set.intersection(*[set(i) for i in assume]) # which ones hold the same value a = assume[0] return {k: a[k] for k in common if all(a[k] == b[k] for b in assume)} def failing_assumptions(expr, **assumptions): """ Return a dictionary containing assumptions with values not matching those of the passed assumptions. Examples ======== >>> from sympy import failing_assumptions, Symbol >>> x = Symbol('x', positive=True) >>> y = Symbol('y') >>> failing_assumptions(6*x + y, positive=True) {'positive': None} >>> failing_assumptions(x**2 - 1, positive=True) {'positive': None} If *expr* satisfies all of the assumptions, an empty dictionary is returned. >>> failing_assumptions(x**2, positive=True) {} """ expr = sympify(expr) failed = {} for k in assumptions: test = getattr(expr, 'is_%s' % k, None) if test is not assumptions[k]: failed[k] = test return failed # {} or {assumption: value != desired} def check_assumptions(expr, against=None, **assume): """ Checks whether assumptions of ``expr`` match the T/F assumptions given (or possessed by ``against``). True is returned if all assumptions match; False is returned if there is a mismatch and the assumption in ``expr`` is not None; else None is returned. Explanation =========== *assume* is a dict of assumptions with True or False values Examples ======== >>> from sympy import Symbol, pi, I, exp, check_assumptions >>> check_assumptions(-5, integer=True) True >>> check_assumptions(pi, real=True, integer=False) True >>> check_assumptions(pi, negative=True) False >>> check_assumptions(exp(I*pi/7), real=False) True >>> x = Symbol('x', positive=True) >>> check_assumptions(2*x + 1, positive=True) True >>> check_assumptions(-2*x - 5, positive=True) False To check assumptions of *expr* against another variable or expression, pass the expression or variable as ``against``. >>> check_assumptions(2*x + 1, x) True To see if a number matches the assumptions of an expression, pass the number as the first argument, else its specific assumptions may not have a non-None value in the expression: >>> check_assumptions(x, 3) >>> check_assumptions(3, x) True ``None`` is returned if ``check_assumptions()`` could not conclude. >>> check_assumptions(2*x - 1, x) >>> z = Symbol('z') >>> check_assumptions(z, real=True) See Also ======== failing_assumptions """ expr = sympify(expr) if against is not None: if assume: raise ValueError( 'Expecting `against` or `assume`, not both.') assume = assumptions(against) known = True for k, v in assume.items(): if v is None: continue e = getattr(expr, 'is_' + k, None) if e is None: known = None elif v != e: return False return known class StdFactKB(FactKB): """A FactKB specialized for the built-in rules This is the only kind of FactKB that Basic objects should use. """ def __init__(self, facts=None): super().__init__(_assume_rules) # save a copy of the facts dict if not facts: self._generator = {} elif not isinstance(facts, FactKB): self._generator = facts.copy() else: self._generator = facts.generator if facts: self.deduce_all_facts(facts) def copy(self): return self.__class__(self) @property def generator(self): return self._generator.copy() def as_property(fact): """Convert a fact name to the name of the corresponding property""" return 'is_%s' % fact def make_property(fact): """Create the automagic property corresponding to a fact.""" def getit(self): try: return self._assumptions[fact] except KeyError: if self._assumptions is self.default_assumptions: self._assumptions = self.default_assumptions.copy() return _ask(fact, self) getit.func_name = as_property(fact) return property(getit) def _ask(fact, obj): """ Find the truth value for a property of an object. This function is called when a request is made to see what a fact value is. For this we use several techniques: First, the fact-evaluation function is tried, if it exists (for example _eval_is_integer). Then we try related facts. For example rational --> integer another example is joined rule: integer & !odd --> even so in the latter case if we are looking at what 'even' value is, 'integer' and 'odd' facts will be asked. In all cases, when we settle on some fact value, its implications are deduced, and the result is cached in ._assumptions. """ assumptions = obj._assumptions handler_map = obj._prop_handler # Store None into the assumptions so that recursive attempts at # evaluating the same fact don't trigger infinite recursion. # # Potentially in a multithreaded context it is possible that the # assumptions query for fact was already resolved in another thread. If # that happens and the query was resolved as True or False then # assumptions._tell will raise InconsistentAssumptions because of the # attempt to replace True/False with None. In that case it should be safe # to catch the exception and return the result that was computed in the # other thread. # # XXX: Ideally this call to assumptions._tell would be removed. Its purpose # is to guard against infinite recursion if a query for one fact attempts # to evaluate a related fact for the same object. However really this is # just masking bugs because a query for a fact about obj should only query # the properties of obj.args and not obj itself. This is not easy to change # though because it requires fixing all of the buggy _eval_is_* handlers. try: assumptions._tell(fact, None) except InconsistentAssumptions: return assumptions[fact] # First try the assumption evaluation function if it exists try: evaluate = handler_map[fact] except KeyError: pass else: a = evaluate(obj) if a is not None: assumptions.deduce_all_facts(((fact, a),)) return a # Try assumption's prerequisites prereq = list(_assume_rules.prereq[fact]) shuffle(prereq) for pk in prereq: if pk in assumptions: continue if pk in handler_map: _ask(pk, obj) # we might have found the value of fact ret_val = assumptions.get(fact) if ret_val is not None: return ret_val # Note: the result has already been cached return None class ManagedProperties(BasicMeta): """Metaclass for classes with old-style assumptions""" def __init__(cls, *args, **kws): BasicMeta.__init__(cls, *args, **kws) local_defs = {} for k in _assume_defined: attrname = as_property(k) v = cls.__dict__.get(attrname, '') if isinstance(v, (bool, int, type(None))): if v is not None: v = bool(v) local_defs[k] = v defs = {} for base in reversed(cls.__bases__): assumptions = getattr(base, '_explicit_class_assumptions', None) if assumptions is not None: defs.update(assumptions) defs.update(local_defs) cls._explicit_class_assumptions = defs cls.default_assumptions = StdFactKB(defs) cls._prop_handler = {} for k in _assume_defined: eval_is_meth = getattr(cls, '_eval_is_%s' % k, None) if eval_is_meth is not None: cls._prop_handler[k] = eval_is_meth # Put definite results directly into the class dict, for speed for k, v in cls.default_assumptions.items(): setattr(cls, as_property(k), v) # protection e.g. for Integer.is_even=F <- (Rational.is_integer=F) derived_from_bases = set() for base in cls.__bases__: default_assumptions = getattr(base, 'default_assumptions', None) # is an assumption-aware class if default_assumptions is not None: derived_from_bases.update(default_assumptions) for fact in derived_from_bases - set(cls.default_assumptions): pname = as_property(fact) if pname not in cls.__dict__: setattr(cls, pname, make_property(fact)) # Finally, add any missing automagic property (e.g. for Basic) for fact in _assume_defined: pname = as_property(fact) if not hasattr(cls, pname): setattr(cls, pname, make_property(fact))
4d658fdb757491ec2d0a87879ef0f5d05f51e485f08985c9bf89fe36f5027417
""" There are three types of functions implemented in SymPy: 1) defined functions (in the sense that they can be evaluated) like exp or sin; they have a name and a body: f = exp 2) undefined function which have a name but no body. Undefined functions can be defined using a Function class as follows: f = Function('f') (the result will be a Function instance) 3) anonymous function (or lambda function) which have a body (defined with dummy variables) but have no name: f = Lambda(x, exp(x)*x) f = Lambda((x, y), exp(x)*y) The fourth type of functions are composites, like (sin + cos)(x); these work in SymPy core, but are not yet part of SymPy. Examples ======== >>> import sympy >>> f = sympy.Function("f") >>> from sympy.abc import x >>> f(x) f(x) >>> print(sympy.srepr(f(x).func)) Function('f') >>> f(x).args (x,) """ from typing import Any, Dict as tDict, Optional, Set as tSet, Tuple as tTuple, Union as tUnion from collections.abc import Iterable from .add import Add from .assumptions import ManagedProperties from .basic import Basic, _atomic from .cache import cacheit from .containers import Tuple, Dict from .decorators import _sympifyit from .expr import Expr, AtomicExpr from .logic import fuzzy_and, fuzzy_or, fuzzy_not, FuzzyBool from .mul import Mul from .numbers import Rational, Float, Integer from .operations import LatticeOp from .parameters import global_parameters from .rules import Transform from .singleton import S from .sympify import sympify from .sorting import default_sort_key, ordered from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import (has_dups, sift, iterable, is_sequence, uniq, topological_sort) from sympy.utilities.lambdify import MPMATH_TRANSLATIONS from sympy.utilities.misc import as_int, filldedent, func_name import mpmath from mpmath.libmp.libmpf import prec_to_dps import inspect from collections import Counter def _coeff_isneg(a): """Return True if the leading Number is negative. Examples ======== >>> from sympy.core.function import _coeff_isneg >>> from sympy import S, Symbol, oo, pi >>> _coeff_isneg(-3*pi) True >>> _coeff_isneg(S(3)) False >>> _coeff_isneg(-oo) True >>> _coeff_isneg(Symbol('n', negative=True)) # coeff is 1 False For matrix expressions: >>> from sympy import MatrixSymbol, sqrt >>> A = MatrixSymbol("A", 3, 3) >>> _coeff_isneg(-sqrt(2)*A) True >>> _coeff_isneg(sqrt(2)*A) False """ if a.is_MatMul: a = a.args[0] if a.is_Mul: a = a.args[0] return a.is_Number and a.is_extended_negative class PoleError(Exception): pass class ArgumentIndexError(ValueError): def __str__(self): return ("Invalid operation with argument number %s for Function %s" % (self.args[1], self.args[0])) class BadSignatureError(TypeError): '''Raised when a Lambda is created with an invalid signature''' pass class BadArgumentsError(TypeError): '''Raised when a Lambda is called with an incorrect number of arguments''' pass # Python 2/3 version that does not raise a Deprecation warning def arity(cls): """Return the arity of the function if it is known, else None. Explanation =========== When default values are specified for some arguments, they are optional and the arity is reported as a tuple of possible values. Examples ======== >>> from sympy import arity, log >>> arity(lambda x: x) 1 >>> arity(log) (1, 2) >>> arity(lambda *x: sum(x)) is None True """ eval_ = getattr(cls, 'eval', cls) parameters = inspect.signature(eval_).parameters.items() if [p for _, p in parameters if p.kind == p.VAR_POSITIONAL]: return p_or_k = [p for _, p in parameters if p.kind == p.POSITIONAL_OR_KEYWORD] # how many have no default and how many have a default value no, yes = map(len, sift(p_or_k, lambda p:p.default == p.empty, binary=True)) return no if not yes else tuple(range(no, no + yes + 1)) class FunctionClass(ManagedProperties): """ Base class for function classes. FunctionClass is a subclass of type. Use Function('<function name>' [ , signature ]) to create undefined function classes. """ _new = type.__new__ def __init__(cls, *args, **kwargs): # honor kwarg value or class-defined value before using # the number of arguments in the eval function (if present) nargs = kwargs.pop('nargs', cls.__dict__.get('nargs', arity(cls))) if nargs is None and 'nargs' not in cls.__dict__: for supcls in cls.__mro__: if hasattr(supcls, '_nargs'): nargs = supcls._nargs break else: continue # Canonicalize nargs here; change to set in nargs. if is_sequence(nargs): if not nargs: raise ValueError(filldedent(''' Incorrectly specified nargs as %s: if there are no arguments, it should be `nargs = 0`; if there are any number of arguments, it should be `nargs = None`''' % str(nargs))) nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) cls._nargs = nargs super().__init__(*args, **kwargs) @property def __signature__(self): """ Allow Python 3's inspect.signature to give a useful signature for Function subclasses. """ # Python 3 only, but backports (like the one in IPython) still might # call this. try: from inspect import signature except ImportError: return None # TODO: Look at nargs return signature(self.eval) @property def free_symbols(self): return set() @property def xreplace(self): # Function needs args so we define a property that returns # a function that takes args...and then use that function # to return the right value return lambda rule, **_: rule.get(self, self) @property def nargs(self): """Return a set of the allowed number of arguments for the function. Examples ======== >>> from sympy import Function >>> f = Function('f') If the function can take any number of arguments, the set of whole numbers is returned: >>> Function('f').nargs Naturals0 If the function was initialized to accept one or more arguments, a corresponding set will be returned: >>> Function('f', nargs=1).nargs {1} >>> Function('f', nargs=(2, 1)).nargs {1, 2} The undefined function, after application, also has the nargs attribute; the actual number of arguments is always available by checking the ``args`` attribute: >>> f = Function('f') >>> f(1).nargs Naturals0 >>> len(f(1).args) 1 """ from sympy.sets.sets import FiniteSet # XXX it would be nice to handle this in __init__ but there are import # problems with trying to import FiniteSet there return FiniteSet(*self._nargs) if self._nargs else S.Naturals0 def __repr__(cls): return cls.__name__ class Application(Basic, metaclass=FunctionClass): """ Base class for applied functions. Explanation =========== Instances of Application represent the result of applying an application of any type to any object. """ is_Function = True @cacheit def __new__(cls, *args, **options): from sympy.sets.fancysets import Naturals0 from sympy.sets.sets import FiniteSet args = list(map(sympify, args)) evaluate = options.pop('evaluate', global_parameters.evaluate) # WildFunction (and anything else like it) may have nargs defined # and we throw that value away here options.pop('nargs', None) if options: raise ValueError("Unknown options: %s" % options) if evaluate: evaluated = cls.eval(*args) if evaluated is not None: return evaluated obj = super().__new__(cls, *args, **options) # make nargs uniform here sentinel = object() objnargs = getattr(obj, "nargs", sentinel) if objnargs is not sentinel: # things passing through here: # - functions subclassed from Function (e.g. myfunc(1).nargs) # - functions like cos(1).nargs # - AppliedUndef with given nargs like Function('f', nargs=1)(1).nargs # Canonicalize nargs here if is_sequence(objnargs): nargs = tuple(ordered(set(objnargs))) elif objnargs is not None: nargs = (as_int(objnargs),) else: nargs = None else: # things passing through here: # - WildFunction('f').nargs # - AppliedUndef with no nargs like Function('f')(1).nargs nargs = obj._nargs # note the underscore here # convert to FiniteSet obj.nargs = FiniteSet(*nargs) if nargs else Naturals0() return obj @classmethod def eval(cls, *args): """ Returns a canonical form of cls applied to arguments args. Explanation =========== The eval() method is called when the class cls is about to be instantiated and it should return either some simplified instance (possible of some other class), or if the class cls should be unmodified, return None. Examples of eval() for the function "sign" --------------------------------------------- .. code-block:: python @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN if arg.is_zero: return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if isinstance(arg, Mul): coeff, terms = arg.as_coeff_Mul(rational=True) if coeff is not S.One: return cls(coeff) * cls(terms) """ return @property def func(self): return self.__class__ def _eval_subs(self, old, new): if (old.is_Function and new.is_Function and callable(old) and callable(new) and old == self.func and len(self.args) in new.nargs): return new(*[i._subs(old, new) for i in self.args]) class Function(Application, Expr): """ Base class for applied mathematical functions. It also serves as a constructor for undefined function classes. Examples ======== First example shows how to use Function as a constructor for undefined function classes: >>> from sympy import Function, Symbol >>> x = Symbol('x') >>> f = Function('f') >>> g = Function('g')(x) >>> f f >>> f(x) f(x) >>> g g(x) >>> f(x).diff(x) Derivative(f(x), x) >>> g.diff(x) Derivative(g(x), x) Assumptions can be passed to Function, and if function is initialized with a Symbol, the function inherits the name and assumptions associated with the Symbol: >>> f_real = Function('f', real=True) >>> f_real(x).is_real True >>> f_real_inherit = Function(Symbol('f', real=True)) >>> f_real_inherit(x).is_real True Note that assumptions on a function are unrelated to the assumptions on the variable it is called on. If you want to add a relationship, subclass Function and define the appropriate ``_eval_is_assumption`` methods. In the following example Function is used as a base class for ``my_func`` that represents a mathematical function *my_func*. Suppose that it is well known, that *my_func(0)* is *1* and *my_func* at infinity goes to *0*, so we want those two simplifications to occur automatically. Suppose also that *my_func(x)* is real exactly when *x* is real. Here is an implementation that honours those requirements: >>> from sympy import Function, S, oo, I, sin >>> class my_func(Function): ... ... @classmethod ... def eval(cls, x): ... if x.is_Number: ... if x.is_zero: ... return S.One ... elif x is S.Infinity: ... return S.Zero ... ... def _eval_is_real(self): ... return self.args[0].is_real ... >>> x = S('x') >>> my_func(0) + sin(0) 1 >>> my_func(oo) 0 >>> my_func(3.54).n() # Not yet implemented for my_func. my_func(3.54) >>> my_func(I).is_real False In order for ``my_func`` to become useful, several other methods would need to be implemented. See source code of some of the already implemented functions for more complete examples. Also, if the function can take more than one argument, then ``nargs`` must be defined, e.g. if ``my_func`` can take one or two arguments then, >>> class my_func(Function): ... nargs = (1, 2) ... >>> """ @property def _diff_wrt(self): return False @cacheit def __new__(cls, *args, **options): # Handle calls like Function('f') if cls is Function: return UndefinedFunction(*args, **options) n = len(args) if n not in cls.nargs: # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. temp = ('%(name)s takes %(qual)s %(args)s ' 'argument%(plural)s (%(given)s given)') raise TypeError(temp % { 'name': cls, 'qual': 'exactly' if len(cls.nargs) == 1 else 'at least', 'args': min(cls.nargs), 'plural': 's'*(min(cls.nargs) != 1), 'given': n}) evaluate = options.get('evaluate', global_parameters.evaluate) result = super().__new__(cls, *args, **options) if evaluate and isinstance(result, cls) and result.args: pr2 = min(cls._should_evalf(a) for a in result.args) if pr2 > 0: pr = max(cls._should_evalf(a) for a in result.args) result = result.evalf(prec_to_dps(pr)) return result @classmethod def _should_evalf(cls, arg): """ Decide if the function should automatically evalf(). Explanation =========== By default (in this implementation), this happens if (and only if) the ARG is a floating point number. This function is used by __new__. Returns the precision to evalf to, or -1 if it shouldn't evalf. """ if arg.is_Float: return arg._prec if not arg.is_Add: return -1 from .evalf import pure_complex m = pure_complex(arg) if m is None or not (m[0].is_Float or m[1].is_Float): return -1 l = [i._prec for i in m if i.is_Float] l.append(-1) return max(l) @classmethod def class_key(cls): from sympy.sets.fancysets import Naturals0 funcs = { 'exp': 10, 'log': 11, 'sin': 20, 'cos': 21, 'tan': 22, 'cot': 23, 'sinh': 30, 'cosh': 31, 'tanh': 32, 'coth': 33, 'conjugate': 40, 're': 41, 'im': 42, 'arg': 43, } name = cls.__name__ try: i = funcs[name] except KeyError: i = 0 if isinstance(cls.nargs, Naturals0) else 10000 return 4, i, name def _eval_evalf(self, prec): def _get_mpmath_func(fname): """Lookup mpmath function based on name""" if isinstance(self, AppliedUndef): # Shouldn't lookup in mpmath but might have ._imp_ return None if not hasattr(mpmath, fname): fname = MPMATH_TRANSLATIONS.get(fname, None) if fname is None: return None return getattr(mpmath, fname) _eval_mpmath = getattr(self, '_eval_mpmath', None) if _eval_mpmath is None: func = _get_mpmath_func(self.func.__name__) args = self.args else: func, args = _eval_mpmath() # Fall-back evaluation if func is None: imp = getattr(self, '_imp_', None) if imp is None: return None try: return Float(imp(*[i.evalf(prec) for i in self.args]), prec) except (TypeError, ValueError): return None # Convert all args to mpf or mpc # Convert the arguments to *higher* precision than requested for the # final result. # XXX + 5 is a guess, it is similar to what is used in evalf.py. Should # we be more intelligent about it? try: args = [arg._to_mpmath(prec + 5) for arg in args] def bad(m): from mpmath import mpf, mpc # the precision of an mpf value is the last element # if that is 1 (and m[1] is not 1 which would indicate a # power of 2), then the eval failed; so check that none of # the arguments failed to compute to a finite precision. # Note: An mpc value has two parts, the re and imag tuple; # check each of those parts, too. Anything else is allowed to # pass if isinstance(m, mpf): m = m._mpf_ return m[1] !=1 and m[-1] == 1 elif isinstance(m, mpc): m, n = m._mpc_ return m[1] !=1 and m[-1] == 1 and \ n[1] !=1 and n[-1] == 1 else: return False if any(bad(a) for a in args): raise ValueError # one or more args failed to compute with significance except ValueError: return with mpmath.workprec(prec): v = func(*args) return Expr._from_mpmath(v, prec) def _eval_derivative(self, s): # f(x).diff(s) -> x.diff(s) * f.fdiff(1)(s) i = 0 l = [] for a in self.args: i += 1 da = a.diff(s) if da.is_zero: continue try: df = self.fdiff(i) except ArgumentIndexError: df = Function.fdiff(self, i) l.append(df * da) return Add(*l) def _eval_is_commutative(self): return fuzzy_and(a.is_commutative for a in self.args) def _eval_is_meromorphic(self, x, a): if not self.args: return True if any(arg.has(x) for arg in self.args[1:]): return False arg = self.args[0] if not arg._eval_is_meromorphic(x, a): return None return fuzzy_not(type(self).is_singular(arg.subs(x, a))) _singularities = None # type: tUnion[FuzzyBool, tTuple[Expr, ...]] @classmethod def is_singular(cls, a): """ Tests whether the argument is an essential singularity or a branch point, or the functions is non-holomorphic. """ ss = cls._singularities if ss in (True, None, False): return ss return fuzzy_or(a.is_infinite if s is S.ComplexInfinity else (a - s).is_zero for s in ss) def as_base_exp(self): """ Returns the method as the 2-tuple (base, exponent). """ return self, S.One def _eval_aseries(self, n, args0, x, logx): """ Compute an asymptotic expansion around args0, in terms of self.args. This function is only used internally by _eval_nseries and should not be called directly; derived classes can overwrite this to implement asymptotic expansions. """ raise PoleError(filldedent(''' Asymptotic expansion of %s around %s is not implemented.''' % (type(self), args0))) def _eval_nseries(self, x, n, logx, cdir=0): """ This function does compute series for multivariate functions, but the expansion is always in terms of *one* variable. Examples ======== >>> from sympy import atan2 >>> from sympy.abc import x, y >>> atan2(x, y).series(x, n=2) atan2(0, y) + x/y + O(x**2) >>> atan2(x, y).series(y, n=2) -y/x + atan2(x, 0) + O(y**2) This function also computes asymptotic expansions, if necessary and possible: >>> from sympy import loggamma >>> loggamma(1/x)._eval_nseries(x,0,None) -1/x - log(x)/x + log(x)/2 + O(1) """ from .symbol import uniquely_named_symbol from sympy.series.order import Order from sympy.sets.sets import FiniteSet args = self.args args0 = [t.limit(x, 0) for t in args] if any(t.is_finite is False for t in args0): from .numbers import oo, zoo, nan # XXX could use t.as_leading_term(x) here but it's a little # slower a = [t.compute_leading_term(x, logx=logx) for t in args] a0 = [t.limit(x, 0) for t in a] if any(t.has(oo, -oo, zoo, nan) for t in a0): return self._eval_aseries(n, args0, x, logx) # Careful: the argument goes to oo, but only logarithmically so. We # are supposed to do a power series expansion "around the # logarithmic term". e.g. # f(1+x+log(x)) # -> f(1+logx) + x*f'(1+logx) + O(x**2) # where 'logx' is given in the argument a = [t._eval_nseries(x, n, logx) for t in args] z = [r - r0 for (r, r0) in zip(a, a0)] p = [Dummy() for _ in z] q = [] v = None for ai, zi, pi in zip(a0, z, p): if zi.has(x): if v is not None: raise NotImplementedError q.append(ai + pi) v = pi else: q.append(ai) e1 = self.func(*q) if v is None: return e1 s = e1._eval_nseries(v, n, logx) o = s.getO() s = s.removeO() s = s.subs(v, zi).expand() + Order(o.expr.subs(v, zi), x) return s if (self.func.nargs is S.Naturals0 or (self.func.nargs == FiniteSet(1) and args0[0]) or any(c > 1 for c in self.func.nargs)): e = self e1 = e.expand() if e == e1: #for example when e = sin(x+1) or e = sin(cos(x)) #let's try the general algorithm if len(e.args) == 1: # issue 14411 e = e.func(e.args[0].cancel()) term = e.subs(x, S.Zero) if term.is_finite is False or term is S.NaN: raise PoleError("Cannot expand %s around 0" % (self)) series = term fact = S.One _x = uniquely_named_symbol('xi', self) e = e.subs(x, _x) for i in range(n - 1): i += 1 fact *= Rational(i) e = e.diff(_x) subs = e.subs(_x, S.Zero) if subs is S.NaN: # try to evaluate a limit if we have to subs = e.limit(_x, S.Zero) if subs.is_finite is False: raise PoleError("Cannot expand %s around 0" % (self)) term = subs*(x**i)/fact term = term.expand() series += term return series + Order(x**n, x) return e1.nseries(x, n=n, logx=logx) arg = self.args[0] l = [] g = None # try to predict a number of terms needed nterms = n + 2 cf = Order(arg.as_leading_term(x), x).getn() if cf != 0: nterms = (n/cf).ceiling() for i in range(nterms): g = self.taylor_term(i, arg, g) g = g.nseries(x, n=n, logx=logx) l.append(g) return Add(*l) + Order(x**n, x) def fdiff(self, argindex=1): """ Returns the first derivative of the function. """ if not (1 <= argindex <= len(self.args)): raise ArgumentIndexError(self, argindex) ix = argindex - 1 A = self.args[ix] if A._diff_wrt: if len(self.args) == 1 or not A.is_Symbol: return _derivative_dispatch(self, A) for i, v in enumerate(self.args): if i != ix and A in v.free_symbols: # it can't be in any other argument's free symbols # issue 8510 break else: return _derivative_dispatch(self, A) # See issue 4624 and issue 4719, 5600 and 8510 D = Dummy('xi_%i' % argindex, dummy_index=hash(A)) args = self.args[:ix] + (D,) + self.args[ix + 1:] return Subs(Derivative(self.func(*args), D), D, A) def _eval_as_leading_term(self, x, logx=None, cdir=0): """Stub that should be overridden by new Functions to return the first non-zero term in a series if ever an x-dependent argument whose leading term vanishes as x -> 0 might be encountered. See, for example, cos._eval_as_leading_term. """ from sympy.series.order import Order args = [a.as_leading_term(x, logx=logx) for a in self.args] o = Order(1, x) if any(x in a.free_symbols and o.contains(a) for a in args): # Whereas x and any finite number are contained in O(1, x), # expressions like 1/x are not. If any arg simplified to a # vanishing expression as x -> 0 (like x or x**2, but not # 3, 1/x, etc...) then the _eval_as_leading_term is needed # to supply the first non-zero term of the series, # # e.g. expression leading term # ---------- ------------ # cos(1/x) cos(1/x) # cos(cos(x)) cos(1) # cos(x) 1 <- _eval_as_leading_term needed # sin(x) x <- _eval_as_leading_term needed # raise NotImplementedError( '%s has no _eval_as_leading_term routine' % self.func) else: return self.func(*args) class AppliedUndef(Function): """ Base class for expressions resulting from the application of an undefined function. """ is_number = False def __new__(cls, *args, **options): args = list(map(sympify, args)) u = [a.name for a in args if isinstance(a, UndefinedFunction)] if u: raise TypeError('Invalid argument: expecting an expression, not UndefinedFunction%s: %s' % ( 's'*(len(u) > 1), ', '.join(u))) obj = super().__new__(cls, *args, **options) return obj def _eval_as_leading_term(self, x, logx=None, cdir=0): return self @property def _diff_wrt(self): """ Allow derivatives wrt to undefined functions. Examples ======== >>> from sympy import Function, Symbol >>> f = Function('f') >>> x = Symbol('x') >>> f(x)._diff_wrt True >>> f(x).diff(x) Derivative(f(x), x) """ return True class UndefSageHelper: """ Helper to facilitate Sage conversion. """ def __get__(self, ins, typ): import sage.all as sage if ins is None: return lambda: sage.function(typ.__name__) else: args = [arg._sage_() for arg in ins.args] return lambda : sage.function(ins.__class__.__name__)(*args) _undef_sage_helper = UndefSageHelper() class UndefinedFunction(FunctionClass): """ The (meta)class of undefined functions. """ def __new__(mcl, name, bases=(AppliedUndef,), __dict__=None, **kwargs): from .symbol import _filter_assumptions # Allow Function('f', real=True) # and/or Function(Symbol('f', real=True)) assumptions, kwargs = _filter_assumptions(kwargs) if isinstance(name, Symbol): assumptions = name._merge(assumptions) name = name.name elif not isinstance(name, str): raise TypeError('expecting string or Symbol for name') else: commutative = assumptions.get('commutative', None) assumptions = Symbol(name, **assumptions).assumptions0 if commutative is None: assumptions.pop('commutative') __dict__ = __dict__ or {} # put the `is_*` for into __dict__ __dict__.update({'is_%s' % k: v for k, v in assumptions.items()}) # You can add other attributes, although they do have to be hashable # (but seriously, if you want to add anything other than assumptions, # just subclass Function) __dict__.update(kwargs) # add back the sanitized assumptions without the is_ prefix kwargs.update(assumptions) # Save these for __eq__ __dict__.update({'_kwargs': kwargs}) # do this for pickling __dict__['__module__'] = None obj = super().__new__(mcl, name, bases, __dict__) obj.name = name obj._sage_ = _undef_sage_helper return obj def __instancecheck__(cls, instance): return cls in type(instance).__mro__ _kwargs = {} # type: tDict[str, Optional[bool]] def __hash__(self): return hash((self.class_key(), frozenset(self._kwargs.items()))) def __eq__(self, other): return (isinstance(other, self.__class__) and self.class_key() == other.class_key() and self._kwargs == other._kwargs) def __ne__(self, other): return not self == other @property def _diff_wrt(self): return False # XXX: The type: ignore on WildFunction is because mypy complains: # # sympy/core/function.py:939: error: Cannot determine type of 'sort_key' in # base class 'Expr' # # Somehow this is because of the @cacheit decorator but it is not clear how to # fix it. class WildFunction(Function, AtomicExpr): # type: ignore """ A WildFunction function matches any function (with its arguments). Examples ======== >>> from sympy import WildFunction, Function, cos >>> from sympy.abc import x, y >>> F = WildFunction('F') >>> f = Function('f') >>> F.nargs Naturals0 >>> x.match(F) >>> F.match(F) {F_: F_} >>> f(x).match(F) {F_: f(x)} >>> cos(x).match(F) {F_: cos(x)} >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a given number of arguments, set ``nargs`` to the desired value at instantiation: >>> F = WildFunction('F', nargs=2) >>> F.nargs {2} >>> f(x).match(F) >>> f(x, y).match(F) {F_: f(x, y)} To match functions with a range of arguments, set ``nargs`` to a tuple containing the desired number of arguments, e.g. if ``nargs = (1, 2)`` then functions with 1 or 2 arguments will be matched. >>> F = WildFunction('F', nargs=(1, 2)) >>> F.nargs {1, 2} >>> f(x).match(F) {F_: f(x)} >>> f(x, y).match(F) {F_: f(x, y)} >>> f(x, y, 1).match(F) """ # XXX: What is this class attribute used for? include = set() # type: tSet[Any] def __init__(cls, name, **assumptions): from sympy.sets.sets import Set, FiniteSet cls.name = name nargs = assumptions.pop('nargs', S.Naturals0) if not isinstance(nargs, Set): # Canonicalize nargs here. See also FunctionClass. if is_sequence(nargs): nargs = tuple(ordered(set(nargs))) elif nargs is not None: nargs = (as_int(nargs),) nargs = FiniteSet(*nargs) cls.nargs = nargs def matches(self, expr, repl_dict=None, old=False): if not isinstance(expr, (AppliedUndef, Function)): return None if len(expr.args) not in self.nargs: return None if repl_dict is None: repl_dict = dict() else: repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict class Derivative(Expr): """ Carries out differentiation of the given expression with respect to symbols. Examples ======== >>> from sympy import Derivative, Function, symbols, Subs >>> from sympy.abc import x, y >>> f, g = symbols('f g', cls=Function) >>> Derivative(x**2, x, evaluate=True) 2*x Denesting of derivatives retains the ordering of variables: >>> Derivative(Derivative(f(x, y), y), x) Derivative(f(x, y), y, x) Contiguously identical symbols are merged into a tuple giving the symbol and the count: >>> Derivative(f(x), x, x, y, x) Derivative(f(x), (x, 2), y, x) If the derivative cannot be performed, and evaluate is True, the order of the variables of differentiation will be made canonical: >>> Derivative(f(x, y), y, x, evaluate=True) Derivative(f(x, y), x, y) Derivatives with respect to undefined functions can be calculated: >>> Derivative(f(x)**2, f(x), evaluate=True) 2*f(x) Such derivatives will show up when the chain rule is used to evalulate a derivative: >>> f(g(x)).diff(x) Derivative(f(g(x)), g(x))*Derivative(g(x), x) Substitution is used to represent derivatives of functions with arguments that are not symbols or functions: >>> f(2*x + 3).diff(x) == 2*Subs(f(y).diff(y), y, 2*x + 3) True Notes ===== Simplification of high-order derivatives: Because there can be a significant amount of simplification that can be done when multiple differentiations are performed, results will be automatically simplified in a fairly conservative fashion unless the keyword ``simplify`` is set to False. >>> from sympy import sqrt, diff, Function, symbols >>> from sympy.abc import x, y, z >>> f, g = symbols('f,g', cls=Function) >>> e = sqrt((x + 1)**2 + x) >>> diff(e, (x, 5), simplify=False).count_ops() 136 >>> diff(e, (x, 5)).count_ops() 30 Ordering of variables: If evaluate is set to True and the expression cannot be evaluated, the list of differentiation symbols will be sorted, that is, the expression is assumed to have continuous derivatives up to the order asked. Derivative wrt non-Symbols: For the most part, one may not differentiate wrt non-symbols. For example, we do not allow differentiation wrt `x*y` because there are multiple ways of structurally defining where x*y appears in an expression: a very strict definition would make (x*y*z).diff(x*y) == 0. Derivatives wrt defined functions (like cos(x)) are not allowed, either: >>> (x*y*z).diff(x*y) Traceback (most recent call last): ... ValueError: Can't calculate derivative wrt x*y. To make it easier to work with variational calculus, however, derivatives wrt AppliedUndef and Derivatives are allowed. For example, in the Euler-Lagrange method one may write F(t, u, v) where u = f(t) and v = f'(t). These variables can be written explicitly as functions of time:: >>> from sympy.abc import t >>> F = Function('F') >>> U = f(t) >>> V = U.diff(t) The derivative wrt f(t) can be obtained directly: >>> direct = F(t, U, V).diff(U) When differentiation wrt a non-Symbol is attempted, the non-Symbol is temporarily converted to a Symbol while the differentiation is performed and the same answer is obtained: >>> indirect = F(t, U, V).subs(U, x).diff(x).subs(x, U) >>> assert direct == indirect The implication of this non-symbol replacement is that all functions are treated as independent of other functions and the symbols are independent of the functions that contain them:: >>> x.diff(f(x)) 0 >>> g(x).diff(f(x)) 0 It also means that derivatives are assumed to depend only on the variables of differentiation, not on anything contained within the expression being differentiated:: >>> F = f(x) >>> Fx = F.diff(x) >>> Fx.diff(F) # derivative depends on x, not F 0 >>> Fxx = Fx.diff(x) >>> Fxx.diff(Fx) # derivative depends on x, not Fx 0 The last example can be made explicit by showing the replacement of Fx in Fxx with y: >>> Fxx.subs(Fx, y) Derivative(y, x) Since that in itself will evaluate to zero, differentiating wrt Fx will also be zero: >>> _.doit() 0 Replacing undefined functions with concrete expressions One must be careful to replace undefined functions with expressions that contain variables consistent with the function definition and the variables of differentiation or else insconsistent result will be obtained. Consider the following example: >>> eq = f(x)*g(y) >>> eq.subs(f(x), x*y).diff(x, y).doit() y*Derivative(g(y), y) + g(y) >>> eq.diff(x, y).subs(f(x), x*y).doit() y*Derivative(g(y), y) The results differ because `f(x)` was replaced with an expression that involved both variables of differentiation. In the abstract case, differentiation of `f(x)` by `y` is 0; in the concrete case, the presence of `y` made that derivative nonvanishing and produced the extra `g(y)` term. Defining differentiation for an object An object must define ._eval_derivative(symbol) method that returns the differentiation result. This function only needs to consider the non-trivial case where expr contains symbol and it should call the diff() method internally (not _eval_derivative); Derivative should be the only one to call _eval_derivative. Any class can allow derivatives to be taken with respect to itself (while indicating its scalar nature). See the docstring of Expr._diff_wrt. See Also ======== _sort_variable_count """ is_Derivative = True @property def _diff_wrt(self): """An expression may be differentiated wrt a Derivative if it is in elementary form. Examples ======== >>> from sympy import Function, Derivative, cos >>> from sympy.abc import x >>> f = Function('f') >>> Derivative(f(x), x)._diff_wrt True >>> Derivative(cos(x), x)._diff_wrt False >>> Derivative(x + 1, x)._diff_wrt False A Derivative might be an unevaluated form of what will not be a valid variable of differentiation if evaluated. For example, >>> Derivative(f(f(x)), x).doit() Derivative(f(x), x)*Derivative(f(f(x)), f(x)) Such an expression will present the same ambiguities as arise when dealing with any other product, like ``2*x``, so ``_diff_wrt`` is False: >>> Derivative(f(f(x)), x)._diff_wrt False """ return self.expr._diff_wrt and isinstance(self.doit(), Derivative) def __new__(cls, expr, *variables, **kwargs): expr = sympify(expr) symbols_or_none = getattr(expr, "free_symbols", None) has_symbol_set = isinstance(symbols_or_none, set) if not has_symbol_set: raise ValueError(filldedent(''' Since there are no variables in the expression %s, it cannot be differentiated.''' % expr)) # determine value for variables if it wasn't given if not variables: variables = expr.free_symbols if len(variables) != 1: if expr.is_number: return S.Zero if len(variables) == 0: raise ValueError(filldedent(''' Since there are no variables in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) else: raise ValueError(filldedent(''' Since there is more than one variable in the expression, the variable(s) of differentiation must be supplied to differentiate %s''' % expr)) # Split the list of variables into a list of the variables we are diff # wrt, where each element of the list has the form (s, count) where # s is the entity to diff wrt and count is the order of the # derivative. variable_count = [] array_likes = (tuple, list, Tuple) integer_likes = (int, Integer) from sympy.tensor.array import Array, NDimArray for i, v in enumerate(variables): if isinstance(v, integer_likes): if i == 0: raise ValueError("First variable cannot be a number: %i" % v) count = v prev, prevcount = variable_count[-1] if prevcount != 1: raise TypeError("tuple {} followed by number {}".format((prev, prevcount), v)) if count == 0: variable_count.pop() else: variable_count[-1] = Tuple(prev, count) else: if isinstance(v, array_likes): if len(v) == 0: # Ignore empty tuples: Derivative(expr, ... , (), ... ) continue if isinstance(v[0], array_likes): # Derive by array: Derivative(expr, ... , [[x, y, z]], ... ) if len(v) == 1: v = Array(v[0]) count = 1 else: v, count = v v = Array(v) else: v, count = v if count == 0: continue elif isinstance(v, UndefinedFunction): raise TypeError( "cannot differentiate wrt " "UndefinedFunction: %s" % v) else: count = 1 variable_count.append(Tuple(v, count)) # light evaluation of contiguous, identical # items: (x, 1), (x, 1) -> (x, 2) merged = [] for t in variable_count: v, c = t if c.is_negative: raise ValueError( 'order of differentiation must be nonnegative') if merged and merged[-1][0] == v: c += merged[-1][1] if not c: merged.pop() else: merged[-1] = Tuple(v, c) else: merged.append(t) variable_count = merged # sanity check of variables of differentation; we waited # until the counts were computed since some variables may # have been removed because the count was 0 for v, c in variable_count: # v must have _diff_wrt True if not v._diff_wrt: __ = '' # filler to make error message neater raise ValueError(filldedent(''' Can't calculate derivative wrt %s.%s''' % (v, __))) # We make a special case for 0th derivative, because there is no # good way to unambiguously print this. if len(variable_count) == 0: return expr evaluate = kwargs.get('evaluate', False) if evaluate: if isinstance(expr, Derivative): expr = expr.canonical variable_count = [ (v.canonical if isinstance(v, Derivative) else v, c) for v, c in variable_count] # Look for a quick exit if there are symbols that don't appear in # expression at all. Note, this cannot check non-symbols like # Derivatives as those can be created by intermediate # derivatives. zero = False free = expr.free_symbols from sympy.matrices.expressions.matexpr import MatrixExpr for v, c in variable_count: vfree = v.free_symbols if c.is_positive and vfree: if isinstance(v, AppliedUndef): # these match exactly since # x.diff(f(x)) == g(x).diff(f(x)) == 0 # and are not created by differentiation D = Dummy() if not expr.xreplace({v: D}).has(D): zero = True break elif isinstance(v, MatrixExpr): zero = False break elif isinstance(v, Symbol) and v not in free: zero = True break else: if not free & vfree: # e.g. v is IndexedBase or Matrix zero = True break if zero: return cls._get_zero_with_shape_like(expr) # make the order of symbols canonical #TODO: check if assumption of discontinuous derivatives exist variable_count = cls._sort_variable_count(variable_count) # denest if isinstance(expr, Derivative): variable_count = list(expr.variable_count) + variable_count expr = expr.expr return _derivative_dispatch(expr, *variable_count, **kwargs) # we return here if evaluate is False or if there is no # _eval_derivative method if not evaluate or not hasattr(expr, '_eval_derivative'): # return an unevaluated Derivative if evaluate and variable_count == [(expr, 1)] and expr.is_scalar: # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined return S.One return Expr.__new__(cls, expr, *variable_count) # evaluate the derivative by calling _eval_derivative method # of expr for each variable # ------------------------------------------------------------- nderivs = 0 # how many derivatives were performed unhandled = [] from sympy.matrices.common import MatrixCommon for i, (v, count) in enumerate(variable_count): old_expr = expr old_v = None is_symbol = v.is_symbol or isinstance(v, (Iterable, Tuple, MatrixCommon, NDimArray)) if not is_symbol: old_v = v v = Dummy('xi') expr = expr.xreplace({old_v: v}) # Derivatives and UndefinedFunctions are independent # of all others clashing = not (isinstance(old_v, Derivative) or \ isinstance(old_v, AppliedUndef)) if v not in expr.free_symbols and not clashing: return expr.diff(v) # expr's version of 0 if not old_v.is_scalar and not hasattr( old_v, '_eval_derivative'): # special hack providing evaluation for classes # that have defined is_scalar=True but have no # _eval_derivative defined expr *= old_v.diff(old_v) obj = cls._dispatch_eval_derivative_n_times(expr, v, count) if obj is not None and obj.is_zero: return obj nderivs += count if old_v is not None: if obj is not None: # remove the dummy that was used obj = obj.subs(v, old_v) # restore expr expr = old_expr if obj is None: # we've already checked for quick-exit conditions # that give 0 so the remaining variables # are contained in the expression but the expression # did not compute a derivative so we stop taking # derivatives unhandled = variable_count[i:] break expr = obj # what we have so far can be made canonical expr = expr.replace( lambda x: isinstance(x, Derivative), lambda x: x.canonical) if unhandled: if isinstance(expr, Derivative): unhandled = list(expr.variable_count) + unhandled expr = expr.expr expr = Expr.__new__(cls, expr, *unhandled) if (nderivs > 1) == True and kwargs.get('simplify', True): from .exprtools import factor_terms from sympy.simplify.simplify import signsimp expr = factor_terms(signsimp(expr)) return expr @property def canonical(cls): return cls.func(cls.expr, *Derivative._sort_variable_count(cls.variable_count)) @classmethod def _sort_variable_count(cls, vc): """ Sort (variable, count) pairs into canonical order while retaining order of variables that do not commute during differentiation: * symbols and functions commute with each other * derivatives commute with each other * a derivative doesn't commute with anything it contains * any other object is not allowed to commute if it has free symbols in common with another object Examples ======== >>> from sympy import Derivative, Function, symbols >>> vsort = Derivative._sort_variable_count >>> x, y, z = symbols('x y z') >>> f, g, h = symbols('f g h', cls=Function) Contiguous items are collapsed into one pair: >>> vsort([(x, 1), (x, 1)]) [(x, 2)] >>> vsort([(y, 1), (f(x), 1), (y, 1), (f(x), 1)]) [(y, 2), (f(x), 2)] Ordering is canonical. >>> def vsort0(*v): ... # docstring helper to ... # change vi -> (vi, 0), sort, and return vi vals ... return [i[0] for i in vsort([(i, 0) for i in v])] >>> vsort0(y, x) [x, y] >>> vsort0(g(y), g(x), f(y)) [f(y), g(x), g(y)] Symbols are sorted as far to the left as possible but never move to the left of a derivative having the same symbol in its variables; the same applies to AppliedUndef which are always sorted after Symbols: >>> dfx = f(x).diff(x) >>> assert vsort0(dfx, y) == [y, dfx] >>> assert vsort0(dfx, x) == [dfx, x] """ if not vc: return [] vc = list(vc) if len(vc) == 1: return [Tuple(*vc[0])] V = list(range(len(vc))) E = [] v = lambda i: vc[i][0] D = Dummy() def _block(d, v, wrt=False): # return True if v should not come before d else False if d == v: return wrt if d.is_Symbol: return False if isinstance(d, Derivative): # a derivative blocks if any of it's variables contain # v; the wrt flag will return True for an exact match # and will cause an AppliedUndef to block if v is in # the arguments if any(_block(k, v, wrt=True) for k in d._wrt_variables): return True return False if not wrt and isinstance(d, AppliedUndef): return False if v.is_Symbol: return v in d.free_symbols if isinstance(v, AppliedUndef): return _block(d.xreplace({v: D}), D) return d.free_symbols & v.free_symbols for i in range(len(vc)): for j in range(i): if _block(v(j), v(i)): E.append((j,i)) # this is the default ordering to use in case of ties O = dict(zip(ordered(uniq([i for i, c in vc])), range(len(vc)))) ix = topological_sort((V, E), key=lambda i: O[v(i)]) # merge counts of contiguously identical items merged = [] for v, c in [vc[i] for i in ix]: if merged and merged[-1][0] == v: merged[-1][1] += c else: merged.append([v, c]) return [Tuple(*i) for i in merged] def _eval_is_commutative(self): return self.expr.is_commutative def _eval_derivative(self, v): # If v (the variable of differentiation) is not in # self.variables, we might be able to take the derivative. if v not in self._wrt_variables: dedv = self.expr.diff(v) if isinstance(dedv, Derivative): return dedv.func(dedv.expr, *(self.variable_count + dedv.variable_count)) # dedv (d(self.expr)/dv) could have simplified things such that the # derivative wrt things in self.variables can now be done. Thus, # we set evaluate=True to see if there are any other derivatives # that can be done. The most common case is when dedv is a simple # number so that the derivative wrt anything else will vanish. return self.func(dedv, *self.variables, evaluate=True) # In this case v was in self.variables so the derivative wrt v has # already been attempted and was not computed, either because it # couldn't be or evaluate=False originally. variable_count = list(self.variable_count) variable_count.append((v, 1)) return self.func(self.expr, *variable_count, evaluate=False) def doit(self, **hints): expr = self.expr if hints.get('deep', True): expr = expr.doit(**hints) hints['evaluate'] = True rv = self.func(expr, *self.variable_count, **hints) if rv!= self and rv.has(Derivative): rv = rv.doit(**hints) return rv @_sympifyit('z0', NotImplementedError) def doit_numerically(self, z0): """ Evaluate the derivative at z numerically. When we can represent derivatives at a point, this should be folded into the normal evalf. For now, we need a special method. """ if len(self.free_symbols) != 1 or len(self.variables) != 1: raise NotImplementedError('partials and higher order derivatives') z = list(self.free_symbols)[0] def eval(x): f0 = self.expr.subs(z, Expr._from_mpmath(x, prec=mpmath.mp.prec)) f0 = f0.evalf(prec_to_dps(mpmath.mp.prec)) return f0._to_mpmath(mpmath.mp.prec) return Expr._from_mpmath(mpmath.diff(eval, z0._to_mpmath(mpmath.mp.prec)), mpmath.mp.prec) @property def expr(self): return self._args[0] @property def _wrt_variables(self): # return the variables of differentiation without # respect to the type of count (int or symbolic) return [i[0] for i in self.variable_count] @property def variables(self): # TODO: deprecate? YES, make this 'enumerated_variables' and # name _wrt_variables as variables # TODO: support for `d^n`? rv = [] for v, count in self.variable_count: if not count.is_Integer: raise TypeError(filldedent(''' Cannot give expansion for symbolic count. If you just want a list of all variables of differentiation, use _wrt_variables.''')) rv.extend([v]*count) return tuple(rv) @property def variable_count(self): return self._args[1:] @property def derivative_count(self): return sum([count for _, count in self.variable_count], 0) @property def free_symbols(self): ret = self.expr.free_symbols # Add symbolic counts to free_symbols for _, count in self.variable_count: ret.update(count.free_symbols) return ret @property def kind(self): return self.args[0].kind def _eval_subs(self, old, new): # The substitution (old, new) cannot be done inside # Derivative(expr, vars) for a variety of reasons # as handled below. if old in self._wrt_variables: # first handle the counts expr = self.func(self.expr, *[(v, c.subs(old, new)) for v, c in self.variable_count]) if expr != self: return expr._eval_subs(old, new) # quick exit case if not getattr(new, '_diff_wrt', False): # case (0): new is not a valid variable of # differentiation if isinstance(old, Symbol): # don't introduce a new symbol if the old will do return Subs(self, old, new) else: xi = Dummy('xi') return Subs(self.xreplace({old: xi}), xi, new) # If both are Derivatives with the same expr, check if old is # equivalent to self or if old is a subderivative of self. if old.is_Derivative and old.expr == self.expr: if self.canonical == old.canonical: return new # collections.Counter doesn't have __le__ def _subset(a, b): return all((a[i] <= b[i]) == True for i in a) old_vars = Counter(dict(reversed(old.variable_count))) self_vars = Counter(dict(reversed(self.variable_count))) if _subset(old_vars, self_vars): return _derivative_dispatch(new, *(self_vars - old_vars).items()).canonical args = list(self.args) newargs = list(x._subs(old, new) for x in args) if args[0] == old: # complete replacement of self.expr # we already checked that the new is valid so we know # it won't be a problem should it appear in variables return _derivative_dispatch(*newargs) if newargs[0] != args[0]: # case (1) can't change expr by introducing something that is in # the _wrt_variables if it was already in the expr # e.g. # for Derivative(f(x, g(y)), y), x cannot be replaced with # anything that has y in it; for f(g(x), g(y)).diff(g(y)) # g(x) cannot be replaced with anything that has g(y) syms = {vi: Dummy() for vi in self._wrt_variables if not vi.is_Symbol} wrt = {syms.get(vi, vi) for vi in self._wrt_variables} forbidden = args[0].xreplace(syms).free_symbols & wrt nfree = new.xreplace(syms).free_symbols ofree = old.xreplace(syms).free_symbols if (nfree - ofree) & forbidden: return Subs(self, old, new) viter = ((i, j) for ((i, _), (j, _)) in zip(newargs[1:], args[1:])) if any(i != j for i, j in viter): # a wrt-variable change # case (2) can't change vars by introducing a variable # that is contained in expr, e.g. # for Derivative(f(z, g(h(x), y)), y), y cannot be changed to # x, h(x), or g(h(x), y) for a in _atomic(self.expr, recursive=True): for i in range(1, len(newargs)): vi, _ = newargs[i] if a == vi and vi != args[i][0]: return Subs(self, old, new) # more arg-wise checks vc = newargs[1:] oldv = self._wrt_variables newe = self.expr subs = [] for i, (vi, ci) in enumerate(vc): if not vi._diff_wrt: # case (3) invalid differentiation expression so # create a replacement dummy xi = Dummy('xi_%i' % i) # replace the old valid variable with the dummy # in the expression newe = newe.xreplace({oldv[i]: xi}) # and replace the bad variable with the dummy vc[i] = (xi, ci) # and record the dummy with the new (invalid) # differentiation expression subs.append((xi, vi)) if subs: # handle any residual substitution in the expression newe = newe._subs(old, new) # return the Subs-wrapped derivative return Subs(Derivative(newe, *vc), *zip(*subs)) # everything was ok return _derivative_dispatch(*newargs) def _eval_lseries(self, x, logx, cdir=0): dx = self.variables for term in self.expr.lseries(x, logx=logx, cdir=cdir): yield self.func(term, *dx) def _eval_nseries(self, x, n, logx, cdir=0): arg = self.expr.nseries(x, n=n, logx=logx) o = arg.getO() dx = self.variables rv = [self.func(a, *dx) for a in Add.make_args(arg.removeO())] if o: rv.append(o/x) return Add(*rv) def _eval_as_leading_term(self, x, logx=None, cdir=0): series_gen = self.expr.lseries(x) d = S.Zero for leading_term in series_gen: d = diff(leading_term, *self.variables) if d != 0: break return d def as_finite_difference(self, points=1, x0=None, wrt=None): """ Expresses a Derivative instance as a finite difference. Parameters ========== points : sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around ``x0``. Default: 1 (step-size 1) x0 : number or Symbol, optional the value of the independent variable (``wrt``) at which the derivative is to be approximated. Default: same as ``wrt``. wrt : Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the derivative is ordinary. Default: ``None``. Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol >>> x, h = symbols('x h') >>> f = Function('f') >>> f(x).diff(x).as_finite_difference() -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> f(x).diff(x).as_finite_difference(h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> f(x).diff(x).as_finite_difference([x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around ``x0``, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> f(x).diff(x, 1).as_finite_difference(xl, x+h*sq2) # doctest: +ELLIPSIS 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/... To approximate ``Derivative`` around ``x0`` using a non-equidistant spacing step, the algorithm supports assignment of undefined functions to ``points``: >>> dx = Function('dx') >>> f(x).diff(x).as_finite_difference(points=dx(x), x0=x-h) -f(-h + x - dx(-h + x)/2)/dx(-h + x) + f(-h + x + dx(-h + x)/2)/dx(-h + x) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> d2fdxdy.as_finite_difference(wrt=x) -Derivative(f(x - 1/2, y), y) + Derivative(f(x + 1/2, y), y) We can apply ``as_finite_difference`` to ``Derivative`` instances in compound expressions using ``replace``: >>> (1 + 42**f(x).diff(x)).replace(lambda arg: arg.is_Derivative, ... lambda arg: arg.as_finite_difference()) 42**(-f(x - 1/2) + f(x + 1/2)) + 1 See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.differentiate_finite sympy.calculus.finite_diff.finite_diff_weights """ from sympy.calculus.finite_diff import _as_finite_diff return _as_finite_diff(self, points, x0, wrt) @classmethod def _get_zero_with_shape_like(cls, expr): return S.Zero @classmethod def _dispatch_eval_derivative_n_times(cls, expr, v, count): # Evaluate the derivative `n` times. If # `_eval_derivative_n_times` is not overridden by the current # object, the default in `Basic` will call a loop over # `_eval_derivative`: return expr._eval_derivative_n_times(v, count) def _derivative_dispatch(expr, *variables, **kwargs): from sympy.matrices.common import MatrixCommon from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.tensor.array import NDimArray array_types = (MatrixCommon, MatrixExpr, NDimArray, list, tuple, Tuple) if isinstance(expr, array_types) or any(isinstance(i[0], array_types) if isinstance(i, (tuple, list, Tuple)) else isinstance(i, array_types) for i in variables): from sympy.tensor.array.array_derivatives import ArrayDerivative return ArrayDerivative(expr, *variables, **kwargs) return Derivative(expr, *variables, **kwargs) class Lambda(Expr): """ Lambda(x, expr) represents a lambda function similar to Python's 'lambda x: expr'. A function of several variables is written as Lambda((x, y, ...), expr). Examples ======== A simple example: >>> from sympy import Lambda >>> from sympy.abc import x >>> f = Lambda(x, x**2) >>> f(4) 16 For multivariate functions, use: >>> from sympy.abc import y, z, t >>> f2 = Lambda((x, y, z, t), x + y**z + t**z) >>> f2(1, 2, 3, 4) 73 It is also possible to unpack tuple arguments: >>> f = Lambda(((x, y), z), x + y + z) >>> f((1, 2), 3) 6 A handy shortcut for lots of arguments: >>> p = x, y, z >>> f = Lambda(p, x + y*z) >>> f(*p) x + y*z """ is_Function = True def __new__(cls, signature, expr): if iterable(signature) and not isinstance(signature, (tuple, Tuple)): SymPyDeprecationWarning( feature="non tuple iterable of argument symbols to Lambda", useinstead="tuple of argument symbols", issue=17474, deprecated_since_version="1.5").warn() signature = tuple(signature) sig = signature if iterable(signature) else (signature,) sig = sympify(sig) cls._check_signature(sig) if len(sig) == 1 and sig[0] == expr: return S.IdentityFunction return Expr.__new__(cls, sig, sympify(expr)) @classmethod def _check_signature(cls, sig): syms = set() def rcheck(args): for a in args: if a.is_symbol: if a in syms: raise BadSignatureError("Duplicate symbol %s" % a) syms.add(a) elif isinstance(a, Tuple): rcheck(a) else: raise BadSignatureError("Lambda signature should be only tuples" " and symbols, not %s" % a) if not isinstance(sig, Tuple): raise BadSignatureError("Lambda signature should be a tuple not %s" % sig) # Recurse through the signature: rcheck(sig) @property def signature(self): """The expected form of the arguments to be unpacked into variables""" return self._args[0] @property def expr(self): """The return value of the function""" return self._args[1] @property def variables(self): """The variables used in the internal representation of the function""" def _variables(args): if isinstance(args, Tuple): for arg in args: yield from _variables(arg) else: yield args return tuple(_variables(self.signature)) @property def nargs(self): from sympy.sets.sets import FiniteSet return FiniteSet(len(self.signature)) bound_symbols = variables @property def free_symbols(self): return self.expr.free_symbols - set(self.variables) def __call__(self, *args): n = len(args) if n not in self.nargs: # Lambda only ever has 1 value in nargs # XXX: exception message must be in exactly this format to # make it work with NumPy's functions like vectorize(). See, # for example, https://github.com/numpy/numpy/issues/1697. # The ideal solution would be just to attach metadata to # the exception and change NumPy to take advantage of this. ## XXX does this apply to Lambda? If not, remove this comment. temp = ('%(name)s takes exactly %(args)s ' 'argument%(plural)s (%(given)s given)') raise BadArgumentsError(temp % { 'name': self, 'args': list(self.nargs)[0], 'plural': 's'*(list(self.nargs)[0] != 1), 'given': n}) d = self._match_signature(self.signature, args) return self.expr.xreplace(d) def _match_signature(self, sig, args): symargmap = {} def rmatch(pars, args): for par, arg in zip(pars, args): if par.is_symbol: symargmap[par] = arg elif isinstance(par, Tuple): if not isinstance(arg, (tuple, Tuple)) or len(args) != len(pars): raise BadArgumentsError("Can't match %s and %s" % (args, pars)) rmatch(par, arg) rmatch(sig, args) return symargmap @property def is_identity(self): """Return ``True`` if this ``Lambda`` is an identity function. """ return self.signature == self.expr def _eval_evalf(self, prec): return self.func(self.args[0], self.args[1].evalf(n=prec_to_dps(prec))) class Subs(Expr): """ Represents unevaluated substitutions of an expression. ``Subs(expr, x, x0)`` represents the expression resulting from substituting x with x0 in expr. Parameters ========== expr : Expr An expression. x : tuple, variable A variable or list of distinct variables. x0 : tuple or list of tuples A point or list of evaluation points corresponding to those variables. Notes ===== ``Subs`` objects are generally useful to represent unevaluated derivatives calculated at a point. The variables may be expressions, but they are subjected to the limitations of subs(), so it is usually a good practice to use only symbols for variables, since in that case there can be no ambiguity. There's no automatic expansion - use the method .doit() to effect all possible substitutions of the object and also of objects inside the expression. When evaluating derivatives at a point that is not a symbol, a Subs object is returned. One is also able to calculate derivatives of Subs objects - in this case the expression is always expanded (for the unevaluated form, use Derivative()). Examples ======== >>> from sympy import Subs, Function, sin, cos >>> from sympy.abc import x, y, z >>> f = Function('f') Subs are created when a particular substitution cannot be made. The x in the derivative cannot be replaced with 0 because 0 is not a valid variables of differentiation: >>> f(x).diff(x).subs(x, 0) Subs(Derivative(f(x), x), x, 0) Once f is known, the derivative and evaluation at 0 can be done: >>> _.subs(f, sin).doit() == sin(x).diff(x).subs(x, 0) == cos(0) True Subs can also be created directly with one or more variables: >>> Subs(f(x)*sin(y) + z, (x, y), (0, 1)) Subs(z + f(x)*sin(y), (x, y), (0, 1)) >>> _.doit() z + f(0)*sin(1) Notes ===== In order to allow expressions to combine before doit is done, a representation of the Subs expression is used internally to make expressions that are superficially different compare the same: >>> a, b = Subs(x, x, 0), Subs(y, y, 0) >>> a + b 2*Subs(x, x, 0) This can lead to unexpected consequences when using methods like `has` that are cached: >>> s = Subs(x, x, 0) >>> s.has(x), s.has(y) (True, False) >>> ss = s.subs(x, y) >>> ss.has(x), ss.has(y) (True, False) >>> s, ss (Subs(x, x, 0), Subs(y, y, 0)) """ def __new__(cls, expr, variables, point, **assumptions): if not is_sequence(variables, Tuple): variables = [variables] variables = Tuple(*variables) if has_dups(variables): repeated = [str(v) for v, i in Counter(variables).items() if i > 1] __ = ', '.join(repeated) raise ValueError(filldedent(''' The following expressions appear more than once: %s ''' % __)) point = Tuple(*(point if is_sequence(point, Tuple) else [point])) if len(point) != len(variables): raise ValueError('Number of point values must be the same as ' 'the number of variables.') if not point: return sympify(expr) # denest if isinstance(expr, Subs): variables = expr.variables + variables point = expr.point + point expr = expr.expr else: expr = sympify(expr) # use symbols with names equal to the point value (with prepended _) # to give a variable-independent expression pre = "_" pts = sorted(set(point), key=default_sort_key) from sympy.printing.str import StrPrinter class CustomStrPrinter(StrPrinter): def _print_Dummy(self, expr): return str(expr) + str(expr.dummy_index) def mystr(expr, **settings): p = CustomStrPrinter(settings) return p.doprint(expr) while 1: s_pts = {p: Symbol(pre + mystr(p)) for p in pts} reps = [(v, s_pts[p]) for v, p in zip(variables, point)] # if any underscore-prepended symbol is already a free symbol # and is a variable with a different point value, then there # is a clash, e.g. _0 clashes in Subs(_0 + _1, (_0, _1), (1, 0)) # because the new symbol that would be created is _1 but _1 # is already mapped to 0 so __0 and __1 are used for the new # symbols if any(r in expr.free_symbols and r in variables and Symbol(pre + mystr(point[variables.index(r)])) != r for _, r in reps): pre += "_" continue break obj = Expr.__new__(cls, expr, Tuple(*variables), point) obj._expr = expr.xreplace(dict(reps)) return obj def _eval_is_commutative(self): return self.expr.is_commutative def doit(self, **hints): e, v, p = self.args # remove self mappings for i, (vi, pi) in enumerate(zip(v, p)): if vi == pi: v = v[:i] + v[i + 1:] p = p[:i] + p[i + 1:] if not v: return self.expr if isinstance(e, Derivative): # apply functions first, e.g. f -> cos undone = [] for i, vi in enumerate(v): if isinstance(vi, FunctionClass): e = e.subs(vi, p[i]) else: undone.append((vi, p[i])) if not isinstance(e, Derivative): e = e.doit() if isinstance(e, Derivative): # do Subs that aren't related to differentiation undone2 = [] D = Dummy() arg = e.args[0] for vi, pi in undone: if D not in e.xreplace({vi: D}).free_symbols: if arg.has(vi): e = e.subs(vi, pi) else: undone2.append((vi, pi)) undone = undone2 # differentiate wrt variables that are present wrt = [] D = Dummy() expr = e.expr free = expr.free_symbols for vi, ci in e.variable_count: if isinstance(vi, Symbol) and vi in free: expr = expr.diff((vi, ci)) elif D in expr.subs(vi, D).free_symbols: expr = expr.diff((vi, ci)) else: wrt.append((vi, ci)) # inject remaining subs rv = expr.subs(undone) # do remaining differentiation *in order given* for vc in wrt: rv = rv.diff(vc) else: # inject remaining subs rv = e.subs(undone) else: rv = e.doit(**hints).subs(list(zip(v, p))) if hints.get('deep', True) and rv != self: rv = rv.doit(**hints) return rv def evalf(self, prec=None, **options): return self.doit().evalf(prec, **options) n = evalf # type:ignore @property def variables(self): """The variables to be evaluated""" return self._args[1] bound_symbols = variables @property def expr(self): """The expression on which the substitution operates""" return self._args[0] @property def point(self): """The values for which the variables are to be substituted""" return self._args[2] @property def free_symbols(self): return (self.expr.free_symbols - set(self.variables) | set(self.point.free_symbols)) @property def expr_free_symbols(self): SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return (self.expr.expr_free_symbols - set(self.variables) | set(self.point.expr_free_symbols)) def __eq__(self, other): if not isinstance(other, Subs): return False return self._hashable_content() == other._hashable_content() def __ne__(self, other): return not(self == other) def __hash__(self): return super().__hash__() def _hashable_content(self): return (self._expr.xreplace(self.canonical_variables), ) + tuple(ordered([(v, p) for v, p in zip(self.variables, self.point) if not self.expr.has(v)])) def _eval_subs(self, old, new): # Subs doit will do the variables in order; the semantics # of subs for Subs is have the following invariant for # Subs object foo: # foo.doit().subs(reps) == foo.subs(reps).doit() pt = list(self.point) if old in self.variables: if _atomic(new) == {new} and not any( i.has(new) for i in self.args): # the substitution is neutral return self.xreplace({old: new}) # any occurrence of old before this point will get # handled by replacements from here on i = self.variables.index(old) for j in range(i, len(self.variables)): pt[j] = pt[j]._subs(old, new) return self.func(self.expr, self.variables, pt) v = [i._subs(old, new) for i in self.variables] if v != list(self.variables): return self.func(self.expr, self.variables + (old,), pt + [new]) expr = self.expr._subs(old, new) pt = [i._subs(old, new) for i in self.point] return self.func(expr, v, pt) def _eval_derivative(self, s): # Apply the chain rule of the derivative on the substitution variables: f = self.expr vp = V, P = self.variables, self.point val = Add.fromiter(p.diff(s)*Subs(f.diff(v), *vp).doit() for v, p in zip(V, P)) # these are all the free symbols in the expr efree = f.free_symbols # some symbols like IndexedBase include themselves and args # as free symbols compound = {i for i in efree if len(i.free_symbols) > 1} # hide them and see what independent free symbols remain dums = {Dummy() for i in compound} masked = f.xreplace(dict(zip(compound, dums))) ifree = masked.free_symbols - dums # include the compound symbols free = ifree | compound # remove the variables already handled free -= set(V) # add back any free symbols of remaining compound symbols free |= {i for j in free & compound for i in j.free_symbols} # if symbols of s are in free then there is more to do if free & s.free_symbols: val += Subs(f.diff(s), self.variables, self.point).doit() return val def _eval_nseries(self, x, n, logx, cdir=0): if x in self.point: # x is the variable being substituted into apos = self.point.index(x) other = self.variables[apos] else: other = x arg = self.expr.nseries(other, n=n, logx=logx) o = arg.getO() terms = Add.make_args(arg.removeO()) rv = Add(*[self.func(a, *self.args[1:]) for a in terms]) if o: rv += o.subs(other, x) return rv def _eval_as_leading_term(self, x, logx=None, cdir=0): if x in self.point: ipos = self.point.index(x) xvar = self.variables[ipos] return self.expr.as_leading_term(xvar) if x in self.variables: # if `x` is a dummy variable, it means it won't exist after the # substitution has been performed: return self # The variable is independent of the substitution: return self.expr.as_leading_term(x) def diff(f, *symbols, **kwargs): """ Differentiate f with respect to symbols. Explanation =========== This is just a wrapper to unify .diff() and the Derivative class; its interface is similar to that of integrate(). You can use the same shortcuts for multiple variables as with Derivative. For example, diff(f(x), x, x, x) and diff(f(x), x, 3) both return the third derivative of f(x). You can pass evaluate=False to get an unevaluated Derivative class. Note that if there are 0 symbols (such as diff(f(x), x, 0), then the result will be the function (the zeroth derivative), even if evaluate=False. Examples ======== >>> from sympy import sin, cos, Function, diff >>> from sympy.abc import x, y >>> f = Function('f') >>> diff(sin(x), x) cos(x) >>> diff(f(x), x, x, x) Derivative(f(x), (x, 3)) >>> diff(f(x), x, 3) Derivative(f(x), (x, 3)) >>> diff(sin(x)*cos(y), x, 2, y, 2) sin(x)*cos(y) >>> type(diff(sin(x), x)) cos >>> type(diff(sin(x), x, evaluate=False)) <class 'sympy.core.function.Derivative'> >>> type(diff(sin(x), x, 0)) sin >>> type(diff(sin(x), x, 0, evaluate=False)) sin >>> diff(sin(x)) cos(x) >>> diff(sin(x*y)) Traceback (most recent call last): ... ValueError: specify differentiation variables to differentiate sin(x*y) Note that ``diff(sin(x))`` syntax is meant only for convenience in interactive sessions and should be avoided in library code. References ========== .. [1] http://reference.wolfram.com/legacy/v5_2/Built-inFunctions/AlgebraicComputation/Calculus/D.html See Also ======== Derivative idiff: computes the derivative implicitly """ if hasattr(f, 'diff'): return f.diff(*symbols, **kwargs) kwargs.setdefault('evaluate', True) return _derivative_dispatch(f, *symbols, **kwargs) def expand(e, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): r""" Expand an expression using methods given as hints. Explanation =========== Hints evaluated unless explicitly set to False are: ``basic``, ``log``, ``multinomial``, ``mul``, ``power_base``, and ``power_exp`` The following hints are supported but not applied unless set to True: ``complex``, ``func``, and ``trig``. In addition, the following meta-hints are supported by some or all of the other hints: ``frac``, ``numer``, ``denom``, ``modulus``, and ``force``. ``deep`` is supported by all hints. Additionally, subclasses of Expr may define their own hints or meta-hints. The ``basic`` hint is used for any special rewriting of an object that should be done automatically (along with the other hints like ``mul``) when expand is called. This is a catch-all hint to handle any sort of expansion that may not be described by the existing hint names. To use this hint an object should override the ``_eval_expand_basic`` method. Objects may also define their own expand methods, which are not run by default. See the API section below. If ``deep`` is set to ``True`` (the default), things like arguments of functions are recursively expanded. Use ``deep=False`` to only expand on the top level. If the ``force`` hint is used, assumptions about variables will be ignored in making the expansion. Hints ===== These hints are run by default mul --- Distributes multiplication over addition: >>> from sympy import cos, exp, sin >>> from sympy.abc import x, y, z >>> (y*(x + z)).expand(mul=True) x*y + y*z multinomial ----------- Expand (x + y + ...)**n where n is a positive integer. >>> ((x + y + z)**2).expand(multinomial=True) x**2 + 2*x*y + 2*x*z + y**2 + 2*y*z + z**2 power_exp --------- Expand addition in exponents into multiplied bases. >>> exp(x + y).expand(power_exp=True) exp(x)*exp(y) >>> (2**(x + y)).expand(power_exp=True) 2**x*2**y power_base ---------- Split powers of multiplied bases. This only happens by default if assumptions allow, or if the ``force`` meta-hint is used: >>> ((x*y)**z).expand(power_base=True) (x*y)**z >>> ((x*y)**z).expand(power_base=True, force=True) x**z*y**z >>> ((2*y)**z).expand(power_base=True) 2**z*y**z Note that in some cases where this expansion always holds, SymPy performs it automatically: >>> (x*y)**2 x**2*y**2 log --- Pull out power of an argument as a coefficient and split logs products into sums of logs. Note that these only work if the arguments of the log function have the proper assumptions--the arguments must be positive and the exponents must be real--or else the ``force`` hint must be True: >>> from sympy import log, symbols >>> log(x**2*y).expand(log=True) log(x**2*y) >>> log(x**2*y).expand(log=True, force=True) 2*log(x) + log(y) >>> x, y = symbols('x,y', positive=True) >>> log(x**2*y).expand(log=True) 2*log(x) + log(y) basic ----- This hint is intended primarily as a way for custom subclasses to enable expansion by default. These hints are not run by default: complex ------- Split an expression into real and imaginary parts. >>> x, y = symbols('x,y') >>> (x + y).expand(complex=True) re(x) + re(y) + I*im(x) + I*im(y) >>> cos(x).expand(complex=True) -I*sin(re(x))*sinh(im(x)) + cos(re(x))*cosh(im(x)) Note that this is just a wrapper around ``as_real_imag()``. Most objects that wish to redefine ``_eval_expand_complex()`` should consider redefining ``as_real_imag()`` instead. func ---- Expand other functions. >>> from sympy import gamma >>> gamma(x + 1).expand(func=True) x*gamma(x) trig ---- Do trigonometric expansions. >>> cos(x + y).expand(trig=True) -sin(x)*sin(y) + cos(x)*cos(y) >>> sin(2*x).expand(trig=True) 2*sin(x)*cos(x) Note that the forms of ``sin(n*x)`` and ``cos(n*x)`` in terms of ``sin(x)`` and ``cos(x)`` are not unique, due to the identity `\sin^2(x) + \cos^2(x) = 1`. The current implementation uses the form obtained from Chebyshev polynomials, but this may change. See `this MathWorld article <http://mathworld.wolfram.com/Multiple-AngleFormulas.html>`_ for more information. Notes ===== - You can shut off unwanted methods:: >>> (exp(x + y)*(x + y)).expand() x*exp(x)*exp(y) + y*exp(x)*exp(y) >>> (exp(x + y)*(x + y)).expand(power_exp=False) x*exp(x + y) + y*exp(x + y) >>> (exp(x + y)*(x + y)).expand(mul=False) (x + y)*exp(x)*exp(y) - Use deep=False to only expand on the top level:: >>> exp(x + exp(x + y)).expand() exp(x)*exp(exp(x)*exp(y)) >>> exp(x + exp(x + y)).expand(deep=False) exp(x)*exp(exp(x + y)) - Hints are applied in an arbitrary, but consistent order (in the current implementation, they are applied in alphabetical order, except multinomial comes before mul, but this may change). Because of this, some hints may prevent expansion by other hints if they are applied first. For example, ``mul`` may distribute multiplications and prevent ``log`` and ``power_base`` from expanding them. Also, if ``mul`` is applied before ``multinomial`, the expression might not be fully distributed. The solution is to use the various ``expand_hint`` helper functions or to use ``hint=False`` to this function to finely control which hints are applied. Here are some examples:: >>> from sympy import expand, expand_mul, expand_power_base >>> x, y, z = symbols('x,y,z', positive=True) >>> expand(log(x*(y + z))) log(x) + log(y + z) Here, we see that ``log`` was applied before ``mul``. To get the mul expanded form, either of the following will work:: >>> expand_mul(log(x*(y + z))) log(x*y + x*z) >>> expand(log(x*(y + z)), log=False) log(x*y + x*z) A similar thing can happen with the ``power_base`` hint:: >>> expand((x*(y + z))**x) (x*y + x*z)**x To get the ``power_base`` expanded form, either of the following will work:: >>> expand((x*(y + z))**x, mul=False) x**x*(y + z)**x >>> expand_power_base((x*(y + z))**x) x**x*(y + z)**x >>> expand((x + y)*y/x) y + y**2/x The parts of a rational expression can be targeted:: >>> expand((x + y)*y/x/(x + 1), frac=True) (x*y + y**2)/(x**2 + x) >>> expand((x + y)*y/x/(x + 1), numer=True) (x*y + y**2)/(x*(x + 1)) >>> expand((x + y)*y/x/(x + 1), denom=True) y*(x + y)/(x**2 + x) - The ``modulus`` meta-hint can be used to reduce the coefficients of an expression post-expansion:: >>> expand((3*x + 1)**2) 9*x**2 + 6*x + 1 >>> expand((3*x + 1)**2, modulus=5) 4*x**2 + x + 1 - Either ``expand()`` the function or ``.expand()`` the method can be used. Both are equivalent:: >>> expand((x + 1)**2) x**2 + 2*x + 1 >>> ((x + 1)**2).expand() x**2 + 2*x + 1 API === Objects can define their own expand hints by defining ``_eval_expand_hint()``. The function should take the form:: def _eval_expand_hint(self, **hints): # Only apply the method to the top-level expression ... See also the example below. Objects should define ``_eval_expand_hint()`` methods only if ``hint`` applies to that specific object. The generic ``_eval_expand_hint()`` method defined in Expr will handle the no-op case. Each hint should be responsible for expanding that hint only. Furthermore, the expansion should be applied to the top-level expression only. ``expand()`` takes care of the recursion that happens when ``deep=True``. You should only call ``_eval_expand_hint()`` methods directly if you are 100% sure that the object has the method, as otherwise you are liable to get unexpected ``AttributeError``s. Note, again, that you do not need to recursively apply the hint to args of your object: this is handled automatically by ``expand()``. ``_eval_expand_hint()`` should generally not be used at all outside of an ``_eval_expand_hint()`` method. If you want to apply a specific expansion from within another method, use the public ``expand()`` function, method, or ``expand_hint()`` functions. In order for expand to work, objects must be rebuildable by their args, i.e., ``obj.func(*obj.args) == obj`` must hold. Expand methods are passed ``**hints`` so that expand hints may use 'metahints'--hints that control how different expand methods are applied. For example, the ``force=True`` hint described above that causes ``expand(log=True)`` to ignore assumptions is such a metahint. The ``deep`` meta-hint is handled exclusively by ``expand()`` and is not passed to ``_eval_expand_hint()`` methods. Note that expansion hints should generally be methods that perform some kind of 'expansion'. For hints that simply rewrite an expression, use the .rewrite() API. Examples ======== >>> from sympy import Expr, sympify >>> class MyClass(Expr): ... def __new__(cls, *args): ... args = sympify(args) ... return Expr.__new__(cls, *args) ... ... def _eval_expand_double(self, *, force=False, **hints): ... ''' ... Doubles the args of MyClass. ... ... If there more than four args, doubling is not performed, ... unless force=True is also used (False by default). ... ''' ... if not force and len(self.args) > 4: ... return self ... return self.func(*(self.args + self.args)) ... >>> a = MyClass(1, 2, MyClass(3, 4)) >>> a MyClass(1, 2, MyClass(3, 4)) >>> a.expand(double=True) MyClass(1, 2, MyClass(3, 4, 3, 4), 1, 2, MyClass(3, 4, 3, 4)) >>> a.expand(double=True, deep=False) MyClass(1, 2, MyClass(3, 4), 1, 2, MyClass(3, 4)) >>> b = MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True) MyClass(1, 2, 3, 4, 5) >>> b.expand(double=True, force=True) MyClass(1, 2, 3, 4, 5, 1, 2, 3, 4, 5) See Also ======== expand_log, expand_mul, expand_multinomial, expand_complex, expand_trig, expand_power_base, expand_power_exp, expand_func, sympy.simplify.hyperexpand.hyperexpand """ # don't modify this; modify the Expr.expand method hints['power_base'] = power_base hints['power_exp'] = power_exp hints['mul'] = mul hints['log'] = log hints['multinomial'] = multinomial hints['basic'] = basic return sympify(e).expand(deep=deep, modulus=modulus, **hints) # This is a special application of two hints def _mexpand(expr, recursive=False): # expand multinomials and then expand products; this may not always # be sufficient to give a fully expanded expression (see # test_issue_8247_8354 in test_arit) if expr is None: return was = None while was != expr: was, expr = expr, expand_mul(expand_multinomial(expr)) if not recursive: break return expr # These are simple wrappers around single hints. def expand_mul(expr, deep=True): """ Wrapper around expand that only uses the mul hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_mul, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_mul(exp(x+y)*(x+y)*log(x*y**2)) x*exp(x + y)*log(x*y**2) + y*exp(x + y)*log(x*y**2) """ return sympify(expr).expand(deep=deep, mul=True, power_exp=False, power_base=False, basic=False, multinomial=False, log=False) def expand_multinomial(expr, deep=True): """ Wrapper around expand that only uses the multinomial hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_multinomial, exp >>> x, y = symbols('x y', positive=True) >>> expand_multinomial((x + exp(x + 1))**2) x**2 + 2*x*exp(x + 1) + exp(2*x + 2) """ return sympify(expr).expand(deep=deep, mul=False, power_exp=False, power_base=False, basic=False, multinomial=True, log=False) def expand_log(expr, deep=True, force=False, factor=False): """ Wrapper around expand that only uses the log hint. See the expand docstring for more information. Examples ======== >>> from sympy import symbols, expand_log, exp, log >>> x, y = symbols('x,y', positive=True) >>> expand_log(exp(x+y)*(x+y)*log(x*y**2)) (x + y)*(log(x) + 2*log(y))*exp(x + y) """ from sympy.functions.elementary.exponential import log if factor is False: def _handle(x): x1 = expand_mul(expand_log(x, deep=deep, force=force, factor=True)) if x1.count(log) <= x.count(log): return x1 return x expr = expr.replace( lambda x: x.is_Mul and all(any(isinstance(i, log) and i.args[0].is_Rational for i in Mul.make_args(j)) for j in x.as_numer_denom()), _handle) return sympify(expr).expand(deep=deep, log=True, mul=False, power_exp=False, power_base=False, multinomial=False, basic=False, force=force, factor=factor) def expand_func(expr, deep=True): """ Wrapper around expand that only uses the func hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_func, gamma >>> from sympy.abc import x >>> expand_func(gamma(x + 2)) x*(x + 1)*gamma(x) """ return sympify(expr).expand(deep=deep, func=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_trig(expr, deep=True): """ Wrapper around expand that only uses the trig hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_trig, sin >>> from sympy.abc import x, y >>> expand_trig(sin(x+y)*(x+y)) (x + y)*(sin(x)*cos(y) + sin(y)*cos(x)) """ return sympify(expr).expand(deep=deep, trig=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_complex(expr, deep=True): """ Wrapper around expand that only uses the complex hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_complex, exp, sqrt, I >>> from sympy.abc import z >>> expand_complex(exp(z)) I*exp(re(z))*sin(im(z)) + exp(re(z))*cos(im(z)) >>> expand_complex(sqrt(I)) sqrt(2)/2 + sqrt(2)*I/2 See Also ======== sympy.core.expr.Expr.as_real_imag """ return sympify(expr).expand(deep=deep, complex=True, basic=False, log=False, mul=False, power_exp=False, power_base=False, multinomial=False) def expand_power_base(expr, deep=True, force=False): """ Wrapper around expand that only uses the power_base hint. A wrapper to expand(power_base=True) which separates a power with a base that is a Mul into a product of powers, without performing any other expansions, provided that assumptions about the power's base and exponent allow. deep=False (default is True) will only apply to the top-level expression. force=True (default is False) will cause the expansion to ignore assumptions about the base and exponent. When False, the expansion will only happen if the base is non-negative or the exponent is an integer. >>> from sympy.abc import x, y, z >>> from sympy import expand_power_base, sin, cos, exp >>> (x*y)**2 x**2*y**2 >>> (2*x)**y (2*x)**y >>> expand_power_base(_) 2**y*x**y >>> expand_power_base((x*y)**z) (x*y)**z >>> expand_power_base((x*y)**z, force=True) x**z*y**z >>> expand_power_base(sin((x*y)**z), deep=False) sin((x*y)**z) >>> expand_power_base(sin((x*y)**z), force=True) sin(x**z*y**z) >>> expand_power_base((2*sin(x))**y + (2*cos(x))**y) 2**y*sin(x)**y + 2**y*cos(x)**y >>> expand_power_base((2*exp(y))**x) 2**x*exp(y)**x >>> expand_power_base((2*cos(x))**y) 2**y*cos(x)**y Notice that sums are left untouched. If this is not the desired behavior, apply full ``expand()`` to the expression: >>> expand_power_base(((x+y)*z)**2) z**2*(x + y)**2 >>> (((x+y)*z)**2).expand() x**2*z**2 + 2*x*y*z**2 + y**2*z**2 >>> expand_power_base((2*y)**(1+z)) 2**(z + 1)*y**(z + 1) >>> ((2*y)**(1+z)).expand() 2*2**z*y*y**z See Also ======== expand """ return sympify(expr).expand(deep=deep, log=False, mul=False, power_exp=False, power_base=True, multinomial=False, basic=False, force=force) def expand_power_exp(expr, deep=True): """ Wrapper around expand that only uses the power_exp hint. See the expand docstring for more information. Examples ======== >>> from sympy import expand_power_exp >>> from sympy.abc import x, y >>> expand_power_exp(x**(y + 2)) x**2*x**y """ return sympify(expr).expand(deep=deep, complex=False, basic=False, log=False, mul=False, power_exp=True, power_base=False, multinomial=False) def count_ops(expr, visual=False): """ Return a representation (integer or expression) of the operations in expr. Parameters ========== expr : Expr If expr is an iterable, the sum of the op counts of the items will be returned. visual : bool, optional If ``False`` (default) then the sum of the coefficients of the visual expression will be returned. If ``True`` then the number of each type of operation is shown with the core class types (or their virtual equivalent) multiplied by the number of times they occur. Examples ======== >>> from sympy.abc import a, b, x, y >>> from sympy import sin, count_ops Although there isn't a SUB object, minus signs are interpreted as either negations or subtractions: >>> (x - y).count_ops(visual=True) SUB >>> (-x).count_ops(visual=True) NEG Here, there are two Adds and a Pow: >>> (1 + a + b**2).count_ops(visual=True) 2*ADD + POW In the following, an Add, Mul, Pow and two functions: >>> (sin(x)*x + sin(x)**2).count_ops(visual=True) ADD + MUL + POW + 2*SIN for a total of 5: >>> (sin(x)*x + sin(x)**2).count_ops(visual=False) 5 Note that "what you type" is not always what you get. The expression 1/x/y is translated by sympy into 1/(x*y) so it gives a DIV and MUL rather than two DIVs: >>> (1/x/y).count_ops(visual=True) DIV + MUL The visual option can be used to demonstrate the difference in operations for expressions in different forms. Here, the Horner representation is compared with the expanded form of a polynomial: >>> eq=x*(1 + x*(2 + x*(3 + x))) >>> count_ops(eq.expand(), visual=True) - count_ops(eq, visual=True) -MUL + 3*POW The count_ops function also handles iterables: >>> count_ops([x, sin(x), None, True, x + 2], visual=False) 2 >>> count_ops([x, sin(x), None, True, x + 2], visual=True) ADD + SIN >>> count_ops({x: sin(x), x + 2: y + 1}, visual=True) 2*ADD + SIN """ from .relational import Relational from sympy.concrete.summations import Sum from sympy.integrals.integrals import Integral from sympy.logic.boolalg import BooleanFunction from sympy.simplify.radsimp import fraction expr = sympify(expr) if isinstance(expr, Expr) and not expr.is_Relational: ops = [] args = [expr] NEG = Symbol('NEG') DIV = Symbol('DIV') SUB = Symbol('SUB') ADD = Symbol('ADD') EXP = Symbol('EXP') while args: a = args.pop() # if the following fails because the object is # not Basic type, then the object should be fixed # since it is the intention that all args of Basic # should themselves be Basic if a.is_Rational: #-1/3 = NEG + DIV if a is not S.One: if a.p < 0: ops.append(NEG) if a.q != 1: ops.append(DIV) continue elif a.is_Mul or a.is_MatMul: if _coeff_isneg(a): ops.append(NEG) if a.args[0] is S.NegativeOne: a = a.as_two_terms()[1] else: a = -a n, d = fraction(a) if n.is_Integer: ops.append(DIV) if n < 0: ops.append(NEG) args.append(d) continue # won't be -Mul but could be Add elif d is not S.One: if not d.is_Integer: args.append(d) ops.append(DIV) args.append(n) continue # could be -Mul elif a.is_Add or a.is_MatAdd: aargs = list(a.args) negs = 0 for i, ai in enumerate(aargs): if _coeff_isneg(ai): negs += 1 args.append(-ai) if i > 0: ops.append(SUB) else: args.append(ai) if i > 0: ops.append(ADD) if negs == len(aargs): # -x - y = NEG + SUB ops.append(NEG) elif _coeff_isneg(aargs[0]): # -x + y = SUB, but already recorded ADD ops.append(SUB - ADD) continue if a.is_Pow and a.exp is S.NegativeOne: ops.append(DIV) args.append(a.base) # won't be -Mul but could be Add continue if a == S.Exp1: ops.append(EXP) continue if a.is_Pow and a.base == S.Exp1: ops.append(EXP) args.append(a.exp) continue if a.is_Mul or isinstance(a, LatticeOp): o = Symbol(a.func.__name__.upper()) # count the args ops.append(o*(len(a.args) - 1)) elif a.args and ( a.is_Pow or a.is_Function or isinstance(a, Derivative) or isinstance(a, Integral) or isinstance(a, Sum)): # if it's not in the list above we don't # consider a.func something to count, e.g. # Tuple, MatrixSymbol, etc... if isinstance(a.func, UndefinedFunction): o = Symbol("FUNC_" + a.func.__name__.upper()) else: o = Symbol(a.func.__name__.upper()) ops.append(o) if not a.is_Symbol: args.extend(a.args) elif isinstance(expr, Dict): ops = [count_ops(k, visual=visual) + count_ops(v, visual=visual) for k, v in expr.items()] elif iterable(expr): ops = [count_ops(i, visual=visual) for i in expr] elif isinstance(expr, (Relational, BooleanFunction)): ops = [] for arg in expr.args: ops.append(count_ops(arg, visual=True)) o = Symbol(func_name(expr, short=True).upper()) ops.append(o) elif not isinstance(expr, Basic): ops = [] else: # it's Basic not isinstance(expr, Expr): if not isinstance(expr, Basic): raise TypeError("Invalid type of expr") else: ops = [] args = [expr] while args: a = args.pop() if a.args: o = Symbol(type(a).__name__.upper()) if a.is_Boolean: ops.append(o*(len(a.args)-1)) else: ops.append(o) args.extend(a.args) if not ops: if visual: return S.Zero return 0 ops = Add(*ops) if visual: return ops if ops.is_Number: return int(ops) return sum(int((a.args or [1])[0]) for a in Add.make_args(ops)) def nfloat(expr, n=15, exponent=False, dkeys=False): """Make all Rationals in expr Floats except those in exponents (unless the exponents flag is set to True) and those in undefined functions. When processing dictionaries, do not modify the keys unless ``dkeys=True``. Examples ======== >>> from sympy import nfloat, cos, pi, sqrt >>> from sympy.abc import x, y >>> nfloat(x**4 + x/2 + cos(pi/3) + 1 + sqrt(y)) x**4 + 0.5*x + sqrt(y) + 1.5 >>> nfloat(x**4 + sqrt(y), exponent=True) x**4.0 + y**0.5 Container types are not modified: >>> type(nfloat((1, 2))) is tuple True """ from sympy.matrices.matrices import MatrixBase kw = dict(n=n, exponent=exponent, dkeys=dkeys) if isinstance(expr, MatrixBase): return expr.applyfunc(lambda e: nfloat(e, **kw)) # handling of iterable containers if iterable(expr, exclude=str): if isinstance(expr, (dict, Dict)): if dkeys: args = [tuple(map(lambda i: nfloat(i, **kw), a)) for a in expr.items()] else: args = [(k, nfloat(v, **kw)) for k, v in expr.items()] if isinstance(expr, dict): return type(expr)(args) else: return expr.func(*args) elif isinstance(expr, Basic): return expr.func(*[nfloat(a, **kw) for a in expr.args]) return type(expr)([nfloat(a, **kw) for a in expr]) rv = sympify(expr) if rv.is_Number: return Float(rv, n) elif rv.is_number: # evalf doesn't always set the precision rv = rv.n(n) if rv.is_Number: rv = Float(rv.n(n), n) else: pass # pure_complex(rv) is likely True return rv elif rv.is_Atom: return rv elif rv.is_Relational: args_nfloat = (nfloat(arg, **kw) for arg in rv.args) return rv.func(*args_nfloat) # watch out for RootOf instances that don't like to have # their exponents replaced with Dummies and also sometimes have # problems with evaluating at low precision (issue 6393) from sympy.polys.rootoftools import RootOf rv = rv.xreplace({ro: ro.n(n) for ro in rv.atoms(RootOf)}) from .power import Pow if not exponent: reps = [(p, Pow(p.base, Dummy())) for p in rv.atoms(Pow)] rv = rv.xreplace(dict(reps)) rv = rv.n(n) if not exponent: rv = rv.xreplace({d.exp: p.exp for p, d in reps}) else: # Pow._eval_evalf special cases Integer exponents so if # exponent is suppose to be handled we have to do so here rv = rv.xreplace(Transform( lambda x: Pow(x.base, Float(x.exp, n)), lambda x: x.is_Pow and x.exp.is_Integer)) return rv.xreplace(Transform( lambda x: x.func(*nfloat(x.args, n, exponent)), lambda x: isinstance(x, Function) and not isinstance(x, AppliedUndef))) from .symbol import Dummy, Symbol
00026c6ed5a2819f400f1490fdb44109ba2ef3075bc3981a94599821203d5d74
from .basic import Basic from .sorting import ordered from .sympify import sympify from sympy.utilities.iterables import iterable def iterargs(expr): """Yield the args of a Basic object in a breadth-first traversal. Depth-traversal stops if `arg.args` is either empty or is not an iterable. Examples ======== >>> from sympy import Integral, Function >>> from sympy.abc import x >>> f = Function('f') >>> from sympy.core.traversal import iterargs >>> list(iterargs(Integral(f(x), (f(x), 1)))) [Integral(f(x), (f(x), 1)), f(x), (f(x), 1), x, f(x), 1, x] See Also ======== iterfreeargs, preorder_traversal """ args = [expr] for i in args: yield i try: args.extend(i.args) except TypeError: pass # for cases like f being an arg def iterfreeargs(expr, _first=True): """Yield the args of a Basic object in a breadth-first traversal. Depth-traversal stops if `arg.args` is either empty or is not an iterable. The bound objects of an expression will be returned as canonical variables. Examples ======== >>> from sympy import Integral, Function >>> from sympy.abc import x >>> f = Function('f') >>> from sympy.core.traversal import iterfreeargs >>> list(iterfreeargs(Integral(f(x), (f(x), 1)))) [Integral(f(x), (f(x), 1)), 1] See Also ======== iterargs, preorder_traversal """ args = [expr] for i in args: yield i if _first and hasattr(i, 'bound_symbols'): void = i.canonical_variables.values() for i in iterfreeargs(i.as_dummy(), _first=False): if not i.has(*void): yield i try: args.extend(i.args) except TypeError: pass # for cases like f being an arg class preorder_traversal: """ Do a pre-order traversal of a tree. This iterator recursively yields nodes that it has visited in a pre-order fashion. That is, it yields the current node then descends through the tree breadth-first to yield all of a node's children's pre-order traversal. For an expression, the order of the traversal depends on the order of .args, which in many cases can be arbitrary. Parameters ========== node : SymPy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ordered will be used. Yields ====== subtree : SymPy expression All of the subtrees in the tree. Examples ======== >>> from sympy import preorder_traversal, symbols >>> x, y, z = symbols('x y z') The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(preorder_traversal((x + y)*z, keys=None)) # doctest: +SKIP [z*(x + y), z, x + y, y, x] >>> list(preorder_traversal((x + y)*z, keys=True)) [z*(x + y), z, x + y, x, y] """ def __init__(self, node, keys=None): self._skip_flag = False self._pt = self._preorder_traversal(node, keys) def _preorder_traversal(self, node, keys): yield node if self._skip_flag: self._skip_flag = False return if isinstance(node, Basic): if not keys and hasattr(node, '_argset'): # LatticeOp keeps args as a set. We should use this if we # don't care about the order, to prevent unnecessary sorting. args = node._argset else: args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from self._preorder_traversal(arg, keys) elif iterable(node): for item in node: yield from self._preorder_traversal(item, keys) def skip(self): """ Skip yielding current node's (last yielded node's) subtrees. Examples ======== >>> from sympy import preorder_traversal, symbols >>> x, y, z = symbols('x y z') >>> pt = preorder_traversal((x + y*z)*z) >>> for i in pt: ... print(i) ... if i == x + y*z: ... pt.skip() z*(x + y*z) z x + y*z """ self._skip_flag = True def __next__(self): return next(self._pt) def __iter__(self): return self def use(expr, func, level=0, args=(), kwargs={}): """ Use ``func`` to transform ``expr`` at the given level. Examples ======== >>> from sympy import use, expand >>> from sympy.abc import x, y >>> f = (x + y)**2*x + 1 >>> use(f, expand, level=2) x*(x**2 + 2*x*y + y**2) + 1 >>> expand(f) x**3 + 2*x**2*y + x*y**2 + 1 """ def _use(expr, level): if not level: return func(expr, *args, **kwargs) else: if expr.is_Atom: return expr else: level -= 1 _args = [] for arg in expr.args: _args.append(_use(arg, level)) return expr.__class__(*_args) return _use(sympify(expr), level) def walk(e, *target): """Iterate through the args that are the given types (target) and return a list of the args that were traversed; arguments that are not of the specified types are not traversed. Examples ======== >>> from sympy.core.traversal import walk >>> from sympy import Min, Max >>> from sympy.abc import x, y, z >>> list(walk(Min(x, Max(y, Min(1, z))), Min)) [Min(x, Max(y, Min(1, z)))] >>> list(walk(Min(x, Max(y, Min(1, z))), Min, Max)) [Min(x, Max(y, Min(1, z))), Max(y, Min(1, z)), Min(1, z)] See Also ======== bottom_up """ if isinstance(e, target): yield e for i in e.args: yield from walk(i, *target) def bottom_up(rv, F, atoms=False, nonbasic=False): """Apply ``F`` to all expressions in an expression tree from the bottom up. If ``atoms`` is True, apply ``F`` even if there are no args; if ``nonbasic`` is True, try to apply ``F`` to non-Basic objects. """ args = getattr(rv, 'args', None) if args is not None: if args: args = tuple([bottom_up(a, F, atoms, nonbasic) for a in args]) if args != rv.args: rv = rv.func(*args) rv = F(rv) elif atoms: rv = F(rv) else: if nonbasic: try: rv = F(rv) except TypeError: pass return rv def postorder_traversal(node, keys=None): """ Do a postorder traversal of a tree. This generator recursively yields nodes that it has visited in a postorder fashion. That is, it descends through the tree depth-first to yield all of a node's children's postorder traversal before yielding the node itself. Parameters ========== node : SymPy expression The expression to traverse. keys : (default None) sort key(s) The key(s) used to sort args of Basic objects. When None, args of Basic objects are processed in arbitrary order. If key is defined, it will be passed along to ordered() as the only key(s) to use to sort the arguments; if ``key`` is simply True then the default keys of ``ordered`` will be used (node count and default_sort_key). Yields ====== subtree : SymPy expression All of the subtrees in the tree. Examples ======== >>> from sympy import postorder_traversal >>> from sympy.abc import w, x, y, z The nodes are returned in the order that they are encountered unless key is given; simply passing key=True will guarantee that the traversal is unique. >>> list(postorder_traversal(w + (x + y)*z)) # doctest: +SKIP [z, y, x, x + y, z*(x + y), w, w + z*(x + y)] >>> list(postorder_traversal(w + (x + y)*z, keys=True)) [w, z, x, y, x + y, z*(x + y), w + z*(x + y)] """ if isinstance(node, Basic): args = node.args if keys: if keys != True: args = ordered(args, keys, default=False) else: args = ordered(args) for arg in args: yield from postorder_traversal(arg, keys) elif iterable(node): for item in node: yield from postorder_traversal(item, keys) yield node
abb47eb45f3bb2dbc80d43507df2d603fa416dd8565ca60c365074b471518c99
from typing import Tuple as tTuple from collections import defaultdict from functools import cmp_to_key, reduce from operator import attrgetter from .basic import Basic from .parameters import global_parameters from .logic import _fuzzy_group, fuzzy_or, fuzzy_not from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .numbers import ilcm, igcd from .expr import Expr from .kind import UndefinedKind from sympy.utilities.iterables import is_sequence, sift # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _could_extract_minus_sign(expr): # assume expr is Add-like # We choose the one with less arguments with minus signs negative_args = sum(1 for i in expr.args if i.could_extract_minus_sign()) positive_args = len(expr.args) - negative_args if positive_args > negative_args: return False elif positive_args < negative_args: return True # choose based on .sort_key() to prefer # x - 1 instead of 1 - x and # 3 - sqrt(2) instead of -3 + sqrt(2) return bool(expr.sort_key() < (-expr).sort_key()) def _addsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Add(*args): """Return a well-formed unevaluated Add: Numbers are collected and put in slot 0 and args are sorted. Use this when args have changed but you still want to return an unevaluated Add. Examples ======== >>> from sympy.core.add import _unevaluated_Add as uAdd >>> from sympy import S, Add >>> from sympy.abc import x, y >>> a = uAdd(*[S(1.0), x, S(2)]) >>> a.args[0] 3.00000000000000 >>> a.args[1] x Beyond the Number being in slot 0, there is no other assurance of order for the arguments since they are hash sorted. So, for testing purposes, output produced by this in some other function can only be tested against the output of this function or as one of several options: >>> opts = (Add(x, y, evaluate=False), Add(y, x, evaluate=False)) >>> a = uAdd(x, y) >>> assert a in opts and a == uAdd(x, y) >>> uAdd(x + 1, x + 2) x + x + 3 """ args = list(args) newargs = [] co = S.Zero while args: a = args.pop() if a.is_Add: # this will keep nesting from building up # so that x + (x + 1) -> x + x + 1 (3 args) args.extend(a.args) elif a.is_Number: co += a else: newargs.append(a) _addsort(newargs) if co: newargs.insert(0, co) return Add._from_args(newargs) class Add(Expr, AssocOp): """ Expression representing addition operation for algebraic group. Every argument of ``Add()`` must be ``Expr``. Infix operator ``+`` on most scalar objects in SymPy calls this class. Another use of ``Add()`` is to represent the structure of abstract addition so that its arguments can be substituted to return different class. Refer to examples section for this. ``Add()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Add(x, Add(y, z))`` -> ``Add(x, y, z)`` 2. Identity removing ``Add(x, 0, y)`` -> ``Add(x, y)`` 3. Coefficient collecting by ``.as_coeff_Mul()`` ``Add(x, 2*x)`` -> ``Mul(3, x)`` 4. Term sorting ``Add(y, x, 2)`` -> ``Add(2, x, y)`` If no argument is passed, identity element 0 is returned. If single element is passed, that element is returned. Note that ``Add(*args)`` is more efficient than ``sum(args)`` because it flattens the arguments. ``sum(a, b, c, ...)`` recursively adds the arguments as ``a + (b + (c + ...))``, which has quadratic complexity. On the other hand, ``Add(a, b, c, d)`` does not assume nested structure, making the complexity linear. Since addition is group operation, every argument should have the same :obj:`sympy.core.kind.Kind()`. Examples ======== >>> from sympy import Add, I >>> from sympy.abc import x, y >>> Add(x, 1) x + 1 >>> Add(x, x) 2*x >>> 2*x**2 + 3*x + I*y + 2*y + 2*x/5 + 1.0*y + 1 2*x**2 + 17*x/5 + 3.0*y + I*y + 1 If ``evaluate=False`` is passed, result is not evaluated. >>> Add(1, 2, evaluate=False) 1 + 2 >>> Add(x, x, evaluate=False) x + x ``Add()`` also represents the general structure of addition operation. >>> from sympy import MatrixSymbol >>> A,B = MatrixSymbol('A', 2,2), MatrixSymbol('B', 2,2) >>> expr = Add(x,y).subs({x:A, y:B}) >>> expr A + B >>> type(expr) <class 'sympy.matrices.expressions.matadd.MatAdd'> Note that the printers do not display in args order. >>> Add(x, 1) x + 1 >>> Add(x, 1).args (1, x) See Also ======== MatAdd """ __slots__ = () args: tTuple[Expr, ...] is_Add = True _args_type = Expr @classmethod def flatten(cls, seq): """ Takes the sequence "seq" of nested Adds and returns a flatten list. Returns: (commutative_part, noncommutative_part, order_symbols) Applies associativity, all terms are commutable with respect to addition. NB: the removal of 0 is already handled by AssocOp.__new__ See also ======== sympy.core.mul.Mul.flatten """ from sympy.calculus.accumulationbounds import AccumBounds from sympy.matrices.expressions import MatrixExpr from sympy.tensor.tensor import TensExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a if a.is_Rational: if b.is_Mul: rv = [a, b], [], None if rv: if all(s.is_commutative for s in rv[0]): return rv return [], rv[0], None terms = {} # term -> coeff # e.g. x**2 -> 5 for ... + 5*x**2 + ... coeff = S.Zero # coefficient (Number or zoo) to always be in slot 0 # e.g. 3 + ... order_factors = [] extra = [] for o in seq: # O(x) if o.is_Order: if o.expr.is_zero: continue for o1 in order_factors: if o1.contains(o): o = None break if o is None: continue order_factors = [o] + [ o1 for o1 in order_factors if not o.contains(o1)] continue # 3 or NaN elif o.is_Number: if (o is S.NaN or coeff is S.ComplexInfinity and o.is_finite is False) and not extra: # we know for sure the result will be nan return [S.NaN], [], None if coeff.is_Number or isinstance(coeff, AccumBounds): coeff += o if coeff is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__add__(coeff) continue elif isinstance(o, MatrixExpr): # can't add 0 to Matrix so make sure coeff is not 0 extra.append(o) continue elif isinstance(o, TensExpr): coeff = o.__add__(coeff) if coeff else o continue elif o is S.ComplexInfinity: if coeff.is_finite is False and not extra: # we know for sure the result will be nan return [S.NaN], [], None coeff = S.ComplexInfinity continue # Add([...]) elif o.is_Add: # NB: here we assume Add is always commutative seq.extend(o.args) # TODO zerocopy? continue # Mul([...]) elif o.is_Mul: c, s = o.as_coeff_Mul() # check for unevaluated Pow, e.g. 2**3 or 2**(-1/2) elif o.is_Pow: b, e = o.as_base_exp() if b.is_Number and (e.is_Integer or (e.is_Rational and e.is_negative)): seq.append(b**e) continue c, s = S.One, o else: # everything else c = S.One s = o # now we have: # o = c*s, where # # c is a Number # s is an expression with number factor extracted # let's collect terms with the same s, so e.g. # 2*x**2 + 3*x**2 -> 5*x**2 if s in terms: terms[s] += c if terms[s] is S.NaN and not extra: # we know for sure the result will be nan return [S.NaN], [], None else: terms[s] = c # now let's construct new args: # [2*x**2, x**3, 7*x**4, pi, ...] newseq = [] noncommutative = False for s, c in terms.items(): # 0*s if c.is_zero: continue # 1*s elif c is S.One: newseq.append(s) # c*s else: if s.is_Mul: # Mul, already keeps its arguments in perfect order. # so we can simply put c in slot0 and go the fast way. cs = s._new_rawargs(*((c,) + s.args)) newseq.append(cs) elif s.is_Add: # we just re-create the unevaluated Mul newseq.append(Mul(c, s, evaluate=False)) else: # alternatively we have to call all Mul's machinery (slow) newseq.append(Mul(c, s)) noncommutative = noncommutative or not s.is_commutative # oo, -oo if coeff is S.Infinity: newseq = [f for f in newseq if not (f.is_extended_nonnegative or f.is_real)] elif coeff is S.NegativeInfinity: newseq = [f for f in newseq if not (f.is_extended_nonpositive or f.is_real)] if coeff is S.ComplexInfinity: # zoo might be # infinite_real + finite_im # finite_real + infinite_im # infinite_real + infinite_im # addition of a finite real or imaginary number won't be able to # change the zoo nature; adding an infinite qualtity would result # in a NaN condition if it had sign opposite of the infinite # portion of zoo, e.g., infinite_real - infinite_real. newseq = [c for c in newseq if not (c.is_finite and c.is_extended_real is not None)] # process O(x) if order_factors: newseq2 = [] for t in newseq: for o in order_factors: # x + O(x) -> O(x) if o.contains(t): t = None break # x + O(x**2) -> x + O(x**2) if t is not None: newseq2.append(t) newseq = newseq2 + order_factors # 1 + O(1) -> O(1) for o in order_factors: if o.contains(coeff): coeff = S.Zero break # order args canonically _addsort(newseq) # current code expects coeff to be first if coeff is not S.Zero: newseq.insert(0, coeff) if extra: newseq += extra noncommutative = True # we are done if noncommutative: return [], newseq, None else: return newseq, [], None @classmethod def class_key(cls): """Nice order of classes""" return 3, 1, cls.__name__ @property def kind(self): k = attrgetter('kind') kinds = map(k, self.args) kinds = frozenset(kinds) if len(kinds) != 1: # Since addition is group operator, kind must be same. # We know that this is unexpected signature, so return this. result = UndefinedKind else: result, = kinds return result def could_extract_minus_sign(self): return _could_extract_minus_sign(self) def as_coefficients_dict(a): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ d = defaultdict(list) for ai in a.args: c, m = ai.as_coeff_Mul() d[m].append(c) for k, v in d.items(): if len(v) == 1: d[k] = v[0] else: d[k] = Add(*v) di = defaultdict(int) di.update(d) return di @cacheit def as_coeff_add(self, *deps): """ Returns a tuple (coeff, args) where self is treated as an Add and coeff is the Number term and args is a tuple of all other terms. Examples ======== >>> from sympy.abc import x >>> (7 + 3*x).as_coeff_add() (7, (3*x,)) >>> (7*x).as_coeff_add() (0, (7*x,)) """ if deps: l1, l2 = sift(self.args, lambda x: x.has_free(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) coeff, notrat = self.args[0].as_coeff_add() if coeff is not S.Zero: return coeff, notrat + self.args[1:] return S.Zero, self.args def as_coeff_Add(self, rational=False, deps=None): """ Efficiently extract the coefficient of a summation. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number and not rational or coeff.is_Rational: return coeff, self._new_rawargs(*args) return S.Zero, self # Note, we intentionally do not implement Add.as_coeff_mul(). Rather, we # let Expr.as_coeff_mul() just always return (S.One, self) for an Add. See # issue 5524. def _eval_power(self, e): from .evalf import pure_complex from .relational import is_eq if len(self.args) == 2 and any(_.is_infinite for _ in self.args): if e.is_zero is False and is_eq(e, S.One) is False: # looking for literal a + I*b a, b = self.args if a.coeff(S.ImaginaryUnit): a, b = b, a ico = b.coeff(S.ImaginaryUnit) if ico and ico.is_extended_real and a.is_extended_real: if e.is_extended_negative: return S.Zero if e.is_extended_positive: return S.ComplexInfinity return if e.is_Rational and self.is_number: ri = pure_complex(self) if ri: r, i = ri if e.q == 2: from sympy.functions.elementary.miscellaneous import sqrt D = sqrt(r**2 + i**2) if D.is_Rational: from .exprtools import factor_terms from sympy.functions.elementary.complexes import sign from .function import expand_multinomial # (r, i, D) is a Pythagorean triple root = sqrt(factor_terms((D - r)/2))**e.p return root*expand_multinomial(( # principle value (D + r)/abs(i) + sign(i)*S.ImaginaryUnit)**e.p) elif e == -1: return _unevaluated_Mul( r - i*S.ImaginaryUnit, 1/(r**2 + i**2)) elif e.is_Number and abs(e) != 1: # handle the Float case: (2.0 + 4*x)**e -> 4**e*(0.5 + x)**e c, m = zip(*[i.as_coeff_Mul() for i in self.args]) if any(i.is_Float for i in c): # XXX should this always be done? big = -1 for i in c: if abs(i) >= big: big = abs(i) if big > 0 and big != 1: from sympy.functions.elementary.complexes import sign bigs = (big, -big) c = [sign(i) if i in bigs else i/big for i in c] addpow = Add(*[c*m for c, m in zip(c, m)])**e return big**e*addpow @cacheit def _eval_derivative(self, s): return self.func(*[a.diff(s) for a in self.args]) def _eval_nseries(self, x, n, logx, cdir=0): terms = [t.nseries(x, n=n, logx=logx, cdir=cdir) for t in self.args] return self.func(*terms) def _matches_simple(self, expr, repl_dict): # handle (w+3).matches('x+5') -> {w: x+2} coeff, terms = self.as_coeff_add() if len(terms) == 1: return terms[0].matches(expr - coeff, repl_dict) return def matches(self, expr, repl_dict=None, old=False): return self._matches_commutative(expr, repl_dict, old) @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs - rhs, but treats oo like a symbol so oo - oo returns 0, instead of a nan. """ from sympy.simplify.simplify import signsimp inf = (S.Infinity, S.NegativeInfinity) if lhs.has(*inf) or rhs.has(*inf): from .symbol import Dummy oo = Dummy('oo') reps = { S.Infinity: oo, S.NegativeInfinity: -oo} ireps = {v: k for k, v in reps.items()} eq = lhs.xreplace(reps) - rhs.xreplace(reps) if eq.has(oo): eq = eq.replace( lambda x: x.is_Pow and x.base is oo, lambda x: x.base) rv = eq.xreplace(ireps) else: rv = lhs - rhs srv = signsimp(rv) return srv if srv.is_Number else rv @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_add() which gives the head and a tuple containing the arguments of the tail when treated as an Add. - if you want the coefficient when self is treated as a Mul then use self.as_coeff_mul()[0] >>> from sympy.abc import x, y >>> (3*x - 2*y + 5).as_two_terms() (5, 3*x - 2*y) """ return self.args[0], self._new_rawargs(*self.args[1:]) def as_numer_denom(self): """ Decomposes an expression to its numerator part and its denominator part. Examples ======== >>> from sympy.abc import x, y, z >>> (x*y/z).as_numer_denom() (x*y, z) >>> (x*(y + 1)/y**7).as_numer_denom() (x*(y + 1), y**7) See Also ======== sympy.core.expr.Expr.as_numer_denom """ # clear rational denominator content, expr = self.primitive() ncon, dcon = content.as_numer_denom() # collect numerators and denominators of the terms nd = defaultdict(list) for f in expr.args: ni, di = f.as_numer_denom() nd[di].append(ni) # check for quick exit if len(nd) == 1: d, n = nd.popitem() return self.func( *[_keep_coeff(ncon, ni) for ni in n]), _keep_coeff(dcon, d) # sum up the terms having a common denominator for d, n in nd.items(): if len(n) == 1: nd[d] = n[0] else: nd[d] = self.func(*n) # assemble single numerator and denominator denoms, numers = [list(i) for i in zip(*iter(nd.items()))] n, d = self.func(*[Mul(*(denoms[:i] + [numers[i]] + denoms[i + 1:])) for i in range(len(numers))]), Mul(*denoms) return _keep_coeff(ncon, n), _keep_coeff(dcon, d) def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) # assumption methods _eval_is_real = lambda self: _fuzzy_group( (a.is_real for a in self.args), quick_exit=True) _eval_is_extended_real = lambda self: _fuzzy_group( (a.is_extended_real for a in self.args), quick_exit=True) _eval_is_complex = lambda self: _fuzzy_group( (a.is_complex for a in self.args), quick_exit=True) _eval_is_antihermitian = lambda self: _fuzzy_group( (a.is_antihermitian for a in self.args), quick_exit=True) _eval_is_finite = lambda self: _fuzzy_group( (a.is_finite for a in self.args), quick_exit=True) _eval_is_hermitian = lambda self: _fuzzy_group( (a.is_hermitian for a in self.args), quick_exit=True) _eval_is_integer = lambda self: _fuzzy_group( (a.is_integer for a in self.args), quick_exit=True) _eval_is_rational = lambda self: _fuzzy_group( (a.is_rational for a in self.args), quick_exit=True) _eval_is_algebraic = lambda self: _fuzzy_group( (a.is_algebraic for a in self.args), quick_exit=True) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_infinite(self): sawinf = False for a in self.args: ainf = a.is_infinite if ainf is None: return None elif ainf is True: # infinite+infinite might not be infinite if sawinf is True: return None sawinf = True return sawinf def _eval_is_imaginary(self): nz = [] im_I = [] for a in self.args: if a.is_extended_real: if a.is_zero: pass elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im_I.append(a*S.ImaginaryUnit) elif (S.ImaginaryUnit*a).is_extended_real: im_I.append(a*S.ImaginaryUnit) else: return b = self.func(*nz) if b.is_zero: return fuzzy_not(self.func(*im_I).is_zero) elif b.is_zero is False: return False def _eval_is_zero(self): if self.is_commutative is False: # issue 10528: there is no way to know if a nc symbol # is zero or not return nz = [] z = 0 im_or_z = False im = 0 for a in self.args: if a.is_extended_real: if a.is_zero: z += 1 elif a.is_zero is False: nz.append(a) else: return elif a.is_imaginary: im += 1 elif (S.ImaginaryUnit*a).is_extended_real: im_or_z = True else: return if z == len(self.args): return True if len(nz) in [0, len(self.args)]: return None b = self.func(*nz) if b.is_zero: if not im_or_z: if im == 0: return True elif im == 1: return False if b.is_zero is False: return False def _eval_is_odd(self): l = [f for f in self.args if not (f.is_even is True)] if not l: return False if l[0].is_odd: return self._new_rawargs(*l[1:]).is_even def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all(x.is_rational is True for x in others): return True return None if a is None: return return False def _eval_is_extended_positive(self): if self.is_number: return super()._eval_is_extended_positive() c, a = self.as_coeff_Add() if not c.is_zero: from .exprtools import _monotonic_sign v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_positive and a.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_positive: return True pos = nonneg = nonpos = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: ispos = a.is_extended_positive infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((ispos, a.is_extended_nonnegative))) if True in saw_INF and False in saw_INF: return if ispos: pos = True continue elif a.is_extended_nonnegative: nonneg = True continue elif a.is_extended_nonpositive: nonpos = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonpos and not nonneg and pos: return True elif not nonpos and pos: return True elif not pos and not nonneg: return False def _eval_is_extended_nonnegative(self): if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonnegative: from .exprtools import _monotonic_sign v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonnegative: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonnegative: return True def _eval_is_extended_nonpositive(self): if not self.is_number: c, a = self.as_coeff_Add() if not c.is_zero and a.is_extended_nonpositive: from .exprtools import _monotonic_sign v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_nonpositive: return True def _eval_is_extended_negative(self): if self.is_number: return super()._eval_is_extended_negative() c, a = self.as_coeff_Add() if not c.is_zero: from .exprtools import _monotonic_sign v = _monotonic_sign(a) if v is not None: s = v + c if s != self and s.is_extended_negative and a.is_extended_nonpositive: return True if len(self.free_symbols) == 1: v = _monotonic_sign(self) if v is not None and v != self and v.is_extended_negative: return True neg = nonpos = nonneg = unknown_sign = False saw_INF = set() args = [a for a in self.args if not a.is_zero] if not args: return False for a in args: isneg = a.is_extended_negative infinite = a.is_infinite if infinite: saw_INF.add(fuzzy_or((isneg, a.is_extended_nonpositive))) if True in saw_INF and False in saw_INF: return if isneg: neg = True continue elif a.is_extended_nonpositive: nonpos = True continue elif a.is_extended_nonnegative: nonneg = True continue if infinite is None: return unknown_sign = True if saw_INF: if len(saw_INF) > 1: return return saw_INF.pop() elif unknown_sign: return elif not nonneg and not nonpos and neg: return True elif not nonneg and neg: return True elif not neg and not nonpos: return False def _eval_subs(self, old, new): if not old.is_Add: if old is S.Infinity and -old in self.args: # foo - oo is foo + (-oo) internally return self.xreplace({-old: -new}) return None coeff_self, terms_self = self.as_coeff_Add() coeff_old, terms_old = old.as_coeff_Add() if coeff_self.is_Rational and coeff_old.is_Rational: if terms_self == terms_old: # (2 + a).subs( 3 + a, y) -> -1 + y return self.func(new, coeff_self, -coeff_old) if terms_self == -terms_old: # (2 + a).subs(-3 - a, y) -> -1 - y return self.func(-new, coeff_self, coeff_old) if coeff_self.is_Rational and coeff_old.is_Rational \ or coeff_self == coeff_old: args_old, args_self = self.func.make_args( terms_old), self.func.make_args(terms_self) if len(args_old) < len(args_self): # (a+b+c).subs(b+c,x) -> a+x self_set = set(args_self) old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(new, coeff_self, -coeff_old, *[s._subs(old, new) for s in ret_set]) args_old = self.func.make_args( -terms_old) # (a+b+c+d).subs(-b-c,x) -> a-x+d old_set = set(args_old) if old_set < self_set: ret_set = self_set - old_set return self.func(-new, coeff_self, coeff_old, *[s._subs(old, new) for s in ret_set]) def removeO(self): args = [a for a in self.args if not a.is_Order] return self._new_rawargs(*args) def getO(self): args = [a for a in self.args if a.is_Order] if args: return self._new_rawargs(*args) @cacheit def extract_leading_order(self, symbols, point=None): """ Returns the leading term and its order. Examples ======== >>> from sympy.abc import x >>> (x + 1 + 1/x**5).extract_leading_order(x) ((x**(-5), O(x**(-5))),) >>> (1 + x).extract_leading_order(x) ((1, O(1)),) >>> (x + x**2).extract_leading_order(x) ((x, O(x)),) """ from sympy.series.order import Order lst = [] symbols = list(symbols if is_sequence(symbols) else [symbols]) if not point: point = [0]*len(symbols) seq = [(f, Order(f, *zip(symbols, point))) for f in self.args] for ef, of in seq: for e, o in lst: if o.contains(of) and o != of: of = None break if of is None: continue new_lst = [(ef, of)] for e, o in lst: if of.contains(o) and o != of: continue new_lst.append((e, o)) lst = new_lst return tuple(lst) def as_real_imag(self, deep=True, **hints): """ returns a tuple representing a complex number Examples ======== >>> from sympy import I >>> (7 + 9*I).as_real_imag() (7, 9) >>> ((1 + I)/(1 - I)).as_real_imag() (0, 1) >>> ((1 + 2*I)*(1 + 3*I)).as_real_imag() (-5, 5) """ sargs = self.args re_part, im_part = [], [] for term in sargs: re, im = term.as_real_imag(deep=deep) re_part.append(re) im_part.append(im) return (self.func(*re_part), self.func(*im_part)) def _eval_as_leading_term(self, x, logx=None, cdir=0): from sympy.series.order import Order from sympy.functions.elementary.exponential import log from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold from .function import expand_mul old = self if old.has(Piecewise): old = piecewise_fold(old) # This expansion is the last part of expand_log. expand_log also calls # expand_mul with factor=True, which would be more expensive if any(isinstance(a, log) for a in self.args): logflags = dict(deep=True, log=True, mul=False, power_exp=False, power_base=False, multinomial=False, basic=False, force=False, factor=False) old = old.expand(**logflags) expr = expand_mul(old) if not expr.is_Add: return expr.as_leading_term(x, logx=logx, cdir=cdir) infinite = [t for t in expr.args if t.is_infinite] leading_terms = [t.as_leading_term(x, logx=logx, cdir=cdir) for t in expr.args] min, new_expr = Order(0), 0 try: for term in leading_terms: order = Order(term, x) if not min or order not in min: min = order new_expr = term elif min in order: new_expr += term except TypeError: return expr is_zero = new_expr.is_zero if is_zero is None: new_expr = new_expr.trigsimp().cancel() is_zero = new_expr.is_zero if is_zero is True: # simple leading term analysis gave us cancelled terms but we have to send # back a term, so compute the leading term (via series) n0 = min.getn() res = Order(1) incr = S.One while res.is_Order: res = old._eval_nseries(x, n=n0+incr, logx=None, cdir=cdir).cancel().powsimp().trigsimp() incr *= 2 return res.as_leading_term(x, logx=logx, cdir=cdir) elif new_expr is S.NaN: return old.func._from_args(infinite) else: return new_expr def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args]) def primitive(self): """ Return ``(R, self/R)`` where ``R``` is the Rational GCD of ``self```. ``R`` is collected only from the leading coefficient of each term. Examples ======== >>> from sympy.abc import x, y >>> (2*x + 4*y).primitive() (2, x + 2*y) >>> (2*x/3 + 4*y/9).primitive() (2/9, 3*x + 2*y) >>> (2*x/3 + 4.2*y).primitive() (1/3, 2*x + 12.6*y) No subprocessing of term factors is performed: >>> ((2 + 2*x)*x + 2).primitive() (1, x*(2*x + 2) + 2) Recursive processing can be done with the ``as_content_primitive()`` method: >>> ((2 + 2*x)*x + 2).as_content_primitive() (2, x*(x + 1) + 1) See also: primitive() function in polytools.py """ terms = [] inf = False for a in self.args: c, m = a.as_coeff_Mul() if not c.is_Rational: c = S.One m = a inf = inf or m is S.ComplexInfinity terms.append((c.p, c.q, m)) if not inf: ngcd = reduce(igcd, [t[0] for t in terms], 0) dlcm = reduce(ilcm, [t[1] for t in terms], 1) else: ngcd = reduce(igcd, [t[0] for t in terms if t[1]], 0) dlcm = reduce(ilcm, [t[1] for t in terms if t[1]], 1) if ngcd == dlcm == 1: return S.One, self if not inf: for i, (p, q, term) in enumerate(terms): terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: for i, (p, q, term) in enumerate(terms): if q: terms[i] = _keep_coeff(Rational((p//ngcd)*(dlcm//q)), term) else: terms[i] = _keep_coeff(Rational(p, q), term) # we don't need a complete re-flattening since no new terms will join # so we just use the same sort as is used in Add.flatten. When the # coefficient changes, the ordering of terms may change, e.g. # (3*x, 6*y) -> (2*y, x) # # We do need to make sure that term[0] stays in position 0, however. # if terms[0].is_Number or terms[0] is S.ComplexInfinity: c = terms.pop(0) else: c = None _addsort(terms) if c: terms.insert(0, c) return Rational(ngcd, dlcm), self._new_rawargs(*terms) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. If radical is True (default is False) then common radicals will be removed and included as a factor of the primitive expression. Examples ======== >>> from sympy import sqrt >>> (3 + 3*sqrt(2)).as_content_primitive() (3, 1 + sqrt(2)) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) See docstring of Expr.as_content_primitive for more examples. """ con, prim = self.func(*[_keep_coeff(*a.as_content_primitive( radical=radical, clear=clear)) for a in self.args]).primitive() if not clear and not con.is_Integer and prim.is_Add: con, d = con.as_numer_denom() _p = prim/d if any(a.as_coeff_Mul()[0].is_Integer for a in _p.args): prim = _p else: con /= d if radical and prim.is_Add: # look for common radicals that can be removed args = prim.args rads = [] common_q = None for m in args: term_rads = defaultdict(list) for ai in Mul.make_args(m): if ai.is_Pow: b, e = ai.as_base_exp() if e.is_Rational and b.is_Integer: term_rads[e.q].append(abs(int(b))**e.p) if not term_rads: break if common_q is None: common_q = set(term_rads.keys()) else: common_q = common_q & set(term_rads.keys()) if not common_q: break rads.append(term_rads) else: # process rads # keep only those in common_q for r in rads: for q in list(r.keys()): if q not in common_q: r.pop(q) for q in r: r[q] = prod(r[q]) # find the gcd of bases for each q G = [] for q in common_q: g = reduce(igcd, [r[q] for r in rads], 0) if g != 1: G.append(g**Rational(1, q)) if G: G = Mul(*G) args = [ai/G for ai in args] prim = G*prim.func(*args) return con, prim @property def _sorted_args(self): from .sorting import default_sort_key return tuple(sorted(self.args, key=default_sort_key)) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd return self.func(*[dd(a, n, step) for a in self.args]) @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from .numbers import Float re_part, rest = self.as_coeff_Add() im_part, imag_unit = rest.as_coeff_Mul() if not imag_unit == S.ImaginaryUnit: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Add to mpc. Must be of the form Number + Number*I") return (Float(re_part)._mpf_, Float(im_part)._mpf_) def __neg__(self): if not global_parameters.distribute: return super().__neg__() return Add(*[-i for i in self.args]) add = AssocOpDispatcher('add') from .mul import Mul, _keep_coeff, prod, _unevaluated_Mul from .numbers import Rational
65c14aa62d0740e2e91baa5f27fc9dba7f601f95f8130a2b46101df0c005a833
from typing import Tuple as tTuple from collections.abc import Iterable from functools import reduce from .sympify import sympify, _sympify, SympifyError from .basic import Basic, Atom from .singleton import S from .evalf import EvalfMixin, pure_complex, DEFAULT_MAXPREC from .decorators import call_highest_priority, sympify_method_args, sympify_return from .cache import cacheit from .sorting import default_sort_key from .kind import NumberKind from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import as_int, func_name, filldedent from sympy.utilities.iterables import has_variety, sift, iterable, NotIterable from mpmath.libmp import mpf_log, prec_to_dps from mpmath.libmp.libintmath import giant_steps from collections import defaultdict @sympify_method_args class Expr(Basic, EvalfMixin): """ Base class for algebraic expressions. Explanation =========== Everything that requires arithmetic operations to be defined should subclass this class, instead of Basic (which should be used only for argument storage and expression manipulation, i.e. pattern matching, substitutions, etc). If you want to override the comparisons of expressions: Should use _eval_is_ge for inequality, or _eval_is_eq, with multiple dispatch. _eval_is_ge return true if x >= y, false if x < y, and None if the two types are not comparable or the comparison is indeterminate See Also ======== sympy.core.basic.Basic """ __slots__ = () # type: tTuple[str, ...] is_scalar = True # self derivative is 1 @property def _diff_wrt(self): """Return True if one can differentiate with respect to this object, else False. Explanation =========== Subclasses such as Symbol, Function and Derivative return True to enable derivatives wrt them. The implementation in Derivative separates the Symbol and non-Symbol (_diff_wrt=True) variables and temporarily converts the non-Symbols into Symbols when performing the differentiation. By default, any object deriving from Expr will behave like a scalar with self.diff(self) == 1. If this is not desired then the object must also set `is_scalar = False` or else define an _eval_derivative routine. Note, see the docstring of Derivative for how this should work mathematically. In particular, note that expr.subs(yourclass, Symbol) should be well-defined on a structural level, or this will lead to inconsistent results. Examples ======== >>> from sympy import Expr >>> e = Expr() >>> e._diff_wrt False >>> class MyScalar(Expr): ... _diff_wrt = True ... >>> MyScalar().diff(MyScalar()) 1 >>> class MySymbol(Expr): ... _diff_wrt = True ... is_scalar = False ... >>> MySymbol().diff(MySymbol()) Derivative(MySymbol(), MySymbol()) """ return False @cacheit def sort_key(self, order=None): coeff, expr = self.as_coeff_Mul() if expr.is_Pow: if expr.base is S.Exp1: # If we remove this, many doctests will go crazy: # (keeps E**x sorted like the exp(x) function, # part of exp(x) to E**x transition) expr, exp = Function("exp")(expr.exp), S.One else: expr, exp = expr.args else: exp = S.One if expr.is_Dummy: args = (expr.sort_key(),) elif expr.is_Atom: args = (str(expr),) else: if expr.is_Add: args = expr.as_ordered_terms(order=order) elif expr.is_Mul: args = expr.as_ordered_factors(order=order) else: args = expr.args args = tuple( [ default_sort_key(arg, order=order) for arg in args ]) args = (len(args), tuple(args)) exp = exp.sort_key(order=order) return expr.class_key(), args, exp, coeff def __hash__(self) -> int: # hash cannot be cached using cache_it because infinite recurrence # occurs as hash is needed for setting cache dictionary keys h = self._mhash if h is None: h = hash((type(self).__name__,) + self._hashable_content()) self._mhash = h return h def _hashable_content(self): """Return a tuple of information about self that can be used to compute the hash. If a class defines additional attributes, like ``name`` in Symbol, then this method should be updated accordingly to return such relevant attributes. Defining more than _hashable_content is necessary if __eq__ has been defined by a class. See note about this in Basic.__eq__.""" return self._args def __eq__(self, other): if not isinstance(other, Basic): if iterable(other, exclude=(str, NotIterable) ) and not hasattr(other, '_sympy_'): # XXX iterable self should have it's own __eq__ # method if the path gives a false negative # comparison return False try: other = _sympify(other) except (SympifyError, SyntaxError): return NotImplemented if not isinstance(other, Expr): return False # check for pure number expr if not (self.is_Number and other.is_Number) and ( type(self) != type(other)): return False a, b = self._hashable_content(), other._hashable_content() if a != b: return False # check number *in* an expression for a, b in zip(a, b): if not isinstance(a, Expr): continue if a.is_Number and type(a) != type(b): return False return True # *************** # * Arithmetics * # *************** # Expr and its sublcasses use _op_priority to determine which object # passed to a binary special method (__mul__, etc.) will handle the # operation. In general, the 'call_highest_priority' decorator will choose # the object with the highest _op_priority to handle the call. # Custom subclasses that want to define their own binary special methods # should set an _op_priority value that is higher than the default. # # **NOTE**: # This is a temporary fix, and will eventually be replaced with # something better and more powerful. See issue 5510. _op_priority = 10.0 @property def _add_handler(self): return Add @property def _mul_handler(self): return Mul def __pos__(self): return self def __neg__(self): # Mul has its own __neg__ routine, so we just # create a 2-args Mul with the -1 in the canonical # slot 0. c = self.is_commutative return Mul._from_args((S.NegativeOne, self), c) def __abs__(self): from sympy.functions.elementary.complexes import Abs return Abs(self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return Add(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return Add(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return Add(self, -other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return Add(other, -self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return Mul(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return Mul(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rpow__') def _pow(self, other): return Pow(self, other) def __pow__(self, other, mod=None): if mod is None: return self._pow(other) try: _self, other, mod = as_int(self), as_int(other), as_int(mod) if other >= 0: return pow(_self, other, mod) else: from sympy.core.numbers import mod_inverse return mod_inverse(pow(_self, -other, mod), mod) except ValueError: power = self._pow(other) try: return power%mod except TypeError: return NotImplemented @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return Pow(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): denom = Pow(other, S.NegativeOne) if self is S.One: return denom else: return Mul(self, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): denom = Pow(self, S.NegativeOne) if other is S.One: return denom else: return Mul(other, denom) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rmod__') def __mod__(self, other): return Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__mod__') def __rmod__(self, other): return Mod(other, self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rfloordiv__') def __floordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__floordiv__') def __rfloordiv__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__rdivmod__') def __divmod__(self, other): from sympy.functions.elementary.integers import floor return floor(self / other), Mod(self, other) @sympify_return([('other', 'Expr')], NotImplemented) @call_highest_priority('__divmod__') def __rdivmod__(self, other): from sympy.functions.elementary.integers import floor return floor(other / self), Mod(other, self) def __int__(self): # Although we only need to round to the units position, we'll # get one more digit so the extra testing below can be avoided # unless the rounded value rounded to an integer, e.g. if an # expression were equal to 1.9 and we rounded to the unit position # we would get a 2 and would not know if this rounded up or not # without doing a test (as done below). But if we keep an extra # digit we know that 1.9 is not the same as 1 and there is no # need for further testing: our int value is correct. If the value # were 1.99, however, this would round to 2.0 and our int value is # off by one. So...if our round value is the same as the int value # (regardless of how much extra work we do to calculate extra decimal # places) we need to test whether we are off by one. from .symbol import Dummy if not self.is_number: raise TypeError("Cannot convert symbols to int") r = self.round(2) if not r.is_Number: raise TypeError("Cannot convert complex to int") if r in (S.NaN, S.Infinity, S.NegativeInfinity): raise TypeError("Cannot convert %s to int" % r) i = int(r) if not i: return 0 # off-by-one check if i == r and not (self - i).equals(0): isign = 1 if i > 0 else -1 x = Dummy() # in the following (self - i).evalf(2) will not always work while # (self - r).evalf(2) and the use of subs does; if the test that # was added when this comment was added passes, it might be safe # to simply use sign to compute this rather than doing this by hand: diff_sign = 1 if (self - x).evalf(2, subs={x: i}) > 0 else -1 if diff_sign != isign: i -= isign return i def __float__(self): # Don't bother testing if it's a number; if it's not this is going # to fail, and if it is we still need to check that it evalf'ed to # a number. result = self.evalf() if result.is_Number: return float(result) if result.is_number and result.as_real_imag()[1]: raise TypeError("Cannot convert complex to float") raise TypeError("Cannot convert expression to float") def __complex__(self): result = self.evalf() re, im = result.as_real_imag() return complex(float(re), float(im)) @sympify_return([('other', 'Expr')], NotImplemented) def __ge__(self, other): from .relational import GreaterThan return GreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __le__(self, other): from .relational import LessThan return LessThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __gt__(self, other): from .relational import StrictGreaterThan return StrictGreaterThan(self, other) @sympify_return([('other', 'Expr')], NotImplemented) def __lt__(self, other): from .relational import StrictLessThan return StrictLessThan(self, other) def __trunc__(self): if not self.is_number: raise TypeError("Cannot truncate symbols and expressions") else: return Integer(self) @staticmethod def _from_mpmath(x, prec): from .numbers import Float if hasattr(x, "_mpf_"): return Float._new(x._mpf_, prec) elif hasattr(x, "_mpc_"): re, im = x._mpc_ re = Float._new(re, prec) im = Float._new(im, prec)*S.ImaginaryUnit return re + im else: raise TypeError("expected mpmath number (mpf or mpc)") @property def is_number(self): """Returns True if ``self`` has no free symbols and no undefined functions (AppliedUndef, to be precise). It will be faster than ``if not self.free_symbols``, however, since ``is_number`` will fail as soon as it hits a free symbol or undefined function. Examples ======== >>> from sympy import Function, Integral, cos, sin, pi >>> from sympy.abc import x >>> f = Function('f') >>> x.is_number False >>> f(1).is_number False >>> (2*x).is_number False >>> (2 + Integral(2, x)).is_number False >>> (2 + Integral(2, (x, 1, 2))).is_number True Not all numbers are Numbers in the SymPy sense: >>> pi.is_number, pi.is_Number (True, False) If something is a number it should evaluate to a number with real and imaginary parts that are Numbers; the result may not be comparable, however, since the real and/or imaginary part of the result may not have precision. >>> cos(1).is_number and cos(1).is_comparable True >>> z = cos(1)**2 + sin(1)**2 - 1 >>> z.is_number True >>> z.is_comparable False See Also ======== sympy.core.basic.Basic.is_comparable """ return all(obj.is_number for obj in self.args) def _random(self, n=None, re_min=-1, im_min=-1, re_max=1, im_max=1): """Return self evaluated, if possible, replacing free symbols with random complex values, if necessary. Explanation =========== The random complex value for each free symbol is generated by the random_complex_number routine giving real and imaginary parts in the range given by the re_min, re_max, im_min, and im_max values. The returned value is evaluated to a precision of n (if given) else the maximum of 15 and the precision needed to get more than 1 digit of precision. If the expression could not be evaluated to a number, or could not be evaluated to more than 1 digit of precision, then None is returned. Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y >>> x._random() # doctest: +SKIP 0.0392918155679172 + 0.916050214307199*I >>> x._random(2) # doctest: +SKIP -0.77 - 0.87*I >>> (x + y/2)._random(2) # doctest: +SKIP -0.57 + 0.16*I >>> sqrt(2)._random(2) 1.4 See Also ======== sympy.core.random.random_complex_number """ free = self.free_symbols prec = 1 if free: from sympy.core.random import random_complex_number a, c, b, d = re_min, re_max, im_min, im_max reps = dict(list(zip(free, [random_complex_number(a, b, c, d, rational=True) for zi in free]))) try: nmag = abs(self.evalf(2, subs=reps)) except (ValueError, TypeError): # if an out of range value resulted in evalf problems # then return None -- XXX is there a way to know how to # select a good random number for a given expression? # e.g. when calculating n! negative values for n should not # be used return None else: reps = {} nmag = abs(self.evalf(2)) if not hasattr(nmag, '_prec'): # e.g. exp_polar(2*I*pi) doesn't evaluate but is_number is True return None if nmag._prec == 1: # increase the precision up to the default maximum # precision to see if we can get any significance # evaluate for prec in giant_steps(2, DEFAULT_MAXPREC): nmag = abs(self.evalf(prec, subs=reps)) if nmag._prec != 1: break if nmag._prec != 1: if n is None: n = max(prec, 15) return self.evalf(n, subs=reps) # never got any significance return None def is_constant(self, *wrt, **flags): """Return True if self is constant, False if not, or None if the constancy could not be determined conclusively. Explanation =========== If an expression has no free symbols then it is a constant. If there are free symbols it is possible that the expression is a constant, perhaps (but not necessarily) zero. To test such expressions, a few strategies are tried: 1) numerical evaluation at two random points. If two such evaluations give two different values and the values have a precision greater than 1 then self is not constant. If the evaluations agree or could not be obtained with any precision, no decision is made. The numerical testing is done only if ``wrt`` is different than the free symbols. 2) differentiation with respect to variables in 'wrt' (or all free symbols if omitted) to see if the expression is constant or not. This will not always lead to an expression that is zero even though an expression is constant (see added test in test_expr.py). If all derivatives are zero then self is constant with respect to the given symbols. 3) finding out zeros of denominator expression with free_symbols. It will not be constant if there are zeros. It gives more negative answers for expression that are not constant. If neither evaluation nor differentiation can prove the expression is constant, None is returned unless two numerical values happened to be the same and the flag ``failing_number`` is True -- in that case the numerical value will be returned. If flag simplify=False is passed, self will not be simplified; the default is True since self should be simplified before testing. Examples ======== >>> from sympy import cos, sin, Sum, S, pi >>> from sympy.abc import a, n, x, y >>> x.is_constant() False >>> S(2).is_constant() True >>> Sum(x, (x, 1, 10)).is_constant() True >>> Sum(x, (x, 1, n)).is_constant() False >>> Sum(x, (x, 1, n)).is_constant(y) True >>> Sum(x, (x, 1, n)).is_constant(n) False >>> Sum(x, (x, 1, n)).is_constant(x) True >>> eq = a*cos(x)**2 + a*sin(x)**2 - a >>> eq.is_constant() True >>> eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 True >>> (0**x).is_constant() False >>> x.is_constant() False >>> (x**x).is_constant() False >>> one = cos(x)**2 + sin(x)**2 >>> one.is_constant() True >>> ((one - 1)**(x + 1)).is_constant() in (True, False) # could be 0 or 1 True """ def check_denominator_zeros(expression): from sympy.solvers.solvers import denoms retNone = False for den in denoms(expression): z = den.is_zero if z is True: return True if z is None: retNone = True if retNone: return None return False simplify = flags.get('simplify', True) if self.is_number: return True free = self.free_symbols if not free: return True # assume f(1) is some constant # if we are only interested in some symbols and they are not in the # free symbols then this expression is constant wrt those symbols wrt = set(wrt) if wrt and not wrt & free: return True wrt = wrt or free # simplify unless this has already been done expr = self if simplify: expr = expr.simplify() # is_zero should be a quick assumptions check; it can be wrong for # numbers (see test_is_not_constant test), giving False when it # shouldn't, but hopefully it will never give True unless it is sure. if expr.is_zero: return True # Don't attempt substitution or differentiation with non-number symbols wrt_number = {sym for sym in wrt if sym.kind is NumberKind} # try numerical evaluation to see if we get two different values failing_number = None if wrt_number == free: # try 0 (for a) and 1 (for b) try: a = expr.subs(list(zip(free, [0]*len(free))), simultaneous=True) if a is S.NaN: # evaluation may succeed when substitution fails a = expr._random(None, 0, 0, 0, 0) except ZeroDivisionError: a = None if a is not None and a is not S.NaN: try: b = expr.subs(list(zip(free, [1]*len(free))), simultaneous=True) if b is S.NaN: # evaluation may succeed when substitution fails b = expr._random(None, 1, 0, 1, 0) except ZeroDivisionError: b = None if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random real b = expr._random(None, -1, 0, 1, 0) if b is not None and b is not S.NaN and b.equals(a) is False: return False # try random complex b = expr._random() if b is not None and b is not S.NaN: if b.equals(a) is False: return False failing_number = a if a.is_number else b # now we will test each wrt symbol (or all free symbols) to see if the # expression depends on them or not using differentiation. This is # not sufficient for all expressions, however, so we don't return # False if we get a derivative other than 0 with free symbols. for w in wrt_number: deriv = expr.diff(w) if simplify: deriv = deriv.simplify() if deriv != 0: if not (pure_complex(deriv, or_real=True)): if flags.get('failing_number', False): return failing_number return False cd = check_denominator_zeros(self) if cd is True: return False elif cd is None: return None return True def equals(self, other, failing_expression=False): """Return True if self == other, False if it doesn't, or None. If failing_expression is True then the expression which did not simplify to a 0 will be returned instead of None. Explanation =========== If ``self`` is a Number (or complex number) that is not zero, then the result is False. If ``self`` is a number and has not evaluated to zero, evalf will be used to test whether the expression evaluates to zero. If it does so and the result has significance (i.e. the precision is either -1, for a Rational result, or is greater than 1) then the evalf value will be used to return True or False. """ from sympy.simplify.simplify import nsimplify, simplify from sympy.solvers.solvers import solve from sympy.polys.polyerrors import NotAlgebraic from sympy.polys.numberfields import minimal_polynomial other = sympify(other) if self == other: return True # they aren't the same so see if we can make the difference 0; # don't worry about doing simplification steps one at a time # because if the expression ever goes to 0 then the subsequent # simplification steps that are done will be very fast. diff = factor_terms(simplify(self - other), radical=True) if not diff: return True if not diff.has(Add, Mod): # if there is no expanding to be done after simplifying # then this can't be a zero return False factors = diff.as_coeff_mul()[1] if len(factors) > 1: # avoid infinity recursion fac_zero = [fac.equals(0) for fac in factors] if None not in fac_zero: # every part can be decided return any(fac_zero) constant = diff.is_constant(simplify=False, failing_number=True) if constant is False: return False if not diff.is_number: if constant is None: # e.g. unless the right simplification is done, a symbolic # zero is possible (see expression of issue 6829: without # simplification constant will be None). return if constant is True: # this gives a number whether there are free symbols or not ndiff = diff._random() # is_comparable will work whether the result is real # or complex; it could be None, however. if ndiff and ndiff.is_comparable: return False # sometimes we can use a simplified result to give a clue as to # what the expression should be; if the expression is *not* zero # then we should have been able to compute that and so now # we can just consider the cases where the approximation appears # to be zero -- we try to prove it via minimal_polynomial. # # removed # ns = nsimplify(diff) # if diff.is_number and (not ns or ns == diff): # # The thought was that if it nsimplifies to 0 that's a sure sign # to try the following to prove it; or if it changed but wasn't # zero that might be a sign that it's not going to be easy to # prove. But tests seem to be working without that logic. # if diff.is_number: # try to prove via self-consistency surds = [s for s in diff.atoms(Pow) if s.args[0].is_Integer] # it seems to work better to try big ones first surds.sort(key=lambda x: -x.args[0]) for s in surds: try: # simplify is False here -- this expression has already # been identified as being hard to identify as zero; # we will handle the checking ourselves using nsimplify # to see if we are in the right ballpark or not and if so # *then* the simplification will be attempted. sol = solve(diff, s, simplify=False) if sol: if s in sol: # the self-consistent result is present return True if all(si.is_Integer for si in sol): # perfect powers are removed at instantiation # so surd s cannot be an integer return False if all(i.is_algebraic is False for i in sol): # a surd is algebraic return False if any(si in surds for si in sol): # it wasn't equal to s but it is in surds # and different surds are not equal return False if any(nsimplify(s - si) == 0 and simplify(s - si) == 0 for si in sol): return True if s.is_real: if any(nsimplify(si, [s]) == s and simplify(si) == s for si in sol): return True except NotImplementedError: pass # try to prove with minimal_polynomial but know when # *not* to use this or else it can take a long time. e.g. issue 8354 if True: # change True to condition that assures non-hang try: mp = minimal_polynomial(diff) if mp.is_Symbol: return True return False except (NotAlgebraic, NotImplementedError): pass # diff has not simplified to zero; constant is either None, True # or the number with significance (is_comparable) that was randomly # calculated twice as the same value. if constant not in (True, None) and constant != 0: return False if failing_expression: return diff return None def _eval_is_positive(self): finite = self.is_finite if finite is False: return False extended_positive = self.is_extended_positive if finite is True: return extended_positive if extended_positive is False: return False def _eval_is_negative(self): finite = self.is_finite if finite is False: return False extended_negative = self.is_extended_negative if finite is True: return extended_negative if extended_negative is False: return False def _eval_is_extended_positive_negative(self, positive): from sympy.polys.numberfields import minimal_polynomial from sympy.polys.polyerrors import NotAlgebraic if self.is_number: if self.is_extended_real is False: return False # check to see that we can get a value try: n2 = self._eval_evalf(2) # XXX: This shouldn't be caught here # Catches ValueError: hypsum() failed to converge to the requested # 34 bits of accuracy except ValueError: return None if n2 is None: return None if getattr(n2, '_prec', 1) == 1: # no significance return None if n2 is S.NaN: return None f = self.evalf(2) if f.is_Float: match = f, S.Zero else: match = pure_complex(f) if match is None: return False r, i = match if not (i.is_Number and r.is_Number): return False if r._prec != 1 and i._prec != 1: return bool(not i and ((r > 0) if positive else (r < 0))) elif r._prec == 1 and (not i or i._prec == 1) and \ self.is_algebraic and not self.has(Function): try: if minimal_polynomial(self).is_Symbol: return False except (NotAlgebraic, NotImplementedError): pass def _eval_is_extended_positive(self): return self._eval_is_extended_positive_negative(positive=True) def _eval_is_extended_negative(self): return self._eval_is_extended_positive_negative(positive=False) def _eval_interval(self, x, a, b): """ Returns evaluation over an interval. For most functions this is: self.subs(x, b) - self.subs(x, a), possibly using limit() if NaN is returned from subs, or if singularities are found between a and b. If b or a is None, it only evaluates -self.subs(x, a) or self.subs(b, x), respectively. """ from sympy.calculus.accumulationbounds import AccumBounds from sympy.functions.elementary.exponential import log from sympy.series.limits import limit, Limit from sympy.sets.sets import Interval from sympy.solvers.solveset import solveset if (a is None and b is None): raise ValueError('Both interval ends cannot be None.') def _eval_endpoint(left): c = a if left else b if c is None: return S.Zero else: C = self.subs(x, c) if C.has(S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, AccumBounds): if (a < b) != False: C = limit(self, x, c, "+" if left else "-") else: C = limit(self, x, c, "-" if left else "+") if isinstance(C, Limit): raise NotImplementedError("Could not compute limit") return C if a == b: return S.Zero A = _eval_endpoint(left=True) if A is S.NaN: return A B = _eval_endpoint(left=False) if (a and b) is None: return B - A value = B - A if a.is_comparable and b.is_comparable: if a < b: domain = Interval(a, b) else: domain = Interval(b, a) # check the singularities of self within the interval # if singularities is a ConditionSet (not iterable), catch the exception and pass singularities = solveset(self.cancel().as_numer_denom()[1], x, domain=domain) for logterm in self.atoms(log): singularities = singularities | solveset(logterm.args[0], x, domain=domain) try: for s in singularities: if value is S.NaN: # no need to keep adding, it will stay NaN break if not s.is_comparable: continue if (a < s) == (s < b) == True: value += -limit(self, x, s, "+") + limit(self, x, s, "-") elif (b < s) == (s < a) == True: value += limit(self, x, s, "+") - limit(self, x, s, "-") except TypeError: pass return value def _eval_power(self, other): # subclass to compute self**other for cases when # other is not NaN, 0, or 1 return None def _eval_conjugate(self): if self.is_extended_real: return self elif self.is_imaginary: return -self def conjugate(self): """Returns the complex conjugate of 'self'.""" from sympy.functions.elementary.complexes import conjugate as c return c(self) def dir(self, x, cdir): if self.is_zero: return S.Zero from sympy.functions.elementary.exponential import log minexp = S.Zero arg = self while arg: minexp += S.One arg = arg.diff(x) coeff = arg.subs(x, 0) if coeff is S.NaN: coeff = arg.limit(x, 0) if coeff is S.ComplexInfinity: try: coeff, _ = arg.leadterm(x) if coeff.has(log(x)): raise ValueError() except ValueError: coeff = arg.limit(x, 0) if coeff != S.Zero: break return coeff*cdir**minexp def _eval_transpose(self): from sympy.functions.elementary.complexes import conjugate if (self.is_complex or self.is_infinite): return self elif self.is_hermitian: return conjugate(self) elif self.is_antihermitian: return -conjugate(self) def transpose(self): from sympy.functions.elementary.complexes import transpose return transpose(self) def _eval_adjoint(self): from sympy.functions.elementary.complexes import conjugate, transpose if self.is_hermitian: return self elif self.is_antihermitian: return -self obj = self._eval_conjugate() if obj is not None: return transpose(obj) obj = self._eval_transpose() if obj is not None: return conjugate(obj) def adjoint(self): from sympy.functions.elementary.complexes import adjoint return adjoint(self) @classmethod def _parse_order(cls, order): """Parse and configure the ordering of terms. """ from sympy.polys.orderings import monomial_key startswith = getattr(order, "startswith", None) if startswith is None: reverse = False else: reverse = startswith('rev-') if reverse: order = order[4:] monom_key = monomial_key(order) def neg(monom): result = [] for m in monom: if isinstance(m, tuple): result.append(neg(m)) else: result.append(-m) return tuple(result) def key(term): _, ((re, im), monom, ncpart) = term monom = neg(monom_key(monom)) ncpart = tuple([e.sort_key(order=order) for e in ncpart]) coeff = ((bool(im), im), (re, im)) return monom, ncpart, coeff return key, reverse def as_ordered_factors(self, order=None): """Return list of ordered factors (if Mul) else [self].""" return [self] def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. Explanation =========== >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ from sympy.polys.polyerrors import PolynomialError, GeneratorsNeeded from sympy.polys.polytools import Poly try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except (PolynomialError, GeneratorsNeeded): # PolynomialError is caught for e.g. exp(x).as_poly(x) # GeneratorsNeeded is caught for e.g. S(2).as_poly() return None def as_ordered_terms(self, order=None, data=False): """ Transform an expression to an ordered list of terms. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> (sin(x)**2*cos(x) + sin(x)**2 + 1).as_ordered_terms() [sin(x)**2*cos(x), sin(x)**2, 1] """ from .numbers import Number, NumberSymbol if order is None and self.is_Add: # Spot the special case of Add(Number, Mul(Number, expr)) with the # first number positive and the second number negative key = lambda x:not isinstance(x, (Number, NumberSymbol)) add_args = sorted(Add.make_args(self), key=key) if (len(add_args) == 2 and isinstance(add_args[0], (Number, NumberSymbol)) and isinstance(add_args[1], Mul)): mul_args = sorted(Mul.make_args(add_args[1]), key=key) if (len(mul_args) == 2 and isinstance(mul_args[0], Number) and add_args[0].is_positive and mul_args[0].is_negative): return add_args key, reverse = self._parse_order(order) terms, gens = self.as_terms() if not any(term.is_Order for term, _ in terms): ordered = sorted(terms, key=key, reverse=reverse) else: _terms, _order = [], [] for term, repr in terms: if not term.is_Order: _terms.append((term, repr)) else: _order.append((term, repr)) ordered = sorted(_terms, key=key, reverse=True) \ + sorted(_order, key=key, reverse=True) if data: return ordered, gens else: return [term for term, _ in ordered] def as_terms(self): """Transform an expression to a list of terms. """ from .exprtools import decompose_power gens, terms = set(), [] for term in Add.make_args(self): coeff, _term = term.as_coeff_Mul() coeff = complex(coeff) cpart, ncpart = {}, [] if _term is not S.One: for factor in Mul.make_args(_term): if factor.is_number: try: coeff *= complex(factor) except (TypeError, ValueError): pass else: continue if factor.is_commutative: base, exp = decompose_power(factor) cpart[base] = exp gens.add(base) else: ncpart.append(factor) coeff = coeff.real, coeff.imag ncpart = tuple(ncpart) terms.append((term, (coeff, cpart, ncpart))) gens = sorted(gens, key=default_sort_key) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i result = [] for term, (coeff, cpart, ncpart) in terms: monom = [0]*k for base, exp in cpart.items(): monom[indices[base]] = exp result.append((term, (coeff, tuple(monom), ncpart))) return result, gens def removeO(self): """Removes the additive O(..) symbol if there is one""" return self def getO(self): """Returns the additive O(..) symbol if there is one, else None.""" return None def getn(self): """ Returns the order of the expression. Explanation =========== The order is determined either from the O(...) term. If there is no O(...) term, it returns None. Examples ======== >>> from sympy import O >>> from sympy.abc import x >>> (1 + x + O(x**2)).getn() 2 >>> (1 + x).getn() """ o = self.getO() if o is None: return None elif o.is_Order: o = o.expr if o is S.One: return S.Zero if o.is_Symbol: return S.One if o.is_Pow: return o.args[1] if o.is_Mul: # x**n*log(x)**n or x**n/log(x)**n for oi in o.args: if oi.is_Symbol: return S.One if oi.is_Pow: from .symbol import Dummy, Symbol syms = oi.atoms(Symbol) if len(syms) == 1: x = syms.pop() oi = oi.subs(x, Dummy('x', positive=True)) if oi.base.is_Symbol and oi.exp.is_Rational: return abs(oi.exp) raise NotImplementedError('not sure of order of %s' % o) def count_ops(self, visual=None): """wrapper for count_ops that returns the operation count.""" from .function import count_ops return count_ops(self, visual) def args_cnc(self, cset=False, warn=True, split_1=True): """Return [commutative factors, non-commutative factors] of self. Explanation =========== self is treated as a Mul and the ordering of the factors is maintained. If ``cset`` is True the commutative factors will be returned in a set. If there were repeated factors (as may happen with an unevaluated Mul) then an error will be raised unless it is explicitly suppressed by setting ``warn`` to False. Note: -1 is always separated from a Number unless split_1 is False. Examples ======== >>> from sympy import symbols, oo >>> A, B = symbols('A B', commutative=0) >>> x, y = symbols('x y') >>> (-2*x*y).args_cnc() [[-1, 2, x, y], []] >>> (-2.5*x).args_cnc() [[-1, 2.5, x], []] >>> (-2*x*A*B*y).args_cnc() [[-1, 2, x, y], [A, B]] >>> (-2*x*A*B*y).args_cnc(split_1=False) [[-2, x, y], [A, B]] >>> (-2*x*y).args_cnc(cset=True) [{-1, 2, x, y}, []] The arg is always treated as a Mul: >>> (-2 + x + A).args_cnc() [[], [x - 2 + A]] >>> (-oo).args_cnc() # -oo is a singleton [[-1, oo], []] """ if self.is_Mul: args = list(self.args) else: args = [self] for i, mi in enumerate(args): if not mi.is_commutative: c = args[:i] nc = args[i:] break else: c = args nc = [] if c and split_1 and ( c[0].is_Number and c[0].is_extended_negative and c[0] is not S.NegativeOne): c[:1] = [S.NegativeOne, -c[0]] if cset: clen = len(c) c = set(c) if clen and warn and len(c) != clen: raise ValueError('repeated commutative arguments: %s' % [ci for ci in c if list(self.args).count(ci) > 1]) return [c, nc] def coeff(self, x, n=1, right=False, _first=True): """ Returns the coefficient from the term(s) containing ``x**n``. If ``n`` is zero then all terms independent of ``x`` will be returned. Explanation =========== When ``x`` is noncommutative, the coefficient to the left (default) or right of ``x`` can be returned. The keyword 'right' is ignored when ``x`` is commutative. Examples ======== >>> from sympy import symbols >>> from sympy.abc import x, y, z You can select terms that have an explicit negative in front of them: >>> (-x + 2*y).coeff(-1) x >>> (x - 2*y).coeff(-1) 2*y You can select terms with no Rational coefficient: >>> (x + 2*y).coeff(1) x >>> (3 + 2*x + 4*x**2).coeff(1) 0 You can select terms independent of x by making n=0; in this case expr.as_independent(x)[0] is returned (and 0 will be returned instead of None): >>> (3 + 2*x + 4*x**2).coeff(x, 0) 3 >>> eq = ((x + 1)**3).expand() + 1 >>> eq x**3 + 3*x**2 + 3*x + 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 2] >>> eq -= 2 >>> [eq.coeff(x, i) for i in reversed(range(4))] [1, 3, 3, 0] You can select terms that have a numerical term in front of them: >>> (-x - 2*y).coeff(2) -y >>> from sympy import sqrt >>> (x + sqrt(2)*x).coeff(sqrt(2)) x The matching is exact: >>> (3 + 2*x + 4*x**2).coeff(x) 2 >>> (3 + 2*x + 4*x**2).coeff(x**2) 4 >>> (3 + 2*x + 4*x**2).coeff(x**3) 0 >>> (z*(x + y)**2).coeff((x + y)**2) z >>> (z*(x + y)**2).coeff(x + y) 0 In addition, no factoring is done, so 1 + z*(1 + y) is not obtained from the following: >>> (x + z*(x + x*y)).coeff(x) 1 If such factoring is desired, factor_terms can be used first: >>> from sympy import factor_terms >>> factor_terms(x + z*(x + x*y)).coeff(x) z*(y + 1) + 1 >>> n, m, o = symbols('n m o', commutative=False) >>> n.coeff(n) 1 >>> (3*n).coeff(n) 3 >>> (n*m + m*n*m).coeff(n) # = (1 + m)*n*m 1 + m >>> (n*m + m*n*m).coeff(n, right=True) # = (1 + m)*n*m m If there is more than one possible coefficient 0 is returned: >>> (n*m + m*n).coeff(n) 0 If there is only one possible coefficient, it is returned: >>> (n*m + x*m*n).coeff(m*n) x >>> (n*m + x*m*n).coeff(m*n, right=1) 1 See Also ======== as_coefficient: separate the expression into a coefficient and factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ x = sympify(x) if not isinstance(x, Basic): return S.Zero n = as_int(n) if not x: return S.Zero if x == self: if n == 1: return S.One return S.Zero if x is S.One: co = [a for a in Add.make_args(self) if a.as_coeff_Mul()[0] is S.One] if not co: return S.Zero return Add(*co) if n == 0: if x.is_Add and self.is_Add: c = self.coeff(x, right=right) if not c: return S.Zero if not right: return self - Add(*[a*x for a in Add.make_args(c)]) return self - Add(*[x*a for a in Add.make_args(c)]) return self.as_independent(x, as_Add=True)[0] # continue with the full method, looking for this power of x: x = x**n def incommon(l1, l2): if not l1 or not l2: return [] n = min(len(l1), len(l2)) for i in range(n): if l1[i] != l2[i]: return l1[:i] return l1[:] def find(l, sub, first=True): """ Find where list sub appears in list l. When ``first`` is True the first occurrence from the left is returned, else the last occurrence is returned. Return None if sub is not in l. Examples ======== >> l = range(5)*2 >> find(l, [2, 3]) 2 >> find(l, [2, 3], first=0) 7 >> find(l, [2, 4]) None """ if not sub or not l or len(sub) > len(l): return None n = len(sub) if not first: l.reverse() sub.reverse() for i in range(0, len(l) - n + 1): if all(l[i + j] == sub[j] for j in range(n)): break else: i = None if not first: l.reverse() sub.reverse() if i is not None and not first: i = len(l) - (i + n) return i co = [] args = Add.make_args(self) self_c = self.is_commutative x_c = x.is_commutative if self_c and not x_c: return S.Zero if _first and self.is_Add and not self_c and not x_c: # get the part that depends on x exactly xargs = Mul.make_args(x) d = Add(*[i for i in Add.make_args(self.as_independent(x)[1]) if all(xi in Mul.make_args(i) for xi in xargs)]) rv = d.coeff(x, right=right, _first=False) if not rv.is_Add or not right: return rv c_part, nc_part = zip(*[i.args_cnc() for i in rv.args]) if has_variety(c_part): return rv return Add(*[Mul._from_args(i) for i in nc_part]) one_c = self_c or x_c xargs, nx = x.args_cnc(cset=True, warn=bool(not x_c)) # find the parts that pass the commutative terms for a in args: margs, nc = a.args_cnc(cset=True, warn=bool(not self_c)) if nc is None: nc = [] if len(xargs) > len(margs): continue resid = margs.difference(xargs) if len(resid) + len(xargs) == len(margs): if one_c: co.append(Mul(*(list(resid) + nc))) else: co.append((resid, nc)) if one_c: if co == []: return S.Zero elif co: return Add(*co) else: # both nc # now check the non-comm parts if not co: return S.Zero if all(n == co[0][1] for r, n in co): ii = find(co[0][1], nx, right) if ii is not None: if not right: return Mul(Add(*[Mul(*r) for r, c in co]), Mul(*co[0][1][:ii])) else: return Mul(*co[0][1][ii + len(nx):]) beg = reduce(incommon, (n[1] for n in co)) if beg: ii = find(beg, nx, right) if ii is not None: if not right: gcdc = co[0][0] for i in range(1, len(co)): gcdc = gcdc.intersection(co[i][0]) if not gcdc: break return Mul(*(list(gcdc) + beg[:ii])) else: m = ii + len(nx) return Add(*[Mul(*(list(r) + n[m:])) for r, n in co]) end = list(reversed( reduce(incommon, (list(reversed(n[1])) for n in co)))) if end: ii = find(end, nx, right) if ii is not None: if not right: return Add(*[Mul(*(list(r) + n[:-len(end) + ii])) for r, n in co]) else: return Mul(*end[ii + len(nx):]) # look for single match hit = None for i, (r, n) in enumerate(co): ii = find(n, nx, right) if ii is not None: if not hit: hit = ii, r, n else: break else: if hit: ii, r, n = hit if not right: return Mul(*(list(r) + n[:ii])) else: return Mul(*n[ii + len(nx):]) return S.Zero def as_expr(self, *gens): """ Convert a polynomial to a SymPy expression. Examples ======== >>> from sympy import sin >>> from sympy.abc import x, y >>> f = (x**2 + x*y).as_poly(x, y) >>> f.as_expr() x**2 + x*y >>> sin(x).as_expr() sin(x) """ return self def as_coefficient(self, expr): """ Extracts symbolic coefficient at the given expression. In other words, this functions separates 'self' into the product of 'expr' and 'expr'-free coefficient. If such separation is not possible it will return None. Examples ======== >>> from sympy import E, pi, sin, I, Poly >>> from sympy.abc import x >>> E.as_coefficient(E) 1 >>> (2*E).as_coefficient(E) 2 >>> (2*sin(E)*E).as_coefficient(E) Two terms have E in them so a sum is returned. (If one were desiring the coefficient of the term exactly matching E then the constant from the returned expression could be selected. Or, for greater precision, a method of Poly can be used to indicate the desired term from which the coefficient is desired.) >>> (2*E + x*E).as_coefficient(E) x + 2 >>> _.args[0] # just want the exact match 2 >>> p = Poly(2*E + x*E); p Poly(x*E + 2*E, x, E, domain='ZZ') >>> p.coeff_monomial(E) 2 >>> p.nth(0, 1) 2 Since the following cannot be written as a product containing E as a factor, None is returned. (If the coefficient ``2*x`` is desired then the ``coeff`` method should be used.) >>> (2*E*x + x).as_coefficient(E) >>> (2*E*x + x).coeff(E) 2*x >>> (E*(x + 1) + x).as_coefficient(E) >>> (2*pi*I).as_coefficient(pi*I) 2 >>> (2*I).as_coefficient(pi*I) See Also ======== coeff: return sum of terms have a given factor as_coeff_Add: separate the additive constant from an expression as_coeff_Mul: separate the multiplicative constant from an expression as_independent: separate x-dependent terms/factors from others sympy.polys.polytools.Poly.coeff_monomial: efficiently find the single coefficient of a monomial in Poly sympy.polys.polytools.Poly.nth: like coeff_monomial but powers of monomial terms are used """ r = self.extract_multiplicatively(expr) if r and not r.has(expr): return r def as_independent(self, *deps, **hint): """ A mostly naive separation of a Mul or Add into arguments that are not are dependent on deps. To obtain as complete a separation of variables as possible, use a separation method first, e.g.: * separatevars() to change Mul, Add and Pow (including exp) into Mul * .expand(mul=True) to change Add or Mul into Add * .expand(log=True) to change log expr into an Add The only non-naive thing that is done here is to respect noncommutative ordering of variables and to always return (0, 0) for `self` of zero regardless of hints. For nonzero `self`, the returned tuple (i, d) has the following interpretation: * i will has no variable that appears in deps * d will either have terms that contain variables that are in deps, or be equal to 0 (when self is an Add) or 1 (when self is a Mul) * if self is an Add then self = i + d * if self is a Mul then self = i*d * otherwise (self, S.One) or (S.One, self) is returned. To force the expression to be treated as an Add, use the hint as_Add=True Examples ======== -- self is an Add >>> from sympy import sin, cos, exp >>> from sympy.abc import x, y, z >>> (x + x*y).as_independent(x) (0, x*y + x) >>> (x + x*y).as_independent(y) (x, x*y) >>> (2*x*sin(x) + y + x + z).as_independent(x) (y + z, 2*x*sin(x) + x) >>> (2*x*sin(x) + y + x + z).as_independent(x, y) (z, 2*x*sin(x) + x + y) -- self is a Mul >>> (x*sin(x)*cos(y)).as_independent(x) (cos(y), x*sin(x)) non-commutative terms cannot always be separated out when self is a Mul >>> from sympy import symbols >>> n1, n2, n3 = symbols('n1 n2 n3', commutative=False) >>> (n1 + n1*n2).as_independent(n2) (n1, n1*n2) >>> (n2*n1 + n1*n2).as_independent(n2) (0, n1*n2 + n2*n1) >>> (n1*n2*n3).as_independent(n1) (1, n1*n2*n3) >>> (n1*n2*n3).as_independent(n2) (n1, n2*n3) >>> ((x-n1)*(x-y)).as_independent(x) (1, (x - y)*(x - n1)) -- self is anything else: >>> (sin(x)).as_independent(x) (1, sin(x)) >>> (sin(x)).as_independent(y) (sin(x), 1) >>> exp(x+y).as_independent(x) (1, exp(x + y)) -- force self to be treated as an Add: >>> (3*x).as_independent(x, as_Add=True) (0, 3*x) -- force self to be treated as a Mul: >>> (3+x).as_independent(x, as_Add=False) (1, x + 3) >>> (-3+x).as_independent(x, as_Add=False) (1, x - 3) Note how the below differs from the above in making the constant on the dep term positive. >>> (y*(-3+x)).as_independent(x) (y, x - 3) -- use .as_independent() for true independence testing instead of .has(). The former considers only symbols in the free symbols while the latter considers all symbols >>> from sympy import Integral >>> I = Integral(x, (x, 1, 2)) >>> I.has(x) True >>> x in I.free_symbols False >>> I.as_independent(x) == (I, 1) True >>> (I + x).as_independent(x) == (I, x) True Note: when trying to get independent terms, a separation method might need to be used first. In this case, it is important to keep track of what you send to this routine so you know how to interpret the returned values >>> from sympy import separatevars, log >>> separatevars(exp(x+y)).as_independent(x) (exp(y), exp(x)) >>> (x + x*y).as_independent(y) (x, x*y) >>> separatevars(x + x*y).as_independent(y) (x, y + 1) >>> (x*(1 + y)).as_independent(y) (x, y + 1) >>> (x*(1 + y)).expand(mul=True).as_independent(y) (x, x*y) >>> a, b=symbols('a b', positive=True) >>> (log(a*b).expand(log=True)).as_independent(b) (log(a), log(b)) See Also ======== .separatevars(), .expand(log=True), sympy.core.add.Add.as_two_terms(), sympy.core.mul.Mul.as_two_terms(), .as_coeff_add(), .as_coeff_mul() """ from .symbol import Symbol from .add import _unevaluated_Add from .mul import _unevaluated_Mul if self.is_zero: return S.Zero, S.Zero func = self.func if hint.get('as_Add', isinstance(self, Add) ): want = Add else: want = Mul # sift out deps into symbolic and other and ignore # all symbols but those that are in the free symbols sym = set() other = [] for d in deps: if isinstance(d, Symbol): # Symbol.is_Symbol is True sym.add(d) else: other.append(d) def has(e): """return the standard has() if there are no literal symbols, else check to see that symbol-deps are in the free symbols.""" has_other = e.has(*other) if not sym: return has_other return has_other or e.has(*(e.free_symbols & sym)) if (want is not func or func is not Add and func is not Mul): if has(self): return (want.identity, self) else: return (self, want.identity) else: if func is Add: args = list(self.args) else: args, nc = self.args_cnc() d = sift(args, has) depend = d[True] indep = d[False] if func is Add: # all terms were treated as commutative return (Add(*indep), _unevaluated_Add(*depend)) else: # handle noncommutative by stopping at first dependent term for i, n in enumerate(nc): if has(n): depend.extend(nc[i:]) break indep.append(n) return Mul(*indep), ( Mul(*depend, evaluate=False) if nc else _unevaluated_Mul(*depend)) def as_real_imag(self, deep=True, **hints): """Performs complex expansion on 'self' and returns a tuple containing collected both real and imaginary parts. This method cannot be confused with re() and im() functions, which does not perform complex expansion at evaluation. However it is possible to expand both re() and im() functions and get exactly the same results as with a single call to this function. >>> from sympy import symbols, I >>> x, y = symbols('x,y', real=True) >>> (x + y*I).as_real_imag() (x, y) >>> from sympy.abc import z, w >>> (z + w*I).as_real_imag() (re(z) - im(w), re(w) + im(z)) """ if hints.get('ignore') == self: return None else: from sympy.functions.elementary.complexes import im, re return (re(self), im(self)) def as_powers_dict(self): """Return self as a dictionary of factors with each factor being treated as a power. The keys are the bases of the factors and the values, the corresponding exponents. The resulting dictionary should be used with caution if the expression is a Mul and contains non- commutative factors since the order that they appeared will be lost in the dictionary. See Also ======== as_ordered_factors: An alternative for noncommutative applications, returning an ordered list of factors. args_cnc: Similar to as_ordered_factors, but guarantees separation of commutative and noncommutative factors. """ d = defaultdict(int) d.update(dict([self.as_base_exp()])) return d def as_coefficients_dict(self): """Return a dictionary mapping terms to their Rational coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. If an expression is not an Add it is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*x + a*x + 4).as_coefficients_dict() {1: 4, x: 3, a*x: 1} >>> _[a] 0 >>> (3*a*x).as_coefficients_dict() {a*x: 3} """ c, m = self.as_coeff_Mul() if not c.is_Rational: c = S.One m = self d = defaultdict(int) d.update({m: c}) return d def as_base_exp(self): # a -> b ** e return self, S.One def as_coeff_mul(self, *deps, **kwargs): """Return the tuple (c, args) where self is written as a Mul, ``m``. c should be a Rational multiplied by any factors of the Mul that are independent of deps. args should be a tuple of all other factors of m; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you do not know if self is a Mul or not but you want to treat self as a Mul or if you want to process the individual arguments of the tail of self as a Mul. - if you know self is a Mul and want only the head, use self.args[0]; - if you do not want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail; - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_mul() (3, ()) >>> (3*x*y).as_coeff_mul() (3, (x, y)) >>> (3*x*y).as_coeff_mul(x) (3*y, (x,)) >>> (3*y).as_coeff_mul(x) (3*y, ()) """ if deps: if not self.has(*deps): return self, tuple() return S.One, (self,) def as_coeff_add(self, *deps): """Return the tuple (c, args) where self is written as an Add, ``a``. c should be a Rational added to any terms of the Add that are independent of deps. args should be a tuple of all other terms of ``a``; args is empty if self is a Number or if self is independent of deps (when given). This should be used when you do not know if self is an Add or not but you want to treat self as an Add or if you want to process the individual arguments of the tail of self as an Add. - if you know self is an Add and want only the head, use self.args[0]; - if you do not want to process the arguments of the tail but need the tail then use self.as_two_terms() which gives the head and tail. - if you want to split self into an independent and dependent parts use ``self.as_independent(*deps)`` >>> from sympy import S >>> from sympy.abc import x, y >>> (S(3)).as_coeff_add() (3, ()) >>> (3 + x).as_coeff_add() (3, (x,)) >>> (3 + x + y).as_coeff_add(x) (y + 3, (x,)) >>> (3 + y).as_coeff_add(x) (y + 3, ()) """ if deps: if not self.has_free(*deps): return self, tuple() return S.Zero, (self,) def primitive(self): """Return the positive Rational that can be extracted non-recursively from every term of self (i.e., self is treated like an Add). This is like the as_coeff_Mul() method but primitive always extracts a positive Rational (never a negative or a Float). Examples ======== >>> from sympy.abc import x >>> (3*(x + 1)**2).primitive() (3, (x + 1)**2) >>> a = (6*x + 2); a.primitive() (2, 3*x + 1) >>> b = (x/2 + 3); b.primitive() (1/2, x + 6) >>> (a*b).primitive() == (1, a*b) True """ if not self: return S.One, S.Zero c, r = self.as_coeff_Mul(rational=True) if c.is_negative: c, r = -c, -r return c, r def as_content_primitive(self, radical=False, clear=True): """This method should recursively remove a Rational from all arguments and return that (content) and the new self (primitive). The content should always be positive and ``Mul(*foo.as_content_primitive()) == foo``. The primitive need not be in canonical form and should try to preserve the underlying structure if possible (i.e. expand_mul should not be applied to self). Examples ======== >>> from sympy import sqrt >>> from sympy.abc import x, y, z >>> eq = 2 + 2*x + 2*y*(3 + 3*y) The as_content_primitive function is recursive and retains structure: >>> eq.as_content_primitive() (2, x + 3*y*(y + 1) + 1) Integer powers will have Rationals extracted from the base: >>> ((2 + 6*x)**2).as_content_primitive() (4, (3*x + 1)**2) >>> ((2 + 6*x)**(2*y)).as_content_primitive() (1, (2*(3*x + 1))**(2*y)) Terms may end up joining once their as_content_primitives are added: >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (11, x*(y + 1)) >>> ((3*(x*(1 + y)) + 2*x*(3 + 3*y))).as_content_primitive() (9, x*(y + 1)) >>> ((3*(z*(1 + y)) + 2.0*x*(3 + 3*y))).as_content_primitive() (1, 6.0*x*(y + 1) + 3*z*(y + 1)) >>> ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() (121, x**2*(y + 1)**2) >>> ((x*(1 + y) + 0.4*x*(3 + 3*y))**2).as_content_primitive() (1, 4.84*x**2*(y + 1)**2) Radical content can also be factored out of the primitive: >>> (2*sqrt(2) + 4*sqrt(10)).as_content_primitive(radical=True) (2, sqrt(2)*(1 + 2*sqrt(5))) If clear=False (default is True) then content will not be removed from an Add if it can be distributed to leave one or more terms with integer coefficients. >>> (x/2 + y).as_content_primitive() (1/2, x + 2*y) >>> (x/2 + y).as_content_primitive(clear=False) (1, x/2 + y) """ return S.One, self def as_numer_denom(self): """ expression -> a/b -> a, b This is just a stub that should be defined by an object's class methods to get anything else. See Also ======== normal: return ``a/b`` instead of ``(a, b)`` """ return self, S.One def normal(self): """ expression -> a/b See Also ======== as_numer_denom: return ``(a, b)`` instead of ``a/b`` """ from .mul import _unevaluated_Mul n, d = self.as_numer_denom() if d is S.One: return n if d.is_Number: return _unevaluated_Mul(n, 1/d) else: return n/d def extract_multiplicatively(self, c): """Return None if it's not possible to make self in the form c * something in a nice way, i.e. preserving the properties of arguments of self. Examples ======== >>> from sympy import symbols, Rational >>> x, y = symbols('x,y', real=True) >>> ((x*y)**3).extract_multiplicatively(x**2 * y) x*y**2 >>> ((x*y)**3).extract_multiplicatively(x**4 * y) >>> (2*x).extract_multiplicatively(2) x >>> (2*x).extract_multiplicatively(3) >>> (Rational(1, 2)*x).extract_multiplicatively(3) x/6 """ from sympy.functions.elementary.exponential import exp from .add import _unevaluated_Add c = sympify(c) if self is S.NaN: return None if c is S.One: return self elif c == self: return S.One if c.is_Add: cc, pc = c.primitive() if cc is not S.One: c = Mul(cc, pc, evaluate=False) if c.is_Mul: a, b = c.as_two_terms() x = self.extract_multiplicatively(a) if x is not None: return x.extract_multiplicatively(b) else: return x quotient = self / c if self.is_Number: if self is S.Infinity: if c.is_positive: return S.Infinity elif self is S.NegativeInfinity: if c.is_negative: return S.Infinity elif c.is_positive: return S.NegativeInfinity elif self is S.ComplexInfinity: if not c.is_zero: return S.ComplexInfinity elif self.is_Integer: if not quotient.is_Integer: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Rational: if not quotient.is_Rational: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_Float: if not quotient.is_Float: return None elif self.is_positive and quotient.is_negative: return None else: return quotient elif self.is_NumberSymbol or self.is_Symbol or self is S.ImaginaryUnit: if quotient.is_Mul and len(quotient.args) == 2: if quotient.args[0].is_Integer and quotient.args[0].is_positive and quotient.args[1] == self: return quotient elif quotient.is_Integer and c.is_Number: return quotient elif self.is_Add: cs, ps = self.primitive() # assert cs >= 1 if c.is_Number and c is not S.NegativeOne: # assert c != 1 (handled at top) if cs is not S.One: if c.is_negative: xc = -(cs.extract_multiplicatively(-c)) else: xc = cs.extract_multiplicatively(c) if xc is not None: return xc*ps # rely on 2-arg Mul to restore Add return # |c| != 1 can only be extracted from cs if c == ps: return cs # check args of ps newargs = [] for arg in ps.args: newarg = arg.extract_multiplicatively(c) if newarg is None: return # all or nothing newargs.append(newarg) if cs is not S.One: args = [cs*t for t in newargs] # args may be in different order return _unevaluated_Add(*args) else: return Add._from_args(newargs) elif self.is_Mul: args = list(self.args) for i, arg in enumerate(args): newarg = arg.extract_multiplicatively(c) if newarg is not None: args[i] = newarg return Mul(*args) elif self.is_Pow or isinstance(self, exp): sb, se = self.as_base_exp() cb, ce = c.as_base_exp() if cb == sb: new_exp = se.extract_additively(ce) if new_exp is not None: return Pow(sb, new_exp) elif c == sb: new_exp = self.exp.extract_additively(1) if new_exp is not None: return Pow(sb, new_exp) def extract_additively(self, c): """Return self - c if it's possible to subtract c from self and make all matching coefficients move towards zero, else return None. Examples ======== >>> from sympy.abc import x, y >>> e = 2*x + 3 >>> e.extract_additively(x + 1) x + 2 >>> e.extract_additively(3*x) >>> e.extract_additively(4) >>> (y*(x + 1)).extract_additively(x + 1) >>> ((x + 1)*(x + 2*y + 1) + 3).extract_additively(x + 1) (x + 1)*(x + 2*y) + 3 Sometimes auto-expansion will return a less simplified result than desired; gcd_terms might be used in such cases: >>> from sympy import gcd_terms >>> (4*x*(y + 1) + y).extract_additively(x) 4*x*(y + 1) + x*(4*y + 3) - x*(4*y + 4) + y >>> gcd_terms(_) x*(4*y + 3) + y See Also ======== extract_multiplicatively coeff as_coefficient """ c = sympify(c) if self is S.NaN: return None if c.is_zero: return self elif c == self: return S.Zero elif self == S.Zero: return None if self.is_Number: if not c.is_Number: return None co = self diff = co - c # XXX should we match types? i.e should 3 - .1 succeed? if (co > 0 and diff > 0 and diff < co or co < 0 and diff < 0 and diff > co): return diff return None if c.is_Number: co, t = self.as_coeff_Add() xa = co.extract_additively(c) if xa is None: return None return xa + t # handle the args[0].is_Number case separately # since we will have trouble looking for the coeff of # a number. if c.is_Add and c.args[0].is_Number: # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise h, t = c.as_coeff_Add() sh, st = self.as_coeff_Add() xa = sh.extract_additively(h) if xa is None: return None xa2 = st.extract_additively(t) if xa2 is None: return None return xa + xa2 # whole term as a term factor co = self.coeff(c) xa0 = (co.extract_additively(1) or 0)*c if xa0: diff = self - co*c return (xa0 + (diff.extract_additively(c) or diff)) or None # term-wise coeffs = [] for a in Add.make_args(c): ac, at = a.as_coeff_Mul() co = self.coeff(at) if not co: return None coc, cot = co.as_coeff_Add() xa = coc.extract_additively(ac) if xa is None: return None self -= co*at coeffs.append((cot + xa)*at) coeffs.append(self) return Add(*coeffs) @property def expr_free_symbols(self): """ Like ``free_symbols``, but returns the free symbols only if they are contained in an expression node. Examples ======== >>> from sympy.utilities.exceptions import SymPyDeprecationWarning >>> import warnings >>> warnings.simplefilter("ignore", SymPyDeprecationWarning) >>> from sympy.abc import x, y >>> (x + y).expr_free_symbols {x, y} If the expression is contained in a non-expression object, do not return the free symbols. Compare: >>> from sympy import Tuple >>> t = Tuple(x + y) >>> t.expr_free_symbols set() >>> t.free_symbols {x, y} """ SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {j for i in self.args for j in i.expr_free_symbols} def could_extract_minus_sign(self): """Return True if self has -1 as a leading factor or has more literal negative signs than positive signs in a sum, otherwise False. Examples ======== >>> from sympy.abc import x, y >>> e = x - y >>> {i.could_extract_minus_sign() for i in (e, -e)} {False, True} Though the ``y - x`` is considered like ``-(x - y)``, since it is in a product without a leading factor of -1, the result is false below: >>> (x*(y - x)).could_extract_minus_sign() False To put something in canonical form wrt to sign, use `signsimp`: >>> from sympy import signsimp >>> signsimp(x*(y - x)) -x*(x - y) >>> _.could_extract_minus_sign() True """ return False def extract_branch_factor(self, allow_half=False): """ Try to write self as ``exp_polar(2*pi*I*n)*z`` in a nice way. Return (z, n). >>> from sympy import exp_polar, I, pi >>> from sympy.abc import x, y >>> exp_polar(I*pi).extract_branch_factor() (exp_polar(I*pi), 0) >>> exp_polar(2*I*pi).extract_branch_factor() (1, 1) >>> exp_polar(-pi*I).extract_branch_factor() (exp_polar(I*pi), -1) >>> exp_polar(3*pi*I + x).extract_branch_factor() (exp_polar(x + I*pi), 1) >>> (y*exp_polar(-5*pi*I)*exp_polar(3*pi*I + 2*pi*x)).extract_branch_factor() (y*exp_polar(2*pi*x), -1) >>> exp_polar(-I*pi/2).extract_branch_factor() (exp_polar(-I*pi/2), 0) If allow_half is True, also extract exp_polar(I*pi): >>> exp_polar(I*pi).extract_branch_factor(allow_half=True) (1, 1/2) >>> exp_polar(2*I*pi).extract_branch_factor(allow_half=True) (1, 1) >>> exp_polar(3*I*pi).extract_branch_factor(allow_half=True) (1, 3/2) >>> exp_polar(-I*pi).extract_branch_factor(allow_half=True) (1, -1/2) """ from sympy.functions.elementary.exponential import exp_polar from sympy.functions.elementary.integers import ceiling n = S.Zero res = S.One args = Mul.make_args(self) exps = [] for arg in args: if isinstance(arg, exp_polar): exps += [arg.exp] else: res *= arg piimult = S.Zero extras = [] ipi = S.Pi*S.ImaginaryUnit while exps: exp = exps.pop() if exp.is_Add: exps += exp.args continue if exp.is_Mul: coeff = exp.as_coefficient(ipi) if coeff is not None: piimult += coeff continue extras += [exp] if piimult.is_number: coeff = piimult tail = () else: coeff, tail = piimult.as_coeff_add(*piimult.free_symbols) # round down to nearest multiple of 2 branchfact = ceiling(coeff/2 - S.Half)*2 n += branchfact/2 c = coeff - branchfact if allow_half: nc = c.extract_additively(1) if nc is not None: n += S.Half c = nc newexp = ipi*Add(*((c, ) + tail)) + Add(*extras) if newexp != 0: res *= exp_polar(newexp) return res, n def is_polynomial(self, *syms): r""" Return True if self is a polynomial in syms and False otherwise. This checks if self is an exact polynomial in syms. This function returns False for expressions that are "polynomials" with symbolic exponents. Thus, you should be able to apply polynomial algorithms to expressions for which this returns True, and Poly(expr, \*syms) should work if and only if expr.is_polynomial(\*syms) returns True. The polynomial does not have to be in expanded form. If no symbols are given, all free symbols in the expression will be used. This is not part of the assumptions system. You cannot do Symbol('z', polynomial=True). Examples ======== >>> from sympy import Symbol, Function >>> x = Symbol('x') >>> ((x**2 + 1)**4).is_polynomial(x) True >>> ((x**2 + 1)**4).is_polynomial() True >>> (2**x + 1).is_polynomial(x) False >>> (2**x + 1).is_polynomial(2**x) True >>> f = Function('f') >>> (f(x) + 1).is_polynomial(x) False >>> (f(x) + 1).is_polynomial(f(x)) True >>> (1/f(x) + 1).is_polynomial(f(x)) False >>> n = Symbol('n', nonnegative=True, integer=True) >>> (x**n + 1).is_polynomial(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a polynomial to become one. >>> from sympy import sqrt, factor, cancel >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1) >>> a.is_polynomial(y) False >>> factor(a) y + 1 >>> factor(a).is_polynomial(y) True >>> b = (y**2 + 2*y + 1)/(y + 1) >>> b.is_polynomial(y) False >>> cancel(b) y + 1 >>> cancel(b).is_polynomial(y) True See also .is_rational_function() """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if not syms: return True return self._eval_is_polynomial(syms) def _eval_is_polynomial(self, syms): if self in syms: return True if not self.has_free(*syms): # constant polynomial return True # subclasses should return True or False def is_rational_function(self, *syms): """ Test whether function is a ratio of two polynomials in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "rational functions" with symbolic exponents. Thus, you should be able to call .as_numer_denom() and apply polynomial algorithms to the result for expressions for which this returns True. This is not part of the assumptions system. You cannot do Symbol('z', rational_function=True). Examples ======== >>> from sympy import Symbol, sin >>> from sympy.abc import x, y >>> (x/y).is_rational_function() True >>> (x**2).is_rational_function() True >>> (x/sin(y)).is_rational_function(y) False >>> n = Symbol('n', integer=True) >>> (x**n + 1).is_rational_function(x) False This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be a rational function to become one. >>> from sympy import sqrt, factor >>> y = Symbol('y', positive=True) >>> a = sqrt(y**2 + 2*y + 1)/y >>> a.is_rational_function(y) False >>> factor(a) (y + 1)/y >>> factor(a).is_rational_function(y) True See also is_algebraic_expr(). """ if self in [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: return False if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if not syms: return True return self._eval_is_rational_function(syms) def _eval_is_rational_function(self, syms): if self in syms: return True if not self.has_free(*syms): return True # subclasses should return True or False def is_meromorphic(self, x, a): """ This tests whether an expression is meromorphic as a function of the given symbol ``x`` at the point ``a``. This method is intended as a quick test that will return None if no decision can be made without simplification or more detailed analysis. Examples ======== >>> from sympy import zoo, log, sin, sqrt >>> from sympy.abc import x >>> f = 1/x**2 + 1 - 2*x**3 >>> f.is_meromorphic(x, 0) True >>> f.is_meromorphic(x, 1) True >>> f.is_meromorphic(x, zoo) True >>> g = x**log(3) >>> g.is_meromorphic(x, 0) False >>> g.is_meromorphic(x, 1) True >>> g.is_meromorphic(x, zoo) False >>> h = sin(1/x)*x**2 >>> h.is_meromorphic(x, 0) False >>> h.is_meromorphic(x, 1) True >>> h.is_meromorphic(x, zoo) True Multivalued functions are considered meromorphic when their branches are meromorphic. Thus most functions are meromorphic everywhere except at essential singularities and branch points. In particular, they will be meromorphic also on branch cuts except at their endpoints. >>> log(x).is_meromorphic(x, -1) True >>> log(x).is_meromorphic(x, 0) False >>> sqrt(x).is_meromorphic(x, -1) True >>> sqrt(x).is_meromorphic(x, 0) False """ if not x.is_symbol: raise TypeError("{} should be of symbol type".format(x)) a = sympify(a) return self._eval_is_meromorphic(x, a) def _eval_is_meromorphic(self, x, a): if self == x: return True if not self.has_free(x): return True # subclasses should return True or False def is_algebraic_expr(self, *syms): """ This tests whether a given expression is algebraic or not, in the given symbols, syms. When syms is not given, all free symbols will be used. The rational function does not have to be in expanded or in any kind of canonical form. This function returns False for expressions that are "algebraic expressions" with symbolic exponents. This is a simple extension to the is_rational_function, including rational exponentiation. Examples ======== >>> from sympy import Symbol, sqrt >>> x = Symbol('x', real=True) >>> sqrt(1 + x).is_rational_function() False >>> sqrt(1 + x).is_algebraic_expr() True This function does not attempt any nontrivial simplifications that may result in an expression that does not appear to be an algebraic expression to become one. >>> from sympy import exp, factor >>> a = sqrt(exp(x)**2 + 2*exp(x) + 1)/(exp(x) + 1) >>> a.is_algebraic_expr(x) False >>> factor(a).is_algebraic_expr() True See Also ======== is_rational_function() References ========== .. [1] https://en.wikipedia.org/wiki/Algebraic_expression """ if syms: syms = set(map(sympify, syms)) else: syms = self.free_symbols if not syms: return True return self._eval_is_algebraic_expr(syms) def _eval_is_algebraic_expr(self, syms): if self in syms: return True if not self.has_free(*syms): return True # subclasses should return True or False ################################################################################### ##################### SERIES, LEADING TERM, LIMIT, ORDER METHODS ################## ################################################################################### def series(self, x=None, x0=0, n=6, dir="+", logx=None, cdir=0): """ Series expansion of "self" around ``x = x0`` yielding either terms of the series one by one (the lazy series given when n=None), else all the terms at once when n != None. Returns the series expansion of "self" around the point ``x = x0`` with respect to ``x`` up to ``O((x - x0)**n, x, x0)`` (default n is 6). If ``x=None`` and ``self`` is univariate, the univariate symbol will be supplied, otherwise an error will be raised. Parameters ========== expr : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. x0 : Value The value around which ``x`` is calculated. Can be any value from ``-oo`` to ``oo``. n : Value The number of terms upto which the series is to be expanded. dir : String, optional The series-expansion can be bi-directional. If ``dir="+"``, then (x->x0+). If ``dir="-", then (x->x0-). For infinite ``x0`` (``oo`` or ``-oo``), the ``dir`` argument is determined from the direction of the infinity (i.e., ``dir="-"`` for ``oo``). logx : optional It is used to replace any log(x) in the returned series with a symbolic value rather than evaluating the actual value. cdir : optional It stands for complex direction, and indicates the direction from which the expansion needs to be evaluated. Examples ======== >>> from sympy import cos, exp, tan >>> from sympy.abc import x, y >>> cos(x).series() 1 - x**2/2 + x**4/24 + O(x**6) >>> cos(x).series(n=4) 1 - x**2/2 + O(x**4) >>> cos(x).series(x, x0=1, n=2) cos(1) - (x - 1)*sin(1) + O((x - 1)**2, (x, 1)) >>> e = cos(x + exp(y)) >>> e.series(y, n=2) cos(x + 1) - y*sin(x + 1) + O(y**2) >>> e.series(x, n=2) cos(exp(y)) - x*sin(exp(y)) + O(x**2) If ``n=None`` then a generator of the series terms will be returned. >>> term=cos(x).series(n=None) >>> [next(term) for i in range(2)] [1, -x**2/2] For ``dir=+`` (default) the series is calculated from the right and for ``dir=-`` the series from the left. For smooth functions this flag will not alter the results. >>> abs(x).series(dir="+") x >>> abs(x).series(dir="-") -x >>> f = tan(x) >>> f.series(x, 2, 6, "+") tan(2) + (1 + tan(2)**2)*(x - 2) + (x - 2)**2*(tan(2)**3 + tan(2)) + (x - 2)**3*(1/3 + 4*tan(2)**2/3 + tan(2)**4) + (x - 2)**4*(tan(2)**5 + 5*tan(2)**3/3 + 2*tan(2)/3) + (x - 2)**5*(2/15 + 17*tan(2)**2/15 + 2*tan(2)**4 + tan(2)**6) + O((x - 2)**6, (x, 2)) >>> f.series(x, 2, 3, "-") tan(2) + (2 - x)*(-tan(2)**2 - 1) + (2 - x)**2*(tan(2)**3 + tan(2)) + O((x - 2)**3, (x, 2)) Returns ======= Expr : Expression Series expansion of the expression about x0 Raises ====== TypeError If "n" and "x0" are infinity objects PoleError If "x0" is an infinity object """ if x is None: syms = self.free_symbols if not syms: return self elif len(syms) > 1: raise ValueError('x must be given for multivariate functions.') x = syms.pop() from .symbol import Dummy, Symbol if isinstance(x, Symbol): dep = x in self.free_symbols else: d = Dummy() dep = d in self.xreplace({x: d}).free_symbols if not dep: if n is None: return (s for s in [self]) else: return self if len(dir) != 1 or dir not in '+-': raise ValueError("Dir must be '+' or '-'") if x0 in [S.Infinity, S.NegativeInfinity]: from .function import PoleError try: sgn = 1 if x0 is S.Infinity else -1 s = self.subs(x, sgn/x).series(x, n=n, dir='+', cdir=cdir) if n is None: return (si.subs(x, sgn/x) for si in s) return s.subs(x, sgn/x) except PoleError: s = self.subs(x, sgn*x).aseries(x, n=n) return s.subs(x, sgn*x) # use rep to shift origin to x0 and change sign (if dir is negative) # and undo the process with rep2 if x0 or dir == '-': if dir == '-': rep = -x + x0 rep2 = -x rep2b = x0 else: rep = x + x0 rep2 = x rep2b = -x0 s = self.subs(x, rep).series(x, x0=0, n=n, dir='+', logx=logx, cdir=cdir) if n is None: # lseries... return (si.subs(x, rep2 + rep2b) for si in s) return s.subs(x, rep2 + rep2b) # from here on it's x0=0 and dir='+' handling if x.is_positive is x.is_negative is None or x.is_Symbol is not True: # replace x with an x that has a positive assumption xpos = Dummy('x', positive=True) rv = self.subs(x, xpos).series(xpos, x0, n, dir, logx=logx, cdir=cdir) if n is None: return (s.subs(xpos, x) for s in rv) else: return rv.subs(xpos, x) from sympy.series.order import Order if n is not None: # nseries handling s1 = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) o = s1.getO() or S.Zero if o: # make sure the requested order is returned ngot = o.getn() if ngot > n: # leave o in its current form (e.g. with x*log(x)) so # it eats terms properly, then replace it below if n != 0: s1 += o.subs(x, x**Rational(n, ngot)) else: s1 += Order(1, x) elif ngot < n: # increase the requested number of terms to get the desired # number keep increasing (up to 9) until the received order # is different than the original order and then predict how # many additional terms are needed from sympy.functions.elementary.integers import ceiling for more in range(1, 9): s1 = self._eval_nseries(x, n=n + more, logx=logx, cdir=cdir) newn = s1.getn() if newn != ngot: ndo = n + ceiling((n - ngot)*more/(newn - ngot)) s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) while s1.getn() < n: s1 = self._eval_nseries(x, n=ndo, logx=logx, cdir=cdir) ndo += 1 break else: raise ValueError('Could not calculate %s terms for %s' % (str(n), self)) s1 += Order(x**n, x) o = s1.getO() s1 = s1.removeO() elif s1.has(Order): # asymptotic expansion return s1 else: o = Order(x**n, x) s1done = s1.doit() if (s1done + o).removeO() == s1done: o = S.Zero try: from sympy.simplify.radsimp import collect return collect(s1, x) + o except NotImplementedError: return s1 + o else: # lseries handling def yield_lseries(s): """Return terms of lseries one at a time.""" for si in s: if not si.is_Add: yield si continue # yield terms 1 at a time if possible # by increasing order until all the # terms have been returned yielded = 0 o = Order(si, x)*x ndid = 0 ndo = len(si.args) while 1: do = (si - yielded + o).removeO() o *= x if not do or do.is_Order: continue if do.is_Add: ndid += len(do.args) else: ndid += 1 yield do if ndid == ndo: break yielded += do return yield_lseries(self.removeO()._eval_lseries(x, logx=logx, cdir=cdir)) def aseries(self, x=None, n=6, bound=0, hir=False): """Asymptotic Series expansion of self. This is equivalent to ``self.series(x, oo, n)``. Parameters ========== self : Expression The expression whose series is to be expanded. x : Symbol It is the variable of the expression to be calculated. n : Value The number of terms upto which the series is to be expanded. hir : Boolean Set this parameter to be True to produce hierarchical series. It stops the recursion at an early level and may provide nicer and more useful results. bound : Value, Integer Use the ``bound`` parameter to give limit on rewriting coefficients in its normalised form. Examples ======== >>> from sympy import sin, exp >>> from sympy.abc import x >>> e = sin(1/x + exp(-x)) - sin(1/x) >>> e.aseries(x) (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x) >>> e.aseries(x, n=3, hir=True) -exp(-2*x)*sin(1/x)/2 + exp(-x)*cos(1/x) + O(exp(-3*x), (x, oo)) >>> e = exp(exp(x)/(1 - 1/x)) >>> e.aseries(x) exp(exp(x)/(1 - 1/x)) >>> e.aseries(x, bound=3) # doctest: +SKIP exp(exp(x)/x**2)*exp(exp(x)/x)*exp(-exp(x) + exp(x)/(1 - 1/x) - exp(x)/x - exp(x)/x**2)*exp(exp(x)) Returns ======= Expr Asymptotic series expansion of the expression. Notes ===== This algorithm is directly induced from the limit computational algorithm provided by Gruntz. It majorly uses the mrv and rewrite sub-routines. The overall idea of this algorithm is first to look for the most rapidly varying subexpression w of a given expression f and then expands f in a series in w. Then same thing is recursively done on the leading coefficient till we get constant coefficients. If the most rapidly varying subexpression of a given expression f is f itself, the algorithm tries to find a normalised representation of the mrv set and rewrites f using this normalised representation. If the expansion contains an order term, it will be either ``O(x ** (-n))`` or ``O(w ** (-n))`` where ``w`` belongs to the most rapidly varying expression of ``self``. References ========== .. [1] Gruntz, Dominik. A new algorithm for computing asymptotic series. In: Proc. 1993 Int. Symp. Symbolic and Algebraic Computation. 1993. pp. 239-244. .. [2] Gruntz thesis - p90 .. [3] http://en.wikipedia.org/wiki/Asymptotic_expansion See Also ======== Expr.aseries: See the docstring of this function for complete details of this wrapper. """ from .symbol import Dummy if x.is_positive is x.is_negative is None: xpos = Dummy('x', positive=True) return self.subs(x, xpos).aseries(xpos, n, bound, hir).subs(xpos, x) from .function import PoleError from sympy.series.gruntz import mrv, rewrite try: om, exps = mrv(self, x) except PoleError: return self # We move one level up by replacing `x` by `exp(x)`, and then # computing the asymptotic series for f(exp(x)). Then asymptotic series # can be obtained by moving one-step back, by replacing x by ln(x). from sympy.functions.elementary.exponential import exp, log from sympy.series.order import Order if x in om: s = self.subs(x, exp(x)).aseries(x, n, bound, hir).subs(x, log(x)) if s.getO(): return s + Order(1/x**n, (x, S.Infinity)) return s k = Dummy('k', positive=True) # f is rewritten in terms of omega func, logw = rewrite(exps, om, x, k) if self in om: if bound <= 0: return self s = (self.exp).aseries(x, n, bound=bound) s = s.func(*[t.removeO() for t in s.args]) try: res = exp(s.subs(x, 1/x).as_leading_term(x).subs(x, 1/x)) except PoleError: res = self func = exp(self.args[0] - res.args[0]) / k logw = log(1/res) s = func.series(k, 0, n) # Hierarchical series if hir: return s.subs(k, exp(logw)) o = s.getO() terms = sorted(Add.make_args(s.removeO()), key=lambda i: int(i.as_coeff_exponent(k)[1])) s = S.Zero has_ord = False # Then we recursively expand these coefficients one by one into # their asymptotic series in terms of their most rapidly varying subexpressions. for t in terms: coeff, expo = t.as_coeff_exponent(k) if coeff.has(x): # Recursive step snew = coeff.aseries(x, n, bound=bound-1) if has_ord and snew.getO(): break elif snew.getO(): has_ord = True s += (snew * k**expo) else: s += t if not o or has_ord: return s.subs(k, exp(logw)) return (s + o).subs(k, exp(logw)) def taylor_term(self, n, x, *previous_terms): """General method for the taylor term. This method is slow, because it differentiates n-times. Subclasses can redefine it to make it faster by using the "previous_terms". """ from .symbol import Dummy from sympy.functions.combinatorial.factorials import factorial x = sympify(x) _x = Dummy('x') return self.subs(x, _x).diff(_x, n).subs(_x, x).subs(x, 0) * x**n / factorial(n) def lseries(self, x=None, x0=0, dir='+', logx=None, cdir=0): """ Wrapper for series yielding an iterator of the terms of the series. Note: an infinite series will yield an infinite iterator. The following, for exaxmple, will never terminate. It will just keep printing terms of the sin(x) series:: for term in sin(x).lseries(x): print term The advantage of lseries() over nseries() is that many times you are just interested in the next term in the series (i.e. the first term for example), but you do not know how many you should ask for in nseries() using the "n" parameter. See also nseries(). """ return self.series(x, x0, n=None, dir=dir, logx=logx, cdir=cdir) def _eval_lseries(self, x, logx=None, cdir=0): # default implementation of lseries is using nseries(), and adaptively # increasing the "n". As you can see, it is not very efficient, because # we are calculating the series over and over again. Subclasses should # override this method and implement much more efficient yielding of # terms. n = 0 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) while series.is_Order: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir) e = series.removeO() yield e if e is S.Zero: return while 1: while 1: n += 1 series = self._eval_nseries(x, n=n, logx=logx, cdir=cdir).removeO() if e != series: break if (series - self).cancel() is S.Zero: return yield series - e e = series def nseries(self, x=None, x0=0, n=6, dir='+', logx=None, cdir=0): """ Wrapper to _eval_nseries if assumptions allow, else to series. If x is given, x0 is 0, dir='+', and self has x, then _eval_nseries is called. This calculates "n" terms in the innermost expressions and then builds up the final series just by "cross-multiplying" everything out. The optional ``logx`` parameter can be used to replace any log(x) in the returned series with a symbolic value to avoid evaluating log(x) at 0. A symbol to use in place of log(x) should be provided. Advantage -- it's fast, because we do not have to determine how many terms we need to calculate in advance. Disadvantage -- you may end up with less terms than you may have expected, but the O(x**n) term appended will always be correct and so the result, though perhaps shorter, will also be correct. If any of those assumptions is not met, this is treated like a wrapper to series which will try harder to return the correct number of terms. See also lseries(). Examples ======== >>> from sympy import sin, log, Symbol >>> from sympy.abc import x, y >>> sin(x).nseries(x, 0, 6) x - x**3/6 + x**5/120 + O(x**6) >>> log(x+1).nseries(x, 0, 5) x - x**2/2 + x**3/3 - x**4/4 + O(x**5) Handling of the ``logx`` parameter --- in the following example the expansion fails since ``sin`` does not have an asymptotic expansion at -oo (the limit of log(x) as x approaches 0): >>> e = sin(log(x)) >>> e.nseries(x, 0, 6) Traceback (most recent call last): ... PoleError: ... ... >>> logx = Symbol('logx') >>> e.nseries(x, 0, 6, logx=logx) sin(logx) In the following example, the expansion works but gives only an Order term unless the ``logx`` parameter is used: >>> e = x**y >>> e.nseries(x, 0, 2) O(log(x)**2) >>> e.nseries(x, 0, 2, logx=logx) exp(logx*y) """ if x and x not in self.free_symbols: return self if x is None or x0 or dir != '+': # {see XPOS above} or (x.is_positive == x.is_negative == None): return self.series(x, x0, n, dir, cdir=cdir) else: return self._eval_nseries(x, n=n, logx=logx, cdir=cdir) def _eval_nseries(self, x, n, logx, cdir): """ Return terms of series for self up to O(x**n) at x=0 from the positive direction. This is a method that should be overridden in subclasses. Users should never call this method directly (use .nseries() instead), so you do not have to write docstrings for _eval_nseries(). """ raise NotImplementedError(filldedent(""" The _eval_nseries method should be added to %s to give terms up to O(x**n) at x=0 from the positive direction so it is available when nseries calls it.""" % self.func) ) def limit(self, x, xlim, dir='+'): """ Compute limit x->xlim. """ from sympy.series.limits import limit return limit(self, x, xlim, dir) def compute_leading_term(self, x, logx=None): """ as_leading_term is only allowed for results of .series() This is a wrapper to compute a series first. """ from sympy.functions.elementary.piecewise import Piecewise, piecewise_fold if self.has(Piecewise): expr = piecewise_fold(self) else: expr = self if self.removeO() == 0: return self from sympy.series.gruntz import calculate_series if logx is None: from .symbol import Dummy from sympy.functions.elementary.exponential import log d = Dummy('logx') s = calculate_series(expr, x, d).subs(d, log(x)) else: s = calculate_series(expr, x, logx) return s.as_leading_term(x) @cacheit def as_leading_term(self, *symbols, logx=None, cdir=0): """ Returns the leading (nonzero) term of the series expansion of self. The _eval_as_leading_term routines are used to do this, and they must always return a non-zero value. Examples ======== >>> from sympy.abc import x >>> (1 + x + x**2).as_leading_term(x) 1 >>> (1/x**2 + x + x**2).as_leading_term(x) x**(-2) """ if len(symbols) > 1: c = self for x in symbols: c = c.as_leading_term(x, logx=logx, cdir=cdir) return c elif not symbols: return self x = sympify(symbols[0]) if not x.is_symbol: raise ValueError('expecting a Symbol but got %s' % x) if x not in self.free_symbols: return self obj = self._eval_as_leading_term(x, logx=logx, cdir=cdir) if obj is not None: from sympy.simplify.powsimp import powsimp return powsimp(obj, deep=True, combine='exp') raise NotImplementedError('as_leading_term(%s, %s)' % (self, x)) def _eval_as_leading_term(self, x, logx=None, cdir=0): return self def as_coeff_exponent(self, x): """ ``c*x**e -> c,e`` where x can be any symbolic expression. """ from sympy.simplify.radsimp import collect s = collect(self, x) c, p = s.as_coeff_mul(x) if len(p) == 1: b, e = p[0].as_base_exp() if b == x: return c, e return s, S.Zero def leadterm(self, x, logx=None, cdir=0): """ Returns the leading term a*x**b as a tuple (a, b). Examples ======== >>> from sympy.abc import x >>> (1+x+x**2).leadterm(x) (1, 0) >>> (1/x**2+x+x**2).leadterm(x) (1, -2) """ from .symbol import Dummy from sympy.functions.elementary.exponential import log l = self.as_leading_term(x, logx=logx, cdir=cdir) d = Dummy('logx') if l.has(log(x)): l = l.subs(log(x), d) c, e = l.as_coeff_exponent(x) if x in c.free_symbols: raise ValueError(filldedent(""" cannot compute leadterm(%s, %s). The coefficient should have been free of %s but got %s""" % (self, x, x, c))) c = c.subs(d, log(x)) return c, e def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return S.One, self def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return S.Zero, self def fps(self, x=None, x0=0, dir=1, hyper=True, order=4, rational=True, full=False): """ Compute formal power power series of self. See the docstring of the :func:`fps` function in sympy.series.formal for more information. """ from sympy.series.formal import fps return fps(self, x, x0, dir, hyper, order, rational, full) def fourier_series(self, limits=None): """Compute fourier sine/cosine series of self. See the docstring of the :func:`fourier_series` in sympy.series.fourier for more information. """ from sympy.series.fourier import fourier_series return fourier_series(self, limits) ################################################################################### ##################### DERIVATIVE, INTEGRAL, FUNCTIONAL METHODS #################### ################################################################################### def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return _derivative_dispatch(self, *symbols, **assumptions) ########################################################################### ###################### EXPRESSION EXPANSION METHODS ####################### ########################################################################### # Relevant subclasses should override _eval_expand_hint() methods. See # the docstring of expand() for more info. def _eval_expand_complex(self, **hints): real, imag = self.as_real_imag(**hints) return real + S.ImaginaryUnit*imag @staticmethod def _expand_hint(expr, hint, deep=True, **hints): """ Helper for ``expand()``. Recursively calls ``expr._eval_expand_hint()``. Returns ``(expr, hit)``, where expr is the (possibly) expanded ``expr`` and ``hit`` is ``True`` if ``expr`` was truly expanded and ``False`` otherwise. """ hit = False # XXX: Hack to support non-Basic args # | # V if deep and getattr(expr, 'args', ()) and not expr.is_Atom: sargs = [] for arg in expr.args: arg, arghit = Expr._expand_hint(arg, hint, **hints) hit |= arghit sargs.append(arg) if hit: expr = expr.func(*sargs) if hasattr(expr, hint): newexpr = getattr(expr, hint)(**hints) if newexpr != expr: return (newexpr, True) return (expr, hit) @cacheit def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, mul=True, log=True, multinomial=True, basic=True, **hints): """ Expand an expression using hints. See the docstring of the expand() function in sympy.core.function for more information. """ from sympy.simplify.radsimp import fraction hints.update(power_base=power_base, power_exp=power_exp, mul=mul, log=log, multinomial=multinomial, basic=basic) expr = self if hints.pop('frac', False): n, d = [a.expand(deep=deep, modulus=modulus, **hints) for a in fraction(self)] return n/d elif hints.pop('denom', False): n, d = fraction(self) return n/d.expand(deep=deep, modulus=modulus, **hints) elif hints.pop('numer', False): n, d = fraction(self) return n.expand(deep=deep, modulus=modulus, **hints)/d # Although the hints are sorted here, an earlier hint may get applied # at a given node in the expression tree before another because of how # the hints are applied. e.g. expand(log(x*(y + z))) -> log(x*y + # x*z) because while applying log at the top level, log and mul are # applied at the deeper level in the tree so that when the log at the # upper level gets applied, the mul has already been applied at the # lower level. # Additionally, because hints are only applied once, the expression # may not be expanded all the way. For example, if mul is applied # before multinomial, x*(x + 1)**2 won't be expanded all the way. For # now, we just use a special case to make multinomial run before mul, # so that at least polynomials will be expanded all the way. In the # future, smarter heuristics should be applied. # TODO: Smarter heuristics def _expand_hint_key(hint): """Make multinomial come before mul""" if hint == 'mul': return 'mulz' return hint for hint in sorted(hints.keys(), key=_expand_hint_key): use_hint = hints[hint] if use_hint: hint = '_eval_expand_' + hint expr, hit = Expr._expand_hint(expr, hint, deep=deep, **hints) while True: was = expr if hints.get('multinomial', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_multinomial', deep=deep, **hints) if hints.get('mul', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_mul', deep=deep, **hints) if hints.get('log', False): expr, _ = Expr._expand_hint( expr, '_eval_expand_log', deep=deep, **hints) if expr == was: break if modulus is not None: modulus = sympify(modulus) if not modulus.is_Integer or modulus <= 0: raise ValueError( "modulus must be a positive integer, got %s" % modulus) terms = [] for term in Add.make_args(expr): coeff, tail = term.as_coeff_Mul(rational=True) coeff %= modulus if coeff: terms.append(coeff*tail) expr = Add(*terms) return expr ########################################################################### ################### GLOBAL ACTION VERB WRAPPER METHODS #################### ########################################################################### def integrate(self, *args, **kwargs): """See the integrate function in sympy.integrals""" from sympy.integrals.integrals import integrate return integrate(self, *args, **kwargs) def nsimplify(self, constants=(), tolerance=None, full=False): """See the nsimplify function in sympy.simplify""" from sympy.simplify.simplify import nsimplify return nsimplify(self, constants, tolerance, full) def separate(self, deep=False, force=False): """See the separate function in sympy.simplify""" from .function import expand_power_base return expand_power_base(self, deep=deep, force=force) def collect(self, syms, func=None, evaluate=True, exact=False, distribute_order_term=True): """See the collect function in sympy.simplify""" from sympy.simplify.radsimp import collect return collect(self, syms, func, evaluate, exact, distribute_order_term) def together(self, *args, **kwargs): """See the together function in sympy.polys""" from sympy.polys.rationaltools import together return together(self, *args, **kwargs) def apart(self, x=None, **args): """See the apart function in sympy.polys""" from sympy.polys.partfrac import apart return apart(self, x, **args) def ratsimp(self): """See the ratsimp function in sympy.simplify""" from sympy.simplify.ratsimp import ratsimp return ratsimp(self) def trigsimp(self, **args): """See the trigsimp function in sympy.simplify""" from sympy.simplify.trigsimp import trigsimp return trigsimp(self, **args) def radsimp(self, **kwargs): """See the radsimp function in sympy.simplify""" from sympy.simplify.radsimp import radsimp return radsimp(self, **kwargs) def powsimp(self, *args, **kwargs): """See the powsimp function in sympy.simplify""" from sympy.simplify.powsimp import powsimp return powsimp(self, *args, **kwargs) def combsimp(self): """See the combsimp function in sympy.simplify""" from sympy.simplify.combsimp import combsimp return combsimp(self) def gammasimp(self): """See the gammasimp function in sympy.simplify""" from sympy.simplify.gammasimp import gammasimp return gammasimp(self) def factor(self, *gens, **args): """See the factor() function in sympy.polys.polytools""" from sympy.polys.polytools import factor return factor(self, *gens, **args) def cancel(self, *gens, **args): """See the cancel function in sympy.polys""" from sympy.polys.polytools import cancel return cancel(self, *gens, **args) def invert(self, g, *gens, **args): """Return the multiplicative inverse of ``self`` mod ``g`` where ``self`` (and ``g``) may be symbolic expressions). See Also ======== sympy.core.numbers.mod_inverse, sympy.polys.polytools.invert """ if self.is_number and getattr(g, 'is_number', True): from .numbers import mod_inverse return mod_inverse(self, g) from sympy.polys.polytools import invert return invert(self, g, *gens, **args) def round(self, n=None): """Return x rounded to the given decimal place. If a complex number would results, apply round to the real and imaginary components of the number. Examples ======== >>> from sympy import pi, E, I, S, Number >>> pi.round() 3 >>> pi.round(2) 3.14 >>> (2*pi + E*I).round() 6 + 3*I The round method has a chopping effect: >>> (2*pi + I/10).round() 6 >>> (pi/10 + 2*I).round() 2*I >>> (pi/10 + E*I).round(2) 0.31 + 2.72*I Notes ===== The Python ``round`` function uses the SymPy ``round`` method so it will always return a SymPy number (not a Python float or int): >>> isinstance(round(S(123), -2), Number) True """ from sympy.core.numbers import Float x = self if not x.is_number: raise TypeError("Cannot round symbolic expression") if not x.is_Atom: if not pure_complex(x.n(2), or_real=True): raise TypeError( 'Expected a number but got %s:' % func_name(x)) elif x in (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity): return x if x.is_extended_real is False: r, i = x.as_real_imag() return r.round(n) + S.ImaginaryUnit*i.round(n) if not x: return S.Zero if n is None else x p = as_int(n or 0) if x.is_Integer: return Integer(round(int(x), p)) digits_to_decimal = _mag(x) # _mag(12) = 2, _mag(.012) = -1 allow = digits_to_decimal + p precs = [f._prec for f in x.atoms(Float)] dps = prec_to_dps(max(precs)) if precs else None if dps is None: # assume everything is exact so use the Python # float default or whatever was requested dps = max(15, allow) else: allow = min(allow, dps) # this will shift all digits to right of decimal # and give us dps to work with as an int shift = -digits_to_decimal + dps extra = 1 # how far we look past known digits # NOTE # mpmath will calculate the binary representation to # an arbitrary number of digits but we must base our # answer on a finite number of those digits, e.g. # .575 2589569785738035/2**52 in binary. # mpmath shows us that the first 18 digits are # >>> Float(.575).n(18) # 0.574999999999999956 # The default precision is 15 digits and if we ask # for 15 we get # >>> Float(.575).n(15) # 0.575000000000000 # mpmath handles rounding at the 15th digit. But we # need to be careful since the user might be asking # for rounding at the last digit and our semantics # are to round toward the even final digit when there # is a tie. So the extra digit will be used to make # that decision. In this case, the value is the same # to 15 digits: # >>> Float(.575).n(16) # 0.5750000000000000 # Now converting this to the 15 known digits gives # 575000000000000.0 # which rounds to integer # 5750000000000000 # And now we can round to the desired digt, e.g. at # the second from the left and we get # 5800000000000000 # and rescaling that gives # 0.58 # as the final result. # If the value is made slightly less than 0.575 we might # still obtain the same value: # >>> Float(.575-1e-16).n(16)*10**15 # 574999999999999.8 # What 15 digits best represents the known digits (which are # to the left of the decimal? 5750000000000000, the same as # before. The only way we will round down (in this case) is # if we declared that we had more than 15 digits of precision. # For example, if we use 16 digits of precision, the integer # we deal with is # >>> Float(.575-1e-16).n(17)*10**16 # 5749999999999998.4 # and this now rounds to 5749999999999998 and (if we round to # the 2nd digit from the left) we get 5700000000000000. # xf = x.n(dps + extra)*Pow(10, shift) xi = Integer(xf) # use the last digit to select the value of xi # nearest to x before rounding at the desired digit sign = 1 if x > 0 else -1 dif2 = sign*(xf - xi).n(extra) if dif2 < 0: raise NotImplementedError( 'not expecting int(x) to round away from 0') if dif2 > .5: xi += sign # round away from 0 elif dif2 == .5: xi += sign if xi%2 else -sign # round toward even # shift p to the new position ip = p - shift # let Python handle the int rounding then rescale xr = round(xi.p, ip) # restore scale rv = Rational(xr, Pow(10, shift)) # return Float or Integer if rv.is_Integer: if n is None: # the single-arg case return rv # use str or else it won't be a float return Float(str(rv), dps) # keep same precision else: if not allow and rv > self: allow += 1 return Float(rv, allow) __round__ = round def _eval_derivative_matrix_lines(self, x): from sympy.matrices.expressions.matexpr import _LeftRightArgs return [_LeftRightArgs([S.One, S.One], higher=self._eval_derivative(x))] class AtomicExpr(Atom, Expr): """ A parent class for object which are both atoms and Exprs. For example: Symbol, Number, Rational, Integer, ... But not: Add, Mul, Pow, ... """ is_number = False is_Atom = True __slots__ = () def _eval_derivative(self, s): if self == s: return S.One return S.Zero def _eval_derivative_n_times(self, s, n): from .containers import Tuple from sympy.matrices.expressions.matexpr import MatrixExpr from sympy.matrices.common import MatrixCommon if isinstance(s, (MatrixCommon, Tuple, Iterable, MatrixExpr)): return super()._eval_derivative_n_times(s, n) from .relational import Eq from sympy.functions.elementary.piecewise import Piecewise if self == s: return Piecewise((self, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) else: return Piecewise((self, Eq(n, 0)), (0, True)) def _eval_is_polynomial(self, syms): return True def _eval_is_rational_function(self, syms): return True def _eval_is_meromorphic(self, x, a): from sympy.calculus.accumulationbounds import AccumBounds return (not self.is_Number or self.is_finite) and not isinstance(self, AccumBounds) def _eval_is_algebraic_expr(self, syms): return True def _eval_nseries(self, x, n, logx, cdir=0): return self @property def expr_free_symbols(self): SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {self} def _mag(x): """Return integer ``i`` such that .1 <= x/10**i < 1 Examples ======== >>> from sympy.core.expr import _mag >>> from sympy import Float >>> _mag(Float(.1)) 0 >>> _mag(Float(.01)) -1 >>> _mag(Float(1234)) 4 """ from math import log10, ceil, log xpos = abs(x.n()) if not xpos: return S.Zero try: mag_first_dig = int(ceil(log10(xpos))) except (ValueError, OverflowError): from .numbers import Float mag_first_dig = int(ceil(Float(mpf_log(xpos._mpf_, 53))/log(10))) # check that we aren't off by 1 if (xpos/10**mag_first_dig) >= 1: assert 1 <= (xpos/10**mag_first_dig) < 10 mag_first_dig += 1 return mag_first_dig class UnevaluatedExpr(Expr): """ Expression that is not evaluated unless released. Examples ======== >>> from sympy import UnevaluatedExpr >>> from sympy.abc import x >>> x*(1/x) 1 >>> x*UnevaluatedExpr(1/x) x*1/x """ def __new__(cls, arg, **kwargs): arg = _sympify(arg) obj = Expr.__new__(cls, arg, **kwargs) return obj def doit(self, **kwargs): if kwargs.get("deep", True): return self.args[0].doit(**kwargs) else: return self.args[0] def unchanged(func, *args): """Return True if `func` applied to the `args` is unchanged. Can be used instead of `assert foo == foo`. Examples ======== >>> from sympy import Piecewise, cos, pi >>> from sympy.core.expr import unchanged >>> from sympy.abc import x >>> unchanged(cos, 1) # instead of assert cos(1) == cos(1) True >>> unchanged(cos, pi) False Comparison of args uses the builtin capabilities of the object's arguments to test for equality so args can be defined loosely. Here, the ExprCondPair arguments of Piecewise compare as equal to the tuples that can be used to create the Piecewise: >>> unchanged(Piecewise, (x, x > 1), (0, True)) True """ f = func(*args) return f.func == func and f.args == args class ExprBuilder: def __init__(self, op, args=None, validator=None, check=True): if not hasattr(op, "__call__"): raise TypeError("op {} needs to be callable".format(op)) self.op = op if args is None: self.args = [] else: self.args = args self.validator = validator if (validator is not None) and check: self.validate() @staticmethod def _build_args(args): return [i.build() if isinstance(i, ExprBuilder) else i for i in args] def validate(self): if self.validator is None: return args = self._build_args(self.args) self.validator(*args) def build(self, check=True): args = self._build_args(self.args) if self.validator and check: self.validator(*args) return self.op(*args) def append_argument(self, arg, check=True): self.args.append(arg) if self.validator and check: self.validate(*self.args) def __getitem__(self, item): if item == 0: return self.op else: return self.args[item-1] def __repr__(self): return str(self.build()) def search_element(self, elem): for i, arg in enumerate(self.args): if isinstance(arg, ExprBuilder): ret = arg.search_index(elem) if ret is not None: return (i,) + ret elif id(arg) == id(elem): return (i,) return None from .mul import Mul from .add import Add from .power import Pow from .function import Function, _derivative_dispatch from .mod import Mod from .exprtools import factor_terms from .numbers import Integer, Rational
c2db61344f12f1e29a1dd2b2d960442528eaccbd9dfa8809ed73f3f251238042
"""When you need to use random, import it from here so there is only one generator working for SymPy. Imports from here should behave the same as if they were being imported from Python's random module. But only the routines currently used in SymPy are included here. To use others import `rng` and access the method directly. For example, to capture the current state of the generator use `rng.getstate()`. There is intentionally no Random to import from here. If you want to control the state of the generator, import `seed` and call it with or without an argument to set the state. EXAMPLES ======== >>> from sympy.core.random import random, seed >>> assert random() < 1 >>> seed(1); a = random() >>> b = random() >>> seed(1); c = random() >>> assert a == c >>> assert a != b # remote possibility this will fail """ from sympy.utilities.iterables import is_sequence from sympy.utilities.misc import as_int import random as _random rng = _random.Random() choice = rng.choice random = rng.random randint = rng.randint randrange = rng.randrange seed = rng.seed shuffle = rng.shuffle uniform = rng.uniform def random_complex_number(a=2, b=-1, c=3, d=1, rational=False, tolerance=None): """ Return a random complex number. To reduce chance of hitting branch cuts or anything, we guarantee b <= Im z <= d, a <= Re z <= c When rational is True, a rational approximation to a random number is obtained within specified tolerance, if any. """ from sympy.core.numbers import I from sympy.simplify.simplify import nsimplify A, B = uniform(a, c), uniform(b, d) if not rational: return A + I*B return (nsimplify(A, rational=True, tolerance=tolerance) + I*nsimplify(B, rational=True, tolerance=tolerance)) def verify_numerically(f, g, z=None, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that f and g agree when evaluated in the argument z. If z is None, all symbols will be tested. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round- off errors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x >>> from sympy.core.random import verify_numerically as tn >>> tn(sin(x)**2 + cos(x)**2, 1, x) True """ from sympy.core.symbol import Symbol from sympy.core.sympify import sympify from sympy.core.numbers import comp f, g = (sympify(i) for i in (f, g)) if z is None: z = f.free_symbols | g.free_symbols elif isinstance(z, Symbol): z = [z] reps = list(zip(z, [random_complex_number(a, b, c, d) for _ in z])) z1 = f.subs(reps).n() z2 = g.subs(reps).n() return comp(z1, z2, tol) def test_derivative_numerically(f, z, tol=1.0e-6, a=2, b=-1, c=3, d=1): """ Test numerically that the symbolically computed derivative of f with respect to z is correct. This routine does not test whether there are Floats present with precision higher than 15 digits so if there are, your results may not be what you expect due to round-off errors. Examples ======== >>> from sympy import sin >>> from sympy.abc import x >>> from sympy.core.random import test_derivative_numerically as td >>> td(sin(x), x) True """ from sympy.core.numbers import comp from sympy.core.function import Derivative z0 = random_complex_number(a, b, c, d) f1 = f.diff(z).subs(z, z0) f2 = Derivative(f, z).doit_numerically(z0) return comp(f1.n(), f2.n(), tol) def _randrange(seed=None): """Return a randrange generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.core.random import _randrange >>> rr = _randrange() >>> rr(1000) # doctest: +SKIP 999 >>> rr = _randrange(3) >>> rr(1000) # doctest: +SKIP 238 >>> rr = _randrange([0, 5, 1, 3, 4]) >>> rr(3), rr(3) (0, 1) """ if seed is None: return randrange elif isinstance(seed, int): rng.seed(seed) return randrange elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b=None, seq=seed): if b is None: a, b = 0, a a, b = as_int(a), as_int(b) w = b - a if w < 1: raise ValueError('_randrange got empty range') try: x = seq.pop() except IndexError: raise ValueError('_randrange sequence was too short') if a <= x < b: return x else: return give(a, b, seq) return give else: raise ValueError('_randrange got an unexpected seed') def _randint(seed=None): """Return a randint generator. ``seed`` can be o None - return randomly seeded generator o int - return a generator seeded with the int o list - the values to be returned will be taken from the list in the order given; the provided list is not modified. Examples ======== >>> from sympy.core.random import _randint >>> ri = _randint() >>> ri(1, 1000) # doctest: +SKIP 999 >>> ri = _randint(3) >>> ri(1, 1000) # doctest: +SKIP 238 >>> ri = _randint([0, 5, 1, 2, 4]) >>> ri(1, 3), ri(1, 3) (1, 2) """ if seed is None: return randint elif isinstance(seed, int): rng.seed(seed) return randint elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse() def give(a, b, seq=seed): a, b = as_int(a), as_int(b) w = b - a if w < 0: raise ValueError('_randint got empty range') try: x = seq.pop() except IndexError: raise ValueError('_randint sequence was too short') if a <= x <= b: return x else: return give(a, b, seq) return give else: raise ValueError('_randint got an unexpected seed')
b6a11c532e3eddff061e2165378a0c8d3d8dfcb9bbca1d2b4a2d8d6f8acab4a3
import numbers import decimal import fractions import math import re as regex import sys from functools import lru_cache from typing import Set as tSet, Tuple as tTuple from .containers import Tuple from .sympify import (SympifyError, converter, sympify, _convert_numpy_types, _sympify, _is_numpy_instance) from .singleton import S, Singleton from .basic import Basic from .expr import Expr, AtomicExpr from .evalf import pure_complex from .cache import cacheit, clear_cache from .decorators import _sympifyit from .logic import fuzzy_not from .kind import NumberKind from sympy.external.gmpy import SYMPY_INTS, HAS_GMPY, gmpy from sympy.multipledispatch import dispatch import mpmath import mpmath.libmp as mlib from mpmath.libmp import bitcount, round_nearest as rnd from mpmath.libmp.backend import MPZ from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed from mpmath.ctx_mp import mpnumeric from mpmath.libmp.libmpf import ( finf as _mpf_inf, fninf as _mpf_ninf, fnan as _mpf_nan, fzero, _normalize as mpf_normalize, prec_to_dps, dps_to_prec) from sympy.utilities.misc import as_int, debug, filldedent from .parameters import global_parameters from sympy.utilities.exceptions import SymPyDeprecationWarning _LOG2 = math.log(2) def comp(z1, z2, tol=None): """Return a bool indicating whether the error between z1 and z2 is <= tol. Examples ======== If ``tol`` is None then True will be returned if ``abs(z1 - z2)*10**p <= 5`` where ``p`` is minimum value of the decimal precision of each value. >>> from sympy import comp, pi >>> pi4 = pi.n(4); pi4 3.142 >>> comp(_, 3.142) True >>> comp(pi4, 3.141) False >>> comp(pi4, 3.143) False A comparison of strings will be made if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''. >>> comp(pi4, 3.1415) True >>> comp(pi4, 3.1415, '') False When ``tol`` is provided and ``z2`` is non-zero and ``|z1| > 1`` the error is normalized by ``|z1|``: >>> abs(pi4 - 3.14)/pi4 0.000509791731426756 >>> comp(pi4, 3.14, .001) # difference less than 0.1% True >>> comp(pi4, 3.14, .0005) # difference less than 0.1% False When ``|z1| <= 1`` the absolute error is used: >>> 1/pi4 0.3183 >>> abs(1/pi4 - 0.3183)/(1/pi4) 3.07371499106316e-5 >>> abs(1/pi4 - 0.3183) 9.78393554684764e-6 >>> comp(1/pi4, 0.3183, 1e-5) True To see if the absolute error between ``z1`` and ``z2`` is less than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)`` or ``comp(z1 - z2, tol=tol)``: >>> abs(pi4 - 3.14) 0.00160156249999988 >>> comp(pi4 - 3.14, 0, .002) True >>> comp(pi4 - 3.14, 0, .001) False """ if type(z2) is str: if not pure_complex(z1, or_real=True): raise ValueError('when z2 is a str z1 must be a Number') return str(z1) == z2 if not z1: z1, z2 = z2, z1 if not z1: return True if not tol: a, b = z1, z2 if tol == '': return str(a) == str(b) if tol is None: a, b = sympify(a), sympify(b) if not all(i.is_number for i in (a, b)): raise ValueError('expecting 2 numbers') fa = a.atoms(Float) fb = b.atoms(Float) if not fa and not fb: # no floats -- compare exactly return a == b # get a to be pure_complex for _ in range(2): ca = pure_complex(a, or_real=True) if not ca: if fa: a = a.n(prec_to_dps(min([i._prec for i in fa]))) ca = pure_complex(a, or_real=True) break else: fa, fb = fb, fa a, b = b, a cb = pure_complex(b) if not cb and fb: b = b.n(prec_to_dps(min([i._prec for i in fb]))) cb = pure_complex(b, or_real=True) if ca and cb and (ca[1] or cb[1]): return all(comp(i, j) for i, j in zip(ca, cb)) tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec))) return int(abs(a - b)*tol) <= 5 diff = abs(z1 - z2) az1 = abs(z1) if z2 and az1 > 1: return diff/az1 <= tol else: return diff <= tol def mpf_norm(mpf, prec): """Return the mpf tuple normalized appropriately for the indicated precision after doing a check to see if zero should be returned or not when the mantissa is 0. ``mpf_normlize`` always assumes that this is zero, but it may not be since the mantissa for mpf's values "+inf", "-inf" and "nan" have a mantissa of zero, too. Note: this is not intended to validate a given mpf tuple, so sending mpf tuples that were not created by mpmath may produce bad results. This is only a wrapper to ``mpf_normalize`` which provides the check for non- zero mpfs that have a 0 for the mantissa. """ sign, man, expt, bc = mpf if not man: # hack for mpf_normalize which does not do this; # it assumes that if man is zero the result is 0 # (see issue 6639) if not bc: return fzero else: # don't change anything; this should already # be a well formed mpf tuple return mpf # Necessary if mpmath is using the gmpy backend from mpmath.libmp.backend import MPZ rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd) return rv # TODO: we should use the warnings module _errdict = {"divide": False} def seterr(divide=False): """ Should SymPy raise an exception on 0/0 or return a nan? divide == True .... raise an exception divide == False ... return nan """ if _errdict["divide"] != divide: clear_cache() _errdict["divide"] = divide def _as_integer_ratio(p): neg_pow, man, expt, _ = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_) p = [1, -1][neg_pow % 2]*man if expt < 0: q = 2**-expt else: q = 1 p *= 2**expt return int(p), int(q) def _decimal_to_Rational_prec(dec): """Convert an ordinary decimal instance to a Rational.""" if not dec.is_finite(): raise TypeError("dec must be finite, got %s." % dec) s, d, e = dec.as_tuple() prec = len(d) if e >= 0: # it's an integer rv = Integer(int(dec)) else: s = (-1)**s d = sum([di*10**i for i, di in enumerate(reversed(d))]) rv = Rational(s*d, 10**-e) return rv, prec _floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))") def _literal_float(f): """Return True if n starts like a floating point number.""" return bool(_floatpat.match(f)) # (a,b) -> gcd(a,b) # TODO caching with decorator, but not to degrade performance @lru_cache(1024) def igcd(*args): """Computes nonnegative integer greatest common divisor. Explanation =========== The algorithm is based on the well known Euclid's algorithm. To improve speed, igcd() has its own caching mechanism implemented. Examples ======== >>> from sympy import igcd >>> igcd(2, 4) 2 >>> igcd(5, 10, 15) 5 """ if len(args) < 2: raise TypeError( 'igcd() takes at least 2 arguments (%s given)' % len(args)) args_temp = [abs(as_int(i)) for i in args] if 1 in args_temp: return 1 a = args_temp.pop() if HAS_GMPY: # Using gmpy if present to speed up. for b in args_temp: a = gmpy.gcd(a, b) if b else a return as_int(a) for b in args_temp: a = math.gcd(a, b) return a igcd2 = math.gcd def igcd_lehmer(a, b): """Computes greatest common divisor of two integers. Explanation =========== Euclid's algorithm for the computation of the greatest common divisor gcd(a, b) of two (positive) integers a and b is based on the division identity a = q*b + r, where the quotient q and the remainder r are integers and 0 <= r < b. Then each common divisor of a and b divides r, and it follows that gcd(a, b) == gcd(b, r). The algorithm works by constructing the sequence r0, r1, r2, ..., where r0 = a, r1 = b, and each rn is the remainder from the division of the two preceding elements. In Python, q = a // b and r = a % b are obtained by the floor division and the remainder operations, respectively. These are the most expensive arithmetic operations, especially for large a and b. Lehmer's algorithm is based on the observation that the quotients qn = r(n-1) // rn are in general small integers even when a and b are very large. Hence the quotients can be usually determined from a relatively small number of most significant bits. The efficiency of the algorithm is further enhanced by not computing each long remainder in Euclid's sequence. The remainders are linear combinations of a and b with integer coefficients derived from the quotients. The coefficients can be computed as far as the quotients can be determined from the chosen most significant parts of a and b. Only then a new pair of consecutive remainders is computed and the algorithm starts anew with this pair. References ========== .. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm """ a, b = abs(as_int(a)), abs(as_int(b)) if a < b: a, b = b, a # The algorithm works by using one or two digit division # whenever possible. The outer loop will replace the # pair (a, b) with a pair of shorter consecutive elements # of the Euclidean gcd sequence until a and b # fit into two Python (long) int digits. nbits = 2*sys.int_info.bits_per_digit while a.bit_length() > nbits and b != 0: # Quotients are mostly small integers that can # be determined from most significant bits. n = a.bit_length() - nbits x, y = int(a >> n), int(b >> n) # most significant bits # Elements of the Euclidean gcd sequence are linear # combinations of a and b with integer coefficients. # Compute the coefficients of consecutive pairs # a' = A*a + B*b, b' = C*a + D*b # using small integer arithmetic as far as possible. A, B, C, D = 1, 0, 0, 1 # initial values while True: # The coefficients alternate in sign while looping. # The inner loop combines two steps to keep track # of the signs. # At this point we have # A > 0, B <= 0, C <= 0, D > 0, # x' = x + B <= x < x" = x + A, # y' = y + C <= y < y" = y + D, # and # x'*N <= a' < x"*N, y'*N <= b' < y"*N, # where N = 2**n. # Now, if y' > 0, and x"//y' and x'//y" agree, # then their common value is equal to q = a'//b'. # In addition, # x'%y" = x' - q*y" < x" - q*y' = x"%y', # and # (x'%y")*N < a'%b' < (x"%y')*N. # On the other hand, we also have x//y == q, # and therefore # x'%y" = x + B - q*(y + D) = x%y + B', # x"%y' = x + A - q*(y + C) = x%y + A', # where # B' = B - q*D < 0, A' = A - q*C > 0. if y + C <= 0: break q = (x + A) // (y + C) # Now x'//y" <= q, and equality holds if # x' - q*y" = (x - q*y) + (B - q*D) >= 0. # This is a minor optimization to avoid division. x_qy, B_qD = x - q*y, B - q*D if x_qy + B_qD < 0: break # Next step in the Euclidean sequence. x, y = y, x_qy A, B, C, D = C, D, A - q*C, B_qD # At this point the signs of the coefficients # change and their roles are interchanged. # A <= 0, B > 0, C > 0, D < 0, # x' = x + A <= x < x" = x + B, # y' = y + D < y < y" = y + C. if y + D <= 0: break q = (x + B) // (y + D) x_qy, A_qC = x - q*y, A - q*C if x_qy + A_qC < 0: break x, y = y, x_qy A, B, C, D = C, D, A_qC, B - q*D # Now the conditions on top of the loop # are again satisfied. # A > 0, B < 0, C < 0, D > 0. if B == 0: # This can only happen when y == 0 in the beginning # and the inner loop does nothing. # Long division is forced. a, b = b, a % b continue # Compute new long arguments using the coefficients. a, b = A*a + B*b, C*a + D*b # Small divisors. Finish with the standard algorithm. while b: a, b = b, a % b return a def ilcm(*args): """Computes integer least common multiple. Examples ======== >>> from sympy import ilcm >>> ilcm(5, 10) 10 >>> ilcm(7, 3) 21 >>> ilcm(5, 10, 15) 30 """ if len(args) < 2: raise TypeError( 'ilcm() takes at least 2 arguments (%s given)' % len(args)) if 0 in args: return 0 a = args[0] for b in args[1:]: a = a // igcd(a, b) * b # since gcd(a,b) | a return a def igcdex(a, b): """Returns x, y, g such that g = x*a + y*b = gcd(a, b). Examples ======== >>> from sympy.core.numbers import igcdex >>> igcdex(2, 3) (-1, 1, 1) >>> igcdex(10, 12) (-1, 1, 2) >>> x, y, g = igcdex(100, 2004) >>> x, y, g (-20, 1, 4) >>> x*100 + y*2004 4 """ if (not a) and (not b): return (0, 1, 0) if not a: return (0, b//abs(b), abs(b)) if not b: return (a//abs(a), 0, abs(a)) if a < 0: a, x_sign = -a, -1 else: x_sign = 1 if b < 0: b, y_sign = -b, -1 else: y_sign = 1 x, y, r, s = 1, 0, 0, 1 while b: (c, q) = (a % b, a // b) (a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s) return (x*x_sign, y*y_sign, a) def mod_inverse(a, m): """ Return the number c such that, (a * c) = 1 (mod m) where c has the same sign as m. If no such value exists, a ValueError is raised. Examples ======== >>> from sympy import mod_inverse, S Suppose we wish to find multiplicative inverse x of 3 modulo 11. This is the same as finding x such that 3 * x = 1 (mod 11). One value of x that satisfies this congruence is 4. Because 3 * 4 = 12 and 12 = 1 (mod 11). This is the value returned by mod_inverse: >>> mod_inverse(3, 11) 4 >>> mod_inverse(-3, 11) 7 When there is a common factor between the numerators of ``a`` and ``m`` the inverse does not exist: >>> mod_inverse(2, 4) Traceback (most recent call last): ... ValueError: inverse of 2 mod 4 does not exist >>> mod_inverse(S(2)/7, S(5)/2) 7/2 References ========== .. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse .. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ c = None try: a, m = as_int(a), as_int(m) if m != 1 and m != -1: x, _, g = igcdex(a, m) if g == 1: c = x % m except ValueError: a, m = sympify(a), sympify(m) if not (a.is_number and m.is_number): raise TypeError(filldedent(''' Expected numbers for arguments; symbolic `mod_inverse` is not implemented but symbolic expressions can be handled with the similar function, sympy.polys.polytools.invert''')) big = (m > 1) if big not in (S.true, S.false): raise ValueError('m > 1 did not evaluate; try to simplify %s' % m) elif big: c = 1/a if c is None: raise ValueError('inverse of %s (mod %s) does not exist' % (a, m)) return c class Number(AtomicExpr): """Represents atomic numbers in SymPy. Explanation =========== Floating point numbers are represented by the Float class. Rational numbers (of any size) are represented by the Rational class. Integer numbers (of any size) are represented by the Integer class. Float and Rational are subclasses of Number; Integer is a subclass of Rational. For example, ``2/3`` is represented as ``Rational(2, 3)`` which is a different object from the floating point number obtained with Python division ``2/3``. Even for numbers that are exactly represented in binary, there is a difference between how two forms, such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy. The rational form is to be preferred in symbolic computations. Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or complex numbers ``3 + 4*I``, are not instances of Number class as they are not atomic. See Also ======== Float, Integer, Rational """ is_commutative = True is_number = True is_Number = True __slots__ = () # Used to make max(x._prec, y._prec) return x._prec when only x is a float _prec = -1 kind = NumberKind def __new__(cls, *obj): if len(obj) == 1: obj = obj[0] if isinstance(obj, Number): return obj if isinstance(obj, SYMPY_INTS): return Integer(obj) if isinstance(obj, tuple) and len(obj) == 2: return Rational(*obj) if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)): return Float(obj) if isinstance(obj, str): _obj = obj.lower() # float('INF') == float('inf') if _obj == 'nan': return S.NaN elif _obj == 'inf': return S.Infinity elif _obj == '+inf': return S.Infinity elif _obj == '-inf': return S.NegativeInfinity val = sympify(obj) if isinstance(val, Number): return val else: raise ValueError('String "%s" does not denote a Number' % obj) msg = "expected str|int|long|float|Decimal|Number object but got %r" raise TypeError(msg % type(obj).__name__) def could_extract_minus_sign(self): return bool(self.is_extended_negative) def invert(self, other, *gens, **args): from sympy.polys.polytools import invert if getattr(other, 'is_number', True): return mod_inverse(self, other) return invert(self, other, *gens, **args) def __divmod__(self, other): from sympy.functions.elementary.complexes import sign try: other = Number(other) if self.is_infinite or S.NaN in (self, other): return (S.NaN, S.NaN) except TypeError: return NotImplemented if not other: raise ZeroDivisionError('modulo by zero') if self.is_Integer and other.is_Integer: return Tuple(*divmod(self.p, other.p)) elif isinstance(other, Float): rat = self/Rational(other) else: rat = self/other if other.is_finite: w = int(rat) if rat >= 0 else int(rat) - 1 r = self - other*w else: w = 0 if not self or (sign(self) == sign(other)) else -1 r = other if w else self return Tuple(w, r) def __rdivmod__(self, other): try: other = Number(other) except TypeError: return NotImplemented return divmod(other, self) def _as_mpf_val(self, prec): """Evaluation of mpf tuple accurate to at least prec bits.""" raise NotImplementedError('%s needs ._as_mpf_val() method' % (self.__class__.__name__)) def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def _as_mpf_op(self, prec): prec = max(prec, self._prec) return self._as_mpf_val(prec), prec def __float__(self): return mlib.to_float(self._as_mpf_val(53)) def floor(self): raise NotImplementedError('%s needs .floor() method' % (self.__class__.__name__)) def ceiling(self): raise NotImplementedError('%s needs .ceiling() method' % (self.__class__.__name__)) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def _eval_conjugate(self): return self def _eval_order(self, *symbols): from sympy.series.order import Order # Order(5, x, y) -> Order(1,x,y) return Order(S.One, *symbols) def _eval_subs(self, old, new): if old == -self: return -new return self # there is no other possibility def _eval_is_finite(self): return True @classmethod def class_key(cls): return 1, 0, 'Number' @cacheit def sort_key(self, order=None): return self.class_key(), (0, ()), (), self @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.Infinity elif other is S.NegativeInfinity: return S.NegativeInfinity return AtomicExpr.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: return S.NegativeInfinity elif other is S.NegativeInfinity: return S.Infinity return AtomicExpr.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other is S.Infinity: if self.is_zero: return S.NaN elif self.is_positive: return S.Infinity else: return S.NegativeInfinity elif other is S.NegativeInfinity: if self.is_zero: return S.NaN elif self.is_positive: return S.NegativeInfinity else: return S.Infinity elif isinstance(other, Tuple): return NotImplemented return AtomicExpr.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.NaN: return S.NaN elif other in (S.Infinity, S.NegativeInfinity): return S.Zero return AtomicExpr.__truediv__(self, other) def __eq__(self, other): raise NotImplementedError('%s needs .__eq__() method' % (self.__class__.__name__)) def __ne__(self, other): raise NotImplementedError('%s needs .__ne__() method' % (self.__class__.__name__)) def __lt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s < %s" % (self, other)) raise NotImplementedError('%s needs .__lt__() method' % (self.__class__.__name__)) def __le__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s <= %s" % (self, other)) raise NotImplementedError('%s needs .__le__() method' % (self.__class__.__name__)) def __gt__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s > %s" % (self, other)) return _sympify(other).__lt__(self) def __ge__(self, other): try: other = _sympify(other) except SympifyError: raise TypeError("Invalid comparison %s >= %s" % (self, other)) return _sympify(other).__le__(self) def __hash__(self): return super().__hash__() def is_constant(self, *wrt, **flags): return True def as_coeff_mul(self, *deps, rational=True, **kwargs): # a -> c*t if self.is_Rational or not rational: return self, tuple() elif self.is_negative: return S.NegativeOne, (-self,) return S.One, (self,) def as_coeff_add(self, *deps): # a -> c + t if self.is_Rational: return self, tuple() return S.Zero, (self,) def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ if rational and not self.is_Rational: return S.One, self return (self, S.One) if self else (S.One, self) def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ if not rational: return self, S.Zero return S.Zero, self def gcd(self, other): """Compute GCD of `self` and `other`. """ from sympy.polys.polytools import gcd return gcd(self, other) def lcm(self, other): """Compute LCM of `self` and `other`. """ from sympy.polys.polytools import lcm return lcm(self, other) def cofactors(self, other): """Compute GCD and cofactors of `self` and `other`. """ from sympy.polys.polytools import cofactors return cofactors(self, other) class Float(Number): """Represent a floating-point number of arbitrary precision. Examples ======== >>> from sympy import Float >>> Float(3.5) 3.50000000000000 >>> Float(3) 3.00000000000000 Creating Floats from strings (and Python ``int`` and ``long`` types) will give a minimum precision of 15 digits, but the precision will automatically increase to capture all digits entered. >>> Float(1) 1.00000000000000 >>> Float(10**20) 100000000000000000000. >>> Float('1e20') 100000000000000000000. However, *floating-point* numbers (Python ``float`` types) retain only 15 digits of precision: >>> Float(1e20) 1.00000000000000e+20 >>> Float(1.23456789123456789) 1.23456789123457 It may be preferable to enter high-precision decimal numbers as strings: >>> Float('1.23456789123456789') 1.23456789123456789 The desired number of digits can also be specified: >>> Float('1e-3', 3) 0.00100 >>> Float(100, 4) 100.0 Float can automatically count significant figures if a null string is sent for the precision; spaces or underscores are also allowed. (Auto- counting is only allowed for strings, ints and longs). >>> Float('123 456 789.123_456', '') 123456789.123456 >>> Float('12e-3', '') 0.012 >>> Float(3, '') 3. If a number is written in scientific notation, only the digits before the exponent are considered significant if a decimal appears, otherwise the "e" signifies only how to move the decimal: >>> Float('60.e2', '') # 2 digits significant 6.0e+3 >>> Float('60e2', '') # 4 digits significant 6000. >>> Float('600e-2', '') # 3 digits significant 6.00 Notes ===== Floats are inexact by their nature unless their value is a binary-exact value. >>> approx, exact = Float(.1, 1), Float(.125, 1) For calculation purposes, evalf needs to be able to change the precision but this will not increase the accuracy of the inexact value. The following is the most accurate 5-digit approximation of a value of 0.1 that had only 1 digit of precision: >>> approx.evalf(5) 0.099609 By contrast, 0.125 is exact in binary (as it is in base 10) and so it can be passed to Float or evalf to obtain an arbitrary precision with matching accuracy: >>> Float(exact, 5) 0.12500 >>> exact.evalf(20) 0.12500000000000000000 Trying to make a high-precision Float from a float is not disallowed, but one must keep in mind that the *underlying float* (not the apparent decimal value) is being obtained with high precision. For example, 0.3 does not have a finite binary representation. The closest rational is the fraction 5404319552844595/2**54. So if you try to obtain a Float of 0.3 to 20 digits of precision you will not see the same thing as 0.3 followed by 19 zeros: >>> Float(0.3, 20) 0.29999999999999998890 If you want a 20-digit value of the decimal 0.3 (not the floating point approximation of 0.3) you should send the 0.3 as a string. The underlying representation is still binary but a higher precision than Python's float is used: >>> Float('0.3', 20) 0.30000000000000000000 Although you can increase the precision of an existing Float using Float it will not increase the accuracy -- the underlying value is not changed: >>> def show(f): # binary rep of Float ... from sympy import Mul, Pow ... s, m, e, b = f._mpf_ ... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False) ... print('%s at prec=%s' % (v, f._prec)) ... >>> t = Float('0.3', 3) >>> show(t) 4915/2**14 at prec=13 >>> show(Float(t, 20)) # higher prec, not higher accuracy 4915/2**14 at prec=70 >>> show(Float(t, 2)) # lower prec 307/2**10 at prec=10 The same thing happens when evalf is used on a Float: >>> show(t.evalf(20)) 4915/2**14 at prec=70 >>> show(t.evalf(2)) 307/2**10 at prec=10 Finally, Floats can be instantiated with an mpf tuple (n, c, p) to produce the number (-1)**n*c*2**p: >>> n, c, p = 1, 5, 0 >>> (-1)**n*c*2**p -5 >>> Float((1, 5, 0)) -5.00000000000000 An actual mpf tuple also contains the number of bits in c as the last element of the tuple: >>> _._mpf_ (1, 5, 0, 3) This is not needed for instantiation and is not the same thing as the precision. The mpf tuple and the precision are two separate quantities that Float tracks. In SymPy, a Float is a number that can be computed with arbitrary precision. Although floating point 'inf' and 'nan' are not such numbers, Float can create these numbers: >>> Float('-inf') -oo >>> _.is_Float False """ __slots__ = ('_mpf_', '_prec') _mpf_: tTuple[int, int, int, int] # A Float represents many real numbers, # both rational and irrational. is_rational = None is_irrational = None is_number = True is_real = True is_extended_real = True is_Float = True def __new__(cls, num, dps=None, prec=None, precision=None): if prec is not None: SymPyDeprecationWarning( feature="Using 'prec=XX' to denote decimal precision", useinstead="'dps=XX' for decimal precision and 'precision=XX' "\ "for binary precision", issue=12820, deprecated_since_version="1.1").warn() dps = prec del prec # avoid using this deprecated kwarg if dps is not None and precision is not None: raise ValueError('Both decimal and binary precision supplied. ' 'Supply only one. ') if isinstance(num, str): # Float accepts spaces as digit separators num = num.replace(' ', '').lower() if num.startswith('.') and len(num) > 1: num = '0' + num elif num.startswith('-.') and len(num) > 2: num = '-0.' + num[2:] elif num in ('inf', '+inf'): return S.Infinity elif num == '-inf': return S.NegativeInfinity elif isinstance(num, float) and num == 0: num = '0' elif isinstance(num, float) and num == float('inf'): return S.Infinity elif isinstance(num, float) and num == float('-inf'): return S.NegativeInfinity elif isinstance(num, float) and math.isnan(num): return S.NaN elif isinstance(num, (SYMPY_INTS, Integer)): num = str(num) elif num is S.Infinity: return num elif num is S.NegativeInfinity: return num elif num is S.NaN: return num elif _is_numpy_instance(num): # support for numpy datatypes num = _convert_numpy_types(num) elif isinstance(num, mpmath.mpf): if precision is None: if dps is None: precision = num.context.prec num = num._mpf_ if dps is None and precision is None: dps = 15 if isinstance(num, Float): return num if isinstance(num, str) and _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) dps = max(15, dps) precision = dps_to_prec(dps) elif precision == '' and dps is None or precision is None and dps == '': if not isinstance(num, str): raise ValueError('The null string can only be used when ' 'the number to Float is passed as a string or an integer.') ok = None if _literal_float(num): try: Num = decimal.Decimal(num) except decimal.InvalidOperation: pass else: isint = '.' not in num num, dps = _decimal_to_Rational_prec(Num) if num.is_Integer and isint: dps = max(dps, len(str(num).lstrip('-'))) precision = dps_to_prec(dps) ok = True if ok is None: raise ValueError('string-float not recognized: %s' % num) # decimal precision(dps) is set and maybe binary precision(precision) # as well.From here on binary precision is used to compute the Float. # Hence, if supplied use binary precision else translate from decimal # precision. if precision is None or precision == '': precision = dps_to_prec(dps) precision = int(precision) if isinstance(num, float): _mpf_ = mlib.from_float(num, precision, rnd) elif isinstance(num, str): _mpf_ = mlib.from_str(num, precision, rnd) elif isinstance(num, decimal.Decimal): if num.is_finite(): _mpf_ = mlib.from_str(str(num), precision, rnd) elif num.is_nan(): return S.NaN elif num.is_infinite(): if num > 0: return S.Infinity return S.NegativeInfinity else: raise ValueError("unexpected decimal value %s" % str(num)) elif isinstance(num, tuple) and len(num) in (3, 4): if isinstance(num[1], str): # it's a hexadecimal (coming from a pickled object) num = list(num) # If we're loading an object pickled in Python 2 into # Python 3, we may need to strip a tailing 'L' because # of a shim for int on Python 3, see issue #13470. if num[1].endswith('L'): num[1] = num[1][:-1] # Strip leading '0x' - gmpy2 only documents such inputs # with base prefix as valid when the 2nd argument (base) is 0. # When mpmath uses Sage as the backend, however, it # ends up including '0x' when preparing the picklable tuple. # See issue #19690. if num[1].startswith('0x'): num[1] = num[1][2:] # Now we can assume that it is in standard form num[1] = MPZ(num[1], 16) _mpf_ = tuple(num) else: if len(num) == 4: # handle normalization hack return Float._new(num, precision) else: if not all(( num[0] in (0, 1), num[1] >= 0, all(type(i) in (int, int) for i in num) )): raise ValueError('malformed mpf: %s' % (num,)) # don't compute number or else it may # over/underflow return Float._new( (num[0], num[1], num[2], bitcount(num[1])), precision) else: try: _mpf_ = num._as_mpf_val(precision) except (NotImplementedError, AttributeError): _mpf_ = mpmath.mpf(num, prec=precision)._mpf_ return cls._new(_mpf_, precision, zero=False) @classmethod def _new(cls, _mpf_, _prec, zero=True): # special cases if zero and _mpf_ == fzero: return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0 elif _mpf_ == _mpf_nan: return S.NaN elif _mpf_ == _mpf_inf: return S.Infinity elif _mpf_ == _mpf_ninf: return S.NegativeInfinity obj = Expr.__new__(cls) obj._mpf_ = mpf_norm(_mpf_, _prec) obj._prec = _prec return obj # mpz can't be pickled def __getnewargs_ex__(self): return ((mlib.to_pickable(self._mpf_),), {'precision': self._prec}) def _hashable_content(self): return (self._mpf_, self._prec) def floor(self): return Integer(int(mlib.to_int( mlib.mpf_floor(self._mpf_, self._prec)))) def ceiling(self): return Integer(int(mlib.to_int( mlib.mpf_ceil(self._mpf_, self._prec)))) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() @property def num(self): return mpmath.mpf(self._mpf_) def _as_mpf_val(self, prec): rv = mpf_norm(self._mpf_, prec) if rv != self._mpf_ and self._prec == prec: debug(self._mpf_, rv) return rv def _as_mpf_op(self, prec): return self._mpf_, max(prec, self._prec) def _eval_is_finite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return False return True def _eval_is_infinite(self): if self._mpf_ in (_mpf_inf, _mpf_ninf): return True return False def _eval_is_integer(self): return self._mpf_ == fzero def _eval_is_negative(self): if self._mpf_ in (_mpf_ninf, _mpf_inf): return False return self.num < 0 def _eval_is_positive(self): if self._mpf_ in (_mpf_ninf, _mpf_inf): return False return self.num > 0 def _eval_is_extended_negative(self): if self._mpf_ == _mpf_ninf: return True if self._mpf_ == _mpf_inf: return False return self.num < 0 def _eval_is_extended_positive(self): if self._mpf_ == _mpf_inf: return True if self._mpf_ == _mpf_ninf: return False return self.num > 0 def _eval_is_zero(self): return self._mpf_ == fzero def __bool__(self): return self._mpf_ != fzero def __neg__(self): if not self: return self return Float._new(mlib.mpf_neg(self._mpf_), self._prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec) return Number.__add__(self, other) @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec) return Number.__mul__(self, other) @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and other != 0 and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate: # calculate mod with Rationals, *then* round the result return Float(Rational.__mod__(Rational(self), other), precision=self._prec) if isinstance(other, Float) and global_parameters.evaluate: r = self/other if r == int(r): return Float(0, precision=max(self._prec, other._prec)) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Float) and global_parameters.evaluate: return other.__mod__(self) if isinstance(other, Number) and global_parameters.evaluate: rhs, prec = other._as_mpf_op(self._prec) return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec) return Number.__rmod__(self, other) def _eval_power(self, expt): """ expt is symbolic object but not equal to 0, 1 (-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) -> -> p**r*(sin(Pi*r) + cos(Pi*r)*I) """ if self == 0: if expt.is_extended_positive: return self if expt.is_extended_negative: return S.ComplexInfinity if isinstance(expt, Number): if isinstance(expt, Integer): prec = self._prec return Float._new( mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec) elif isinstance(expt, Rational) and \ expt.p == 1 and expt.q % 2 and self.is_negative: return Pow(S.NegativeOne, expt, evaluate=False)*( -self)._eval_power(expt) expt, prec = expt._as_mpf_op(self._prec) mpfself = self._mpf_ try: y = mpf_pow(mpfself, expt, prec, rnd) return Float._new(y, prec) except mlib.ComplexResult: re, im = mlib.mpc_pow( (mpfself, fzero), (expt, fzero), prec, rnd) return Float._new(re, prec) + \ Float._new(im, prec)*S.ImaginaryUnit def __abs__(self): return Float._new(mlib.mpf_abs(self._mpf_), self._prec) def __int__(self): if self._mpf_ == fzero: return 0 return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down def __eq__(self, other): from sympy.logic.boolalg import Boolean try: other = _sympify(other) except SympifyError: return NotImplemented if isinstance(other, Boolean): return False if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Float: # comparison is exact # so Float(.1, 3) != Float(.1, 33) return self._mpf_ == other._mpf_ if other.is_Rational: return other.__eq__(self) if other.is_Number: # numbers should compare at the same precision; # all _as_mpf_val routines should be sure to abide # by the request to change the prec if necessary; if # they don't, the equality test will fail since it compares # the mpf tuples ompf = other._as_mpf_val(self._prec) return bool(mlib.mpf_eq(self._mpf_, ompf)) if not self: return not other return False # Float != non-Number def __ne__(self, other): return not self == other def _Frel(self, other, op): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Rational: # test self*other.q <?> other.p without losing precision ''' >>> f = Float(.1,2) >>> i = 1234567890 >>> (f*i)._mpf_ (0, 471, 18, 9) >>> mlib.mpf_mul(f._mpf_, mlib.from_int(i)) (0, 505555550955, -12, 39) ''' smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q)) ompf = mlib.from_int(other.p) return _sympify(bool(op(smpf, ompf))) elif other.is_Float: return _sympify(bool( op(self._mpf_, other._mpf_))) elif other.is_comparable and other not in ( S.Infinity, S.NegativeInfinity): other = other.evalf(prec_to_dps(self._prec)) if other._prec > 1: if other.is_Number: return _sympify(bool( op(self._mpf_, other._as_mpf_val(self._prec)))) def __gt__(self, other): if isinstance(other, NumberSymbol): return other.__lt__(self) rv = self._Frel(other, mlib.mpf_gt) if rv is None: return Expr.__gt__(self, other) return rv def __ge__(self, other): if isinstance(other, NumberSymbol): return other.__le__(self) rv = self._Frel(other, mlib.mpf_ge) if rv is None: return Expr.__ge__(self, other) return rv def __lt__(self, other): if isinstance(other, NumberSymbol): return other.__gt__(self) rv = self._Frel(other, mlib.mpf_lt) if rv is None: return Expr.__lt__(self, other) return rv def __le__(self, other): if isinstance(other, NumberSymbol): return other.__ge__(self) rv = self._Frel(other, mlib.mpf_le) if rv is None: return Expr.__le__(self, other) return rv def __hash__(self): return super().__hash__() def epsilon_eq(self, other, epsilon="1e-15"): return abs(self - other) < Float(epsilon) def __format__(self, format_spec): return format(decimal.Decimal(str(self)), format_spec) # Add sympify converters converter[float] = converter[decimal.Decimal] = Float # this is here to work nicely in Sage RealNumber = Float class Rational(Number): """Represents rational numbers (p/q) of any size. Examples ======== >>> from sympy import Rational, nsimplify, S, pi >>> Rational(1, 2) 1/2 Rational is unprejudiced in accepting input. If a float is passed, the underlying value of the binary representation will be returned: >>> Rational(.5) 1/2 >>> Rational(.2) 3602879701896397/18014398509481984 If the simpler representation of the float is desired then consider limiting the denominator to the desired value or convert the float to a string (which is roughly equivalent to limiting the denominator to 10**12): >>> Rational(str(.2)) 1/5 >>> Rational(.2).limit_denominator(10**12) 1/5 An arbitrarily precise Rational is obtained when a string literal is passed: >>> Rational("1.23") 123/100 >>> Rational('1e-2') 1/100 >>> Rational(".1") 1/10 >>> Rational('1e-2/3.2') 1/320 The conversion of other types of strings can be handled by the sympify() function, and conversion of floats to expressions or simple fractions can be handled with nsimplify: >>> S('.[3]') # repeating digits in brackets 1/3 >>> S('3**2/10') # general expressions 9/10 >>> nsimplify(.3) # numbers that have a simple form 3/10 But if the input does not reduce to a literal Rational, an error will be raised: >>> Rational(pi) Traceback (most recent call last): ... TypeError: invalid input: pi Low-level --------- Access numerator and denominator as .p and .q: >>> r = Rational(3, 4) >>> r 3/4 >>> r.p 3 >>> r.q 4 Note that p and q return integers (not SymPy Integers) so some care is needed when using them in expressions: >>> r.p/r.q 0.75 If an unevaluated Rational is desired, ``gcd=1`` can be passed and this will keep common divisors of the numerator and denominator from being eliminated. It is not possible, however, to leave a negative value in the denominator. >>> Rational(2, 4, gcd=1) 2/4 >>> Rational(2, -4, gcd=1).q 4 See Also ======== sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify """ is_real = True is_integer = False is_rational = True is_number = True __slots__ = ('p', 'q') p: int q: int is_Rational = True @cacheit def __new__(cls, p, q=None, gcd=None): if q is None: if isinstance(p, Rational): return p if isinstance(p, SYMPY_INTS): pass else: if isinstance(p, (float, Float)): return Rational(*_as_integer_ratio(p)) if not isinstance(p, str): try: p = sympify(p) except (SympifyError, SyntaxError): pass # error will raise below else: if p.count('/') > 1: raise TypeError('invalid input: %s' % p) p = p.replace(' ', '') pq = p.rsplit('/', 1) if len(pq) == 2: p, q = pq fp = fractions.Fraction(p) fq = fractions.Fraction(q) p = fp/fq try: p = fractions.Fraction(p) except ValueError: pass # error will raise below else: return Rational(p.numerator, p.denominator, 1) if not isinstance(p, Rational): raise TypeError('invalid input: %s' % p) q = 1 gcd = 1 if not isinstance(p, SYMPY_INTS): p = Rational(p) q *= p.q p = p.p else: p = int(p) if not isinstance(q, SYMPY_INTS): q = Rational(q) p *= q.q q = q.p else: q = int(q) # p and q are now ints if q == 0: if p == 0: if _errdict["divide"]: raise ValueError("Indeterminate 0/0") else: return S.NaN return S.ComplexInfinity if q < 0: q = -q p = -p if not gcd: gcd = igcd(abs(p), q) if gcd > 1: p //= gcd q //= gcd if q == 1: return Integer(p) if p == 1 and q == 2: return S.Half obj = Expr.__new__(cls) obj.p = p obj.q = q return obj def limit_denominator(self, max_denominator=1000000): """Closest Rational to self with denominator at most max_denominator. Examples ======== >>> from sympy import Rational >>> Rational('3.141592653589793').limit_denominator(10) 22/7 >>> Rational('3.141592653589793').limit_denominator(100) 311/99 """ f = fractions.Fraction(self.p, self.q) return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator)))) def __getnewargs__(self): return (self.p, self.q) def _hashable_content(self): return (self.p, self.q) def _eval_is_positive(self): return self.p > 0 def _eval_is_zero(self): return self.p == 0 def __neg__(self): return Rational(-self.p, self.q) @_sympifyit('other', NotImplemented) def __add__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p + self.q*other.p, self.q, 1) elif isinstance(other, Rational): #TODO: this can probably be optimized more return Rational(self.p*other.q + self.q*other.p, self.q*other.q) elif isinstance(other, Float): return other + self else: return Number.__add__(self, other) return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p - self.q*other.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.p*other.q - self.q*other.p, self.q*other.q) elif isinstance(other, Float): return -other + self else: return Number.__sub__(self, other) return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.q*other.p - self.p, self.q, 1) elif isinstance(other, Rational): return Rational(self.q*other.p - self.p*other.q, self.q*other.q) elif isinstance(other, Float): return -self + other else: return Number.__rsub__(self, other) return Number.__rsub__(self, other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(self.p*other.p, self.q, igcd(other.p, self.q)) elif isinstance(other, Rational): return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p)) elif isinstance(other, Float): return other*self else: return Number.__mul__(self, other) return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): if self.p and other.p == S.Zero: return S.ComplexInfinity else: return Rational(self.p, self.q*other.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return self*(1/other) else: return Number.__truediv__(self, other) return Number.__truediv__(self, other) @_sympifyit('other', NotImplemented) def __rtruediv__(self, other): if global_parameters.evaluate: if isinstance(other, Integer): return Rational(other.p*self.q, self.p, igcd(self.p, other.p)) elif isinstance(other, Rational): return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q)) elif isinstance(other, Float): return other*(1/self) else: return Number.__rtruediv__(self, other) return Number.__rtruediv__(self, other) @_sympifyit('other', NotImplemented) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, Rational): n = (self.p*other.q) // (other.p*self.q) return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q) if isinstance(other, Float): # calculate mod with Rationals, *then* round the answer return Float(self.__mod__(Rational(other)), precision=other._prec) return Number.__mod__(self, other) return Number.__mod__(self, other) @_sympifyit('other', NotImplemented) def __rmod__(self, other): if isinstance(other, Rational): return Rational.__mod__(other, self) return Number.__rmod__(self, other) def _eval_power(self, expt): if isinstance(expt, Number): if isinstance(expt, Float): return self._eval_evalf(expt._prec)**expt if expt.is_extended_negative: # (3/4)**-2 -> (4/3)**2 ne = -expt if (ne is S.One): return Rational(self.q, self.p) if self.is_negative: return S.NegativeOne**expt*Rational(self.q, -self.p)**ne else: return Rational(self.q, self.p)**ne if expt is S.Infinity: # -oo already caught by test for negative if self.p > self.q: # (3/2)**oo -> oo return S.Infinity if self.p < -self.q: # (-3/2)**oo -> oo + I*oo return S.Infinity + S.Infinity*S.ImaginaryUnit return S.Zero if isinstance(expt, Integer): # (4/3)**2 -> 4**2 / 3**2 return Rational(self.p**expt.p, self.q**expt.p, 1) if isinstance(expt, Rational): intpart = expt.p // expt.q if intpart: intpart += 1 remfracpart = intpart*expt.q - expt.p ratfracpart = Rational(remfracpart, expt.q) if self.p != 1: return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1) return Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1) else: remfracpart = expt.q - expt.p ratfracpart = Rational(remfracpart, expt.q) if self.p != 1: return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q, 1) return Integer(self.q)**ratfracpart*Rational(1, self.q, 1) if self.is_extended_negative and expt.is_even: return (-self)**expt return def _as_mpf_val(self, prec): return mlib.from_rational(self.p, self.q, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd)) def __abs__(self): return Rational(abs(self.p), self.q) def __int__(self): p, q = self.p, self.q if p < 0: return -int(-p//q) return int(p//q) def floor(self): return Integer(self.p // self.q) def ceiling(self): return -Integer(-self.p // self.q) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if not isinstance(other, Number): # S(0) == S.false is False # S(0) == False is True return False if not self: return not other if other.is_NumberSymbol: if other.is_irrational: return False return other.__eq__(self) if other.is_Rational: # a Rational is always in reduced form so will never be 2/4 # so we can just check equivalence of args return self.p == other.p and self.q == other.q if other.is_Float: # all Floats have a denominator that is a power of 2 # so if self doesn't, it can't be equal to other if self.q & (self.q - 1): return False s, m, t = other._mpf_[:3] if s: m = -m if not t: # other is an odd integer if not self.is_Integer or self.is_even: return False return m == self.p from .power import integer_log if t > 0: # other is an even integer if not self.is_Integer: return False # does m*2**t == self.p return self.p and not self.p % m and \ integer_log(self.p//m, 2) == (t, True) # does non-integer s*m/2**-t = p/q? if self.is_Integer: return False return m == self.p and integer_log(self.q, 2) == (-t, True) return False def __ne__(self, other): return not self == other def _Rrel(self, other, attr): # if you want self < other, pass self, other, __gt__ try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Number: op = None s, o = self, other if other.is_NumberSymbol: op = getattr(o, attr) elif other.is_Float: op = getattr(o, attr) elif other.is_Rational: s, o = Integer(s.p*o.q), Integer(s.q*o.p) op = getattr(o, attr) if op: return op(s) if o.is_number and o.is_extended_real: return Integer(s.p), s.q*o def __gt__(self, other): rv = self._Rrel(other, '__lt__') if rv is None: rv = self, other elif not isinstance(rv, tuple): return rv return Expr.__gt__(*rv) def __ge__(self, other): rv = self._Rrel(other, '__le__') if rv is None: rv = self, other elif not isinstance(rv, tuple): return rv return Expr.__ge__(*rv) def __lt__(self, other): rv = self._Rrel(other, '__gt__') if rv is None: rv = self, other elif not isinstance(rv, tuple): return rv return Expr.__lt__(*rv) def __le__(self, other): rv = self._Rrel(other, '__ge__') if rv is None: rv = self, other elif not isinstance(rv, tuple): return rv return Expr.__le__(*rv) def __hash__(self): return super().__hash__() def factors(self, limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): """A wrapper to factorint which return factors of self that are smaller than limit (or cheap to compute). Special methods of factoring are disabled by default so that only trial division is used. """ from sympy.ntheory.factor_ import factorrat return factorrat(self, limit=limit, use_trial=use_trial, use_rho=use_rho, use_pm1=use_pm1, verbose=verbose).copy() @property def numerator(self): return self.p @property def denominator(self): return self.q @_sympifyit('other', NotImplemented) def gcd(self, other): if isinstance(other, Rational): if other == S.Zero: return other return Rational( igcd(self.p, other.p), ilcm(self.q, other.q)) return Number.gcd(self, other) @_sympifyit('other', NotImplemented) def lcm(self, other): if isinstance(other, Rational): return Rational( self.p // igcd(self.p, other.p) * other.p, igcd(self.q, other.q)) return Number.lcm(self, other) def as_numer_denom(self): return Integer(self.p), Integer(self.q) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import S >>> (S(-3)/2).as_content_primitive() (3/2, -1) See docstring of Expr.as_content_primitive for more examples. """ if self: if self.is_positive: return self, S.One return -self, S.NegativeOne return S.One, self def as_coeff_Mul(self, rational=False): """Efficiently extract the coefficient of a product. """ return self, S.One def as_coeff_Add(self, rational=False): """Efficiently extract the coefficient of a summation. """ return self, S.Zero class Integer(Rational): """Represents integer numbers of any size. Examples ======== >>> from sympy import Integer >>> Integer(3) 3 If a float or a rational is passed to Integer, the fractional part will be discarded; the effect is of rounding toward zero. >>> Integer(3.8) 3 >>> Integer(-3.8) -3 A string is acceptable input if it can be parsed as an integer: >>> Integer("9" * 20) 99999999999999999999 It is rarely needed to explicitly instantiate an Integer, because Python integers are automatically converted to Integer when they are used in SymPy expressions. """ q = 1 is_integer = True is_number = True is_Integer = True __slots__ = ('p',) def _as_mpf_val(self, prec): return mlib.from_int(self.p, prec, rnd) def _mpmath_(self, prec, rnd): return mpmath.make_mpf(self._as_mpf_val(prec)) @cacheit def __new__(cls, i): if isinstance(i, str): i = i.replace(' ', '') # whereas we cannot, in general, make a Rational from an # arbitrary expression, we can make an Integer unambiguously # (except when a non-integer expression happens to round to # an integer). So we proceed by taking int() of the input and # let the int routines determine whether the expression can # be made into an int or whether an error should be raised. try: ival = int(i) except TypeError: raise TypeError( "Argument of Integer should be of numeric type, got %s." % i) # We only work with well-behaved integer types. This converts, for # example, numpy.int32 instances. if ival == 1: return S.One if ival == -1: return S.NegativeOne if ival == 0: return S.Zero obj = Expr.__new__(cls) obj.p = ival return obj def __getnewargs__(self): return (self.p,) # Arithmetic operations are here for efficiency def __int__(self): return self.p def floor(self): return Integer(self.p) def ceiling(self): return Integer(self.p) def __floor__(self): return self.floor() def __ceil__(self): return self.ceiling() def __neg__(self): return Integer(-self.p) def __abs__(self): if self.p >= 0: return self else: return Integer(-self.p) def __divmod__(self, other): if isinstance(other, Integer) and global_parameters.evaluate: return Tuple(*(divmod(self.p, other.p))) else: return Number.__divmod__(self, other) def __rdivmod__(self, other): if isinstance(other, int) and global_parameters.evaluate: return Tuple(*(divmod(other, self.p))) else: try: other = Number(other) except TypeError: msg = "unsupported operand type(s) for divmod(): '%s' and '%s'" oname = type(other).__name__ sname = type(self).__name__ raise TypeError(msg % (oname, sname)) return Number.__divmod__(other, self) # TODO make it decorator + bytecodehacks? def __add__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p + other) elif isinstance(other, Integer): return Integer(self.p + other.p) elif isinstance(other, Rational): return Rational(self.p*other.q + other.p, other.q, 1) return Rational.__add__(self, other) else: return Add(self, other) def __radd__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other + self.p) elif isinstance(other, Rational): return Rational(other.p + self.p*other.q, other.q, 1) return Rational.__radd__(self, other) return Rational.__radd__(self, other) def __sub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p - other) elif isinstance(other, Integer): return Integer(self.p - other.p) elif isinstance(other, Rational): return Rational(self.p*other.q - other.p, other.q, 1) return Rational.__sub__(self, other) return Rational.__sub__(self, other) def __rsub__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other - self.p) elif isinstance(other, Rational): return Rational(other.p - self.p*other.q, other.q, 1) return Rational.__rsub__(self, other) return Rational.__rsub__(self, other) def __mul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p*other) elif isinstance(other, Integer): return Integer(self.p*other.p) elif isinstance(other, Rational): return Rational(self.p*other.p, other.q, igcd(self.p, other.q)) return Rational.__mul__(self, other) return Rational.__mul__(self, other) def __rmul__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other*self.p) elif isinstance(other, Rational): return Rational(other.p*self.p, other.q, igcd(self.p, other.q)) return Rational.__rmul__(self, other) return Rational.__rmul__(self, other) def __mod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(self.p % other) elif isinstance(other, Integer): return Integer(self.p % other.p) return Rational.__mod__(self, other) return Rational.__mod__(self, other) def __rmod__(self, other): if global_parameters.evaluate: if isinstance(other, int): return Integer(other % self.p) elif isinstance(other, Integer): return Integer(other.p % self.p) return Rational.__rmod__(self, other) return Rational.__rmod__(self, other) def __eq__(self, other): if isinstance(other, int): return (self.p == other) elif isinstance(other, Integer): return (self.p == other.p) return Rational.__eq__(self, other) def __ne__(self, other): return not self == other def __gt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p > other.p) return Rational.__gt__(self, other) def __lt__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p < other.p) return Rational.__lt__(self, other) def __ge__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p >= other.p) return Rational.__ge__(self, other) def __le__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if other.is_Integer: return _sympify(self.p <= other.p) return Rational.__le__(self, other) def __hash__(self): return hash(self.p) def __index__(self): return self.p ######################################## def _eval_is_odd(self): return bool(self.p % 2) def _eval_power(self, expt): """ Tries to do some simplifications on self**expt Returns None if no further simplifications can be done. Explanation =========== When exponent is a fraction (so we have for example a square root), we try to find a simpler representation by factoring the argument up to factors of 2**15, e.g. - sqrt(4) becomes 2 - sqrt(-4) becomes 2*I - (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7) Further simplification would require a special call to factorint on the argument which is not done here for sake of speed. """ from sympy.ntheory.factor_ import perfect_power if expt is S.Infinity: if self.p > S.One: return S.Infinity # cases -1, 0, 1 are done in their respective classes return S.Infinity + S.ImaginaryUnit*S.Infinity if expt is S.NegativeInfinity: return Rational(1, self, 1)**S.Infinity if not isinstance(expt, Number): # simplify when expt is even # (-2)**k --> 2**k if self.is_negative and expt.is_even: return (-self)**expt if isinstance(expt, Float): # Rational knows how to exponentiate by a Float return super()._eval_power(expt) if not isinstance(expt, Rational): return if expt is S.Half and self.is_negative: # we extract I for this special case since everyone is doing so return S.ImaginaryUnit*Pow(-self, expt) if expt.is_negative: # invert base and change sign on exponent ne = -expt if self.is_negative: return S.NegativeOne**expt*Rational(1, -self, 1)**ne else: return Rational(1, self.p, 1)**ne # see if base is a perfect root, sqrt(4) --> 2 x, xexact = integer_nthroot(abs(self.p), expt.q) if xexact: # if it's a perfect root we've finished result = Integer(x**abs(expt.p)) if self.is_negative: result *= S.NegativeOne**expt return result # The following is an algorithm where we collect perfect roots # from the factors of base. # if it's not an nth root, it still might be a perfect power b_pos = int(abs(self.p)) p = perfect_power(b_pos) if p is not False: dict = {p[0]: p[1]} else: dict = Integer(b_pos).factors(limit=2**15) # now process the dict of factors out_int = 1 # integer part out_rad = 1 # extracted radicals sqr_int = 1 sqr_gcd = 0 sqr_dict = {} for prime, exponent in dict.items(): exponent *= expt.p # remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10) div_e, div_m = divmod(exponent, expt.q) if div_e > 0: out_int *= prime**div_e if div_m > 0: # see if the reduced exponent shares a gcd with e.q # (2**2)**(1/10) -> 2**(1/5) g = igcd(div_m, expt.q) if g != 1: out_rad *= Pow(prime, Rational(div_m//g, expt.q//g, 1)) else: sqr_dict[prime] = div_m # identify gcd of remaining powers for p, ex in sqr_dict.items(): if sqr_gcd == 0: sqr_gcd = ex else: sqr_gcd = igcd(sqr_gcd, ex) if sqr_gcd == 1: break for k, v in sqr_dict.items(): sqr_int *= k**(v//sqr_gcd) if sqr_int == b_pos and out_int == 1 and out_rad == 1: result = None else: result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q)) if self.is_negative: result *= Pow(S.NegativeOne, expt) return result def _eval_is_prime(self): from sympy.ntheory.primetest import isprime return isprime(self) def _eval_is_composite(self): if self > 1: return fuzzy_not(self.is_prime) else: return False def as_numer_denom(self): return self, S.One @_sympifyit('other', NotImplemented) def __floordiv__(self, other): if not isinstance(other, Expr): return NotImplemented if isinstance(other, Integer): return Integer(self.p // other) return Integer(divmod(self, other)[0]) def __rfloordiv__(self, other): return Integer(Integer(other).p // self.p) # These bitwise operations (__lshift__, __rlshift__, ..., __invert__) are defined # for Integer only and not for general SymPy expressions. This is to achieve # compatibility with the numbers.Integral ABC which only defines these operations # among instances of numbers.Integral. Therefore, these methods check explicitly for # integer types rather than using sympify because they should not accept arbitrary # symbolic expressions and there is no symbolic analogue of numbers.Integral's # bitwise operations. def __lshift__(self, other): if isinstance(other, (int, Integer, numbers.Integral)): return Integer(self.p << int(other)) else: return NotImplemented def __rlshift__(self, other): if isinstance(other, (int, numbers.Integral)): return Integer(int(other) << self.p) else: return NotImplemented def __rshift__(self, other): if isinstance(other, (int, Integer, numbers.Integral)): return Integer(self.p >> int(other)) else: return NotImplemented def __rrshift__(self, other): if isinstance(other, (int, numbers.Integral)): return Integer(int(other) >> self.p) else: return NotImplemented def __and__(self, other): if isinstance(other, (int, Integer, numbers.Integral)): return Integer(self.p & int(other)) else: return NotImplemented def __rand__(self, other): if isinstance(other, (int, numbers.Integral)): return Integer(int(other) & self.p) else: return NotImplemented def __xor__(self, other): if isinstance(other, (int, Integer, numbers.Integral)): return Integer(self.p ^ int(other)) else: return NotImplemented def __rxor__(self, other): if isinstance(other, (int, numbers.Integral)): return Integer(int(other) ^ self.p) else: return NotImplemented def __or__(self, other): if isinstance(other, (int, Integer, numbers.Integral)): return Integer(self.p | int(other)) else: return NotImplemented def __ror__(self, other): if isinstance(other, (int, numbers.Integral)): return Integer(int(other) | self.p) else: return NotImplemented def __invert__(self): return Integer(~self.p) # Add sympify converters converter[int] = Integer class AlgebraicNumber(Expr): r""" Class for representing algebraic numbers in SymPy. Symbolically, an instance of this class represents an element $\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$. That is, the algebraic number $\alpha$ is represented as an element of a particular number field $\mathbb{Q}(\theta)$, with a particular embedding of this field into the complex numbers. Formally, the primitive element $\theta$ is given by two data points: (1) its minimal polynomial (which defines $\mathbb{Q}(\theta)$), and (2) a particular complex number that is a root of this polynomial (which defines the embedding $\mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$). Finally, the algebraic number $\alpha$ which we represent is then given by the coefficients of a polynomial in $\theta$. """ __slots__ = ('rep', 'root', 'alias', 'minpoly', '_own_minpoly') is_AlgebraicNumber = True is_algebraic = True is_number = True kind = NumberKind # Optional alias symbol is not free. # Actually, alias should be a Str, but some methods # expect that it be an instance of Expr. free_symbols: tSet[Basic] = set() def __new__(cls, expr, coeffs=None, alias=None, **args): r""" Construct a new algebraic number $\alpha$ belonging to a number field $k = \mathbb{Q}(\theta)$. There are four instance attributes to be determined: =========== ============================================================================ Attribute Type/Meaning =========== ============================================================================ ``root`` :py:class:`~.Expr` for $\theta$ as a complex number ``minpoly`` :py:class:`~.Poly`, the minimal polynomial of $\theta$ ``rep`` :py:class:`~sympy.polys.polyclasses.DMP` giving $\alpha$ as poly in $\theta$ ``alias`` :py:class:`~.Symbol` for $\theta$, or ``None`` =========== ============================================================================ See Parameters section for how they are determined. Parameters ========== expr : :py:class:`~.Expr`, or pair $(m, r)$ There are three distinct modes of construction, depending on what is passed as *expr*. **(1)** *expr* is an :py:class:`~.AlgebraicNumber`: In this case we begin by copying all four instance attributes from *expr*. If *coeffs* were also given, we compose the two coeff polynomials (see below). If an *alias* was given, it overrides. **(2)** *expr* is any other type of :py:class:`~.Expr`: Then ``root`` will equal *expr*. Therefore it must express an algebraic quantity, and we will compute its ``minpoly``. **(3)** *expr* is an ordered pair $(m, r)$ giving the ``minpoly`` $m$, and a ``root`` $r$ thereof, which together define $\theta$. In this case $m$ may be either a univariate :py:class:`~.Poly` or any :py:class:`~.Expr` which represents the same, while $r$ must be some :py:class:`~.Expr` representing a complex number that is a root of $m$, including both explicit expressions in radicals, and instances of :py:class:`~.ComplexRootOf` or :py:class:`~.AlgebraicNumber`. coeffs : list, :py:class:`~.ANP`, None, optional (default=None) This defines ``rep``, giving the algebraic number $\alpha$ as a polynomial in $\theta$. If a list, the elements should be integers or rational numbers. If an :py:class:`~.ANP`, we take its coefficients (using its :py:meth:`~.ANP.to_list()` method). If ``None``, then the list of coefficients defaults to ``[1, 0]``, meaning that $\alpha = \theta$ is the primitive element of the field. If *expr* was an :py:class:`~.AlgebraicNumber`, let $g(x)$ be its ``rep`` polynomial, and let $f(x)$ be the polynomial defined by *coeffs*. Then ``self.rep`` will represent the composition $(f \circ g)(x)$. alias : str, :py:class:`~.Symbol`, None, optional (default=None) This is a way to provide a name for the primitive element. We described several ways in which the *expr* argument can define the value of the primitive element, but none of these methods gave it a name. Here, for example, *alias* could be set as ``Symbol('theta')``, in order to make this symbol appear when $\alpha$ is printed, or rendered as a polynomial, using the :py:meth:`~.as_poly()` method. Examples ======== Recall that we are constructing an algebraic number as a field element $\alpha \in \mathbb{Q}(\theta)$. >>> from sympy import AlgebraicNumber, sqrt, CRootOf, S >>> from sympy.abc import x Example (1): $\alpha = \theta = \sqrt{2}$ >>> a1 = AlgebraicNumber(sqrt(2)) >>> a1.minpoly_of_element().as_expr(x) x**2 - 2 >>> a1.evalf(10) 1.414213562 Example (2): $\alpha = 3 \sqrt{2} - 5$, $\theta = \sqrt{2}$. We can either build on the last example: >>> a2 = AlgebraicNumber(a1, [3, -5]) >>> a2.as_expr() -5 + 3*sqrt(2) or start from scratch: >>> a2 = AlgebraicNumber(sqrt(2), [3, -5]) >>> a2.as_expr() -5 + 3*sqrt(2) Example (3): $\alpha = 6 \sqrt{2} - 11$, $\theta = \sqrt{2}$. Again we can build on the previous example, and we see that the coeff polys are composed: >>> a3 = AlgebraicNumber(a2, [2, -1]) >>> a3.as_expr() -11 + 6*sqrt(2) reflecting the fact that $(2x - 1) \circ (3x - 5) = 6x - 11$. Example (4): $\alpha = \sqrt{2}$, $\theta = \sqrt{2} + \sqrt{3}$. The easiest way is to use the :py:func:`~.to_number_field()` function: >>> from sympy import to_number_field >>> a4 = to_number_field(sqrt(2), sqrt(2) + sqrt(3)) >>> a4.minpoly_of_element().as_expr(x) x**2 - 2 >>> a4.to_root() sqrt(2) >>> a4.primitive_element() sqrt(2) + sqrt(3) >>> a4.coeffs() [1/2, 0, -9/2, 0] but if you already knew the right coefficients, you could construct it directly: >>> a4 = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0]) >>> a4.to_root() sqrt(2) >>> a4.primitive_element() sqrt(2) + sqrt(3) Example (5): Construct the Golden Ratio as an element of the 5th cyclotomic field, supposing we already know its coefficients. This time we introduce the alias $\zeta$ for the primitive element of the field: >>> from sympy import cyclotomic_poly >>> from sympy.abc import zeta >>> a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), ... [-1, -1, 0, 0], alias=zeta) >>> a5.as_poly().as_expr() -zeta**3 - zeta**2 >>> a5.evalf() 1.61803398874989 (The index ``-1`` to ``CRootOf`` selects the complex root with the largest real and imaginary parts, which in this case is $\mathrm{e}^{2i\pi/5}$. See :py:class:`~.ComplexRootOf`.) Example (6): Building on the last example, construct the number $2 \phi \in \mathbb{Q}(\phi)$, where $\phi$ is the Golden Ratio: >>> from sympy.abc import phi >>> a6 = AlgebraicNumber(a5.to_root(), coeffs=[2, 0], alias=phi) >>> a6.as_poly().as_expr() 2*phi >>> a6.primitive_element().evalf() 1.61803398874989 Note that we needed to use ``a5.to_root()``, since passing ``a5`` as the first argument would have constructed the number $2 \phi$ as an element of the field $\mathbb{Q}(\zeta)$: >>> a6_wrong = AlgebraicNumber(a5, coeffs=[2, 0]) >>> a6_wrong.as_poly().as_expr() -2*zeta**3 - 2*zeta**2 >>> a6_wrong.primitive_element().evalf() 0.309016994374947 + 0.951056516295154*I """ from sympy.polys.polyclasses import ANP, DMP from sympy.polys.numberfields import minimal_polynomial expr = sympify(expr) rep0 = None alias0 = None if isinstance(expr, (tuple, Tuple)): minpoly, root = expr if not minpoly.is_Poly: from sympy.polys.polytools import Poly minpoly = Poly(minpoly) elif expr.is_AlgebraicNumber: minpoly, root, rep0, alias0 = (expr.minpoly, expr.root, expr.rep, expr.alias) else: minpoly, root = minimal_polynomial( expr, args.get('gen'), polys=True), expr dom = minpoly.get_domain() if coeffs is not None: if not isinstance(coeffs, ANP): rep = DMP.from_sympy_list(sympify(coeffs), 0, dom) scoeffs = Tuple(*coeffs) else: rep = DMP.from_list(coeffs.to_list(), 0, dom) scoeffs = Tuple(*coeffs.to_list()) else: rep = DMP.from_list([1, 0], 0, dom) scoeffs = Tuple(1, 0) if rep0 is not None: from sympy.polys.densetools import dup_compose c = dup_compose(rep.rep, rep0.rep, dom) rep = DMP.from_list(c, 0, dom) scoeffs = Tuple(*c) if rep.degree() >= minpoly.degree(): rep = rep.rem(minpoly.rep) sargs = (root, scoeffs) alias = alias or alias0 if alias is not None: from .symbol import Symbol if not isinstance(alias, Symbol): alias = Symbol(alias) sargs = sargs + (alias,) obj = Expr.__new__(cls, *sargs) obj.rep = rep obj.root = root obj.alias = alias obj.minpoly = minpoly obj._own_minpoly = None return obj def __hash__(self): return super().__hash__() def _eval_evalf(self, prec): return self.as_expr()._evalf(prec) @property def is_aliased(self): """Returns ``True`` if ``alias`` was set. """ return self.alias is not None def as_poly(self, x=None): """Create a Poly instance from ``self``. """ from sympy.polys.polytools import Poly, PurePoly if x is not None: return Poly.new(self.rep, x) else: if self.alias is not None: return Poly.new(self.rep, self.alias) else: from .symbol import Dummy return PurePoly.new(self.rep, Dummy('x')) def as_expr(self, x=None): """Create a Basic expression from ``self``. """ return self.as_poly(x or self.root).as_expr().expand() def coeffs(self): """Returns all SymPy coefficients of an algebraic number. """ return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ] def native_coeffs(self): """Returns all native coefficients of an algebraic number. """ return self.rep.all_coeffs() def to_algebraic_integer(self): """Convert ``self`` to an algebraic integer. """ from sympy.polys.polytools import Poly f = self.minpoly if f.LC() == 1: return self coeff = f.LC()**(f.degree() - 1) poly = f.compose(Poly(f.gen/f.LC())) minpoly = poly*coeff root = f.LC()*self.root return AlgebraicNumber((minpoly, root), self.coeffs()) def _eval_simplify(self, **kwargs): from sympy.polys.rootoftools import CRootOf from sympy.polys import minpoly measure, ratio = kwargs['measure'], kwargs['ratio'] for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]: if minpoly(self.root - r).is_Symbol: # use the matching root if it's simpler if measure(r) < ratio*measure(self.root): return AlgebraicNumber(r) return self def field_element(self, coeffs): r""" Form another element of the same number field. Explanation =========== If we represent $\alpha \in \mathbb{Q}(\theta)$, form another element $\beta \in \mathbb{Q}(\theta)$ of the same number field. Parameters ========== coeffs : list, :py:class:`~.ANP` Like the *coeffs* arg to the class :py:meth:`constructor<.AlgebraicNumber.__new__>`, defines the new element as a polynomial in the primitive element. If a list, the elements should be integers or rational numbers. If an :py:class:`~.ANP`, we take its coefficients (using its :py:meth:`~.ANP.to_list()` method). Examples ======== >>> from sympy import AlgebraicNumber, sqrt >>> a = AlgebraicNumber(sqrt(5), [-1, 1]) >>> b = a.field_element([3, 2]) >>> print(a) 1 - sqrt(5) >>> print(b) 2 + 3*sqrt(5) >>> print(b.primitive_element() == a.primitive_element()) True See Also ======== .AlgebraicNumber.__new__() """ return AlgebraicNumber( (self.minpoly, self.root), coeffs=coeffs, alias=self.alias) @property def is_primitive_element(self): r""" Say whether this algebraic number $\alpha \in \mathbb{Q}(\theta)$ is equal to the primitive element $\theta$ for its field. """ c = self.coeffs() # Second case occurs if self.minpoly is linear: return c == [1, 0] or c == [self.root] def primitive_element(self): r""" Get the primitive element $\theta$ for the number field $\mathbb{Q}(\theta)$ to which this algebraic number $\alpha$ belongs. Returns ======= AlgebraicNumber """ if self.is_primitive_element: return self return self.field_element([1, 0]) def to_primitive_element(self, radicals=True): r""" Convert ``self`` to an :py:class:`~.AlgebraicNumber` instance that is equal to its own primitive element. Explanation =========== If we represent $\alpha \in \mathbb{Q}(\theta)$, $\alpha \neq \theta$, construct a new :py:class:`~.AlgebraicNumber` that represents $\alpha \in \mathbb{Q}(\alpha)$. Examples ======== >>> from sympy import sqrt, to_number_field >>> from sympy.abc import x >>> a = to_number_field(sqrt(2), sqrt(2) + sqrt(3)) The :py:class:`~.AlgebraicNumber` ``a`` represents the number $\sqrt{2}$ in the field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$. Rendering ``a`` as a polynomial, >>> a.as_poly().as_expr(x) x**3/2 - 9*x/2 reflects the fact that $\sqrt{2} = \theta^3/2 - 9 \theta/2$, where $\theta = \sqrt{2} + \sqrt{3}$. ``a`` is not equal to its own primitive element. Its minpoly >>> a.minpoly.as_poly().as_expr(x) x**4 - 10*x**2 + 1 is that of $\theta$. Converting to a primitive element, >>> a_prim = a.to_primitive_element() >>> a_prim.minpoly.as_poly().as_expr(x) x**2 - 2 we obtain an :py:class:`~.AlgebraicNumber` whose ``minpoly`` is that of the number itself. Parameters ========== radicals : boolean, optional (default=True) If ``True``, then we will try to return an :py:class:`~.AlgebraicNumber` whose ``root`` is an expression in radicals. If that is not possible (or if *radicals* is ``False``), ``root`` will be a :py:class:`~.ComplexRootOf`. Returns ======= AlgebraicNumber See Also ======== is_primitive_element """ if self.is_primitive_element: return self m = self.minpoly_of_element() r = self.to_root(radicals=radicals) return AlgebraicNumber((m, r)) def minpoly_of_element(self): r""" Compute the minimal polynomial for this algebraic number. Explanation =========== Recall that we represent an element $\alpha \in \mathbb{Q}(\theta)$. Our instance attribute ``self.minpoly`` is the minimal polynomial for our primitive element $\theta$. This method computes the minimal polynomial for $\alpha$. """ if self._own_minpoly is None: if self.is_primitive_element: self._own_minpoly = self.minpoly else: from sympy.polys.numberfields.minpoly import minpoly theta = self.primitive_element() self._own_minpoly = minpoly(self.as_expr(theta), polys=True) return self._own_minpoly def to_root(self, radicals=True, minpoly=None): """ Convert to an :py:class:`~.Expr` that is not an :py:class:`~.AlgebraicNumber`, specifically, either a :py:class:`~.ComplexRootOf`, or, optionally and where possible, an expression in radicals. Parameters ========== radicals : boolean, optional (default=True) If ``True``, then we will try to return the root as an expression in radicals. If that is not possible, we will return a :py:class:`~.ComplexRootOf`. minpoly : :py:class:`~.Poly` If the minimal polynomial for `self` has been pre-computed, it can be passed in order to save time. """ if self.is_primitive_element and not isinstance(self.root, AlgebraicNumber): return self.root m = minpoly or self.minpoly_of_element() roots = m.all_roots(radicals=radicals) if len(roots) == 1: return roots[0] root = None if all(hasattr(r, "_get_interval") for r in roots): root = self._to_root_by_intervals(roots) if root is not None: return root return self._to_root_by_distance(roots) def _to_root_by_intervals(self, roots): intervals = [r._get_interval() for r in roots] D0 = int(max(i.max_denom for i in intervals)) # Make n more than the number of decimal places in D0. This is to # eliminate false positives, i.e. cases where we appear to belong to # an interval but only due to rounding errors. n = math.ceil(D0.bit_length()/3.3) + 2 c = self.evalf(n).as_real_imag() for j, i in enumerate(intervals): if c in i: return roots[j] return None def _to_root_by_distance(self, roots, max_prec=160): # Compare sympy.polys.numberfields.minpoly._choose_factor() prec1 = 10 while prec1 <= max_prec: r0 = self.evalf(prec1) candidates = [(abs(r0 - r.evalf(prec1)), j) for j, r in enumerate(roots)] can = sorted(candidates) (a, ix), (b, _) = can[:2] if b > a * 10 ** 6: return roots[ix] prec1 *= 2 raise NotImplementedError("Could not locate root.") class RationalConstant(Rational): """ Abstract base class for rationals with specific behaviors Derived classes must define class attributes p and q and should probably all be singletons. """ __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class IntegerConstant(Integer): __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) class Zero(IntegerConstant, metaclass=Singleton): """The number zero. Zero is a singleton, and can be accessed by ``S.Zero`` Examples ======== >>> from sympy import S, Integer >>> Integer(0) is S.Zero True >>> 1/S.Zero zoo References ========== .. [1] https://en.wikipedia.org/wiki/Zero """ p = 0 q = 1 is_positive = False is_negative = False is_zero = True is_number = True is_comparable = True __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Zero @staticmethod def __neg__(): return S.Zero def _eval_power(self, expt): if expt.is_extended_positive: return self if expt.is_extended_negative: return S.ComplexInfinity if expt.is_extended_real is False: return S.NaN # infinities are already handled with pos and neg # tests above; now throw away leading numbers on Mul # exponent coeff, terms = expt.as_coeff_Mul() if coeff.is_negative: return S.ComplexInfinity**terms if coeff is not S.One: # there is a Number to discard return self**terms def _eval_order(self, *symbols): # Order(0,x) -> 0 return self def __bool__(self): return False class One(IntegerConstant, metaclass=Singleton): """The number one. One is a singleton, and can be accessed by ``S.One``. Examples ======== >>> from sympy import S, Integer >>> Integer(1) is S.One True References ========== .. [1] https://en.wikipedia.org/wiki/1_%28number%29 """ is_number = True is_positive = True p = 1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.NegativeOne def _eval_power(self, expt): return self def _eval_order(self, *symbols): return @staticmethod def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False, verbose=False, visual=False): if visual: return S.One else: return {} class NegativeOne(IntegerConstant, metaclass=Singleton): """The number negative one. NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``. Examples ======== >>> from sympy import S, Integer >>> Integer(-1) is S.NegativeOne True See Also ======== One References ========== .. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29 """ is_number = True p = -1 q = 1 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.One @staticmethod def __neg__(): return S.One def _eval_power(self, expt): if expt.is_odd: return S.NegativeOne if expt.is_even: return S.One if isinstance(expt, Number): if isinstance(expt, Float): return Float(-1.0)**expt if expt is S.NaN: return S.NaN if expt in (S.Infinity, S.NegativeInfinity): return S.NaN if expt is S.Half: return S.ImaginaryUnit if isinstance(expt, Rational): if expt.q == 2: return S.ImaginaryUnit**Integer(expt.p) i, r = divmod(expt.p, expt.q) if i: return self**i*self**Rational(r, expt.q) return class Half(RationalConstant, metaclass=Singleton): """The rational number 1/2. Half is a singleton, and can be accessed by ``S.Half``. Examples ======== >>> from sympy import S, Rational >>> Rational(1, 2) is S.Half True References ========== .. [1] https://en.wikipedia.org/wiki/One_half """ is_number = True p = 1 q = 2 __slots__ = () def __getnewargs__(self): return () @staticmethod def __abs__(): return S.Half class Infinity(Number, metaclass=Singleton): r"""Positive infinite quantity. Explanation =========== In real analysis the symbol `\infty` denotes an unbounded limit: `x\to\infty` means that `x` grows without bound. Infinity is often used not only to define a limit but as a value in the affinely extended real number system. Points labeled `+\infty` and `-\infty` can be added to the topological space of the real numbers, producing the two-point compactification of the real numbers. Adding algebraic properties to this gives us the extended real numbers. Infinity is a singleton, and can be accessed by ``S.Infinity``, or can be imported as ``oo``. Examples ======== >>> from sympy import oo, exp, limit, Symbol >>> 1 + oo oo >>> 42/oo 0 >>> x = Symbol('x') >>> limit(exp(x), x, oo) oo See Also ======== NegativeInfinity, NaN References ========== .. [1] https://en.wikipedia.org/wiki/Infinity """ is_commutative = True is_number = True is_complex = False is_extended_real = True is_infinite = True is_comparable = True is_extended_positive = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other in (S.NegativeInfinity, S.NaN): return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other in (S.Infinity, S.NaN): return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.NegativeInfinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.NegativeInfinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.NegativeInfinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``oo ** nan`` ``nan`` ``oo ** -p`` ``0`` ``p`` is number, ``oo`` ================ ======= ============================== See Also ======== Pow NaN NegativeInfinity """ if expt.is_extended_positive: return S.Infinity if expt.is_extended_negative: return S.Zero if expt is S.NaN: return S.NaN if expt is S.ComplexInfinity: return S.NaN if expt.is_extended_real is False and expt.is_number: from sympy.functions.elementary.complexes import re expt_real = re(expt) if expt_real.is_positive: return S.ComplexInfinity if expt_real.is_negative: return S.Zero if expt_real.is_zero: return S.NaN return self**expt.evalf() def _as_mpf_val(self, prec): return mlib.finf def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.Infinity or other == float('inf') def __ne__(self, other): return other is not S.Infinity and other != float('inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self oo = S.Infinity class NegativeInfinity(Number, metaclass=Singleton): """Negative infinite quantity. NegativeInfinity is a singleton, and can be accessed by ``S.NegativeInfinity``. See Also ======== Infinity """ is_extended_real = True is_complex = False is_commutative = True is_infinite = True is_comparable = True is_extended_negative = True is_number = True is_prime = False __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"-\infty" def _eval_subs(self, old, new): if self == old: return new def _eval_evalf(self, prec=None): return Float('-inf') def evalf(self, prec=None, **options): return self._eval_evalf(prec) @_sympifyit('other', NotImplemented) def __add__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other in (S.Infinity, S.NaN): return S.NaN return self return Number.__add__(self, other) __radd__ = __add__ @_sympifyit('other', NotImplemented) def __sub__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other in (S.NegativeInfinity, S.NaN): return S.NaN return self return Number.__sub__(self, other) @_sympifyit('other', NotImplemented) def __rsub__(self, other): return (-self).__add__(other) @_sympifyit('other', NotImplemented) def __mul__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other.is_zero or other is S.NaN: return S.NaN if other.is_extended_positive: return self return S.Infinity return Number.__mul__(self, other) __rmul__ = __mul__ @_sympifyit('other', NotImplemented) def __truediv__(self, other): if isinstance(other, Number) and global_parameters.evaluate: if other is S.Infinity or \ other is S.NegativeInfinity or \ other is S.NaN: return S.NaN if other.is_extended_nonnegative: return self return S.Infinity return Number.__truediv__(self, other) def __abs__(self): return S.Infinity def __neg__(self): return S.Infinity def _eval_power(self, expt): """ ``expt`` is symbolic object but not equal to 0 or 1. ================ ======= ============================== Expression Result Notes ================ ======= ============================== ``(-oo) ** nan`` ``nan`` ``(-oo) ** oo`` ``nan`` ``(-oo) ** -oo`` ``nan`` ``(-oo) ** e`` ``oo`` ``e`` is positive even integer ``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer ================ ======= ============================== See Also ======== Infinity Pow NaN """ if expt.is_number: if expt is S.NaN or \ expt is S.Infinity or \ expt is S.NegativeInfinity: return S.NaN if isinstance(expt, Integer) and expt.is_extended_positive: if expt.is_odd: return S.NegativeInfinity else: return S.Infinity inf_part = S.Infinity**expt s_part = S.NegativeOne**expt if inf_part == 0 and s_part.is_finite: return inf_part if (inf_part is S.ComplexInfinity and s_part.is_finite and not s_part.is_zero): return S.ComplexInfinity return s_part*inf_part def _as_mpf_val(self, prec): return mlib.fninf def __hash__(self): return super().__hash__() def __eq__(self, other): return other is S.NegativeInfinity or other == float('-inf') def __ne__(self, other): return other is not S.NegativeInfinity and other != float('-inf') __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ @_sympifyit('other', NotImplemented) def __mod__(self, other): if not isinstance(other, Expr): return NotImplemented return S.NaN __rmod__ = __mod__ def floor(self): return self def ceiling(self): return self def as_powers_dict(self): return {S.NegativeOne: 1, S.Infinity: 1} class NaN(Number, metaclass=Singleton): """ Not a Number. Explanation =========== This serves as a place holder for numeric values that are indeterminate. Most operations on NaN, produce another NaN. Most indeterminate forms, such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0`` and ``oo**0``, which all produce ``1`` (this is consistent with Python's float). NaN is loosely related to floating point nan, which is defined in the IEEE 754 floating point standard, and corresponds to the Python ``float('nan')``. Differences are noted below. NaN is mathematically not equal to anything else, even NaN itself. This explains the initially counter-intuitive results with ``Eq`` and ``==`` in the examples below. NaN is not comparable so inequalities raise a TypeError. This is in contrast with floating point nan where all inequalities are false. NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported as ``nan``. Examples ======== >>> from sympy import nan, S, oo, Eq >>> nan is S.NaN True >>> oo - oo nan >>> nan + 1 nan >>> Eq(nan, nan) # mathematical equality False >>> nan == nan # structural equality True References ========== .. [1] https://en.wikipedia.org/wiki/NaN """ is_commutative = True is_extended_real = None is_real = None is_rational = None is_algebraic = None is_transcendental = None is_integer = None is_comparable = False is_finite = None is_zero = None is_prime = None is_positive = None is_negative = None is_number = True __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\text{NaN}" def __neg__(self): return self @_sympifyit('other', NotImplemented) def __add__(self, other): return self @_sympifyit('other', NotImplemented) def __sub__(self, other): return self @_sympifyit('other', NotImplemented) def __mul__(self, other): return self @_sympifyit('other', NotImplemented) def __truediv__(self, other): return self def floor(self): return self def ceiling(self): return self def _as_mpf_val(self, prec): return _mpf_nan def __hash__(self): return super().__hash__() def __eq__(self, other): # NaN is structurally equal to another NaN return other is S.NaN def __ne__(self, other): return other is not S.NaN # Expr will _sympify and raise TypeError __gt__ = Expr.__gt__ __ge__ = Expr.__ge__ __lt__ = Expr.__lt__ __le__ = Expr.__le__ nan = S.NaN @dispatch(NaN, Expr) # type:ignore def _eval_is_eq(a, b): # noqa:F811 return False class ComplexInfinity(AtomicExpr, metaclass=Singleton): r"""Complex infinity. Explanation =========== In complex analysis the symbol `\tilde\infty`, called "complex infinity", represents a quantity with infinite magnitude, but undetermined complex phase. ComplexInfinity is a singleton, and can be accessed by ``S.ComplexInfinity``, or can be imported as ``zoo``. Examples ======== >>> from sympy import zoo >>> zoo + 42 zoo >>> 42/zoo 0 >>> zoo + zoo nan >>> zoo*zoo zoo See Also ======== Infinity """ is_commutative = True is_infinite = True is_number = True is_prime = False is_complex = False is_extended_real = False kind = NumberKind __slots__ = () def __new__(cls): return AtomicExpr.__new__(cls) def _latex(self, printer): return r"\tilde{\infty}" @staticmethod def __abs__(): return S.Infinity def floor(self): return self def ceiling(self): return self @staticmethod def __neg__(): return S.ComplexInfinity def _eval_power(self, expt): if expt is S.ComplexInfinity: return S.NaN if isinstance(expt, Number): if expt.is_zero: return S.NaN else: if expt.is_positive: return S.ComplexInfinity else: return S.Zero zoo = S.ComplexInfinity class NumberSymbol(AtomicExpr): is_commutative = True is_finite = True is_number = True __slots__ = () is_NumberSymbol = True kind = NumberKind def __new__(cls): return AtomicExpr.__new__(cls) def approximation(self, number_cls): """ Return an interval with number_cls endpoints that contains the value of NumberSymbol. If not implemented, then return None. """ def _eval_evalf(self, prec): return Float._new(self._as_mpf_val(prec), prec) def __eq__(self, other): try: other = _sympify(other) except SympifyError: return NotImplemented if self is other: return True if other.is_Number and self.is_irrational: return False return False # NumberSymbol != non-(Number|self) def __ne__(self, other): return not self == other def __le__(self, other): if self is other: return S.true return Expr.__le__(self, other) def __ge__(self, other): if self is other: return S.true return Expr.__ge__(self, other) def __int__(self): # subclass with appropriate return value raise NotImplementedError def __hash__(self): return super().__hash__() class Exp1(NumberSymbol, metaclass=Singleton): r"""The `e` constant. Explanation =========== The transcendental number `e = 2.718281828\ldots` is the base of the natural logarithm and of the exponential function, `e = \exp(1)`. Sometimes called Euler's number or Napier's constant. Exp1 is a singleton, and can be accessed by ``S.Exp1``, or can be imported as ``E``. Examples ======== >>> from sympy import exp, log, E >>> E is exp(1) True >>> log(E) 1 References ========== .. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29 """ is_real = True is_positive = True is_negative = False # XXX Forces is_negative/is_nonnegative is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"e" @staticmethod def __abs__(): return S.Exp1 def __int__(self): return 2 def _as_mpf_val(self, prec): return mpf_e(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(2), Integer(3)) elif issubclass(number_cls, Rational): pass def _eval_power(self, expt): if global_parameters.exp_is_pow: return self._eval_power_exp_is_pow(expt) else: from sympy.functions.elementary.exponential import exp return exp(expt) def _eval_power_exp_is_pow(self, arg): if arg.is_Number: if arg is oo: return oo elif arg == -oo: return S.Zero from sympy.functions.elementary.exponential import log if isinstance(arg, log): return arg.args[0] # don't autoexpand Pow or Mul (see the issue 3351): elif not arg.is_Add: Ioo = I*oo if arg in [Ioo, -Ioo]: return nan coeff = arg.coeff(pi*I) if coeff: if (2*coeff).is_integer: if coeff.is_even: return S.One elif coeff.is_odd: return S.NegativeOne elif (coeff + S.Half).is_even: return -I elif (coeff + S.Half).is_odd: return I elif coeff.is_Rational: ncoeff = coeff % 2 # restrict to [0, 2pi) if ncoeff > 1: # restrict to (-pi, pi] ncoeff -= 2 if ncoeff != coeff: return S.Exp1**(ncoeff*S.Pi*S.ImaginaryUnit) # Warning: code in risch.py will be very sensitive to changes # in this (see DifferentialExtension). # look for a single log factor coeff, terms = arg.as_coeff_Mul() # but it can't be multiplied by oo if coeff in (oo, -oo): return coeffs, log_term = [coeff], None for term in Mul.make_args(terms): if isinstance(term, log): if log_term is None: log_term = term.args[0] else: return elif term.is_comparable: coeffs.append(term) else: return return log_term**Mul(*coeffs) if log_term else None elif arg.is_Add: out = [] add = [] argchanged = False for a in arg.args: if a is S.One: add.append(a) continue newa = self**a if isinstance(newa, Pow) and newa.base is self: if newa.exp != a: add.append(newa.exp) argchanged = True else: add.append(a) else: out.append(newa) if out or argchanged: return Mul(*out)*Pow(self, Add(*add), evaluate=False) elif arg.is_Matrix: return arg.exp() def _eval_rewrite_as_sin(self, **kwargs): from sympy.functions.elementary.trigonometric import sin return sin(I + S.Pi/2) - I*sin(I) def _eval_rewrite_as_cos(self, **kwargs): from sympy.functions.elementary.trigonometric import cos return cos(I) + I*cos(I + S.Pi/2) E = S.Exp1 class Pi(NumberSymbol, metaclass=Singleton): r"""The `\pi` constant. Explanation =========== The transcendental number `\pi = 3.141592654\ldots` represents the ratio of a circle's circumference to its diameter, the area of the unit circle, the half-period of trigonometric functions, and many other things in mathematics. Pi is a singleton, and can be accessed by ``S.Pi``, or can be imported as ``pi``. Examples ======== >>> from sympy import S, pi, oo, sin, exp, integrate, Symbol >>> S.Pi pi >>> pi > 3 True >>> pi.is_irrational True >>> x = Symbol('x') >>> sin(x + 2*pi) sin(x) >>> integrate(exp(-x**2), (x, -oo, oo)) sqrt(pi) References ========== .. [1] https://en.wikipedia.org/wiki/Pi """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = False is_transcendental = True __slots__ = () def _latex(self, printer): return r"\pi" @staticmethod def __abs__(): return S.Pi def __int__(self): return 3 def _as_mpf_val(self, prec): return mpf_pi(prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (Integer(3), Integer(4)) elif issubclass(number_cls, Rational): return (Rational(223, 71, 1), Rational(22, 7, 1)) pi = S.Pi class GoldenRatio(NumberSymbol, metaclass=Singleton): r"""The golden ratio, `\phi`. Explanation =========== `\phi = \frac{1 + \sqrt{5}}{2}` is algebraic number. Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities, i.e. their maximum. GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``. Examples ======== >>> from sympy import S >>> S.GoldenRatio > 1 True >>> S.GoldenRatio.expand(func=True) 1/2 + sqrt(5)/2 >>> S.GoldenRatio.is_irrational True References ========== .. [1] https://en.wikipedia.org/wiki/Golden_ratio """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\phi" def __int__(self): return 1 def _as_mpf_val(self, prec): # XXX track down why this has to be increased rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10) return mpf_norm(rv, prec) def _eval_expand_func(self, **hints): from sympy.functions.elementary.miscellaneous import sqrt return S.Half + S.Half*sqrt(5) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class TribonacciConstant(NumberSymbol, metaclass=Singleton): r"""The tribonacci constant. Explanation =========== The tribonacci numbers are like the Fibonacci numbers, but instead of starting with two predetermined terms, the sequence starts with three predetermined terms and each term afterwards is the sum of the preceding three terms. The tribonacci constant is the ratio toward which adjacent tribonacci numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`, and also satisfies the equation `x + x^{-3} = 2`. TribonacciConstant is a singleton, and can be accessed by ``S.TribonacciConstant``. Examples ======== >>> from sympy import S >>> S.TribonacciConstant > 1 True >>> S.TribonacciConstant.expand(func=True) 1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3 >>> S.TribonacciConstant.is_irrational True >>> S.TribonacciConstant.n(20) 1.8392867552141611326 References ========== .. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers """ is_real = True is_positive = True is_negative = False is_irrational = True is_number = True is_algebraic = True is_transcendental = False __slots__ = () def _latex(self, printer): return r"\text{TribonacciConstant}" def __int__(self): return 1 def _eval_evalf(self, prec): rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4) return Float(rv, precision=prec) def _eval_expand_func(self, **hints): from sympy.functions.elementary.miscellaneous import cbrt, sqrt return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.One, Rational(2)) elif issubclass(number_cls, Rational): pass _eval_rewrite_as_sqrt = _eval_expand_func class EulerGamma(NumberSymbol, metaclass=Singleton): r"""The Euler-Mascheroni constant. Explanation =========== `\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical constant recurring in analysis and number theory. It is defined as the limiting difference between the harmonic series and the natural logarithm: .. math:: \gamma = \lim\limits_{n\to\infty} \left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right) EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``. Examples ======== >>> from sympy import S >>> S.EulerGamma.is_irrational >>> S.EulerGamma > 0 True >>> S.EulerGamma > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def _latex(self, printer): return r"\gamma" def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.libhyper.euler_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (S.Half, Rational(3, 5, 1)) class Catalan(NumberSymbol, metaclass=Singleton): r"""Catalan's constant. Explanation =========== $G = 0.91596559\ldots$ is given by the infinite series .. math:: G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2} Catalan is a singleton, and can be accessed by ``S.Catalan``. Examples ======== >>> from sympy import S >>> S.Catalan.is_irrational >>> S.Catalan > 0 True >>> S.Catalan > 1 False References ========== .. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant """ is_real = True is_positive = True is_negative = False is_irrational = None is_number = True __slots__ = () def __int__(self): return 0 def _as_mpf_val(self, prec): # XXX track down why this has to be increased v = mlib.catalan_fixed(prec + 10) rv = mlib.from_man_exp(v, -prec - 10) return mpf_norm(rv, prec) def approximation_interval(self, number_cls): if issubclass(number_cls, Integer): return (S.Zero, S.One) elif issubclass(number_cls, Rational): return (Rational(9, 10, 1), S.One) def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None): if (k_sym is not None) or (symbols is not None): return self from .symbol import Dummy from sympy.concrete.summations import Sum k = Dummy('k', integer=True, nonnegative=True) return Sum(S.NegativeOne**k / (2*k+1)**2, (k, 0, S.Infinity)) def _latex(self, printer): return "G" class ImaginaryUnit(AtomicExpr, metaclass=Singleton): r"""The imaginary unit, `i = \sqrt{-1}`. I is a singleton, and can be accessed by ``S.I``, or can be imported as ``I``. Examples ======== >>> from sympy import I, sqrt >>> sqrt(-1) I >>> I*I -1 >>> 1/I -I References ========== .. [1] https://en.wikipedia.org/wiki/Imaginary_unit """ is_commutative = True is_imaginary = True is_finite = True is_number = True is_algebraic = True is_transcendental = False kind = NumberKind __slots__ = () def _latex(self, printer): return printer._settings['imaginary_unit_latex'] @staticmethod def __abs__(): return S.One def _eval_evalf(self, prec): return self def _eval_conjugate(self): return -S.ImaginaryUnit def _eval_power(self, expt): """ b is I = sqrt(-1) e is symbolic object but not equal to 0, 1 I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal I**0 mod 4 -> 1 I**1 mod 4 -> I I**2 mod 4 -> -1 I**3 mod 4 -> -I """ if isinstance(expt, Integer): expt = expt % 4 if expt == 0: return S.One elif expt == 1: return S.ImaginaryUnit elif expt == 2: return S.NegativeOne elif expt == 3: return -S.ImaginaryUnit if isinstance(expt, Rational): i, r = divmod(expt, 2) rv = Pow(S.ImaginaryUnit, r, evaluate=False) if i % 2: return Mul(S.NegativeOne, rv, evaluate=False) return rv def as_base_exp(self): return S.NegativeOne, S.Half @property def _mpc_(self): return (Float(0)._mpf_, Float(1)._mpf_) I = S.ImaginaryUnit @dispatch(Tuple, Number) # type:ignore def _eval_is_eq(self, other): # noqa: F811 return False def sympify_fractions(f): return Rational(f.numerator, f.denominator, 1) converter[fractions.Fraction] = sympify_fractions if HAS_GMPY: def sympify_mpz(x): return Integer(int(x)) # XXX: The sympify_mpq function here was never used because it is # overridden by the other sympify_mpq function below. Maybe it should just # be removed or maybe it should be used for something... def sympify_mpq(x): return Rational(int(x.numerator), int(x.denominator)) converter[type(gmpy.mpz(1))] = sympify_mpz converter[type(gmpy.mpq(1, 2))] = sympify_mpq def sympify_mpmath_mpq(x): p, q = x._mpq_ return Rational(p, q, 1) converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq def sympify_mpmath(x): return Expr._from_mpmath(x, x.context.prec) converter[mpnumeric] = sympify_mpmath def sympify_complex(a): real, imag = list(map(sympify, (a.real, a.imag))) return real + S.ImaginaryUnit*imag converter[complex] = sympify_complex from .power import Pow, integer_nthroot from .mul import Mul Mul.identity = One() from .add import Add Add.identity = Zero() def _register_classes(): numbers.Number.register(Number) numbers.Real.register(Float) numbers.Rational.register(Rational) numbers.Integral.register(Integer) _register_classes()
25559d7402ba81bf0c7ef146edb3861331bbcba84df3487105c55f5f815e5801
from operator import attrgetter from typing import Tuple as tTuple, Type from collections import defaultdict from sympy.utilities.exceptions import SymPyDeprecationWarning from .sympify import _sympify as _sympify_, sympify from .basic import Basic from .cache import cacheit from .sorting import ordered from .logic import fuzzy_and from .parameters import global_parameters from sympy.utilities.iterables import sift from sympy.multipledispatch.dispatcher import (Dispatcher, ambiguity_register_error_ignore_dup, str_signature, RaiseNotImplementedError) class AssocOp(Basic): """ Associative operations, can separate noncommutative and commutative parts. (a op b) op c == a op (b op c) == a op b op c. Base class for Add and Mul. This is an abstract base class, concrete derived classes must define the attribute `identity`. Parameters ========== *args : Arguments which are operated evaluate : bool, optional Evaluate the operation. If not passed, refer to ``global_parameters.evaluate``. """ # for performance reason, we don't let is_commutative go to assumptions, # and keep it right here __slots__ = ('is_commutative',) # type: tTuple[str, ...] _args_type = None # type: Type[Basic] @cacheit def __new__(cls, *args, evaluate=None, _sympify=True): # Allow faster processing by passing ``_sympify=False``, if all arguments # are already sympified. if _sympify: args = list(map(_sympify_, args)) # Disallow non-Expr args in Add/Mul typ = cls._args_type if typ is not None: from .relational import Relational if any(isinstance(arg, Relational) for arg in args): raise TypeError("Relational cannot be used in %s" % cls.__name__) # This should raise TypeError once deprecation period is over: if not all(isinstance(arg, typ) for arg in args): SymPyDeprecationWarning( feature="Add/Mul with non-Expr args", useinstead="Expr args", issue=19445, deprecated_since_version="1.7" ).warn() if evaluate is None: evaluate = global_parameters.evaluate if not evaluate: obj = cls._from_args(args) obj = cls._exec_constructor_postprocessors(obj) return obj args = [a for a in args if a is not cls.identity] if len(args) == 0: return cls.identity if len(args) == 1: return args[0] c_part, nc_part, order_symbols = cls.flatten(args) is_commutative = not nc_part obj = cls._from_args(c_part + nc_part, is_commutative) obj = cls._exec_constructor_postprocessors(obj) if order_symbols is not None: from sympy.series.order import Order return Order(obj, *order_symbols) return obj @classmethod def _from_args(cls, args, is_commutative=None): """Create new instance with already-processed args. If the args are not in canonical order, then a non-canonical result will be returned, so use with caution. The order of args may change if the sign of the args is changed.""" if len(args) == 0: return cls.identity elif len(args) == 1: return args[0] obj = super().__new__(cls, *args) if is_commutative is None: is_commutative = fuzzy_and(a.is_commutative for a in args) obj.is_commutative = is_commutative return obj def _new_rawargs(self, *args, reeval=True, **kwargs): """Create new instance of own class with args exactly as provided by caller but returning the self class identity if args is empty. Examples ======== This is handy when we want to optimize things, e.g. >>> from sympy import Mul, S >>> from sympy.abc import x, y >>> e = Mul(3, x, y) >>> e.args (3, x, y) >>> Mul(*e.args[1:]) x*y >>> e._new_rawargs(*e.args[1:]) # the same as above, but faster x*y Note: use this with caution. There is no checking of arguments at all. This is best used when you are rebuilding an Add or Mul after simply removing one or more args. If, for example, modifications, result in extra 1s being inserted they will show up in the result: >>> m = (x*y)._new_rawargs(S.One, x); m 1*x >>> m == x False >>> m.is_Mul True Another issue to be aware of is that the commutativity of the result is based on the commutativity of self. If you are rebuilding the terms that came from a commutative object then there will be no problem, but if self was non-commutative then what you are rebuilding may now be commutative. Although this routine tries to do as little as possible with the input, getting the commutativity right is important, so this level of safety is enforced: commutativity will always be recomputed if self is non-commutative and kwarg `reeval=False` has not been passed. """ if reeval and self.is_commutative is False: is_commutative = None else: is_commutative = self.is_commutative return self._from_args(args, is_commutative) @classmethod def flatten(cls, seq): """Return seq so that none of the elements are of type `cls`. This is the vanilla routine that will be used if a class derived from AssocOp does not define its own flatten routine.""" # apply associativity, no commutativity property is used new_seq = [] while seq: o = seq.pop() if o.__class__ is cls: # classes must match exactly seq.extend(o.args) else: new_seq.append(o) new_seq.reverse() # c_part, nc_part, order_symbols return [], new_seq, None def _matches_commutative(self, expr, repl_dict=None, old=False): """ Matches Add/Mul "pattern" to an expression "expr". repl_dict ... a dictionary of (wild: expression) pairs, that get returned with the results This function is the main workhorse for Add/Mul. Examples ======== >>> from sympy import symbols, Wild, sin >>> a = Wild("a") >>> b = Wild("b") >>> c = Wild("c") >>> x, y, z = symbols("x y z") >>> (a+sin(b)*c)._matches_commutative(x+sin(y)*z) {a_: x, b_: y, c_: z} In the example above, "a+sin(b)*c" is the pattern, and "x+sin(y)*z" is the expression. The repl_dict contains parts that were already matched. For example here: >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z, repl_dict={a: x}) {a_: x, b_: y, c_: z} the only function of the repl_dict is to return it in the result, e.g. if you omit it: >>> (x+sin(b)*c)._matches_commutative(x+sin(y)*z) {b_: y, c_: z} the "a: x" is not returned in the result, but otherwise it is equivalent. """ # make sure expr is Expr if pattern is Expr from .expr import Expr if isinstance(self, Expr) and not isinstance(expr, Expr): return None if repl_dict is None: repl_dict = dict() # handle simple patterns if self == expr: return repl_dict d = self._matches_simple(expr, repl_dict) if d is not None: return d # eliminate exact part from pattern: (2+a+w1+w2).matches(expr) -> (w1+w2).matches(expr-a-2) from .function import WildFunction from .symbol import Wild wild_part, exact_part = sift(self.args, lambda p: p.has(Wild, WildFunction) and not expr.has(p), binary=True) if not exact_part: wild_part = list(ordered(wild_part)) if self.is_Add: # in addition to normal ordered keys, impose # sorting on Muls with leading Number to put # them in order wild_part = sorted(wild_part, key=lambda x: x.args[0] if x.is_Mul and x.args[0].is_Number else 0) else: exact = self._new_rawargs(*exact_part) free = expr.free_symbols if free and (exact.free_symbols - free): # there are symbols in the exact part that are not # in the expr; but if there are no free symbols, let # the matching continue return None newexpr = self._combine_inverse(expr, exact) if not old and (expr.is_Add or expr.is_Mul): if newexpr.count_ops() > expr.count_ops(): return None newpattern = self._new_rawargs(*wild_part) return newpattern.matches(newexpr, repl_dict) # now to real work ;) i = 0 saw = set() while expr not in saw: saw.add(expr) args = tuple(ordered(self.make_args(expr))) if self.is_Add and expr.is_Add: # in addition to normal ordered keys, impose # sorting on Muls with leading Number to put # them in order args = tuple(sorted(args, key=lambda x: x.args[0] if x.is_Mul and x.args[0].is_Number else 0)) expr_list = (self.identity,) + args for last_op in reversed(expr_list): for w in reversed(wild_part): d1 = w.matches(last_op, repl_dict) if d1 is not None: d2 = self.xreplace(d1).matches(expr, d1) if d2 is not None: return d2 if i == 0: if self.is_Mul: # make e**i look like Mul if expr.is_Pow and expr.exp.is_Integer: from .mul import Mul if expr.exp > 0: expr = Mul(*[expr.base, expr.base**(expr.exp - 1)], evaluate=False) else: expr = Mul(*[1/expr.base, expr.base**(expr.exp + 1)], evaluate=False) i += 1 continue elif self.is_Add: # make i*e look like Add c, e = expr.as_coeff_Mul() if abs(c) > 1: from .add import Add if c > 0: expr = Add(*[e, (c - 1)*e], evaluate=False) else: expr = Add(*[-e, (c + 1)*e], evaluate=False) i += 1 continue # try collection on non-Wild symbols from sympy.simplify.radsimp import collect was = expr did = set() for w in reversed(wild_part): c, w = w.as_coeff_mul(Wild) free = c.free_symbols - did if free: did.update(free) expr = collect(expr, free) if expr != was: i += 0 continue break # if we didn't continue, there is nothing more to do return def _has_matcher(self): """Helper for .has() that checks for containment of subexpressions within an expr by using sets of args of similar nodes, e.g. x + 1 in x + y + 1 checks to see that {x, 1} & {x, y, 1} == {x, 1} """ def _ncsplit(expr): # this is not the same as args_cnc because here # we don't assume expr is a Mul -- hence deal with args -- # and always return a set. cpart, ncpart = sift(expr.args, lambda arg: arg.is_commutative is True, binary=True) return set(cpart), ncpart c, nc = _ncsplit(self) cls = self.__class__ def is_in(expr): if isinstance(expr, cls): if expr == self: return True _c, _nc = _ncsplit(expr) if (c & _c) == c: if not nc: return True elif len(nc) <= len(_nc): for i in range(len(_nc) - len(nc) + 1): if _nc[i:i + len(nc)] == nc: return True return False return is_in def _eval_evalf(self, prec): """ Evaluate the parts of self that are numbers; if the whole thing was a number with no functions it would have been evaluated, but it wasn't so we must judiciously extract the numbers and reconstruct the object. This is *not* simply replacing numbers with evaluated numbers. Numbers should be handled in the largest pure-number expression as possible. So the code below separates ``self`` into number and non-number parts and evaluates the number parts and walks the args of the non-number part recursively (doing the same thing). """ from .add import Add from .mul import Mul from .symbol import Symbol from .function import AppliedUndef if isinstance(self, (Mul, Add)): x, tail = self.as_independent(Symbol, AppliedUndef) # if x is an AssocOp Function then the _evalf below will # call _eval_evalf (here) so we must break the recursion if not (tail is self.identity or isinstance(x, AssocOp) and x.is_Function or x is self.identity and isinstance(tail, AssocOp)): # here, we have a number so we just call to _evalf with prec; # prec is not the same as n, it is the binary precision so # that's why we don't call to evalf. x = x._evalf(prec) if x is not self.identity else self.identity args = [] tail_args = tuple(self.func.make_args(tail)) for a in tail_args: # here we call to _eval_evalf since we don't know what we # are dealing with and all other _eval_evalf routines should # be doing the same thing (i.e. taking binary prec and # finding the evalf-able args) newa = a._eval_evalf(prec) if newa is None: args.append(a) else: args.append(newa) return self.func(x, *args) # this is the same as above, but there were no pure-number args to # deal with args = [] for a in self.args: newa = a._eval_evalf(prec) if newa is None: args.append(a) else: args.append(newa) return self.func(*args) @classmethod def make_args(cls, expr): """ Return a sequence of elements `args` such that cls(*args) == expr Examples ======== >>> from sympy import Symbol, Mul, Add >>> x, y = map(Symbol, 'xy') >>> Mul.make_args(x*y) (x, y) >>> Add.make_args(x*y) (x*y,) >>> set(Add.make_args(x*y + y)) == set([y, x*y]) True """ if isinstance(expr, cls): return expr.args else: return (sympify(expr),) def doit(self, **hints): if hints.get('deep', True): terms = [term.doit(**hints) for term in self.args] else: terms = self.args return self.func(*terms, evaluate=True) class ShortCircuit(Exception): pass class LatticeOp(AssocOp): """ Join/meet operations of an algebraic lattice[1]. Explanation =========== These binary operations are associative (op(op(a, b), c) = op(a, op(b, c))), commutative (op(a, b) = op(b, a)) and idempotent (op(a, a) = op(a) = a). Common examples are AND, OR, Union, Intersection, max or min. They have an identity element (op(identity, a) = a) and an absorbing element conventionally called zero (op(zero, a) = zero). This is an abstract base class, concrete derived classes must declare attributes zero and identity. All defining properties are then respected. Examples ======== >>> from sympy import Integer >>> from sympy.core.operations import LatticeOp >>> class my_join(LatticeOp): ... zero = Integer(0) ... identity = Integer(1) >>> my_join(2, 3) == my_join(3, 2) True >>> my_join(2, my_join(3, 4)) == my_join(2, 3, 4) True >>> my_join(0, 1, 4, 2, 3, 4) 0 >>> my_join(1, 2) 2 References: .. [1] https://en.wikipedia.org/wiki/Lattice_%28order%29 """ is_commutative = True def __new__(cls, *args, **options): args = (_sympify_(arg) for arg in args) try: # /!\ args is a generator and _new_args_filter # must be careful to handle as such; this # is done so short-circuiting can be done # without having to sympify all values _args = frozenset(cls._new_args_filter(args)) except ShortCircuit: return sympify(cls.zero) if not _args: return sympify(cls.identity) elif len(_args) == 1: return set(_args).pop() else: # XXX in almost every other case for __new__, *_args is # passed along, but the expectation here is for _args obj = super(AssocOp, cls).__new__(cls, *ordered(_args)) obj._argset = _args return obj @classmethod def _new_args_filter(cls, arg_sequence, call_cls=None): """Generator filtering args""" ncls = call_cls or cls for arg in arg_sequence: if arg == ncls.zero: raise ShortCircuit(arg) elif arg == ncls.identity: continue elif arg.func == ncls: yield from arg.args else: yield arg @classmethod def make_args(cls, expr): """ Return a set of args such that cls(*arg_set) == expr. """ if isinstance(expr, cls): return expr._argset else: return frozenset([sympify(expr)]) @staticmethod def _compare_pretty(a, b): return (str(a) > str(b)) - (str(a) < str(b)) class AssocOpDispatcher: """ Handler dispatcher for associative operators .. notes:: This approach is experimental, and can be replaced or deleted in the future. See https://github.com/sympy/sympy/pull/19463. Explanation =========== If arguments of different types are passed, the classes which handle the operation for each type are collected. Then, a class which performs the operation is selected by recursive binary dispatching. Dispatching relation can be registered by ``register_handlerclass`` method. Priority registration is unordered. You cannot make ``A*B`` and ``B*A`` refer to different handler classes. All logic dealing with the order of arguments must be implemented in the handler class. Examples ======== >>> from sympy import Add, Expr, Symbol >>> from sympy.core.add import add >>> class NewExpr(Expr): ... @property ... def _add_handler(self): ... return NewAdd >>> class NewAdd(NewExpr, Add): ... pass >>> add.register_handlerclass((Add, NewAdd), NewAdd) >>> a, b = Symbol('a'), NewExpr() >>> add(a, b) == NewAdd(a, b) True """ def __init__(self, name, doc=None): self.name = name self.doc = doc self.handlerattr = "_%s_handler" % name self._handlergetter = attrgetter(self.handlerattr) self._dispatcher = Dispatcher(name) def __repr__(self): return "<dispatched %s>" % self.name def register_handlerclass(self, classes, typ, on_ambiguity=ambiguity_register_error_ignore_dup): """ Register the handler class for two classes, in both straight and reversed order. Paramteters =========== classes : tuple of two types Classes who are compared with each other. typ: Class which is registered to represent *cls1* and *cls2*. Handler method of *self* must be implemented in this class. """ if not len(classes) == 2: raise RuntimeError( "Only binary dispatch is supported, but got %s types: <%s>." % ( len(classes), str_signature(classes) )) if len(set(classes)) == 1: raise RuntimeError( "Duplicate types <%s> cannot be dispatched." % str_signature(classes) ) self._dispatcher.add(tuple(classes), typ, on_ambiguity=on_ambiguity) self._dispatcher.add(tuple(reversed(classes)), typ, on_ambiguity=on_ambiguity) @cacheit def __call__(self, *args, _sympify=True, **kwargs): """ Parameters ========== *args : Arguments which are operated """ if _sympify: args = tuple(map(_sympify_, args)) handlers = frozenset(map(self._handlergetter, args)) # no need to sympify again return self.dispatch(handlers)(*args, _sympify=False, **kwargs) @cacheit def dispatch(self, handlers): """ Select the handler class, and return its handler method. """ # Quick exit for the case where all handlers are same if len(handlers) == 1: h, = handlers if not isinstance(h, type): raise RuntimeError("Handler {!r} is not a type.".format(h)) return h # Recursively select with registered binary priority for i, typ in enumerate(handlers): if not isinstance(typ, type): raise RuntimeError("Handler {!r} is not a type.".format(typ)) if i == 0: handler = typ else: prev_handler = handler handler = self._dispatcher.dispatch(prev_handler, typ) if not isinstance(handler, type): raise RuntimeError( "Dispatcher for {!r} and {!r} must return a type, but got {!r}".format( prev_handler, typ, handler )) # return handler class return handler @property def __doc__(self): docs = [ "Multiply dispatched associative operator: %s" % self.name, "Note that support for this is experimental, see the docs for :class:`AssocOpDispatcher` for details" ] if self.doc: docs.append(self.doc) s = "Registered handler classes\n" s += '=' * len(s) docs.append(s) amb_sigs = [] typ_sigs = defaultdict(list) for sigs in self._dispatcher.ordering[::-1]: key = self._dispatcher.funcs[sigs] typ_sigs[key].append(sigs) for typ, sigs in typ_sigs.items(): sigs_str = ', '.join('<%s>' % str_signature(sig) for sig in sigs) if isinstance(typ, RaiseNotImplementedError): amb_sigs.append(sigs_str) continue s = 'Inputs: %s\n' % sigs_str s += '-' * len(s) + '\n' s += typ.__name__ docs.append(s) if amb_sigs: s = "Ambiguous handler classes\n" s += '=' * len(s) docs.append(s) s = '\n'.join(amb_sigs) docs.append(s) return '\n\n'.join(docs)
7e812884dd17f0f5dc976ff86469993826e6ea028072c9fcbe278dc6bfe34da2
from .assumptions import StdFactKB, _assume_defined from .basic import Basic, Atom from .cache import cacheit from .containers import Tuple from .expr import Expr, AtomicExpr from .function import AppliedUndef, FunctionClass from .kind import NumberKind, UndefinedKind from .logic import fuzzy_bool from .singleton import S from .sorting import ordered from .sympify import sympify from sympy.logic.boolalg import Boolean from sympy.utilities.iterables import sift, is_sequence from sympy.utilities.misc import filldedent import string import re as _re import random from itertools import product class Str(Atom): """ Represents string in SymPy. Explanation =========== Previously, ``Symbol`` was used where string is needed in ``args`` of SymPy objects, e.g. denoting the name of the instance. However, since ``Symbol`` represents mathematical scalar, this class should be used instead. """ __slots__ = ('name',) def __new__(cls, name, **kwargs): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls, **kwargs) obj.name = name return obj def __getnewargs__(self): return (self.name,) def _hashable_content(self): return (self.name,) def _filter_assumptions(kwargs): """Split the given dict into assumptions and non-assumptions. Keys are taken as assumptions if they correspond to an entry in ``_assume_defined``. """ assumptions, nonassumptions = map(dict, sift(kwargs.items(), lambda i: i[0] in _assume_defined, binary=True)) Symbol._sanitize(assumptions) return assumptions, nonassumptions def _symbol(s, matching_symbol=None, **assumptions): """Return s if s is a Symbol, else if s is a string, return either the matching_symbol if the names are the same or else a new symbol with the same assumptions as the matching symbol (or the assumptions as provided). Examples ======== >>> from sympy import Symbol >>> from sympy.core.symbol import _symbol >>> _symbol('y') y >>> _.is_real is None True >>> _symbol('y', real=True).is_real True >>> x = Symbol('x') >>> _symbol(x, real=True) x >>> _.is_real is None # ignore attribute if s is a Symbol True Below, the variable sym has the name 'foo': >>> sym = Symbol('foo', real=True) Since 'x' is not the same as sym's name, a new symbol is created: >>> _symbol('x', sym).name 'x' It will acquire any assumptions give: >>> _symbol('x', sym, real=False).is_real False Since 'foo' is the same as sym's name, sym is returned >>> _symbol('foo', sym) foo Any assumptions given are ignored: >>> _symbol('foo', sym, real=False).is_real True NB: the symbol here may not be the same as a symbol with the same name defined elsewhere as a result of different assumptions. See Also ======== sympy.core.symbol.Symbol """ if isinstance(s, str): if matching_symbol and matching_symbol.name == s: return matching_symbol return Symbol(s, **assumptions) elif isinstance(s, Symbol): return s else: raise ValueError('symbol must be string for symbol name or Symbol') def uniquely_named_symbol(xname, exprs=(), compare=str, modify=None, **assumptions): """Return a symbol which, when printed, will have a name unique from any other already in the expressions given. The name is made unique by appending numbers (default) but this can be customized with the keyword 'modify'. Parameters ========== xname : a string or a Symbol compare : a single arg function that takes a symbol and returns a string to be compared with xname (the default is the str function which indicates how the name will look when it is printed, e.g. this includes underscores that appear on Dummy symbols). When ``xname`` is a Symbol, ``compare`` will be used to supply the value for ``xname``. modify : a single arg function that changes its string argument in some way (the default is to append numbers) Examples ======== >>> from sympy.core.symbol import uniquely_named_symbol >>> from sympy.abc import x >>> uniquely_named_symbol('x', x) x0 """ def numbered_string_incr(s, start=0): if not s: return str(start) i = len(s) - 1 while i != -1: if not s[i].isdigit(): break i -= 1 n = str(int(s[i + 1:] or start - 1) + 1) return s[:i + 1] + n default = None if is_sequence(xname): xname, default = xname x = compare(xname) if not exprs: return _symbol(x, default, **assumptions) if not is_sequence(exprs): exprs = [exprs] names = set().union( [i.name for e in exprs for i in e.atoms(Symbol)] + [i.func.name for e in exprs for i in e.atoms(AppliedUndef)]) if modify is None: modify = numbered_string_incr while any(x == compare(s) for s in names): x = modify(x) return _symbol(x, default, **assumptions) _uniquely_named_symbol = uniquely_named_symbol class Symbol(AtomicExpr, Boolean): """ Assumptions: commutative = True You can override the default assumptions in the constructor. Examples ======== >>> from sympy import symbols >>> A,B = symbols('A,B', commutative = False) >>> bool(A*B != B*A) True >>> bool(A*B*2 == 2*A*B) == True # multiplication by scalars is commutative True """ is_comparable = False __slots__ = ('name',) name: str is_Symbol = True is_symbol = True @property def kind(self): if self.is_commutative: return NumberKind return UndefinedKind @property def _diff_wrt(self): """Allow derivatives wrt Symbols. Examples ======== >>> from sympy import Symbol >>> x = Symbol('x') >>> x._diff_wrt True """ return True @staticmethod def _sanitize(assumptions, obj=None): """Remove None, covert values to bool, check commutativity *in place*. """ # be strict about commutativity: cannot be None is_commutative = fuzzy_bool(assumptions.get('commutative', True)) if is_commutative is None: whose = '%s ' % obj.__name__ if obj else '' raise ValueError( '%scommutativity must be True or False.' % whose) # sanitize other assumptions so 1 -> True and 0 -> False for key in list(assumptions.keys()): v = assumptions[key] if v is None: assumptions.pop(key) continue assumptions[key] = bool(v) def _merge(self, assumptions): base = self.assumptions0 for k in set(assumptions) & set(base): if assumptions[k] != base[k]: raise ValueError(filldedent(''' non-matching assumptions for %s: existing value is %s and new value is %s''' % ( k, base[k], assumptions[k]))) base.update(assumptions) return base def __new__(cls, name, **assumptions): """Symbols are identified by name and assumptions:: >>> from sympy import Symbol >>> Symbol("x") == Symbol("x") True >>> Symbol("x", real=True) == Symbol("x", real=False) False """ cls._sanitize(assumptions, cls) return Symbol.__xnew_cached_(cls, name, **assumptions) def __new_stage2__(cls, name, **assumptions): if not isinstance(name, str): raise TypeError("name should be a string, not %s" % repr(type(name))) obj = Expr.__new__(cls) obj.name = name # TODO: Issue #8873: Forcing the commutative assumption here means # later code such as ``srepr()`` cannot tell whether the user # specified ``commutative=True`` or omitted it. To workaround this, # we keep a copy of the assumptions dict, then create the StdFactKB, # and finally overwrite its ``._generator`` with the dict copy. This # is a bit of a hack because we assume StdFactKB merely copies the # given dict as ``._generator``, but future modification might, e.g., # compute a minimal equivalent assumption set. tmp_asm_copy = assumptions.copy() # be strict about commutativity is_commutative = fuzzy_bool(assumptions.get('commutative', True)) assumptions['commutative'] = is_commutative obj._assumptions = StdFactKB(assumptions) obj._assumptions._generator = tmp_asm_copy # Issue #8873 return obj __xnew__ = staticmethod( __new_stage2__) # never cached (e.g. dummy) __xnew_cached_ = staticmethod( cacheit(__new_stage2__)) # symbols are always cached def __getnewargs_ex__(self): return ((self.name,), self.assumptions0) # NOTE: __setstate__ is not needed for pickles created by __getnewargs_ex__ # but was used before Symbol was changed to use __getnewargs_ex__ in v1.9. # Pickles created in previous SymPy versions will still need __setstate__ # so that they can be unpickled in SymPy > v1.9. def __setstate__(self, state): for name, value in state.items(): setattr(self, name, value) def _hashable_content(self): # Note: user-specified assumptions not hashed, just derived ones return (self.name,) + tuple(sorted(self.assumptions0.items())) def _eval_subs(self, old, new): if old.is_Pow: from sympy.core.power import Pow return Pow(self, S.One, evaluate=False)._eval_subs(old, new) def _eval_refine(self, assumptions): return self @property def assumptions0(self): return {key: value for key, value in self._assumptions.items() if value is not None} @cacheit def sort_key(self, order=None): return self.class_key(), (1, (self.name,)), S.One.sort_key(), S.One def as_dummy(self): # only put commutativity in explicitly if it is False return Dummy(self.name) if self.is_commutative is not False \ else Dummy(self.name, commutative=self.is_commutative) def as_real_imag(self, deep=True, **hints): if hints.get('ignore') == self: return None else: from sympy.functions.elementary.complexes import im, re return (re(self), im(self)) def is_constant(self, *wrt, **flags): if not wrt: return False return self not in wrt @property def free_symbols(self): return {self} binary_symbols = free_symbols # in this case, not always def as_set(self): return S.UniversalSet class Dummy(Symbol): """Dummy symbols are each unique, even if they have the same name: Examples ======== >>> from sympy import Dummy >>> Dummy("x") == Dummy("x") False If a name is not supplied then a string value of an internal count will be used. This is useful when a temporary variable is needed and the name of the variable used in the expression is not important. >>> Dummy() #doctest: +SKIP _Dummy_10 """ # In the rare event that a Dummy object needs to be recreated, both the # `name` and `dummy_index` should be passed. This is used by `srepr` for # example: # >>> d1 = Dummy() # >>> d2 = eval(srepr(d1)) # >>> d2 == d1 # True # # If a new session is started between `srepr` and `eval`, there is a very # small chance that `d2` will be equal to a previously-created Dummy. _count = 0 _prng = random.Random() _base_dummy_index = _prng.randint(10**6, 9*10**6) __slots__ = ('dummy_index',) is_Dummy = True def __new__(cls, name=None, dummy_index=None, **assumptions): if dummy_index is not None: assert name is not None, "If you specify a dummy_index, you must also provide a name" if name is None: name = "Dummy_" + str(Dummy._count) if dummy_index is None: dummy_index = Dummy._base_dummy_index + Dummy._count Dummy._count += 1 cls._sanitize(assumptions, cls) obj = Symbol.__xnew__(cls, name, **assumptions) obj.dummy_index = dummy_index return obj def __getnewargs_ex__(self): return ((self.name, self.dummy_index), self.assumptions0) @cacheit def sort_key(self, order=None): return self.class_key(), ( 2, (self.name, self.dummy_index)), S.One.sort_key(), S.One def _hashable_content(self): return Symbol._hashable_content(self) + (self.dummy_index,) class Wild(Symbol): """ A Wild symbol matches anything, or anything without whatever is explicitly excluded. Parameters ========== name : str Name of the Wild instance. exclude : iterable, optional Instances in ``exclude`` will not be matched. properties : iterable of functions, optional Functions, each taking an expressions as input and returns a ``bool``. All functions in ``properties`` need to return ``True`` in order for the Wild instance to match the expression. Examples ======== >>> from sympy import Wild, WildFunction, cos, pi >>> from sympy.abc import x, y, z >>> a = Wild('a') >>> x.match(a) {a_: x} >>> pi.match(a) {a_: pi} >>> (3*x**2).match(a*x) {a_: 3*x} >>> cos(x).match(a) {a_: cos(x)} >>> b = Wild('b', exclude=[x]) >>> (3*x**2).match(b*x) >>> b.match(a) {a_: b_} >>> A = WildFunction('A') >>> A.match(a) {a_: A_} Tips ==== When using Wild, be sure to use the exclude keyword to make the pattern more precise. Without the exclude pattern, you may get matches that are technically correct, but not what you wanted. For example, using the above without exclude: >>> from sympy import symbols >>> a, b = symbols('a b', cls=Wild) >>> (2 + 3*y).match(a*x + b*y) {a_: 2/x, b_: 3} This is technically correct, because (2/x)*x + 3*y == 2 + 3*y, but you probably wanted it to not match at all. The issue is that you really didn't want a and b to include x and y, and the exclude parameter lets you specify exactly this. With the exclude parameter, the pattern will not match. >>> a = Wild('a', exclude=[x, y]) >>> b = Wild('b', exclude=[x, y]) >>> (2 + 3*y).match(a*x + b*y) Exclude also helps remove ambiguity from matches. >>> E = 2*x**3*y*z >>> a, b = symbols('a b', cls=Wild) >>> E.match(a*b) {a_: 2*y*z, b_: x**3} >>> a = Wild('a', exclude=[x, y]) >>> E.match(a*b) {a_: z, b_: 2*x**3*y} >>> a = Wild('a', exclude=[x, y, z]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} Wild also accepts a ``properties`` parameter: >>> a = Wild('a', properties=[lambda k: k.is_Integer]) >>> E.match(a*b) {a_: 2, b_: x**3*y*z} """ is_Wild = True __slots__ = ('exclude', 'properties') def __new__(cls, name, exclude=(), properties=(), **assumptions): exclude = tuple([sympify(x) for x in exclude]) properties = tuple(properties) cls._sanitize(assumptions, cls) return Wild.__xnew__(cls, name, exclude, properties, **assumptions) def __getnewargs__(self): return (self.name, self.exclude, self.properties) @staticmethod @cacheit def __xnew__(cls, name, exclude, properties, **assumptions): obj = Symbol.__xnew__(cls, name, **assumptions) obj.exclude = exclude obj.properties = properties return obj def _hashable_content(self): return super()._hashable_content() + (self.exclude, self.properties) # TODO add check against another Wild def matches(self, expr, repl_dict=None, old=False): if any(expr.has(x) for x in self.exclude): return None if not all(f(expr) for f in self.properties): return None if repl_dict is None: repl_dict = dict() else: repl_dict = repl_dict.copy() repl_dict[self] = expr return repl_dict _range = _re.compile('([0-9]*:[0-9]+|[a-zA-Z]?:[a-zA-Z])') def symbols(names, *, cls=Symbol, **args): r""" Transform strings into instances of :class:`Symbol` class. :func:`symbols` function returns a sequence of symbols with names taken from ``names`` argument, which can be a comma or whitespace delimited string, or a sequence of strings:: >>> from sympy import symbols, Function >>> x, y, z = symbols('x,y,z') >>> a, b, c = symbols('a b c') The type of output is dependent on the properties of input arguments:: >>> symbols('x') x >>> symbols('x,') (x,) >>> symbols('x,y') (x, y) >>> symbols(('a', 'b', 'c')) (a, b, c) >>> symbols(['a', 'b', 'c']) [a, b, c] >>> symbols({'a', 'b', 'c'}) {a, b, c} If an iterable container is needed for a single symbol, set the ``seq`` argument to ``True`` or terminate the symbol name with a comma:: >>> symbols('x', seq=True) (x,) To reduce typing, range syntax is supported to create indexed symbols. Ranges are indicated by a colon and the type of range is determined by the character to the right of the colon. If the character is a digit then all contiguous digits to the left are taken as the nonnegative starting value (or 0 if there is no digit left of the colon) and all contiguous digits to the right are taken as 1 greater than the ending value:: >>> symbols('x:10') (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) >>> symbols('x5:10') (x5, x6, x7, x8, x9) >>> symbols('x5(:2)') (x50, x51) >>> symbols('x5:10,y:5') (x5, x6, x7, x8, x9, y0, y1, y2, y3, y4) >>> symbols(('x5:10', 'y:5')) ((x5, x6, x7, x8, x9), (y0, y1, y2, y3, y4)) If the character to the right of the colon is a letter, then the single letter to the left (or 'a' if there is none) is taken as the start and all characters in the lexicographic range *through* the letter to the right are used as the range:: >>> symbols('x:z') (x, y, z) >>> symbols('x:c') # null range () >>> symbols('x(:c)') (xa, xb, xc) >>> symbols(':c') (a, b, c) >>> symbols('a:d, x:z') (a, b, c, d, x, y, z) >>> symbols(('a:d', 'x:z')) ((a, b, c, d), (x, y, z)) Multiple ranges are supported; contiguous numerical ranges should be separated by parentheses to disambiguate the ending number of one range from the starting number of the next:: >>> symbols('x:2(1:3)') (x01, x02, x11, x12) >>> symbols(':3:2') # parsing is from left to right (00, 01, 10, 11, 20, 21) Only one pair of parentheses surrounding ranges are removed, so to include parentheses around ranges, double them. And to include spaces, commas, or colons, escape them with a backslash:: >>> symbols('x((a:b))') (x(a), x(b)) >>> symbols(r'x(:1\,:2)') # or r'x((:1)\,(:2))' (x(0,0), x(0,1)) All newly created symbols have assumptions set according to ``args``:: >>> a = symbols('a', integer=True) >>> a.is_integer True >>> x, y, z = symbols('x,y,z', real=True) >>> x.is_real and y.is_real and z.is_real True Despite its name, :func:`symbols` can create symbol-like objects like instances of Function or Wild classes. To achieve this, set ``cls`` keyword argument to the desired type:: >>> symbols('f,g,h', cls=Function) (f, g, h) >>> type(_[0]) <class 'sympy.core.function.UndefinedFunction'> """ result = [] if isinstance(names, str): marker = 0 literals = [r'\,', r'\:', r'\ '] for i in range(len(literals)): lit = literals.pop(0) if lit in names: while chr(marker) in names: marker += 1 lit_char = chr(marker) marker += 1 names = names.replace(lit, lit_char) literals.append((lit_char, lit[1:])) def literal(s): if literals: for c, l in literals: s = s.replace(c, l) return s names = names.strip() as_seq = names.endswith(',') if as_seq: names = names[:-1].rstrip() if not names: raise ValueError('no symbols given') # split on commas names = [n.strip() for n in names.split(',')] if not all(n for n in names): raise ValueError('missing symbol between commas') # split on spaces for i in range(len(names) - 1, -1, -1): names[i: i + 1] = names[i].split() seq = args.pop('seq', as_seq) for name in names: if not name: raise ValueError('missing symbol') if ':' not in name: symbol = cls(literal(name), **args) result.append(symbol) continue split = _range.split(name) # remove 1 layer of bounding parentheses around ranges for i in range(len(split) - 1): if i and ':' in split[i] and split[i] != ':' and \ split[i - 1].endswith('(') and \ split[i + 1].startswith(')'): split[i - 1] = split[i - 1][:-1] split[i + 1] = split[i + 1][1:] for i, s in enumerate(split): if ':' in s: if s[-1].endswith(':'): raise ValueError('missing end range') a, b = s.split(':') if b[-1] in string.digits: a = 0 if not a else int(a) b = int(b) split[i] = [str(c) for c in range(a, b)] else: a = a or 'a' split[i] = [string.ascii_letters[c] for c in range( string.ascii_letters.index(a), string.ascii_letters.index(b) + 1)] # inclusive if not split[i]: break else: split[i] = [s] else: seq = True if len(split) == 1: names = split[0] else: names = [''.join(s) for s in product(*split)] if literals: result.extend([cls(literal(s), **args) for s in names]) else: result.extend([cls(s, **args) for s in names]) if not seq and len(result) <= 1: if not result: return () return result[0] return tuple(result) else: for name in names: result.append(symbols(name, **args)) return type(names)(result) def var(names, **args): """ Create symbols and inject them into the global namespace. Explanation =========== This calls :func:`symbols` with the same arguments and puts the results into the *global* namespace. It's recommended not to use :func:`var` in library code, where :func:`symbols` has to be used:: Examples ======== >>> from sympy import var >>> var('x') x >>> x # noqa: F821 x >>> var('a,ab,abc') (a, ab, abc) >>> abc # noqa: F821 abc >>> var('x,y', real=True) (x, y) >>> x.is_real and y.is_real # noqa: F821 True See :func:`symbols` documentation for more details on what kinds of arguments can be passed to :func:`var`. """ def traverse(symbols, frame): """Recursively inject symbols to the global namespace. """ for symbol in symbols: if isinstance(symbol, Basic): frame.f_globals[symbol.name] = symbol elif isinstance(symbol, FunctionClass): frame.f_globals[symbol.__name__] = symbol else: traverse(symbol, frame) from inspect import currentframe frame = currentframe().f_back try: syms = symbols(names, **args) if syms is not None: if isinstance(syms, Basic): frame.f_globals[syms.name] = syms elif isinstance(syms, FunctionClass): frame.f_globals[syms.__name__] = syms else: traverse(syms, frame) finally: del frame # break cyclic dependencies as stated in inspect docs return syms def disambiguate(*iter): """ Return a Tuple containing the passed expressions with symbols that appear the same when printed replaced with numerically subscripted symbols, and all Dummy symbols replaced with Symbols. Parameters ========== iter: list of symbols or expressions. Examples ======== >>> from sympy.core.symbol import disambiguate >>> from sympy import Dummy, Symbol, Tuple >>> from sympy.abc import y >>> tup = Symbol('_x'), Dummy('x'), Dummy('x') >>> disambiguate(*tup) (x_2, x, x_1) >>> eqs = Tuple(Symbol('x')/y, Dummy('x')/y) >>> disambiguate(*eqs) (x_1/y, x/y) >>> ix = Symbol('x', integer=True) >>> vx = Symbol('x') >>> disambiguate(vx + ix) (x + x_1,) To make your own mapping of symbols to use, pass only the free symbols of the expressions and create a dictionary: >>> free = eqs.free_symbols >>> mapping = dict(zip(free, disambiguate(*free))) >>> eqs.xreplace(mapping) (x_1/y, x/y) """ new_iter = Tuple(*iter) key = lambda x:tuple(sorted(x.assumptions0.items())) syms = ordered(new_iter.free_symbols, keys=key) mapping = {} for s in syms: mapping.setdefault(str(s).lstrip('_'), []).append(s) reps = {} for k in mapping: # the first or only symbol doesn't get subscripted but make # sure that it's a Symbol, not a Dummy mapk0 = Symbol("%s" % (k), **mapping[k][0].assumptions0) if mapping[k][0] != mapk0: reps[mapping[k][0]] = mapk0 # the others get subscripts (and are made into Symbols) skip = 0 for i in range(1, len(mapping[k])): while True: name = "%s_%i" % (k, i + skip) if name not in mapping: break skip += 1 ki = mapping[k][i] reps[ki] = Symbol(name, **ki.assumptions0) return new_iter.xreplace(reps)
cd286d7463a73588c5d4c23cacca53b71a2bdeb688d7fa8ed13b8213f464cc69
""" Reimplementations of constructs introduced in later versions of Python than we support. Also some functions that are needed SymPy-wide and are located here for easy import. """ from .sorting import ordered as _ordered, _nodes as __nodes, default_sort_key as _default_sort_key from sympy.utilities.decorator import deprecated from sympy.utilities.misc import as_int as _as_int from sympy.utilities.iterables import (iterable as _iterable, is_sequence as _is_sequence, NotIterable as _notiterable) default_sort_key = deprecated(useinstead="sympy.core.sorting.default_sort_key", deprecated_since_version="1.10", issue=22352)(_default_sort_key) ordered = deprecated(useinstead="sympy.core.sorting.ordered", deprecated_since_version="1.10", issue=22352)(_ordered) _nodes = deprecated(useinstead="sympy.core.sorting._nodes", deprecated_since_version="1.10", issue=22352)(__nodes) as_int = deprecated(useinstead="sympy.utilities.misc.as_int", deprecated_since_version="1.10", issue=22352)(_as_int) is_sequence = deprecated(useinstead="sympy.utilities.iterables.is_sequence", deprecated_since_version="1.10", issue=22352)(_is_sequence) iterable = deprecated(useinstead="sympy.utilities.iterables.iterable", deprecated_since_version="1.10", issue=22352)(_iterable) NotIterable = deprecated(useinstead="sympy.utilities.iterables.NotIterable", deprecated_since_version="1.10", issue=22352)(_notiterable)
ee163dd2644f9a8a7e9b08e5e7f9c5abfe9c7ec64ef252f90efe230dd571b1cf
"""sympify -- convert objects SymPy internal format""" import typing if typing.TYPE_CHECKING: from typing import Any, Callable, Dict as tDict, Type from inspect import getmro import string from sympy.core.random import choice from .parameters import global_parameters from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable class SympifyError(ValueError): def __init__(self, expr, base_exc=None): self.expr = expr self.base_exc = base_exc def __str__(self): if self.base_exc is None: return "SympifyError: %r" % (self.expr,) return ("Sympify of expression '%s' failed, because of exception being " "raised:\n%s: %s" % (self.expr, self.base_exc.__class__.__name__, str(self.base_exc))) # See sympify docstring. converter = {} # type: tDict[Type[Any], Callable[[Any], Basic]] class CantSympify: """ Mix in this trait to a class to disallow sympification of its instances. Examples ======== >>> from sympy import sympify >>> from sympy.core.sympify import CantSympify >>> class Something(dict): ... pass ... >>> sympify(Something()) {} >>> class Something(dict, CantSympify): ... pass ... >>> sympify(Something()) Traceback (most recent call last): ... SympifyError: SympifyError: {} """ pass def _is_numpy_instance(a): """ Checks if an object is an instance of a type from the numpy module. """ # This check avoids unnecessarily importing NumPy. We check the whole # __mro__ in case any base type is a numpy type. return any(type_.__module__ == 'numpy' for type_ in type(a).__mro__) def _convert_numpy_types(a, **sympify_args): """ Converts a numpy datatype input to an appropriate SymPy type. """ import numpy as np if not isinstance(a, np.floating): if np.iscomplex(a): return converter[complex](a.item()) else: return sympify(a.item(), **sympify_args) else: try: from .numbers import Float prec = np.finfo(a).nmant + 1 # E.g. double precision means prec=53 but nmant=52 # Leading bit of mantissa is always 1, so is not stored a = str(list(np.reshape(np.asarray(a), (1, np.size(a)))[0]))[1:-1] return Float(a, precision=prec) except NotImplementedError: raise SympifyError('Translation for numpy float : %s ' 'is not implemented' % a) def sympify(a, locals=None, convert_xor=True, strict=False, rational=False, evaluate=None): """ Converts an arbitrary expression to a type that can be used inside SymPy. Explanation =========== It will convert Python ints into instances of :class:`~.Integer`, floats into instances of :class:`~.Float`, etc. It is also able to coerce symbolic expressions which inherit from :class:`~.Basic`. This can be useful in cooperation with SAGE. .. warning:: Note that this function uses ``eval``, and thus shouldn't be used on unsanitized input. If the argument is already a type that SymPy understands, it will do nothing but return that value. This can be used at the beginning of a function to ensure you are working with the correct type. Examples ======== >>> from sympy import sympify >>> sympify(2).is_integer True >>> sympify(2).is_real True >>> sympify(2.0).is_real True >>> sympify("2.0").is_real True >>> sympify("2e-45").is_real True If the expression could not be converted, a SympifyError is raised. >>> sympify("x***2") Traceback (most recent call last): ... SympifyError: SympifyError: "could not parse 'x***2'" Locals ------ The sympification happens with access to everything that is loaded by ``from sympy import *``; anything used in a string that is not defined by that import will be converted to a symbol. In the following, the ``bitcount`` function is treated as a symbol and the ``O`` is interpreted as the :class:`~.Order` object (used with series) and it raises an error when used improperly: >>> s = 'bitcount(42)' >>> sympify(s) bitcount(42) >>> sympify("O(x)") O(x) >>> sympify("O + 1") Traceback (most recent call last): ... TypeError: unbound method... In order to have ``bitcount`` be recognized it can be imported into a namespace dictionary and passed as locals: >>> ns = {} >>> exec('from sympy.core.evalf import bitcount', ns) >>> sympify(s, locals=ns) 6 In order to have the ``O`` interpreted as a Symbol, identify it as such in the namespace dictionary. This can be done in a variety of ways; all three of the following are possibilities: >>> from sympy import Symbol >>> ns["O"] = Symbol("O") # method 1 >>> exec('from sympy.abc import O', ns) # method 2 >>> ns.update(dict(O=Symbol("O"))) # method 3 >>> sympify("O + 1", locals=ns) O + 1 If you want *all* single-letter and Greek-letter variables to be symbols then you can use the clashing-symbols dictionaries that have been defined there as private variables: ``_clash1`` (single-letter variables), ``_clash2`` (the multi-letter Greek names) or ``_clash`` (both single and multi-letter names that are defined in ``abc``). >>> from sympy.abc import _clash1 >>> set(_clash1) {'E', 'I', 'N', 'O', 'Q', 'S'} >>> sympify('I & Q', _clash1) I & Q Strict ------ If the option ``strict`` is set to ``True``, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised. >>> print(sympify(None)) None >>> sympify(None, strict=True) Traceback (most recent call last): ... SympifyError: SympifyError: None Evaluation ---------- If the option ``evaluate`` is set to ``False``, then arithmetic and operators will be converted into their SymPy equivalents and the ``evaluate=False`` option will be added. Nested ``Add`` or ``Mul`` will be denested first. This is done via an AST transformation that replaces operators with their SymPy equivalents, so if an operand redefines any of those operations, the redefined operators will not be used. If argument a is not a string, the mathematical expression is evaluated before being passed to sympify, so adding ``evaluate=False`` will still return the evaluated result of expression. >>> sympify('2**2 / 3 + 5') 19/3 >>> sympify('2**2 / 3 + 5', evaluate=False) 2**2/3 + 5 >>> sympify('4/2+7', evaluate=True) 9 >>> sympify('4/2+7', evaluate=False) 4/2 + 7 >>> sympify(4/2+7, evaluate=False) 9.00000000000000 Extending --------- To extend ``sympify`` to convert custom objects (not derived from ``Basic``), just define a ``_sympy_`` method to your class. You can do that even to classes that you do not own by subclassing or adding the method at runtime. >>> from sympy import Matrix >>> class MyList1(object): ... def __iter__(self): ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] ... def _sympy_(self): return Matrix(self) >>> sympify(MyList1()) Matrix([ [1], [2]]) If you do not have control over the class definition you could also use the ``converter`` global dictionary. The key is the class and the value is a function that takes a single argument and returns the desired SymPy object, e.g. ``converter[MyList] = lambda x: Matrix(x)``. >>> class MyList2(object): # XXX Do not do this if you control the class! ... def __iter__(self): # Use _sympy_! ... yield 1 ... yield 2 ... return ... def __getitem__(self, i): return list(self)[i] >>> from sympy.core.sympify import converter >>> converter[MyList2] = lambda x: Matrix(x) >>> sympify(MyList2()) Matrix([ [1], [2]]) Notes ===== The keywords ``rational`` and ``convert_xor`` are only used when the input is a string. convert_xor ----------- >>> sympify('x^y',convert_xor=True) x**y >>> sympify('x^y',convert_xor=False) x ^ y rational -------- >>> sympify('0.1',rational=False) 0.1 >>> sympify('0.1',rational=True) 1/10 Sometimes autosimplification during sympification results in expressions that are very different in structure than what was entered. Until such autosimplification is no longer done, the ``kernS`` function might be of some use. In the example below you can see how an expression reduces to $-1$ by autosimplification, but does not do so when ``kernS`` is used. >>> from sympy.core.sympify import kernS >>> from sympy.abc import x >>> -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 -1 >>> s = '-2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1' >>> sympify(s) -1 >>> kernS(s) -2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) - 1 Parameters ========== a : - any object defined in SymPy - standard numeric Python types: ``int``, ``long``, ``float``, ``Decimal`` - strings (like ``"0.09"``, ``"2e-19"`` or ``'sin(x)'``) - booleans, including ``None`` (will leave ``None`` unchanged) - dicts, lists, sets or tuples containing any of the above convert_xor : bool, optional If true, treats ``^`` as exponentiation. If False, treats ``^`` as XOR itself. Used only when input is a string. locals : any object defined in SymPy, optional In order to have strings be recognized it can be imported into a namespace dictionary and passed as locals. strict : bool, optional If the option strict is set to ``True``, only the types for which an explicit conversion has been defined are converted. In the other cases, a SympifyError is raised. rational : bool, optional If ``True``, converts floats into :class:`~.Rational`. If ``False``, it lets floats remain as it is. Used only when input is a string. evaluate : bool, optional If False, then arithmetic and operators will be converted into their SymPy equivalents. If True the expression will be evaluated and the result will be returned. """ # XXX: If a is a Basic subclass rather than instance (e.g. sin rather than # sin(x)) then a.__sympy__ will be the property. Only on the instance will # a.__sympy__ give the *value* of the property (True). Since sympify(sin) # was used for a long time we allow it to pass. However if strict=True as # is the case in internal calls to _sympify then we only allow # is_sympy=True. # # https://github.com/sympy/sympy/issues/20124 is_sympy = getattr(a, '__sympy__', None) if is_sympy is True: return a elif is_sympy is not None: if not strict: return a else: raise SympifyError(a) if isinstance(a, CantSympify): raise SympifyError(a) cls = getattr(a, "__class__", None) if cls is None: cls = type(a) # Probably an old-style class conv = converter.get(cls, None) if conv is not None: return conv(a) for superclass in getmro(cls): try: return converter[superclass](a) except KeyError: continue if cls is type(None): if strict: raise SympifyError(a) else: return a if evaluate is None: evaluate = global_parameters.evaluate # Support for basic numpy datatypes if _is_numpy_instance(a): import numpy as np if np.isscalar(a): return _convert_numpy_types(a, locals=locals, convert_xor=convert_xor, strict=strict, rational=rational, evaluate=evaluate) _sympy_ = getattr(a, "_sympy_", None) if _sympy_ is not None: try: return a._sympy_() # XXX: Catches AttributeError: 'SymPyConverter' object has no # attribute 'tuple' # This is probably a bug somewhere but for now we catch it here. except AttributeError: pass if not strict: # Put numpy array conversion _before_ float/int, see # <https://github.com/sympy/sympy/issues/13924>. flat = getattr(a, "flat", None) if flat is not None: shape = getattr(a, "shape", None) if shape is not None: from sympy.tensor.array import Array return Array(a.flat, a.shape) # works with e.g. NumPy arrays if not isinstance(a, str): if _is_numpy_instance(a): import numpy as np assert not isinstance(a, np.number) if isinstance(a, np.ndarray): # Scalar arrays (those with zero dimensions) have sympify # called on the scalar element. if a.ndim == 0: try: return sympify(a.item(), locals=locals, convert_xor=convert_xor, strict=strict, rational=rational, evaluate=evaluate) except SympifyError: pass else: # float and int can coerce size-one numpy arrays to their lone # element. See issue https://github.com/numpy/numpy/issues/10404. for coerce in (float, int): try: return sympify(coerce(a)) except (TypeError, ValueError, AttributeError, SympifyError): continue if strict: raise SympifyError(a) if iterable(a): try: return type(a)([sympify(x, locals=locals, convert_xor=convert_xor, rational=rational, evaluate=evaluate) for x in a]) except TypeError: # Not all iterables are rebuildable with their type. pass if not isinstance(a, str): try: a = str(a) except Exception as exc: raise SympifyError(a, exc) SymPyDeprecationWarning( feature="String fallback in sympify", useinstead= \ 'sympify(str(obj)) or ' + \ 'sympy.core.sympify.converter or obj._sympy_', issue=18066, deprecated_since_version='1.6' ).warn() from sympy.parsing.sympy_parser import (parse_expr, TokenError, standard_transformations) from sympy.parsing.sympy_parser import convert_xor as t_convert_xor from sympy.parsing.sympy_parser import rationalize as t_rationalize transformations = standard_transformations if rational: transformations += (t_rationalize,) if convert_xor: transformations += (t_convert_xor,) try: a = a.replace('\n', '') expr = parse_expr(a, local_dict=locals, transformations=transformations, evaluate=evaluate) except (TokenError, SyntaxError) as exc: raise SympifyError('could not parse %r' % a, exc) return expr def _sympify(a): """ Short version of :func:`~.sympify` for internal usage for ``__add__`` and ``__eq__`` methods where it is ok to allow some things (like Python integers and floats) in the expression. This excludes things (like strings) that are unwise to allow into such an expression. >>> from sympy import Integer >>> Integer(1) == 1 True >>> Integer(1) == '1' False >>> from sympy.abc import x >>> x + 1 x + 1 >>> x + '1' Traceback (most recent call last): ... TypeError: unsupported operand type(s) for +: 'Symbol' and 'str' see: sympify """ return sympify(a, strict=True) def kernS(s): """Use a hack to try keep autosimplification from distributing a a number into an Add; this modification doesn't prevent the 2-arg Mul from becoming an Add, however. Examples ======== >>> from sympy.core.sympify import kernS >>> from sympy.abc import x, y The 2-arg Mul distributes a number (or minus sign) across the terms of an expression, but kernS will prevent that: >>> 2*(x + y), -(x + 1) (2*x + 2*y, -x - 1) >>> kernS('2*(x + y)') 2*(x + y) >>> kernS('-(x + 1)') -(x + 1) If use of the hack fails, the un-hacked string will be passed to sympify... and you get what you get. XXX This hack should not be necessary once issue 4596 has been resolved. """ hit = False quoted = '"' in s or "'" in s if '(' in s and not quoted: if s.count('(') != s.count(")"): raise SympifyError('unmatched left parenthesis') # strip all space from s s = ''.join(s.split()) olds = s # now use space to represent a symbol that # will # step 1. turn potential 2-arg Muls into 3-arg versions # 1a. *( -> * *( s = s.replace('*(', '* *(') # 1b. close up exponentials s = s.replace('** *', '**') # 2. handle the implied multiplication of a negated # parenthesized expression in two steps # 2a: -(...) --> -( *(...) target = '-( *(' s = s.replace('-(', target) # 2b: double the matching closing parenthesis # -( *(...) --> -( *(...)) i = nest = 0 assert target.endswith('(') # assumption below while True: j = s.find(target, i) if j == -1: break j += len(target) - 1 for j in range(j, len(s)): if s[j] == "(": nest += 1 elif s[j] == ")": nest -= 1 if nest == 0: break s = s[:j] + ")" + s[j:] i = j + 2 # the first char after 2nd ) if ' ' in s: # get a unique kern kern = '_' while kern in s: kern += choice(string.ascii_letters + string.digits) s = s.replace(' ', kern) hit = kern in s else: hit = False for i in range(2): try: expr = sympify(s) break except TypeError: # the kern might cause unknown errors... if hit: s = olds # maybe it didn't like the kern; use un-kerned s hit = False continue expr = sympify(s) # let original error raise if not hit: return expr from .symbol import Symbol rep = {Symbol(kern): 1} def _clear(expr): if isinstance(expr, (list, tuple, set)): return type(expr)([_clear(e) for e in expr]) if hasattr(expr, 'subs'): return expr.subs(rep, hack2=True) return expr expr = _clear(expr) # hope that kern is not there anymore return expr # Avoid circular import from .basic import Basic
d20ba0ddd0bc7f8558ed9629bdd72134505767540c1f4fe89ca80970c724e796
""" Adaptive numerical evaluation of SymPy expressions, using mpmath for mathematical functions. """ from typing import Tuple as tTuple, Optional, Union as tUnion, Callable, List, Dict as tDict, Type, TYPE_CHECKING, \ Any, overload import math import mpmath.libmp as libmp from mpmath import ( make_mpc, make_mpf, mp, mpc, mpf, nsum, quadts, quadosc, workprec) from mpmath import inf as mpmath_inf from mpmath.libmp import (from_int, from_man_exp, from_rational, fhalf, fnan, finf, fninf, fnone, fone, fzero, mpf_abs, mpf_add, mpf_atan, mpf_atan2, mpf_cmp, mpf_cos, mpf_e, mpf_exp, mpf_log, mpf_lt, mpf_mul, mpf_neg, mpf_pi, mpf_pow, mpf_pow_int, mpf_shift, mpf_sin, mpf_sqrt, normalize, round_nearest, to_int, to_str) from mpmath.libmp import bitcount as mpmath_bitcount from mpmath.libmp.backend import MPZ from mpmath.libmp.libmpc import _infs_nan from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps from mpmath.libmp.gammazeta import mpf_bernoulli from .sympify import sympify from .singleton import S from sympy.external.gmpy import SYMPY_INTS from sympy.utilities.iterables import is_sequence from sympy.utilities.lambdify import lambdify from sympy.utilities.misc import as_int if TYPE_CHECKING: from sympy.core.expr import Expr from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.integrals.integrals import Integral from sympy.concrete.summations import Sum from sympy.concrete.products import Product from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.complexes import Abs, re, im from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.trigonometric import atan from sympy.functions.combinatorial.numbers import bernoulli from .numbers import Float, Rational, Integer LG10 = math.log(10, 2) rnd = round_nearest def bitcount(n): """Return smallest integer, b, such that |n|/2**b < 1. """ return mpmath_bitcount(abs(int(n))) # Used in a few places as placeholder values to denote exponents and # precision levels, e.g. of exact numbers. Must be careful to avoid # passing these to mpmath functions or returning them in final results. INF = float(mpmath_inf) MINUS_INF = float(-mpmath_inf) # ~= 100 digits. Real men set this to INF. DEFAULT_MAXPREC = 333 class PrecisionExhausted(ArithmeticError): pass #----------------------------------------------------------------------------# # # # Helper functions for arithmetic and complex parts # # # #----------------------------------------------------------------------------# """ An mpf value tuple is a tuple of integers (sign, man, exp, bc) representing a floating-point number: [1, -1][sign]*man*2**exp where sign is 0 or 1 and bc should correspond to the number of bits used to represent the mantissa (man) in binary notation, e.g. """ MPF_TUP = tTuple[int, int, int, int] # mpf value tuple """ Explanation =========== >>> from sympy.core.evalf import bitcount >>> sign, man, exp, bc = 0, 5, 1, 3 >>> n = [1, -1][sign]*man*2**exp >>> n, bitcount(man) (10, 3) A temporary result is a tuple (re, im, re_acc, im_acc) where re and im are nonzero mpf value tuples representing approximate numbers, or None to denote exact zeros. re_acc, im_acc are integers denoting log2(e) where e is the estimated relative accuracy of the respective complex part, but may be anything if the corresponding complex part is None. """ TMP_RES = Any # temporary result, should be some variant of # tUnion[tTuple[Optional[MPF_TUP], Optional[MPF_TUP], # Optional[int], Optional[int]], # 'ComplexInfinity'] # but mypy reports error because it doesn't know as we know # 1. re and re_acc are either both None or both MPF_TUP # 2. sometimes the result can't be zoo # type of the "options" parameter in internal evalf functions OPT_DICT = tDict[str, Any] def fastlog(x: Optional[MPF_TUP]) -> tUnion[int, Any]: """Fast approximation of log2(x) for an mpf value tuple x. Explanation =========== Calculated as exponent + width of mantissa. This is an approximation for two reasons: 1) it gives the ceil(log2(abs(x))) value and 2) it is too high by 1 in the case that x is an exact power of 2. Although this is easy to remedy by testing to see if the odd mpf mantissa is 1 (indicating that one was dealing with an exact power of 2) that would decrease the speed and is not necessary as this is only being used as an approximation for the number of bits in x. The correct return value could be written as "x[2] + (x[3] if x[1] != 1 else 0)". Since mpf tuples always have an odd mantissa, no check is done to see if the mantissa is a multiple of 2 (in which case the result would be too large by 1). Examples ======== >>> from sympy import log >>> from sympy.core.evalf import fastlog, bitcount >>> s, m, e = 0, 5, 1 >>> bc = bitcount(m) >>> n = [1, -1][s]*m*2**e >>> n, (log(n)/log(2)).evalf(2), fastlog((s, m, e, bc)) (10, 3.3, 4) """ if not x or x == fzero: return MINUS_INF return x[2] + x[3] def pure_complex(v: 'Expr', or_real=False) -> Optional[tTuple['Expr', 'Expr']]: """Return a and b if v matches a + I*b where b is not zero and a and b are Numbers, else None. If `or_real` is True then 0 will be returned for `b` if `v` is a real number. Examples ======== >>> from sympy.core.evalf import pure_complex >>> from sympy import sqrt, I, S >>> a, b, surd = S(2), S(3), sqrt(2) >>> pure_complex(a) >>> pure_complex(a, or_real=True) (2, 0) >>> pure_complex(surd) >>> pure_complex(a + b*I) (2, 3) >>> pure_complex(I) (0, 1) """ h, t = v.as_coeff_Add() if t: c, i = t.as_coeff_Mul() if i is S.ImaginaryUnit: return h, c elif or_real: return h, t return None # I don't know what this is, see function scaled_zero below SCALED_ZERO_TUP = tTuple[List[int], int, int, int] @overload def scaled_zero(mag: SCALED_ZERO_TUP, sign=1) -> MPF_TUP: ... @overload def scaled_zero(mag: int, sign=1) -> tTuple[SCALED_ZERO_TUP, int]: ... def scaled_zero(mag: tUnion[SCALED_ZERO_TUP, int], sign=1) -> \ tUnion[MPF_TUP, tTuple[SCALED_ZERO_TUP, int]]: """Return an mpf representing a power of two with magnitude ``mag`` and -1 for precision. Or, if ``mag`` is a scaled_zero tuple, then just remove the sign from within the list that it was initially wrapped in. Examples ======== >>> from sympy.core.evalf import scaled_zero >>> from sympy import Float >>> z, p = scaled_zero(100) >>> z, p (([0], 1, 100, 1), -1) >>> ok = scaled_zero(z) >>> ok (0, 1, 100, 1) >>> Float(ok) 1.26765060022823e+30 >>> Float(ok, p) 0.e+30 >>> ok, p = scaled_zero(100, -1) >>> Float(scaled_zero(ok), p) -0.e+30 """ if isinstance(mag, tuple) and len(mag) == 4 and iszero(mag, scaled=True): return (mag[0][0],) + mag[1:] elif isinstance(mag, SYMPY_INTS): if sign not in [-1, 1]: raise ValueError('sign must be +/-1') rv, p = mpf_shift(fone, mag), -1 s = 0 if sign == 1 else 1 rv = ([s],) + rv[1:] return rv, p else: raise ValueError('scaled zero expects int or scaled_zero tuple.') def iszero(mpf: tUnion[MPF_TUP, SCALED_ZERO_TUP, None], scaled=False) -> Optional[bool]: if not scaled: return not mpf or not mpf[1] and not mpf[-1] return mpf and isinstance(mpf[0], list) and mpf[1] == mpf[-1] == 1 def complex_accuracy(result: TMP_RES) -> tUnion[int, Any]: """ Returns relative accuracy of a complex number with given accuracies for the real and imaginary parts. The relative accuracy is defined in the complex norm sense as ||z|+|error|| / |z| where error is equal to (real absolute error) + (imag absolute error)*i. The full expression for the (logarithmic) error can be approximated easily by using the max norm to approximate the complex norm. In the worst case (re and im equal), this is wrong by a factor sqrt(2), or by log2(sqrt(2)) = 0.5 bit. """ if result is S.ComplexInfinity: return INF re, im, re_acc, im_acc = result if not im: if not re: return INF return re_acc if not re: return im_acc re_size = fastlog(re) im_size = fastlog(im) absolute_error = max(re_size - re_acc, im_size - im_acc) relative_error = absolute_error - max(re_size, im_size) return -relative_error def get_abs(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES: result = evalf(expr, prec + 2, options) if result is S.ComplexInfinity: return finf, None, prec, None re, im, re_acc, im_acc = result if not re: re, re_acc, im, im_acc = im, im_acc, re, re_acc if im: if expr.is_number: abs_expr, _, acc, _ = evalf(abs(N(expr, prec + 2)), prec + 2, options) return abs_expr, None, acc, None else: if 'subs' in options: return libmp.mpc_abs((re, im), prec), None, re_acc, None return abs(expr), None, prec, None elif re: return mpf_abs(re), None, re_acc, None else: return None, None, None, None def get_complex_part(expr: 'Expr', no: int, prec: int, options: OPT_DICT) -> TMP_RES: """no = 0 for real part, no = 1 for imaginary part""" workprec = prec i = 0 while 1: res = evalf(expr, workprec, options) if res is S.ComplexInfinity: return fnan, None, prec, None value, accuracy = res[no::2] # XXX is the last one correct? Consider re((1+I)**2).n() if (not value) or accuracy >= prec or -value[2] > prec: return value, None, accuracy, None workprec += max(30, 2**i) i += 1 def evalf_abs(expr: 'Abs', prec: int, options: OPT_DICT) -> TMP_RES: return get_abs(expr.args[0], prec, options) def evalf_re(expr: 're', prec: int, options: OPT_DICT) -> TMP_RES: return get_complex_part(expr.args[0], 0, prec, options) def evalf_im(expr: 'im', prec: int, options: OPT_DICT) -> TMP_RES: return get_complex_part(expr.args[0], 1, prec, options) def finalize_complex(re: MPF_TUP, im: MPF_TUP, prec: int) -> TMP_RES: if re == fzero and im == fzero: raise ValueError("got complex zero with unknown accuracy") elif re == fzero: return None, im, None, prec elif im == fzero: return re, None, prec, None size_re = fastlog(re) size_im = fastlog(im) if size_re > size_im: re_acc = prec im_acc = prec + min(-(size_re - size_im), 0) else: im_acc = prec re_acc = prec + min(-(size_im - size_re), 0) return re, im, re_acc, im_acc def chop_parts(value: TMP_RES, prec: int) -> TMP_RES: """ Chop off tiny real or complex parts. """ if value is S.ComplexInfinity: return value re, im, re_acc, im_acc = value # Method 1: chop based on absolute value if re and re not in _infs_nan and (fastlog(re) < -prec + 4): re, re_acc = None, None if im and im not in _infs_nan and (fastlog(im) < -prec + 4): im, im_acc = None, None # Method 2: chop if inaccurate and relatively small if re and im: delta = fastlog(re) - fastlog(im) if re_acc < 2 and (delta - re_acc <= -prec + 4): re, re_acc = None, None if im_acc < 2 and (delta - im_acc >= prec - 4): im, im_acc = None, None return re, im, re_acc, im_acc def check_target(expr: 'Expr', result: TMP_RES, prec: int): a = complex_accuracy(result) if a < prec: raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n" "from zero. Try simplifying the input, using chop=True, or providing " "a higher maxn for evalf" % (expr)) def get_integer_part(expr: 'Expr', no: int, options: OPT_DICT, return_ints=False) -> \ tUnion[TMP_RES, tTuple[int, int]]: """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ from sympy.functions.elementary.complexes import re, im # The expression is likely less than 2^30 or so assumed_size = 30 result = evalf(expr, assumed_size, options) if result is S.ComplexInfinity: raise ValueError("Cannot get integer part of Complex Infinity") ire, iim, ire_acc, iim_acc = result # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire) - ire_acc, fastlog(iim) - iim_acc) elif ire: gap = fastlog(ire) - ire_acc elif iim: gap = fastlog(iim) - iim_acc else: # ... or maybe the expression was exactly zero if return_ints: return 0, 0 else: return None, None, None, None margin = 10 if gap >= -margin: prec = margin + assumed_size + gap ire, iim, ire_acc, iim_acc = evalf( expr, prec, options) else: prec = assumed_size # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close). def calc_part(re_im: 'Expr', nexpr: MPF_TUP): from .add import Add _, _, exponent, _ = nexpr is_int = exponent == 0 nint = int(to_int(nexpr, rnd)) if is_int: # make sure that we had enough precision to distinguish # between nint and the re or im part (re_im) of expr that # was passed to calc_part ire, iim, ire_acc, iim_acc = evalf( re_im - nint, 10, options) # don't need much precision assert not iim size = -fastlog(ire) + 2 # -ve b/c ire is less than 1 if size > prec: ire, iim, ire_acc, iim_acc = evalf( re_im, size, options) assert not iim nexpr = ire nint = int(to_int(nexpr, rnd)) _, _, new_exp, _ = ire is_int = new_exp == 0 if not is_int: # if there are subs and they all contain integer re/im parts # then we can (hopefully) safely substitute them into the # expression s = options.get('subs', False) if s: doit = True # use strict=False with as_int because we take # 2.0 == 2 for v in s.values(): try: as_int(v, strict=False) except ValueError: try: [as_int(i, strict=False) for i in v.as_real_imag()] continue except (ValueError, AttributeError): doit = False break if doit: re_im = re_im.subs(s) re_im = Add(re_im, -nint, evaluate=False) x, _, x_acc, _ = evalf(re_im, 10, options) try: check_target(re_im, (x, None, x_acc, None), 3) except PrecisionExhausted: if not re_im.equals(0): raise PrecisionExhausted x = fzero nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, INF re_, im_, re_acc, im_acc = None, None, None, None if ire: re_, re_acc = calc_part(re(expr, evaluate=False), ire) if iim: im_, im_acc = calc_part(im(expr, evaluate=False), iim) if return_ints: return int(to_int(re_ or fzero)), int(to_int(im_ or fzero)) return re_, im_, re_acc, im_acc def evalf_ceiling(expr: 'ceiling', prec: int, options: OPT_DICT) -> TMP_RES: return get_integer_part(expr.args[0], 1, options) def evalf_floor(expr: 'floor', prec: int, options: OPT_DICT) -> TMP_RES: return get_integer_part(expr.args[0], -1, options) def evalf_float(expr: 'Float', prec: int, options: OPT_DICT) -> TMP_RES: return expr._mpf_, None, prec, None def evalf_rational(expr: 'Rational', prec: int, options: OPT_DICT) -> TMP_RES: return from_rational(expr.p, expr.q, prec), None, prec, None def evalf_integer(expr: 'Integer', prec: int, options: OPT_DICT) -> TMP_RES: return from_int(expr.p, prec), None, prec, None #----------------------------------------------------------------------------# # # # Arithmetic operations # # # #----------------------------------------------------------------------------# def add_terms(terms: list, prec: int, target_prec: int) -> \ tTuple[tUnion[MPF_TUP, SCALED_ZERO_TUP, None], Optional[int]]: """ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. Returns ======= - None, None if there are no non-zero terms; - terms[0] if there is only 1 term; - scaled_zero if the sum of the terms produces a zero by cancellation e.g. mpfs representing 1 and -1 would produce a scaled zero which need special handling since they are not actually zero and they are purposely malformed to ensure that they cannot be used in anything but accuracy calculations; - a tuple that is scaled to target_prec that corresponds to the sum of the terms. The returned mpf tuple will be normalized to target_prec; the input prec is used to define the working precision. XXX explain why this is needed and why one cannot just loop using mpf_add """ terms = [t for t in terms if not iszero(t[0])] if not terms: return None, None elif len(terms) == 1: return terms[0] # see if any argument is NaN or oo and thus warrants a special return special = [] from .numbers import Float for t in terms: arg = Float._new(t[0], 1) if arg is S.NaN or arg.is_infinite: special.append(arg) if special: from .add import Add rv = evalf(Add(*special), prec + 4, {}) return rv[0], rv[2] working_prec = 2*prec sum_man, sum_exp = 0, 0 absolute_err: List[int] = [] for x, accuracy in terms: sign, man, exp, bc = x if sign: man = -man absolute_err.append(bc + exp - accuracy) delta = exp - sum_exp if exp >= sum_exp: # x much larger than existing sum? # first: quick test if ((delta > working_prec) and ((not sum_man) or delta - bitcount(abs(sum_man)) > working_prec)): sum_man = man sum_exp = exp else: sum_man += (man << delta) else: delta = -delta # x much smaller than existing sum? if delta - bc > working_prec: if not sum_man: sum_man, sum_exp = man, exp else: sum_man = (sum_man << delta) + man sum_exp = exp absolute_error = max(absolute_err) if not sum_man: return scaled_zero(absolute_error) if sum_man < 0: sum_sign = 1 sum_man = -sum_man else: sum_sign = 0 sum_bc = bitcount(sum_man) sum_accuracy = sum_exp + sum_bc - absolute_error r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, rnd), sum_accuracy return r def evalf_add(v: 'Add', prec: int, options: OPT_DICT) -> TMP_RES: res = pure_complex(v) if res: h, c = res re, _, re_acc, _ = evalf(h, prec, options) im, _, im_acc, _ = evalf(c, prec, options) return re, im, re_acc, im_acc oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) i = 0 target_prec = prec while 1: options['maxprec'] = min(oldmaxprec, 2*prec) terms = [evalf(arg, prec + 10, options) for arg in v.args] n = terms.count(S.ComplexInfinity) if n >= 2: return fnan, None, prec, None re, re_acc = add_terms( [a[0::2] for a in terms if isinstance(a, tuple) and a[0]], prec, target_prec) im, im_acc = add_terms( [a[1::2] for a in terms if isinstance(a, tuple) and a[1]], prec, target_prec) if n == 1: if re in (finf, fninf, fnan) or im in (finf, fninf, fnan): return fnan, None, prec, None return S.ComplexInfinity acc = complex_accuracy((re, im, re_acc, im_acc)) if acc >= target_prec: if options.get('verbose'): print("ADD: wanted", target_prec, "accurate bits, got", re_acc, im_acc) break else: if (prec - target_prec) > options['maxprec']: break prec = prec + max(10 + 2**i, target_prec - acc) i += 1 if options.get('verbose'): print("ADD: restarting with prec", prec) options['maxprec'] = oldmaxprec if iszero(re, scaled=True): re = scaled_zero(re) if iszero(im, scaled=True): im = scaled_zero(im) return re, im, re_acc, im_acc def evalf_mul(v: 'Mul', prec: int, options: OPT_DICT) -> TMP_RES: res = pure_complex(v) if res: # the only pure complex that is a mul is h*I _, h = res im, _, im_acc, _ = evalf(h, prec, options) return None, im, None, im_acc args = list(v.args) # see if any argument is NaN or oo and thus warrants a special return has_zero = False special = [] from .numbers import Float for arg in args: result = evalf(arg, prec, options) if result is S.ComplexInfinity: special.append(result) continue if result[0] is None: if result[1] is None: has_zero = True continue num = Float._new(result[0], 1) if num is S.NaN: return fnan, None, prec, None if num.is_infinite: special.append(num) if special: if has_zero: return fnan, None, prec, None from .mul import Mul return evalf(Mul(*special), prec + 4, {}) if has_zero: return None, None, None, None # With guard digits, multiplication in the real case does not destroy # accuracy. This is also true in the complex case when considering the # total accuracy; however accuracy for the real or imaginary parts # separately may be lower. acc = prec # XXX: big overestimate working_prec = prec + len(args) + 5 # Empty product is 1 start = man, exp, bc = MPZ(1), 0, 1 # First, we multiply all pure real or pure imaginary numbers. # direction tells us that the result should be multiplied by # I**direction; all other numbers get put into complex_factors # to be multiplied out after the first phase. last = len(args) direction = 0 args.append(S.One) complex_factors = [] for i, arg in enumerate(args): if i != last and pure_complex(arg): args[-1] = (args[-1]*arg).expand() continue elif i == last and arg is S.One: continue re, im, re_acc, im_acc = evalf(arg, working_prec, options) if re and im: complex_factors.append((re, im, re_acc, im_acc)) continue elif re: (s, m, e, b), w_acc = re, re_acc elif im: (s, m, e, b), w_acc = im, im_acc direction += 1 else: return None, None, None, None direction += 2*s man *= m exp += e bc += b if bc > 3*working_prec: man >>= working_prec exp += working_prec acc = min(acc, w_acc) sign = (direction & 2) >> 1 if not complex_factors: v = normalize(sign, man, exp, bitcount(man), prec, rnd) # multiply by i if direction & 1: return None, v, None, acc else: return v, None, acc, None else: # initialize with the first term if (man, exp, bc) != start: # there was a real part; give it an imaginary part re, im = (sign, man, exp, bitcount(man)), (0, MPZ(0), 0, 0) i0 = 0 else: # there is no real part to start (other than the starting 1) wre, wim, wre_acc, wim_acc = complex_factors[0] acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) re = wre im = wim i0 = 1 for wre, wim, wre_acc, wim_acc in complex_factors[i0:]: # acc is the overall accuracy of the product; we aren't # computing exact accuracies of the product. acc = min(acc, complex_accuracy((wre, wim, wre_acc, wim_acc))) use_prec = working_prec A = mpf_mul(re, wre, use_prec) B = mpf_mul(mpf_neg(im), wim, use_prec) C = mpf_mul(re, wim, use_prec) D = mpf_mul(im, wre, use_prec) re = mpf_add(A, B, use_prec) im = mpf_add(C, D, use_prec) if options.get('verbose'): print("MUL: wanted", prec, "accurate bits, got", acc) # multiply by I if direction & 1: re, im = mpf_neg(im), re return re, im, acc, acc def evalf_pow(v: 'Pow', prec: int, options) -> TMP_RES: target_prec = prec base, exp = v.args # We handle x**n separately. This has two purposes: 1) it is much # faster, because we avoid calling evalf on the exponent, and 2) it # allows better handling of real/imaginary parts that are exactly zero if exp.is_Integer: p: int = exp.p # type: ignore # Exact if not p: return fone, None, prec, None # Exponentiation by p magnifies relative error by |p|, so the # base must be evaluated with increased precision if p is large prec += int(math.log(abs(p), 2)) result = evalf(base, prec + 5, options) if result is S.ComplexInfinity: if p < 0: return None, None, None, None return result re, im, re_acc, im_acc = result # Real to integer power if re and not im: return mpf_pow_int(re, p, target_prec), None, target_prec, None # (x*I)**n = I**n * x**n if im and not re: z = mpf_pow_int(im, p, target_prec) case = p % 4 if case == 0: return z, None, target_prec, None if case == 1: return None, z, None, target_prec if case == 2: return mpf_neg(z), None, target_prec, None if case == 3: return None, mpf_neg(z), None, target_prec # Zero raised to an integer power if not re: if p < 0: return S.ComplexInfinity return None, None, None, None # General complex number to arbitrary integer power re, im = libmp.mpc_pow_int((re, im), p, prec) # Assumes full accuracy in input return finalize_complex(re, im, target_prec) result = evalf(base, prec + 5, options) if result is S.ComplexInfinity: if exp.is_Rational: if exp < 0: return None, None, None, None return result raise NotImplementedError # Pure square root if exp is S.Half: xre, xim, _, _ = result # General complex square root if xim: re, im = libmp.mpc_sqrt((xre or fzero, xim), prec) return finalize_complex(re, im, prec) if not xre: return None, None, None, None # Square root of a negative real number if mpf_lt(xre, fzero): return None, mpf_sqrt(mpf_neg(xre), prec), None, prec # Positive square root return mpf_sqrt(xre, prec), None, prec, None # We first evaluate the exponent to find its magnitude # This determines the working precision that must be used prec += 10 result = evalf(exp, prec, options) if result is S.ComplexInfinity: return fnan, None, prec, None yre, yim, _, _ = result # Special cases: x**0 if not (yre or yim): return fone, None, prec, None ysize = fastlog(yre) # Restart if too big # XXX: prec + ysize might exceed maxprec if ysize > 5: prec += ysize yre, yim, _, _ = evalf(exp, prec, options) # Pure exponential function; no need to evalf the base if base is S.Exp1: if yim: re, im = libmp.mpc_exp((yre or fzero, yim), prec) return finalize_complex(re, im, target_prec) return mpf_exp(yre, target_prec), None, target_prec, None xre, xim, _, _ = evalf(base, prec + 5, options) # 0**y if not (xre or xim): if yim: return fnan, None, prec, None if yre[0] == 1: # y < 0 return S.ComplexInfinity return None, None, None, None # (real ** complex) or (complex ** complex) if yim: re, im = libmp.mpc_pow( (xre or fzero, xim or fzero), (yre or fzero, yim), target_prec) return finalize_complex(re, im, target_prec) # complex ** real if xim: re, im = libmp.mpc_pow_mpf((xre or fzero, xim), yre, target_prec) return finalize_complex(re, im, target_prec) # negative ** real elif mpf_lt(xre, fzero): re, im = libmp.mpc_pow_mpf((xre, fzero), yre, target_prec) return finalize_complex(re, im, target_prec) # positive ** real else: return mpf_pow(xre, yre, target_prec), None, target_prec, None #----------------------------------------------------------------------------# # # # Special functions # # # #----------------------------------------------------------------------------# def evalf_exp(expr: 'exp', prec: int, options: OPT_DICT) -> TMP_RES: from .power import Pow return evalf_pow(Pow(S.Exp1, expr.exp, evaluate=False), prec, options) def evalf_trig(v: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES: """ This function handles sin and cos of complex arguments. TODO: should also handle tan of complex arguments. """ from sympy.functions.elementary.trigonometric import cos, sin if isinstance(v, cos): func = mpf_cos elif isinstance(v, sin): func = mpf_sin else: raise NotImplementedError arg = v.args[0] # 20 extra bits is possibly overkill. It does make the need # to restart very unlikely xprec = prec + 20 re, im, re_acc, im_acc = evalf(arg, xprec, options) if im: if 'subs' in options: v = v.subs(options['subs']) return evalf(v._eval_evalf(prec), prec, options) if not re: if isinstance(v, cos): return fone, None, prec, None elif isinstance(v, sin): return None, None, None, None else: raise NotImplementedError # For trigonometric functions, we are interested in the # fixed-point (absolute) accuracy of the argument. xsize = fastlog(re) # Magnitude <= 1.0. OK to compute directly, because there is no # danger of hitting the first root of cos (with sin, magnitude # <= 2.0 would actually be ok) if xsize < 1: return func(re, prec, rnd), None, prec, None # Very large if xsize >= 10: xprec = prec + xsize re, im, re_acc, im_acc = evalf(arg, xprec, options) # Need to repeat in case the argument is very close to a # multiple of pi (or pi/2), hitting close to a root while 1: y = func(re, prec, rnd) ysize = fastlog(y) gap = -ysize accuracy = (xprec - xsize) - gap if accuracy < prec: if options.get('verbose'): print("SIN/COS", accuracy, "wanted", prec, "gap", gap) print(to_str(y, 10)) if xprec > options.get('maxprec', DEFAULT_MAXPREC): return y, None, accuracy, None xprec += gap re, im, re_acc, im_acc = evalf(arg, xprec, options) continue else: return y, None, prec, None def evalf_log(expr: 'log', prec: int, options: OPT_DICT) -> TMP_RES: if len(expr.args)>1: expr = expr.doit() return evalf(expr, prec, options) arg = expr.args[0] workprec = prec + 10 result = evalf(arg, workprec, options) if result is S.ComplexInfinity: return result xre, xim, xacc, _ = result # evalf can return NoneTypes if chop=True # issue 18516, 19623 if xre is xim is None: # Dear reviewer, I do not know what -inf is; # it looks to be (1, 0, -789, -3) # but I'm not sure in general, # so we just let mpmath figure # it out by taking log of 0 directly. # It would be better to return -inf instead. xre = fzero if xim: from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import log # XXX: use get_abs etc instead re = evalf_log( log(Abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, rnd) size = fastlog(re) if prec - size > workprec and re != fzero: from .add import Add # We actually need to compute 1+x accurately, not x add = Add(S.NegativeOne, arg, evaluate=False) xre, xim, _, _ = evalf_add(add, prec, options) prec2 = workprec - fastlog(xre) # xre is now x - 1 so we add 1 back here to calculate x re = mpf_log(mpf_abs(mpf_add(xre, fone, prec2)), prec, rnd) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None def evalf_atan(v: 'atan', prec: int, options: OPT_DICT) -> TMP_RES: arg = v.args[0] xre, xim, reacc, imacc = evalf(arg, prec + 5, options) if xre is xim is None: return (None,)*4 if xim: raise NotImplementedError return mpf_atan(xre, prec, rnd), None, prec, None def evalf_subs(prec: int, subs: dict) -> dict: """ Change all Float entries in `subs` to have precision prec. """ newsubs = {} for a, b in subs.items(): b = S(b) if b.is_Float: b = b._eval_evalf(prec) newsubs[a] = b return newsubs def evalf_piecewise(expr: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES: from .numbers import Float, Integer if 'subs' in options: expr = expr.subs(evalf_subs(prec, options['subs'])) newopts = options.copy() del newopts['subs'] if hasattr(expr, 'func'): return evalf(expr, prec, newopts) if isinstance(expr, float): return evalf(Float(expr), prec, newopts) if isinstance(expr, int): return evalf(Integer(expr), prec, newopts) # We still have undefined symbols raise NotImplementedError def evalf_bernoulli(expr: 'bernoulli', prec: int, options: OPT_DICT) -> TMP_RES: arg = expr.args[0] if not arg.is_Integer: raise ValueError("Bernoulli number index must be an integer") n = int(arg) b = mpf_bernoulli(n, prec, rnd) if b == fzero: return None, None, None, None return b, None, prec, None #----------------------------------------------------------------------------# # # # High-level operations # # # #----------------------------------------------------------------------------# def as_mpmath(x: Any, prec: int, options: OPT_DICT) -> tUnion[mpc, mpf]: from .numbers import Infinity, NegativeInfinity, Zero x = sympify(x) if isinstance(x, Zero) or x == 0: return mpf(0) if isinstance(x, Infinity): return mpf('inf') if isinstance(x, NegativeInfinity): return mpf('-inf') # XXX re, im, _, _ = evalf(x, prec, options) if im: return mpc(re or fzero, im) return mpf(re) def do_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES: func = expr.args[0] x, xlow, xhigh = expr.args[1] if xlow == xhigh: xlow = xhigh = 0 elif x not in func.free_symbols: # only the difference in limits matters in this case # so if there is a symbol in common that will cancel # out when taking the difference, then use that # difference if xhigh.free_symbols & xlow.free_symbols: diff = xhigh - xlow if diff.is_number: xlow, xhigh = 0, diff oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2*prec) with workprec(prec + 5): xlow = as_mpmath(xlow, prec + 15, options) xhigh = as_mpmath(xhigh, prec + 15, options) # Integration is like summation, and we can phone home from # the integrand function to update accuracy summation style # Note that this accuracy is inaccurate, since it fails # to account for the variable quadrature weights, # but it is better than nothing from sympy.functions.elementary.trigonometric import cos, sin from .symbol import Wild have_part = [False, False] max_real_term: tUnion[float, int] = MINUS_INF max_imag_term: tUnion[float, int] = MINUS_INF def f(t: 'Expr') -> tUnion[mpc, mpf]: nonlocal max_real_term, max_imag_term re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs': {x: t}}) have_part[0] = re or have_part[0] have_part[1] = im or have_part[1] max_real_term = max(max_real_term, fastlog(re)) max_imag_term = max(max_imag_term, fastlog(im)) if im: return mpc(re or fzero, im) return mpf(re or fzero) if options.get('quad') == 'osc': A = Wild('A', exclude=[x]) B = Wild('B', exclude=[x]) D = Wild('D') m = func.match(cos(A*x + B)*D) if not m: m = func.match(sin(A*x + B)*D) if not m: raise ValueError("An integrand of the form sin(A*x+B)*f(x) " "or cos(A*x+B)*f(x) is required for oscillatory quadrature") period = as_mpmath(2*S.Pi/m[A], prec + 15, options) result = quadosc(f, [xlow, xhigh], period=period) # XXX: quadosc does not do error detection yet quadrature_error = MINUS_INF else: result, quadrature_err = quadts(f, [xlow, xhigh], error=1) quadrature_error = fastlog(quadrature_err._mpf_) options['maxprec'] = oldmaxprec if have_part[0]: re: Optional[MPF_TUP] = result.real._mpf_ re_acc: Optional[int] if re == fzero: re_s, re_acc = scaled_zero(int(-max(prec, max_real_term, quadrature_error))) re = scaled_zero(re_s) # handled ok in evalf_integral else: re_acc = int(-max(max_real_term - fastlog(re) - prec, quadrature_error)) else: re, re_acc = None, None if have_part[1]: im: Optional[MPF_TUP] = result.imag._mpf_ im_acc: Optional[int] if im == fzero: im_s, im_acc = scaled_zero(int(-max(prec, max_imag_term, quadrature_error))) im = scaled_zero(im_s) # handled ok in evalf_integral else: im_acc = int(-max(max_imag_term - fastlog(im) - prec, quadrature_error)) else: im, im_acc = None, None result = re, im, re_acc, im_acc return result def evalf_integral(expr: 'Integral', prec: int, options: OPT_DICT) -> TMP_RES: limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError workprec = prec i = 0 maxprec = options.get('maxprec', INF) while 1: result = do_integral(expr, workprec, options) accuracy = complex_accuracy(result) if accuracy >= prec: # achieved desired precision break if workprec >= maxprec: # can't increase accuracy any more break if accuracy == -1: # maybe the answer really is zero and maybe we just haven't increased # the precision enough. So increase by doubling to not take too long # to get to maxprec. workprec *= 2 else: workprec += max(prec, 2**i) workprec = min(workprec, maxprec) i += 1 return result def check_convergence(numer: 'Expr', denom: 'Expr', n: 'Symbol') -> tTuple[int, Any, Any]: """ Returns ======= (h, g, p) where -- h is: > 0 for convergence of rate 1/factorial(n)**h < 0 for divergence of rate factorial(n)**(-h) = 0 for geometric or polynomial convergence or divergence -- abs(g) is: > 1 for geometric convergence of rate 1/h**n < 1 for geometric divergence of rate h**n = 1 for polynomial convergence or divergence (g < 0 indicates an alternating series) -- p is: > 1 for polynomial convergence of rate 1/n**h <= 1 for polynomial divergence of rate n**(-h) """ from sympy.polys.polytools import Poly npol = Poly(numer, n) dpol = Poly(denom, n) p = npol.degree() q = dpol.degree() rate = q - p if rate: return rate, None, None constant = dpol.LC() / npol.LC() if abs(constant) != 1: return rate, constant, None if npol.degree() == dpol.degree() == 0: return rate, constant, 0 pc = npol.all_coeffs()[1] qc = dpol.all_coeffs()[1] return rate, constant, (qc - pc)/dpol.LC() def hypsum(expr: 'Expr', n: 'Symbol', start: int, prec: int) -> mpf: """ Sum a rapidly convergent infinite hypergeometric series with given general term, e.g. e = hypsum(1/factorial(n), n). The quotient between successive terms must be a quotient of integer polynomials. """ from .numbers import Float from sympy.simplify.simplify import hypersimp if prec == float('inf'): raise NotImplementedError('does not support inf prec') if start: expr = expr.subs(n, n + start) hs = hypersimp(expr, n) if hs is None: raise NotImplementedError("a hypergeometric series is required") num, den = hs.as_numer_denom() func1 = lambdify(n, num) func2 = lambdify(n, den) h, g, p = check_convergence(num, den, n) if h < 0: raise ValueError("Sum diverges like (n!)^%i" % (-h)) term = expr.subs(n, 0) if not term.is_Rational: raise NotImplementedError("Non rational term functionality is not implemented.") # Direct summation if geometric or faster if h > 0 or (h == 0 and abs(g) > 1): term = (MPZ(term.p) << prec) // term.q s = term k = 1 while abs(term) > 5: term *= MPZ(func1(k - 1)) term //= MPZ(func2(k - 1)) s += term k += 1 return from_man_exp(s, -prec) else: alt = g < 0 if abs(g) < 1: raise ValueError("Sum diverges like (%i)^n" % abs(1/g)) if p < 1 or (p == 1 and not alt): raise ValueError("Sum diverges like n^%i" % (-p)) # We have polynomial convergence: use Richardson extrapolation vold = None ndig = prec_to_dps(prec) while True: # Need to use at least quad precision because a lot of cancellation # might occur in the extrapolation process; we check the answer to # make sure that the desired precision has been reached, too. prec2 = 4*prec term0 = (MPZ(term.p) << prec2) // term.q def summand(k, _term=[term0]): if k: k = int(k) _term[0] *= MPZ(func1(k - 1)) _term[0] //= MPZ(func2(k - 1)) return make_mpf(from_man_exp(_term[0], -prec2)) with workprec(prec): v = nsum(summand, [0, mpmath_inf], method='richardson') vf = Float(v, ndig) if vold is not None and vold == vf: break prec += prec # double precision each time vold = vf return v._mpf_ def evalf_prod(expr: 'Product', prec: int, options: OPT_DICT) -> TMP_RES: if all((l[1] - l[2]).is_Integer for l in expr.limits): result = evalf(expr.doit(), prec=prec, options=options) else: from sympy.concrete.summations import Sum result = evalf(expr.rewrite(Sum), prec=prec, options=options) return result def evalf_sum(expr: 'Sum', prec: int, options: OPT_DICT) -> TMP_RES: from .numbers import Float if 'subs' in options: expr = expr.subs(options['subs']) func = expr.function limits = expr.limits if len(limits) != 1 or len(limits[0]) != 3: raise NotImplementedError if func.is_zero: return None, None, prec, None prec2 = prec + 10 try: n, a, b = limits[0] if b is not S.Infinity or a is S.NegativeInfinity or a != int(a): raise NotImplementedError # Use fast hypergeometric summation if possible v = hypsum(func, n, int(a), prec2) delta = prec - fastlog(v) if fastlog(v) < -10: v = hypsum(func, n, int(a), delta) return v, None, min(prec, delta), None except NotImplementedError: # Euler-Maclaurin summation for general series eps = Float(2.0)**(-prec) for i in range(1, 5): m = n = 2**i * prec s, err = expr.euler_maclaurin(m=m, n=n, eps=eps, eval_integral=False) err = err.evalf() if err is S.NaN: raise NotImplementedError if err <= eps: break err = fastlog(evalf(abs(err), 20, options)[0]) re, im, re_acc, im_acc = evalf(s, prec2, options) if re_acc is None: re_acc = -err if im_acc is None: im_acc = -err return re, im, re_acc, im_acc #----------------------------------------------------------------------------# # # # Symbolic interface # # # #----------------------------------------------------------------------------# def evalf_symbol(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES: val = options['subs'][x] if isinstance(val, mpf): if not val: return None, None, None, None return val._mpf_, None, prec, None else: if '_cache' not in options: options['_cache'] = {} cache = options['_cache'] cached, cached_prec = cache.get(x, (None, MINUS_INF)) if cached_prec >= prec: return cached v = evalf(sympify(val), prec, options) cache[x] = (v, prec) return v evalf_table: tDict[Type['Expr'], Callable[['Expr', int, OPT_DICT], TMP_RES]] = {} def _create_evalf_table(): global evalf_table from sympy.functions.combinatorial.numbers import bernoulli from sympy.concrete.products import Product from sympy.concrete.summations import Sum from .add import Add from .mul import Mul from .numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, \ Zero, ComplexInfinity from .power import Pow from .symbol import Dummy, Symbol from sympy.functions.elementary.complexes import Abs, im, re from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.integers import ceiling, floor from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import atan, cos, sin from sympy.integrals.integrals import Integral evalf_table = { Symbol: evalf_symbol, Dummy: evalf_symbol, Float: evalf_float, Rational: evalf_rational, Integer: evalf_integer, Zero: lambda x, prec, options: (None, None, prec, None), One: lambda x, prec, options: (fone, None, prec, None), Half: lambda x, prec, options: (fhalf, None, prec, None), Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None), Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None), ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec), NegativeOne: lambda x, prec, options: (fnone, None, prec, None), ComplexInfinity: lambda x, prec, options: S.ComplexInfinity, NaN: lambda x, prec, options: (fnan, None, prec, None), exp: evalf_exp, cos: evalf_trig, sin: evalf_trig, Add: evalf_add, Mul: evalf_mul, Pow: evalf_pow, log: evalf_log, atan: evalf_atan, Abs: evalf_abs, re: evalf_re, im: evalf_im, floor: evalf_floor, ceiling: evalf_ceiling, Integral: evalf_integral, Sum: evalf_sum, Product: evalf_prod, Piecewise: evalf_piecewise, bernoulli: evalf_bernoulli, } def evalf(x: 'Expr', prec: int, options: OPT_DICT) -> TMP_RES: """ Evaluate the ``Expr`` instance, ``x`` to a binary precision of ``prec``. This function is supposed to be used internally. Parameters ========== x : Expr The formula to evaluate to a float. prec : int The binary precision that the output should have. options : dict A dictionary with the same entries as ``EvalfMixin.evalf`` and in addition, ``maxprec`` which is the maximum working precision. Returns ======= An optional tuple, ``(re, im, re_acc, im_acc)`` which are the real, imaginary, real accuracy and imaginary accuracy respectively. ``re`` is an mpf value tuple and so is ``im``. ``re_acc`` and ``im_acc`` are ints. NB: all these return values can be ``None``. If all values are ``None``, then that represents 0. Note that 0 is also represented as ``fzero = (0, 0, 0, 0)``. """ from sympy.functions.elementary.complexes import re as re_, im as im_ try: rf = evalf_table[type(x)] r = rf(x, prec, options) except KeyError: # Fall back to ordinary evalf if possible if 'subs' in options: x = x.subs(evalf_subs(prec, options['subs'])) xe = x._eval_evalf(prec) if xe is None: raise NotImplementedError as_real_imag = getattr(xe, "as_real_imag", None) if as_real_imag is None: raise NotImplementedError # e.g. FiniteSet(-1.0, 1.0).evalf() re, im = as_real_imag() if re.has(re_) or im.has(im_): raise NotImplementedError if re == 0: re = None reprec = None elif re.is_number: re = re._to_mpmath(prec, allow_ints=False)._mpf_ reprec = prec else: raise NotImplementedError if im == 0: im = None imprec = None elif im.is_number: im = im._to_mpmath(prec, allow_ints=False)._mpf_ imprec = prec else: raise NotImplementedError r = re, im, reprec, imprec if options.get("verbose"): print("### input", x) print("### output", to_str(r[0] or fzero, 50) if isinstance(r, tuple) else r) print("### raw", r) # r[0], r[2] print() chop = options.get('chop', False) if chop: if chop is True: chop_prec = prec else: # convert (approximately) from given tolerance; # the formula here will will make 1e-i rounds to 0 for # i in the range +/-27 while 2e-i will not be chopped chop_prec = int(round(-3.321*math.log10(chop) + 2.5)) if chop_prec == 3: chop_prec -= 1 r = chop_parts(r, chop_prec) if options.get("strict"): check_target(x, r, prec) return r class EvalfMixin: """Mixin class adding evalf capability.""" __slots__ = () # type: tTuple[str, ...] def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): """ Evaluate the given formula to an accuracy of *n* digits. Parameters ========== subs : dict, optional Substitute numerical values for symbols, e.g. ``subs={x:3, y:1+pi}``. The substitutions must be given as a dictionary. maxn : int, optional Allow a maximum temporary working precision of maxn digits. chop : bool or number, optional Specifies how to replace tiny real or imaginary parts in subresults by exact zeros. When ``True`` the chop value defaults to standard precision. Otherwise the chop value is used to determine the magnitude of "small" for purposes of chopping. >>> from sympy import N >>> x = 1e-4 >>> N(x, chop=True) 0.000100000000000000 >>> N(x, chop=1e-5) 0.000100000000000000 >>> N(x, chop=1e-4) 0 strict : bool, optional Raise ``PrecisionExhausted`` if any subresult fails to evaluate to full accuracy, given the available maxprec. quad : str, optional Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try ``quad='osc'``. verbose : bool, optional Print debug information. Notes ===== When Floats are naively substituted into an expression, precision errors may adversely affect the result. For example, adding 1e16 (a Float) to 1 will truncate to 1e16; if 1e16 is then subtracted, the result will be 0. That is exactly what happens in the following: >>> from sympy.abc import x, y, z >>> values = {x: 1e16, y: 1, z: 1e16} >>> (x + y - z).subs(values) 0 Using the subs argument for evalf is the accurate way to evaluate such an expression: >>> (x + y - z).evalf(subs=values) 1.00000000000000 """ from .numbers import Float, Number n = n if n is not None else 15 if subs and is_sequence(subs): raise TypeError('subs must be given as a dictionary') # for sake of sage that doesn't like evalf(1) if n == 1 and isinstance(self, Number): from .expr import _mag rv = self.evalf(2, subs, maxn, chop, strict, quad, verbose) m = _mag(rv) rv = rv.round(1 - m) return rv if not evalf_table: _create_evalf_table() prec = dps_to_prec(n) options = {'maxprec': max(prec, int(maxn*LG10)), 'chop': chop, 'strict': strict, 'verbose': verbose} if subs is not None: options['subs'] = subs if quad is not None: options['quad'] = quad try: result = evalf(self, prec + 4, options) except NotImplementedError: # Fall back to the ordinary evalf if hasattr(self, 'subs') and subs is not None: # issue 20291 v = self.subs(subs)._eval_evalf(prec) else: v = self._eval_evalf(prec) if v is None: return self elif not v.is_number: return v try: # If the result is numerical, normalize it result = evalf(v, prec, options) except NotImplementedError: # Probably contains symbols or unknown functions return v if result is S.ComplexInfinity: return result re, im, re_acc, im_acc = result if re is S.NaN or im is S.NaN: return S.NaN if re: p = max(min(prec, re_acc), 1) re = Float._new(re, p) else: re = S.Zero if im: p = max(min(prec, im_acc), 1) im = Float._new(im, p) return re + im*S.ImaginaryUnit else: return re n = evalf def _evalf(self, prec): """Helper for evalf. Does the same thing but takes binary precision""" r = self._eval_evalf(prec) if r is None: r = self return r def _eval_evalf(self, prec): return def _to_mpmath(self, prec, allow_ints=True): # mpmath functions accept ints as input errmsg = "cannot convert to mpmath number" if allow_ints and self.is_Integer: return self.p if hasattr(self, '_as_mpf_val'): return make_mpf(self._as_mpf_val(prec)) try: result = evalf(self, prec, {}) if result is S.ComplexInfinity: raise NotImplementedError re, im, _, _ = result if im: if not re: re = fzero return make_mpc((re, im)) elif re: return make_mpf(re) else: return make_mpf(fzero) except NotImplementedError: v = self._eval_evalf(prec) if v is None: raise ValueError(errmsg) if v.is_Float: return make_mpf(v._mpf_) # Number + Number*I is also fine re, im = v.as_real_imag() if allow_ints and re.is_Integer: re = from_int(re.p) elif re.is_Float: re = re._mpf_ else: raise ValueError(errmsg) if allow_ints and im.is_Integer: im = from_int(im.p) elif im.is_Float: im = im._mpf_ else: raise ValueError(errmsg) return make_mpc((re, im)) def N(x, n=15, **options): r""" Calls x.evalf(n, \*\*options). Explanations ============ Both .n() and N() are equivalent to .evalf(); use the one that you like better. See also the docstring of .evalf() for information on the options. Examples ======== >>> from sympy import Sum, oo, N >>> from sympy.abc import k >>> Sum(1/k**k, (k, 1, oo)) Sum(k**(-k), (k, 1, oo)) >>> N(_, 4) 1.291 """ # by using rational=True, any evaluation of a string # will be done using exact values for the Floats return sympify(x, rational=True).evalf(n, **options)
e07d54f50005385ef21ddbff793372f9ea469b9ca97c65036b6948ee9b2e3308
"""Module for SymPy containers (SymPy objects that store other SymPy objects) The containers implemented in this module are subclassed to Basic. They are supposed to work seamlessly within the SymPy framework. """ from collections import OrderedDict from collections.abc import MutableSet from typing import Any, Callable from .basic import Basic from .sorting import default_sort_key, ordered from .sympify import _sympify, sympify, converter, SympifyError from sympy.utilities.iterables import iterable from sympy.utilities.misc import as_int class Tuple(Basic): """ Wrapper around the builtin tuple object. Explanation =========== The Tuple is a subclass of Basic, so that it works well in the SymPy framework. The wrapped tuple is available as self.args, but you can also access elements or slices with [:] syntax. Parameters ========== sympify : bool If ``False``, ``sympify`` is not called on ``args``. This can be used for speedups for very large tuples where the elements are known to already be SymPy objects. Examples ======== >>> from sympy import Tuple, symbols >>> a, b, c, d = symbols('a b c d') >>> Tuple(a, b, c)[1:] (b, c) >>> Tuple(a, b, c).subs(a, d) (d, b, c) """ def __new__(cls, *args, **kwargs): if kwargs.get('sympify', True): args = (sympify(arg) for arg in args) obj = Basic.__new__(cls, *args) return obj def __getitem__(self, i): if isinstance(i, slice): indices = i.indices(len(self)) return Tuple(*(self.args[j] for j in range(*indices))) return self.args[i] def __len__(self): return len(self.args) def __contains__(self, item): return item in self.args def __iter__(self): return iter(self.args) def __add__(self, other): if isinstance(other, Tuple): return Tuple(*(self.args + other.args)) elif isinstance(other, tuple): return Tuple(*(self.args + other)) else: return NotImplemented def __radd__(self, other): if isinstance(other, Tuple): return Tuple(*(other.args + self.args)) elif isinstance(other, tuple): return Tuple(*(other + self.args)) else: return NotImplemented def __mul__(self, other): try: n = as_int(other) except ValueError: raise TypeError("Can't multiply sequence by non-integer of type '%s'" % type(other)) return self.func(*(self.args*n)) __rmul__ = __mul__ def __eq__(self, other): if isinstance(other, Basic): return super().__eq__(other) return self.args == other def __ne__(self, other): if isinstance(other, Basic): return super().__ne__(other) return self.args != other def __hash__(self): return hash(self.args) def _to_mpmath(self, prec): return tuple(a._to_mpmath(prec) for a in self.args) def __lt__(self, other): return _sympify(self.args < other.args) def __le__(self, other): return _sympify(self.args <= other.args) # XXX: Basic defines count() as something different, so we can't # redefine it here. Originally this lead to cse() test failure. def tuple_count(self, value): """T.count(value) -> integer -- return number of occurrences of value""" return self.args.count(value) def index(self, value, start=None, stop=None): """Searches and returns the first index of the value.""" # XXX: One would expect: # # return self.args.index(value, start, stop) # # here. Any trouble with that? Yes: # # >>> (1,).index(1, None, None) # Traceback (most recent call last): # File "<stdin>", line 1, in <module> # TypeError: slice indices must be integers or None or have an __index__ method # # See: http://bugs.python.org/issue13340 if start is None and stop is None: return self.args.index(value) elif stop is None: return self.args.index(value, start) else: return self.args.index(value, start, stop) converter[tuple] = lambda tup: Tuple(*tup) def tuple_wrapper(method): """ Decorator that converts any tuple in the function arguments into a Tuple. Explanation =========== The motivation for this is to provide simple user interfaces. The user can call a function with regular tuples in the argument, and the wrapper will convert them to Tuples before handing them to the function. Explanation =========== >>> from sympy.core.containers import tuple_wrapper >>> def f(*args): ... return args >>> g = tuple_wrapper(f) The decorated function g sees only the Tuple argument: >>> g(0, (1, 2), 3) (0, (1, 2), 3) """ def wrap_tuples(*args, **kw_args): newargs = [] for arg in args: if isinstance(arg, tuple): newargs.append(Tuple(*arg)) else: newargs.append(arg) return method(*newargs, **kw_args) return wrap_tuples class Dict(Basic): """ Wrapper around the builtin dict object Explanation =========== The Dict is a subclass of Basic, so that it works well in the SymPy framework. Because it is immutable, it may be included in sets, but its values must all be given at instantiation and cannot be changed afterwards. Otherwise it behaves identically to the Python dict. Examples ======== >>> from sympy import Dict, Symbol >>> D = Dict({1: 'one', 2: 'two'}) >>> for key in D: ... if key == 1: ... print('%s %s' % (key, D[key])) 1 one The args are sympified so the 1 and 2 are Integers and the values are Symbols. Queries automatically sympify args so the following work: >>> 1 in D True >>> D.has(Symbol('one')) # searches keys and values True >>> 'one' in D # not in the keys False >>> D[1] one """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], (dict, Dict)): items = [Tuple(k, v) for k, v in args[0].items()] elif iterable(args) and all(len(arg) == 2 for arg in args): items = [Tuple(k, v) for k, v in args] else: raise TypeError('Pass Dict args as Dict((k1, v1), ...) or Dict({k1: v1, ...})') elements = frozenset(items) obj = Basic.__new__(cls, *ordered(items)) obj.elements = elements obj._dict = dict(items) # In case Tuple decides it wants to sympify return obj def __getitem__(self, key): """x.__getitem__(y) <==> x[y]""" try: key = _sympify(key) except SympifyError: raise KeyError(key) return self._dict[key] def __setitem__(self, key, value): raise NotImplementedError("SymPy Dicts are Immutable") def items(self): '''Returns a set-like object providing a view on dict's items. ''' return self._dict.items() def keys(self): '''Returns the list of the dict's keys.''' return self._dict.keys() def values(self): '''Returns the list of the dict's values.''' return self._dict.values() def __iter__(self): '''x.__iter__() <==> iter(x)''' return iter(self._dict) def __len__(self): '''x.__len__() <==> len(x)''' return self._dict.__len__() def get(self, key, default=None): '''Returns the value for key if the key is in the dictionary.''' try: key = _sympify(key) except SympifyError: return default return self._dict.get(key, default) def __contains__(self, key): '''D.__contains__(k) -> True if D has a key k, else False''' try: key = _sympify(key) except SympifyError: return False return key in self._dict def __lt__(self, other): return _sympify(self.args < other.args) @property def _sorted_args(self): return tuple(sorted(self.args, key=default_sort_key)) def __eq__(self, other): if isinstance(other, dict): return self == Dict(other) return super().__eq__(other) __hash__ : Callable[[Basic], Any] = Basic.__hash__ # this handles dict, defaultdict, OrderedDict converter[dict] = lambda d: Dict(*d.items()) class OrderedSet(MutableSet): def __init__(self, iterable=None): if iterable: self.map = OrderedDict((item, None) for item in iterable) else: self.map = OrderedDict() def __len__(self): return len(self.map) def __contains__(self, key): return key in self.map def add(self, key): self.map[key] = None def discard(self, key): self.map.pop(key) def pop(self, last=True): return self.map.popitem(last=last)[0] def __iter__(self): yield from self.map.keys() def __repr__(self): if not self.map: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, list(self.map.keys())) def intersection(self, other): result = [] for val in self: if val in other: result.append(val) return self.__class__(result) def difference(self, other): result = [] for val in self: if val not in other: result.append(val) return self.__class__(result) def update(self, iterable): for val in iterable: self.add(val)
6c52cd7988c5716fd3a1d44162db4c8bfa73fe0e82e93eb6ff9ff91257efadc7
from typing import Tuple as tTuple from collections import defaultdict from functools import cmp_to_key, reduce from itertools import product import operator from .sympify import sympify from .basic import Basic from .singleton import S from .operations import AssocOp, AssocOpDispatcher from .cache import cacheit from .logic import fuzzy_not, _fuzzy_group from .expr import Expr from .parameters import global_parameters from .kind import KindDispatcher from .traversal import bottom_up from sympy.utilities.iterables import sift # internal marker to indicate: # "there are still non-commutative objects -- don't forget to process them" class NC_Marker: is_Order = False is_Mul = False is_Number = False is_Poly = False is_commutative = False # Key for sorting commutative args in canonical order _args_sortkey = cmp_to_key(Basic.compare) def _mulsort(args): # in-place sorting of args args.sort(key=_args_sortkey) def _unevaluated_Mul(*args): """Return a well-formed unevaluated Mul: Numbers are collected and put in slot 0, any arguments that are Muls will be flattened, and args are sorted. Use this when args have changed but you still want to return an unevaluated Mul. Examples ======== >>> from sympy.core.mul import _unevaluated_Mul as uMul >>> from sympy import S, sqrt, Mul >>> from sympy.abc import x >>> a = uMul(*[S(3.0), x, S(2)]) >>> a.args[0] 6.00000000000000 >>> a.args[1] x Two unevaluated Muls with the same arguments will always compare as equal during testing: >>> m = uMul(sqrt(2), sqrt(3)) >>> m == uMul(sqrt(3), sqrt(2)) True >>> u = Mul(sqrt(3), sqrt(2), evaluate=False) >>> m == uMul(u) True >>> m == Mul(*m.args) False """ args = list(args) newargs = [] ncargs = [] co = S.One while args: a = args.pop() if a.is_Mul: c, nc = a.args_cnc() args.extend(c) if nc: ncargs.append(Mul._from_args(nc)) elif a.is_Number: co *= a else: newargs.append(a) _mulsort(newargs) if co is not S.One: newargs.insert(0, co) if ncargs: newargs.append(Mul._from_args(ncargs)) return Mul._from_args(newargs) class Mul(Expr, AssocOp): """ Expression representing multiplication operation for algebraic field. Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*`` on most scalar objects in SymPy calls this class. Another use of ``Mul()`` is to represent the structure of abstract multiplication so that its arguments can be substituted to return different class. Refer to examples section for this. ``Mul()`` evaluates the argument unless ``evaluate=False`` is passed. The evaluation logic includes: 1. Flattening ``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)`` 2. Identity removing ``Mul(x, 1, y)`` -> ``Mul(x, y)`` 3. Exponent collecting by ``.as_base_exp()`` ``Mul(x, x**2)`` -> ``Pow(x, 3)`` 4. Term sorting ``Mul(y, x, 2)`` -> ``Mul(2, x, y)`` Since multiplication can be vector space operation, arguments may have the different :obj:`sympy.core.kind.Kind()`. Kind of the resulting object is automatically inferred. Examples ======== >>> from sympy import Mul >>> from sympy.abc import x, y >>> Mul(x, 1) x >>> Mul(x, x) x**2 If ``evaluate=False`` is passed, result is not evaluated. >>> Mul(1, 2, evaluate=False) 1*2 >>> Mul(x, x, evaluate=False) x*x ``Mul()`` also represents the general structure of multiplication operation. >>> from sympy import MatrixSymbol >>> A = MatrixSymbol('A', 2,2) >>> expr = Mul(x,y).subs({y:A}) >>> expr x*A >>> type(expr) <class 'sympy.matrices.expressions.matmul.MatMul'> See Also ======== MatMul """ __slots__ = () args: tTuple[Expr] is_Mul = True _args_type = Expr _kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True) @property def kind(self): arg_kinds = (a.kind for a in self.args) return self._kind_dispatcher(*arg_kinds) def could_extract_minus_sign(self): if self == (-self): return False # e.g. zoo*x == -zoo*x c = self.args[0] return c.is_Number and c.is_extended_negative def __neg__(self): c, args = self.as_coeff_mul() if args[0] is not S.ComplexInfinity: c = -c if c is not S.One: if args[0].is_Number: args = list(args) if c is S.NegativeOne: args[0] = -args[0] else: args[0] *= c else: args = (c,) + args return self._from_args(args, self.is_commutative) @classmethod def flatten(cls, seq): """Return commutative, noncommutative and order arguments by combining related terms. Notes ===== * In an expression like ``a*b*c``, Python process this through SymPy as ``Mul(Mul(a, b), c)``. This can have undesirable consequences. - Sometimes terms are not combined as one would like: {c.f. https://github.com/sympy/sympy/issues/4596} >>> from sympy import Mul, sqrt >>> from sympy.abc import x, y, z >>> 2*(x + 1) # this is the 2-arg Mul behavior 2*x + 2 >>> y*(x + 1)*2 2*y*(x + 1) >>> 2*(x + 1)*y # 2-arg result will be obtained first y*(2*x + 2) >>> Mul(2, x + 1, y) # all 3 args simultaneously processed 2*y*(x + 1) >>> 2*((x + 1)*y) # parentheses can control this behavior 2*y*(x + 1) Powers with compound bases may not find a single base to combine with unless all arguments are processed at once. Post-processing may be necessary in such cases. {c.f. https://github.com/sympy/sympy/issues/5728} >>> a = sqrt(x*sqrt(y)) >>> a**3 (x*sqrt(y))**(3/2) >>> Mul(a,a,a) (x*sqrt(y))**(3/2) >>> a*a*a x*sqrt(y)*sqrt(x*sqrt(y)) >>> _.subs(a.base, z).subs(z, a.base) (x*sqrt(y))**(3/2) - If more than two terms are being multiplied then all the previous terms will be re-processed for each new argument. So if each of ``a``, ``b`` and ``c`` were :class:`Mul` expression, then ``a*b*c`` (or building up the product with ``*=``) will process all the arguments of ``a`` and ``b`` twice: once when ``a*b`` is computed and again when ``c`` is multiplied. Using ``Mul(a, b, c)`` will process all arguments once. * The results of Mul are cached according to arguments, so flatten will only be called once for ``Mul(a, b, c)``. If you can structure a calculation so the arguments are most likely to be repeats then this can save time in computing the answer. For example, say you had a Mul, M, that you wished to divide by ``d[i]`` and multiply by ``n[i]`` and you suspect there are many repeats in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the product, ``M*n[i]`` will be returned without flattening -- the cached value will be returned. If you divide by the ``d[i]`` first (and those are more unique than the ``n[i]``) then that will create a new Mul, ``M/d[i]`` the args of which will be traversed again when it is multiplied by ``n[i]``. {c.f. https://github.com/sympy/sympy/issues/5706} This consideration is moot if the cache is turned off. NB -- The validity of the above notes depends on the implementation details of Mul and flatten which may change at any time. Therefore, you should only consider them when your code is highly performance sensitive. Removal of 1 from the sequence is already handled by AssocOp.__new__. """ from sympy.calculus.accumulationbounds import AccumBounds from sympy.matrices.expressions import MatrixExpr rv = None if len(seq) == 2: a, b = seq if b.is_Rational: a, b = b, a seq = [a, b] assert a is not S.One if not a.is_zero and a.is_Rational: r, b = b.as_coeff_Mul() if b.is_Add: if r is not S.One: # 2-arg hack # leave the Mul as a Mul? ar = a*r if ar is S.One: arb = b else: arb = cls(a*r, b, evaluate=False) rv = [arb], [], None elif global_parameters.distribute and b.is_commutative: newb = Add(*[_keep_coeff(a, bi) for bi in b.args]) rv = [newb], [], None if rv: return rv # apply associativity, separate commutative part of seq c_part = [] # out: commutative factors nc_part = [] # out: non-commutative factors nc_seq = [] coeff = S.One # standalone term # e.g. 3 * ... c_powers = [] # (base,exp) n # e.g. (x,n) for x num_exp = [] # (num-base, exp) y # e.g. (3, y) for ... * 3 * ... neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I pnum_rat = {} # (num-base, Rat-exp) 1/2 # e.g. (3, 1/2) for ... * 3 * ... order_symbols = None # --- PART 1 --- # # "collect powers and coeff": # # o coeff # o c_powers # o num_exp # o neg1e # o pnum_rat # # NOTE: this is optimized for all-objects-are-commutative case for o in seq: # O(x) if o.is_Order: o, order_symbols = o.as_expr_variables(order_symbols) # Mul([...]) if o.is_Mul: if o.is_commutative: seq.extend(o.args) # XXX zerocopy? else: # NCMul can have commutative parts as well for q in o.args: if q.is_commutative: seq.append(q) else: nc_seq.append(q) # append non-commutative marker, so we don't forget to # process scheduled non-commutative objects seq.append(NC_Marker) continue # 3 elif o.is_Number: if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero: # we know for sure the result will be nan return [S.NaN], [], None elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo coeff *= o if coeff is S.NaN: # we know for sure the result will be nan return [S.NaN], [], None continue elif isinstance(o, AccumBounds): coeff = o.__mul__(coeff) continue elif o is S.ComplexInfinity: if not coeff: # 0 * zoo = NaN return [S.NaN], [], None coeff = S.ComplexInfinity continue elif o is S.ImaginaryUnit: neg1e += S.Half continue elif o.is_commutative: # e # o = b b, e = o.as_base_exp() # y # 3 if o.is_Pow: if b.is_Number: # get all the factors with numeric base so they can be # combined below, but don't combine negatives unless # the exponent is an integer if e.is_Rational: if e.is_Integer: coeff *= Pow(b, e) # it is an unevaluated power continue elif e.is_negative: # also a sign of an unevaluated power seq.append(Pow(b, e)) continue elif b.is_negative: neg1e += e b = -b if b is not S.One: pnum_rat.setdefault(b, []).append(e) continue elif b.is_positive or e.is_integer: num_exp.append((b, e)) continue c_powers.append((b, e)) # NON-COMMUTATIVE # TODO: Make non-commutative exponents not combine automatically else: if o is not NC_Marker: nc_seq.append(o) # process nc_seq (if any) while nc_seq: o = nc_seq.pop(0) if not nc_part: nc_part.append(o) continue # b c b+c # try to combine last terms: a * a -> a o1 = nc_part.pop() b1, e1 = o1.as_base_exp() b2, e2 = o.as_base_exp() new_exp = e1 + e2 # Only allow powers to combine if the new exponent is # not an Add. This allow things like a**2*b**3 == a**5 # if a.is_commutative == False, but prohibits # a**x*a**y and x**a*x**b from combining (x,y commute). if b1 == b2 and (not new_exp.is_Add): o12 = b1 ** new_exp # now o12 could be a commutative object if o12.is_commutative: seq.append(o12) continue else: nc_seq.insert(0, o12) else: nc_part.append(o1) nc_part.append(o) # We do want a combined exponent if it would not be an Add, such as # y 2y 3y # x * x -> x # We determine if two exponents have the same term by using # as_coeff_Mul. # # Unfortunately, this isn't smart enough to consider combining into # exponents that might already be adds, so things like: # z - y y # x * x will be left alone. This is because checking every possible # combination can slow things down. # gather exponents of common bases... def _gather(c_powers): common_b = {} # b:e for b, e in c_powers: co = e.as_coeff_Mul() common_b.setdefault(b, {}).setdefault( co[1], []).append(co[0]) for b, d in common_b.items(): for di, li in d.items(): d[di] = Add(*li) new_c_powers = [] for b, e in common_b.items(): new_c_powers.extend([(b, c*t) for t, c in e.items()]) return new_c_powers # in c_powers c_powers = _gather(c_powers) # and in num_exp num_exp = _gather(num_exp) # --- PART 2 --- # # o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow) # o combine collected powers (2**x * 3**x -> 6**x) # with numeric base # ................................ # now we have: # - coeff: # - c_powers: (b, e) # - num_exp: (2, e) # - pnum_rat: {(1/3, [1/3, 2/3, 1/4])} # 0 1 # x -> 1 x -> x # this should only need to run twice; if it fails because # it needs to be run more times, perhaps this should be # changed to a "while True" loop -- the only reason it # isn't such now is to allow a less-than-perfect result to # be obtained rather than raising an error or entering an # infinite loop for i in range(2): new_c_powers = [] changed = False for b, e in c_powers: if e.is_zero: # canceling out infinities yields NaN if (b.is_Add or b.is_Mul) and any(infty in b.args for infty in (S.ComplexInfinity, S.Infinity, S.NegativeInfinity)): return [S.NaN], [], None continue if e is S.One: if b.is_Number: coeff *= b continue p = b if e is not S.One: p = Pow(b, e) # check to make sure that the base doesn't change # after exponentiation; to allow for unevaluated # Pow, we only do so if b is not already a Pow if p.is_Pow and not b.is_Pow: bi = b b, e = p.as_base_exp() if b != bi: changed = True c_part.append(p) new_c_powers.append((b, e)) # there might have been a change, but unless the base # matches some other base, there is nothing to do if changed and len({ b for b, e in new_c_powers}) != len(new_c_powers): # start over again c_part = [] c_powers = _gather(new_c_powers) else: break # x x x # 2 * 3 -> 6 inv_exp_dict = {} # exp:Mul(num-bases) x x # e.g. x:6 for ... * 2 * 3 * ... for b, e in num_exp: inv_exp_dict.setdefault(e, []).append(b) for e, b in inv_exp_dict.items(): inv_exp_dict[e] = cls(*b) c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e]) # b, e -> e' = sum(e), b # {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])} comb_e = {} for b, e in pnum_rat.items(): comb_e.setdefault(Add(*e), []).append(b) del pnum_rat # process them, reducing exponents to values less than 1 # and updating coeff if necessary else adding them to # num_rat for further processing num_rat = [] for e, b in comb_e.items(): b = cls(*b) if e.q == 1: coeff *= Pow(b, e) continue if e.p > e.q: e_i, ep = divmod(e.p, e.q) coeff *= Pow(b, e_i) e = Rational(ep, e.q) num_rat.append((b, e)) del comb_e # extract gcd of bases in num_rat # 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4) pnew = defaultdict(list) i = 0 # steps through num_rat which may grow while i < len(num_rat): bi, ei = num_rat[i] grow = [] for j in range(i + 1, len(num_rat)): bj, ej = num_rat[j] g = bi.gcd(bj) if g is not S.One: # 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2 # this might have a gcd with something else e = ei + ej if e.q == 1: coeff *= Pow(g, e) else: if e.p > e.q: e_i, ep = divmod(e.p, e.q) # change e in place coeff *= Pow(g, e_i) e = Rational(ep, e.q) grow.append((g, e)) # update the jth item num_rat[j] = (bj/g, ej) # update bi that we are checking with bi = bi/g if bi is S.One: break if bi is not S.One: obj = Pow(bi, ei) if obj.is_Number: coeff *= obj else: # changes like sqrt(12) -> 2*sqrt(3) for obj in Mul.make_args(obj): if obj.is_Number: coeff *= obj else: assert obj.is_Pow bi, ei = obj.args pnew[ei].append(bi) num_rat.extend(grow) i += 1 # combine bases of the new powers for e, b in pnew.items(): pnew[e] = cls(*b) # handle -1 and I if neg1e: # treat I as (-1)**(1/2) and compute -1's total exponent p, q = neg1e.as_numer_denom() # if the integer part is odd, extract -1 n, p = divmod(p, q) if n % 2: coeff = -coeff # if it's a multiple of 1/2 extract I if q == 2: c_part.append(S.ImaginaryUnit) elif p: # see if there is any positive base this power of # -1 can join neg1e = Rational(p, q) for e, b in pnew.items(): if e == neg1e and b.is_positive: pnew[e] = -b break else: # keep it separate; we've already evaluated it as # much as possible so evaluate=False c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False)) # add all the pnew powers c_part.extend([Pow(b, e) for e, b in pnew.items()]) # oo, -oo if coeff in (S.Infinity, S.NegativeInfinity): def _handle_for_oo(c_part, coeff_sign): new_c_part = [] for t in c_part: if t.is_extended_positive: continue if t.is_extended_negative: coeff_sign *= -1 continue new_c_part.append(t) return new_c_part, coeff_sign c_part, coeff_sign = _handle_for_oo(c_part, 1) nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign) coeff *= coeff_sign # zoo if coeff is S.ComplexInfinity: # zoo might be # infinite_real + bounded_im # bounded_real + infinite_im # infinite_real + infinite_im # and non-zero real or imaginary will not change that status. c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and c.is_extended_real is not None)] # 0 elif coeff.is_zero: # we know for sure the result will be 0 except the multiplicand # is infinity or a matrix if any(isinstance(c, MatrixExpr) for c in nc_part): return [coeff], nc_part, order_symbols if any(c.is_finite == False for c in c_part): return [S.NaN], [], order_symbols return [coeff], [], order_symbols # check for straggling Numbers that were produced _new = [] for i in c_part: if i.is_Number: coeff *= i else: _new.append(i) c_part = _new # order commutative part canonically _mulsort(c_part) # current code expects coeff to be always in slot-0 if coeff is not S.One: c_part.insert(0, coeff) # we are done if (global_parameters.distribute and not nc_part and len(c_part) == 2 and c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add): # 2*(1+a) -> 2 + 2 * a coeff = c_part[0] c_part = [Add(*[coeff*f for f in c_part[1].args])] return c_part, nc_part, order_symbols def _eval_power(self, e): # don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B cargs, nc = self.args_cnc(split_1=False) if e.is_Integer: return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \ Pow(Mul._from_args(nc), e, evaluate=False) if e.is_Rational and e.q == 2: if self.is_imaginary: a = self.as_real_imag()[1] if a.is_Rational: from .power import integer_nthroot n, d = abs(a/2).as_numer_denom() n, t = integer_nthroot(n, 2) if t: d, t = integer_nthroot(d, 2) if t: from sympy.functions.elementary.complexes import sign r = sympify(n)/d return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p) p = Pow(self, e, evaluate=False) if e.is_Rational or e.is_Float: return p._eval_expand_power_base() return p @classmethod def class_key(cls): return 3, 0, cls.__name__ def _eval_evalf(self, prec): c, m = self.as_coeff_Mul() if c is S.NegativeOne: if m.is_Mul: rv = -AssocOp._eval_evalf(m, prec) else: mnew = m._eval_evalf(prec) if mnew is not None: m = mnew rv = -m else: rv = AssocOp._eval_evalf(self, prec) if rv.is_number: return rv.expand() return rv @property def _mpc_(self): """ Convert self to an mpmath mpc if possible """ from .numbers import Float im_part, imag_unit = self.as_coeff_Mul() if imag_unit is not S.ImaginaryUnit: # ValueError may seem more reasonable but since it's a @property, # we need to use AttributeError to keep from confusing things like # hasattr. raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I") return (Float(0)._mpf_, Float(im_part)._mpf_) @cacheit def as_two_terms(self): """Return head and tail of self. This is the most efficient way to get the head and tail of an expression. - if you want only the head, use self.args[0]; - if you want to process the arguments of the tail then use self.as_coef_mul() which gives the head and a tuple containing the arguments of the tail when treated as a Mul. - if you want the coefficient when self is treated as an Add then use self.as_coeff_add()[0] Examples ======== >>> from sympy.abc import x, y >>> (3*x*y).as_two_terms() (3, x*y) """ args = self.args if len(args) == 1: return S.One, self elif len(args) == 2: return args else: return args[0], self._new_rawargs(*args[1:]) @cacheit def as_coefficients_dict(self): """Return a dictionary mapping terms to their coefficient. Since the dictionary is a defaultdict, inquiries about terms which were not present will return a coefficient of 0. The dictionary is considered to have a single term. Examples ======== >>> from sympy.abc import a, x >>> (3*a*x).as_coefficients_dict() {a*x: 3} >>> _[a] 0 """ d = defaultdict(int) args = self.args if len(args) == 1 or not args[0].is_Number: d[self] = S.One else: d[self._new_rawargs(*args[1:])] = args[0] return d @cacheit def as_coeff_mul(self, *deps, rational=True, **kwargs): if deps: l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True) return self._new_rawargs(*l2), tuple(l1) args = self.args if args[0].is_Number: if not rational or args[0].is_Rational: return args[0], args[1:] elif args[0].is_extended_negative: return S.NegativeOne, (-args[0],) + args[1:] return S.One, args def as_coeff_Mul(self, rational=False): """ Efficiently extract the coefficient of a product. """ coeff, args = self.args[0], self.args[1:] if coeff.is_Number: if not rational or coeff.is_Rational: if len(args) == 1: return coeff, args[0] else: return coeff, self._new_rawargs(*args) elif coeff.is_extended_negative: return S.NegativeOne, self._new_rawargs(*((-coeff,) + args)) return S.One, self def as_real_imag(self, deep=True, **hints): from sympy.functions.elementary.complexes import Abs, im, re other = [] coeffr = [] coeffi = [] addterms = S.One for a in self.args: r, i = a.as_real_imag() if i.is_zero: coeffr.append(r) elif r.is_zero: coeffi.append(i*S.ImaginaryUnit) elif a.is_commutative: # search for complex conjugate pairs: for i, x in enumerate(other): if x == a.conjugate(): coeffr.append(Abs(x)**2) del other[i] break else: if a.is_Add: addterms *= a else: other.append(a) else: other.append(a) m = self.func(*other) if hints.get('ignore') == m: return if len(coeffi) % 2: imco = im(coeffi.pop(0)) # all other pairs make a real factor; they will be # put into reco below else: imco = S.Zero reco = self.func(*(coeffr + coeffi)) r, i = (reco*re(m), reco*im(m)) if addterms == 1: if m == 1: if imco.is_zero: return (reco, S.Zero) else: return (S.Zero, reco*imco) if imco is S.Zero: return (r, i) return (-imco*i, imco*r) from .function import expand_mul addre, addim = expand_mul(addterms, deep=False).as_real_imag() if imco is S.Zero: return (r*addre - i*addim, i*addre + r*addim) else: r, i = -imco*i, imco*r return (r*addre - i*addim, r*addim + i*addre) @staticmethod def _expandsums(sums): """ Helper function for _eval_expand_mul. sums must be a list of instances of Basic. """ L = len(sums) if L == 1: return sums[0].args terms = [] left = Mul._expandsums(sums[:L//2]) right = Mul._expandsums(sums[L//2:]) terms = [Mul(a, b) for a in left for b in right] added = Add(*terms) return Add.make_args(added) # it may have collapsed down to one term def _eval_expand_mul(self, **hints): from sympy.simplify.radsimp import fraction # Handle things like 1/(x*(x + 1)), which are automatically converted # to 1/x*1/(x + 1) expr = self n, d = fraction(expr) if d.is_Mul: n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i for i in (n, d)] expr = n/d if not expr.is_Mul: return expr plain, sums, rewrite = [], [], False for factor in expr.args: if factor.is_Add: sums.append(factor) rewrite = True else: if factor.is_commutative: plain.append(factor) else: sums.append(Basic(factor)) # Wrapper if not rewrite: return expr else: plain = self.func(*plain) if sums: deep = hints.get("deep", False) terms = self.func._expandsums(sums) args = [] for term in terms: t = self.func(plain, term) if t.is_Mul and any(a.is_Add for a in t.args) and deep: t = t._eval_expand_mul() args.append(t) return Add(*args) else: return plain @cacheit def _eval_derivative(self, s): args = list(self.args) terms = [] for i in range(len(args)): d = args[i].diff(s) if d: # Note: reduce is used in step of Mul as Mul is unable to # handle subtypes and operation priority: terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One)) return Add.fromiter(terms) @cacheit def _eval_derivative_n_times(self, s, n): from .function import AppliedUndef from .symbol import Symbol, symbols, Dummy if not isinstance(s, AppliedUndef) and not isinstance(s, Symbol): # other types of s may not be well behaved, e.g. # (cos(x)*sin(y)).diff([[x, y, z]]) return super()._eval_derivative_n_times(s, n) from .numbers import Integer args = self.args m = len(args) if isinstance(n, (int, Integer)): # https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors terms = [] from sympy.ntheory.multinomial import multinomial_coefficients_iterator for kvals, c in multinomial_coefficients_iterator(m, n): p = prod([arg.diff((s, k)) for k, arg in zip(kvals, args)]) terms.append(c * p) return Add(*terms) from sympy.concrete.summations import Sum from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.miscellaneous import Max kvals = symbols("k1:%i" % m, cls=Dummy) klast = n - sum(kvals) nfact = factorial(n) e, l = (# better to use the multinomial? nfact/prod(map(factorial, kvals))/factorial(klast)*\ prod([args[t].diff((s, kvals[t])) for t in range(m-1)])*\ args[-1].diff((s, Max(0, klast))), [(k, 0, n) for k in kvals]) return Sum(e, *l) def _eval_difference_delta(self, n, step): from sympy.series.limitseq import difference_delta as dd arg0 = self.args[0] rest = Mul(*self.args[1:]) return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) * rest) def _matches_simple(self, expr, repl_dict): # handle (w*3).matches('x*5') -> {w: x*5/3} coeff, terms = self.as_coeff_Mul() terms = Mul.make_args(terms) if len(terms) == 1: newexpr = self.__class__._combine_inverse(expr, coeff) return terms[0].matches(newexpr, repl_dict) return def matches(self, expr, repl_dict=None, old=False): expr = sympify(expr) if self.is_commutative and expr.is_commutative: return self._matches_commutative(expr, repl_dict, old) elif self.is_commutative is not expr.is_commutative: return None # Proceed only if both both expressions are non-commutative c1, nc1 = self.args_cnc() c2, nc2 = expr.args_cnc() c1, c2 = [c or [1] for c in [c1, c2]] # TODO: Should these be self.func? comm_mul_self = Mul(*c1) comm_mul_expr = Mul(*c2) repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old) # If the commutative arguments didn't match and aren't equal, then # then the expression as a whole doesn't match if not repl_dict and c1 != c2: return None # Now match the non-commutative arguments, expanding powers to # multiplications nc1 = Mul._matches_expand_pows(nc1) nc2 = Mul._matches_expand_pows(nc2) repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict) return repl_dict or None @staticmethod def _matches_expand_pows(arg_list): new_args = [] for arg in arg_list: if arg.is_Pow and arg.exp > 0: new_args.extend([arg.base] * arg.exp) else: new_args.append(arg) return new_args @staticmethod def _matches_noncomm(nodes, targets, repl_dict=None): """Non-commutative multiplication matcher. `nodes` is a list of symbols within the matcher multiplication expression, while `targets` is a list of arguments in the multiplication expression being matched against. """ if repl_dict is None: repl_dict = dict() else: repl_dict = repl_dict.copy() # List of possible future states to be considered agenda = [] # The current matching state, storing index in nodes and targets state = (0, 0) node_ind, target_ind = state # Mapping between wildcard indices and the index ranges they match wildcard_dict = {} while target_ind < len(targets) and node_ind < len(nodes): node = nodes[node_ind] if node.is_Wild: Mul._matches_add_wildcard(wildcard_dict, state) states_matches = Mul._matches_new_states(wildcard_dict, state, nodes, targets) if states_matches: new_states, new_matches = states_matches agenda.extend(new_states) if new_matches: for match in new_matches: repl_dict[match] = new_matches[match] if not agenda: return None else: state = agenda.pop() node_ind, target_ind = state return repl_dict @staticmethod def _matches_add_wildcard(dictionary, state): node_ind, target_ind = state if node_ind in dictionary: begin, end = dictionary[node_ind] dictionary[node_ind] = (begin, target_ind) else: dictionary[node_ind] = (target_ind, target_ind) @staticmethod def _matches_new_states(dictionary, state, nodes, targets): node_ind, target_ind = state node = nodes[node_ind] target = targets[target_ind] # Don't advance at all if we've exhausted the targets but not the nodes if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1: return None if node.is_Wild: match_attempt = Mul._matches_match_wilds(dictionary, node_ind, nodes, targets) if match_attempt: # If the same node has been matched before, don't return # anything if the current match is diverging from the previous # match other_node_inds = Mul._matches_get_other_nodes(dictionary, nodes, node_ind) for ind in other_node_inds: other_begin, other_end = dictionary[ind] curr_begin, curr_end = dictionary[node_ind] other_targets = targets[other_begin:other_end + 1] current_targets = targets[curr_begin:curr_end + 1] for curr, other in zip(current_targets, other_targets): if curr != other: return None # A wildcard node can match more than one target, so only the # target index is advanced new_state = [(node_ind, target_ind + 1)] # Only move on to the next node if there is one if node_ind < len(nodes) - 1: new_state.append((node_ind + 1, target_ind + 1)) return new_state, match_attempt else: # If we're not at a wildcard, then make sure we haven't exhausted # nodes but not targets, since in this case one node can only match # one target if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1: return None match_attempt = node.matches(target) if match_attempt: return [(node_ind + 1, target_ind + 1)], match_attempt elif node == target: return [(node_ind + 1, target_ind + 1)], None else: return None @staticmethod def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets): """Determine matches of a wildcard with sub-expression in `target`.""" wildcard = nodes[wildcard_ind] begin, end = dictionary[wildcard_ind] terms = targets[begin:end + 1] # TODO: Should this be self.func? mult = Mul(*terms) if len(terms) > 1 else terms[0] return wildcard.matches(mult) @staticmethod def _matches_get_other_nodes(dictionary, nodes, node_ind): """Find other wildcards that may have already been matched.""" other_node_inds = [] for ind in dictionary: if nodes[ind] == nodes[node_ind]: other_node_inds.append(ind) return other_node_inds @staticmethod def _combine_inverse(lhs, rhs): """ Returns lhs/rhs, but treats arguments like symbols, so things like oo/oo return 1 (instead of a nan) and ``I`` behaves like a symbol instead of sqrt(-1). """ from sympy.simplify.simplify import signsimp from .symbol import Dummy if lhs == rhs: return S.One def check(l, r): if l.is_Float and r.is_comparable: # if both objects are added to 0 they will share the same "normalization" # and are more likely to compare the same. Since Add(foo, 0) will not allow # the 0 to pass, we use __add__ directly. return l.__add__(0) == r.evalf().__add__(0) return False if check(lhs, rhs) or check(rhs, lhs): return S.One if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)): # gruntz and limit wants a literal I to not combine # with a power of -1 d = Dummy('I') _i = {S.ImaginaryUnit: d} i_ = {d: S.ImaginaryUnit} a = lhs.xreplace(_i).as_powers_dict() b = rhs.xreplace(_i).as_powers_dict() blen = len(b) for bi in tuple(b.keys()): if bi in a: a[bi] -= b.pop(bi) if not a[bi]: a.pop(bi) if len(b) != blen: lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_) rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_) rv = lhs/rhs srv = signsimp(rv) return srv if srv.is_Number else rv def as_powers_dict(self): d = defaultdict(int) for term in self.args: for b, e in term.as_powers_dict().items(): d[b] += e return d def as_numer_denom(self): # don't use _from_args to rebuild the numerators and denominators # as the order is not guaranteed to be the same once they have # been separated from each other numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args])) return self.func(*numers), self.func(*denoms) def as_base_exp(self): e1 = None bases = [] nc = 0 for m in self.args: b, e = m.as_base_exp() if not b.is_commutative: nc += 1 if e1 is None: e1 = e elif e != e1 or nc > 1: return self, S.One bases.append(b) return self.func(*bases), e1 def _eval_is_polynomial(self, syms): return all(term._eval_is_polynomial(syms) for term in self.args) def _eval_is_rational_function(self, syms): return all(term._eval_is_rational_function(syms) for term in self.args) def _eval_is_meromorphic(self, x, a): return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args), quick_exit=True) def _eval_is_algebraic_expr(self, syms): return all(term._eval_is_algebraic_expr(syms) for term in self.args) _eval_is_commutative = lambda self: _fuzzy_group( a.is_commutative for a in self.args) def _eval_is_complex(self): comp = _fuzzy_group(a.is_complex for a in self.args) if comp is False: if any(a.is_infinite for a in self.args): if any(a.is_zero is not False for a in self.args): return None return False return comp def _eval_is_finite(self): if all(a.is_finite for a in self.args): return True if any(a.is_infinite for a in self.args): if all(a.is_zero is False for a in self.args): return False def _eval_is_infinite(self): if any(a.is_infinite for a in self.args): if any(a.is_zero for a in self.args): return S.NaN.is_infinite if any(a.is_zero is None for a in self.args): return None return True def _eval_is_rational(self): r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_algebraic(self): r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True) if r: return r elif r is False: return self.is_zero def _eval_is_zero(self): zero = infinite = False for a in self.args: z = a.is_zero if z: if infinite: return # 0*oo is nan and nan.is_zero is None zero = True else: if not a.is_finite: if zero: return # 0*oo is nan and nan.is_zero is None infinite = True if zero is False and z is None: # trap None zero = None return zero # without involving odd/even checks this code would suffice: #_eval_is_integer = lambda self: _fuzzy_group( # (a.is_integer for a in self.args), quick_exit=True) def _eval_is_integer(self): from sympy.ntheory.factor_ import trailing is_rational = self._eval_is_rational() if is_rational is False: return False numerators = [] denominators = [] unknown = False for a in self.args: hit = False if a.is_integer: if abs(a) is not S.One: numerators.append(a) elif a.is_Rational: n, d = a.as_numer_denom() if abs(n) is not S.One: numerators.append(n) if d is not S.One: denominators.append(d) elif a.is_Pow: b, e = a.as_base_exp() if not b.is_integer or not e.is_integer: hit = unknown = True if e.is_negative: denominators.append(2 if a is S.Half else Pow(a, S.NegativeOne)) elif not hit: # int b and pos int e: a = b**e is integer assert not e.is_positive # for rational self and e equal to zero: a = b**e is 1 assert not e.is_zero return # sign of e unknown -> self.is_integer unknown else: return if not denominators and not unknown: return True allodd = lambda x: all(i.is_odd for i in x) alleven = lambda x: all(i.is_even for i in x) anyeven = lambda x: any(i.is_even for i in x) from .relational import is_gt if not numerators and denominators and all(is_gt(_, S.One) for _ in denominators): return False elif unknown: return elif allodd(numerators) and anyeven(denominators): return False elif anyeven(numerators) and denominators == [2]: return True elif alleven(numerators) and allodd(denominators ) and (Mul(*denominators, evaluate=False) - 1 ).is_positive: return False if len(denominators) == 1: d = denominators[0] if d.is_Integer and d.is_even: # if minimal power of 2 in num vs den is not # negative then we have an integer if (Add(*[i.as_base_exp()[1] for i in numerators if i.is_even]) - trailing(d.p) ).is_nonnegative: return True if len(numerators) == 1: n = numerators[0] if n.is_Integer and n.is_even: # if minimal power of 2 in den vs num is positive # then we have have a non-integer if (Add(*[i.as_base_exp()[1] for i in denominators if i.is_even]) - trailing(n.p) ).is_positive: return False def _eval_is_polar(self): has_polar = any(arg.is_polar for arg in self.args) return has_polar and \ all(arg.is_polar or arg.is_positive for arg in self.args) def _eval_is_extended_real(self): return self._eval_real_imag(True) def _eval_real_imag(self, real): zero = False t_not_re_im = None for t in self.args: if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False: return False elif t.is_imaginary: # I real = not real elif t.is_extended_real: # 2 if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_extended_real is False: # symbolic or literal like `2 + I` or symbolic imaginary if t_not_re_im: return # complex terms might cancel t_not_re_im = t elif t.is_imaginary is False: # symbolic like `2` or `2 + I` if t_not_re_im: return # complex terms might cancel t_not_re_im = t else: return if t_not_re_im: if t_not_re_im.is_extended_real is False: if real: # like 3 return zero # 3*(smthng like 2 + I or i) is not real if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I if not real: # like I return zero # I*(smthng like 2 or 2 + I) is not real elif zero is False: return real # can't be trumped by 0 elif real: return real # doesn't matter what zero is def _eval_is_imaginary(self): z = self.is_zero if z: return False if self.is_finite is False: return False elif z is False and self.is_finite is True: return self._eval_real_imag(False) def _eval_is_hermitian(self): return self._eval_herm_antiherm(True) def _eval_herm_antiherm(self, real): one_nc = zero = one_neither = False for t in self.args: if not t.is_commutative: if one_nc: return one_nc = True if t.is_antihermitian: real = not real elif t.is_hermitian: if not zero: z = t.is_zero if not z and zero is False: zero = z elif z: if all(a.is_finite for a in self.args): return True return elif t.is_hermitian is False: if one_neither: return one_neither = True else: return if one_neither: if real: return zero elif zero is False or real: return real def _eval_is_antihermitian(self): z = self.is_zero if z: return False elif z is False: return self._eval_herm_antiherm(False) def _eval_is_irrational(self): for t in self.args: a = t.is_irrational if a: others = list(self.args) others.remove(t) if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others): return True return if a is None: return if all(x.is_real for x in self.args): return False def _eval_is_extended_positive(self): """Return True if self is positive, False if not, and None if it cannot be determined. Explanation =========== This algorithm is non-recursive and works by keeping track of the sign which changes when a negative or nonpositive is encountered. Whether a nonpositive or nonnegative is seen is also tracked since the presence of these makes it impossible to return True, but possible to return False if the end result is nonpositive. e.g. pos * neg * nonpositive -> pos or zero -> None is returned pos * neg * nonnegative -> neg or zero -> False is returned """ return self._eval_pos_neg(1) def _eval_pos_neg(self, sign): saw_NON = saw_NOT = False for t in self.args: if t.is_extended_positive: continue elif t.is_extended_negative: sign = -sign elif t.is_zero: if all(a.is_finite for a in self.args): return False return elif t.is_extended_nonpositive: sign = -sign saw_NON = True elif t.is_extended_nonnegative: saw_NON = True # FIXME: is_positive/is_negative is False doesn't take account of # Symbol('x', infinite=True, extended_real=True) which has # e.g. is_positive is False but has uncertain sign. elif t.is_positive is False: sign = -sign if saw_NOT: return saw_NOT = True elif t.is_negative is False: if saw_NOT: return saw_NOT = True else: return if sign == 1 and saw_NON is False and saw_NOT is False: return True if sign < 0: return False def _eval_is_extended_negative(self): return self._eval_pos_neg(-1) def _eval_is_odd(self): is_integer = self.is_integer if is_integer: if self.is_zero: return False from sympy.simplify.radsimp import fraction n, d = fraction(self) if d.is_Integer and d.is_even: from sympy.ntheory.factor_ import trailing # if minimal power of 2 in num vs den is # positive then we have an even number if (Add(*[i.as_base_exp()[1] for i in Mul.make_args(n) if i.is_even]) - trailing(d.p) ).is_positive: return False return r, acc = True, 1 for t in self.args: if abs(t) is S.One: continue assert t.is_integer if t.is_even: return False if r is False: pass elif acc != 1 and (acc + t).is_odd: r = False elif t.is_even is None: r = None acc = t return r return is_integer # !integer -> !odd def _eval_is_even(self): is_integer = self.is_integer if is_integer: return fuzzy_not(self.is_odd) from sympy.simplify.radsimp import fraction n, d = fraction(self) if n.is_Integer and n.is_even: # if minimal power of 2 in den vs num is not # negative then this is not an integer and # can't be even from sympy.ntheory.factor_ import trailing if (Add(*[i.as_base_exp()[1] for i in Mul.make_args(d) if i.is_even]) - trailing(n.p) ).is_nonnegative: return False return is_integer def _eval_is_composite(self): """ Here we count the number of arguments that have a minimum value greater than two. If there are more than one of such a symbol then the result is composite. Else, the result cannot be determined. """ number_of_args = 0 # count of symbols with minimum value greater than one for arg in self.args: if not (arg.is_integer and arg.is_positive): return None if (arg-1).is_positive: number_of_args += 1 if number_of_args > 1: return True def _eval_subs(self, old, new): from sympy.functions.elementary.complexes import sign from sympy.ntheory.factor_ import multiplicity from sympy.simplify.powsimp import powdenest from sympy.simplify.radsimp import fraction if not old.is_Mul: return None # try keep replacement literal so -2*x doesn't replace 4*x if old.args[0].is_Number and old.args[0] < 0: if self.args[0].is_Number: if self.args[0] < 0: return self._subs(-old, -new) return None def base_exp(a): # if I and -1 are in a Mul, they get both end up with # a -1 base (see issue 6421); all we want here are the # true Pow or exp separated into base and exponent from sympy.functions.elementary.exponential import exp if a.is_Pow or isinstance(a, exp): return a.as_base_exp() return a, S.One def breakup(eq): """break up powers of eq when treated as a Mul: b**(Rational*e) -> b**e, Rational commutatives come back as a dictionary {b**e: Rational} noncommutatives come back as a list [(b**e, Rational)] """ (c, nc) = (defaultdict(int), list()) for a in Mul.make_args(eq): a = powdenest(a) (b, e) = base_exp(a) if e is not S.One: (co, _) = e.as_coeff_mul() b = Pow(b, e/co) e = co if a.is_commutative: c[b] += e else: nc.append([b, e]) return (c, nc) def rejoin(b, co): """ Put rational back with exponent; in general this is not ok, but since we took it from the exponent for analysis, it's ok to put it back. """ (b, e) = base_exp(b) return Pow(b, e*co) def ndiv(a, b): """if b divides a in an extractive way (like 1/4 divides 1/2 but not vice versa, and 2/5 does not divide 1/3) then return the integer number of times it divides, else return 0. """ if not b.q % a.q or not a.q % b.q: return int(a/b) return 0 # give Muls in the denominator a chance to be changed (see issue 5651) # rv will be the default return value rv = None n, d = fraction(self) self2 = self if d is not S.One: self2 = n._subs(old, new)/d._subs(old, new) if not self2.is_Mul: return self2._subs(old, new) if self2 != self: rv = self2 # Now continue with regular substitution. # handle the leading coefficient and use it to decide if anything # should even be started; we always know where to find the Rational # so it's a quick test co_self = self2.args[0] co_old = old.args[0] co_xmul = None if co_old.is_Rational and co_self.is_Rational: # if coeffs are the same there will be no updating to do # below after breakup() step; so skip (and keep co_xmul=None) if co_old != co_self: co_xmul = co_self.extract_multiplicatively(co_old) elif co_old.is_Rational: return rv # break self and old into factors (c, nc) = breakup(self2) (old_c, old_nc) = breakup(old) # update the coefficients if we had an extraction # e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5 # then co_self in c is replaced by (3/5)**2 and co_residual # is 2*(1/7)**2 if co_xmul and co_xmul.is_Rational and abs(co_old) != 1: mult = S(multiplicity(abs(co_old), co_self)) c.pop(co_self) if co_old in c: c[co_old] += mult else: c[co_old] = mult co_residual = co_self/co_old**mult else: co_residual = 1 # do quick tests to see if we can't succeed ok = True if len(old_nc) > len(nc): # more non-commutative terms ok = False elif len(old_c) > len(c): # more commutative terms ok = False elif {i[0] for i in old_nc}.difference({i[0] for i in nc}): # unmatched non-commutative bases ok = False elif set(old_c).difference(set(c)): # unmatched commutative terms ok = False elif any(sign(c[b]) != sign(old_c[b]) for b in old_c): # differences in sign ok = False if not ok: return rv if not old_c: cdid = None else: rat = [] for (b, old_e) in old_c.items(): c_e = c[b] rat.append(ndiv(c_e, old_e)) if not rat[-1]: return rv cdid = min(rat) if not old_nc: ncdid = None for i in range(len(nc)): nc[i] = rejoin(*nc[i]) else: ncdid = 0 # number of nc replacements we did take = len(old_nc) # how much to look at each time limit = cdid or S.Infinity # max number that we can take failed = [] # failed terms will need subs if other terms pass i = 0 while limit and i + take <= len(nc): hit = False # the bases must be equivalent in succession, and # the powers must be extractively compatible on the # first and last factor but equal in between. rat = [] for j in range(take): if nc[i + j][0] != old_nc[j][0]: break elif j == 0: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif j == take - 1: rat.append(ndiv(nc[i + j][1], old_nc[j][1])) elif nc[i + j][1] != old_nc[j][1]: break else: rat.append(1) j += 1 else: ndo = min(rat) if ndo: if take == 1: if cdid: ndo = min(cdid, ndo) nc[i] = Pow(new, ndo)*rejoin(nc[i][0], nc[i][1] - ndo*old_nc[0][1]) else: ndo = 1 # the left residual l = rejoin(nc[i][0], nc[i][1] - ndo* old_nc[0][1]) # eliminate all middle terms mid = new # the right residual (which may be the same as the middle if take == 2) ir = i + take - 1 r = (nc[ir][0], nc[ir][1] - ndo* old_nc[-1][1]) if r[1]: if i + take < len(nc): nc[i:i + take] = [l*mid, r] else: r = rejoin(*r) nc[i:i + take] = [l*mid*r] else: # there was nothing left on the right nc[i:i + take] = [l*mid] limit -= ndo ncdid += ndo hit = True if not hit: # do the subs on this failing factor failed.append(i) i += 1 else: if not ncdid: return rv # although we didn't fail, certain nc terms may have # failed so we rebuild them after attempting a partial # subs on them failed.extend(range(i, len(nc))) for i in failed: nc[i] = rejoin(*nc[i]).subs(old, new) # rebuild the expression if cdid is None: do = ncdid elif ncdid is None: do = cdid else: do = min(ncdid, cdid) margs = [] for b in c: if b in old_c: # calculate the new exponent e = c[b] - old_c[b]*do margs.append(rejoin(b, e)) else: margs.append(rejoin(b.subs(old, new), c[b])) if cdid and not ncdid: # in case we are replacing commutative with non-commutative, # we want the new term to come at the front just like the # rest of this routine margs = [Pow(new, cdid)] + margs return co_residual*self2.func(*margs)*self2.func(*nc) def _eval_nseries(self, x, n, logx, cdir=0): from .function import PoleError from sympy.functions.elementary.integers import ceiling from sympy.series.order import Order def coeff_exp(term, x): lt = term.as_coeff_exponent(x) if lt[0].has(x): try: lt = term.leadterm(x) except ValueError: return term, S.Zero return lt ords = [] try: for t in self.args: coeff, exp = t.leadterm(x, logx=logx) if not coeff.has(x): ords.append((t, exp)) else: raise ValueError n0 = sum(t[1] for t in ords if t[1].is_number) facs = [] for t, m in ords: n1 = ceiling(n - n0 + (m if m.is_number else 0)) s = t.nseries(x, n=n1, logx=logx, cdir=cdir) ns = s.getn() if ns is not None: if ns < n1: # less than expected n -= n1 - ns # reduce n facs.append(s) except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError): n0 = sympify(sum(t[1] for t in ords if t[1].is_number)) if n0.is_nonnegative: n0 = S.Zero facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args] from sympy.simplify.powsimp import powsimp res = powsimp(self.func(*facs).expand(), combine='exp', deep=True) if res.has(Order): res += Order(x**n, x) return res res = S.Zero ords2 = [Add.make_args(factor) for factor in facs] for fac in product(*ords2): ords3 = [coeff_exp(term, x) for term in fac] coeffs, powers = zip(*ords3) power = sum(powers) if (power - n).is_negative: res += Mul(*coeffs)*(x**power) def max_degree(e, x): if e is x: return S.One if e.is_Atom: return S.Zero if e.is_Add: return max(max_degree(a, x) for a in e.args) if e.is_Mul: return Add(*[max_degree(a, x) for a in e.args]) if e.is_Pow: return max_degree(e.base, x)*e.exp return S.Zero if self.is_polynomial(x): from sympy.polys.polyerrors import PolynomialError from sympy.polys.polytools import degree try: if max_degree(self, x) >= n or degree(self, x) != degree(res, x): res += Order(x**n, x) except PolynomialError: pass else: return res if res != self: res += Order(x**n, x) return res def _eval_as_leading_term(self, x, logx=None, cdir=0): return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args]) def _eval_conjugate(self): return self.func(*[t.conjugate() for t in self.args]) def _eval_transpose(self): return self.func(*[t.transpose() for t in self.args[::-1]]) def _eval_adjoint(self): return self.func(*[t.adjoint() for t in self.args[::-1]]) def as_content_primitive(self, radical=False, clear=True): """Return the tuple (R, self/R) where R is the positive Rational extracted from self. Examples ======== >>> from sympy import sqrt >>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive() (6, -sqrt(2)*(1 - sqrt(2))) See docstring of Expr.as_content_primitive for more examples. """ coef = S.One args = [] for a in self.args: c, p = a.as_content_primitive(radical=radical, clear=clear) coef *= c if p is not S.One: args.append(p) # don't use self._from_args here to reconstruct args # since there may be identical args now that should be combined # e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x)) return coef, self.func(*args) def as_ordered_factors(self, order=None): """Transform an expression into an ordered list of factors. Examples ======== >>> from sympy import sin, cos >>> from sympy.abc import x, y >>> (2*x*y*sin(x)*cos(x)).as_ordered_factors() [2, x, y, sin(x), cos(x)] """ cpart, ncpart = self.args_cnc() cpart.sort(key=lambda expr: expr.sort_key(order=order)) return cpart + ncpart @property def _sorted_args(self): return tuple(self.as_ordered_factors()) mul = AssocOpDispatcher('mul') def prod(a, start=1): """Return product of elements of a. Start with int 1 so if only ints are included then an int result is returned. Examples ======== >>> from sympy import prod, S >>> prod(range(3)) 0 >>> type(_) is int True >>> prod([S(2), 3]) 6 >>> _.is_Integer True You can start the product at something other than 1: >>> prod([1, 2], 3) 6 """ return reduce(operator.mul, a, start) def _keep_coeff(coeff, factors, clear=True, sign=False): """Return ``coeff*factors`` unevaluated if necessary. If ``clear`` is False, do not keep the coefficient as a factor if it can be distributed on a single factor such that one or more terms will still have integer coefficients. If ``sign`` is True, allow a coefficient of -1 to remain factored out. Examples ======== >>> from sympy.core.mul import _keep_coeff >>> from sympy.abc import x, y >>> from sympy import S >>> _keep_coeff(S.Half, x + 2) (x + 2)/2 >>> _keep_coeff(S.Half, x + 2, clear=False) x/2 + 1 >>> _keep_coeff(S.Half, (x + 2)*y, clear=False) y*(x + 2)/2 >>> _keep_coeff(S(-1), x + y) -x - y >>> _keep_coeff(S(-1), x + y, sign=True) -(x + y) """ if not coeff.is_Number: if factors.is_Number: factors, coeff = coeff, factors else: return coeff*factors if factors is S.One: return coeff if coeff is S.One: return factors elif coeff is S.NegativeOne and not sign: return -factors elif factors.is_Add: if not clear and coeff.is_Rational and coeff.q != 1: args = [i.as_coeff_Mul() for i in factors.args] args = [(_keep_coeff(c, coeff), m) for c, m in args] if any(c.is_Integer for c, _ in args): return Add._from_args([Mul._from_args( i[1:] if i[0] == 1 else i) for i in args]) return Mul(coeff, factors, evaluate=False) elif factors.is_Mul: margs = list(factors.args) if margs[0].is_Number: margs[0] *= coeff if margs[0] == 1: margs.pop(0) else: margs.insert(0, coeff) return Mul._from_args(margs) else: m = coeff*factors if m.is_Number and not factors.is_Number: m = Mul._from_args((coeff, factors)) return m def expand_2arg(e): def do(e): if e.is_Mul: c, r = e.as_coeff_Mul() if c.is_Number and r.is_Add: return _unevaluated_Add(*[c*ri for ri in r.args]) return e return bottom_up(e, do) from .numbers import Rational from .power import Pow from .add import Add, _unevaluated_Add
14e637172d6005f965afd7f45975ce3aea6c5f99ab95b2419d47a6f30fca68ea
"""OO layer for several polynomial representations. """ from sympy.core.numbers import oo from sympy.core.sympify import CantSympify from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible from sympy.polys.polyutils import PicklableWithSlots class GenericPoly(PicklableWithSlots): """Base class for low-level polynomial representations. """ def ground_to_ring(f): """Make the ground domain a ring. """ return f.set_domain(f.dom.get_ring()) def ground_to_field(f): """Make the ground domain a field. """ return f.set_domain(f.dom.get_field()) def ground_to_exact(f): """Make the ground domain exact. """ return f.set_domain(f.dom.get_exact()) @classmethod def _perify_factors(per, result, include): if include: coeff, factors = result factors = [ (per(g), k) for g, k in factors ] if include: return coeff, factors else: return factors from sympy.polys.densebasic import ( dmp_validate, dup_normal, dmp_normal, dup_convert, dmp_convert, dmp_from_sympy, dup_strip, dup_degree, dmp_degree_in, dmp_degree_list, dmp_negative_p, dup_LC, dmp_ground_LC, dup_TC, dmp_ground_TC, dmp_ground_nth, dmp_one, dmp_ground, dmp_zero_p, dmp_one_p, dmp_ground_p, dup_from_dict, dmp_from_dict, dmp_to_dict, dmp_deflate, dmp_inject, dmp_eject, dmp_terms_gcd, dmp_list_terms, dmp_exclude, dmp_slice_in, dmp_permute, dmp_to_tuple,) from sympy.polys.densearith import ( dmp_add_ground, dmp_sub_ground, dmp_mul_ground, dmp_quo_ground, dmp_exquo_ground, dmp_abs, dup_neg, dmp_neg, dup_add, dmp_add, dup_sub, dmp_sub, dup_mul, dmp_mul, dmp_sqr, dup_pow, dmp_pow, dmp_pdiv, dmp_prem, dmp_pquo, dmp_pexquo, dmp_div, dup_rem, dmp_rem, dmp_quo, dmp_exquo, dmp_add_mul, dmp_sub_mul, dmp_max_norm, dmp_l1_norm) from sympy.polys.densetools import ( dmp_clear_denoms, dmp_integrate_in, dmp_diff_in, dmp_eval_in, dup_revert, dmp_ground_trunc, dmp_ground_content, dmp_ground_primitive, dmp_ground_monic, dmp_compose, dup_decompose, dup_shift, dup_transform, dmp_lift) from sympy.polys.euclidtools import ( dup_half_gcdex, dup_gcdex, dup_invert, dmp_subresultants, dmp_resultant, dmp_discriminant, dmp_inner_gcd, dmp_gcd, dmp_lcm, dmp_cancel) from sympy.polys.sqfreetools import ( dup_gff_list, dmp_norm, dmp_sqf_p, dmp_sqf_norm, dmp_sqf_part, dmp_sqf_list, dmp_sqf_list_include) from sympy.polys.factortools import ( dup_cyclotomic_p, dmp_irreducible_p, dmp_factor_list, dmp_factor_list_include) from sympy.polys.rootisolation import ( dup_isolate_real_roots_sqf, dup_isolate_real_roots, dup_isolate_all_roots_sqf, dup_isolate_all_roots, dup_refine_real_root, dup_count_real_roots, dup_count_complex_roots, dup_sturm) from sympy.polys.polyerrors import ( UnificationFailed, PolynomialError) def init_normal_DMP(rep, lev, dom): return DMP(dmp_normal(rep, lev, dom), dom, lev) class DMP(PicklableWithSlots, CantSympify): """Dense Multivariate Polynomials over `K`. """ __slots__ = ('rep', 'lev', 'dom', 'ring') def __init__(self, rep, dom, lev=None, ring=None): if lev is not None: # Not possible to check with isinstance if type(rep) is dict: rep = dmp_from_dict(rep, lev, dom) elif type(rep) is not list: rep = dmp_ground(dom.convert(rep), lev) else: rep, lev = dmp_validate(rep) self.rep = rep self.lev = lev self.dom = dom self.ring = ring def __repr__(f): return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring) def __hash__(f): return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring)) def unify(f, g): """Unify representations of two multivariate polynomials. """ if not isinstance(g, DMP) or f.lev != g.lev: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return f.lev, f.dom, f.per, f.rep, g.rep else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = dmp_convert(f.rep, lev, f.dom, dom) G = dmp_convert(g.rep, lev, g.dom, dom) def per(rep, dom=dom, lev=lev, kill=False): if kill: if not lev: return rep else: lev -= 1 return DMP(rep, dom, lev, ring) return lev, dom, per, F, G def per(f, rep, dom=None, kill=False, ring=None): """Create a DMP out of the given representation. """ lev = f.lev if kill: if not lev: return rep else: lev -= 1 if dom is None: dom = f.dom if ring is None: ring = f.ring return DMP(rep, dom, lev, ring) @classmethod def zero(cls, lev, dom, ring=None): return DMP(0, dom, lev, ring) @classmethod def one(cls, lev, dom, ring=None): return DMP(1, dom, lev, ring) @classmethod def from_list(cls, rep, lev, dom): """Create an instance of ``cls`` given a list of native coefficients. """ return cls(dmp_convert(rep, lev, None, dom), dom, lev) @classmethod def from_sympy_list(cls, rep, lev, dom): """Create an instance of ``cls`` given a list of SymPy coefficients. """ return cls(dmp_from_sympy(rep, lev, dom), dom, lev) def to_dict(f, zero=False): """Convert ``f`` to a dict representation with native coefficients. """ return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) def to_sympy_dict(f, zero=False): """Convert ``f`` to a dict representation with SymPy coefficients. """ rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero) for k, v in rep.items(): rep[k] = f.dom.to_sympy(v) return rep def to_list(f): """Convert ``f`` to a list representation with native coefficients. """ return f.rep def to_sympy_list(f): """Convert ``f`` to a list representation with SymPy coefficients. """ def sympify_nested_list(rep): out = [] for val in rep: if isinstance(val, list): out.append(sympify_nested_list(val)) else: out.append(f.dom.to_sympy(val)) return out return sympify_nested_list(f.rep) def to_tuple(f): """ Convert ``f`` to a tuple representation with native coefficients. This is needed for hashing. """ return dmp_to_tuple(f.rep, f.lev) @classmethod def from_dict(cls, rep, lev, dom): """Construct and instance of ``cls`` from a ``dict`` representation. """ return cls(dmp_from_dict(rep, lev, dom), dom, lev) @classmethod def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None): return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring) def to_ring(f): """Make the ground domain a ring. """ return f.convert(f.dom.get_ring()) def to_field(f): """Make the ground domain a field. """ return f.convert(f.dom.get_field()) def to_exact(f): """Make the ground domain exact. """ return f.convert(f.dom.get_exact()) def convert(f, dom): """Convert the ground domain of ``f``. """ if f.dom == dom: return f else: return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev) def slice(f, m, n, j=0): """Take a continuous subsequence of terms of ``f``. """ return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom)) def coeffs(f, order=None): """Returns all non-zero coefficients from ``f`` in lex order. """ return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] def monoms(f, order=None): """Returns all non-zero monomials from ``f`` in lex order. """ return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ] def terms(f, order=None): """Returns all non-zero terms from ``f`` in lex order. """ return dmp_list_terms(f.rep, f.lev, f.dom, order=order) def all_coeffs(f): """Returns all coefficients from ``f``. """ if not f.lev: if not f: return [f.dom.zero] else: return [ c for c in f.rep ] else: raise PolynomialError('multivariate polynomials not supported') def all_monoms(f): """Returns all monomials from ``f``. """ if not f.lev: n = dup_degree(f.rep) if n < 0: return [(0,)] else: return [ (n - i,) for i, c in enumerate(f.rep) ] else: raise PolynomialError('multivariate polynomials not supported') def all_terms(f): """Returns all terms from a ``f``. """ if not f.lev: n = dup_degree(f.rep) if n < 0: return [((0,), f.dom.zero)] else: return [ ((n - i,), c) for i, c in enumerate(f.rep) ] else: raise PolynomialError('multivariate polynomials not supported') def lift(f): """Convert algebraic coefficients to rationals. """ return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom) def deflate(f): """Reduce degree of `f` by mapping `x_i^m` to `y_i`. """ J, F = dmp_deflate(f.rep, f.lev, f.dom) return J, f.per(F) def inject(f, front=False): """Inject ground domain generators into ``f``. """ F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front) return f.__class__(F, f.dom.dom, lev) def eject(f, dom, front=False): """Eject selected generators into the ground domain. """ F = dmp_eject(f.rep, f.lev, dom, front=front) return f.__class__(F, dom, f.lev - len(dom.symbols)) def exclude(f): r""" Remove useless generators from ``f``. Returns the removed generators and the new excluded ``f``. Examples ======== >>> from sympy.polys.polyclasses import DMP >>> from sympy.polys.domains import ZZ >>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude() ([2], DMP([[1], [1, 2]], ZZ, None)) """ J, F, u = dmp_exclude(f.rep, f.lev, f.dom) return J, f.__class__(F, f.dom, u) def permute(f, P): r""" Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`. Examples ======== >>> from sympy.polys.polyclasses import DMP >>> from sympy.polys.domains import ZZ >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2]) DMP([[[2], []], [[1, 0], []]], ZZ, None) >>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0]) DMP([[[1], []], [[2, 0], []]], ZZ, None) """ return f.per(dmp_permute(f.rep, P, f.lev, f.dom)) def terms_gcd(f): """Remove GCD of terms from the polynomial ``f``. """ J, F = dmp_terms_gcd(f.rep, f.lev, f.dom) return J, f.per(F) def add_ground(f, c): """Add an element of the ground domain to ``f``. """ return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def sub_ground(f, c): """Subtract an element of the ground domain from ``f``. """ return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def mul_ground(f, c): """Multiply ``f`` by a an element of the ground domain. """ return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def quo_ground(f, c): """Quotient of ``f`` by a an element of the ground domain. """ return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def exquo_ground(f, c): """Exact quotient of ``f`` by a an element of the ground domain. """ return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom)) def abs(f): """Make all coefficients in ``f`` positive. """ return f.per(dmp_abs(f.rep, f.lev, f.dom)) def neg(f): """Negate all coefficients in ``f``. """ return f.per(dmp_neg(f.rep, f.lev, f.dom)) def add(f, g): """Add two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_add(F, G, lev, dom)) def sub(f, g): """Subtract two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_sub(F, G, lev, dom)) def mul(f, g): """Multiply two multivariate polynomials ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_mul(F, G, lev, dom)) def sqr(f): """Square a multivariate polynomial ``f``. """ return f.per(dmp_sqr(f.rep, f.lev, f.dom)) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): return f.per(dmp_pow(f.rep, n, f.lev, f.dom)) else: raise TypeError("``int`` expected, got %s" % type(n)) def pdiv(f, g): """Polynomial pseudo-division of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) q, r = dmp_pdiv(F, G, lev, dom) return per(q), per(r) def prem(f, g): """Polynomial pseudo-remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_prem(F, G, lev, dom)) def pquo(f, g): """Polynomial pseudo-quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_pquo(F, G, lev, dom)) def pexquo(f, g): """Polynomial exact pseudo-quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_pexquo(F, G, lev, dom)) def div(f, g): """Polynomial division with remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) q, r = dmp_div(F, G, lev, dom) return per(q), per(r) def rem(f, g): """Computes polynomial remainder of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_rem(F, G, lev, dom)) def quo(f, g): """Computes polynomial quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_quo(F, G, lev, dom)) def exquo(f, g): """Computes polynomial exact quotient of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) res = per(dmp_exquo(F, G, lev, dom)) if f.ring and res not in f.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(f, g, f.ring) return res def degree(f, j=0): """Returns the leading degree of ``f`` in ``x_j``. """ if isinstance(j, int): return dmp_degree_in(f.rep, j, f.lev) else: raise TypeError("``int`` expected, got %s" % type(j)) def degree_list(f): """Returns a list of degrees of ``f``. """ return dmp_degree_list(f.rep, f.lev) def total_degree(f): """Returns the total degree of ``f``. """ return max(sum(m) for m in f.monoms()) def homogenize(f, s): """Return homogeneous polynomial of ``f``""" td = f.total_degree() result = {} new_symbol = (s == len(f.terms()[0][0])) for term in f.terms(): d = sum(term[0]) if d < td: i = td - d else: i = 0 if new_symbol: result[term[0] + (i,)] = term[1] else: l = list(term[0]) l[s] += i result[tuple(l)] = term[1] return DMP(result, f.dom, f.lev + int(new_symbol), f.ring) def homogeneous_order(f): """Returns the homogeneous order of ``f``. """ if f.is_zero: return -oo monoms = f.monoms() tdeg = sum(monoms[0]) for monom in monoms: _tdeg = sum(monom) if _tdeg != tdeg: return None return tdeg def LC(f): """Returns the leading coefficient of ``f``. """ return dmp_ground_LC(f.rep, f.lev, f.dom) def TC(f): """Returns the trailing coefficient of ``f``. """ return dmp_ground_TC(f.rep, f.lev, f.dom) def nth(f, *N): """Returns the ``n``-th coefficient of ``f``. """ if all(isinstance(n, int) for n in N): return dmp_ground_nth(f.rep, N, f.lev, f.dom) else: raise TypeError("a sequence of integers expected") def max_norm(f): """Returns maximum norm of ``f``. """ return dmp_max_norm(f.rep, f.lev, f.dom) def l1_norm(f): """Returns l1 norm of ``f``. """ return dmp_l1_norm(f.rep, f.lev, f.dom) def clear_denoms(f): """Clear denominators, but keep the ground domain. """ coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom) return coeff, f.per(F) def integrate(f, m=1, j=0): """Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """ if not isinstance(m, int): raise TypeError("``int`` expected, got %s" % type(m)) if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom)) def diff(f, m=1, j=0): """Computes the ``m``-th order derivative of ``f`` in ``x_j``. """ if not isinstance(m, int): raise TypeError("``int`` expected, got %s" % type(m)) if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom)) def eval(f, a, j=0): """Evaluates ``f`` at the given point ``a`` in ``x_j``. """ if not isinstance(j, int): raise TypeError("``int`` expected, got %s" % type(j)) return f.per(dmp_eval_in(f.rep, f.dom.convert(a), j, f.lev, f.dom), kill=True) def half_gcdex(f, g): """Half extended Euclidean algorithm, if univariate. """ lev, dom, per, F, G = f.unify(g) if not lev: s, h = dup_half_gcdex(F, G, dom) return per(s), per(h) else: raise ValueError('univariate polynomial expected') def gcdex(f, g): """Extended Euclidean algorithm, if univariate. """ lev, dom, per, F, G = f.unify(g) if not lev: s, t, h = dup_gcdex(F, G, dom) return per(s), per(t), per(h) else: raise ValueError('univariate polynomial expected') def invert(f, g): """Invert ``f`` modulo ``g``, if possible. """ lev, dom, per, F, G = f.unify(g) if not lev: return per(dup_invert(F, G, dom)) else: raise ValueError('univariate polynomial expected') def revert(f, n): """Compute ``f**(-1)`` mod ``x**n``. """ if not f.lev: return f.per(dup_revert(f.rep, n, f.dom)) else: raise ValueError('univariate polynomial expected') def subresultants(f, g): """Computes subresultant PRS sequence of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) R = dmp_subresultants(F, G, lev, dom) return list(map(per, R)) def resultant(f, g, includePRS=False): """Computes resultant of ``f`` and ``g`` via PRS. """ lev, dom, per, F, G = f.unify(g) if includePRS: res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS) return per(res, kill=True), list(map(per, R)) return per(dmp_resultant(F, G, lev, dom), kill=True) def discriminant(f): """Computes discriminant of ``f``. """ return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True) def cofactors(f, g): """Returns GCD of ``f`` and ``g`` and their cofactors. """ lev, dom, per, F, G = f.unify(g) h, cff, cfg = dmp_inner_gcd(F, G, lev, dom) return per(h), per(cff), per(cfg) def gcd(f, g): """Returns polynomial GCD of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_gcd(F, G, lev, dom)) def lcm(f, g): """Returns polynomial LCM of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_lcm(F, G, lev, dom)) def cancel(f, g, include=True): """Cancel common factors in a rational function ``f/g``. """ lev, dom, per, F, G = f.unify(g) if include: F, G = dmp_cancel(F, G, lev, dom, include=True) else: cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False) F, G = per(F), per(G) if include: return F, G else: return cF, cG, F, G def trunc(f, p): """Reduce ``f`` modulo a constant ``p``. """ return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom)) def monic(f): """Divides all coefficients by ``LC(f)``. """ return f.per(dmp_ground_monic(f.rep, f.lev, f.dom)) def content(f): """Returns GCD of polynomial coefficients. """ return dmp_ground_content(f.rep, f.lev, f.dom) def primitive(f): """Returns content and a primitive form of ``f``. """ cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom) return cont, f.per(F) def compose(f, g): """Computes functional composition of ``f`` and ``g``. """ lev, dom, per, F, G = f.unify(g) return per(dmp_compose(F, G, lev, dom)) def decompose(f): """Computes functional decomposition of ``f``. """ if not f.lev: return list(map(f.per, dup_decompose(f.rep, f.dom))) else: raise ValueError('univariate polynomial expected') def shift(f, a): """Efficiently compute Taylor shift ``f(x + a)``. """ if not f.lev: return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom)) else: raise ValueError('univariate polynomial expected') def transform(f, p, q): """Evaluate functional transformation ``q**n * f(p/q)``.""" if f.lev: raise ValueError('univariate polynomial expected') lev, dom, per, P, Q = p.unify(q) lev, dom, per, F, P = f.unify(per(P, dom, lev)) lev, dom, per, F, Q = per(F, dom, lev).unify(per(Q, dom, lev)) if not lev: return per(dup_transform(F, P, Q, dom)) else: raise ValueError('univariate polynomial expected') def sturm(f): """Computes the Sturm sequence of ``f``. """ if not f.lev: return list(map(f.per, dup_sturm(f.rep, f.dom))) else: raise ValueError('univariate polynomial expected') def gff_list(f): """Computes greatest factorial factorization of ``f``. """ if not f.lev: return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ] else: raise ValueError('univariate polynomial expected') def norm(f): """Computes ``Norm(f)``.""" r = dmp_norm(f.rep, f.lev, f.dom) return f.per(r, dom=f.dom.dom) def sqf_norm(f): """Computes square-free norm of ``f``. """ s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom) return s, f.per(g), f.per(r, dom=f.dom.dom) def sqf_part(f): """Computes square-free part of ``f``. """ return f.per(dmp_sqf_part(f.rep, f.lev, f.dom)) def sqf_list(f, all=False): """Returns a list of square-free factors of ``f``. """ coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all) return coeff, [ (f.per(g), k) for g, k in factors ] def sqf_list_include(f, all=False): """Returns a list of square-free factors of ``f``. """ factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all) return [ (f.per(g), k) for g, k in factors ] def factor_list(f): """Returns a list of irreducible factors of ``f``. """ coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom) return coeff, [ (f.per(g), k) for g, k in factors ] def factor_list_include(f): """Returns a list of irreducible factors of ``f``. """ factors = dmp_factor_list_include(f.rep, f.lev, f.dom) return [ (f.per(g), k) for g, k in factors ] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """Compute isolating intervals for roots of ``f``. """ if not f.lev: if not all: if not sqf: return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: if not sqf: return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast) else: raise PolynomialError( "Cannot isolate roots of a multivariate polynomial") def refine_root(f, s, t, eps=None, steps=None, fast=False): """ Refine an isolating interval to the given precision. ``eps`` should be a rational number. """ if not f.lev: return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast) else: raise PolynomialError( "Cannot refine a root of a multivariate polynomial") def count_real_roots(f, inf=None, sup=None): """Return the number of real roots of ``f`` in ``[inf, sup]``. """ return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup) def count_complex_roots(f, inf=None, sup=None): """Return the number of complex roots of ``f`` in ``[inf, sup]``. """ return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup) @property def is_zero(f): """Returns ``True`` if ``f`` is a zero polynomial. """ return dmp_zero_p(f.rep, f.lev) @property def is_one(f): """Returns ``True`` if ``f`` is a unit polynomial. """ return dmp_one_p(f.rep, f.lev, f.dom) @property def is_ground(f): """Returns ``True`` if ``f`` is an element of the ground domain. """ return dmp_ground_p(f.rep, None, f.lev) @property def is_sqf(f): """Returns ``True`` if ``f`` is a square-free polynomial. """ return dmp_sqf_p(f.rep, f.lev, f.dom) @property def is_monic(f): """Returns ``True`` if the leading coefficient of ``f`` is one. """ return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom)) @property def is_primitive(f): """Returns ``True`` if the GCD of the coefficients of ``f`` is one. """ return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom)) @property def is_linear(f): """Returns ``True`` if ``f`` is linear in all its variables. """ return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) @property def is_quadratic(f): """Returns ``True`` if ``f`` is quadratic in all its variables. """ return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys()) @property def is_monomial(f): """Returns ``True`` if ``f`` is zero or has only one term. """ return len(f.to_dict()) <= 1 @property def is_homogeneous(f): """Returns ``True`` if ``f`` is a homogeneous polynomial. """ return f.homogeneous_order() is not None @property def is_irreducible(f): """Returns ``True`` if ``f`` has no factors over its domain. """ return dmp_irreducible_p(f.rep, f.lev, f.dom) @property def is_cyclotomic(f): """Returns ``True`` if ``f`` is a cyclotomic polynomial. """ if not f.lev: return dup_cyclotomic_p(f.rep, f.dom) else: return False def __abs__(f): return f.abs() def __neg__(f): return f.neg() def __add__(f, g): if not isinstance(g, DMP): try: g = f.per(dmp_ground(f.dom.convert(g), f.lev)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: g = f.ring.convert(g) except (CoercionFailed, NotImplementedError): return NotImplemented return f.add(g) def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if not isinstance(g, DMP): try: g = f.per(dmp_ground(f.dom.convert(g), f.lev)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: g = f.ring.convert(g) except (CoercionFailed, NotImplementedError): return NotImplemented return f.sub(g) def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, DMP): return f.mul(g) else: try: return f.mul_ground(g) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.mul(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __truediv__(f, g): if isinstance(g, DMP): return f.exquo(g) else: try: return f.mul_ground(g) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.exquo(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rtruediv__(f, g): if isinstance(g, DMP): return g.exquo(f) elif f.ring is not None: try: return f.ring.convert(g).exquo(f) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __divmod__(f, g): return f.div(g) def __mod__(f, g): return f.rem(g) def __floordiv__(f, g): if isinstance(g, DMP): return f.quo(g) else: try: return f.quo_ground(g) except TypeError: return NotImplemented def __eq__(f, g): try: _, _, _, F, G = f.unify(g) if f.lev == g.lev: return F == G except UnificationFailed: pass return False def __ne__(f, g): return not f == g def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(g) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.lev == g.lev \ and f.dom == g.dom \ and f.rep == g.rep def __lt__(f, g): _, _, _, F, G = f.unify(g) return F < G def __le__(f, g): _, _, _, F, G = f.unify(g) return F <= G def __gt__(f, g): _, _, _, F, G = f.unify(g) return F > G def __ge__(f, g): _, _, _, F, G = f.unify(g) return F >= G def __bool__(f): return not dmp_zero_p(f.rep, f.lev) def init_normal_DMF(num, den, lev, dom): return DMF(dmp_normal(num, lev, dom), dmp_normal(den, lev, dom), dom, lev) class DMF(PicklableWithSlots, CantSympify): """Dense Multivariate Fractions over `K`. """ __slots__ = ('num', 'den', 'lev', 'dom', 'ring') def __init__(self, rep, dom, lev=None, ring=None): num, den, lev = self._parse(rep, dom, lev) num, den = dmp_cancel(num, den, lev, dom) self.num = num self.den = den self.lev = lev self.dom = dom self.ring = ring @classmethod def new(cls, rep, dom, lev=None, ring=None): num, den, lev = cls._parse(rep, dom, lev) obj = object.__new__(cls) obj.num = num obj.den = den obj.lev = lev obj.dom = dom obj.ring = ring return obj @classmethod def _parse(cls, rep, dom, lev=None): if type(rep) is tuple: num, den = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) if type(den) is dict: den = dmp_from_dict(den, lev, dom) else: num, num_lev = dmp_validate(num) den, den_lev = dmp_validate(den) if num_lev == den_lev: lev = num_lev else: raise ValueError('inconsistent number of levels') if dmp_zero_p(den, lev): raise ZeroDivisionError('fraction denominator') if dmp_zero_p(num, lev): den = dmp_one(lev, dom) else: if dmp_negative_p(den, lev, dom): num = dmp_neg(num, lev, dom) den = dmp_neg(den, lev, dom) else: num = rep if lev is not None: if type(num) is dict: num = dmp_from_dict(num, lev, dom) elif type(num) is not list: num = dmp_ground(dom.convert(num), lev) else: num, lev = dmp_validate(num) den = dmp_one(lev, dom) return num, den, lev def __repr__(f): return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den, f.dom, f.ring) def __hash__(f): return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev), dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring)) def poly_unify(f, g): """Unify a multivariate fraction and a polynomial. """ if not isinstance(g, DMP) or f.lev != g.lev: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return (f.lev, f.dom, f.per, (f.num, f.den), g.rep) else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = (dmp_convert(f.num, lev, f.dom, dom), dmp_convert(f.den, lev, f.dom, dom)) G = dmp_convert(g.rep, lev, g.dom, dom) def per(num, den, cancel=True, kill=False, lev=lev): if kill: if not lev: return num/den else: lev = lev - 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) return f.__class__.new((num, den), dom, lev, ring=ring) return lev, dom, per, F, G def frac_unify(f, g): """Unify representations of two multivariate fractions. """ if not isinstance(g, DMF) or f.lev != g.lev: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if f.dom == g.dom and f.ring == g.ring: return (f.lev, f.dom, f.per, (f.num, f.den), (g.num, g.den)) else: lev, dom = f.lev, f.dom.unify(g.dom) ring = f.ring if g.ring is not None: if ring is not None: ring = ring.unify(g.ring) else: ring = g.ring F = (dmp_convert(f.num, lev, f.dom, dom), dmp_convert(f.den, lev, f.dom, dom)) G = (dmp_convert(g.num, lev, g.dom, dom), dmp_convert(g.den, lev, g.dom, dom)) def per(num, den, cancel=True, kill=False, lev=lev): if kill: if not lev: return num/den else: lev = lev - 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) return f.__class__.new((num, den), dom, lev, ring=ring) return lev, dom, per, F, G def per(f, num, den, cancel=True, kill=False, ring=None): """Create a DMF out of the given representation. """ lev, dom = f.lev, f.dom if kill: if not lev: return num/den else: lev -= 1 if cancel: num, den = dmp_cancel(num, den, lev, dom) if ring is None: ring = f.ring return f.__class__.new((num, den), dom, lev, ring=ring) def half_per(f, rep, kill=False): """Create a DMP out of the given representation. """ lev = f.lev if kill: if not lev: return rep else: lev -= 1 return DMP(rep, f.dom, lev) @classmethod def zero(cls, lev, dom, ring=None): return cls.new(0, dom, lev, ring=ring) @classmethod def one(cls, lev, dom, ring=None): return cls.new(1, dom, lev, ring=ring) def numer(f): """Returns the numerator of ``f``. """ return f.half_per(f.num) def denom(f): """Returns the denominator of ``f``. """ return f.half_per(f.den) def cancel(f): """Remove common factors from ``f.num`` and ``f.den``. """ return f.per(f.num, f.den) def neg(f): """Negate all coefficients in ``f``. """ return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False) def add(f, g): """Add two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_add(dmp_mul(F_num, G_den, lev, dom), dmp_mul(F_den, G_num, lev, dom), lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def sub(f, g): """Subtract two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_sub(dmp_mul(F_num, G_den, lev, dom), dmp_mul(F_den, G_num, lev, dom), lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def mul(f, g): """Multiply two multivariate fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = dmp_mul(F_num, G, lev, dom), F_den else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_mul(F_num, G_num, lev, dom) den = dmp_mul(F_den, G_den, lev, dom) return per(num, den) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): num, den = f.num, f.den if n < 0: num, den, n = den, num, -n return f.per(dmp_pow(num, n, f.lev, f.dom), dmp_pow(den, n, f.lev, f.dom), cancel=False) else: raise TypeError("``int`` expected, got %s" % type(n)) def quo(f, g): """Computes quotient of fractions ``f`` and ``g``. """ if isinstance(g, DMP): lev, dom, per, (F_num, F_den), G = f.poly_unify(g) num, den = F_num, dmp_mul(F_den, G, lev, dom) else: lev, dom, per, F, G = f.frac_unify(g) (F_num, F_den), (G_num, G_den) = F, G num = dmp_mul(F_num, G_den, lev, dom) den = dmp_mul(F_den, G_num, lev, dom) res = per(num, den) if f.ring is not None and res not in f.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(f, g, f.ring) return res exquo = quo def invert(f, check=True): """Computes inverse of a fraction ``f``. """ if check and f.ring is not None and not f.ring.is_unit(f): raise NotReversible(f, f.ring) res = f.per(f.den, f.num, cancel=False) return res @property def is_zero(f): """Returns ``True`` if ``f`` is a zero fraction. """ return dmp_zero_p(f.num, f.lev) @property def is_one(f): """Returns ``True`` if ``f`` is a unit fraction. """ return dmp_one_p(f.num, f.lev, f.dom) and \ dmp_one_p(f.den, f.lev, f.dom) def __neg__(f): return f.neg() def __add__(f, g): if isinstance(g, (DMP, DMF)): return f.add(g) try: return f.add(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.add(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if isinstance(g, (DMP, DMF)): return f.sub(g) try: return f.sub(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.sub(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, (DMP, DMF)): return f.mul(g) try: return f.mul(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.mul(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __truediv__(f, g): if isinstance(g, (DMP, DMF)): return f.quo(g) try: return f.quo(f.half_per(g)) except TypeError: return NotImplemented except (CoercionFailed, NotImplementedError): if f.ring is not None: try: return f.quo(f.ring.convert(g)) except (CoercionFailed, NotImplementedError): pass return NotImplemented def __rtruediv__(self, g): r = self.invert(check=False)*g if self.ring and r not in self.ring: from sympy.polys.polyerrors import ExactQuotientFailed raise ExactQuotientFailed(g, self, self.ring) return r def __eq__(f, g): try: if isinstance(g, DMP): _, _, _, (F_num, F_den), G = f.poly_unify(g) if f.lev == g.lev: return dmp_one_p(F_den, f.lev, f.dom) and F_num == G else: _, _, _, F, G = f.frac_unify(g) if f.lev == g.lev: return F == G except UnificationFailed: pass return False def __ne__(f, g): try: if isinstance(g, DMP): _, _, _, (F_num, F_den), G = f.poly_unify(g) if f.lev == g.lev: return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G) else: _, _, _, F, G = f.frac_unify(g) if f.lev == g.lev: return F != G except UnificationFailed: pass return True def __lt__(f, g): _, _, _, F, G = f.frac_unify(g) return F < G def __le__(f, g): _, _, _, F, G = f.frac_unify(g) return F <= G def __gt__(f, g): _, _, _, F, G = f.frac_unify(g) return F > G def __ge__(f, g): _, _, _, F, G = f.frac_unify(g) return F >= G def __bool__(f): return not dmp_zero_p(f.num, f.lev) def init_normal_ANP(rep, mod, dom): return ANP(dup_normal(rep, dom), dup_normal(mod, dom), dom) class ANP(PicklableWithSlots, CantSympify): """Dense Algebraic Number Polynomials over a field. """ __slots__ = ('rep', 'mod', 'dom') def __init__(self, rep, mod, dom): if type(rep) is dict: self.rep = dup_from_dict(rep, dom) else: if type(rep) is list: rep = [dom.convert(a) for a in rep] else: rep = [dom.convert(rep)] self.rep = dup_strip(rep) if isinstance(mod, DMP): self.mod = mod.rep else: if type(mod) is dict: self.mod = dup_from_dict(mod, dom) else: self.mod = dup_strip(mod) self.dom = dom def __repr__(f): return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom) def __hash__(f): return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom)) def unify(f, g): """Unify representations of two algebraic numbers. """ if not isinstance(g, ANP) or f.mod != g.mod: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if f.dom == g.dom: return f.dom, f.per, f.rep, g.rep, f.mod else: dom = f.dom.unify(g.dom) F = dup_convert(f.rep, f.dom, dom) G = dup_convert(g.rep, g.dom, dom) if dom != f.dom and dom != g.dom: mod = dup_convert(f.mod, f.dom, dom) else: if dom == f.dom: mod = f.mod else: mod = g.mod per = lambda rep: ANP(rep, mod, dom) return dom, per, F, G, mod def per(f, rep, mod=None, dom=None): return ANP(rep, mod or f.mod, dom or f.dom) @classmethod def zero(cls, mod, dom): return ANP(0, mod, dom) @classmethod def one(cls, mod, dom): return ANP(1, mod, dom) def to_dict(f): """Convert ``f`` to a dict representation with native coefficients. """ return dmp_to_dict(f.rep, 0, f.dom) def to_sympy_dict(f): """Convert ``f`` to a dict representation with SymPy coefficients. """ rep = dmp_to_dict(f.rep, 0, f.dom) for k, v in rep.items(): rep[k] = f.dom.to_sympy(v) return rep def to_list(f): """Convert ``f`` to a list representation with native coefficients. """ return f.rep def to_sympy_list(f): """Convert ``f`` to a list representation with SymPy coefficients. """ return [ f.dom.to_sympy(c) for c in f.rep ] def to_tuple(f): """ Convert ``f`` to a tuple representation with native coefficients. This is needed for hashing. """ return dmp_to_tuple(f.rep, 0) @classmethod def from_list(cls, rep, mod, dom): return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom) def neg(f): return f.per(dup_neg(f.rep, f.dom)) def add(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_add(F, G, dom)) def sub(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_sub(F, G, dom)) def mul(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_rem(dup_mul(F, G, dom), mod, dom)) def pow(f, n): """Raise ``f`` to a non-negative power ``n``. """ if isinstance(n, int): if n < 0: F, n = dup_invert(f.rep, f.mod, f.dom), -n else: F = f.rep return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom)) else: raise TypeError("``int`` expected, got %s" % type(n)) def div(f, g): dom, per, F, G, mod = f.unify(g) return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom)) def rem(f, g): dom, _, _, G, mod = f.unify(g) s, h = dup_half_gcdex(G, mod, dom) if h == [dom.one]: return f.zero(mod, dom) else: raise NotInvertible("zero divisor") def quo(f, g): dom, per, F, G, mod = f.unify(g) return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)) exquo = quo def LC(f): """Returns the leading coefficient of ``f``. """ return dup_LC(f.rep, f.dom) def TC(f): """Returns the trailing coefficient of ``f``. """ return dup_TC(f.rep, f.dom) @property def is_zero(f): """Returns ``True`` if ``f`` is a zero algebraic number. """ return not f @property def is_one(f): """Returns ``True`` if ``f`` is a unit algebraic number. """ return f.rep == [f.dom.one] @property def is_ground(f): """Returns ``True`` if ``f`` is an element of the ground domain. """ return not f.rep or len(f.rep) == 1 def __pos__(f): return f def __neg__(f): return f.neg() def __add__(f, g): if isinstance(g, ANP): return f.add(g) else: try: return f.add(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __radd__(f, g): return f.__add__(g) def __sub__(f, g): if isinstance(g, ANP): return f.sub(g) else: try: return f.sub(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __rsub__(f, g): return (-f).__add__(g) def __mul__(f, g): if isinstance(g, ANP): return f.mul(g) else: try: return f.mul(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __rmul__(f, g): return f.__mul__(g) def __pow__(f, n): return f.pow(n) def __divmod__(f, g): return f.div(g) def __mod__(f, g): return f.rem(g) def __truediv__(f, g): if isinstance(g, ANP): return f.quo(g) else: try: return f.quo(f.per(g)) except (CoercionFailed, TypeError): return NotImplemented def __eq__(f, g): try: _, _, F, G, _ = f.unify(g) return F == G except UnificationFailed: return False def __ne__(f, g): try: _, _, F, G, _ = f.unify(g) return F != G except UnificationFailed: return True def __lt__(f, g): _, _, F, G, _ = f.unify(g) return F < G def __le__(f, g): _, _, F, G, _ = f.unify(g) return F <= G def __gt__(f, g): _, _, F, G, _ = f.unify(g) return F > G def __ge__(f, g): _, _, F, G, _ = f.unify(g) return F >= G def __bool__(f): return bool(f.rep)
ce501a59e0a314055c9c6753887b8a5d0c42d1999937b380fbd4a5d212448416
"""Implementation of RootOf class and related tools. """ from sympy.core.basic import Basic from sympy.core import (S, Expr, Integer, Float, I, oo, Add, Lambda, symbols, sympify, Rational, Dummy) from sympy.core.cache import cacheit from sympy.core.relational import is_le from sympy.core.sorting import ordered from sympy.polys.domains import QQ from sympy.polys.polyerrors import ( MultivariatePolynomialError, GeneratorsNeeded, PolynomialError, DomainError) from sympy.polys.polyfuncs import symmetrize, viete from sympy.polys.polyroots import ( roots_linear, roots_quadratic, roots_binomial, preprocess_roots, roots) from sympy.polys.polytools import Poly, PurePoly, factor from sympy.polys.rationaltools import together from sympy.polys.rootisolation import ( dup_isolate_complex_roots_sqf, dup_isolate_real_roots_sqf) from sympy.utilities import lambdify, public, sift, numbered_symbols from mpmath import mpf, mpc, findroot, workprec from mpmath.libmp.libmpf import dps_to_prec, prec_to_dps from sympy.multipledispatch import dispatch from itertools import chain __all__ = ['CRootOf'] class _pure_key_dict: """A minimal dictionary that makes sure that the key is a univariate PurePoly instance. Examples ======== Only the following actions are guaranteed: >>> from sympy.polys.rootoftools import _pure_key_dict >>> from sympy import PurePoly >>> from sympy.abc import x, y 1) creation >>> P = _pure_key_dict() 2) assignment for a PurePoly or univariate polynomial >>> P[x] = 1 >>> P[PurePoly(x - y, x)] = 2 3) retrieval based on PurePoly key comparison (use this instead of the get method) >>> P[y] 1 4) KeyError when trying to retrieve a nonexisting key >>> P[y + 1] Traceback (most recent call last): ... KeyError: PurePoly(y + 1, y, domain='ZZ') 5) ability to query with ``in`` >>> x + 1 in P False NOTE: this is a *not* a dictionary. It is a very basic object for internal use that makes sure to always address its cache via PurePoly instances. It does not, for example, implement ``get`` or ``setdefault``. """ def __init__(self): self._dict = {} def __getitem__(self, k): if not isinstance(k, PurePoly): if not (isinstance(k, Expr) and len(k.free_symbols) == 1): raise KeyError k = PurePoly(k, expand=False) return self._dict[k] def __setitem__(self, k, v): if not isinstance(k, PurePoly): if not (isinstance(k, Expr) and len(k.free_symbols) == 1): raise ValueError('expecting univariate expression') k = PurePoly(k, expand=False) self._dict[k] = v def __contains__(self, k): try: self[k] return True except KeyError: return False _reals_cache = _pure_key_dict() _complexes_cache = _pure_key_dict() def _pure_factors(poly): _, factors = poly.factor_list() return [(PurePoly(f, expand=False), m) for f, m in factors] def _imag_count_of_factor(f): """Return the number of imaginary roots for irreducible univariate polynomial ``f``. """ terms = [(i, j) for (i,), j in f.terms()] if any(i % 2 for i, j in terms): return 0 # update signs even = [(i, I**i*j) for i, j in terms] even = Poly.from_dict(dict(even), Dummy('x')) return int(even.count_roots(-oo, oo)) @public def rootof(f, x, index=None, radicals=True, expand=True): """An indexed root of a univariate polynomial. Returns either a :obj:`ComplexRootOf` object or an explicit expression involving radicals. Parameters ========== f : Expr Univariate polynomial. x : Symbol, optional Generator for ``f``. index : int or Integer radicals : bool Return a radical expression if possible. expand : bool Expand ``f``. """ return CRootOf(f, x, index=index, radicals=radicals, expand=expand) @public class RootOf(Expr): """Represents a root of a univariate polynomial. Base class for roots of different kinds of polynomials. Only complex roots are currently supported. """ __slots__ = ('poly',) def __new__(cls, f, x, index=None, radicals=True, expand=True): """Construct a new ``CRootOf`` object for ``k``-th root of ``f``.""" return rootof(f, x, index=index, radicals=radicals, expand=expand) @public class ComplexRootOf(RootOf): """Represents an indexed complex root of a polynomial. Roots of a univariate polynomial separated into disjoint real or complex intervals and indexed in a fixed order: * real roots come first and are sorted in increasing order; * complex roots come next and are sorted primarily by increasing real part, secondarily by increasing imaginary part. Currently only rational coefficients are allowed. Can be imported as ``CRootOf``. To avoid confusion, the generator must be a Symbol. Examples ======== >>> from sympy import CRootOf, rootof >>> from sympy.abc import x CRootOf is a way to reference a particular root of a polynomial. If there is a rational root, it will be returned: >>> CRootOf.clear_cache() # for doctest reproducibility >>> CRootOf(x**2 - 4, 0) -2 Whether roots involving radicals are returned or not depends on whether the ``radicals`` flag is true (which is set to True with rootof): >>> CRootOf(x**2 - 3, 0) CRootOf(x**2 - 3, 0) >>> CRootOf(x**2 - 3, 0, radicals=True) -sqrt(3) >>> rootof(x**2 - 3, 0) -sqrt(3) The following cannot be expressed in terms of radicals: >>> r = rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0); r CRootOf(4*x**5 + 16*x**3 + 12*x**2 + 7, 0) The root bounds can be seen, however, and they are used by the evaluation methods to get numerical approximations for the root. >>> interval = r._get_interval(); interval (-1, 0) >>> r.evalf(2) -0.98 The evalf method refines the width of the root bounds until it guarantees that any decimal approximation within those bounds will satisfy the desired precision. It then stores the refined interval so subsequent requests at or below the requested precision will not have to recompute the root bounds and will return very quickly. Before evaluation above, the interval was >>> interval (-1, 0) After evaluation it is now >>> r._get_interval() # doctest: +SKIP (-165/169, -206/211) To reset all intervals for a given polynomial, the :meth:`_reset` method can be called from any CRootOf instance of the polynomial: >>> r._reset() >>> r._get_interval() (-1, 0) The :meth:`eval_approx` method will also find the root to a given precision but the interval is not modified unless the search for the root fails to converge within the root bounds. And the secant method is used to find the root. (The ``evalf`` method uses bisection and will always update the interval.) >>> r.eval_approx(2) -0.98 The interval needed to be slightly updated to find that root: >>> r._get_interval() (-1, -1/2) The ``evalf_rational`` will compute a rational approximation of the root to the desired accuracy or precision. >>> r.eval_rational(n=2) -69629/71318 >>> t = CRootOf(x**3 + 10*x + 1, 1) >>> t.eval_rational(1e-1) 15/256 - 805*I/256 >>> t.eval_rational(1e-1, 1e-4) 3275/65536 - 414645*I/131072 >>> t.eval_rational(1e-4, 1e-4) 6545/131072 - 414645*I/131072 >>> t.eval_rational(n=2) 104755/2097152 - 6634255*I/2097152 Notes ===== Although a PurePoly can be constructed from a non-symbol generator RootOf instances of non-symbols are disallowed to avoid confusion over what root is being represented. >>> from sympy import exp, PurePoly >>> PurePoly(x) == PurePoly(exp(x)) True >>> CRootOf(x - 1, 0) 1 >>> CRootOf(exp(x) - 1, 0) # would correspond to x == 0 Traceback (most recent call last): ... sympy.polys.polyerrors.PolynomialError: generator must be a Symbol See Also ======== eval_approx eval_rational """ __slots__ = ('index',) is_complex = True is_number = True is_finite = True def __new__(cls, f, x, index=None, radicals=False, expand=True): """ Construct an indexed complex root of a polynomial. See ``rootof`` for the parameters. The default value of ``radicals`` is ``False`` to satisfy ``eval(srepr(expr) == expr``. """ x = sympify(x) if index is None and x.is_Integer: x, index = None, x else: index = sympify(index) if index is not None and index.is_Integer: index = int(index) else: raise ValueError("expected an integer root index, got %s" % index) poly = PurePoly(f, x, greedy=False, expand=expand) if not poly.is_univariate: raise PolynomialError("only univariate polynomials are allowed") if not poly.gen.is_Symbol: # PurePoly(sin(x) + 1) == PurePoly(x + 1) but the roots of # x for each are not the same: issue 8617 raise PolynomialError("generator must be a Symbol") degree = poly.degree() if degree <= 0: raise PolynomialError("Cannot construct CRootOf object for %s" % f) if index < -degree or index >= degree: raise IndexError("root index out of [%d, %d] range, got %d" % (-degree, degree - 1, index)) elif index < 0: index += degree dom = poly.get_domain() if not dom.is_Exact: poly = poly.to_exact() roots = cls._roots_trivial(poly, radicals) if roots is not None: return roots[index] coeff, poly = preprocess_roots(poly) dom = poly.get_domain() if not dom.is_ZZ: raise NotImplementedError("CRootOf is not supported over %s" % dom) root = cls._indexed_root(poly, index) return coeff * cls._postprocess_root(root, radicals) @classmethod def _new(cls, poly, index): """Construct new ``CRootOf`` object from raw data. """ obj = Expr.__new__(cls) obj.poly = PurePoly(poly) obj.index = index try: _reals_cache[obj.poly] = _reals_cache[poly] _complexes_cache[obj.poly] = _complexes_cache[poly] except KeyError: pass return obj def _hashable_content(self): return (self.poly, self.index) @property def expr(self): return self.poly.as_expr() @property def args(self): return (self.expr, Integer(self.index)) @property def free_symbols(self): # CRootOf currently only works with univariate expressions # whose poly attribute should be a PurePoly with no free # symbols return set() def _eval_is_real(self): """Return ``True`` if the root is real. """ return self.index < len(_reals_cache[self.poly]) def _eval_is_imaginary(self): """Return ``True`` if the root is imaginary. """ if self.index >= len(_reals_cache[self.poly]): ivl = self._get_interval() return ivl.ax*ivl.bx <= 0 # all others are on one side or the other return False # XXX is this necessary? @classmethod def real_roots(cls, poly, radicals=True): """Get real roots of a polynomial. """ return cls._get_roots("_real_roots", poly, radicals) @classmethod def all_roots(cls, poly, radicals=True): """Get real and complex roots of a polynomial. """ return cls._get_roots("_all_roots", poly, radicals) @classmethod def _get_reals_sqf(cls, currentfactor, use_cache=True): """Get real root isolating intervals for a square-free factor.""" if use_cache and currentfactor in _reals_cache: real_part = _reals_cache[currentfactor] else: _reals_cache[currentfactor] = real_part = \ dup_isolate_real_roots_sqf( currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True) return real_part @classmethod def _get_complexes_sqf(cls, currentfactor, use_cache=True): """Get complex root isolating intervals for a square-free factor.""" if use_cache and currentfactor in _complexes_cache: complex_part = _complexes_cache[currentfactor] else: _complexes_cache[currentfactor] = complex_part = \ dup_isolate_complex_roots_sqf( currentfactor.rep.rep, currentfactor.rep.dom, blackbox=True) return complex_part @classmethod def _get_reals(cls, factors, use_cache=True): """Compute real root isolating intervals for a list of factors. """ reals = [] for currentfactor, k in factors: try: if not use_cache: raise KeyError r = _reals_cache[currentfactor] reals.extend([(i, currentfactor, k) for i in r]) except KeyError: real_part = cls._get_reals_sqf(currentfactor, use_cache) new = [(root, currentfactor, k) for root in real_part] reals.extend(new) reals = cls._reals_sorted(reals) return reals @classmethod def _get_complexes(cls, factors, use_cache=True): """Compute complex root isolating intervals for a list of factors. """ complexes = [] for currentfactor, k in ordered(factors): try: if not use_cache: raise KeyError c = _complexes_cache[currentfactor] complexes.extend([(i, currentfactor, k) for i in c]) except KeyError: complex_part = cls._get_complexes_sqf(currentfactor, use_cache) new = [(root, currentfactor, k) for root in complex_part] complexes.extend(new) complexes = cls._complexes_sorted(complexes) return complexes @classmethod def _reals_sorted(cls, reals): """Make real isolating intervals disjoint and sort roots. """ cache = {} for i, (u, f, k) in enumerate(reals): for j, (v, g, m) in enumerate(reals[i + 1:]): u, v = u.refine_disjoint(v) reals[i + j + 1] = (v, g, m) reals[i] = (u, f, k) reals = sorted(reals, key=lambda r: r[0].a) for root, currentfactor, _ in reals: if currentfactor in cache: cache[currentfactor].append(root) else: cache[currentfactor] = [root] for currentfactor, root in cache.items(): _reals_cache[currentfactor] = root return reals @classmethod def _refine_imaginary(cls, complexes): sifted = sift(complexes, lambda c: c[1]) complexes = [] for f in ordered(sifted): nimag = _imag_count_of_factor(f) if nimag == 0: # refine until xbounds are neg or pos for u, f, k in sifted[f]: while u.ax*u.bx <= 0: u = u._inner_refine() complexes.append((u, f, k)) else: # refine until all but nimag xbounds are neg or pos potential_imag = list(range(len(sifted[f]))) while True: assert len(potential_imag) > 1 for i in list(potential_imag): u, f, k = sifted[f][i] if u.ax*u.bx > 0: potential_imag.remove(i) elif u.ax != u.bx: u = u._inner_refine() sifted[f][i] = u, f, k if len(potential_imag) == nimag: break complexes.extend(sifted[f]) return complexes @classmethod def _refine_complexes(cls, complexes): """return complexes such that no bounding rectangles of non-conjugate roots would intersect. In addition, assure that neither ay nor by is 0 to guarantee that non-real roots are distinct from real roots in terms of the y-bounds. """ # get the intervals pairwise-disjoint. # If rectangles were drawn around the coordinates of the bounding # rectangles, no rectangles would intersect after this procedure. for i, (u, f, k) in enumerate(complexes): for j, (v, g, m) in enumerate(complexes[i + 1:]): u, v = u.refine_disjoint(v) complexes[i + j + 1] = (v, g, m) complexes[i] = (u, f, k) # refine until the x-bounds are unambiguously positive or negative # for non-imaginary roots complexes = cls._refine_imaginary(complexes) # make sure that all y bounds are off the real axis # and on the same side of the axis for i, (u, f, k) in enumerate(complexes): while u.ay*u.by <= 0: u = u.refine() complexes[i] = u, f, k return complexes @classmethod def _complexes_sorted(cls, complexes): """Make complex isolating intervals disjoint and sort roots. """ complexes = cls._refine_complexes(complexes) # XXX don't sort until you are sure that it is compatible # with the indexing method but assert that the desired state # is not broken C, F = 0, 1 # location of ComplexInterval and factor fs = {i[F] for i in complexes} for i in range(1, len(complexes)): if complexes[i][F] != complexes[i - 1][F]: # if this fails the factors of a root were not # contiguous because a discontinuity should only # happen once fs.remove(complexes[i - 1][F]) for i in range(len(complexes)): # negative im part (conj=True) comes before # positive im part (conj=False) assert complexes[i][C].conj is (i % 2 == 0) # update cache cache = {} # -- collate for root, currentfactor, _ in complexes: cache.setdefault(currentfactor, []).append(root) # -- store for currentfactor, root in cache.items(): _complexes_cache[currentfactor] = root return complexes @classmethod def _reals_index(cls, reals, index): """ Map initial real root index to an index in a factor where the root belongs. """ i = 0 for j, (_, currentfactor, k) in enumerate(reals): if index < i + k: poly, index = currentfactor, 0 for _, currentfactor, _ in reals[:j]: if currentfactor == poly: index += 1 return poly, index else: i += k @classmethod def _complexes_index(cls, complexes, index): """ Map initial complex root index to an index in a factor where the root belongs. """ i = 0 for j, (_, currentfactor, k) in enumerate(complexes): if index < i + k: poly, index = currentfactor, 0 for _, currentfactor, _ in complexes[:j]: if currentfactor == poly: index += 1 index += len(_reals_cache[poly]) return poly, index else: i += k @classmethod def _count_roots(cls, roots): """Count the number of real or complex roots with multiplicities.""" return sum([k for _, _, k in roots]) @classmethod def _indexed_root(cls, poly, index): """Get a root of a composite polynomial by index. """ factors = _pure_factors(poly) reals = cls._get_reals(factors) reals_count = cls._count_roots(reals) if index < reals_count: return cls._reals_index(reals, index) else: complexes = cls._get_complexes(factors) return cls._complexes_index(complexes, index - reals_count) @classmethod def _real_roots(cls, poly): """Get real roots of a composite polynomial. """ factors = _pure_factors(poly) reals = cls._get_reals(factors) reals_count = cls._count_roots(reals) roots = [] for index in range(0, reals_count): roots.append(cls._reals_index(reals, index)) return roots def _reset(self): """ Reset all intervals """ self._all_roots(self.poly, use_cache=False) @classmethod def _all_roots(cls, poly, use_cache=True): """Get real and complex roots of a composite polynomial. """ factors = _pure_factors(poly) reals = cls._get_reals(factors, use_cache=use_cache) reals_count = cls._count_roots(reals) roots = [] for index in range(0, reals_count): roots.append(cls._reals_index(reals, index)) complexes = cls._get_complexes(factors, use_cache=use_cache) complexes_count = cls._count_roots(complexes) for index in range(0, complexes_count): roots.append(cls._complexes_index(complexes, index)) return roots @classmethod @cacheit def _roots_trivial(cls, poly, radicals): """Compute roots in linear, quadratic and binomial cases. """ if poly.degree() == 1: return roots_linear(poly) if not radicals: return None if poly.degree() == 2: return roots_quadratic(poly) elif poly.length() == 2 and poly.TC(): return roots_binomial(poly) else: return None @classmethod def _preprocess_roots(cls, poly): """Take heroic measures to make ``poly`` compatible with ``CRootOf``.""" dom = poly.get_domain() if not dom.is_Exact: poly = poly.to_exact() coeff, poly = preprocess_roots(poly) dom = poly.get_domain() if not dom.is_ZZ: raise NotImplementedError( "sorted roots not supported over %s" % dom) return coeff, poly @classmethod def _postprocess_root(cls, root, radicals): """Return the root if it is trivial or a ``CRootOf`` object. """ poly, index = root roots = cls._roots_trivial(poly, radicals) if roots is not None: return roots[index] else: return cls._new(poly, index) @classmethod def _get_roots(cls, method, poly, radicals): """Return postprocessed roots of specified kind. """ if not poly.is_univariate: raise PolynomialError("only univariate polynomials are allowed") # get rid of gen and it's free symbol d = Dummy() poly = poly.subs(poly.gen, d) x = symbols('x') # see what others are left and select x or a numbered x # that doesn't clash free_names = {str(i) for i in poly.free_symbols} for x in chain((symbols('x'),), numbered_symbols('x')): if x.name not in free_names: poly = poly.xreplace({d: x}) break coeff, poly = cls._preprocess_roots(poly) roots = [] for root in getattr(cls, method)(poly): roots.append(coeff*cls._postprocess_root(root, radicals)) return roots @classmethod def clear_cache(cls): """Reset cache for reals and complexes. The intervals used to approximate a root instance are updated as needed. When a request is made to see the intervals, the most current values are shown. `clear_cache` will reset all CRootOf instances back to their original state. See Also ======== _reset """ global _reals_cache, _complexes_cache _reals_cache = _pure_key_dict() _complexes_cache = _pure_key_dict() def _get_interval(self): """Internal function for retrieving isolation interval from cache. """ if self.is_real: return _reals_cache[self.poly][self.index] else: reals_count = len(_reals_cache[self.poly]) return _complexes_cache[self.poly][self.index - reals_count] def _set_interval(self, interval): """Internal function for updating isolation interval in cache. """ if self.is_real: _reals_cache[self.poly][self.index] = interval else: reals_count = len(_reals_cache[self.poly]) _complexes_cache[self.poly][self.index - reals_count] = interval def _eval_subs(self, old, new): # don't allow subs to change anything return self def _eval_conjugate(self): if self.is_real: return self expr, i = self.args return self.func(expr, i + (1 if self._get_interval().conj else -1)) def eval_approx(self, n): """Evaluate this complex root to the given precision. This uses secant method and root bounds are used to both generate an initial guess and to check that the root returned is valid. If ever the method converges outside the root bounds, the bounds will be made smaller and updated. """ prec = dps_to_prec(n) with workprec(prec): g = self.poly.gen if not g.is_Symbol: d = Dummy('x') if self.is_imaginary: d *= I func = lambdify(d, self.expr.subs(g, d)) else: expr = self.expr if self.is_imaginary: expr = self.expr.subs(g, I*g) func = lambdify(g, expr) interval = self._get_interval() while True: if self.is_real: a = mpf(str(interval.a)) b = mpf(str(interval.b)) if a == b: root = a break x0 = mpf(str(interval.center)) x1 = x0 + mpf(str(interval.dx))/4 elif self.is_imaginary: a = mpf(str(interval.ay)) b = mpf(str(interval.by)) if a == b: root = mpc(mpf('0'), a) break x0 = mpf(str(interval.center[1])) x1 = x0 + mpf(str(interval.dy))/4 else: ax = mpf(str(interval.ax)) bx = mpf(str(interval.bx)) ay = mpf(str(interval.ay)) by = mpf(str(interval.by)) if ax == bx and ay == by: root = mpc(ax, ay) break x0 = mpc(*map(str, interval.center)) x1 = x0 + mpc(*map(str, (interval.dx, interval.dy)))/4 try: # without a tolerance, this will return when (to within # the given precision) x_i == x_{i-1} root = findroot(func, (x0, x1)) # If the (real or complex) root is not in the 'interval', # then keep refining the interval. This happens if findroot # accidentally finds a different root outside of this # interval because our initial estimate 'x0' was not close # enough. It is also possible that the secant method will # get trapped by a max/min in the interval; the root # verification by findroot will raise a ValueError in this # case and the interval will then be tightened -- and # eventually the root will be found. # # It is also possible that findroot will not have any # successful iterations to process (in which case it # will fail to initialize a variable that is tested # after the iterations and raise an UnboundLocalError). if self.is_real or self.is_imaginary: if not bool(root.imag) == self.is_real and ( a <= root <= b): if self.is_imaginary: root = mpc(mpf('0'), root.real) break elif (ax <= root.real <= bx and ay <= root.imag <= by): break except (UnboundLocalError, ValueError): pass interval = interval.refine() # update the interval so we at least (for this precision or # less) don't have much work to do to recompute the root self._set_interval(interval) return (Float._new(root.real._mpf_, prec) + I*Float._new(root.imag._mpf_, prec)) def _eval_evalf(self, prec, **kwargs): """Evaluate this complex root to the given precision.""" # all kwargs are ignored return self.eval_rational(n=prec_to_dps(prec))._evalf(prec) def eval_rational(self, dx=None, dy=None, n=15): """ Return a Rational approximation of ``self`` that has real and imaginary component approximations that are within ``dx`` and ``dy`` of the true values, respectively. Alternatively, ``n`` digits of precision can be specified. The interval is refined with bisection and is sure to converge. The root bounds are updated when the refinement is complete so recalculation at the same or lesser precision will not have to repeat the refinement and should be much faster. The following example first obtains Rational approximation to 1e-8 accuracy for all roots of the 4-th order Legendre polynomial. Since the roots are all less than 1, this will ensure the decimal representation of the approximation will be correct (including rounding) to 6 digits: >>> from sympy import legendre_poly, Symbol >>> x = Symbol("x") >>> p = legendre_poly(4, x, polys=True) >>> r = p.real_roots()[-1] >>> r.eval_rational(10**-8).n(6) 0.861136 It is not necessary to a two-step calculation, however: the decimal representation can be computed directly: >>> r.evalf(17) 0.86113631159405258 """ dy = dy or dx if dx: rtol = None dx = dx if isinstance(dx, Rational) else Rational(str(dx)) dy = dy if isinstance(dy, Rational) else Rational(str(dy)) else: # 5 binary (or 2 decimal) digits are needed to ensure that # a given digit is correctly rounded # prec_to_dps(dps_to_prec(n) + 5) - n <= 2 (tested for # n in range(1000000) rtol = S(10)**-(n + 2) # +2 for guard digits interval = self._get_interval() while True: if self.is_real: if rtol: dx = abs(interval.center*rtol) interval = interval.refine_size(dx=dx) c = interval.center real = Rational(c) imag = S.Zero if not rtol or interval.dx < abs(c*rtol): break elif self.is_imaginary: if rtol: dy = abs(interval.center[1]*rtol) dx = 1 interval = interval.refine_size(dx=dx, dy=dy) c = interval.center[1] imag = Rational(c) real = S.Zero if not rtol or interval.dy < abs(c*rtol): break else: if rtol: dx = abs(interval.center[0]*rtol) dy = abs(interval.center[1]*rtol) interval = interval.refine_size(dx, dy) c = interval.center real, imag = map(Rational, c) if not rtol or ( interval.dx < abs(c[0]*rtol) and interval.dy < abs(c[1]*rtol)): break # update the interval so we at least (for this precision or # less) don't have much work to do to recompute the root self._set_interval(interval) return real + I*imag CRootOf = ComplexRootOf @dispatch(ComplexRootOf, ComplexRootOf) def _eval_is_eq(lhs, rhs): # noqa:F811 # if we use is_eq to check here, we get infinite recurion return lhs == rhs @dispatch(ComplexRootOf, Basic) # type:ignore def _eval_is_eq(lhs, rhs): # noqa:F811 # CRootOf represents a Root, so if rhs is that root, it should set # the expression to zero *and* it should be in the interval of the # CRootOf instance. It must also be a number that agrees with the # is_real value of the CRootOf instance. if not rhs.is_number: return None if not rhs.is_finite: return False z = lhs.expr.subs(lhs.expr.free_symbols.pop(), rhs).is_zero if z is False: # all roots will make z True but we don't know # whether this is the right root if z is True return False o = rhs.is_real, rhs.is_imaginary s = lhs.is_real, lhs.is_imaginary assert None not in s # this is part of initial refinement if o != s and None not in o: return False re, im = rhs.as_real_imag() if lhs.is_real: if im: return False i = lhs._get_interval() a, b = [Rational(str(_)) for _ in (i.a, i.b)] return sympify(a <= rhs and rhs <= b) i = lhs._get_interval() r1, r2, i1, i2 = [Rational(str(j)) for j in ( i.ax, i.bx, i.ay, i.by)] return is_le(r1, re) and is_le(re,r2) and is_le(i1,im) and is_le(im,i2) @public class RootSum(Expr): """Represents a sum of all roots of a univariate polynomial. """ __slots__ = ('poly', 'fun', 'auto') def __new__(cls, expr, func=None, x=None, auto=True, quadratic=False): """Construct a new ``RootSum`` instance of roots of a polynomial.""" coeff, poly = cls._transform(expr, x) if not poly.is_univariate: raise MultivariatePolynomialError( "only univariate polynomials are allowed") if func is None: func = Lambda(poly.gen, poly.gen) else: is_func = getattr(func, 'is_Function', False) if is_func and 1 in func.nargs: if not isinstance(func, Lambda): func = Lambda(poly.gen, func(poly.gen)) else: raise ValueError( "expected a univariate function, got %s" % func) var, expr = func.variables[0], func.expr if coeff is not S.One: expr = expr.subs(var, coeff*var) deg = poly.degree() if not expr.has(var): return deg*expr if expr.is_Add: add_const, expr = expr.as_independent(var) else: add_const = S.Zero if expr.is_Mul: mul_const, expr = expr.as_independent(var) else: mul_const = S.One func = Lambda(var, expr) rational = cls._is_func_rational(poly, func) factors, terms = _pure_factors(poly), [] for poly, k in factors: if poly.is_linear: term = func(roots_linear(poly)[0]) elif quadratic and poly.is_quadratic: term = sum(map(func, roots_quadratic(poly))) else: if not rational or not auto: term = cls._new(poly, func, auto) else: term = cls._rational_case(poly, func) terms.append(k*term) return mul_const*Add(*terms) + deg*add_const @classmethod def _new(cls, poly, func, auto=True): """Construct new raw ``RootSum`` instance. """ obj = Expr.__new__(cls) obj.poly = poly obj.fun = func obj.auto = auto return obj @classmethod def new(cls, poly, func, auto=True): """Construct new ``RootSum`` instance. """ if not func.expr.has(*func.variables): return func.expr rational = cls._is_func_rational(poly, func) if not rational or not auto: return cls._new(poly, func, auto) else: return cls._rational_case(poly, func) @classmethod def _transform(cls, expr, x): """Transform an expression to a polynomial. """ poly = PurePoly(expr, x, greedy=False) return preprocess_roots(poly) @classmethod def _is_func_rational(cls, poly, func): """Check if a lambda is a rational function. """ var, expr = func.variables[0], func.expr return expr.is_rational_function(var) @classmethod def _rational_case(cls, poly, func): """Handle the rational function case. """ roots = symbols('r:%d' % poly.degree()) var, expr = func.variables[0], func.expr f = sum(expr.subs(var, r) for r in roots) p, q = together(f).as_numer_denom() domain = QQ[roots] p = p.expand() q = q.expand() try: p = Poly(p, domain=domain, expand=False) except GeneratorsNeeded: p, p_coeff = None, (p,) else: p_monom, p_coeff = zip(*p.terms()) try: q = Poly(q, domain=domain, expand=False) except GeneratorsNeeded: q, q_coeff = None, (q,) else: q_monom, q_coeff = zip(*q.terms()) coeffs, mapping = symmetrize(p_coeff + q_coeff, formal=True) formulas, values = viete(poly, roots), [] for (sym, _), (_, val) in zip(mapping, formulas): values.append((sym, val)) for i, (coeff, _) in enumerate(coeffs): coeffs[i] = coeff.subs(values) n = len(p_coeff) p_coeff = coeffs[:n] q_coeff = coeffs[n:] if p is not None: p = Poly(dict(zip(p_monom, p_coeff)), *p.gens).as_expr() else: (p,) = p_coeff if q is not None: q = Poly(dict(zip(q_monom, q_coeff)), *q.gens).as_expr() else: (q,) = q_coeff return factor(p/q) def _hashable_content(self): return (self.poly, self.fun) @property def expr(self): return self.poly.as_expr() @property def args(self): return (self.expr, self.fun, self.poly.gen) @property def free_symbols(self): return self.poly.free_symbols | self.fun.free_symbols @property def is_commutative(self): return True def doit(self, **hints): if not hints.get('roots', True): return self _roots = roots(self.poly, multiple=True) if len(_roots) < self.poly.degree(): return self else: return Add(*[self.fun(r) for r in _roots]) def _eval_evalf(self, prec): try: _roots = self.poly.nroots(n=prec_to_dps(prec)) except (DomainError, PolynomialError): return self else: return Add(*[self.fun(r) for r in _roots]) def _eval_derivative(self, x): var, expr = self.fun.args func = Lambda(var, expr.diff(x)) return self.new(self.poly, func, self.auto)
262188678d32bc735f28fd617d7bc80f687e9904a0866c92eb017cffab5f0341
"""User-friendly public interface to polynomial functions. """ from functools import wraps, reduce from operator import mul from sympy.core import ( S, Expr, Add, Tuple ) from sympy.core.basic import Basic from sympy.core.decorators import _sympifyit from sympy.core.exprtools import Factors, factor_nc, factor_terms from sympy.core.evalf import pure_complex from sympy.core.function import Derivative from sympy.core.mul import Mul, _keep_coeff from sympy.core.numbers import ilcm, I, Integer from sympy.core.relational import Relational, Equality from sympy.core.sorting import ordered from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify, _sympify from sympy.core.traversal import preorder_traversal, bottom_up from sympy.logic.boolalg import BooleanAtom from sympy.polys import polyoptions as options from sympy.polys.constructor import construct_domain from sympy.polys.domains import FF, QQ, ZZ from sympy.polys.domains.domainelement import DomainElement from sympy.polys.fglmtools import matrix_fglm from sympy.polys.groebnertools import groebner as _groebner from sympy.polys.monomials import Monomial from sympy.polys.orderings import monomial_key from sympy.polys.polyclasses import DMP, DMF, ANP from sympy.polys.polyerrors import ( OperationNotSupported, DomainError, CoercionFailed, UnificationFailed, GeneratorsNeeded, PolynomialError, MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, GeneratorsError, ) from sympy.polys.polyutils import ( basic_from_dict, _sort_gens, _unify_gens, _dict_reorder, _dict_from_expr, _parallel_dict_from_expr, ) from sympy.polys.rationaltools import together from sympy.polys.rootisolation import dup_isolate_real_roots_list from sympy.utilities import group, public, filldedent from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable, sift # Required to avoid errors import sympy.polys import mpmath from mpmath.libmp.libhyper import NoConvergence def _polifyit(func): @wraps(func) def wrapper(f, g): g = _sympify(g) if isinstance(g, Poly): return func(f, g) elif isinstance(g, Expr): try: g = f.from_expr(g, *f.gens) except PolynomialError: if g.is_Matrix: return NotImplemented expr_method = getattr(f.as_expr(), func.__name__) result = expr_method(g) if result is not NotImplemented: SymPyDeprecationWarning( feature="Mixing Poly with non-polynomial expressions in binary operations", issue=18613, deprecated_since_version="1.6", useinstead="the as_expr or as_poly method to convert types").warn() return result else: return func(f, g) else: return NotImplemented return wrapper @public class Poly(Basic): """ Generic class for representing and operating on polynomial expressions. See :ref:`polys-docs` for general documentation. Poly is a subclass of Basic rather than Expr but instances can be converted to Expr with the :py:meth:`~.Poly.as_expr` method. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y Create a univariate polynomial: >>> Poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') Create a univariate polynomial with specific domain: >>> from sympy import sqrt >>> Poly(x**2 + 2*x + sqrt(3), domain='R') Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR') Create a multivariate polynomial: >>> Poly(y*x**2 + x*y + 1) Poly(x**2*y + x*y + 1, x, y, domain='ZZ') Create a univariate polynomial, where y is a constant: >>> Poly(y*x**2 + x*y + 1,x) Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]') You can evaluate the above polynomial as a function of y: >>> Poly(y*x**2 + x*y + 1,x).eval(2) 6*y + 1 See Also ======== sympy.core.expr.Expr """ __slots__ = ('rep', 'gens') is_commutative = True is_Poly = True _op_priority = 10.001 def __new__(cls, rep, *gens, **args): """Create a new polynomial instance out of something useful. """ opt = options.build_options(gens, args) if 'order' in opt: raise NotImplementedError("'order' keyword is not implemented yet") if isinstance(rep, (DMP, DMF, ANP, DomainElement)): return cls._from_domain_element(rep, opt) elif iterable(rep, exclude=str): if isinstance(rep, dict): return cls._from_dict(rep, opt) else: return cls._from_list(list(rep), opt) else: rep = sympify(rep) if rep.is_Poly: return cls._from_poly(rep, opt) else: return cls._from_expr(rep, opt) # Poly does not pass its args to Basic.__new__ to be stored in _args so we # have to emulate them here with an args property that derives from rep # and gens which are instance attributes. This also means we need to # define _hashable_content. The _hashable_content is rep and gens but args # uses expr instead of rep (expr is the Basic version of rep). Passing # expr in args means that Basic methods like subs should work. Using rep # otherwise means that Poly can remain more efficient than Basic by # avoiding creating a Basic instance just to be hashable. @classmethod def new(cls, rep, *gens): """Construct :class:`Poly` instance from raw representation. """ if not isinstance(rep, DMP): raise PolynomialError( "invalid polynomial representation: %s" % rep) elif rep.lev != len(gens) - 1: raise PolynomialError("invalid arguments: %s, %s" % (rep, gens)) obj = Basic.__new__(cls) obj.rep = rep obj.gens = gens return obj @property def expr(self): return basic_from_dict(self.rep.to_sympy_dict(), *self.gens) @property def args(self): return (self.expr,) + self.gens def _hashable_content(self): return (self.rep,) + self.gens @classmethod def from_dict(cls, rep, *gens, **args): """Construct a polynomial from a ``dict``. """ opt = options.build_options(gens, args) return cls._from_dict(rep, opt) @classmethod def from_list(cls, rep, *gens, **args): """Construct a polynomial from a ``list``. """ opt = options.build_options(gens, args) return cls._from_list(rep, opt) @classmethod def from_poly(cls, rep, *gens, **args): """Construct a polynomial from a polynomial. """ opt = options.build_options(gens, args) return cls._from_poly(rep, opt) @classmethod def from_expr(cls, rep, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return cls._from_expr(rep, opt) @classmethod def _from_dict(cls, rep, opt): """Construct a polynomial from a ``dict``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "Cannot initialize from 'dict' without generators") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: for monom, coeff in rep.items(): rep[monom] = domain.convert(coeff) return cls.new(DMP.from_dict(rep, level, domain), *gens) @classmethod def _from_list(cls, rep, opt): """Construct a polynomial from a ``list``. """ gens = opt.gens if not gens: raise GeneratorsNeeded( "Cannot initialize from 'list' without generators") elif len(gens) != 1: raise MultivariatePolynomialError( "'list' representation not supported") level = len(gens) - 1 domain = opt.domain if domain is None: domain, rep = construct_domain(rep, opt=opt) else: rep = list(map(domain.convert, rep)) return cls.new(DMP.from_list(rep, level, domain), *gens) @classmethod def _from_poly(cls, rep, opt): """Construct a polynomial from a polynomial. """ if cls != rep.__class__: rep = cls.new(rep.rep, *rep.gens) gens = opt.gens field = opt.field domain = opt.domain if gens and rep.gens != gens: if set(rep.gens) != set(gens): return cls._from_expr(rep.as_expr(), opt) else: rep = rep.reorder(*gens) if 'domain' in opt and domain: rep = rep.set_domain(domain) elif field is True: rep = rep.to_field() return rep @classmethod def _from_expr(cls, rep, opt): """Construct a polynomial from an expression. """ rep, opt = _dict_from_expr(rep, opt) return cls._from_dict(rep, opt) @classmethod def _from_domain_element(cls, rep, opt): gens = opt.gens domain = opt.domain level = len(gens) - 1 rep = [domain.convert(rep)] return cls.new(DMP.from_list(rep, level, domain), *gens) def __hash__(self): return super().__hash__() @property def free_symbols(self): """ Free symbols of a polynomial expression. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 1).free_symbols {x} >>> Poly(x**2 + y).free_symbols {x, y} >>> Poly(x**2 + y, x).free_symbols {x, y} >>> Poly(x**2 + y, x, z).free_symbols {x, y} """ symbols = set() gens = self.gens for i in range(len(gens)): for monom in self.monoms(): if monom[i]: symbols |= gens[i].free_symbols break return symbols | self.free_symbols_in_domain @property def free_symbols_in_domain(self): """ Free symbols of the domain of ``self``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1).free_symbols_in_domain set() >>> Poly(x**2 + y).free_symbols_in_domain set() >>> Poly(x**2 + y, x).free_symbols_in_domain {y} """ domain, symbols = self.rep.dom, set() if domain.is_Composite: for gen in domain.symbols: symbols |= gen.free_symbols elif domain.is_EX: for coeff in self.coeffs(): symbols |= coeff.free_symbols return symbols @property def gen(self): """ Return the principal generator. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).gen x """ return self.gens[0] @property def domain(self): """Get the ground domain of a :py:class:`~.Poly` Returns ======= :py:class:`~.Domain`: Ground domain of the :py:class:`~.Poly`. Examples ======== >>> from sympy import Poly, Symbol >>> x = Symbol('x') >>> p = Poly(x**2 + x) >>> p Poly(x**2 + x, x, domain='ZZ') >>> p.domain ZZ """ return self.get_domain() @property def zero(self): """Return zero polynomial with ``self``'s properties. """ return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens) @property def one(self): """Return one polynomial with ``self``'s properties. """ return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens) @property def unit(self): """Return unit polynomial with ``self``'s properties. """ return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens) def unify(f, g): """ Make ``f`` and ``g`` belong to the same domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f, g = Poly(x/2 + 1), Poly(2*x + 1) >>> f Poly(1/2*x + 1, x, domain='QQ') >>> g Poly(2*x + 1, x, domain='ZZ') >>> F, G = f.unify(g) >>> F Poly(1/2*x + 1, x, domain='QQ') >>> G Poly(2*x + 1, x, domain='QQ') """ _, per, F, G = f._unify(g) return per(F), per(G) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if isinstance(f.rep, DMP) and isinstance(g.rep, DMP): gens = _unify_gens(f.gens, g.gens) dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1 if f.gens != gens: f_monoms, f_coeffs = _dict_reorder( f.rep.to_dict(), f.gens, gens) if f.rep.dom != dom: f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs] F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev) else: F = f.rep.convert(dom) if g.gens != gens: g_monoms, g_coeffs = _dict_reorder( g.rep.to_dict(), g.gens, gens) if g.rep.dom != dom: g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs] G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev) else: G = g.rep.convert(dom) else: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) cls = f.__class__ def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G def per(f, rep, gens=None, remove=None): """ Create a Poly out of the given representation. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x, y >>> from sympy.polys.polyclasses import DMP >>> a = Poly(x**2 + 1) >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y]) Poly(y + 1, y, domain='ZZ') """ if gens is None: gens = f.gens if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return f.rep.dom.to_sympy(rep) return f.__class__.new(rep, *gens) def set_domain(f, domain): """Set the ground domain of ``f``. """ opt = options.build_options(f.gens, {'domain': domain}) return f.per(f.rep.convert(opt.domain)) def get_domain(f): """Get the ground domain of ``f``. """ return f.rep.dom def set_modulus(f, modulus): """ Set the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2) Poly(x**2 + 1, x, modulus=2) """ modulus = options.Modulus.preprocess(modulus) return f.set_domain(FF(modulus)) def get_modulus(f): """ Get the modulus of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, modulus=2).get_modulus() 2 """ domain = f.get_domain() if domain.is_FiniteField: return Integer(domain.characteristic()) else: raise PolynomialError("not a polynomial over a Galois field") def _eval_subs(f, old, new): """Internal implementation of :func:`subs`. """ if old in f.gens: if new.is_number: return f.eval(old, new) else: try: return f.replace(old, new) except PolynomialError: pass return f.as_expr().subs(old, new) def exclude(f): """ Remove unnecessary generators from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import a, b, c, d, x >>> Poly(a + x, a, b, c, d, x).exclude() Poly(a + x, a, x, domain='ZZ') """ J, new = f.rep.exclude() gens = [] for j in range(len(f.gens)): if j not in J: gens.append(f.gens[j]) return f.per(new, gens=gens) def replace(f, x, y=None, **_ignore): # XXX this does not match Basic's signature """ Replace ``x`` with ``y`` in generators list. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 1, x).replace(x, y) Poly(y**2 + 1, y, domain='ZZ') """ if y is None: if f.is_univariate: x, y = f.gen, x else: raise PolynomialError( "syntax supported only in univariate case") if x == y or x not in f.gens: return f if x in f.gens and y not in f.gens: dom = f.get_domain() if not dom.is_Composite or y not in dom.symbols: gens = list(f.gens) gens[gens.index(x)] = y return f.per(f.rep, gens=gens) raise PolynomialError("Cannot replace %s with %s in %s" % (x, y, f)) def match(f, *args, **kwargs): """Match expression from Poly. See Basic.match()""" return f.as_expr().match(*args, **kwargs) def reorder(f, *gens, **args): """ Efficiently apply new order of generators. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y**2, x, y).reorder(y, x) Poly(y**2*x + x**2, y, x, domain='ZZ') """ opt = options.Options((), args) if not gens: gens = _sort_gens(f.gens, opt=opt) elif set(f.gens) != set(gens): raise PolynomialError( "generators list can differ only up to order of elements") rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens)))) return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens) def ltrim(f, gen): """ Remove dummy generators from ``f`` that are to the left of specified ``gen`` in the generators as ordered. When ``gen`` is an integer, it refers to the generator located at that position within the tuple of generators of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y) Poly(y**2 + y*z**2, y, z, domain='ZZ') >>> Poly(z, x, y, z).ltrim(-1) Poly(z, z, domain='ZZ') """ rep = f.as_dict(native=True) j = f._gen_to_level(gen) terms = {} for monom, coeff in rep.items(): if any(monom[:j]): # some generator is used in the portion to be trimmed raise PolynomialError("Cannot left trim %s" % f) terms[monom[j:]] = coeff gens = f.gens[j:] return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens) def has_only_gens(f, *gens): """ Return ``True`` if ``Poly(f, *gens)`` retains ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y) True >>> Poly(x*y + z, x, y, z).has_only_gens(x, y) False """ indices = set() for gen in gens: try: index = f.gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: indices.add(index) for monom in f.monoms(): for i, elt in enumerate(monom): if i not in indices and elt: return False return True def to_ring(f): """ Make the ground domain a ring. Examples ======== >>> from sympy import Poly, QQ >>> from sympy.abc import x >>> Poly(x**2 + 1, domain=QQ).to_ring() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'to_ring'): result = f.rep.to_ring() else: # pragma: no cover raise OperationNotSupported(f, 'to_ring') return f.per(result) def to_field(f): """ Make the ground domain a field. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(x**2 + 1, x, domain=ZZ).to_field() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_field'): result = f.rep.to_field() else: # pragma: no cover raise OperationNotSupported(f, 'to_field') return f.per(result) def to_exact(f): """ Make the ground domain exact. Examples ======== >>> from sympy import Poly, RR >>> from sympy.abc import x >>> Poly(x**2 + 1.0, x, domain=RR).to_exact() Poly(x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'to_exact'): result = f.rep.to_exact() else: # pragma: no cover raise OperationNotSupported(f, 'to_exact') return f.per(result) def retract(f, field=None): """ Recalculate the ground domain of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x, domain='QQ[y]') >>> f Poly(x**2 + 1, x, domain='QQ[y]') >>> f.retract() Poly(x**2 + 1, x, domain='ZZ') >>> f.retract(field=True) Poly(x**2 + 1, x, domain='QQ') """ dom, rep = construct_domain(f.as_dict(zero=True), field=field, composite=f.domain.is_Composite or None) return f.from_dict(rep, f.gens, domain=dom) def slice(f, x, m, n=None): """Take a continuous subsequence of terms of ``f``. """ if n is None: j, m, n = 0, x, m else: j = f._gen_to_level(x) m, n = int(m), int(n) if hasattr(f.rep, 'slice'): result = f.rep.slice(m, n, j) else: # pragma: no cover raise OperationNotSupported(f, 'slice') return f.per(result) def coeffs(f, order=None): """ Returns all non-zero coefficients from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x + 3, x).coeffs() [1, 2, 3] See Also ======== all_coeffs coeff_monomial nth """ return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)] def monoms(f, order=None): """ Returns all non-zero monomials from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms() [(2, 0), (1, 2), (1, 1), (0, 1)] See Also ======== all_monoms """ return f.rep.monoms(order=order) def terms(f, order=None): """ Returns all non-zero terms from ``f`` in lex order. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms() [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)] See Also ======== all_terms """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)] def all_coeffs(f): """ Returns all coefficients from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_coeffs() [1, 0, 2, -1] """ return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()] def all_monoms(f): """ Returns all monomials from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_monoms() [(3,), (2,), (1,), (0,)] See Also ======== all_terms """ return f.rep.all_monoms() def all_terms(f): """ Returns all terms from a univariate polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x - 1, x).all_terms() [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)] """ return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()] def termwise(f, func, *gens, **args): """ Apply a function to all terms of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> def func(k, coeff): ... k = k[0] ... return coeff//10**(2-k) >>> Poly(x**2 + 20*x + 400).termwise(func) Poly(x**2 + 2*x + 4, x, domain='ZZ') """ terms = {} for monom, coeff in f.terms(): result = func(monom, coeff) if isinstance(result, tuple): monom, coeff = result else: coeff = result if coeff: if monom not in terms: terms[monom] = coeff else: raise PolynomialError( "%s monomial was generated twice" % monom) return f.from_dict(terms, *(gens or f.gens), **args) def length(f): """ Returns the number of non-zero terms in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x - 1).length() 3 """ return len(f.as_dict()) def as_dict(f, native=False, zero=False): """ Switch to a ``dict`` representation. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict() {(0, 1): -1, (1, 2): 2, (2, 0): 1} """ if native: return f.rep.to_dict(zero=zero) else: return f.rep.to_sympy_dict(zero=zero) def as_list(f, native=False): """Switch to a ``list`` representation. """ if native: return f.rep.to_list() else: return f.rep.to_sympy_list() def as_expr(f, *gens): """ Convert a Poly instance to an Expr instance. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2 + 2*x*y**2 - y, x, y) >>> f.as_expr() x**2 + 2*x*y**2 - y >>> f.as_expr({x: 5}) 10*y**2 - y + 25 >>> f.as_expr(5, 6) 379 """ if not gens: return f.expr if len(gens) == 1 and isinstance(gens[0], dict): mapping = gens[0] gens = list(f.gens) for gen, value in mapping.items(): try: index = gens.index(gen) except ValueError: raise GeneratorsError( "%s doesn't have %s as generator" % (f, gen)) else: gens[index] = value return basic_from_dict(f.rep.to_sympy_dict(), *gens) def as_poly(self, *gens, **args): """Converts ``self`` to a polynomial or returns ``None``. >>> from sympy import sin >>> from sympy.abc import x, y >>> print((x**2 + x*y).as_poly()) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + x*y).as_poly(x, y)) Poly(x**2 + x*y, x, y, domain='ZZ') >>> print((x**2 + sin(y)).as_poly(x, y)) None """ try: poly = Poly(self, *gens, **args) if not poly.is_Poly: return None else: return poly except PolynomialError: return None def lift(f): """ Convert algebraic coefficients to rationals. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**2 + I*x + 1, x, extension=I).lift() Poly(x**4 + 3*x**2 + 1, x, domain='QQ') """ if hasattr(f.rep, 'lift'): result = f.rep.lift() else: # pragma: no cover raise OperationNotSupported(f, 'lift') return f.per(result) def deflate(f): """ Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate() ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'deflate'): J, result = f.rep.deflate() else: # pragma: no cover raise OperationNotSupported(f, 'deflate') return J, f.per(result) def inject(f, front=False): """ Inject ground domain generators into ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x) >>> f.inject() Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ') >>> f.inject(front=True) Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ') """ dom = f.rep.dom if dom.is_Numerical: return f elif not dom.is_Poly: raise DomainError("Cannot inject generators over %s" % dom) if hasattr(f.rep, 'inject'): result = f.rep.inject(front=front) else: # pragma: no cover raise OperationNotSupported(f, 'inject') if front: gens = dom.symbols + f.gens else: gens = f.gens + dom.symbols return f.new(result, *gens) def eject(f, *gens): """ Eject selected generators into the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) >>> f.eject(x) Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') >>> f.eject(y) Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') """ dom = f.rep.dom if not dom.is_Numerical: raise DomainError("Cannot eject generators over %s" % dom) k = len(gens) if f.gens[:k] == gens: _gens, front = f.gens[k:], True elif f.gens[-k:] == gens: _gens, front = f.gens[:-k], False else: raise NotImplementedError( "can only eject front or back generators") dom = dom.inject(*gens) if hasattr(f.rep, 'eject'): result = f.rep.eject(dom, front=front) else: # pragma: no cover raise OperationNotSupported(f, 'eject') return f.new(result, *_gens) def terms_gcd(f): """ Remove GCD of terms from the polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd() ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ')) """ if hasattr(f.rep, 'terms_gcd'): J, result = f.rep.terms_gcd() else: # pragma: no cover raise OperationNotSupported(f, 'terms_gcd') return J, f.per(result) def add_ground(f, coeff): """ Add an element of the ground domain to ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).add_ground(2) Poly(x + 3, x, domain='ZZ') """ if hasattr(f.rep, 'add_ground'): result = f.rep.add_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'add_ground') return f.per(result) def sub_ground(f, coeff): """ Subtract an element of the ground domain from ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).sub_ground(2) Poly(x - 1, x, domain='ZZ') """ if hasattr(f.rep, 'sub_ground'): result = f.rep.sub_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'sub_ground') return f.per(result) def mul_ground(f, coeff): """ Multiply ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 1).mul_ground(2) Poly(2*x + 2, x, domain='ZZ') """ if hasattr(f.rep, 'mul_ground'): result = f.rep.mul_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'mul_ground') return f.per(result) def quo_ground(f, coeff): """ Quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).quo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).quo_ground(2) Poly(x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'quo_ground'): result = f.rep.quo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'quo_ground') return f.per(result) def exquo_ground(f, coeff): """ Exact quotient of ``f`` by a an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x + 4).exquo_ground(2) Poly(x + 2, x, domain='ZZ') >>> Poly(2*x + 3).exquo_ground(2) Traceback (most recent call last): ... ExactQuotientFailed: 2 does not divide 3 in ZZ """ if hasattr(f.rep, 'exquo_ground'): result = f.rep.exquo_ground(coeff) else: # pragma: no cover raise OperationNotSupported(f, 'exquo_ground') return f.per(result) def abs(f): """ Make all coefficients in ``f`` positive. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).abs() Poly(x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'abs'): result = f.rep.abs() else: # pragma: no cover raise OperationNotSupported(f, 'abs') return f.per(result) def neg(f): """ Negate all coefficients in ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).neg() Poly(-x**2 + 1, x, domain='ZZ') >>> -Poly(x**2 - 1, x) Poly(-x**2 + 1, x, domain='ZZ') """ if hasattr(f.rep, 'neg'): result = f.rep.neg() else: # pragma: no cover raise OperationNotSupported(f, 'neg') return f.per(result) def add(f, g): """ Add two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).add(Poly(x - 2, x)) Poly(x**2 + x - 1, x, domain='ZZ') >>> Poly(x**2 + 1, x) + Poly(x - 2, x) Poly(x**2 + x - 1, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.add_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'add'): result = F.add(G) else: # pragma: no cover raise OperationNotSupported(f, 'add') return per(result) def sub(f, g): """ Subtract two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x)) Poly(x**2 - x + 3, x, domain='ZZ') >>> Poly(x**2 + 1, x) - Poly(x - 2, x) Poly(x**2 - x + 3, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.sub_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'sub'): result = F.sub(G) else: # pragma: no cover raise OperationNotSupported(f, 'sub') return per(result) def mul(f, g): """ Multiply two polynomials ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x)) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') >>> Poly(x**2 + 1, x)*Poly(x - 2, x) Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ') """ g = sympify(g) if not g.is_Poly: return f.mul_ground(g) _, per, F, G = f._unify(g) if hasattr(f.rep, 'mul'): result = F.mul(G) else: # pragma: no cover raise OperationNotSupported(f, 'mul') return per(result) def sqr(f): """ Square a polynomial ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).sqr() Poly(x**2 - 4*x + 4, x, domain='ZZ') >>> Poly(x - 2, x)**2 Poly(x**2 - 4*x + 4, x, domain='ZZ') """ if hasattr(f.rep, 'sqr'): result = f.rep.sqr() else: # pragma: no cover raise OperationNotSupported(f, 'sqr') return f.per(result) def pow(f, n): """ Raise ``f`` to a non-negative power ``n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x - 2, x).pow(3) Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') >>> Poly(x - 2, x)**3 Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ') """ n = int(n) if hasattr(f.rep, 'pow'): result = f.rep.pow(n) else: # pragma: no cover raise OperationNotSupported(f, 'pow') return f.per(result) def pdiv(f, g): """ Polynomial pseudo-division of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x)) (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pdiv'): q, r = F.pdiv(G) else: # pragma: no cover raise OperationNotSupported(f, 'pdiv') return per(q), per(r) def prem(f, g): """ Polynomial pseudo-remainder of ``f`` by ``g``. Caveat: The function prem(f, g, x) can be safely used to compute in Z[x] _only_ subresultant polynomial remainder sequences (prs's). To safely compute Euclidean and Sturmian prs's in Z[x] employ anyone of the corresponding functions found in the module sympy.polys.subresultants_qq_zz. The functions in the module with suffix _pg compute prs's in Z[x] employing rem(f, g, x), whereas the functions with suffix _amv compute prs's in Z[x] employing rem_z(f, g, x). The function rem_z(f, g, x) differs from prem(f, g, x) in that to compute the remainder polynomials in Z[x] it premultiplies the divident times the absolute value of the leading coefficient of the divisor raised to the power degree(f, x) - degree(g, x) + 1. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x)) Poly(20, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'prem'): result = F.prem(G) else: # pragma: no cover raise OperationNotSupported(f, 'prem') return per(result) def pquo(f, g): """ Polynomial pseudo-quotient of ``f`` by ``g``. See the Caveat note in the function prem(f, g). Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x)) Poly(2*x + 4, x, domain='ZZ') >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pquo'): result = F.pquo(G) else: # pragma: no cover raise OperationNotSupported(f, 'pquo') return per(result) def pexquo(f, g): """ Polynomial exact pseudo-quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x)) Poly(2*x + 2, x, domain='ZZ') >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'pexquo'): try: result = F.pexquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'pexquo') return per(result) def div(f, g, auto=True): """ Polynomial division with remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x)) (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ')) >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False) (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'div'): q, r = F.div(G) else: # pragma: no cover raise OperationNotSupported(f, 'div') if retract: try: Q, R = q.to_ring(), r.to_ring() except CoercionFailed: pass else: q, r = Q, R return per(q), per(r) def rem(f, g, auto=True): """ Computes the polynomial remainder of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x)) Poly(5, x, domain='ZZ') >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False) Poly(x**2 + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'rem'): r = F.rem(G) else: # pragma: no cover raise OperationNotSupported(f, 'rem') if retract: try: r = r.to_ring() except CoercionFailed: pass return per(r) def quo(f, g, auto=True): """ Computes polynomial quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x)) Poly(1/2*x + 1, x, domain='QQ') >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'quo'): q = F.quo(G) else: # pragma: no cover raise OperationNotSupported(f, 'quo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def exquo(f, g, auto=True): """ Computes polynomial exact quotient of ``f`` by ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x)) Poly(x + 1, x, domain='ZZ') >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x)) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ dom, per, F, G = f._unify(g) retract = False if auto and dom.is_Ring and not dom.is_Field: F, G = F.to_field(), G.to_field() retract = True if hasattr(f.rep, 'exquo'): try: q = F.exquo(G) except ExactQuotientFailed as exc: raise exc.new(f.as_expr(), g.as_expr()) else: # pragma: no cover raise OperationNotSupported(f, 'exquo') if retract: try: q = q.to_ring() except CoercionFailed: pass return per(q) def _gen_to_level(f, gen): """Returns level associated with the given generator. """ if isinstance(gen, int): length = len(f.gens) if -length <= gen < length: if gen < 0: return length + gen else: return gen else: raise PolynomialError("-%s <= gen < %s expected, got %s" % (length, length, gen)) else: try: return f.gens.index(sympify(gen)) except ValueError: raise PolynomialError( "a valid generator expected, got %s" % gen) def degree(f, gen=0): """ Returns degree of ``f`` in ``x_j``. The degree of 0 is negative infinity. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree() 2 >>> Poly(x**2 + y*x + y, x, y).degree(y) 1 >>> Poly(0, x).degree() -oo """ j = f._gen_to_level(gen) if hasattr(f.rep, 'degree'): return f.rep.degree(j) else: # pragma: no cover raise OperationNotSupported(f, 'degree') def degree_list(f): """ Returns a list of degrees of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).degree_list() (2, 1) """ if hasattr(f.rep, 'degree_list'): return f.rep.degree_list() else: # pragma: no cover raise OperationNotSupported(f, 'degree_list') def total_degree(f): """ Returns the total degree of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + y*x + 1, x, y).total_degree() 2 >>> Poly(x + y**5, x, y).total_degree() 5 """ if hasattr(f.rep, 'total_degree'): return f.rep.total_degree() else: # pragma: no cover raise OperationNotSupported(f, 'total_degree') def homogenize(f, s): """ Returns the homogeneous polynomial of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3) >>> f.homogenize(z) Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ') """ if not isinstance(s, Symbol): raise TypeError("``Symbol`` expected, got %s" % type(s)) if s in f.gens: i = f.gens.index(s) gens = f.gens else: i = len(f.gens) gens = f.gens + (s,) if hasattr(f.rep, 'homogenize'): return f.per(f.rep.homogenize(i), gens=gens) raise OperationNotSupported(f, 'homogeneous_order') def homogeneous_order(f): """ Returns the homogeneous order of ``f``. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. This degree is the homogeneous order of ``f``. If you only want to check if a polynomial is homogeneous, then use :func:`Poly.is_homogeneous`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4) >>> f.homogeneous_order() 5 """ if hasattr(f.rep, 'homogeneous_order'): return f.rep.homogeneous_order() else: # pragma: no cover raise OperationNotSupported(f, 'homogeneous_order') def LC(f, order=None): """ Returns the leading coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC() 4 """ if order is not None: return f.coeffs(order)[0] if hasattr(f.rep, 'LC'): result = f.rep.LC() else: # pragma: no cover raise OperationNotSupported(f, 'LC') return f.rep.dom.to_sympy(result) def TC(f): """ Returns the trailing coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).TC() 0 """ if hasattr(f.rep, 'TC'): result = f.rep.TC() else: # pragma: no cover raise OperationNotSupported(f, 'TC') return f.rep.dom.to_sympy(result) def EC(f, order=None): """ Returns the last non-zero coefficient of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 + 2*x**2 + 3*x, x).EC() 3 """ if hasattr(f.rep, 'coeffs'): return f.coeffs(order)[-1] else: # pragma: no cover raise OperationNotSupported(f, 'EC') def coeff_monomial(f, monom): """ Returns the coefficient of ``monom`` in ``f`` if there, else None. Examples ======== >>> from sympy import Poly, exp >>> from sympy.abc import x, y >>> p = Poly(24*x*y*exp(8) + 23*x, x, y) >>> p.coeff_monomial(x) 23 >>> p.coeff_monomial(y) 0 >>> p.coeff_monomial(x*y) 24*exp(8) Note that ``Expr.coeff()`` behaves differently, collecting terms if possible; the Poly must be converted to an Expr to use that method, however: >>> p.as_expr().coeff(x) 24*y*exp(8) + 23 >>> p.as_expr().coeff(y) 24*x*exp(8) >>> p.as_expr().coeff(x*y) 24*exp(8) See Also ======== nth: more efficient query using exponents of the monomial's generators """ return f.nth(*Monomial(monom, f.gens).exponents) def nth(f, *N): """ Returns the ``n``-th coefficient of ``f`` where ``N`` are the exponents of the generators in the term of interest. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x, y >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2) 2 >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2) 2 >>> Poly(4*sqrt(x)*y) Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ') >>> _.nth(1, 1) 4 See Also ======== coeff_monomial """ if hasattr(f.rep, 'nth'): if len(N) != len(f.gens): raise ValueError('exponent of each generator must be specified') result = f.rep.nth(*list(map(int, N))) else: # pragma: no cover raise OperationNotSupported(f, 'nth') return f.rep.dom.to_sympy(result) def coeff(f, x, n=1, right=False): # the semantics of coeff_monomial and Expr.coeff are different; # if someone is working with a Poly, they should be aware of the # differences and chose the method best suited for the query. # Alternatively, a pure-polys method could be written here but # at this time the ``right`` keyword would be ignored because Poly # doesn't work with non-commutatives. raise NotImplementedError( 'Either convert to Expr with `as_expr` method ' 'to use Expr\'s coeff method or else use the ' '`coeff_monomial` method of Polys.') def LM(f, order=None): """ Returns the leading monomial of ``f``. The Leading monomial signifies the monomial having the highest power of the principal generator in the expression f. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM() x**2*y**0 """ return Monomial(f.monoms(order)[0], f.gens) def EM(f, order=None): """ Returns the last non-zero monomial of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM() x**0*y**1 """ return Monomial(f.monoms(order)[-1], f.gens) def LT(f, order=None): """ Returns the leading term of ``f``. The Leading term signifies the term having the highest power of the principal generator in the expression f along with its coefficient. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT() (x**2*y**0, 4) """ monom, coeff = f.terms(order)[0] return Monomial(monom, f.gens), coeff def ET(f, order=None): """ Returns the last non-zero term of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET() (x**0*y**1, 3) """ monom, coeff = f.terms(order)[-1] return Monomial(monom, f.gens), coeff def max_norm(f): """ Returns maximum norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).max_norm() 3 """ if hasattr(f.rep, 'max_norm'): result = f.rep.max_norm() else: # pragma: no cover raise OperationNotSupported(f, 'max_norm') return f.rep.dom.to_sympy(result) def l1_norm(f): """ Returns l1 norm of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(-x**2 + 2*x - 3, x).l1_norm() 6 """ if hasattr(f.rep, 'l1_norm'): result = f.rep.l1_norm() else: # pragma: no cover raise OperationNotSupported(f, 'l1_norm') return f.rep.dom.to_sympy(result) def clear_denoms(self, convert=False): """ Clear denominators, but keep the ground domain. Examples ======== >>> from sympy import Poly, S, QQ >>> from sympy.abc import x >>> f = Poly(x/2 + S(1)/3, x, domain=QQ) >>> f.clear_denoms() (6, Poly(3*x + 2, x, domain='QQ')) >>> f.clear_denoms(convert=True) (6, Poly(3*x + 2, x, domain='ZZ')) """ f = self if not f.rep.dom.is_Field: return S.One, f dom = f.get_domain() if dom.has_assoc_Ring: dom = f.rep.dom.get_ring() if hasattr(f.rep, 'clear_denoms'): coeff, result = f.rep.clear_denoms() else: # pragma: no cover raise OperationNotSupported(f, 'clear_denoms') coeff, f = dom.to_sympy(coeff), f.per(result) if not convert or not dom.has_assoc_Ring: return coeff, f else: return coeff, f.to_ring() def rat_clear_denoms(self, g): """ Clear denominators in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = Poly(x**2/y + 1, x) >>> g = Poly(x**3 + y, x) >>> p, q = f.rat_clear_denoms(g) >>> p Poly(x**2 + y, x, domain='ZZ[y]') >>> q Poly(y*x**3 + y**2, x, domain='ZZ[y]') """ f = self dom, per, f, g = f._unify(g) f = per(f) g = per(g) if not (dom.is_Field and dom.has_assoc_Ring): return f, g a, f = f.clear_denoms(convert=True) b, g = g.clear_denoms(convert=True) f = f.mul_ground(b) g = g.mul_ground(a) return f, g def integrate(self, *specs, **args): """ Computes indefinite integral of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).integrate() Poly(1/3*x**3 + x**2 + x, x, domain='QQ') >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0)) Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ') """ f = self if args.get('auto', True) and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'integrate'): if not specs: return f.per(f.rep.integrate(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.integrate(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'integrate') def diff(f, *specs, **kwargs): """ Computes partial derivative of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + 2*x + 1, x).diff() Poly(2*x + 2, x, domain='ZZ') >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1)) Poly(2*x*y, x, y, domain='ZZ') """ if not kwargs.get('evaluate', True): return Derivative(f, *specs, **kwargs) if hasattr(f.rep, 'diff'): if not specs: return f.per(f.rep.diff(m=1)) rep = f.rep for spec in specs: if type(spec) is tuple: gen, m = spec else: gen, m = spec, 1 rep = rep.diff(int(m), f._gen_to_level(gen)) return f.per(rep) else: # pragma: no cover raise OperationNotSupported(f, 'diff') _eval_derivative = diff def eval(self, x, a=None, auto=True): """ Evaluate ``f`` at ``a`` in the given variable. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> Poly(x**2 + 2*x + 3, x).eval(2) 11 >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2) Poly(5*y + 8, y, domain='ZZ') >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f.eval({x: 2}) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f.eval({x: 2, y: 5}) Poly(2*z + 31, z, domain='ZZ') >>> f.eval({x: 2, y: 5, z: 7}) 45 >>> f.eval((2, 5)) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') """ f = self if a is None: if isinstance(x, dict): mapping = x for gen, value in mapping.items(): f = f.eval(gen, value) return f elif isinstance(x, (tuple, list)): values = x if len(values) > len(f.gens): raise ValueError("too many values provided") for gen, value in zip(f.gens, values): f = f.eval(gen, value) return f else: j, a = 0, x else: j = f._gen_to_level(x) if not hasattr(f.rep, 'eval'): # pragma: no cover raise OperationNotSupported(f, 'eval') try: result = f.rep.eval(a, j) except CoercionFailed: if not auto: raise DomainError("Cannot evaluate at %s in %s" % (a, f.rep.dom)) else: a_domain, [a] = construct_domain([a]) new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens) f = f.set_domain(new_domain) a = new_domain.convert(a, a_domain) result = f.rep.eval(a, j) return f.per(result, remove=j) def __call__(f, *values): """ Evaluate ``f`` at the give values. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y, z >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z) >>> f(2) Poly(5*y + 2*z + 6, y, z, domain='ZZ') >>> f(2, 5) Poly(2*z + 31, z, domain='ZZ') >>> f(2, 5, 7) 45 """ return f.eval(values) def half_gcdex(f, g, auto=True): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).half_gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'half_gcdex'): s, h = F.half_gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'half_gcdex') return per(s), per(h) def gcdex(f, g, auto=True): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15 >>> g = x**3 + x**2 - 4*x - 4 >>> Poly(f).gcdex(Poly(g)) (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'), Poly(x + 1, x, domain='QQ')) """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'gcdex'): s, t, h = F.gcdex(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcdex') return per(s), per(t), per(h) def invert(f, g, auto=True): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x)) Poly(-4/3, x, domain='QQ') >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x)) Traceback (most recent call last): ... NotInvertible: zero divisor """ dom, per, F, G = f._unify(g) if auto and dom.is_Ring: F, G = F.to_field(), G.to_field() if hasattr(f.rep, 'invert'): result = F.invert(G) else: # pragma: no cover raise OperationNotSupported(f, 'invert') return per(result) def revert(f, n): """ Compute ``f**(-1)`` mod ``x**n``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(1, x).revert(2) Poly(1, x, domain='ZZ') >>> Poly(1 + x, x).revert(1) Poly(1, x, domain='ZZ') >>> Poly(x**2 - 2, x).revert(2) Traceback (most recent call last): ... NotReversible: only units are reversible in a ring >>> Poly(1/x, x).revert(1) Traceback (most recent call last): ... PolynomialError: 1/x contains an element of the generators set """ if hasattr(f.rep, 'revert'): result = f.rep.revert(int(n)) else: # pragma: no cover raise OperationNotSupported(f, 'revert') return f.per(result) def subresultants(f, g): """ Computes the subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x)) [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')] """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'subresultants'): result = F.subresultants(G) else: # pragma: no cover raise OperationNotSupported(f, 'subresultants') return list(map(per, result)) def resultant(f, g, includePRS=False): """ Computes the resultant of ``f`` and ``g`` via PRS. If includePRS=True, it includes the subresultant PRS in the result. Because the PRS is used to calculate the resultant, this is more efficient than calling :func:`subresultants` separately. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**2 + 1, x) >>> f.resultant(Poly(x**2 - 1, x)) 4 >>> f.resultant(Poly(x**2 - 1, x), includePRS=True) (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'), Poly(-2, x, domain='ZZ')]) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'resultant'): if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) else: # pragma: no cover raise OperationNotSupported(f, 'resultant') if includePRS: return (per(result, remove=0), list(map(per, R))) return per(result, remove=0) def discriminant(f): """ Computes the discriminant of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + 2*x + 3, x).discriminant() -8 """ if hasattr(f.rep, 'discriminant'): result = f.rep.discriminant() else: # pragma: no cover raise OperationNotSupported(f, 'discriminant') return f.per(result, remove=0) def dispersionset(f, g=None): r"""Compute the *dispersion set* of two polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as: .. math:: \operatorname{J}(f, g) & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ & = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\} For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersion References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersionset return dispersionset(f, g) def dispersion(f, g=None): r"""Compute the *dispersion* of polynomials. For two polynomials `f(x)` and `g(x)` with `\deg f > 0` and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as: .. math:: \operatorname{dis}(f, g) & := \max\{ J(f,g) \cup \{0\} \} \\ & = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \} and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`. Examples ======== >>> from sympy import poly >>> from sympy.polys.dispersion import dispersion, dispersionset >>> from sympy.abc import x Dispersion set and dispersion of a simple polynomial: >>> fp = poly((x - 3)*(x + 3), x) >>> sorted(dispersionset(fp)) [0, 6] >>> dispersion(fp) 6 Note that the definition of the dispersion is not symmetric: >>> fp = poly(x**4 - 3*x**2 + 1, x) >>> gp = fp.shift(-3) >>> sorted(dispersionset(fp, gp)) [2, 3, 4] >>> dispersion(fp, gp) 4 >>> sorted(dispersionset(gp, fp)) [] >>> dispersion(gp, fp) -oo Computing the dispersion also works over field extensions: >>> from sympy import sqrt >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') >>> sorted(dispersionset(fp, gp)) [2] >>> sorted(dispersionset(gp, fp)) [1, 4] We can even perform the computations for polynomials having symbolic coefficients: >>> from sympy.abc import a >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) >>> sorted(dispersionset(fp)) [0, 1] See Also ======== dispersionset References ========== 1. [ManWright94]_ 2. [Koepf98]_ 3. [Abramov71]_ 4. [Man93]_ """ from sympy.polys.dispersion import dispersion return dispersion(f, g) def cofactors(f, g): """ Returns the GCD of ``f`` and ``g`` and their cofactors. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x)) (Poly(x - 1, x, domain='ZZ'), Poly(x + 1, x, domain='ZZ'), Poly(x - 2, x, domain='ZZ')) """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'cofactors'): h, cff, cfg = F.cofactors(G) else: # pragma: no cover raise OperationNotSupported(f, 'cofactors') return per(h), per(cff), per(cfg) def gcd(f, g): """ Returns the polynomial GCD of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x)) Poly(x - 1, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'gcd'): result = F.gcd(G) else: # pragma: no cover raise OperationNotSupported(f, 'gcd') return per(result) def lcm(f, g): """ Returns polynomial LCM of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x)) Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'lcm'): result = F.lcm(G) else: # pragma: no cover raise OperationNotSupported(f, 'lcm') return per(result) def trunc(f, p): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3) Poly(-x**3 - x + 1, x, domain='ZZ') """ p = f.rep.dom.convert(p) if hasattr(f.rep, 'trunc'): result = f.rep.trunc(p) else: # pragma: no cover raise OperationNotSupported(f, 'trunc') return f.per(result) def monic(self, auto=True): """ Divides all coefficients by ``LC(f)``. Examples ======== >>> from sympy import Poly, ZZ >>> from sympy.abc import x >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic() Poly(x**2 + 2*x + 3, x, domain='QQ') >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic() Poly(x**2 + 4/3*x + 2/3, x, domain='QQ') """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'monic'): result = f.rep.monic() else: # pragma: no cover raise OperationNotSupported(f, 'monic') return f.per(result) def content(f): """ Returns the GCD of polynomial coefficients. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(6*x**2 + 8*x + 12, x).content() 2 """ if hasattr(f.rep, 'content'): result = f.rep.content() else: # pragma: no cover raise OperationNotSupported(f, 'content') return f.rep.dom.to_sympy(result) def primitive(f): """ Returns the content and a primitive form of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 8*x + 12, x).primitive() (2, Poly(x**2 + 4*x + 6, x, domain='ZZ')) """ if hasattr(f.rep, 'primitive'): cont, result = f.rep.primitive() else: # pragma: no cover raise OperationNotSupported(f, 'primitive') return f.rep.dom.to_sympy(cont), f.per(result) def compose(f, g): """ Computes the functional composition of ``f`` and ``g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x, x).compose(Poly(x - 1, x)) Poly(x**2 - x, x, domain='ZZ') """ _, per, F, G = f._unify(g) if hasattr(f.rep, 'compose'): result = F.compose(G) else: # pragma: no cover raise OperationNotSupported(f, 'compose') return per(result) def decompose(f): """ Computes a functional decomposition of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose() [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')] """ if hasattr(f.rep, 'decompose'): result = f.rep.decompose() else: # pragma: no cover raise OperationNotSupported(f, 'decompose') return list(map(f.per, result)) def shift(f, a): """ Efficiently compute Taylor shift ``f(x + a)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).shift(2) Poly(x**2 + 2*x + 1, x, domain='ZZ') """ if hasattr(f.rep, 'shift'): result = f.rep.shift(a) else: # pragma: no cover raise OperationNotSupported(f, 'shift') return f.per(result) def transform(f, p, q): """ Efficiently evaluate the functional transformation ``q**n * f(p/q)``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x)) Poly(4, x, domain='ZZ') """ P, Q = p.unify(q) F, P = f.unify(P) F, Q = F.unify(Q) if hasattr(F.rep, 'transform'): result = F.rep.transform(P.rep, Q.rep) else: # pragma: no cover raise OperationNotSupported(F, 'transform') return F.per(result) def sturm(self, auto=True): """ Computes the Sturm sequence of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm() [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'), Poly(3*x**2 - 4*x + 1, x, domain='QQ'), Poly(2/9*x + 25/9, x, domain='QQ'), Poly(-2079/4, x, domain='QQ')] """ f = self if auto and f.rep.dom.is_Ring: f = f.to_field() if hasattr(f.rep, 'sturm'): result = f.rep.sturm() else: # pragma: no cover raise OperationNotSupported(f, 'sturm') return list(map(f.per, result)) def gff_list(f): """ Computes greatest factorial factorization of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**5 + 2*x**4 - x**3 - 2*x**2 >>> Poly(f).gff_list() [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'gff_list'): result = f.rep.gff_list() else: # pragma: no cover raise OperationNotSupported(f, 'gff_list') return [(f.per(g), k) for g, k in result] def norm(f): """ Computes the product, ``Norm(f)``, of the conjugates of a polynomial ``f`` defined over a number field ``K``. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> a, b = sqrt(2), sqrt(3) A polynomial over a quadratic extension. Two conjugates x - a and x + a. >>> f = Poly(x - a, x, extension=a) >>> f.norm() Poly(x**2 - 2, x, domain='QQ') A polynomial over a quartic extension. Four conjugates x - a, x - a, x + a and x + a. >>> f = Poly(x - a, x, extension=(a, b)) >>> f.norm() Poly(x**4 - 4*x**2 + 4, x, domain='QQ') """ if hasattr(f.rep, 'norm'): r = f.rep.norm() else: # pragma: no cover raise OperationNotSupported(f, 'norm') return f.per(r) def sqf_norm(f): """ Computes square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import Poly, sqrt >>> from sympy.abc import x >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm() >>> s 1 >>> f Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>') >>> r Poly(x**4 - 4*x**2 + 16, x, domain='QQ') """ if hasattr(f.rep, 'sqf_norm'): s, g, r = f.rep.sqf_norm() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_norm') return s, f.per(g), f.per(r) def sqf_part(f): """ Computes square-free part of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**3 - 3*x - 2, x).sqf_part() Poly(x**2 - x - 2, x, domain='ZZ') """ if hasattr(f.rep, 'sqf_part'): result = f.rep.sqf_part() else: # pragma: no cover raise OperationNotSupported(f, 'sqf_part') return f.per(result) def sqf_list(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16 >>> Poly(f).sqf_list() (2, [(Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) >>> Poly(f).sqf_list(all=True) (2, [(Poly(1, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 2), (Poly(x + 2, x, domain='ZZ'), 3)]) """ if hasattr(f.rep, 'sqf_list'): coeff, factors = f.rep.sqf_list(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def sqf_list_include(f, all=False): """ Returns a list of square-free factors of ``f``. Examples ======== >>> from sympy import Poly, expand >>> from sympy.abc import x >>> f = expand(2*(x + 1)**3*x**4) >>> f 2*x**7 + 6*x**6 + 6*x**5 + 2*x**4 >>> Poly(f).sqf_list_include() [(Poly(2, x, domain='ZZ'), 1), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] >>> Poly(f).sqf_list_include(all=True) [(Poly(2, x, domain='ZZ'), 1), (Poly(1, x, domain='ZZ'), 2), (Poly(x + 1, x, domain='ZZ'), 3), (Poly(x, x, domain='ZZ'), 4)] """ if hasattr(f.rep, 'sqf_list_include'): factors = f.rep.sqf_list_include(all) else: # pragma: no cover raise OperationNotSupported(f, 'sqf_list_include') return [(f.per(g), k) for g, k in factors] def factor_list(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list() (2, [(Poly(x + y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]) """ if hasattr(f.rep, 'factor_list'): try: coeff, factors = f.rep.factor_list() except DomainError: return S.One, [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list') return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors] def factor_list_include(f): """ Returns a list of irreducible factors of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y >>> Poly(f).factor_list_include() [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1), (Poly(x**2 + 1, x, y, domain='ZZ'), 2)] """ if hasattr(f.rep, 'factor_list_include'): try: factors = f.rep.factor_list_include() except DomainError: return [(f, 1)] else: # pragma: no cover raise OperationNotSupported(f, 'factor_list_include') return [(f.per(g), k) for g, k in factors] def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used. References ========== .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).intervals() [((-2, -1), 1), ((1, 2), 1)] >>> Poly(x**2 - 3, x).intervals(eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = QQ.convert(inf) if sup is not None: sup = QQ.convert(sup) if hasattr(f.rep, 'intervals'): result = f.rep.intervals( all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: # pragma: no cover raise OperationNotSupported(f, 'intervals') if sqf: def _real(interval): s, t = interval return (QQ.to_sympy(s), QQ.to_sympy(t)) if not all: return list(map(_real, result)) def _complex(rectangle): (u, v), (s, t) = rectangle return (QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) else: def _real(interval): (s, t), k = interval return ((QQ.to_sympy(s), QQ.to_sympy(t)), k) if not all: return list(map(_real, result)) def _complex(rectangle): ((u, v), (s, t)), k = rectangle return ((QQ.to_sympy(u) + I*QQ.to_sympy(v), QQ.to_sympy(s) + I*QQ.to_sympy(t)), k) real_part, complex_part = result return list(map(_real, real_part)), list(map(_complex, complex_part)) def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2) (19/11, 26/15) """ if check_sqf and not f.is_sqf: raise PolynomialError("only square-free polynomials supported") s, t = QQ.convert(s), QQ.convert(t) if eps is not None: eps = QQ.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if steps is not None: steps = int(steps) elif eps is None: steps = 1 if hasattr(f.rep, 'refine_root'): S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast) else: # pragma: no cover raise OperationNotSupported(f, 'refine_root') return QQ.to_sympy(S), QQ.to_sympy(T) def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. Examples ======== >>> from sympy import Poly, I >>> from sympy.abc import x >>> Poly(x**4 - 4, x).count_roots(-3, 3) 2 >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I) 1 """ inf_real, sup_real = True, True if inf is not None: inf = sympify(inf) if inf is S.NegativeInfinity: inf = None else: re, im = inf.as_real_imag() if not im: inf = QQ.convert(inf) else: inf, inf_real = list(map(QQ.convert, (re, im))), False if sup is not None: sup = sympify(sup) if sup is S.Infinity: sup = None else: re, im = sup.as_real_imag() if not im: sup = QQ.convert(sup) else: sup, sup_real = list(map(QQ.convert, (re, im))), False if inf_real and sup_real: if hasattr(f.rep, 'count_real_roots'): count = f.rep.count_real_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_real_roots') else: if inf_real and inf is not None: inf = (inf, QQ.zero) if sup_real and sup is not None: sup = (sup, QQ.zero) if hasattr(f.rep, 'count_complex_roots'): count = f.rep.count_complex_roots(inf=inf, sup=sup) else: # pragma: no cover raise OperationNotSupported(f, 'count_complex_roots') return Integer(count) def root(f, index, radicals=True): """ Get an indexed root of a polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4) >>> f.root(0) -1/2 >>> f.root(1) 2 >>> f.root(2) 2 >>> f.root(3) Traceback (most recent call last): ... IndexError: root index out of [-3, 2] range, got 3 >>> Poly(x**5 + x + 1).root(0) CRootOf(x**3 - x**2 + 1, 0) """ return sympy.polys.rootoftools.rootof(f, index, radicals=radicals) def real_roots(f, multiple=True, radicals=True): """ Return a list of real roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).real_roots() [CRootOf(x**3 + x + 1, 0)] """ reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals) if multiple: return reals else: return group(reals, multiple=False) def all_roots(f, multiple=True, radicals=True): """ Return a list of real and complex roots with multiplicities. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots() [-1/2, 2, 2] >>> Poly(x**3 + x + 1).all_roots() [CRootOf(x**3 + x + 1, 0), CRootOf(x**3 + x + 1, 1), CRootOf(x**3 + x + 1, 2)] """ roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals) if multiple: return roots else: return group(roots, multiple=False) def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Parameters ========== n ... the number of digits to calculate maxsteps ... the maximum number of iterations to do If the accuracy `n` cannot be reached in `maxsteps`, it will raise an exception. You need to rerun with higher maxsteps. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 3).nroots(n=15) [-1.73205080756888, 1.73205080756888] >>> Poly(x**2 - 3).nroots(n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ from sympy.functions.elementary.complexes import sign if f.is_multivariate: raise MultivariatePolynomialError( "Cannot compute numerical roots of %s" % f) if f.degree() <= 0: return [] # For integer and rational coefficients, convert them to integers only # (for accuracy). Otherwise just try to convert the coefficients to # mpmath.mpc and raise an exception if the conversion fails. if f.rep.dom is ZZ: coeffs = [int(coeff) for coeff in f.all_coeffs()] elif f.rep.dom is QQ: denoms = [coeff.q for coeff in f.all_coeffs()] fac = ilcm(*denoms) coeffs = [int(coeff*fac) for coeff in f.all_coeffs()] else: coeffs = [coeff.evalf(n=n).as_real_imag() for coeff in f.all_coeffs()] try: coeffs = [mpmath.mpc(*coeff) for coeff in coeffs] except TypeError: raise DomainError("Numerical domain expected, got %s" % \ f.rep.dom) dps = mpmath.mp.dps mpmath.mp.dps = n try: # We need to add extra precision to guard against losing accuracy. # 10 times the degree of the polynomial seems to work well. roots = mpmath.polyroots(coeffs, maxsteps=maxsteps, cleanup=cleanup, error=False, extraprec=f.degree()*10) # Mpmath puts real roots first, then complex ones (as does all_roots) # so we make sure this convention holds here, too. roots = list(map(sympify, sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag))))) except NoConvergence: try: # If roots did not converge try again with more extra precision. roots = mpmath.polyroots(coeffs, maxsteps=maxsteps, cleanup=cleanup, error=False, extraprec=f.degree()*15) roots = list(map(sympify, sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag))))) except NoConvergence: raise NoConvergence( 'convergence to root failed; try n < %s or maxsteps > %s' % ( n, maxsteps)) finally: mpmath.mp.dps = dps return roots def ground_roots(f): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots() {0: 2, 1: 2} """ if f.is_multivariate: raise MultivariatePolynomialError( "Cannot compute ground roots of %s" % f) roots = {} for factor, k in f.factor_list()[1]: if factor.is_linear: a, b = factor.all_coeffs() roots[-b/a] = k return roots def nth_power_roots_poly(f, n): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = Poly(x**4 - x**2 + 1) >>> f.nth_power_roots_poly(2) Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(3) Poly(x**4 + 2*x**2 + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(4) Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ') >>> f.nth_power_roots_poly(12) Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ') """ if f.is_multivariate: raise MultivariatePolynomialError( "must be a univariate polynomial") N = sympify(n) if N.is_Integer and N >= 1: n = int(N) else: raise ValueError("'n' must an integer and n >= 1, got %s" % n) x = f.gen t = Dummy('t') r = f.resultant(f.__class__.from_expr(x**n - t, x, t)) return r.replace(t, x) def cancel(f, g, include=False): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x)) (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True) (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ')) """ dom, per, F, G = f._unify(g) if hasattr(F, 'cancel'): result = F.cancel(G, include=include) else: # pragma: no cover raise OperationNotSupported(f, 'cancel') if not include: if dom.has_assoc_Ring: dom = dom.get_ring() cp, cq, p, q = result cp = dom.to_sympy(cp) cq = dom.to_sympy(cq) return cp/cq, per(p), per(q) else: return tuple(map(per, result)) @property def is_zero(f): """ Returns ``True`` if ``f`` is a zero polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_zero True >>> Poly(1, x).is_zero False """ return f.rep.is_zero @property def is_one(f): """ Returns ``True`` if ``f`` is a unit polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(0, x).is_one False >>> Poly(1, x).is_one True """ return f.rep.is_one @property def is_sqf(f): """ Returns ``True`` if ``f`` is a square-free polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 - 2*x + 1, x).is_sqf False >>> Poly(x**2 - 1, x).is_sqf True """ return f.rep.is_sqf @property def is_monic(f): """ Returns ``True`` if the leading coefficient of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x + 2, x).is_monic True >>> Poly(2*x + 2, x).is_monic False """ return f.rep.is_monic @property def is_primitive(f): """ Returns ``True`` if GCD of the coefficients of ``f`` is one. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(2*x**2 + 6*x + 12, x).is_primitive False >>> Poly(x**2 + 3*x + 6, x).is_primitive True """ return f.rep.is_primitive @property def is_ground(f): """ Returns ``True`` if ``f`` is an element of the ground domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x, x).is_ground False >>> Poly(2, x).is_ground True >>> Poly(y, x).is_ground True """ return f.rep.is_ground @property def is_linear(f): """ Returns ``True`` if ``f`` is linear in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x + y + 2, x, y).is_linear True >>> Poly(x*y + 2, x, y).is_linear False """ return f.rep.is_linear @property def is_quadratic(f): """ Returns ``True`` if ``f`` is quadratic in all its variables. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x*y + 2, x, y).is_quadratic True >>> Poly(x*y**2 + 2, x, y).is_quadratic False """ return f.rep.is_quadratic @property def is_monomial(f): """ Returns ``True`` if ``f`` is zero or has only one term. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(3*x**2, x).is_monomial True >>> Poly(3*x**2 + 1, x).is_monomial False """ return f.rep.is_monomial @property def is_homogeneous(f): """ Returns ``True`` if ``f`` is a homogeneous polynomial. A homogeneous polynomial is a polynomial whose all monomials with non-zero coefficients have the same total degree. If you want not only to check if a polynomial is homogeneous but also compute its homogeneous order, then use :func:`Poly.homogeneous_order`. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x*y, x, y).is_homogeneous True >>> Poly(x**3 + x*y, x, y).is_homogeneous False """ return f.rep.is_homogeneous @property def is_irreducible(f): """ Returns ``True`` if ``f`` has no factors over its domain. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible True >>> Poly(x**2 + 1, x, modulus=2).is_irreducible False """ return f.rep.is_irreducible @property def is_univariate(f): """ Returns ``True`` if ``f`` is a univariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_univariate True >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate False >>> Poly(x*y**2 + x*y + 1, x).is_univariate True >>> Poly(x**2 + x + 1, x, y).is_univariate False """ return len(f.gens) == 1 @property def is_multivariate(f): """ Returns ``True`` if ``f`` is a multivariate polynomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x, y >>> Poly(x**2 + x + 1, x).is_multivariate False >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate True >>> Poly(x*y**2 + x*y + 1, x).is_multivariate False >>> Poly(x**2 + x + 1, x, y).is_multivariate True """ return len(f.gens) != 1 @property def is_cyclotomic(f): """ Returns ``True`` if ``f`` is a cyclotomic polnomial. Examples ======== >>> from sympy import Poly >>> from sympy.abc import x >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 >>> Poly(f).is_cyclotomic False >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 >>> Poly(g).is_cyclotomic True """ return f.rep.is_cyclotomic def __abs__(f): return f.abs() def __neg__(f): return f.neg() @_polifyit def __add__(f, g): return f.add(g) @_polifyit def __radd__(f, g): return g.add(f) @_polifyit def __sub__(f, g): return f.sub(g) @_polifyit def __rsub__(f, g): return g.sub(f) @_polifyit def __mul__(f, g): return f.mul(g) @_polifyit def __rmul__(f, g): return g.mul(f) @_sympifyit('n', NotImplemented) def __pow__(f, n): if n.is_Integer and n >= 0: return f.pow(n) else: return NotImplemented @_polifyit def __divmod__(f, g): return f.div(g) @_polifyit def __rdivmod__(f, g): return g.div(f) @_polifyit def __mod__(f, g): return f.rem(g) @_polifyit def __rmod__(f, g): return g.rem(f) @_polifyit def __floordiv__(f, g): return f.quo(g) @_polifyit def __rfloordiv__(f, g): return g.quo(f) @_sympifyit('g', NotImplemented) def __truediv__(f, g): return f.as_expr()/g.as_expr() @_sympifyit('g', NotImplemented) def __rtruediv__(f, g): return g.as_expr()/f.as_expr() @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if f.gens != g.gens: return False if f.rep.dom != g.rep.dom: return False return f.rep == g.rep @_sympifyit('g', NotImplemented) def __ne__(f, g): return not f == g def __bool__(f): return not f.is_zero def eq(f, g, strict=False): if not strict: return f == g else: return f._strict_eq(sympify(g)) def ne(f, g, strict=False): return not f.eq(g, strict=strict) def _strict_eq(f, g): return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True) @public class PurePoly(Poly): """Class for representing pure polynomials. """ def _hashable_content(self): """Allow SymPy to hash Poly instances. """ return (self.rep,) def __hash__(self): return super().__hash__() @property def free_symbols(self): """ Free symbols of a polynomial. Examples ======== >>> from sympy import PurePoly >>> from sympy.abc import x, y >>> PurePoly(x**2 + 1).free_symbols set() >>> PurePoly(x**2 + y).free_symbols set() >>> PurePoly(x**2 + y, x).free_symbols {y} """ return self.free_symbols_in_domain @_sympifyit('other', NotImplemented) def __eq__(self, other): f, g = self, other if not g.is_Poly: try: g = f.__class__(g, f.gens, domain=f.get_domain()) except (PolynomialError, DomainError, CoercionFailed): return False if len(f.gens) != len(g.gens): return False if f.rep.dom != g.rep.dom: try: dom = f.rep.dom.unify(g.rep.dom, f.gens) except UnificationFailed: return False f = f.set_domain(dom) g = g.set_domain(dom) return f.rep == g.rep def _strict_eq(f, g): return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True) def _unify(f, g): g = sympify(g) if not g.is_Poly: try: return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g)) except CoercionFailed: raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if len(f.gens) != len(g.gens): raise UnificationFailed("Cannot unify %s with %s" % (f, g)) if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)): raise UnificationFailed("Cannot unify %s with %s" % (f, g)) cls = f.__class__ gens = f.gens dom = f.rep.dom.unify(g.rep.dom, gens) F = f.rep.convert(dom) G = g.rep.convert(dom) def per(rep, dom=dom, gens=gens, remove=None): if remove is not None: gens = gens[:remove] + gens[remove + 1:] if not gens: return dom.to_sympy(rep) return cls.new(rep, *gens) return dom, per, F, G @public def poly_from_expr(expr, *gens, **args): """Construct a polynomial from an expression. """ opt = options.build_options(gens, args) return _poly_from_expr(expr, opt) def _poly_from_expr(expr, opt): """Construct a polynomial from an expression. """ orig, expr = expr, sympify(expr) if not isinstance(expr, Basic): raise PolificationFailed(opt, orig, expr) elif expr.is_Poly: poly = expr.__class__._from_poly(expr, opt) opt.gens = poly.gens opt.domain = poly.domain if opt.polys is None: opt.polys = True return poly, opt elif opt.expand: expr = expr.expand() rep, opt = _dict_from_expr(expr, opt) if not opt.gens: raise PolificationFailed(opt, orig, expr) monoms, coeffs = list(zip(*list(rep.items()))) domain = opt.domain if domain is None: opt.domain, coeffs = construct_domain(coeffs, opt=opt) else: coeffs = list(map(domain.from_sympy, coeffs)) rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) if opt.polys is None: opt.polys = False return poly, opt @public def parallel_poly_from_expr(exprs, *gens, **args): """Construct polynomials from expressions. """ opt = options.build_options(gens, args) return _parallel_poly_from_expr(exprs, opt) def _parallel_poly_from_expr(exprs, opt): """Construct polynomials from expressions. """ from sympy.functions.elementary.piecewise import Piecewise if len(exprs) == 2: f, g = exprs if isinstance(f, Poly) and isinstance(g, Poly): f = f.__class__._from_poly(f, opt) g = g.__class__._from_poly(g, opt) f, g = f.unify(g) opt.gens = f.gens opt.domain = f.domain if opt.polys is None: opt.polys = True return [f, g], opt origs, exprs = list(exprs), [] _exprs, _polys = [], [] failed = False for i, expr in enumerate(origs): expr = sympify(expr) if isinstance(expr, Basic): if expr.is_Poly: _polys.append(i) else: _exprs.append(i) if opt.expand: expr = expr.expand() else: failed = True exprs.append(expr) if failed: raise PolificationFailed(opt, origs, exprs, True) if _polys: # XXX: this is a temporary solution for i in _polys: exprs[i] = exprs[i].as_expr() reps, opt = _parallel_dict_from_expr(exprs, opt) if not opt.gens: raise PolificationFailed(opt, origs, exprs, True) for k in opt.gens: if isinstance(k, Piecewise): raise PolynomialError("Piecewise generators do not make sense") coeffs_list, lengths = [], [] all_monoms = [] all_coeffs = [] for rep in reps: monoms, coeffs = list(zip(*list(rep.items()))) coeffs_list.extend(coeffs) all_monoms.append(monoms) lengths.append(len(coeffs)) domain = opt.domain if domain is None: opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt) else: coeffs_list = list(map(domain.from_sympy, coeffs_list)) for k in lengths: all_coeffs.append(coeffs_list[:k]) coeffs_list = coeffs_list[k:] polys = [] for monoms, coeffs in zip(all_monoms, all_coeffs): rep = dict(list(zip(monoms, coeffs))) poly = Poly._from_dict(rep, opt) polys.append(poly) if opt.polys is None: opt.polys = bool(_polys) return polys, opt def _update_args(args, key, value): """Add a new ``(key, value)`` pair to arguments ``dict``. """ args = dict(args) if key not in args: args[key] = value return args @public def degree(f, gen=0): """ Return the degree of ``f`` in the given variable. The degree of 0 is negative infinity. Examples ======== >>> from sympy import degree >>> from sympy.abc import x, y >>> degree(x**2 + y*x + 1, gen=x) 2 >>> degree(x**2 + y*x + 1, gen=y) 1 >>> degree(0, x) -oo See also ======== sympy.polys.polytools.Poly.total_degree degree_list """ f = sympify(f, strict=True) gen_is_Num = sympify(gen, strict=True).is_Number if f.is_Poly: p = f isNum = p.as_expr().is_Number else: isNum = f.is_Number if not isNum: if gen_is_Num: p, _ = poly_from_expr(f) else: p, _ = poly_from_expr(f, gen) if isNum: return S.Zero if f else S.NegativeInfinity if not gen_is_Num: if f.is_Poly and gen not in p.gens: # try recast without explicit gens p, _ = poly_from_expr(f.as_expr()) if gen not in p.gens: return S.Zero elif not f.is_Poly and len(f.free_symbols) > 1: raise TypeError(filldedent(''' A symbolic generator of interest is required for a multivariate expression like func = %s, e.g. degree(func, gen = %s) instead of degree(func, gen = %s). ''' % (f, next(ordered(f.free_symbols)), gen))) result = p.degree(gen) return Integer(result) if isinstance(result, int) else S.NegativeInfinity @public def total_degree(f, *gens): """ Return the total_degree of ``f`` in the given variables. Examples ======== >>> from sympy import total_degree, Poly >>> from sympy.abc import x, y >>> total_degree(1) 0 >>> total_degree(x + x*y) 2 >>> total_degree(x + x*y, x) 1 If the expression is a Poly and no variables are given then the generators of the Poly will be used: >>> p = Poly(x + x*y, y) >>> total_degree(p) 1 To deal with the underlying expression of the Poly, convert it to an Expr: >>> total_degree(p.as_expr()) 2 This is done automatically if any variables are given: >>> total_degree(p, x) 1 See also ======== degree """ p = sympify(f) if p.is_Poly: p = p.as_expr() if p.is_Number: rv = 0 else: if f.is_Poly: gens = gens or f.gens rv = Poly(p, gens).total_degree() return Integer(rv) @public def degree_list(f, *gens, **args): """ Return a list of degrees of ``f`` in all variables. Examples ======== >>> from sympy import degree_list >>> from sympy.abc import x, y >>> degree_list(x**2 + y*x + 1) (2, 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('degree_list', 1, exc) degrees = F.degree_list() return tuple(map(Integer, degrees)) @public def LC(f, *gens, **args): """ Return the leading coefficient of ``f``. Examples ======== >>> from sympy import LC >>> from sympy.abc import x, y >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y) 4 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LC', 1, exc) return F.LC(order=opt.order) @public def LM(f, *gens, **args): """ Return the leading monomial of ``f``. Examples ======== >>> from sympy import LM >>> from sympy.abc import x, y >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y) x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LM', 1, exc) monom = F.LM(order=opt.order) return monom.as_expr() @public def LT(f, *gens, **args): """ Return the leading term of ``f``. Examples ======== >>> from sympy import LT >>> from sympy.abc import x, y >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y) 4*x**2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('LT', 1, exc) monom, coeff = F.LT(order=opt.order) return coeff*monom.as_expr() @public def pdiv(f, g, *gens, **args): """ Compute polynomial pseudo-division of ``f`` and ``g``. Examples ======== >>> from sympy import pdiv >>> from sympy.abc import x >>> pdiv(x**2 + 1, 2*x - 4) (2*x + 4, 20) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pdiv', 2, exc) q, r = F.pdiv(G) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def prem(f, g, *gens, **args): """ Compute polynomial pseudo-remainder of ``f`` and ``g``. Examples ======== >>> from sympy import prem >>> from sympy.abc import x >>> prem(x**2 + 1, 2*x - 4) 20 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('prem', 2, exc) r = F.prem(G) if not opt.polys: return r.as_expr() else: return r @public def pquo(f, g, *gens, **args): """ Compute polynomial pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pquo >>> from sympy.abc import x >>> pquo(x**2 + 1, 2*x - 4) 2*x + 4 >>> pquo(x**2 - 1, 2*x - 1) 2*x + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pquo', 2, exc) try: q = F.pquo(G) except ExactQuotientFailed: raise ExactQuotientFailed(f, g) if not opt.polys: return q.as_expr() else: return q @public def pexquo(f, g, *gens, **args): """ Compute polynomial exact pseudo-quotient of ``f`` and ``g``. Examples ======== >>> from sympy import pexquo >>> from sympy.abc import x >>> pexquo(x**2 - 1, 2*x - 2) 2*x + 2 >>> pexquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('pexquo', 2, exc) q = F.pexquo(G) if not opt.polys: return q.as_expr() else: return q @public def div(f, g, *gens, **args): """ Compute polynomial division of ``f`` and ``g``. Examples ======== >>> from sympy import div, ZZ, QQ >>> from sympy.abc import x >>> div(x**2 + 1, 2*x - 4, domain=ZZ) (0, x**2 + 1) >>> div(x**2 + 1, 2*x - 4, domain=QQ) (x/2 + 1, 5) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('div', 2, exc) q, r = F.div(G, auto=opt.auto) if not opt.polys: return q.as_expr(), r.as_expr() else: return q, r @public def rem(f, g, *gens, **args): """ Compute polynomial remainder of ``f`` and ``g``. Examples ======== >>> from sympy import rem, ZZ, QQ >>> from sympy.abc import x >>> rem(x**2 + 1, 2*x - 4, domain=ZZ) x**2 + 1 >>> rem(x**2 + 1, 2*x - 4, domain=QQ) 5 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('rem', 2, exc) r = F.rem(G, auto=opt.auto) if not opt.polys: return r.as_expr() else: return r @public def quo(f, g, *gens, **args): """ Compute polynomial quotient of ``f`` and ``g``. Examples ======== >>> from sympy import quo >>> from sympy.abc import x >>> quo(x**2 + 1, 2*x - 4) x/2 + 1 >>> quo(x**2 - 1, x - 1) x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('quo', 2, exc) q = F.quo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def exquo(f, g, *gens, **args): """ Compute polynomial exact quotient of ``f`` and ``g``. Examples ======== >>> from sympy import exquo >>> from sympy.abc import x >>> exquo(x**2 - 1, x - 1) x + 1 >>> exquo(x**2 + 1, 2*x - 4) Traceback (most recent call last): ... ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('exquo', 2, exc) q = F.exquo(G, auto=opt.auto) if not opt.polys: return q.as_expr() else: return q @public def half_gcdex(f, g, *gens, **args): """ Half extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``. Examples ======== >>> from sympy import half_gcdex >>> from sympy.abc import x >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, h = domain.half_gcdex(a, b) except NotImplementedError: raise ComputationFailed('half_gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(h) s, h = F.half_gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), h.as_expr() else: return s, h @public def gcdex(f, g, *gens, **args): """ Extended Euclidean algorithm of ``f`` and ``g``. Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. Examples ======== >>> from sympy import gcdex >>> from sympy.abc import x >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4) (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1) """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: s, t, h = domain.gcdex(a, b) except NotImplementedError: raise ComputationFailed('gcdex', 2, exc) else: return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h) s, t, h = F.gcdex(G, auto=opt.auto) if not opt.polys: return s.as_expr(), t.as_expr(), h.as_expr() else: return s, t, h @public def invert(f, g, *gens, **args): """ Invert ``f`` modulo ``g`` when possible. Examples ======== >>> from sympy import invert, S, mod_inverse >>> from sympy.abc import x >>> invert(x**2 - 1, 2*x - 1) -4/3 >>> invert(x**2 - 1, x - 1) Traceback (most recent call last): ... NotInvertible: zero divisor For more efficient inversion of Rationals, use the :obj:`~.mod_inverse` function: >>> mod_inverse(3, 5) 2 >>> (S(2)/5).invert(S(7)/3) 5/2 See Also ======== sympy.core.numbers.mod_inverse """ options.allowed_flags(args, ['auto', 'polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.invert(a, b)) except NotImplementedError: raise ComputationFailed('invert', 2, exc) h = F.invert(G, auto=opt.auto) if not opt.polys: return h.as_expr() else: return h @public def subresultants(f, g, *gens, **args): """ Compute subresultant PRS of ``f`` and ``g``. Examples ======== >>> from sympy import subresultants >>> from sympy.abc import x >>> subresultants(x**2 + 1, x**2 - 1) [x**2 + 1, x**2 - 1, -2] """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('subresultants', 2, exc) result = F.subresultants(G) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def resultant(f, g, *gens, includePRS=False, **args): """ Compute resultant of ``f`` and ``g``. Examples ======== >>> from sympy import resultant >>> from sympy.abc import x >>> resultant(x**2 + 1, x**2 - 1) 4 """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('resultant', 2, exc) if includePRS: result, R = F.resultant(G, includePRS=includePRS) else: result = F.resultant(G) if not opt.polys: if includePRS: return result.as_expr(), [r.as_expr() for r in R] return result.as_expr() else: if includePRS: return result, R return result @public def discriminant(f, *gens, **args): """ Compute discriminant of ``f``. Examples ======== >>> from sympy import discriminant >>> from sympy.abc import x >>> discriminant(x**2 + 2*x + 3) -8 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('discriminant', 1, exc) result = F.discriminant() if not opt.polys: return result.as_expr() else: return result @public def cofactors(f, g, *gens, **args): """ Compute GCD and cofactors of ``f`` and ``g``. Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors of ``f`` and ``g``. Examples ======== >>> from sympy import cofactors >>> from sympy.abc import x >>> cofactors(x**2 - 1, x**2 - 3*x + 2) (x - 1, x + 1, x - 2) """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: h, cff, cfg = domain.cofactors(a, b) except NotImplementedError: raise ComputationFailed('cofactors', 2, exc) else: return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg) h, cff, cfg = F.cofactors(G) if not opt.polys: return h.as_expr(), cff.as_expr(), cfg.as_expr() else: return h, cff, cfg @public def gcd_list(seq, *gens, **args): """ Compute GCD of a list of polynomials. Examples ======== >>> from sympy import gcd_list >>> from sympy.abc import x >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x - 1 """ seq = sympify(seq) def try_non_polynomial_gcd(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.zero elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.gcd(result, number) if domain.is_one(result): break return domain.to_sympy(result) return None result = try_non_polynomial_gcd(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[0]) # abs ensures that the gcd is always non-negative return abs(a/lc) except PolificationFailed as exc: result = try_non_polynomial_gcd(exc.exprs) if result is not None: return result else: raise ComputationFailed('gcd_list', len(seq), exc) if not polys: if not opt.polys: return S.Zero else: return Poly(0, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.gcd(poly) if result.is_one: break if not opt.polys: return result.as_expr() else: return result @public def gcd(f, g=None, *gens, **args): """ Compute GCD of ``f`` and ``g``. Examples ======== >>> from sympy import gcd >>> from sympy.abc import x >>> gcd(x**2 - 1, x**2 - 3*x + 2) x - 1 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return gcd_list(f, *gens, **args) elif g is None: raise TypeError("gcd() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # gcd for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: # abs ensures that the returned gcd is always non-negative return abs(a/frc.as_numer_denom()[0]) except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.gcd(a, b)) except NotImplementedError: raise ComputationFailed('gcd', 2, exc) result = F.gcd(G) if not opt.polys: return result.as_expr() else: return result @public def lcm_list(seq, *gens, **args): """ Compute LCM of a list of polynomials. Examples ======== >>> from sympy import lcm_list >>> from sympy.abc import x >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2]) x**5 - x**4 - 2*x**3 - x**2 + x + 2 """ seq = sympify(seq) def try_non_polynomial_lcm(seq): if not gens and not args: domain, numbers = construct_domain(seq) if not numbers: return domain.one elif domain.is_Numerical: result, numbers = numbers[0], numbers[1:] for number in numbers: result = domain.lcm(result, number) return domain.to_sympy(result) return None result = try_non_polynomial_lcm(seq) if result is not None: return result options.allowed_flags(args, ['polys']) try: polys, opt = parallel_poly_from_expr(seq, *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq): a = seq[-1] lst = [ (a/elt).ratsimp() for elt in seq[:-1] ] if all(frc.is_rational for frc in lst): lc = 1 for frc in lst: lc = lcm(lc, frc.as_numer_denom()[1]) return a*lc except PolificationFailed as exc: result = try_non_polynomial_lcm(exc.exprs) if result is not None: return result else: raise ComputationFailed('lcm_list', len(seq), exc) if not polys: if not opt.polys: return S.One else: return Poly(1, opt=opt) result, polys = polys[0], polys[1:] for poly in polys: result = result.lcm(poly) if not opt.polys: return result.as_expr() else: return result @public def lcm(f, g=None, *gens, **args): """ Compute LCM of ``f`` and ``g``. Examples ======== >>> from sympy import lcm >>> from sympy.abc import x >>> lcm(x**2 - 1, x**2 - 3*x + 2) x**3 - 2*x**2 - x + 2 """ if hasattr(f, '__iter__'): if g is not None: gens = (g,) + gens return lcm_list(f, *gens, **args) elif g is None: raise TypeError("lcm() takes 2 arguments or a sequence of arguments") options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) # lcm for domain Q[irrational] (purely algebraic irrational) a, b = map(sympify, (f, g)) if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational: frc = (a/b).ratsimp() if frc.is_rational: return a*frc.as_numer_denom()[1] except PolificationFailed as exc: domain, (a, b) = construct_domain(exc.exprs) try: return domain.to_sympy(domain.lcm(a, b)) except NotImplementedError: raise ComputationFailed('lcm', 2, exc) result = F.lcm(G) if not opt.polys: return result.as_expr() else: return result @public def terms_gcd(f, *gens, **args): """ Remove GCD of terms from ``f``. If the ``deep`` flag is True, then the arguments of ``f`` will have terms_gcd applied to them. If a fraction is factored out of ``f`` and ``f`` is an Add, then an unevaluated Mul will be returned so that automatic simplification does not redistribute it. The hint ``clear``, when set to False, can be used to prevent such factoring when all coefficients are not fractions. Examples ======== >>> from sympy import terms_gcd, cos >>> from sympy.abc import x, y >>> terms_gcd(x**6*y**2 + x**3*y, x, y) x**3*y*(x**3*y + 1) The default action of polys routines is to expand the expression given to them. terms_gcd follows this behavior: >>> terms_gcd((3+3*x)*(x+x*y)) 3*x*(x*y + x + y + 1) If this is not desired then the hint ``expand`` can be set to False. In this case the expression will be treated as though it were comprised of one or more terms: >>> terms_gcd((3+3*x)*(x+x*y), expand=False) (3*x + 3)*(x*y + x) In order to traverse factors of a Mul or the arguments of other functions, the ``deep`` hint can be used: >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True) 3*x*(x + 1)*(y + 1) >>> terms_gcd(cos(x + x*y), deep=True) cos(x*(y + 1)) Rationals are factored out by default: >>> terms_gcd(x + y/2) (2*x + y)/2 Only the y-term had a coefficient that was a fraction; if one does not want to factor out the 1/2 in cases like this, the flag ``clear`` can be set to False: >>> terms_gcd(x + y/2, clear=False) x + y/2 >>> terms_gcd(x*y/2 + y**2, clear=False) y*(x/2 + y) The ``clear`` flag is ignored if all coefficients are fractions: >>> terms_gcd(x/3 + y/2, clear=False) (2*x + 3*y)/6 See Also ======== sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms """ orig = sympify(f) if isinstance(f, Equality): return Equality(*(terms_gcd(s, *gens, **args) for s in [f.lhs, f.rhs])) elif isinstance(f, Relational): raise TypeError("Inequalities cannot be used with terms_gcd. Found: %s" %(f,)) if not isinstance(f, Expr) or f.is_Atom: return orig if args.get('deep', False): new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args]) args.pop('deep') args['expand'] = False return terms_gcd(new, *gens, **args) clear = args.pop('clear', True) options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: return exc.expr J, f = F.terms_gcd() if opt.domain.is_Ring: if opt.domain.is_Field: denom, f = f.clear_denoms(convert=True) coeff, f = f.primitive() if opt.domain.is_Field: coeff /= denom else: coeff = S.One term = Mul(*[x**j for x, j in zip(f.gens, J)]) if coeff == 1: coeff = S.One if term == 1: return orig if clear: return _keep_coeff(coeff, term*f.as_expr()) # base the clearing on the form of the original expression, not # the (perhaps) Mul that we have now coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul() return _keep_coeff(coeff, term*f, clear=False) @public def trunc(f, p, *gens, **args): """ Reduce ``f`` modulo a constant ``p``. Examples ======== >>> from sympy import trunc >>> from sympy.abc import x >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3) -x**3 - x + 1 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('trunc', 1, exc) result = F.trunc(sympify(p)) if not opt.polys: return result.as_expr() else: return result @public def monic(f, *gens, **args): """ Divide all coefficients of ``f`` by ``LC(f)``. Examples ======== >>> from sympy import monic >>> from sympy.abc import x >>> monic(3*x**2 + 4*x + 2) x**2 + 4*x/3 + 2/3 """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('monic', 1, exc) result = F.monic(auto=opt.auto) if not opt.polys: return result.as_expr() else: return result @public def content(f, *gens, **args): """ Compute GCD of coefficients of ``f``. Examples ======== >>> from sympy import content >>> from sympy.abc import x >>> content(6*x**2 + 8*x + 12) 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('content', 1, exc) return F.content() @public def primitive(f, *gens, **args): """ Compute content and the primitive form of ``f``. Examples ======== >>> from sympy.polys.polytools import primitive >>> from sympy.abc import x >>> primitive(6*x**2 + 8*x + 12) (2, 3*x**2 + 4*x + 6) >>> eq = (2 + 2*x)*x + 2 Expansion is performed by default: >>> primitive(eq) (2, x**2 + x + 1) Set ``expand`` to False to shut this off. Note that the extraction will not be recursive; use the as_content_primitive method for recursive, non-destructive Rational extraction. >>> primitive(eq, expand=False) (1, x*(2*x + 2) + 2) >>> eq.as_content_primitive() (2, x*(x + 1) + 1) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('primitive', 1, exc) cont, result = F.primitive() if not opt.polys: return cont, result.as_expr() else: return cont, result @public def compose(f, g, *gens, **args): """ Compute functional composition ``f(g)``. Examples ======== >>> from sympy import compose >>> from sympy.abc import x >>> compose(x**2 + x, x - 1) x**2 - x """ options.allowed_flags(args, ['polys']) try: (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('compose', 2, exc) result = F.compose(G) if not opt.polys: return result.as_expr() else: return result @public def decompose(f, *gens, **args): """ Compute functional decomposition of ``f``. Examples ======== >>> from sympy import decompose >>> from sympy.abc import x >>> decompose(x**4 + 2*x**3 - x - 1) [x**2 - x - 1, x**2 + x] """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('decompose', 1, exc) result = F.decompose() if not opt.polys: return [r.as_expr() for r in result] else: return result @public def sturm(f, *gens, **args): """ Compute Sturm sequence of ``f``. Examples ======== >>> from sympy import sturm >>> from sympy.abc import x >>> sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4] """ options.allowed_flags(args, ['auto', 'polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sturm', 1, exc) result = F.sturm(auto=opt.auto) if not opt.polys: return [r.as_expr() for r in result] else: return result @public def gff_list(f, *gens, **args): """ Compute a list of greatest factorial factors of ``f``. Note that the input to ff() and rf() should be Poly instances to use the definitions here. Examples ======== >>> from sympy import gff_list, ff, Poly >>> from sympy.abc import x >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x) >>> gff_list(f) [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)] >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f True >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \ 1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x) >>> gff_list(f) [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)] >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f True """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('gff_list', 1, exc) factors = F.gff_list() if not opt.polys: return [(g.as_expr(), k) for g, k in factors] else: return factors @public def gff(f, *gens, **args): """Compute greatest factorial factorization of ``f``. """ raise NotImplementedError('symbolic falling factorial') @public def sqf_norm(f, *gens, **args): """ Compute square-free norm of ``f``. Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``, where ``a`` is the algebraic extension of the ground domain. Examples ======== >>> from sympy import sqf_norm, sqrt >>> from sympy.abc import x >>> sqf_norm(x**2 + 1, extension=[sqrt(3)]) (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16) """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_norm', 1, exc) s, g, r = F.sqf_norm() if not opt.polys: return Integer(s), g.as_expr(), r.as_expr() else: return Integer(s), g, r @public def sqf_part(f, *gens, **args): """ Compute square-free part of ``f``. Examples ======== >>> from sympy import sqf_part >>> from sympy.abc import x >>> sqf_part(x**3 - 3*x - 2) x**2 - x - 2 """ options.allowed_flags(args, ['polys']) try: F, opt = poly_from_expr(f, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('sqf_part', 1, exc) result = F.sqf_part() if not opt.polys: return result.as_expr() else: return result def _sorted_factors(factors, method): """Sort a list of ``(expr, exp)`` pairs. """ if method == 'sqf': def key(obj): poly, exp = obj rep = poly.rep.rep return (exp, len(rep), len(poly.gens), str(poly.domain), rep) else: def key(obj): poly, exp = obj rep = poly.rep.rep return (len(rep), len(poly.gens), exp, str(poly.domain), rep) return sorted(factors, key=key) def _factors_product(factors): """Multiply a list of ``(expr, exp)`` pairs. """ return Mul(*[f.as_expr()**k for f, k in factors]) def _symbolic_factor_list(expr, opt, method): """Helper function for :func:`_symbolic_factor`. """ coeff, factors = S.One, [] args = [i._eval_factor() if hasattr(i, '_eval_factor') else i for i in Mul.make_args(expr)] for arg in args: if arg.is_Number or (isinstance(arg, Expr) and pure_complex(arg)): coeff *= arg continue elif arg.is_Pow and arg.base != S.Exp1: base, exp = arg.args if base.is_Number and exp.is_Number: coeff *= arg continue if base.is_Number: factors.append((base, exp)) continue else: base, exp = arg, S.One try: poly, _ = _poly_from_expr(base, opt) except PolificationFailed as exc: factors.append((exc.expr, exp)) else: func = getattr(poly, method + '_list') _coeff, _factors = func() if _coeff is not S.One: if exp.is_Integer: coeff *= _coeff**exp elif _coeff.is_positive: factors.append((_coeff, exp)) else: _factors.append((_coeff, S.One)) if exp is S.One: factors.extend(_factors) elif exp.is_integer: factors.extend([(f, k*exp) for f, k in _factors]) else: other = [] for f, k in _factors: if f.as_expr().is_positive: factors.append((f, k*exp)) else: other.append((f, k)) factors.append((_factors_product(other), exp)) if method == 'sqf': factors = [(reduce(mul, (f for f, _ in factors if _ == k)), k) for k in {i for _, i in factors}] return coeff, factors def _symbolic_factor(expr, opt, method): """Helper function for :func:`_factor`. """ if isinstance(expr, Expr): if hasattr(expr,'_eval_factor'): return expr._eval_factor() coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method) return _keep_coeff(coeff, _factors_product(factors)) elif hasattr(expr, 'args'): return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args]) elif hasattr(expr, '__iter__'): return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr]) else: return expr def _generic_factor_list(expr, gens, args, method): """Helper function for :func:`sqf_list` and :func:`factor_list`. """ options.allowed_flags(args, ['frac', 'polys']) opt = options.build_options(gens, args) expr = sympify(expr) if isinstance(expr, (Expr, Poly)): if isinstance(expr, Poly): numer, denom = expr, 1 else: numer, denom = together(expr).as_numer_denom() cp, fp = _symbolic_factor_list(numer, opt, method) cq, fq = _symbolic_factor_list(denom, opt, method) if fq and not opt.frac: raise PolynomialError("a polynomial expected, got %s" % expr) _opt = opt.clone(dict(expand=True)) for factors in (fp, fq): for i, (f, k) in enumerate(factors): if not f.is_Poly: f, _ = _poly_from_expr(f, _opt) factors[i] = (f, k) fp = _sorted_factors(fp, method) fq = _sorted_factors(fq, method) if not opt.polys: fp = [(f.as_expr(), k) for f, k in fp] fq = [(f.as_expr(), k) for f, k in fq] coeff = cp/cq if not opt.frac: return coeff, fp else: return coeff, fp, fq else: raise PolynomialError("a polynomial expected, got %s" % expr) def _generic_factor(expr, gens, args, method): """Helper function for :func:`sqf` and :func:`factor`. """ fraction = args.pop('fraction', True) options.allowed_flags(args, []) opt = options.build_options(gens, args) opt['fraction'] = fraction return _symbolic_factor(sympify(expr), opt, method) def to_rational_coeffs(f): """ try to transform a polynomial to have rational coefficients try to find a transformation ``x = alpha*y`` ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with rational coefficients, ``lc`` the leading coefficient. If this fails, try ``x = y + beta`` ``f(x) = g(y)`` Returns ``None`` if ``g`` not found; ``(lc, alpha, None, g)`` in case of rescaling ``(None, None, beta, g)`` in case of translation Notes ===== Currently it transforms only polynomials without roots larger than 2. Examples ======== >>> from sympy import sqrt, Poly, simplify >>> from sympy.polys.polytools import to_rational_coeffs >>> from sympy.abc import x >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX') >>> lc, r, _, g = to_rational_coeffs(p) >>> lc, r (7 + 5*sqrt(2), 2 - 2*sqrt(2)) >>> g Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ') >>> r1 = simplify(1/r) >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p True """ from sympy.simplify.simplify import simplify def _try_rescale(f, f1=None): """ try rescaling ``x -> alpha*x`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the rescaling is successful, ``alpha`` is the rescaling factor, and ``f`` is the rescaled polynomial; else ``alpha`` is ``None``. """ if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() lc = f.LC() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] coeffs = [simplify(coeffx) for coeffx in coeffs] if len(coeffs) > 1 and coeffs[-2]: rescale1_x = simplify(coeffs[-2]/coeffs[-1]) coeffs1 = [] for i in range(len(coeffs)): coeffx = simplify(coeffs[i]*rescale1_x**(i + 1)) if not coeffx.is_rational: break coeffs1.append(coeffx) else: rescale_x = simplify(1/rescale1_x) x = f.gens[0] v = [x**n] for i in range(1, n + 1): v.append(coeffs1[i - 1]*x**(n - i)) f = Add(*v) f = Poly(f) return lc, rescale_x, f return None def _try_translate(f, f1=None): """ try translating ``x -> x + alpha`` to convert f to a polynomial with rational coefficients. Returns ``alpha, f``; if the translating is successful, ``alpha`` is the translating factor, and ``f`` is the shifted polynomial; else ``alpha`` is ``None``. """ if not len(f.gens) == 1 or not (f.gens[0]).is_Atom: return None, f n = f.degree() f1 = f1 or f1.monic() coeffs = f1.all_coeffs()[1:] c = simplify(coeffs[0]) if c.is_Add and not c.is_rational: rat, nonrat = sift(c.args, lambda z: z.is_rational is True, binary=True) alpha = -c.func(*nonrat)/n f2 = f1.shift(alpha) return alpha, f2 return None def _has_square_roots(p): """ Return True if ``f`` is a sum with square roots but no other root """ coeffs = p.coeffs() has_sq = False for y in coeffs: for x in Add.make_args(y): f = Factors(x).factors r = [wx.q for b, wx in f.items() if b.is_number and wx.is_Rational and wx.q >= 2] if not r: continue if min(r) == 2: has_sq = True if max(r) > 2: return False return has_sq if f.get_domain().is_EX and _has_square_roots(f): f1 = f.monic() r = _try_rescale(f, f1) if r: return r[0], r[1], None, r[2] else: r = _try_translate(f, f1) if r: return None, None, r[0], r[1] return None def _torational_factor_list(p, x): """ helper function to factor polynomial using to_rational_coeffs Examples ======== >>> from sympy.polys.polytools import _torational_factor_list >>> from sympy.abc import x >>> from sympy import sqrt, expand, Mul >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) >>> factors = _torational_factor_list(p, x); factors (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)})) >>> factors = _torational_factor_list(p, x); factors (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)]) >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p True """ from sympy.simplify.simplify import simplify p1 = Poly(p, x, domain='EX') n = p1.degree() res = to_rational_coeffs(p1) if not res: return None lc, r, t, g = res factors = factor_list(g.as_expr()) if lc: c = simplify(factors[0]*lc*r**n) r1 = simplify(1/r) a = [] for z in factors[1:][0]: a.append((simplify(z[0].subs({x: x*r1})), z[1])) else: c = factors[0] a = [] for z in factors[1:][0]: a.append((z[0].subs({x: x - t}), z[1])) return (c, a) @public def sqf_list(f, *gens, **args): """ Compute a list of square-free factors of ``f``. Examples ======== >>> from sympy import sqf_list >>> from sympy.abc import x >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) (2, [(x + 1, 2), (x + 2, 3)]) """ return _generic_factor_list(f, gens, args, method='sqf') @public def sqf(f, *gens, **args): """ Compute square-free factorization of ``f``. Examples ======== >>> from sympy import sqf >>> from sympy.abc import x >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16) 2*(x + 1)**2*(x + 2)**3 """ return _generic_factor(f, gens, args, method='sqf') @public def factor_list(f, *gens, **args): """ Compute a list of irreducible factors of ``f``. Examples ======== >>> from sympy import factor_list >>> from sympy.abc import x, y >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) (2, [(x + y, 1), (x**2 + 1, 2)]) """ return _generic_factor_list(f, gens, args, method='factor') @public def factor(f, *gens, deep=False, **args): """ Compute the factorization of expression, ``f``, into irreducibles. (To factor an integer into primes, use ``factorint``.) There two modes implemented: symbolic and formal. If ``f`` is not an instance of :class:`Poly` and generators are not specified, then the former mode is used. Otherwise, the formal mode is used. In symbolic mode, :func:`factor` will traverse the expression tree and factor its components without any prior expansion, unless an instance of :class:`~.Add` is encountered (in this case formal factorization is used). This way :func:`factor` can handle large or symbolic exponents. By default, the factorization is computed over the rationals. To factor over other domain, e.g. an algebraic or finite field, use appropriate options: ``extension``, ``modulus`` or ``domain``. Examples ======== >>> from sympy import factor, sqrt, exp >>> from sympy.abc import x, y >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y) 2*(x + y)*(x**2 + 1)**2 >>> factor(x**2 + 1) x**2 + 1 >>> factor(x**2 + 1, modulus=2) (x + 1)**2 >>> factor(x**2 + 1, gaussian=True) (x - I)*(x + I) >>> factor(x**2 - 2, extension=sqrt(2)) (x - sqrt(2))*(x + sqrt(2)) >>> factor((x**2 - 1)/(x**2 + 4*x + 4)) (x - 1)*(x + 1)/(x + 2)**2 >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1)) (x + 2)**20000000*(x**2 + 1) By default, factor deals with an expression as a whole: >>> eq = 2**(x**2 + 2*x + 1) >>> factor(eq) 2**(x**2 + 2*x + 1) If the ``deep`` flag is True then subexpressions will be factored: >>> factor(eq, deep=True) 2**((x + 1)**2) If the ``fraction`` flag is False then rational expressions will not be combined. By default it is True. >>> factor(5*x + 3*exp(2 - 7*x), deep=True) (5*x*exp(7*x) + 3*exp(2))*exp(-7*x) >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False) 5*x + 3*exp(2)*exp(-7*x) See Also ======== sympy.ntheory.factor_.factorint """ f = sympify(f) if deep: def _try_factor(expr): """ Factor, but avoid changing the expression when unable to. """ fac = factor(expr, *gens, **args) if fac.is_Mul or fac.is_Pow: return fac return expr f = bottom_up(f, _try_factor) # clean up any subexpressions that may have been expanded # while factoring out a larger expression partials = {} muladd = f.atoms(Mul, Add) for p in muladd: fac = factor(p, *gens, **args) if (fac.is_Mul or fac.is_Pow) and fac != p: partials[p] = fac return f.xreplace(partials) try: return _generic_factor(f, gens, args, method='factor') except PolynomialError as msg: if not f.is_commutative: return factor_nc(f) else: raise PolynomialError(msg) @public def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False): """ Compute isolating intervals for roots of ``f``. Examples ======== >>> from sympy import intervals >>> from sympy.abc import x >>> intervals(x**2 - 3) [((-2, -1), 1), ((1, 2), 1)] >>> intervals(x**2 - 3, eps=1e-2) [((-26/15, -19/11), 1), ((19/11, 26/15), 1)] """ if not hasattr(F, '__iter__'): try: F = Poly(F) except GeneratorsNeeded: return [] return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf) else: polys, opt = parallel_poly_from_expr(F, domain='QQ') if len(opt.gens) > 1: raise MultivariatePolynomialError for i, poly in enumerate(polys): polys[i] = poly.rep.rep if eps is not None: eps = opt.domain.convert(eps) if eps <= 0: raise ValueError("'eps' must be a positive rational") if inf is not None: inf = opt.domain.convert(inf) if sup is not None: sup = opt.domain.convert(sup) intervals = dup_isolate_real_roots_list(polys, opt.domain, eps=eps, inf=inf, sup=sup, strict=strict, fast=fast) result = [] for (s, t), indices in intervals: s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t) result.append(((s, t), indices)) return result @public def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False): """ Refine an isolating interval of a root to the given precision. Examples ======== >>> from sympy import refine_root >>> from sympy.abc import x >>> refine_root(x**2 - 3, 1, 2, eps=1e-2) (19/11, 26/15) """ try: F = Poly(f) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "Cannot refine a root of %s, not a polynomial" % f) return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf) @public def count_roots(f, inf=None, sup=None): """ Return the number of roots of ``f`` in ``[inf, sup]`` interval. If one of ``inf`` or ``sup`` is complex, it will return the number of roots in the complex rectangle with corners at ``inf`` and ``sup``. Examples ======== >>> from sympy import count_roots, I >>> from sympy.abc import x >>> count_roots(x**4 - 4, -3, 3) 2 >>> count_roots(x**4 - 4, 0, 1 + 3*I) 1 """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError("Cannot count roots of %s, not a polynomial" % f) return F.count_roots(inf=inf, sup=sup) @public def real_roots(f, multiple=True): """ Return a list of real roots with multiplicities of ``f``. Examples ======== >>> from sympy import real_roots >>> from sympy.abc import x >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4) [-1/2, 2, 2] """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "Cannot compute real roots of %s, not a polynomial" % f) return F.real_roots(multiple=multiple) @public def nroots(f, n=15, maxsteps=50, cleanup=True): """ Compute numerical approximations of roots of ``f``. Examples ======== >>> from sympy import nroots >>> from sympy.abc import x >>> nroots(x**2 - 3, n=15) [-1.73205080756888, 1.73205080756888] >>> nroots(x**2 - 3, n=30) [-1.73205080756887729352744634151, 1.73205080756887729352744634151] """ try: F = Poly(f, greedy=False) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except GeneratorsNeeded: raise PolynomialError( "Cannot compute numerical roots of %s, not a polynomial" % f) return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup) @public def ground_roots(f, *gens, **args): """ Compute roots of ``f`` by factorization in the ground domain. Examples ======== >>> from sympy import ground_roots >>> from sympy.abc import x >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2) {0: 2, 1: 2} """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except PolificationFailed as exc: raise ComputationFailed('ground_roots', 1, exc) return F.ground_roots() @public def nth_power_roots_poly(f, n, *gens, **args): """ Construct a polynomial with n-th powers of roots of ``f``. Examples ======== >>> from sympy import nth_power_roots_poly, factor, roots >>> from sympy.abc import x >>> f = x**4 - x**2 + 1 >>> g = factor(nth_power_roots_poly(f, 2)) >>> g (x**2 - x + 1)**2 >>> R_f = [ (r**2).expand() for r in roots(f) ] >>> R_g = roots(g).keys() >>> set(R_f) == set(R_g) True """ options.allowed_flags(args, []) try: F, opt = poly_from_expr(f, *gens, **args) if not isinstance(f, Poly) and not F.gen.is_Symbol: # root of sin(x) + 1 is -1 but when someone # passes an Expr instead of Poly they may not expect # that the generator will be sin(x), not x raise PolynomialError("generator must be a Symbol") except PolificationFailed as exc: raise ComputationFailed('nth_power_roots_poly', 1, exc) result = F.nth_power_roots_poly(n) if not opt.polys: return result.as_expr() else: return result @public def cancel(f, *gens, _signsimp=True, **args): """ Cancel common factors in a rational function ``f``. Examples ======== >>> from sympy import cancel, sqrt, Symbol, together >>> from sympy.abc import x >>> A = Symbol('A', commutative=False) >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1)) (2*x + 2)/(x - 1) >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A)) sqrt(6)/2 Note: due to automatic distribution of Rationals, a sum divided by an integer will appear as a sum. To recover a rational form use `together` on the result: >>> cancel(x/2 + 1) x/2 + 1 >>> together(_) (x + 2)/2 """ from sympy.simplify.simplify import signsimp from sympy.functions.elementary.piecewise import Piecewise from sympy.polys.rings import sring options.allowed_flags(args, ['polys']) f = sympify(f) if _signsimp: f = signsimp(f) opt = {} if 'polys' in args: opt['polys'] = args['polys'] if not isinstance(f, (tuple, Tuple)): if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr): return f f = factor_terms(f, radical=True) p, q = f.as_numer_denom() elif len(f) == 2: p, q = f if isinstance(p, Poly) and isinstance(q, Poly): opt['gens'] = p.gens opt['domain'] = p.domain opt['polys'] = opt.get('polys', True) p, q = p.as_expr(), q.as_expr() elif isinstance(f, Tuple): return factor_terms(f) else: raise ValueError('unexpected argument: %s' % f) try: if f.has(Piecewise): raise PolynomialError() R, (F, G) = sring((p, q), *gens, **args) if not R.ngens: if not isinstance(f, (tuple, Tuple)): return f.expand() else: return S.One, p, q except PolynomialError as msg: if f.is_commutative and not f.has(Piecewise): raise PolynomialError(msg) # Handling of noncommutative and/or piecewise expressions if f.is_Add or f.is_Mul: c, nc = sift(f.args, lambda x: x.is_commutative is True and not x.has(Piecewise), binary=True) nc = [cancel(i) for i in nc] return f.func(cancel(f.func(*c)), *nc) else: reps = [] pot = preorder_traversal(f) next(pot) for e in pot: # XXX: This should really skip anything that's not Expr. if isinstance(e, (tuple, Tuple, BooleanAtom)): continue try: reps.append((e, cancel(e))) pot.skip() # this was handled successfully except NotImplementedError: pass return f.xreplace(dict(reps)) c, (P, Q) = 1, F.cancel(G) if opt.get('polys', False) and 'gens' not in opt: opt['gens'] = R.symbols if not isinstance(f, (tuple, Tuple)): return c*(P.as_expr()/Q.as_expr()) else: P, Q = P.as_expr(), Q.as_expr() if not opt.get('polys', False): return c, P, Q else: return c, Poly(P, *gens, **opt), Poly(Q, *gens, **opt) @public def reduced(f, G, *gens, **args): """ Reduces a polynomial ``f`` modulo a set of polynomials ``G``. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import reduced >>> from sympy.abc import x, y >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y]) ([2*x, 1], x**2 + y**2 + y) """ options.allowed_flags(args, ['polys', 'auto']) try: polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args) except PolificationFailed as exc: raise ComputationFailed('reduced', 0, exc) domain = opt.domain retract = False if opt.auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r @public def groebner(F, *gens, **args): """ Computes the reduced Groebner basis for a set of polynomials. Use the ``order`` argument to set the monomial ordering that will be used to compute the basis. Allowed orders are ``lex``, ``grlex`` and ``grevlex``. If no order is specified, it defaults to ``lex``. For more information on Groebner bases, see the references and the docstring of :func:`~.solve_poly_system`. Examples ======== Example taken from [1]. >>> from sympy import groebner >>> from sympy.abc import x, y >>> F = [x*y - 2*y, 2*y**2 - x**2] >>> groebner(F, x, y, order='lex') GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, order='grlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grlex') >>> groebner(F, x, y, order='grevlex') GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y, domain='ZZ', order='grevlex') By default, an improved implementation of the Buchberger algorithm is used. Optionally, an implementation of the F5B algorithm can be used. The algorithm can be set using the ``method`` flag or with the :func:`sympy.polys.polyconfig.setup` function. >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)] >>> groebner(F, x, y, method='buchberger') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') >>> groebner(F, x, y, method='f5b') GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex') References ========== 1. [Buchberger01]_ 2. [Cox97]_ """ return GroebnerBasis(F, *gens, **args) @public def is_zero_dimensional(F, *gens, **args): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ return GroebnerBasis(F, *gens, **args).is_zero_dimensional @public class GroebnerBasis(Basic): """Represents a reduced Groebner basis. """ def __new__(cls, F, *gens, **args): """Compute a reduced Groebner basis for a system of polynomials. """ options.allowed_flags(args, ['polys', 'method']) try: polys, opt = parallel_poly_from_expr(F, *gens, **args) except PolificationFailed as exc: raise ComputationFailed('groebner', len(F), exc) from sympy.polys.rings import PolyRing ring = PolyRing(opt.gens, opt.domain, opt.order) polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly] G = _groebner(polys, ring, method=opt.method) G = [Poly._from_dict(g, opt) for g in G] return cls._new(G, opt) @classmethod def _new(cls, basis, options): obj = Basic.__new__(cls) obj._basis = tuple(basis) obj._options = options return obj @property def args(self): basis = (p.as_expr() for p in self._basis) return (Tuple(*basis), Tuple(*self._options.gens)) @property def exprs(self): return [poly.as_expr() for poly in self._basis] @property def polys(self): return list(self._basis) @property def gens(self): return self._options.gens @property def domain(self): return self._options.domain @property def order(self): return self._options.order def __len__(self): return len(self._basis) def __iter__(self): if self._options.polys: return iter(self.polys) else: return iter(self.exprs) def __getitem__(self, item): if self._options.polys: basis = self.polys else: basis = self.exprs return basis[item] def __hash__(self): return hash((self._basis, tuple(self._options.items()))) def __eq__(self, other): if isinstance(other, self.__class__): return self._basis == other._basis and self._options == other._options elif iterable(other): return self.polys == list(other) or self.exprs == list(other) else: return False def __ne__(self, other): return not self == other @property def is_zero_dimensional(self): """ Checks if the ideal generated by a Groebner basis is zero-dimensional. The algorithm checks if the set of monomials not divisible by the leading monomial of any element of ``F`` is bounded. References ========== David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and Algorithms, 3rd edition, p. 230 """ def single_var(monomial): return sum(map(bool, monomial)) == 1 exponents = Monomial([0]*len(self.gens)) order = self._options.order for poly in self.polys: monomial = poly.LM(order=order) if single_var(monomial): exponents *= monomial # If any element of the exponents vector is zero, then there's # a variable for which there's no degree bound and the ideal # generated by this Groebner basis isn't zero-dimensional. return all(exponents) def fglm(self, order): """ Convert a Groebner basis from one ordering to another. The FGLM algorithm converts reduced Groebner bases of zero-dimensional ideals from one ordering to another. This method is often used when it is infeasible to compute a Groebner basis with respect to a particular ordering directly. Examples ======== >>> from sympy.abc import x, y >>> from sympy import groebner >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] >>> G = groebner(F, x, y, order='grlex') >>> list(G.fglm('lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] >>> list(groebner(F, x, y, order='lex')) [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7] References ========== .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient Computation of Zero-dimensional Groebner Bases by Change of Ordering """ opt = self._options src_order = opt.order dst_order = monomial_key(order) if src_order == dst_order: return self if not self.is_zero_dimensional: raise NotImplementedError("Cannot convert Groebner bases of ideals with positive dimension") polys = list(self._basis) domain = opt.domain opt = opt.clone(dict( domain=domain.get_field(), order=dst_order, )) from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, src_order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) G = matrix_fglm(polys, _ring, dst_order) G = [Poly._from_dict(dict(g), opt) for g in G] if not domain.is_Field: G = [g.clear_denoms(convert=True)[1] for g in G] opt.domain = domain return self._new(G, opt) def reduce(self, expr, auto=True): """ Reduces a polynomial modulo a Groebner basis. Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``, computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r`` such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r`` is a completely reduced polynomial with respect to ``G``. Examples ======== >>> from sympy import groebner, expand >>> from sympy.abc import x, y >>> f = 2*x**4 - x**2 + y**3 + y**2 >>> G = groebner([x**3 - x, y**3 - y]) >>> G.reduce(f) ([2*x, 1], x**2 + y**2 + y) >>> Q, r = _ >>> expand(sum(q*g for q, g in zip(Q, G)) + r) 2*x**4 - x**2 + y**3 + y**2 >>> _ == f True """ poly = Poly._from_expr(expr, self._options) polys = [poly] + list(self._basis) opt = self._options domain = opt.domain retract = False if auto and domain.is_Ring and not domain.is_Field: opt = opt.clone(dict(domain=domain.get_field())) retract = True from sympy.polys.rings import xring _ring, _ = xring(opt.gens, opt.domain, opt.order) for i, poly in enumerate(polys): poly = poly.set_domain(opt.domain).rep.to_dict() polys[i] = _ring.from_dict(poly) Q, r = polys[0].div(polys[1:]) Q = [Poly._from_dict(dict(q), opt) for q in Q] r = Poly._from_dict(dict(r), opt) if retract: try: _Q, _r = [q.to_ring() for q in Q], r.to_ring() except CoercionFailed: pass else: Q, r = _Q, _r if not opt.polys: return [q.as_expr() for q in Q], r.as_expr() else: return Q, r def contains(self, poly): """ Check if ``poly`` belongs the ideal generated by ``self``. Examples ======== >>> from sympy import groebner >>> from sympy.abc import x, y >>> f = 2*x**3 + y**3 + 3*y >>> G = groebner([x**2 + y**2 - 1, x*y - 2]) >>> G.contains(f) True >>> G.contains(f + 1) False """ return self.reduce(poly)[1] == 0 @public def poly(expr, *gens, **args): """ Efficiently transform an expression into a polynomial. Examples ======== >>> from sympy import poly >>> from sympy.abc import x >>> poly(x*(x**2 + x - 1)**2) Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ') """ options.allowed_flags(args, []) def _poly(expr, opt): terms, poly_terms = [], [] for term in Add.make_args(expr): factors, poly_factors = [], [] for factor in Mul.make_args(term): if factor.is_Add: poly_factors.append(_poly(factor, opt)) elif factor.is_Pow and factor.base.is_Add and \ factor.exp.is_Integer and factor.exp >= 0: poly_factors.append( _poly(factor.base, opt).pow(factor.exp)) else: factors.append(factor) if not poly_factors: terms.append(term) else: product = poly_factors[0] for factor in poly_factors[1:]: product = product.mul(factor) if factors: factor = Mul(*factors) if factor.is_Number: product = product.mul(factor) else: product = product.mul(Poly._from_expr(factor, opt)) poly_terms.append(product) if not poly_terms: result = Poly._from_expr(expr, opt) else: result = poly_terms[0] for term in poly_terms[1:]: result = result.add(term) if terms: term = Add(*terms) if term.is_Number: result = result.add(term) else: result = result.add(Poly._from_expr(term, opt)) return result.reorder(*opt.get('gens', ()), **args) expr = sympify(expr) if expr.is_Poly: return Poly(expr, *gens, **args) if 'expand' not in args: args['expand'] = False opt = options.build_options(gens, args) return _poly(expr, opt)
c53071717b9997c3cce164ef35a00adb8100a2694ca2fb0b4321f7e11914af22
"""Polynomial manipulation algorithms and algebraic objects. """ __all__ = [ 'Poly', 'PurePoly', 'poly_from_expr', 'parallel_poly_from_expr', 'degree', 'total_degree', 'degree_list', 'LC', 'LM', 'LT', 'pdiv', 'prem', 'pquo', 'pexquo', 'div', 'rem', 'quo', 'exquo', 'half_gcdex', 'gcdex', 'invert', 'subresultants', 'resultant', 'discriminant', 'cofactors', 'gcd_list', 'gcd', 'lcm_list', 'lcm', 'terms_gcd', 'trunc', 'monic', 'content', 'primitive', 'compose', 'decompose', 'sturm', 'gff_list', 'gff', 'sqf_norm', 'sqf_part', 'sqf_list', 'sqf', 'factor_list', 'factor', 'intervals', 'refine_root', 'count_roots', 'real_roots', 'nroots', 'ground_roots', 'nth_power_roots_poly', 'cancel', 'reduced', 'groebner', 'is_zero_dimensional', 'GroebnerBasis', 'poly', 'symmetrize', 'horner', 'interpolate', 'rational_interpolate', 'viete', 'together', 'BasePolynomialError', 'ExactQuotientFailed', 'PolynomialDivisionFailed', 'OperationNotSupported', 'HeuristicGCDFailed', 'HomomorphismFailed', 'IsomorphismFailed', 'ExtraneousFactors', 'EvaluationFailed', 'RefinementFailed', 'CoercionFailed', 'NotInvertible', 'NotReversible', 'NotAlgebraic', 'DomainError', 'PolynomialError', 'UnificationFailed', 'GeneratorsError', 'GeneratorsNeeded', 'ComputationFailed', 'UnivariatePolynomialError', 'MultivariatePolynomialError', 'PolificationFailed', 'OptionError', 'FlagError', 'minpoly', 'minimal_polynomial', 'primitive_element', 'field_isomorphism', 'to_number_field', 'isolate', 'round_two', 'prime_decomp', 'prime_valuation', 'itermonomials', 'Monomial', 'lex', 'grlex', 'grevlex', 'ilex', 'igrlex', 'igrevlex', 'CRootOf', 'rootof', 'RootOf', 'ComplexRootOf', 'RootSum', 'roots', 'Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'FF_python', 'FF_gmpy', 'ZZ_python', 'ZZ_gmpy', 'QQ_python', 'QQ_gmpy', 'GF', 'FF', 'ZZ', 'QQ', 'ZZ_I', 'QQ_I', 'RR', 'CC', 'EX', 'EXRAW', 'construct_domain', 'swinnerton_dyer_poly', 'cyclotomic_poly', 'symmetric_poly', 'random_poly', 'interpolating_poly', 'jacobi_poly', 'chebyshevt_poly', 'chebyshevu_poly', 'hermite_poly', 'legendre_poly', 'laguerre_poly', 'apart', 'apart_list', 'assemble_partfrac_list', 'Options', 'ring', 'xring', 'vring', 'sring', 'field', 'xfield', 'vfield', 'sfield' ] from .polytools import (Poly, PurePoly, poly_from_expr, parallel_poly_from_expr, degree, total_degree, degree_list, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, cofactors, gcd_list, gcd, lcm_list, lcm, terms_gcd, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, is_zero_dimensional, GroebnerBasis, poly) from .polyfuncs import (symmetrize, horner, interpolate, rational_interpolate, viete) from .rationaltools import together from .polyerrors import (BasePolynomialError, ExactQuotientFailed, PolynomialDivisionFailed, OperationNotSupported, HeuristicGCDFailed, HomomorphismFailed, IsomorphismFailed, ExtraneousFactors, EvaluationFailed, RefinementFailed, CoercionFailed, NotInvertible, NotReversible, NotAlgebraic, DomainError, PolynomialError, UnificationFailed, GeneratorsError, GeneratorsNeeded, ComputationFailed, UnivariatePolynomialError, MultivariatePolynomialError, PolificationFailed, OptionError, FlagError) from .numberfields import (minpoly, minimal_polynomial, primitive_element, field_isomorphism, to_number_field, isolate, round_two, prime_decomp, prime_valuation) from .monomials import itermonomials, Monomial from .orderings import lex, grlex, grevlex, ilex, igrlex, igrevlex from .rootoftools import CRootOf, rootof, RootOf, ComplexRootOf, RootSum from .polyroots import roots from .domains import (Domain, FiniteField, IntegerRing, RationalField, RealField, ComplexField, PythonFiniteField, GMPYFiniteField, PythonIntegerRing, GMPYIntegerRing, PythonRational, GMPYRationalField, AlgebraicField, PolynomialRing, FractionField, ExpressionDomain, FF_python, FF_gmpy, ZZ_python, ZZ_gmpy, QQ_python, QQ_gmpy, GF, FF, ZZ, QQ, ZZ_I, QQ_I, RR, CC, EX, EXRAW) from .constructor import construct_domain from .specialpolys import (swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly) from .orthopolys import (jacobi_poly, chebyshevt_poly, chebyshevu_poly, hermite_poly, legendre_poly, laguerre_poly) from .partfrac import apart, apart_list, assemble_partfrac_list from .polyoptions import Options from .rings import ring, xring, vring, sring from .fields import field, xfield, vfield, sfield
ac6b61893b691f93974c5a2fcb4609a6b57d0be474a7d0d22b25943e6aeab9df
"""Dense univariate polynomials with coefficients in Galois fields. """ from sympy.core.random import uniform from math import ceil as _ceil, sqrt as _sqrt from sympy.core.mul import prod from sympy.external.gmpy import SYMPY_INTS from sympy.ntheory import factorint from sympy.polys.polyconfig import query from sympy.polys.polyerrors import ExactQuotientFailed from sympy.polys.polyutils import _sort_factors def gf_crt(U, M, K=None): """ Chinese Remainder Theorem. Given a set of integer residues ``u_0,...,u_n`` and a set of co-prime integer moduli ``m_0,...,m_n``, returns an integer ``u``, such that ``u = u_i mod m_i`` for ``i = ``0,...,n``. Examples ======== Consider a set of residues ``U = [49, 76, 65]`` and a set of moduli ``M = [99, 97, 95]``. Then we have:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_crt >>> gf_crt([49, 76, 65], [99, 97, 95], ZZ) 639985 This is the correct result because:: >>> [639985 % m for m in [99, 97, 95]] [49, 76, 65] Note: this is a low-level routine with no error checking. See Also ======== sympy.ntheory.modular.crt : a higher level crt routine sympy.ntheory.modular.solve_congruence """ p = prod(M, start=K.one) v = K.zero for u, m in zip(U, M): e = p // m s, _, _ = K.gcdex(e, m) v += e*(u*s % m) return v % p def gf_crt1(M, K): """ First part of the Chinese Remainder Theorem. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_crt1 >>> gf_crt1([99, 97, 95], ZZ) (912285, [9215, 9405, 9603], [62, 24, 12]) """ E, S = [], [] p = prod(M, start=K.one) for m in M: E.append(p // m) S.append(K.gcdex(E[-1], m)[0] % m) return p, E, S def gf_crt2(U, M, p, E, S, K): """ Second part of the Chinese Remainder Theorem. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_crt2 >>> U = [49, 76, 65] >>> M = [99, 97, 95] >>> p = 912285 >>> E = [9215, 9405, 9603] >>> S = [62, 24, 12] >>> gf_crt2(U, M, p, E, S, ZZ) 639985 """ v = K.zero for u, m, e, s in zip(U, M, E, S): v += e*(u*s % m) return v % p def gf_int(a, p): """ Coerce ``a mod p`` to an integer in the range ``[-p/2, p/2]``. Examples ======== >>> from sympy.polys.galoistools import gf_int >>> gf_int(2, 7) 2 >>> gf_int(5, 7) -2 """ if a <= p // 2: return a else: return a - p def gf_degree(f): """ Return the leading degree of ``f``. Examples ======== >>> from sympy.polys.galoistools import gf_degree >>> gf_degree([1, 1, 2, 0]) 3 >>> gf_degree([]) -1 """ return len(f) - 1 def gf_LC(f, K): """ Return the leading coefficient of ``f``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_LC >>> gf_LC([3, 0, 1], ZZ) 3 """ if not f: return K.zero else: return f[0] def gf_TC(f, K): """ Return the trailing coefficient of ``f``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_TC >>> gf_TC([3, 0, 1], ZZ) 1 """ if not f: return K.zero else: return f[-1] def gf_strip(f): """ Remove leading zeros from ``f``. Examples ======== >>> from sympy.polys.galoistools import gf_strip >>> gf_strip([0, 0, 0, 3, 0, 1]) [3, 0, 1] """ if not f or f[0]: return f k = 0 for coeff in f: if coeff: break else: k += 1 return f[k:] def gf_trunc(f, p): """ Reduce all coefficients modulo ``p``. Examples ======== >>> from sympy.polys.galoistools import gf_trunc >>> gf_trunc([7, -2, 3], 5) [2, 3, 3] """ return gf_strip([ a % p for a in f ]) def gf_normal(f, p, K): """ Normalize all coefficients in ``K``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_normal >>> gf_normal([5, 10, 21, -3], 5, ZZ) [1, 2] """ return gf_trunc(list(map(K, f)), p) def gf_from_dict(f, p, K): """ Create a ``GF(p)[x]`` polynomial from a dict. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_from_dict >>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ) [4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4] """ n, h = max(f.keys()), [] if isinstance(n, SYMPY_INTS): for k in range(n, -1, -1): h.append(f.get(k, K.zero) % p) else: (n,) = n for k in range(n, -1, -1): h.append(f.get((k,), K.zero) % p) return gf_trunc(h, p) def gf_to_dict(f, p, symmetric=True): """ Convert a ``GF(p)[x]`` polynomial to a dict. Examples ======== >>> from sympy.polys.galoistools import gf_to_dict >>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5) {0: -1, 4: -2, 10: -1} >>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False) {0: 4, 4: 3, 10: 4} """ n, result = gf_degree(f), {} for k in range(0, n + 1): if symmetric: a = gf_int(f[n - k], p) else: a = f[n - k] if a: result[k] = a return result def gf_from_int_poly(f, p): """ Create a ``GF(p)[x]`` polynomial from ``Z[x]``. Examples ======== >>> from sympy.polys.galoistools import gf_from_int_poly >>> gf_from_int_poly([7, -2, 3], 5) [2, 3, 3] """ return gf_trunc(f, p) def gf_to_int_poly(f, p, symmetric=True): """ Convert a ``GF(p)[x]`` polynomial to ``Z[x]``. Examples ======== >>> from sympy.polys.galoistools import gf_to_int_poly >>> gf_to_int_poly([2, 3, 3], 5) [2, -2, -2] >>> gf_to_int_poly([2, 3, 3], 5, symmetric=False) [2, 3, 3] """ if symmetric: return [ gf_int(c, p) for c in f ] else: return f def gf_neg(f, p, K): """ Negate a polynomial in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_neg >>> gf_neg([3, 2, 1, 0], 5, ZZ) [2, 3, 4, 0] """ return [ -coeff % p for coeff in f ] def gf_add_ground(f, a, p, K): """ Compute ``f + a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_add_ground >>> gf_add_ground([3, 2, 4], 2, 5, ZZ) [3, 2, 1] """ if not f: a = a % p else: a = (f[-1] + a) % p if len(f) > 1: return f[:-1] + [a] if not a: return [] else: return [a] def gf_sub_ground(f, a, p, K): """ Compute ``f - a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sub_ground >>> gf_sub_ground([3, 2, 4], 2, 5, ZZ) [3, 2, 2] """ if not f: a = -a % p else: a = (f[-1] - a) % p if len(f) > 1: return f[:-1] + [a] if not a: return [] else: return [a] def gf_mul_ground(f, a, p, K): """ Compute ``f * a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_mul_ground >>> gf_mul_ground([3, 2, 4], 2, 5, ZZ) [1, 4, 3] """ if not a: return [] else: return [ (a*b) % p for b in f ] def gf_quo_ground(f, a, p, K): """ Compute ``f/a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_quo_ground >>> gf_quo_ground(ZZ.map([3, 2, 4]), ZZ(2), 5, ZZ) [4, 1, 2] """ return gf_mul_ground(f, K.invert(a, p), p, K) def gf_add(f, g, p, K): """ Add polynomials in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_add >>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ) [4, 1] """ if not f: return g if not g: return f df = gf_degree(f) dg = gf_degree(g) if df == dg: return gf_strip([ (a + b) % p for a, b in zip(f, g) ]) else: k = abs(df - dg) if df > dg: h, f = f[:k], f[k:] else: h, g = g[:k], g[k:] return h + [ (a + b) % p for a, b in zip(f, g) ] def gf_sub(f, g, p, K): """ Subtract polynomials in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sub >>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ) [1, 0, 2] """ if not g: return f if not f: return gf_neg(g, p, K) df = gf_degree(f) dg = gf_degree(g) if df == dg: return gf_strip([ (a - b) % p for a, b in zip(f, g) ]) else: k = abs(df - dg) if df > dg: h, f = f[:k], f[k:] else: h, g = gf_neg(g[:k], p, K), g[k:] return h + [ (a - b) % p for a, b in zip(f, g) ] def gf_mul(f, g, p, K): """ Multiply polynomials in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_mul >>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ) [1, 0, 3, 2, 3] """ df = gf_degree(f) dg = gf_degree(g) dh = df + dg h = [0]*(dh + 1) for i in range(0, dh + 1): coeff = K.zero for j in range(max(0, i - dg), min(i, df) + 1): coeff += f[j]*g[i - j] h[i] = coeff % p return gf_strip(h) def gf_sqr(f, p, K): """ Square polynomials in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sqr >>> gf_sqr([3, 2, 4], 5, ZZ) [4, 2, 3, 1, 1] """ df = gf_degree(f) dh = 2*df h = [0]*(dh + 1) for i in range(0, dh + 1): coeff = K.zero jmin = max(0, i - df) jmax = min(i, df) n = jmax - jmin + 1 jmax = jmin + n // 2 - 1 for j in range(jmin, jmax + 1): coeff += f[j]*f[i - j] coeff += coeff if n & 1: elem = f[jmax + 1] coeff += elem**2 h[i] = coeff % p return gf_strip(h) def gf_add_mul(f, g, h, p, K): """ Returns ``f + g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_add_mul >>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ) [2, 3, 2, 2] """ return gf_add(f, gf_mul(g, h, p, K), p, K) def gf_sub_mul(f, g, h, p, K): """ Compute ``f - g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sub_mul >>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ) [3, 3, 2, 1] """ return gf_sub(f, gf_mul(g, h, p, K), p, K) def gf_expand(F, p, K): """ Expand results of :func:`~.factor` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_expand >>> gf_expand([([3, 2, 4], 1), ([2, 2], 2), ([3, 1], 3)], 5, ZZ) [4, 3, 0, 3, 0, 1, 4, 1] """ if isinstance(F, tuple): lc, F = F else: lc = K.one g = [lc] for f, k in F: f = gf_pow(f, k, p, K) g = gf_mul(g, f, p, K) return g def gf_div(f, g, p, K): """ Division with remainder in ``GF(p)[x]``. Given univariate polynomials ``f`` and ``g`` with coefficients in a finite field with ``p`` elements, returns polynomials ``q`` and ``r`` (quotient and remainder) such that ``f = q*g + r``. Consider polynomials ``x**3 + x + 1`` and ``x**2 + x`` in GF(2):: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_div, gf_add_mul >>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) ([1, 1], [1]) As result we obtained quotient ``x + 1`` and remainder ``1``, thus:: >>> gf_add_mul(ZZ.map([1]), ZZ.map([1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) [1, 0, 1, 1] References ========== .. [1] [Monagan93]_ .. [2] [Gathen99]_ """ df = gf_degree(f) dg = gf_degree(g) if not g: raise ZeroDivisionError("polynomial division") elif df < dg: return [], f inv = K.invert(g[0], p) h, dq, dr = list(f), df - dg, dg - 1 for i in range(0, df + 1): coeff = h[i] for j in range(max(0, dg - i), min(df - i, dr) + 1): coeff -= h[i + j - dg] * g[dg - j] if i <= dq: coeff *= inv h[i] = coeff % p return h[:dq + 1], gf_strip(h[dq + 1:]) def gf_rem(f, g, p, K): """ Compute polynomial remainder in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_rem >>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) [1] """ return gf_div(f, g, p, K)[1] def gf_quo(f, g, p, K): """ Compute exact quotient in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_quo >>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) [1, 1] >>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ) [3, 2, 4] """ df = gf_degree(f) dg = gf_degree(g) if not g: raise ZeroDivisionError("polynomial division") elif df < dg: return [] inv = K.invert(g[0], p) h, dq, dr = f[:], df - dg, dg - 1 for i in range(0, dq + 1): coeff = h[i] for j in range(max(0, dg - i), min(df - i, dr) + 1): coeff -= h[i + j - dg] * g[dg - j] h[i] = (coeff * inv) % p return h[:dq + 1] def gf_exquo(f, g, p, K): """ Compute polynomial quotient in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_exquo >>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ) [3, 2, 4] >>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) Traceback (most recent call last): ... ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1] """ q, r = gf_div(f, g, p, K) if not r: return q else: raise ExactQuotientFailed(f, g) def gf_lshift(f, n, K): """ Efficiently multiply ``f`` by ``x**n``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_lshift >>> gf_lshift([3, 2, 4], 4, ZZ) [3, 2, 4, 0, 0, 0, 0] """ if not f: return f else: return f + [K.zero]*n def gf_rshift(f, n, K): """ Efficiently divide ``f`` by ``x**n``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_rshift >>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ) ([1, 2], [3, 4, 0]) """ if not n: return f, [] else: return f[:-n], f[-n:] def gf_pow(f, n, p, K): """ Compute ``f**n`` in ``GF(p)[x]`` using repeated squaring. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_pow >>> gf_pow([3, 2, 4], 3, 5, ZZ) [2, 4, 4, 2, 2, 1, 4] """ if not n: return [K.one] elif n == 1: return f elif n == 2: return gf_sqr(f, p, K) h = [K.one] while True: if n & 1: h = gf_mul(h, f, p, K) n -= 1 n >>= 1 if not n: break f = gf_sqr(f, p, K) return h def gf_frobenius_monomial_base(g, p, K): """ return the list of ``x**(i*p) mod g in Z_p`` for ``i = 0, .., n - 1`` where ``n = gf_degree(g)`` Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_frobenius_monomial_base >>> g = ZZ.map([1, 0, 2, 1]) >>> gf_frobenius_monomial_base(g, 5, ZZ) [[1], [4, 4, 2], [1, 2]] """ n = gf_degree(g) if n == 0: return [] b = [0]*n b[0] = [1] if p < n: for i in range(1, n): mon = gf_lshift(b[i - 1], p, K) b[i] = gf_rem(mon, g, p, K) elif n > 1: b[1] = gf_pow_mod([K.one, K.zero], p, g, p, K) for i in range(2, n): b[i] = gf_mul(b[i - 1], b[1], p, K) b[i] = gf_rem(b[i], g, p, K) return b def gf_frobenius_map(f, g, b, p, K): """ compute gf_pow_mod(f, p, g, p, K) using the Frobenius map Parameters ========== f, g : polynomials in ``GF(p)[x]`` b : frobenius monomial base p : prime number K : domain Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_frobenius_monomial_base, gf_frobenius_map >>> f = ZZ.map([2, 1, 0, 1]) >>> g = ZZ.map([1, 0, 2, 1]) >>> p = 5 >>> b = gf_frobenius_monomial_base(g, p, ZZ) >>> r = gf_frobenius_map(f, g, b, p, ZZ) >>> gf_frobenius_map(f, g, b, p, ZZ) [4, 0, 3] """ m = gf_degree(g) if gf_degree(f) >= m: f = gf_rem(f, g, p, K) if not f: return [] n = gf_degree(f) sf = [f[-1]] for i in range(1, n + 1): v = gf_mul_ground(b[i], f[n - i], p, K) sf = gf_add(sf, v, p, K) return sf def _gf_pow_pnm1d2(f, n, g, b, p, K): """ utility function for ``gf_edf_zassenhaus`` Compute ``f**((p**n - 1) // 2)`` in ``GF(p)[x]/(g)`` ``f**((p**n - 1) // 2) = (f*f**p*...*f**(p**n - 1))**((p - 1) // 2)`` """ f = gf_rem(f, g, p, K) h = f r = f for i in range(1, n): h = gf_frobenius_map(h, g, b, p, K) r = gf_mul(r, h, p, K) r = gf_rem(r, g, p, K) res = gf_pow_mod(r, (p - 1)//2, g, p, K) return res def gf_pow_mod(f, n, g, p, K): """ Compute ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring. Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder of ``f**n`` from division by ``g``, using the repeated squaring algorithm. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_pow_mod >>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ) [] References ========== .. [1] [Gathen99]_ """ if not n: return [K.one] elif n == 1: return gf_rem(f, g, p, K) elif n == 2: return gf_rem(gf_sqr(f, p, K), g, p, K) h = [K.one] while True: if n & 1: h = gf_mul(h, f, p, K) h = gf_rem(h, g, p, K) n -= 1 n >>= 1 if not n: break f = gf_sqr(f, p, K) f = gf_rem(f, g, p, K) return h def gf_gcd(f, g, p, K): """ Euclidean Algorithm in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_gcd >>> gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) [1, 3] """ while g: f, g = g, gf_rem(f, g, p, K) return gf_monic(f, p, K)[1] def gf_lcm(f, g, p, K): """ Compute polynomial LCM in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_lcm >>> gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) [1, 2, 0, 4] """ if not f or not g: return [] h = gf_quo(gf_mul(f, g, p, K), gf_gcd(f, g, p, K), p, K) return gf_monic(h, p, K)[1] def gf_cofactors(f, g, p, K): """ Compute polynomial GCD and cofactors in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_cofactors >>> gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) ([1, 3], [3, 3], [2, 1]) """ if not f and not g: return ([], [], []) h = gf_gcd(f, g, p, K) return (h, gf_quo(f, h, p, K), gf_quo(g, h, p, K)) def gf_gcdex(f, g, p, K): """ Extended Euclidean Algorithm in ``GF(p)[x]``. Given polynomials ``f`` and ``g`` in ``GF(p)[x]``, computes polynomials ``s``, ``t`` and ``h``, such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. The typical application of EEA is solving polynomial diophantine equations. Consider polynomials ``f = (x + 7) (x + 1)``, ``g = (x + 7) (x**2 + 1)`` in ``GF(11)[x]``. Application of Extended Euclidean Algorithm gives:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add >>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) >>> s, t, g ([5, 6], [6], [1, 7]) As result we obtained polynomials ``s = 5*x + 6`` and ``t = 6``, and additionally ``gcd(f, g) = x + 7``. This is correct because:: >>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ) >>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ) >>> gf_add(S, T, 11, ZZ) == [1, 7] True References ========== .. [1] [Gathen99]_ """ if not (f or g): return [K.one], [], [] p0, r0 = gf_monic(f, p, K) p1, r1 = gf_monic(g, p, K) if not f: return [], [K.invert(p1, p)], r1 if not g: return [K.invert(p0, p)], [], r0 s0, s1 = [K.invert(p0, p)], [] t0, t1 = [], [K.invert(p1, p)] while True: Q, R = gf_div(r0, r1, p, K) if not R: break (lc, r1), r0 = gf_monic(R, p, K), r1 inv = K.invert(lc, p) s = gf_sub_mul(s0, s1, Q, p, K) t = gf_sub_mul(t0, t1, Q, p, K) s1, s0 = gf_mul_ground(s, inv, p, K), s1 t1, t0 = gf_mul_ground(t, inv, p, K), t1 return s1, t1, r1 def gf_monic(f, p, K): """ Compute LC and a monic polynomial in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_monic >>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ) (3, [1, 4, 3]) """ if not f: return K.zero, [] else: lc = f[0] if K.is_one(lc): return lc, list(f) else: return lc, gf_quo_ground(f, lc, p, K) def gf_diff(f, p, K): """ Differentiate polynomial in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_diff >>> gf_diff([3, 2, 4], 5, ZZ) [1, 2] """ df = gf_degree(f) h, n = [K.zero]*df, df for coeff in f[:-1]: coeff *= K(n) coeff %= p if coeff: h[df - n] = coeff n -= 1 return gf_strip(h) def gf_eval(f, a, p, K): """ Evaluate ``f(a)`` in ``GF(p)`` using Horner scheme. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_eval >>> gf_eval([3, 2, 4], 2, 5, ZZ) 0 """ result = K.zero for c in f: result *= a result += c result %= p return result def gf_multi_eval(f, A, p, K): """ Evaluate ``f(a)`` for ``a`` in ``[a_1, ..., a_n]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_multi_eval >>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ) [4, 4, 0, 2, 0] """ return [ gf_eval(f, a, p, K) for a in A ] def gf_compose(f, g, p, K): """ Compute polynomial composition ``f(g)`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_compose >>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ) [2, 4, 0, 3, 0] """ if len(g) <= 1: return gf_strip([gf_eval(f, gf_LC(g, K), p, K)]) if not f: return [] h = [f[0]] for c in f[1:]: h = gf_mul(h, g, p, K) h = gf_add_ground(h, c, p, K) return h def gf_compose_mod(g, h, f, p, K): """ Compute polynomial composition ``g(h)`` in ``GF(p)[x]/(f)``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_compose_mod >>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), 5, ZZ) [4] """ if not g: return [] comp = [g[0]] for a in g[1:]: comp = gf_mul(comp, h, p, K) comp = gf_add_ground(comp, a, p, K) comp = gf_rem(comp, f, p, K) return comp def gf_trace_map(a, b, c, n, f, p, K): """ Compute polynomial trace map in ``GF(p)[x]/(f)``. Given a polynomial ``f`` in ``GF(p)[x]``, polynomials ``a``, ``b``, ``c`` in the quotient ring ``GF(p)[x]/(f)`` such that ``b = c**t (mod f)`` for some positive power ``t`` of ``p``, and a positive integer ``n``, returns a mapping:: a -> a**t**n, a + a**t + a**t**2 + ... + a**t**n (mod f) In factorization context, ``b = x**p mod f`` and ``c = x mod f``. This way we can efficiently compute trace polynomials in equal degree factorization routine, much faster than with other methods, like iterated Frobenius algorithm, for large degrees. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_trace_map >>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ) ([1, 3], [1, 3]) References ========== .. [1] [Gathen92]_ """ u = gf_compose_mod(a, b, f, p, K) v = b if n & 1: U = gf_add(a, u, p, K) V = b else: U = a V = c n >>= 1 while n: u = gf_add(u, gf_compose_mod(u, v, f, p, K), p, K) v = gf_compose_mod(v, v, f, p, K) if n & 1: U = gf_add(U, gf_compose_mod(u, V, f, p, K), p, K) V = gf_compose_mod(v, V, f, p, K) n >>= 1 return gf_compose_mod(a, V, f, p, K), U def _gf_trace_map(f, n, g, b, p, K): """ utility for ``gf_edf_shoup`` """ f = gf_rem(f, g, p, K) h = f r = f for i in range(1, n): h = gf_frobenius_map(h, g, b, p, K) r = gf_add(r, h, p, K) r = gf_rem(r, g, p, K) return r def gf_random(n, p, K): """ Generate a random polynomial in ``GF(p)[x]`` of degree ``n``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_random >>> gf_random(10, 5, ZZ) #doctest: +SKIP [1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2] """ return [K.one] + [ K(int(uniform(0, p))) for i in range(0, n) ] def gf_irreducible(n, p, K): """ Generate random irreducible polynomial of degree ``n`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_irreducible >>> gf_irreducible(10, 5, ZZ) #doctest: +SKIP [1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4] """ while True: f = gf_random(n, p, K) if gf_irreducible_p(f, p, K): return f def gf_irred_p_ben_or(f, p, K): """ Ben-Or's polynomial irreducibility test over finite fields. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_irred_p_ben_or >>> gf_irred_p_ben_or(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) True >>> gf_irred_p_ben_or(ZZ.map([3, 2, 4]), 5, ZZ) False """ n = gf_degree(f) if n <= 1: return True _, f = gf_monic(f, p, K) if n < 5: H = h = gf_pow_mod([K.one, K.zero], p, f, p, K) for i in range(0, n//2): g = gf_sub(h, [K.one, K.zero], p, K) if gf_gcd(f, g, p, K) == [K.one]: h = gf_compose_mod(h, H, f, p, K) else: return False else: b = gf_frobenius_monomial_base(f, p, K) H = h = gf_frobenius_map([K.one, K.zero], f, b, p, K) for i in range(0, n//2): g = gf_sub(h, [K.one, K.zero], p, K) if gf_gcd(f, g, p, K) == [K.one]: h = gf_frobenius_map(h, f, b, p, K) else: return False return True def gf_irred_p_rabin(f, p, K): """ Rabin's polynomial irreducibility test over finite fields. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_irred_p_rabin >>> gf_irred_p_rabin(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) True >>> gf_irred_p_rabin(ZZ.map([3, 2, 4]), 5, ZZ) False """ n = gf_degree(f) if n <= 1: return True _, f = gf_monic(f, p, K) x = [K.one, K.zero] indices = { n//d for d in factorint(n) } b = gf_frobenius_monomial_base(f, p, K) h = b[1] for i in range(1, n): if i in indices: g = gf_sub(h, x, p, K) if gf_gcd(f, g, p, K) != [K.one]: return False h = gf_frobenius_map(h, f, b, p, K) return h == x _irred_methods = { 'ben-or': gf_irred_p_ben_or, 'rabin': gf_irred_p_rabin, } def gf_irreducible_p(f, p, K): """ Test irreducibility of a polynomial ``f`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_irreducible_p >>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) True >>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ) False """ method = query('GF_IRRED_METHOD') if method is not None: irred = _irred_methods[method](f, p, K) else: irred = gf_irred_p_rabin(f, p, K) return irred def gf_sqf_p(f, p, K): """ Return ``True`` if ``f`` is square-free in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sqf_p >>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ) True >>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ) False """ _, f = gf_monic(f, p, K) if not f: return True else: return gf_gcd(f, gf_diff(f, p, K), p, K) == [K.one] def gf_sqf_part(f, p, K): """ Return square-free part of a ``GF(p)[x]`` polynomial. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_sqf_part >>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ) [1, 4, 3] """ _, sqf = gf_sqf_list(f, p, K) g = [K.one] for f, _ in sqf: g = gf_mul(g, f, p, K) return g def gf_sqf_list(f, p, K, all=False): """ Return the square-free decomposition of a ``GF(p)[x]`` polynomial. Given a polynomial ``f`` in ``GF(p)[x]``, returns the leading coefficient of ``f`` and a square-free decomposition ``f_1**e_1 f_2**e_2 ... f_k**e_k`` such that all ``f_i`` are monic polynomials and ``(f_i, f_j)`` for ``i != j`` are co-prime and ``e_1 ... e_k`` are given in increasing order. All trivial terms (i.e. ``f_i = 1``) aren't included in the output. Consider polynomial ``f = x**11 + 1`` over ``GF(11)[x]``:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import ( ... gf_from_dict, gf_diff, gf_sqf_list, gf_pow, ... ) ... # doctest: +NORMALIZE_WHITESPACE >>> f = gf_from_dict({11: ZZ(1), 0: ZZ(1)}, 11, ZZ) Note that ``f'(x) = 0``:: >>> gf_diff(f, 11, ZZ) [] This phenomenon doesn't happen in characteristic zero. However we can still compute square-free decomposition of ``f`` using ``gf_sqf()``:: >>> gf_sqf_list(f, 11, ZZ) (1, [([1, 1], 11)]) We obtained factorization ``f = (x + 1)**11``. This is correct because:: >>> gf_pow([1, 1], 11, 11, ZZ) == f True References ========== .. [1] [Geddes92]_ """ n, sqf, factors, r = 1, False, [], int(p) lc, f = gf_monic(f, p, K) if gf_degree(f) < 1: return lc, [] while True: F = gf_diff(f, p, K) if F != []: g = gf_gcd(f, F, p, K) h = gf_quo(f, g, p, K) i = 1 while h != [K.one]: G = gf_gcd(g, h, p, K) H = gf_quo(h, G, p, K) if gf_degree(H) > 0: factors.append((H, i*n)) g, h, i = gf_quo(g, G, p, K), G, i + 1 if g == [K.one]: sqf = True else: f = g if not sqf: d = gf_degree(f) // r for i in range(0, d + 1): f[i] = f[i*r] f, n = f[:d + 1], n*r else: break if all: raise ValueError("'all=True' is not supported yet") return lc, factors def gf_Qmatrix(f, p, K): """ Calculate Berlekamp's ``Q`` matrix. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_Qmatrix >>> gf_Qmatrix([3, 2, 4], 5, ZZ) [[1, 0], [3, 4]] >>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ) [[1, 0, 0, 0], [0, 4, 0, 0], [0, 0, 1, 0], [0, 0, 0, 4]] """ n, r = gf_degree(f), int(p) q = [K.one] + [K.zero]*(n - 1) Q = [list(q)] + [[]]*(n - 1) for i in range(1, (n - 1)*r + 1): qq, c = [(-q[-1]*f[-1]) % p], q[-1] for j in range(1, n): qq.append((q[j - 1] - c*f[-j - 1]) % p) if not (i % r): Q[i//r] = list(qq) q = qq return Q def gf_Qbasis(Q, p, K): """ Compute a basis of the kernel of ``Q``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis >>> gf_Qbasis(gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ), 5, ZZ) [[1, 0, 0, 0], [0, 0, 1, 0]] >>> gf_Qbasis(gf_Qmatrix([3, 2, 4], 5, ZZ), 5, ZZ) [[1, 0]] """ Q, n = [ list(q) for q in Q ], len(Q) for k in range(0, n): Q[k][k] = (Q[k][k] - K.one) % p for k in range(0, n): for i in range(k, n): if Q[k][i]: break else: continue inv = K.invert(Q[k][i], p) for j in range(0, n): Q[j][i] = (Q[j][i]*inv) % p for j in range(0, n): t = Q[j][k] Q[j][k] = Q[j][i] Q[j][i] = t for i in range(0, n): if i != k: q = Q[k][i] for j in range(0, n): Q[j][i] = (Q[j][i] - Q[j][k]*q) % p for i in range(0, n): for j in range(0, n): if i == j: Q[i][j] = (K.one - Q[i][j]) % p else: Q[i][j] = (-Q[i][j]) % p basis = [] for q in Q: if any(q): basis.append(q) return basis def gf_berlekamp(f, p, K): """ Factor a square-free ``f`` in ``GF(p)[x]`` for small ``p``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_berlekamp >>> gf_berlekamp([1, 0, 0, 0, 1], 5, ZZ) [[1, 0, 2], [1, 0, 3]] """ Q = gf_Qmatrix(f, p, K) V = gf_Qbasis(Q, p, K) for i, v in enumerate(V): V[i] = gf_strip(list(reversed(v))) factors = [f] for k in range(1, len(V)): for f in list(factors): s = K.zero while s < p: g = gf_sub_ground(V[k], s, p, K) h = gf_gcd(f, g, p, K) if h != [K.one] and h != f: factors.remove(f) f = gf_quo(f, h, p, K) factors.extend([f, h]) if len(factors) == len(V): return _sort_factors(factors, multiple=False) s += K.one return _sort_factors(factors, multiple=False) def gf_ddf_zassenhaus(f, p, K): """ Cantor-Zassenhaus: Deterministic Distinct Degree Factorization Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes partial distinct degree factorization ``f_1 ... f_d`` of ``f`` where ``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0`` is an argument to the equal degree factorization routine. Consider the polynomial ``x**15 - 1`` in ``GF(11)[x]``:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_from_dict >>> f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ) Distinct degree factorization gives:: >>> from sympy.polys.galoistools import gf_ddf_zassenhaus >>> gf_ddf_zassenhaus(f, 11, ZZ) [([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)] which means ``x**15 - 1 = (x**5 - 1) (x**10 + x**5 + 1)``. To obtain factorization into irreducibles, use equal degree factorization procedure (EDF) with each of the factors. References ========== .. [1] [Gathen99]_ .. [2] [Geddes92]_ """ i, g, factors = 1, [K.one, K.zero], [] b = gf_frobenius_monomial_base(f, p, K) while 2*i <= gf_degree(f): g = gf_frobenius_map(g, f, b, p, K) h = gf_gcd(f, gf_sub(g, [K.one, K.zero], p, K), p, K) if h != [K.one]: factors.append((h, i)) f = gf_quo(f, h, p, K) g = gf_rem(g, f, p, K) b = gf_frobenius_monomial_base(f, p, K) i += 1 if f != [K.one]: return factors + [(f, gf_degree(f))] else: return factors def gf_edf_zassenhaus(f, n, p, K): """ Cantor-Zassenhaus: Probabilistic Equal Degree Factorization Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and an integer ``n``, such that ``n`` divides ``deg(f)``, returns all irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``. EDF procedure gives complete factorization over Galois fields. Consider the square-free polynomial ``f = x**3 + x**2 + x + 1`` in ``GF(5)[x]``. Let's compute its irreducible factors of degree one:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_edf_zassenhaus >>> gf_edf_zassenhaus([1,1,1,1], 1, 5, ZZ) [[1, 1], [1, 2], [1, 3]] References ========== .. [1] [Gathen99]_ .. [2] [Geddes92]_ """ factors = [f] if gf_degree(f) <= n: return factors N = gf_degree(f) // n if p != 2: b = gf_frobenius_monomial_base(f, p, K) while len(factors) < N: r = gf_random(2*n - 1, p, K) if p == 2: h = r for i in range(0, 2**(n*N - 1)): r = gf_pow_mod(r, 2, f, p, K) h = gf_add(h, r, p, K) g = gf_gcd(f, h, p, K) else: h = _gf_pow_pnm1d2(r, n, f, b, p, K) g = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K) if g != [K.one] and g != f: factors = gf_edf_zassenhaus(g, n, p, K) \ + gf_edf_zassenhaus(gf_quo(f, g, p, K), n, p, K) return _sort_factors(factors, multiple=False) def gf_ddf_shoup(f, p, K): """ Kaltofen-Shoup: Deterministic Distinct Degree Factorization Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes partial distinct degree factorization ``f_1,...,f_d`` of ``f`` where ``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0`` is an argument to the equal degree factorization routine. This algorithm is an improved version of Zassenhaus algorithm for large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``). Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_ddf_shoup, gf_from_dict >>> f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ) >>> gf_ddf_shoup(f, 3, ZZ) [([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)] References ========== .. [1] [Kaltofen98]_ .. [2] [Shoup95]_ .. [3] [Gathen92]_ """ n = gf_degree(f) k = int(_ceil(_sqrt(n//2))) b = gf_frobenius_monomial_base(f, p, K) h = gf_frobenius_map([K.one, K.zero], f, b, p, K) # U[i] = x**(p**i) U = [[K.one, K.zero], h] + [K.zero]*(k - 1) for i in range(2, k + 1): U[i] = gf_frobenius_map(U[i-1], f, b, p, K) h, U = U[k], U[:k] # V[i] = x**(p**(k*(i+1))) V = [h] + [K.zero]*(k - 1) for i in range(1, k): V[i] = gf_compose_mod(V[i - 1], h, f, p, K) factors = [] for i, v in enumerate(V): h, j = [K.one], k - 1 for u in U: g = gf_sub(v, u, p, K) h = gf_mul(h, g, p, K) h = gf_rem(h, f, p, K) g = gf_gcd(f, h, p, K) f = gf_quo(f, g, p, K) for u in reversed(U): h = gf_sub(v, u, p, K) F = gf_gcd(g, h, p, K) if F != [K.one]: factors.append((F, k*(i + 1) - j)) g, j = gf_quo(g, F, p, K), j - 1 if f != [K.one]: factors.append((f, gf_degree(f))) return factors def gf_edf_shoup(f, n, p, K): """ Gathen-Shoup: Probabilistic Equal Degree Factorization Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and integer ``n`` such that ``n`` divides ``deg(f)``, returns all irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``. This is a complete factorization over Galois fields. This algorithm is an improved version of Zassenhaus algorithm for large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``). Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_edf_shoup >>> gf_edf_shoup(ZZ.map([1, 2837, 2277]), 1, 2917, ZZ) [[1, 852], [1, 1985]] References ========== .. [1] [Shoup91]_ .. [2] [Gathen92]_ """ N, q = gf_degree(f), int(p) if not N: return [] if N <= n: return [f] factors, x = [f], [K.one, K.zero] r = gf_random(N - 1, p, K) if p == 2: h = gf_pow_mod(x, q, f, p, K) H = gf_trace_map(r, h, x, n - 1, f, p, K)[1] h1 = gf_gcd(f, H, p, K) h2 = gf_quo(f, h1, p, K) factors = gf_edf_shoup(h1, n, p, K) \ + gf_edf_shoup(h2, n, p, K) else: b = gf_frobenius_monomial_base(f, p, K) H = _gf_trace_map(r, n, f, b, p, K) h = gf_pow_mod(H, (q - 1)//2, f, p, K) h1 = gf_gcd(f, h, p, K) h2 = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K) h3 = gf_quo(f, gf_mul(h1, h2, p, K), p, K) factors = gf_edf_shoup(h1, n, p, K) \ + gf_edf_shoup(h2, n, p, K) \ + gf_edf_shoup(h3, n, p, K) return _sort_factors(factors, multiple=False) def gf_zassenhaus(f, p, K): """ Factor a square-free ``f`` in ``GF(p)[x]`` for medium ``p``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_zassenhaus >>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ) [[1, 1], [1, 3]] """ factors = [] for factor, n in gf_ddf_zassenhaus(f, p, K): factors += gf_edf_zassenhaus(factor, n, p, K) return _sort_factors(factors, multiple=False) def gf_shoup(f, p, K): """ Factor a square-free ``f`` in ``GF(p)[x]`` for large ``p``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_shoup >>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ) [[1, 1], [1, 3]] """ factors = [] for factor, n in gf_ddf_shoup(f, p, K): factors += gf_edf_shoup(factor, n, p, K) return _sort_factors(factors, multiple=False) _factor_methods = { 'berlekamp': gf_berlekamp, # ``p`` : small 'zassenhaus': gf_zassenhaus, # ``p`` : medium 'shoup': gf_shoup, # ``p`` : large } def gf_factor_sqf(f, p, K, method=None): """ Factor a square-free polynomial ``f`` in ``GF(p)[x]``. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_factor_sqf >>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ) (3, [[1, 1], [1, 3]]) """ lc, f = gf_monic(f, p, K) if gf_degree(f) < 1: return lc, [] method = method or query('GF_FACTOR_METHOD') if method is not None: factors = _factor_methods[method](f, p, K) else: factors = gf_zassenhaus(f, p, K) return lc, factors def gf_factor(f, p, K): """ Factor (non square-free) polynomials in ``GF(p)[x]``. Given a possibly non square-free polynomial ``f`` in ``GF(p)[x]``, returns its complete factorization into irreducibles:: f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d where each ``f_i`` is a monic polynomial and ``gcd(f_i, f_j) == 1``, for ``i != j``. The result is given as a tuple consisting of the leading coefficient of ``f`` and a list of factors of ``f`` with their multiplicities. The algorithm proceeds by first computing square-free decomposition of ``f`` and then iteratively factoring each of square-free factors. Consider a non square-free polynomial ``f = (7*x + 1) (x + 2)**2`` in ``GF(11)[x]``. We obtain its factorization into irreducibles as follows:: >>> from sympy.polys.domains import ZZ >>> from sympy.polys.galoistools import gf_factor >>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ) (5, [([1, 2], 1), ([1, 8], 2)]) We arrived with factorization ``f = 5 (x + 2) (x + 8)**2``. We didn't recover the exact form of the input polynomial because we requested to get monic factors of ``f`` and its leading coefficient separately. Square-free factors of ``f`` can be factored into irreducibles over ``GF(p)`` using three very different methods: Berlekamp efficient for very small values of ``p`` (usually ``p < 25``) Cantor-Zassenhaus efficient on average input and with "typical" ``p`` Shoup-Kaltofen-Gathen efficient with very large inputs and modulus If you want to use a specific factorization method, instead of the default one, set ``GF_FACTOR_METHOD`` with one of ``berlekamp``, ``zassenhaus`` or ``shoup`` values. References ========== .. [1] [Gathen99]_ """ lc, f = gf_monic(f, p, K) if gf_degree(f) < 1: return lc, [] factors = [] for g, n in gf_sqf_list(f, p, K)[1]: for h in gf_factor_sqf(g, p, K)[1]: factors.append((h, n)) return lc, _sort_factors(factors) def gf_value(f, a): """ Value of polynomial 'f' at 'a' in field R. Examples ======== >>> from sympy.polys.galoistools import gf_value >>> gf_value([1, 7, 2, 4], 11) 2204 """ result = 0 for c in f: result *= a result += c return result def linear_congruence(a, b, m): """ Returns the values of x satisfying a*x congruent b mod(m) Here m is positive integer and a, b are natural numbers. This function returns only those values of x which are distinct mod(m). Examples ======== >>> from sympy.polys.galoistools import linear_congruence >>> linear_congruence(3, 12, 15) [4, 9, 14] There are 3 solutions distinct mod(15) since gcd(a, m) = gcd(3, 15) = 3. References ========== .. [1] https://en.wikipedia.org/wiki/Linear_congruence_theorem """ from sympy.polys.polytools import gcdex if a % m == 0: if b % m == 0: return list(range(m)) else: return [] r, _, g = gcdex(a, m) if b % g != 0: return [] return [(r * b // g + t * m // g) % m for t in range(g)] def _raise_mod_power(x, s, p, f): """ Used in gf_csolve to generate solutions of f(x) cong 0 mod(p**(s + 1)) from the solutions of f(x) cong 0 mod(p**s). Examples ======== >>> from sympy.polys.galoistools import _raise_mod_power >>> from sympy.polys.galoistools import csolve_prime These is the solutions of f(x) = x**2 + x + 7 cong 0 mod(3) >>> f = [1, 1, 7] >>> csolve_prime(f, 3) [1] >>> [ i for i in range(3) if not (i**2 + i + 7) % 3] [1] The solutions of f(x) cong 0 mod(9) are constructed from the values returned from _raise_mod_power: >>> x, s, p = 1, 1, 3 >>> V = _raise_mod_power(x, s, p, f) >>> [x + v * p**s for v in V] [1, 4, 7] And these are confirmed with the following: >>> [ i for i in range(3**2) if not (i**2 + i + 7) % 3**2] [1, 4, 7] """ from sympy.polys.domains import ZZ f_f = gf_diff(f, p, ZZ) alpha = gf_value(f_f, x) beta = - gf_value(f, x) // p**s return linear_congruence(alpha, beta, p) def csolve_prime(f, p, e=1): """ Solutions of f(x) congruent 0 mod(p**e). Examples ======== >>> from sympy.polys.galoistools import csolve_prime >>> csolve_prime([1, 1, 7], 3, 1) [1] >>> csolve_prime([1, 1, 7], 3, 2) [1, 4, 7] Solutions [7, 4, 1] (mod 3**2) are generated by ``_raise_mod_power()`` from solution [1] (mod 3). """ from sympy.polys.domains import ZZ X1 = [i for i in range(p) if gf_eval(f, i, p, ZZ) == 0] if e == 1: return X1 X = [] S = list(zip(X1, [1]*len(X1))) while S: x, s = S.pop() if s == e: X.append(x) else: s1 = s + 1 ps = p**s S.extend([(x + v*ps, s1) for v in _raise_mod_power(x, s, p, f)]) return sorted(X) def gf_csolve(f, n): """ To solve f(x) congruent 0 mod(n). n is divided into canonical factors and f(x) cong 0 mod(p**e) will be solved for each factor. Applying the Chinese Remainder Theorem to the results returns the final answers. Examples ======== Solve [1, 1, 7] congruent 0 mod(189): >>> from sympy.polys.galoistools import gf_csolve >>> gf_csolve([1, 1, 7], 189) [13, 49, 76, 112, 139, 175] References ========== .. [1] 'An introduction to the Theory of Numbers' 5th Edition by Ivan Niven, Zuckerman and Montgomery. """ from sympy.polys.domains import ZZ P = factorint(n) X = [csolve_prime(f, p, e) for p, e in P.items()] pools = list(map(tuple, X)) perms = [[]] for pool in pools: perms = [x + [y] for x in perms for y in pool] dist_factors = [pow(p, e) for p, e in P.items()] return sorted([gf_crt(per, dist_factors, ZZ) for per in perms])
04280a6569f74f11cdd131cebf57d119c649d14298914f27d85207b2294c8741
"""Sparse polynomial rings. """ from typing import Any, Dict as tDict from operator import add, mul, lt, le, gt, ge from functools import reduce from types import GeneratorType from sympy.core.expr import Expr from sympy.core.numbers import igcd, oo from sympy.core.symbol import Symbol, symbols as _symbols from sympy.core.sympify import CantSympify, sympify from sympy.ntheory.multinomial import multinomial_coefficients from sympy.polys.compatibility import IPolys from sympy.polys.constructor import construct_domain from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict from sympy.polys.domains.domainelement import DomainElement from sympy.polys.domains.polynomialring import PolynomialRing from sympy.polys.heuristicgcd import heugcd from sympy.polys.monomials import MonomialOps from sympy.polys.orderings import lex from sympy.polys.polyerrors import ( CoercionFailed, GeneratorsError, ExactQuotientFailed, MultivariatePolynomialError) from sympy.polys.polyoptions import (Domain as DomainOpt, Order as OrderOpt, build_options) from sympy.polys.polyutils import (expr_from_dict, _dict_reorder, _parallel_dict_from_expr) from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.iterables import is_sequence from sympy.utilities.magic import pollute @public def ring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, x, y, z = ring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring,) + _ring.gens @public def xring(symbols, domain, order=lex): """Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import xring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> R, (x, y, z) = xring("x,y,z", ZZ, lex) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) return (_ring, _ring.gens) @public def vring(symbols, domain, order=lex): """Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace. Parameters ========== symbols : str Symbol/Expr or sequence of str, Symbol/Expr (non-empty) domain : :class:`~.Domain` or coercible order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex`` Examples ======== >>> from sympy.polys.rings import vring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex >>> vring("x,y,z", ZZ, lex) Polynomial ring in x, y, z over ZZ with lex order >>> x + y + z # noqa: x + y + z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ _ring = PolyRing(symbols, domain, order) pollute([ sym.name for sym in _ring.symbols ], _ring.gens) return _ring @public def sring(exprs, *symbols, **options): """Construct a ring deriving generators and domain from options and input expressions. Parameters ========== exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable) symbols : sequence of :class:`~.Symbol`/:class:`~.Expr` options : keyword arguments understood by :class:`~.Options` Examples ======== >>> from sympy import sring, symbols >>> x, y, z = symbols("x,y,z") >>> R, f = sring(x + 2*y + 3*z) >>> R Polynomial ring in x, y, z over ZZ with lex order >>> f x + 2*y + 3*z >>> type(_) <class 'sympy.polys.rings.PolyElement'> """ single = False if not is_sequence(exprs): exprs, single = [exprs], True exprs = list(map(sympify, exprs)) opt = build_options(symbols, options) # TODO: rewrite this so that it doesn't use expand() (see poly()). reps, opt = _parallel_dict_from_expr(exprs, opt) if opt.domain is None: coeffs = sum([ list(rep.values()) for rep in reps ], []) opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt) coeff_map = dict(zip(coeffs, coeffs_dom)) reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps] _ring = PolyRing(opt.gens, opt.domain, opt.order) polys = list(map(_ring.from_dict, reps)) if single: return (_ring, polys[0]) else: return (_ring, polys) def _parse_symbols(symbols): if isinstance(symbols, str): return _symbols(symbols, seq=True) if symbols else () elif isinstance(symbols, Expr): return (symbols,) elif is_sequence(symbols): if all(isinstance(s, str) for s in symbols): return _symbols(symbols) elif all(isinstance(s, Expr) for s in symbols): return symbols raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions") _ring_cache = {} # type: tDict[Any, Any] class PolyRing(DefaultPrinting, IPolys): """Multivariate distributed polynomial ring. """ def __new__(cls, symbols, domain, order=lex): symbols = tuple(_parse_symbols(symbols)) ngens = len(symbols) domain = DomainOpt.preprocess(domain) order = OrderOpt.preprocess(order) _hash_tuple = (cls.__name__, symbols, ngens, domain, order) obj = _ring_cache.get(_hash_tuple) if obj is None: if domain.is_Composite and set(symbols) & set(domain.symbols): raise GeneratorsError("polynomial ring and it's ground domain share generators") obj = object.__new__(cls) obj._hash_tuple = _hash_tuple obj._hash = hash(_hash_tuple) obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj}) obj.symbols = symbols obj.ngens = ngens obj.domain = domain obj.order = order obj.zero_monom = (0,)*ngens obj.gens = obj._gens() obj._gens_set = set(obj.gens) obj._one = [(obj.zero_monom, domain.one)] if ngens: # These expect monomials in at least one variable codegen = MonomialOps(ngens) obj.monomial_mul = codegen.mul() obj.monomial_pow = codegen.pow() obj.monomial_mulpow = codegen.mulpow() obj.monomial_ldiv = codegen.ldiv() obj.monomial_div = codegen.div() obj.monomial_lcm = codegen.lcm() obj.monomial_gcd = codegen.gcd() else: monunit = lambda a, b: () obj.monomial_mul = monunit obj.monomial_pow = monunit obj.monomial_mulpow = lambda a, b, c: () obj.monomial_ldiv = monunit obj.monomial_div = monunit obj.monomial_lcm = monunit obj.monomial_gcd = monunit if order is lex: obj.leading_expv = max else: obj.leading_expv = lambda f: max(f, key=order) for symbol, generator in zip(obj.symbols, obj.gens): if isinstance(symbol, Symbol): name = symbol.name if not hasattr(obj, name): setattr(obj, name, generator) _ring_cache[_hash_tuple] = obj return obj def _gens(self): """Return a list of polynomial generators. """ one = self.domain.one _gens = [] for i in range(self.ngens): expv = self.monomial_basis(i) poly = self.zero poly[expv] = one _gens.append(poly) return tuple(_gens) def __getnewargs__(self): return (self.symbols, self.domain, self.order) def __getstate__(self): state = self.__dict__.copy() del state["leading_expv"] for key, value in state.items(): if key.startswith("monomial_"): del state[key] return state def __hash__(self): return self._hash def __eq__(self, other): return isinstance(other, PolyRing) and \ (self.symbols, self.domain, self.ngens, self.order) == \ (other.symbols, other.domain, other.ngens, other.order) def __ne__(self, other): return not self == other def clone(self, symbols=None, domain=None, order=None): return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order) def monomial_basis(self, i): """Return the ith-basis element. """ basis = [0]*self.ngens basis[i] = 1 return tuple(basis) @property def zero(self): return self.dtype() @property def one(self): return self.dtype(self._one) def domain_new(self, element, orig_domain=None): return self.domain.convert(element, orig_domain) def ground_new(self, coeff): return self.term_new(self.zero_monom, coeff) def term_new(self, monom, coeff): coeff = self.domain_new(coeff) poly = self.zero if coeff: poly[monom] = coeff return poly def ring_new(self, element): if isinstance(element, PolyElement): if self == element.ring: return element elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring: return self.ground_new(element) else: raise NotImplementedError("conversion") elif isinstance(element, str): raise NotImplementedError("parsing") elif isinstance(element, dict): return self.from_dict(element) elif isinstance(element, list): try: return self.from_terms(element) except ValueError: return self.from_list(element) elif isinstance(element, Expr): return self.from_expr(element) else: return self.ground_new(element) __call__ = ring_new def from_dict(self, element, orig_domain=None): domain_new = self.domain_new poly = self.zero for monom, coeff in element.items(): coeff = domain_new(coeff, orig_domain) if coeff: poly[monom] = coeff return poly def from_terms(self, element, orig_domain=None): return self.from_dict(dict(element), orig_domain) def from_list(self, element): return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain)) def _rebuild_expr(self, expr, mapping): domain = self.domain def _rebuild(expr): generator = mapping.get(expr) if generator is not None: return generator elif expr.is_Add: return reduce(add, list(map(_rebuild, expr.args))) elif expr.is_Mul: return reduce(mul, list(map(_rebuild, expr.args))) else: # XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n) # XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E] base, exp = expr.as_base_exp() if exp.is_Integer and exp > 1: return _rebuild(base)**int(exp) else: return self.ground_new(domain.convert(expr)) return _rebuild(sympify(expr)) def from_expr(self, expr): mapping = dict(list(zip(self.symbols, self.gens))) try: poly = self._rebuild_expr(expr, mapping) except CoercionFailed: raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr)) else: return self.ring_new(poly) def index(self, gen): """Compute index of ``gen`` in ``self.gens``. """ if gen is None: if self.ngens: i = 0 else: i = -1 # indicate impossible choice elif isinstance(gen, int): i = gen if 0 <= i and i < self.ngens: pass elif -self.ngens <= i and i <= -1: i = -i - 1 else: raise ValueError("invalid generator index: %s" % gen) elif isinstance(gen, self.dtype): try: i = self.gens.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) elif isinstance(gen, str): try: i = self.symbols.index(gen) except ValueError: raise ValueError("invalid generator: %s" % gen) else: raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen) return i def drop(self, *gens): """Remove specified generators from this ring. """ indices = set(map(self.index, gens)) symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ] if not symbols: return self.domain else: return self.clone(symbols=symbols) def __getitem__(self, key): symbols = self.symbols[key] if not symbols: return self.domain else: return self.clone(symbols=symbols) def to_ground(self): # TODO: should AlgebraicField be a Composite domain? if self.domain.is_Composite or hasattr(self.domain, 'domain'): return self.clone(domain=self.domain.domain) else: raise ValueError("%s is not a composite domain" % self.domain) def to_domain(self): return PolynomialRing(self) def to_field(self): from sympy.polys.fields import FracField return FracField(self.symbols, self.domain, self.order) @property def is_univariate(self): return len(self.gens) == 1 @property def is_multivariate(self): return len(self.gens) > 1 def add(self, *objs): """ Add a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.add([ x**2 + 2*i + 3 for i in range(4) ]) 4*x**2 + 24 >>> _.factor_list() (4, [(x**2 + 6, 1)]) """ p = self.zero for obj in objs: if is_sequence(obj, include=GeneratorType): p += self.add(*obj) else: p += obj return p def mul(self, *objs): """ Multiply a sequence of polynomials or containers of polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> R, x = ring("x", ZZ) >>> R.mul([ x**2 + 2*i + 3 for i in range(4) ]) x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945 >>> _.factor_list() (1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)]) """ p = self.one for obj in objs: if is_sequence(obj, include=GeneratorType): p *= self.mul(*obj) else: p *= obj return p def drop_to_ground(self, *gens): r""" Remove specified generators from the ring and inject them into its domain. """ indices = set(map(self.index, gens)) symbols = [s for i, s in enumerate(self.symbols) if i not in indices] gens = [gen for i, gen in enumerate(self.gens) if i not in indices] if not symbols: return self else: return self.clone(symbols=symbols, domain=self.drop(*gens)) def compose(self, other): """Add the generators of ``other`` to ``self``""" if self != other: syms = set(self.symbols).union(set(other.symbols)) return self.clone(symbols=list(syms)) else: return self def add_gens(self, symbols): """Add the elements of ``symbols`` as generators to ``self``""" syms = set(self.symbols).union(set(symbols)) return self.clone(symbols=list(syms)) class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict): """Element of multivariate distributed polynomial ring. """ def new(self, init): return self.__class__(init) def parent(self): return self.ring.to_domain() def __getnewargs__(self): return (self.ring, list(self.iterterms())) _hash = None def __hash__(self): # XXX: This computes a hash of a dictionary, but currently we don't # protect dictionary from being changed so any use site modifications # will make hashing go wrong. Use this feature with caution until we # figure out how to make a safe API without compromising speed of this # low-level class. _hash = self._hash if _hash is None: self._hash = _hash = hash((self.ring, frozenset(self.items()))) return _hash def copy(self): """Return a copy of polynomial self. Polynomials are mutable; if one is interested in preserving a polynomial, and one plans to use inplace operations, one can copy the polynomial. This method makes a shallow copy. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> R, x, y = ring('x, y', ZZ) >>> p = (x + y)**2 >>> p1 = p.copy() >>> p2 = p >>> p[R.zero_monom] = 3 >>> p x**2 + 2*x*y + y**2 + 3 >>> p1 x**2 + 2*x*y + y**2 >>> p2 x**2 + 2*x*y + y**2 + 3 """ return self.new(self) def set_ring(self, new_ring): if self.ring == new_ring: return self elif self.ring.symbols != new_ring.symbols: terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols))) return new_ring.from_terms(terms, self.ring.domain) else: return new_ring.from_dict(self, self.ring.domain) def as_expr(self, *symbols): if symbols and len(symbols) != self.ring.ngens: raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols))) else: symbols = self.ring.symbols return expr_from_dict(self.as_expr_dict(), *symbols) def as_expr_dict(self): to_sympy = self.ring.domain.to_sympy return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()} def clear_denoms(self): domain = self.ring.domain if not domain.is_Field or not domain.has_assoc_Ring: return domain.one, self ground_ring = domain.get_ring() common = ground_ring.one lcm = ground_ring.lcm denom = domain.denom for coeff in self.values(): common = lcm(common, denom(coeff)) poly = self.new([ (k, v*common) for k, v in self.items() ]) return common, poly def strip_zero(self): """Eliminate monomials with zero coefficient. """ for k, v in list(self.items()): if not v: del self[k] def __eq__(p1, p2): """Equality test for polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = (x + y)**2 + (x - y)**2 >>> p1 == 4*x*y False >>> p1 == 2*(x**2 + y**2) True """ if not p2: return not p1 elif isinstance(p2, PolyElement) and p2.ring == p1.ring: return dict.__eq__(p1, p2) elif len(p1) > 1: return False else: return p1.get(p1.ring.zero_monom) == p2 def __ne__(p1, p2): return not p1 == p2 def almosteq(p1, p2, tolerance=None): """Approximate equality test for polynomials. """ ring = p1.ring if isinstance(p2, ring.dtype): if set(p1.keys()) != set(p2.keys()): return False almosteq = ring.domain.almosteq for k in p1.keys(): if not almosteq(p1[k], p2[k], tolerance): return False return True elif len(p1) > 1: return False else: try: p2 = ring.domain.convert(p2) except CoercionFailed: return False else: return ring.domain.almosteq(p1.const(), p2, tolerance) def sort_key(self): return (len(self), self.terms()) def _cmp(p1, p2, op): if isinstance(p2, p1.ring.dtype): return op(p1.sort_key(), p2.sort_key()) else: return NotImplemented def __lt__(p1, p2): return p1._cmp(p2, lt) def __le__(p1, p2): return p1._cmp(p2, le) def __gt__(p1, p2): return p1._cmp(p2, gt) def __ge__(p1, p2): return p1._cmp(p2, ge) def _drop(self, gen): ring = self.ring i = ring.index(gen) if ring.ngens == 1: return i, ring.domain else: symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols) def drop(self, gen): i, ring = self._drop(gen) if self.ring.ngens == 1: if self.is_ground: return self.coeff(1) else: raise ValueError("Cannot drop %s" % gen) else: poly = ring.zero for k, v in self.items(): if k[i] == 0: K = list(k) del K[i] poly[tuple(K)] = v else: raise ValueError("Cannot drop %s" % gen) return poly def _drop_to_ground(self, gen): ring = self.ring i = ring.index(gen) symbols = list(ring.symbols) del symbols[i] return i, ring.clone(symbols=symbols, domain=ring[i]) def drop_to_ground(self, gen): if self.ring.ngens == 1: raise ValueError("Cannot drop only generator to ground") i, ring = self._drop_to_ground(gen) poly = ring.zero gen = ring.domain.gens[0] for monom, coeff in self.iterterms(): mon = monom[:i] + monom[i+1:] if mon not in poly: poly[mon] = (gen**monom[i]).mul_ground(coeff) else: poly[mon] += (gen**monom[i]).mul_ground(coeff) return poly def to_dense(self): return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain) def to_dict(self): return dict(self) def str(self, printer, precedence, exp_pattern, mul_symbol): if not self: return printer._print(self.ring.domain.zero) prec_mul = precedence["Mul"] prec_atom = precedence["Atom"] ring = self.ring symbols = ring.symbols ngens = ring.ngens zm = ring.zero_monom sexpvs = [] for expv, coeff in self.terms(): negative = ring.domain.is_negative(coeff) sign = " - " if negative else " + " sexpvs.append(sign) if expv == zm: scoeff = printer._print(coeff) if negative and scoeff.startswith("-"): scoeff = scoeff[1:] else: if negative: coeff = -coeff if coeff != self.ring.one: scoeff = printer.parenthesize(coeff, prec_mul, strict=True) else: scoeff = '' sexpv = [] for i in range(ngens): exp = expv[i] if not exp: continue symbol = printer.parenthesize(symbols[i], prec_atom, strict=True) if exp != 1: if exp != int(exp) or exp < 0: sexp = printer.parenthesize(exp, prec_atom, strict=False) else: sexp = exp sexpv.append(exp_pattern % (symbol, sexp)) else: sexpv.append('%s' % symbol) if scoeff: sexpv = [scoeff] + sexpv sexpvs.append(mul_symbol.join(sexpv)) if sexpvs[0] in [" + ", " - "]: head = sexpvs.pop(0) if head == " - ": sexpvs.insert(0, "-") return "".join(sexpvs) @property def is_generator(self): return self in self.ring._gens_set @property def is_ground(self): return not self or (len(self) == 1 and self.ring.zero_monom in self) @property def is_monomial(self): return not self or (len(self) == 1 and self.LC == 1) @property def is_term(self): return len(self) <= 1 @property def is_negative(self): return self.ring.domain.is_negative(self.LC) @property def is_positive(self): return self.ring.domain.is_positive(self.LC) @property def is_nonnegative(self): return self.ring.domain.is_nonnegative(self.LC) @property def is_nonpositive(self): return self.ring.domain.is_nonpositive(self.LC) @property def is_zero(f): return not f @property def is_one(f): return f == f.ring.one @property def is_monic(f): return f.ring.domain.is_one(f.LC) @property def is_primitive(f): return f.ring.domain.is_one(f.content()) @property def is_linear(f): return all(sum(monom) <= 1 for monom in f.itermonoms()) @property def is_quadratic(f): return all(sum(monom) <= 2 for monom in f.itermonoms()) @property def is_squarefree(f): if not f.ring.ngens: return True return f.ring.dmp_sqf_p(f) @property def is_irreducible(f): if not f.ring.ngens: return True return f.ring.dmp_irreducible_p(f) @property def is_cyclotomic(f): if f.ring.is_univariate: return f.ring.dup_cyclotomic_p(f) else: raise MultivariatePolynomialError("cyclotomic polynomial") def __neg__(self): return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ]) def __pos__(self): return self def __add__(p1, p2): """Add two polynomials. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> (x + y)**2 + (x - y)**2 2*x**2 + 2*y**2 """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) + v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__radd__(p1) else: return NotImplemented try: cp2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() if not cp2: return p zm = ring.zero_monom if zm not in p1.keys(): p[zm] = cp2 else: if p2 == -p[zm]: del p[zm] else: p[zm] += cp2 return p def __radd__(p1, n): p = p1.copy() if not n: return p ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: zm = ring.zero_monom if zm not in p1.keys(): p[zm] = n else: if n == -p[zm]: del p[zm] else: p[zm] += n return p def __sub__(p1, p2): """Subtract polynomial p2 from p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p1 = x + y**2 >>> p2 = x*y + y**2 >>> p1 - p2 -x*y + x """ if not p2: return p1.copy() ring = p1.ring if isinstance(p2, ring.dtype): p = p1.copy() get = p.get zero = ring.domain.zero for k, v in p2.items(): v = get(k, zero) - v if v: p[k] = v else: del p[k] return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rsub__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: p = p1.copy() zm = ring.zero_monom if zm not in p1.keys(): p[zm] = -p2 else: if p2 == p[zm]: del p[zm] else: p[zm] -= p2 return p def __rsub__(p1, n): """n - p1 with n convertible to the coefficient domain. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 - p -x - y + 4 """ ring = p1.ring try: n = ring.domain_new(n) except CoercionFailed: return NotImplemented else: p = ring.zero for expv in p1: p[expv] = -p1[expv] p += n return p def __mul__(p1, p2): """Multiply two polynomials. Examples ======== >>> from sympy.polys.domains import QQ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', QQ) >>> p1 = x + y >>> p2 = x - y >>> p1*p2 x**2 - y**2 """ ring = p1.ring p = ring.zero if not p1 or not p2: return p elif isinstance(p2, ring.dtype): get = p.get zero = ring.domain.zero monomial_mul = ring.monomial_mul p2it = list(p2.items()) for exp1, v1 in p1.items(): for exp2, v2 in p2it: exp = monomial_mul(exp1, exp2) p[exp] = get(exp, zero) + v1*v2 p.strip_zero() return p elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmul__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = v1*p2 if v: p[exp1] = v return p def __rmul__(p1, p2): """p2 * p1 with p2 in the coefficient domain of p1. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y >>> 4 * p 4*x + 4*y """ p = p1.ring.zero if not p2: return p try: p2 = p.ring.domain_new(p2) except CoercionFailed: return NotImplemented else: for exp1, v1 in p1.items(): v = p2*v1 if v: p[exp1] = v return p def __pow__(self, n): """raise polynomial to power `n` Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.polys.rings import ring >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p**3 x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6 """ ring = self.ring if not n: if self: return ring.one else: raise ValueError("0**0") elif len(self) == 1: monom, coeff = list(self.items())[0] p = ring.zero if coeff == 1: p[ring.monomial_pow(monom, n)] = coeff else: p[ring.monomial_pow(monom, n)] = coeff**n return p # For ring series, we need negative and rational exponent support only # with monomials. n = int(n) if n < 0: raise ValueError("Negative exponent") elif n == 1: return self.copy() elif n == 2: return self.square() elif n == 3: return self*self.square() elif len(self) <= 5: # TODO: use an actual density measure return self._pow_multinomial(n) else: return self._pow_generic(n) def _pow_generic(self, n): p = self.ring.one c = self while True: if n & 1: p = p*c n -= 1 if not n: break c = c.square() n = n // 2 return p def _pow_multinomial(self, n): multinomials = multinomial_coefficients(len(self), n).items() monomial_mulpow = self.ring.monomial_mulpow zero_monom = self.ring.zero_monom terms = self.items() zero = self.ring.domain.zero poly = self.ring.zero for multinomial, multinomial_coeff in multinomials: product_monom = zero_monom product_coeff = multinomial_coeff for exp, (monom, coeff) in zip(multinomial, terms): if exp: product_monom = monomial_mulpow(product_monom, monom, exp) product_coeff *= coeff**exp monom = tuple(product_monom) coeff = product_coeff coeff = poly.get(monom, zero) + coeff if coeff: poly[monom] = coeff elif monom in poly: del poly[monom] return poly def square(self): """square of a polynomial Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p.square() x**2 + 2*x*y**2 + y**4 """ ring = self.ring p = ring.zero get = p.get keys = list(self.keys()) zero = ring.domain.zero monomial_mul = ring.monomial_mul for i in range(len(keys)): k1 = keys[i] pk = self[k1] for j in range(i): k2 = keys[j] exp = monomial_mul(k1, k2) p[exp] = get(exp, zero) + pk*self[k2] p = p.imul_num(2) get = p.get for k, v in self.items(): k2 = monomial_mul(k, k) p[k2] = get(k2, zero) + v**2 p.strip_zero() return p def __divmod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.div(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rdivmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return (p1.quo_ground(p2), p1.rem_ground(p2)) def __rdivmod__(p1, p2): return NotImplemented def __mod__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): return p1.rem(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rmod__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.rem_ground(p2) def __rmod__(p1, p2): return NotImplemented def __truediv__(p1, p2): ring = p1.ring if not p2: raise ZeroDivisionError("polynomial division") elif isinstance(p2, ring.dtype): if p2.is_monomial: return p1*(p2**(-1)) else: return p1.quo(p2) elif isinstance(p2, PolyElement): if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring: pass elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring: return p2.__rtruediv__(p1) else: return NotImplemented try: p2 = ring.domain_new(p2) except CoercionFailed: return NotImplemented else: return p1.quo_ground(p2) def __rtruediv__(p1, p2): return NotImplemented __floordiv__ = __truediv__ __rfloordiv__ = __rtruediv__ # TODO: use // (__floordiv__) for exquo()? def _term_div(self): zm = self.ring.zero_monom domain = self.ring.domain domain_quo = domain.quo monomial_div = self.ring.monomial_div if domain.is_Field: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if monom is not None: return monom, domain_quo(a_lc, b_lc) else: return None else: def term_div(a_lm_a_lc, b_lm_b_lc): a_lm, a_lc = a_lm_a_lc b_lm, b_lc = b_lm_b_lc if b_lm == zm: # apparently this is a very common case monom = a_lm else: monom = monomial_div(a_lm, b_lm) if not (monom is None or a_lc % b_lc): return monom, domain_quo(a_lc, b_lc) else: return None return term_div def div(self, fv): """Division algorithm, see [CLO] p64. fv array of polynomials return qv, r such that self = sum(fv[i]*qv[i]) + r All polynomials are required not to be Laurent polynomials. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> f = x**3 >>> f0 = x - y**2 >>> f1 = x - y >>> qv, r = f.div((f0, f1)) >>> qv[0] x**2 + x*y**2 + y**4 >>> qv[1] 0 >>> r y**6 """ ring = self.ring ret_single = False if isinstance(fv, PolyElement): ret_single = True fv = [fv] if not all(fv): raise ZeroDivisionError("polynomial division") if not self: if ret_single: return ring.zero, ring.zero else: return [], ring.zero for f in fv: if f.ring != ring: raise ValueError('self and f must have the same ring') s = len(fv) qv = [ring.zero for i in range(s)] p = self.copy() r = ring.zero term_div = self._term_div() expvs = [fx.leading_expv() for fx in fv] while p: i = 0 divoccurred = 0 while i < s and divoccurred == 0: expv = p.leading_expv() term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]])) if term is not None: expv1, c = term qv[i] = qv[i]._iadd_monom((expv1, c)) p = p._iadd_poly_monom(fv[i], (expv1, -c)) divoccurred = 1 else: i += 1 if not divoccurred: expv = p.leading_expv() r = r._iadd_monom((expv, p[expv])) del p[expv] if expv == ring.zero_monom: r += p if ret_single: if not qv: return ring.zero, r else: return qv[0], r else: return qv, r def rem(self, G): f = self if isinstance(G, PolyElement): G = [G] if not all(G): raise ZeroDivisionError("polynomial division") ring = f.ring domain = ring.domain zero = domain.zero monomial_mul = ring.monomial_mul r = ring.zero term_div = f._term_div() ltf = f.LT f = f.copy() get = f.get while f: for g in G: tq = term_div(ltf, g.LT) if tq is not None: m, c = tq for mg, cg in g.iterterms(): m1 = monomial_mul(mg, m) c1 = get(m1, zero) - c*cg if not c1: del f[m1] else: f[m1] = c1 ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] break else: ltm, ltc = ltf if ltm in r: r[ltm] += ltc else: r[ltm] = ltc del f[ltm] ltm = f.leading_expv() if ltm is not None: ltf = ltm, f[ltm] return r def quo(f, G): return f.div(G)[0] def exquo(f, G): q, r = f.div(G) if not r: return q else: raise ExactQuotientFailed(f, G) def _iadd_monom(self, mc): """add to self the monomial coeff*x0**i0*x1**i1*... unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x**4 + 2*y >>> m = (1, 2) >>> p1 = p._iadd_monom((m, 5)) >>> p1 x**4 + 5*x*y**2 + 2*y >>> p1 is p True >>> p = x >>> p1 = p._iadd_monom((m, 5)) >>> p1 5*x*y**2 + x >>> p1 is p False """ if self in self.ring._gens_set: cpself = self.copy() else: cpself = self expv, coeff = mc c = cpself.get(expv) if c is None: cpself[expv] = coeff else: c += coeff if c: cpself[expv] = c else: del cpself[expv] return cpself def _iadd_poly_monom(self, p2, mc): """add to self the product of (p)*(coeff*x0**i0*x1**i1*...) unless self is a generator -- then just return the sum of the two. mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...) Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p1 = x**4 + 2*y >>> p2 = y + z >>> m = (1, 2, 3) >>> p1 = p1._iadd_poly_monom(p2, (m, 3)) >>> p1 x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y """ p1 = self if p1 in p1.ring._gens_set: p1 = p1.copy() (m, c) = mc get = p1.get zero = p1.ring.domain.zero monomial_mul = p1.ring.monomial_mul for k, v in p2.items(): ka = monomial_mul(k, m) coeff = get(ka, zero) + v*c if coeff: p1[ka] = coeff else: del p1[ka] return p1 def degree(f, x=None): """ The leading degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo). """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return max([ monom[i] for monom in f.itermonoms() ]) def degrees(f): """ A tuple containing leading degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(max, list(zip(*f.itermonoms())))) def tail_degree(f, x=None): """ The tail degree in ``x`` or the main variable. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ i = f.ring.index(x) if not f: return -oo elif i < 0: return 0 else: return min([ monom[i] for monom in f.itermonoms() ]) def tail_degrees(f): """ A tuple containing tail degrees in all variables. Note that the degree of 0 is negative infinity (the SymPy object -oo) """ if not f: return (-oo,)*f.ring.ngens else: return tuple(map(min, list(zip(*f.itermonoms())))) def leading_expv(self): """Leading monomial tuple according to the monomial ordering. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring('x, y, z', ZZ) >>> p = x**4 + x**3*y + x**2*z**2 + z**7 >>> p.leading_expv() (4, 0, 0) """ if self: return self.ring.leading_expv(self) else: return None def _get_coeff(self, expv): return self.get(expv, self.ring.domain.zero) def coeff(self, element): """ Returns the coefficient that stands next to the given monomial. Parameters ========== element : PolyElement (with ``is_monomial = True``) or 1 Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y, z = ring("x,y,z", ZZ) >>> f = 3*x**2*y - x*y*z + 7*z**3 + 23 >>> f.coeff(x**2*y) 3 >>> f.coeff(x*y) 0 >>> f.coeff(1) 23 """ if element == 1: return self._get_coeff(self.ring.zero_monom) elif isinstance(element, self.ring.dtype): terms = list(element.iterterms()) if len(terms) == 1: monom, coeff = terms[0] if coeff == self.ring.domain.one: return self._get_coeff(monom) raise ValueError("expected a monomial, got %s" % element) def const(self): """Returns the constant coeffcient. """ return self._get_coeff(self.ring.zero_monom) @property def LC(self): return self._get_coeff(self.leading_expv()) @property def LM(self): expv = self.leading_expv() if expv is None: return self.ring.zero_monom else: return expv def leading_monom(self): """ Leading monomial as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_monom() x*y """ p = self.ring.zero expv = self.leading_expv() if expv: p[expv] = self.ring.domain.one return p @property def LT(self): expv = self.leading_expv() if expv is None: return (self.ring.zero_monom, self.ring.domain.zero) else: return (expv, self._get_coeff(expv)) def leading_term(self): """Leading term as a polynomial element. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> (3*x*y + y**2).leading_term() 3*x*y """ p = self.ring.zero expv = self.leading_expv() if expv is not None: p[expv] = self[expv] return p def _sorted(self, seq, order): if order is None: order = self.ring.order else: order = OrderOpt.preprocess(order) if order is lex: return sorted(seq, key=lambda monom: monom[0], reverse=True) else: return sorted(seq, key=lambda monom: order(monom[0]), reverse=True) def coeffs(self, order=None): """Ordered list of polynomial coefficients. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.coeffs() [2, 1] >>> f.coeffs(grlex) [1, 2] """ return [ coeff for _, coeff in self.terms(order) ] def monoms(self, order=None): """Ordered list of polynomial monomials. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.monoms() [(2, 3), (1, 7)] >>> f.monoms(grlex) [(1, 7), (2, 3)] """ return [ monom for monom, _ in self.terms(order) ] def terms(self, order=None): """Ordered list of polynomial terms. Parameters ========== order : :class:`~.MonomialOrder` or coercible, optional Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> from sympy.polys.orderings import lex, grlex >>> _, x, y = ring("x, y", ZZ, lex) >>> f = x*y**7 + 2*x**2*y**3 >>> f.terms() [((2, 3), 2), ((1, 7), 1)] >>> f.terms(grlex) [((1, 7), 1), ((2, 3), 2)] """ return self._sorted(list(self.items()), order) def itercoeffs(self): """Iterator over coefficients of a polynomial. """ return iter(self.values()) def itermonoms(self): """Iterator over monomials of a polynomial. """ return iter(self.keys()) def iterterms(self): """Iterator over terms of a polynomial. """ return iter(self.items()) def listcoeffs(self): """Unordered list of polynomial coefficients. """ return list(self.values()) def listmonoms(self): """Unordered list of polynomial monomials. """ return list(self.keys()) def listterms(self): """Unordered list of polynomial terms. """ return list(self.items()) def imul_num(p, c): """multiply inplace the polynomial p by an element in the coefficient ring, provided p is not one of the generators; else multiply not inplace Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring('x, y', ZZ) >>> p = x + y**2 >>> p1 = p.imul_num(3) >>> p1 3*x + 3*y**2 >>> p1 is p True >>> p = x >>> p1 = p.imul_num(3) >>> p1 3*x >>> p1 is p False """ if p in p.ring._gens_set: return p*c if not c: p.clear() return for exp in p: p[exp] *= c return p def content(f): """Returns GCD of polynomial's coefficients. """ domain = f.ring.domain cont = domain.zero gcd = domain.gcd for coeff in f.itercoeffs(): cont = gcd(cont, coeff) return cont def primitive(f): """Returns content and a primitive polynomial. """ cont = f.content() return cont, f.quo_ground(cont) def monic(f): """Divides all coefficients by the leading coefficient. """ if not f: return f else: return f.quo_ground(f.LC) def mul_ground(f, x): if not x: return f.ring.zero terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ] return f.new(terms) def mul_monom(f, monom): monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def mul_term(f, term): monom, coeff = term if not f or not coeff: return f.ring.zero elif monom == f.ring.zero_monom: return f.mul_ground(coeff) monomial_mul = f.ring.monomial_mul terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ] return f.new(terms) def quo_ground(f, x): domain = f.ring.domain if not x: raise ZeroDivisionError('polynomial division') if not f or x == domain.one: return f if domain.is_Field: quo = domain.quo terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ] else: terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ] return f.new(terms) def quo_term(f, term): monom, coeff = term if not coeff: raise ZeroDivisionError("polynomial division") elif not f: return f.ring.zero elif monom == f.ring.zero_monom: return f.quo_ground(coeff) term_div = f._term_div() terms = [ term_div(t, term) for t in f.iterterms() ] return f.new([ t for t in terms if t is not None ]) def trunc_ground(f, p): if f.ring.domain.is_ZZ: terms = [] for monom, coeff in f.iterterms(): coeff = coeff % p if coeff > p // 2: coeff = coeff - p terms.append((monom, coeff)) else: terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ] poly = f.new(terms) poly.strip_zero() return poly rem_ground = trunc_ground def extract_ground(self, g): f = self fc = f.content() gc = g.content() gcd = f.ring.domain.gcd(fc, gc) f = f.quo_ground(gcd) g = g.quo_ground(gcd) return gcd, f, g def _norm(f, norm_func): if not f: return f.ring.domain.zero else: ground_abs = f.ring.domain.abs return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ]) def max_norm(f): return f._norm(max) def l1_norm(f): return f._norm(sum) def deflate(f, *G): ring = f.ring polys = [f] + list(G) J = [0]*ring.ngens for p in polys: for monom in p.itermonoms(): for i, m in enumerate(monom): J[i] = igcd(J[i], m) for i, b in enumerate(J): if not b: J[i] = 1 J = tuple(J) if all(b == 1 for b in J): return J, polys H = [] for p in polys: h = ring.zero for I, coeff in p.iterterms(): N = [ i // j for i, j in zip(I, J) ] h[tuple(N)] = coeff H.append(h) return J, H def inflate(f, J): poly = f.ring.zero for I, coeff in f.iterterms(): N = [ i*j for i, j in zip(I, J) ] poly[tuple(N)] = coeff return poly def lcm(self, g): f = self domain = f.ring.domain if not domain.is_Field: fc, f = f.primitive() gc, g = g.primitive() c = domain.lcm(fc, gc) h = (f*g).quo(f.gcd(g)) if not domain.is_Field: return h.mul_ground(c) else: return h.monic() def gcd(f, g): return f.cofactors(g)[0] def cofactors(f, g): if not f and not g: zero = f.ring.zero return zero, zero, zero elif not f: h, cff, cfg = f._gcd_zero(g) return h, cff, cfg elif not g: h, cfg, cff = g._gcd_zero(f) return h, cff, cfg elif len(f) == 1: h, cff, cfg = f._gcd_monom(g) return h, cff, cfg elif len(g) == 1: h, cfg, cff = g._gcd_monom(f) return h, cff, cfg J, (f, g) = f.deflate(g) h, cff, cfg = f._gcd(g) return (h.inflate(J), cff.inflate(J), cfg.inflate(J)) def _gcd_zero(f, g): one, zero = f.ring.one, f.ring.zero if g.is_nonnegative: return g, zero, one else: return -g, zero, -one def _gcd_monom(f, g): ring = f.ring ground_gcd = ring.domain.gcd ground_quo = ring.domain.quo monomial_gcd = ring.monomial_gcd monomial_ldiv = ring.monomial_ldiv mf, cf = list(f.iterterms())[0] _mgcd, _cgcd = mf, cf for mg, cg in g.iterterms(): _mgcd = monomial_gcd(_mgcd, mg) _cgcd = ground_gcd(_cgcd, cg) h = f.new([(_mgcd, _cgcd)]) cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))]) cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()]) return h, cff, cfg def _gcd(f, g): ring = f.ring if ring.domain.is_QQ: return f._gcd_QQ(g) elif ring.domain.is_ZZ: return f._gcd_ZZ(g) else: # TODO: don't use dense representation (port PRS algorithms) return ring.dmp_inner_gcd(f, g) def _gcd_ZZ(f, g): return heugcd(f, g) def _gcd_QQ(self, g): f = self ring = f.ring new_ring = ring.clone(domain=ring.domain.get_ring()) cf, f = f.clear_denoms() cg, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) h, cff, cfg = f._gcd_ZZ(g) h = h.set_ring(ring) c, h = h.LC, h.monic() cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf)) cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg)) return h, cff, cfg def cancel(self, g): """ Cancel common factors in a rational function ``f/g``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> (2*x**2 - 2).cancel(x**2 - 2*x + 1) (2*x + 2, x - 1) """ f = self ring = f.ring if not f: return f, ring.one domain = ring.domain if not (domain.is_Field and domain.has_assoc_Ring): _, p, q = f.cofactors(g) else: new_ring = ring.clone(domain=domain.get_ring()) cq, f = f.clear_denoms() cp, g = g.clear_denoms() f = f.set_ring(new_ring) g = g.set_ring(new_ring) _, p, q = f.cofactors(g) _, cp, cq = new_ring.domain.cofactors(cp, cq) p = p.set_ring(ring) q = q.set_ring(ring) p = p.mul_ground(cp) q = q.mul_ground(cq) # Make canonical with respect to sign or quadrant in the case of ZZ_I # or QQ_I. This ensures that the LC of the denominator is canonical by # multiplying top and bottom by a unit of the ring. u = q.canonical_unit() if u == domain.one: p, q = p, q elif u == -domain.one: p, q = -p, -q else: p = p.mul_ground(u) q = q.mul_ground(u) return p, q def canonical_unit(f): domain = f.ring.domain return domain.canonical_unit(f.LC) def diff(f, x): """Computes partial derivative in ``x``. Examples ======== >>> from sympy.polys.rings import ring >>> from sympy.polys.domains import ZZ >>> _, x, y = ring("x,y", ZZ) >>> p = x + x**2*y**3 >>> p.diff(x) 2*x*y**3 + 1 """ ring = f.ring i = ring.index(x) m = ring.monomial_basis(i) g = ring.zero for expv, coeff in f.iterterms(): if expv[i]: e = ring.monomial_ldiv(expv, m) g[e] = ring.domain_new(coeff*expv[i]) return g def __call__(f, *values): if 0 < len(values) <= f.ring.ngens: return f.evaluate(list(zip(f.ring.gens, values))) else: raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values))) def evaluate(self, x, a=None): f = self if isinstance(x, list) and a is None: (X, a), x = x[0], x[1:] f = f.evaluate(X, a) if not x: return f else: x = [ (Y.drop(X), a) for (Y, a) in x ] return f.evaluate(x) ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return result else: poly = ring.drop(x).zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def subs(self, x, a=None): f = self if isinstance(x, list) and a is None: for X, a in x: f = f.subs(X, a) return f ring = f.ring i = ring.index(x) a = ring.domain.convert(a) if ring.ngens == 1: result = ring.domain.zero for (n,), coeff in f.iterterms(): result += coeff*a**n return ring.ground_new(result) else: poly = ring.zero for monom, coeff in f.iterterms(): n, monom = monom[i], monom[:i] + (0,) + monom[i+1:] coeff = coeff*a**n if monom in poly: coeff = coeff + poly[monom] if coeff: poly[monom] = coeff else: del poly[monom] else: if coeff: poly[monom] = coeff return poly def compose(f, x, a=None): ring = f.ring poly = ring.zero gens_map = dict(list(zip(ring.gens, list(range(ring.ngens))))) if a is not None: replacements = [(x, a)] else: if isinstance(x, list): replacements = list(x) elif isinstance(x, dict): replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]]) else: raise ValueError("expected a generator, value pair a sequence of such pairs") for k, (x, g) in enumerate(replacements): replacements[k] = (gens_map[x], ring.ring_new(g)) for monom, coeff in f.iterterms(): monom = list(monom) subpoly = ring.one for i, g in replacements: n, monom[i] = monom[i], 0 if n: subpoly *= g**n subpoly = subpoly.mul_term((tuple(monom), coeff)) poly += subpoly return poly # TODO: following methods should point to polynomial # representation independent algorithm implementations. def pdiv(f, g): return f.ring.dmp_pdiv(f, g) def prem(f, g): return f.ring.dmp_prem(f, g) def pquo(f, g): return f.ring.dmp_quo(f, g) def pexquo(f, g): return f.ring.dmp_exquo(f, g) def half_gcdex(f, g): return f.ring.dmp_half_gcdex(f, g) def gcdex(f, g): return f.ring.dmp_gcdex(f, g) def subresultants(f, g): return f.ring.dmp_subresultants(f, g) def resultant(f, g): return f.ring.dmp_resultant(f, g) def discriminant(f): return f.ring.dmp_discriminant(f) def decompose(f): if f.ring.is_univariate: return f.ring.dup_decompose(f) else: raise MultivariatePolynomialError("polynomial decomposition") def shift(f, a): if f.ring.is_univariate: return f.ring.dup_shift(f, a) else: raise MultivariatePolynomialError("polynomial shift") def sturm(f): if f.ring.is_univariate: return f.ring.dup_sturm(f) else: raise MultivariatePolynomialError("sturm sequence") def gff_list(f): return f.ring.dmp_gff_list(f) def sqf_norm(f): return f.ring.dmp_sqf_norm(f) def sqf_part(f): return f.ring.dmp_sqf_part(f) def sqf_list(f, all=False): return f.ring.dmp_sqf_list(f, all=all) def factor_list(f): return f.ring.dmp_factor_list(f)
e153f740d221c33680f4c311d2b20b11a9e22a733b7da1e8211ae8f6221043d4
"""Options manager for :class:`~.Poly` and public API functions. """ __all__ = ["Options"] from typing import Dict as tDict, Type from typing import List, Optional from sympy.core import Basic, sympify from sympy.polys.polyerrors import GeneratorsError, OptionError, FlagError from sympy.utilities import numbered_symbols, topological_sort, public from sympy.utilities.iterables import has_dups, is_sequence import sympy.polys import re class Option: """Base class for all kinds of options. """ option = None # type: Optional[str] is_Flag = False requires = [] # type: List[str] excludes = [] # type: List[str] after = [] # type: List[str] before = [] # type: List[str] @classmethod def default(cls): return None @classmethod def preprocess(cls, option): return None @classmethod def postprocess(cls, options): pass class Flag(Option): """Base class for all kinds of flags. """ is_Flag = True class BooleanOption(Option): """An option that must have a boolean value or equivalent assigned. """ @classmethod def preprocess(cls, value): if value in [True, False]: return bool(value) else: raise OptionError("'%s' must have a boolean value assigned, got %s" % (cls.option, value)) class OptionType(type): """Base type for all options that does registers options. """ def __init__(cls, *args, **kwargs): @property def getter(self): try: return self[cls.option] except KeyError: return cls.default() setattr(Options, cls.option, getter) Options.__options__[cls.option] = cls @public class Options(dict): """ Options manager for polynomial manipulation module. Examples ======== >>> from sympy.polys.polyoptions import Options >>> from sympy.polys.polyoptions import build_options >>> from sympy.abc import x, y, z >>> Options((x, y, z), {'domain': 'ZZ'}) {'auto': False, 'domain': ZZ, 'gens': (x, y, z)} >>> build_options((x, y, z), {'domain': 'ZZ'}) {'auto': False, 'domain': ZZ, 'gens': (x, y, z)} **Options** * Expand --- boolean option * Gens --- option * Wrt --- option * Sort --- option * Order --- option * Field --- boolean option * Greedy --- boolean option * Domain --- option * Split --- boolean option * Gaussian --- boolean option * Extension --- option * Modulus --- option * Symmetric --- boolean option * Strict --- boolean option **Flags** * Auto --- boolean flag * Frac --- boolean flag * Formal --- boolean flag * Polys --- boolean flag * Include --- boolean flag * All --- boolean flag * Gen --- flag * Series --- boolean flag """ __order__ = None __options__ = {} # type: tDict[str, Type[Option]] def __init__(self, gens, args, flags=None, strict=False): dict.__init__(self) if gens and args.get('gens', ()): raise OptionError( "both '*gens' and keyword argument 'gens' supplied") elif gens: args = dict(args) args['gens'] = gens defaults = args.pop('defaults', {}) def preprocess_options(args): for option, value in args.items(): try: cls = self.__options__[option] except KeyError: raise OptionError("'%s' is not a valid option" % option) if issubclass(cls, Flag): if flags is None or option not in flags: if strict: raise OptionError("'%s' flag is not allowed in this context" % option) if value is not None: self[option] = cls.preprocess(value) preprocess_options(args) for key, value in dict(defaults).items(): if key in self: del defaults[key] else: for option in self.keys(): cls = self.__options__[option] if key in cls.excludes: del defaults[key] break preprocess_options(defaults) for option in self.keys(): cls = self.__options__[option] for require_option in cls.requires: if self.get(require_option) is None: raise OptionError("'%s' option is only allowed together with '%s'" % (option, require_option)) for exclude_option in cls.excludes: if self.get(exclude_option) is not None: raise OptionError("'%s' option is not allowed together with '%s'" % (option, exclude_option)) for option in self.__order__: self.__options__[option].postprocess(self) @classmethod def _init_dependencies_order(cls): """Resolve the order of options' processing. """ if cls.__order__ is None: vertices, edges = [], set() for name, option in cls.__options__.items(): vertices.append(name) for _name in option.after: edges.add((_name, name)) for _name in option.before: edges.add((name, _name)) try: cls.__order__ = topological_sort((vertices, list(edges))) except ValueError: raise RuntimeError( "cycle detected in sympy.polys options framework") def clone(self, updates={}): """Clone ``self`` and update specified options. """ obj = dict.__new__(self.__class__) for option, value in self.items(): obj[option] = value for option, value in updates.items(): obj[option] = value return obj def __setattr__(self, attr, value): if attr in self.__options__: self[attr] = value else: super().__setattr__(attr, value) @property def args(self): args = {} for option, value in self.items(): if value is not None and option != 'gens': cls = self.__options__[option] if not issubclass(cls, Flag): args[option] = value return args @property def options(self): options = {} for option, cls in self.__options__.items(): if not issubclass(cls, Flag): options[option] = getattr(self, option) return options @property def flags(self): flags = {} for option, cls in self.__options__.items(): if issubclass(cls, Flag): flags[option] = getattr(self, option) return flags class Expand(BooleanOption, metaclass=OptionType): """``expand`` option to polynomial manipulation functions. """ option = 'expand' requires = [] # type: List[str] excludes = [] # type: List[str] @classmethod def default(cls): return True class Gens(Option, metaclass=OptionType): """``gens`` option to polynomial manipulation functions. """ option = 'gens' requires = [] # type: List[str] excludes = [] # type: List[str] @classmethod def default(cls): return () @classmethod def preprocess(cls, gens): if isinstance(gens, Basic): gens = (gens,) elif len(gens) == 1 and is_sequence(gens[0]): gens = gens[0] if gens == (None,): gens = () elif has_dups(gens): raise GeneratorsError("duplicated generators: %s" % str(gens)) elif any(gen.is_commutative is False for gen in gens): raise GeneratorsError("non-commutative generators: %s" % str(gens)) return tuple(gens) class Wrt(Option, metaclass=OptionType): """``wrt`` option to polynomial manipulation functions. """ option = 'wrt' requires = [] # type: List[str] excludes = [] # type: List[str] _re_split = re.compile(r"\s*,\s*|\s+") @classmethod def preprocess(cls, wrt): if isinstance(wrt, Basic): return [str(wrt)] elif isinstance(wrt, str): wrt = wrt.strip() if wrt.endswith(','): raise OptionError('Bad input: missing parameter.') if not wrt: return [] return [ gen for gen in cls._re_split.split(wrt) ] elif hasattr(wrt, '__getitem__'): return list(map(str, wrt)) else: raise OptionError("invalid argument for 'wrt' option") class Sort(Option, metaclass=OptionType): """``sort`` option to polynomial manipulation functions. """ option = 'sort' requires = [] # type: List[str] excludes = [] # type: List[str] @classmethod def default(cls): return [] @classmethod def preprocess(cls, sort): if isinstance(sort, str): return [ gen.strip() for gen in sort.split('>') ] elif hasattr(sort, '__getitem__'): return list(map(str, sort)) else: raise OptionError("invalid argument for 'sort' option") class Order(Option, metaclass=OptionType): """``order`` option to polynomial manipulation functions. """ option = 'order' requires = [] # type: List[str] excludes = [] # type: List[str] @classmethod def default(cls): return sympy.polys.orderings.lex @classmethod def preprocess(cls, order): return sympy.polys.orderings.monomial_key(order) class Field(BooleanOption, metaclass=OptionType): """``field`` option to polynomial manipulation functions. """ option = 'field' requires = [] # type: List[str] excludes = ['domain', 'split', 'gaussian'] class Greedy(BooleanOption, metaclass=OptionType): """``greedy`` option to polynomial manipulation functions. """ option = 'greedy' requires = [] # type: List[str] excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric'] class Composite(BooleanOption, metaclass=OptionType): """``composite`` option to polynomial manipulation functions. """ option = 'composite' @classmethod def default(cls): return None requires = [] # type: List[str] excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric'] class Domain(Option, metaclass=OptionType): """``domain`` option to polynomial manipulation functions. """ option = 'domain' requires = [] # type: List[str] excludes = ['field', 'greedy', 'split', 'gaussian', 'extension'] after = ['gens'] _re_realfield = re.compile(r"^(R|RR)(_(\d+))?$") _re_complexfield = re.compile(r"^(C|CC)(_(\d+))?$") _re_finitefield = re.compile(r"^(FF|GF)\((\d+)\)$") _re_polynomial = re.compile(r"^(Z|ZZ|Q|QQ|ZZ_I|QQ_I|R|RR|C|CC)\[(.+)\]$") _re_fraction = re.compile(r"^(Z|ZZ|Q|QQ)\((.+)\)$") _re_algebraic = re.compile(r"^(Q|QQ)\<(.+)\>$") @classmethod def preprocess(cls, domain): if isinstance(domain, sympy.polys.domains.Domain): return domain elif hasattr(domain, 'to_domain'): return domain.to_domain() elif isinstance(domain, str): if domain in ['Z', 'ZZ']: return sympy.polys.domains.ZZ if domain in ['Q', 'QQ']: return sympy.polys.domains.QQ if domain == 'ZZ_I': return sympy.polys.domains.ZZ_I if domain == 'QQ_I': return sympy.polys.domains.QQ_I if domain == 'EX': return sympy.polys.domains.EX r = cls._re_realfield.match(domain) if r is not None: _, _, prec = r.groups() if prec is None: return sympy.polys.domains.RR else: return sympy.polys.domains.RealField(int(prec)) r = cls._re_complexfield.match(domain) if r is not None: _, _, prec = r.groups() if prec is None: return sympy.polys.domains.CC else: return sympy.polys.domains.ComplexField(int(prec)) r = cls._re_finitefield.match(domain) if r is not None: return sympy.polys.domains.FF(int(r.groups()[1])) r = cls._re_polynomial.match(domain) if r is not None: ground, gens = r.groups() gens = list(map(sympify, gens.split(','))) if ground in ['Z', 'ZZ']: return sympy.polys.domains.ZZ.poly_ring(*gens) elif ground in ['Q', 'QQ']: return sympy.polys.domains.QQ.poly_ring(*gens) elif ground in ['R', 'RR']: return sympy.polys.domains.RR.poly_ring(*gens) elif ground == 'ZZ_I': return sympy.polys.domains.ZZ_I.poly_ring(*gens) elif ground == 'QQ_I': return sympy.polys.domains.QQ_I.poly_ring(*gens) else: return sympy.polys.domains.CC.poly_ring(*gens) r = cls._re_fraction.match(domain) if r is not None: ground, gens = r.groups() gens = list(map(sympify, gens.split(','))) if ground in ['Z', 'ZZ']: return sympy.polys.domains.ZZ.frac_field(*gens) else: return sympy.polys.domains.QQ.frac_field(*gens) r = cls._re_algebraic.match(domain) if r is not None: gens = list(map(sympify, r.groups()[1].split(','))) return sympy.polys.domains.QQ.algebraic_field(*gens) raise OptionError('expected a valid domain specification, got %s' % domain) @classmethod def postprocess(cls, options): if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \ (set(options['domain'].symbols) & set(options['gens'])): raise GeneratorsError( "ground domain and generators interfere together") elif ('gens' not in options or not options['gens']) and \ 'domain' in options and options['domain'] == sympy.polys.domains.EX: raise GeneratorsError("you have to provide generators because EX domain was requested") class Split(BooleanOption, metaclass=OptionType): """``split`` option to polynomial manipulation functions. """ option = 'split' requires = [] # type: List[str] excludes = ['field', 'greedy', 'domain', 'gaussian', 'extension', 'modulus', 'symmetric'] @classmethod def postprocess(cls, options): if 'split' in options: raise NotImplementedError("'split' option is not implemented yet") class Gaussian(BooleanOption, metaclass=OptionType): """``gaussian`` option to polynomial manipulation functions. """ option = 'gaussian' requires = [] # type: List[str] excludes = ['field', 'greedy', 'domain', 'split', 'extension', 'modulus', 'symmetric'] @classmethod def postprocess(cls, options): if 'gaussian' in options and options['gaussian'] is True: options['domain'] = sympy.polys.domains.QQ_I Extension.postprocess(options) class Extension(Option, metaclass=OptionType): """``extension`` option to polynomial manipulation functions. """ option = 'extension' requires = [] # type: List[str] excludes = ['greedy', 'domain', 'split', 'gaussian', 'modulus', 'symmetric'] @classmethod def preprocess(cls, extension): if extension == 1: return bool(extension) elif extension == 0: raise OptionError("'False' is an invalid argument for 'extension'") else: if not hasattr(extension, '__iter__'): extension = {extension} else: if not extension: extension = None else: extension = set(extension) return extension @classmethod def postprocess(cls, options): if 'extension' in options and options['extension'] is not True: options['domain'] = sympy.polys.domains.QQ.algebraic_field( *options['extension']) class Modulus(Option, metaclass=OptionType): """``modulus`` option to polynomial manipulation functions. """ option = 'modulus' requires = [] # type: List[str] excludes = ['greedy', 'split', 'domain', 'gaussian', 'extension'] @classmethod def preprocess(cls, modulus): modulus = sympify(modulus) if modulus.is_Integer and modulus > 0: return int(modulus) else: raise OptionError( "'modulus' must a positive integer, got %s" % modulus) @classmethod def postprocess(cls, options): if 'modulus' in options: modulus = options['modulus'] symmetric = options.get('symmetric', True) options['domain'] = sympy.polys.domains.FF(modulus, symmetric) class Symmetric(BooleanOption, metaclass=OptionType): """``symmetric`` option to polynomial manipulation functions. """ option = 'symmetric' requires = ['modulus'] excludes = ['greedy', 'domain', 'split', 'gaussian', 'extension'] class Strict(BooleanOption, metaclass=OptionType): """``strict`` option to polynomial manipulation functions. """ option = 'strict' @classmethod def default(cls): return True class Auto(BooleanOption, Flag, metaclass=OptionType): """``auto`` flag to polynomial manipulation functions. """ option = 'auto' after = ['field', 'domain', 'extension', 'gaussian'] @classmethod def default(cls): return True @classmethod def postprocess(cls, options): if ('domain' in options or 'field' in options) and 'auto' not in options: options['auto'] = False class Frac(BooleanOption, Flag, metaclass=OptionType): """``auto`` option to polynomial manipulation functions. """ option = 'frac' @classmethod def default(cls): return False class Formal(BooleanOption, Flag, metaclass=OptionType): """``formal`` flag to polynomial manipulation functions. """ option = 'formal' @classmethod def default(cls): return False class Polys(BooleanOption, Flag, metaclass=OptionType): """``polys`` flag to polynomial manipulation functions. """ option = 'polys' class Include(BooleanOption, Flag, metaclass=OptionType): """``include`` flag to polynomial manipulation functions. """ option = 'include' @classmethod def default(cls): return False class All(BooleanOption, Flag, metaclass=OptionType): """``all`` flag to polynomial manipulation functions. """ option = 'all' @classmethod def default(cls): return False class Gen(Flag, metaclass=OptionType): """``gen`` flag to polynomial manipulation functions. """ option = 'gen' @classmethod def default(cls): return 0 @classmethod def preprocess(cls, gen): if isinstance(gen, (Basic, int)): return gen else: raise OptionError("invalid argument for 'gen' option") class Series(BooleanOption, Flag, metaclass=OptionType): """``series`` flag to polynomial manipulation functions. """ option = 'series' @classmethod def default(cls): return False class Symbols(Flag, metaclass=OptionType): """``symbols`` flag to polynomial manipulation functions. """ option = 'symbols' @classmethod def default(cls): return numbered_symbols('s', start=1) @classmethod def preprocess(cls, symbols): if hasattr(symbols, '__iter__'): return iter(symbols) else: raise OptionError("expected an iterator or iterable container, got %s" % symbols) class Method(Flag, metaclass=OptionType): """``method`` flag to polynomial manipulation functions. """ option = 'method' @classmethod def preprocess(cls, method): if isinstance(method, str): return method.lower() else: raise OptionError("expected a string, got %s" % method) def build_options(gens, args=None): """Construct options from keyword arguments or ... options. """ if args is None: gens, args = (), gens if len(args) != 1 or 'opt' not in args or gens: return Options(gens, args) else: return args['opt'] def allowed_flags(args, flags): """ Allow specified flags to be used in the given context. Examples ======== >>> from sympy.polys.polyoptions import allowed_flags >>> from sympy.polys.domains import ZZ >>> allowed_flags({'domain': ZZ}, []) >>> allowed_flags({'domain': ZZ, 'frac': True}, []) Traceback (most recent call last): ... FlagError: 'frac' flag is not allowed in this context >>> allowed_flags({'domain': ZZ, 'frac': True}, ['frac']) """ flags = set(flags) for arg in args.keys(): try: if Options.__options__[arg].is_Flag and arg not in flags: raise FlagError( "'%s' flag is not allowed in this context" % arg) except KeyError: raise OptionError("'%s' is not a valid option" % arg) def set_defaults(options, **defaults): """Update options with default values. """ if 'defaults' not in options: options = dict(options) options['defaults'] = defaults return options Options._init_dependencies_order()
beaf0ca7ea59869bcc8d8fabada9cda7751433e102d048428ea55d79c27f8c57
"""Groebner bases algorithms. """ from sympy.core.symbol import Dummy from sympy.polys.monomials import monomial_mul, monomial_lcm, monomial_divides, term_div from sympy.polys.orderings import lex from sympy.polys.polyerrors import DomainError from sympy.polys.polyconfig import query def groebner(seq, ring, method=None): """ Computes Groebner basis for a set of polynomials in `K[X]`. Wrapper around the (default) improved Buchberger and the other algorithms for computing Groebner bases. The choice of algorithm can be changed via ``method`` argument or :func:`sympy.polys.polyconfig.setup`, where ``method`` can be either ``buchberger`` or ``f5b``. """ if method is None: method = query('groebner') _groebner_methods = { 'buchberger': _buchberger, 'f5b': _f5b, } try: _groebner = _groebner_methods[method] except KeyError: raise ValueError("'%s' is not a valid Groebner bases algorithm (valid are 'buchberger' and 'f5b')" % method) domain, orig = ring.domain, None if not domain.is_Field or not domain.has_assoc_Field: try: orig, ring = ring, ring.clone(domain=domain.get_field()) except DomainError: raise DomainError("Cannot compute a Groebner basis over %s" % domain) else: seq = [ s.set_ring(ring) for s in seq ] G = _groebner(seq, ring) if orig is not None: G = [ g.clear_denoms()[1].set_ring(orig) for g in G ] return G def _buchberger(f, ring): """ Computes Groebner basis for a set of polynomials in `K[X]`. Given a set of multivariate polynomials `F`, finds another set `G`, such that Ideal `F = Ideal G` and `G` is a reduced Groebner basis. The resulting basis is unique and has monic generators if the ground domains is a field. Otherwise the result is non-unique but Groebner bases over e.g. integers can be computed (if the input polynomials are monic). Groebner bases can be used to choose specific generators for a polynomial ideal. Because these bases are unique you can check for ideal equality by comparing the Groebner bases. To see if one polynomial lies in an ideal, divide by the elements in the base and see if the remainder vanishes. They can also be used to solve systems of polynomial equations as, by choosing lexicographic ordering, you can eliminate one variable at a time, provided that the ideal is zero-dimensional (finite number of solutions). Notes ===== Algorithm used: an improved version of Buchberger's algorithm as presented in T. Becker, V. Weispfenning, Groebner Bases: A Computational Approach to Commutative Algebra, Springer, 1993, page 232. References ========== .. [1] [Bose03]_ .. [2] [Giovini91]_ .. [3] [Ajwa95]_ .. [4] [Cox97]_ """ order = ring.order monomial_mul = ring.monomial_mul monomial_div = ring.monomial_div monomial_lcm = ring.monomial_lcm def select(P): # normal selection strategy # select the pair with minimum LCM(LM(f), LM(g)) pr = min(P, key=lambda pair: order(monomial_lcm(f[pair[0]].LM, f[pair[1]].LM))) return pr def normal(g, J): h = g.rem([ f[j] for j in J ]) if not h: return None else: h = h.monic() if h not in I: I[h] = len(f) f.append(h) return h.LM, I[h] def update(G, B, ih): # update G using the set of critical pairs B and h # [BW] page 230 h = f[ih] mh = h.LM # filter new pairs (h, g), g in G C = G.copy() D = set() while C: # select a pair (h, g) by popping an element from C ig = C.pop() g = f[ig] mg = g.LM LCMhg = monomial_lcm(mh, mg) def lcm_divides(ip): # LCM(LM(h), LM(p)) divides LCM(LM(h), LM(g)) m = monomial_lcm(mh, f[ip].LM) return monomial_div(LCMhg, m) # HT(h) and HT(g) disjoint: mh*mg == LCMhg if monomial_mul(mh, mg) == LCMhg or ( not any(lcm_divides(ipx) for ipx in C) and not any(lcm_divides(pr[1]) for pr in D)): D.add((ih, ig)) E = set() while D: # select h, g from D (h the same as above) ih, ig = D.pop() mg = f[ig].LM LCMhg = monomial_lcm(mh, mg) if not monomial_mul(mh, mg) == LCMhg: E.add((ih, ig)) # filter old pairs B_new = set() while B: # select g1, g2 from B (-> CP) ig1, ig2 = B.pop() mg1 = f[ig1].LM mg2 = f[ig2].LM LCM12 = monomial_lcm(mg1, mg2) # if HT(h) does not divide lcm(HT(g1), HT(g2)) if not monomial_div(LCM12, mh) or \ monomial_lcm(mg1, mh) == LCM12 or \ monomial_lcm(mg2, mh) == LCM12: B_new.add((ig1, ig2)) B_new |= E # filter polynomials G_new = set() while G: ig = G.pop() mg = f[ig].LM if not monomial_div(mg, mh): G_new.add(ig) G_new.add(ih) return G_new, B_new # end of update ################################ if not f: return [] # replace f with a reduced list of initial polynomials; see [BW] page 203 f1 = f[:] while True: f = f1[:] f1 = [] for i in range(len(f)): p = f[i] r = p.rem(f[:i]) if r: f1.append(r.monic()) if f == f1: break I = {} # ip = I[p]; p = f[ip] F = set() # set of indices of polynomials G = set() # set of indices of intermediate would-be Groebner basis CP = set() # set of pairs of indices of critical pairs for i, h in enumerate(f): I[h] = i F.add(i) ##################################### # algorithm GROEBNERNEWS2 in [BW] page 232 while F: # select p with minimum monomial according to the monomial ordering h = min([f[x] for x in F], key=lambda f: order(f.LM)) ih = I[h] F.remove(ih) G, CP = update(G, CP, ih) # count the number of critical pairs which reduce to zero reductions_to_zero = 0 while CP: ig1, ig2 = select(CP) CP.remove((ig1, ig2)) h = spoly(f[ig1], f[ig2], ring) # ordering divisors is on average more efficient [Cox] page 111 G1 = sorted(G, key=lambda g: order(f[g].LM)) ht = normal(h, G1) if ht: G, CP = update(G, CP, ht[1]) else: reductions_to_zero += 1 ###################################### # now G is a Groebner basis; reduce it Gr = set() for ig in G: ht = normal(f[ig], G - {ig}) if ht: Gr.add(ht[1]) Gr = [f[ig] for ig in Gr] # order according to the monomial ordering Gr = sorted(Gr, key=lambda f: order(f.LM), reverse=True) return Gr def spoly(p1, p2, ring): """ Compute LCM(LM(p1), LM(p2))/LM(p1)*p1 - LCM(LM(p1), LM(p2))/LM(p2)*p2 This is the S-poly provided p1 and p2 are monic """ LM1 = p1.LM LM2 = p2.LM LCM12 = ring.monomial_lcm(LM1, LM2) m1 = ring.monomial_div(LCM12, LM1) m2 = ring.monomial_div(LCM12, LM2) s1 = p1.mul_monom(m1) s2 = p2.mul_monom(m2) s = s1 - s2 return s # F5B # convenience functions def Sign(f): return f[0] def Polyn(f): return f[1] def Num(f): return f[2] def sig(monomial, index): return (monomial, index) def lbp(signature, polynomial, number): return (signature, polynomial, number) # signature functions def sig_cmp(u, v, order): """ Compare two signatures by extending the term order to K[X]^n. u < v iff - the index of v is greater than the index of u or - the index of v is equal to the index of u and u[0] < v[0] w.r.t. order u > v otherwise """ if u[1] > v[1]: return -1 if u[1] == v[1]: #if u[0] == v[0]: # return 0 if order(u[0]) < order(v[0]): return -1 return 1 def sig_key(s, order): """ Key for comparing two signatures. s = (m, k), t = (n, l) s < t iff [k > l] or [k == l and m < n] s > t otherwise """ return (-s[1], order(s[0])) def sig_mult(s, m): """ Multiply a signature by a monomial. The product of a signature (m, i) and a monomial n is defined as (m * t, i). """ return sig(monomial_mul(s[0], m), s[1]) # labeled polynomial functions def lbp_sub(f, g): """ Subtract labeled polynomial g from f. The signature and number of the difference of f and g are signature and number of the maximum of f and g, w.r.t. lbp_cmp. """ if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) < 0: max_poly = g else: max_poly = f ret = Polyn(f) - Polyn(g) return lbp(Sign(max_poly), ret, Num(max_poly)) def lbp_mul_term(f, cx): """ Multiply a labeled polynomial with a term. The product of a labeled polynomial (s, p, k) by a monomial is defined as (m * s, m * p, k). """ return lbp(sig_mult(Sign(f), cx[0]), Polyn(f).mul_term(cx), Num(f)) def lbp_cmp(f, g): """ Compare two labeled polynomials. f < g iff - Sign(f) < Sign(g) or - Sign(f) == Sign(g) and Num(f) > Num(g) f > g otherwise """ if sig_cmp(Sign(f), Sign(g), Polyn(f).ring.order) == -1: return -1 if Sign(f) == Sign(g): if Num(f) > Num(g): return -1 #if Num(f) == Num(g): # return 0 return 1 def lbp_key(f): """ Key for comparing two labeled polynomials. """ return (sig_key(Sign(f), Polyn(f).ring.order), -Num(f)) # algorithm and helper functions def critical_pair(f, g, ring): """ Compute the critical pair corresponding to two labeled polynomials. A critical pair is a tuple (um, f, vm, g), where um and vm are terms such that um * f - vm * g is the S-polynomial of f and g (so, wlog assume um * f > vm * g). For performance sake, a critical pair is represented as a tuple (Sign(um * f), um, f, Sign(vm * g), vm, g), since um * f creates a new, relatively expensive object in memory, whereas Sign(um * f) and um are lightweight and f (in the tuple) is a reference to an already existing object in memory. """ domain = ring.domain ltf = Polyn(f).LT ltg = Polyn(g).LT lt = (monomial_lcm(ltf[0], ltg[0]), domain.one) um = term_div(lt, ltf, domain) vm = term_div(lt, ltg, domain) # The full information is not needed (now), so only the product # with the leading term is considered: fr = lbp_mul_term(lbp(Sign(f), Polyn(f).leading_term(), Num(f)), um) gr = lbp_mul_term(lbp(Sign(g), Polyn(g).leading_term(), Num(g)), vm) # return in proper order, such that the S-polynomial is just # u_first * f_first - u_second * f_second: if lbp_cmp(fr, gr) == -1: return (Sign(gr), vm, g, Sign(fr), um, f) else: return (Sign(fr), um, f, Sign(gr), vm, g) def cp_cmp(c, d): """ Compare two critical pairs c and d. c < d iff - lbp(c[0], _, Num(c[2]) < lbp(d[0], _, Num(d[2])) (this corresponds to um_c * f_c and um_d * f_d) or - lbp(c[0], _, Num(c[2]) >< lbp(d[0], _, Num(d[2])) and lbp(c[3], _, Num(c[5])) < lbp(d[3], _, Num(d[5])) (this corresponds to vm_c * g_c and vm_d * g_d) c > d otherwise """ zero = Polyn(c[2]).ring.zero c0 = lbp(c[0], zero, Num(c[2])) d0 = lbp(d[0], zero, Num(d[2])) r = lbp_cmp(c0, d0) if r == -1: return -1 if r == 0: c1 = lbp(c[3], zero, Num(c[5])) d1 = lbp(d[3], zero, Num(d[5])) r = lbp_cmp(c1, d1) if r == -1: return -1 #if r == 0: # return 0 return 1 def cp_key(c, ring): """ Key for comparing critical pairs. """ return (lbp_key(lbp(c[0], ring.zero, Num(c[2]))), lbp_key(lbp(c[3], ring.zero, Num(c[5])))) def s_poly(cp): """ Compute the S-polynomial of a critical pair. The S-polynomial of a critical pair cp is cp[1] * cp[2] - cp[4] * cp[5]. """ return lbp_sub(lbp_mul_term(cp[2], cp[1]), lbp_mul_term(cp[5], cp[4])) def is_rewritable_or_comparable(sign, num, B): """ Check if a labeled polynomial is redundant by checking if its signature and number imply rewritability or comparability. (sign, num) is comparable if there exists a labeled polynomial h in B, such that sign[1] (the index) is less than Sign(h)[1] and sign[0] is divisible by the leading monomial of h. (sign, num) is rewritable if there exists a labeled polynomial h in B, such thatsign[1] is equal to Sign(h)[1], num < Num(h) and sign[0] is divisible by Sign(h)[0]. """ for h in B: # comparable if sign[1] < Sign(h)[1]: if monomial_divides(Polyn(h).LM, sign[0]): return True # rewritable if sign[1] == Sign(h)[1]: if num < Num(h): if monomial_divides(Sign(h)[0], sign[0]): return True return False def f5_reduce(f, B): """ F5-reduce a labeled polynomial f by B. Continuously searches for non-zero labeled polynomial h in B, such that the leading term lt_h of h divides the leading term lt_f of f and Sign(lt_h * h) < Sign(f). If such a labeled polynomial h is found, f gets replaced by f - lt_f / lt_h * h. If no such h can be found or f is 0, f is no further F5-reducible and f gets returned. A polynomial that is reducible in the usual sense need not be F5-reducible, e.g.: >>> from sympy.polys.groebnertools import lbp, sig, f5_reduce, Polyn >>> from sympy.polys import ring, QQ, lex >>> R, x,y,z = ring("x,y,z", QQ, lex) >>> f = lbp(sig((1, 1, 1), 4), x, 3) >>> g = lbp(sig((0, 0, 0), 2), x, 2) >>> Polyn(f).rem([Polyn(g)]) 0 >>> f5_reduce(f, [g]) (((1, 1, 1), 4), x, 3) """ order = Polyn(f).ring.order domain = Polyn(f).ring.domain if not Polyn(f): return f while True: g = f for h in B: if Polyn(h): if monomial_divides(Polyn(h).LM, Polyn(f).LM): t = term_div(Polyn(f).LT, Polyn(h).LT, domain) if sig_cmp(sig_mult(Sign(h), t[0]), Sign(f), order) < 0: # The following check need not be done and is in general slower than without. #if not is_rewritable_or_comparable(Sign(gp), Num(gp), B): hp = lbp_mul_term(h, t) f = lbp_sub(f, hp) break if g == f or not Polyn(f): return f def _f5b(F, ring): """ Computes a reduced Groebner basis for the ideal generated by F. f5b is an implementation of the F5B algorithm by Yao Sun and Dingkang Wang. Similarly to Buchberger's algorithm, the algorithm proceeds by computing critical pairs, computing the S-polynomial, reducing it and adjoining the reduced S-polynomial if it is not 0. Unlike Buchberger's algorithm, each polynomial contains additional information, namely a signature and a number. The signature specifies the path of computation (i.e. from which polynomial in the original basis was it derived and how), the number says when the polynomial was added to the basis. With this information it is (often) possible to decide if an S-polynomial will reduce to 0 and can be discarded. Optimizations include: Reducing the generators before computing a Groebner basis, removing redundant critical pairs when a new polynomial enters the basis and sorting the critical pairs and the current basis. Once a Groebner basis has been found, it gets reduced. References ========== .. [1] Yao Sun, Dingkang Wang: "A New Proof for the Correctness of F5 (F5-Like) Algorithm", http://arxiv.org/abs/1004.0084 (specifically v4) .. [2] Thomas Becker, Volker Weispfenning, Groebner bases: A computational approach to commutative algebra, 1993, p. 203, 216 """ order = ring.order # reduce polynomials (like in Mario Pernici's implementation) (Becker, Weispfenning, p. 203) B = F while True: F = B B = [] for i in range(len(F)): p = F[i] r = p.rem(F[:i]) if r: B.append(r) if F == B: break # basis B = [lbp(sig(ring.zero_monom, i + 1), F[i], i + 1) for i in range(len(F))] B.sort(key=lambda f: order(Polyn(f).LM), reverse=True) # critical pairs CP = [critical_pair(B[i], B[j], ring) for i in range(len(B)) for j in range(i + 1, len(B))] CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) k = len(B) reductions_to_zero = 0 while len(CP): cp = CP.pop() # discard redundant critical pairs: if is_rewritable_or_comparable(cp[0], Num(cp[2]), B): continue if is_rewritable_or_comparable(cp[3], Num(cp[5]), B): continue s = s_poly(cp) p = f5_reduce(s, B) p = lbp(Sign(p), Polyn(p).monic(), k + 1) if Polyn(p): # remove old critical pairs, that become redundant when adding p: indices = [] for i, cp in enumerate(CP): if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): indices.append(i) elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): indices.append(i) for i in reversed(indices): del CP[i] # only add new critical pairs that are not made redundant by p: for g in B: if Polyn(g): cp = critical_pair(p, g, ring) if is_rewritable_or_comparable(cp[0], Num(cp[2]), [p]): continue elif is_rewritable_or_comparable(cp[3], Num(cp[5]), [p]): continue CP.append(cp) # sort (other sorting methods/selection strategies were not as successful) CP.sort(key=lambda cp: cp_key(cp, ring), reverse=True) # insert p into B: m = Polyn(p).LM if order(m) <= order(Polyn(B[-1]).LM): B.append(p) else: for i, q in enumerate(B): if order(m) > order(Polyn(q).LM): B.insert(i, p) break k += 1 #print(len(B), len(CP), "%d critical pairs removed" % len(indices)) else: reductions_to_zero += 1 # reduce Groebner basis: H = [Polyn(g).monic() for g in B] H = red_groebner(H, ring) return sorted(H, key=lambda f: order(f.LM), reverse=True) def red_groebner(G, ring): """ Compute reduced Groebner basis, from BeckerWeispfenning93, p. 216 Selects a subset of generators, that already generate the ideal and computes a reduced Groebner basis for them. """ def reduction(P): """ The actual reduction algorithm. """ Q = [] for i, p in enumerate(P): h = p.rem(P[:i] + P[i + 1:]) if h: Q.append(h) return [p.monic() for p in Q] F = G H = [] while F: f0 = F.pop() if not any(monomial_divides(f.LM, f0.LM) for f in F + H): H.append(f0) # Becker, Weispfenning, p. 217: H is Groebner basis of the ideal generated by G. return reduction(H) def is_groebner(G, ring): """ Check if G is a Groebner basis. """ for i in range(len(G)): for j in range(i + 1, len(G)): s = spoly(G[i], G[j], ring) s = s.rem(G) if s: return False return True def is_minimal(G, ring): """ Checks if G is a minimal Groebner basis. """ order = ring.order domain = ring.domain G.sort(key=lambda g: order(g.LM)) for i, g in enumerate(G): if g.LC != domain.one: return False for h in G[:i] + G[i + 1:]: if monomial_divides(h.LM, g.LM): return False return True def is_reduced(G, ring): """ Checks if G is a reduced Groebner basis. """ order = ring.order domain = ring.domain G.sort(key=lambda g: order(g.LM)) for i, g in enumerate(G): if g.LC != domain.one: return False for term in g.terms(): for h in G[:i] + G[i + 1:]: if monomial_divides(h.LM, term[0]): return False return True def groebner_lcm(f, g): """ Computes LCM of two polynomials using Groebner bases. The LCM is computed as the unique generator of the intersection of the two ideals generated by `f` and `g`. The approach is to compute a Groebner basis with respect to lexicographic ordering of `t*f` and `(1 - t)*g`, where `t` is an unrelated variable and then filtering out the solution that doesn't contain `t`. References ========== .. [1] [Cox97]_ """ if f.ring != g.ring: raise ValueError("Values should be equal") ring = f.ring domain = ring.domain if not f or not g: return ring.zero if len(f) <= 1 and len(g) <= 1: monom = monomial_lcm(f.LM, g.LM) coeff = domain.lcm(f.LC, g.LC) return ring.term_new(monom, coeff) fc, f = f.primitive() gc, g = g.primitive() lcm = domain.lcm(fc, gc) f_terms = [ ((1,) + monom, coeff) for monom, coeff in f.terms() ] g_terms = [ ((0,) + monom, coeff) for monom, coeff in g.terms() ] \ + [ ((1,) + monom,-coeff) for monom, coeff in g.terms() ] t = Dummy("t") t_ring = ring.clone(symbols=(t,) + ring.symbols, order=lex) F = t_ring.from_terms(f_terms) G = t_ring.from_terms(g_terms) basis = groebner([F, G], t_ring) def is_independent(h, j): return not any(monom[j] for monom in h.monoms()) H = [ h for h in basis if is_independent(h, 0) ] h_terms = [ (monom[1:], coeff*lcm) for monom, coeff in H[0].terms() ] h = ring.from_terms(h_terms) return h def groebner_gcd(f, g): """Computes GCD of two polynomials using Groebner bases. """ if f.ring != g.ring: raise ValueError("Values should be equal") domain = f.ring.domain if not domain.is_Field: fc, f = f.primitive() gc, g = g.primitive() gcd = domain.gcd(fc, gc) H = (f*g).quo([groebner_lcm(f, g)]) if len(H) != 1: raise ValueError("Length should be 1") h = H[0] if not domain.is_Field: return gcd*h else: return h.monic()
eb56c0b80eaa7794ab1ffc268033c2108d2aaca308bfbd6942943a59b8390697
"""Real and complex root isolation and refinement algorithms. """ from sympy.polys.densearith import ( dup_neg, dup_rshift, dup_rem) from sympy.polys.densebasic import ( dup_LC, dup_TC, dup_degree, dup_strip, dup_reverse, dup_convert, dup_terms_gcd) from sympy.polys.densetools import ( dup_clear_denoms, dup_mirror, dup_scale, dup_shift, dup_transform, dup_diff, dup_eval, dmp_eval_in, dup_sign_variations, dup_real_imag) from sympy.polys.factortools import ( dup_factor_list) from sympy.polys.polyerrors import ( RefinementFailed, DomainError) from sympy.polys.sqfreetools import ( dup_sqf_part, dup_sqf_list) def dup_sturm(f, K): """ Computes the Sturm sequence of ``f`` in ``F[x]``. Given a univariate, square-free polynomial ``f(x)`` returns the associated Sturm sequence ``f_0(x), ..., f_n(x)`` defined by:: f_0(x), f_1(x) = f(x), f'(x) f_n = -rem(f_{n-2}(x), f_{n-1}(x)) Examples ======== >>> from sympy.polys import ring, QQ >>> R, x = ring("x", QQ) >>> R.dup_sturm(x**3 - 2*x**2 + x - 3) [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2/9*x + 25/9, -2079/4] References ========== .. [1] [Davenport88]_ """ if not K.is_Field: raise DomainError("Cannot compute Sturm sequence over %s" % K) f = dup_sqf_part(f, K) sturm = [f, dup_diff(f, 1, K)] while sturm[-1]: s = dup_rem(sturm[-2], sturm[-1], K) sturm.append(dup_neg(s, K)) return sturm[:-1] def dup_root_upper_bound(f, K): """Compute the LMQ upper bound for the positive roots of `f`; LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas. References ========== .. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the Values of the Positive Roots of Polynomials" Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009. """ n, P = len(f), [] t = n * [K.one] if dup_LC(f, K) < 0: f = dup_neg(f, K) f = list(reversed(f)) for i in range(0, n): if f[i] >= 0: continue a, QL = K.log(-f[i], 2), [] for j in range(i + 1, n): if f[j] <= 0: continue q = t[j] + a - K.log(f[j], 2) QL.append([q // (j - i), j]) if not QL: continue q = min(QL) t[q[1]] = t[q[1]] + 1 P.append(q[0]) if not P: return None else: return K.get_field()(2)**(max(P) + 1) def dup_root_lower_bound(f, K): """Compute the LMQ lower bound for the positive roots of `f`; LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas. References ========== .. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the Values of the Positive Roots of Polynomials" Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009. """ bound = dup_root_upper_bound(dup_reverse(f), K) if bound is not None: return 1/bound else: return None def _mobius_from_interval(I, field): """Convert an open interval to a Mobius transform. """ s, t = I a, c = field.numer(s), field.denom(s) b, d = field.numer(t), field.denom(t) return a, b, c, d def _mobius_to_interval(M, field): """Convert a Mobius transform to an open interval. """ a, b, c, d = M s, t = field(a, c), field(b, d) if s <= t: return (s, t) else: return (t, s) def dup_step_refine_real_root(f, M, K, fast=False): """One step of positive real root refinement algorithm. """ a, b, c, d = M if a == b and c == d: return f, (a, b, c, d) A = dup_root_lower_bound(f, K) if A is not None: A = K(int(A)) else: A = K.zero if fast and A > 16: f = dup_scale(f, A, K) a, c, A = A*a, A*c, K.one if A >= K.one: f = dup_shift(f, A, K) b, d = A*a + b, A*c + d if not dup_eval(f, K.zero, K): return f, (b, b, d, d) f, g = dup_shift(f, K.one, K), f a1, b1, c1, d1 = a, a + b, c, c + d if not dup_eval(f, K.zero, K): return f, (b1, b1, d1, d1) k = dup_sign_variations(f, K) if k == 1: a, b, c, d = a1, b1, c1, d1 else: f = dup_shift(dup_reverse(g), K.one, K) if not dup_eval(f, K.zero, K): f = dup_rshift(f, 1, K) a, b, c, d = b, a + b, d, c + d return f, (a, b, c, d) def dup_inner_refine_real_root(f, M, K, eps=None, steps=None, disjoint=None, fast=False, mobius=False): """Refine a positive root of `f` given a Mobius transform or an interval. """ F = K.get_field() if len(M) == 2: a, b, c, d = _mobius_from_interval(M, F) else: a, b, c, d = M while not c: f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) if eps is not None and steps is not None: for i in range(0, steps): if abs(F(a, c) - F(b, d)) >= eps: f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) else: break else: if eps is not None: while abs(F(a, c) - F(b, d)) >= eps: f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) if steps is not None: for i in range(0, steps): f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) if disjoint is not None: while True: u, v = _mobius_to_interval((a, b, c, d), F) if v <= disjoint or disjoint <= u: break else: f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) if not mobius: return _mobius_to_interval((a, b, c, d), F) else: return f, (a, b, c, d) def dup_outer_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False): """Refine a positive root of `f` given an interval `(s, t)`. """ a, b, c, d = _mobius_from_interval((s, t), K.get_field()) f = dup_transform(f, dup_strip([a, b]), dup_strip([c, d]), K) if dup_sign_variations(f, K) != 1: raise RefinementFailed("there should be exactly one root in (%s, %s) interval" % (s, t)) return dup_inner_refine_real_root(f, (a, b, c, d), K, eps=eps, steps=steps, disjoint=disjoint, fast=fast) def dup_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False): """Refine real root's approximating interval to the given precision. """ if K.is_QQ: (_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() elif not K.is_ZZ: raise DomainError("real root refinement not supported over %s" % K) if s == t: return (s, t) if s > t: s, t = t, s negative = False if s < 0: if t <= 0: f, s, t, negative = dup_mirror(f, K), -t, -s, True else: raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t)) if negative and disjoint is not None: if disjoint < 0: disjoint = -disjoint else: disjoint = None s, t = dup_outer_refine_real_root( f, s, t, K, eps=eps, steps=steps, disjoint=disjoint, fast=fast) if negative: return (-t, -s) else: return ( s, t) def dup_inner_isolate_real_roots(f, K, eps=None, fast=False): """Internal function for isolation positive roots up to given precision. References ========== 1. Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. 2. Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. """ a, b, c, d = K.one, K.zero, K.zero, K.one k = dup_sign_variations(f, K) if k == 0: return [] if k == 1: roots = [dup_inner_refine_real_root( f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True)] else: roots, stack = [], [(a, b, c, d, f, k)] while stack: a, b, c, d, f, k = stack.pop() A = dup_root_lower_bound(f, K) if A is not None: A = K(int(A)) else: A = K.zero if fast and A > 16: f = dup_scale(f, A, K) a, c, A = A*a, A*c, K.one if A >= K.one: f = dup_shift(f, A, K) b, d = A*a + b, A*c + d if not dup_TC(f, K): roots.append((f, (b, b, d, d))) f = dup_rshift(f, 1, K) k = dup_sign_variations(f, K) if k == 0: continue if k == 1: roots.append(dup_inner_refine_real_root( f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True)) continue f1 = dup_shift(f, K.one, K) a1, b1, c1, d1, r = a, a + b, c, c + d, 0 if not dup_TC(f1, K): roots.append((f1, (b1, b1, d1, d1))) f1, r = dup_rshift(f1, 1, K), 1 k1 = dup_sign_variations(f1, K) k2 = k - k1 - r a2, b2, c2, d2 = b, a + b, d, c + d if k2 > 1: f2 = dup_shift(dup_reverse(f), K.one, K) if not dup_TC(f2, K): f2 = dup_rshift(f2, 1, K) k2 = dup_sign_variations(f2, K) else: f2 = None if k1 < k2: a1, a2, b1, b2 = a2, a1, b2, b1 c1, c2, d1, d2 = c2, c1, d2, d1 f1, f2, k1, k2 = f2, f1, k2, k1 if not k1: continue if f1 is None: f1 = dup_shift(dup_reverse(f), K.one, K) if not dup_TC(f1, K): f1 = dup_rshift(f1, 1, K) if k1 == 1: roots.append(dup_inner_refine_real_root( f1, (a1, b1, c1, d1), K, eps=eps, fast=fast, mobius=True)) else: stack.append((a1, b1, c1, d1, f1, k1)) if not k2: continue if f2 is None: f2 = dup_shift(dup_reverse(f), K.one, K) if not dup_TC(f2, K): f2 = dup_rshift(f2, 1, K) if k2 == 1: roots.append(dup_inner_refine_real_root( f2, (a2, b2, c2, d2), K, eps=eps, fast=fast, mobius=True)) else: stack.append((a2, b2, c2, d2, f2, k2)) return roots def _discard_if_outside_interval(f, M, inf, sup, K, negative, fast, mobius): """Discard an isolating interval if outside ``(inf, sup)``. """ F = K.get_field() while True: u, v = _mobius_to_interval(M, F) if negative: u, v = -v, -u if (inf is None or u >= inf) and (sup is None or v <= sup): if not mobius: return u, v else: return f, M elif (sup is not None and u > sup) or (inf is not None and v < inf): return None else: f, M = dup_step_refine_real_root(f, M, K, fast=fast) def dup_inner_isolate_positive_roots(f, K, eps=None, inf=None, sup=None, fast=False, mobius=False): """Iteratively compute disjoint positive root isolation intervals. """ if sup is not None and sup < 0: return [] roots = dup_inner_isolate_real_roots(f, K, eps=eps, fast=fast) F, results = K.get_field(), [] if inf is not None or sup is not None: for f, M in roots: result = _discard_if_outside_interval(f, M, inf, sup, K, False, fast, mobius) if result is not None: results.append(result) elif not mobius: for f, M in roots: u, v = _mobius_to_interval(M, F) results.append((u, v)) else: results = roots return results def dup_inner_isolate_negative_roots(f, K, inf=None, sup=None, eps=None, fast=False, mobius=False): """Iteratively compute disjoint negative root isolation intervals. """ if inf is not None and inf >= 0: return [] roots = dup_inner_isolate_real_roots(dup_mirror(f, K), K, eps=eps, fast=fast) F, results = K.get_field(), [] if inf is not None or sup is not None: for f, M in roots: result = _discard_if_outside_interval(f, M, inf, sup, K, True, fast, mobius) if result is not None: results.append(result) elif not mobius: for f, M in roots: u, v = _mobius_to_interval(M, F) results.append((-v, -u)) else: results = roots return results def _isolate_zero(f, K, inf, sup, basis=False, sqf=False): """Handle special case of CF algorithm when ``f`` is homogeneous. """ j, f = dup_terms_gcd(f, K) if j > 0: F = K.get_field() if (inf is None or inf <= 0) and (sup is None or 0 <= sup): if not sqf: if not basis: return [((F.zero, F.zero), j)], f else: return [((F.zero, F.zero), j, [K.one, K.zero])], f else: return [(F.zero, F.zero)], f return [], f def dup_isolate_real_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False): """Isolate real roots of a square-free polynomial using the Vincent-Akritas-Strzebonski (VAS) CF approach. References ========== .. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods. Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. """ if K.is_QQ: (_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() elif not K.is_ZZ: raise DomainError("isolation of real roots not supported over %s" % K) if dup_degree(f) <= 0: return [] I_zero, f = _isolate_zero(f, K, inf, sup, basis=False, sqf=True) I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) roots = sorted(I_neg + I_zero + I_pos) if not blackbox: return roots else: return [ RealInterval((a, b), f, K) for (a, b) in roots ] def dup_isolate_real_roots(f, K, eps=None, inf=None, sup=None, basis=False, fast=False): """Isolate real roots using Vincent-Akritas-Strzebonski (VAS) continued fractions approach. References ========== .. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods. Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. """ if K.is_QQ: (_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() elif not K.is_ZZ: raise DomainError("isolation of real roots not supported over %s" % K) if dup_degree(f) <= 0: return [] I_zero, f = _isolate_zero(f, K, inf, sup, basis=basis, sqf=False) _, factors = dup_sqf_list(f, K) if len(factors) == 1: ((f, k),) = factors I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) I_neg = [ ((u, v), k) for u, v in I_neg ] I_pos = [ ((u, v), k) for u, v in I_pos ] else: I_neg, I_pos = _real_isolate_and_disjoin(factors, K, eps=eps, inf=inf, sup=sup, basis=basis, fast=fast) return sorted(I_neg + I_zero + I_pos) def dup_isolate_real_roots_list(polys, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False): """Isolate real roots of a list of square-free polynomial using Vincent-Akritas-Strzebonski (VAS) CF approach. References ========== .. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root Isolation Methods. Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. .. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots. Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. """ if K.is_QQ: K, F, polys = K.get_ring(), K, polys[:] for i, p in enumerate(polys): polys[i] = dup_clear_denoms(p, F, K, convert=True)[1] elif not K.is_ZZ: raise DomainError("isolation of real roots not supported over %s" % K) zeros, factors_dict = False, {} if (inf is None or inf <= 0) and (sup is None or 0 <= sup): zeros, zero_indices = True, {} for i, p in enumerate(polys): j, p = dup_terms_gcd(p, K) if zeros and j > 0: zero_indices[i] = j for f, k in dup_factor_list(p, K)[1]: f = tuple(f) if f not in factors_dict: factors_dict[f] = {i: k} else: factors_dict[f][i] = k factors_list = [] for f, indices in factors_dict.items(): factors_list.append((list(f), indices)) I_neg, I_pos = _real_isolate_and_disjoin(factors_list, K, eps=eps, inf=inf, sup=sup, strict=strict, basis=basis, fast=fast) F = K.get_field() if not zeros or not zero_indices: I_zero = [] else: if not basis: I_zero = [((F.zero, F.zero), zero_indices)] else: I_zero = [((F.zero, F.zero), zero_indices, [K.one, K.zero])] return sorted(I_neg + I_zero + I_pos) def _disjoint_p(M, N, strict=False): """Check if Mobius transforms define disjoint intervals. """ a1, b1, c1, d1 = M a2, b2, c2, d2 = N a1d1, b1c1 = a1*d1, b1*c1 a2d2, b2c2 = a2*d2, b2*c2 if a1d1 == b1c1 and a2d2 == b2c2: return True if a1d1 > b1c1: a1, c1, b1, d1 = b1, d1, a1, c1 if a2d2 > b2c2: a2, c2, b2, d2 = b2, d2, a2, c2 if not strict: return a2*d1 >= c2*b1 or b2*c1 <= d2*a1 else: return a2*d1 > c2*b1 or b2*c1 < d2*a1 def _real_isolate_and_disjoin(factors, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False): """Isolate real roots of a list of polynomials and disjoin intervals. """ I_pos, I_neg = [], [] for i, (f, k) in enumerate(factors): for F, M in dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True): I_pos.append((F, M, k, f)) for G, N in dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True): I_neg.append((G, N, k, f)) for i, (f, M, k, F) in enumerate(I_pos): for j, (g, N, m, G) in enumerate(I_pos[i + 1:]): while not _disjoint_p(M, N, strict=strict): f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) I_pos[i + j + 1] = (g, N, m, G) I_pos[i] = (f, M, k, F) for i, (f, M, k, F) in enumerate(I_neg): for j, (g, N, m, G) in enumerate(I_neg[i + 1:]): while not _disjoint_p(M, N, strict=strict): f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) I_neg[i + j + 1] = (g, N, m, G) I_neg[i] = (f, M, k, F) if strict: for i, (f, M, k, F) in enumerate(I_neg): if not M[0]: while not M[0]: f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) I_neg[i] = (f, M, k, F) break for j, (g, N, m, G) in enumerate(I_pos): if not N[0]: while not N[0]: g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) I_pos[j] = (g, N, m, G) break field = K.get_field() I_neg = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_neg ] I_pos = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_pos ] if not basis: I_neg = [ ((-v, -u), k) for ((u, v), k, _) in I_neg ] I_pos = [ (( u, v), k) for ((u, v), k, _) in I_pos ] else: I_neg = [ ((-v, -u), k, f) for ((u, v), k, f) in I_neg ] I_pos = [ (( u, v), k, f) for ((u, v), k, f) in I_pos ] return I_neg, I_pos def dup_count_real_roots(f, K, inf=None, sup=None): """Returns the number of distinct real roots of ``f`` in ``[inf, sup]``. """ if dup_degree(f) <= 0: return 0 if not K.is_Field: R, K = K, K.get_field() f = dup_convert(f, R, K) sturm = dup_sturm(f, K) if inf is None: signs_inf = dup_sign_variations([ dup_LC(s, K)*(-1)**dup_degree(s) for s in sturm ], K) else: signs_inf = dup_sign_variations([ dup_eval(s, inf, K) for s in sturm ], K) if sup is None: signs_sup = dup_sign_variations([ dup_LC(s, K) for s in sturm ], K) else: signs_sup = dup_sign_variations([ dup_eval(s, sup, K) for s in sturm ], K) count = abs(signs_inf - signs_sup) if inf is not None and not dup_eval(f, inf, K): count += 1 return count OO = 'OO' # Origin of (re, im) coordinate system Q1 = 'Q1' # Quadrant #1 (++): re > 0 and im > 0 Q2 = 'Q2' # Quadrant #2 (-+): re < 0 and im > 0 Q3 = 'Q3' # Quadrant #3 (--): re < 0 and im < 0 Q4 = 'Q4' # Quadrant #4 (+-): re > 0 and im < 0 A1 = 'A1' # Axis #1 (+0): re > 0 and im = 0 A2 = 'A2' # Axis #2 (0+): re = 0 and im > 0 A3 = 'A3' # Axis #3 (-0): re < 0 and im = 0 A4 = 'A4' # Axis #4 (0-): re = 0 and im < 0 _rules_simple = { # Q --> Q (same) => no change (Q1, Q1): 0, (Q2, Q2): 0, (Q3, Q3): 0, (Q4, Q4): 0, # A -- CCW --> Q => +1/4 (CCW) (A1, Q1): 1, (A2, Q2): 1, (A3, Q3): 1, (A4, Q4): 1, # A -- CW --> Q => -1/4 (CCW) (A1, Q4): 2, (A2, Q1): 2, (A3, Q2): 2, (A4, Q3): 2, # Q -- CCW --> A => +1/4 (CCW) (Q1, A2): 3, (Q2, A3): 3, (Q3, A4): 3, (Q4, A1): 3, # Q -- CW --> A => -1/4 (CCW) (Q1, A1): 4, (Q2, A2): 4, (Q3, A3): 4, (Q4, A4): 4, # Q -- CCW --> Q => +1/2 (CCW) (Q1, Q2): +5, (Q2, Q3): +5, (Q3, Q4): +5, (Q4, Q1): +5, # Q -- CW --> Q => -1/2 (CW) (Q1, Q4): -5, (Q2, Q1): -5, (Q3, Q2): -5, (Q4, Q3): -5, } _rules_ambiguous = { # A -- CCW --> Q => { +1/4 (CCW), -9/4 (CW) } (A1, OO, Q1): -1, (A2, OO, Q2): -1, (A3, OO, Q3): -1, (A4, OO, Q4): -1, # A -- CW --> Q => { -1/4 (CCW), +7/4 (CW) } (A1, OO, Q4): -2, (A2, OO, Q1): -2, (A3, OO, Q2): -2, (A4, OO, Q3): -2, # Q -- CCW --> A => { +1/4 (CCW), -9/4 (CW) } (Q1, OO, A2): -3, (Q2, OO, A3): -3, (Q3, OO, A4): -3, (Q4, OO, A1): -3, # Q -- CW --> A => { -1/4 (CCW), +7/4 (CW) } (Q1, OO, A1): -4, (Q2, OO, A2): -4, (Q3, OO, A3): -4, (Q4, OO, A4): -4, # A -- OO --> A => { +1 (CCW), -1 (CW) } (A1, A3): 7, (A2, A4): 7, (A3, A1): 7, (A4, A2): 7, (A1, OO, A3): 7, (A2, OO, A4): 7, (A3, OO, A1): 7, (A4, OO, A2): 7, # Q -- DIA --> Q => { +1 (CCW), -1 (CW) } (Q1, Q3): 8, (Q2, Q4): 8, (Q3, Q1): 8, (Q4, Q2): 8, (Q1, OO, Q3): 8, (Q2, OO, Q4): 8, (Q3, OO, Q1): 8, (Q4, OO, Q2): 8, # A --- R ---> A => { +1/2 (CCW), -3/2 (CW) } (A1, A2): 9, (A2, A3): 9, (A3, A4): 9, (A4, A1): 9, (A1, OO, A2): 9, (A2, OO, A3): 9, (A3, OO, A4): 9, (A4, OO, A1): 9, # A --- L ---> A => { +3/2 (CCW), -1/2 (CW) } (A1, A4): 10, (A2, A1): 10, (A3, A2): 10, (A4, A3): 10, (A1, OO, A4): 10, (A2, OO, A1): 10, (A3, OO, A2): 10, (A4, OO, A3): 10, # Q --- 1 ---> A => { +3/4 (CCW), -5/4 (CW) } (Q1, A3): 11, (Q2, A4): 11, (Q3, A1): 11, (Q4, A2): 11, (Q1, OO, A3): 11, (Q2, OO, A4): 11, (Q3, OO, A1): 11, (Q4, OO, A2): 11, # Q --- 2 ---> A => { +5/4 (CCW), -3/4 (CW) } (Q1, A4): 12, (Q2, A1): 12, (Q3, A2): 12, (Q4, A3): 12, (Q1, OO, A4): 12, (Q2, OO, A1): 12, (Q3, OO, A2): 12, (Q4, OO, A3): 12, # A --- 1 ---> Q => { +5/4 (CCW), -3/4 (CW) } (A1, Q3): 13, (A2, Q4): 13, (A3, Q1): 13, (A4, Q2): 13, (A1, OO, Q3): 13, (A2, OO, Q4): 13, (A3, OO, Q1): 13, (A4, OO, Q2): 13, # A --- 2 ---> Q => { +3/4 (CCW), -5/4 (CW) } (A1, Q2): 14, (A2, Q3): 14, (A3, Q4): 14, (A4, Q1): 14, (A1, OO, Q2): 14, (A2, OO, Q3): 14, (A3, OO, Q4): 14, (A4, OO, Q1): 14, # Q --> OO --> Q => { +1/2 (CCW), -3/2 (CW) } (Q1, OO, Q2): 15, (Q2, OO, Q3): 15, (Q3, OO, Q4): 15, (Q4, OO, Q1): 15, # Q --> OO --> Q => { +3/2 (CCW), -1/2 (CW) } (Q1, OO, Q4): 16, (Q2, OO, Q1): 16, (Q3, OO, Q2): 16, (Q4, OO, Q3): 16, # A --> OO --> A => { +2 (CCW), 0 (CW) } (A1, OO, A1): 17, (A2, OO, A2): 17, (A3, OO, A3): 17, (A4, OO, A4): 17, # Q --> OO --> Q => { +2 (CCW), 0 (CW) } (Q1, OO, Q1): 18, (Q2, OO, Q2): 18, (Q3, OO, Q3): 18, (Q4, OO, Q4): 18, } _values = { 0: [( 0, 1)], 1: [(+1, 4)], 2: [(-1, 4)], 3: [(+1, 4)], 4: [(-1, 4)], -1: [(+9, 4), (+1, 4)], -2: [(+7, 4), (-1, 4)], -3: [(+9, 4), (+1, 4)], -4: [(+7, 4), (-1, 4)], +5: [(+1, 2)], -5: [(-1, 2)], 7: [(+1, 1), (-1, 1)], 8: [(+1, 1), (-1, 1)], 9: [(+1, 2), (-3, 2)], 10: [(+3, 2), (-1, 2)], 11: [(+3, 4), (-5, 4)], 12: [(+5, 4), (-3, 4)], 13: [(+5, 4), (-3, 4)], 14: [(+3, 4), (-5, 4)], 15: [(+1, 2), (-3, 2)], 16: [(+3, 2), (-1, 2)], 17: [(+2, 1), ( 0, 1)], 18: [(+2, 1), ( 0, 1)], } def _classify_point(re, im): """Return the half-axis (or origin) on which (re, im) point is located. """ if not re and not im: return OO if not re: if im > 0: return A2 else: return A4 elif not im: if re > 0: return A1 else: return A3 def _intervals_to_quadrants(intervals, f1, f2, s, t, F): """Generate a sequence of extended quadrants from a list of critical points. """ if not intervals: return [] Q = [] if not f1: (a, b), _, _ = intervals[0] if a == b == s: if len(intervals) == 1: if dup_eval(f2, t, F) > 0: return [OO, A2] else: return [OO, A4] else: (a, _), _, _ = intervals[1] if dup_eval(f2, (s + a)/2, F) > 0: Q.extend([OO, A2]) f2_sgn = +1 else: Q.extend([OO, A4]) f2_sgn = -1 intervals = intervals[1:] else: if dup_eval(f2, s, F) > 0: Q.append(A2) f2_sgn = +1 else: Q.append(A4) f2_sgn = -1 for (a, _), indices, _ in intervals: Q.append(OO) if indices[1] % 2 == 1: f2_sgn = -f2_sgn if a != t: if f2_sgn > 0: Q.append(A2) else: Q.append(A4) return Q if not f2: (a, b), _, _ = intervals[0] if a == b == s: if len(intervals) == 1: if dup_eval(f1, t, F) > 0: return [OO, A1] else: return [OO, A3] else: (a, _), _, _ = intervals[1] if dup_eval(f1, (s + a)/2, F) > 0: Q.extend([OO, A1]) f1_sgn = +1 else: Q.extend([OO, A3]) f1_sgn = -1 intervals = intervals[1:] else: if dup_eval(f1, s, F) > 0: Q.append(A1) f1_sgn = +1 else: Q.append(A3) f1_sgn = -1 for (a, _), indices, _ in intervals: Q.append(OO) if indices[0] % 2 == 1: f1_sgn = -f1_sgn if a != t: if f1_sgn > 0: Q.append(A1) else: Q.append(A3) return Q re = dup_eval(f1, s, F) im = dup_eval(f2, s, F) if not re or not im: Q.append(_classify_point(re, im)) if len(intervals) == 1: re = dup_eval(f1, t, F) im = dup_eval(f2, t, F) else: (a, _), _, _ = intervals[1] re = dup_eval(f1, (s + a)/2, F) im = dup_eval(f2, (s + a)/2, F) intervals = intervals[1:] if re > 0: f1_sgn = +1 else: f1_sgn = -1 if im > 0: f2_sgn = +1 else: f2_sgn = -1 sgn = { (+1, +1): Q1, (-1, +1): Q2, (-1, -1): Q3, (+1, -1): Q4, } Q.append(sgn[(f1_sgn, f2_sgn)]) for (a, b), indices, _ in intervals: if a == b: re = dup_eval(f1, a, F) im = dup_eval(f2, a, F) cls = _classify_point(re, im) if cls is not None: Q.append(cls) if 0 in indices: if indices[0] % 2 == 1: f1_sgn = -f1_sgn if 1 in indices: if indices[1] % 2 == 1: f2_sgn = -f2_sgn if not (a == b and b == t): Q.append(sgn[(f1_sgn, f2_sgn)]) return Q def _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=None): """Transform sequences of quadrants to a sequence of rules. """ if exclude is True: edges = [1, 1, 0, 0] corners = { (0, 1): 1, (1, 2): 1, (2, 3): 0, (3, 0): 1, } else: edges = [0, 0, 0, 0] corners = { (0, 1): 0, (1, 2): 0, (2, 3): 0, (3, 0): 0, } if exclude is not None and exclude is not True: exclude = set(exclude) for i, edge in enumerate(['S', 'E', 'N', 'W']): if edge in exclude: edges[i] = 1 for i, corner in enumerate(['SW', 'SE', 'NE', 'NW']): if corner in exclude: corners[((i - 1) % 4, i)] = 1 QQ, rules = [Q_L1, Q_L2, Q_L3, Q_L4], [] for i, Q in enumerate(QQ): if not Q: continue if Q[-1] == OO: Q = Q[:-1] if Q[0] == OO: j, Q = (i - 1) % 4, Q[1:] qq = (QQ[j][-2], OO, Q[0]) if qq in _rules_ambiguous: rules.append((_rules_ambiguous[qq], corners[(j, i)])) else: raise NotImplementedError("3 element rule (corner): " + str(qq)) q1, k = Q[0], 1 while k < len(Q): q2, k = Q[k], k + 1 if q2 != OO: qq = (q1, q2) if qq in _rules_simple: rules.append((_rules_simple[qq], 0)) elif qq in _rules_ambiguous: rules.append((_rules_ambiguous[qq], edges[i])) else: raise NotImplementedError("2 element rule (inside): " + str(qq)) else: qq, k = (q1, q2, Q[k]), k + 1 if qq in _rules_ambiguous: rules.append((_rules_ambiguous[qq], edges[i])) else: raise NotImplementedError("3 element rule (edge): " + str(qq)) q1 = qq[-1] return rules def _reverse_intervals(intervals): """Reverse intervals for traversal from right to left and from top to bottom. """ return [ ((b, a), indices, f) for (a, b), indices, f in reversed(intervals) ] def _winding_number(T, field): """Compute the winding number of the input polynomial, i.e. the number of roots. """ return int(sum([ field(*_values[t][i]) for t, i in T ]) / field(2)) def dup_count_complex_roots(f, K, inf=None, sup=None, exclude=None): """Count all roots in [u + v*I, s + t*I] rectangle using Collins-Krandick algorithm. """ if not K.is_ZZ and not K.is_QQ: raise DomainError("complex root counting is not supported over %s" % K) if K.is_ZZ: R, F = K, K.get_field() else: R, F = K.get_ring(), K f = dup_convert(f, K, F) if inf is None or sup is None: _, lc = dup_degree(f), abs(dup_LC(f, F)) B = 2*max([ F.quo(abs(c), lc) for c in f ]) if inf is None: (u, v) = (-B, -B) else: (u, v) = inf if sup is None: (s, t) = (+B, +B) else: (s, t) = sup f1, f2 = dup_real_imag(f, F) f1L1F = dmp_eval_in(f1, v, 1, 1, F) f2L1F = dmp_eval_in(f2, v, 1, 1, F) _, f1L1R = dup_clear_denoms(f1L1F, F, R, convert=True) _, f2L1R = dup_clear_denoms(f2L1F, F, R, convert=True) f1L2F = dmp_eval_in(f1, s, 0, 1, F) f2L2F = dmp_eval_in(f2, s, 0, 1, F) _, f1L2R = dup_clear_denoms(f1L2F, F, R, convert=True) _, f2L2R = dup_clear_denoms(f2L2F, F, R, convert=True) f1L3F = dmp_eval_in(f1, t, 1, 1, F) f2L3F = dmp_eval_in(f2, t, 1, 1, F) _, f1L3R = dup_clear_denoms(f1L3F, F, R, convert=True) _, f2L3R = dup_clear_denoms(f2L3F, F, R, convert=True) f1L4F = dmp_eval_in(f1, u, 0, 1, F) f2L4F = dmp_eval_in(f2, u, 0, 1, F) _, f1L4R = dup_clear_denoms(f1L4F, F, R, convert=True) _, f2L4R = dup_clear_denoms(f2L4F, F, R, convert=True) S_L1 = [f1L1R, f2L1R] S_L2 = [f1L2R, f2L2R] S_L3 = [f1L3R, f2L3R] S_L4 = [f1L4R, f2L4R] I_L1 = dup_isolate_real_roots_list(S_L1, R, inf=u, sup=s, fast=True, basis=True, strict=True) I_L2 = dup_isolate_real_roots_list(S_L2, R, inf=v, sup=t, fast=True, basis=True, strict=True) I_L3 = dup_isolate_real_roots_list(S_L3, R, inf=u, sup=s, fast=True, basis=True, strict=True) I_L4 = dup_isolate_real_roots_list(S_L4, R, inf=v, sup=t, fast=True, basis=True, strict=True) I_L3 = _reverse_intervals(I_L3) I_L4 = _reverse_intervals(I_L4) Q_L1 = _intervals_to_quadrants(I_L1, f1L1F, f2L1F, u, s, F) Q_L2 = _intervals_to_quadrants(I_L2, f1L2F, f2L2F, v, t, F) Q_L3 = _intervals_to_quadrants(I_L3, f1L3F, f2L3F, s, u, F) Q_L4 = _intervals_to_quadrants(I_L4, f1L4F, f2L4F, t, v, F) T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=exclude) return _winding_number(T, F) def _vertical_bisection(N, a, b, I, Q, F1, F2, f1, f2, F): """Vertical bisection step in Collins-Krandick root isolation algorithm. """ (u, v), (s, t) = a, b I_L1, I_L2, I_L3, I_L4 = I Q_L1, Q_L2, Q_L3, Q_L4 = Q f1L1F, f1L2F, f1L3F, f1L4F = F1 f2L1F, f2L2F, f2L3F, f2L4F = F2 x = (u + s) / 2 f1V = dmp_eval_in(f1, x, 0, 1, F) f2V = dmp_eval_in(f2, x, 0, 1, F) I_V = dup_isolate_real_roots_list([f1V, f2V], F, inf=v, sup=t, fast=True, strict=True, basis=True) I_L1_L, I_L1_R = [], [] I_L2_L, I_L2_R = I_V, I_L2 I_L3_L, I_L3_R = [], [] I_L4_L, I_L4_R = I_L4, _reverse_intervals(I_V) for I in I_L1: (a, b), indices, h = I if a == b: if a == x: I_L1_L.append(I) I_L1_R.append(I) elif a < x: I_L1_L.append(I) else: I_L1_R.append(I) else: if b <= x: I_L1_L.append(I) elif a >= x: I_L1_R.append(I) else: a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True) if b <= x: I_L1_L.append(((a, b), indices, h)) if a >= x: I_L1_R.append(((a, b), indices, h)) for I in I_L3: (b, a), indices, h = I if a == b: if a == x: I_L3_L.append(I) I_L3_R.append(I) elif a < x: I_L3_L.append(I) else: I_L3_R.append(I) else: if b <= x: I_L3_L.append(I) elif a >= x: I_L3_R.append(I) else: a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True) if b <= x: I_L3_L.append(((b, a), indices, h)) if a >= x: I_L3_R.append(((b, a), indices, h)) Q_L1_L = _intervals_to_quadrants(I_L1_L, f1L1F, f2L1F, u, x, F) Q_L2_L = _intervals_to_quadrants(I_L2_L, f1V, f2V, v, t, F) Q_L3_L = _intervals_to_quadrants(I_L3_L, f1L3F, f2L3F, x, u, F) Q_L4_L = Q_L4 Q_L1_R = _intervals_to_quadrants(I_L1_R, f1L1F, f2L1F, x, s, F) Q_L2_R = Q_L2 Q_L3_R = _intervals_to_quadrants(I_L3_R, f1L3F, f2L3F, s, x, F) Q_L4_R = _intervals_to_quadrants(I_L4_R, f1V, f2V, t, v, F) T_L = _traverse_quadrants(Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L, exclude=True) T_R = _traverse_quadrants(Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R, exclude=True) N_L = _winding_number(T_L, F) N_R = _winding_number(T_R, F) I_L = (I_L1_L, I_L2_L, I_L3_L, I_L4_L) Q_L = (Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L) I_R = (I_L1_R, I_L2_R, I_L3_R, I_L4_R) Q_R = (Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R) F1_L = (f1L1F, f1V, f1L3F, f1L4F) F2_L = (f2L1F, f2V, f2L3F, f2L4F) F1_R = (f1L1F, f1L2F, f1L3F, f1V) F2_R = (f2L1F, f2L2F, f2L3F, f2V) a, b = (u, v), (x, t) c, d = (x, v), (s, t) D_L = (N_L, a, b, I_L, Q_L, F1_L, F2_L) D_R = (N_R, c, d, I_R, Q_R, F1_R, F2_R) return D_L, D_R def _horizontal_bisection(N, a, b, I, Q, F1, F2, f1, f2, F): """Horizontal bisection step in Collins-Krandick root isolation algorithm. """ (u, v), (s, t) = a, b I_L1, I_L2, I_L3, I_L4 = I Q_L1, Q_L2, Q_L3, Q_L4 = Q f1L1F, f1L2F, f1L3F, f1L4F = F1 f2L1F, f2L2F, f2L3F, f2L4F = F2 y = (v + t) / 2 f1H = dmp_eval_in(f1, y, 1, 1, F) f2H = dmp_eval_in(f2, y, 1, 1, F) I_H = dup_isolate_real_roots_list([f1H, f2H], F, inf=u, sup=s, fast=True, strict=True, basis=True) I_L1_B, I_L1_U = I_L1, I_H I_L2_B, I_L2_U = [], [] I_L3_B, I_L3_U = _reverse_intervals(I_H), I_L3 I_L4_B, I_L4_U = [], [] for I in I_L2: (a, b), indices, h = I if a == b: if a == y: I_L2_B.append(I) I_L2_U.append(I) elif a < y: I_L2_B.append(I) else: I_L2_U.append(I) else: if b <= y: I_L2_B.append(I) elif a >= y: I_L2_U.append(I) else: a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True) if b <= y: I_L2_B.append(((a, b), indices, h)) if a >= y: I_L2_U.append(((a, b), indices, h)) for I in I_L4: (b, a), indices, h = I if a == b: if a == y: I_L4_B.append(I) I_L4_U.append(I) elif a < y: I_L4_B.append(I) else: I_L4_U.append(I) else: if b <= y: I_L4_B.append(I) elif a >= y: I_L4_U.append(I) else: a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True) if b <= y: I_L4_B.append(((b, a), indices, h)) if a >= y: I_L4_U.append(((b, a), indices, h)) Q_L1_B = Q_L1 Q_L2_B = _intervals_to_quadrants(I_L2_B, f1L2F, f2L2F, v, y, F) Q_L3_B = _intervals_to_quadrants(I_L3_B, f1H, f2H, s, u, F) Q_L4_B = _intervals_to_quadrants(I_L4_B, f1L4F, f2L4F, y, v, F) Q_L1_U = _intervals_to_quadrants(I_L1_U, f1H, f2H, u, s, F) Q_L2_U = _intervals_to_quadrants(I_L2_U, f1L2F, f2L2F, y, t, F) Q_L3_U = Q_L3 Q_L4_U = _intervals_to_quadrants(I_L4_U, f1L4F, f2L4F, t, y, F) T_B = _traverse_quadrants(Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B, exclude=True) T_U = _traverse_quadrants(Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U, exclude=True) N_B = _winding_number(T_B, F) N_U = _winding_number(T_U, F) I_B = (I_L1_B, I_L2_B, I_L3_B, I_L4_B) Q_B = (Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B) I_U = (I_L1_U, I_L2_U, I_L3_U, I_L4_U) Q_U = (Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U) F1_B = (f1L1F, f1L2F, f1H, f1L4F) F2_B = (f2L1F, f2L2F, f2H, f2L4F) F1_U = (f1H, f1L2F, f1L3F, f1L4F) F2_U = (f2H, f2L2F, f2L3F, f2L4F) a, b = (u, v), (s, y) c, d = (u, y), (s, t) D_B = (N_B, a, b, I_B, Q_B, F1_B, F2_B) D_U = (N_U, c, d, I_U, Q_U, F1_U, F2_U) return D_B, D_U def _depth_first_select(rectangles): """Find a rectangle of minimum area for bisection. """ min_area, j = None, None for i, (_, (u, v), (s, t), _, _, _, _) in enumerate(rectangles): area = (s - u)*(t - v) if min_area is None or area < min_area: min_area, j = area, i return rectangles.pop(j) def _rectangle_small_p(a, b, eps): """Return ``True`` if the given rectangle is small enough. """ (u, v), (s, t) = a, b if eps is not None: return s - u < eps and t - v < eps else: return True def dup_isolate_complex_roots_sqf(f, K, eps=None, inf=None, sup=None, blackbox=False): """Isolate complex roots of a square-free polynomial using Collins-Krandick algorithm. """ if not K.is_ZZ and not K.is_QQ: raise DomainError("isolation of complex roots is not supported over %s" % K) if dup_degree(f) <= 0: return [] if K.is_ZZ: F = K.get_field() else: F = K f = dup_convert(f, K, F) lc = abs(dup_LC(f, F)) B = 2*max([ F.quo(abs(c), lc) for c in f ]) (u, v), (s, t) = (-B, F.zero), (B, B) if inf is not None: u = inf if sup is not None: s = sup if v < 0 or t <= v or s <= u: raise ValueError("not a valid complex isolation rectangle") f1, f2 = dup_real_imag(f, F) f1L1 = dmp_eval_in(f1, v, 1, 1, F) f2L1 = dmp_eval_in(f2, v, 1, 1, F) f1L2 = dmp_eval_in(f1, s, 0, 1, F) f2L2 = dmp_eval_in(f2, s, 0, 1, F) f1L3 = dmp_eval_in(f1, t, 1, 1, F) f2L3 = dmp_eval_in(f2, t, 1, 1, F) f1L4 = dmp_eval_in(f1, u, 0, 1, F) f2L4 = dmp_eval_in(f2, u, 0, 1, F) S_L1 = [f1L1, f2L1] S_L2 = [f1L2, f2L2] S_L3 = [f1L3, f2L3] S_L4 = [f1L4, f2L4] I_L1 = dup_isolate_real_roots_list(S_L1, F, inf=u, sup=s, fast=True, strict=True, basis=True) I_L2 = dup_isolate_real_roots_list(S_L2, F, inf=v, sup=t, fast=True, strict=True, basis=True) I_L3 = dup_isolate_real_roots_list(S_L3, F, inf=u, sup=s, fast=True, strict=True, basis=True) I_L4 = dup_isolate_real_roots_list(S_L4, F, inf=v, sup=t, fast=True, strict=True, basis=True) I_L3 = _reverse_intervals(I_L3) I_L4 = _reverse_intervals(I_L4) Q_L1 = _intervals_to_quadrants(I_L1, f1L1, f2L1, u, s, F) Q_L2 = _intervals_to_quadrants(I_L2, f1L2, f2L2, v, t, F) Q_L3 = _intervals_to_quadrants(I_L3, f1L3, f2L3, s, u, F) Q_L4 = _intervals_to_quadrants(I_L4, f1L4, f2L4, t, v, F) T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4) N = _winding_number(T, F) if not N: return [] I = (I_L1, I_L2, I_L3, I_L4) Q = (Q_L1, Q_L2, Q_L3, Q_L4) F1 = (f1L1, f1L2, f1L3, f1L4) F2 = (f2L1, f2L2, f2L3, f2L4) rectangles, roots = [(N, (u, v), (s, t), I, Q, F1, F2)], [] while rectangles: N, (u, v), (s, t), I, Q, F1, F2 = _depth_first_select(rectangles) if s - u > t - v: D_L, D_R = _vertical_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F) N_L, a, b, I_L, Q_L, F1_L, F2_L = D_L N_R, c, d, I_R, Q_R, F1_R, F2_R = D_R if N_L >= 1: if N_L == 1 and _rectangle_small_p(a, b, eps): roots.append(ComplexInterval(a, b, I_L, Q_L, F1_L, F2_L, f1, f2, F)) else: rectangles.append(D_L) if N_R >= 1: if N_R == 1 and _rectangle_small_p(c, d, eps): roots.append(ComplexInterval(c, d, I_R, Q_R, F1_R, F2_R, f1, f2, F)) else: rectangles.append(D_R) else: D_B, D_U = _horizontal_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F) N_B, a, b, I_B, Q_B, F1_B, F2_B = D_B N_U, c, d, I_U, Q_U, F1_U, F2_U = D_U if N_B >= 1: if N_B == 1 and _rectangle_small_p(a, b, eps): roots.append(ComplexInterval( a, b, I_B, Q_B, F1_B, F2_B, f1, f2, F)) else: rectangles.append(D_B) if N_U >= 1: if N_U == 1 and _rectangle_small_p(c, d, eps): roots.append(ComplexInterval( c, d, I_U, Q_U, F1_U, F2_U, f1, f2, F)) else: rectangles.append(D_U) _roots, roots = sorted(roots, key=lambda r: (r.ax, r.ay)), [] for root in _roots: roots.extend([root.conjugate(), root]) if blackbox: return roots else: return [ r.as_tuple() for r in roots ] def dup_isolate_all_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False): """Isolate real and complex roots of a square-free polynomial ``f``. """ return ( dup_isolate_real_roots_sqf( f, K, eps=eps, inf=inf, sup=sup, fast=fast, blackbox=blackbox), dup_isolate_complex_roots_sqf(f, K, eps=eps, inf=inf, sup=sup, blackbox=blackbox)) def dup_isolate_all_roots(f, K, eps=None, inf=None, sup=None, fast=False): """Isolate real and complex roots of a non-square-free polynomial ``f``. """ if not K.is_ZZ and not K.is_QQ: raise DomainError("isolation of real and complex roots is not supported over %s" % K) _, factors = dup_sqf_list(f, K) if len(factors) == 1: ((f, k),) = factors real_part, complex_part = dup_isolate_all_roots_sqf( f, K, eps=eps, inf=inf, sup=sup, fast=fast) real_part = [ ((a, b), k) for (a, b) in real_part ] complex_part = [ ((a, b), k) for (a, b) in complex_part ] return real_part, complex_part else: raise NotImplementedError( "only trivial square-free polynomials are supported") class RealInterval: """A fully qualified representation of a real isolation interval. """ def __init__(self, data, f, dom): """Initialize new real interval with complete information. """ if len(data) == 2: s, t = data self.neg = False if s < 0: if t <= 0: f, s, t, self.neg = dup_mirror(f, dom), -t, -s, True else: raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t)) a, b, c, d = _mobius_from_interval((s, t), dom.get_field()) f = dup_transform(f, dup_strip([a, b]), dup_strip([c, d]), dom) self.mobius = a, b, c, d else: self.mobius = data[:-1] self.neg = data[-1] self.f, self.dom = f, dom @property def func(self): return RealInterval @property def args(self): i = self return (i.mobius + (i.neg,), i.f, i.dom) def __eq__(self, other): if type(other) != type(self): return False return self.args == other.args @property def a(self): """Return the position of the left end. """ field = self.dom.get_field() a, b, c, d = self.mobius if not self.neg: if a*d < b*c: return field(a, c) return field(b, d) else: if a*d > b*c: return -field(a, c) return -field(b, d) @property def b(self): """Return the position of the right end. """ was = self.neg self.neg = not was rv = -self.a self.neg = was return rv @property def dx(self): """Return width of the real isolating interval. """ return self.b - self.a @property def center(self): """Return the center of the real isolating interval. """ return (self.a + self.b)/2 @property def max_denom(self): """Return the largest denominator occurring in either endpoint. """ return max(self.a.denominator, self.b.denominator) def as_tuple(self): """Return tuple representation of real isolating interval. """ return (self.a, self.b) def __repr__(self): return "(%s, %s)" % (self.a, self.b) def __contains__(self, item): """ Say whether a complex number belongs to this real interval. Parameters ========== item : pair (re, im) or number re Either a pair giving the real and imaginary parts of the number, or else a real number. """ if isinstance(item, tuple): re, im = item else: re, im = item, 0 return im == 0 and self.a <= re <= self.b def is_disjoint(self, other): """Return ``True`` if two isolation intervals are disjoint. """ if isinstance(other, RealInterval): return (self.b < other.a or other.b < self.a) assert isinstance(other, ComplexInterval) return (self.b < other.ax or other.bx < self.a or other.ay*other.by > 0) def _inner_refine(self): """Internal one step real root refinement procedure. """ if self.mobius is None: return self f, mobius = dup_inner_refine_real_root( self.f, self.mobius, self.dom, steps=1, mobius=True) return RealInterval(mobius + (self.neg,), f, self.dom) def refine_disjoint(self, other): """Refine an isolating interval until it is disjoint with another one. """ expr = self while not expr.is_disjoint(other): expr, other = expr._inner_refine(), other._inner_refine() return expr, other def refine_size(self, dx): """Refine an isolating interval until it is of sufficiently small size. """ expr = self while not (expr.dx < dx): expr = expr._inner_refine() return expr def refine_step(self, steps=1): """Perform several steps of real root refinement algorithm. """ expr = self for _ in range(steps): expr = expr._inner_refine() return expr def refine(self): """Perform one step of real root refinement algorithm. """ return self._inner_refine() class ComplexInterval: """A fully qualified representation of a complex isolation interval. The printed form is shown as (ax, bx) x (ay, by) where (ax, ay) and (bx, by) are the coordinates of the southwest and northeast corners of the interval's rectangle, respectively. Examples ======== >>> from sympy import CRootOf, S >>> from sympy.abc import x >>> CRootOf.clear_cache() # for doctest reproducibility >>> root = CRootOf(x**10 - 2*x + 3, 9) >>> i = root._get_interval(); i (3/64, 3/32) x (9/8, 75/64) The real part of the root lies within the range [0, 3/4] while the imaginary part lies within the range [9/8, 3/2]: >>> root.n(3) 0.0766 + 1.14*I The width of the ranges in the x and y directions on the complex plane are: >>> i.dx, i.dy (3/64, 3/64) The center of the range is >>> i.center (9/128, 147/128) The northeast coordinate of the rectangle bounding the root in the complex plane is given by attribute b and the x and y components are accessed by bx and by: >>> i.b, i.bx, i.by ((3/32, 75/64), 3/32, 75/64) The southwest coordinate is similarly given by i.a >>> i.a, i.ax, i.ay ((3/64, 9/8), 3/64, 9/8) Although the interval prints to show only the real and imaginary range of the root, all the information of the underlying root is contained as properties of the interval. For example, an interval with a nonpositive imaginary range is considered to be the conjugate. Since the y values of y are in the range [0, 1/4] it is not the conjugate: >>> i.conj False The conjugate's interval is >>> ic = i.conjugate(); ic (3/64, 3/32) x (-75/64, -9/8) NOTE: the values printed still represent the x and y range in which the root -- conjugate, in this case -- is located, but the underlying a and b values of a root and its conjugate are the same: >>> assert i.a == ic.a and i.b == ic.b What changes are the reported coordinates of the bounding rectangle: >>> (i.ax, i.ay), (i.bx, i.by) ((3/64, 9/8), (3/32, 75/64)) >>> (ic.ax, ic.ay), (ic.bx, ic.by) ((3/64, -75/64), (3/32, -9/8)) The interval can be refined once: >>> i # for reference, this is the current interval (3/64, 3/32) x (9/8, 75/64) >>> i.refine() (3/64, 3/32) x (9/8, 147/128) Several refinement steps can be taken: >>> i.refine_step(2) # 2 steps (9/128, 3/32) x (9/8, 147/128) It is also possible to refine to a given tolerance: >>> tol = min(i.dx, i.dy)/2 >>> i.refine_size(tol) (9/128, 21/256) x (9/8, 291/256) A disjoint interval is one whose bounding rectangle does not overlap with another. An interval, necessarily, is not disjoint with itself, but any interval is disjoint with a conjugate since the conjugate rectangle will always be in the lower half of the complex plane and the non-conjugate in the upper half: >>> i.is_disjoint(i), i.is_disjoint(i.conjugate()) (False, True) The following interval j is not disjoint from i: >>> close = CRootOf(x**10 - 2*x + 300/S(101), 9) >>> j = close._get_interval(); j (75/1616, 75/808) x (225/202, 1875/1616) >>> i.is_disjoint(j) False The two can be made disjoint, however: >>> newi, newj = i.refine_disjoint(j) >>> newi (39/512, 159/2048) x (2325/2048, 4653/4096) >>> newj (3975/51712, 2025/25856) x (29325/25856, 117375/103424) Even though the real ranges overlap, the imaginary do not, so the roots have been resolved as distinct. Intervals are disjoint when either the real or imaginary component of the intervals is distinct. In the case above, the real components have not been resolved (so we do not know, yet, which root has the smaller real part) but the imaginary part of ``close`` is larger than ``root``: >>> close.n(3) 0.0771 + 1.13*I >>> root.n(3) 0.0766 + 1.14*I """ def __init__(self, a, b, I, Q, F1, F2, f1, f2, dom, conj=False): """Initialize new complex interval with complete information. """ # a and b are the SW and NE corner of the bounding interval, # (ax, ay) and (bx, by), respectively, for the NON-CONJUGATE # root (the one with the positive imaginary part); when working # with the conjugate, the a and b value are still non-negative # but the ay, by are reversed and have oppositite sign self.a, self.b = a, b self.I, self.Q = I, Q self.f1, self.F1 = f1, F1 self.f2, self.F2 = f2, F2 self.dom = dom self.conj = conj @property def func(self): return ComplexInterval @property def args(self): i = self return (i.a, i.b, i.I, i.Q, i.F1, i.F2, i.f1, i.f2, i.dom, i.conj) def __eq__(self, other): if type(other) != type(self): return False return self.args == other.args @property def ax(self): """Return ``x`` coordinate of south-western corner. """ return self.a[0] @property def ay(self): """Return ``y`` coordinate of south-western corner. """ if not self.conj: return self.a[1] else: return -self.b[1] @property def bx(self): """Return ``x`` coordinate of north-eastern corner. """ return self.b[0] @property def by(self): """Return ``y`` coordinate of north-eastern corner. """ if not self.conj: return self.b[1] else: return -self.a[1] @property def dx(self): """Return width of the complex isolating interval. """ return self.b[0] - self.a[0] @property def dy(self): """Return height of the complex isolating interval. """ return self.b[1] - self.a[1] @property def center(self): """Return the center of the complex isolating interval. """ return ((self.ax + self.bx)/2, (self.ay + self.by)/2) @property def max_denom(self): """Return the largest denominator occurring in either endpoint. """ return max(self.ax.denominator, self.bx.denominator, self.ay.denominator, self.by.denominator) def as_tuple(self): """Return tuple representation of the complex isolating interval's SW and NE corners, respectively. """ return ((self.ax, self.ay), (self.bx, self.by)) def __repr__(self): return "(%s, %s) x (%s, %s)" % (self.ax, self.bx, self.ay, self.by) def conjugate(self): """This complex interval really is located in lower half-plane. """ return ComplexInterval(self.a, self.b, self.I, self.Q, self.F1, self.F2, self.f1, self.f2, self.dom, conj=True) def __contains__(self, item): """ Say whether a complex number belongs to this complex rectangular region. Parameters ========== item : pair (re, im) or number re Either a pair giving the real and imaginary parts of the number, or else a real number. """ if isinstance(item, tuple): re, im = item else: re, im = item, 0 return self.ax <= re <= self.bx and self.ay <= im <= self.by def is_disjoint(self, other): """Return ``True`` if two isolation intervals are disjoint. """ if isinstance(other, RealInterval): return other.is_disjoint(self) if self.conj != other.conj: # above and below real axis return True re_distinct = (self.bx < other.ax or other.bx < self.ax) if re_distinct: return True im_distinct = (self.by < other.ay or other.by < self.ay) return im_distinct def _inner_refine(self): """Internal one step complex root refinement procedure. """ (u, v), (s, t) = self.a, self.b I, Q = self.I, self.Q f1, F1 = self.f1, self.F1 f2, F2 = self.f2, self.F2 dom = self.dom if s - u > t - v: D_L, D_R = _vertical_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom) if D_L[0] == 1: _, a, b, I, Q, F1, F2 = D_L else: _, a, b, I, Q, F1, F2 = D_R else: D_B, D_U = _horizontal_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom) if D_B[0] == 1: _, a, b, I, Q, F1, F2 = D_B else: _, a, b, I, Q, F1, F2 = D_U return ComplexInterval(a, b, I, Q, F1, F2, f1, f2, dom, self.conj) def refine_disjoint(self, other): """Refine an isolating interval until it is disjoint with another one. """ expr = self while not expr.is_disjoint(other): expr, other = expr._inner_refine(), other._inner_refine() return expr, other def refine_size(self, dx, dy=None): """Refine an isolating interval until it is of sufficiently small size. """ if dy is None: dy = dx expr = self while not (expr.dx < dx and expr.dy < dy): expr = expr._inner_refine() return expr def refine_step(self, steps=1): """Perform several steps of complex root refinement algorithm. """ expr = self for _ in range(steps): expr = expr._inner_refine() return expr def refine(self): """Perform one step of complex root refinement algorithm. """ return self._inner_refine()
836f34a72db8061de6c608c096d37b4f08faa8851fd59fe81dfa1f487ead2b79
"""Useful utilities for higher level polynomial classes. """ from sympy.core import (S, Add, Mul, Pow, Eq, Expr, expand_mul, expand_multinomial) from sympy.core.exprtools import decompose_power, decompose_power_rat from sympy.polys.polyerrors import PolynomialError, GeneratorsError from sympy.polys.polyoptions import build_options import re _gens_order = { 'a': 301, 'b': 302, 'c': 303, 'd': 304, 'e': 305, 'f': 306, 'g': 307, 'h': 308, 'i': 309, 'j': 310, 'k': 311, 'l': 312, 'm': 313, 'n': 314, 'o': 315, 'p': 216, 'q': 217, 'r': 218, 's': 219, 't': 220, 'u': 221, 'v': 222, 'w': 223, 'x': 124, 'y': 125, 'z': 126, } _max_order = 1000 _re_gen = re.compile(r"^(.*?)(\d*)$", re.MULTILINE) def _nsort(roots, separated=False): """Sort the numerical roots putting the real roots first, then sorting according to real and imaginary parts. If ``separated`` is True, then the real and imaginary roots will be returned in two lists, respectively. This routine tries to avoid issue 6137 by separating the roots into real and imaginary parts before evaluation. In addition, the sorting will raise an error if any computation cannot be done with precision. """ if not all(r.is_number for r in roots): raise NotImplementedError # see issue 6137: # get the real part of the evaluated real and imaginary parts of each root key = [[i.n(2).as_real_imag()[0] for i in r.as_real_imag()] for r in roots] # make sure the parts were computed with precision if len(roots) > 1 and any(i._prec == 1 for k in key for i in k): raise NotImplementedError("could not compute root with precision") # insert a key to indicate if the root has an imaginary part key = [(1 if i else 0, r, i) for r, i in key] key = sorted(zip(key, roots)) # return the real and imaginary roots separately if desired if separated: r = [] i = [] for (im, _, _), v in key: if im: i.append(v) else: r.append(v) return r, i _, roots = zip(*key) return list(roots) def _sort_gens(gens, **args): """Sort generators in a reasonably intelligent way. """ opt = build_options(args) gens_order, wrt = {}, None if opt is not None: gens_order, wrt = {}, opt.wrt for i, gen in enumerate(opt.sort): gens_order[gen] = i + 1 def order_key(gen): gen = str(gen) if wrt is not None: try: return (-len(wrt) + wrt.index(gen), gen, 0) except ValueError: pass name, index = _re_gen.match(gen).groups() if index: index = int(index) else: index = 0 try: return ( gens_order[name], name, index) except KeyError: pass try: return (_gens_order[name], name, index) except KeyError: pass return (_max_order, name, index) try: gens = sorted(gens, key=order_key) except TypeError: # pragma: no cover pass return tuple(gens) def _unify_gens(f_gens, g_gens): """Unify generators in a reasonably intelligent way. """ f_gens = list(f_gens) g_gens = list(g_gens) if f_gens == g_gens: return tuple(f_gens) gens, common, k = [], [], 0 for gen in f_gens: if gen in g_gens: common.append(gen) for i, gen in enumerate(g_gens): if gen in common: g_gens[i], k = common[k], k + 1 for gen in common: i = f_gens.index(gen) gens.extend(f_gens[:i]) f_gens = f_gens[i + 1:] i = g_gens.index(gen) gens.extend(g_gens[:i]) g_gens = g_gens[i + 1:] gens.append(gen) gens.extend(f_gens) gens.extend(g_gens) return tuple(gens) def _analyze_gens(gens): """Support for passing generators as `*gens` and `[gens]`. """ if len(gens) == 1 and hasattr(gens[0], '__iter__'): return tuple(gens[0]) else: return tuple(gens) def _sort_factors(factors, **args): """Sort low-level factors in increasing 'complexity' order. """ def order_if_multiple_key(factor): (f, n) = factor return (len(f), n, f) def order_no_multiple_key(f): return (len(f), f) if args.get('multiple', True): return sorted(factors, key=order_if_multiple_key) else: return sorted(factors, key=order_no_multiple_key) illegal = [S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity] illegal_types = [type(obj) for obj in illegal] finf = [float(i) for i in illegal[1:3]] def _not_a_coeff(expr): """Do not treat NaN and infinities as valid polynomial coefficients. """ if type(expr) in illegal_types or expr in finf: return True if type(expr) is float and float(expr) != expr: return True # nan return # could be def _parallel_dict_from_expr_if_gens(exprs, opt): """Transform expressions into a multinomial form given generators. """ k, indices = len(opt.gens), {} for i, g in enumerate(opt.gens): indices[g] = i polys = [] for expr in exprs: poly = {} if expr.is_Equality: expr = expr.lhs - expr.rhs for term in Add.make_args(expr): coeff, monom = [], [0]*k for factor in Mul.make_args(term): if not _not_a_coeff(factor) and factor.is_Number: coeff.append(factor) else: try: if opt.series is False: base, exp = decompose_power(factor) if exp < 0: exp, base = -exp, Pow(base, -S.One) else: base, exp = decompose_power_rat(factor) monom[indices[base]] = exp except KeyError: if not factor.has_free(*opt.gens): coeff.append(factor) else: raise PolynomialError("%s contains an element of " "the set of generators." % factor) monom = tuple(monom) if monom in poly: poly[monom] += Mul(*coeff) else: poly[monom] = Mul(*coeff) polys.append(poly) return polys, opt.gens def _parallel_dict_from_expr_no_gens(exprs, opt): """Transform expressions into a multinomial form and figure out generators. """ if opt.domain is not None: def _is_coeff(factor): return factor in opt.domain elif opt.extension is True: def _is_coeff(factor): return factor.is_algebraic elif opt.greedy is not False: def _is_coeff(factor): return factor is S.ImaginaryUnit else: def _is_coeff(factor): return factor.is_number gens, reprs = set(), [] for expr in exprs: terms = [] if expr.is_Equality: expr = expr.lhs - expr.rhs for term in Add.make_args(expr): coeff, elements = [], {} for factor in Mul.make_args(term): if not _not_a_coeff(factor) and (factor.is_Number or _is_coeff(factor)): coeff.append(factor) else: if opt.series is False: base, exp = decompose_power(factor) if exp < 0: exp, base = -exp, Pow(base, -S.One) else: base, exp = decompose_power_rat(factor) elements[base] = elements.setdefault(base, 0) + exp gens.add(base) terms.append((coeff, elements)) reprs.append(terms) gens = _sort_gens(gens, opt=opt) k, indices = len(gens), {} for i, g in enumerate(gens): indices[g] = i polys = [] for terms in reprs: poly = {} for coeff, term in terms: monom = [0]*k for base, exp in term.items(): monom[indices[base]] = exp monom = tuple(monom) if monom in poly: poly[monom] += Mul(*coeff) else: poly[monom] = Mul(*coeff) polys.append(poly) return polys, tuple(gens) def _dict_from_expr_if_gens(expr, opt): """Transform an expression into a multinomial form given generators. """ (poly,), gens = _parallel_dict_from_expr_if_gens((expr,), opt) return poly, gens def _dict_from_expr_no_gens(expr, opt): """Transform an expression into a multinomial form and figure out generators. """ (poly,), gens = _parallel_dict_from_expr_no_gens((expr,), opt) return poly, gens def parallel_dict_from_expr(exprs, **args): """Transform expressions into a multinomial form. """ reps, opt = _parallel_dict_from_expr(exprs, build_options(args)) return reps, opt.gens def _parallel_dict_from_expr(exprs, opt): """Transform expressions into a multinomial form. """ if opt.expand is not False: exprs = [ expr.expand() for expr in exprs ] if any(expr.is_commutative is False for expr in exprs): raise PolynomialError('non-commutative expressions are not supported') if opt.gens: reps, gens = _parallel_dict_from_expr_if_gens(exprs, opt) else: reps, gens = _parallel_dict_from_expr_no_gens(exprs, opt) return reps, opt.clone({'gens': gens}) def dict_from_expr(expr, **args): """Transform an expression into a multinomial form. """ rep, opt = _dict_from_expr(expr, build_options(args)) return rep, opt.gens def _dict_from_expr(expr, opt): """Transform an expression into a multinomial form. """ if expr.is_commutative is False: raise PolynomialError('non-commutative expressions are not supported') def _is_expandable_pow(expr): return (expr.is_Pow and expr.exp.is_positive and expr.exp.is_Integer and expr.base.is_Add) if opt.expand is not False: if not isinstance(expr, (Expr, Eq)): raise PolynomialError('expression must be of type Expr') expr = expr.expand() # TODO: Integrate this into expand() itself while any(_is_expandable_pow(i) or i.is_Mul and any(_is_expandable_pow(j) for j in i.args) for i in Add.make_args(expr)): expr = expand_multinomial(expr) while any(i.is_Mul and any(j.is_Add for j in i.args) for i in Add.make_args(expr)): expr = expand_mul(expr) if opt.gens: rep, gens = _dict_from_expr_if_gens(expr, opt) else: rep, gens = _dict_from_expr_no_gens(expr, opt) return rep, opt.clone({'gens': gens}) def expr_from_dict(rep, *gens): """Convert a multinomial form into an expression. """ result = [] for monom, coeff in rep.items(): term = [coeff] for g, m in zip(gens, monom): if m: term.append(Pow(g, m)) result.append(Mul(*term)) return Add(*result) parallel_dict_from_basic = parallel_dict_from_expr dict_from_basic = dict_from_expr basic_from_dict = expr_from_dict def _dict_reorder(rep, gens, new_gens): """Reorder levels using dict representation. """ gens = list(gens) monoms = rep.keys() coeffs = rep.values() new_monoms = [ [] for _ in range(len(rep)) ] used_indices = set() for gen in new_gens: try: j = gens.index(gen) used_indices.add(j) for M, new_M in zip(monoms, new_monoms): new_M.append(M[j]) except ValueError: for new_M in new_monoms: new_M.append(0) for i, _ in enumerate(gens): if i not in used_indices: for monom in monoms: if monom[i]: raise GeneratorsError("unable to drop generators") return map(tuple, new_monoms), coeffs class PicklableWithSlots: """ Mixin class that allows to pickle objects with ``__slots__``. Examples ======== First define a class that mixes :class:`PicklableWithSlots` in:: >>> from sympy.polys.polyutils import PicklableWithSlots >>> class Some(PicklableWithSlots): ... __slots__ = ('foo', 'bar') ... ... def __init__(self, foo, bar): ... self.foo = foo ... self.bar = bar To make :mod:`pickle` happy in doctest we have to use these hacks:: >>> import builtins >>> builtins.Some = Some >>> from sympy.polys import polyutils >>> polyutils.Some = Some Next lets see if we can create an instance, pickle it and unpickle:: >>> some = Some('abc', 10) >>> some.foo, some.bar ('abc', 10) >>> from pickle import dumps, loads >>> some2 = loads(dumps(some)) >>> some2.foo, some2.bar ('abc', 10) """ __slots__ = () def __getstate__(self, cls=None): if cls is None: # This is the case for the instance that gets pickled cls = self.__class__ d = {} # Get all data that should be stored from super classes for c in cls.__bases__: if hasattr(c, "__getstate__"): d.update(c.__getstate__(self, c)) # Get all information that should be stored from cls and return the dict for name in cls.__slots__: if hasattr(self, name): d[name] = getattr(self, name) return d def __setstate__(self, d): # All values that were pickled are now assigned to a fresh instance for name, value in d.items(): try: setattr(self, name, value) except AttributeError: # This is needed in cases like Rational :> Half pass class IntegerPowerable: r""" Mixin class for classes that define a `__mul__` method, and want to be raised to integer powers in the natural way that follows. Implements powering via binary expansion, for efficiency. By default, only integer powers $\geq 2$ are supported. To support the first, zeroth, or negative powers, override the corresponding methods, `_first_power`, `_zeroth_power`, `_negative_power`, below. """ def __pow__(self, e, modulo=None): if e < 2: try: if e == 1: return self._first_power() elif e == 0: return self._zeroth_power() else: return self._negative_power(e, modulo=modulo) except NotImplementedError: return NotImplemented else: bits = [int(d) for d in reversed(bin(e)[2:])] n = len(bits) p = self first = True for i in range(n): if bits[i]: if first: r = p first = False else: r *= p if modulo is not None: r %= modulo if i < n - 1: p *= p if modulo is not None: p %= modulo return r def _negative_power(self, e, modulo=None): """ Compute inverse of self, then raise that to the abs(e) power. For example, if the class has an `inv()` method, return self.inv() ** abs(e) % modulo """ raise NotImplementedError def _zeroth_power(self): """Return unity element of algebraic struct to which self belongs.""" raise NotImplementedError def _first_power(self): """Return a copy of self.""" raise NotImplementedError
029dd7e250a6050540a3caa87da676058eb17eb50902aee3563886f643ad18ca
"""Polynomial factorization routines in characteristic zero. """ from sympy.polys.galoistools import ( gf_from_int_poly, gf_to_int_poly, gf_lshift, gf_add_mul, gf_mul, gf_div, gf_rem, gf_gcdex, gf_sqf_p, gf_factor_sqf, gf_factor) from sympy.polys.densebasic import ( dup_LC, dmp_LC, dmp_ground_LC, dup_TC, dup_convert, dmp_convert, dup_degree, dmp_degree, dmp_degree_in, dmp_degree_list, dmp_from_dict, dmp_zero_p, dmp_one, dmp_nest, dmp_raise, dup_strip, dmp_ground, dup_inflate, dmp_exclude, dmp_include, dmp_inject, dmp_eject, dup_terms_gcd, dmp_terms_gcd) from sympy.polys.densearith import ( dup_neg, dmp_neg, dup_add, dmp_add, dup_sub, dmp_sub, dup_mul, dmp_mul, dup_sqr, dmp_pow, dup_div, dmp_div, dup_quo, dmp_quo, dmp_expand, dmp_add_mul, dup_sub_mul, dmp_sub_mul, dup_lshift, dup_max_norm, dmp_max_norm, dup_l1_norm, dup_mul_ground, dmp_mul_ground, dup_quo_ground, dmp_quo_ground) from sympy.polys.densetools import ( dup_clear_denoms, dmp_clear_denoms, dup_trunc, dmp_ground_trunc, dup_content, dup_monic, dmp_ground_monic, dup_primitive, dmp_ground_primitive, dmp_eval_tail, dmp_eval_in, dmp_diff_eval_in, dmp_compose, dup_shift, dup_mirror) from sympy.polys.euclidtools import ( dmp_primitive, dup_inner_gcd, dmp_inner_gcd) from sympy.polys.sqfreetools import ( dup_sqf_p, dup_sqf_norm, dmp_sqf_norm, dup_sqf_part, dmp_sqf_part) from sympy.polys.polyutils import _sort_factors from sympy.polys.polyconfig import query from sympy.polys.polyerrors import ( ExtraneousFactors, DomainError, CoercionFailed, EvaluationFailed) from sympy.ntheory import nextprime, isprime, factorint from sympy.utilities import subsets from math import ceil as _ceil, log as _log def dup_trial_division(f, factors, K): """ Determine multiplicities of factors for a univariate polynomial using trial division. """ result = [] for factor in factors: k = 0 while True: q, r = dup_div(f, factor, K) if not r: f, k = q, k + 1 else: break result.append((factor, k)) return _sort_factors(result) def dmp_trial_division(f, factors, u, K): """ Determine multiplicities of factors for a multivariate polynomial using trial division. """ result = [] for factor in factors: k = 0 while True: q, r = dmp_div(f, factor, u, K) if dmp_zero_p(r, u): f, k = q, k + 1 else: break result.append((factor, k)) return _sort_factors(result) def dup_zz_mignotte_bound(f, K): """ The Knuth-Cohen variant of Mignotte bound for univariate polynomials in `K[x]`. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = x**3 + 14*x**2 + 56*x + 64 >>> R.dup_zz_mignotte_bound(f) 152 By checking `factor(f)` we can see that max coeff is 8 Also consider a case that `f` is irreducible for example `f = 2*x**2 + 3*x + 4` To avoid a bug for these cases, we return the bound plus the max coefficient of `f` >>> f = 2*x**2 + 3*x + 4 >>> R.dup_zz_mignotte_bound(f) 6 Lastly,To see the difference between the new and the old Mignotte bound consider the irreducible polynomial:: >>> f = 87*x**7 + 4*x**6 + 80*x**5 + 17*x**4 + 9*x**3 + 12*x**2 + 49*x + 26 >>> R.dup_zz_mignotte_bound(f) 744 The new Mignotte bound is 744 whereas the old one (SymPy 1.5.1) is 1937664. References ========== ..[1] [Abbott2013]_ """ from sympy.functions.combinatorial.factorials import binomial d = dup_degree(f) delta = _ceil(d / 2) delta2 = _ceil(delta / 2) # euclidean-norm eucl_norm = K.sqrt( sum( [cf**2 for cf in f] ) ) # biggest values of binomial coefficients (p. 538 of reference) t1 = binomial(delta - 1, delta2) t2 = binomial(delta - 1, delta2 - 1) lc = K.abs(dup_LC(f, K)) # leading coefficient bound = t1 * eucl_norm + t2 * lc # (p. 538 of reference) bound += dup_max_norm(f, K) # add max coeff for irreducible polys bound = _ceil(bound / 2) * 2 # round up to even integer return bound def dmp_zz_mignotte_bound(f, u, K): """Mignotte bound for multivariate polynomials in `K[X]`. """ a = dmp_max_norm(f, u, K) b = abs(dmp_ground_LC(f, u, K)) n = sum(dmp_degree_list(f, u)) return K.sqrt(K(n + 1))*2**n*a*b def dup_zz_hensel_step(m, f, g, h, s, t, K): """ One step in Hensel lifting in `Z[x]`. Given positive integer `m` and `Z[x]` polynomials `f`, `g`, `h`, `s` and `t` such that:: f = g*h (mod m) s*g + t*h = 1 (mod m) lc(f) is not a zero divisor (mod m) lc(h) = 1 deg(f) = deg(g) + deg(h) deg(s) < deg(h) deg(t) < deg(g) returns polynomials `G`, `H`, `S` and `T`, such that:: f = G*H (mod m**2) S*G + T*H = 1 (mod m**2) References ========== .. [1] [Gathen99]_ """ M = m**2 e = dup_sub_mul(f, g, h, K) e = dup_trunc(e, M, K) q, r = dup_div(dup_mul(s, e, K), h, K) q = dup_trunc(q, M, K) r = dup_trunc(r, M, K) u = dup_add(dup_mul(t, e, K), dup_mul(q, g, K), K) G = dup_trunc(dup_add(g, u, K), M, K) H = dup_trunc(dup_add(h, r, K), M, K) u = dup_add(dup_mul(s, G, K), dup_mul(t, H, K), K) b = dup_trunc(dup_sub(u, [K.one], K), M, K) c, d = dup_div(dup_mul(s, b, K), H, K) c = dup_trunc(c, M, K) d = dup_trunc(d, M, K) u = dup_add(dup_mul(t, b, K), dup_mul(c, G, K), K) S = dup_trunc(dup_sub(s, d, K), M, K) T = dup_trunc(dup_sub(t, u, K), M, K) return G, H, S, T def dup_zz_hensel_lift(p, f, f_list, l, K): r""" Multifactor Hensel lifting in `Z[x]`. Given a prime `p`, polynomial `f` over `Z[x]` such that `lc(f)` is a unit modulo `p`, monic pair-wise coprime polynomials `f_i` over `Z[x]` satisfying:: f = lc(f) f_1 ... f_r (mod p) and a positive integer `l`, returns a list of monic polynomials `F_1,\ F_2,\ \dots,\ F_r` satisfying:: f = lc(f) F_1 ... F_r (mod p**l) F_i = f_i (mod p), i = 1..r References ========== .. [1] [Gathen99]_ """ r = len(f_list) lc = dup_LC(f, K) if r == 1: F = dup_mul_ground(f, K.gcdex(lc, p**l)[0], K) return [ dup_trunc(F, p**l, K) ] m = p k = r // 2 d = int(_ceil(_log(l, 2))) g = gf_from_int_poly([lc], p) for f_i in f_list[:k]: g = gf_mul(g, gf_from_int_poly(f_i, p), p, K) h = gf_from_int_poly(f_list[k], p) for f_i in f_list[k + 1:]: h = gf_mul(h, gf_from_int_poly(f_i, p), p, K) s, t, _ = gf_gcdex(g, h, p, K) g = gf_to_int_poly(g, p) h = gf_to_int_poly(h, p) s = gf_to_int_poly(s, p) t = gf_to_int_poly(t, p) for _ in range(1, d + 1): (g, h, s, t), m = dup_zz_hensel_step(m, f, g, h, s, t, K), m**2 return dup_zz_hensel_lift(p, g, f_list[:k], l, K) \ + dup_zz_hensel_lift(p, h, f_list[k:], l, K) def _test_pl(fc, q, pl): if q > pl // 2: q = q - pl if not q: return True return fc % q == 0 def dup_zz_zassenhaus(f, K): """Factor primitive square-free polynomials in `Z[x]`. """ n = dup_degree(f) if n == 1: return [f] fc = f[-1] A = dup_max_norm(f, K) b = dup_LC(f, K) B = int(abs(K.sqrt(K(n + 1))*2**n*A*b)) C = int((n + 1)**(2*n)*A**(2*n - 1)) gamma = int(_ceil(2*_log(C, 2))) bound = int(2*gamma*_log(gamma)) a = [] # choose a prime number `p` such that `f` be square free in Z_p # if there are many factors in Z_p, choose among a few different `p` # the one with fewer factors for px in range(3, bound + 1): if not isprime(px) or b % px == 0: continue px = K.convert(px) F = gf_from_int_poly(f, px) if not gf_sqf_p(F, px, K): continue fsqfx = gf_factor_sqf(F, px, K)[1] a.append((px, fsqfx)) if len(fsqfx) < 15 or len(a) > 4: break p, fsqf = min(a, key=lambda x: len(x[1])) l = int(_ceil(_log(2*B + 1, p))) modular = [gf_to_int_poly(ff, p) for ff in fsqf] g = dup_zz_hensel_lift(p, f, modular, l, K) sorted_T = range(len(g)) T = set(sorted_T) factors, s = [], 1 pl = p**l while 2*s <= len(T): for S in subsets(sorted_T, s): # lift the constant coefficient of the product `G` of the factors # in the subset `S`; if it is does not divide `fc`, `G` does # not divide the input polynomial if b == 1: q = 1 for i in S: q = q*g[i][-1] q = q % pl if not _test_pl(fc, q, pl): continue else: G = [b] for i in S: G = dup_mul(G, g[i], K) G = dup_trunc(G, pl, K) G = dup_primitive(G, K)[1] q = G[-1] if q and fc % q != 0: continue H = [b] S = set(S) T_S = T - S if b == 1: G = [b] for i in S: G = dup_mul(G, g[i], K) G = dup_trunc(G, pl, K) for i in T_S: H = dup_mul(H, g[i], K) H = dup_trunc(H, pl, K) G_norm = dup_l1_norm(G, K) H_norm = dup_l1_norm(H, K) if G_norm*H_norm <= B: T = T_S sorted_T = [i for i in sorted_T if i not in S] G = dup_primitive(G, K)[1] f = dup_primitive(H, K)[1] factors.append(G) b = dup_LC(f, K) break else: s += 1 return factors + [f] def dup_zz_irreducible_p(f, K): """Test irreducibility using Eisenstein's criterion. """ lc = dup_LC(f, K) tc = dup_TC(f, K) e_fc = dup_content(f[1:], K) if e_fc: e_ff = factorint(int(e_fc)) for p in e_ff.keys(): if (lc % p) and (tc % p**2): return True def dup_cyclotomic_p(f, K, irreducible=False): """ Efficiently test if ``f`` is a cyclotomic polynomial. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1 >>> R.dup_cyclotomic_p(f) False >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1 >>> R.dup_cyclotomic_p(g) True """ if K.is_QQ: try: K0, K = K, K.get_ring() f = dup_convert(f, K0, K) except CoercionFailed: return False elif not K.is_ZZ: return False lc = dup_LC(f, K) tc = dup_TC(f, K) if lc != 1 or (tc != -1 and tc != 1): return False if not irreducible: coeff, factors = dup_factor_list(f, K) if coeff != K.one or factors != [(f, 1)]: return False n = dup_degree(f) g, h = [], [] for i in range(n, -1, -2): g.insert(0, f[i]) for i in range(n - 1, -1, -2): h.insert(0, f[i]) g = dup_sqr(dup_strip(g), K) h = dup_sqr(dup_strip(h), K) F = dup_sub(g, dup_lshift(h, 1, K), K) if K.is_negative(dup_LC(F, K)): F = dup_neg(F, K) if F == f: return True g = dup_mirror(f, K) if K.is_negative(dup_LC(g, K)): g = dup_neg(g, K) if F == g and dup_cyclotomic_p(g, K): return True G = dup_sqf_part(F, K) if dup_sqr(G, K) == F and dup_cyclotomic_p(G, K): return True return False def dup_zz_cyclotomic_poly(n, K): """Efficiently generate n-th cyclotomic polynomial. """ h = [K.one, -K.one] for p, k in factorint(n).items(): h = dup_quo(dup_inflate(h, p, K), h, K) h = dup_inflate(h, p**(k - 1), K) return h def _dup_cyclotomic_decompose(n, K): H = [[K.one, -K.one]] for p, k in factorint(n).items(): Q = [ dup_quo(dup_inflate(h, p, K), h, K) for h in H ] H.extend(Q) for i in range(1, k): Q = [ dup_inflate(q, p, K) for q in Q ] H.extend(Q) return H def dup_zz_cyclotomic_factor(f, K): """ Efficiently factor polynomials `x**n - 1` and `x**n + 1` in `Z[x]`. Given a univariate polynomial `f` in `Z[x]` returns a list of factors of `f`, provided that `f` is in the form `x**n - 1` or `x**n + 1` for `n >= 1`. Otherwise returns None. Factorization is performed using cyclotomic decomposition of `f`, which makes this method much faster that any other direct factorization approach (e.g. Zassenhaus's). References ========== .. [1] [Weisstein09]_ """ lc_f, tc_f = dup_LC(f, K), dup_TC(f, K) if dup_degree(f) <= 0: return None if lc_f != 1 or tc_f not in [-1, 1]: return None if any(bool(cf) for cf in f[1:-1]): return None n = dup_degree(f) F = _dup_cyclotomic_decompose(n, K) if not K.is_one(tc_f): return F else: H = [] for h in _dup_cyclotomic_decompose(2*n, K): if h not in F: H.append(h) return H def dup_zz_factor_sqf(f, K): """Factor square-free (non-primitive) polynomials in `Z[x]`. """ cont, g = dup_primitive(f, K) n = dup_degree(g) if dup_LC(g, K) < 0: cont, g = -cont, dup_neg(g, K) if n <= 0: return cont, [] elif n == 1: return cont, [g] if query('USE_IRREDUCIBLE_IN_FACTOR'): if dup_zz_irreducible_p(g, K): return cont, [g] factors = None if query('USE_CYCLOTOMIC_FACTOR'): factors = dup_zz_cyclotomic_factor(g, K) if factors is None: factors = dup_zz_zassenhaus(g, K) return cont, _sort_factors(factors, multiple=False) def dup_zz_factor(f, K): """ Factor (non square-free) polynomials in `Z[x]`. Given a univariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, ..., f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Zassenhaus algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Examples ======== Consider the polynomial `f = 2*x**4 - 2`:: >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_zz_factor(2*x**4 - 2) (2, [(x - 1, 1), (x + 1, 1), (x**2 + 1, 1)]) In result we got the following factorization:: f = 2 (x - 1) (x + 1) (x**2 + 1) Note that this is a complete factorization over integers, however over Gaussian integers we can factor the last term. By default, polynomials `x**n - 1` and `x**n + 1` are factored using cyclotomic decomposition to speedup computations. To disable this behaviour set cyclotomic=False. References ========== .. [1] [Gathen99]_ """ cont, g = dup_primitive(f, K) n = dup_degree(g) if dup_LC(g, K) < 0: cont, g = -cont, dup_neg(g, K) if n <= 0: return cont, [] elif n == 1: return cont, [(g, 1)] if query('USE_IRREDUCIBLE_IN_FACTOR'): if dup_zz_irreducible_p(g, K): return cont, [(g, 1)] g = dup_sqf_part(g, K) H = None if query('USE_CYCLOTOMIC_FACTOR'): H = dup_zz_cyclotomic_factor(g, K) if H is None: H = dup_zz_zassenhaus(g, K) factors = dup_trial_division(f, H, K) return cont, factors def dmp_zz_wang_non_divisors(E, cs, ct, K): """Wang/EEZ: Compute a set of valid divisors. """ result = [ cs*ct ] for q in E: q = abs(q) for r in reversed(result): while r != 1: r = K.gcd(r, q) q = q // r if K.is_one(q): return None result.append(q) return result[1:] def dmp_zz_wang_test_points(f, T, ct, A, u, K): """Wang/EEZ: Test evaluation points for suitability. """ if not dmp_eval_tail(dmp_LC(f, K), A, u - 1, K): raise EvaluationFailed('no luck') g = dmp_eval_tail(f, A, u, K) if not dup_sqf_p(g, K): raise EvaluationFailed('no luck') c, h = dup_primitive(g, K) if K.is_negative(dup_LC(h, K)): c, h = -c, dup_neg(h, K) v = u - 1 E = [ dmp_eval_tail(t, A, v, K) for t, _ in T ] D = dmp_zz_wang_non_divisors(E, c, ct, K) if D is not None: return c, h, E else: raise EvaluationFailed('no luck') def dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K): """Wang/EEZ: Compute correct leading coefficients. """ C, J, v = [], [0]*len(E), u - 1 for h in H: c = dmp_one(v, K) d = dup_LC(h, K)*cs for i in reversed(range(len(E))): k, e, (t, _) = 0, E[i], T[i] while not (d % e): d, k = d//e, k + 1 if k != 0: c, J[i] = dmp_mul(c, dmp_pow(t, k, v, K), v, K), 1 C.append(c) if not all(J): raise ExtraneousFactors # pragma: no cover CC, HH = [], [] for c, h in zip(C, H): d = dmp_eval_tail(c, A, v, K) lc = dup_LC(h, K) if K.is_one(cs): cc = lc//d else: g = K.gcd(lc, d) d, cc = d//g, lc//g h, cs = dup_mul_ground(h, d, K), cs//d c = dmp_mul_ground(c, cc, v, K) CC.append(c) HH.append(h) if K.is_one(cs): return f, HH, CC CCC, HHH = [], [] for c, h in zip(CC, HH): CCC.append(dmp_mul_ground(c, cs, v, K)) HHH.append(dmp_mul_ground(h, cs, 0, K)) f = dmp_mul_ground(f, cs**(len(H) - 1), u, K) return f, HHH, CCC def dup_zz_diophantine(F, m, p, K): """Wang/EEZ: Solve univariate Diophantine equations. """ if len(F) == 2: a, b = F f = gf_from_int_poly(a, p) g = gf_from_int_poly(b, p) s, t, G = gf_gcdex(g, f, p, K) s = gf_lshift(s, m, K) t = gf_lshift(t, m, K) q, s = gf_div(s, f, p, K) t = gf_add_mul(t, q, g, p, K) s = gf_to_int_poly(s, p) t = gf_to_int_poly(t, p) result = [s, t] else: G = [F[-1]] for f in reversed(F[1:-1]): G.insert(0, dup_mul(f, G[0], K)) S, T = [], [[1]] for f, g in zip(F, G): t, s = dmp_zz_diophantine([g, f], T[-1], [], 0, p, 1, K) T.append(t) S.append(s) result, S = [], S + [T[-1]] for s, f in zip(S, F): s = gf_from_int_poly(s, p) f = gf_from_int_poly(f, p) r = gf_rem(gf_lshift(s, m, K), f, p, K) s = gf_to_int_poly(r, p) result.append(s) return result def dmp_zz_diophantine(F, c, A, d, p, u, K): """Wang/EEZ: Solve multivariate Diophantine equations. """ if not A: S = [ [] for _ in F ] n = dup_degree(c) for i, coeff in enumerate(c): if not coeff: continue T = dup_zz_diophantine(F, n - i, p, K) for j, (s, t) in enumerate(zip(S, T)): t = dup_mul_ground(t, coeff, K) S[j] = dup_trunc(dup_add(s, t, K), p, K) else: n = len(A) e = dmp_expand(F, u, K) a, A = A[-1], A[:-1] B, G = [], [] for f in F: B.append(dmp_quo(e, f, u, K)) G.append(dmp_eval_in(f, a, n, u, K)) C = dmp_eval_in(c, a, n, u, K) v = u - 1 S = dmp_zz_diophantine(G, C, A, d, p, v, K) S = [ dmp_raise(s, 1, v, K) for s in S ] for s, b in zip(S, B): c = dmp_sub_mul(c, s, b, u, K) c = dmp_ground_trunc(c, p, u, K) m = dmp_nest([K.one, -a], n, K) M = dmp_one(n, K) for k in K.map(range(0, d)): if dmp_zero_p(c, u): break M = dmp_mul(M, m, u, K) C = dmp_diff_eval_in(c, k + 1, a, n, u, K) if not dmp_zero_p(C, v): C = dmp_quo_ground(C, K.factorial(k + 1), v, K) T = dmp_zz_diophantine(G, C, A, d, p, v, K) for i, t in enumerate(T): T[i] = dmp_mul(dmp_raise(t, 1, v, K), M, u, K) for i, (s, t) in enumerate(zip(S, T)): S[i] = dmp_add(s, t, u, K) for t, b in zip(T, B): c = dmp_sub_mul(c, t, b, u, K) c = dmp_ground_trunc(c, p, u, K) S = [ dmp_ground_trunc(s, p, u, K) for s in S ] return S def dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K): """Wang/EEZ: Parallel Hensel lifting algorithm. """ S, n, v = [f], len(A), u - 1 H = list(H) for i, a in enumerate(reversed(A[1:])): s = dmp_eval_in(S[0], a, n - i, u - i, K) S.insert(0, dmp_ground_trunc(s, p, v - i, K)) d = max(dmp_degree_list(f, u)[1:]) for j, s, a in zip(range(2, n + 2), S, A): G, w = list(H), j - 1 I, J = A[:j - 2], A[j - 1:] for i, (h, lc) in enumerate(zip(H, LC)): lc = dmp_ground_trunc(dmp_eval_tail(lc, J, v, K), p, w - 1, K) H[i] = [lc] + dmp_raise(h[1:], 1, w - 1, K) m = dmp_nest([K.one, -a], w, K) M = dmp_one(w, K) c = dmp_sub(s, dmp_expand(H, w, K), w, K) dj = dmp_degree_in(s, w, w) for k in K.map(range(0, dj)): if dmp_zero_p(c, w): break M = dmp_mul(M, m, w, K) C = dmp_diff_eval_in(c, k + 1, a, w, w, K) if not dmp_zero_p(C, w - 1): C = dmp_quo_ground(C, K.factorial(k + 1), w - 1, K) T = dmp_zz_diophantine(G, C, I, d, p, w - 1, K) for i, (h, t) in enumerate(zip(H, T)): h = dmp_add_mul(h, dmp_raise(t, 1, w - 1, K), M, w, K) H[i] = dmp_ground_trunc(h, p, w, K) h = dmp_sub(s, dmp_expand(H, w, K), w, K) c = dmp_ground_trunc(h, p, w, K) if dmp_expand(H, u, K) != f: raise ExtraneousFactors # pragma: no cover else: return H def dmp_zz_wang(f, u, K, mod=None, seed=None): r""" Factor primitive square-free polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x_1,...,x_n]`, which is primitive and square-free in `x_1`, computes factorization of `f` into irreducibles over integers. The procedure is based on Wang's Enhanced Extended Zassenhaus algorithm. The algorithm works by viewing `f` as a univariate polynomial in `Z[x_2,...,x_n][x_1]`, for which an evaluation mapping is computed:: x_2 -> a_2, ..., x_n -> a_n where `a_i`, for `i = 2, \dots, n`, are carefully chosen integers. The mapping is used to transform `f` into a univariate polynomial in `Z[x_1]`, which can be factored efficiently using Zassenhaus algorithm. The last step is to lift univariate factors to obtain true multivariate factors. For this purpose a parallel Hensel lifting procedure is used. The parameter ``seed`` is passed to _randint and can be used to seed randint (when an integer) or (for testing purposes) can be a sequence of numbers. References ========== .. [1] [Wang78]_ .. [2] [Geddes92]_ """ from sympy.core.random import _randint randint = _randint(seed) ct, T = dmp_zz_factor(dmp_LC(f, K), u - 1, K) b = dmp_zz_mignotte_bound(f, u, K) p = K(nextprime(b)) if mod is None: if u == 1: mod = 2 else: mod = 1 history, configs, A, r = set(), [], [K.zero]*u, None try: cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) _, H = dup_zz_factor_sqf(s, K) r = len(H) if r == 1: return [f] configs = [(s, cs, E, H, A)] except EvaluationFailed: pass eez_num_configs = query('EEZ_NUMBER_OF_CONFIGS') eez_num_tries = query('EEZ_NUMBER_OF_TRIES') eez_mod_step = query('EEZ_MODULUS_STEP') while len(configs) < eez_num_configs: for _ in range(eez_num_tries): A = [ K(randint(-mod, mod)) for _ in range(u) ] if tuple(A) not in history: history.add(tuple(A)) else: continue try: cs, s, E = dmp_zz_wang_test_points(f, T, ct, A, u, K) except EvaluationFailed: continue _, H = dup_zz_factor_sqf(s, K) rr = len(H) if r is not None: if rr != r: # pragma: no cover if rr < r: configs, r = [], rr else: continue else: r = rr if r == 1: return [f] configs.append((s, cs, E, H, A)) if len(configs) == eez_num_configs: break else: mod += eez_mod_step s_norm, s_arg, i = None, 0, 0 for s, _, _, _, _ in configs: _s_norm = dup_max_norm(s, K) if s_norm is not None: if _s_norm < s_norm: s_norm = _s_norm s_arg = i else: s_norm = _s_norm i += 1 _, cs, E, H, A = configs[s_arg] orig_f = f try: f, H, LC = dmp_zz_wang_lead_coeffs(f, T, cs, E, H, A, u, K) factors = dmp_zz_wang_hensel_lifting(f, H, LC, A, p, u, K) except ExtraneousFactors: # pragma: no cover if query('EEZ_RESTART_IF_NEEDED'): return dmp_zz_wang(orig_f, u, K, mod + 1) else: raise ExtraneousFactors( "we need to restart algorithm with better parameters") result = [] for f in factors: _, f = dmp_ground_primitive(f, u, K) if K.is_negative(dmp_ground_LC(f, u, K)): f = dmp_neg(f, u, K) result.append(f) return result def dmp_zz_factor(f, u, K): r""" Factor (non square-free) polynomials in `Z[X]`. Given a multivariate polynomial `f` in `Z[x]` computes its complete factorization `f_1, \dots, f_n` into irreducibles over integers:: f = content(f) f_1**k_1 ... f_n**k_n The factorization is computed by reducing the input polynomial into a primitive square-free polynomial and factoring it using Enhanced Extended Zassenhaus (EEZ) algorithm. Trial division is used to recover the multiplicities of factors. The result is returned as a tuple consisting of:: (content(f), [(f_1, k_1), ..., (f_n, k_n)) Consider polynomial `f = 2*(x**2 - y**2)`:: >>> from sympy.polys import ring, ZZ >>> R, x,y = ring("x,y", ZZ) >>> R.dmp_zz_factor(2*x**2 - 2*y**2) (2, [(x - y, 1), (x + y, 1)]) In result we got the following factorization:: f = 2 (x - y) (x + y) References ========== .. [1] [Gathen99]_ """ if not u: return dup_zz_factor(f, K) if dmp_zero_p(f, u): return K.zero, [] cont, g = dmp_ground_primitive(f, u, K) if dmp_ground_LC(g, u, K) < 0: cont, g = -cont, dmp_neg(g, u, K) if all(d <= 0 for d in dmp_degree_list(g, u)): return cont, [] G, g = dmp_primitive(g, u, K) factors = [] if dmp_degree(g, u) > 0: g = dmp_sqf_part(g, u, K) H = dmp_zz_wang(g, u, K) factors = dmp_trial_division(f, H, u, K) for g, k in dmp_zz_factor(G, u - 1, K)[1]: factors.insert(0, ([g], k)) return cont, _sort_factors(factors) def dup_qq_i_factor(f, K0): """Factor univariate polynomials into irreducibles in `QQ_I[x]`. """ # Factor in QQ<I> K1 = K0.as_AlgebraicField() f = dup_convert(f, K0, K1) coeff, factors = dup_factor_list(f, K1) factors = [(dup_convert(fac, K1, K0), i) for fac, i in factors] coeff = K0.convert(coeff, K1) return coeff, factors def dup_zz_i_factor(f, K0): """Factor univariate polynomials into irreducibles in `ZZ_I[x]`. """ # First factor in QQ_I K1 = K0.get_field() f = dup_convert(f, K0, K1) coeff, factors = dup_qq_i_factor(f, K1) new_factors = [] for fac, i in factors: # Extract content fac_denom, fac_num = dup_clear_denoms(fac, K1) fac_num_ZZ_I = dup_convert(fac_num, K1, K0) content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, 0, K1) coeff = (coeff * content ** i) // fac_denom ** i new_factors.append((fac_prim, i)) factors = new_factors coeff = K0.convert(coeff, K1) return coeff, factors def dmp_qq_i_factor(f, u, K0): """Factor multivariate polynomials into irreducibles in `QQ_I[X]`. """ # Factor in QQ<I> K1 = K0.as_AlgebraicField() f = dmp_convert(f, u, K0, K1) coeff, factors = dmp_factor_list(f, u, K1) factors = [(dmp_convert(fac, u, K1, K0), i) for fac, i in factors] coeff = K0.convert(coeff, K1) return coeff, factors def dmp_zz_i_factor(f, u, K0): """Factor multivariate polynomials into irreducibles in `ZZ_I[X]`. """ # First factor in QQ_I K1 = K0.get_field() f = dmp_convert(f, u, K0, K1) coeff, factors = dmp_qq_i_factor(f, u, K1) new_factors = [] for fac, i in factors: # Extract content fac_denom, fac_num = dmp_clear_denoms(fac, u, K1) fac_num_ZZ_I = dmp_convert(fac_num, u, K1, K0) content, fac_prim = dmp_ground_primitive(fac_num_ZZ_I, u, K1) coeff = (coeff * content ** i) // fac_denom ** i new_factors.append((fac_prim, i)) factors = new_factors coeff = K0.convert(coeff, K1) return coeff, factors def dup_ext_factor(f, K): """Factor univariate polynomials over algebraic number fields. """ n, lc = dup_degree(f), dup_LC(f, K) f = dup_monic(f, K) if n <= 0: return lc, [] if n == 1: return lc, [(f, 1)] f, F = dup_sqf_part(f, K), f s, g, r = dup_sqf_norm(f, K) factors = dup_factor_list_include(r, K.dom) if len(factors) == 1: return lc, [(f, n//dup_degree(f))] H = s*K.unit for i, (factor, _) in enumerate(factors): h = dup_convert(factor, K.dom, K) h, _, g = dup_inner_gcd(h, g, K) h = dup_shift(h, H, K) factors[i] = h factors = dup_trial_division(F, factors, K) return lc, factors def dmp_ext_factor(f, u, K): """Factor multivariate polynomials over algebraic number fields. """ if not u: return dup_ext_factor(f, K) lc = dmp_ground_LC(f, u, K) f = dmp_ground_monic(f, u, K) if all(d <= 0 for d in dmp_degree_list(f, u)): return lc, [] f, F = dmp_sqf_part(f, u, K), f s, g, r = dmp_sqf_norm(f, u, K) factors = dmp_factor_list_include(r, u, K.dom) if len(factors) == 1: factors = [f] else: H = dmp_raise([K.one, s*K.unit], u, 0, K) for i, (factor, _) in enumerate(factors): h = dmp_convert(factor, u, K.dom, K) h, _, g = dmp_inner_gcd(h, g, u, K) h = dmp_compose(h, H, u, K) factors[i] = h return lc, dmp_trial_division(F, factors, u, K) def dup_gf_factor(f, K): """Factor univariate polynomials over finite fields. """ f = dup_convert(f, K, K.dom) coeff, factors = gf_factor(f, K.mod, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K.dom, K), k) return K.convert(coeff, K.dom), factors def dmp_gf_factor(f, u, K): """Factor multivariate polynomials over finite fields. """ raise NotImplementedError('multivariate polynomials over finite fields') def dup_factor_list(f, K0): """Factor univariate polynomials into irreducibles in `K[x]`. """ j, f = dup_terms_gcd(f, K0) cont, f = dup_primitive(f, K0) if K0.is_FiniteField: coeff, factors = dup_gf_factor(f, K0) elif K0.is_Algebraic: coeff, factors = dup_ext_factor(f, K0) elif K0.is_GaussianRing: coeff, factors = dup_zz_i_factor(f, K0) elif K0.is_GaussianField: coeff, factors = dup_qq_i_factor(f, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dup_convert(f, K0_inexact, K0) else: K0_inexact = None if K0.is_Field: K = K0.get_ring() denom, f = dup_clear_denoms(f, K0, K) f = dup_convert(f, K0, K) else: K = K0 if K.is_ZZ: coeff, factors = dup_zz_factor(f, K) elif K.is_Poly: f, u = dmp_inject(f, 0, K) coeff, factors = dmp_factor_list(f, u, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, u, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.is_Field: for i, (f, k) in enumerate(factors): factors[i] = (dup_convert(f, K, K0), k) coeff = K0.convert(coeff, K) coeff = K0.quo(coeff, denom) if K0_inexact: for i, (f, k) in enumerate(factors): max_norm = dup_max_norm(f, K0) f = dup_quo_ground(f, max_norm, K0) f = dup_convert(f, K0, K0_inexact) factors[i] = (f, k) coeff = K0.mul(coeff, K0.pow(max_norm, k)) coeff = K0_inexact.convert(coeff, K0) K0 = K0_inexact if j: factors.insert(0, ([K0.one, K0.zero], j)) return coeff*cont, _sort_factors(factors) def dup_factor_list_include(f, K): """Factor univariate polynomials into irreducibles in `K[x]`. """ coeff, factors = dup_factor_list(f, K) if not factors: return [(dup_strip([coeff]), 1)] else: g = dup_mul_ground(factors[0][0], coeff, K) return [(g, factors[0][1])] + factors[1:] def dmp_factor_list(f, u, K0): """Factor multivariate polynomials into irreducibles in `K[X]`. """ if not u: return dup_factor_list(f, K0) J, f = dmp_terms_gcd(f, u, K0) cont, f = dmp_ground_primitive(f, u, K0) if K0.is_FiniteField: # pragma: no cover coeff, factors = dmp_gf_factor(f, u, K0) elif K0.is_Algebraic: coeff, factors = dmp_ext_factor(f, u, K0) elif K0.is_GaussianRing: coeff, factors = dmp_zz_i_factor(f, u, K0) elif K0.is_GaussianField: coeff, factors = dmp_qq_i_factor(f, u, K0) else: if not K0.is_Exact: K0_inexact, K0 = K0, K0.get_exact() f = dmp_convert(f, u, K0_inexact, K0) else: K0_inexact = None if K0.is_Field: K = K0.get_ring() denom, f = dmp_clear_denoms(f, u, K0, K) f = dmp_convert(f, u, K0, K) else: K = K0 if K.is_ZZ: levels, f, v = dmp_exclude(f, u, K) coeff, factors = dmp_zz_factor(f, v, K) for i, (f, k) in enumerate(factors): factors[i] = (dmp_include(f, levels, v, K), k) elif K.is_Poly: f, v = dmp_inject(f, u, K) coeff, factors = dmp_factor_list(f, v, K.dom) for i, (f, k) in enumerate(factors): factors[i] = (dmp_eject(f, v, K), k) coeff = K.convert(coeff, K.dom) else: # pragma: no cover raise DomainError('factorization not supported over %s' % K0) if K0.is_Field: for i, (f, k) in enumerate(factors): factors[i] = (dmp_convert(f, u, K, K0), k) coeff = K0.convert(coeff, K) coeff = K0.quo(coeff, denom) if K0_inexact: for i, (f, k) in enumerate(factors): max_norm = dmp_max_norm(f, u, K0) f = dmp_quo_ground(f, max_norm, u, K0) f = dmp_convert(f, u, K0, K0_inexact) factors[i] = (f, k) coeff = K0.mul(coeff, K0.pow(max_norm, k)) coeff = K0_inexact.convert(coeff, K0) K0 = K0_inexact for i, j in enumerate(reversed(J)): if not j: continue term = {(0,)*(u - i) + (1,) + (0,)*i: K0.one} factors.insert(0, (dmp_from_dict(term, u, K0), j)) return coeff*cont, _sort_factors(factors) def dmp_factor_list_include(f, u, K): """Factor multivariate polynomials into irreducibles in `K[X]`. """ if not u: return dup_factor_list_include(f, K) coeff, factors = dmp_factor_list(f, u, K) if not factors: return [(dmp_ground(coeff, u), 1)] else: g = dmp_mul_ground(factors[0][0], coeff, u, K) return [(g, factors[0][1])] + factors[1:] def dup_irreducible_p(f, K): """ Returns ``True`` if a univariate polynomial ``f`` has no factors over its domain. """ return dmp_irreducible_p(f, 0, K) def dmp_irreducible_p(f, u, K): """ Returns ``True`` if a multivariate polynomial ``f`` has no factors over its domain. """ _, factors = dmp_factor_list(f, u, K) if not factors: return True elif len(factors) > 1: return False else: _, k = factors[0] return k == 1
3b4c6e67f8a115a5bdc943cd482388d73ec939442fc7dba1618c08dc49c6db00
r""" Sparse distributed elements of free modules over multivariate (generalized) polynomial rings. This code and its data structures are very much like the distributed polynomials, except that the first "exponent" of the monomial is a module generator index. That is, the multi-exponent ``(i, e_1, ..., e_n)`` represents the "monomial" `x_1^{e_1} \cdots x_n^{e_n} f_i` of the free module `F` generated by `f_1, \ldots, f_r` over (a localization of) the ring `K[x_1, \ldots, x_n]`. A module element is simply stored as a list of terms ordered by the monomial order. Here a term is a pair of a multi-exponent and a coefficient. In general, this coefficient should never be zero (since it can then be omitted). The zero module element is stored as an empty list. The main routines are ``sdm_nf_mora`` and ``sdm_groebner`` which can be used to compute, respectively, weak normal forms and standard bases. They work with arbitrary (not necessarily global) monomial orders. In general, product orders have to be used to construct valid monomial orders for modules. However, ``lex`` can be used as-is. Note that the "level" (number of variables, i.e. parameter u+1 in distributedpolys.py) is never needed in this code. The main reference for this file is [SCA], "A Singular Introduction to Commutative Algebra". """ from itertools import permutations from sympy.polys.monomials import ( monomial_mul, monomial_lcm, monomial_div, monomial_deg ) from sympy.polys.polytools import Poly from sympy.polys.polyutils import parallel_dict_from_expr from sympy.core.singleton import S from sympy.core.sympify import sympify # Additional monomial tools. def sdm_monomial_mul(M, X): """ Multiply tuple ``X`` representing a monomial of `K[X]` into the tuple ``M`` representing a monomial of `F`. Examples ======== Multiplying `xy^3` into `x f_1` yields `x^2 y^3 f_1`: >>> from sympy.polys.distributedmodules import sdm_monomial_mul >>> sdm_monomial_mul((1, 1, 0), (1, 3)) (1, 2, 3) """ return (M[0],) + monomial_mul(X, M[1:]) def sdm_monomial_deg(M): """ Return the total degree of ``M``. Examples ======== For example, the total degree of `x^2 y f_5` is 3: >>> from sympy.polys.distributedmodules import sdm_monomial_deg >>> sdm_monomial_deg((5, 2, 1)) 3 """ return monomial_deg(M[1:]) def sdm_monomial_lcm(A, B): r""" Return the "least common multiple" of ``A`` and ``B``. IF `A = M e_j` and `B = N e_j`, where `M` and `N` are polynomial monomials, this returns `\lcm(M, N) e_j`. Note that ``A`` and ``B`` involve distinct monomials. Otherwise the result is undefined. Examples ======== >>> from sympy.polys.distributedmodules import sdm_monomial_lcm >>> sdm_monomial_lcm((1, 2, 3), (1, 0, 5)) (1, 2, 5) """ return (A[0],) + monomial_lcm(A[1:], B[1:]) def sdm_monomial_divides(A, B): """ Does there exist a (polynomial) monomial X such that XA = B? Examples ======== Positive examples: In the following examples, the monomial is given in terms of x, y and the generator(s), f_1, f_2 etc. The tuple form of that monomial is used in the call to sdm_monomial_divides. Note: the generator appears last in the expression but first in the tuple and other factors appear in the same order that they appear in the monomial expression. `A = f_1` divides `B = f_1` >>> from sympy.polys.distributedmodules import sdm_monomial_divides >>> sdm_monomial_divides((1, 0, 0), (1, 0, 0)) True `A = f_1` divides `B = x^2 y f_1` >>> sdm_monomial_divides((1, 0, 0), (1, 2, 1)) True `A = xy f_5` divides `B = x^2 y f_5` >>> sdm_monomial_divides((5, 1, 1), (5, 2, 1)) True Negative examples: `A = f_1` does not divide `B = f_2` >>> sdm_monomial_divides((1, 0, 0), (2, 0, 0)) False `A = x f_1` does not divide `B = f_1` >>> sdm_monomial_divides((1, 1, 0), (1, 0, 0)) False `A = xy^2 f_5` does not divide `B = y f_5` >>> sdm_monomial_divides((5, 1, 2), (5, 0, 1)) False """ return A[0] == B[0] and all(a <= b for a, b in zip(A[1:], B[1:])) # The actual distributed modules code. def sdm_LC(f, K): """Returns the leading coeffcient of ``f``. """ if not f: return K.zero else: return f[0][1] def sdm_to_dict(f): """Make a dictionary from a distributed polynomial. """ return dict(f) def sdm_from_dict(d, O): """ Create an sdm from a dictionary. Here ``O`` is the monomial order to use. Examples ======== >>> from sympy.polys.distributedmodules import sdm_from_dict >>> from sympy.polys import QQ, lex >>> dic = {(1, 1, 0): QQ(1), (1, 0, 0): QQ(2), (0, 1, 0): QQ(0)} >>> sdm_from_dict(dic, lex) [((1, 1, 0), 1), ((1, 0, 0), 2)] """ return sdm_strip(sdm_sort(list(d.items()), O)) def sdm_sort(f, O): """Sort terms in ``f`` using the given monomial order ``O``. """ return sorted(f, key=lambda term: O(term[0]), reverse=True) def sdm_strip(f): """Remove terms with zero coefficients from ``f`` in ``K[X]``. """ return [ (monom, coeff) for monom, coeff in f if coeff ] def sdm_add(f, g, O, K): """ Add two module elements ``f``, ``g``. Addition is done over the ground field ``K``, monomials are ordered according to ``O``. Examples ======== All examples use lexicographic order. `(xy f_1) + (f_2) = f_2 + xy f_1` >>> from sympy.polys.distributedmodules import sdm_add >>> from sympy.polys import lex, QQ >>> sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ) [((2, 0, 0), 1), ((1, 1, 1), 1)] `(xy f_1) + (-xy f_1)` = 0` >>> sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ) [] `(f_1) + (2f_1) = 3f_1` >>> sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ) [((1, 0, 0), 3)] `(yf_1) + (xf_1) = xf_1 + yf_1` >>> sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ) [((1, 1, 0), 1), ((1, 0, 1), 1)] """ h = dict(f) for monom, c in g: if monom in h: coeff = h[monom] + c if not coeff: del h[monom] else: h[monom] = coeff else: h[monom] = c return sdm_from_dict(h, O) def sdm_LM(f): r""" Returns the leading monomial of ``f``. Only valid if `f \ne 0`. Examples ======== >>> from sympy.polys.distributedmodules import sdm_LM, sdm_from_dict >>> from sympy.polys import QQ, lex >>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)} >>> sdm_LM(sdm_from_dict(dic, lex)) (4, 0, 1) """ return f[0][0] def sdm_LT(f): r""" Returns the leading term of ``f``. Only valid if `f \ne 0`. Examples ======== >>> from sympy.polys.distributedmodules import sdm_LT, sdm_from_dict >>> from sympy.polys import QQ, lex >>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)} >>> sdm_LT(sdm_from_dict(dic, lex)) ((4, 0, 1), 3) """ return f[0] def sdm_mul_term(f, term, O, K): """ Multiply a distributed module element ``f`` by a (polynomial) term ``term``. Multiplication of coefficients is done over the ground field ``K``, and monomials are ordered according to ``O``. Examples ======== `0 f_1 = 0` >>> from sympy.polys.distributedmodules import sdm_mul_term >>> from sympy.polys import lex, QQ >>> sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ) [] `x 0 = 0` >>> sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ) [] `(x) (f_1) = xf_1` >>> sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ) [((1, 1, 0), 1)] `(2xy) (3x f_1 + 4y f_2) = 8xy^2 f_2 + 6x^2y f_1` >>> f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))] >>> sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ) [((2, 1, 2), 8), ((1, 2, 1), 6)] """ X, c = term if not f or not c: return [] else: if K.is_one(c): return [ (sdm_monomial_mul(f_M, X), f_c) for f_M, f_c in f ] else: return [ (sdm_monomial_mul(f_M, X), f_c * c) for f_M, f_c in f ] def sdm_zero(): """Return the zero module element.""" return [] def sdm_deg(f): """ Degree of ``f``. This is the maximum of the degrees of all its monomials. Invalid if ``f`` is zero. Examples ======== >>> from sympy.polys.distributedmodules import sdm_deg >>> sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)]) 7 """ return max(sdm_monomial_deg(M[0]) for M in f) # Conversion def sdm_from_vector(vec, O, K, **opts): """ Create an sdm from an iterable of expressions. Coefficients are created in the ground field ``K``, and terms are ordered according to monomial order ``O``. Named arguments are passed on to the polys conversion code and can be used to specify for example generators. Examples ======== >>> from sympy.polys.distributedmodules import sdm_from_vector >>> from sympy.abc import x, y, z >>> from sympy.polys import QQ, lex >>> sdm_from_vector([x**2+y**2, 2*z], lex, QQ) [((1, 0, 0, 1), 2), ((0, 2, 0, 0), 1), ((0, 0, 2, 0), 1)] """ dics, gens = parallel_dict_from_expr(sympify(vec), **opts) dic = {} for i, d in enumerate(dics): for k, v in d.items(): dic[(i,) + k] = K.convert(v) return sdm_from_dict(dic, O) def sdm_to_vector(f, gens, K, n=None): """ Convert sdm ``f`` into a list of polynomial expressions. The generators for the polynomial ring are specified via ``gens``. The rank of the module is guessed, or passed via ``n``. The ground field is assumed to be ``K``. Examples ======== >>> from sympy.polys.distributedmodules import sdm_to_vector >>> from sympy.abc import x, y, z >>> from sympy.polys import QQ >>> f = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))] >>> sdm_to_vector(f, [x, y, z], QQ) [x**2 + y**2, 2*z] """ dic = sdm_to_dict(f) dics = {} for k, v in dic.items(): dics.setdefault(k[0], []).append((k[1:], v)) n = n or len(dics) res = [] for k in range(n): if k in dics: res.append(Poly(dict(dics[k]), gens=gens, domain=K).as_expr()) else: res.append(S.Zero) return res # Algorithms. def sdm_spoly(f, g, O, K, phantom=None): """ Compute the generalized s-polynomial of ``f`` and ``g``. The ground field is assumed to be ``K``, and monomials ordered according to ``O``. This is invalid if either of ``f`` or ``g`` is zero. If the leading terms of `f` and `g` involve different basis elements of `F`, their s-poly is defined to be zero. Otherwise it is a certain linear combination of `f` and `g` in which the leading terms cancel. See [SCA, defn 2.3.6] for details. If ``phantom`` is not ``None``, it should be a pair of module elements on which to perform the same operation(s) as on ``f`` and ``g``. The in this case both results are returned. Examples ======== >>> from sympy.polys.distributedmodules import sdm_spoly >>> from sympy.polys import QQ, lex >>> f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))] >>> g = [((2, 3, 0), QQ(1))] >>> h = [((1, 2, 3), QQ(1))] >>> sdm_spoly(f, h, lex, QQ) [] >>> sdm_spoly(f, g, lex, QQ) [((1, 2, 1), 1)] """ if not f or not g: return sdm_zero() LM1 = sdm_LM(f) LM2 = sdm_LM(g) if LM1[0] != LM2[0]: return sdm_zero() LM1 = LM1[1:] LM2 = LM2[1:] lcm = monomial_lcm(LM1, LM2) m1 = monomial_div(lcm, LM1) m2 = monomial_div(lcm, LM2) c = K.quo(-sdm_LC(f, K), sdm_LC(g, K)) r1 = sdm_add(sdm_mul_term(f, (m1, K.one), O, K), sdm_mul_term(g, (m2, c), O, K), O, K) if phantom is None: return r1 r2 = sdm_add(sdm_mul_term(phantom[0], (m1, K.one), O, K), sdm_mul_term(phantom[1], (m2, c), O, K), O, K) return r1, r2 def sdm_ecart(f): """ Compute the ecart of ``f``. This is defined to be the difference of the total degree of `f` and the total degree of the leading monomial of `f` [SCA, defn 2.3.7]. Invalid if f is zero. Examples ======== >>> from sympy.polys.distributedmodules import sdm_ecart >>> sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)]) 0 >>> sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)]) 3 """ return sdm_deg(f) - sdm_monomial_deg(sdm_LM(f)) def sdm_nf_mora(f, G, O, K, phantom=None): r""" Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``. The ground field is assumed to be ``K``, and monomials ordered according to ``O``. Weak normal forms are defined in [SCA, defn 2.3.3]. They are not unique. This function deterministically computes a weak normal form, depending on the order of `G`. The most important property of a weak normal form is the following: if `R` is the ring associated with the monomial ordering (if the ordering is global, we just have `R = K[x_1, \ldots, x_n]`, otherwise it is a certain localization thereof), `I` any ideal of `R` and `G` a standard basis for `I`, then for any `f \in R`, we have `f \in I` if and only if `NF(f | G) = 0`. This is the generalized Mora algorithm for computing weak normal forms with respect to arbitrary monomial orders [SCA, algorithm 2.3.9]. If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments on which to perform the same computations as on ``f``, ``G``, both results are then returned. """ from itertools import repeat h = f T = list(G) if phantom is not None: # "phantom" variables with suffix p hp = phantom[0] Tp = list(phantom[1]) phantom = True else: Tp = repeat([]) phantom = False while h: # TODO better data structure!!! Th = [(g, sdm_ecart(g), gp) for g, gp in zip(T, Tp) if sdm_monomial_divides(sdm_LM(g), sdm_LM(h))] if not Th: break g, _, gp = min(Th, key=lambda x: x[1]) if sdm_ecart(g) > sdm_ecart(h): T.append(h) if phantom: Tp.append(hp) if phantom: h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp)) else: h = sdm_spoly(h, g, O, K) if phantom: return h, hp return h def sdm_nf_buchberger(f, G, O, K, phantom=None): r""" Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``. The ground field is assumed to be ``K``, and monomials ordered according to ``O``. This is the standard Buchberger algorithm for computing weak normal forms with respect to *global* monomial orders [SCA, algorithm 1.6.10]. If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments on which to perform the same computations as on ``f``, ``G``, both results are then returned. """ from itertools import repeat h = f T = list(G) if phantom is not None: # "phantom" variables with suffix p hp = phantom[0] Tp = list(phantom[1]) phantom = True else: Tp = repeat([]) phantom = False while h: try: g, gp = next((g, gp) for g, gp in zip(T, Tp) if sdm_monomial_divides(sdm_LM(g), sdm_LM(h))) except StopIteration: break if phantom: h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp)) else: h = sdm_spoly(h, g, O, K) if phantom: return h, hp return h def sdm_nf_buchberger_reduced(f, G, O, K): r""" Compute a reduced normal form of ``f`` with respect to ``G`` and order ``O``. The ground field is assumed to be ``K``, and monomials ordered according to ``O``. In contrast to weak normal forms, reduced normal forms *are* unique, but their computation is more expensive. This is the standard Buchberger algorithm for computing reduced normal forms with respect to *global* monomial orders [SCA, algorithm 1.6.11]. The ``pantom`` option is not supported, so this normal form cannot be used as a normal form for the "extended" groebner algorithm. """ h = sdm_zero() g = f while g: g = sdm_nf_buchberger(g, G, O, K) if g: h = sdm_add(h, [sdm_LT(g)], O, K) g = g[1:] return h def sdm_groebner(G, NF, O, K, extended=False): """ Compute a minimal standard basis of ``G`` with respect to order ``O``. The algorithm uses a normal form ``NF``, for example ``sdm_nf_mora``. The ground field is assumed to be ``K``, and monomials ordered according to ``O``. Let `N` denote the submodule generated by elements of `G`. A standard basis for `N` is a subset `S` of `N`, such that `in(S) = in(N)`, where for any subset `X` of `F`, `in(X)` denotes the submodule generated by the initial forms of elements of `X`. [SCA, defn 2.3.2] A standard basis is called minimal if no subset of it is a standard basis. One may show that standard bases are always generating sets. Minimal standard bases are not unique. This algorithm computes a deterministic result, depending on the particular order of `G`. If ``extended=True``, also compute the transition matrix from the initial generators to the groebner basis. That is, return a list of coefficient vectors, expressing the elements of the groebner basis in terms of the elements of ``G``. This functions implements the "sugar" strategy, see Giovini et al: "One sugar cube, please" OR Selection strategies in Buchberger algorithm. """ # The critical pair set. # A critical pair is stored as (i, j, s, t) where (i, j) defines the pair # (by indexing S), s is the sugar of the pair, and t is the lcm of their # leading monomials. P = [] # The eventual standard basis. S = [] Sugars = [] def Ssugar(i, j): """Compute the sugar of the S-poly corresponding to (i, j).""" LMi = sdm_LM(S[i]) LMj = sdm_LM(S[j]) return max(Sugars[i] - sdm_monomial_deg(LMi), Sugars[j] - sdm_monomial_deg(LMj)) \ + sdm_monomial_deg(sdm_monomial_lcm(LMi, LMj)) ourkey = lambda p: (p[2], O(p[3]), p[1]) def update(f, sugar, P): """Add f with sugar ``sugar`` to S, update P.""" if not f: return P k = len(S) S.append(f) Sugars.append(sugar) LMf = sdm_LM(f) def removethis(pair): i, j, s, t = pair if LMf[0] != t[0]: return False tik = sdm_monomial_lcm(LMf, sdm_LM(S[i])) tjk = sdm_monomial_lcm(LMf, sdm_LM(S[j])) return tik != t and tjk != t and sdm_monomial_divides(tik, t) and \ sdm_monomial_divides(tjk, t) # apply the chain criterion P = [p for p in P if not removethis(p)] # new-pair set N = [(i, k, Ssugar(i, k), sdm_monomial_lcm(LMf, sdm_LM(S[i]))) for i in range(k) if LMf[0] == sdm_LM(S[i])[0]] # TODO apply the product criterion? N.sort(key=ourkey) remove = set() for i, p in enumerate(N): for j in range(i + 1, len(N)): if sdm_monomial_divides(p[3], N[j][3]): remove.add(j) # TODO mergesort? P.extend(reversed([p for i, p in enumerate(N) if i not in remove])) P.sort(key=ourkey, reverse=True) # NOTE reverse-sort, because we want to pop from the end return P # Figure out the number of generators in the ground ring. try: # NOTE: we look for the first non-zero vector, take its first monomial # the number of generators in the ring is one less than the length # (since the zeroth entry is for the module generators) numgens = len(next(x[0] for x in G if x)[0]) - 1 except StopIteration: # No non-zero elements in G ... if extended: return [], [] return [] # This list will store expressions of the elements of S in terms of the # initial generators coefficients = [] # First add all the elements of G to S for i, f in enumerate(G): P = update(f, sdm_deg(f), P) if extended and f: coefficients.append(sdm_from_dict({(i,) + (0,)*numgens: K(1)}, O)) # Now carry out the buchberger algorithm. while P: i, j, s, t = P.pop() f, g = S[i], S[j] if extended: sp, coeff = sdm_spoly(f, g, O, K, phantom=(coefficients[i], coefficients[j])) h, hcoeff = NF(sp, S, O, K, phantom=(coeff, coefficients)) if h: coefficients.append(hcoeff) else: h = NF(sdm_spoly(f, g, O, K), S, O, K) P = update(h, Ssugar(i, j), P) # Finally interreduce the standard basis. # (TODO again, better data structures) S = {(tuple(f), i) for i, f in enumerate(S)} for (a, ai), (b, bi) in permutations(S, 2): A = sdm_LM(a) B = sdm_LM(b) if sdm_monomial_divides(A, B) and (b, bi) in S and (a, ai) in S: S.remove((b, bi)) L = sorted(((list(f), i) for f, i in S), key=lambda p: O(sdm_LM(p[0])), reverse=True) res = [x[0] for x in L] if extended: return res, [coefficients[i] for _, i in L] return res
06a9e00fcaa03b0846bd610a171ba25f3c5460d6a69674d98e1729c79d10277c
from sympy.core.random import ( random_complex_number as A, verify_numerically as B, test_derivative_numerically as C, _randrange as D, _randint as E) from sympy.utilities.decorator import deprecated random_complex_number = deprecated(useinstead="sympy.core.random.random_complex_number", deprecated_since_version="1.10", issue=22433)(A) verify_numerically = deprecated(useinstead="sympy.core.random.verify_numerically", deprecated_since_version="1.10", issue=22433)(B) test_derivative_numerically = deprecated(useinstead="sympy.core.random.test_derivative_numerically", deprecated_since_version="1.10", issue=22433)(C) _randrange = deprecated(useinstead="sympy.core.random._randrange", deprecated_since_version="1.10", issue=22433)(D) _randint = deprecated(useinstead="sympy.core.random._randint", deprecated_since_version="1.10", issue=22433)(E)
10e4ad2880202c55a42aa071799cf03341deedbc61b61fd0e8dee3aafaf85b5c
from typing import Type from sympy.core.add import Add from sympy.core.assumptions import StdFactKB from sympy.core.expr import AtomicExpr, Expr from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix from sympy.vector.basisdependent import (BasisDependentZero, BasisDependent, BasisDependentMul, BasisDependentAdd) from sympy.vector.coordsysrect import CoordSys3D from sympy.vector.dyadic import Dyadic, BaseDyadic, DyadicAdd class Vector(BasisDependent): """ Super class for all Vector classes. Ideally, neither this class nor any of its subclasses should be instantiated by the user. """ is_Vector = True _op_priority = 12.0 _expr_type = None # type: Type[Vector] _mul_func = None # type: Type[Vector] _add_func = None # type: Type[Vector] _zero_func = None # type: Type[Vector] _base_func = None # type: Type[Vector] zero = None # type: VectorZero @property def components(self): """ Returns the components of this vector in the form of a Python dictionary mapping BaseVector instances to the corresponding measure numbers. Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> v = 3*C.i + 4*C.j + 5*C.k >>> v.components {C.i: 3, C.j: 4, C.k: 5} """ # The '_components' attribute is defined according to the # subclass of Vector the instance belongs to. return self._components def magnitude(self): """ Returns the magnitude of this vector. """ return sqrt(self & self) def normalize(self): """ Returns the normalized version of this vector. """ return self / self.magnitude() def dot(self, other): """ Returns the dot product of this Vector, either with another Vector, or a Dyadic, or a Del operator. If 'other' is a Vector, returns the dot product scalar (SymPy expression). If 'other' is a Dyadic, the dot product is returned as a Vector. If 'other' is an instance of Del, returns the directional derivative operator as a Python function. If this function is applied to a scalar expression, it returns the directional derivative of the scalar field wrt this Vector. Parameters ========== other: Vector/Dyadic/Del The Vector or Dyadic we are dotting with, or a Del operator . Examples ======== >>> from sympy.vector import CoordSys3D, Del >>> C = CoordSys3D('C') >>> delop = Del() >>> C.i.dot(C.j) 0 >>> C.i & C.i 1 >>> v = 3*C.i + 4*C.j + 5*C.k >>> v.dot(C.k) 5 >>> (C.i & delop)(C.x*C.y*C.z) C.y*C.z >>> d = C.i.outer(C.i) >>> C.i.dot(d) C.i """ # Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return Vector.zero outvec = Vector.zero for k, v in other.components.items(): vect_dot = k.args[0].dot(self) outvec += vect_dot * v * k.args[1] return outvec from sympy.vector.deloperator import Del if not isinstance(other, Vector) and not isinstance(other, Del): raise TypeError(str(other) + " is not a vector, dyadic or " + "del operator") # Check if the other is a del operator if isinstance(other, Del): def directional_derivative(field): from sympy.vector.functions import directional_derivative return directional_derivative(field, self) return directional_derivative return dot(self, other) def __and__(self, other): return self.dot(other) __and__.__doc__ = dot.__doc__ def cross(self, other): """ Returns the cross product of this Vector with another Vector or Dyadic instance. The cross product is a Vector, if 'other' is a Vector. If 'other' is a Dyadic, this returns a Dyadic instance. Parameters ========== other: Vector/Dyadic The Vector or Dyadic we are crossing with. Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> C.i.cross(C.j) C.k >>> C.i ^ C.i 0 >>> v = 3*C.i + 4*C.j + 5*C.k >>> v ^ C.i 5*C.j + (-4)*C.k >>> d = C.i.outer(C.i) >>> C.j.cross(d) (-1)*(C.k|C.i) """ # Check special cases if isinstance(other, Dyadic): if isinstance(self, VectorZero): return Dyadic.zero outdyad = Dyadic.zero for k, v in other.components.items(): cross_product = self.cross(k.args[0]) outer = cross_product.outer(k.args[1]) outdyad += v * outer return outdyad return cross(self, other) def __xor__(self, other): return self.cross(other) __xor__.__doc__ = cross.__doc__ def outer(self, other): """ Returns the outer product of this vector with another, in the form of a Dyadic instance. Parameters ========== other : Vector The Vector with respect to which the outer product is to be computed. Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> N.i.outer(N.j) (N.i|N.j) """ # Handle the special cases if not isinstance(other, Vector): raise TypeError("Invalid operand for outer product") elif (isinstance(self, VectorZero) or isinstance(other, VectorZero)): return Dyadic.zero # Iterate over components of both the vectors to generate # the required Dyadic instance args = [] for k1, v1 in self.components.items(): for k2, v2 in other.components.items(): args.append((v1 * v2) * BaseDyadic(k1, k2)) return DyadicAdd(*args) def projection(self, other, scalar=False): """ Returns the vector or scalar projection of the 'other' on 'self'. Examples ======== >>> from sympy.vector.coordsysrect import CoordSys3D >>> C = CoordSys3D('C') >>> i, j, k = C.base_vectors() >>> v1 = i + j + k >>> v2 = 3*i + 4*j >>> v1.projection(v2) 7/3*C.i + 7/3*C.j + 7/3*C.k >>> v1.projection(v2, scalar=True) 7/3 """ if self.equals(Vector.zero): return S.Zero if scalar else Vector.zero if scalar: return self.dot(other) / self.dot(self) else: return self.dot(other) / self.dot(self) * self @property def _projections(self): """ Returns the components of this vector but the output includes also zero values components. Examples ======== >>> from sympy.vector import CoordSys3D, Vector >>> C = CoordSys3D('C') >>> v1 = 3*C.i + 4*C.j + 5*C.k >>> v1._projections (3, 4, 5) >>> v2 = C.x*C.y*C.z*C.i >>> v2._projections (C.x*C.y*C.z, 0, 0) >>> v3 = Vector.zero >>> v3._projections (0, 0, 0) """ from sympy.vector.operators import _get_coord_sys_from_expr if isinstance(self, VectorZero): return (S.Zero, S.Zero, S.Zero) base_vec = next(iter(_get_coord_sys_from_expr(self))).base_vectors() return tuple([self.dot(i) for i in base_vec]) def __or__(self, other): return self.outer(other) __or__.__doc__ = outer.__doc__ def to_matrix(self, system): """ Returns the matrix form of this vector with respect to the specified coordinate system. Parameters ========== system : CoordSys3D The system wrt which the matrix form is to be computed Examples ======== >>> from sympy.vector import CoordSys3D >>> C = CoordSys3D('C') >>> from sympy.abc import a, b, c >>> v = a*C.i + b*C.j + c*C.k >>> v.to_matrix(C) Matrix([ [a], [b], [c]]) """ return Matrix([self.dot(unit_vec) for unit_vec in system.base_vectors()]) def separate(self): """ The constituents of this vector in different coordinate systems, as per its definition. Returns a dict mapping each CoordSys3D to the corresponding constituent Vector. Examples ======== >>> from sympy.vector import CoordSys3D >>> R1 = CoordSys3D('R1') >>> R2 = CoordSys3D('R2') >>> v = R1.i + R2.i >>> v.separate() == {R1: R1.i, R2: R2.i} True """ parts = {} for vect, measure in self.components.items(): parts[vect.system] = (parts.get(vect.system, Vector.zero) + vect * measure) return parts def _div_helper(one, other): """ Helper for division involving vectors. """ if isinstance(one, Vector) and isinstance(other, Vector): raise TypeError("Cannot divide two vectors") elif isinstance(one, Vector): if other == S.Zero: raise ValueError("Cannot divide a vector by zero") return VectorMul(one, Pow(other, S.NegativeOne)) else: raise TypeError("Invalid division involving a vector") class BaseVector(Vector, AtomicExpr): """ Class to denote a base vector. Unicode pretty forms in Python 2 should use the prefix ``u``. """ def __new__(cls, index, system, pretty_str=None, latex_str=None): if pretty_str is None: pretty_str = "x{}".format(index) if latex_str is None: latex_str = "x_{}".format(index) pretty_str = str(pretty_str) latex_str = str(latex_str) # Verify arguments if index not in range(0, 3): raise ValueError("index must be 0, 1 or 2") if not isinstance(system, CoordSys3D): raise TypeError("system should be a CoordSys3D") name = system._vector_names[index] # Initialize an object obj = super().__new__(cls, S(index), system) # Assign important attributes obj._base_instance = obj obj._components = {obj: S.One} obj._measure_number = S.One obj._name = system._name + '.' + name obj._pretty_form = '' + pretty_str obj._latex_form = latex_str obj._system = system # The _id is used for printing purposes obj._id = (index, system) assumptions = {'commutative': True} obj._assumptions = StdFactKB(assumptions) # This attr is used for re-expression to one of the systems # involved in the definition of the Vector. Applies to # VectorMul and VectorAdd too. obj._sys = system return obj @property def system(self): return self._system def _sympystr(self, printer): return self._name def _sympyrepr(self, printer): index, system = self._id return printer._print(system) + '.' + system._vector_names[index] @property def free_symbols(self): return {self} class VectorAdd(BasisDependentAdd, Vector): """ Class to denote sum of Vector instances. """ def __new__(cls, *args, **options): obj = BasisDependentAdd.__new__(cls, *args, **options) return obj def _sympystr(self, printer): ret_str = '' items = list(self.separate().items()) items.sort(key=lambda x: x[0].__str__()) for system, vect in items: base_vects = system.base_vectors() for x in base_vects: if x in vect.components: temp_vect = self.components[x] * x ret_str += printer._print(temp_vect) + " + " return ret_str[:-3] class VectorMul(BasisDependentMul, Vector): """ Class to denote products of scalars and BaseVectors. """ def __new__(cls, *args, **options): obj = BasisDependentMul.__new__(cls, *args, **options) return obj @property def base_vector(self): """ The BaseVector involved in the product. """ return self._base_instance @property def measure_number(self): """ The scalar expression involved in the definition of this VectorMul. """ return self._measure_number class VectorZero(BasisDependentZero, Vector): """ Class to denote a zero vector """ _op_priority = 12.1 _pretty_form = '0' _latex_form = r'\mathbf{\hat{0}}' def __new__(cls): obj = BasisDependentZero.__new__(cls) return obj class Cross(Vector): """ Represents unevaluated Cross product. Examples ======== >>> from sympy.vector import CoordSys3D, Cross >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> Cross(v1, v2) Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k) >>> Cross(v1, v2).doit() (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k """ def __new__(cls, expr1, expr2): expr1 = sympify(expr1) expr2 = sympify(expr2) if default_sort_key(expr1) > default_sort_key(expr2): return -Cross(expr2, expr1) obj = Expr.__new__(cls, expr1, expr2) obj._expr1 = expr1 obj._expr2 = expr2 return obj def doit(self, **kwargs): return cross(self._expr1, self._expr2) class Dot(Expr): """ Represents unevaluated Dot product. Examples ======== >>> from sympy.vector import CoordSys3D, Dot >>> from sympy import symbols >>> R = CoordSys3D('R') >>> a, b, c = symbols('a b c') >>> v1 = R.i + R.j + R.k >>> v2 = a * R.i + b * R.j + c * R.k >>> Dot(v1, v2) Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k) >>> Dot(v1, v2).doit() a + b + c """ def __new__(cls, expr1, expr2): expr1 = sympify(expr1) expr2 = sympify(expr2) expr1, expr2 = sorted([expr1, expr2], key=default_sort_key) obj = Expr.__new__(cls, expr1, expr2) obj._expr1 = expr1 obj._expr2 = expr2 return obj def doit(self, **kwargs): return dot(self._expr1, self._expr2) def cross(vect1, vect2): """ Returns cross product of two vectors. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector.vector import cross >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> cross(v1, v2) (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k """ if isinstance(vect1, Add): return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args) if isinstance(vect2, Add): return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args) if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector): if vect1._sys == vect2._sys: n1 = vect1.args[0] n2 = vect2.args[0] if n1 == n2: return Vector.zero n3 = ({0,1,2}.difference({n1, n2})).pop() sign = 1 if ((n1 + 1) % 3 == n2) else -1 return sign*vect1._sys.base_vectors()[n3] from .functions import express try: v = express(vect1, vect2._sys) except ValueError: return Cross(vect1, vect2) else: return cross(v, vect2) if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero): return Vector.zero if isinstance(vect1, VectorMul): v1, m1 = next(iter(vect1.components.items())) return m1*cross(v1, vect2) if isinstance(vect2, VectorMul): v2, m2 = next(iter(vect2.components.items())) return m2*cross(vect1, v2) return Cross(vect1, vect2) def dot(vect1, vect2): """ Returns dot product of two vectors. Examples ======== >>> from sympy.vector import CoordSys3D >>> from sympy.vector.vector import dot >>> R = CoordSys3D('R') >>> v1 = R.i + R.j + R.k >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k >>> dot(v1, v2) R.x + R.y + R.z """ if isinstance(vect1, Add): return Add.fromiter(dot(i, vect2) for i in vect1.args) if isinstance(vect2, Add): return Add.fromiter(dot(vect1, i) for i in vect2.args) if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector): if vect1._sys == vect2._sys: return S.One if vect1 == vect2 else S.Zero from .functions import express try: v = express(vect2, vect1._sys) except ValueError: return Dot(vect1, vect2) else: return dot(vect1, v) if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero): return S.Zero if isinstance(vect1, VectorMul): v1, m1 = next(iter(vect1.components.items())) return m1*dot(v1, vect2) if isinstance(vect2, VectorMul): v2, m2 = next(iter(vect2.components.items())) return m2*dot(vect1, v2) return Dot(vect1, vect2) Vector._expr_type = Vector Vector._mul_func = VectorMul Vector._add_func = VectorAdd Vector._zero_func = VectorZero Vector._base_func = BaseVector Vector.zero = VectorZero()
63628424f5c2141111ff63748384342552456765376cd66814287cb44d0973ef
from typing import Type from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd, BasisDependentMul, BasisDependentZero) from sympy.core import S, Pow from sympy.core.expr import AtomicExpr from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix import sympy.vector class Dyadic(BasisDependent): """ Super class for all Dyadic-classes. References ========== .. [1] https://en.wikipedia.org/wiki/Dyadic_tensor .. [2] Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill """ _op_priority = 13.0 _expr_type = None # type: Type[Dyadic] _mul_func = None # type: Type[Dyadic] _add_func = None # type: Type[Dyadic] _zero_func = None # type: Type[Dyadic] _base_func = None # type: Type[Dyadic] zero = None # type: DyadicZero @property def components(self): """ Returns the components of this dyadic in the form of a Python dictionary mapping BaseDyadic instances to the corresponding measure numbers. """ # The '_components' attribute is defined according to the # subclass of Dyadic the instance belongs to. return self._components def dot(self, other): """ Returns the dot product(also called inner product) of this Dyadic, with another Dyadic or Vector. If 'other' is a Dyadic, this returns a Dyadic. Else, it returns a Vector (unless an error is encountered). Parameters ========== other : Dyadic/Vector The other Dyadic or Vector to take the inner product with Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> D1 = N.i.outer(N.j) >>> D2 = N.j.outer(N.j) >>> D1.dot(D2) (N.i|N.j) >>> D1.dot(N.j) N.i """ Vector = sympy.vector.Vector if isinstance(other, BasisDependentZero): return Vector.zero elif isinstance(other, Vector): outvec = Vector.zero for k, v in self.components.items(): vect_dot = k.args[1].dot(other) outvec += vect_dot * v * k.args[0] return outvec elif isinstance(other, Dyadic): outdyad = Dyadic.zero for k1, v1 in self.components.items(): for k2, v2 in other.components.items(): vect_dot = k1.args[1].dot(k2.args[0]) outer_product = k1.args[0].outer(k2.args[1]) outdyad += vect_dot * v1 * v2 * outer_product return outdyad else: raise TypeError("Inner product is not defined for " + str(type(other)) + " and Dyadics.") def __and__(self, other): return self.dot(other) __and__.__doc__ = dot.__doc__ def cross(self, other): """ Returns the cross product between this Dyadic, and a Vector, as a Vector instance. Parameters ========== other : Vector The Vector that we are crossing this Dyadic with Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> d = N.i.outer(N.i) >>> d.cross(N.j) (N.i|N.k) """ Vector = sympy.vector.Vector if other == Vector.zero: return Dyadic.zero elif isinstance(other, Vector): outdyad = Dyadic.zero for k, v in self.components.items(): cross_product = k.args[1].cross(other) outer = k.args[0].outer(cross_product) outdyad += v * outer return outdyad else: raise TypeError(str(type(other)) + " not supported for " + "cross with dyadics") def __xor__(self, other): return self.cross(other) __xor__.__doc__ = cross.__doc__ def to_matrix(self, system, second_system=None): """ Returns the matrix form of the dyadic with respect to one or two coordinate systems. Parameters ========== system : CoordSys3D The coordinate system that the rows and columns of the matrix correspond to. If a second system is provided, this only corresponds to the rows of the matrix. second_system : CoordSys3D, optional, default=None The coordinate system that the columns of the matrix correspond to. Examples ======== >>> from sympy.vector import CoordSys3D >>> N = CoordSys3D('N') >>> v = N.i + 2*N.j >>> d = v.outer(N.i) >>> d.to_matrix(N) Matrix([ [1, 0, 0], [2, 0, 0], [0, 0, 0]]) >>> from sympy import Symbol >>> q = Symbol('q') >>> P = N.orient_new_axis('P', q, N.k) >>> d.to_matrix(N, P) Matrix([ [ cos(q), -sin(q), 0], [2*cos(q), -2*sin(q), 0], [ 0, 0, 0]]) """ if second_system is None: second_system = system return Matrix([i.dot(self).dot(j) for i in system for j in second_system]).reshape(3, 3) def _div_helper(one, other): """ Helper for division involving dyadics """ if isinstance(one, Dyadic) and isinstance(other, Dyadic): raise TypeError("Cannot divide two dyadics") elif isinstance(one, Dyadic): return DyadicMul(one, Pow(other, S.NegativeOne)) else: raise TypeError("Cannot divide by a dyadic") class BaseDyadic(Dyadic, AtomicExpr): """ Class to denote a base dyadic tensor component. """ def __new__(cls, vector1, vector2): Vector = sympy.vector.Vector BaseVector = sympy.vector.BaseVector VectorZero = sympy.vector.VectorZero # Verify arguments if not isinstance(vector1, (BaseVector, VectorZero)) or \ not isinstance(vector2, (BaseVector, VectorZero)): raise TypeError("BaseDyadic cannot be composed of non-base " + "vectors") # Handle special case of zero vector elif vector1 == Vector.zero or vector2 == Vector.zero: return Dyadic.zero # Initialize instance obj = super().__new__(cls, vector1, vector2) obj._base_instance = obj obj._measure_number = 1 obj._components = {obj: S.One} obj._sys = vector1._sys obj._pretty_form = ('(' + vector1._pretty_form + '|' + vector2._pretty_form + ')') obj._latex_form = (r'\left(' + vector1._latex_form + r"{\middle|}" + vector2._latex_form + r'\right)') return obj def _sympystr(self, printer): return "({}|{})".format( printer._print(self.args[0]), printer._print(self.args[1])) def _sympyrepr(self, printer): return "BaseDyadic({}, {})".format( printer._print(self.args[0]), printer._print(self.args[1])) class DyadicMul(BasisDependentMul, Dyadic): """ Products of scalars and BaseDyadics """ def __new__(cls, *args, **options): obj = BasisDependentMul.__new__(cls, *args, **options) return obj @property def base_dyadic(self): """ The BaseDyadic involved in the product. """ return self._base_instance @property def measure_number(self): """ The scalar expression involved in the definition of this DyadicMul. """ return self._measure_number class DyadicAdd(BasisDependentAdd, Dyadic): """ Class to hold dyadic sums """ def __new__(cls, *args, **options): obj = BasisDependentAdd.__new__(cls, *args, **options) return obj def _sympystr(self, printer): items = list(self.components.items()) items.sort(key=lambda x: x[0].__str__()) return " + ".join(printer._print(k * v) for k, v in items) class DyadicZero(BasisDependentZero, Dyadic): """ Class to denote a zero dyadic """ _op_priority = 13.1 _pretty_form = '(0|0)' _latex_form = r'(\mathbf{\hat{0}}|\mathbf{\hat{0}})' def __new__(cls): obj = BasisDependentZero.__new__(cls) return obj Dyadic._expr_type = Dyadic Dyadic._mul_func = DyadicMul Dyadic._add_func = DyadicAdd Dyadic._zero_func = DyadicZero Dyadic._base_func = BaseDyadic Dyadic.zero = DyadicZero()
63b87cfc8a77cff900df03382d2becebc22ad6390c67645e2eb5132622ef0cd1
"""Geometrical Planes. Contains ======== Plane """ from sympy.core import Dummy, Rational, S, Symbol from sympy.core.symbol import _symbol from sympy.functions.elementary.trigonometric import cos, sin, acos, asin, sqrt from .entity import GeometryEntity from .line import (Line, Ray, Segment, Line3D, LinearEntity, LinearEntity3D, Ray3D, Segment3D) from .point import Point, Point3D from sympy.matrices import Matrix from sympy.polys.polytools import cancel from sympy.simplify.simplify import simplify from sympy.solvers import solve, linsolve from sympy.utilities.iterables import uniq, is_sequence from sympy.utilities.misc import filldedent, func_name, Undecidable from mpmath.libmp.libmpf import prec_to_dps import random class Plane(GeometryEntity): """ A plane is a flat, two-dimensional surface. A plane is the two-dimensional analogue of a point (zero-dimensions), a line (one-dimension) and a solid (three-dimensions). A plane can generally be constructed by two types of inputs. They are three non-collinear points and a point and the plane's normal vector. Attributes ========== p1 normal_vector Examples ======== >>> from sympy import Plane, Point3D >>> Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane((1, 1, 1), (2, 3, 4), (2, 2, 2)) Plane(Point3D(1, 1, 1), (-1, 2, -1)) >>> Plane(Point3D(1, 1, 1), normal_vector=(1,4,7)) Plane(Point3D(1, 1, 1), (1, 4, 7)) """ def __new__(cls, p1, a=None, b=None, **kwargs): p1 = Point3D(p1, dim=3) if a and b: p2 = Point(a, dim=3) p3 = Point(b, dim=3) if Point3D.are_collinear(p1, p2, p3): raise ValueError('Enter three non-collinear points') a = p1.direction_ratio(p2) b = p1.direction_ratio(p3) normal_vector = tuple(Matrix(a).cross(Matrix(b))) else: a = kwargs.pop('normal_vector', a) evaluate = kwargs.get('evaluate', True) if is_sequence(a) and len(a) == 3: normal_vector = Point3D(a).args if evaluate else a else: raise ValueError(filldedent(''' Either provide 3 3D points or a point with a normal vector expressed as a sequence of length 3''')) if all(coord.is_zero for coord in normal_vector): raise ValueError('Normal vector cannot be zero vector') return GeometryEntity.__new__(cls, p1, normal_vector, **kwargs) def __contains__(self, o): x, y, z = map(Dummy, 'xyz') k = self.equation(x, y, z) if isinstance(o, (LinearEntity, LinearEntity3D)): t = Dummy() d = Point3D(o.arbitrary_point(t)) e = k.subs([(x, d.x), (y, d.y), (z, d.z)]) return e.equals(0) try: o = Point(o, dim=3, strict=True) d = k.xreplace(dict(zip((x, y, z), o.args))) return d.equals(0) except TypeError: return False def _eval_evalf(self, prec=15, **options): pt, tup = self.args dps = prec_to_dps(prec) pt = pt.evalf(n=dps, **options) tup = tuple([i.evalf(n=dps, **options) for i in tup]) return self.func(pt, normal_vector=tup, evaluate=False) def angle_between(self, o): """Angle between the plane and other geometric entity. Parameters ========== LinearEntity3D, Plane. Returns ======= angle : angle in radians Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the angle between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the angle. Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 2, 2), normal_vector=(1, 2, 3)) >>> b = Line3D(Point3D(1, 3, 4), Point3D(2, 2, 2)) >>> a.angle_between(b) -asin(sqrt(21)/6) """ if isinstance(o, LinearEntity3D): a = Matrix(self.normal_vector) b = Matrix(o.direction_ratio) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.direction_ratio])) return asin(c/(d*e)) if isinstance(o, Plane): a = Matrix(self.normal_vector) b = Matrix(o.normal_vector) c = a.dot(b) d = sqrt(sum([i**2 for i in self.normal_vector])) e = sqrt(sum([i**2 for i in o.normal_vector])) return acos(c/(d*e)) def arbitrary_point(self, u=None, v=None): """ Returns an arbitrary point on the Plane. If given two parameters, the point ranges over the entire plane. If given 1 or no parameters, returns a point with one parameter which, when varying from 0 to 2*pi, moves the point in a circle of radius 1 about p1 of the Plane. Examples ======== >>> from sympy.geometry import Plane, Ray >>> from sympy.abc import u, v, t, r >>> p = Plane((1, 1, 1), normal_vector=(1, 0, 0)) >>> p.arbitrary_point(u, v) Point3D(1, u + 1, v + 1) >>> p.arbitrary_point(t) Point3D(1, cos(t) + 1, sin(t) + 1) While arbitrary values of u and v can move the point anywhere in the plane, the single-parameter point can be used to construct a ray whose arbitrary point can be located at angle t and radius r from p.p1: >>> Ray(p.p1, _).arbitrary_point(r) Point3D(1, r*cos(t) + 1, r*sin(t) + 1) Returns ======= Point3D """ circle = v is None if circle: u = _symbol(u or 't', real=True) else: u = _symbol(u or 'u', real=True) v = _symbol(v or 'v', real=True) x, y, z = self.normal_vector a, b, c = self.p1.args # x1, y1, z1 is a nonzero vector parallel to the plane if x.is_zero and y.is_zero: x1, y1, z1 = S.One, S.Zero, S.Zero else: x1, y1, z1 = -y, x, S.Zero # x2, y2, z2 is also parallel to the plane, and orthogonal to x1, y1, z1 x2, y2, z2 = tuple(Matrix((x, y, z)).cross(Matrix((x1, y1, z1)))) if circle: x1, y1, z1 = (w/sqrt(x1**2 + y1**2 + z1**2) for w in (x1, y1, z1)) x2, y2, z2 = (w/sqrt(x2**2 + y2**2 + z2**2) for w in (x2, y2, z2)) p = Point3D(a + x1*cos(u) + x2*sin(u), \ b + y1*cos(u) + y2*sin(u), \ c + z1*cos(u) + z2*sin(u)) else: p = Point3D(a + x1*u + x2*v, b + y1*u + y2*v, c + z1*u + z2*v) return p @staticmethod def are_concurrent(*planes): """Is a sequence of Planes concurrent? Two or more Planes are concurrent if their intersections are a common line. Parameters ========== planes: list Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(5, 0, 0), normal_vector=(1, -1, 1)) >>> b = Plane(Point3D(0, -2, 0), normal_vector=(3, 1, 1)) >>> c = Plane(Point3D(0, -1, 0), normal_vector=(5, -1, 9)) >>> Plane.are_concurrent(a, b) True >>> Plane.are_concurrent(a, b, c) False """ planes = list(uniq(planes)) for i in planes: if not isinstance(i, Plane): raise ValueError('All objects should be Planes but got %s' % i.func) if len(planes) < 2: return False planes = list(planes) first = planes.pop(0) sol = first.intersection(planes[0]) if sol == []: return False else: line = sol[0] for i in planes[1:]: l = first.intersection(i) if not l or l[0] not in line: return False return True def distance(self, o): """Distance between the plane and another geometric entity. Parameters ========== Point3D, LinearEntity3D, Plane. Returns ======= distance Notes ===== This method accepts only 3D entities as it's parameter, but if you want to calculate the distance between a 2D entity and a plane you should first convert to a 3D entity by projecting onto a desired plane and then proceed to calculate the distance. Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.distance(b) sqrt(3) >>> c = Line3D(Point3D(2, 3, 1), Point3D(1, 2, 2)) >>> a.distance(c) 0 """ if self.intersection(o) != []: return S.Zero if isinstance(o, (Segment3D, Ray3D)): a, b = o.p1, o.p2 pi, = self.intersection(Line3D(a, b)) if pi in o: return self.distance(pi) elif a in Segment3D(pi, b): return self.distance(a) else: assert isinstance(o, Segment3D) is True return self.distance(b) # following code handles `Point3D`, `LinearEntity3D`, `Plane` a = o if isinstance(o, Point3D) else o.p1 n = Point3D(self.normal_vector).unit d = (a - self.p1).dot(n) return abs(d) def equals(self, o): """ Returns True if self and o are the same mathematical entities. Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Plane(Point3D(1, 2, 3), normal_vector=(2, 2, 2)) >>> c = Plane(Point3D(1, 2, 3), normal_vector=(-1, 4, 6)) >>> a.equals(a) True >>> a.equals(b) True >>> a.equals(c) False """ if isinstance(o, Plane): a = self.equation() b = o.equation() return simplify(a / b).is_constant() else: return False def equation(self, x=None, y=None, z=None): """The equation of the Plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 2), Point3D(2, 4, 7), Point3D(3, 5, 1)) >>> a.equation() -23*x + 11*y - 2*z + 16 >>> a = Plane(Point3D(1, 4, 2), normal_vector=(6, 6, 6)) >>> a.equation() 6*x + 6*y + 6*z - 42 """ x, y, z = [i if i else Symbol(j, real=True) for i, j in zip((x, y, z), 'xyz')] a = Point3D(x, y, z) b = self.p1.direction_ratio(a) c = self.normal_vector return (sum(i*j for i, j in zip(b, c))) def intersection(self, o): """ The intersection with other geometrical entity. Parameters ========== Point, Point3D, LinearEntity, LinearEntity3D, Plane Returns ======= List Examples ======== >>> from sympy import Point3D, Line3D, Plane >>> a = Plane(Point3D(1, 2, 3), normal_vector=(1, 1, 1)) >>> b = Point3D(1, 2, 3) >>> a.intersection(b) [Point3D(1, 2, 3)] >>> c = Line3D(Point3D(1, 4, 7), Point3D(2, 2, 2)) >>> a.intersection(c) [Point3D(2, 2, 2)] >>> d = Plane(Point3D(6, 0, 0), normal_vector=(2, -5, 3)) >>> e = Plane(Point3D(2, 0, 0), normal_vector=(3, 4, -3)) >>> d.intersection(e) [Line3D(Point3D(78/23, -24/23, 0), Point3D(147/23, 321/23, 23))] """ if not isinstance(o, GeometryEntity): o = Point(o, dim=3) if isinstance(o, Point): if o in self: return [o] else: return [] if isinstance(o, (LinearEntity, LinearEntity3D)): # recast to 3D p1, p2 = o.p1, o.p2 if isinstance(o, Segment): o = Segment3D(p1, p2) elif isinstance(o, Ray): o = Ray3D(p1, p2) elif isinstance(o, Line): o = Line3D(p1, p2) else: raise ValueError('unhandled linear entity: %s' % o.func) if o in self: return [o] else: t = Dummy() # unnamed else it may clash with a symbol in o a = Point3D(o.arbitrary_point(t)) p1, n = self.p1, Point3D(self.normal_vector) # TODO: Replace solve with solveset, when this line is tested c = solve((a - p1).dot(n), t) if not c: return [] else: c = [i for i in c if i.is_real is not False] if len(c) > 1: c = [i for i in c if i.is_real] if len(c) != 1: raise Undecidable("not sure which point is real") p = a.subs(t, c[0]) if p not in o: return [] # e.g. a segment might not intersect a plane return [p] if isinstance(o, Plane): if self.equals(o): return [self] if self.is_parallel(o): return [] else: x, y, z = map(Dummy, 'xyz') a, b = Matrix([self.normal_vector]), Matrix([o.normal_vector]) c = list(a.cross(b)) d = self.equation(x, y, z) e = o.equation(x, y, z) result = list(linsolve([d, e], x, y, z))[0] for i in (x, y, z): result = result.subs(i, 0) return [Line3D(Point3D(result), direction_ratio=c)] def is_coplanar(self, o): """ Returns True if `o` is coplanar with self, else False. Examples ======== >>> from sympy import Plane >>> o = (0, 0, 0) >>> p = Plane(o, (1, 1, 1)) >>> p2 = Plane(o, (2, 2, 2)) >>> p == p2 False >>> p.is_coplanar(p2) True """ if isinstance(o, Plane): x, y, z = map(Dummy, 'xyz') return not cancel(self.equation(x, y, z)/o.equation(x, y, z)).has(x, y, z) if isinstance(o, Point3D): return o in self elif isinstance(o, LinearEntity3D): return all(i in self for i in self) elif isinstance(o, GeometryEntity): # XXX should only be handling 2D objects now return all(i == 0 for i in self.normal_vector[:2]) def is_parallel(self, l): """Is the given geometric entity parallel to the plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(3,1,3), normal_vector=(4, 8, 12)) >>> a.is_parallel(b) True """ if isinstance(l, LinearEntity3D): a = l.direction_ratio b = self.normal_vector c = sum([i*j for i, j in zip(a, b)]) if c == 0: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.cross(b).is_zero_matrix: return True else: return False def is_perpendicular(self, l): """is the given geometric entity perpendicualar to the given plane? Parameters ========== LinearEntity3D or Plane Returns ======= Boolean Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> b = Plane(Point3D(2, 2, 2), normal_vector=(-1, 2, -1)) >>> a.is_perpendicular(b) True """ if isinstance(l, LinearEntity3D): a = Matrix(l.direction_ratio) b = Matrix(self.normal_vector) if a.cross(b).is_zero_matrix: return True else: return False elif isinstance(l, Plane): a = Matrix(l.normal_vector) b = Matrix(self.normal_vector) if a.dot(b) == 0: return True else: return False else: return False @property def normal_vector(self): """Normal vector of the given plane. Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.normal_vector (-1, 2, -1) >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 4, 7)) >>> a.normal_vector (1, 4, 7) """ return self.args[1] @property def p1(self): """The only defining point of the plane. Others can be obtained from the arbitrary_point method. See Also ======== sympy.geometry.point.Point3D Examples ======== >>> from sympy import Point3D, Plane >>> a = Plane(Point3D(1, 1, 1), Point3D(2, 3, 4), Point3D(2, 2, 2)) >>> a.p1 Point3D(1, 1, 1) """ return self.args[0] def parallel_plane(self, pt): """ Plane parallel to the given plane and passing through the point pt. Parameters ========== pt: Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1, 4, 6), normal_vector=(2, 4, 6)) >>> a.parallel_plane(Point3D(2, 3, 5)) Plane(Point3D(2, 3, 5), (2, 4, 6)) """ a = self.normal_vector return Plane(pt, normal_vector=a) def perpendicular_line(self, pt): """A line perpendicular to the given plane. Parameters ========== pt: Point3D Returns ======= Line3D Examples ======== >>> from sympy import Plane, Point3D >>> a = Plane(Point3D(1,4,6), normal_vector=(2, 4, 6)) >>> a.perpendicular_line(Point3D(9, 8, 7)) Line3D(Point3D(9, 8, 7), Point3D(11, 12, 13)) """ a = self.normal_vector return Line3D(pt, direction_ratio=a) def perpendicular_plane(self, *pts): """ Return a perpendicular passing through the given points. If the direction ratio between the points is the same as the Plane's normal vector then, to select from the infinite number of possible planes, a third point will be chosen on the z-axis (or the y-axis if the normal vector is already parallel to the z-axis). If less than two points are given they will be supplied as follows: if no point is given then pt1 will be self.p1; if a second point is not given it will be a point through pt1 on a line parallel to the z-axis (if the normal is not already the z-axis, otherwise on the line parallel to the y-axis). Parameters ========== pts: 0, 1 or 2 Point3D Returns ======= Plane Examples ======== >>> from sympy import Plane, Point3D >>> a, b = Point3D(0, 0, 0), Point3D(0, 1, 0) >>> Z = (0, 0, 1) >>> p = Plane(a, normal_vector=Z) >>> p.perpendicular_plane(a, b) Plane(Point3D(0, 0, 0), (1, 0, 0)) """ if len(pts) > 2: raise ValueError('No more than 2 pts should be provided.') pts = list(pts) if len(pts) == 0: pts.append(self.p1) if len(pts) == 1: x, y, z = self.normal_vector if x == y == 0: dir = (0, 1, 0) else: dir = (0, 0, 1) pts.append(pts[0] + Point3D(*dir)) p1, p2 = [Point(i, dim=3) for i in pts] l = Line3D(p1, p2) n = Line3D(p1, direction_ratio=self.normal_vector) if l in n: # XXX should an error be raised instead? # there are infinitely many perpendicular planes; x, y, z = self.normal_vector if x == y == 0: # the z axis is the normal so pick a pt on the y-axis p3 = Point3D(0, 1, 0) # case 1 else: # else pick a pt on the z axis p3 = Point3D(0, 0, 1) # case 2 # in case that point is already given, move it a bit if p3 in l: p3 *= 2 # case 3 else: p3 = p1 + Point3D(*self.normal_vector) # case 4 return Plane(p1, p2, p3) def projection_line(self, line): """Project the given line onto the plane through the normal plane containing the line. Parameters ========== LinearEntity or LinearEntity3D Returns ======= Point3D, Line3D, Ray3D or Segment3D Notes ===== For the interaction between 2D and 3D lines(segments, rays), you should convert the line to 3D by using this method. For example for finding the intersection between a 2D and a 3D line, convert the 2D line to a 3D line by projecting it on a required plane and then proceed to find the intersection between those lines. Examples ======== >>> from sympy import Plane, Line, Line3D, Point3D >>> a = Plane(Point3D(1, 1, 1), normal_vector=(1, 1, 1)) >>> b = Line(Point3D(1, 1), Point3D(2, 2)) >>> a.projection_line(b) Line3D(Point3D(4/3, 4/3, 1/3), Point3D(5/3, 5/3, -1/3)) >>> c = Line3D(Point3D(1, 1, 1), Point3D(2, 2, 2)) >>> a.projection_line(c) Point3D(1, 1, 1) """ if not isinstance(line, (LinearEntity, LinearEntity3D)): raise NotImplementedError('Enter a linear entity only') a, b = self.projection(line.p1), self.projection(line.p2) if a == b: # projection does not imply intersection so for # this case (line parallel to plane's normal) we # return the projection point return a if isinstance(line, (Line, Line3D)): return Line3D(a, b) if isinstance(line, (Ray, Ray3D)): return Ray3D(a, b) if isinstance(line, (Segment, Segment3D)): return Segment3D(a, b) def projection(self, pt): """Project the given point onto the plane along the plane normal. Parameters ========== Point or Point3D Returns ======= Point3D Examples ======== >>> from sympy import Plane, Point3D >>> A = Plane(Point3D(1, 1, 2), normal_vector=(1, 1, 1)) The projection is along the normal vector direction, not the z axis, so (1, 1) does not project to (1, 1, 2) on the plane A: >>> b = Point3D(1, 1) >>> A.projection(b) Point3D(5/3, 5/3, 2/3) >>> _ in A True But the point (1, 1, 2) projects to (1, 1) on the XY-plane: >>> XY = Plane((0, 0, 0), (0, 0, 1)) >>> XY.projection((1, 1, 2)) Point3D(1, 1, 0) """ rv = Point(pt, dim=3) if rv in self: return rv return self.intersection(Line3D(rv, rv + Point3D(self.normal_vector)))[0] def random_point(self, seed=None): """ Returns a random point on the Plane. Returns ======= Point3D Examples ======== >>> from sympy import Plane >>> p = Plane((1, 0, 0), normal_vector=(0, 1, 0)) >>> r = p.random_point(seed=42) # seed value is optional >>> r.n(3) Point3D(2.29, 0, -1.35) The random point can be moved to lie on the circle of radius 1 centered on p1: >>> c = p.p1 + (r - p.p1).unit >>> c.distance(p.p1).equals(1) True """ if seed is not None: rng = random.Random(seed) else: rng = random u, v = Dummy('u'), Dummy('v') params = { u: 2*Rational(rng.gauss(0, 1)) - 1, v: 2*Rational(rng.gauss(0, 1)) - 1} return self.arbitrary_point(u, v).subs(params) def parameter_value(self, other, u, v=None): """Return the parameter(s) corresponding to the given point. Examples ======== >>> from sympy import pi >>> from sympy.geometry import Plane >>> from sympy.abc import t, u, v >>> p = Plane((2, 0, 0), (0, 0, 1), (0, 1, 0)) By default, the parameter value returned defines a point that is a distance of 1 from the Plane's p1 value and in line with the given point: >>> on_circle = p.arbitrary_point(t).subs(t, pi/4) >>> on_circle.distance(p.p1) 1 >>> p.parameter_value(on_circle, t) {t: pi/4} Moving the point twice as far from p1 does not change the parameter value: >>> off_circle = p.p1 + (on_circle - p.p1)*2 >>> off_circle.distance(p.p1) 2 >>> p.parameter_value(off_circle, t) {t: pi/4} If the 2-value parameter is desired, supply the two parameter symbols and a replacement dictionary will be returned: >>> p.parameter_value(on_circle, u, v) {u: sqrt(10)/10, v: sqrt(10)/30} >>> p.parameter_value(off_circle, u, v) {u: sqrt(10)/5, v: sqrt(10)/15} """ from sympy.geometry.point import Point if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if not isinstance(other, Point): raise ValueError("other must be a point") if other == self.p1: return other if isinstance(u, Symbol) and v is None: delta = self.arbitrary_point(u) - self.p1 eq = delta - (other - self.p1).unit sol = solve(eq, u, dict=True) elif isinstance(u, Symbol) and isinstance(v, Symbol): pt = self.arbitrary_point(u, v) sol = solve(pt - other, (u, v), dict=True) else: raise ValueError('expecting 1 or 2 symbols') if not sol: raise ValueError("Given point is not on %s" % func_name(self)) return sol[0] # {t: tval} or {u: uval, v: vval} @property def ambient_dimension(self): return self.p1.ambient_dimension
9ddaeb83944da291ccdb63a95df3d51926f6ad9036c79459cac9876bde1f51e1
"""Utility functions for geometrical entities. Contains ======== intersection convex_hull closest_points farthest_points are_coplanar are_similar """ from .point import Point, Point2D from sympy.core.containers import OrderedSet from sympy.core.function import Function from sympy.core.sorting import ordered from sympy.core.symbol import Symbol from sympy.functions.elementary.miscellaneous import sqrt from sympy.solvers.solvers import solve from sympy.utilities.iterables import is_sequence def find(x, equation): """ Checks whether a Symbol matching ``x`` is present in ``equation`` or not. If present, the matching symbol is returned, else a ValueError is raised. If ``x`` is a string the matching symbol will have the same name; if ``x`` is a Symbol then it will be returned if found. Examples ======== >>> from sympy.geometry.util import find >>> from sympy import Dummy >>> from sympy.abc import x >>> find('x', x) x >>> find('x', Dummy('x')) _x The dummy symbol is returned since it has a matching name: >>> _.name == 'x' True >>> find(x, Dummy('x')) Traceback (most recent call last): ... ValueError: could not find x """ free = equation.free_symbols xs = [i for i in free if (i.name if isinstance(x, str) else i) == x] if not xs: raise ValueError('could not find %s' % x) if len(xs) != 1: raise ValueError('ambiguous %s' % x) return xs[0] def _ordered_points(p): """Return the tuple of points sorted numerically according to args""" return tuple(sorted(p, key=lambda x: x.args)) def are_coplanar(*e): """ Returns True if the given entities are coplanar otherwise False Parameters ========== e: entities to be checked for being coplanar Returns ======= Boolean Examples ======== >>> from sympy import Point3D, Line3D >>> from sympy.geometry.util import are_coplanar >>> a = Line3D(Point3D(5, 0, 0), Point3D(1, -1, 1)) >>> b = Line3D(Point3D(0, -2, 0), Point3D(3, 1, 1)) >>> c = Line3D(Point3D(0, -1, 0), Point3D(5, -1, 9)) >>> are_coplanar(a, b, c) False """ from sympy.geometry.line import LinearEntity3D from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point3D from sympy.geometry.plane import Plane # XXX update tests for coverage e = set(e) # first work with a Plane if present for i in list(e): if isinstance(i, Plane): e.remove(i) return all(p.is_coplanar(i) for p in e) if all(isinstance(i, Point3D) for i in e): if len(e) < 3: return False # remove pts that are collinear with 2 pts a, b = e.pop(), e.pop() for i in list(e): if Point3D.are_collinear(a, b, i): e.remove(i) if not e: return False else: # define a plane p = Plane(a, b, e.pop()) for i in e: if i not in p: return False return True else: pt3d = [] for i in e: if isinstance(i, Point3D): pt3d.append(i) elif isinstance(i, LinearEntity3D): pt3d.extend(i.args) elif isinstance(i, GeometryEntity): # XXX we should have a GeometryEntity3D class so we can tell the difference between 2D and 3D -- here we just want to deal with 2D objects; if new 3D objects are encountered that we didn't handle above, an error should be raised # all 2D objects have some Point that defines them; so convert those points to 3D pts by making z=0 for p in i.args: if isinstance(p, Point): pt3d.append(Point3D(*(p.args + (0,)))) return are_coplanar(*pt3d) def are_similar(e1, e2): """Are two geometrical entities similar. Can one geometrical entity be uniformly scaled to the other? Parameters ========== e1 : GeometryEntity e2 : GeometryEntity Returns ======= are_similar : boolean Raises ====== GeometryError When `e1` and `e2` cannot be compared. Notes ===== If the two objects are equal then they are similar. See Also ======== sympy.geometry.entity.GeometryEntity.is_similar Examples ======== >>> from sympy import Point, Circle, Triangle, are_similar >>> c1, c2 = Circle(Point(0, 0), 4), Circle(Point(1, 4), 3) >>> t1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) >>> t2 = Triangle(Point(0, 0), Point(2, 0), Point(0, 2)) >>> t3 = Triangle(Point(0, 0), Point(3, 0), Point(0, 1)) >>> are_similar(t1, t2) True >>> are_similar(t1, t3) False """ from .exceptions import GeometryError if e1 == e2: return True is_similar1 = getattr(e1, 'is_similar', None) if is_similar1: return is_similar1(e2) is_similar2 = getattr(e2, 'is_similar', None) if is_similar2: return is_similar2(e1) n1 = e1.__class__.__name__ n2 = e2.__class__.__name__ raise GeometryError( "Cannot test similarity between %s and %s" % (n1, n2)) def centroid(*args): """Find the centroid (center of mass) of the collection containing only Points, Segments or Polygons. The centroid is the weighted average of the individual centroid where the weights are the lengths (of segments) or areas (of polygons). Overlapping regions will add to the weight of that region. If there are no objects (or a mixture of objects) then None is returned. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Segment, sympy.geometry.polygon.Polygon Examples ======== >>> from sympy import Point, Segment, Polygon >>> from sympy.geometry.util import centroid >>> p = Polygon((0, 0), (10, 0), (10, 10)) >>> q = p.translate(0, 20) >>> p.centroid, q.centroid (Point2D(20/3, 10/3), Point2D(20/3, 70/3)) >>> centroid(p, q) Point2D(20/3, 40/3) >>> p, q = Segment((0, 0), (2, 0)), Segment((0, 0), (2, 2)) >>> centroid(p, q) Point2D(1, 2 - sqrt(2)) >>> centroid(Point(0, 0), Point(2, 0)) Point2D(1, 0) Stacking 3 polygons on top of each other effectively triples the weight of that polygon: >>> p = Polygon((0, 0), (1, 0), (1, 1), (0, 1)) >>> q = Polygon((1, 0), (3, 0), (3, 1), (1, 1)) >>> centroid(p, q) Point2D(3/2, 1/2) >>> centroid(p, p, p, q) # centroid x-coord shifts left Point2D(11/10, 1/2) Stacking the squares vertically above and below p has the same effect: >>> centroid(p, p.translate(0, 1), p.translate(0, -1), q) Point2D(11/10, 1/2) """ from sympy.geometry import Polygon, Segment, Point if args: if all(isinstance(g, Point) for g in args): c = Point(0, 0) for g in args: c += g den = len(args) elif all(isinstance(g, Segment) for g in args): c = Point(0, 0) L = 0 for g in args: l = g.length c += g.midpoint*l L += l den = L elif all(isinstance(g, Polygon) for g in args): c = Point(0, 0) A = 0 for g in args: a = g.area c += g.centroid*a A += a den = A c /= den return c.func(*[i.simplify() for i in c.args]) def closest_points(*args): """Return the subset of points from a set of points that were the closest to each other in the 2D plane. Parameters ========== args : a collection of Points on 2D plane. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. If there are no ties then a single pair of Points will be in the set. Examples ======== >>> from sympy.geometry import closest_points, Triangle >>> Triangle(sss=(3, 4, 5)).args (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> closest_points(*_) {(Point2D(0, 0), Point2D(3, 0))} References ========== .. [1] http://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairPS.html .. [2] Sweep line algorithm https://en.wikipedia.org/wiki/Sweep_line_algorithm """ from collections import deque from math import sqrt as _sqrt p = [Point2D(i) for i in set(args)] if len(p) < 2: raise ValueError('At least 2 distinct points must be given.') try: p.sort(key=lambda x: x.args) except TypeError: raise ValueError("The points could not be sorted.") if not all(i.is_Rational for j in p for i in j.args): def hypot(x, y): arg = x*x + y*y if arg.is_Rational: return _sqrt(arg) return sqrt(arg) else: from math import hypot rv = [(0, 1)] best_dist = hypot(p[1].x - p[0].x, p[1].y - p[0].y) i = 2 left = 0 box = deque([0, 1]) while i < len(p): while left < i and p[i][0] - p[left][0] > best_dist: box.popleft() left += 1 for j in box: d = hypot(p[i].x - p[j].x, p[i].y - p[j].y) if d < best_dist: rv = [(j, i)] elif d == best_dist: rv.append((j, i)) else: continue best_dist = d box.append(i) i += 1 return {tuple([p[i] for i in pair]) for pair in rv} def convex_hull(*args, polygon=True): """The convex hull surrounding the Points contained in the list of entities. Parameters ========== args : a collection of Points, Segments and/or Polygons Optional parameters =================== polygon : Boolean. If True, returns a Polygon, if false a tuple, see below. Default is True. Returns ======= convex_hull : Polygon if ``polygon`` is True else as a tuple `(U, L)` where ``L`` and ``U`` are the lower and upper hulls, respectively. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. See Also ======== sympy.geometry.point.Point, sympy.geometry.polygon.Polygon Examples ======== >>> from sympy.geometry import convex_hull >>> points = [(1, 1), (1, 2), (3, 1), (-5, 2), (15, 4)] >>> convex_hull(*points) Polygon(Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)) >>> convex_hull(*points, **dict(polygon=False)) ([Point2D(-5, 2), Point2D(15, 4)], [Point2D(-5, 2), Point2D(1, 1), Point2D(3, 1), Point2D(15, 4)]) References ========== .. [1] https://en.wikipedia.org/wiki/Graham_scan .. [2] Andrew's Monotone Chain Algorithm (A.M. Andrew, "Another Efficient Algorithm for Convex Hulls in Two Dimensions", 1979) http://geomalgorithms.com/a10-_hull-1.html """ from .entity import GeometryEntity from .point import Point from .line import Segment from .polygon import Polygon p = OrderedSet() for e in args: if not isinstance(e, GeometryEntity): try: e = Point(e) except NotImplementedError: raise ValueError('%s is not a GeometryEntity and cannot be made into Point' % str(e)) if isinstance(e, Point): p.add(e) elif isinstance(e, Segment): p.update(e.points) elif isinstance(e, Polygon): p.update(e.vertices) else: raise NotImplementedError( 'Convex hull for %s not implemented.' % type(e)) # make sure all our points are of the same dimension if any(len(x) != 2 for x in p): raise ValueError('Can only compute the convex hull in two dimensions') p = list(p) if len(p) == 1: return p[0] if polygon else (p[0], None) elif len(p) == 2: s = Segment(p[0], p[1]) return s if polygon else (s, None) def _orientation(p, q, r): '''Return positive if p-q-r are clockwise, neg if ccw, zero if collinear.''' return (q.y - p.y)*(r.x - p.x) - (q.x - p.x)*(r.y - p.y) # scan to find upper and lower convex hulls of a set of 2d points. U = [] L = [] try: p.sort(key=lambda x: x.args) except TypeError: raise ValueError("The points could not be sorted.") for p_i in p: while len(U) > 1 and _orientation(U[-2], U[-1], p_i) <= 0: U.pop() while len(L) > 1 and _orientation(L[-2], L[-1], p_i) >= 0: L.pop() U.append(p_i) L.append(p_i) U.reverse() convexHull = tuple(L + U[1:-1]) if len(convexHull) == 2: s = Segment(convexHull[0], convexHull[1]) return s if polygon else (s, None) if polygon: return Polygon(*convexHull) else: U.reverse() return (U, L) def farthest_points(*args): """Return the subset of points from a set of points that were the furthest apart from each other in the 2D plane. Parameters ========== args : a collection of Points on 2D plane. Notes ===== This can only be performed on a set of points whose coordinates can be ordered on the number line. If there are no ties then a single pair of Points will be in the set. Examples ======== >>> from sympy.geometry import farthest_points, Triangle >>> Triangle(sss=(3, 4, 5)).args (Point2D(0, 0), Point2D(3, 0), Point2D(3, 4)) >>> farthest_points(*_) {(Point2D(0, 0), Point2D(3, 4))} References ========== .. [1] http://code.activestate.com/recipes/117225-convex-hull-and-diameter-of-2d-point-sets/ .. [2] Rotating Callipers Technique https://en.wikipedia.org/wiki/Rotating_calipers """ from math import sqrt as _sqrt def rotatingCalipers(Points): U, L = convex_hull(*Points, **dict(polygon=False)) if L is None: if isinstance(U, Point): raise ValueError('At least two distinct points must be given.') yield U.args else: i = 0 j = len(L) - 1 while i < len(U) - 1 or j > 0: yield U[i], L[j] # if all the way through one side of hull, advance the other side if i == len(U) - 1: j -= 1 elif j == 0: i += 1 # still points left on both lists, compare slopes of next hull edges # being careful to avoid divide-by-zero in slope calculation elif (U[i+1].y - U[i].y) * (L[j].x - L[j-1].x) > \ (L[j].y - L[j-1].y) * (U[i+1].x - U[i].x): i += 1 else: j -= 1 p = [Point2D(i) for i in set(args)] if not all(i.is_Rational for j in p for i in j.args): def hypot(x, y): arg = x*x + y*y if arg.is_Rational: return _sqrt(arg) return sqrt(arg) else: from math import hypot rv = [] diam = 0 for pair in rotatingCalipers(args): h, q = _ordered_points(pair) d = hypot(h.x - q.x, h.y - q.y) if d > diam: rv = [(h, q)] elif d == diam: rv.append((h, q)) else: continue diam = d return set(rv) def idiff(eq, y, x, n=1): """Return ``dy/dx`` assuming that ``eq == 0``. Parameters ========== y : the dependent variable or a list of dependent variables (with y first) x : the variable that the derivative is being taken with respect to n : the order of the derivative (default is 1) Examples ======== >>> from sympy.abc import x, y, a >>> from sympy.geometry.util import idiff >>> circ = x**2 + y**2 - 4 >>> idiff(circ, y, x) -x/y >>> idiff(circ, y, x, 2).simplify() (-x**2 - y**2)/y**3 Here, ``a`` is assumed to be independent of ``x``: >>> idiff(x + a + y, y, x) -1 Now the x-dependence of ``a`` is made explicit by listing ``a`` after ``y`` in a list. >>> idiff(x + a + y, [y, a], x) -Derivative(a, x) - 1 See Also ======== sympy.core.function.Derivative: represents unevaluated derivatives sympy.core.function.diff: explicitly differentiates wrt symbols """ if is_sequence(y): dep = set(y) y = y[0] elif isinstance(y, Symbol): dep = {y} elif isinstance(y, Function): pass else: raise ValueError("expecting x-dependent symbol(s) or function(s) but got: %s" % y) f = {s: Function(s.name)(x) for s in eq.free_symbols if s != x and s in dep} if isinstance(y, Symbol): dydx = Function(y.name)(x).diff(x) else: dydx = y.diff(x) eq = eq.subs(f) derivs = {} for i in range(n): yp = solve(eq.diff(x), dydx)[0].subs(derivs) if i == n - 1: return yp.subs([(v, k) for k, v in f.items()]) derivs[dydx] = yp eq = dydx - yp dydx = dydx.diff(x) def intersection(*entities, pairwise=False, **kwargs): """The intersection of a collection of GeometryEntity instances. Parameters ========== entities : sequence of GeometryEntity pairwise (keyword argument) : Can be either True or False Returns ======= intersection : list of GeometryEntity Raises ====== NotImplementedError When unable to calculate intersection. Notes ===== The intersection of any geometrical entity with itself should return a list with one item: the entity in question. An intersection requires two or more entities. If only a single entity is given then the function will return an empty list. It is possible for `intersection` to miss intersections that one knows exists because the required quantities were not fully simplified internally. Reals should be converted to Rationals, e.g. Rational(str(real_num)) or else failures due to floating point issues may result. Case 1: When the keyword argument 'pairwise' is False (default value): In this case, the function returns a list of intersections common to all entities. Case 2: When the keyword argument 'pairwise' is True: In this case, the functions returns a list intersections that occur between any pair of entities. See Also ======== sympy.geometry.entity.GeometryEntity.intersection Examples ======== >>> from sympy.geometry import Ray, Circle, intersection >>> c = Circle((0, 1), 1) >>> intersection(c, c.center) [] >>> right = Ray((0, 0), (1, 0)) >>> up = Ray((0, 0), (0, 1)) >>> intersection(c, right, up) [Point2D(0, 0)] >>> intersection(c, right, up, pairwise=True) [Point2D(0, 0), Point2D(0, 2)] >>> left = Ray((1, 0), (0, 0)) >>> intersection(right, left) [Segment2D(Point2D(0, 0), Point2D(1, 0))] """ from .entity import GeometryEntity from .point import Point if len(entities) <= 1: return [] # entities may be an immutable tuple entities = list(entities) for i, e in enumerate(entities): if not isinstance(e, GeometryEntity): entities[i] = Point(e) if not pairwise: # find the intersection common to all objects res = entities[0].intersection(entities[1]) for entity in entities[2:]: newres = [] for x in res: newres.extend(x.intersection(entity)) res = newres return res # find all pairwise intersections ans = [] for j in range(0, len(entities)): for k in range(j + 1, len(entities)): ans.extend(intersection(entities[j], entities[k])) return list(ordered(set(ans)))
8c365a2cc9d01bc5c8bd0f9e12943354cc692d224dbaa29de30ccdaed102d658
"""Line-like geometrical entities. Contains ======== LinearEntity Line Ray Segment LinearEntity2D Line2D Ray2D Segment2D LinearEntity3D Line3D Ray3D Segment3D """ from sympy.core.containers import Tuple from sympy.core.evalf import N from sympy.core.expr import Expr from sympy.core.numbers import Rational, oo from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.sorting import ordered from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol from sympy.core.sympify import sympify from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (_pi_coeff as pi_coeff, acos, tan, atan2) from .entity import GeometryEntity, GeometrySet from .exceptions import GeometryError from .point import Point, Point3D from .util import find, intersection from sympy.logic.boolalg import And from sympy.matrices import Matrix from sympy.sets.sets import Intersection from sympy.simplify.simplify import simplify from sympy.solvers.solveset import linear_coeffs from sympy.utilities.decorator import deprecated from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.misc import Undecidable, filldedent import random class LinearEntity(GeometrySet): """A base class for all linear entities (Line, Ray and Segment) in n-dimensional Euclidean space. Attributes ========== ambient_dimension direction length p1 p2 points Notes ===== This is an abstract class and is not meant to be instantiated. See Also ======== sympy.geometry.entity.GeometryEntity """ def __new__(cls, p1, p2=None, **kwargs): p1, p2 = Point._normalize_dimension(p1, p2) if p1 == p2: # sometimes we return a single point if we are not given two unique # points. This is done in the specific subclass raise ValueError( "%s.__new__ requires two unique Points." % cls.__name__) if len(p1) != len(p2): raise ValueError( "%s.__new__ requires two Points of equal dimension." % cls.__name__) return GeometryEntity.__new__(cls, p1, p2, **kwargs) def __contains__(self, other): """Return a definitive answer or else raise an error if it cannot be determined that other is on the boundaries of self.""" result = self.contains(other) if result is not None: return result else: raise Undecidable( "Cannot decide whether '%s' contains '%s'" % (self, other)) def _span_test(self, other): """Test whether the point `other` lies in the positive span of `self`. A point x is 'in front' of a point y if x.dot(y) >= 0. Return -1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and and 1 if `other` is in front of `self.p1`.""" if self.p1 == other: return 0 rel_pos = other - self.p1 d = self.direction if d.dot(rel_pos) > 0: return 1 return -1 @property def ambient_dimension(self): """A property method that returns the dimension of LinearEntity object. Parameters ========== p1 : LinearEntity Returns ======= dimension : integer Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> l1 = Line(p1, p2) >>> l1.ambient_dimension 2 >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) >>> l1 = Line(p1, p2) >>> l1.ambient_dimension 3 """ return len(self.p1) def angle_between(l1, l2): """Return the non-reflex angle formed by rays emanating from the origin with directions the same as the direction vectors of the linear entities. Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= angle : angle in radians Notes ===== From the dot product of vectors v1 and v2 it is known that: ``dot(v1, v2) = |v1|*|v2|*cos(A)`` where A is the angle formed between the two vectors. We can get the directional vectors of the two lines and readily find the angle between the two using the above formula. See Also ======== is_perpendicular, Ray2D.closing_angle Examples ======== >>> from sympy import Line >>> e = Line((0, 0), (1, 0)) >>> ne = Line((0, 0), (1, 1)) >>> sw = Line((1, 1), (0, 0)) >>> ne.angle_between(e) pi/4 >>> sw.angle_between(e) 3*pi/4 To obtain the non-obtuse angle at the intersection of lines, use the ``smallest_angle_between`` method: >>> sw.smallest_angle_between(e) pi/4 >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) >>> l1.angle_between(l2) acos(-sqrt(2)/3) >>> l1.smallest_angle_between(l2) acos(sqrt(2)/3) """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') v1, v2 = l1.direction, l2.direction return acos(v1.dot(v2)/(abs(v1)*abs(v2))) def smallest_angle_between(l1, l2): """Return the smallest angle formed at the intersection of the lines containing the linear entities. Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= angle : angle in radians See Also ======== angle_between, is_perpendicular, Ray2D.closing_angle Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2) >>> l1, l2 = Line(p1, p2), Line(p1, p3) >>> l1.smallest_angle_between(l2) pi/4 See Also ======== angle_between, Ray2D.closing_angle """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') v1, v2 = l1.direction, l2.direction return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2))) def arbitrary_point(self, parameter='t'): """A parameterized point on the Line. Parameters ========== parameter : str, optional The name of the parameter which will be used for the parametric point. The default value is 't'. When this parameter is 0, the first point used to define the line will be returned, and when it is 1 the second point will be returned. Returns ======= point : Point Raises ====== ValueError When ``parameter`` already appears in the Line's definition. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(1, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.arbitrary_point() Point2D(4*t + 1, 3*t) >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1) >>> l1 = Line3D(p1, p2) >>> l1.arbitrary_point() Point3D(4*t + 1, 3*t, t) """ t = _symbol(parameter, real=True) if t.name in (f.name for f in self.free_symbols): raise ValueError(filldedent(''' Symbol %s already appears in object and cannot be used as a parameter. ''' % t.name)) # multiply on the right so the variable gets # combined with the coordinates of the point return self.p1 + (self.p2 - self.p1)*t @staticmethod def are_concurrent(*lines): """Is a sequence of linear entities concurrent? Two or more linear entities are concurrent if they all intersect at a single point. Parameters ========== lines : a sequence of linear entities. Returns ======= True : if the set of linear entities intersect in one point False : otherwise. See Also ======== sympy.geometry.util.intersection Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(3, 5) >>> p3, p4 = Point(-2, -2), Point(0, 2) >>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4) >>> Line.are_concurrent(l1, l2, l3) True >>> l4 = Line(p2, p3) >>> Line.are_concurrent(l2, l3, l4) False >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2) >>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1) >>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4) >>> Line3D.are_concurrent(l1, l2, l3) True >>> l4 = Line3D(p2, p3) >>> Line3D.are_concurrent(l2, l3, l4) False """ common_points = Intersection(*lines) if common_points.is_FiniteSet and len(common_points) == 1: return True return False def contains(self, other): """Subclasses should implement this method and should return True if other is on the boundaries of self; False if not on the boundaries of self; None if a determination cannot be made.""" raise NotImplementedError() @property def direction(self): """The direction vector of the LinearEntity. Returns ======= p : a Point; the ray from the origin to this point is the direction of `self` Examples ======== >>> from sympy.geometry import Line >>> a, b = (1, 1), (1, 3) >>> Line(a, b).direction Point2D(0, 2) >>> Line(b, a).direction Point2D(0, -2) This can be reported so the distance from the origin is 1: >>> Line(b, a).direction.unit Point2D(0, -1) See Also ======== sympy.geometry.point.Point.unit """ return self.p2 - self.p1 def intersection(self, other): """The intersection with another geometrical entity. Parameters ========== o : Point or LinearEntity Returns ======= intersection : list of geometrical entities See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line, Segment >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7) >>> l1 = Line(p1, p2) >>> l1.intersection(p3) [Point2D(7, 7)] >>> p4, p5 = Point(5, 0), Point(0, 3) >>> l2 = Line(p4, p5) >>> l1.intersection(l2) [Point2D(15/8, 15/8)] >>> p6, p7 = Point(0, 5), Point(2, 6) >>> s1 = Segment(p6, p7) >>> l1.intersection(s1) [] >>> from sympy import Point3D, Line3D, Segment3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7) >>> l1 = Line3D(p1, p2) >>> l1.intersection(p3) [Point3D(7, 7, 7)] >>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17)) >>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8]) >>> l1.intersection(l2) [Point3D(1, 1, -3)] >>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3) >>> s1 = Segment3D(p6, p7) >>> l1.intersection(s1) [] """ def intersect_parallel_rays(ray1, ray2): if ray1.direction.dot(ray2.direction) > 0: # rays point in the same direction # so return the one that is "in front" return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1] else: # rays point in opposite directions st = ray1._span_test(ray2.p1) if st < 0: return [] elif st == 0: return [ray2.p1] return [Segment(ray1.p1, ray2.p1)] def intersect_parallel_ray_and_segment(ray, seg): st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2) if st1 < 0 and st2 < 0: return [] elif st1 >= 0 and st2 >= 0: return [seg] elif st1 >= 0: # st2 < 0: return [Segment(ray.p1, seg.p1)] else: # st1 < 0 and st2 >= 0: return [Segment(ray.p1, seg.p2)] def intersect_parallel_segments(seg1, seg2): if seg1.contains(seg2): return [seg2] if seg2.contains(seg1): return [seg1] # direct the segments so they're oriented the same way if seg1.direction.dot(seg2.direction) < 0: seg2 = Segment(seg2.p2, seg2.p1) # order the segments so seg1 is "behind" seg2 if seg1._span_test(seg2.p1) < 0: seg1, seg2 = seg2, seg1 if seg2._span_test(seg1.p2) < 0: return [] return [Segment(seg2.p1, seg1.p2)] if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if other.is_Point: if self.contains(other): return [other] else: return [] elif isinstance(other, LinearEntity): # break into cases based on whether # the lines are parallel, non-parallel intersecting, or skew pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2) rank = Point.affine_rank(*pts) if rank == 1: # we're collinear if isinstance(self, Line): return [other] if isinstance(other, Line): return [self] if isinstance(self, Ray) and isinstance(other, Ray): return intersect_parallel_rays(self, other) if isinstance(self, Ray) and isinstance(other, Segment): return intersect_parallel_ray_and_segment(self, other) if isinstance(self, Segment) and isinstance(other, Ray): return intersect_parallel_ray_and_segment(other, self) if isinstance(self, Segment) and isinstance(other, Segment): return intersect_parallel_segments(self, other) elif rank == 2: # we're in the same plane l1 = Line(*pts[:2]) l2 = Line(*pts[2:]) # check to see if we're parallel. If we are, we can't # be intersecting, since the collinear case was already # handled if l1.direction.is_scalar_multiple(l2.direction): return [] # find the intersection as if everything were lines # by solving the equation t*d + p1 == s*d' + p1' m = Matrix([l1.direction, -l2.direction]).transpose() v = Matrix([l2.p1 - l1.p1]).transpose() # we cannot use m.solve(v) because that only works for square matrices m_rref, pivots = m.col_insert(2, v).rref(simplify=True) # rank == 2 ensures we have 2 pivots, but let's check anyway if len(pivots) != 2: raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v)) coeff = m_rref[0, 2] line_intersection = l1.direction*coeff + self.p1 # if we're both lines, we can skip a containment check if isinstance(self, Line) and isinstance(other, Line): return [line_intersection] if ((isinstance(self, Line) or self.contains(line_intersection)) and other.contains(line_intersection)): return [line_intersection] return [] else: # we're skew return [] return other.intersection(self) def is_parallel(l1, l2): """Are two linear entities parallel? Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= True : if l1 and l2 are parallel, False : otherwise. See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> p3, p4 = Point(3, 4), Point(6, 7) >>> l1, l2 = Line(p1, p2), Line(p3, p4) >>> Line.is_parallel(l1, l2) True >>> p5 = Point(6, 6) >>> l3 = Line(p3, p5) >>> Line.is_parallel(l1, l3) False >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5) >>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11) >>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4) >>> Line3D.is_parallel(l1, l2) True >>> p5 = Point3D(6, 6, 6) >>> l3 = Line3D(p3, p5) >>> Line3D.is_parallel(l1, l3) False """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') return l1.direction.is_scalar_multiple(l2.direction) def is_perpendicular(l1, l2): """Are two linear entities perpendicular? Parameters ========== l1 : LinearEntity l2 : LinearEntity Returns ======= True : if l1 and l2 are perpendicular, False : otherwise. See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1) >>> l1, l2 = Line(p1, p2), Line(p1, p3) >>> l1.is_perpendicular(l2) True >>> p4 = Point(5, 3) >>> l3 = Line(p1, p4) >>> l1.is_perpendicular(l3) False >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0) >>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3) >>> l1.is_perpendicular(l2) False >>> p4 = Point3D(5, 3, 7) >>> l3 = Line3D(p1, p4) >>> l1.is_perpendicular(l3) False """ if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity): raise TypeError('Must pass only LinearEntity objects') return S.Zero.equals(l1.direction.dot(l2.direction)) def is_similar(self, other): """ Return True if self and other are contained in the same line. Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3) >>> l1 = Line(p1, p2) >>> l2 = Line(p1, p3) >>> l1.is_similar(l2) True """ l = Line(self.p1, self.p2) return l.contains(other) @property def length(self): """ The length of the line. Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(3, 5) >>> l1 = Line(p1, p2) >>> l1.length oo """ return S.Infinity @property def p1(self): """The first defining point of a linear entity. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.p1 Point2D(0, 0) """ return self.args[0] @property def p2(self): """The second defining point of a linear entity. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.p2 Point2D(5, 3) """ return self.args[1] def parallel_line(self, p): """Create a new Line parallel to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== is_parallel Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.parallel_line(p3) >>> p3 in l2 True >>> l1.is_parallel(l2) True >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) >>> l1 = Line3D(p1, p2) >>> l2 = l1.parallel_line(p3) >>> p3 in l2 True >>> l1.is_parallel(l2) True """ p = Point(p, dim=self.ambient_dimension) return Line(p, p + self.direction) def perpendicular_line(self, p): """Create a new Line perpendicular to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0) >>> l1 = Line3D(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True """ p = Point(p, dim=self.ambient_dimension) if p in self: p = p + self.direction.orthogonal_direction return Line(p, self.projection(p)) def perpendicular_segment(self, p): """Create a perpendicular line segment from `p` to this line. The enpoints of the segment are ``p`` and the closest point in the line containing self. (If self is not a line, the point might not be in self.) Parameters ========== p : Point Returns ======= segment : Segment Notes ===== Returns `p` itself if `p` is on this linear entity. See Also ======== perpendicular_line Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2) >>> l1 = Line(p1, p2) >>> s1 = l1.perpendicular_segment(p3) >>> l1.is_perpendicular(s1) True >>> p3 in s1 True >>> l1.perpendicular_segment(Point(4, 0)) Segment2D(Point2D(4, 0), Point2D(2, 2)) >>> from sympy import Point3D, Line3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0) >>> l1 = Line3D(p1, p2) >>> s1 = l1.perpendicular_segment(p3) >>> l1.is_perpendicular(s1) True >>> p3 in s1 True >>> l1.perpendicular_segment(Point3D(4, 0, 0)) Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3)) """ p = Point(p, dim=self.ambient_dimension) if p in self: return p l = self.perpendicular_line(p) # The intersection should be unique, so unpack the singleton p2, = Intersection(Line(self.p1, self.p2), l) return Segment(p, p2) @property def points(self): """The two points used to define this linear entity. Returns ======= points : tuple of Points See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 11) >>> l1 = Line(p1, p2) >>> l1.points (Point2D(0, 0), Point2D(5, 11)) """ return (self.p1, self.p2) def projection(self, other): """Project a point, line, ray, or segment onto this linear entity. Parameters ========== other : Point or LinearEntity (Line, Ray, Segment) Returns ======= projection : Point or LinearEntity (Line, Ray, Segment) The return type matches the type of the parameter ``other``. Raises ====== GeometryError When method is unable to perform projection. Notes ===== A projection involves taking the two points that define the linear entity and projecting those points onto a Line and then reforming the linear entity using these projections. A point P is projected onto a line L by finding the point on L that is closest to P. This point is the intersection of L and the line perpendicular to L that passes through P. See Also ======== sympy.geometry.point.Point, perpendicular_line Examples ======== >>> from sympy import Point, Line, Segment, Rational >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0) >>> l1 = Line(p1, p2) >>> l1.projection(p3) Point2D(1/4, 1/4) >>> p4, p5 = Point(10, 0), Point(12, 1) >>> s1 = Segment(p4, p5) >>> l1.projection(s1) Segment2D(Point2D(5, 5), Point2D(13/2, 13/2)) >>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1) >>> l1 = Line(p1, p2) >>> l1.projection(p3) Point3D(2/3, 2/3, 5/3) >>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3) >>> s1 = Segment(p4, p5) >>> l1.projection(s1) Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6)) """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) def proj_point(p): return Point.project(p - self.p1, self.direction) + self.p1 if isinstance(other, Point): return proj_point(other) elif isinstance(other, LinearEntity): p1, p2 = proj_point(other.p1), proj_point(other.p2) # test to see if we're degenerate if p1 == p2: return p1 projected = other.__class__(p1, p2) projected = Intersection(self, projected) # if we happen to have intersected in only a point, return that if projected.is_FiniteSet and len(projected) == 1: # projected is a set of size 1, so unpack it in `a` a, = projected return a # order args so projection is in the same direction as self if self.direction.dot(projected.direction) < 0: p1, p2 = projected.args projected = projected.func(p2, p1) return projected raise GeometryError( "Do not know how to project %s onto %s" % (other, self)) def random_point(self, seed=None): """A random point on a LinearEntity. Returns ======= point : Point See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Line, Ray, Segment >>> p1, p2 = Point(0, 0), Point(5, 3) >>> line = Line(p1, p2) >>> r = line.random_point(seed=42) # seed value is optional >>> r.n(3) Point2D(-0.72, -0.432) >>> r in line True >>> Ray(p1, p2).random_point(seed=42).n(3) Point2D(0.72, 0.432) >>> Segment(p1, p2).random_point(seed=42).n(3) Point2D(3.2, 1.92) """ if seed is not None: rng = random.Random(seed) else: rng = random t = Dummy() pt = self.arbitrary_point(t) if isinstance(self, Ray): v = abs(rng.gauss(0, 1)) elif isinstance(self, Segment): v = rng.random() elif isinstance(self, Line): v = rng.gauss(0, 1) else: raise NotImplementedError('unhandled line type') return pt.subs(t, Rational(v)) def bisectors(self, other): """Returns the perpendicular lines which pass through the intersections of self and other that are in the same plane. Parameters ========== line : Line3D Returns ======= list: two Line instances Examples ======== >>> from sympy.geometry import Point3D, Line3D >>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0)) >>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0)) >>> r1.bisectors(r2) [Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))] """ if not isinstance(other, LinearEntity): raise GeometryError("Expecting LinearEntity, not %s" % other) l1, l2 = self, other # make sure dimensions match or else a warning will rise from # intersection calculation if l1.p1.ambient_dimension != l2.p1.ambient_dimension: if isinstance(l1, Line2D): l1, l2 = l2, l1 _, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore') _, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore') l2 = Line(p1, p2) point = intersection(l1, l2) # Three cases: Lines may intersect in a point, may be equal or may not intersect. if not point: raise GeometryError("The lines do not intersect") else: pt = point[0] if isinstance(pt, Line): # Intersection is a line because both lines are coincident return [self] d1 = l1.direction.unit d2 = l2.direction.unit bis1 = Line(pt, pt + d1 + d2) bis2 = Line(pt, pt + d1 - d2) return [bis1, bis2] class Line(LinearEntity): """An infinite line in space. A 2D line is declared with two distinct points, point and slope, or an equation. A 3D line may be defined with a point and a direction ratio. Parameters ========== p1 : Point p2 : Point slope : SymPy expression direction_ratio : list equation : equation of a line Notes ===== `Line` will automatically subclass to `Line2D` or `Line3D` based on the dimension of `p1`. The `slope` argument is only relevant for `Line2D` and the `direction_ratio` argument is only relevant for `Line3D`. See Also ======== sympy.geometry.point.Point sympy.geometry.line.Line2D sympy.geometry.line.Line3D Examples ======== >>> from sympy import Point, Eq >>> from sympy.geometry import Line, Segment >>> from sympy.abc import x, y, a, b >>> L = Line(Point(2,3), Point(3,5)) >>> L Line2D(Point2D(2, 3), Point2D(3, 5)) >>> L.points (Point2D(2, 3), Point2D(3, 5)) >>> L.equation() -2*x + y + 1 >>> L.coefficients (-2, 1, 1) Instantiate with keyword ``slope``: >>> Line(Point(0, 0), slope=0) Line2D(Point2D(0, 0), Point2D(1, 0)) Instantiate with another linear object >>> s = Segment((0, 0), (0, 1)) >>> Line(s).equation() x The line corresponding to an equation in the for `ax + by + c = 0`, can be entered: >>> Line(3*x + y + 18) Line2D(Point2D(0, -18), Point2D(1, -21)) If `x` or `y` has a different name, then they can be specified, too, as a string (to match the name) or symbol: >>> Line(Eq(3*a + b, -18), x='a', y=b) Line2D(Point2D(0, -18), Point2D(1, -21)) """ def __new__(cls, *args, **kwargs): if len(args) == 1 and isinstance(args[0], (Expr, Eq)): missing = uniquely_named_symbol('?', args) if not kwargs: x = 'x' y = 'y' else: x = kwargs.pop('x', missing) y = kwargs.pop('y', missing) if kwargs: raise ValueError('expecting only x and y as keywords') equation = args[0] if isinstance(equation, Eq): equation = equation.lhs - equation.rhs def find_or_missing(x): try: return find(x, equation) except ValueError: return missing x = find_or_missing(x) y = find_or_missing(y) a, b, c = linear_coeffs(equation, x, y) if b: return Line((0, -c/b), slope=-a/b) if a: return Line((-c/a, 0), slope=oo) raise ValueError('not found in equation: %s' % (set('xy') - {x, y})) else: if len(args) > 0: p1 = args[0] if len(args) > 1: p2 = args[1] else: p2 = None if isinstance(p1, LinearEntity): if p2: raise ValueError('If p1 is a LinearEntity, p2 must be None.') dim = len(p1.p1) else: p1 = Point(p1) dim = len(p1) if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim: p2 = Point(p2) if dim == 2: return Line2D(p1, p2, **kwargs) elif dim == 3: return Line3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, p2, **kwargs) def contains(self, other): """ Return True if `other` is on this Line, or False otherwise. Examples ======== >>> from sympy import Line,Point >>> p1, p2 = Point(0, 1), Point(3, 4) >>> l = Line(p1, p2) >>> l.contains(p1) True >>> l.contains((0, 1)) True >>> l.contains((0, 0)) False >>> a = (0, 0, 0) >>> b = (1, 1, 1) >>> c = (2, 2, 2) >>> l1 = Line(a, b) >>> l2 = Line(b, a) >>> l1 == l2 False >>> l1 in l2 True """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): return Point.is_collinear(other, self.p1, self.p2) if isinstance(other, LinearEntity): return Point.is_collinear(self.p1, self.p2, other.p1, other.p2) return False def distance(self, other): """ Finds the shortest distance between a line and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(1, 1) >>> s = Line(p1, p2) >>> s.distance(Point(-1, 1)) sqrt(2) >>> s.distance((-1, 2)) 3*sqrt(2)/2 >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1) >>> s = Line(p1, p2) >>> s.distance(Point(-1, 1, 1)) 2*sqrt(6)/3 >>> s.distance((-1, 1, 1)) 2*sqrt(6)/3 """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if self.contains(other): return S.Zero return self.perpendicular_segment(other).length @deprecated(useinstead="equals", issue=12860, deprecated_since_version="1.0") def equal(self, other): return self.equals(other) def equals(self, other): """Returns True if self and other are the same mathematical entities""" if not isinstance(other, Line): return False return Point.is_collinear(self.p1, other.p1, self.p2, other.p2) def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of line. Gives values that will produce a line that is +/- 5 units long (where a unit is the distance between the two points that define the line). Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list (plot interval) [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.plot_interval() [t, -5, 5] """ t = _symbol(parameter, real=True) return [t, -5, 5] class Ray(LinearEntity): """A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point The source of the Ray p2 : Point or radian value This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw. Attributes ========== source See Also ======== sympy.geometry.line.Ray2D sympy.geometry.line.Ray3D sympy.geometry.point.Point sympy.geometry.line.Line Notes ===== `Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the dimension of `p1`. Examples ======== >>> from sympy import Point, pi >>> from sympy.geometry import Ray >>> r = Ray(Point(2, 3), Point(3, 5)) >>> r Ray2D(Point2D(2, 3), Point2D(3, 5)) >>> r.points (Point2D(2, 3), Point2D(3, 5)) >>> r.source Point2D(2, 3) >>> r.xdirection oo >>> r.ydirection oo >>> r.slope 2 >>> Ray(Point(0, 0), angle=pi/4).slope 1 """ def __new__(cls, p1, p2=None, **kwargs): p1 = Point(p1) if p2 is not None: p1, p2 = Point._normalize_dimension(p1, Point(p2)) dim = len(p1) if dim == 2: return Ray2D(p1, p2, **kwargs) elif dim == 3: return Ray3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, p2, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ verts = (N(self.p1), N(self.p2)) coords = ["{},{}".format(p.x, p.y) for p in verts] path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" ' 'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>' ).format(2.*scale_factor, path, fill_color) def contains(self, other): """ Is other GeometryEntity contained in this Ray? Examples ======== >>> from sympy import Ray,Point,Segment >>> p1, p2 = Point(0, 0), Point(4, 4) >>> r = Ray(p1, p2) >>> r.contains(p1) True >>> r.contains((1, 1)) True >>> r.contains((1, 3)) False >>> s = Segment((1, 1), (2, 2)) >>> r.contains(s) True >>> s = Segment((1, 2), (2, 5)) >>> r.contains(s) False >>> r1 = Ray((2, 2), (3, 3)) >>> r.contains(r1) True >>> r1 = Ray((2, 2), (3, 5)) >>> r.contains(r1) False """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): if Point.is_collinear(self.p1, self.p2, other): # if we're in the direction of the ray, our # direction vector dot the ray's direction vector # should be non-negative return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero) return False elif isinstance(other, Ray): if Point.is_collinear(self.p1, self.p2, other.p1, other.p2): return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero) return False elif isinstance(other, Segment): return other.p1 in self and other.p2 in self # No other known entity can be contained in a Ray return False def distance(self, other): """ Finds the shortest distance between the ray and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Ray >>> p1, p2 = Point(0, 0), Point(1, 1) >>> s = Ray(p1, p2) >>> s.distance(Point(-1, -1)) sqrt(2) >>> s.distance((-1, 2)) 3*sqrt(2)/2 >>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2) >>> s = Ray(p1, p2) >>> s Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2)) >>> s.distance(Point(-1, -1, 2)) 4*sqrt(3)/3 >>> s.distance((-1, -1, 2)) 4*sqrt(3)/3 """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if self.contains(other): return S.Zero proj = Line(self.p1, self.p2).projection(other) if self.contains(proj): return abs(other - proj) else: return abs(other - self.source) def equals(self, other): """Returns True if self and other are the same mathematical entities""" if not isinstance(other, Ray): return False return self.source == other.source and other.p2 in self def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the Ray. Gives values that will produce a ray that is 10 units long (where a unit is the distance between the two points that define the ray). Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Ray, pi >>> r = Ray((0, 0), angle=pi/4) >>> r.plot_interval() [t, 0, 10] """ t = _symbol(parameter, real=True) return [t, 0, 10] @property def source(self): """The point from which the ray emanates. See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point, Ray >>> p1, p2 = Point(0, 0), Point(4, 1) >>> r1 = Ray(p1, p2) >>> r1.source Point2D(0, 0) >>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5) >>> r1 = Ray(p2, p1) >>> r1.source Point3D(4, 1, 5) """ return self.p1 class Segment(LinearEntity): """A line segment in space. Parameters ========== p1 : Point p2 : Point Attributes ========== length : number or SymPy expression midpoint : Point See Also ======== sympy.geometry.line.Segment2D sympy.geometry.line.Segment3D sympy.geometry.point.Point sympy.geometry.line.Line Notes ===== If 2D or 3D points are used to define `Segment`, it will be automatically subclassed to `Segment2D` or `Segment3D`. Examples ======== >>> from sympy import Point >>> from sympy.geometry import Segment >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts Segment2D(Point2D(1, 0), Point2D(1, 1)) >>> s = Segment(Point(4, 3), Point(1, 1)) >>> s.points (Point2D(4, 3), Point2D(1, 1)) >>> s.slope 2/3 >>> s.length sqrt(13) >>> s.midpoint Point2D(5/2, 2) >>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) >>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.points (Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.length sqrt(17) >>> s.midpoint Point3D(5/2, 2, 8) """ def __new__(cls, p1, p2, **kwargs): p1, p2 = Point._normalize_dimension(Point(p1), Point(p2)) dim = len(p1) if dim == 2: return Segment2D(p1, p2, **kwargs) elif dim == 3: return Segment3D(p1, p2, **kwargs) return LinearEntity.__new__(cls, p1, p2, **kwargs) def contains(self, other): """ Is the other GeometryEntity contained within this Segment? Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 1), Point(3, 4) >>> s = Segment(p1, p2) >>> s2 = Segment(p2, p1) >>> s.contains(s2) True >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5) >>> s = Segment3D(p1, p2) >>> s2 = Segment3D(p2, p1) >>> s.contains(s2) True >>> s.contains((p1 + p2)/2) True """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): if Point.is_collinear(other, self.p1, self.p2): if isinstance(self, Segment2D): # if it is collinear and is in the bounding box of the # segment then it must be on the segment vert = (1/self.slope).equals(0) if vert is False: isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0 if isin in (True, False): return isin if vert is True: isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0 if isin in (True, False): return isin # use the triangle inequality d1, d2 = other - self.p1, other - self.p2 d = self.p2 - self.p1 # without the call to simplify, SymPy cannot tell that an expression # like (a+b)*(a/2+b/2) is always non-negative. If it cannot be # determined, raise an Undecidable error try: # the triangle inequality says that |d1|+|d2| >= |d| and is strict # only if other lies in the line segment return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0))) except TypeError: raise Undecidable("Cannot determine if {} is in {}".format(other, self)) if isinstance(other, Segment): return other.p1 in self and other.p2 in self return False def equals(self, other): """Returns True if self and other are the same mathematical entities""" return isinstance(other, self.func) and list( ordered(self.args)) == list(ordered(other.args)) def distance(self, other): """ Finds the shortest distance between a line segment and a point. Raises ====== NotImplementedError is raised if `other` is not a Point Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 1), Point(3, 4) >>> s = Segment(p1, p2) >>> s.distance(Point(10, 15)) sqrt(170) >>> s.distance((0, 12)) sqrt(73) >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4) >>> s = Segment3D(p1, p2) >>> s.distance(Point3D(10, 15, 12)) sqrt(341) >>> s.distance((10, 15, 12)) sqrt(341) """ if not isinstance(other, GeometryEntity): other = Point(other, dim=self.ambient_dimension) if isinstance(other, Point): vp1 = other - self.p1 vp2 = other - self.p2 dot_prod_sign_1 = self.direction.dot(vp1) >= 0 dot_prod_sign_2 = self.direction.dot(vp2) <= 0 if dot_prod_sign_1 and dot_prod_sign_2: return Line(self.p1, self.p2).distance(other) if dot_prod_sign_1 and not dot_prod_sign_2: return abs(vp2) if not dot_prod_sign_1 and dot_prod_sign_2: return abs(vp1) raise NotImplementedError() @property def length(self): """The length of the line segment. See Also ======== sympy.geometry.point.Point.distance Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(4, 3) >>> s1 = Segment(p1, p2) >>> s1.length 5 >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) >>> s1 = Segment3D(p1, p2) >>> s1.length sqrt(34) """ return Point.distance(self.p1, self.p2) @property def midpoint(self): """The midpoint of the line segment. See Also ======== sympy.geometry.point.Point.midpoint Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(4, 3) >>> s1 = Segment(p1, p2) >>> s1.midpoint Point2D(2, 3/2) >>> from sympy import Point3D, Segment3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3) >>> s1 = Segment3D(p1, p2) >>> s1.midpoint Point3D(2, 3/2, 3/2) """ return Point.midpoint(self.p1, self.p2) def perpendicular_bisector(self, p=None): """The perpendicular bisector of this segment. If no point is specified or the point specified is not on the bisector then the bisector is returned as a Line. Otherwise a Segment is returned that joins the point specified and the intersection of the bisector and the segment. Parameters ========== p : Point Returns ======= bisector : Line or Segment See Also ======== LinearEntity.perpendicular_segment Examples ======== >>> from sympy import Point, Segment >>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1) >>> s1 = Segment(p1, p2) >>> s1.perpendicular_bisector() Line2D(Point2D(3, 3), Point2D(-3, 9)) >>> s1.perpendicular_bisector(p3) Segment2D(Point2D(5, 1), Point2D(3, 3)) """ l = self.perpendicular_line(self.midpoint) if p is not None: p2 = Point(p, dim=self.ambient_dimension) if p2 in l: return Segment(p2, self.midpoint) return l def plot_interval(self, parameter='t'): """The plot interval for the default geometric plot of the Segment gives values that will produce the full segment in a plot. Parameters ========== parameter : str, optional Default value is 't'. Returns ======= plot_interval : list [parameter, lower_bound, upper_bound] Examples ======== >>> from sympy import Point, Segment >>> p1, p2 = Point(0, 0), Point(5, 3) >>> s1 = Segment(p1, p2) >>> s1.plot_interval() [t, 0, 1] """ t = _symbol(parameter, real=True) return [t, 0, 1] class LinearEntity2D(LinearEntity): """A base class for all linear entities (line, ray and segment) in a 2-dimensional Euclidean space. Attributes ========== p1 p2 coefficients slope points Notes ===== This is an abstract class and is not meant to be instantiated. See Also ======== sympy.geometry.entity.GeometryEntity """ @property def bounds(self): """Return a tuple (xmin, ymin, xmax, ymax) representing the bounding rectangle for the geometric figure. """ verts = self.points xs = [p.x for p in verts] ys = [p.y for p in verts] return (min(xs), min(ys), max(xs), max(ys)) def perpendicular_line(self, p): """Create a new Line perpendicular to this linear entity which passes through the point `p`. Parameters ========== p : Point Returns ======= line : Line See Also ======== sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment Examples ======== >>> from sympy import Point, Line >>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2) >>> l1 = Line(p1, p2) >>> l2 = l1.perpendicular_line(p3) >>> p3 in l2 True >>> l1.is_perpendicular(l2) True """ p = Point(p, dim=self.ambient_dimension) # any two lines in R^2 intersect, so blindly making # a line through p in an orthogonal direction will work return Line(p, p + self.direction.orthogonal_direction) @property def slope(self): """The slope of this linear entity, or infinity if vertical. Returns ======= slope : number or SymPy expression See Also ======== coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(0, 0), Point(3, 5) >>> l1 = Line(p1, p2) >>> l1.slope 5/3 >>> p3 = Point(0, 4) >>> l2 = Line(p1, p3) >>> l2.slope oo """ d1, d2 = (self.p1 - self.p2).args if d1 == 0: return S.Infinity return simplify(d2/d1) class Line2D(LinearEntity2D, Line): """An infinite line in space 2D. A line is declared with two distinct points or a point and slope as defined using keyword `slope`. Parameters ========== p1 : Point pt : Point slope : SymPy expression See Also ======== sympy.geometry.point.Point Examples ======== >>> from sympy import Point >>> from sympy.geometry import Line, Segment >>> L = Line(Point(2,3), Point(3,5)) >>> L Line2D(Point2D(2, 3), Point2D(3, 5)) >>> L.points (Point2D(2, 3), Point2D(3, 5)) >>> L.equation() -2*x + y + 1 >>> L.coefficients (-2, 1, 1) Instantiate with keyword ``slope``: >>> Line(Point(0, 0), slope=0) Line2D(Point2D(0, 0), Point2D(1, 0)) Instantiate with another linear object >>> s = Segment((0, 0), (0, 1)) >>> Line(s).equation() x """ def __new__(cls, p1, pt=None, slope=None, **kwargs): if isinstance(p1, LinearEntity): if pt is not None: raise ValueError('When p1 is a LinearEntity, pt should be None') p1, pt = Point._normalize_dimension(*p1.args, dim=2) else: p1 = Point(p1, dim=2) if pt is not None and slope is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): raise ValueError(filldedent(''' The 2nd argument was not a valid Point. If it was a slope, enter it with keyword "slope". ''')) elif slope is not None and pt is None: slope = sympify(slope) if slope.is_finite is False: # when infinite slope, don't change x dx = 0 dy = 1 else: # go over 1 up slope dx = 1 dy = slope # XXX avoiding simplification by adding to coords directly p2 = Point(p1.x + dx, p1.y + dy, evaluate=False) else: raise ValueError('A 2nd Point or keyword "slope" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ verts = (N(self.p1), N(self.p2)) coords = ["{},{}".format(p.x, p.y) for p in verts] path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" ' 'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>' ).format(2.*scale_factor, path, fill_color) @property def coefficients(self): """The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`. See Also ======== sympy.geometry.line.Line2D.equation Examples ======== >>> from sympy import Point, Line >>> from sympy.abc import x, y >>> p1, p2 = Point(0, 0), Point(5, 3) >>> l = Line(p1, p2) >>> l.coefficients (-3, 5, 0) >>> p3 = Point(x, y) >>> l2 = Line(p1, p3) >>> l2.coefficients (-y, x, 0) """ p1, p2 = self.points if p1.x == p2.x: return (S.One, S.Zero, -p1.x) elif p1.y == p2.y: return (S.Zero, S.One, -p1.y) return tuple([simplify(i) for i in (self.p1.y - self.p2.y, self.p2.x - self.p1.x, self.p1.x*self.p2.y - self.p1.y*self.p2.x)]) def equation(self, x='x', y='y'): """The equation of the line: ax + by + c. Parameters ========== x : str, optional The name to use for the x-axis, default value is 'x'. y : str, optional The name to use for the y-axis, default value is 'y'. Returns ======= equation : SymPy expression See Also ======== sympy.geometry.line.Line2D.coefficients Examples ======== >>> from sympy import Point, Line >>> p1, p2 = Point(1, 0), Point(5, 3) >>> l1 = Line(p1, p2) >>> l1.equation() -3*x + 4*y + 3 """ x = _symbol(x, real=True) y = _symbol(y, real=True) p1, p2 = self.points if p1.x == p2.x: return x - p1.x elif p1.y == p2.y: return y - p1.y a, b, c = self.coefficients return a*x + b*y + c class Ray2D(LinearEntity2D, Ray): """ A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point The source of the Ray p2 : Point or radian value This point determines the direction in which the Ray propagates. If given as an angle it is interpreted in radians with the positive direction being ccw. Attributes ========== source xdirection ydirection See Also ======== sympy.geometry.point.Point, Line Examples ======== >>> from sympy import Point, pi >>> from sympy.geometry import Ray >>> r = Ray(Point(2, 3), Point(3, 5)) >>> r Ray2D(Point2D(2, 3), Point2D(3, 5)) >>> r.points (Point2D(2, 3), Point2D(3, 5)) >>> r.source Point2D(2, 3) >>> r.xdirection oo >>> r.ydirection oo >>> r.slope 2 >>> Ray(Point(0, 0), angle=pi/4).slope 1 """ def __new__(cls, p1, pt=None, angle=None, **kwargs): p1 = Point(p1, dim=2) if pt is not None and angle is None: try: p2 = Point(pt, dim=2) except (NotImplementedError, TypeError, ValueError): raise ValueError(filldedent(''' The 2nd argument was not a valid Point; if it was meant to be an angle it should be given with keyword "angle".''')) if p1 == p2: raise ValueError('A Ray requires two distinct points.') elif angle is not None and pt is None: # we need to know if the angle is an odd multiple of pi/2 c = pi_coeff(sympify(angle)) p2 = None if c is not None: if c.is_Rational: if c.q == 2: if c.p == 1: p2 = p1 + Point(0, 1) elif c.p == 3: p2 = p1 + Point(0, -1) elif c.q == 1: if c.p == 0: p2 = p1 + Point(1, 0) elif c.p == 1: p2 = p1 + Point(-1, 0) if p2 is None: c *= S.Pi else: c = angle % (2*S.Pi) if not p2: m = 2*c/S.Pi left = And(1 < m, m < 3) # is it in quadrant 2 or 3? x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True)) y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True)) p2 = p1 + Point(x, y) else: raise ValueError('A 2nd point or keyword "angle" must be used.') return LinearEntity2D.__new__(cls, p1, p2, **kwargs) @property def xdirection(self): """The x direction of the ray. Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical. See Also ======== ydirection Examples ======== >>> from sympy import Point, Ray >>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1) >>> r1, r2 = Ray(p1, p2), Ray(p1, p3) >>> r1.xdirection oo >>> r2.xdirection 0 """ if self.p1.x < self.p2.x: return S.Infinity elif self.p1.x == self.p2.x: return S.Zero else: return S.NegativeInfinity @property def ydirection(self): """The y direction of the ray. Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point, Ray >>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0) >>> r1, r2 = Ray(p1, p2), Ray(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 """ if self.p1.y < self.p2.y: return S.Infinity elif self.p1.y == self.p2.y: return S.Zero else: return S.NegativeInfinity def closing_angle(r1, r2): """Return the angle by which r2 must be rotated so it faces the same direction as r1. Parameters ========== r1 : Ray2D r2 : Ray2D Returns ======= angle : angle in radians (ccw angle is positive) See Also ======== LinearEntity.angle_between Examples ======== >>> from sympy import Ray, pi >>> r1 = Ray((0, 0), (1, 0)) >>> r2 = r1.rotate(-pi/2) >>> angle = r1.closing_angle(r2); angle pi/2 >>> r2.rotate(angle).direction.unit == r1.direction.unit True >>> r2.closing_angle(r1) -pi/2 """ if not all(isinstance(r, Ray2D) for r in (r1, r2)): # although the direction property is defined for # all linear entities, only the Ray is truly a # directed object raise TypeError('Both arguments must be Ray2D objects.') a1 = atan2(*list(reversed(r1.direction.args))) a2 = atan2(*list(reversed(r2.direction.args))) if a1*a2 < 0: a1 = 2*S.Pi + a1 if a1 < 0 else a1 a2 = 2*S.Pi + a2 if a2 < 0 else a2 return a1 - a2 class Segment2D(LinearEntity2D, Segment): """A line segment in 2D space. Parameters ========== p1 : Point p2 : Point Attributes ========== length : number or SymPy expression midpoint : Point See Also ======== sympy.geometry.point.Point, Line Examples ======== >>> from sympy import Point >>> from sympy.geometry import Segment >>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts Segment2D(Point2D(1, 0), Point2D(1, 1)) >>> s = Segment(Point(4, 3), Point(1, 1)); s Segment2D(Point2D(4, 3), Point2D(1, 1)) >>> s.points (Point2D(4, 3), Point2D(1, 1)) >>> s.slope 2/3 >>> s.length sqrt(13) >>> s.midpoint Point2D(5/2, 2) """ def __new__(cls, p1, p2, **kwargs): p1 = Point(p1, dim=2) p2 = Point(p2, dim=2) if p1 == p2: return p1 return LinearEntity2D.__new__(cls, p1, p2, **kwargs) def _svg(self, scale_factor=1., fill_color="#66cc99"): """Returns SVG path element for the LinearEntity. Parameters ========== scale_factor : float Multiplication factor for the SVG stroke-width. Default is 1. fill_color : str, optional Hex string for fill color. Default is "#66cc99". """ verts = (N(self.p1), N(self.p2)) coords = ["{},{}".format(p.x, p.y) for p in verts] path = "M {} L {}".format(coords[0], " L ".join(coords[1:])) return ( '<path fill-rule="evenodd" fill="{2}" stroke="#555555" ' 'stroke-width="{0}" opacity="0.6" d="{1}" />' ).format(2.*scale_factor, path, fill_color) class LinearEntity3D(LinearEntity): """An base class for all linear entities (line, ray and segment) in a 3-dimensional Euclidean space. Attributes ========== p1 p2 direction_ratio direction_cosine points Notes ===== This is a base class and is not meant to be instantiated. """ def __new__(cls, p1, p2, **kwargs): p1 = Point3D(p1, dim=3) p2 = Point3D(p2, dim=3) if p1 == p2: # if it makes sense to return a Point, handle in subclass raise ValueError( "%s.__new__ requires two unique Points." % cls.__name__) return GeometryEntity.__new__(cls, p1, p2, **kwargs) ambient_dimension = 3 @property def direction_ratio(self): """The direction ratio of a given line in 3D. See Also ======== sympy.geometry.line.Line3D.equation Examples ======== >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) >>> l = Line3D(p1, p2) >>> l.direction_ratio [5, 3, 1] """ p1, p2 = self.points return p1.direction_ratio(p2) @property def direction_cosine(self): """The normalized direction ratio of a given line in 3D. See Also ======== sympy.geometry.line.Line3D.equation Examples ======== >>> from sympy import Point3D, Line3D >>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1) >>> l = Line3D(p1, p2) >>> l.direction_cosine [sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35] >>> sum(i**2 for i in _) 1 """ p1, p2 = self.points return p1.direction_cosine(p2) class Line3D(LinearEntity3D, Line): """An infinite 3D line in space. A line is declared with two distinct points or a point and direction_ratio as defined using keyword `direction_ratio`. Parameters ========== p1 : Point3D pt : Point3D direction_ratio : list See Also ======== sympy.geometry.point.Point3D sympy.geometry.line.Line sympy.geometry.line.Line2D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Line3D >>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) >>> L Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1)) >>> L.points (Point3D(2, 3, 4), Point3D(3, 5, 1)) """ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs): if isinstance(p1, LinearEntity3D): if pt is not None: raise ValueError('if p1 is a LinearEntity, pt must be None.') p1, pt = p1.args else: p1 = Point(p1, dim=3) if pt is not None and len(direction_ratio) == 0: pt = Point(pt, dim=3) elif len(direction_ratio) == 3 and pt is None: pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], p1.z + direction_ratio[2]) else: raise ValueError('A 2nd Point or keyword "direction_ratio" must ' 'be used.') return LinearEntity3D.__new__(cls, p1, pt, **kwargs) def equation(self, x='x', y='y', z='z', k=None): """Return the equations that define the line in 3D. Parameters ========== x : str, optional The name to use for the x-axis, default value is 'x'. y : str, optional The name to use for the y-axis, default value is 'y'. z : str, optional The name to use for the z-axis, default value is 'z'. Returns ======= equation : Tuple of simultaneous equations Examples ======== >>> from sympy import Point3D, Line3D, solve >>> from sympy.abc import x, y, z >>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0) >>> l1 = Line3D(p1, p2) >>> eq = l1.equation(x, y, z); eq (-3*x + 4*y + 3, z) >>> solve(eq.subs(z, 0), (x, y, z)) {x: 4*y/3 + 1} """ if k is not None: SymPyDeprecationWarning( feature="equation() no longer needs 'k'", issue=13742, deprecated_since_version="1.2").warn() from sympy.solvers.solvers import solve x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')] p1, p2 = self.points d1, d2, d3 = p1.direction_ratio(p2) x1, y1, z1 = p1 eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1] # eliminate k from equations by solving first eq with k for k for i, e in enumerate(eqs): if e.has(k): kk = solve(eqs[i], k)[0] eqs.pop(i) break return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs]) class Ray3D(LinearEntity3D, Ray): """ A Ray is a semi-line in the space with a source point and a direction. Parameters ========== p1 : Point3D The source of the Ray p2 : Point or a direction vector direction_ratio: Determines the direction in which the Ray propagates. Attributes ========== source xdirection ydirection zdirection See Also ======== sympy.geometry.point.Point3D, Line3D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Ray3D >>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r.points (Point3D(2, 3, 4), Point3D(3, 5, 0)) >>> r.source Point3D(2, 3, 4) >>> r.xdirection oo >>> r.ydirection oo >>> r.direction_ratio [1, 2, -4] """ def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs): if isinstance(p1, LinearEntity3D): if pt is not None: raise ValueError('If p1 is a LinearEntity, pt must be None') p1, pt = p1.args else: p1 = Point(p1, dim=3) if pt is not None and len(direction_ratio) == 0: pt = Point(pt, dim=3) elif len(direction_ratio) == 3 and pt is None: pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1], p1.z + direction_ratio[2]) else: raise ValueError(filldedent(''' A 2nd Point or keyword "direction_ratio" must be used. ''')) return LinearEntity3D.__new__(cls, p1, pt, **kwargs) @property def xdirection(self): """The x direction of the ray. Positive infinity if the ray points in the positive x direction, negative infinity if the ray points in the negative x direction, or 0 if the ray is vertical. See Also ======== ydirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.xdirection oo >>> r2.xdirection 0 """ if self.p1.x < self.p2.x: return S.Infinity elif self.p1.x == self.p2.x: return S.Zero else: return S.NegativeInfinity @property def ydirection(self): """The y direction of the ray. Positive infinity if the ray points in the positive y direction, negative infinity if the ray points in the negative y direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 """ if self.p1.y < self.p2.y: return S.Infinity elif self.p1.y == self.p2.y: return S.Zero else: return S.NegativeInfinity @property def zdirection(self): """The z direction of the ray. Positive infinity if the ray points in the positive z direction, negative infinity if the ray points in the negative z direction, or 0 if the ray is horizontal. See Also ======== xdirection Examples ======== >>> from sympy import Point3D, Ray3D >>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0) >>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3) >>> r1.ydirection -oo >>> r2.ydirection 0 >>> r2.zdirection 0 """ if self.p1.z < self.p2.z: return S.Infinity elif self.p1.z == self.p2.z: return S.Zero else: return S.NegativeInfinity class Segment3D(LinearEntity3D, Segment): """A line segment in a 3D space. Parameters ========== p1 : Point3D p2 : Point3D Attributes ========== length : number or SymPy expression midpoint : Point3D See Also ======== sympy.geometry.point.Point3D, Line3D Examples ======== >>> from sympy import Point3D >>> from sympy.geometry import Segment3D >>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1)) >>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.points (Point3D(4, 3, 9), Point3D(1, 1, 7)) >>> s.length sqrt(17) >>> s.midpoint Point3D(5/2, 2, 8) """ def __new__(cls, p1, p2, **kwargs): p1 = Point(p1, dim=3) p2 = Point(p2, dim=3) if p1 == p2: return p1 return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
b19717e6836ad65b998c7e1c2665d4665b0e5e68ac358cd4c84947c85e82efd5
""" This module implements Holonomic Functions and various operations on them. """ from sympy.core import Add, Mul, Pow from sympy.core.numbers import NaN, Infinity, NegativeInfinity, Float, I, pi from sympy.core.singleton import S from sympy.core.sorting import ordered from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import binomial, factorial, rf from sympy.functions.elementary.exponential import exp_polar, exp, log from sympy.functions.elementary.hyperbolic import (cosh, sinh) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin, sinc) from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi) from sympy.functions.special.gamma_functions import gamma from sympy.functions.special.hyper import hyper, meijerg from sympy.integrals import meijerint from sympy.matrices import Matrix from sympy.polys.rings import PolyElement from sympy.polys.fields import FracElement from sympy.polys.domains import QQ, RR from sympy.polys.polyclasses import DMF from sympy.polys.polyroots import roots from sympy.polys.polytools import Poly from sympy.polys.matrices import DomainMatrix from sympy.printing import sstr from sympy.series.limits import limit from sympy.series.order import Order from sympy.simplify.hyperexpand import hyperexpand from sympy.simplify.simplify import nsimplify from sympy.solvers.solvers import solve from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, SingularityError, NotHolonomicError) def _find_nonzero_solution(r, homosys): ones = lambda shape: DomainMatrix.ones(shape, r.domain) particular, nullspace = r._solve(homosys) nullity = nullspace.shape[0] nullpart = ones((1, nullity)) * nullspace sol = (particular + nullpart).transpose() return sol def DifferentialOperators(base, generator): r""" This function is used to create annihilators using ``Dx``. Explanation =========== Returns an Algebra of Differential Operators also called Weyl Algebra and the operator for differentiation i.e. the ``Dx`` operator. Parameters ========== base: Base polynomial ring for the algebra. The base polynomial ring is the ring of polynomials in :math:`x` that will appear as coefficients in the operators. generator: Generator of the algebra which can be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy.abc import x >>> from sympy.holonomic.holonomic import DifferentialOperators >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] >>> Dx*x (1) + (x)*Dx """ ring = DifferentialOperatorAlgebra(base, generator) return (ring, ring.derivative_operator) class DifferentialOperatorAlgebra: r""" An Ore Algebra is a set of noncommutative polynomials in the intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. It follows the commutation rule: .. math :: Dxa = \sigma(a)Dx + \delta(a) for :math:`a \subset A`. Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A` is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`. If one takes the sigma as identity map and delta as the standard derivation then it becomes the algebra of Differential Operators also called a Weyl Algebra i.e. an algebra whose elements are Differential Operators. This class represents a Weyl Algebra and serves as the parent ring for Differential Operators. Examples ======== >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> from sympy.holonomic.holonomic import DifferentialOperators >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') >>> R Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] See Also ======== DifferentialOperator """ def __init__(self, base, generator): # the base polynomial ring for the algebra self.base = base # the operator representing differentiation i.e. `Dx` self.derivative_operator = DifferentialOperator( [base.zero, base.one], self) if generator is None: self.gen_symbol = Symbol('Dx', commutative=False) else: if isinstance(generator, str): self.gen_symbol = Symbol(generator, commutative=False) elif isinstance(generator, Symbol): self.gen_symbol = generator def __str__(self): string = 'Univariate Differential Operator Algebra in intermediate '\ + sstr(self.gen_symbol) + ' over the base ring ' + \ (self.base).__str__() return string __repr__ = __str__ def __eq__(self, other): if self.base == other.base and self.gen_symbol == other.gen_symbol: return True else: return False class DifferentialOperator: """ Differential Operators are elements of Weyl Algebra. The Operators are defined by a list of polynomials in the base ring and the parent ring of the Operator i.e. the algebra it belongs to. Explanation =========== Takes a list of polynomials for each power of ``Dx`` and the parent ring which must be an instance of DifferentialOperatorAlgebra. A Differential Operator can be created easily using the operator ``Dx``. See examples below. Examples ======== >>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> DifferentialOperator([0, 1, x**2], R) (1)*Dx + (x**2)*Dx**2 >>> (x*Dx*x + 1 - Dx**2)**2 (2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 See Also ======== DifferentialOperatorAlgebra """ _op_priority = 20 def __init__(self, list_of_poly, parent): """ Parameters ========== list_of_poly: List of polynomials belonging to the base ring of the algebra. parent: Parent algebra of the operator. """ # the parent ring for this operator # must be an DifferentialOperatorAlgebra object self.parent = parent base = self.parent.base self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] # sequence of polynomials in x for each power of Dx # the list should not have trailing zeroes # represents the operator # convert the expressions into ring elements using from_sympy for i, j in enumerate(list_of_poly): if not isinstance(j, base.dtype): list_of_poly[i] = base.from_sympy(sympify(j)) else: list_of_poly[i] = base.from_sympy(base.to_sympy(j)) self.listofpoly = list_of_poly # highest power of `Dx` self.order = len(self.listofpoly) - 1 def __mul__(self, other): """ Multiplies two DifferentialOperator and returns another DifferentialOperator instance using the commutation rule Dx*a = a*Dx + a' """ listofself = self.listofpoly if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): listofother = [self.parent.base.from_sympy(sympify(other))] else: listofother = [other] else: listofother = other.listofpoly # multiplies a polynomial `b` with a list of polynomials def _mul_dmp_diffop(b, listofother): if isinstance(listofother, list): sol = [] for i in listofother: sol.append(i * b) return sol else: return [b * listofother] sol = _mul_dmp_diffop(listofself[0], listofother) # compute Dx^i * b def _mul_Dxi_b(b): sol1 = [self.parent.base.zero] sol2 = [] if isinstance(b, list): for i in b: sol1.append(i) sol2.append(i.diff()) else: sol1.append(self.parent.base.from_sympy(b)) sol2.append(self.parent.base.from_sympy(b).diff()) return _add_lists(sol1, sol2) for i in range(1, len(listofself)): # find Dx^i * b in ith iteration listofother = _mul_Dxi_b(listofother) # solution = solution + listofself[i] * (Dx^i * b) sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) return DifferentialOperator(sol, self.parent) def __rmul__(self, other): if not isinstance(other, DifferentialOperator): if not isinstance(other, self.parent.base.dtype): other = (self.parent.base).from_sympy(sympify(other)) sol = [] for j in self.listofpoly: sol.append(other * j) return DifferentialOperator(sol, self.parent) def __add__(self, other): if isinstance(other, DifferentialOperator): sol = _add_lists(self.listofpoly, other.listofpoly) return DifferentialOperator(sol, self.parent) else: list_self = self.listofpoly if not isinstance(other, self.parent.base.dtype): list_other = [((self.parent).base).from_sympy(sympify(other))] else: list_other = [other] sol = [] sol.append(list_self[0] + list_other[0]) sol += list_self[1:] return DifferentialOperator(sol, self.parent) __radd__ = __add__ def __sub__(self, other): return self + (-1) * other def __rsub__(self, other): return (-1) * self + other def __neg__(self): return -1 * self def __truediv__(self, other): return self * (S.One / other) def __pow__(self, n): if n == 1: return self if n == 0: return DifferentialOperator([self.parent.base.one], self.parent) # if self is `Dx` if self.listofpoly == self.parent.derivative_operator.listofpoly: sol = [] for i in range(0, n): sol.append(self.parent.base.zero) sol.append(self.parent.base.one) return DifferentialOperator(sol, self.parent) # the general case else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def __str__(self): listofpoly = self.listofpoly print_str = '' for i, j in enumerate(listofpoly): if j == self.parent.base.zero: continue if i == 0: print_str += '(' + sstr(j) + ')' continue if print_str: print_str += ' + ' if i == 1: print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) continue print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) return print_str __repr__ = __str__ def __eq__(self, other): if isinstance(other, DifferentialOperator): if self.listofpoly == other.listofpoly and self.parent == other.parent: return True else: return False else: if self.listofpoly[0] == other: for i in self.listofpoly[1:]: if i is not self.parent.base.zero: return False return True else: return False def is_singular(self, x0): """ Checks if the differential equation is singular at x0. """ base = self.parent.base return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) class HolonomicFunction: r""" A Holonomic Function is a solution to a linear homogeneous ordinary differential equation with polynomial coefficients. This differential equation can also be represented by an annihilator i.e. a Differential Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, initial conditions can also be provided along with the annihilator. Explanation =========== Holonomic functions have closure properties and thus forms a ring. Given two Holonomic Functions f and g, their sum, product, integral and derivative is also a Holonomic Function. For ordinary points initial condition should be a vector of values of the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. For regular singular points initial conditions can also be provided in this format: :math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` where s0, s1, ... are the roots of indicial equation and vectors :math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial terms of the associated power series. See Examples below. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x >>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) >>> p + q # annihilator of e^x + sin(x) HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) >>> p * q # annihilator of e^x * sin(x) HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) An example of initial conditions for regular singular points, the indicial equation has only one root `1/2`. >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() sqrt(x) To plot a Holonomic Function, one can use `.evalf()` for numerical computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. >>> import sympy.holonomic # doctest: +SKIP >>> from sympy import var, sin # doctest: +SKIP >>> import matplotlib.pyplot as plt # doctest: +SKIP >>> import numpy as np # doctest: +SKIP >>> var("x") # doctest: +SKIP >>> r = np.linspace(1, 5, 100) # doctest: +SKIP >>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP >>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP >>> plt.show() # doctest: +SKIP """ _op_priority = 20 def __init__(self, annihilator, x, x0=0, y0=None): """ Parameters ========== annihilator: Annihilator of the Holonomic Function, represented by a `DifferentialOperator` object. x: Variable of the function. x0: The point at which initial conditions are stored. Generally an integer. y0: The initial condition. The proper format for the initial condition is described in class docstring. To make the function unique, length of the vector `y0` should be equal to or greater than the order of differential equation. """ # initial condition self.y0 = y0 # the point for initial conditions, default is zero. self.x0 = x0 # differential operator L such that L.f = 0 self.annihilator = annihilator self.x = x def __str__(self): if self._have_init_cond(): str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ sstr(self.x), sstr(self.x0), sstr(self.y0)) else: str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ sstr(self.x)) return str_sol __repr__ = __str__ def unify(self, other): """ Unifies the base polynomial ring of a given two Holonomic Functions. """ R1 = self.annihilator.parent.base R2 = other.annihilator.parent.base dom1 = R1.dom dom2 = R2.dom if R1 == R2: return (self, other) R = (dom1.unify(dom2)).old_poly_ring(self.x) newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] sol1 = DifferentialOperator(sol1, newparent) sol2 = DifferentialOperator(sol2, newparent) sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) return (sol1, sol2) def is_singularics(self): """ Returns True if the function have singular initial condition in the dictionary format. Returns False if the function have ordinary initial condition in the list format. Returns None for all other cases. """ if isinstance(self.y0, dict): return True elif isinstance(self.y0, list): return False def _have_init_cond(self): """ Checks if the function have initial condition. """ return bool(self.y0) def _singularics_to_ord(self): """ Converts a singular initial condition to ordinary if possible. """ a = list(self.y0)[0] b = self.y0[a] if len(self.y0) == 1 and a == int(a) and a > 0: y0 = [] a = int(a) for i in range(a): y0.append(S.Zero) y0 += [j * factorial(a + i) for i, j in enumerate(b)] return HolonomicFunction(self.annihilator, self.x, self.x0, y0) def __add__(self, other): # if the ground domains are different if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a + b deg1 = self.annihilator.order deg2 = other.annihilator.order dim = max(deg1, deg2) R = self.annihilator.parent.base K = R.get_field() rowsself = [self.annihilator] rowsother = [other.annihilator] gen = self.annihilator.parent.derivative_operator # constructing annihilators up to order dim for i in range(dim - deg1): diff1 = (gen * rowsself[-1]) rowsself.append(diff1) for i in range(dim - deg2): diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother # constructing the matrix of the ansatz r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(K.zero) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) # solving the linear system using gauss jordan solver r = DomainMatrix(r, (len(row), dim+1), K).transpose() homosys = DomainMatrix.zeros((dim+1, 1), K) sol = _find_nonzero_solution(r, homosys) # if a solution is not obtained then increasing the order by 1 in each # iteration while sol.is_zero_matrix: dim += 1 diff1 = (gen * rowsself[-1]) rowsself.append(diff1) diff2 = (gen * rowsother[-1]) rowsother.append(diff2) row = rowsself + rowsother r = [] for expr in row: p = [] for i in range(dim + 1): if i >= len(expr.listofpoly): p.append(K.zero) else: p.append(K.new(expr.listofpoly[i].rep)) r.append(p) # solving the linear system using gauss jordan solver r = DomainMatrix(r, (len(row), dim+1), K).transpose() homosys = DomainMatrix.zeros((dim+1, 1), K) sol = _find_nonzero_solution(r, homosys) # taking only the coefficients needed to multiply with `self` # can be also be done the other way by taking R.H.S and multiplying with # `other` sol = sol.flat()[:dim + 1 - deg1] sol1 = _normalize(sol, self.annihilator.parent) # annihilator of the solution sol = sol1 * (self.annihilator) sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol, self.x) # both the functions have ordinary initial conditions if self.is_singularics() == False and other.is_singularics() == False: # directly add the corresponding value if self.x0 == other.x0: # try to extended the initial conditions # using the annihilator y1 = _extend_y0(self, sol.order) y2 = _extend_y0(other, sol.order) y0 = [a + b for a, b in zip(y1, y2)] return HolonomicFunction(sol, self.x, self.x0, y0) else: # change the intiial conditions to a same point selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self + other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) + other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self + other.change_ics(self.x0) else: return self.change_ics(other.x0) + other if self.x0 != other.x0: return HolonomicFunction(sol, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: # convert the ordinary initial condition to singular. _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 # computing singular initial condition for the result # taking union of the series terms of both functions y0 = {} for i in y1: # add corresponding initial terms if the power # on `x` is same if i in y2: y0[i] = [a + b for a, b in zip(y1[i], y2[i])] else: y0[i] = y1[i] for i in y2: if i not in y1: y0[i] = y2[i] return HolonomicFunction(sol, self.x, self.x0, y0) def integrate(self, limits, initcond=False): """ Integrates the given holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) >>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) """ # to get the annihilator, just multiply by Dx from right D = self.annihilator.parent.derivative_operator # if the function have initial conditions of the series format if self.is_singularics() == True: r = self._singularics_to_ord() if r: return r.integrate(limits, initcond=initcond) # computing singular initial condition for the function # produced after integration. y0 = {} for i in self.y0: c = self.y0[i] c2 = [] for j in range(len(c)): if c[j] == 0: c2.append(S.Zero) # if power on `x` is -1, the integration becomes log(x) # TODO: Implement this case elif i + j + 1 == 0: raise NotImplementedError("logarithmic terms in the series are not supported") else: c2.append(c[j] / S(i + j + 1)) y0[i + 1] = c2 if hasattr(limits, "__iter__"): raise NotImplementedError("Definite integration for singular initial conditions") return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) # if no initial conditions are available for the function if not self._have_init_cond(): if initcond: return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero]) return HolonomicFunction(self.annihilator * D, self.x) # definite integral # initial conditions for the answer will be stored at point `a`, # where `a` is the lower limit of the integrand if hasattr(limits, "__iter__"): if len(limits) == 3 and limits[0] == self.x: x0 = self.x0 a = limits[1] b = limits[2] definite = True else: definite = False y0 = [S.Zero] y0 += self.y0 indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) if not definite: return indefinite_integral # use evalf to get the values at `a` if x0 != a: try: indefinite_expr = indefinite_integral.to_expr() except (NotHyperSeriesError, NotPowerSeriesError): indefinite_expr = None if indefinite_expr: lower = indefinite_expr.subs(self.x, a) if isinstance(lower, NaN): lower = indefinite_expr.limit(self.x, a) else: lower = indefinite_integral.evalf(a) if b == self.x: y0[0] = y0[0] - lower return HolonomicFunction(self.annihilator * D, self.x, x0, y0) elif S(b).is_Number: if indefinite_expr: upper = indefinite_expr.subs(self.x, b) if isinstance(upper, NaN): upper = indefinite_expr.limit(self.x, b) else: upper = indefinite_integral.evalf(b) return upper - lower # if the upper limit is `x`, the answer will be a function if b == self.x: return HolonomicFunction(self.annihilator * D, self.x, a, y0) # if the upper limits is a Number, a numerical value will be returned elif S(b).is_Number: try: s = HolonomicFunction(self.annihilator * D, self.x, a,\ y0).to_expr() indefinite = s.subs(self.x, b) if not isinstance(indefinite, NaN): return indefinite else: return s.limit(self.x, b) except (NotHyperSeriesError, NotPowerSeriesError): return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) return HolonomicFunction(self.annihilator * D, self.x) def diff(self, *args, **kwargs): r""" Differentiation of the given Holonomic function. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() cos(x) >>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() 2*exp(2*x) See Also ======== .integrate() """ kwargs.setdefault('evaluate', True) if args: if args[0] != self.x: return S.Zero elif len(args) == 2: sol = self for i in range(args[1]): sol = sol.diff(args[0]) return sol ann = self.annihilator # if the function is constant. if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: return S.Zero # if the coefficient of y in the differential equation is zero. # a shifting is done to compute the answer in this case. elif ann.listofpoly[0] == ann.parent.base.zero: sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) if self._have_init_cond(): # if ordinary initial condition if self.is_singularics() == False: return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) # TODO: support for singular initial condition return HolonomicFunction(sol, self.x) else: return HolonomicFunction(sol, self.x) # the general algorithm R = ann.parent.base K = R.get_field() seq_dmf = [K.new(i.rep) for i in ann.listofpoly] # -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0 rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] rhs.insert(0, K.zero) # differentiate both lhs and rhs sol = _derivate_diff_eq(rhs) # add the term y' in lhs to rhs sol = _add_lists(sol, [K.zero, K.one]) sol = _normalize(sol[1:], self.annihilator.parent, negative=False) if not self._have_init_cond() or self.is_singularics() == True: return HolonomicFunction(sol, self.x) y0 = _extend_y0(self, sol.order + 1)[1:] return HolonomicFunction(sol, self.x, self.x0, y0) def __eq__(self, other): if self.annihilator == other.annihilator: if self.x == other.x: if self._have_init_cond() and other._have_init_cond(): if self.x0 == other.x0 and self.y0 == other.y0: return True else: return False else: return True else: return False else: return False def __mul__(self, other): ann_self = self.annihilator if not isinstance(other, HolonomicFunction): other = sympify(other) if other.has(self.x): raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") if not self._have_init_cond(): return self else: y0 = _extend_y0(self, ann_self.order) y1 = [] for j in y0: y1.append((Poly.new(j, self.x) * other).rep) return HolonomicFunction(ann_self, self.x, self.x0, y1) if self.annihilator.parent.base != other.annihilator.parent.base: a, b = self.unify(other) return a * b ann_other = other.annihilator list_self = [] list_other = [] a = ann_self.order b = ann_other.order R = ann_self.parent.base K = R.get_field() for j in ann_self.listofpoly: list_self.append(K.new(j.rep)) for j in ann_other.listofpoly: list_other.append(K.new(j.rep)) # will be used to reduce the degree self_red = [-list_self[i] / list_self[a] for i in range(a)] other_red = [-list_other[i] / list_other[b] for i in range(b)] # coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g) coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)] coeff_mul[0][0] = K.one # making the ansatz lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose() homo_sys = DomainMatrix.zeros((a*b, 1), K) sol = _find_nonzero_solution(lin_sys, homo_sys) # until a non trivial solution is found while sol.is_zero_matrix: # updating the coefficients Dx^i(f).Dx^j(g) for next degree for i in range(a - 1, -1, -1): for j in range(b - 1, -1, -1): coeff_mul[i][j + 1] += coeff_mul[i][j] coeff_mul[i + 1][j] += coeff_mul[i][j] if isinstance(coeff_mul[i][j], K.dtype): coeff_mul[i][j] = DMFdiff(coeff_mul[i][j]) else: coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) # reduce the terms to lower power using annihilators of f, g for i in range(a + 1): if not coeff_mul[i][b].is_zero: for j in range(b): coeff_mul[i][j] += other_red[j] * \ coeff_mul[i][b] coeff_mul[i][b] = K.zero # not d2 + 1, as that is already covered in previous loop for j in range(b): if not coeff_mul[a][j] == 0: for i in range(a): coeff_mul[i][j] += self_red[i] * \ coeff_mul[a][j] coeff_mul[a][j] = K.zero lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose() sol = _find_nonzero_solution(lin_sys, homo_sys) sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False) if not (self._have_init_cond() and other._have_init_cond()): return HolonomicFunction(sol_ann, self.x) if self.is_singularics() == False and other.is_singularics() == False: # if both the conditions are at same point if self.x0 == other.x0: # try to find more initial conditions y0_self = _extend_y0(self, sol_ann.order) y0_other = _extend_y0(other, sol_ann.order) # h(x0) = f(x0) * g(x0) y0 = [y0_self[0] * y0_other[0]] # coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg) for i in range(1, min(len(y0_self), len(y0_other))): coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] for j in range(i + 1): for k in range(i + 1): if j + k == i: coeff[j][k] = binomial(i, j) sol = 0 for j in range(i + 1): for k in range(i + 1): sol += coeff[j][k]* y0_self[j] * y0_other[k] y0.append(sol) return HolonomicFunction(sol_ann, self.x, self.x0, y0) # if the points are different, consider one else: selfat0 = self.annihilator.is_singular(0) otherat0 = other.annihilator.is_singular(0) if self.x0 == 0 and not selfat0 and not otherat0: return self * other.change_ics(0) elif other.x0 == 0 and not selfat0 and not otherat0: return self.change_ics(0) * other else: selfatx0 = self.annihilator.is_singular(self.x0) otheratx0 = other.annihilator.is_singular(self.x0) if not selfatx0 and not otheratx0: return self * other.change_ics(self.x0) else: return self.change_ics(other.x0) * other if self.x0 != other.x0: return HolonomicFunction(sol_ann, self.x) # if the functions have singular_ics y1 = None y2 = None if self.is_singularics() == False and other.is_singularics() == True: _y0 = [j / factorial(i) for i, j in enumerate(self.y0)] y1 = {S.Zero: _y0} y2 = other.y0 elif self.is_singularics() == True and other.is_singularics() == False: _y0 = [j / factorial(i) for i, j in enumerate(other.y0)] y1 = self.y0 y2 = {S.Zero: _y0} elif self.is_singularics() == True and other.is_singularics() == True: y1 = self.y0 y2 = other.y0 y0 = {} # multiply every possible pair of the series terms for i in y1: for j in y2: k = min(len(y1[i]), len(y2[j])) c = [] for a in range(k): s = S.Zero for b in range(a + 1): s += y1[i][b] * y2[j][a - b] c.append(s) if not i + j in y0: y0[i + j] = c else: y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] return HolonomicFunction(sol_ann, self.x, self.x0, y0) __rmul__ = __mul__ def __sub__(self, other): return self + other * -1 def __rsub__(self, other): return self * -1 + other def __neg__(self): return -1 * self def __truediv__(self, other): return self * (S.One / other) def __pow__(self, n): if self.annihilator.order <= 1: ann = self.annihilator parent = ann.parent if self.y0 is None: y0 = None else: y0 = [list(self.y0)[0] ** n] p0 = ann.listofpoly[0] p1 = ann.listofpoly[1] p0 = (Poly.new(p0, self.x) * n).rep sol = [parent.base.to_sympy(i) for i in [p0, p1]] dd = DifferentialOperator(sol, parent) return HolonomicFunction(dd, self.x, self.x0, y0) if n < 0: raise NotHolonomicError("Negative Power on a Holonomic Function") if n == 0: Dx = self.annihilator.parent.derivative_operator return HolonomicFunction(Dx, self.x, S.Zero, [S.One]) if n == 1: return self else: if n % 2 == 1: powreduce = self**(n - 1) return powreduce * self elif n % 2 == 0: powreduce = self**(n / 2) return powreduce * powreduce def degree(self): """ Returns the highest power of `x` in the annihilator. """ sol = [i.degree() for i in self.annihilator.listofpoly] return max(sol) def composition(self, expr, *args, **kwargs): """ Returns function after composition of a holonomic function with an algebraic function. The method cannot compute initial conditions for the result by itself, so they can be also be provided. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) >>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) See Also ======== from_hyper() """ R = self.annihilator.parent a = self.annihilator.order diff = expr.diff(self.x) listofpoly = self.annihilator.listofpoly for i, j in enumerate(listofpoly): if isinstance(j, self.annihilator.parent.base.dtype): listofpoly[i] = self.annihilator.parent.base.to_sympy(j) r = listofpoly[a].subs({self.x:expr}) subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a)) coeffs[0] = S.One system = [coeffs] homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose() while True: coeffs_next = [p.diff(self.x) for p in coeffs] for i in range(a - 1): coeffs_next[i + 1] += (coeffs[i] * diff) for i in range(a): coeffs_next[i] += (coeffs[-1] * subs[i] * diff) coeffs = coeffs_next # check for linear relations system.append(coeffs) sol, taus = (Matrix(system).transpose() ).gauss_jordan_solve(homogeneous) if sol.is_zero_matrix is not True: break tau = list(taus)[0] sol = sol.subs(tau, 1) sol = _normalize(sol[0:], R, negative=False) # if initial conditions are given for the resulting function if args: return HolonomicFunction(sol, self.x, args[0], args[1]) return HolonomicFunction(sol, self.x) def to_sequence(self, lb=True): r""" Finds recurrence relation for the coefficients in the series expansion of the function about :math:`x_0`, where :math:`x_0` is the point at which the initial condition is stored. Explanation =========== If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the smallest ``n`` for which the recurrence holds true. If the point :math:`x_0` is regular singular, a list of solutions in the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. Each tuple in this vector represents a recurrence relation :math:`R` associated with a root of the indicial equation ``p``. Conditions of a different format can also be provided in this case, see the docstring of HolonomicFunction class. If it's not possible to numerically compute a initial condition, it is returned as a symbol :math:`C_j`, denoting the coefficient of :math:`(x - x_0)^j` in the power series about :math:`x_0`. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() [(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] >>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() [(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] >>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() [(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] See Also ======== HolonomicFunction.series() References ========== .. [1] https://hal.inria.fr/inria-00070025/document .. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf """ if self.x0 != 0: return self.shift_x(self.x0).to_sequence() # check whether a power series exists if the point is singular if self.annihilator.is_singular(self.x0): return self._frobenius(lb=lb) dict1 = {} n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') # substituting each term of the form `x^k Dx^j` in the # annihilator, according to the formula below: # x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo)) # for explanation see [2]. for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k) in dict1: dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) else: dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = self.degree() # the recurrence relation holds for all values of # n greater than smallest_n, i.e. n >= smallest_n smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] # an appropriate shift of the recurrence for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n y0 = _extend_y0(self, order) u0 = [] # u(n) = y^n(0)/factorial(n) for i, j in enumerate(y0): u0.append(j / factorial(i)) # if sufficient conditions can't be computed then # try to use the series method i.e. # equate the coefficients of x^k in the equation formed by # substituting the series in differential equation, to zero. if len(u0) < order: for i in range(degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] for i in range(len(u0), order): if i not in dummys: dummys[i] = Symbol('C_%s' %i) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: return [(HolonomicSequence(sol, u0), smallest_n)] return [HolonomicSequence(sol, u0)] def _frobenius(self, lb=True): # compute the roots of indicial equation indicialroots = self._indicial() reals = [] compl = [] for i in ordered(indicialroots.keys()): if i.is_real: reals.extend([i] * indicialroots[i]) else: a, b = i.as_real_imag() compl.extend([(i, a, b)] * indicialroots[i]) # sort the roots for a fixed ordering of solution compl.sort(key=lambda x : x[1]) compl.sort(key=lambda x : x[2]) reals.sort() # grouping the roots, roots differ by an integer are put in the same group. grp = [] for i in reals: intdiff = False if len(grp) == 0: grp.append([i]) continue for j in grp: if int(j[0] - i) == j[0] - i: j.append(i) intdiff = True break if not intdiff: grp.append([i]) # True if none of the roots differ by an integer i.e. # each element in group have only one member independent = True if all(len(i) == 1 for i in grp) else False allpos = all(i >= 0 for i in reals) allint = all(int(i) == i for i in reals) # if initial conditions are provided # then use them. if self.is_singularics() == True: rootstoconsider = [] for i in ordered(self.y0.keys()): for j in ordered(indicialroots.keys()): if j == i: rootstoconsider.append(i) elif allpos and allint: rootstoconsider = [min(reals)] elif independent: rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] elif not allint: rootstoconsider = [] for i in reals: if not int(i) == i: rootstoconsider.append(i) elif not allpos: if not self._have_init_cond() or S(self.y0[0]).is_finite == False: rootstoconsider = [min(reals)] else: posroots = [] for i in reals: if i >= 0: posroots.append(i) rootstoconsider = [min(posroots)] n = Symbol('n', integer=True) dom = self.annihilator.parent.base.dom R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') finalsol = [] char = ord('C') for p in rootstoconsider: dict1 = {} for i, j in enumerate(self.annihilator.listofpoly): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 for k in range(degree + 1): coeff = listofdmp[degree - k] if coeff == 0: continue if (i - k, k - i) in dict1: dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) else: dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) sol = [] keylist = [i[0] for i in dict1] lower = min(keylist) upper = max(keylist) degree = max([i[1] for i in dict1]) degree2 = min([i[1] for i in dict1]) smallest_n = lower + degree dummys = {} eqs = [] unknowns = [] for j in range(lower, upper + 1): if j in keylist: temp = S.Zero for k in dict1.keys(): if k[0] == j: temp += dict1[k].subs(n, n - lower) sol.append(temp) else: sol.append(S.Zero) # the recurrence relation sol = RecurrenceOperator(sol, R) # computing the initial conditions for recurrence order = sol.order all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') all_roots = all_roots.keys() if all_roots: max_root = max(all_roots) + 1 smallest_n = max(max_root, smallest_n) order += smallest_n u0 = [] if self.is_singularics() == True: u0 = self.y0[p] elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: y0 = _extend_y0(self, order + int(p)) # u(n) = y^n(0)/factorial(n) if len(y0) > int(p): for i in range(int(p), len(y0)): u0.append(y0[i] / factorial(i)) if len(u0) < order: for i in range(degree2, degree): eq = S.Zero for j in dict1: if i + j[0] < 0: dummys[i + j[0]] = S.Zero elif i + j[0] < len(u0): dummys[i + j[0]] = u0[i + j[0]] elif not i + j[0] in dummys: letter = chr(char) + '_%s' %(i + j[0]) dummys[i + j[0]] = Symbol(letter) unknowns.append(dummys[i + j[0]]) if j[1] <= i: eq += dict1[j].subs(n, i) * dummys[i + j[0]] eqs.append(eq) # solve the system of equations formed soleqs = solve(eqs, *unknowns) if isinstance(soleqs, dict): for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) if dummys[i] in soleqs: u0.append(soleqs[dummys[i]]) else: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) continue else: finalsol.append((HolonomicSequence(sol, u0), p)) continue for i in range(len(u0), order): if i not in dummys: letter = chr(char) + '_%s' %i dummys[i] = Symbol(letter) s = False for j in soleqs: if dummys[i] in j: u0.append(j[dummys[i]]) s = True if not s: u0.append(dummys[i]) if lb: finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) else: finalsol.append((HolonomicSequence(sol, u0), p)) char += 1 return finalsol def series(self, n=6, coefficient=False, order=True, _recur=None): r""" Finds the power series expansion of given holonomic function about :math:`x_0`. Explanation =========== A list of series might be returned if :math:`x_0` is a regular point with multiple roots of the indicial equation. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') >>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x 1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) See Also ======== HolonomicFunction.to_sequence() """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = [] for i in recurrence: sol.append(self.series(_recur=i)) return sol n = n - int(constantpower) l = len(recurrence.u0) - 1 k = recurrence.recurrence.order x = self.x x0 = self.x0 seq_dmp = recurrence.recurrence.listofpoly R = recurrence.recurrence.parent.base K = R.get_field() seq = [] for i, j in enumerate(seq_dmp): seq.append(K.new(j.rep)) sub = [-seq[i] / seq[k] for i in range(k)] sol = [i for i in recurrence.u0] if l + 1 >= n: pass else: # use the initial conditions to find the next term for i in range(l + 1 - k, n - k): coeff = S.Zero for j in range(k): if i + j >= 0: coeff += DMFsubs(sub[j], i) * sol[i + j] sol.append(coeff) if coefficient: return sol ser = S.Zero for i, j in enumerate(sol): ser += x**(i + constantpower) * j if order: ser += Order(x**(n + int(constantpower)), x) if x0 != 0: return ser.subs(x, x - x0) return ser def _indicial(self): """ Computes roots of the Indicial equation. """ if self.x0 != 0: return self.shift_x(self.x0)._indicial() list_coeff = self.annihilator.listofpoly R = self.annihilator.parent.base x = self.x s = R.zero y = R.one def _pole_degree(poly): root_all = roots(R.to_sympy(poly), x, filter='Z') if 0 in root_all.keys(): return root_all[0] else: return 0 degree = [j.degree() for j in list_coeff] degree = max(degree) inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) deg = lambda q: inf if q.is_zero else _pole_degree(q) b = deg(list_coeff[0]) for j in range(1, len(list_coeff)): b = min(b, deg(list_coeff[j]) - j) for i, j in enumerate(list_coeff): listofdmp = j.all_coeffs() degree = len(listofdmp) - 1 if - i - b <= 0 and degree - i - b >= 0: s = s + listofdmp[degree - i - b] * y y *= x - i return roots(R.to_sympy(s), x) def evalf(self, points, method='RK4', h=0.05, derivatives=False): r""" Finds numerical value of a holonomic function using numerical methods. (RK4 by default). A set of points (real or complex) must be provided which will be the path for the numerical integration. Explanation =========== The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical values will be computed at each point in this order :math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`. Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import QQ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') A straight line on the real axis from (0 to 1) >>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] Runge-Kutta 4th order on e^x from 0.1 to 1. Exact solution at 1 is 2.71828182845905 >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) [1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, 1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, 2.45960141378007, 2.71827974413517] Euler's method for the same >>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') [1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, 2.357947691, 2.5937424601] One can also observe that the value obtained using Runge-Kutta 4th order is much more accurate than Euler's method. """ from sympy.holonomic.numerical import _evalf lp = False # if a point `b` is given instead of a mesh if not hasattr(points, "__iter__"): lp = True b = S(points) if self.x0 == b: return _evalf(self, [b], method=method, derivatives=derivatives)[-1] if not b.is_Number: raise NotImplementedError a = self.x0 if a > b: h = -h n = int((b - a) / h) points = [a + h] for i in range(n - 1): points.append(points[-1] + h) for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): if i == self.x0 or i in points: raise SingularityError(self, i) if lp: return _evalf(self, points, method=method, derivatives=derivatives)[-1] return _evalf(self, points, method=method, derivatives=derivatives) def change_x(self, z): """ Changes only the variable of Holonomic Function, for internal purposes. For composition use HolonomicFunction.composition() """ dom = self.annihilator.parent.base.dom R = dom.old_poly_ring(z) parent, _ = DifferentialOperators(R, 'Dx') sol = [] for j in self.annihilator.listofpoly: sol.append(R(j.rep)) sol = DifferentialOperator(sol, parent) return HolonomicFunction(sol, z, self.x0, self.y0) def shift_x(self, a): """ Substitute `x + a` for `x`. """ x = self.x listaftershift = self.annihilator.listofpoly base = self.annihilator.parent.base sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] sol = DifferentialOperator(sol, self.annihilator.parent) x0 = self.x0 - a if not self._have_init_cond(): return HolonomicFunction(sol, x) return HolonomicFunction(sol, x, x0, self.y0) def to_hyper(self, as_list=False, _recur=None): r""" Returns a hypergeometric function (or linear combination of them) representing the given holonomic function. Explanation =========== Returns an answer of the form: `a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots` This is very useful as one can now use ``hyperexpand`` to find the symbolic expressions/functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> # sin(x) >>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() x*hyper((), (3/2,), -x**2/4) >>> # exp(x) >>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() hyper((), (), x) See Also ======== from_hyper, from_meijerg """ if _recur is None: recurrence = self.to_sequence() else: recurrence = _recur if isinstance(recurrence, tuple) and len(recurrence) == 2: smallest_n = recurrence[1] recurrence = recurrence[0] constantpower = 0 elif isinstance(recurrence, tuple) and len(recurrence) == 3: smallest_n = recurrence[2] constantpower = recurrence[1] recurrence = recurrence[0] elif len(recurrence) == 1 and len(recurrence[0]) == 2: smallest_n = recurrence[0][1] recurrence = recurrence[0][0] constantpower = 0 elif len(recurrence) == 1 and len(recurrence[0]) == 3: smallest_n = recurrence[0][2] constantpower = recurrence[0][1] recurrence = recurrence[0][0] else: sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) for i in recurrence[1:]: sol += self.to_hyper(as_list=as_list, _recur=i) return sol u0 = recurrence.u0 r = recurrence.recurrence x = self.x x0 = self.x0 # order of the recurrence relation m = r.order # when no recurrence exists, and the power series have finite terms if m == 0: nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') sol = S.Zero for j, i in enumerate(nonzeroterms): if i < 0 or int(i) != i: continue i = int(i) if i < len(u0): if isinstance(u0[i], (PolyElement, FracElement)): u0[i] = u0[i].as_expr() sol += u0[i] * x**i else: sol += Symbol('C_%s' %j) * x**i if isinstance(sol, (PolyElement, FracElement)): sol = sol.as_expr() * x**constantpower else: sol = sol * x**constantpower if as_list: if x0 != 0: return [(sol.subs(x, x - x0), )] return [(sol, )] if x0 != 0: return sol.subs(x, x - x0) return sol if smallest_n + m > len(u0): raise NotImplementedError("Can't compute sufficient Initial Conditions") # check if the recurrence represents a hypergeometric series is_hyper = True for i in range(1, len(r.listofpoly)-1): if r.listofpoly[i] != r.parent.base.zero: is_hyper = False break if not is_hyper: raise NotHyperSeriesError(self, self.x0) a = r.listofpoly[0] b = r.listofpoly[-1] # the constant multiple of argument of hypergeometric function if isinstance(a.rep[0], (PolyElement, FracElement)): c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree())) else: c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree())) sol = 0 arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) # iterate through the initial conditions to find # the hypergeometric representation of the given # function. # The answer will be a linear combination # of different hypergeometric series which satisfies # the recurrence. if as_list: listofsol = [] for i in range(smallest_n + m): # if the recurrence relation doesn't hold for `n = i`, # then a Hypergeometric representation doesn't exist. # add the algebraic term a * x**i to the solution, # where a is u0[i] if i < smallest_n: if as_list: listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) else: sol += S(u0[i]) * x**i continue # if the coefficient u0[i] is zero, then the # independent hypergeomtric series starting with # x**i is not a part of the answer. if S(u0[i]) == 0: continue ap = [] bq = [] # substitute m * n + i for n for k in ordered(arg1.keys()): ap.extend([nsimplify((i - k) / m)] * arg1[k]) for k in ordered(arg2.keys()): bq.extend([nsimplify((i - k) / m)] * arg2[k]) # convention of (k + 1) in the denominator if 1 in bq: bq.remove(1) else: ap.append(1) if as_list: listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) else: sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i if as_list: return listofsol sol = sol * x**constantpower if x0 != 0: return sol.subs(x, x - x0) return sol def to_expr(self): """ Converts a Holonomic Function back to elementary functions. Examples ======== >>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators >>> from sympy.polys.domains import ZZ >>> from sympy import symbols, S >>> x = symbols('x') >>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') >>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() besselj(1, x) >>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() x*log(x + 1) + log(x + 1) + 1 """ return hyperexpand(self.to_hyper()).simplify() def change_ics(self, b, lenics=None): """ Changes the point `x0` to ``b`` for initial conditions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import symbols, sin, exp >>> x = symbols('x') >>> expr_to_holonomic(sin(x)).change_ics(1) HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) >>> expr_to_holonomic(exp(x)).change_ics(2) HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) """ symbolic = True if lenics is None and len(self.y0) > self.annihilator.order: lenics = len(self.y0) dom = self.annihilator.parent.base.domain try: sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) except (NotPowerSeriesError, NotHyperSeriesError): symbolic = False if symbolic and sol.x0 == b: return sol y0 = self.evalf(b, derivatives=True) return HolonomicFunction(self.annihilator, self.x, b, y0) def to_meijerg(self): """ Returns a linear combination of Meijer G-functions. Examples ======== >>> from sympy.holonomic import expr_to_holonomic >>> from sympy import sin, cos, hyperexpand, log, symbols >>> x = symbols('x') >>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) sin(x) + cos(x) >>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() log(x) See Also ======== to_hyper() """ # convert to hypergeometric first rep = self.to_hyper(as_list=True) sol = S.Zero for i in rep: if len(i) == 1: sol += i[0] elif len(i) == 2: sol += i[0] * _hyper_to_meijerg(i[1]) return sol def from_hyper(func, x0=0, evalf=False): r""" Converts a hypergeometric function to holonomic. ``func`` is the Hypergeometric Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_hyper >>> from sympy import symbols, hyper, S >>> x = symbols('x') >>> from_hyper(hyper([], [S(3)/2], x**2/4)) HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) """ a = func.ap b = func.bq z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # generalized hypergeometric differential equation r1 = 1 for i in range(len(a)): r1 = r1 * (x * Dx + a[i]) r2 = Dx for i in range(len(b)): r2 = r2 * (x * Dx + b[i] - 1) sol = r1 - r2 simp = hyperexpand(func) if simp in (Infinity, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) # return None if it is Infinite or NaN if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # if the function is known symbolically if not isinstance(simp, hyper): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: # if values don't exist at 0, then try to find initial # conditions at 1. If it doesn't exist at 1 too then # try 2 and so on. x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, hyper): x0 = 1 # use evalf if the function can't be simplified y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): """ Converts a Meijer G-function to Holonomic. ``func`` is the G-Function and ``x0`` is the point at which initial conditions are required. Examples ======== >>> from sympy.holonomic.holonomic import from_meijerg >>> from sympy import symbols, meijerg, S >>> x = symbols('x') >>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) """ a = func.ap b = func.bq n = len(func.an) m = len(func.bm) p = len(a) z = func.args[2] x = z.atoms(Symbol).pop() R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') # compute the differential equation satisfied by the # Meijer G-function. mnp = (-1)**(m + n - p) r1 = x * mnp for i in range(len(a)): r1 *= x * Dx + 1 - a[i] r2 = 1 for i in range(len(b)): r2 *= x * Dx - b[i] sol = r1 - r2 if not initcond: return HolonomicFunction(sol, x).composition(z) simp = hyperexpand(func) if simp in (Infinity, NegativeInfinity): return HolonomicFunction(sol, x).composition(z) def _find_conditions(simp, x, x0, order, evalf=False): y0 = [] for i in range(order): if evalf: val = simp.subs(x, x0).evalf() else: val = simp.subs(x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) simp = simp.diff(x) return y0 # computing initial conditions if not isinstance(simp, meijerg): y0 = _find_conditions(simp, x, x0, sol.order) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order) return HolonomicFunction(sol, x).composition(z, x0, y0) if isinstance(simp, meijerg): x0 = 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) while not y0: x0 += 1 y0 = _find_conditions(simp, x, x0, sol.order, evalf) return HolonomicFunction(sol, x).composition(z, x0, y0) return HolonomicFunction(sol, x).composition(z) x_1 = Dummy('x_1') _lookup_table = None domain_for_table = None from sympy.integrals.meijerint import _mytype def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): """ Converts a function or an expression to a holonomic function. Parameters ========== func: The expression to be converted. x: variable for the function. x0: point at which initial condition must be computed. y0: One can optionally provide initial condition if the method isn't able to do it automatically. lenics: Number of terms in the initial condition. By default it is equal to the order of the annihilator. domain: Ground domain for the polynomials in ``x`` appearing as coefficients in the annihilator. initcond: Set it false if you do not want the initial conditions to be computed. Examples ======== >>> from sympy.holonomic.holonomic import expr_to_holonomic >>> from sympy import sin, exp, symbols >>> x = symbols('x') >>> expr_to_holonomic(sin(x)) HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) >>> expr_to_holonomic(exp(x)) HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) See Also ======== sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table """ func = sympify(func) syms = func.free_symbols if not x: if len(syms) == 1: x= syms.pop() else: raise ValueError("Specify the variable for the function") elif x in syms: syms.remove(x) extra_syms = list(syms) if domain is None: if func.has(Float): domain = RR else: domain = QQ if len(extra_syms) != 0: domain = domain[extra_syms].get_field() # try to convert if the function is polynomial or rational solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) if solpoly: return solpoly # create the lookup table global _lookup_table, domain_for_table if not _lookup_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) elif domain != domain_for_table: domain_for_table = domain _lookup_table = {} _create_table(_lookup_table, domain=domain) # use the table directly to convert to Holonomic if func.is_Function: f = func.subs(x, x_1) t = _mytype(f, x_1) if t in _lookup_table: l = _lookup_table[t] sol = l[0][1].change_x(x) else: sol = _convert_meijerint(func, x, initcond=False, domain=domain) if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) if y0 or not initcond: sol = sol.composition(func.args[0]) if y0: sol.y0 = y0 sol.x0 = x0 return sol if not lenics: lenics = sol.annihilator.order _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return sol.composition(func.args[0], x0, _y0) # iterate through the expression recursively args = func.args f = func.func sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) if f is Add: for i in range(1, len(args)): sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Mul: for i in range(1, len(args)): sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) elif f is Pow: sol = sol**args[1] sol.x0 = x0 if not sol: raise NotImplementedError if y0: sol.y0 = y0 if y0 or not initcond: return sol if sol.y0: return sol if not lenics: lenics = sol.annihilator.order if sol.annihilator.is_singular(x0): r = sol._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol.annihilator, x, x0, y0) _y0 = _find_conditions(func, x, x0, lenics) while not _y0: x0 += 1 _y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol.annihilator, x, x0, _y0) ## Some helper functions ## def _normalize(list_of, parent, negative=True): """ Normalize a given annihilator """ num = [] denom = [] base = parent.base K = base.get_field() lcm_denom = base.from_sympy(S.One) list_of_coeff = [] # convert polynomials to the elements of associated # fraction field for i, j in enumerate(list_of): if isinstance(j, base.dtype): list_of_coeff.append(K.new(j.rep)) elif not isinstance(j, K.dtype): list_of_coeff.append(K.from_sympy(sympify(j))) else: list_of_coeff.append(j) # corresponding numerators of the sequence of polynomials num.append(list_of_coeff[i].numer()) # corresponding denominators denom.append(list_of_coeff[i].denom()) # lcm of denominators in the coefficients for i in denom: lcm_denom = i.lcm(lcm_denom) if negative: lcm_denom = -lcm_denom lcm_denom = K.new(lcm_denom.rep) # multiply the coefficients with lcm for i, j in enumerate(list_of_coeff): list_of_coeff[i] = j * lcm_denom gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep) # gcd of numerators in the coefficients for i in num: gcd_numer = i.gcd(gcd_numer) gcd_numer = K.new(gcd_numer.rep) # divide all the coefficients by the gcd for i, j in enumerate(list_of_coeff): frac_ans = j / gcd_numer list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep) return DifferentialOperator(list_of_coeff, parent) def _derivate_diff_eq(listofpoly): """ Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 where a0, a1,... are polynomials or rational functions. The function returns b0, b1, b2... such that the differential equation b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the former equation. """ sol = [] a = len(listofpoly) - 1 sol.append(DMFdiff(listofpoly[0])) for i, j in enumerate(listofpoly[1:]): sol.append(DMFdiff(j) + listofpoly[i]) sol.append(listofpoly[a]) return sol def _hyper_to_meijerg(func): """ Converts a `hyper` to meijerg. """ ap = func.ap bq = func.bq ispoly = any(i <= 0 and int(i) == i for i in ap) if ispoly: return hyperexpand(func) z = func.args[2] # parameters of the `meijerg` function. an = (1 - i for i in ap) anp = () bm = (S.Zero, ) bmq = (1 - i for i in bq) k = S.One for i in bq: k = k * gamma(i) for i in ap: k = k / gamma(i) return k * meijerg(an, anp, bm, bmq, -z) def _add_lists(list1, list2): """Takes polynomial sequences of two annihilators a and b and returns the list of polynomials of sum of a and b. """ if len(list1) <= len(list2): sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] else: sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] return sol def _extend_y0(Holonomic, n): """ Tries to find more initial conditions by substituting the initial value point in the differential equation. """ if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: return Holonomic.y0 annihilator = Holonomic.annihilator a = annihilator.order listofpoly = [] y0 = Holonomic.y0 R = annihilator.parent.base K = R.get_field() for i, j in enumerate(annihilator.listofpoly): if isinstance(j, annihilator.parent.base.dtype): listofpoly.append(K.new(j.rep)) if len(y0) < a or n <= len(y0): return y0 else: list_red = [-listofpoly[i] / listofpoly[a] for i in range(a)] if len(y0) > a: y1 = [y0[i] for i in range(a)] else: y1 = [i for i in y0] for i in range(n - a): sol = 0 for a, b in zip(y1, list_red): r = DMFsubs(b, Holonomic.x0) if not getattr(r, 'is_finite', True): return y0 if isinstance(r, (PolyElement, FracElement)): r = r.as_expr() sol += a * r y1.append(sol) list_red = _derivate_diff_eq(list_red) return y0 + y1[len(y0):] def DMFdiff(frac): # differentiate a DMF object represented as p/q if not isinstance(frac, DMF): return frac.diff() K = frac.ring p = K.numer(frac) q = K.denom(frac) sol_num = - p * q.diff() + q * p.diff() sol_denom = q**2 return K((sol_num.rep, sol_denom.rep)) def DMFsubs(frac, x0, mpm=False): # substitute the point x0 in DMF object of the form p/q if not isinstance(frac, DMF): return frac p = frac.num q = frac.den sol_p = S.Zero sol_q = S.Zero if mpm: from mpmath import mp for i, j in enumerate(reversed(p)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_p += j * x0**i for i, j in enumerate(reversed(q)): if mpm: j = sympify(j)._to_mpmath(mp.prec) sol_q += j * x0**i if isinstance(sol_p, (PolyElement, FracElement)): sol_p = sol_p.as_expr() if isinstance(sol_q, (PolyElement, FracElement)): sol_q = sol_q.as_expr() return sol_p / sol_q def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): """ Converts polynomials, rationals and algebraic functions to holonomic. """ ispoly = func.is_polynomial() if not ispoly: israt = func.is_rational_function() else: israt = True if not (ispoly or israt): basepoly, ratexp = func.as_base_exp() if basepoly.is_polynomial() and ratexp.is_Number: if isinstance(ratexp, Float): ratexp = nsimplify(ratexp) m, n = ratexp.p, ratexp.q is_alg = True else: is_alg = False else: is_alg = True if not (ispoly or israt or is_alg): return None R = domain.old_poly_ring(x) _, Dx = DifferentialOperators(R, 'Dx') # if the function is constant if not func.has(x): return HolonomicFunction(Dx, x, 0, [func]) if ispoly: # differential equation satisfied by polynomial sol = func * Dx - func.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular: rep = R.from_sympy(func).rep for i, j in enumerate(reversed(rep)): if j == 0: continue else: coeff = list(reversed(rep))[i:] indicial = i break for i, j in enumerate(coeff): if isinstance(j, (PolyElement, FracElement)): coeff[i] = j.as_expr() y0 = {indicial: S(coeff)} elif israt: p, q = func.as_numer_denom() # differential equation satisfied by rational sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) sol = _normalize(sol.listofpoly, sol.parent, negative=False) elif is_alg: sol = n * (x / m) * Dx - 1 sol = HolonomicFunction(sol, x).composition(basepoly).annihilator is_singular = sol.is_singular(x0) # try to compute the conditions for singular points if y0 is None and x0 == 0 and is_singular and \ (lenics is None or lenics <= 1): rep = R.from_sympy(basepoly).rep for i, j in enumerate(reversed(rep)): if j == 0: continue if isinstance(j, (PolyElement, FracElement)): j = j.as_expr() coeff = S(j)**ratexp indicial = S(i) * ratexp break if isinstance(coeff, (PolyElement, FracElement)): coeff = coeff.as_expr() y0 = {indicial: S([coeff])} if y0 or not initcond: return HolonomicFunction(sol, x, x0, y0) if not lenics: lenics = sol.order if sol.is_singular(x0): r = HolonomicFunction(sol, x, x0)._indicial() l = list(r) if len(r) == 1 and r[l[0]] == S.One: r = l[0] g = func / (x - x0)**r singular_ics = _find_conditions(g, x, x0, lenics) singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] y0 = {r:singular_ics} return HolonomicFunction(sol, x, x0, y0) y0 = _find_conditions(func, x, x0, lenics) while not y0: x0 += 1 y0 = _find_conditions(func, x, x0, lenics) return HolonomicFunction(sol, x, x0, y0) def _convert_meijerint(func, x, initcond=True, domain=QQ): args = meijerint._rewrite1(func, x) if args: fac, po, g, _ = args else: return None # lists for sum of meijerg functions fac_list = [fac * i[0] for i in g] t = po.as_base_exp() s = t[1] if t[0] == x else S.Zero po_list = [s + i[1] for i in g] G_list = [i[2] for i in g] # finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z) def _shift(func, s): z = func.args[-1] if z.has(I): z = z.subs(exp_polar, exp) d = z.collect(x, evaluate=False) b = list(d)[0] a = d[b] t = b.as_base_exp() b = t[1] if t[0] == x else S.Zero r = s / b an = (i + r for i in func.args[0][0]) ap = (i + r for i in func.args[0][1]) bm = (i + r for i in func.args[1][0]) bq = (i + r for i in func.args[1][1]) return a**-r, meijerg((an, ap), (bm, bq), z) coeff, m = _shift(G_list[0], po_list[0]) sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) # add all the meijerg functions after converting to holonomic for i in range(1, len(G_list)): coeff, m = _shift(G_list[i], po_list[i]) sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) return sol def _create_table(table, domain=QQ): """ Creates the look-up table. For a similar implementation see meijerint._create_lookup_table. """ def add(formula, annihilator, arg, x0=0, y0=()): """ Adds a formula in the dictionary """ table.setdefault(_mytype(formula, x_1), []).append((formula, HolonomicFunction(annihilator, arg, x0, y0))) R = domain.old_poly_ring(x_1) _, Dx = DifferentialOperators(R, 'Dx') # add some basic functions add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) add(exp(x_1), Dx - 1, x_1, 0, 1) add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) def _find_conditions(func, x, x0, order): y0 = [] for i in range(order): val = func.subs(x, x0) if isinstance(val, NaN): val = limit(func, x, x0) if val.is_finite is False or isinstance(val, NaN): return None y0.append(val) func = func.diff(x) return y0
491d8ef388d5d5b26f154f12c7b57e17ec2573c32640ef6a896b98ff3efd225b
"""Transform a string with Python-like source code into SymPy expression. """ from tokenize import (generate_tokens, untokenize, TokenError, NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE) from keyword import iskeyword import ast import unicodedata from io import StringIO import builtins import types from sympy.assumptions.ask import AssumptionKeys from sympy.core.basic import Basic from sympy.core import Symbol from sympy.core.function import arity, Function from sympy.utilities.iterables import iterable from sympy.utilities.misc import filldedent, func_name from sympy.functions.elementary.miscellaneous import Max, Min def _token_splittable(token): """ Predicate for whether a token name can be split into multiple tokens. A token is splittable if it does not contain an underscore character and it is not the name of a Greek letter. This is used to implicitly convert expressions like 'xyz' into 'x*y*z'. """ if '_' in token: return False else: try: return not unicodedata.lookup('GREEK SMALL LETTER ' + token) except KeyError: pass if len(token) > 1: return True return False def _token_callable(token, local_dict, global_dict, nextToken=None): """ Predicate for whether a token name represents a callable function. Essentially wraps ``callable``, but looks up the token name in the locals and globals. """ func = local_dict.get(token[1]) if not func: func = global_dict.get(token[1]) return callable(func) and not isinstance(func, Symbol) def _add_factorial_tokens(name, result): if result == [] or result[-1][1] == '(': raise TokenError() beginning = [(NAME, name), (OP, '(')] end = [(OP, ')')] diff = 0 length = len(result) for index, token in enumerate(result[::-1]): toknum, tokval = token i = length - index - 1 if tokval == ')': diff += 1 elif tokval == '(': diff -= 1 if diff == 0: if i - 1 >= 0 and result[i - 1][0] == NAME: return result[:i - 1] + beginning + result[i - 1:] + end else: return result[:i] + beginning + result[i:] + end return result class AppliedFunction: """ A group of tokens representing a function and its arguments. `exponent` is for handling the shorthand sin^2, ln^2, etc. """ def __init__(self, function, args, exponent=None): if exponent is None: exponent = [] self.function = function self.args = args self.exponent = exponent self.items = ['function', 'args', 'exponent'] def expand(self): """Return a list of tokens representing the function""" result = [] result.append(self.function) result.extend(self.args) return result def __getitem__(self, index): return getattr(self, self.items[index]) def __repr__(self): return "AppliedFunction(%s, %s, %s)" % (self.function, self.args, self.exponent) class ParenthesisGroup(list): """List of tokens representing an expression in parentheses.""" pass def _flatten(result): result2 = [] for tok in result: if isinstance(tok, AppliedFunction): result2.extend(tok.expand()) else: result2.append(tok) return result2 def _group_parentheses(recursor): def _inner(tokens, local_dict, global_dict): """Group tokens between parentheses with ParenthesisGroup. Also processes those tokens recursively. """ result = [] stacks = [] stacklevel = 0 for token in tokens: if token[0] == OP: if token[1] == '(': stacks.append(ParenthesisGroup([])) stacklevel += 1 elif token[1] == ')': stacks[-1].append(token) stack = stacks.pop() if len(stacks) > 0: # We don't recurse here since the upper-level stack # would reprocess these tokens stacks[-1].extend(stack) else: # Recurse here to handle nested parentheses # Strip off the outer parentheses to avoid an infinite loop inner = stack[1:-1] inner = recursor(inner, local_dict, global_dict) parenGroup = [stack[0]] + inner + [stack[-1]] result.append(ParenthesisGroup(parenGroup)) stacklevel -= 1 continue if stacklevel: stacks[-1].append(token) else: result.append(token) if stacklevel: raise TokenError("Mismatched parentheses") return result return _inner def _apply_functions(tokens, local_dict, global_dict): """Convert a NAME token + ParenthesisGroup into an AppliedFunction. Note that ParenthesisGroups, if not applied to any function, are converted back into lists of tokens. """ result = [] symbol = None for tok in tokens: if tok[0] == NAME: symbol = tok result.append(tok) elif isinstance(tok, ParenthesisGroup): if symbol and _token_callable(symbol, local_dict, global_dict): result[-1] = AppliedFunction(symbol, tok) symbol = None else: result.extend(tok) else: symbol = None result.append(tok) return result def _implicit_multiplication(tokens, local_dict, global_dict): """Implicitly adds '*' tokens. Cases: - Two AppliedFunctions next to each other ("sin(x)cos(x)") - AppliedFunction next to an open parenthesis ("sin x (cos x + 1)") - A close parenthesis next to an AppliedFunction ("(x+2)sin x")\ - A close parenthesis next to an open parenthesis ("(x+2)(x+3)") - AppliedFunction next to an implicitly applied function ("sin(x)cos x") """ result = [] skip = False for tok, nextTok in zip(tokens, tokens[1:]): result.append(tok) if skip: skip = False continue if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME: # Dotted name. Do not do implicit multiplication skip = True continue if (isinstance(tok, AppliedFunction) and isinstance(nextTok, AppliedFunction)): result.append((OP, '*')) elif (isinstance(tok, AppliedFunction) and nextTok[0] == OP and nextTok[1] == '('): # Applied function followed by an open parenthesis if tok.function[1] == "Function": result[-1].function = (result[-1].function[0], 'Symbol') result.append((OP, '*')) elif (tok[0] == OP and tok[1] == ')' and isinstance(nextTok, AppliedFunction)): # Close parenthesis followed by an applied function result.append((OP, '*')) elif (tok[0] == OP and tok[1] == ')' and nextTok[0] == NAME): # Close parenthesis followed by an implicitly applied function result.append((OP, '*')) elif (tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '('): # Close parenthesis followed by an open parenthesis result.append((OP, '*')) elif (isinstance(tok, AppliedFunction) and nextTok[0] == NAME): # Applied function followed by implicitly applied function result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and nextTok[0] == OP and nextTok[1] == '('): # Constant followed by parenthesis result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and nextTok[0] == NAME and not _token_callable(nextTok, local_dict, global_dict)): # Constant followed by constant result.append((OP, '*')) elif (tok[0] == NAME and not _token_callable(tok, local_dict, global_dict) and (isinstance(nextTok, AppliedFunction) or nextTok[0] == NAME)): # Constant followed by (implicitly applied) function result.append((OP, '*')) if tokens: result.append(tokens[-1]) return result def _implicit_application(tokens, local_dict, global_dict): """Adds parentheses as needed after functions.""" result = [] appendParen = 0 # number of closing parentheses to add skip = 0 # number of tokens to delay before adding a ')' (to # capture **, ^, etc.) exponentSkip = False # skipping tokens before inserting parentheses to # work with function exponentiation for tok, nextTok in zip(tokens, tokens[1:]): result.append(tok) if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]): if _token_callable(tok, local_dict, global_dict, nextTok): result.append((OP, '(')) appendParen += 1 # name followed by exponent - function exponentiation elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'): if _token_callable(tok, local_dict, global_dict): exponentSkip = True elif exponentSkip: # if the last token added was an applied function (i.e. the # power of the function exponent) OR a multiplication (as # implicit multiplication would have added an extraneous # multiplication) if (isinstance(tok, AppliedFunction) or (tok[0] == OP and tok[1] == '*')): # don't add anything if the next token is a multiplication # or if there's already a parenthesis (if parenthesis, still # stop skipping tokens) if not (nextTok[0] == OP and nextTok[1] == '*'): if not(nextTok[0] == OP and nextTok[1] == '('): result.append((OP, '(')) appendParen += 1 exponentSkip = False elif appendParen: if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'): skip = 1 continue if skip: skip -= 1 continue result.append((OP, ')')) appendParen -= 1 if tokens: result.append(tokens[-1]) if appendParen: result.extend([(OP, ')')] * appendParen) return result def function_exponentiation(tokens, local_dict, global_dict): """Allows functions to be exponentiated, e.g. ``cos**2(x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, function_exponentiation) >>> transformations = standard_transformations + (function_exponentiation,) >>> parse_expr('sin**4(x)', transformations=transformations) sin(x)**4 """ result = [] exponent = [] consuming_exponent = False level = 0 for tok, nextTok in zip(tokens, tokens[1:]): if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**': if _token_callable(tok, local_dict, global_dict): consuming_exponent = True elif consuming_exponent: if tok[0] == NAME and tok[1] == 'Function': tok = (NAME, 'Symbol') exponent.append(tok) # only want to stop after hitting ) if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(': consuming_exponent = False # if implicit multiplication was used, we may have )*( instead if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(': consuming_exponent = False del exponent[-1] continue elif exponent and not consuming_exponent: if tok[0] == OP: if tok[1] == '(': level += 1 elif tok[1] == ')': level -= 1 if level == 0: result.append(tok) result.extend(exponent) exponent = [] continue result.append(tok) if tokens: result.append(tokens[-1]) if exponent: result.extend(exponent) return result def split_symbols_custom(predicate): """Creates a transformation that splits symbol names. ``predicate`` should return True if the symbol name is to be split. For instance, to retain the default behavior but avoid splitting certain symbol names, a predicate like this would work: >>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable, ... standard_transformations, implicit_multiplication, ... split_symbols_custom) >>> def can_split(symbol): ... if symbol not in ('list', 'of', 'unsplittable', 'names'): ... return _token_splittable(symbol) ... return False ... >>> transformation = split_symbols_custom(can_split) >>> parse_expr('unsplittable', transformations=standard_transformations + ... (transformation, implicit_multiplication)) unsplittable """ def _split_symbols(tokens, local_dict, global_dict): result = [] split = False split_previous=False for tok in tokens: if split_previous: # throw out closing parenthesis of Symbol that was split split_previous=False continue split_previous=False if tok[0] == NAME and tok[1] in ['Symbol', 'Function']: split = True elif split and tok[0] == NAME: symbol = tok[1][1:-1] if predicate(symbol): tok_type = result[-2][1] # Symbol or Function del result[-2:] # Get rid of the call to Symbol i = 0 while i < len(symbol): char = symbol[i] if char in local_dict or char in global_dict: result.append((NAME, "%s" % char)) elif char.isdigit(): char = [char] for i in range(i + 1, len(symbol)): if not symbol[i].isdigit(): i -= 1 break char.append(symbol[i]) char = ''.join(char) result.extend([(NAME, 'Number'), (OP, '('), (NAME, "'%s'" % char), (OP, ')')]) else: use = tok_type if i == len(symbol) else 'Symbol' result.extend([(NAME, use), (OP, '('), (NAME, "'%s'" % char), (OP, ')')]) i += 1 # Set split_previous=True so will skip # the closing parenthesis of the original Symbol split = False split_previous = True continue else: split = False result.append(tok) return result return _split_symbols #: Splits symbol names for implicit multiplication. #: #: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not #: split Greek character names, so ``theta`` will *not* become #: ``t*h*e*t*a``. Generally this should be used with #: ``implicit_multiplication``. split_symbols = split_symbols_custom(_token_splittable) def implicit_multiplication(result, local_dict, global_dict): """Makes the multiplication operator optional in most cases. Use this before :func:`implicit_application`, otherwise expressions like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication) >>> transformations = standard_transformations + (implicit_multiplication,) >>> parse_expr('3 x y', transformations=transformations) 3*x*y """ # These are interdependent steps, so we don't expose them separately for step in (_group_parentheses(implicit_multiplication), _apply_functions, _implicit_multiplication): result = step(result, local_dict, global_dict) result = _flatten(result) return result def implicit_application(result, local_dict, global_dict): """Makes parentheses optional in some cases for function calls. Use this after :func:`implicit_multiplication`, otherwise expressions like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_application) >>> transformations = standard_transformations + (implicit_application,) >>> parse_expr('cot z + csc z', transformations=transformations) cot(z) + csc(z) """ for step in (_group_parentheses(implicit_application), _apply_functions, _implicit_application,): result = step(result, local_dict, global_dict) result = _flatten(result) return result def implicit_multiplication_application(result, local_dict, global_dict): """Allows a slightly relaxed syntax. - Parentheses for single-argument method calls are optional. - Multiplication is implicit. - Symbol names can be split (i.e. spaces are not needed between symbols). - Functions can be exponentiated. Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, implicit_multiplication_application) >>> parse_expr("10sin**2 x**2 + 3xyz + tan theta", ... transformations=(standard_transformations + ... (implicit_multiplication_application,))) 3*x*y*z + 10*sin(x**2)**2 + tan(theta) """ for step in (split_symbols, implicit_multiplication, implicit_application, function_exponentiation): result = step(result, local_dict, global_dict) return result def auto_symbol(tokens, local_dict, global_dict): """Inserts calls to ``Symbol``/``Function`` for undefined variables.""" result = [] prevTok = (None, None) tokens.append((None, None)) # so zip traverses all tokens for tok, nextTok in zip(tokens, tokens[1:]): tokNum, tokVal = tok nextTokNum, nextTokVal = nextTok if tokNum == NAME: name = tokVal if (name in ['True', 'False', 'None'] or iskeyword(name) # Don't convert attribute access or (prevTok[0] == OP and prevTok[1] == '.') # Don't convert keyword arguments or (prevTok[0] == OP and prevTok[1] in ('(', ',') and nextTokNum == OP and nextTokVal == '=') # the name has already been defined or name in local_dict and local_dict[name] is not None): result.append((NAME, name)) continue elif name in local_dict: local_dict.setdefault(None, set()).add(name) if nextTokVal == '(': local_dict[name] = Function(name) else: local_dict[name] = Symbol(name) result.append((NAME, name)) continue elif name in global_dict: obj = global_dict[name] if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj): result.append((NAME, name)) continue result.extend([ (NAME, 'Symbol' if nextTokVal != '(' else 'Function'), (OP, '('), (NAME, repr(str(name))), (OP, ')'), ]) else: result.append((tokNum, tokVal)) prevTok = (tokNum, tokVal) return result def lambda_notation(tokens, local_dict, global_dict): """Substitutes "lambda" with its SymPy equivalent Lambda(). However, the conversion doesn't take place if only "lambda" is passed because that is a syntax error. """ result = [] flag = False toknum, tokval = tokens[0] tokLen = len(tokens) if toknum == NAME and tokval == 'lambda': if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE: # In Python 3.6.7+, inputs without a newline get NEWLINE added to # the tokens result.extend(tokens) elif tokLen > 2: result.extend([ (NAME, 'Lambda'), (OP, '('), (OP, '('), (OP, ')'), (OP, ')'), ]) for tokNum, tokVal in tokens[1:]: if tokNum == OP and tokVal == ':': tokVal = ',' flag = True if not flag and tokNum == OP and tokVal in ('*', '**'): raise TokenError("Starred arguments in lambda not supported") if flag: result.insert(-1, (tokNum, tokVal)) else: result.insert(-2, (tokNum, tokVal)) else: result.extend(tokens) return result def factorial_notation(tokens, local_dict, global_dict): """Allows standard notation for factorial.""" result = [] nfactorial = 0 for toknum, tokval in tokens: if toknum == ERRORTOKEN: op = tokval if op == '!': nfactorial += 1 else: nfactorial = 0 result.append((OP, op)) else: if nfactorial == 1: result = _add_factorial_tokens('factorial', result) elif nfactorial == 2: result = _add_factorial_tokens('factorial2', result) elif nfactorial > 2: raise TokenError nfactorial = 0 result.append((toknum, tokval)) return result def convert_xor(tokens, local_dict, global_dict): """Treats XOR, ``^``, as exponentiation, ``**``.""" result = [] for toknum, tokval in tokens: if toknum == OP: if tokval == '^': result.append((OP, '**')) else: result.append((toknum, tokval)) else: result.append((toknum, tokval)) return result def repeated_decimals(tokens, local_dict, global_dict): """ Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90) Run this before auto_number. """ result = [] def is_digit(s): return all(i in '0123456789_' for i in s) # num will running match any DECIMAL [ INTEGER ] num = [] for toknum, tokval in tokens: if toknum == NUMBER: if (not num and '.' in tokval and 'e' not in tokval.lower() and 'j' not in tokval.lower()): num.append((toknum, tokval)) elif is_digit(tokval)and len(num) == 2: num.append((toknum, tokval)) elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]): # Python 2 tokenizes 00123 as '00', '123' # Python 3 tokenizes 01289 as '012', '89' num.append((toknum, tokval)) else: num = [] elif toknum == OP: if tokval == '[' and len(num) == 1: num.append((OP, tokval)) elif tokval == ']' and len(num) >= 3: num.append((OP, tokval)) elif tokval == '.' and not num: # handle .[1] num.append((NUMBER, '0.')) else: num = [] else: num = [] result.append((toknum, tokval)) if num and num[-1][1] == ']': # pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post, # and d/e = repetend result = result[:-len(num)] pre, post = num[0][1].split('.') repetend = num[2][1] if len(num) == 5: repetend += num[3][1] pre = pre.replace('_', '') post = post.replace('_', '') repetend = repetend.replace('_', '') zeros = '0'*len(post) post, repetends = [w.lstrip('0') for w in [post, repetend]] # or else interpreted as octal a = pre or '0' b, c = post or '0', '1' + zeros d, e = repetends, ('9'*len(repetend)) + zeros seq = [ (OP, '('), (NAME, 'Integer'), (OP, '('), (NUMBER, a), (OP, ')'), (OP, '+'), (NAME, 'Rational'), (OP, '('), (NUMBER, b), (OP, ','), (NUMBER, c), (OP, ')'), (OP, '+'), (NAME, 'Rational'), (OP, '('), (NUMBER, d), (OP, ','), (NUMBER, e), (OP, ')'), (OP, ')'), ] result.extend(seq) num = [] return result def auto_number(tokens, local_dict, global_dict): """ Converts numeric literals to use SymPy equivalents. Complex numbers use ``I``, integer literals use ``Integer``, and float literals use ``Float``. """ result = [] for toknum, tokval in tokens: if toknum == NUMBER: number = tokval postfix = [] if number.endswith('j') or number.endswith('J'): number = number[:-1] postfix = [(OP, '*'), (NAME, 'I')] if '.' in number or (('e' in number or 'E' in number) and not (number.startswith('0x') or number.startswith('0X'))): seq = [(NAME, 'Float'), (OP, '('), (NUMBER, repr(str(number))), (OP, ')')] else: seq = [(NAME, 'Integer'), (OP, '('), ( NUMBER, number), (OP, ')')] result.extend(seq + postfix) else: result.append((toknum, tokval)) return result def rationalize(tokens, local_dict, global_dict): """Converts floats into ``Rational``. Run AFTER ``auto_number``.""" result = [] passed_float = False for toknum, tokval in tokens: if toknum == NAME: if tokval == 'Float': passed_float = True tokval = 'Rational' result.append((toknum, tokval)) elif passed_float == True and toknum == NUMBER: passed_float = False result.append((STRING, tokval)) else: result.append((toknum, tokval)) return result def _transform_equals_sign(tokens, local_dict, global_dict): """Transforms the equals sign ``=`` to instances of Eq. This is a helper function for ``convert_equals_signs``. Works with expressions containing one equals sign and no nesting. Expressions like ``(1=2)=False`` will not work with this and should be used with ``convert_equals_signs``. Examples: 1=2 to Eq(1,2) 1*2=x to Eq(1*2, x) This does not deal with function arguments yet. """ result = [] if (OP, "=") in tokens: result.append((NAME, "Eq")) result.append((OP, "(")) for index, token in enumerate(tokens): if token == (OP, "="): result.append((OP, ",")) continue result.append(token) result.append((OP, ")")) else: result = tokens return result def convert_equals_signs(result, local_dict, global_dict): """ Transforms all the equals signs ``=`` to instances of Eq. Parses the equals signs in the expression and replaces them with appropriate Eq instances. Also works with nested equals signs. Does not yet play well with function arguments. For example, the expression ``(x=y)`` is ambiguous and can be interpreted as x being an argument to a function and ``convert_equals_signs`` will not work for this. See also ======== convert_equality_operators Examples ======== >>> from sympy.parsing.sympy_parser import (parse_expr, ... standard_transformations, convert_equals_signs) >>> parse_expr("1*2=x", transformations=( ... standard_transformations + (convert_equals_signs,))) Eq(2, x) >>> parse_expr("(1*2=x)=False", transformations=( ... standard_transformations + (convert_equals_signs,))) Eq(Eq(2, x), False) """ for step in (_group_parentheses(convert_equals_signs), _apply_functions, _transform_equals_sign): result = step(result, local_dict, global_dict) result = _flatten(result) return result #: Standard transformations for :func:`parse_expr`. #: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy #: datatypes and allows the use of standard factorial notation (e.g. ``x!``). standard_transformations = (lambda_notation, auto_symbol, repeated_decimals, auto_number, factorial_notation) def stringify_expr(s, local_dict, global_dict, transformations): """ Converts the string ``s`` to Python code, in ``local_dict`` Generally, ``parse_expr`` should be used. """ tokens = [] input_code = StringIO(s.strip()) for toknum, tokval, _, _, _ in generate_tokens(input_code.readline): tokens.append((toknum, tokval)) for transform in transformations: tokens = transform(tokens, local_dict, global_dict) return untokenize(tokens) def eval_expr(code, local_dict, global_dict): """ Evaluate Python code generated by ``stringify_expr``. Generally, ``parse_expr`` should be used. """ expr = eval( code, global_dict, local_dict) # take local objects in preference return expr def parse_expr(s, local_dict=None, transformations=standard_transformations, global_dict=None, evaluate=True): """Converts the string ``s`` to a SymPy expression, in ``local_dict`` Parameters ========== s : str The string to parse. local_dict : dict, optional A dictionary of local variables to use when parsing. global_dict : dict, optional A dictionary of global variables. By default, this is initialized with ``from sympy import *``; provide this parameter to override this behavior (for instance, to parse ``"Q & S"``). transformations : tuple or str, optional A tuple of transformation functions used to modify the tokens of the parsed expression before evaluation. The default transformations convert numeric literals into their SymPy equivalents, convert undefined variables into SymPy symbols, and allow the use of standard mathematical factorial notation (e.g. ``x!``). Selection via string is available (see below). evaluate : bool, optional When False, the order of the arguments will remain as they were in the string and automatic simplification that would normally occur is suppressed. (see examples) Examples ======== >>> from sympy.parsing.sympy_parser import parse_expr >>> parse_expr("1/2") 1/2 >>> type(_) <class 'sympy.core.numbers.Half'> >>> from sympy.parsing.sympy_parser import standard_transformations,\\ ... implicit_multiplication_application >>> transformations = (standard_transformations + ... (implicit_multiplication_application,)) >>> parse_expr("2x", transformations=transformations) 2*x When evaluate=False, some automatic simplifications will not occur: >>> parse_expr("2**3"), parse_expr("2**3", evaluate=False) (8, 2**3) In addition the order of the arguments will not be made canonical. This feature allows one to tell exactly how the expression was entered: >>> a = parse_expr('1 + x', evaluate=False) >>> b = parse_expr('x + 1', evaluate=0) >>> a == b False >>> a.args (1, x) >>> b.args (x, 1) Note, however, that when these expressions are printed they will appear the same: >>> assert str(a) == str(b) As a convenience, transformations can be seen by printing ``transformations``: >>> from sympy.parsing.sympy_parser import transformations >>> print(transformations) 0: lambda_notation 1: auto_symbol 2: repeated_decimals 3: auto_number 4: factorial_notation 5: implicit_multiplication_application 6: convert_xor 7: implicit_application 8: implicit_multiplication 9: convert_equals_signs 10: function_exponentiation 11: rationalize The ``T`` object provides a way to select these transformations: >>> from sympy.parsing.sympy_parser import T If you print it, you will see the same list as shown above. >>> str(T) == str(transformations) True Standard slicing will return a tuple of transformations: >>> T[:5] == standard_transformations True So ``T`` can be used to specify the parsing transformations: >>> parse_expr("2x", transformations=T[:5]) Traceback (most recent call last): ... SyntaxError: invalid syntax >>> parse_expr("2x", transformations=T[:6]) 2*x >>> parse_expr('.3', transformations=T[3, 11]) 3/10 >>> parse_expr('.3x', transformations=T[:]) 3*x/10 As a further convenience, strings 'implicit' and 'all' can be used to select 0-5 and all the transformations, respectively. >>> parse_expr('.3x', transformations='all') 3*x/10 See Also ======== stringify_expr, eval_expr, standard_transformations, implicit_multiplication_application """ if local_dict is None: local_dict = {} elif not isinstance(local_dict, dict): raise TypeError('expecting local_dict to be a dict') if global_dict is None: global_dict = {} exec('from sympy import *', global_dict) elif not isinstance(global_dict, dict): raise TypeError('expecting global_dict to be a dict') transformations = transformations or () if type(transformations) is str: if transformations == 'all': transformations = T[:] elif transformations == 'implicit': transformations = T[:6] else: raise ValueError('unknown transformation group name') if transformations: if not iterable(transformations): raise TypeError( '`transformations` should be a list of functions.') for _ in transformations: if not callable(_): raise TypeError(filldedent(''' expected a function in `transformations`, not %s''' % func_name(_))) if arity(_) != 3: raise TypeError(filldedent(''' a transformation should be function that takes 3 arguments''')) builtins_dict = vars(builtins) for name, obj in builtins_dict.items(): if isinstance(obj, types.BuiltinFunctionType): global_dict[name] = obj global_dict['max'] = Max global_dict['min'] = Min code = stringify_expr(s, local_dict, global_dict, transformations) if not evaluate: code = compile(evaluateFalse(code), '<string>', 'eval') try: rv = eval_expr(code, local_dict, global_dict) # restore neutral definitions for names for i in local_dict.pop(None, ()): local_dict[i] = None return rv except Exception as e: # restore neutral definitions for names for i in local_dict.pop(None, ()): local_dict[i] = None raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}") def evaluateFalse(s): """ Replaces operators with the SymPy equivalent and sets evaluate=False. """ node = ast.parse(s) node = EvaluateFalseTransformer().visit(node) # node is a Module, we want an Expression node = ast.Expression(node.body[0].value) return ast.fix_missing_locations(node) class EvaluateFalseTransformer(ast.NodeTransformer): operators = { ast.Add: 'Add', ast.Mult: 'Mul', ast.Pow: 'Pow', ast.Sub: 'Add', ast.Div: 'Mul', ast.BitOr: 'Or', ast.BitAnd: 'And', ast.BitXor: 'Not', } functions = ( 'Abs', 'im', 're', 'sign', 'arg', 'conjugate', 'acos', 'acot', 'acsc', 'asec', 'asin', 'atan', 'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh', 'cos', 'cot', 'csc', 'sec', 'sin', 'tan', 'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh', 'exp', 'ln', 'log', 'sqrt', 'cbrt', ) def flatten(self, args, func): result = [] for arg in args: if isinstance(arg, ast.Call): arg_func = arg.func if isinstance(arg_func, ast.Call): arg_func = arg_func.func if arg_func.id == func: result.extend(self.flatten(arg.args, func)) else: result.append(arg) else: result.append(arg) return result def visit_BinOp(self, node): if node.op.__class__ in self.operators: sympy_class = self.operators[node.op.__class__] right = self.visit(node.right) left = self.visit(node.left) rev = False if isinstance(node.op, ast.Sub): right = ast.Call( func=ast.Name(id='Mul', ctx=ast.Load()), args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) elif isinstance(node.op, ast.Div): if isinstance(node.left, ast.UnaryOp): left, right = right, left rev = True left = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) else: right = ast.Call( func=ast.Name(id='Pow', ctx=ast.Load()), args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) if rev: # undo reversal left, right = right, left new_node = ast.Call( func=ast.Name(id=sympy_class, ctx=ast.Load()), args=[left, right], keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))], starargs=None, kwargs=None ) if sympy_class in ('Add', 'Mul'): # Denest Add or Mul as appropriate new_node.args = self.flatten(new_node.args, sympy_class) return new_node return node def visit_Call(self, node): new_node = self.generic_visit(node) if isinstance(node.func, ast.Name) and node.func.id in self.functions: new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))) return new_node _transformation = { # items can be added but never re-ordered 0: lambda_notation, 1: auto_symbol, 2: repeated_decimals, 3: auto_number, 4: factorial_notation, 5: implicit_multiplication_application, 6: convert_xor, 7: implicit_application, 8: implicit_multiplication, 9: convert_equals_signs, 10: function_exponentiation, 11: rationalize} transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items()) class _T(): """class to retrieve transformations from a given slice EXAMPLES ======== >>> from sympy.parsing.sympy_parser import T, standard_transformations >>> assert T[:5] == standard_transformations """ def __init__(self): self.N = len(_transformation) def __str__(self): return transformations def __getitem__(self, t): if not type(t) is tuple: t = (t,) i = [] for ti in t: if type(ti) is int: i.append(range(self.N)[ti]) elif type(ti) is slice: i.extend(list(range(*ti.indices(self.N)))) else: raise TypeError('unexpected slice arg') return tuple([_transformation[_] for _ in i]) T = _T()
17fcaf50c0ae06adc747edc08ba5b8a24b41b17460f0a76eb452f04fd1452656
""" A module that helps solving problems in physics. """ from . import units from .matrices import mgamma, msigma, minkowski_tensor, mdft __all__ = [ 'units', 'mgamma', 'msigma', 'minkowski_tensor', 'mdft', ]
d6bfea0c16d5ca5f37eaa2179550dda05f3d67dc1e746bd62241c06f041a2bee
""" This module implements Pauli algebra by subclassing Symbol. Only algebraic properties of Pauli matrices are used (we do not use the Matrix class). See the documentation to the class Pauli for examples. References ========== .. [1] https://en.wikipedia.org/wiki/Pauli_matrices """ from sympy.core.add import Add from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.core.power import Pow from sympy.core.symbol import Symbol from sympy.physics.quantum import TensorProduct __all__ = ['evaluate_pauli_product'] def delta(i, j): """ Returns 1 if ``i == j``, else 0. This is used in the multiplication of Pauli matrices. Examples ======== >>> from sympy.physics.paulialgebra import delta >>> delta(1, 1) 1 >>> delta(2, 3) 0 """ if i == j: return 1 else: return 0 def epsilon(i, j, k): """ Return 1 if i,j,k is equal to (1,2,3), (2,3,1), or (3,1,2); -1 if ``i``,``j``,``k`` is equal to (1,3,2), (3,2,1), or (2,1,3); else return 0. This is used in the multiplication of Pauli matrices. Examples ======== >>> from sympy.physics.paulialgebra import epsilon >>> epsilon(1, 2, 3) 1 >>> epsilon(1, 3, 2) -1 """ if (i, j, k) in ((1, 2, 3), (2, 3, 1), (3, 1, 2)): return 1 elif (i, j, k) in ((1, 3, 2), (3, 2, 1), (2, 1, 3)): return -1 else: return 0 class Pauli(Symbol): """ The class representing algebraic properties of Pauli matrices. Explanation =========== The symbol used to display the Pauli matrices can be changed with an optional parameter ``label="sigma"``. Pauli matrices with different ``label`` attributes cannot multiply together. If the left multiplication of symbol or number with Pauli matrix is needed, please use parentheses to separate Pauli and symbolic multiplication (for example: 2*I*(Pauli(3)*Pauli(2))). Another variant is to use evaluate_pauli_product function to evaluate the product of Pauli matrices and other symbols (with commutative multiply rules). See Also ======== evaluate_pauli_product Examples ======== >>> from sympy.physics.paulialgebra import Pauli >>> Pauli(1) sigma1 >>> Pauli(1)*Pauli(2) I*sigma3 >>> Pauli(1)*Pauli(1) 1 >>> Pauli(3)**4 1 >>> Pauli(1)*Pauli(2)*Pauli(3) I >>> from sympy.physics.paulialgebra import Pauli >>> Pauli(1, label="tau") tau1 >>> Pauli(1)*Pauli(2, label="tau") sigma1*tau2 >>> Pauli(1, label="tau")*Pauli(2, label="tau") I*tau3 >>> from sympy import I >>> I*(Pauli(2)*Pauli(3)) -sigma1 >>> from sympy.physics.paulialgebra import evaluate_pauli_product >>> f = I*Pauli(2)*Pauli(3) >>> f I*sigma2*sigma3 >>> evaluate_pauli_product(f) -sigma1 """ __slots__ = ("i", "label") def __new__(cls, i, label="sigma"): if i not in [1, 2, 3]: raise IndexError("Invalid Pauli index") obj = Symbol.__new__(cls, "%s%d" %(label,i), commutative=False, hermitian=True) obj.i = i obj.label = label return obj def __getnewargs_ex__(self): return (self.i, self.label), {} def _hashable_content(self): return (self.i, self.label) # FIXME don't work for -I*Pauli(2)*Pauli(3) def __mul__(self, other): if isinstance(other, Pauli): j = self.i k = other.i jlab = self.label klab = other.label if jlab == klab: return delta(j, k) \ + I*epsilon(j, k, 1)*Pauli(1,jlab) \ + I*epsilon(j, k, 2)*Pauli(2,jlab) \ + I*epsilon(j, k, 3)*Pauli(3,jlab) return super().__mul__(other) def _eval_power(b, e): if e.is_Integer and e.is_positive: return super().__pow__(int(e) % 2) def evaluate_pauli_product(arg): '''Help function to evaluate Pauli matrices product with symbolic objects. Parameters ========== arg: symbolic expression that contains Paulimatrices Examples ======== >>> from sympy.physics.paulialgebra import Pauli, evaluate_pauli_product >>> from sympy import I >>> evaluate_pauli_product(I*Pauli(1)*Pauli(2)) -sigma3 >>> from sympy.abc import x >>> evaluate_pauli_product(x**2*Pauli(2)*Pauli(1)) -I*x**2*sigma3 ''' start = arg end = arg if isinstance(arg, Pow) and isinstance(arg.args[0], Pauli): if arg.args[1].is_odd: return arg.args[0] else: return 1 if isinstance(arg, Add): return Add(*[evaluate_pauli_product(part) for part in arg.args]) if isinstance(arg, TensorProduct): return TensorProduct(*[evaluate_pauli_product(part) for part in arg.args]) elif not(isinstance(arg, Mul)): return arg while not start == end or start == arg and end == arg: start = end tmp = start.as_coeff_mul() sigma_product = 1 com_product = 1 keeper = 1 for el in tmp[1]: if isinstance(el, Pauli): sigma_product *= el elif not el.is_commutative: if isinstance(el, Pow) and isinstance(el.args[0], Pauli): if el.args[1].is_odd: sigma_product *= el.args[0] elif isinstance(el, TensorProduct): keeper = keeper*sigma_product*\ TensorProduct( *[evaluate_pauli_product(part) for part in el.args] ) sigma_product = 1 else: keeper = keeper*sigma_product*el sigma_product = 1 else: com_product *= el end = tmp[0]*keeper*sigma_product*com_product if end == arg: break return end
a99b740bc9b82c9fb43f50fe7db00f0ec92ff32a153b87b8f145195a9ab2a3ae
from sympy.core.numbers import Float from sympy.core.singleton import S from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.polynomials import assoc_laguerre from sympy.functions.special.spherical_harmonics import Ynm def R_nl(n, l, r, Z=1): """ Returns the Hydrogen radial wavefunction R_{nl}. Parameters ========== n : integer Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,... l : integer ``l`` is the Angular Momentum Quantum Number with values ranging from 0 to ``n-1``. r : Radial coordinate. Z : Atomic number (1 for Hydrogen, 2 for Helium, ...) Everything is in Hartree atomic units. Examples ======== >>> from sympy.physics.hydrogen import R_nl >>> from sympy.abc import r, Z >>> R_nl(1, 0, r, Z) 2*sqrt(Z**3)*exp(-Z*r) >>> R_nl(2, 0, r, Z) sqrt(2)*(-Z*r + 2)*sqrt(Z**3)*exp(-Z*r/2)/4 >>> R_nl(2, 1, r, Z) sqrt(6)*Z*r*sqrt(Z**3)*exp(-Z*r/2)/12 For Hydrogen atom, you can just use the default value of Z=1: >>> R_nl(1, 0, r) 2*exp(-r) >>> R_nl(2, 0, r) sqrt(2)*(2 - r)*exp(-r/2)/4 >>> R_nl(3, 0, r) 2*sqrt(3)*(2*r**2/9 - 2*r + 3)*exp(-r/3)/27 For Silver atom, you would use Z=47: >>> R_nl(1, 0, r, Z=47) 94*sqrt(47)*exp(-47*r) >>> R_nl(2, 0, r, Z=47) 47*sqrt(94)*(2 - 47*r)*exp(-47*r/2)/4 >>> R_nl(3, 0, r, Z=47) 94*sqrt(141)*(4418*r**2/9 - 94*r + 3)*exp(-47*r/3)/27 The normalization of the radial wavefunction is: >>> from sympy import integrate, oo >>> integrate(R_nl(1, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r)**2 * r**2, (r, 0, oo)) 1 It holds for any atomic number: >>> integrate(R_nl(1, 0, r, Z=2)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 0, r, Z=3)**2 * r**2, (r, 0, oo)) 1 >>> integrate(R_nl(2, 1, r, Z=4)**2 * r**2, (r, 0, oo)) 1 """ # sympify arguments n, l, r, Z = map(S, [n, l, r, Z]) # radial quantum number n_r = n - l - 1 # rescaled "r" a = 1/Z # Bohr radius r0 = 2 * r / (n * a) # normalization coefficient C = sqrt((S(2)/(n*a))**3 * factorial(n_r) / (2*n*factorial(n + l))) # This is an equivalent normalization coefficient, that can be found in # some books. Both coefficients seem to be the same fast: # C = S(2)/n**2 * sqrt(1/a**3 * factorial(n_r) / (factorial(n+l))) return C * r0**l * assoc_laguerre(n_r, 2*l + 1, r0).expand() * exp(-r0/2) def Psi_nlm(n, l, m, r, phi, theta, Z=1): """ Returns the Hydrogen wave function psi_{nlm}. It's the product of the radial wavefunction R_{nl} and the spherical harmonic Y_{l}^{m}. Parameters ========== n : integer Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,... l : integer ``l`` is the Angular Momentum Quantum Number with values ranging from 0 to ``n-1``. m : integer ``m`` is the Magnetic Quantum Number with values ranging from ``-l`` to ``l``. r : radial coordinate phi : azimuthal angle theta : polar angle Z : atomic number (1 for Hydrogen, 2 for Helium, ...) Everything is in Hartree atomic units. Examples ======== >>> from sympy.physics.hydrogen import Psi_nlm >>> from sympy import Symbol >>> r=Symbol("r", positive=True) >>> phi=Symbol("phi", real=True) >>> theta=Symbol("theta", real=True) >>> Z=Symbol("Z", positive=True, integer=True, nonzero=True) >>> Psi_nlm(1,0,0,r,phi,theta,Z) Z**(3/2)*exp(-Z*r)/sqrt(pi) >>> Psi_nlm(2,1,1,r,phi,theta,Z) -Z**(5/2)*r*exp(I*phi)*exp(-Z*r/2)*sin(theta)/(8*sqrt(pi)) Integrating the absolute square of a hydrogen wavefunction psi_{nlm} over the whole space leads 1. The normalization of the hydrogen wavefunctions Psi_nlm is: >>> from sympy import integrate, conjugate, pi, oo, sin >>> wf=Psi_nlm(2,1,1,r,phi,theta,Z) >>> abs_sqrd=wf*conjugate(wf) >>> jacobi=r**2*sin(theta) >>> integrate(abs_sqrd*jacobi, (r,0,oo), (phi,0,2*pi), (theta,0,pi)) 1 """ # sympify arguments n, l, m, r, phi, theta, Z = map(S, [n, l, m, r, phi, theta, Z]) # check if values for n,l,m make physically sense if n.is_integer and n < 1: raise ValueError("'n' must be positive integer") if l.is_integer and not (n > l): raise ValueError("'n' must be greater than 'l'") if m.is_integer and not (abs(m) <= l): raise ValueError("|'m'| must be less or equal 'l'") # return the hydrogen wave function return R_nl(n, l, r, Z)*Ynm(l, m, theta, phi).expand(func=True) def E_nl(n, Z=1): """ Returns the energy of the state (n, l) in Hartree atomic units. The energy doesn't depend on "l". Parameters ========== n : integer Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,... Z : Atomic number (1 for Hydrogen, 2 for Helium, ...) Examples ======== >>> from sympy.physics.hydrogen import E_nl >>> from sympy.abc import n, Z >>> E_nl(n, Z) -Z**2/(2*n**2) >>> E_nl(1) -1/2 >>> E_nl(2) -1/8 >>> E_nl(3) -1/18 >>> E_nl(3, 47) -2209/18 """ n, Z = S(n), S(Z) if n.is_integer and (n < 1): raise ValueError("'n' must be positive integer") return -Z**2/(2*n**2) def E_nl_dirac(n, l, spin_up=True, Z=1, c=Float("137.035999037")): """ Returns the relativistic energy of the state (n, l, spin) in Hartree atomic units. The energy is calculated from the Dirac equation. The rest mass energy is *not* included. Parameters ========== n : integer Principal Quantum Number which is an integer with possible values as 1, 2, 3, 4,... l : integer ``l`` is the Angular Momentum Quantum Number with values ranging from 0 to ``n-1``. spin_up : True if the electron spin is up (default), otherwise down Z : Atomic number (1 for Hydrogen, 2 for Helium, ...) c : Speed of light in atomic units. Default value is 137.035999037, taken from http://arxiv.org/abs/1012.3627 Examples ======== >>> from sympy.physics.hydrogen import E_nl_dirac >>> E_nl_dirac(1, 0) -0.500006656595360 >>> E_nl_dirac(2, 0) -0.125002080189006 >>> E_nl_dirac(2, 1) -0.125000416028342 >>> E_nl_dirac(2, 1, False) -0.125002080189006 >>> E_nl_dirac(3, 0) -0.0555562951740285 >>> E_nl_dirac(3, 1) -0.0555558020932949 >>> E_nl_dirac(3, 1, False) -0.0555562951740285 >>> E_nl_dirac(3, 2) -0.0555556377366884 >>> E_nl_dirac(3, 2, False) -0.0555558020932949 """ n, l, Z, c = map(S, [n, l, Z, c]) if not (l >= 0): raise ValueError("'l' must be positive or zero") if not (n > l): raise ValueError("'n' must be greater than 'l'") if (l == 0 and spin_up is False): raise ValueError("Spin must be up for l==0.") # skappa is sign*kappa, where sign contains the correct sign if spin_up: skappa = -l - 1 else: skappa = -l beta = sqrt(skappa**2 - Z**2/c**2) return c**2/sqrt(1 + Z**2/(n + skappa + beta)**2/c**2) - c**2
af2f24d0dfde1ef86ffca2625d026296a6259c85bd7d7c670343f913b3a87835
"""Known matrices related to physics""" from sympy.core.numbers import I from sympy.matrices.dense import MutableDenseMatrix as Matrix from sympy.utilities.decorator import deprecated def msigma(i): r"""Returns a Pauli matrix `\sigma_i` with ``i=1,2,3``. References ========== .. [1] https://en.wikipedia.org/wiki/Pauli_matrices Examples ======== >>> from sympy.physics.matrices import msigma >>> msigma(1) Matrix([ [0, 1], [1, 0]]) """ if i == 1: mat = ( (0, 1), (1, 0) ) elif i == 2: mat = ( (0, -I), (I, 0) ) elif i == 3: mat = ( (1, 0), (0, -1) ) else: raise IndexError("Invalid Pauli index") return Matrix(mat) def pat_matrix(m, dx, dy, dz): """Returns the Parallel Axis Theorem matrix to translate the inertia matrix a distance of `(dx, dy, dz)` for a body of mass m. Examples ======== To translate a body having a mass of 2 units a distance of 1 unit along the `x`-axis we get: >>> from sympy.physics.matrices import pat_matrix >>> pat_matrix(2, 1, 0, 0) Matrix([ [0, 0, 0], [0, 2, 0], [0, 0, 2]]) """ dxdy = -dx*dy dydz = -dy*dz dzdx = -dz*dx dxdx = dx**2 dydy = dy**2 dzdz = dz**2 mat = ((dydy + dzdz, dxdy, dzdx), (dxdy, dxdx + dzdz, dydz), (dzdx, dydz, dydy + dxdx)) return m*Matrix(mat) def mgamma(mu, lower=False): r"""Returns a Dirac gamma matrix `\gamma^\mu` in the standard (Dirac) representation. Explanation =========== If you want `\gamma_\mu`, use ``gamma(mu, True)``. We use a convention: `\gamma^5 = i \cdot \gamma^0 \cdot \gamma^1 \cdot \gamma^2 \cdot \gamma^3` `\gamma_5 = i \cdot \gamma_0 \cdot \gamma_1 \cdot \gamma_2 \cdot \gamma_3 = - \gamma^5` References ========== .. [1] https://en.wikipedia.org/wiki/Gamma_matrices Examples ======== >>> from sympy.physics.matrices import mgamma >>> mgamma(1) Matrix([ [ 0, 0, 0, 1], [ 0, 0, 1, 0], [ 0, -1, 0, 0], [-1, 0, 0, 0]]) """ if mu not in (0, 1, 2, 3, 5): raise IndexError("Invalid Dirac index") if mu == 0: mat = ( (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1) ) elif mu == 1: mat = ( (0, 0, 0, 1), (0, 0, 1, 0), (0, -1, 0, 0), (-1, 0, 0, 0) ) elif mu == 2: mat = ( (0, 0, 0, -I), (0, 0, I, 0), (0, I, 0, 0), (-I, 0, 0, 0) ) elif mu == 3: mat = ( (0, 0, 1, 0), (0, 0, 0, -1), (-1, 0, 0, 0), (0, 1, 0, 0) ) elif mu == 5: mat = ( (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0) ) m = Matrix(mat) if lower: if mu in (1, 2, 3, 5): m = -m return m #Minkowski tensor using the convention (+,-,-,-) used in the Quantum Field #Theory minkowski_tensor = Matrix( ( (1, 0, 0, 0), (0, -1, 0, 0), (0, 0, -1, 0), (0, 0, 0, -1) )) @deprecated(issue=20246, useinstead="DFT(n).as_mutable(), DFT(n), DFT(n).as_explicit()", deprecated_since_version="1.9") def mdft(n): r""" Deprecated. Use DFT from sympy.matrices.expressions.fourier instead. To get identical behavior to ``mdft(n)``, use ``DFT(n).as_mutable()``. """ from sympy.matrices.expressions.fourier import DFT return DFT(n).as_mutable()
8e34e5d1f82d684bb980fc422e63135f38d9ba6c826c13e1c0d49960f0f64f8d
""" Second quantization operators and states for bosons. This follow the formulation of Fetter and Welecka, "Quantum Theory of Many-Particle Systems." """ from collections import defaultdict from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Function from sympy.core.mul import Mul from sympy.core.numbers import I from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.sorting import default_sort_key from sympy.core.symbol import Dummy, Symbol from sympy.core.sympify import sympify from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.matrices.dense import zeros from sympy.printing.str import StrPrinter from sympy.utilities.iterables import has_dups __all__ = [ 'Dagger', 'KroneckerDelta', 'BosonicOperator', 'AnnihilateBoson', 'CreateBoson', 'AnnihilateFermion', 'CreateFermion', 'FockState', 'FockStateBra', 'FockStateKet', 'FockStateBosonKet', 'FockStateBosonBra', 'FockStateFermionKet', 'FockStateFermionBra', 'BBra', 'BKet', 'FBra', 'FKet', 'F', 'Fd', 'B', 'Bd', 'apply_operators', 'InnerProduct', 'BosonicBasis', 'VarBosonicBasis', 'FixedBosonicBasis', 'Commutator', 'matrix_rep', 'contraction', 'wicks', 'NO', 'evaluate_deltas', 'AntiSymmetricTensor', 'substitute_dummies', 'PermutationOperator', 'simplify_index_permutations', ] class SecondQuantizationError(Exception): pass class AppliesOnlyToSymbolicIndex(SecondQuantizationError): pass class ContractionAppliesOnlyToFermions(SecondQuantizationError): pass class ViolationOfPauliPrinciple(SecondQuantizationError): pass class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError): pass class WicksTheoremDoesNotApply(SecondQuantizationError): pass class Dagger(Expr): """ Hermitian conjugate of creation/annihilation operators. Examples ======== >>> from sympy import I >>> from sympy.physics.secondquant import Dagger, B, Bd >>> Dagger(2*I) -2*I >>> Dagger(B(0)) CreateBoson(0) >>> Dagger(Bd(0)) AnnihilateBoson(0) """ def __new__(cls, arg): arg = sympify(arg) r = cls.eval(arg) if isinstance(r, Basic): return r obj = Basic.__new__(cls, arg) return obj @classmethod def eval(cls, arg): """ Evaluates the Dagger instance. Examples ======== >>> from sympy import I >>> from sympy.physics.secondquant import Dagger, B, Bd >>> Dagger(2*I) -2*I >>> Dagger(B(0)) CreateBoson(0) >>> Dagger(Bd(0)) AnnihilateBoson(0) The eval() method is called automatically. """ dagger = getattr(arg, '_dagger_', None) if dagger is not None: return dagger() if isinstance(arg, Basic): if arg.is_Add: return Add(*tuple(map(Dagger, arg.args))) if arg.is_Mul: return Mul(*tuple(map(Dagger, reversed(arg.args)))) if arg.is_Number: return arg if arg.is_Pow: return Pow(Dagger(arg.args[0]), arg.args[1]) if arg == I: return -arg else: return None def _dagger_(self): return self.args[0] class TensorSymbol(Expr): is_commutative = True class AntiSymmetricTensor(TensorSymbol): """Stores upper and lower indices in separate Tuple's. Each group of indices is assumed to be antisymmetric. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (i, a), (b, j)) -AntiSymmetricTensor(v, (a, i), (b, j)) As you can see, the indices are automatically sorted to a canonical form. """ def __new__(cls, symbol, upper, lower): try: upper, signu = _sort_anticommuting_fermions( upper, key=cls._sortkey) lower, signl = _sort_anticommuting_fermions( lower, key=cls._sortkey) except ViolationOfPauliPrinciple: return S.Zero symbol = sympify(symbol) upper = Tuple(*upper) lower = Tuple(*lower) if (signu + signl) % 2: return -TensorSymbol.__new__(cls, symbol, upper, lower) else: return TensorSymbol.__new__(cls, symbol, upper, lower) @classmethod def _sortkey(cls, index): """Key for sorting of indices. particle < hole < general FIXME: This is a bottle-neck, can we do it faster? """ h = hash(index) label = str(index) if isinstance(index, Dummy): if index.assumptions0.get('above_fermi'): return (20, label, h) elif index.assumptions0.get('below_fermi'): return (21, label, h) else: return (22, label, h) if index.assumptions0.get('above_fermi'): return (10, label, h) elif index.assumptions0.get('below_fermi'): return (11, label, h) else: return (12, label, h) def _latex(self, printer): return "{%s^{%s}_{%s}}" % ( self.symbol, "".join([ i.name for i in self.args[1]]), "".join([ i.name for i in self.args[2]]) ) @property def symbol(self): """ Returns the symbol of the tensor. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol v """ return self.args[0] @property def upper(self): """ Returns the upper indices. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).upper (a, i) """ return self.args[1] @property def lower(self): """ Returns the lower indices. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)) AntiSymmetricTensor(v, (a, i), (b, j)) >>> AntiSymmetricTensor('v', (a, i), (b, j)).lower (b, j) """ return self.args[2] def __str__(self): return "%s(%s,%s)" % self.args def doit(self, **kw_args): """ Returns self. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import AntiSymmetricTensor >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> AntiSymmetricTensor('v', (a, i), (b, j)).doit() AntiSymmetricTensor(v, (a, i), (b, j)) """ return self class SqOperator(Expr): """ Base class for Second Quantization operators. """ op_symbol = 'sq' is_commutative = False def __new__(cls, k): obj = Basic.__new__(cls, sympify(k)) return obj @property def state(self): """ Returns the state index related to this operator. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F, Fd, B, Bd >>> p = Symbol('p') >>> F(p).state p >>> Fd(p).state p >>> B(p).state p >>> Bd(p).state p """ return self.args[0] @property def is_symbolic(self): """ Returns True if the state is a symbol (as opposed to a number). Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> p = Symbol('p') >>> F(p).is_symbolic True >>> F(1).is_symbolic False """ if self.state.is_Integer: return False else: return True def doit(self, **kw_args): """ FIXME: hack to prevent crash further up... """ return self def __repr__(self): return NotImplemented def __str__(self): return "%s(%r)" % (self.op_symbol, self.state) def apply_operator(self, state): """ Applies an operator to itself. """ raise NotImplementedError('implement apply_operator in a subclass') class BosonicOperator(SqOperator): pass class Annihilator(SqOperator): pass class Creator(SqOperator): pass class AnnihilateBoson(BosonicOperator, Annihilator): """ Bosonic annihilation operator. Examples ======== >>> from sympy.physics.secondquant import B >>> from sympy.abc import x >>> B(x) AnnihilateBoson(x) """ op_symbol = 'b' def _dagger_(self): return CreateBoson(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, BKet >>> from sympy.abc import x, y, n >>> B(x).apply_operator(y) y*AnnihilateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if not self.is_symbolic and isinstance(state, FockStateKet): element = self.state amp = sqrt(state[element]) return amp*state.down(element) else: return Mul(self, state) def __repr__(self): return "AnnihilateBoson(%s)" % self.state def _latex(self, printer): if self.state is S.Zero: return "b_{0}" else: return "b_{%s}" % self.state.name class CreateBoson(BosonicOperator, Creator): """ Bosonic creation operator. """ op_symbol = 'b+' def _dagger_(self): return AnnihilateBoson(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if not self.is_symbolic and isinstance(state, FockStateKet): element = self.state amp = sqrt(state[element] + 1) return amp*state.up(element) else: return Mul(self, state) def __repr__(self): return "CreateBoson(%s)" % self.state def _latex(self, printer): if self.state is S.Zero: return "{b^\\dagger_{0}}" else: return "{b^\\dagger_{%s}}" % self.state.name B = AnnihilateBoson Bd = CreateBoson class FermionicOperator(SqOperator): @property def is_restricted(self): """ Is this FermionicOperator restricted with respect to fermi level? Returns ======= 1 : restricted to orbits above fermi 0 : no restriction -1 : restricted to orbits below fermi Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F, Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_restricted 1 >>> Fd(a).is_restricted 1 >>> F(i).is_restricted -1 >>> Fd(i).is_restricted -1 >>> F(p).is_restricted 0 >>> Fd(p).is_restricted 0 """ ass = self.args[0].assumptions0 if ass.get("below_fermi"): return -1 if ass.get("above_fermi"): return 1 return 0 @property def is_above_fermi(self): """ Does the index of this FermionicOperator allow values above fermi? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_above_fermi True >>> F(i).is_above_fermi False >>> F(p).is_above_fermi True Note ==== The same applies to creation operators Fd """ return not self.args[0].assumptions0.get("below_fermi") @property def is_below_fermi(self): """ Does the index of this FermionicOperator allow values below fermi? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_below_fermi False >>> F(i).is_below_fermi True >>> F(p).is_below_fermi True The same applies to creation operators Fd """ return not self.args[0].assumptions0.get("above_fermi") @property def is_only_below_fermi(self): """ Is the index of this FermionicOperator restricted to values below fermi? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_below_fermi False >>> F(i).is_only_below_fermi True >>> F(p).is_only_below_fermi False The same applies to creation operators Fd """ return self.is_below_fermi and not self.is_above_fermi @property def is_only_above_fermi(self): """ Is the index of this FermionicOperator restricted to values above fermi? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_above_fermi True >>> F(i).is_only_above_fermi False >>> F(p).is_only_above_fermi False The same applies to creation operators Fd """ return self.is_above_fermi and not self.is_below_fermi def _sortkey(self): h = hash(self) label = str(self.args[0]) if self.is_only_q_creator: return 1, label, h if self.is_only_q_annihilator: return 4, label, h if isinstance(self, Annihilator): return 3, label, h if isinstance(self, Creator): return 2, label, h class AnnihilateFermion(FermionicOperator, Annihilator): """ Fermionic annihilation operator. """ op_symbol = 'f' def _dagger_(self): return CreateFermion(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if isinstance(state, FockStateFermionKet): element = self.state return state.down(element) elif isinstance(state, Mul): c_part, nc_part = state.args_cnc() if isinstance(nc_part[0], FockStateFermionKet): element = self.state return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:])) else: return Mul(self, state) else: return Mul(self, state) @property def is_q_creator(self): """ Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_q_creator 0 >>> F(i).is_q_creator -1 >>> F(p).is_q_creator -1 """ if self.is_below_fermi: return -1 return 0 @property def is_q_annihilator(self): """ Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=1) >>> i = Symbol('i', below_fermi=1) >>> p = Symbol('p') >>> F(a).is_q_annihilator 1 >>> F(i).is_q_annihilator 0 >>> F(p).is_q_annihilator 1 """ if self.is_above_fermi: return 1 return 0 @property def is_only_q_creator(self): """ Always create a quasi-particle? (create hole or create particle) Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_q_creator False >>> F(i).is_only_q_creator True >>> F(p).is_only_q_creator False """ return self.is_only_below_fermi @property def is_only_q_annihilator(self): """ Always destroy a quasi-particle? (annihilate hole or annihilate particle) Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import F >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> F(a).is_only_q_annihilator True >>> F(i).is_only_q_annihilator False >>> F(p).is_only_q_annihilator False """ return self.is_only_above_fermi def __repr__(self): return "AnnihilateFermion(%s)" % self.state def _latex(self, printer): if self.state is S.Zero: return "a_{0}" else: return "a_{%s}" % self.state.name class CreateFermion(FermionicOperator, Creator): """ Fermionic creation operator. """ op_symbol = 'f+' def _dagger_(self): return AnnihilateFermion(self.state) def apply_operator(self, state): """ Apply state to self if self is not symbolic and state is a FockStateKet, else multiply self by state. Examples ======== >>> from sympy.physics.secondquant import B, Dagger, BKet >>> from sympy.abc import x, y, n >>> Dagger(B(x)).apply_operator(y) y*CreateBoson(x) >>> B(0).apply_operator(BKet((n,))) sqrt(n)*FockStateBosonKet((n - 1,)) """ if isinstance(state, FockStateFermionKet): element = self.state return state.up(element) elif isinstance(state, Mul): c_part, nc_part = state.args_cnc() if isinstance(nc_part[0], FockStateFermionKet): element = self.state return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:])) return Mul(self, state) @property def is_q_creator(self): """ Can we create a quasi-particle? (create hole or create particle) If so, would that be above or below the fermi surface? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_q_creator 1 >>> Fd(i).is_q_creator 0 >>> Fd(p).is_q_creator 1 """ if self.is_above_fermi: return 1 return 0 @property def is_q_annihilator(self): """ Can we destroy a quasi-particle? (annihilate hole or annihilate particle) If so, would that be above or below the fermi surface? Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=1) >>> i = Symbol('i', below_fermi=1) >>> p = Symbol('p') >>> Fd(a).is_q_annihilator 0 >>> Fd(i).is_q_annihilator -1 >>> Fd(p).is_q_annihilator -1 """ if self.is_below_fermi: return -1 return 0 @property def is_only_q_creator(self): """ Always create a quasi-particle? (create hole or create particle) Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_only_q_creator True >>> Fd(i).is_only_q_creator False >>> Fd(p).is_only_q_creator False """ return self.is_only_above_fermi @property def is_only_q_annihilator(self): """ Always destroy a quasi-particle? (annihilate hole or annihilate particle) Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import Fd >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> Fd(a).is_only_q_annihilator False >>> Fd(i).is_only_q_annihilator True >>> Fd(p).is_only_q_annihilator False """ return self.is_only_below_fermi def __repr__(self): return "CreateFermion(%s)" % self.state def _latex(self, printer): if self.state is S.Zero: return "{a^\\dagger_{0}}" else: return "{a^\\dagger_{%s}}" % self.state.name Fd = CreateFermion F = AnnihilateFermion class FockState(Expr): """ Many particle Fock state with a sequence of occupation numbers. Anywhere you can have a FockState, you can also have S.Zero. All code must check for this! Base class to represent FockStates. """ is_commutative = False def __new__(cls, occupations): """ occupations is a list with two possible meanings: - For bosons it is a list of occupation numbers. Element i is the number of particles in state i. - For fermions it is a list of occupied orbits. Element 0 is the state that was occupied first, element i is the i'th occupied state. """ occupations = list(map(sympify, occupations)) obj = Basic.__new__(cls, Tuple(*occupations)) return obj def __getitem__(self, i): i = int(i) return self.args[0][i] def __repr__(self): return ("FockState(%r)") % (self.args) def __str__(self): return "%s%r%s" % (getattr(self, 'lbracket', ""), self._labels(), getattr(self, 'rbracket', "")) def _labels(self): return self.args[0] def __len__(self): return len(self.args[0]) def _latex(self, printer): return "%s%s%s" % (getattr(self, 'lbracket_latex', ""), printer._print(self._labels()), getattr(self, 'rbracket_latex', "")) class BosonState(FockState): """ Base class for FockStateBoson(Ket/Bra). """ def up(self, i): """ Performs the action of a creation operator. Examples ======== >>> from sympy.physics.secondquant import BBra >>> b = BBra([1, 2]) >>> b FockStateBosonBra((1, 2)) >>> b.up(1) FockStateBosonBra((1, 3)) """ i = int(i) new_occs = list(self.args[0]) new_occs[i] = new_occs[i] + S.One return self.__class__(new_occs) def down(self, i): """ Performs the action of an annihilation operator. Examples ======== >>> from sympy.physics.secondquant import BBra >>> b = BBra([1, 2]) >>> b FockStateBosonBra((1, 2)) >>> b.down(1) FockStateBosonBra((1, 1)) """ i = int(i) new_occs = list(self.args[0]) if new_occs[i] == S.Zero: return S.Zero else: new_occs[i] = new_occs[i] - S.One return self.__class__(new_occs) class FermionState(FockState): """ Base class for FockStateFermion(Ket/Bra). """ fermi_level = 0 def __new__(cls, occupations, fermi_level=0): occupations = list(map(sympify, occupations)) if len(occupations) > 1: try: (occupations, sign) = _sort_anticommuting_fermions( occupations, key=hash) except ViolationOfPauliPrinciple: return S.Zero else: sign = 0 cls.fermi_level = fermi_level if cls._count_holes(occupations) > fermi_level: return S.Zero if sign % 2: return S.NegativeOne*FockState.__new__(cls, occupations) else: return FockState.__new__(cls, occupations) def up(self, i): """ Performs the action of a creation operator. Explanation =========== If below fermi we try to remove a hole, if above fermi we try to create a particle. If general index p we return ``Kronecker(p,i)*self`` where ``i`` is a new symbol with restriction above or below. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import FKet >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') >>> FKet([]).up(a) FockStateFermionKet((a,)) A creator acting on vacuum below fermi vanishes >>> FKet([]).up(i) 0 """ present = i in self.args[0] if self._only_above_fermi(i): if present: return S.Zero else: return self._add_orbit(i) elif self._only_below_fermi(i): if present: return self._remove_orbit(i) else: return S.Zero else: if present: hole = Dummy("i", below_fermi=True) return KroneckerDelta(i, hole)*self._remove_orbit(i) else: particle = Dummy("a", above_fermi=True) return KroneckerDelta(i, particle)*self._add_orbit(i) def down(self, i): """ Performs the action of an annihilation operator. Explanation =========== If below fermi we try to create a hole, If above fermi we try to remove a particle. If general index p we return ``Kronecker(p,i)*self`` where ``i`` is a new symbol with restriction above or below. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.secondquant import FKet >>> a = Symbol('a', above_fermi=True) >>> i = Symbol('i', below_fermi=True) >>> p = Symbol('p') An annihilator acting on vacuum above fermi vanishes >>> FKet([]).down(a) 0 Also below fermi, it vanishes, unless we specify a fermi level > 0 >>> FKet([]).down(i) 0 >>> FKet([],4).down(i) FockStateFermionKet((i,)) """ present = i in self.args[0] if self._only_above_fermi(i): if present: return self._remove_orbit(i) else: return S.Zero elif self._only_below_fermi(i): if present: return S.Zero else: return self._add_orbit(i) else: if present: hole = Dummy("i", below_fermi=True) return KroneckerDelta(i, hole)*self._add_orbit(i) else: particle = Dummy("a", above_fermi=True) return KroneckerDelta(i, particle)*self._remove_orbit(i) @classmethod def _only_below_fermi(cls, i): """ Tests if given orbit is only below fermi surface. If nothing can be concluded we return a conservative False. """ if i.is_number: return i <= cls.fermi_level if i.assumptions0.get('below_fermi'): return True return False @classmethod def _only_above_fermi(cls, i): """ Tests if given orbit is only above fermi surface. If fermi level has not been set we return True. If nothing can be concluded we return a conservative False. """ if i.is_number: return i > cls.fermi_level if i.assumptions0.get('above_fermi'): return True return not cls.fermi_level def _remove_orbit(self, i): """ Removes particle/fills hole in orbit i. No input tests performed here. """ new_occs = list(self.args[0]) pos = new_occs.index(i) del new_occs[pos] if (pos) % 2: return S.NegativeOne*self.__class__(new_occs, self.fermi_level) else: return self.__class__(new_occs, self.fermi_level) def _add_orbit(self, i): """ Adds particle/creates hole in orbit i. No input tests performed here. """ return self.__class__((i,) + self.args[0], self.fermi_level) @classmethod def _count_holes(cls, list): """ Returns the number of identified hole states in list. """ return len([i for i in list if cls._only_below_fermi(i)]) def _negate_holes(self, list): return tuple([-i if i <= self.fermi_level else i for i in list]) def __repr__(self): if self.fermi_level: return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level) else: return "FockStateKet(%r)" % (self.args[0],) def _labels(self): return self._negate_holes(self.args[0]) class FockStateKet(FockState): """ Representation of a ket. """ lbracket = '|' rbracket = '>' lbracket_latex = r'\left|' rbracket_latex = r'\right\rangle' class FockStateBra(FockState): """ Representation of a bra. """ lbracket = '<' rbracket = '|' lbracket_latex = r'\left\langle' rbracket_latex = r'\right|' def __mul__(self, other): if isinstance(other, FockStateKet): return InnerProduct(self, other) else: return Expr.__mul__(self, other) class FockStateBosonKet(BosonState, FockStateKet): """ Many particle Fock state with a sequence of occupation numbers. Occupation numbers can be any integer >= 0. Examples ======== >>> from sympy.physics.secondquant import BKet >>> BKet([1, 2]) FockStateBosonKet((1, 2)) """ def _dagger_(self): return FockStateBosonBra(*self.args) class FockStateBosonBra(BosonState, FockStateBra): """ Describes a collection of BosonBra particles. Examples ======== >>> from sympy.physics.secondquant import BBra >>> BBra([1, 2]) FockStateBosonBra((1, 2)) """ def _dagger_(self): return FockStateBosonKet(*self.args) class FockStateFermionKet(FermionState, FockStateKet): """ Many-particle Fock state with a sequence of occupied orbits. Explanation =========== Each state can only have one particle, so we choose to store a list of occupied orbits rather than a tuple with occupation numbers (zeros and ones). states below fermi level are holes, and are represented by negative labels in the occupation list. For symbolic state labels, the fermi_level caps the number of allowed hole- states. Examples ======== >>> from sympy.physics.secondquant import FKet >>> FKet([1, 2]) FockStateFermionKet((1, 2)) """ def _dagger_(self): return FockStateFermionBra(*self.args) class FockStateFermionBra(FermionState, FockStateBra): """ See Also ======== FockStateFermionKet Examples ======== >>> from sympy.physics.secondquant import FBra >>> FBra([1, 2]) FockStateFermionBra((1, 2)) """ def _dagger_(self): return FockStateFermionKet(*self.args) BBra = FockStateBosonBra BKet = FockStateBosonKet FBra = FockStateFermionBra FKet = FockStateFermionKet def _apply_Mul(m): """ Take a Mul instance with operators and apply them to states. Explanation =========== This method applies all operators with integer state labels to the actual states. For symbolic state labels, nothing is done. When inner products of FockStates are encountered (like <a|b>), they are converted to instances of InnerProduct. This does not currently work on double inner products like, <a|b><c|d>. If the argument is not a Mul, it is simply returned as is. """ if not isinstance(m, Mul): return m c_part, nc_part = m.args_cnc() n_nc = len(nc_part) if n_nc in (0, 1): return m else: last = nc_part[-1] next_to_last = nc_part[-2] if isinstance(last, FockStateKet): if isinstance(next_to_last, SqOperator): if next_to_last.is_symbolic: return m else: result = next_to_last.apply_operator(last) if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) elif isinstance(next_to_last, Pow): if isinstance(next_to_last.base, SqOperator) and \ next_to_last.exp.is_Integer: if next_to_last.base.is_symbolic: return m else: result = last for i in range(next_to_last.exp): result = next_to_last.base.apply_operator(result) if result == 0: break if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) else: return m elif isinstance(next_to_last, FockStateBra): result = InnerProduct(next_to_last, last) if result == 0: return S.Zero else: return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result]))) else: return m else: return m def apply_operators(e): """ Take a SymPy expression with operators and states and apply the operators. Examples ======== >>> from sympy.physics.secondquant import apply_operators >>> from sympy import sympify >>> apply_operators(sympify(3)+4) 7 """ e = e.expand() muls = e.atoms(Mul) subs_list = [(m, _apply_Mul(m)) for m in iter(muls)] return e.subs(subs_list) class InnerProduct(Basic): """ An unevaluated inner product between a bra and ket. Explanation =========== Currently this class just reduces things to a product of Kronecker Deltas. In the future, we could introduce abstract states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as ``<a|b>``. """ is_commutative = True def __new__(cls, bra, ket): if not isinstance(bra, FockStateBra): raise TypeError("must be a bra") if not isinstance(ket, FockStateKet): raise TypeError("must be a key") return cls.eval(bra, ket) @classmethod def eval(cls, bra, ket): result = S.One for i, j in zip(bra.args[0], ket.args[0]): result *= KroneckerDelta(i, j) if result == 0: break return result @property def bra(self): """Returns the bra part of the state""" return self.args[0] @property def ket(self): """Returns the ket part of the state""" return self.args[1] def __repr__(self): sbra = repr(self.bra) sket = repr(self.ket) return "%s|%s" % (sbra[:-1], sket[1:]) def __str__(self): return self.__repr__() def matrix_rep(op, basis): """ Find the representation of an operator in a basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep >>> b = VarBosonicBasis(5) >>> o = B(0) >>> matrix_rep(o, b) Matrix([ [0, 1, 0, 0, 0], [0, 0, sqrt(2), 0, 0], [0, 0, 0, sqrt(3), 0], [0, 0, 0, 0, 2], [0, 0, 0, 0, 0]]) """ a = zeros(len(basis)) for i in range(len(basis)): for j in range(len(basis)): a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j]) return a class BosonicBasis: """ Base class for a basis set of bosonic Fock states. """ pass class VarBosonicBasis: """ A single state, variable particle number basis set. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(5) >>> b [FockState((0,)), FockState((1,)), FockState((2,)), FockState((3,)), FockState((4,))] """ def __init__(self, n_max): self.n_max = n_max self._build_states() def _build_states(self): self.basis = [] for i in range(self.n_max): self.basis.append(FockStateBosonKet([i])) self.n_basis = len(self.basis) def index(self, state): """ Returns the index of state in basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(3) >>> state = b.state(1) >>> b [FockState((0,)), FockState((1,)), FockState((2,))] >>> state FockStateBosonKet((1,)) >>> b.index(state) 1 """ return self.basis.index(state) def state(self, i): """ The state of a single basis. Examples ======== >>> from sympy.physics.secondquant import VarBosonicBasis >>> b = VarBosonicBasis(5) >>> b.state(3) FockStateBosonKet((3,)) """ return self.basis[i] def __getitem__(self, i): return self.state(i) def __len__(self): return len(self.basis) def __repr__(self): return repr(self.basis) class FixedBosonicBasis(BosonicBasis): """ Fixed particle number basis set. Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 2) >>> state = b.state(1) >>> b [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] >>> state FockStateBosonKet((1, 1)) >>> b.index(state) 1 """ def __init__(self, n_particles, n_levels): self.n_particles = n_particles self.n_levels = n_levels self._build_particle_locations() self._build_states() def _build_particle_locations(self): tup = ["i%i" % i for i in range(self.n_particles)] first_loop = "for i0 in range(%i)" % self.n_levels other_loops = '' for cur, prev in zip(tup[1:], tup): temp = "for %s in range(%s + 1) " % (cur, prev) other_loops = other_loops + temp tup_string = "(%s)" % ", ".join(tup) list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops) result = eval(list_comp) if self.n_particles == 1: result = [(item,) for item in result] self.particle_locations = result def _build_states(self): self.basis = [] for tuple_of_indices in self.particle_locations: occ_numbers = self.n_levels*[0] for level in tuple_of_indices: occ_numbers[level] += 1 self.basis.append(FockStateBosonKet(occ_numbers)) self.n_basis = len(self.basis) def index(self, state): """Returns the index of state in basis. Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 3) >>> b.index(b.state(3)) 3 """ return self.basis.index(state) def state(self, i): """Returns the state that lies at index i of the basis Examples ======== >>> from sympy.physics.secondquant import FixedBosonicBasis >>> b = FixedBosonicBasis(2, 3) >>> b.state(3) FockStateBosonKet((1, 0, 1)) """ return self.basis[i] def __getitem__(self, i): return self.state(i) def __len__(self): return len(self.basis) def __repr__(self): return repr(self.basis) class Commutator(Function): """ The Commutator: [A, B] = A*B - B*A The arguments are ordered according to .__cmp__() Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import Commutator >>> A, B = symbols('A,B', commutative=False) >>> Commutator(B, A) -Commutator(A, B) Evaluate the commutator with .doit() >>> comm = Commutator(A,B); comm Commutator(A, B) >>> comm.doit() A*B - B*A For two second quantization operators the commutator is evaluated immediately: >>> from sympy.physics.secondquant import Fd, F >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> p,q = symbols('p,q') >>> Commutator(Fd(a),Fd(i)) 2*NO(CreateFermion(a)*CreateFermion(i)) But for more complicated expressions, the evaluation is triggered by a call to .doit() >>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i)) >>> comm.doit(wicks=True) -KroneckerDelta(i, p)*CreateFermion(q) + KroneckerDelta(i, q)*CreateFermion(p) """ is_commutative = False @classmethod def eval(cls, a, b): """ The Commutator [A,B] is on canonical form if A < B. Examples ======== >>> from sympy.physics.secondquant import Commutator, F, Fd >>> from sympy.abc import x >>> c1 = Commutator(F(x), Fd(x)) >>> c2 = Commutator(Fd(x), F(x)) >>> Commutator.eval(c1, c2) 0 """ if not (a and b): return S.Zero if a == b: return S.Zero if a.is_commutative or b.is_commutative: return S.Zero # # [A+B,C] -> [A,C] + [B,C] # a = a.expand() if isinstance(a, Add): return Add(*[cls(term, b) for term in a.args]) b = b.expand() if isinstance(b, Add): return Add(*[cls(a, term) for term in b.args]) # # [xA,yB] -> xy*[A,B] # ca, nca = a.args_cnc() cb, ncb = b.args_cnc() c_part = list(ca) + list(cb) if c_part: return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb))) # # single second quantization operators # if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator): if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson): return KroneckerDelta(a.state, b.state) if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson): return S.NegativeOne*KroneckerDelta(a.state, b.state) else: return S.Zero if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator): return wicks(a*b) - wicks(b*a) # # Canonical ordering of arguments # if a.sort_key() > b.sort_key(): return S.NegativeOne*cls(b, a) def doit(self, **hints): """ Enables the computation of complex expressions. Examples ======== >>> from sympy.physics.secondquant import Commutator, F, Fd >>> from sympy import symbols >>> i, j = symbols('i,j', below_fermi=True) >>> a, b = symbols('a,b', above_fermi=True) >>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) >>> c.doit(wicks=True) 0 """ a = self.args[0] b = self.args[1] if hints.get("wicks"): a = a.doit(**hints) b = b.doit(**hints) try: return wicks(a*b) - wicks(b*a) except ContractionAppliesOnlyToFermions: pass except WicksTheoremDoesNotApply: pass return (a*b - b*a).doit(**hints) def __repr__(self): return "Commutator(%s,%s)" % (self.args[0], self.args[1]) def __str__(self): return "[%s,%s]" % (self.args[0], self.args[1]) def _latex(self, printer): return "\\left[%s,%s\\right]" % tuple([ printer._print(arg) for arg in self.args]) class NO(Expr): """ This Object is used to represent normal ordering brackets. i.e. {abcd} sometimes written :abcd: Explanation =========== Applying the function NO(arg) to an argument means that all operators in the argument will be assumed to anticommute, and have vanishing contractions. This allows an immediate reordering to canonical form upon object creation. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> p,q = symbols('p,q') >>> NO(Fd(p)*F(q)) NO(CreateFermion(p)*AnnihilateFermion(q)) >>> NO(F(q)*Fd(p)) -NO(CreateFermion(p)*AnnihilateFermion(q)) Note ==== If you want to generate a normal ordered equivalent of an expression, you should use the function wicks(). This class only indicates that all operators inside the brackets anticommute, and have vanishing contractions. Nothing more, nothing less. """ is_commutative = False def __new__(cls, arg): """ Use anticommutation to get canonical form of operators. Explanation =========== Employ associativity of normal ordered product: {ab{cd}} = {abcd} but note that {ab}{cd} /= {abcd}. We also employ distributivity: {ab + cd} = {ab} + {cd}. Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}. """ # {ab + cd} = {ab} + {cd} arg = sympify(arg) arg = arg.expand() if arg.is_Add: return Add(*[ cls(term) for term in arg.args]) if arg.is_Mul: # take coefficient outside of normal ordering brackets c_part, seq = arg.args_cnc() if c_part: coeff = Mul(*c_part) if not seq: return coeff else: coeff = S.One # {ab{cd}} = {abcd} newseq = [] foundit = False for fac in seq: if isinstance(fac, NO): newseq.extend(fac.args) foundit = True else: newseq.append(fac) if foundit: return coeff*cls(Mul(*newseq)) # We assume that the user don't mix B and F operators if isinstance(seq[0], BosonicOperator): raise NotImplementedError try: newseq, sign = _sort_anticommuting_fermions(seq) except ViolationOfPauliPrinciple: return S.Zero if sign % 2: return (S.NegativeOne*coeff)*cls(Mul(*newseq)) elif sign: return coeff*cls(Mul(*newseq)) else: pass # since sign==0, no permutations was necessary # if we couldn't do anything with Mul object, we just # mark it as normal ordered if coeff != S.One: return coeff*cls(Mul(*newseq)) return Expr.__new__(cls, Mul(*newseq)) if isinstance(arg, NO): return arg # if object was not Mul or Add, normal ordering does not apply return arg @property def has_q_creators(self): """ Return 0 if the leftmost argument of the first argument is a not a q_creator, else 1 if it is above fermi or -1 if it is below fermi. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> NO(Fd(a)*Fd(i)).has_q_creators 1 >>> NO(F(i)*F(a)).has_q_creators -1 >>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP 0 """ return self.args[0].args[0].is_q_creator @property def has_q_annihilators(self): """ Return 0 if the rightmost argument of the first argument is a not a q_annihilator, else 1 if it is above fermi or -1 if it is below fermi. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import NO, F, Fd >>> a = symbols('a', above_fermi=True) >>> i = symbols('i', below_fermi=True) >>> NO(Fd(a)*Fd(i)).has_q_annihilators -1 >>> NO(F(i)*F(a)).has_q_annihilators 1 >>> NO(Fd(a)*F(i)).has_q_annihilators 0 """ return self.args[0].args[-1].is_q_annihilator def doit(self, **kw_args): """ Either removes the brackets or enables complex computations in its arguments. Examples ======== >>> from sympy.physics.secondquant import NO, Fd, F >>> from textwrap import fill >>> from sympy import symbols, Dummy >>> p,q = symbols('p,q', cls=Dummy) >>> print(fill(str(NO(Fd(p)*F(q)).doit()))) KroneckerDelta(_a, _p)*KroneckerDelta(_a, _q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a, _p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) - KroneckerDelta(_a, _q)*KroneckerDelta(_i, _p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i, _p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i) """ if kw_args.get("remove_brackets", True): return self._remove_brackets() else: return self.__new__(type(self), self.args[0].doit(**kw_args)) def _remove_brackets(self): """ Returns the sorted string without normal order brackets. The returned string have the property that no nonzero contractions exist. """ # check if any creator is also an annihilator subslist = [] for i in self.iter_q_creators(): if self[i].is_q_annihilator: assume = self[i].state.assumptions0 # only operators with a dummy index can be split in two terms if isinstance(self[i].state, Dummy): # create indices with fermi restriction assume.pop("above_fermi", None) assume["below_fermi"] = True below = Dummy('i', **assume) assume.pop("below_fermi", None) assume["above_fermi"] = True above = Dummy('a', **assume) cls = type(self[i]) split = ( self[i].__new__(cls, below) * KroneckerDelta(below, self[i].state) + self[i].__new__(cls, above) * KroneckerDelta(above, self[i].state) ) subslist.append((self[i], split)) else: raise SubstitutionOfAmbigousOperatorFailed(self[i]) if subslist: result = NO(self.subs(subslist)) if isinstance(result, Add): return Add(*[term.doit() for term in result.args]) else: return self.args[0] def _expand_operators(self): """ Returns a sum of NO objects that contain no ambiguous q-operators. Explanation =========== If an index q has range both above and below fermi, the operator F(q) is ambiguous in the sense that it can be both a q-creator and a q-annihilator. If q is dummy, it is assumed to be a summation variable and this method rewrites it into a sum of NO terms with unambiguous operators: {Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)} where a,b are above and i,j are below fermi level. """ return NO(self._remove_brackets) def __getitem__(self, i): if isinstance(i, slice): indices = i.indices(len(self)) return [self.args[0].args[i] for i in range(*indices)] else: return self.args[0].args[i] def __len__(self): return len(self.args[0].args) def iter_q_annihilators(self): """ Iterates over the annihilation operators. Examples ======== >>> from sympy import symbols >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> from sympy.physics.secondquant import NO, F, Fd >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j)) >>> no.iter_q_creators() <generator object... at 0x...> >>> list(no.iter_q_creators()) [0, 1] >>> list(no.iter_q_annihilators()) [3, 2] """ ops = self.args[0].args iter = range(len(ops) - 1, -1, -1) for i in iter: if ops[i].is_q_annihilator: yield i else: break def iter_q_creators(self): """ Iterates over the creation operators. Examples ======== >>> from sympy import symbols >>> i, j = symbols('i j', below_fermi=True) >>> a, b = symbols('a b', above_fermi=True) >>> from sympy.physics.secondquant import NO, F, Fd >>> no = NO(Fd(a)*F(i)*F(b)*Fd(j)) >>> no.iter_q_creators() <generator object... at 0x...> >>> list(no.iter_q_creators()) [0, 1] >>> list(no.iter_q_annihilators()) [3, 2] """ ops = self.args[0].args iter = range(0, len(ops)) for i in iter: if ops[i].is_q_creator: yield i else: break def get_subNO(self, i): """ Returns a NO() without FermionicOperator at index i. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import F, NO >>> p, q, r = symbols('p,q,r') >>> NO(F(p)*F(q)*F(r)).get_subNO(1) NO(AnnihilateFermion(p)*AnnihilateFermion(r)) """ arg0 = self.args[0] # it's a Mul by definition of how it's created mul = arg0._new_rawargs(*(arg0.args[:i] + arg0.args[i + 1:])) return NO(mul) def _latex(self, printer): return "\\left\\{%s\\right\\}" % printer._print(self.args[0]) def __repr__(self): return "NO(%s)" % self.args[0] def __str__(self): return ":%s:" % self.args[0] def contraction(a, b): """ Calculates contraction of Fermionic operators a and b. Examples ======== >>> from sympy import symbols >>> from sympy.physics.secondquant import F, Fd, contraction >>> p, q = symbols('p,q') >>> a, b = symbols('a,b', above_fermi=True) >>> i, j = symbols('i,j', below_fermi=True) A contraction is non-zero only if a quasi-creator is to the right of a quasi-annihilator: >>> contraction(F(a),Fd(b)) KroneckerDelta(a, b) >>> contraction(Fd(i),F(j)) KroneckerDelta(i, j) For general indices a non-zero result restricts the indices to below/above the fermi surface: >>> contraction(Fd(p),F(q)) KroneckerDelta(_i, q)*KroneckerDelta(p, q) >>> contraction(F(p),Fd(q)) KroneckerDelta(_a, q)*KroneckerDelta(p, q) Two creators or two annihilators always vanishes: >>> contraction(F(p),F(q)) 0 >>> contraction(Fd(p),Fd(q)) 0 """ if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator): if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion): if b.state.assumptions0.get("below_fermi"): return S.Zero if a.state.assumptions0.get("below_fermi"): return S.Zero if b.state.assumptions0.get("above_fermi"): return KroneckerDelta(a.state, b.state) if a.state.assumptions0.get("above_fermi"): return KroneckerDelta(a.state, b.state) return (KroneckerDelta(a.state, b.state)* KroneckerDelta(b.state, Dummy('a', above_fermi=True))) if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion): if b.state.assumptions0.get("above_fermi"): return S.Zero if a.state.assumptions0.get("above_fermi"): return S.Zero if b.state.assumptions0.get("below_fermi"): return KroneckerDelta(a.state, b.state) if a.state.assumptions0.get("below_fermi"): return KroneckerDelta(a.state, b.state) return (KroneckerDelta(a.state, b.state)* KroneckerDelta(b.state, Dummy('i', below_fermi=True))) # vanish if 2xAnnihilator or 2xCreator return S.Zero else: #not fermion operators t = ( isinstance(i, FermionicOperator) for i in (a, b) ) raise ContractionAppliesOnlyToFermions(*t) def _sqkey(sq_operator): """Generates key for canonical sorting of SQ operators.""" return sq_operator._sortkey() def _sort_anticommuting_fermions(string1, key=_sqkey): """Sort fermionic operators to canonical order, assuming all pairs anticommute. Explanation =========== Uses a bidirectional bubble sort. Items in string1 are not referenced so in principle they may be any comparable objects. The sorting depends on the operators '>' and '=='. If the Pauli principle is violated, an exception is raised. Returns ======= tuple (sorted_str, sign) sorted_str: list containing the sorted operators sign: int telling how many times the sign should be changed (if sign==0 the string was already sorted) """ verified = False sign = 0 rng = list(range(len(string1) - 1)) rev = list(range(len(string1) - 3, -1, -1)) keys = list(map(key, string1)) key_val = dict(list(zip(keys, string1))) while not verified: verified = True for i in rng: left = keys[i] right = keys[i + 1] if left == right: raise ViolationOfPauliPrinciple([left, right]) if left > right: verified = False keys[i:i + 2] = [right, left] sign = sign + 1 if verified: break for i in rev: left = keys[i] right = keys[i + 1] if left == right: raise ViolationOfPauliPrinciple([left, right]) if left > right: verified = False keys[i:i + 2] = [right, left] sign = sign + 1 string1 = [ key_val[k] for k in keys ] return (string1, sign) def evaluate_deltas(e): """ We evaluate KroneckerDelta symbols in the expression assuming Einstein summation. Explanation =========== If one index is repeated it is summed over and in effect substituted with the other one. If both indices are repeated we substitute according to what is the preferred index. this is determined by KroneckerDelta.preferred_index and KroneckerDelta.killable_index. In case there are no possible substitutions or if a substitution would imply a loss of information, nothing is done. In case an index appears in more than one KroneckerDelta, the resulting substitution depends on the order of the factors. Since the ordering is platform dependent, the literal expression resulting from this function may be hard to predict. Examples ======== We assume the following: >>> from sympy import symbols, Function, Dummy, KroneckerDelta >>> from sympy.physics.secondquant import evaluate_deltas >>> i,j = symbols('i j', below_fermi=True, cls=Dummy) >>> a,b = symbols('a b', above_fermi=True, cls=Dummy) >>> p,q = symbols('p q', cls=Dummy) >>> f = Function('f') >>> t = Function('t') The order of preference for these indices according to KroneckerDelta is (a, b, i, j, p, q). Trivial cases: >>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j) f(_j) >>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i) f(_i) >>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i) f(_i) >>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q) f(_q) >>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p) f(_p) More interesting cases: >>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q)) f(_i, _q)*t(_a, _i) >>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q)) f(_a, _q)*t(_a, _i) >>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q)) f(_p, _p) Finally, here are some cases where nothing is done, because that would imply a loss of information: >>> evaluate_deltas(KroneckerDelta(i,p)*f(q)) f(_q)*KroneckerDelta(_i, _p) >>> evaluate_deltas(KroneckerDelta(i,p)*f(i)) f(_i)*KroneckerDelta(_i, _p) """ # We treat Deltas only in mul objects # for general function objects we don't evaluate KroneckerDeltas in arguments, # but here we hard code exceptions to this rule accepted_functions = ( Add, ) if isinstance(e, accepted_functions): return e.func(*[evaluate_deltas(arg) for arg in e.args]) elif isinstance(e, Mul): # find all occurrences of delta function and count each index present in # expression. deltas = [] indices = {} for i in e.args: for s in i.free_symbols: if s in indices: indices[s] += 1 else: indices[s] = 0 # geek counting simplifies logic below if isinstance(i, KroneckerDelta): deltas.append(i) for d in deltas: # If we do something, and there are more deltas, we should recurse # to treat the resulting expression properly if d.killable_index.is_Symbol and indices[d.killable_index]: e = e.subs(d.killable_index, d.preferred_index) if len(deltas) > 1: return evaluate_deltas(e) elif (d.preferred_index.is_Symbol and indices[d.preferred_index] and d.indices_contain_equal_information): e = e.subs(d.preferred_index, d.killable_index) if len(deltas) > 1: return evaluate_deltas(e) else: pass return e # nothing to do, maybe we hit a Symbol or a number else: return e def substitute_dummies(expr, new_indices=False, pretty_indices={}): """ Collect terms by substitution of dummy variables. Explanation =========== This routine allows simplification of Add expressions containing terms which differ only due to dummy variables. The idea is to substitute all dummy variables consistently depending on the structure of the term. For each term, we obtain a sequence of all dummy variables, where the order is determined by the index range, what factors the index belongs to and its position in each factor. See _get_ordered_dummies() for more information about the sorting of dummies. The index sequence is then substituted consistently in each term. Examples ======== >>> from sympy import symbols, Function, Dummy >>> from sympy.physics.secondquant import substitute_dummies >>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy) >>> i,j = symbols('i j', below_fermi=True, cls=Dummy) >>> f = Function('f') >>> expr = f(a,b) + f(c,d); expr f(_a, _b) + f(_c, _d) Since a, b, c and d are equivalent summation indices, the expression can be simplified to a single term (for which the dummy indices are still summed over) >>> substitute_dummies(expr) 2*f(_a, _b) Controlling output: By default the dummy symbols that are already present in the expression will be reused in a different permutation. However, if new_indices=True, new dummies will be generated and inserted. The keyword 'pretty_indices' can be used to control this generation of new symbols. By default the new dummies will be generated on the form i_1, i_2, a_1, etc. If you supply a dictionary with key:value pairs in the form: { index_group: string_of_letters } The letters will be used as labels for the new dummy symbols. The index_groups must be one of 'above', 'below' or 'general'. >>> expr = f(a,b,i,j) >>> my_dummies = { 'above':'st', 'below':'uv' } >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies) f(_s, _t, _u, _v) If we run out of letters, or if there is no keyword for some index_group the default dummy generator will be used as a fallback: >>> p,q = symbols('p q', cls=Dummy) # general indices >>> expr = f(p,q) >>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies) f(_p_0, _p_1) """ # setup the replacing dummies if new_indices: letters_above = pretty_indices.get('above', "") letters_below = pretty_indices.get('below', "") letters_general = pretty_indices.get('general', "") len_above = len(letters_above) len_below = len(letters_below) len_general = len(letters_general) def _i(number): try: return letters_below[number] except IndexError: return 'i_' + str(number - len_below) def _a(number): try: return letters_above[number] except IndexError: return 'a_' + str(number - len_above) def _p(number): try: return letters_general[number] except IndexError: return 'p_' + str(number - len_general) aboves = [] belows = [] generals = [] dummies = expr.atoms(Dummy) if not new_indices: dummies = sorted(dummies, key=default_sort_key) # generate lists with the dummies we will insert a = i = p = 0 for d in dummies: assum = d.assumptions0 if assum.get("above_fermi"): if new_indices: sym = _a(a) a += 1 l1 = aboves elif assum.get("below_fermi"): if new_indices: sym = _i(i) i += 1 l1 = belows else: if new_indices: sym = _p(p) p += 1 l1 = generals if new_indices: l1.append(Dummy(sym, **assum)) else: l1.append(d) expr = expr.expand() terms = Add.make_args(expr) new_terms = [] for term in terms: i = iter(belows) a = iter(aboves) p = iter(generals) ordered = _get_ordered_dummies(term) subsdict = {} for d in ordered: if d.assumptions0.get('below_fermi'): subsdict[d] = next(i) elif d.assumptions0.get('above_fermi'): subsdict[d] = next(a) else: subsdict[d] = next(p) subslist = [] final_subs = [] for k, v in subsdict.items(): if k == v: continue if v in subsdict: # We check if the sequence of substitutions end quickly. In # that case, we can avoid temporary symbols if we ensure the # correct substitution order. if subsdict[v] in subsdict: # (x, y) -> (y, x), we need a temporary variable x = Dummy('x') subslist.append((k, x)) final_subs.append((x, v)) else: # (x, y) -> (y, a), x->y must be done last # but before temporary variables are resolved final_subs.insert(0, (k, v)) else: subslist.append((k, v)) subslist.extend(final_subs) new_terms.append(term.subs(subslist)) return Add(*new_terms) class KeyPrinter(StrPrinter): """Printer for which only equal objects are equal in print""" def _print_Dummy(self, expr): return "(%s_%i)" % (expr.name, expr.dummy_index) def __kprint(expr): p = KeyPrinter() return p.doprint(expr) def _get_ordered_dummies(mul, verbose=False): """Returns all dummies in the mul sorted in canonical order. Explanation =========== The purpose of the canonical ordering is that dummies can be substituted consistently across terms with the result that equivalent terms can be simplified. It is not possible to determine if two terms are equivalent based solely on the dummy order. However, a consistent substitution guided by the ordered dummies should lead to trivially (non-)equivalent terms, thereby revealing the equivalence. This also means that if two terms have identical sequences of dummies, the (non-)equivalence should already be apparent. Strategy -------- The canoncial order is given by an arbitrary sorting rule. A sort key is determined for each dummy as a tuple that depends on all factors where the index is present. The dummies are thereby sorted according to the contraction structure of the term, instead of sorting based solely on the dummy symbol itself. After all dummies in the term has been assigned a key, we check for identical keys, i.e. unorderable dummies. If any are found, we call a specialized method, _determine_ambiguous(), that will determine a unique order based on recursive calls to _get_ordered_dummies(). Key description --------------- A high level description of the sort key: 1. Range of the dummy index 2. Relation to external (non-dummy) indices 3. Position of the index in the first factor 4. Position of the index in the second factor The sort key is a tuple with the following components: 1. A single character indicating the range of the dummy (above, below or general.) 2. A list of strings with fully masked string representations of all factors where the dummy is present. By masked, we mean that dummies are represented by a symbol to indicate either below fermi, above or general. No other information is displayed about the dummies at this point. The list is sorted stringwise. 3. An integer number indicating the position of the index, in the first factor as sorted in 2. 4. An integer number indicating the position of the index, in the second factor as sorted in 2. If a factor is either of type AntiSymmetricTensor or SqOperator, the index position in items 3 and 4 is indicated as 'upper' or 'lower' only. (Creation operators are considered upper and annihilation operators lower.) If the masked factors are identical, the two factors cannot be ordered unambiguously in item 2. In this case, items 3, 4 are left out. If several indices are contracted between the unorderable factors, it will be handled by _determine_ambiguous() """ # setup dicts to avoid repeated calculations in key() args = Mul.make_args(mul) fac_dum = { fac: fac.atoms(Dummy) for fac in args } fac_repr = { fac: __kprint(fac) for fac in args } all_dums = set().union(*fac_dum.values()) mask = {} for d in all_dums: if d.assumptions0.get('below_fermi'): mask[d] = '0' elif d.assumptions0.get('above_fermi'): mask[d] = '1' else: mask[d] = '2' dum_repr = {d: __kprint(d) for d in all_dums} def _key(d): dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ] other_dums = set().union(*[fac_dum[fac] for fac in dumstruct]) fac = dumstruct[-1] if other_dums is fac_dum[fac]: other_dums = fac_dum[fac].copy() other_dums.remove(d) masked_facs = [ fac_repr[fac] for fac in dumstruct ] for d2 in other_dums: masked_facs = [ fac.replace(dum_repr[d2], mask[d2]) for fac in masked_facs ] all_masked = [ fac.replace(dum_repr[d], mask[d]) for fac in masked_facs ] masked_facs = dict(list(zip(dumstruct, masked_facs))) # dummies for which the ordering cannot be determined if has_dups(all_masked): all_masked.sort() return mask[d], tuple(all_masked) # positions are ambiguous # sort factors according to fully masked strings keydict = dict(list(zip(dumstruct, all_masked))) dumstruct.sort(key=lambda x: keydict[x]) all_masked.sort() pos_val = [] for fac in dumstruct: if isinstance(fac, AntiSymmetricTensor): if d in fac.upper: pos_val.append('u') if d in fac.lower: pos_val.append('l') elif isinstance(fac, Creator): pos_val.append('u') elif isinstance(fac, Annihilator): pos_val.append('l') elif isinstance(fac, NO): ops = [ op for op in fac if op.has(d) ] for op in ops: if isinstance(op, Creator): pos_val.append('u') else: pos_val.append('l') else: # fallback to position in string representation facpos = -1 while 1: facpos = masked_facs[fac].find(dum_repr[d], facpos + 1) if facpos == -1: break pos_val.append(facpos) return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1]) dumkey = dict(list(zip(all_dums, list(map(_key, all_dums))))) result = sorted(all_dums, key=lambda x: dumkey[x]) if has_dups(iter(dumkey.values())): # We have ambiguities unordered = defaultdict(set) for d, k in dumkey.items(): unordered[k].add(d) for k in [ k for k in unordered if len(unordered[k]) < 2 ]: del unordered[k] unordered = [ unordered[k] for k in sorted(unordered) ] result = _determine_ambiguous(mul, result, unordered) return result def _determine_ambiguous(term, ordered, ambiguous_groups): # We encountered a term for which the dummy substitution is ambiguous. # This happens for terms with 2 or more contractions between factors that # cannot be uniquely ordered independent of summation indices. For # example: # # Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .} # # Assuming that the indices represented by . are dummies with the # same range, the factors cannot be ordered, and there is no # way to determine a consistent ordering of p and q. # # The strategy employed here, is to relabel all unambiguous dummies with # non-dummy symbols and call _get_ordered_dummies again. This procedure is # applied to the entire term so there is a possibility that # _determine_ambiguous() is called again from a deeper recursion level. # break recursion if there are no ordered dummies all_ambiguous = set() for dummies in ambiguous_groups: all_ambiguous |= dummies all_ordered = set(ordered) - all_ambiguous if not all_ordered: # FIXME: If we arrive here, there are no ordered dummies. A method to # handle this needs to be implemented. In order to return something # useful nevertheless, we choose arbitrarily the first dummy and # determine the rest from this one. This method is dependent on the # actual dummy labels which violates an assumption for the # canonicalization procedure. A better implementation is needed. group = [ d for d in ordered if d in ambiguous_groups[0] ] d = group[0] all_ordered.add(d) ambiguous_groups[0].remove(d) stored_counter = _symbol_factory._counter subslist = [] for d in [ d for d in ordered if d in all_ordered ]: nondum = _symbol_factory._next() subslist.append((d, nondum)) newterm = term.subs(subslist) neworder = _get_ordered_dummies(newterm) _symbol_factory._set_counter(stored_counter) # update ordered list with new information for group in ambiguous_groups: ordered_group = [ d for d in neworder if d in group ] ordered_group.reverse() result = [] for d in ordered: if d in group: result.append(ordered_group.pop()) else: result.append(d) ordered = result return ordered class _SymbolFactory: def __init__(self, label): self._counterVar = 0 self._label = label def _set_counter(self, value): """ Sets counter to value. """ self._counterVar = value @property def _counter(self): """ What counter is currently at. """ return self._counterVar def _next(self): """ Generates the next symbols and increments counter by 1. """ s = Symbol("%s%i" % (self._label, self._counterVar)) self._counterVar += 1 return s _symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label @cacheit def _get_contractions(string1, keep_only_fully_contracted=False): """ Returns Add-object with contracted terms. Uses recursion to find all contractions. -- Internal helper function -- Will find nonzero contractions in string1 between indices given in leftrange and rightrange. """ # Should we store current level of contraction? if keep_only_fully_contracted and string1: result = [] else: result = [NO(Mul(*string1))] for i in range(len(string1) - 1): for j in range(i + 1, len(string1)): c = contraction(string1[i], string1[j]) if c: sign = (j - i + 1) % 2 if sign: coeff = S.NegativeOne*c else: coeff = c # # Call next level of recursion # ============================ # # We now need to find more contractions among operators # # oplist = string1[:i]+ string1[i+1:j] + string1[j+1:] # # To prevent overcounting, we don't allow contractions # we have already encountered. i.e. contractions between # string1[:i] <---> string1[i+1:j] # and string1[:i] <---> string1[j+1:]. # # This leaves the case: oplist = string1[i + 1:j] + string1[j + 1:] if oplist: result.append(coeff*NO( Mul(*string1[:i])*_get_contractions( oplist, keep_only_fully_contracted=keep_only_fully_contracted))) else: result.append(coeff*NO( Mul(*string1[:i]))) if keep_only_fully_contracted: break # next iteration over i leaves leftmost operator string1[0] uncontracted return Add(*result) def wicks(e, **kw_args): """ Returns the normal ordered equivalent of an expression using Wicks Theorem. Examples ======== >>> from sympy import symbols, Dummy >>> from sympy.physics.secondquant import wicks, F, Fd >>> p, q, r = symbols('p,q,r') >>> wicks(Fd(p)*F(q)) KroneckerDelta(_i, q)*KroneckerDelta(p, q) + NO(CreateFermion(p)*AnnihilateFermion(q)) By default, the expression is expanded: >>> wicks(F(p)*(F(q)+F(r))) NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(AnnihilateFermion(p)*AnnihilateFermion(r)) With the keyword 'keep_only_fully_contracted=True', only fully contracted terms are returned. By request, the result can be simplified in the following order: -- KroneckerDelta functions are evaluated -- Dummy variables are substituted consistently across terms >>> p, q, r = symbols('p q r', cls=Dummy) >>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True) KroneckerDelta(_i, _q)*KroneckerDelta(_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r) """ if not e: return S.Zero opts = { 'simplify_kronecker_deltas': False, 'expand': True, 'simplify_dummies': False, 'keep_only_fully_contracted': False } opts.update(kw_args) # check if we are already normally ordered if isinstance(e, NO): if opts['keep_only_fully_contracted']: return S.Zero else: return e elif isinstance(e, FermionicOperator): if opts['keep_only_fully_contracted']: return S.Zero else: return e # break up any NO-objects, and evaluate commutators e = e.doit(wicks=True) # make sure we have only one term to consider e = e.expand() if isinstance(e, Add): if opts['simplify_dummies']: return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args])) else: return Add(*[ wicks(term, **kw_args) for term in e.args]) # For Mul-objects we can actually do something if isinstance(e, Mul): # we don't want to mess around with commuting part of Mul # so we factorize it out before starting recursion c_part = [] string1 = [] for factor in e.args: if factor.is_commutative: c_part.append(factor) else: string1.append(factor) n = len(string1) # catch trivial cases if n == 0: result = e elif n == 1: if opts['keep_only_fully_contracted']: return S.Zero else: result = e else: # non-trivial if isinstance(string1[0], BosonicOperator): raise NotImplementedError string1 = tuple(string1) # recursion over higher order contractions result = _get_contractions(string1, keep_only_fully_contracted=opts['keep_only_fully_contracted'] ) result = Mul(*c_part)*result if opts['expand']: result = result.expand() if opts['simplify_kronecker_deltas']: result = evaluate_deltas(result) return result # there was nothing to do return e class PermutationOperator(Expr): """ Represents the index permutation operator P(ij). P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i) """ is_commutative = True def __new__(cls, i, j): i, j = sorted(map(sympify, (i, j)), key=default_sort_key) obj = Basic.__new__(cls, i, j) return obj def get_permuted(self, expr): """ Returns -expr with permuted indices. Explanation =========== >>> from sympy import symbols, Function >>> from sympy.physics.secondquant import PermutationOperator >>> p,q = symbols('p,q') >>> f = Function('f') >>> PermutationOperator(p,q).get_permuted(f(p,q)) -f(q, p) """ i = self.args[0] j = self.args[1] if expr.has(i) and expr.has(j): tmp = Dummy() expr = expr.subs(i, tmp) expr = expr.subs(j, i) expr = expr.subs(tmp, j) return S.NegativeOne*expr else: return expr def _latex(self, printer): return "P(%s%s)" % self.args def simplify_index_permutations(expr, permutation_operators): """ Performs simplification by introducing PermutationOperators where appropriate. Explanation =========== Schematically: [abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij] permutation_operators is a list of PermutationOperators to consider. If permutation_operators=[P(ab),P(ij)] we will try to introduce the permutation operators P(ij) and P(ab) in the expression. If there are other possible simplifications, we ignore them. >>> from sympy import symbols, Function >>> from sympy.physics.secondquant import simplify_index_permutations >>> from sympy.physics.secondquant import PermutationOperator >>> p,q,r,s = symbols('p,q,r,s') >>> f = Function('f') >>> g = Function('g') >>> expr = f(p)*g(q) - f(q)*g(p); expr f(p)*g(q) - f(q)*g(p) >>> simplify_index_permutations(expr,[PermutationOperator(p,q)]) f(p)*g(q)*PermutationOperator(p, q) >>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)] >>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r) >>> simplify_index_permutations(expr,PermutList) f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s) """ def _get_indices(expr, ind): """ Collects indices recursively in predictable order. """ result = [] for arg in expr.args: if arg in ind: result.append(arg) else: if arg.args: result.extend(_get_indices(arg, ind)) return result def _choose_one_to_keep(a, b, ind): # we keep the one where indices in ind are in order ind[0] < ind[1] return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind))) expr = expr.expand() if isinstance(expr, Add): terms = set(expr.args) for P in permutation_operators: new_terms = set() on_hold = set() while terms: term = terms.pop() permuted = P.get_permuted(term) if permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: # Some terms must get a second chance because the permuted # term may already have canonical dummy ordering. Then # substitute_dummies() does nothing. However, the other # term, if it exists, will be able to match with us. permuted1 = permuted permuted = substitute_dummies(permuted) if permuted1 == permuted: on_hold.add(term) elif permuted in terms | on_hold: try: terms.remove(permuted) except KeyError: on_hold.remove(permuted) keep = _choose_one_to_keep(term, permuted, P.args) new_terms.add(P*keep) else: new_terms.add(term) terms = new_terms | on_hold return Add(*terms) return expr
3970d79f402785296af04bf2d85f3879952617f723e360cc77d1c2d90dd20003
r"""Module that defines indexed objects The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a matrix element ``M[i, j]`` as in the following diagram:: 1) The Indexed class represents the entire indexed object. | ___|___ ' ' M[i, j] / \__\______ | | | | | 2) The Idx class represents indices; each Idx can | optionally contain information about its range. | 3) IndexedBase represents the 'stem' of an indexed object, here `M`. The stem used by itself is usually taken to represent the entire array. There can be any number of indices on an Indexed object. No transformation properties are implemented in these Base objects, but implicit contraction of repeated indices is supported. Note that the support for complicated (i.e. non-atomic) integer expressions as indices is limited. (This should be improved in future releases.) Examples ======== To express the above matrix element example you would write: >>> from sympy import symbols, IndexedBase, Idx >>> M = IndexedBase('M') >>> i, j = symbols('i j', cls=Idx) >>> M[i, j] M[i, j] Repeated indices in a product implies a summation, so to express a matrix-vector product in terms of Indexed objects: >>> x = IndexedBase('x') >>> M[i, j]*x[j] M[i, j]*x[j] If the indexed objects will be converted to component based arrays, e.g. with the code printers or the autowrap framework, you also need to provide (symbolic or numerical) dimensions. This can be done by passing an optional shape parameter to IndexedBase upon construction: >>> dim1, dim2 = symbols('dim1 dim2', integer=True) >>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2)) >>> A.shape (dim1, 2*dim1, dim2) >>> A[i, j, 3].shape (dim1, 2*dim1, dim2) If an IndexedBase object has no shape information, it is assumed that the array is as large as the ranges of its indices: >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> M[i, j].shape (m, n) >>> M[i, j].ranges [(0, m - 1), (0, n - 1)] The above can be compared with the following: >>> A[i, 2, j].shape (dim1, 2*dim1, dim2) >>> A[i, 2, j].ranges [(0, m - 1), None, (0, n - 1)] To analyze the structure of indexed expressions, you can use the methods get_indices() and get_contraction_structure(): >>> from sympy.tensor import get_indices, get_contraction_structure >>> get_indices(A[i, j, j]) ({i}, {}) >>> get_contraction_structure(A[i, j, j]) {(j,): {A[i, j, j]}} See the appropriate docstrings for a detailed explanation of the output. """ # TODO: (some ideas for improvement) # # o test and guarantee numpy compatibility # - implement full support for broadcasting # - strided arrays # # o more functions to analyze indexed expressions # - identify standard constructs, e.g matrix-vector product in a subexpression # # o functions to generate component based arrays (numpy and sympy.Matrix) # - generate a single array directly from Indexed # - convert simple sub-expressions # # o sophisticated indexing (possibly in subclasses to preserve simplicity) # - Idx with range smaller than dimension of Indexed # - Idx with stepsize != 1 # - Idx with step determined by function call from collections.abc import Iterable from sympy.core.numbers import Number from sympy.core.assumptions import StdFactKB from sympy.core import Expr, Tuple, sympify, S from sympy.core.symbol import _filter_assumptions, Symbol from sympy.core.logic import fuzzy_bool, fuzzy_not from sympy.core.sympify import _sympify from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.multipledispatch import dispatch from sympy.utilities.iterables import is_sequence, NotIterable from sympy.utilities.misc import filldedent class IndexException(Exception): pass class Indexed(Expr): """Represents a mathematical object with indices. >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j) A[i, j] It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``: ``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``. >>> A = IndexedBase('A') >>> a_ij = A[i, j] # Prefer this, >>> b_ij = Indexed(A, i, j) # over this. >>> a_ij == b_ij True """ is_commutative = True is_Indexed = True is_symbol = True is_Atom = True def __new__(cls, base, *args, **kw_args): from sympy.tensor.array.ndim_array import NDimArray from sympy.matrices.matrices import MatrixBase if not args: raise IndexException("Indexed needs at least one index.") if isinstance(base, (str, Symbol)): base = IndexedBase(base) elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase): raise TypeError(filldedent(""" The base can only be replaced with a string, Symbol, IndexedBase or an object with a method for getting items (i.e. an object with a `__getitem__` method). """)) args = list(map(sympify, args)) if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all(i.is_number for i in args): if len(args) == 1: return base[args[0]] else: return base[args] obj = Expr.__new__(cls, base, *args, **kw_args) try: IndexedBase._set_assumptions(obj, base.assumptions0) except AttributeError: IndexedBase._set_assumptions(obj, {}) return obj def _hashable_content(self): return super()._hashable_content() + tuple(sorted(self.assumptions0.items())) @property def name(self): return str(self) @property def _diff_wrt(self): """Allow derivatives with respect to an ``Indexed`` object.""" return True def _eval_derivative(self, wrt): from sympy.tensor.array.ndim_array import NDimArray if isinstance(wrt, Indexed) and wrt.base == self.base: if len(self.indices) != len(wrt.indices): msg = "Different # of indices: d({!s})/d({!s})".format(self, wrt) raise IndexException(msg) result = S.One for index1, index2 in zip(self.indices, wrt.indices): result *= KroneckerDelta(index1, index2) return result elif isinstance(self.base, NDimArray): from sympy.tensor.array import derive_by_array return Indexed(derive_by_array(self.base, wrt), *self.args[1:]) else: if Tuple(self.indices).has(wrt): return S.NaN return S.Zero @property def assumptions0(self): return {k: v for k, v in self._assumptions.items() if v is not None} @property def base(self): """Returns the ``IndexedBase`` of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, IndexedBase, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).base A >>> B = IndexedBase('B') >>> B == B[i, j].base True """ return self.args[0] @property def indices(self): """ Returns the indices of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j = symbols('i j', cls=Idx) >>> Indexed('A', i, j).indices (i, j) """ return self.args[1:] @property def rank(self): """ Returns the rank of the ``Indexed`` object. Examples ======== >>> from sympy import Indexed, Idx, symbols >>> i, j, k, l, m = symbols('i:m', cls=Idx) >>> Indexed('A', i, j).rank 2 >>> q = Indexed('A', i, j, k, l, m) >>> q.rank 5 >>> q.rank == len(q.indices) True """ return len(self.args) - 1 @property def shape(self): """Returns a list with dimensions of each index. Dimensions is a property of the array, not of the indices. Still, if the ``IndexedBase`` does not define a shape attribute, it is assumed that the ranges of the indices correspond to the shape of the array. >>> from sympy import IndexedBase, Idx, symbols >>> n, m = symbols('n m', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', m) >>> A = IndexedBase('A', shape=(n, n)) >>> B = IndexedBase('B') >>> A[i, j].shape (n, n) >>> B[i, j].shape (m, m) """ if self.base.shape: return self.base.shape sizes = [] for i in self.indices: upper = getattr(i, 'upper', None) lower = getattr(i, 'lower', None) if None in (upper, lower): raise IndexException(filldedent(""" Range is not defined for all indices in: %s""" % self)) try: size = upper - lower + 1 except TypeError: raise IndexException(filldedent(""" Shape cannot be inferred from Idx with undefined range: %s""" % self)) sizes.append(size) return Tuple(*sizes) @property def ranges(self): """Returns a list of tuples with lower and upper range of each index. If an index does not define the data members upper and lower, the corresponding slot in the list contains ``None`` instead of a tuple. Examples ======== >>> from sympy import Indexed,Idx, symbols >>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges [(0, 1), (0, 3), (0, 7)] >>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges [(0, 2), (0, 2), (0, 2)] >>> x, y, z = symbols('x y z', integer=True) >>> Indexed('A', x, y, z).ranges [None, None, None] """ ranges = [] sentinel = object() for i in self.indices: upper = getattr(i, 'upper', sentinel) lower = getattr(i, 'lower', sentinel) if sentinel not in (upper, lower): ranges.append((lower, upper)) else: ranges.append(None) return ranges def _sympystr(self, p): indices = list(map(p.doprint, self.indices)) return "%s[%s]" % (p.doprint(self.base), ", ".join(indices)) @property def free_symbols(self): base_free_symbols = self.base.free_symbols indices_free_symbols = { fs for i in self.indices for fs in i.free_symbols} if base_free_symbols: return {self} | base_free_symbols | indices_free_symbols else: return indices_free_symbols @property def expr_free_symbols(self): from sympy.utilities.exceptions import SymPyDeprecationWarning SymPyDeprecationWarning(feature="expr_free_symbols method", issue=21494, deprecated_since_version="1.9").warn() return {self} class IndexedBase(Expr, NotIterable): """Represent the base or stem of an indexed object The IndexedBase class represent an array that contains elements. The main purpose of this class is to allow the convenient creation of objects of the Indexed class. The __getitem__ method of IndexedBase returns an instance of Indexed. Alone, without indices, the IndexedBase class can be used as a notation for e.g. matrix equations, resembling what you could do with the Symbol class. But, the IndexedBase class adds functionality that is not available for Symbol instances: - An IndexedBase object can optionally store shape information. This can be used in to check array conformance and conditions for numpy broadcasting. (TODO) - An IndexedBase object implements syntactic sugar that allows easy symbolic representation of array operations, using implicit summation of repeated indices. - The IndexedBase object symbolizes a mathematical structure equivalent to arrays, and is recognized as such for code generation and automatic compilation and wrapping. >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> A = IndexedBase('A'); A A >>> type(A) <class 'sympy.tensor.indexed.IndexedBase'> When an IndexedBase object receives indices, it returns an array with named axes, represented by an Indexed object: >>> i, j = symbols('i j', integer=True) >>> A[i, j, 2] A[i, j, 2] >>> type(A[i, j, 2]) <class 'sympy.tensor.indexed.Indexed'> The IndexedBase constructor takes an optional shape argument. If given, it overrides any shape information in the indices. (But not the index ranges!) >>> m, n, o, p = symbols('m n o p', integer=True) >>> i = Idx('i', m) >>> j = Idx('j', n) >>> A[i, j].shape (m, n) >>> B = IndexedBase('B', shape=(o, p)) >>> B[i, j].shape (o, p) Assumptions can be specified with keyword arguments the same way as for Symbol: >>> A_real = IndexedBase('A', real=True) >>> A_real.is_real True >>> A != A_real True Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase: >>> I = symbols('I', integer=True) >>> C_inherit = IndexedBase(I) >>> C_explicit = IndexedBase('I', integer=True) >>> C_inherit == C_explicit True """ is_commutative = True is_symbol = True is_Atom = True @staticmethod def _set_assumptions(obj, assumptions): """Set assumptions on obj, making sure to apply consistent values.""" tmp_asm_copy = assumptions.copy() is_commutative = fuzzy_bool(assumptions.get('commutative', True)) assumptions['commutative'] = is_commutative obj._assumptions = StdFactKB(assumptions) obj._assumptions._generator = tmp_asm_copy # Issue #8873 def __new__(cls, label, shape=None, *, offset=S.Zero, strides=None, **kw_args): from sympy.matrices.matrices import MatrixBase from sympy.tensor.array.ndim_array import NDimArray assumptions, kw_args = _filter_assumptions(kw_args) if isinstance(label, str): label = Symbol(label, **assumptions) elif isinstance(label, Symbol): assumptions = label._merge(assumptions) elif isinstance(label, (MatrixBase, NDimArray)): return label elif isinstance(label, Iterable): return _sympify(label) else: label = _sympify(label) if is_sequence(shape): shape = Tuple(*shape) elif shape is not None: shape = Tuple(shape) if shape is not None: obj = Expr.__new__(cls, label, shape) else: obj = Expr.__new__(cls, label) obj._shape = shape obj._offset = offset obj._strides = strides obj._name = str(label) IndexedBase._set_assumptions(obj, assumptions) return obj @property def name(self): return self._name def _hashable_content(self): return super()._hashable_content() + tuple(sorted(self.assumptions0.items())) @property def assumptions0(self): return {k: v for k, v in self._assumptions.items() if v is not None} def __getitem__(self, indices, **kw_args): if is_sequence(indices): # Special case needed because M[*my_tuple] is a syntax error. if self.shape and len(self.shape) != len(indices): raise IndexException("Rank mismatch.") return Indexed(self, *indices, **kw_args) else: if self.shape and len(self.shape) != 1: raise IndexException("Rank mismatch.") return Indexed(self, indices, **kw_args) @property def shape(self): """Returns the shape of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase, Idx >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).shape (x, y) Note: If the shape of the ``IndexedBase`` is specified, it will override any shape information given by the indices. >>> A = IndexedBase('A', shape=(x, y)) >>> B = IndexedBase('B') >>> i = Idx('i', 2) >>> j = Idx('j', 1) >>> A[i, j].shape (x, y) >>> B[i, j].shape (2, 1) """ return self._shape @property def strides(self): """Returns the strided scheme for the ``IndexedBase`` object. Normally this is a tuple denoting the number of steps to take in the respective dimension when traversing an array. For code generation purposes strides='C' and strides='F' can also be used. strides='C' would mean that code printer would unroll in row-major order and 'F' means unroll in column major order. """ return self._strides @property def offset(self): """Returns the offset for the ``IndexedBase`` object. This is the value added to the resulting index when the 2D Indexed object is unrolled to a 1D form. Used in code generation. Examples ========== >>> from sympy.printing import ccode >>> from sympy.tensor import IndexedBase, Idx >>> from sympy import symbols >>> l, m, n, o = symbols('l m n o', integer=True) >>> A = IndexedBase('A', strides=(l, m, n), offset=o) >>> i, j, k = map(Idx, 'ijk') >>> ccode(A[i, j, k]) 'A[l*i + m*j + n*k + o]' """ return self._offset @property def label(self): """Returns the label of the ``IndexedBase`` object. Examples ======== >>> from sympy import IndexedBase >>> from sympy.abc import x, y >>> IndexedBase('A', shape=(x, y)).label A """ return self.args[0] def _sympystr(self, p): return p.doprint(self.label) class Idx(Expr): """Represents an integer index as an ``Integer`` or integer expression. There are a number of ways to create an ``Idx`` object. The constructor takes two arguments: ``label`` An integer or a symbol that labels the index. ``range`` Optionally you can specify a range as either * ``Symbol`` or integer: This is interpreted as a dimension. Lower and upper bounds are set to ``0`` and ``range - 1``, respectively. * ``tuple``: The two elements are interpreted as the lower and upper bounds of the range, respectively. Note: bounds of the range are assumed to be either integer or infinite (oo and -oo are allowed to specify an unbounded range). If ``n`` is given as a bound, then ``n.is_integer`` must not return false. For convenience, if the label is given as a string it is automatically converted to an integer symbol. (Note: this conversion is not done for range or dimension arguments.) Examples ======== >>> from sympy import Idx, symbols, oo >>> n, i, L, U = symbols('n i L U', integer=True) If a string is given for the label an integer ``Symbol`` is created and the bounds are both ``None``: >>> idx = Idx('qwerty'); idx qwerty >>> idx.lower, idx.upper (None, None) Both upper and lower bounds can be specified: >>> idx = Idx(i, (L, U)); idx i >>> idx.lower, idx.upper (L, U) When only a single bound is given it is interpreted as the dimension and the lower bound defaults to 0: >>> idx = Idx(i, n); idx.lower, idx.upper (0, n - 1) >>> idx = Idx(i, 4); idx.lower, idx.upper (0, 3) >>> idx = Idx(i, oo); idx.lower, idx.upper (0, oo) """ is_integer = True is_finite = True is_real = True is_symbol = True is_Atom = True _diff_wrt = True def __new__(cls, label, range=None, **kw_args): if isinstance(label, str): label = Symbol(label, integer=True) label, range = list(map(sympify, (label, range))) if label.is_Number: if not label.is_integer: raise TypeError("Index is not an integer number.") return label if not label.is_integer: raise TypeError("Idx object requires an integer label.") elif is_sequence(range): if len(range) != 2: raise ValueError(filldedent(""" Idx range tuple must have length 2, but got %s""" % len(range))) for bound in range: if (bound.is_integer is False and bound is not S.Infinity and bound is not S.NegativeInfinity): raise TypeError("Idx object requires integer bounds.") args = label, Tuple(*range) elif isinstance(range, Expr): if range is not S.Infinity and fuzzy_not(range.is_integer): raise TypeError("Idx object requires an integer dimension.") args = label, Tuple(0, range - 1) elif range: raise TypeError(filldedent(""" The range must be an ordered iterable or integer SymPy expression.""")) else: args = label, obj = Expr.__new__(cls, *args, **kw_args) obj._assumptions["finite"] = True obj._assumptions["real"] = True return obj @property def label(self): """Returns the label (Integer or integer expression) of the Idx object. Examples ======== >>> from sympy import Idx, Symbol >>> x = Symbol('x', integer=True) >>> Idx(x).label x >>> j = Symbol('j', integer=True) >>> Idx(j).label j >>> Idx(j + 1).label j + 1 """ return self.args[0] @property def lower(self): """Returns the lower bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).lower 0 >>> Idx('j', 5).lower 0 >>> Idx('j').lower is None True """ try: return self.args[1][0] except IndexError: return @property def upper(self): """Returns the upper bound of the ``Idx``. Examples ======== >>> from sympy import Idx >>> Idx('j', 2).upper 1 >>> Idx('j', 5).upper 4 >>> Idx('j').upper is None True """ try: return self.args[1][1] except IndexError: return def _sympystr(self, p): return p.doprint(self.label) @property def name(self): return self.label.name if self.label.is_Symbol else str(self.label) @property def free_symbols(self): return {self} @dispatch(Idx, Idx) def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = rhs if rhs.upper is None else rhs.upper other_lower = rhs if rhs.lower is None else rhs.lower if lhs.lower is not None and (lhs.lower >= other_upper) == True: return True if lhs.upper is not None and (lhs.upper < other_lower) == True: return False return None @dispatch(Idx, Number) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = rhs other_lower = rhs if lhs.lower is not None and (lhs.lower >= other_upper) == True: return True if lhs.upper is not None and (lhs.upper < other_lower) == True: return False return None @dispatch(Number, Idx) # type:ignore def _eval_is_ge(lhs, rhs): # noqa:F811 other_upper = lhs other_lower = lhs if rhs.upper is not None and (rhs.upper <= other_lower) == True: return True if rhs.lower is not None and (rhs.lower > other_upper) == True: return False return None
f20a0cfc21205593cdcbfad8fc121f44c68b77696422aecaa60ea42208332bfc
""" Boolean algebra module for SymPy """ from collections import defaultdict from itertools import chain, combinations, product, permutations from sympy.core.add import Add from sympy.core.basic import Basic from sympy.core.cache import cacheit from sympy.core.containers import Tuple from sympy.core.decorators import sympify_method_args, sympify_return from sympy.core.function import Application, Derivative from sympy.core.kind import BooleanKind, NumberKind from sympy.core.numbers import Number from sympy.core.operations import LatticeOp from sympy.core.singleton import Singleton, S from sympy.core.sorting import ordered from sympy.core.sympify import converter, _sympify, sympify from sympy.utilities.iterables import sift, ibin from sympy.utilities.misc import filldedent def as_Boolean(e): """Like ``bool``, return the Boolean value of an expression, e, which can be any instance of :py:class:`~.Boolean` or ``bool``. Examples ======== >>> from sympy import true, false, nan >>> from sympy.logic.boolalg import as_Boolean >>> from sympy.abc import x >>> as_Boolean(0) is false True >>> as_Boolean(1) is true True >>> as_Boolean(x) x >>> as_Boolean(2) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `2`. >>> as_Boolean(nan) Traceback (most recent call last): ... TypeError: expecting bool or Boolean, not `nan`. """ from sympy.core.symbol import Symbol if e == True: return S.true if e == False: return S.false if isinstance(e, Symbol): z = e.is_zero if z is None: return e return S.false if z else S.true if isinstance(e, Boolean): return e raise TypeError('expecting bool or Boolean, not `%s`.' % e) @sympify_method_args class Boolean(Basic): """A Boolean object is an object for which logic operations make sense.""" __slots__ = () kind = BooleanKind @sympify_return([('other', 'Boolean')], NotImplemented) def __and__(self, other): return And(self, other) __rand__ = __and__ @sympify_return([('other', 'Boolean')], NotImplemented) def __or__(self, other): return Or(self, other) __ror__ = __or__ def __invert__(self): """Overloading for ~""" return Not(self) @sympify_return([('other', 'Boolean')], NotImplemented) def __rshift__(self, other): return Implies(self, other) @sympify_return([('other', 'Boolean')], NotImplemented) def __lshift__(self, other): return Implies(other, self) __rrshift__ = __lshift__ __rlshift__ = __rshift__ @sympify_return([('other', 'Boolean')], NotImplemented) def __xor__(self, other): return Xor(self, other) __rxor__ = __xor__ def equals(self, other): """ Returns ``True`` if the given formulas have the same truth table. For two formulas to be equal they must have the same literals. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import And, Or, Not >>> (A >> B).equals(~B >> ~A) True >>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C))) False >>> Not(And(A, Not(A))).equals(Or(B, Not(B))) False """ from sympy.logic.inference import satisfiable from sympy.core.relational import Relational if self.has(Relational) or other.has(Relational): raise NotImplementedError('handling of relationals') return self.atoms() == other.atoms() and \ not satisfiable(Not(Equivalent(self, other))) def to_nnf(self, simplify=True): # override where necessary return self def as_set(self): """ Rewrites Boolean expression in terms of real sets. Examples ======== >>> from sympy import Symbol, Eq, Or, And >>> x = Symbol('x', real=True) >>> Eq(x, 0).as_set() {0} >>> (x > 0).as_set() Interval.open(0, oo) >>> And(-2 < x, x < 2).as_set() Interval.open(-2, 2) >>> Or(x < -2, 2 < x).as_set() Union(Interval.open(-oo, -2), Interval.open(2, oo)) """ from sympy.calculus.util import periodicity from sympy.core.relational import Relational free = self.free_symbols if len(free) == 1: x = free.pop() if x.kind is NumberKind: reps = {} for r in self.atoms(Relational): if periodicity(r, x) not in (0, None): s = r._eval_as_set() if s in (S.EmptySet, S.UniversalSet, S.Reals): reps[r] = s.as_relational(x) continue raise NotImplementedError(filldedent(''' as_set is not implemented for relationals with periodic solutions ''')) new = self.subs(reps) if new.func != self.func: return new.as_set() # restart with new obj else: return new._eval_as_set() return self._eval_as_set() else: raise NotImplementedError("Sorry, as_set has not yet been" " implemented for multivariate" " expressions") @property def binary_symbols(self): from sympy.core.relational import Eq, Ne return set().union(*[i.binary_symbols for i in self.args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) def _eval_refine(self, assumptions): from sympy.assumptions import ask ret = ask(self, assumptions) if ret is True: return true elif ret is False: return false return None class BooleanAtom(Boolean): """ Base class of :py:class:`~.BooleanTrue` and :py:class:`~.BooleanFalse`. """ is_Boolean = True is_Atom = True _op_priority = 11 # higher than Expr def simplify(self, *a, **kw): return self def expand(self, *a, **kw): return self @property def canonical(self): return self def _noop(self, other=None): raise TypeError('BooleanAtom not allowed in this context.') __add__ = _noop __radd__ = _noop __sub__ = _noop __rsub__ = _noop __mul__ = _noop __rmul__ = _noop __pow__ = _noop __rpow__ = _noop __truediv__ = _noop __rtruediv__ = _noop __mod__ = _noop __rmod__ = _noop _eval_power = _noop # /// drop when Py2 is no longer supported def __lt__(self, other): raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __gt__ = __lt__ __ge__ = __lt__ # \\\ def _eval_simplify(self, **kwargs): return self class BooleanTrue(BooleanAtom, metaclass=Singleton): """ SymPy version of ``True``, a singleton that can be accessed via ``S.true``. This is the SymPy version of ``True``, for use in the logic module. The primary advantage of using ``true`` instead of ``True`` is that shorthand Boolean operations like ``~`` and ``>>`` will work as expected on this class, whereas with True they act bitwise on 1. Functions in the logic module will return this class when they evaluate to true. Notes ===== There is liable to be some confusion as to when ``True`` should be used and when ``S.true`` should be used in various contexts throughout SymPy. An important thing to remember is that ``sympify(True)`` returns ``S.true``. This means that for the most part, you can just use ``True`` and it will automatically be converted to ``S.true`` when necessary, similar to how you can generally use 1 instead of ``S.One``. The rule of thumb is: "If the boolean in question can be replaced by an arbitrary symbolic ``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``. Otherwise, use ``True``" In other words, use ``S.true`` only on those contexts where the boolean is being used as a symbolic representation of truth. For example, if the object ends up in the ``.args`` of any expression, then it must necessarily be ``S.true`` instead of ``True``, as elements of ``.args`` must be ``Basic``. On the other hand, ``==`` is not a symbolic operation in SymPy, since it always returns ``True`` or ``False``, and does so in terms of structural equality rather than mathematical, so it should return ``True``. The assumptions system should use ``True`` and ``False``. Aside from not satisfying the above rule of thumb, the assumptions system uses a three-valued logic (``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false`` represent a two-valued logic. When in doubt, use ``True``. "``S.true == True is True``." While "``S.true is True``" is ``False``, "``S.true == True``" is ``True``, so if there is any doubt over whether a function or expression will return ``S.true`` or ``True``, just use ``==`` instead of ``is`` to do the comparison, and it will work in either case. Finally, for boolean flags, it's better to just use ``if x`` instead of ``if x is True``. To quote PEP 8: Don't compare boolean values to ``True`` or ``False`` using ``==``. * Yes: ``if greeting:`` * No: ``if greeting == True:`` * Worse: ``if greeting is True:`` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(True) True >>> _ is True, _ is true (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) Python operators give a boolean result for true but a bitwise result for True >>> ~true, ~True (False, -2) >>> true >> true, True >> True (True, 0) See Also ======== sympy.logic.boolalg.BooleanFalse """ def __bool__(self): return True def __hash__(self): return hash(True) @property def negated(self): return S.false def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import true >>> true.as_set() UniversalSet """ return S.UniversalSet class BooleanFalse(BooleanAtom, metaclass=Singleton): """ SymPy version of ``False``, a singleton that can be accessed via ``S.false``. This is the SymPy version of ``False``, for use in the logic module. The primary advantage of using ``false`` instead of ``False`` is that shorthand Boolean operations like ``~`` and ``>>`` will work as expected on this class, whereas with ``False`` they act bitwise on 0. Functions in the logic module will return this class when they evaluate to false. Notes ====== See the notes section in :py:class:`sympy.logic.boolalg.BooleanTrue` Examples ======== >>> from sympy import sympify, true, false, Or >>> sympify(False) False >>> _ is False, _ is false (False, True) >>> Or(true, false) True >>> _ is true True Python operators give a boolean result for false but a bitwise result for False >>> ~false, ~False (True, -1) >>> false >> false, False >> False (True, 0) See Also ======== sympy.logic.boolalg.BooleanTrue """ def __bool__(self): return False def __hash__(self): return hash(False) @property def negated(self): return S.true def as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import false >>> false.as_set() EmptySet """ return S.EmptySet true = BooleanTrue() false = BooleanFalse() # We want S.true and S.false to work, rather than S.BooleanTrue and # S.BooleanFalse, but making the class and instance names the same causes some # major issues (like the inability to import the class directly from this # file). S.true = true S.false = false converter[bool] = lambda x: S.true if x else S.false class BooleanFunction(Application, Boolean): """Boolean function is a function that lives in a boolean space It is used as base class for :py:class:`~.And`, :py:class:`~.Or`, :py:class:`~.Not`, etc. """ is_Boolean = True def _eval_simplify(self, **kwargs): rv = simplify_univariate(self) if not isinstance(rv, BooleanFunction): return rv.simplify(**kwargs) rv = rv.func(*[a.simplify(**kwargs) for a in rv.args]) return simplify_logic(rv) def simplify(self, **kwargs): from sympy.simplify.simplify import simplify return simplify(self, **kwargs) def __lt__(self, other): raise TypeError(filldedent(''' A Boolean argument can only be used in Eq and Ne; all other relationals expect real expressions. ''')) __le__ = __lt__ __ge__ = __lt__ __gt__ = __lt__ @classmethod def binary_check_and_simplify(self, *args): from sympy.core.relational import Relational, Eq, Ne args = [as_Boolean(i) for i in args] bin_syms = set().union(*[i.binary_symbols for i in args]) rel = set().union(*[i.atoms(Relational) for i in args]) reps = {} for x in bin_syms: for r in rel: if x in bin_syms and x in r.free_symbols: if isinstance(r, (Eq, Ne)): if not ( S.true in r.args or S.false in r.args): reps[r] = S.false else: raise TypeError(filldedent(''' Incompatible use of binary symbol `%s` as a real variable in `%s` ''' % (x, r))) return [i.subs(reps) for i in args] def to_nnf(self, simplify=True): return self._to_nnf(*self.args, simplify=simplify) def to_anf(self, deep=True): return self._to_anf(*self.args, deep=deep) @classmethod def _to_nnf(cls, *args, **kwargs): simplify = kwargs.get('simplify', True) argset = set() for arg in args: if not is_literal(arg): arg = arg.to_nnf(simplify) if simplify: if isinstance(arg, cls): arg = arg.args else: arg = (arg,) for a in arg: if Not(a) in argset: return cls.zero argset.add(a) else: argset.add(arg) return cls(*argset) @classmethod def _to_anf(cls, *args, **kwargs): deep = kwargs.get('deep', True) argset = set() for arg in args: if deep: if not is_literal(arg) or isinstance(arg, Not): arg = arg.to_anf(deep=deep) argset.add(arg) else: argset.add(arg) return cls(*argset, remove_true=False) # the diff method below is copied from Expr class def diff(self, *symbols, **assumptions): assumptions.setdefault("evaluate", True) return Derivative(self, *symbols, **assumptions) def _eval_derivative(self, x): if x in self.binary_symbols: from sympy.core.relational import Eq from sympy.functions.elementary.piecewise import Piecewise return Piecewise( (0, Eq(self.subs(x, 0), self.subs(x, 1))), (1, True)) elif x in self.free_symbols: # not implemented, see https://www.encyclopediaofmath.org/ # index.php/Boolean_differential_calculus pass else: return S.Zero class And(LatticeOp, BooleanFunction): """ Logical AND function. It evaluates its arguments in order, returning false immediately when an argument is false and true if they are all true. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import And >>> x & y x & y Notes ===== The ``&`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise and. Hence, ``And(a, b)`` and ``a & b`` will return different things if ``a`` and ``b`` are integers. >>> And(x, y).subs(x, 1) y """ zero = false identity = true nargs = None @classmethod def _new_args_filter(cls, args): args = BooleanFunction.binary_check_and_simplify(*args) args = LatticeOp._new_args_filter(args, And) newargs = [] rel = set() for x in ordered(args): if x.is_Relational: c = x.canonical if c in rel: continue elif c.negated.canonical in rel: return [S.false] else: rel.add(c) newargs.append(x) return newargs def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == False: return S.false elif i != True: args.append(i) if bad is not None: # let it raise bad.subs(old, new) # If old is And, replace the parts of the arguments with new if all # are there if isinstance(old, And): old_set = set(old.args) if old_set.issubset(args): args = set(args) - old_set args.add(new) return self.func(*args) def _eval_simplify(self, **kwargs): from sympy.core.relational import Equality, Relational from sympy.solvers.solveset import linear_coeffs # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, And): return rv # simplify args that are equalities involving # symbols so x == 0 & x == y -> x==0 & y == 0 Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if not Rel: return rv eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True) measure = kwargs['measure'] if eqs: ratio = kwargs['ratio'] reps = {} sifted = {} # group by length of free symbols sifted = sift(ordered([ (i.free_symbols, i) for i in eqs]), lambda x: len(x[0])) eqs = [] nonlineqs = [] while 1 in sifted: for free, e in sifted.pop(1): x = free.pop() if (e.lhs != x or x in e.rhs.free_symbols) and x not in reps: try: m, b = linear_coeffs( e.rewrite(Add, evaluate=False), x) enew = e.func(x, -b/m) if measure(enew) <= ratio*measure(e): e = enew else: eqs.append(e) continue except ValueError: pass if x in reps: eqs.append(e.subs(x, reps[x])) elif e.lhs == x and x not in e.rhs.free_symbols: reps[x] = e.rhs eqs.append(e) else: # x is not yet identified, but may be later nonlineqs.append(e) resifted = defaultdict(list) for k in sifted: for f, e in sifted[k]: e = e.xreplace(reps) f = e.free_symbols resifted[len(f)].append((f, e)) sifted = resifted for k in sifted: eqs.extend([e for f, e in sifted[k]]) nonlineqs = [ei.subs(reps) for ei in nonlineqs] other = [ei.subs(reps) for ei in other] rv = rv.func(*([i.canonical for i in (eqs + nonlineqs + other)] + nonRel)) patterns = _simplify_patterns_and() threeterm_patterns = _simplify_patterns_and3() return _apply_patternbased_simplification(rv, patterns, measure, S.false, threeterm_patterns=threeterm_patterns) def _eval_as_set(self): from sympy.sets.sets import Intersection return Intersection(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nor(self, *args, **kwargs): return Nor(*[Not(arg) for arg in self.args]) def to_anf(self, deep=True): if deep: result = And._to_anf(*self.args, deep=deep) return distribute_xor_over_and(result) return self class Or(LatticeOp, BooleanFunction): """ Logical OR function It evaluates its arguments in order, returning true immediately when an argument is true, and false if they are all false. Examples ======== >>> from sympy.abc import x, y >>> from sympy.logic.boolalg import Or >>> x | y x | y Notes ===== The ``|`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if ``a`` and ``b`` are integers. >>> Or(x, y).subs(x, 0) y """ zero = true identity = false @classmethod def _new_args_filter(cls, args): newargs = [] rel = [] args = BooleanFunction.binary_check_and_simplify(*args) for x in args: if x.is_Relational: c = x.canonical if c in rel: continue nc = c.negated.canonical if any(r == nc for r in rel): return [S.true] rel.append(c) newargs.append(x) return LatticeOp._new_args_filter(newargs, Or) def _eval_subs(self, old, new): args = [] bad = None for i in self.args: try: i = i.subs(old, new) except TypeError: # store TypeError if bad is None: bad = i continue if i == True: return S.true elif i != False: args.append(i) if bad is not None: # let it raise bad.subs(old, new) # If old is Or, replace the parts of the arguments with new if all # are there if isinstance(old, Or): old_set = set(old.args) if old_set.issubset(args): args = set(args) - old_set args.add(new) return self.func(*args) def _eval_as_set(self): from sympy.sets.sets import Union return Union(*[arg.as_set() for arg in self.args]) def _eval_rewrite_as_Nand(self, *args, **kwargs): return Nand(*[Not(arg) for arg in self.args]) def _eval_simplify(self, **kwargs): from sympy.core.relational import Le, Ge, Eq lege = self.atoms(Le, Ge) if lege: reps = {i: self.func( Eq(i.lhs, i.rhs), i.strict) for i in lege} return self.xreplace(reps)._eval_simplify(**kwargs) # standard simplify rv = super()._eval_simplify(**kwargs) if not isinstance(rv, Or): return rv patterns = _simplify_patterns_or() return _apply_patternbased_simplification(rv, patterns, kwargs['measure'], S.true) def to_anf(self, deep=True): args = range(1, len(self.args) + 1) args = (combinations(self.args, j) for j in args) args = chain.from_iterable(args) # powerset args = (And(*arg) for arg in args) args = map(lambda x: to_anf(x, deep=deep) if deep else x, args) return Xor(*list(args), remove_true=False) class Not(BooleanFunction): """ Logical Not function (negation) Returns ``true`` if the statement is ``false`` or ``False``. Returns ``false`` if the statement is ``true`` or ``True``. Examples ======== >>> from sympy.logic.boolalg import Not, And, Or >>> from sympy.abc import x, A, B >>> Not(True) False >>> Not(False) True >>> Not(And(True, False)) True >>> Not(Or(True, False)) False >>> Not(And(And(True, x), Or(x, False))) ~x >>> ~x ~x >>> Not(And(Or(A, B), Or(~A, ~B))) ~((A | B) & (~A | ~B)) Notes ===== - The ``~`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is an integer. Furthermore, since bools in Python subclass from ``int``, ``~True`` is the same as ``~1`` which is ``-2``, which has a boolean value of True. To avoid this issue, use the SymPy boolean types ``true`` and ``false``. >>> from sympy import true >>> ~True -2 >>> ~true False """ is_Not = True @classmethod def eval(cls, arg): if isinstance(arg, Number) or arg in (True, False): return false if arg else true if arg.is_Not: return arg.args[0] # Simplify Relational objects. if arg.is_Relational: return arg.negated def _eval_as_set(self): """ Rewrite logic operators and relationals in terms of real sets. Examples ======== >>> from sympy import Not, Symbol >>> x = Symbol('x') >>> Not(x > 0).as_set() Interval(-oo, 0) """ return self.args[0].as_set().complement(S.Reals) def to_nnf(self, simplify=True): if is_literal(self): return self expr = self.args[0] func, args = expr.func, expr.args if func == And: return Or._to_nnf(*[Not(arg) for arg in args], simplify=simplify) if func == Or: return And._to_nnf(*[Not(arg) for arg in args], simplify=simplify) if func == Implies: a, b = args return And._to_nnf(a, Not(b), simplify=simplify) if func == Equivalent: return And._to_nnf(Or(*args), Or(*[Not(arg) for arg in args]), simplify=simplify) if func == Xor: result = [] for i in range(1, len(args)+1, 2): for neg in combinations(args, i): clause = [Not(s) if s in neg else s for s in args] result.append(Or(*clause)) return And._to_nnf(*result, simplify=simplify) if func == ITE: a, b, c = args return And._to_nnf(Or(a, Not(c)), Or(Not(a), Not(b)), simplify=simplify) raise ValueError("Illegal operator %s in expression" % func) def to_anf(self, deep=True): return Xor._to_anf(true, self.args[0], deep=deep) class Xor(BooleanFunction): """ Logical XOR (exclusive OR) function. Returns True if an odd number of the arguments are True and the rest are False. Returns False if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xor(True, False) True >>> Xor(True, True) False >>> Xor(True, False, True, True, False) True >>> Xor(True, False, True, False) False >>> x ^ y x ^ y Notes ===== The ``^`` operator is provided as a convenience, but note that its use here is different from its normal use in Python, which is bitwise xor. In particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and ``b`` are integers. >>> Xor(x, y).subs(y, 0) x """ def __new__(cls, *args, remove_true=True, **kwargs): argset = set() obj = super().__new__(cls, *args, **kwargs) for arg in obj._args: if isinstance(arg, Number) or arg in (True, False): if arg: arg = true else: continue if isinstance(arg, Xor): for a in arg.args: argset.remove(a) if a in argset else argset.add(a) elif arg in argset: argset.remove(arg) else: argset.add(arg) rel = [(r, r.canonical, r.negated.canonical) for r in argset if r.is_Relational] odd = False # is number of complimentary pairs odd? start 0 -> False remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: odd = ~odd break elif cj == c: break else: continue remove.append((r, rj)) if odd: argset.remove(true) if true in argset else argset.add(true) for a, b in remove: argset.remove(a) argset.remove(b) if len(argset) == 0: return false elif len(argset) == 1: return argset.pop() elif True in argset and remove_true: argset.remove(True) return Not(Xor(*argset)) else: obj._args = tuple(ordered(argset)) obj._argset = frozenset(argset) return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for i in range(0, len(self.args)+1, 2): for neg in combinations(self.args, i): clause = [Not(s) if s in neg else s for s in self.args] args.append(Or(*clause)) return And._to_nnf(*args, simplify=simplify) def _eval_rewrite_as_Or(self, *args, **kwargs): a = self.args return Or(*[_convert_to_varsSOP(x, self.args) for x in _get_odd_parity_terms(len(a))]) def _eval_rewrite_as_And(self, *args, **kwargs): a = self.args return And(*[_convert_to_varsPOS(x, self.args) for x in _get_even_parity_terms(len(a))]) def _eval_simplify(self, **kwargs): # as standard simplify uses simplify_logic which writes things as # And and Or, we only simplify the partial expressions before using # patterns rv = self.func(*[a.simplify(**kwargs) for a in self.args]) if not isinstance(rv, Xor): # This shouldn't really happen here return rv patterns = _simplify_patterns_xor() return _apply_patternbased_simplification(rv, patterns, kwargs['measure'], None) def _eval_subs(self, old, new): # If old is Xor, replace the parts of the arguments with new if all # are there if isinstance(old, Xor): old_set = set(old.args) if old_set.issubset(self.args): args = set(self.args) - old_set args.add(new) return self.func(*args) class Nand(BooleanFunction): """ Logical NAND function. It evaluates its arguments in order, giving True immediately if any of them are False, and False if they are all True. Returns True if any of the arguments are False Returns False if all arguments are True Examples ======== >>> from sympy.logic.boolalg import Nand >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nand(False, True) True >>> Nand(True, True) False >>> Nand(x, y) ~(x & y) """ @classmethod def eval(cls, *args): return Not(And(*args)) class Nor(BooleanFunction): """ Logical NOR function. It evaluates its arguments in order, giving False immediately if any of them are True, and True if they are all False. Returns False if any argument is True Returns True if all arguments are False Examples ======== >>> from sympy.logic.boolalg import Nor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Nor(True, False) False >>> Nor(True, True) False >>> Nor(False, True) False >>> Nor(False, False) True >>> Nor(x, y) ~(x | y) """ @classmethod def eval(cls, *args): return Not(Or(*args)) class Xnor(BooleanFunction): """ Logical XNOR function. Returns False if an odd number of the arguments are True and the rest are False. Returns True if an even number of the arguments are True and the rest are False. Examples ======== >>> from sympy.logic.boolalg import Xnor >>> from sympy import symbols >>> x, y = symbols('x y') >>> Xnor(True, False) False >>> Xnor(True, True) True >>> Xnor(True, False, True, True, False) False >>> Xnor(True, False, True, False) True """ @classmethod def eval(cls, *args): return Not(Xor(*args)) class Implies(BooleanFunction): r""" Logical implication. A implies B is equivalent to if A then B. Mathematically, it is written as `A \Rightarrow B` and is equivalent to `\neg A \vee B` or ``~A | B``. Accepts two Boolean arguments; A and B. Returns False if A is True and B is False Returns True otherwise. Examples ======== >>> from sympy.logic.boolalg import Implies >>> from sympy import symbols >>> x, y = symbols('x y') >>> Implies(True, False) False >>> Implies(False, False) True >>> Implies(True, True) True >>> Implies(False, True) True >>> x >> y Implies(x, y) >>> y << x Implies(x, y) Notes ===== The ``>>`` and ``<<`` operators are provided as a convenience, but note that their use here is different from their normal use in Python, which is bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different things if ``a`` and ``b`` are integers. In particular, since Python considers ``True`` and ``False`` to be integers, ``True >> True`` will be the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To avoid this issue, use the SymPy objects ``true`` and ``false``. >>> from sympy import true, false >>> True >> False 1 >>> true >> false False """ @classmethod def eval(cls, *args): try: newargs = [] for x in args: if isinstance(x, Number) or x in (0, 1): newargs.append(bool(x)) else: newargs.append(x) A, B = newargs except ValueError: raise ValueError( "%d operand(s) used for an Implies " "(pairs are required): %s" % (len(args), str(args))) if A in (True, False) or B in (True, False): return Or(Not(A), B) elif A == B: return S.true elif A.is_Relational and B.is_Relational: if A.canonical == B.canonical: return S.true if A.negated.canonical == B.canonical: return B else: return Basic.__new__(cls, *args) def to_nnf(self, simplify=True): a, b = self.args return Or._to_nnf(Not(a), b, simplify=simplify) def to_anf(self, deep=True): a, b = self.args return Xor._to_anf(true, a, And(a, b), deep=deep) class Equivalent(BooleanFunction): """ Equivalence relation. ``Equivalent(A, B)`` is True iff A and B are both True or both False. Returns True if all of the arguments are logically equivalent. Returns False otherwise. For two arguments, this is equivalent to :py:class:`~.Xnor`. Examples ======== >>> from sympy.logic.boolalg import Equivalent, And >>> from sympy.abc import x >>> Equivalent(False, False, False) True >>> Equivalent(True, False, False) False >>> Equivalent(x, And(x, True)) True """ def __new__(cls, *args, **options): from sympy.core.relational import Relational args = [_sympify(arg) for arg in args] argset = set(args) for x in args: if isinstance(x, Number) or x in [True, False]: # Includes 0, 1 argset.discard(x) argset.add(bool(x)) rel = [] for r in argset: if isinstance(r, Relational): rel.append((r, r.canonical, r.negated.canonical)) remove = [] for i, (r, c, nc) in enumerate(rel): for j in range(i + 1, len(rel)): rj, cj = rel[j][:2] if cj == nc: return false elif cj == c: remove.append((r, rj)) break for a, b in remove: argset.remove(a) argset.remove(b) argset.add(True) if len(argset) <= 1: return true if True in argset: argset.discard(True) return And(*argset) if False in argset: argset.discard(False) return And(*[Not(arg) for arg in argset]) _args = frozenset(argset) obj = super().__new__(cls, _args) obj._argset = _args return obj # XXX: This should be cached on the object rather than using cacheit # Maybe it can be computed in __new__? @property # type: ignore @cacheit def args(self): return tuple(ordered(self._argset)) def to_nnf(self, simplify=True): args = [] for a, b in zip(self.args, self.args[1:]): args.append(Or(Not(a), b)) args.append(Or(Not(self.args[-1]), self.args[0])) return And._to_nnf(*args, simplify=simplify) def to_anf(self, deep=True): a = And(*self.args) b = And(*[to_anf(Not(arg), deep=False) for arg in self.args]) b = distribute_xor_over_and(b) return Xor._to_anf(a, b, deep=deep) class ITE(BooleanFunction): """ If-then-else clause. ``ITE(A, B, C)`` evaluates and returns the result of B if A is true else it returns the result of C. All args must be Booleans. Examples ======== >>> from sympy.logic.boolalg import ITE, And, Xor, Or >>> from sympy.abc import x, y, z >>> ITE(True, False, True) False >>> ITE(Or(True, False), And(True, True), Xor(True, True)) True >>> ITE(x, y, z) ITE(x, y, z) >>> ITE(True, x, y) x >>> ITE(False, x, y) y >>> ITE(x, y, y) y Trying to use non-Boolean args will generate a TypeError: >>> ITE(True, [], ()) Traceback (most recent call last): ... TypeError: expecting bool, Boolean or ITE, not `[]` """ def __new__(cls, *args, **kwargs): from sympy.core.relational import Eq, Ne if len(args) != 3: raise ValueError('expecting exactly 3 args') a, b, c = args # check use of binary symbols if isinstance(a, (Eq, Ne)): # in this context, we can evaluate the Eq/Ne # if one arg is a binary symbol and the other # is true/false b, c = map(as_Boolean, (b, c)) bin_syms = set().union(*[i.binary_symbols for i in (b, c)]) if len(set(a.args) - bin_syms) == 1: # one arg is a binary_symbols _a = a if a.lhs is S.true: a = a.rhs elif a.rhs is S.true: a = a.lhs elif a.lhs is S.false: a = Not(a.rhs) elif a.rhs is S.false: a = Not(a.lhs) else: # binary can only equal True or False a = S.false if isinstance(_a, Ne): a = Not(a) else: a, b, c = BooleanFunction.binary_check_and_simplify( a, b, c) rv = None if kwargs.get('evaluate', True): rv = cls.eval(a, b, c) if rv is None: rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False) return rv @classmethod def eval(cls, *args): from sympy.core.relational import Eq, Ne # do the args give a singular result? a, b, c = args if isinstance(a, (Ne, Eq)): _a = a if S.true in a.args: a = a.lhs if a.rhs is S.true else a.rhs elif S.false in a.args: a = Not(a.lhs) if a.rhs is S.false else Not(a.rhs) else: _a = None if _a is not None and isinstance(_a, Ne): a = Not(a) if a is S.true: return b if a is S.false: return c if b == c: return b else: # or maybe the results allow the answer to be expressed # in terms of the condition if b is S.true and c is S.false: return a if b is S.false and c is S.true: return Not(a) if [a, b, c] != args: return cls(a, b, c, evaluate=False) def to_nnf(self, simplify=True): a, b, c = self.args return And._to_nnf(Or(Not(a), b), Or(a, c), simplify=simplify) def _eval_as_set(self): return self.to_nnf().as_set() def _eval_rewrite_as_Piecewise(self, *args, **kwargs): from sympy.functions import Piecewise return Piecewise((args[1], args[0]), (args[2], True)) class Exclusive(BooleanFunction): """ True if only one or no argument is true. ``Exclusive(A, B, C)`` is equivalent to ``~(A & B) & ~(A & C) & ~(B & C)``. For two arguments, this is equivalent to :py:class:`~.Xor`. Examples ======== >>> from sympy.logic.boolalg import Exclusive >>> Exclusive(False, False, False) True >>> Exclusive(False, True, False) True >>> Exclusive(False, True, True) False """ @classmethod def eval(cls, *args): and_args = [] for a, b in combinations(args, 2): and_args.append(Not(And(a, b))) return And(*and_args) # end class definitions. Some useful methods def conjuncts(expr): """Return a list of the conjuncts in ``expr``. Examples ======== >>> from sympy.logic.boolalg import conjuncts >>> from sympy.abc import A, B >>> conjuncts(A & B) frozenset({A, B}) >>> conjuncts(A | B) frozenset({A | B}) """ return And.make_args(expr) def disjuncts(expr): """Return a list of the disjuncts in ``expr``. Examples ======== >>> from sympy.logic.boolalg import disjuncts >>> from sympy.abc import A, B >>> disjuncts(A | B) frozenset({A, B}) >>> disjuncts(A & B) frozenset({A & B}) """ return Or.make_args(expr) def distribute_and_over_or(expr): """ Given a sentence ``expr`` consisting of conjunctions and disjunctions of literals, return an equivalent sentence in CNF. Examples ======== >>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_and_over_or(Or(A, And(Not(B), Not(C)))) (A | ~B) & (A | ~C) """ return _distribute((expr, And, Or)) def distribute_or_over_and(expr): """ Given a sentence ``expr`` consisting of conjunctions and disjunctions of literals, return an equivalent sentence in DNF. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not >>> from sympy.abc import A, B, C >>> distribute_or_over_and(And(Or(Not(A), B), C)) (B & C) | (C & ~A) """ return _distribute((expr, Or, And)) def distribute_xor_over_and(expr): """ Given a sentence ``expr`` consisting of conjunction and exclusive disjunctions of literals, return an equivalent exclusive disjunction. Note that the output is NOT simplified. Examples ======== >>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not >>> from sympy.abc import A, B, C >>> distribute_xor_over_and(And(Xor(Not(A), B), C)) (B & C) ^ (C & ~A) """ return _distribute((expr, Xor, And)) def _distribute(info): """ Distributes ``info[1]`` over ``info[2]`` with respect to ``info[0]``. """ if isinstance(info[0], info[2]): for arg in info[0].args: if isinstance(arg, info[1]): conj = arg break else: return info[0] rest = info[2](*[a for a in info[0].args if a is not conj]) return info[1](*list(map(_distribute, [(info[2](c, rest), info[1], info[2]) for c in conj.args])), remove_true=False) elif isinstance(info[0], info[1]): return info[1](*list(map(_distribute, [(x, info[1], info[2]) for x in info[0].args])), remove_true=False) else: return info[0] def to_anf(expr, deep=True): r""" Converts expr to Algebraic Normal Form (ANF). ANF is a canonical normal form, which means that two equivalent formulas will convert to the same ANF. A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it can be: - purely true, - purely false, - conjunction of variables, - exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. If ``deep`` is ``False``, arguments of the boolean expression are considered variables, i.e. only the top-level expression is converted to ANF. Examples ======== >>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent >>> from sympy.logic.boolalg import to_anf >>> from sympy.abc import A, B, C >>> to_anf(Not(A)) A ^ True >>> to_anf(And(Or(A, B), Not(C))) A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C) >>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False) True ^ ~A ^ (~A & (Equivalent(B, C))) """ expr = sympify(expr) if is_anf(expr): return expr return expr.to_anf(deep=deep) def to_nnf(expr, simplify=True): """ Converts ``expr`` to Negation Normal Form (NNF). A logical expression is in NNF if it contains only And, Or and Not, and Not is applied only to literals. If ``simplify`` is ``True``, the result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C, D >>> from sympy.logic.boolalg import Not, Equivalent, to_nnf >>> to_nnf(Not((~A & ~B) | (C & D))) (A | B) & (~C | ~D) >>> to_nnf(Equivalent(A >> B, B >> A)) (A | ~B | (A & ~B)) & (B | ~A | (B & ~A)) """ if is_nnf(expr, simplify): return expr return expr.to_nnf(simplify) def to_cnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence ``expr`` to conjunctive normal form: ``((A | ~B | ...) & (B | C | ...) & ...)``. If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest CNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to ``True`` (default is ``False``). Examples ======== >>> from sympy.logic.boolalg import to_cnf >>> from sympy.abc import A, B, D >>> to_cnf(~(A | B) | D) (D | ~A) & (D | ~B) >>> to_cnf((A | B) & (A | ~A), True) A | B """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'cnf', True, force=force) # Don't convert unless we have to if is_cnf(expr): return expr expr = eliminate_implications(expr) res = distribute_and_over_or(expr) return res def to_dnf(expr, simplify=False, force=False): """ Convert a propositional logical sentence ``expr`` to disjunctive normal form: ``((A & ~B & ...) | (B & C & ...) | ...)``. If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest DNF form using the Quine-McCluskey algorithm; this may take a long time if there are more than 8 variables and requires that the ``force`` flag be set to ``True`` (default is ``False``). Examples ======== >>> from sympy.logic.boolalg import to_dnf >>> from sympy.abc import A, B, C >>> to_dnf(B & (A | C)) (A & B) | (B & C) >>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True) A | C """ expr = sympify(expr) if not isinstance(expr, BooleanFunction): return expr if simplify: if not force and len(_find_predicates(expr)) > 8: raise ValueError(filldedent(''' To simplify a logical expression with more than 8 variables may take a long time and requires the use of `force=True`.''')) return simplify_logic(expr, 'dnf', True, force=force) # Don't convert unless we have to if is_dnf(expr): return expr expr = eliminate_implications(expr) return distribute_or_over_and(expr) def is_anf(expr): r""" Checks if ``expr`` is in Algebraic Normal Form (ANF). A logical expression is in ANF if it has the form .. math:: 1 \oplus a \oplus b \oplus ab \oplus abc i.e. it is purely true, purely false, conjunction of variables or exclusive disjunction. The exclusive disjunction can only contain true, variables or conjunction of variables. No negations are permitted. Examples ======== >>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf >>> from sympy.abc import A, B, C >>> is_anf(true) True >>> is_anf(A) True >>> is_anf(And(A, B, C)) True >>> is_anf(Xor(A, Not(B))) False """ expr = sympify(expr) if is_literal(expr) and not isinstance(expr, Not): return True if isinstance(expr, And): for arg in expr.args: if not arg.is_Symbol: return False return True elif isinstance(expr, Xor): for arg in expr.args: if isinstance(arg, And): for a in arg.args: if not a.is_Symbol: return False elif is_literal(arg): if isinstance(arg, Not): return False else: return False return True else: return False def is_nnf(expr, simplified=True): """ Checks if ``expr`` is in Negation Normal Form (NNF). A logical expression is in NNF if it contains only And, Or and Not, and Not is applied only to literals. If ``simplified`` is ``True``, checks if result contains no redundant clauses. Examples ======== >>> from sympy.abc import A, B, C >>> from sympy.logic.boolalg import Not, is_nnf >>> is_nnf(A & B | ~C) True >>> is_nnf((A | ~A) & (B | C)) False >>> is_nnf((A | ~A) & (B | C), False) True >>> is_nnf(Not(A & B) | C) False >>> is_nnf((A >> B) & (B >> A)) False """ expr = sympify(expr) if is_literal(expr): return True stack = [expr] while stack: expr = stack.pop() if expr.func in (And, Or): if simplified: args = expr.args for arg in args: if Not(arg) in args: return False stack.extend(expr.args) elif not is_literal(expr): return False return True def is_cnf(expr): """ Test whether or not an expression is in conjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_cnf >>> from sympy.abc import A, B, C >>> is_cnf(A | B | C) True >>> is_cnf(A & B & C) True >>> is_cnf((A & B) | C) False """ return _is_form(expr, And, Or) def is_dnf(expr): """ Test whether or not an expression is in disjunctive normal form. Examples ======== >>> from sympy.logic.boolalg import is_dnf >>> from sympy.abc import A, B, C >>> is_dnf(A | B | C) True >>> is_dnf(A & B & C) True >>> is_dnf((A & B) | C) True >>> is_dnf(A & (B | C)) False """ return _is_form(expr, Or, And) def _is_form(expr, function1, function2): """ Test whether or not an expression is of the required form. """ expr = sympify(expr) vals = function1.make_args(expr) if isinstance(expr, function1) else [expr] for lit in vals: if isinstance(lit, function2): vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit] for l in vals2: if is_literal(l) is False: return False elif is_literal(lit) is False: return False return True def eliminate_implications(expr): """ Change ``Implies`` and ``Equivalent`` into ``And``, ``Or``, and ``Not``. That is, return an expression that is equivalent to ``expr``, but has only ``&``, ``|``, and ``~`` as logical operators. Examples ======== >>> from sympy.logic.boolalg import Implies, Equivalent, \ eliminate_implications >>> from sympy.abc import A, B, C >>> eliminate_implications(Implies(A, B)) B | ~A >>> eliminate_implications(Equivalent(A, B)) (A | ~B) & (B | ~A) >>> eliminate_implications(Equivalent(A, B, C)) (A | ~C) & (B | ~A) & (C | ~B) """ return to_nnf(expr, simplify=False) def is_literal(expr): """ Returns True if expr is a literal, else False. Examples ======== >>> from sympy import Or, Q >>> from sympy.abc import A, B >>> from sympy.logic.boolalg import is_literal >>> is_literal(A) True >>> is_literal(~A) True >>> is_literal(Q.zero(A)) True >>> is_literal(A + B) True >>> is_literal(Or(A, B)) False """ from sympy.assumptions import AppliedPredicate if isinstance(expr, Not): return is_literal(expr.args[0]) elif expr in (True, False) or isinstance(expr, AppliedPredicate) or expr.is_Atom: return True elif not isinstance(expr, BooleanFunction) and all( (isinstance(expr, AppliedPredicate) or a.is_Atom) for a in expr.args): return True return False def to_int_repr(clauses, symbols): """ Takes clauses in CNF format and puts them into an integer representation. Examples ======== >>> from sympy.logic.boolalg import to_int_repr >>> from sympy.abc import x, y >>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}] True """ # Convert the symbol list into a dict symbols = dict(list(zip(symbols, list(range(1, len(symbols) + 1))))) def append_symbol(arg, symbols): if isinstance(arg, Not): return -symbols[arg.args[0]] else: return symbols[arg] return [{append_symbol(arg, symbols) for arg in Or.make_args(c)} for c in clauses] def term_to_integer(term): """ Return an integer corresponding to the base-2 digits given by ``term``. Parameters ========== term : a string or list of ones and zeros Examples ======== >>> from sympy.logic.boolalg import term_to_integer >>> term_to_integer([1, 0, 0]) 4 >>> term_to_integer('100') 4 """ return int(''.join(list(map(str, list(term)))), 2) integer_to_term = ibin # XXX could delete? def truth_table(expr, variables, input=True): """ Return a generator of all possible configurations of the input variables, and the result of the boolean expression for those values. Parameters ========== expr : Boolean expression variables : list of variables input : bool (default ``True``) Indicates whether to return the input combinations. Examples ======== >>> from sympy.logic.boolalg import truth_table >>> from sympy.abc import x,y >>> table = truth_table(x >> y, [x, y]) >>> for t in table: ... print('{0} -> {1}'.format(*t)) [0, 0] -> True [0, 1] -> True [1, 0] -> False [1, 1] -> True >>> table = truth_table(x | y, [x, y]) >>> list(table) [([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)] If ``input`` is ``False``, ``truth_table`` returns only a list of truth values. In this case, the corresponding input values of variables can be deduced from the index of a given output. >>> from sympy.utilities.iterables import ibin >>> vars = [y, x] >>> values = truth_table(x >> y, vars, input=False) >>> values = list(values) >>> values [True, False, True, True] >>> for i, value in enumerate(values): ... print('{0} -> {1}'.format(list(zip( ... vars, ibin(i, len(vars)))), value)) [(y, 0), (x, 0)] -> True [(y, 0), (x, 1)] -> False [(y, 1), (x, 0)] -> True [(y, 1), (x, 1)] -> True """ variables = [sympify(v) for v in variables] expr = sympify(expr) if not isinstance(expr, BooleanFunction) and not is_literal(expr): return table = product((0, 1), repeat=len(variables)) for term in table: value = expr.xreplace(dict(zip(variables, term))) if input: yield list(term), value else: yield value def _check_pair(minterm1, minterm2): """ Checks if a pair of minterms differs by only one bit. If yes, returns index, else returns `-1`. """ # Early termination seems to be faster than list comprehension, # at least for large examples. index = -1 for x, i in enumerate(minterm1): # zip(minterm1, minterm2) is slower if i != minterm2[x]: if index == -1: index = x else: return -1 return index def _convert_to_varsSOP(minterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for SOP). """ temp = [variables[n] if val == 1 else Not(variables[n]) for n, val in enumerate(minterm) if val != 3] return And(*temp) def _convert_to_varsPOS(maxterm, variables): """ Converts a term in the expansion of a function from binary to its variable form (for POS). """ temp = [variables[n] if val == 0 else Not(variables[n]) for n, val in enumerate(maxterm) if val != 3] return Or(*temp) def _convert_to_varsANF(term, variables): """ Converts a term in the expansion of a function from binary to it's variable form (for ANF). Parameters ========== term : list of 1's and 0's (complementation patter) variables : list of variables """ temp = [variables[n] for n, t in enumerate(term) if t == 1] if not temp: return true return And(*temp) def _get_odd_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an odd number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 1] def _get_even_parity_terms(n): """ Returns a list of lists, with all possible combinations of n zeros and ones with an even number of ones. """ return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 0] def _simplified_pairs(terms): """ Reduces a set of minterms, if possible, to a simplified set of minterms with one less variable in the terms using QM method. """ if not terms: return [] simplified_terms = [] todo = list(range(len(terms))) # Count number of ones as _check_pair can only potentially match if there # is at most a difference of a single one termdict = defaultdict(list) for n, term in enumerate(terms): ones = sum([1 for t in term if t == 1]) termdict[ones].append(n) variables = len(terms[0]) for k in range(variables): for i in termdict[k]: for j in termdict[k+1]: index = _check_pair(terms[i], terms[j]) if index != -1: # Mark terms handled todo[i] = todo[j] = None # Copy old term newterm = terms[i][:] # Set differing position to don't care newterm[index] = 3 # Add if not already there if newterm not in simplified_terms: simplified_terms.append(newterm) if simplified_terms: # Further simplifications only among the new terms simplified_terms = _simplified_pairs(simplified_terms) # Add remaining, non-simplified, terms simplified_terms.extend([terms[i] for i in todo if i is not None]) return simplified_terms def _rem_redundancy(l1, terms): """ After the truth table has been sufficiently simplified, use the prime implicant table method to recognize and eliminate redundant pairs, and return the essential arguments. """ if not terms: return [] nterms = len(terms) nl1 = len(l1) # Create dominating matrix dommatrix = [[0]*nl1 for n in range(nterms)] colcount = [0]*nl1 rowcount = [0]*nterms for primei, prime in enumerate(l1): for termi, term in enumerate(terms): # Check prime implicant covering term if all(t == 3 or t == mt for t, mt in zip(prime, term)): dommatrix[termi][primei] = 1 colcount[primei] += 1 rowcount[termi] += 1 # Keep track if anything changed anythingchanged = True # Then, go again while anythingchanged: anythingchanged = False for rowi in range(nterms): # Still non-dominated? if rowcount[rowi]: row = dommatrix[rowi] for row2i in range(nterms): # Still non-dominated? if rowi != row2i and rowcount[rowi] and (rowcount[rowi] <= rowcount[row2i]): row2 = dommatrix[row2i] if all(row2[n] >= row[n] for n in range(nl1)): # row2 dominating row, remove row2 rowcount[row2i] = 0 anythingchanged = True for primei, prime in enumerate(row2): if prime: # Make corresponding entry 0 dommatrix[row2i][primei] = 0 colcount[primei] -= 1 colcache = dict() for coli in range(nl1): # Still non-dominated? if colcount[coli]: if coli in colcache: col = colcache[coli] else: col = [dommatrix[i][coli] for i in range(nterms)] colcache[coli] = col for col2i in range(nl1): # Still non-dominated? if coli != col2i and colcount[col2i] and (colcount[coli] >= colcount[col2i]): if col2i in colcache: col2 = colcache[col2i] else: col2 = [dommatrix[i][col2i] for i in range(nterms)] colcache[col2i] = col2 if all(col[n] >= col2[n] for n in range(nterms)): # col dominating col2, remove col2 colcount[col2i] = 0 anythingchanged = True for termi, term in enumerate(col2): if term and dommatrix[termi][col2i]: # Make corresponding entry 0 dommatrix[termi][col2i] = 0 rowcount[termi] -= 1 if not anythingchanged: # Heuristically select the prime implicant covering most terms maxterms = 0 bestcolidx = -1 for coli in range(nl1): s = colcount[coli] if s > maxterms: bestcolidx = coli maxterms = s # In case we found a prime implicant covering at least two terms if bestcolidx != -1 and maxterms > 1: for primei, prime in enumerate(l1): if primei != bestcolidx: for termi, term in enumerate(colcache[bestcolidx]): if term and dommatrix[termi][primei]: # Make corresponding entry 0 dommatrix[termi][primei] = 0 anythingchanged = True rowcount[termi] -= 1 colcount[primei] -= 1 return [l1[i] for i in range(nl1) if colcount[i]] def _input_to_binlist(inputlist, variables): binlist = [] bits = len(variables) for val in inputlist: if isinstance(val, int): binlist.append(ibin(val, bits)) elif isinstance(val, dict): nonspecvars = list(variables) for key in val.keys(): nonspecvars.remove(key) for t in product((0, 1), repeat=len(nonspecvars)): d = dict(zip(nonspecvars, t)) d.update(val) binlist.append([d[v] for v in variables]) elif isinstance(val, (list, tuple)): if len(val) != bits: raise ValueError("Each term must contain {bits} bits as there are" "\n{bits} variables (or be an integer)." "".format(bits=bits)) binlist.append(list(val)) else: raise TypeError("A term list can only contain lists," " ints or dicts.") return binlist def SOPform(variables, minterms, dontcares=None): """ The SOPform function uses simplified_pairs and a redundant group- eliminating algorithm to convert the list of all input combos that generate '1' (the minterms) into the smallest Sum of Products form. The variables must be given as the first argument. Return a logical Or function (i.e., the "sum of products" or "SOP" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import SOPform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], ... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (y & z) | (~w & ~x) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> SOPform([w, x, y, z], minterms) (x & ~w) | (y & z & ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> SOPform([w, x, y, z], minterms, dontcares) (w & y & z) | (~w & ~y) | (x & z & ~w) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ if not minterms: return false variables = tuple(map(sympify, variables)) minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) return _sop_form(variables, minterms, dontcares) def _sop_form(variables, minterms, dontcares): new = _simplified_pairs(minterms + dontcares) essential = _rem_redundancy(new, minterms) return Or(*[_convert_to_varsSOP(x, variables) for x in essential]) def POSform(variables, minterms, dontcares=None): """ The POSform function uses simplified_pairs and a redundant-group eliminating algorithm to convert the list of all input combinations that generate '1' (the minterms) into the smallest Product of Sums form. The variables must be given as the first argument. Return a logical And function (i.e., the "product of sums" or "POS" form) that gives the desired outcome. If there are inputs that can be ignored, pass them as a list, too. The result will be one of the (perhaps many) functions that satisfy the conditions. Examples ======== >>> from sympy.logic import POSform >>> from sympy import symbols >>> w, x, y, z = symbols('w x y z') >>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], ... [1, 0, 1, 1], [1, 1, 1, 1]] >>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) The terms can also be represented as integers: >>> minterms = [1, 3, 7, 11, 15] >>> dontcares = [0, 2, 5] >>> POSform([w, x, y, z], minterms, dontcares) z & (y | ~w) They can also be specified using dicts, which does not have to be fully specified: >>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}] >>> POSform([w, x, y, z], minterms) (x | y) & (x | z) & (~w | ~x) Or a combination: >>> minterms = [4, 7, 11, [1, 1, 1, 1]] >>> dontcares = [{w : 0, x : 0, y: 0}, 5] >>> POSform([w, x, y, z], minterms, dontcares) (w | x) & (y | ~w) & (z | ~y) References ========== .. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm """ if not minterms: return false variables = tuple(map(sympify, variables)) minterms = _input_to_binlist(minterms, variables) dontcares = _input_to_binlist((dontcares or []), variables) for d in dontcares: if d in minterms: raise ValueError('%s in minterms is also in dontcares' % d) maxterms = [] for t in product((0, 1), repeat=len(variables)): t = list(t) if (t not in minterms) and (t not in dontcares): maxterms.append(t) new = _simplified_pairs(maxterms + dontcares) essential = _rem_redundancy(new, maxterms) return And(*[_convert_to_varsPOS(x, variables) for x in essential]) def ANFform(variables, truthvalues): """ The ANFform function converts the list of truth values to Algebraic Normal Form (ANF). The variables must be given as the first argument. Return True, False, logical And funciton (i.e., the "Zhegalkin monomial") or logical Xor function (i.e., the "Zhegalkin polynomial"). When True and False are represented by 1 and 0, respectively, then And is multiplication and Xor is addition. Formally a "Zhegalkin monomial" is the product (logical And) of a finite set of distinct variables, including the empty set whose product is denoted 1 (True). A "Zhegalkin polynomial" is the sum (logical Xor) of a set of Zhegalkin monomials, with the empty set denoted by 0 (False). Parameters ========== variables : list of variables truthvalues : list of 1's and 0's (result column of truth table) Examples ======== >>> from sympy.logic.boolalg import ANFform >>> from sympy.abc import x, y >>> ANFform([x], [1, 0]) x ^ True >>> ANFform([x, y], [0, 1, 1, 1]) x ^ y ^ (x & y) References ========== .. [1] https://en.wikipedia.org/wiki/Zhegalkin_polynomial """ n_vars = len(variables) n_values = len(truthvalues) if n_values != 2 ** n_vars: raise ValueError("The number of truth values must be equal to 2^%d, " "got %d" % (n_vars, n_values)) variables = tuple(map(sympify, variables)) coeffs = anf_coeffs(truthvalues) terms = [] for i, t in enumerate(product((0, 1), repeat=n_vars)): if coeffs[i] == 1: terms.append(t) return Xor(*[_convert_to_varsANF(x, variables) for x in terms], remove_true=False) def anf_coeffs(truthvalues): """ Convert a list of truth values of some boolean expression to the list of coefficients of the polynomial mod 2 (exclusive disjunction) representing the boolean expression in ANF (i.e., the "Zhegalkin polynomial"). There are `2^n` possible Zhegalkin monomials in `n` variables, since each monomial is fully specified by the presence or absence of each variable. We can enumerate all the monomials. For example, boolean function with four variables ``(a, b, c, d)`` can contain up to `2^4 = 16` monomials. The 13-th monomial is the product ``a & b & d``, because 13 in binary is 1, 1, 0, 1. A given monomial's presence or absence in a polynomial corresponds to that monomial's coefficient being 1 or 0 respectively. Examples ======== >>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor >>> from sympy.abc import a, b, c >>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1] >>> coeffs = anf_coeffs(truthvalues) >>> coeffs [0, 1, 1, 0, 0, 0, 1, 0] >>> polynomial = Xor(*[ ... bool_monomial(k, [a, b, c]) ... for k, coeff in enumerate(coeffs) if coeff == 1 ... ]) >>> polynomial b ^ c ^ (a & b) """ s = '{:b}'.format(len(truthvalues)) n = len(s) - 1 if len(truthvalues) != 2**n: raise ValueError("The number of truth values must be a power of two, " "got %d" % len(truthvalues)) coeffs = [[v] for v in truthvalues] for i in range(n): tmp = [] for j in range(2 ** (n-i-1)): tmp.append(coeffs[2*j] + list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1]))) coeffs = tmp return coeffs[0] def bool_minterm(k, variables): """ Return the k-th minterm. Minterms are numbered by a binary encoding of the complementation pattern of the variables. This convention assigns the value 1 to the direct form and 0 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation patter) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_minterm >>> from sympy.abc import x, y, z >>> bool_minterm([1, 0, 1], [x, y, z]) x & z & ~y >>> bool_minterm(6, [x, y, z]) x & y & ~z References ========== .. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms """ if isinstance(k, int): k = ibin(k, len(variables)) variables = tuple(map(sympify, variables)) return _convert_to_varsSOP(k, variables) def bool_maxterm(k, variables): """ Return the k-th maxterm. Each maxterm is assigned an index based on the opposite conventional binary encoding used for minterms. The maxterm convention assigns the value 0 to the direct form and 1 to the complemented form. Parameters ========== k : int or list of 1's and 0's (complementation pattern) variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_maxterm >>> from sympy.abc import x, y, z >>> bool_maxterm([1, 0, 1], [x, y, z]) y | ~x | ~z >>> bool_maxterm(6, [x, y, z]) z | ~x | ~y References ========== .. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms """ if isinstance(k, int): k = ibin(k, len(variables)) variables = tuple(map(sympify, variables)) return _convert_to_varsPOS(k, variables) def bool_monomial(k, variables): """ Return the k-th monomial. Monomials are numbered by a binary encoding of the presence and absences of the variables. This convention assigns the value 1 to the presence of variable and 0 to the absence of variable. Each boolean function can be uniquely represented by a Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin Polynomial of the boolean function with `n` variables can contain up to `2^n` monomials. We can enumarate all the monomials. Each monomial is fully specified by the presence or absence of each variable. For example, boolean function with four variables ``(a, b, c, d)`` can contain up to `2^4 = 16` monomials. The 13-th monomial is the product ``a & b & d``, because 13 in binary is 1, 1, 0, 1. Parameters ========== k : int or list of 1's and 0's variables : list of variables Examples ======== >>> from sympy.logic.boolalg import bool_monomial >>> from sympy.abc import x, y, z >>> bool_monomial([1, 0, 1], [x, y, z]) x & z >>> bool_monomial(6, [x, y, z]) x & y """ if isinstance(k, int): k = ibin(k, len(variables)) variables = tuple(map(sympify, variables)) return _convert_to_varsANF(k, variables) def _find_predicates(expr): """Helper to find logical predicates in BooleanFunctions. A logical predicate is defined here as anything within a BooleanFunction that is not a BooleanFunction itself. """ if not isinstance(expr, BooleanFunction): return {expr} return set().union(*(map(_find_predicates, expr.args))) def simplify_logic(expr, form=None, deep=True, force=False): """ This function simplifies a boolean function to its simplified version in SOP or POS form. The return type is an Or or And object in SymPy. Parameters ========== expr : Boolean expression form : string (``'cnf'`` or ``'dnf'``) or ``None`` (default). If ``'cnf'`` or ``'dnf'``, the simplest expression in the corresponding normal form is returned; if ``None``, the answer is returned according to the form with fewest args (in CNF by default). deep : bool (default ``True``) Indicates whether to recursively simplify any non-boolean functions contained within the input. force : bool (default ``False``) As the simplifications require exponential time in the number of variables, there is by default a limit on expressions with 8 variables. When the expression has more than 8 variables only symbolical simplification (controlled by ``deep``) is made. By setting ``force`` to ``True``, this limit is removed. Be aware that this can lead to very long simplification times. Examples ======== >>> from sympy.logic import simplify_logic >>> from sympy.abc import x, y, z >>> from sympy import S >>> b = (~x & ~y & ~z) | ( ~x & ~y & z) >>> simplify_logic(b) ~x & ~y >>> S(b) (z & ~x & ~y) | (~x & ~y & ~z) >>> simplify_logic(_) ~x & ~y """ if form not in (None, 'cnf', 'dnf'): raise ValueError("form can be cnf or dnf only") expr = sympify(expr) # check for quick exit if form is given: right form and all args are # literal and do not involve Not if form: form_ok = False if form == 'cnf': form_ok = is_cnf(expr) elif form == 'dnf': form_ok = is_dnf(expr) if form_ok and all(is_literal(a) for a in expr.args): return expr from sympy.core.relational import Relational if deep: variables = expr.atoms(Relational) from sympy.simplify.simplify import simplify s = tuple(map(simplify, variables)) expr = expr.xreplace(dict(zip(variables, s))) if not isinstance(expr, BooleanFunction): return expr # Replace Relationals with Dummys to possibly # reduce the number of variables repl = dict() undo = dict() from sympy.core.symbol import Dummy variables = expr.atoms(Relational) while variables: var = variables.pop() if var.is_Relational: d = Dummy() undo[d] = var repl[var] = d nvar = var.negated if nvar in variables: repl[nvar] = Not(d) variables.remove(nvar) expr = expr.xreplace(repl) # Get new variables after replacing variables = _find_predicates(expr) if not force and len(variables) > 8: return expr.xreplace(undo) # group into constants and variable values c, v = sift(ordered(variables), lambda x: x in (True, False), binary=True) variables = c + v truthtable = [] # standardize constants to be 1 or 0 in keeping with truthtable c = [1 if i == True else 0 for i in c] truthtable = _get_truthtable(v, expr, c) big = len(truthtable) >= (2 ** (len(variables) - 1)) if form == 'dnf' or form is None and big: return _sop_form(variables, truthtable, []).xreplace(undo) return POSform(variables, truthtable).xreplace(undo) def _get_truthtable(variables, expr, const): """ Return a list of all combinations leading to a True result for ``expr``. """ def _get_tt(inputs): if variables: v = variables.pop() tab = [[i[0].xreplace({v: false}), [0] + i[1]] for i in inputs if i[0] is not false] tab.extend([[i[0].xreplace({v: true}), [1] + i[1]] for i in inputs if i[0] is not false]) return _get_tt(tab) return inputs return [const + k[1] for k in _get_tt([[expr, []]]) if k[0]] def _finger(eq): """ Assign a 5-item fingerprint to each symbol in the equation: [ # of times it appeared as a Symbol; # of times it appeared as a Not(symbol); # of times it appeared as a Symbol in an And or Or; # of times it appeared as a Not(Symbol) in an And or Or; a sorted tuple of tuples, (i, j, k), where i is the number of arguments in an And or Or with which it appeared as a Symbol, and j is the number of arguments that were Not(Symbol); k is the number of times that (i, j) was seen. ] Examples ======== >>> from sympy.logic.boolalg import _finger as finger >>> from sympy import And, Or, Not, Xor, to_cnf, symbols >>> from sympy.abc import a, b, x, y >>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y)) >>> dict(finger(eq)) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (0, 0, 1, 0, ((2, 1, 1),)): [a, b], (0, 0, 1, 2, ((2, 0, 1),)): [y]} >>> dict(finger(x & ~y)) {(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]} In the following, the (5, 2, 6) means that there were 6 Or functions in which a symbol appeared as itself amongst 5 arguments in which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)`` is counted once for a0, a1 and a2. >>> dict(finger(to_cnf(Xor(*symbols('a:5'))))) {(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]} The equation must not have more than one level of nesting: >>> dict(finger(And(Or(x, y), y))) {(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]} >>> dict(finger(And(Or(x, And(a, x)), y))) Traceback (most recent call last): ... NotImplementedError: unexpected level of nesting So y and x have unique fingerprints, but a and b do not. """ f = eq.free_symbols d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f]))) for a in eq.args: if a.is_Symbol: d[a][0] += 1 elif a.is_Not: d[a.args[0]][1] += 1 else: o = len(a.args), sum(isinstance(ai, Not) for ai in a.args) for ai in a.args: if ai.is_Symbol: d[ai][2] += 1 d[ai][-1][o] += 1 elif ai.is_Not: d[ai.args[0]][3] += 1 else: raise NotImplementedError('unexpected level of nesting') inv = defaultdict(list) for k, v in ordered(iter(d.items())): v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()])) inv[tuple(v)].append(k) return inv def bool_map(bool1, bool2): """ Return the simplified version of *bool1*, and the mapping of variables that makes the two expressions *bool1* and *bool2* represent the same logical behaviour for some correspondence between the variables of each. If more than one mappings of this sort exist, one of them is returned. For example, ``And(x, y)`` is logically equivalent to ``And(a, b)`` for the mapping ``{x: a, y: b}`` or ``{x: b, y: a}``. If no such mapping exists, return ``False``. Examples ======== >>> from sympy import SOPform, bool_map, Or, And, Not, Xor >>> from sympy.abc import w, x, y, z, a, b, c, d >>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]]) >>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]]) >>> bool_map(function1, function2) (y & ~z, {y: a, z: b}) The results are not necessarily unique, but they are canonical. Here, ``(w, z)`` could be ``(a, d)`` or ``(d, a)``: >>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y)) >>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c)) >>> bool_map(eq, eq2) ((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d}) >>> eq = And(Xor(a, b), c, And(c,d)) >>> bool_map(eq, eq.subs(c, x)) (c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x}) """ def match(function1, function2): """Return the mapping that equates variables between two simplified boolean expressions if possible. By "simplified" we mean that a function has been denested and is either an And (or an Or) whose arguments are either symbols (x), negated symbols (Not(x)), or Or (or an And) whose arguments are only symbols or negated symbols. For example, ``And(x, Not(y), Or(w, Not(z)))``. Basic.match is not robust enough (see issue 4835) so this is a workaround that is valid for simplified boolean expressions """ # do some quick checks if function1.__class__ != function2.__class__: return None # maybe simplification makes them the same? if len(function1.args) != len(function2.args): return None # maybe simplification makes them the same? if function1.is_Symbol: return {function1: function2} # get the fingerprint dictionaries f1 = _finger(function1) f2 = _finger(function2) # more quick checks if len(f1) != len(f2): return False # assemble the match dictionary if possible matchdict = {} for k in f1.keys(): if k not in f2: return False if len(f1[k]) != len(f2[k]): return False for i, x in enumerate(f1[k]): matchdict[x] = f2[k][i] return matchdict a = simplify_logic(bool1) b = simplify_logic(bool2) m = match(a, b) if m: return a, m return m def _apply_patternbased_simplification(rv, patterns, measure, dominatingvalue, replacementvalue=None, threeterm_patterns=None): """ Replace patterns of Relational Parameters ========== rv : Expr Boolean expression patterns : tuple Tuple of tuples, with (pattern to simplify, simplified pattern). measure : function Simplification measure. dominatingvalue : Boolean or ``None`` The dominating value for the function of consideration. For example, for :py:class:`~.And` ``S.false`` is dominating. As soon as one expression is ``S.false`` in :py:class:`~.And`, the whole expression is ``S.false``. replacementvalue : Boolean or ``None``, optional The resulting value for the whole expression if one argument evaluates to ``dominatingvalue``. For example, for :py:class:`~.Nand` ``S.false`` is dominating, but in this case the resulting value is ``S.true``. Default is ``None``. If ``replacementvalue`` is ``None`` and ``dominatingvalue`` is not ``None``, ``replacementvalue = dominatingvalue``. """ from sympy.core.relational import Relational, _canonical if replacementvalue is None and dominatingvalue is not None: replacementvalue = dominatingvalue # Use replacement patterns for Relationals Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational), binary=True) if len(Rel) <= 1: return rv Rel, nonRealRel = sift(Rel, lambda i: not any(s.is_real is False for s in i.free_symbols), binary=True) Rel = [i.canonical for i in Rel] if threeterm_patterns and len(Rel) >= 3: Rel = _apply_patternbased_threeterm_simplification(Rel, threeterm_patterns, rv.func, dominatingvalue, replacementvalue, measure) Rel = _apply_patternbased_twoterm_simplification(Rel, patterns, rv.func, dominatingvalue, replacementvalue, measure) rv = rv.func(*([_canonical(i) for i in ordered(Rel)] + nonRel + nonRealRel)) return rv def _apply_patternbased_twoterm_simplification(Rel, patterns, func, dominatingvalue, replacementvalue, measure): """ Apply pattern-based two-term simplification.""" from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core.relational import Ge, Gt, _Inequality changed = True while changed and len(Rel) >= 2: changed = False # Use only < or <= Rel = [r.reversed if isinstance(r, (Ge, Gt)) else r for r in Rel] # Sort based on ordered Rel = list(ordered(Rel)) # Eq and Ne must be tested reversed as well rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel] # Create a list of possible replacements results = [] # Try all combinations of possibly reversed relational for ((i, pi), (j, pj)) in combinations(enumerate(rtmp), 2): for pattern, simp in patterns: res = [] for p1, p2 in product(pi, pj): # use SymPy matching oldexpr = Tuple(p1, p2) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.xreplace(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return [replacementvalue] # add replacement if not isinstance(np, ITE) and not np.has(Min, Max): # We only want to use ITE and Min/Max replacements if # they simplify to a relational costsaving = measure(func(*oldexpr.args)) - measure(np) if costsaving > 0: results.append((costsaving, ([i, j], np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification replacement = results[0][1] idx, newrel = replacement idx.sort() # Remove the old relationals for index in reversed(idx): del Rel[index] if dominatingvalue is None or newrel != Not(dominatingvalue): # Insert the new one (no need to insert a value that will # not affect the result) if newrel.func == func: for a in newrel.args: Rel.append(a) else: Rel.append(newrel) # We did change something so try again changed = True return Rel def _apply_patternbased_threeterm_simplification(Rel, patterns, func, dominatingvalue, replacementvalue, measure): """ Apply pattern-based three-term simplification.""" from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core.relational import Le, Lt, _Inequality changed = True while changed and len(Rel) >= 3: changed = False # Use only > or >= Rel = [r.reversed if isinstance(r, (Le, Lt)) else r for r in Rel] # Sort based on ordered Rel = list(ordered(Rel)) # Create a list of possible replacements results = [] # Eq and Ne must be tested reversed as well rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel] # Try all combinations of possibly reversed relational for ((i, pi), (j, pj), (k, pk)) in permutations(enumerate(rtmp), 3): for pattern, simp in patterns: res = [] for p1, p2, p3 in product(pi, pj, pk): # use SymPy matching oldexpr = Tuple(p1, p2, p3) tmpres = oldexpr.match(pattern) if tmpres: res.append((tmpres, oldexpr)) if res: for tmpres, oldexpr in res: # we have a matching, compute replacement np = simp.xreplace(tmpres) if np == dominatingvalue: # if dominatingvalue, the whole expression # will be replacementvalue return [replacementvalue] # add replacement if not isinstance(np, ITE) and not np.has(Min, Max): # We only want to use ITE and Min/Max replacements if # they simplify to a relational costsaving = measure(func(*oldexpr.args)) - measure(np) if costsaving > 0: results.append((costsaving, ([i, j, k], np))) if results: # Sort results based on complexity results = list(reversed(sorted(results, key=lambda pair: pair[0]))) # Replace the one providing most simplification replacement = results[0][1] idx, newrel = replacement idx.sort() # Remove the old relationals for index in reversed(idx): del Rel[index] if dominatingvalue is None or newrel != Not(dominatingvalue): # Insert the new one (no need to insert a value that will # not affect the result) if newrel.func == func: for a in newrel.args: Rel.append(a) else: Rel.append(newrel) # We did change something so try again changed = True return Rel def _simplify_patterns_and(): """ Two-term patterns for And.""" from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import Min, Max a = Wild('a') b = Wild('b') c = Wild('c') # Relationals patterns should be in alphabetical order # (pattern1, pattern2, simplified) # Do not use Ge, Gt _matchers_and = ((Tuple(Eq(a, b), Lt(a, b)), S.false), #(Tuple(Eq(a, b), Lt(b, a)), S.false), #(Tuple(Le(b, a), Lt(a, b)), S.false), #(Tuple(Lt(b, a), Le(a, b)), S.false), (Tuple(Lt(b, a), Lt(a, b)), S.false), (Tuple(Eq(a, b), Le(b, a)), Eq(a, b)), #(Tuple(Eq(a, b), Le(a, b)), Eq(a, b)), #(Tuple(Le(b, a), Lt(b, a)), Gt(a, b)), (Tuple(Le(b, a), Le(a, b)), Eq(a, b)), #(Tuple(Le(b, a), Ne(a, b)), Gt(a, b)), #(Tuple(Lt(b, a), Ne(a, b)), Gt(a, b)), (Tuple(Le(a, b), Lt(a, b)), Lt(a, b)), (Tuple(Le(a, b), Ne(a, b)), Lt(a, b)), (Tuple(Lt(a, b), Ne(a, b)), Lt(a, b)), # Sign (Tuple(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))), # Min/Max/ITE (Tuple(Le(b, a), Le(c, a)), Ge(a, Max(b, c))), (Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Ge(a, b), Gt(a, c))), (Tuple(Lt(b, a), Lt(c, a)), Gt(a, Max(b, c))), (Tuple(Le(a, b), Le(a, c)), Le(a, Min(b, c))), (Tuple(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))), (Tuple(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))), (Tuple(Le(a, b), Le(c, a)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, S.false, And(Le(a, b), Ge(a, c))))), (Tuple(Le(c, a), Le(a, b)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, S.false, And(Le(a, b), Ge(a, c))))), (Tuple(Lt(a, b), Lt(c, a)), ITE(b < c, S.false, And(Lt(a, b), Gt(a, c)))), (Tuple(Lt(c, a), Lt(a, b)), ITE(b < c, S.false, And(Lt(a, b), Gt(a, c)))), (Tuple(Le(a, b), Lt(c, a)), ITE(b <= c, S.false, And(Le(a, b), Gt(a, c)))), (Tuple(Le(c, a), Lt(a, b)), ITE(b <= c, S.false, And(Lt(a, b), Ge(a, c)))), (Tuple(Eq(a, b), Eq(a, c)), ITE(Eq(b, c), Eq(a, b), S.false)), (Tuple(Lt(a, b), Lt(-b, a)), ITE(b > 0, Lt(Abs(a), b), S.false)), (Tuple(Le(a, b), Le(-b, a)), ITE(b >= 0, Le(Abs(a), b), S.false)), ) return _matchers_and def _simplify_patterns_and3(): """ Three-term patterns for And.""" from sympy.core import Wild from sympy.core.relational import Eq, Ge, Gt a = Wild('a') b = Wild('b') c = Wild('c') # Relationals patterns should be in alphabetical order # (pattern1, pattern2, pattern3, simplified) # Do not use Le, Lt _matchers_and = ((Tuple(Ge(a, b), Ge(b, c), Gt(c, a)), S.false), (Tuple(Ge(a, b), Gt(b, c), Gt(c, a)), S.false), (Tuple(Gt(a, b), Gt(b, c), Gt(c, a)), S.false), # (Tuple(Ge(c, a), Gt(a, b), Gt(b, c)), S.false), # Lower bound relations # Commented out combinations that does not simplify (Tuple(Ge(a, b), Ge(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))), (Tuple(Ge(a, b), Ge(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))), # (Tuple(Ge(a, b), Gt(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))), (Tuple(Ge(a, b), Gt(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))), # (Tuple(Gt(a, b), Ge(a, c), Ge(b, c)), And(Gt(a, b), Ge(b, c))), (Tuple(Ge(a, c), Gt(a, b), Gt(b, c)), And(Gt(a, b), Gt(b, c))), (Tuple(Ge(b, c), Gt(a, b), Gt(a, c)), And(Gt(a, b), Ge(b, c))), (Tuple(Gt(a, b), Gt(a, c), Gt(b, c)), And(Gt(a, b), Gt(b, c))), # Upper bound relations # Commented out combinations that does not simplify (Tuple(Ge(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))), (Tuple(Ge(b, a), Ge(c, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))), # (Tuple(Ge(b, a), Gt(c, a), Ge(b, c)), And(Gt(c, a), Ge(b, c))), (Tuple(Ge(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))), # (Tuple(Gt(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))), (Tuple(Ge(c, a), Gt(b, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))), (Tuple(Ge(b, c), Gt(b, a), Gt(c, a)), And(Gt(c, a), Ge(b, c))), (Tuple(Gt(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))), # Circular relation (Tuple(Ge(a, b), Ge(b, c), Ge(c, a)), And(Eq(a, b), Eq(b, c))), ) return _matchers_and def _simplify_patterns_or(): """ Two-term patterns for Or.""" from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import Min, Max a = Wild('a') b = Wild('b') c = Wild('c') # Relationals patterns should be in alphabetical order # (pattern1, pattern2, simplified) # Do not use Ge, Gt _matchers_or = ((Tuple(Le(b, a), Le(a, b)), S.true), #(Tuple(Le(b, a), Lt(a, b)), S.true), (Tuple(Le(b, a), Ne(a, b)), S.true), #(Tuple(Le(a, b), Lt(b, a)), S.true), #(Tuple(Le(a, b), Ne(a, b)), S.true), #(Tuple(Eq(a, b), Le(b, a)), Ge(a, b)), #(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)), (Tuple(Eq(a, b), Le(a, b)), Le(a, b)), (Tuple(Eq(a, b), Lt(a, b)), Le(a, b)), #(Tuple(Le(b, a), Lt(b, a)), Ge(a, b)), (Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)), (Tuple(Lt(b, a), Ne(a, b)), Ne(a, b)), (Tuple(Le(a, b), Lt(a, b)), Le(a, b)), #(Tuple(Lt(a, b), Ne(a, b)), Ne(a, b)), # Min/Max/ITE (Tuple(Le(b, a), Le(c, a)), Ge(a, Min(b, c))), #(Tuple(Ge(b, a), Ge(c, a)), Ge(Min(b, c), a)), (Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Gt(a, c), Ge(a, b))), (Tuple(Lt(b, a), Lt(c, a)), Gt(a, Min(b, c))), #(Tuple(Gt(b, a), Gt(c, a)), Gt(Min(b, c), a)), (Tuple(Le(a, b), Le(a, c)), Le(a, Max(b, c))), #(Tuple(Le(b, a), Le(c, a)), Le(Max(b, c), a)), (Tuple(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))), (Tuple(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))), #(Tuple(Lt(b, a), Lt(c, a)), Lt(Max(b, c), a)), (Tuple(Le(a, b), Le(c, a)), ITE(b >= c, S.true, Or(Le(a, b), Ge(a, c)))), (Tuple(Le(c, a), Le(a, b)), ITE(b >= c, S.true, Or(Le(a, b), Ge(a, c)))), (Tuple(Lt(a, b), Lt(c, a)), ITE(b > c, S.true, Or(Lt(a, b), Gt(a, c)))), (Tuple(Lt(c, a), Lt(a, b)), ITE(b > c, S.true, Or(Lt(a, b), Gt(a, c)))), (Tuple(Le(a, b), Lt(c, a)), ITE(b >= c, S.true, Or(Le(a, b), Gt(a, c)))), (Tuple(Le(c, a), Lt(a, b)), ITE(b >= c, S.true, Or(Lt(a, b), Ge(a, c)))), (Tuple(Lt(b, a), Lt(a, -b)), ITE(b >= 0, Gt(Abs(a), b), S.true)), (Tuple(Le(b, a), Le(a, -b)), ITE(b > 0, Ge(Abs(a), b), S.true)), ) return _matchers_or def _simplify_patterns_xor(): """ Two-term patterns for Xor.""" from sympy.functions.elementary.miscellaneous import Min, Max from sympy.core import Wild from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt a = Wild('a') b = Wild('b') c = Wild('c') # Relationals patterns should be in alphabetical order # (pattern1, pattern2, simplified) # Do not use Ge, Gt _matchers_xor = (#(Tuple(Le(b, a), Lt(a, b)), S.true), #(Tuple(Lt(b, a), Le(a, b)), S.true), #(Tuple(Eq(a, b), Le(b, a)), Gt(a, b)), #(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)), (Tuple(Eq(a, b), Le(a, b)), Lt(a, b)), (Tuple(Eq(a, b), Lt(a, b)), Le(a, b)), (Tuple(Le(a, b), Lt(a, b)), Eq(a, b)), (Tuple(Le(a, b), Le(b, a)), Ne(a, b)), (Tuple(Le(b, a), Ne(a, b)), Le(a, b)), # (Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)), (Tuple(Lt(b, a), Ne(a, b)), Lt(a, b)), # (Tuple(Le(a, b), Lt(a, b)), Eq(a, b)), # (Tuple(Le(a, b), Ne(a, b)), Ge(a, b)), # (Tuple(Lt(a, b), Ne(a, b)), Gt(a, b)), # Min/Max/ITE (Tuple(Le(b, a), Le(c, a)), And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))), (Tuple(Le(b, a), Lt(c, a)), ITE(b > c, And(Gt(a, c), Lt(a, b)), And(Ge(a, b), Le(a, c)))), (Tuple(Lt(b, a), Lt(c, a)), And(Gt(a, Min(b, c)), Le(a, Max(b, c)))), (Tuple(Le(a, b), Le(a, c)), And(Le(a, Max(b, c)), Gt(a, Min(b, c)))), (Tuple(Le(a, b), Lt(a, c)), ITE(b < c, And(Lt(a, c), Gt(a, b)), And(Le(a, b), Ge(a, c)))), (Tuple(Lt(a, b), Lt(a, c)), And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))), ) return _matchers_xor def simplify_univariate(expr): """return a simplified version of univariate boolean expression, else ``expr``""" from sympy.functions.elementary.piecewise import Piecewise from sympy.core.relational import Eq, Ne if not isinstance(expr, BooleanFunction): return expr if expr.atoms(Eq, Ne): return expr c = expr free = c.free_symbols if len(free) != 1: return c x = free.pop() ok, i = Piecewise((0, c), evaluate=False )._intervals(x, err_on_Eq=True) if not ok: return c if not i: return S.false args = [] for a, b, _, _ in i: if a is S.NegativeInfinity: if b is S.Infinity: c = S.true else: if c.subs(x, b) == True: c = (x <= b) else: c = (x < b) else: incl_a = (c.subs(x, a) == True) incl_b = (c.subs(x, b) == True) if incl_a and incl_b: if b.is_infinite: c = (x >= a) else: c = And(a <= x, x <= b) elif incl_a: c = And(a <= x, x < b) elif incl_b: if b.is_infinite: c = (x > a) else: c = And(a < x, x <= b) else: c = And(a < x, x < b) args.append(c) return Or(*args)
5b51ea2bff32f9a096220c31d886e8cc8eb511fb021db609fd1715ec6a9b5893
'''Functions returning normal forms of matrices''' from sympy.polys.domains.integerring import ZZ from sympy.polys.polytools import Poly from sympy.polys.matrices import DomainMatrix from sympy.polys.matrices.normalforms import ( smith_normal_form as _snf, invariant_factors as _invf, hermite_normal_form as _hnf, ) def _to_domain(m, domain=None): """Convert Matrix to DomainMatrix""" # XXX: deprecated support for RawMatrix: ring = getattr(m, "ring", None) m = m.applyfunc(lambda e: e.as_expr() if isinstance(e, Poly) else e) dM = DomainMatrix.from_Matrix(m) domain = domain or ring if domain is not None: dM = dM.convert_to(domain) return dM def smith_normal_form(m, domain=None): ''' Return the Smith Normal Form of a matrix `m` over the ring `domain`. This will only work if the ring is a principal ideal domain. Examples ======== >>> from sympy import Matrix, ZZ >>> from sympy.matrices.normalforms import smith_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(smith_normal_form(m, domain=ZZ)) Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) ''' dM = _to_domain(m, domain) return _snf(dM).to_Matrix() def invariant_factors(m, domain=None): ''' Return the tuple of abelian invariants for a matrix `m` (as in the Smith-Normal form) References ========== .. [1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm .. [2] http://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf ''' dM = _to_domain(m, domain) factors = _invf(dM) factors = tuple(dM.domain.to_sympy(f) for f in factors) # XXX: deprecated. if hasattr(m, "ring"): if m.ring.is_PolynomialRing: K = m.ring to_poly = lambda f: Poly(f, K.symbols, domain=K.domain) factors = tuple(to_poly(f) for f in factors) return factors def hermite_normal_form(A, *, D=None, check_rank=False): r""" Compute the Hermite Normal Form of a Matrix *A* of integers. Examples ======== >>> from sympy import Matrix >>> from sympy.matrices.normalforms import hermite_normal_form >>> m = Matrix([[12, 6, 4], [3, 9, 6], [2, 16, 14]]) >>> print(hermite_normal_form(m)) Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) Parameters ========== A : $m \times n$ ``Matrix`` of integers. D : int, optional Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* being any multiple of $\det(W)$ may be provided. In this case, if *A* also has rank $m$, then we may use an alternative algorithm that works mod *D* in order to prevent coefficient explosion. check_rank : boolean, optional (default=False) The basic assumption is that, if you pass a value for *D*, then you already believe that *A* has rank $m$, so we do not waste time checking it for you. If you do want this to be checked (and the ordinary, non-modulo *D* algorithm to be used if the check fails), then set *check_rank* to ``True``. Returns ======= ``Matrix`` The HNF of matrix *A*. Raises ====== DMDomainError If the domain of the matrix is not :ref:`ZZ`. DMShapeError If the mod *D* algorithm is used but the matrix has more rows than columns. References ========== .. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* (See Algorithms 2.4.5 and 2.4.8.) """ # Accept any of Python int, SymPy Integer, and ZZ itself: if D is not None and not ZZ.of_type(D): D = ZZ(int(D)) return _hnf(A._rep, D=D, check_rank=check_rank).to_Matrix()
b653193e2ece49c5c8c14aba0c95ad65a69975a0d98616f096b31351fb2cda3d
from types import FunctionType from sympy.simplify.simplify import ( simplify as _simplify, dotprodsimp as _dotprodsimp) from .utilities import _get_intermediate_simp, _iszero from .determinant import _find_reasonable_pivot def _row_reduce_list(mat, rows, cols, one, iszerofunc, simpfunc, normalize_last=True, normalize=True, zero_above=True): """Row reduce a flat list representation of a matrix and return a tuple (rref_matrix, pivot_cols, swaps) where ``rref_matrix`` is a flat list, ``pivot_cols`` are the pivot columns and ``swaps`` are any row swaps that were used in the process of row reduction. Parameters ========== mat : list list of matrix elements, must be ``rows`` * ``cols`` in length rows, cols : integer number of rows and columns in flat list representation one : SymPy object represents the value one, from ``Matrix.one`` iszerofunc : determines if an entry can be used as a pivot simpfunc : used to simplify elements and test if they are zero if ``iszerofunc`` returns `None` normalize_last : indicates where all row reduction should happen in a fraction-free manner and then the rows are normalized (so that the pivots are 1), or whether rows should be normalized along the way (like the naive row reduction algorithm) normalize : whether pivot rows should be normalized so that the pivot value is 1 zero_above : whether entries above the pivot should be zeroed. If ``zero_above=False``, an echelon matrix will be returned. """ def get_col(i): return mat[i::cols] def row_swap(i, j): mat[i*cols:(i + 1)*cols], mat[j*cols:(j + 1)*cols] = \ mat[j*cols:(j + 1)*cols], mat[i*cols:(i + 1)*cols] def cross_cancel(a, i, b, j): """Does the row op row[i] = a*row[i] - b*row[j]""" q = (j - i)*cols for p in range(i*cols, (i + 1)*cols): mat[p] = isimp(a*mat[p] - b*mat[p + q]) isimp = _get_intermediate_simp(_dotprodsimp) piv_row, piv_col = 0, 0 pivot_cols = [] swaps = [] # use a fraction free method to zero above and below each pivot while piv_col < cols and piv_row < rows: pivot_offset, pivot_val, \ assumed_nonzero, newly_determined = _find_reasonable_pivot( get_col(piv_col)[piv_row:], iszerofunc, simpfunc) # _find_reasonable_pivot may have simplified some things # in the process. Let's not let them go to waste for (offset, val) in newly_determined: offset += piv_row mat[offset*cols + piv_col] = val if pivot_offset is None: piv_col += 1 continue pivot_cols.append(piv_col) if pivot_offset != 0: row_swap(piv_row, pivot_offset + piv_row) swaps.append((piv_row, pivot_offset + piv_row)) # if we aren't normalizing last, we normalize # before we zero the other rows if normalize_last is False: i, j = piv_row, piv_col mat[i*cols + j] = one for p in range(i*cols + j + 1, (i + 1)*cols): mat[p] = isimp(mat[p] / pivot_val) # after normalizing, the pivot value is 1 pivot_val = one # zero above and below the pivot for row in range(rows): # don't zero our current row if row == piv_row: continue # don't zero above the pivot unless we're told. if zero_above is False and row < piv_row: continue # if we're already a zero, don't do anything val = mat[row*cols + piv_col] if iszerofunc(val): continue cross_cancel(pivot_val, row, val, piv_row) piv_row += 1 # normalize each row if normalize_last is True and normalize is True: for piv_i, piv_j in enumerate(pivot_cols): pivot_val = mat[piv_i*cols + piv_j] mat[piv_i*cols + piv_j] = one for p in range(piv_i*cols + piv_j + 1, (piv_i + 1)*cols): mat[p] = isimp(mat[p] / pivot_val) return mat, tuple(pivot_cols), tuple(swaps) # This functions is a candidate for caching if it gets implemented for matrices. def _row_reduce(M, iszerofunc, simpfunc, normalize_last=True, normalize=True, zero_above=True): mat, pivot_cols, swaps = _row_reduce_list(list(M), M.rows, M.cols, M.one, iszerofunc, simpfunc, normalize_last=normalize_last, normalize=normalize, zero_above=zero_above) return M._new(M.rows, M.cols, mat), pivot_cols, swaps def _is_echelon(M, iszerofunc=_iszero): """Returns `True` if the matrix is in echelon form. That is, all rows of zeros are at the bottom, and below each leading non-zero in a row are exclusively zeros.""" if M.rows <= 0 or M.cols <= 0: return True zeros_below = all(iszerofunc(t) for t in M[1:, 0]) if iszerofunc(M[0, 0]): return zeros_below and _is_echelon(M[:, 1:], iszerofunc) return zeros_below and _is_echelon(M[1:, 1:], iszerofunc) def _echelon_form(M, iszerofunc=_iszero, simplify=False, with_pivots=False): """Returns a matrix row-equivalent to ``M`` that is in echelon form. Note that echelon form of a matrix is *not* unique, however, properties like the row space and the null space are preserved. Examples ======== >>> from sympy import Matrix >>> M = Matrix([[1, 2], [3, 4]]) >>> M.echelon_form() Matrix([ [1, 2], [0, -2]]) """ simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify mat, pivots, _ = _row_reduce(M, iszerofunc, simpfunc, normalize_last=True, normalize=False, zero_above=False) if with_pivots: return mat, pivots return mat # This functions is a candidate for caching if it gets implemented for matrices. def _rank(M, iszerofunc=_iszero, simplify=False): """Returns the rank of a matrix. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rank() 2 >>> n = Matrix(3, 3, range(1, 10)) >>> n.rank() 2 """ def _permute_complexity_right(M, iszerofunc): """Permute columns with complicated elements as far right as they can go. Since the ``sympy`` row reduction algorithms start on the left, having complexity right-shifted speeds things up. Returns a tuple (mat, perm) where perm is a permutation of the columns to perform to shift the complex columns right, and mat is the permuted matrix.""" def complexity(i): # the complexity of a column will be judged by how many # element's zero-ness cannot be determined return sum(1 if iszerofunc(e) is None else 0 for e in M[:, i]) complex = [(complexity(i), i) for i in range(M.cols)] perm = [j for (i, j) in sorted(complex)] return (M.permute(perm, orientation='cols'), perm) simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify # for small matrices, we compute the rank explicitly # if is_zero on elements doesn't answer the question # for small matrices, we fall back to the full routine. if M.rows <= 0 or M.cols <= 0: return 0 if M.rows <= 1 or M.cols <= 1: zeros = [iszerofunc(x) for x in M] if False in zeros: return 1 if M.rows == 2 and M.cols == 2: zeros = [iszerofunc(x) for x in M] if False not in zeros and None not in zeros: return 0 d = M.det() if iszerofunc(d) and False in zeros: return 1 if iszerofunc(d) is False: return 2 mat, _ = _permute_complexity_right(M, iszerofunc=iszerofunc) _, pivots, _ = _row_reduce(mat, iszerofunc, simpfunc, normalize_last=True, normalize=False, zero_above=False) return len(pivots) def _rref(M, iszerofunc=_iszero, simplify=False, pivots=True, normalize_last=True): """Return reduced row-echelon form of matrix and indices of pivot vars. Parameters ========== iszerofunc : Function A function used for detecting whether an element can act as a pivot. ``lambda x: x.is_zero`` is used by default. simplify : Function A function used to simplify elements when looking for a pivot. By default SymPy's ``simplify`` is used. pivots : True or False If ``True``, a tuple containing the row-reduced matrix and a tuple of pivot columns is returned. If ``False`` just the row-reduced matrix is returned. normalize_last : True or False If ``True``, no pivots are normalized to `1` until after all entries above and below each pivot are zeroed. This means the row reduction algorithm is fraction free until the very last step. If ``False``, the naive row reduction procedure is used where each pivot is normalized to be `1` before row operations are used to zero above and below the pivot. Examples ======== >>> from sympy import Matrix >>> from sympy.abc import x >>> m = Matrix([[1, 2], [x, 1 - 1/x]]) >>> m.rref() (Matrix([ [1, 0], [0, 1]]), (0, 1)) >>> rref_matrix, rref_pivots = m.rref() >>> rref_matrix Matrix([ [1, 0], [0, 1]]) >>> rref_pivots (0, 1) Notes ===== The default value of ``normalize_last=True`` can provide significant speedup to row reduction, especially on matrices with symbols. However, if you depend on the form row reduction algorithm leaves entries of the matrix, set ``noramlize_last=False`` """ simpfunc = simplify if isinstance(simplify, FunctionType) else _simplify mat, pivot_cols, _ = _row_reduce(M, iszerofunc, simpfunc, normalize_last, normalize=True, zero_above=True) if pivots: mat = (mat, pivot_cols) return mat
f9108beeb602a306fa670addbcac517203c41e9f601d3a33c7f825494226e479
from sympy.core import S from sympy.core.relational import Eq, Ne from sympy.logic.boolalg import BooleanFunction from sympy.utilities.misc import func_name from .sets import Set class Contains(BooleanFunction): """ Asserts that x is an element of the set S. Examples ======== >>> from sympy import Symbol, Integer, S, Contains >>> Contains(Integer(2), S.Integers) True >>> Contains(Integer(-2), S.Naturals) False >>> i = Symbol('i', integer=True) >>> Contains(i, S.Naturals) Contains(i, Naturals) References ========== .. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29 """ @classmethod def eval(cls, x, s): if not isinstance(s, Set): raise TypeError('expecting Set, not %s' % func_name(s)) ret = s.contains(x) if not isinstance(ret, Contains) and ( ret in (S.true, S.false) or isinstance(ret, Set)): return ret @property def binary_symbols(self): return set().union(*[i.binary_symbols for i in self.args[1].args if i.is_Boolean or i.is_Symbol or isinstance(i, (Eq, Ne))]) def as_set(self): raise NotImplementedError()
192c9a06aec11c90b7a6f828083a14299434204d955f21edc7afe0e4e4bae16e
from sympy.core import Basic, Integer import operator class OmegaPower(Basic): """ Represents ordinal exponential and multiplication terms one of the building blocks of the :class:`Ordinal` class. In ``OmegaPower(a, b)``, ``a`` represents exponent and ``b`` represents multiplicity. """ def __new__(cls, a, b): if isinstance(b, int): b = Integer(b) if not isinstance(b, Integer) or b <= 0: raise TypeError("multiplicity must be a positive integer") if not isinstance(a, Ordinal): a = Ordinal.convert(a) return Basic.__new__(cls, a, b) @property def exp(self): return self.args[0] @property def mult(self): return self.args[1] def _compare_term(self, other, op): if self.exp == other.exp: return op(self.mult, other.mult) else: return op(self.exp, other.exp) def __eq__(self, other): if not isinstance(other, OmegaPower): try: other = OmegaPower(0, other) except TypeError: return NotImplemented return self.args == other.args def __hash__(self): return Basic.__hash__(self) def __lt__(self, other): if not isinstance(other, OmegaPower): try: other = OmegaPower(0, other) except TypeError: return NotImplemented return self._compare_term(other, operator.lt) class Ordinal(Basic): """ Represents ordinals in Cantor normal form. Internally, this class is just a list of instances of OmegaPower. Examples ======== >>> from sympy import Ordinal, OmegaPower >>> from sympy.sets.ordinals import omega >>> w = omega >>> w.is_limit_ordinal True >>> Ordinal(OmegaPower(w + 1, 1), OmegaPower(3, 2)) w**(w + 1) + w**3*2 >>> 3 + w w >>> (w + 1) * w w**2 References ========== .. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic """ def __new__(cls, *terms): obj = super().__new__(cls, *terms) powers = [i.exp for i in obj.args] if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)): raise ValueError("powers must be in decreasing order") return obj @property def terms(self): return self.args @property def leading_term(self): if self == ord0: raise ValueError("ordinal zero has no leading term") return self.terms[0] @property def trailing_term(self): if self == ord0: raise ValueError("ordinal zero has no trailing term") return self.terms[-1] @property def is_successor_ordinal(self): try: return self.trailing_term.exp == ord0 except ValueError: return False @property def is_limit_ordinal(self): try: return not self.trailing_term.exp == ord0 except ValueError: return False @property def degree(self): return self.leading_term.exp @classmethod def convert(cls, integer_value): if integer_value == 0: return ord0 return Ordinal(OmegaPower(0, integer_value)) def __eq__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented return self.terms == other.terms def __hash__(self): return hash(self.args) def __lt__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented for term_self, term_other in zip(self.terms, other.terms): if term_self != term_other: return term_self < term_other return len(self.terms) < len(other.terms) def __le__(self, other): return (self == other or self < other) def __gt__(self, other): return not self <= other def __ge__(self, other): return not self < other def __str__(self): net_str = "" plus_count = 0 if self == ord0: return 'ord0' for i in self.terms: if plus_count: net_str += " + " if i.exp == ord0: net_str += str(i.mult) elif i.exp == 1: net_str += 'w' elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal: net_str += 'w**(%s)'%i.exp else: net_str += 'w**%s'%i.exp if not i.mult == 1 and not i.exp == ord0: net_str += '*%s'%i.mult plus_count += 1 return(net_str) __repr__ = __str__ def __add__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented if other == ord0: return self a_terms = list(self.terms) b_terms = list(other.terms) r = len(a_terms) - 1 b_exp = other.degree while r >= 0 and a_terms[r].exp < b_exp: r -= 1 if r < 0: terms = b_terms elif a_terms[r].exp == b_exp: sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult) terms = a_terms[:r] + [sum_term] + b_terms[1:] else: terms = a_terms[:r+1] + b_terms return Ordinal(*terms) def __radd__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented return other + self def __mul__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented if ord0 in (self, other): return ord0 a_exp = self.degree a_mult = self.leading_term.mult summation = [] if other.is_limit_ordinal: for arg in other.terms: summation.append(OmegaPower(a_exp + arg.exp, arg.mult)) else: for arg in other.terms[:-1]: summation.append(OmegaPower(a_exp + arg.exp, arg.mult)) b_mult = other.trailing_term.mult summation.append(OmegaPower(a_exp, a_mult*b_mult)) summation += list(self.terms[1:]) return Ordinal(*summation) def __rmul__(self, other): if not isinstance(other, Ordinal): try: other = Ordinal.convert(other) except TypeError: return NotImplemented return other * self def __pow__(self, other): if not self == omega: return NotImplemented return Ordinal(OmegaPower(other, 1)) class OrdinalZero(Ordinal): """The ordinal zero. OrdinalZero can be imported as ``ord0``. """ pass class OrdinalOmega(Ordinal): """The ordinal omega which forms the base of all ordinals in cantor normal form. OrdinalOmega can be imported as ``omega``. Examples ======== >>> from sympy.sets.ordinals import omega >>> omega + omega w*2 """ def __new__(cls): return Ordinal.__new__(cls) @property def terms(self): return (OmegaPower(1, 1),) ord0 = OrdinalZero() omega = OrdinalOmega()
8cc3908a00ec70b4eb14f5ef1eaa353835511bd06a0b8ca7dfc123e26e963dad
from sympy.core import Expr from sympy.core.decorators import call_highest_priority, _sympifyit from .fancysets import ImageSet from .sets import set_add, set_sub, set_mul, set_div, set_pow, set_function class SetExpr(Expr): """An expression that can take on values of a set. Examples ======== >>> from sympy import Interval, FiniteSet >>> from sympy.sets.setexpr import SetExpr >>> a = SetExpr(Interval(0, 5)) >>> b = SetExpr(FiniteSet(1, 10)) >>> (a + b).set Union(Interval(1, 6), Interval(10, 15)) >>> (2*a + b).set Interval(1, 20) """ _op_priority = 11.0 def __new__(cls, setarg): return Expr.__new__(cls, setarg) set = property(lambda self: self.args[0]) def _latex(self, printer): return r"SetExpr\left({}\right)".format(printer._print(self.set)) @_sympifyit('other', NotImplemented) @call_highest_priority('__radd__') def __add__(self, other): return _setexpr_apply_operation(set_add, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__add__') def __radd__(self, other): return _setexpr_apply_operation(set_add, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rmul__') def __mul__(self, other): return _setexpr_apply_operation(set_mul, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__mul__') def __rmul__(self, other): return _setexpr_apply_operation(set_mul, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rsub__') def __sub__(self, other): return _setexpr_apply_operation(set_sub, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__sub__') def __rsub__(self, other): return _setexpr_apply_operation(set_sub, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rpow__') def __pow__(self, other): return _setexpr_apply_operation(set_pow, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__pow__') def __rpow__(self, other): return _setexpr_apply_operation(set_pow, other, self) @_sympifyit('other', NotImplemented) @call_highest_priority('__rtruediv__') def __truediv__(self, other): return _setexpr_apply_operation(set_div, self, other) @_sympifyit('other', NotImplemented) @call_highest_priority('__truediv__') def __rtruediv__(self, other): return _setexpr_apply_operation(set_div, other, self) def _eval_func(self, func): # TODO: this could be implemented straight into `imageset`: res = set_function(func, self.set) if res is None: return SetExpr(ImageSet(func, self.set)) return SetExpr(res) def _setexpr_apply_operation(op, x, y): if isinstance(x, SetExpr): x = x.set if isinstance(y, SetExpr): y = y.set out = op(x, y) return SetExpr(out)
1d444c7dba97195b61c1bf7889b86291cb9937ca4a84c0a336b10d4aef8d44e8
from sympy.core.decorators import _sympifyit from sympy.core.parameters import global_parameters from sympy.core.logic import fuzzy_bool from sympy.core.singleton import S from sympy.core.sympify import _sympify from .sets import Set, FiniteSet class PowerSet(Set): r"""A symbolic object representing a power set. Parameters ========== arg : Set The set to take power of. evaluate : bool The flag to control evaluation. If the evaluation is disabled for finite sets, it can take advantage of using subset test as a membership test. Notes ===== Power set `\mathcal{P}(S)` is defined as a set containing all the subsets of `S`. If the set `S` is a finite set, its power set would have `2^{\left| S \right|}` elements, where `\left| S \right|` denotes the cardinality of `S`. Examples ======== >>> from sympy import PowerSet, S, FiniteSet A power set of a finite set: >>> PowerSet(FiniteSet(1, 2, 3)) PowerSet({1, 2, 3}) A power set of an empty set: >>> PowerSet(S.EmptySet) PowerSet(EmptySet) >>> PowerSet(PowerSet(S.EmptySet)) PowerSet(PowerSet(EmptySet)) A power set of an infinite set: >>> PowerSet(S.Reals) PowerSet(Reals) Evaluating the power set of a finite set to its explicit form: >>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet) FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set .. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set """ def __new__(cls, arg, evaluate=None): if evaluate is None: evaluate=global_parameters.evaluate arg = _sympify(arg) if not isinstance(arg, Set): raise ValueError('{} must be a set.'.format(arg)) return super().__new__(cls, arg) @property def arg(self): return self.args[0] def _eval_rewrite_as_FiniteSet(self, *args, **kwargs): arg = self.arg if arg.is_FiniteSet: return arg.powerset() return None @_sympifyit('other', NotImplemented) def _contains(self, other): if not isinstance(other, Set): return None return fuzzy_bool(self.arg.is_superset(other)) def _eval_is_subset(self, other): if isinstance(other, PowerSet): return self.arg.is_subset(other.arg) def __len__(self): return 2 ** len(self.arg) def __iter__(self): found = [S.EmptySet] yield S.EmptySet for x in self.arg: temp = [] x = FiniteSet(x) for y in found: new = x + y yield new temp.append(new) found.extend(temp)
0b646d22510a21c1024e369ff9b1351b472911954f0cfb723f7947da58383c8f
from functools import reduce from itertools import product from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.expr import Expr from sympy.core.function import Lambda from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and from sympy.core.mod import Mod from sympy.core.numbers import oo, igcd, Rational from sympy.core.relational import Eq, is_eq from sympy.core.singleton import Singleton, S from sympy.core.symbol import Dummy, symbols, Symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.logic.boolalg import And, Or from .sets import Set, Interval, Union, FiniteSet, ProductSet from sympy.utilities.misc import filldedent class Rationals(Set, metaclass=Singleton): """ Represents the rational numbers. This set is also available as the singleton ``S.Rationals``. Examples ======== >>> from sympy import S >>> S.Half in S.Rationals True >>> iterable = iter(S.Rationals) >>> [next(iterable) for i in range(12)] [0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3] """ is_iterable = True _inf = S.NegativeInfinity _sup = S.Infinity is_empty = False is_finite_set = False def _contains(self, other): if not isinstance(other, Expr): return False return other.is_rational def __iter__(self): yield S.Zero yield S.One yield S.NegativeOne d = 2 while True: for n in range(d): if igcd(n, d) == 1: yield Rational(n, d) yield Rational(d, n) yield Rational(-n, d) yield Rational(-d, n) d += 1 @property def _boundary(self): return S.Reals class Naturals(Set, metaclass=Singleton): """ Represents the natural numbers (or counting numbers) which are all positive integers starting from 1. This set is also available as the singleton ``S.Naturals``. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Naturals) >>> next(iterable) 1 >>> next(iterable) 2 >>> next(iterable) 3 >>> pprint(S.Naturals.intersect(Interval(0, 10))) {1, 2, ..., 10} See Also ======== Naturals0 : non-negative integers (i.e. includes 0, too) Integers : also includes negative integers """ is_iterable = True _inf = S.One _sup = S.Infinity is_empty = False is_finite_set = False def _contains(self, other): if not isinstance(other, Expr): return False elif other.is_positive and other.is_integer: return True elif other.is_integer is False or other.is_positive is False: return False def _eval_is_subset(self, other): return Range(1, oo).is_subset(other) def _eval_is_superset(self, other): return Range(1, oo).is_superset(other) def __iter__(self): i = self._inf while True: yield i i = i + 1 @property def _boundary(self): return self def as_relational(self, x): from sympy.functions.elementary.integers import floor return And(Eq(floor(x), x), x >= self.inf, x < oo) class Naturals0(Naturals): """Represents the whole numbers which are all the non-negative integers, inclusive of zero. See Also ======== Naturals : positive integers; does not include 0 Integers : also includes the negative integers """ _inf = S.Zero def _contains(self, other): if not isinstance(other, Expr): return S.false elif other.is_integer and other.is_nonnegative: return S.true elif other.is_integer is False or other.is_nonnegative is False: return S.false def _eval_is_subset(self, other): return Range(oo).is_subset(other) def _eval_is_superset(self, other): return Range(oo).is_superset(other) class Integers(Set, metaclass=Singleton): """ Represents all integers: positive, negative and zero. This set is also available as the singleton ``S.Integers``. Examples ======== >>> from sympy import S, Interval, pprint >>> 5 in S.Naturals True >>> iterable = iter(S.Integers) >>> next(iterable) 0 >>> next(iterable) 1 >>> next(iterable) -1 >>> next(iterable) 2 >>> pprint(S.Integers.intersect(Interval(-4, 4))) {-4, -3, ..., 4} See Also ======== Naturals0 : non-negative integers Integers : positive and negative integers and zero """ is_iterable = True is_empty = False is_finite_set = False def _contains(self, other): if not isinstance(other, Expr): return S.false return other.is_integer def __iter__(self): yield S.Zero i = S.One while True: yield i yield -i i = i + 1 @property def _inf(self): return S.NegativeInfinity @property def _sup(self): return S.Infinity @property def _boundary(self): return self def as_relational(self, x): from sympy.functions.elementary.integers import floor return And(Eq(floor(x), x), -oo < x, x < oo) def _eval_is_subset(self, other): return Range(-oo, oo).is_subset(other) def _eval_is_superset(self, other): return Range(-oo, oo).is_superset(other) class Reals(Interval, metaclass=Singleton): """ Represents all real numbers from negative infinity to positive infinity, including all integer, rational and irrational numbers. This set is also available as the singleton ``S.Reals``. Examples ======== >>> from sympy import S, Rational, pi, I >>> 5 in S.Reals True >>> Rational(-1, 2) in S.Reals True >>> pi in S.Reals True >>> 3*I in S.Reals False >>> S.Reals.contains(pi) True See Also ======== ComplexRegion """ @property def start(self): return S.NegativeInfinity @property def end(self): return S.Infinity @property def left_open(self): return True @property def right_open(self): return True def __eq__(self, other): return other == Interval(S.NegativeInfinity, S.Infinity) def __hash__(self): return hash(Interval(S.NegativeInfinity, S.Infinity)) class ImageSet(Set): """ Image of a set under a mathematical function. The transformation must be given as a Lambda function which has as many arguments as the elements of the set upon which it operates, e.g. 1 argument when acting on the set of integers or 2 arguments when acting on a complex region. This function is not normally called directly, but is called from ``imageset``. Examples ======== >>> from sympy import Symbol, S, pi, Dummy, Lambda >>> from sympy import FiniteSet, ImageSet, Interval >>> x = Symbol('x') >>> N = S.Naturals >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N} >>> 4 in squares True >>> 5 in squares False >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares) {1, 4, 9} >>> square_iterable = iter(squares) >>> for i in range(4): ... next(square_iterable) 1 4 9 16 If you want to get value for `x` = 2, 1/2 etc. (Please check whether the `x` value is in ``base_set`` or not before passing it as args) >>> squares.lamda(2) 4 >>> squares.lamda(S(1)/2) 1/4 >>> n = Dummy('n') >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0 >>> dom = Interval(-1, 1) >>> dom.intersect(solutions) {0} See Also ======== sympy.sets.sets.imageset """ def __new__(cls, flambda, *sets): if not isinstance(flambda, Lambda): raise ValueError('First argument must be a Lambda') signature = flambda.signature if len(signature) != len(sets): raise ValueError('Incompatible signature') sets = [_sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Set arguments to ImageSet should of type Set") if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)): raise ValueError("Signature %s does not match sets %s" % (signature, sets)) if flambda is S.IdentityFunction and len(sets) == 1: return sets[0] if not set(flambda.variables) & flambda.expr.free_symbols: is_empty = fuzzy_or(s.is_empty for s in sets) if is_empty == True: return S.EmptySet elif is_empty == False: return FiniteSet(flambda.expr) return Basic.__new__(cls, flambda, *sets) lamda = property(lambda self: self.args[0]) base_sets = property(lambda self: self.args[1:]) @property def base_set(self): # XXX: Maybe deprecate this? It is poorly defined in handling # the multivariate case... sets = self.base_sets if len(sets) == 1: return sets[0] else: return ProductSet(*sets).flatten() @property def base_pset(self): return ProductSet(*self.base_sets) @classmethod def _check_sig(cls, sig_i, set_i): if sig_i.is_symbol: return True elif isinstance(set_i, ProductSet): sets = set_i.sets if len(sig_i) != len(sets): return False # Recurse through the signature for nested tuples: return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets)) else: # XXX: Need a better way of checking whether a set is a set of # Tuples or not. For example a FiniteSet can contain Tuples # but so can an ImageSet or a ConditionSet. Others like # Integers, Reals etc can not contain Tuples. We could just # list the possibilities here... Current code for e.g. # _contains probably only works for ProductSet. return True # Give the benefit of the doubt def __iter__(self): already_seen = set() for i in self.base_pset: val = self.lamda(*i) if val in already_seen: continue else: already_seen.add(val) yield val def _is_multivariate(self): return len(self.lamda.variables) > 1 def _contains(self, other): from sympy.solvers.solveset import _solveset_multi def get_symsetmap(signature, base_sets): '''Attempt to get a map of symbols to base_sets''' queue = list(zip(signature, base_sets)) symsetmap = {} for sig, base_set in queue: if sig.is_symbol: symsetmap[sig] = base_set elif base_set.is_ProductSet: sets = base_set.sets if len(sig) != len(sets): raise ValueError("Incompatible signature") # Recurse queue.extend(zip(sig, sets)) else: # If we get here then we have something like sig = (x, y) and # base_set = {(1, 2), (3, 4)}. For now we give up. return None return symsetmap def get_equations(expr, candidate): '''Find the equations relating symbols in expr and candidate.''' queue = [(expr, candidate)] for e, c in queue: if not isinstance(e, Tuple): yield Eq(e, c) elif not isinstance(c, Tuple) or len(e) != len(c): yield False return else: queue.extend(zip(e, c)) # Get the basic objects together: other = _sympify(other) expr = self.lamda.expr sig = self.lamda.signature variables = self.lamda.variables base_sets = self.base_sets # Use dummy symbols for ImageSet parameters so they don't match # anything in other rep = {v: Dummy(v.name) for v in variables} variables = [v.subs(rep) for v in variables] sig = sig.subs(rep) expr = expr.subs(rep) # Map the parts of other to those in the Lambda expr equations = [] for eq in get_equations(expr, other): # Unsatisfiable equation? if eq is False: return False equations.append(eq) # Map the symbols in the signature to the corresponding domains symsetmap = get_symsetmap(sig, base_sets) if symsetmap is None: # Can't factor the base sets to a ProductSet return None # Which of the variables in the Lambda signature need to be solved for? symss = (eq.free_symbols for eq in equations) variables = set(variables) & reduce(set.union, symss, set()) # Use internal multivariate solveset variables = tuple(variables) base_sets = [symsetmap[v] for v in variables] solnset = _solveset_multi(equations, variables, base_sets) if solnset is None: return None return fuzzy_not(solnset.is_empty) @property def is_iterable(self): return all(s.is_iterable for s in self.base_sets) def doit(self, **kwargs): from sympy.sets.setexpr import SetExpr f = self.lamda sig = f.signature if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr): base_set = self.base_sets[0] return SetExpr(base_set)._eval_func(f).set if all(s.is_FiniteSet for s in self.base_sets): return FiniteSet(*(f(*a) for a in product(*self.base_sets))) return self class Range(Set): """ Represents a range of integers. Can be called as ``Range(stop)``, ``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is not given it defaults to 1. ``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value (just as for Python ranges) is not included in the Range values. >>> from sympy import Range >>> list(Range(3)) [0, 1, 2] The step can also be negative: >>> list(Range(10, 0, -2)) [10, 8, 6, 4, 2] The stop value is made canonical so equivalent ranges always have the same args: >>> Range(0, 10, 3) Range(0, 12, 3) Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the set (``Range`` is always a subset of ``Integers``). If the starting point is infinite, then the final value is ``stop - step``. To iterate such a range, it needs to be reversed: >>> from sympy import oo >>> r = Range(-oo, 1) >>> r[-1] 0 >>> next(iter(r)) Traceback (most recent call last): ... TypeError: Cannot iterate over Range with infinite start >>> next(iter(r.reversed)) 0 Although ``Range`` is a :class:`Set` (and supports the normal set operations) it maintains the order of the elements and can be used in contexts where ``range`` would be used. >>> from sympy import Interval >>> Range(0, 10, 2).intersect(Interval(3, 7)) Range(4, 8, 2) >>> list(_) [4, 6] Although slicing of a Range will always return a Range -- possibly empty -- an empty set will be returned from any intersection that is empty: >>> Range(3)[:0] Range(0, 0, 1) >>> Range(3).intersect(Interval(4, oo)) EmptySet >>> Range(3).intersect(Range(4, oo)) EmptySet Range will accept symbolic arguments but has very limited support for doing anything other than displaying the Range: >>> from sympy import Symbol, pprint >>> from sympy.abc import i, j, k >>> Range(i, j, k).start i >>> Range(i, j, k).inf Traceback (most recent call last): ... ValueError: invalid method for symbolic range Better success will be had when using integer symbols: >>> n = Symbol('n', integer=True) >>> r = Range(n, n + 20, 3) >>> r.inf n >>> pprint(r) {n, n + 3, ..., n + 18} """ def __new__(cls, *args): from sympy.functions.elementary.integers import ceiling if len(args) == 1: if isinstance(args[0], range): raise TypeError( 'use sympify(%s) to convert range to Range' % args[0]) # expand range slc = slice(*args) if slc.step == 0: raise ValueError("step cannot be 0") start, stop, step = slc.start or 0, slc.stop, slc.step or 1 try: ok = [] for w in (start, stop, step): w = sympify(w) if w in [S.NegativeInfinity, S.Infinity] or ( w.has(Symbol) and w.is_integer != False): ok.append(w) elif not w.is_Integer: if w.is_infinite: raise ValueError('infinite symbols not allowed') raise ValueError else: ok.append(w) except ValueError: raise ValueError(filldedent(''' Finite arguments to Range must be integers; `imageset` can define other cases, e.g. use `imageset(i, i/10, Range(3))` to give [0, 1/10, 1/5].''')) start, stop, step = ok null = False if any(i.has(Symbol) for i in (start, stop, step)): dif = stop - start n = dif/step if n.is_Rational: from sympy.functions.elementary.integers import floor if dif == 0: null = True else: # (x, x + 5, 2) or (x, 3*x, x) n = floor(n) end = start + n*step if dif.is_Rational: # (x, x + 5, 2) if (end - stop).is_negative: end += step else: # (x, 3*x, x) if (end/stop - 1).is_negative: end += step elif n.is_extended_negative: null = True else: end = stop # other methods like sup and reversed must fail elif start.is_infinite: span = step*(stop - start) if span is S.NaN or span <= 0: null = True elif step.is_Integer and stop.is_infinite and abs(step) != 1: raise ValueError(filldedent(''' Step size must be %s in this case.''' % (1 if step > 0 else -1))) else: end = stop else: oostep = step.is_infinite if oostep: step = S.One if step > 0 else S.NegativeOne n = ceiling((stop - start)/step) if n <= 0: null = True elif oostep: step = S.One # make it canonical end = start + step else: end = start + n*step if null: start = end = S.Zero step = S.One return Basic.__new__(cls, start, end, step) start = property(lambda self: self.args[0]) stop = property(lambda self: self.args[1]) step = property(lambda self: self.args[2]) @property def reversed(self): """Return an equivalent Range in the opposite order. Examples ======== >>> from sympy import Range >>> Range(10).reversed Range(9, -1, -1) """ if self.has(Symbol): n = (self.stop - self.start)/self.step if not n.is_extended_positive or not all( i.is_integer or i.is_infinite for i in self.args): raise ValueError('invalid method for symbolic range') if self.start == self.stop: return self return self.func( self.stop - self.step, self.start - self.step, -self.step) def _contains(self, other): if self.start == self.stop: return S.false if other.is_infinite: return S.false if not other.is_integer: return other.is_integer if self.has(Symbol): n = (self.stop - self.start)/self.step if not n.is_extended_positive or not all( i.is_integer or i.is_infinite for i in self.args): return else: n = self.size if self.start.is_finite: ref = self.start elif self.stop.is_finite: ref = self.stop else: # both infinite; step is +/- 1 (enforced by __new__) return S.true if n == 1: return Eq(other, self[0]) res = (ref - other) % self.step if res == S.Zero: if self.has(Symbol): d = Dummy('i') return self.as_relational(d).subs(d, other) return And(other >= self.inf, other <= self.sup) elif res.is_Integer: # off sequence return S.false else: # symbolic/unsimplified residue modulo step return None def __iter__(self): n = self.size # validate if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer): raise TypeError("Cannot iterate over symbolic Range") if self.start in [S.NegativeInfinity, S.Infinity]: raise TypeError("Cannot iterate over Range with infinite start") elif self.start != self.stop: i = self.start if n.is_infinite: while True: yield i i += self.step else: for _ in range(n): yield i i += self.step @property def is_iterable(self): # Check that size can be determined, used by __iter__ dif = self.stop - self.start n = dif/self.step if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer): return False if self.start in [S.NegativeInfinity, S.Infinity]: return False if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)): return False return True def __len__(self): rv = self.size if rv is S.Infinity: raise ValueError('Use .size to get the length of an infinite Range') return int(rv) @property def size(self): if self.start == self.stop: return S.Zero dif = self.stop - self.start n = dif/self.step if n.is_infinite: return S.Infinity if n.is_extended_nonnegative and all(i.is_integer for i in self.args): from sympy.functions.elementary.integers import floor return abs(floor(n)) raise ValueError('Invalid method for symbolic Range') @property def is_finite_set(self): if self.start.is_integer and self.stop.is_integer: return True return self.size.is_finite @property def is_empty(self): try: return self.size.is_zero except ValueError: return None def __bool__(self): # this only distinguishes between definite null range # and non-null/unknown null; getting True doesn't mean # that it actually is not null b = is_eq(self.start, self.stop) if b is None: raise ValueError('cannot tell if Range is null or not') return not bool(b) def __getitem__(self, i): from sympy.functions.elementary.integers import ceiling ooslice = "cannot slice from the end with an infinite value" zerostep = "slice step cannot be zero" infinite = "slicing not possible on range with infinite start" # if we had to take every other element in the following # oo, ..., 6, 4, 2, 0 # we might get oo, ..., 4, 0 or oo, ..., 6, 2 ambiguous = "cannot unambiguously re-stride from the end " + \ "with an infinite value" if isinstance(i, slice): if self.size.is_finite: # validates, too if self.start == self.stop: return Range(0) start, stop, step = i.indices(self.size) n = ceiling((stop - start)/step) if n <= 0: return Range(0) canonical_stop = start + n*step end = canonical_stop - step ss = step*self.step return Range(self[start], self[end] + ss, ss) else: # infinite Range start = i.start stop = i.stop if i.step == 0: raise ValueError(zerostep) step = i.step or 1 ss = step*self.step #--------------------- # handle infinite Range # i.e. Range(-oo, oo) or Range(oo, -oo, -1) # -------------------- if self.start.is_infinite and self.stop.is_infinite: raise ValueError(infinite) #--------------------- # handle infinite on right # e.g. Range(0, oo) or Range(0, -oo, -1) # -------------------- if self.stop.is_infinite: # start and stop are not interdependent -- # they only depend on step --so we use the # equivalent reversed values return self.reversed[ stop if stop is None else -stop + 1: start if start is None else -start: step].reversed #--------------------- # handle infinite on the left # e.g. Range(oo, 0, -1) or Range(-oo, 0) # -------------------- # consider combinations of # start/stop {== None, < 0, == 0, > 0} and # step {< 0, > 0} if start is None: if stop is None: if step < 0: return Range(self[-1], self.start, ss) elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step < 0: return Range(self[-1], self[stop], ss) else: # > 0 return Range(self.start, self[stop], ss) elif stop == 0: if step > 0: return Range(0) else: # < 0 raise ValueError(ooslice) elif stop == 1: if step > 0: raise ValueError(ooslice) # infinite singleton else: # < 0 raise ValueError(ooslice) else: # > 1 raise ValueError(ooslice) elif start < 0: if stop is None: if step < 0: return Range(self[start], self.start, ss) else: # > 0 return Range(self[start], self.stop, ss) elif stop < 0: return Range(self[start], self[stop], ss) elif stop == 0: if step < 0: raise ValueError(ooslice) else: # > 0 return Range(0) elif stop > 0: raise ValueError(ooslice) elif start == 0: if stop is None: if step < 0: raise ValueError(ooslice) # infinite singleton elif step > 1: raise ValueError(ambiguous) else: # == 1 return self elif stop < 0: if step > 1: raise ValueError(ambiguous) elif step == 1: return Range(self.start, self[stop], ss) else: # < 0 return Range(0) else: # >= 0 raise ValueError(ooslice) elif start > 0: raise ValueError(ooslice) else: if self.start == self.stop: raise IndexError('Range index out of range') if not (all(i.is_integer or i.is_infinite for i in self.args) and ((self.stop - self.start)/ self.step).is_extended_positive): raise ValueError('Invalid method for symbolic Range') if i == 0: if self.start.is_infinite: raise ValueError(ooslice) return self.start if i == -1: if self.stop.is_infinite: raise ValueError(ooslice) return self.stop - self.step n = self.size # must be known for any other index rv = (self.stop if i < 0 else self.start) + i*self.step if rv.is_infinite: raise ValueError(ooslice) val = (rv - self.start)/self.step rel = fuzzy_or([val.is_infinite, fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])]) if rel: return rv if rel is None: raise ValueError('Invalid method for symbolic Range') raise IndexError("Range index out of range") @property def _inf(self): if not self: return S.EmptySet.inf if self.has(Symbol): if all(i.is_integer or i.is_infinite for i in self.args): dif = self.stop - self.start if self.step.is_positive and dif.is_positive: return self.start elif self.step.is_negative and dif.is_negative: return self.stop - self.step raise ValueError('invalid method for symbolic range') if self.step > 0: return self.start else: return self.stop - self.step @property def _sup(self): if not self: return S.EmptySet.sup if self.has(Symbol): if all(i.is_integer or i.is_infinite for i in self.args): dif = self.stop - self.start if self.step.is_positive and dif.is_positive: return self.stop - self.step elif self.step.is_negative and dif.is_negative: return self.start raise ValueError('invalid method for symbolic range') if self.step > 0: return self.stop - self.step else: return self.start @property def _boundary(self): return self def as_relational(self, x): """Rewrite a Range in terms of equalities and logic operators. """ if self.start.is_infinite: assert not self.stop.is_infinite # by instantiation a = self.reversed.start else: a = self.start step = self.step in_seq = Eq(Mod(x - a, step), 0) ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0)) n = (self.stop - self.start)/self.step if n == 0: return S.EmptySet.as_relational(x) if n == 1: return And(Eq(x, a), ints) try: a, b = self.inf, self.sup except ValueError: a = None if a is not None: range_cond = And( x > a if a.is_infinite else x >= a, x < b if b.is_infinite else x <= b) else: a, b = self.start, self.stop - self.step range_cond = Or( And(self.step >= 1, x > a if a.is_infinite else x >= a, x < b if b.is_infinite else x <= b), And(self.step <= -1, x < a if a.is_infinite else x <= a, x > b if b.is_infinite else x >= b)) return And(in_seq, ints, range_cond) converter[range] = lambda r: Range(r.start, r.stop, r.step) def normalize_theta_set(theta): r""" Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns a normalized value of theta in the Set. For Interval, a maximum of one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$, returned normalized value would be $[0, 2\pi)$. As of now intervals with end points as non-multiples of ``pi`` is not supported. Raises ====== NotImplementedError The algorithms for Normalizing theta Set are not yet implemented. ValueError The input is not valid, i.e. the input is not a real set. RuntimeError It is a bug, please report to the github issue tracker. Examples ======== >>> from sympy.sets.fancysets import normalize_theta_set >>> from sympy import Interval, FiniteSet, pi >>> normalize_theta_set(Interval(9*pi/2, 5*pi)) Interval(pi/2, pi) >>> normalize_theta_set(Interval(-3*pi/2, pi/2)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-pi/2, pi/2)) Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi)) >>> normalize_theta_set(Interval(-4*pi, 3*pi)) Interval.Ropen(0, 2*pi) >>> normalize_theta_set(Interval(-3*pi/2, -pi/2)) Interval(pi/2, 3*pi/2) >>> normalize_theta_set(FiniteSet(0, pi, 3*pi)) {0, pi} """ from sympy.functions.elementary.trigonometric import _pi_coeff as coeff if theta.is_Interval: interval_len = theta.measure # one complete circle if interval_len >= 2*S.Pi: if interval_len == 2*S.Pi and theta.left_open and theta.right_open: k = coeff(theta.start) return Union(Interval(0, k*S.Pi, False, True), Interval(k*S.Pi, 2*S.Pi, True, True)) return Interval(0, 2*S.Pi, False, True) k_start, k_end = coeff(theta.start), coeff(theta.end) if k_start is None or k_end is None: raise NotImplementedError("Normalizing theta without pi as coefficient is " "not yet implemented") new_start = k_start*S.Pi new_end = k_end*S.Pi if new_start > new_end: return Union(Interval(S.Zero, new_end, False, theta.right_open), Interval(new_start, 2*S.Pi, theta.left_open, True)) else: return Interval(new_start, new_end, theta.left_open, theta.right_open) elif theta.is_FiniteSet: new_theta = [] for element in theta: k = coeff(element) if k is None: raise NotImplementedError('Normalizing theta without pi as ' 'coefficient, is not Implemented.') else: new_theta.append(k*S.Pi) return FiniteSet(*new_theta) elif theta.is_Union: return Union(*[normalize_theta_set(interval) for interval in theta.args]) elif theta.is_subset(S.Reals): raise NotImplementedError("Normalizing theta when, it is of type %s is not " "implemented" % type(theta)) else: raise ValueError(" %s is not a real set" % (theta)) class ComplexRegion(Set): r""" Represents the Set of all Complex Numbers. It can represent a region of Complex Plane in both the standard forms Polar and Rectangular coordinates. * Polar Form Input is in the form of the ProductSet or Union of ProductSets of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``. .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\} * Rectangular Form Input is in the form of the ProductSet or Union of ProductSets of interval of x and y, the real and imaginary parts of the Complex numbers in a plane. Default input type is in rectangular form. .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\} Examples ======== >>> from sympy import ComplexRegion, Interval, S, I, Union >>> a = Interval(2, 3) >>> b = Interval(4, 6) >>> c1 = ComplexRegion(a*b) # Rectangular Form >>> c1 CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6))) * c1 represents the rectangular region in complex plane surrounded by the coordinates (2, 4), (3, 4), (3, 6) and (2, 6), of the four vertices. >>> c = Interval(1, 8) >>> c2 = ComplexRegion(Union(a*b, b*c)) >>> c2 CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8)))) * c2 represents the Union of two rectangular regions in complex plane. One of them surrounded by the coordinates of c1 and other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and (4, 8). >>> 2.5 + 4.5*I in c1 True >>> 2.5 + 6.5*I in c1 False >>> r = Interval(0, 1) >>> theta = Interval(0, 2*S.Pi) >>> c2 = ComplexRegion(r*theta, polar=True) # Polar Form >>> c2 # unit Disk PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi))) * c2 represents the region in complex plane inside the Unit Disk centered at the origin. >>> 0.5 + 0.5*I in c2 True >>> 1 + 2*I in c2 False >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True) >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True) >>> intersection = unit_disk.intersect(upper_half_unit_disk) >>> intersection PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi))) >>> intersection == upper_half_unit_disk True See Also ======== CartesianComplexRegion PolarComplexRegion Complexes """ is_ComplexRegion = True def __new__(cls, sets, polar=False): if polar is False: return CartesianComplexRegion(sets) elif polar is True: return PolarComplexRegion(sets) else: raise ValueError("polar should be either True or False") @property def sets(self): """ Return raw input sets to the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.sets ProductSet(Interval(2, 3), Interval(4, 5)) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.sets Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7))) """ return self.args[0] @property def psets(self): """ Return a tuple of sets (ProductSets) input of the self. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.psets (ProductSet(Interval(2, 3), Interval(4, 5)),) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.psets (ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7))) """ if self.sets.is_ProductSet: psets = () psets = psets + (self.sets, ) else: psets = self.sets.args return psets @property def a_interval(self): """ Return the union of intervals of `x` when, self is in rectangular form, or the union of intervals of `r` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.a_interval Interval(2, 3) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.a_interval Union(Interval(2, 3), Interval(4, 5)) """ a_interval = [] for element in self.psets: a_interval.append(element.args[0]) a_interval = Union(*a_interval) return a_interval @property def b_interval(self): """ Return the union of intervals of `y` when, self is in rectangular form, or the union of intervals of `theta` when self is in polar form. Examples ======== >>> from sympy import Interval, ComplexRegion, Union >>> a = Interval(2, 3) >>> b = Interval(4, 5) >>> c = Interval(1, 7) >>> C1 = ComplexRegion(a*b) >>> C1.b_interval Interval(4, 5) >>> C2 = ComplexRegion(Union(a*b, b*c)) >>> C2.b_interval Interval(1, 7) """ b_interval = [] for element in self.psets: b_interval.append(element.args[1]) b_interval = Union(*b_interval) return b_interval @property def _measure(self): """ The measure of self.sets. Examples ======== >>> from sympy import Interval, ComplexRegion, S >>> a, b = Interval(2, 5), Interval(4, 8) >>> c = Interval(0, 2*S.Pi) >>> c1 = ComplexRegion(a*b) >>> c1.measure 12 >>> c2 = ComplexRegion(a*c, polar=True) >>> c2.measure 6*pi """ return self.sets._measure @classmethod def from_real(cls, sets): """ Converts given subset of real numbers to a complex region. Examples ======== >>> from sympy import Interval, ComplexRegion >>> unit = Interval(0,1) >>> ComplexRegion.from_real(unit) CartesianComplexRegion(ProductSet(Interval(0, 1), {0})) """ if not sets.is_subset(S.Reals): raise ValueError("sets must be a subset of the real line") return CartesianComplexRegion(sets * FiniteSet(0)) def _contains(self, other): from sympy.functions import arg, Abs other = sympify(other) isTuple = isinstance(other, Tuple) if isTuple and len(other) != 2: raise ValueError('expecting Tuple of length 2') # If the other is not an Expression, and neither a Tuple if not isinstance(other, Expr) and not isinstance(other, Tuple): return S.false # self in rectangular form if not self.polar: re, im = other if isTuple else other.as_real_imag() return fuzzy_or(fuzzy_and([ pset.args[0]._contains(re), pset.args[1]._contains(im)]) for pset in self.psets) # self in polar form elif self.polar: if other.is_zero: # ignore undefined complex argument return fuzzy_or(pset.args[0]._contains(S.Zero) for pset in self.psets) if isTuple: r, theta = other else: r, theta = Abs(other), arg(other) if theta.is_real and theta.is_number: # angles in psets are normalized to [0, 2pi) theta %= 2*S.Pi return fuzzy_or(fuzzy_and([ pset.args[0]._contains(r), pset.args[1]._contains(theta)]) for pset in self.psets) class CartesianComplexRegion(ComplexRegion): r""" Set representing a square region of the complex plane. .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\} Examples ======== >>> from sympy import ComplexRegion, I, Interval >>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6)) >>> 2 + 5*I in region True >>> 5*I in region False See also ======== ComplexRegion PolarComplexRegion Complexes """ polar = False variables = symbols('x, y', cls=Dummy) def __new__(cls, sets): if sets == S.Reals*S.Reals: return S.Complexes if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2): # ** ProductSet of FiniteSets in the Complex Plane. ** # For Cases like ComplexRegion({2, 4}*{3}), It # would return {2 + 3*I, 4 + 3*I} # FIXME: This should probably be handled with something like: # return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet) complex_num = [] for x in sets.args[0]: for y in sets.args[1]: complex_num.append(x + S.ImaginaryUnit*y) return FiniteSet(*complex_num) else: return Set.__new__(cls, sets) @property def expr(self): x, y = self.variables return x + S.ImaginaryUnit*y class PolarComplexRegion(ComplexRegion): r""" Set representing a polar region of the complex plane. .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\} Examples ======== >>> from sympy import ComplexRegion, Interval, oo, pi, I >>> rset = Interval(0, oo) >>> thetaset = Interval(0, pi) >>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True) >>> 1 + I in upper_half_plane True >>> 1 - I in upper_half_plane False See also ======== ComplexRegion CartesianComplexRegion Complexes """ polar = True variables = symbols('r, theta', cls=Dummy) def __new__(cls, sets): new_sets = [] # sets is Union of ProductSets if not sets.is_ProductSet: for k in sets.args: new_sets.append(k) # sets is ProductSets else: new_sets.append(sets) # Normalize input theta for k, v in enumerate(new_sets): new_sets[k] = ProductSet(v.args[0], normalize_theta_set(v.args[1])) sets = Union(*new_sets) return Set.__new__(cls, sets) @property def expr(self): from sympy.functions.elementary.trigonometric import sin, cos r, theta = self.variables return r*(cos(theta) + S.ImaginaryUnit*sin(theta)) class Complexes(CartesianComplexRegion, metaclass=Singleton): """ The :class:`Set` of all complex numbers Examples ======== >>> from sympy import S, I >>> S.Complexes Complexes >>> 1 + I in S.Complexes True See also ======== Reals ComplexRegion """ is_empty = False is_finite_set = False # Override property from superclass since Complexes has no args @property def sets(self): return ProductSet(S.Reals, S.Reals) def __new__(cls): return Set.__new__(cls)
712b94f7d2fbed4bff08b1f26dcf09fdce3e29a07774c7f0d80a083aab78fda3
from typing import Any, Callable, Optional from functools import reduce from collections import defaultdict import inspect from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.decorators import sympify_method_args, sympify_return from sympy.core.evalf import EvalfMixin from sympy.core.expr import Expr from sympy.core.function import Lambda from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and, fuzzy_not) from sympy.core.numbers import Float, Integer from sympy.core.operations import LatticeOp from sympy.core.parameters import global_parameters from sympy.core.relational import Eq, Ne, is_lt from sympy.core.singleton import Singleton, S from sympy.core.sorting import ordered from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol from sympy.core.sympify import _sympify, sympify, converter from sympy.functions.elementary.miscellaneous import Max, Min from sympy.logic.boolalg import And, Or, Not, Xor, true, false from sympy.utilities.decorator import deprecated from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable, subsets) from sympy.utilities.misc import func_name, filldedent from mpmath import mpi, mpf from mpmath.libmp.libmpf import prec_to_dps tfn = defaultdict(lambda: None, { True: S.true, S.true: S.true, False: S.false, S.false: S.false}) @sympify_method_args class Set(Basic, EvalfMixin): """ The base class for any kind of set. Explanation =========== This is not meant to be used directly as a container of items. It does not behave like the builtin ``set``; see :class:`FiniteSet` for that. Real intervals are represented by the :class:`Interval` class and unions of sets by the :class:`Union` class. The empty set is represented by the :class:`EmptySet` class and available as a singleton as ``S.EmptySet``. """ is_number = False is_iterable = False is_interval = False is_FiniteSet = False is_Interval = False is_ProductSet = False is_Union = False is_Intersection = None # type: Optional[bool] is_UniversalSet = None # type: Optional[bool] is_Complement = None # type: Optional[bool] is_ComplexRegion = False is_empty = None # type: FuzzyBool is_finite_set = None # type: FuzzyBool @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return None @staticmethod def _infimum_key(expr): """ Return infimum (if possible) else S.Infinity. """ try: infimum = expr.inf assert infimum.is_comparable infimum = infimum.evalf() # issue #18505 except (NotImplementedError, AttributeError, AssertionError, ValueError): infimum = S.Infinity return infimum def union(self, other): """ Returns the union of ``self`` and ``other``. Examples ======== As a shortcut it is possible to use the ``+`` operator: >>> from sympy import Interval, FiniteSet >>> Interval(0, 1).union(Interval(2, 3)) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(0, 1) + Interval(2, 3) Union(Interval(0, 1), Interval(2, 3)) >>> Interval(1, 2, True, True) + FiniteSet(2, 3) Union({3}, Interval.Lopen(1, 2)) Similarly it is possible to use the ``-`` operator for set differences: >>> Interval(0, 2) - Interval(0, 1) Interval.Lopen(1, 2) >>> Interval(1, 3) - FiniteSet(2) Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3)) """ return Union(self, other) def intersect(self, other): """ Returns the intersection of 'self' and 'other'. Examples ======== >>> from sympy import Interval >>> Interval(1, 3).intersect(Interval(1, 2)) Interval(1, 2) >>> from sympy import imageset, Lambda, symbols, S >>> n, m = symbols('n m') >>> a = imageset(Lambda(n, 2*n), S.Integers) >>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers)) EmptySet """ return Intersection(self, other) def intersection(self, other): """ Alias for :meth:`intersect()` """ return self.intersect(other) def is_disjoint(self, other): """ Returns True if ``self`` and ``other`` are disjoint. Examples ======== >>> from sympy import Interval >>> Interval(0, 2).is_disjoint(Interval(1, 2)) False >>> Interval(0, 2).is_disjoint(Interval(3, 4)) True References ========== .. [1] https://en.wikipedia.org/wiki/Disjoint_sets """ return self.intersect(other) == S.EmptySet def isdisjoint(self, other): """ Alias for :meth:`is_disjoint()` """ return self.is_disjoint(other) def complement(self, universe): r""" The complement of 'self' w.r.t the given universe. Examples ======== >>> from sympy import Interval, S >>> Interval(0, 1).complement(S.Reals) Union(Interval.open(-oo, 0), Interval.open(1, oo)) >>> Interval(0, 1).complement(S.UniversalSet) Complement(UniversalSet, Interval(0, 1)) """ return Complement(universe, self) def _complement(self, other): # this behaves as other - self if isinstance(self, ProductSet) and isinstance(other, ProductSet): # If self and other are disjoint then other - self == self if len(self.sets) != len(other.sets): return other # There can be other ways to represent this but this gives: # (A x B) - (C x D) = ((A - C) x B) U (A x (B - D)) overlaps = [] pairs = list(zip(self.sets, other.sets)) for n in range(len(pairs)): sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs)) overlaps.append(ProductSet(*sets)) return Union(*overlaps) elif isinstance(other, Interval): if isinstance(self, (Interval, FiniteSet)): return Intersection(other, self.complement(S.Reals)) elif isinstance(other, Union): return Union(*(o - self for o in other.args)) elif isinstance(other, Complement): return Complement(other.args[0], Union(other.args[1], self), evaluate=False) elif other is S.EmptySet: return S.EmptySet elif isinstance(other, FiniteSet): sifted = sift(other, lambda x: fuzzy_bool(self.contains(x))) # ignore those that are contained in self return Union(FiniteSet(*(sifted[False])), Complement(FiniteSet(*(sifted[None])), self, evaluate=False) if sifted[None] else S.EmptySet) def symmetric_difference(self, other): """ Returns symmetric difference of ``self`` and ``other``. Examples ======== >>> from sympy import Interval, S >>> Interval(1, 3).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(3, oo)) >>> Interval(1, 10).symmetric_difference(S.Reals) Union(Interval.open(-oo, 1), Interval.open(10, oo)) >>> from sympy import S, EmptySet >>> S.Reals.symmetric_difference(EmptySet) Reals References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ return SymmetricDifference(self, other) def _symmetric_difference(self, other): return Union(Complement(self, other), Complement(other, self)) @property def inf(self): """ The infimum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).inf 0 >>> Union(Interval(0, 1), Interval(2, 3)).inf 0 """ return self._inf @property def _inf(self): raise NotImplementedError("(%s)._inf" % self) @property def sup(self): """ The supremum of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).sup 1 >>> Union(Interval(0, 1), Interval(2, 3)).sup 3 """ return self._sup @property def _sup(self): raise NotImplementedError("(%s)._sup" % self) def contains(self, other): """ Returns a SymPy value indicating whether ``other`` is contained in ``self``: ``true`` if it is, ``false`` if it isn't, else an unevaluated ``Contains`` expression (or, as in the case of ConditionSet and a union of FiniteSet/Intervals, an expression indicating the conditions for containment). Examples ======== >>> from sympy import Interval, S >>> from sympy.abc import x >>> Interval(0, 1).contains(0.5) True As a shortcut it is possible to use the ``in`` operator, but that will raise an error unless an affirmative true or false is not obtained. >>> Interval(0, 1).contains(x) (0 <= x) & (x <= 1) >>> x in Interval(0, 1) Traceback (most recent call last): ... TypeError: did not evaluate to a bool: None The result of 'in' is a bool, not a SymPy value >>> 1 in Interval(0, 2) True >>> _ is S.true False """ from .contains import Contains other = sympify(other, strict=True) c = self._contains(other) if isinstance(c, Contains): return c if c is None: return Contains(other, self, evaluate=False) b = tfn[c] if b is None: return c return b def _contains(self, other): raise NotImplementedError(filldedent(''' (%s)._contains(%s) is not defined. This method, when defined, will receive a sympified object. The method should return True, False, None or something that expresses what must be true for the containment of that object in self to be evaluated. If None is returned then a generic Contains object will be returned by the ``contains`` method.''' % (self, other))) def is_subset(self, other): """ Returns True if ``self`` is a subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_subset(Interval(0, 1)) True >>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True)) False """ if not isinstance(other, Set): raise ValueError("Unknown argument '%s'" % other) # Handle the trivial cases if self == other: return True is_empty = self.is_empty if is_empty is True: return True elif fuzzy_not(is_empty) and other.is_empty: return False if self.is_finite_set is False and other.is_finite_set: return False # Dispatch on subclass rules ret = self._eval_is_subset(other) if ret is not None: return ret ret = other._eval_is_superset(self) if ret is not None: return ret # Use pairwise rules from multiple dispatch from sympy.sets.handlers.issubset import is_subset_sets ret = is_subset_sets(self, other) if ret is not None: return ret # Fall back on computing the intersection # XXX: We shouldn't do this. A query like this should be handled # without evaluating new Set objects. It should be the other way round # so that the intersect method uses is_subset for evaluation. if self.intersect(other) == self: return True def _eval_is_subset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None def _eval_is_superset(self, other): '''Returns a fuzzy bool for whether self is a subset of other.''' return None # This should be deprecated: def issubset(self, other): """ Alias for :meth:`is_subset()` """ return self.is_subset(other) def is_proper_subset(self, other): """ Returns True if ``self`` is a proper subset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_proper_subset(Interval(0, 1)) True >>> Interval(0, 1).is_proper_subset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_subset(other) else: raise ValueError("Unknown argument '%s'" % other) def is_superset(self, other): """ Returns True if ``self`` is a superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 0.5).is_superset(Interval(0, 1)) False >>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True)) True """ if isinstance(other, Set): return other.is_subset(self) else: raise ValueError("Unknown argument '%s'" % other) # This should be deprecated: def issuperset(self, other): """ Alias for :meth:`is_superset()` """ return self.is_superset(other) def is_proper_superset(self, other): """ Returns True if ``self`` is a proper superset of ``other``. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_proper_superset(Interval(0, 0.5)) True >>> Interval(0, 1).is_proper_superset(Interval(0, 1)) False """ if isinstance(other, Set): return self != other and self.is_superset(other) else: raise ValueError("Unknown argument '%s'" % other) def _eval_powerset(self): from .powerset import PowerSet return PowerSet(self) def powerset(self): """ Find the Power set of ``self``. Examples ======== >>> from sympy import EmptySet, FiniteSet, Interval A power set of an empty set: >>> A = EmptySet >>> A.powerset() {EmptySet} A power set of a finite set: >>> A = FiniteSet(1, 2) >>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2) >>> A.powerset() == FiniteSet(a, b, c, EmptySet) True A power set of an interval: >>> Interval(1, 2).powerset() PowerSet(Interval(1, 2)) References ========== .. [1] https://en.wikipedia.org/wiki/Power_set """ return self._eval_powerset() @property def measure(self): """ The (Lebesgue) measure of ``self``. Examples ======== >>> from sympy import Interval, Union >>> Interval(0, 1).measure 1 >>> Union(Interval(0, 1), Interval(2, 3)).measure 2 """ return self._measure @property def boundary(self): """ The boundary or frontier of a set. Explanation =========== A point x is on the boundary of a set S if 1. x is in the closure of S. I.e. Every neighborhood of x contains a point in S. 2. x is not in the interior of S. I.e. There does not exist an open set centered on x contained entirely within S. There are the points on the outer rim of S. If S is open then these points need not actually be contained within S. For example, the boundary of an interval is its start and end points. This is true regardless of whether or not the interval is open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).boundary {0, 1} >>> Interval(0, 1, True, False).boundary {0, 1} """ return self._boundary @property def is_open(self): """ Property method to check whether a set is open. Explanation =========== A set is open if and only if it has an empty intersection with its boundary. In particular, a subset A of the reals is open if and only if each one of its points is contained in an open interval that is a subset of A. Examples ======== >>> from sympy import S >>> S.Reals.is_open True >>> S.Rationals.is_open False """ return Intersection(self, self.boundary).is_empty @property def is_closed(self): """ A property method to check whether a set is closed. Explanation =========== A set is closed if its complement is an open set. The closedness of a subset of the reals is determined with respect to R and its standard topology. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).is_closed True """ return self.boundary.is_subset(self) @property def closure(self): """ Property method which returns the closure of a set. The closure is defined as the union of the set itself and its boundary. Examples ======== >>> from sympy import S, Interval >>> S.Reals.closure Reals >>> Interval(0, 1).closure Interval(0, 1) """ return self + self.boundary @property def interior(self): """ Property method which returns the interior of a set. The interior of a set S consists all points of S that do not belong to the boundary of S. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).interior Interval.open(0, 1) >>> Interval(0, 1).boundary.interior EmptySet """ return self - self.boundary @property def _boundary(self): raise NotImplementedError() @property def _measure(self): raise NotImplementedError("(%s)._measure" % self) def _eval_evalf(self, prec): dps = prec_to_dps(prec) return self.func(*[arg.evalf(n=dps) for arg in self.args]) @sympify_return([('other', 'Set')], NotImplemented) def __add__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __or__(self, other): return self.union(other) @sympify_return([('other', 'Set')], NotImplemented) def __and__(self, other): return self.intersect(other) @sympify_return([('other', 'Set')], NotImplemented) def __mul__(self, other): return ProductSet(self, other) @sympify_return([('other', 'Set')], NotImplemented) def __xor__(self, other): return SymmetricDifference(self, other) @sympify_return([('exp', Expr)], NotImplemented) def __pow__(self, exp): if not (exp.is_Integer and exp >= 0): raise ValueError("%s: Exponent must be a positive Integer" % exp) return ProductSet(*[self]*exp) @sympify_return([('other', 'Set')], NotImplemented) def __sub__(self, other): return Complement(self, other) def __contains__(self, other): other = _sympify(other) c = self._contains(other) b = tfn[c] if b is None: # x in y must evaluate to T or F; to entertain a None # result with Set use y.contains(x) raise TypeError('did not evaluate to a bool: %r' % c) return b class ProductSet(Set): """ Represents a Cartesian Product of Sets. Explanation =========== Returns a Cartesian product given several sets as either an iterable or individual arguments. Can use ``*`` operator on any sets for convenient shorthand. Examples ======== >>> from sympy import Interval, FiniteSet, ProductSet >>> I = Interval(0, 5); S = FiniteSet(1, 2, 3) >>> ProductSet(I, S) ProductSet(Interval(0, 5), {1, 2, 3}) >>> (2, 2) in ProductSet(I, S) True >>> Interval(0, 1) * Interval(0, 1) # The unit square ProductSet(Interval(0, 1), Interval(0, 1)) >>> coin = FiniteSet('H', 'T') >>> set(coin**2) {(H, H), (H, T), (T, H), (T, T)} The Cartesian product is not commutative or associative e.g.: >>> I*S == S*I False >>> (I*I)*I == I*(I*I) False Notes ===== - Passes most operations down to the argument sets References ========== .. [1] https://en.wikipedia.org/wiki/Cartesian_product """ is_ProductSet = True def __new__(cls, *sets, **assumptions): if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)): SymPyDeprecationWarning( feature="ProductSet(iterable)", useinstead="ProductSet(*iterable)", issue=17557, deprecated_since_version="1.5" ).warn() sets = tuple(sets[0]) sets = [sympify(s) for s in sets] if not all(isinstance(s, Set) for s in sets): raise TypeError("Arguments to ProductSet should be of type Set") # Nullary product of sets is *not* the empty set if len(sets) == 0: return FiniteSet(()) if S.EmptySet in sets: return S.EmptySet return Basic.__new__(cls, *sets, **assumptions) @property def sets(self): return self.args def flatten(self): def _flatten(sets): for s in sets: if s.is_ProductSet: yield from _flatten(s.sets) else: yield s return ProductSet(*_flatten(self.sets)) def _contains(self, element): """ ``in`` operator for ProductSets. Examples ======== >>> from sympy import Interval >>> (2, 3) in Interval(0, 5) * Interval(0, 5) True >>> (10, 10) in Interval(0, 5) * Interval(0, 5) False Passes operation on to constituent sets """ if element.is_Symbol: return None if not isinstance(element, Tuple) or len(element) != len(self.sets): return False return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element)) def as_relational(self, *symbols): symbols = [_sympify(s) for s in symbols] if len(symbols) != len(self.sets) or not all( i.is_Symbol for i in symbols): raise ValueError( 'number of symbols must match the number of sets') return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)]) @property def _boundary(self): return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary for j, b in enumerate(self.sets))) for i, a in enumerate(self.sets))) @property def is_iterable(self): """ A property method which tests whether a set is iterable or not. Returns True if set is iterable, otherwise returns False. Examples ======== >>> from sympy import FiniteSet, Interval >>> I = Interval(0, 1) >>> A = FiniteSet(1, 2, 3, 4, 5) >>> I.is_iterable False >>> A.is_iterable True """ return all(set.is_iterable for set in self.sets) def __iter__(self): """ A method which implements is_iterable property method. If self.is_iterable returns True (both constituent sets are iterable), then return the Cartesian Product. Otherwise, raise TypeError. """ return iproduct(*self.sets) @property def is_empty(self): return fuzzy_or(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def _measure(self): measure = 1 for s in self.sets: measure *= s.measure return measure def __len__(self): return reduce(lambda a, b: a*b, (len(s) for s in self.args)) def __bool__(self): return all(self.sets) class Interval(Set): """ Represents a real interval as a Set. Usage: Returns an interval with end points ``start`` and ``end``. For ``left_open=True`` (default ``left_open`` is ``False``) the interval will be open on the left. Similarly, for ``right_open=True`` the interval will be open on the right. Examples ======== >>> from sympy import Symbol, Interval >>> Interval(0, 1) Interval(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Ropen(0, 1) Interval.Ropen(0, 1) >>> Interval.Lopen(0, 1) Interval.Lopen(0, 1) >>> Interval.open(0, 1) Interval.open(0, 1) >>> a = Symbol('a', real=True) >>> Interval(0, a) Interval(0, a) Notes ===== - Only real end points are supported - ``Interval(a, b)`` with $a > b$ will return the empty set - Use the ``evalf()`` method to turn an Interval into an mpmath ``mpi`` interval instance References ========== .. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29 """ is_Interval = True def __new__(cls, start, end, left_open=False, right_open=False): start = _sympify(start) end = _sympify(end) left_open = _sympify(left_open) right_open = _sympify(right_open) if not all(isinstance(a, (type(true), type(false))) for a in [left_open, right_open]): raise NotImplementedError( "left_open and right_open can have only true/false values, " "got %s and %s" % (left_open, right_open)) # Only allow real intervals if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))): raise ValueError("Non-real intervals are not supported") # evaluate if possible if is_lt(end, start): return S.EmptySet elif (end - start).is_negative: return S.EmptySet if end == start and (left_open or right_open): return S.EmptySet if end == start and not (left_open or right_open): if start is S.Infinity or start is S.NegativeInfinity: return S.EmptySet return FiniteSet(end) # Make sure infinite interval end points are open. if start is S.NegativeInfinity: left_open = true if end is S.Infinity: right_open = true if start == S.Infinity or end == S.NegativeInfinity: return S.EmptySet return Basic.__new__(cls, start, end, left_open, right_open) @property def start(self): """ The left end point of the interval. This property takes the same value as the ``inf`` property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).start 0 """ return self._args[0] @property def end(self): """ The right end point of the interval. This property takes the same value as the ``sup`` property. Examples ======== >>> from sympy import Interval >>> Interval(0, 1).end 1 """ return self._args[1] @property def left_open(self): """ True if interval is left-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, left_open=True).left_open True >>> Interval(0, 1, left_open=False).left_open False """ return self._args[2] @property def right_open(self): """ True if interval is right-open. Examples ======== >>> from sympy import Interval >>> Interval(0, 1, right_open=True).right_open True >>> Interval(0, 1, right_open=False).right_open False """ return self._args[3] @classmethod def open(cls, a, b): """Return an interval including neither boundary.""" return cls(a, b, True, True) @classmethod def Lopen(cls, a, b): """Return an interval not including the left boundary.""" return cls(a, b, True, False) @classmethod def Ropen(cls, a, b): """Return an interval not including the right boundary.""" return cls(a, b, False, True) @property def _inf(self): return self.start @property def _sup(self): return self.end @property def left(self): return self.start @property def right(self): return self.end @property def is_empty(self): if self.left_open or self.right_open: cond = self.start >= self.end # One/both bounds open else: cond = self.start > self.end # Both bounds closed return fuzzy_bool(cond) @property def is_finite_set(self): return self.measure.is_zero def _complement(self, other): if other == S.Reals: a = Interval(S.NegativeInfinity, self.start, True, not self.left_open) b = Interval(self.end, S.Infinity, not self.right_open, True) return Union(a, b) if isinstance(other, FiniteSet): nums = [m for m in other.args if m.is_number] if nums == []: return None return Set._complement(self, other) @property def _boundary(self): finite_points = [p for p in (self.start, self.end) if abs(p) != S.Infinity] return FiniteSet(*finite_points) def _contains(self, other): if (not isinstance(other, Expr) or other is S.NaN or other.is_real is False or other.has(S.ComplexInfinity)): # if an expression has zoo it will be zoo or nan # and neither of those is real return false if self.start is S.NegativeInfinity and self.end is S.Infinity: if other.is_real is not None: return other.is_real d = Dummy() return self.as_relational(d).subs(d, other) def as_relational(self, x): """Rewrite an interval in terms of inequalities and logic operators.""" x = sympify(x) if self.right_open: right = x < self.end else: right = x <= self.end if self.left_open: left = self.start < x else: left = self.start <= x return And(left, right) @property def _measure(self): return self.end - self.start def to_mpi(self, prec=53): return mpi(mpf(self.start._eval_evalf(prec)), mpf(self.end._eval_evalf(prec))) def _eval_evalf(self, prec): return Interval(self.left._evalf(prec), self.right._evalf(prec), left_open=self.left_open, right_open=self.right_open) def _is_comparable(self, other): is_comparable = self.start.is_comparable is_comparable &= self.end.is_comparable is_comparable &= other.start.is_comparable is_comparable &= other.end.is_comparable return is_comparable @property def is_left_unbounded(self): """Return ``True`` if the left endpoint is negative infinity. """ return self.left is S.NegativeInfinity or self.left == Float("-inf") @property def is_right_unbounded(self): """Return ``True`` if the right endpoint is positive infinity. """ return self.right is S.Infinity or self.right == Float("+inf") def _eval_Eq(self, other): if not isinstance(other, Interval): if isinstance(other, FiniteSet): return false elif isinstance(other, Set): return None return false class Union(Set, LatticeOp): """ Represents a union of sets as a :class:`Set`. Examples ======== >>> from sympy import Union, Interval >>> Union(Interval(1, 2), Interval(3, 4)) Union(Interval(1, 2), Interval(3, 4)) The Union constructor will always try to merge overlapping intervals, if possible. For example: >>> Union(Interval(1, 2), Interval(2, 3)) Interval(1, 3) See Also ======== Intersection References ========== .. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29 """ is_Union = True @property def identity(self): return S.EmptySet @property def zero(self): return S.UniversalSet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = _sympify(args) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_union(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args def _complement(self, universe): # DeMorgan's Law return Intersection(s.complement(universe) for s in self.args) @property def _inf(self): # We use Min so that sup is meaningful in combination with symbolic # interval end points. return Min(*[set.inf for set in self.args]) @property def _sup(self): # We use Max so that sup is meaningful in combination with symbolic # end points. return Max(*[set.sup for set in self.args]) @property def is_empty(self): return fuzzy_and(set.is_empty for set in self.args) @property def is_finite_set(self): return fuzzy_and(set.is_finite_set for set in self.args) @property def _measure(self): # Measure of a union is the sum of the measures of the sets minus # the sum of their pairwise intersections plus the sum of their # triple-wise intersections minus ... etc... # Sets is a collection of intersections and a set of elementary # sets which made up those intersections (called "sos" for set of sets) # An example element might of this list might be: # ( {A,B,C}, A.intersect(B).intersect(C) ) # Start with just elementary sets ( ({A}, A), ({B}, B), ... ) # Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero sets = [(FiniteSet(s), s) for s in self.args] measure = 0 parity = 1 while sets: # Add up the measure of these sets and add or subtract it to total measure += parity * sum(inter.measure for sos, inter in sets) # For each intersection in sets, compute the intersection with every # other set not already part of the intersection. sets = ((sos + FiniteSet(newset), newset.intersect(intersection)) for sos, intersection in sets for newset in self.args if newset not in sos) # Clear out sets with no measure sets = [(sos, inter) for sos, inter in sets if inter.measure != 0] # Clear out duplicates sos_list = [] sets_list = [] for _set in sets: if _set[0] in sos_list: continue else: sos_list.append(_set[0]) sets_list.append(_set) sets = sets_list # Flip Parity - next time subtract/add if we added/subtracted here parity *= -1 return measure @property def _boundary(self): def boundary_of_set(i): """ The boundary of set i minus interior of all other sets """ b = self.args[i].boundary for j, a in enumerate(self.args): if j != i: b = b - a.interior return b return Union(*map(boundary_of_set, range(len(self.args)))) def _contains(self, other): return Or(*[s.contains(other) for s in self.args]) def is_subset(self, other): return fuzzy_and(s.is_subset(other) for s in self.args) def as_relational(self, symbol): """Rewrite a Union in terms of equalities and logic operators. """ if (len(self.args) == 2 and all(isinstance(i, Interval) for i in self.args)): # optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3) # instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x)) a, b = self.args if (a.sup == b.inf and not any(a.sup in i for i in self.args)): return And(Ne(symbol, a.sup), symbol < b.sup, symbol > a.inf) return Or(*[i.as_relational(symbol) for i in self.args]) @property def is_iterable(self): return all(arg.is_iterable for arg in self.args) def __iter__(self): return roundrobin(*(iter(arg) for arg in self.args)) class Intersection(Set, LatticeOp): """ Represents an intersection of sets as a :class:`Set`. Examples ======== >>> from sympy import Intersection, Interval >>> Intersection(Interval(1, 3), Interval(2, 4)) Interval(2, 3) We often use the .intersect method >>> Interval(1,3).intersect(Interval(2,4)) Interval(2, 3) See Also ======== Union References ========== .. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29 """ is_Intersection = True @property def identity(self): return S.UniversalSet @property def zero(self): return S.EmptySet def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) # flatten inputs to merge intersections and iterables args = list(ordered(set(_sympify(args)))) # Reduce sets using known rules if evaluate: args = list(cls._new_args_filter(args)) return simplify_intersection(args) args = list(ordered(args, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._argset = frozenset(args) return obj @property def args(self): return self._args @property def is_iterable(self): return any(arg.is_iterable for arg in self.args) @property def is_finite_set(self): if fuzzy_or(arg.is_finite_set for arg in self.args): return True @property def _inf(self): raise NotImplementedError() @property def _sup(self): raise NotImplementedError() def _contains(self, other): return And(*[set.contains(other) for set in self.args]) def __iter__(self): sets_sift = sift(self.args, lambda x: x.is_iterable) completed = False candidates = sets_sift[True] + sets_sift[None] finite_candidates, others = [], [] for candidate in candidates: length = None try: length = len(candidate) except TypeError: others.append(candidate) if length is not None: finite_candidates.append(candidate) finite_candidates.sort(key=len) for s in finite_candidates + others: other_sets = set(self.args) - {s} other = Intersection(*other_sets, evaluate=False) completed = True for x in s: try: if x in other: yield x except TypeError: completed = False if completed: return if not completed: if not candidates: raise TypeError("None of the constituent sets are iterable") raise TypeError( "The computation had not completed because of the " "undecidable set membership is found in every candidates.") @staticmethod def _handle_finite_sets(args): '''Simplify intersection of one or more FiniteSets and other sets''' # First separate the FiniteSets from the others fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True) # Let the caller handle intersection of non-FiniteSets if not fs_args: return # Convert to Python sets and build the set of all elements fs_sets = [set(fs) for fs in fs_args] all_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Extract elements that are definitely in or definitely not in the # intersection. Here we check contains for all of args. definite = set() for e in all_elements: inall = fuzzy_and(s.contains(e) for s in args) if inall is True: definite.add(e) if inall is not None: for s in fs_sets: s.discard(e) # At this point all elements in all of fs_sets are possibly in the # intersection. In some cases this is because they are definitely in # the intersection of the finite sets but it's not clear if they are # members of others. We might have {m, n}, {m}, and Reals where we # don't know if m or n is real. We want to remove n here but it is # possibly in because it might be equal to m. So what we do now is # extract the elements that are definitely in the remaining finite # sets iteratively until we end up with {n}, {}. At that point if we # get any empty set all remaining elements are discarded. fs_elements = reduce(lambda a, b: a | b, fs_sets, set()) # Need fuzzy containment testing fs_symsets = [FiniteSet(*s) for s in fs_sets] while fs_elements: for e in fs_elements: infs = fuzzy_and(s.contains(e) for s in fs_symsets) if infs is True: definite.add(e) if infs is not None: for n, s in enumerate(fs_sets): # Update Python set and FiniteSet if e in s: s.remove(e) fs_symsets[n] = FiniteSet(*s) fs_elements.remove(e) break # If we completed the for loop without removing anything we are # done so quit the outer while loop else: break # If any of the sets of remainder elements is empty then we discard # all of them for the intersection. if not all(fs_sets): fs_sets = [set()] # Here we fold back the definitely included elements into each fs. # Since they are definitely included they must have been members of # each FiniteSet to begin with. We could instead fold these in with a # Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}. if definite: fs_sets = [fs | definite for fs in fs_sets] if fs_sets == [set()]: return S.EmptySet sets = [FiniteSet(*s) for s in fs_sets] # Any set in others is redundant if it contains all the elements that # are in the finite sets so we don't need it in the Intersection all_elements = reduce(lambda a, b: a | b, fs_sets, set()) is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements) others = [o for o in others if not is_redundant(o)] if others: rest = Intersection(*others) # XXX: Maybe this shortcut should be at the beginning. For large # FiniteSets it could much more efficient to process the other # sets first... if rest is S.EmptySet: return S.EmptySet # Flatten the Intersection if rest.is_Intersection: sets.extend(rest.args) else: sets.append(rest) if len(sets) == 1: return sets[0] else: return Intersection(*sets, evaluate=False) def as_relational(self, symbol): """Rewrite an Intersection in terms of equalities and logic operators""" return And(*[set.as_relational(symbol) for set in self.args]) class Complement(Set): r"""Represents the set difference or relative complement of a set with another set. $$A - B = \{x \in A \mid x \notin B\}$$ Examples ======== >>> from sympy import Complement, FiniteSet >>> Complement(FiniteSet(0, 1, 2), FiniteSet(1)) {0, 2} See Also ========= Intersection, Union References ========== .. [1] http://mathworld.wolfram.com/ComplementSet.html """ is_Complement = True def __new__(cls, a, b, evaluate=True): a, b = map(_sympify, (a, b)) if evaluate: return Complement.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): """ Simplify a :class:`Complement`. """ if B == S.UniversalSet or A.is_subset(B): return S.EmptySet if isinstance(B, Union): return Intersection(*(s.complement(A) for s in B.args)) result = B._complement(A) if result is not None: return result else: return Complement(A, B, evaluate=False) def _contains(self, other): A = self.args[0] B = self.args[1] return And(A.contains(other), Not(B.contains(other))) def as_relational(self, symbol): """Rewrite a complement in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = Not(B.as_relational(symbol)) return And(A_rel, B_rel) @property def is_iterable(self): if self.args[0].is_iterable: return True @property def is_finite_set(self): A, B = self.args a_finite = A.is_finite_set if a_finite is True: return True elif a_finite is False and B.is_finite_set: return False def __iter__(self): A, B = self.args for a in A: if a not in B: yield a else: continue class EmptySet(Set, metaclass=Singleton): """ Represents the empty set. The empty set is available as a singleton as ``S.EmptySet``. Examples ======== >>> from sympy import S, Interval >>> S.EmptySet EmptySet >>> Interval(1, 2).intersect(S.EmptySet) EmptySet See Also ======== UniversalSet References ========== .. [1] https://en.wikipedia.org/wiki/Empty_set """ is_empty = True is_finite_set = True is_FiniteSet = True @property # type: ignore @deprecated(useinstead="is S.EmptySet or is_empty", issue=16946, deprecated_since_version="1.5") def is_EmptySet(self): return True @property def _measure(self): return 0 def _contains(self, other): return false def as_relational(self, symbol): return false def __len__(self): return 0 def __iter__(self): return iter([]) def _eval_powerset(self): return FiniteSet(self) @property def _boundary(self): return self def _complement(self, other): return other def _symmetric_difference(self, other): return other class UniversalSet(Set, metaclass=Singleton): """ Represents the set of all things. The universal set is available as a singleton as ``S.UniversalSet``. Examples ======== >>> from sympy import S, Interval >>> S.UniversalSet UniversalSet >>> Interval(1, 2).intersect(S.UniversalSet) Interval(1, 2) See Also ======== EmptySet References ========== .. [1] https://en.wikipedia.org/wiki/Universal_set """ is_UniversalSet = True is_empty = False is_finite_set = False def _complement(self, other): return S.EmptySet def _symmetric_difference(self, other): return other @property def _measure(self): return S.Infinity def _contains(self, other): return true def as_relational(self, symbol): return true @property def _boundary(self): return S.EmptySet class FiniteSet(Set): """ Represents a finite set of discrete numbers. Examples ======== >>> from sympy import FiniteSet >>> FiniteSet(1, 2, 3, 4) {1, 2, 3, 4} >>> 3 in FiniteSet(1, 2, 3, 4) True >>> members = [1, 2, 3, 4] >>> f = FiniteSet(*members) >>> f {1, 2, 3, 4} >>> f - FiniteSet(2) {1, 3, 4} >>> f + FiniteSet(2, 5) {1, 2, 3, 4, 5} References ========== .. [1] https://en.wikipedia.org/wiki/Finite_set """ is_FiniteSet = True is_iterable = True is_empty = False is_finite_set = True def __new__(cls, *args, **kwargs): evaluate = kwargs.get('evaluate', global_parameters.evaluate) if evaluate: args = list(map(sympify, args)) if len(args) == 0: return S.EmptySet else: args = list(map(sympify, args)) # keep the form of the first canonical arg dargs = {} for i in reversed(list(ordered(args))): if i.is_Symbol: dargs[i] = i else: try: dargs[i.as_dummy()] = i except TypeError: # e.g. i = class without args like `Interval` dargs[i] = i _args_set = set(dargs.values()) args = list(ordered(_args_set, Set._infimum_key)) obj = Basic.__new__(cls, *args) obj._args_set = _args_set return obj def __iter__(self): return iter(self.args) def _complement(self, other): if isinstance(other, Interval): # Splitting in sub-intervals is only done for S.Reals; # other cases that need splitting will first pass through # Set._complement(). nums, syms = [], [] for m in self.args: if m.is_number and m.is_real: nums.append(m) elif m.is_real == False: pass # drop non-reals else: syms.append(m) # various symbolic expressions if other == S.Reals and nums != []: nums.sort() intervals = [] # Build up a list of intervals between the elements intervals += [Interval(S.NegativeInfinity, nums[0], True, True)] for a, b in zip(nums[:-1], nums[1:]): intervals.append(Interval(a, b, True, True)) # both open intervals.append(Interval(nums[-1], S.Infinity, True, True)) if syms != []: return Complement(Union(*intervals, evaluate=False), FiniteSet(*syms), evaluate=False) else: return Union(*intervals, evaluate=False) elif nums == []: # no splitting necessary or possible: if syms: return Complement(other, FiniteSet(*syms), evaluate=False) else: return other elif isinstance(other, FiniteSet): unk = [] for i in self: c = sympify(other.contains(i)) if c is not S.true and c is not S.false: unk.append(i) unk = FiniteSet(*unk) if unk == self: return not_true = [] for i in other: c = sympify(self.contains(i)) if c is not S.true: not_true.append(i) return Complement(FiniteSet(*not_true), unk) return Set._complement(self, other) def _contains(self, other): """ Tests whether an element, other, is in the set. Explanation =========== The actual test is for mathematical equality (as opposed to syntactical equality). In the worst case all elements of the set must be checked. Examples ======== >>> from sympy import FiniteSet >>> 1 in FiniteSet(1, 2) True >>> 5 in FiniteSet(1, 2) False """ if other in self._args_set: return True else: # evaluate=True is needed to override evaluate=False context; # we need Eq to do the evaluation return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True)) for e in self.args) def _eval_is_subset(self, other): return fuzzy_and(other._contains(e) for e in self.args) @property def _boundary(self): return self @property def _inf(self): return Min(*self) @property def _sup(self): return Max(*self) @property def measure(self): return 0 def __len__(self): return len(self.args) def as_relational(self, symbol): """Rewrite a FiniteSet in terms of equalities and logic operators. """ return Or(*[Eq(symbol, elem) for elem in self]) def compare(self, other): return (hash(self) - hash(other)) def _eval_evalf(self, prec): dps = prec_to_dps(prec) return FiniteSet(*[elem.evalf(n=dps) for elem in self]) def _eval_simplify(self, **kwargs): from sympy.simplify import simplify return FiniteSet(*[simplify(elem, **kwargs) for elem in self]) @property def _sorted_args(self): return self.args def _eval_powerset(self): return self.func(*[self.func(*s) for s in subsets(self.args)]) def _eval_rewrite_as_PowerSet(self, *args, **kwargs): """Rewriting method for a finite set to a power set.""" from .powerset import PowerSet is2pow = lambda n: bool(n and not n & (n - 1)) if not is2pow(len(self)): return None fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet if not all(fs_test(arg) for arg in args): return None biggest = max(args, key=len) for arg in subsets(biggest.args): arg_set = FiniteSet(*arg) if arg_set not in args: return None return PowerSet(biggest) def __ge__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return other.is_subset(self) def __gt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_superset(other) def __le__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_subset(other) def __lt__(self, other): if not isinstance(other, Set): raise TypeError("Invalid comparison of set with %s" % func_name(other)) return self.is_proper_subset(other) def __eq__(self, other): if isinstance(other, (set, frozenset)): return self._args_set == other return super().__eq__(other) __hash__ : Callable[[Basic], Any] = Basic.__hash__ converter[set] = lambda x: FiniteSet(*x) converter[frozenset] = lambda x: FiniteSet(*x) class SymmetricDifference(Set): """Represents the set of elements which are in either of the sets and not in their intersection. Examples ======== >>> from sympy import SymmetricDifference, FiniteSet >>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5)) {1, 2, 4, 5} See Also ======== Complement, Union References ========== .. [1] https://en.wikipedia.org/wiki/Symmetric_difference """ is_SymmetricDifference = True def __new__(cls, a, b, evaluate=True): if evaluate: return SymmetricDifference.reduce(a, b) return Basic.__new__(cls, a, b) @staticmethod def reduce(A, B): result = B._symmetric_difference(A) if result is not None: return result else: return SymmetricDifference(A, B, evaluate=False) def as_relational(self, symbol): """Rewrite a symmetric_difference in terms of equalities and logic operators""" A, B = self.args A_rel = A.as_relational(symbol) B_rel = B.as_relational(symbol) return Xor(A_rel, B_rel) @property def is_iterable(self): if all(arg.is_iterable for arg in self.args): return True def __iter__(self): args = self.args union = roundrobin(*(iter(arg) for arg in args)) for item in union: count = 0 for s in args: if item in s: count += 1 if count % 2 == 1: yield item class DisjointUnion(Set): """ Represents the disjoint union (also known as the external disjoint union) of a finite number of sets. Examples ======== >>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol >>> A = FiniteSet(1, 2, 3) >>> B = Interval(0, 5) >>> DisjointUnion(A, B) DisjointUnion({1, 2, 3}, Interval(0, 5)) >>> DisjointUnion(A, B).rewrite(Union) Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1})) >>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z')) >>> DisjointUnion(C, C) DisjointUnion({x, y, z}, {x, y, z}) >>> DisjointUnion(C, C).rewrite(Union) ProductSet({x, y, z}, {0, 1}) References ========== https://en.wikipedia.org/wiki/Disjoint_union """ def __new__(cls, *sets): dj_collection = [] for set_i in sets: if isinstance(set_i, Set): dj_collection.append(set_i) else: raise TypeError("Invalid input: '%s', input args \ to DisjointUnion must be Sets" % set_i) obj = Basic.__new__(cls, *dj_collection) return obj @property def sets(self): return self.args @property def is_empty(self): return fuzzy_and(s.is_empty for s in self.sets) @property def is_finite_set(self): all_finite = fuzzy_and(s.is_finite_set for s in self.sets) return fuzzy_or([self.is_empty, all_finite]) @property def is_iterable(self): if self.is_empty: return False iter_flag = True for set_i in self.sets: if not set_i.is_empty: iter_flag = iter_flag and set_i.is_iterable return iter_flag def _eval_rewrite_as_Union(self, *sets): """ Rewrites the disjoint union as the union of (``set`` x {``i``}) where ``set`` is the element in ``sets`` at index = ``i`` """ dj_union = S.EmptySet index = 0 for set_i in sets: if isinstance(set_i, Set): cross = ProductSet(set_i, FiniteSet(index)) dj_union = Union(dj_union, cross) index = index + 1 return dj_union def _contains(self, element): """ ``in`` operator for DisjointUnion Examples ======== >>> from sympy import Interval, DisjointUnion >>> D = DisjointUnion(Interval(0, 1), Interval(0, 2)) >>> (0.5, 0) in D True >>> (0.5, 1) in D True >>> (1.5, 0) in D False >>> (1.5, 1) in D True Passes operation on to constituent sets """ if not isinstance(element, Tuple) or len(element) != 2: return False if not element[1].is_Integer: return False if element[1] >= len(self.sets) or element[1] < 0: return False return element[0] in self.sets[element[1]] def __iter__(self): if self.is_iterable: iters = [] for i, s in enumerate(self.sets): iters.append(iproduct(s, {Integer(i)})) return iter(roundrobin(*iters)) else: raise ValueError("'%s' is not iterable." % self) def __len__(self): """ Returns the length of the disjoint union, i.e., the number of elements in the set. Examples ======== >>> from sympy import FiniteSet, DisjointUnion, EmptySet >>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5)) >>> len(D1) 7 >>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7)) >>> len(D2) 6 >>> D3 = DisjointUnion(EmptySet, EmptySet) >>> len(D3) 0 Adds up the lengths of the constituent sets. """ if self.is_finite_set: size = 0 for set in self.sets: size += len(set) return size else: raise ValueError("'%s' is not a finite set." % self) def imageset(*args): r""" Return an image of the set under transformation ``f``. Explanation =========== If this function cannot compute the image, it returns an unevaluated ImageSet object. .. math:: \{ f(x) \mid x \in \mathrm{self} \} Examples ======== >>> from sympy import S, Interval, imageset, sin, Lambda >>> from sympy.abc import x >>> imageset(x, 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(lambda x: 2*x, Interval(0, 2)) Interval(0, 4) >>> imageset(Lambda(x, sin(x)), Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(sin, Interval(-2, 1)) ImageSet(Lambda(x, sin(x)), Interval(-2, 1)) >>> imageset(lambda y: x + y, Interval(-2, 1)) ImageSet(Lambda(y, x + y), Interval(-2, 1)) Expressions applied to the set of Integers are simplified to show as few negatives as possible and linear expressions are converted to a canonical form. If this is not desirable then the unevaluated ImageSet should be used. >>> imageset(x, -2*x + 5, S.Integers) ImageSet(Lambda(x, 2*x + 1), Integers) See Also ======== sympy.sets.fancysets.ImageSet """ from .fancysets import ImageSet from .setexpr import set_function if len(args) < 2: raise ValueError('imageset expects at least 2 args, got: %s' % len(args)) if isinstance(args[0], (Symbol, tuple)) and len(args) > 2: f = Lambda(args[0], args[1]) set_list = args[2:] else: f = args[0] set_list = args[1:] if isinstance(f, Lambda): pass elif callable(f): nargs = getattr(f, 'nargs', {}) if nargs: if len(nargs) != 1: raise NotImplementedError(filldedent(''' This function can take more than 1 arg but the potentially complicated set input has not been analyzed at this point to know its dimensions. TODO ''')) N = nargs.args[0] if N == 1: s = 'x' else: s = [Symbol('x%i' % i) for i in range(1, N + 1)] else: s = inspect.signature(f).parameters dexpr = _sympify(f(*[Dummy() for i in s])) var = tuple(uniquely_named_symbol( Symbol(i), dexpr) for i in s) f = Lambda(var, f(*var)) else: raise TypeError(filldedent(''' expecting lambda, Lambda, or FunctionClass, not \'%s\'.''' % func_name(f))) if any(not isinstance(s, Set) for s in set_list): name = [func_name(s) for s in set_list] raise ValueError( 'arguments after mapping should be sets, not %s' % name) if len(set_list) == 1: set = set_list[0] try: # TypeError if arg count != set dimensions r = set_function(f, set) if r is None: raise TypeError if not r: return r except TypeError: r = ImageSet(f, set) if isinstance(r, ImageSet): f, set = r.args if f.variables[0] == f.expr: return set if isinstance(set, ImageSet): # XXX: Maybe this should just be: # f2 = set.lambda # fun = Lambda(f2.signature, f(*f2.expr)) # return imageset(fun, *set.base_sets) if len(set.lamda.variables) == 1 and len(f.variables) == 1: x = set.lamda.variables[0] y = f.variables[0] return imageset( Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets) if r is not None: return r return ImageSet(f, *set_list) def is_function_invertible_in_set(func, setv): """ Checks whether function ``func`` is invertible when the domain is restricted to set ``setv``. """ from sympy.functions.elementary.exponential import exp, log # Functions known to always be invertible: if func in (exp, log): return True u = Dummy("u") fdiff = func(u).diff(u) # monotonous functions: # TODO: check subsets (`func` in `setv`) if (fdiff > 0) == True or (fdiff < 0) == True: return True # TODO: support more return None def simplify_union(args): """ Simplify a :class:`Union` using known rules. Explanation =========== We first start with global rules like 'Merge all FiniteSets' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent. This process depends on ``union_sets(a, b)`` functions. """ from sympy.sets.handlers.union import union_sets # ===== Global Rules ===== if not args: return S.EmptySet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # Merge all finite sets finite_sets = [x for x in args if x.is_FiniteSet] if len(finite_sets) > 1: a = (x for set in finite_sets for x in set) finite_set = FiniteSet(*a) args = [finite_set] + [x for x in args if not x.is_FiniteSet] # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = union_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: if not isinstance(new_set, set): new_set = {new_set} new_args = (args - {s, t}).union(new_set) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Union(*args, evaluate=False) def simplify_intersection(args): """ Simplify an intersection using known rules. Explanation =========== We first start with global rules like 'if any empty sets return empty set' and 'distribute any unions' Then we iterate through all pairs and ask the constituent sets if they can simplify themselves with any other constituent """ # ===== Global Rules ===== if not args: return S.UniversalSet for arg in args: if not isinstance(arg, Set): raise TypeError("Input args to Union must be Sets") # If any EmptySets return EmptySet if S.EmptySet in args: return S.EmptySet # Handle Finite sets rv = Intersection._handle_finite_sets(args) if rv is not None: return rv # If any of the sets are unions, return a Union of Intersections for s in args: if s.is_Union: other_sets = set(args) - {s} if len(other_sets) > 0: other = Intersection(*other_sets) return Union(*(Intersection(arg, other) for arg in s.args)) else: return Union(*[arg for arg in s.args]) for s in args: if s.is_Complement: args.remove(s) other_sets = args + [s.args[0]] return Complement(Intersection(*other_sets), s.args[1]) from sympy.sets.handlers.intersection import intersection_sets # At this stage we are guaranteed not to have any # EmptySets, FiniteSets, or Unions in the intersection # ===== Pair-wise Rules ===== # Here we depend on rules built into the constituent sets args = set(args) new_args = True while new_args: for s in args: new_args = False for t in args - {s}: new_set = intersection_sets(s, t) # This returns None if s does not know how to intersect # with t. Returns the newly intersected set otherwise if new_set is not None: new_args = (args - {s, t}).union({new_set}) break if new_args: args = new_args break if len(args) == 1: return args.pop() else: return Intersection(*args, evaluate=False) def _handle_finite_sets(op, x, y, commutative): # Handle finite sets: fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True) if len(fs_args) == 2: return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]]) elif len(fs_args) == 1: sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]] return Union(*sets) else: return None def _apply_operation(op, x, y, commutative): from .fancysets import ImageSet d = Dummy('d') out = _handle_finite_sets(op, x, y, commutative) if out is None: out = op(x, y) if out is None and commutative: out = op(y, x) if out is None: _x, _y = symbols("x y") if isinstance(x, Set) and not isinstance(y, Set): out = ImageSet(Lambda(d, op(d, y)), x).doit() elif not isinstance(x, Set) and isinstance(y, Set): out = ImageSet(Lambda(d, op(x, d)), y).doit() else: out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y) return out def set_add(x, y): from sympy.sets.handlers.add import _set_add return _apply_operation(_set_add, x, y, commutative=True) def set_sub(x, y): from sympy.sets.handlers.add import _set_sub return _apply_operation(_set_sub, x, y, commutative=False) def set_mul(x, y): from sympy.sets.handlers.mul import _set_mul return _apply_operation(_set_mul, x, y, commutative=True) def set_div(x, y): from sympy.sets.handlers.mul import _set_div return _apply_operation(_set_div, x, y, commutative=False) def set_pow(x, y): from sympy.sets.handlers.power import _set_pow return _apply_operation(_set_pow, x, y, commutative=False) def set_function(f, x): from sympy.sets.handlers.functions import _set_function return _set_function(f, x)
6b6b31c8564a263c206e7f97447d583417d5dcb72f23ec0c7cbf955b09595b15
from sympy.concrete.summations import Sum from sympy.core.basic import Basic from sympy.core.containers import Tuple from sympy.core.function import Lambda from sympy.core.numbers import (Rational, nan, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.combinatorial.factorials import (FallingFactorial, binomial) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.delta_functions import DiracDelta from sympy.integrals.integrals import integrate from sympy.logic.boolalg import (And, Or) from sympy.matrices.dense import Matrix from sympy.sets.sets import Interval from sympy.tensor.indexed import Indexed from sympy.stats import (Die, Normal, Exponential, FiniteRV, P, E, H, variance, density, given, independent, dependent, where, pspace, GaussianUnitaryEnsemble, random_symbols, sample, Geometric, factorial_moment, Binomial, Hypergeometric, DiscreteUniform, Poisson, characteristic_function, moment_generating_function, BernoulliProcess, Variance, Expectation, Probability, Covariance, covariance, cmoment, moment, median) from sympy.stats.rv import (IndependentProductPSpace, rs_swap, Density, NamedArgsMixin, RandomSymbol, sample_iter, PSpace, is_random, RandomIndexedSymbol, RandomMatrixSymbol) from sympy.testing.pytest import raises, skip, XFAIL from sympy.external import import_module from sympy.core.numbers import comp from sympy.stats.frv_types import BernoulliDistribution from sympy.core.symbol import Dummy from sympy.functions.elementary.piecewise import Piecewise def test_where(): X, Y = Die('X'), Die('Y') Z = Normal('Z', 0, 1) assert where(Z**2 <= 1).set == Interval(-1, 1) assert where(Z**2 <= 1).as_boolean() == Interval(-1, 1).as_relational(Z.symbol) assert where(And(X > Y, Y > 4)).as_boolean() == And( Eq(X.symbol, 6), Eq(Y.symbol, 5)) assert len(where(X < 3).set) == 2 assert 1 in where(X < 3).set X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) XX = given(X, And(X**2 <= 1, X >= 0)) assert XX.pspace.domain.set == Interval(0, 1) assert XX.pspace.domain.as_boolean() == \ And(0 <= X.symbol, X.symbol**2 <= 1, -oo < X.symbol, X.symbol < oo) with raises(TypeError): XX = given(X, X + 3) def test_random_symbols(): X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) assert set(random_symbols(2*X + 1)) == {X} assert set(random_symbols(2*X + Y)) == {X, Y} assert set(random_symbols(2*X + Y.symbol)) == {X} assert set(random_symbols(2)) == set() def test_characteristic_function(): # Imports I from sympy from sympy.core.numbers import I X = Normal('X',0,1) Y = DiscreteUniform('Y', [1,2,7]) Z = Poisson('Z', 2) t = symbols('_t') P = Lambda(t, exp(-t**2/2)) Q = Lambda(t, exp(7*t*I)/3 + exp(2*t*I)/3 + exp(t*I)/3) R = Lambda(t, exp(2 * exp(t*I) - 2)) assert characteristic_function(X).dummy_eq(P) assert characteristic_function(Y).dummy_eq(Q) assert characteristic_function(Z).dummy_eq(R) def test_moment_generating_function(): X = Normal('X',0,1) Y = DiscreteUniform('Y', [1,2,7]) Z = Poisson('Z', 2) t = symbols('_t') P = Lambda(t, exp(t**2/2)) Q = Lambda(t, (exp(7*t)/3 + exp(2*t)/3 + exp(t)/3)) R = Lambda(t, exp(2 * exp(t) - 2)) assert moment_generating_function(X).dummy_eq(P) assert moment_generating_function(Y).dummy_eq(Q) assert moment_generating_function(Z).dummy_eq(R) def test_sample_iter(): X = Normal('X',0,1) Y = DiscreteUniform('Y', [1, 2, 7]) Z = Poisson('Z', 2) scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') expr = X**2 + 3 iterator = sample_iter(expr) expr2 = Y**2 + 5*Y + 4 iterator2 = sample_iter(expr2) expr3 = Z**3 + 4 iterator3 = sample_iter(expr3) def is_iterator(obj): if ( hasattr(obj, '__iter__') and (hasattr(obj, 'next') or hasattr(obj, '__next__')) and callable(obj.__iter__) and obj.__iter__() is obj ): return True else: return False assert is_iterator(iterator) assert is_iterator(iterator2) assert is_iterator(iterator3) def test_pspace(): X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) x = Symbol('x') raises(ValueError, lambda: pspace(5 + 3)) raises(ValueError, lambda: pspace(x < 1)) assert pspace(X) == X.pspace assert pspace(2*X + 1) == X.pspace assert pspace(2*X + Y) == IndependentProductPSpace(Y.pspace, X.pspace) def test_rs_swap(): X = Normal('x', 0, 1) Y = Exponential('y', 1) XX = Normal('x', 0, 2) YY = Normal('y', 0, 3) expr = 2*X + Y assert expr.subs(rs_swap((X, Y), (YY, XX))) == 2*XX + YY def test_RandomSymbol(): X = Normal('x', 0, 1) Y = Normal('x', 0, 2) assert X.symbol == Y.symbol assert X != Y assert X.name == X.symbol.name X = Normal('lambda', 0, 1) # make sure we can use protected terms X = Normal('Lambda', 0, 1) # make sure we can use SymPy terms def test_RandomSymbol_diff(): X = Normal('x', 0, 1) assert (2*X).diff(X) def test_random_symbol_no_pspace(): x = RandomSymbol(Symbol('x')) assert x.pspace == PSpace() def test_overlap(): X = Normal('x', 0, 1) Y = Normal('x', 0, 2) raises(ValueError, lambda: P(X > Y)) def test_IndependentProductPSpace(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 1) px = X.pspace py = Y.pspace assert pspace(X + Y) == IndependentProductPSpace(px, py) assert pspace(X + Y) == IndependentProductPSpace(py, px) def test_E(): assert E(5) == 5 def test_H(): X = Normal('X', 0, 1) D = Die('D', sides = 4) G = Geometric('G', 0.5) assert H(X, X > 0) == -log(2)/2 + S.Half + log(pi)/2 assert H(D, D > 2) == log(2) assert comp(H(G).evalf().round(2), 1.39) def test_Sample(): X = Die('X', 6) Y = Normal('Y', 0, 1) z = Symbol('z', integer=True) scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') assert sample(X) in [1, 2, 3, 4, 5, 6] assert isinstance(sample(X + Y), float) assert P(X + Y > 0, Y < 0, numsamples=10).is_number assert E(X + Y, numsamples=10).is_number assert E(X**2 + Y, numsamples=10).is_number assert E((X + Y)**2, numsamples=10).is_number assert variance(X + Y, numsamples=10).is_number raises(TypeError, lambda: P(Y > z, numsamples=5)) assert P(sin(Y) <= 1, numsamples=10) == 1 assert P(sin(Y) <= 1, cos(Y) < 1, numsamples=10) == 1 assert all(i in range(1, 7) for i in density(X, numsamples=10)) assert all(i in range(4, 7) for i in density(X, X>3, numsamples=10)) numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests') #Test Issue #21563: Output of sample must be a float or array assert isinstance(sample(X), (numpy.int32, numpy.int64)) assert isinstance(sample(Y), numpy.float64) assert isinstance(sample(X, size=2), numpy.ndarray) @XFAIL def test_samplingE(): scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests') Y = Normal('Y', 0, 1) z = Symbol('z', integer=True) assert E(Sum(1/z**Y, (z, 1, oo)), Y > 2, numsamples=3).is_number def test_given(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 1) A = given(X, True) B = given(X, Y > 2) assert X == A == B def test_factorial_moment(): X = Poisson('X', 2) Y = Binomial('Y', 2, S.Half) Z = Hypergeometric('Z', 4, 2, 2) assert factorial_moment(X, 2) == 4 assert factorial_moment(Y, 2) == S.Half assert factorial_moment(Z, 2) == Rational(1, 3) x, y, z, l = symbols('x y z l') Y = Binomial('Y', 2, y) Z = Hypergeometric('Z', 10, 2, 3) assert factorial_moment(Y, l) == y**2*FallingFactorial( 2, l) + 2*y*(1 - y)*FallingFactorial(1, l) + (1 - y)**2*\ FallingFactorial(0, l) assert factorial_moment(Z, l) == 7*FallingFactorial(0, l)/\ 15 + 7*FallingFactorial(1, l)/15 + FallingFactorial(2, l)/15 def test_dependence(): X, Y = Die('X'), Die('Y') assert independent(X, 2*Y) assert not dependent(X, 2*Y) X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) assert independent(X, Y) assert dependent(X, 2*X) # Create a dependency XX, YY = given(Tuple(X, Y), Eq(X + Y, 3)) assert dependent(XX, YY) def test_dependent_finite(): X, Y = Die('X'), Die('Y') # Dependence testing requires symbolic conditions which currently break # finite random variables assert dependent(X, Y + X) XX, YY = given(Tuple(X, Y), X + Y > 5) # Create a dependency assert dependent(XX, YY) def test_normality(): X, Y = Normal('X', 0, 1), Normal('Y', 0, 1) x = Symbol('x', real=True) z = Symbol('z', real=True) dens = density(X - Y, Eq(X + Y, z)) assert integrate(dens(x), (x, -oo, oo)) == 1 def test_Density(): X = Die('X', 6) d = Density(X) assert d.doit() == density(X) def test_NamedArgsMixin(): class Foo(Basic, NamedArgsMixin): _argnames = 'foo', 'bar' a = Foo(S(1), S(2)) assert a.foo == 1 assert a.bar == 2 raises(AttributeError, lambda: a.baz) class Bar(Basic, NamedArgsMixin): pass raises(AttributeError, lambda: Bar(S(1), S(2)).foo) def test_density_constant(): assert density(3)(2) == 0 assert density(3)(3) == DiracDelta(0) def test_cmoment_constant(): assert variance(3) == 0 assert cmoment(3, 3) == 0 assert cmoment(3, 4) == 0 x = Symbol('x') assert variance(x) == 0 assert cmoment(x, 15) == 0 assert cmoment(x, 0) == 1 def test_moment_constant(): assert moment(3, 0) == 1 assert moment(3, 1) == 3 assert moment(3, 2) == 9 x = Symbol('x') assert moment(x, 2) == x**2 def test_median_constant(): assert median(3) == 3 x = Symbol('x') assert median(x) == x def test_real(): x = Normal('x', 0, 1) assert x.is_real def test_issue_10052(): X = Exponential('X', 3) assert P(X < oo) == 1 assert P(X > oo) == 0 assert P(X < 2, X > oo) == 0 assert P(X < oo, X > oo) == 0 assert P(X < oo, X > 2) == 1 assert P(X < 3, X == 2) == 0 raises(ValueError, lambda: P(1)) raises(ValueError, lambda: P(X < 1, 2)) def test_issue_11934(): density = {0: .5, 1: .5} X = FiniteRV('X', density) assert E(X) == 0.5 assert P( X>= 2) == 0 def test_issue_8129(): X = Exponential('X', 4) assert P(X >= X) == 1 assert P(X > X) == 0 assert P(X > X+1) == 0 def test_issue_12237(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 1) U = P(X > 0, X) V = P(Y < 0, X) W = P(X + Y > 0, X) assert W == P(X + Y > 0, X) assert U == BernoulliDistribution(S.Half, S.Zero, S.One) assert V == S.Half def test_is_random(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 1) a, b = symbols('a, b') G = GaussianUnitaryEnsemble('U', 2) B = BernoulliProcess('B', 0.9) assert not is_random(a) assert not is_random(a + b) assert not is_random(a * b) assert not is_random(Matrix([a**2, b**2])) assert is_random(X) assert is_random(X**2 + Y) assert is_random(Y + b**2) assert is_random(Y > 5) assert is_random(B[3] < 1) assert is_random(G) assert is_random(X * Y * B[1]) assert is_random(Matrix([[X, B[2]], [G, Y]])) assert is_random(Eq(X, 4)) def test_issue_12283(): x = symbols('x') X = RandomSymbol(x) Y = RandomSymbol('Y') Z = RandomMatrixSymbol('Z', 2, 1) W = RandomMatrixSymbol('W', 2, 1) RI = RandomIndexedSymbol(Indexed('RI', 3)) assert pspace(Z) == PSpace() assert pspace(RI) == PSpace() assert pspace(X) == PSpace() assert E(X) == Expectation(X) assert P(Y > 3) == Probability(Y > 3) assert variance(X) == Variance(X) assert variance(RI) == Variance(RI) assert covariance(X, Y) == Covariance(X, Y) assert covariance(W, Z) == Covariance(W, Z) def test_issue_6810(): X = Die('X', 6) Y = Normal('Y', 0, 1) assert P(Eq(X, 2)) == S(1)/6 assert P(Eq(Y, 0)) == 0 assert P(Or(X > 2, X < 3)) == 1 assert P(And(X > 3, X > 2)) == S(1)/2 def test_issue_20286(): n, p = symbols('n p') B = Binomial('B', n, p) k = Dummy('k', integer = True) eq = Sum(Piecewise((-p**k*(1 - p)**(-k + n)*log(p**k*(1 - p)**(-k + n)*binomial(n, k))*binomial(n, k), (k >= 0) & (k <= n)), (nan, True)), (k, 0, n)) assert eq.dummy_eq(H(B))
0bb421586735a7e4538db1ffcbe6b1b1a3a717dab00e96637c18ba3faeca570a
from sympy.concrete.products import Product from sympy.concrete.summations import Sum from sympy.core.numbers import (Rational, oo, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) from sympy.functions.elementary.complexes import polar_lift from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.bessel import besselk from sympy.functions.special.gamma_functions import gamma from sympy.matrices.dense import eye from sympy.matrices.expressions.determinant import Determinant from sympy.sets.fancysets import Range from sympy.sets.sets import (Interval, ProductSet) from sympy.simplify.simplify import simplify from sympy.tensor.indexed import (Indexed, IndexedBase) from sympy.core.numbers import comp from sympy.integrals.integrals import integrate from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.matexpr import MatrixElement from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution, JointDistributionHandmade, MultivariateT, NormalGamma, GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta, GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens, Multinomial, NegativeMultinomial, MultivariateNormal, MultivariateLaplace) from sympy.testing.pytest import raises, XFAIL, skip from sympy.external import import_module from sympy.abc import x, y def test_Normal(): m = Normal('A', [1, 2], [[1, 0], [0, 1]]) A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]]) assert m == A assert density(m)(1, 2) == 1/(2*pi) assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals) raises (ValueError, lambda:m[2]) n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) assert density(m)(x, y) == density(p)(x, y) assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) raises(ValueError, lambda: marginal_distribution(m)) assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1 N = Normal('N', [1, 2], [[x, 0], [0, y]]) assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y)) raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) # symbolic n = symbols('n', integer=True, positive=True) mu = MatrixSymbol('mu', n, 1) sigma = MatrixSymbol('sigma', n, n) X = Normal('X', mu, sigma) assert density(X) == MultivariateNormalDistribution(mu, sigma) raises (NotImplementedError, lambda: median(m)) # Below tests should work after issue #17267 is resolved # assert E(X) == mu # assert variance(X) == sigma # test symbolic multivariate normal densities n = 3 Sg = MatrixSymbol('Sg', n, n) mu = MatrixSymbol('mu', n, 1) obs = MatrixSymbol('obs', n, 1) X = MultivariateNormal('X', mu, Sg) density_X = density(X) eval_a = density_X(obs).subs({Sg: eye(3), mu: Matrix([0, 0, 0]), obs: Matrix([0, 0, 0])}).doit() eval_b = density_X(0, 0, 0).subs({Sg: eye(3), mu: Matrix([0, 0, 0])}).doit() assert eval_a == sqrt(2)/(4*pi**Rational(3/2)) assert eval_b == sqrt(2)/(4*pi**Rational(3/2)) n = symbols('n', integer=True, positive=True) Sg = MatrixSymbol('Sg', n, n) mu = MatrixSymbol('mu', n, 1) obs = MatrixSymbol('obs', n, 1) X = MultivariateNormal('X', mu, Sg) density_X_at_obs = density(X)(obs) expected_density = MatrixElement( exp((S(1)/2) * (mu.T - obs.T) * Sg**(-1) * (-mu + obs)) / \ sqrt((2*pi)**n * Determinant(Sg)), 0, 0) assert density_X_at_obs == expected_density def test_MultivariateTDist(): t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) assert(density(t1))(1, 1) == 1/(8*pi) assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert integrate(density(t1)(x, y), (x, -oo, oo), \ (y, -oo, oo)).evalf() == 1 raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) def test_multivariate_laplace(): raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) L = Laplace('L', [1, 0], [[1, 0], [0, 1]]) L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]]) assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) assert density(L1)(0, 1) == \ exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals) assert L.pspace.distribution == L2.pspace.distribution def test_NormalGamma(): ng = NormalGamma('G', 1, 2, 3, 4) assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo)) raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) assert marginal_distribution(ng, 0)(1) == \ 3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4))) assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128 assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128 def test_GeneralizedMultivariateLogGammaDistribution(): h = S.Half omega = Matrix([[1, h, h, h], [h, 1, h, h], [h, h, 1, h], [h, h, h, 1]]) v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True) delta = symbols('d', positive=True) G = GMVLGO('G', omega, v, l, mu) Gd = GMVLG('Gd', delta, v, l, mu) dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 " "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/" "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))") assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*" "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - " "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64") assert str(density(G)(y_1, y_2, y_3, y_4)) == den marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])" "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp(" "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3" "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)" "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]" ", -oo, oo))/5308416") assert str(marginal_distribution(G, G[0])(y_1)) == marg omega_f1 = Matrix([[1, h, h]]) omega_f2 = Matrix([[1, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) omega_f3 = Matrix([[6, h, h, h], [h, 1, 2, h], [h, h, 1, h], [h, h, h, 1]]) v_f = symbols("v_f", positive=False, real=True) l_f = [1, 2, v_f, 4] m_f = [v_f, 2, 3, 4] omega_f4 = Matrix([[1, h, h, h, h], [h, 1, h, h, h], [h, h, 1, h, h], [h, h, h, 1, h], [h, h, h, h, 1]]) l_f1 = [1, 2, 3, 4, 5] omega_f5 = Matrix([[1]]) mu_f5 = l_f5 = [1] raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f)) raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu)) raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu)) raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5)) raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu)) def test_MultivariateBeta(): a1, a2 = symbols('a1, a2', positive=True) a1_f, a2_f = symbols('a1, a2', positive=False, real=True) mb = MultivariateBeta('B', [a1, a2]) mb_c = MultivariateBeta('C', a1, a2) assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\ (gamma(a1)*gamma(a2)) assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\ (a2*gamma(a1)*gamma(a2)) raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2])) raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f])) raises(ValueError, lambda: MultivariateBeta('b3', [0, 0])) raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f])) assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1)) def test_MultivariateEwens(): n, theta, i = symbols('n theta i', positive=True) # tests for integer dimensions theta_f = symbols('t_f', negative=True) a = symbols('a_1:4', positive = True, integer = True) ed = MultivariateEwens('E', 3, theta) assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* theta**a[0]*theta**a[1]*theta**a[2]/ (theta*(theta + 1)*(theta + 2)* factorial(a[0])*factorial(a[1])* factorial(a[2])), Eq(a[0] + 2*a[1] + 3*a[2], 3)), (0, True)) assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* theta**a[1]/((theta + 1)* (theta + 2)*factorial(a[1])), Eq(2*a[1] + 1, 3)), (0, True)) raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), Range(0, 2, 1), Range(0, 2, 1)) # tests for symbolic dimensions eds = MultivariateEwens('E', n, theta) a = IndexedBase('a') j, k = symbols('j, k') den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/ factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n), Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True)) assert density(eds)(a).dummy_eq(den) def test_Multinomial(): n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f, n_f = symbols('p1_f, n_f', negative=True) M = Multinomial('M', n, [p1, p2, p3, p4]) C = Multinomial('C', 3, p1, p2, p3) f = factorial assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4* f(n)/(f(x1)*f(x2)*f(x3)*f(x4)), Eq(n, x1 + x2 + x3 + x4)), (0, True)) assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\ 3*p1*p2**2 +\ 6*p1*p2*p3 +\ 3*p1*p3**2 raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4])) raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1)) def test_NegativeMultinomial(): k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True) p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) p1_f = symbols('p1_f', negative=True) N = NegativeMultinomial('N', 4, [p1, p2, p3, p4]) C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3) g = gamma f = factorial assert simplify(density(N)(x1, x2, x3, x4) - p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 + x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01) raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f])) raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4)) assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1)) def test_JointPSpace_marginal_distribution(): T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) got = marginal_distribution(T, T[1])(x) ans = sqrt(2)*(x**2/2 + 1)/(4*polar_lift(x**2/2 + 1)**(S(5)/2)) assert got == ans, got assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3) assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01) def test_JointRV(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) assert density(X)(1, 2) == exp(-2)/(2*pi) assert isinstance(X.pspace.distribution, JointDistributionHandmade) assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi)) def test_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert simplify(E(m[1])) == y @XFAIL def test_joint_vector_expectation(): m = Normal('A', [x, y], [[1, 0], [0, 1]]) assert E(m) == (x, y) def test_sample_numpy(): distribs_numpy = [ MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]), MultivariateBeta("B", [0.4, 5, 15, 50, 203]), Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15]) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: for X in distribs_numpy: samps = sample(X, size=size, library='numpy') for sam in samps: assert tuple(sam) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c, library='numpy')) def test_sample_scipy(): distribs_scipy = [ MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4]) ] size = 3 scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests for _sample_scipy.') else: for X in distribs_scipy: samps = sample(X, size=size) samps2 = sample(X, size=(2, 2)) for sam in samps: assert tuple(sam) in X.pspace.distribution.set for i in range(2): for j in range(2): assert tuple(samps2[i][j]) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c)) def test_sample_pymc3(): distribs_pymc3 = [ MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]), MultivariateBeta("B", [0.4, 5, 15]), Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4]) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: for X in distribs_pymc3: samps = sample(X, size=size, library='pymc3') for sam in samps: assert tuple(sam.flatten()) in X.pspace.distribution.set N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) raises(NotImplementedError, lambda: sample(N_c, library='pymc3')) def test_sample_seed(): x1, x2 = (Indexed('x', i) for i in (1, 2)) pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) X = JointRV('x', pdf) libraries = ['scipy', 'numpy', 'pymc3'] for lib in libraries: try: imported_lib = import_module(lib) if imported_lib: s0, s1, s2 = [], [], [] s0 = sample(X, size=10, library=lib, seed=0) s1 = sample(X, size=10, library=lib, seed=0) s2 = sample(X, size=10, library=lib, seed=1) assert all(s0 == s1) assert all(s1 != s2) except NotImplementedError: continue def test_issue_21057(): m = Normal("x", [0, 0], [[0, 0], [0, 0]]) n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]]) p = Normal("x", [0, 0], [[0, 0], [0, 1]]) assert m == n libraries = ['scipy', 'numpy', 'pymc3'] for library in libraries: try: imported_lib = import_module(library) if imported_lib: s1 = sample(m, size=8) s2 = sample(n, size=8) s3 = sample(p, size=8) assert tuple(s1.flatten()) == tuple(s2.flatten()) for s in s3: assert tuple(s.flatten()) in p.pspace.distribution.set except NotImplementedError: continue
939b6b49c322c12825f5dcc9b77d0157eb742ae61cc83facf47b53dbe855850d
from sympy.concrete.summations import Sum from sympy.core.mul import Mul from sympy.core.numbers import (oo, pi) from sympy.core.relational import Eq from sympy.core.symbol import (Dummy, symbols) from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import sin from sympy.integrals.integrals import Integral from sympy.core.expr import unchanged from sympy.stats import (Normal, Poisson, variance, Covariance, Variance, Probability, Expectation, Moment, CentralMoment) from sympy.stats.rv import probability, expectation def test_literal_probability(): X = Normal('X', 2, 3) Y = Normal('Y', 3, 4) Z = Poisson('Z', 4) W = Poisson('W', 3) x = symbols('x', real=True) y, w, z = symbols('y, w, z') assert Probability(X > 0).evaluate_integral() == probability(X > 0) assert Probability(X > x).evaluate_integral() == probability(X > x) assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0) assert Probability(X > x).rewrite(Integral).doit() == probability(X > x) assert Expectation(X).evaluate_integral() == expectation(X) assert Expectation(X).rewrite(Integral).doit() == expectation(X) assert Expectation(X**2).evaluate_integral() == expectation(X**2) assert Expectation(x*X).args == (x*X,) assert Expectation(x*X).expand() == x*Expectation(X) assert Expectation(2*X + 3*Y + z*X*Y).expand() == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y) assert Expectation(2*X + 3*Y + z*X*Y).args == (2*X + 3*Y + z*X*Y,) assert Expectation(sin(X)) == Expectation(sin(X)).expand() assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y).expand() == 2*x*Expectation(sin(X)*Y) \ + y*Expectation(X**2) + z*Expectation(X*Y) assert Expectation(X + Y).expand() == Expectation(X) + Expectation(Y) assert Expectation((X + Y)*(X - Y)).expand() == Expectation(X**2) - Expectation(Y**2) assert Expectation((X + Y)*(X - Y)).expand().doit() == -12 assert Expectation(X + Y, evaluate=True).doit() == 5 assert Expectation(X + Expectation(Y)).doit() == 5 assert Expectation(X + Expectation(Y)).doit(deep=False) == 2 + Expectation(Expectation(Y)) assert Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False) == 2 \ + Expectation(Expectation(Y + Expectation(2*X))) assert Expectation(X + Expectation(Y + Expectation(2*X))).doit() == 9 assert Expectation(Expectation(2*X)).doit() == 4 assert Expectation(Expectation(2*X)).doit(deep=False) == Expectation(2*X) assert Expectation(4*Expectation(2*X)).doit(deep=False) == 4*Expectation(2*X) assert Expectation((X + Y)**3).expand() == 3*Expectation(X*Y**2) +\ 3*Expectation(X**2*Y) + Expectation(X**3) + Expectation(Y**3) assert Expectation((X - Y)**3).expand() == 3*Expectation(X*Y**2) -\ 3*Expectation(X**2*Y) + Expectation(X**3) - Expectation(Y**3) assert Expectation((X - Y)**2).expand() == -2*Expectation(X*Y) +\ Expectation(X**2) + Expectation(Y**2) assert Variance(w).args == (w,) assert Variance(w).expand() == 0 assert Variance(X).evaluate_integral() == Variance(X).rewrite(Integral).doit() == variance(X) assert Variance(X + z).args == (X + z,) assert Variance(X + z).expand() == Variance(X) assert Variance(X*Y).args == (Mul(X, Y),) assert type(Variance(X*Y)) == Variance assert Variance(z*X).expand() == z**2*Variance(X) assert Variance(X + Y).expand() == Variance(X) + Variance(Y) + 2*Covariance(X, Y) assert Variance(X + Y + Z + W).expand() == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) + 2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) + 2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z)) assert Variance(X**2).evaluate_integral() == variance(X**2) assert unchanged(Variance, X**2) assert Variance(x*X**2).expand() == x**2*Variance(X**2) assert Variance(sin(X)).args == (sin(X),) assert Variance(sin(X)).expand() == Variance(sin(X)) assert Variance(x*sin(X)).expand() == x**2*Variance(sin(X)) assert Covariance(w, z).args == (w, z) assert Covariance(w, z).expand() == 0 assert Covariance(X, w).expand() == 0 assert Covariance(w, X).expand() == 0 assert Covariance(X, Y).args == (X, Y) assert type(Covariance(X, Y)) == Covariance assert Covariance(z*X + 3, Y).expand() == z*Covariance(X, Y) assert Covariance(X, X).args == (X, X) assert Covariance(X, X).expand() == Variance(X) assert Covariance(z*X + 3, w*Y + 4).expand() == w*z*Covariance(X,Y) assert Covariance(X, Y) == Covariance(Y, X) assert Covariance(X + Y, Z + W).expand() == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z) assert Covariance(x*X + y*Y, z*Z + w*W).expand() == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) + x*z*Covariance(X, Z) + y*z*Covariance(Y, Z)) assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W).expand() == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) + x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y))) assert Covariance(X, X**2).expand() == Covariance(X, X**2) assert Covariance(X, sin(X)).expand() == Covariance(sin(X), X) assert Covariance(X**2, sin(X)*Y).expand() == Covariance(sin(X)*Y, X**2) assert Covariance(w, X).evaluate_integral() == 0 def test_probability_rewrite(): X = Normal('X', 2, 3) Y = Normal('Y', 3, 4) Z = Poisson('Z', 4) W = Poisson('W', 3) x, y, w, z = symbols('x, y, w, z') assert Variance(w).rewrite(Expectation) == 0 assert Variance(X).rewrite(Expectation) == Expectation(X ** 2) - Expectation(X) ** 2 assert Variance(X, condition=Y).rewrite(Expectation) == Expectation(X ** 2, Y) - Expectation(X, Y) ** 2 assert Variance(X, Y) != Expectation(X**2) - Expectation(X)**2 assert Variance(X + z).rewrite(Expectation) == Expectation((X + z) ** 2) - Expectation(X + z) ** 2 assert Variance(X * Y).rewrite(Expectation) == Expectation(X ** 2 * Y ** 2) - Expectation(X * Y) ** 2 assert Covariance(w, X).rewrite(Expectation) == -w*Expectation(X) + Expectation(w*X) assert Covariance(X, Y).rewrite(Expectation) == Expectation(X*Y) - Expectation(X)*Expectation(Y) assert Covariance(X, Y, condition=W).rewrite(Expectation) == Expectation(X * Y, W) - Expectation(X, W) * Expectation(Y, W) w, x, z = symbols("W, x, z") px = Probability(Eq(X, x)) pz = Probability(Eq(Z, z)) assert Expectation(X).rewrite(Probability) == Integral(x*px, (x, -oo, oo)) assert Expectation(Z).rewrite(Probability) == Sum(z*pz, (z, 0, oo)) assert Variance(X).rewrite(Probability) == Integral(x**2*px, (x, -oo, oo)) - Integral(x*px, (x, -oo, oo))**2 assert Variance(Z).rewrite(Probability) == Sum(z**2*pz, (z, 0, oo)) - Sum(z*pz, (z, 0, oo))**2 assert Covariance(w, X).rewrite(Probability) == \ -w*Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) + Integral(w*x*Probability(Eq(X, x)), (x, -oo, oo)) # To test rewrite as sum function assert Variance(X).rewrite(Sum) == Variance(X).rewrite(Integral) assert Expectation(X).rewrite(Sum) == Expectation(X).rewrite(Integral) assert Covariance(w, X).rewrite(Sum) == 0 assert Covariance(w, X).rewrite(Integral) == 0 assert Variance(X, condition=Y).rewrite(Probability) == Integral(x**2*Probability(Eq(X, x), Y), (x, -oo, oo)) - \ Integral(x*Probability(Eq(X, x), Y), (x, -oo, oo))**2 def test_symbolic_Moment(): mu = symbols('mu', real=True) sigma = symbols('sigma', positive=True) x = symbols('x') X = Normal('X', mu, sigma) M = Moment(X, 4, 2) assert M.rewrite(Expectation) == Expectation((X - 2)**4) assert M.rewrite(Probability) == Integral((x - 2)**4*Probability(Eq(X, x)), (x, -oo, oo)) k = Dummy('k') expri = Integral(sqrt(2)*(k - 2)**4*exp(-(k - \ mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)) assert M.rewrite(Integral).dummy_eq(expri) assert M.doit() == (mu**4 - 8*mu**3 + 6*mu**2*sigma**2 + \ 24*mu**2 - 24*mu*sigma**2 - 32*mu + 3*sigma**4 + 24*sigma**2 + 16) M = Moment(2, 5) assert M.doit() == 2**5 def test_symbolic_CentralMoment(): mu = symbols('mu', real=True) sigma = symbols('sigma', positive=True) x = symbols('x') X = Normal('X', mu, sigma) CM = CentralMoment(X, 6) assert CM.rewrite(Expectation) == Expectation((X - Expectation(X))**6) assert CM.rewrite(Probability) == Integral((x - Integral(x*Probability(True), (x, -oo, oo)))**6*Probability(Eq(X, x)), (x, -oo, oo)) k = Dummy('k') expri = Integral(sqrt(2)*(k - Integral(sqrt(2)*k*exp(-(k - \ mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)))**6*exp(-(k - \ mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)) assert CM.rewrite(Integral).dummy_eq(expri) assert CM.doit().simplify() == 15*sigma**6 CM = Moment(5, 5) assert CM.doit() == 5**5
2f62ddc2593696adff09ec023f2b0f0d4d0516c64ff318d58c2b3523de6c9719
from sympy.concrete.summations import Sum from sympy.core.containers import Tuple from sympy.core.function import Lambda from sympy.core.numbers import (Float, Rational, oo, pi) from sympy.core.relational import (Eq, Ge, Gt, Le, Lt, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.integers import ceiling from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.error_functions import erf from sympy.functions.special.gamma_functions import (gamma, lowergamma) from sympy.logic.boolalg import (And, Not) from sympy.matrices.dense import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.immutable import ImmutableMatrix from sympy.sets.contains import Contains from sympy.sets.fancysets import Range from sympy.sets.sets import (FiniteSet, Interval) from sympy.stats import (DiscreteMarkovChain, P, TransitionMatrixOf, E, StochasticStateSpaceOf, variance, ContinuousMarkovChain, BernoulliProcess, PoissonProcess, WienerProcess, GammaProcess, sample_stochastic_process) from sympy.stats.joint_rv import JointDistribution from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.rv import RandomIndexedSymbol from sympy.stats.symbolic_probability import Probability, Expectation from sympy.testing.pytest import raises, skip, ignore_warnings from sympy.external import import_module from sympy.stats.frv_types import BernoulliDistribution from sympy.stats.drv_types import PoissonDistribution from sympy.stats.crv_types import NormalDistribution, GammaDistribution from sympy.core.symbol import Str def test_DiscreteMarkovChain(): # pass only the name X = DiscreteMarkovChain("X") assert isinstance(X.state_space, Range) assert X.index_set == S.Naturals0 assert isinstance(X.transition_probabilities, MatrixSymbol) t = symbols('t', positive=True, integer=True) assert isinstance(X[t], RandomIndexedSymbol) assert E(X[0]) == Expectation(X[0]) raises(TypeError, lambda: DiscreteMarkovChain(1)) raises(NotImplementedError, lambda: X(t)) raises(NotImplementedError, lambda: X.communication_classes()) raises(NotImplementedError, lambda: X.canonical_form()) raises(NotImplementedError, lambda: X.decompose()) nz = Symbol('n', integer=True) TZ = MatrixSymbol('M', nz, nz) SZ = Range(nz) YZ = DiscreteMarkovChain('Y', SZ, TZ) assert P(Eq(YZ[2], 1), Eq(YZ[1], 0)) == TZ[0, 1] raises(ValueError, lambda: sample_stochastic_process(t)) raises(ValueError, lambda: next(sample_stochastic_process(X))) # pass name and state_space # any hashable object should be a valid state # states should be valid as a tuple/set/list/Tuple/Range sym, rainy, cloudy, sunny = symbols('a Rainy Cloudy Sunny', real=True) state_spaces = [(1, 2, 3), [Str('Hello'), sym, DiscreteMarkovChain], Tuple(S(1), exp(sym), Str('World'), sympify=False), Range(-1, 5, 2), [rainy, cloudy, sunny]] chains = [DiscreteMarkovChain("Y", state_space) for state_space in state_spaces] for i, Y in enumerate(chains): assert isinstance(Y.transition_probabilities, MatrixSymbol) assert Y.state_space == state_spaces[i] or Y.state_space == FiniteSet(*state_spaces[i]) assert Y.number_of_states == 3 with ignore_warnings(UserWarning): # TODO: Restore tests once warnings are removed assert P(Eq(Y[2], 1), Eq(Y[0], 2), evaluate=False) == Probability(Eq(Y[2], 1), Eq(Y[0], 2)) assert E(Y[0]) == Expectation(Y[0]) raises(ValueError, lambda: next(sample_stochastic_process(Y))) raises(TypeError, lambda: DiscreteMarkovChain("Y", dict((1, 1)))) Y = DiscreteMarkovChain("Y", Range(1, t, 2)) assert Y.number_of_states == ceiling((t-1)/2) # pass name and transition_probabilities chains = [DiscreteMarkovChain("Y", trans_probs=Matrix([[]])), DiscreteMarkovChain("Y", trans_probs=Matrix([[0, 1], [1, 0]])), DiscreteMarkovChain("Y", trans_probs=Matrix([[pi, 1-pi], [sym, 1-sym]]))] for Z in chains: assert Z.number_of_states == Z.transition_probabilities.shape[0] assert isinstance(Z.transition_probabilities, ImmutableMatrix) # pass name, state_space and transition_probabilities T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) TS = MatrixSymbol('T', 3, 3) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) YS = DiscreteMarkovChain("Y", ['One', 'Two', 3], TS) assert Y.joint_distribution(1, Y[2], 3) == JointDistribution(Y[1], Y[2], Y[3]) raises(ValueError, lambda: Y.joint_distribution(Y[1].symbol, Y[2].symbol)) assert P(Eq(Y[3], 2), Eq(Y[1], 1)).round(2) == Float(0.36, 2) assert (P(Eq(YS[3], 2), Eq(YS[1], 1)) - (TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2])).simplify() == 0 assert P(Eq(YS[1], 1), Eq(YS[2], 2)) == Probability(Eq(YS[1], 1)) assert P(Eq(YS[3], 3), Eq(YS[1], 1)) == TS[0, 2]*TS[1, 0] + TS[1, 1]*TS[1, 2] + TS[1, 2]*TS[2, 2] TO = Matrix([[0.25, 0.75, 0],[0, 0.25, 0.75],[0.75, 0, 0.25]]) assert P(Eq(Y[3], 2), Eq(Y[1], 1) & TransitionMatrixOf(Y, TO)).round(3) == Float(0.375, 3) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert E(Y[3], evaluate=False) == Expectation(Y[3]) assert E(Y[3], Eq(Y[2], 1)).round(2) == Float(1.1, 3) TSO = MatrixSymbol('T', 4, 4) raises(ValueError, lambda: str(P(Eq(YS[3], 2), Eq(YS[1], 1) & TransitionMatrixOf(YS, TSO)))) raises(TypeError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], symbols('M'))) raises(ValueError, lambda: DiscreteMarkovChain("Z", [0, 1, 2], MatrixSymbol('T', 3, 4))) raises(ValueError, lambda: E(Y[3], Eq(Y[2], 6))) raises(ValueError, lambda: E(Y[2], Eq(Y[3], 1))) # extended tests for probability queries TO1 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]]) assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Probability(Eq(Y[0], 0)), Rational(1, 4)) & TransitionMatrixOf(Y, TO1)) == Rational(1, 16) assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), TransitionMatrixOf(Y, TO1)) == \ Probability(Eq(Y[0], 0))/4 assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4) assert P(Lt(X[1], 2) & Gt(X[1], 0), Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) == Rational(1, 4) assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) & StochasticStateSpaceOf(X, [0, 1, 2]) & TransitionMatrixOf(X, TO1)) is S.Zero assert P(Ne(X[1], 2) & Ne(X[1], 1), Eq(X[0], 2) & StochasticStateSpaceOf(X, [None, 'None', 1]) & TransitionMatrixOf(X, TO1)) is S.Zero assert P(And(Eq(Y[2], 1), Eq(Y[1], 1), Eq(Y[0], 0)), Eq(Y[1], 1)) == 0.1*Probability(Eq(Y[0], 0)) # testing properties of Markov chain TO2 = Matrix([[S.One, 0, 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)],[0, Rational(1, 4), Rational(3, 4)]]) TO3 = Matrix([[Rational(1, 4), Rational(3, 4), 0],[Rational(1, 3), Rational(1, 3), Rational(1, 3)], [0, Rational(1, 4), Rational(3, 4)]]) Y2 = DiscreteMarkovChain('Y', trans_probs=TO2) Y3 = DiscreteMarkovChain('Y', trans_probs=TO3) assert Y3.fundamental_matrix() == ImmutableMatrix([[176, 81, -132], [36, 141, -52], [-44, -39, 208]])/125 assert Y2.is_absorbing_chain() == True assert Y3.is_absorbing_chain() == False assert Y2.canonical_form() == ([0, 1, 2], TO2) assert Y3.canonical_form() == ([0, 1, 2], TO3) assert Y2.decompose() == ([0, 1, 2], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3]) assert Y3.decompose() == ([0, 1, 2], TO3, Matrix(0, 3, []), Matrix(0, 0, [])) TO4 = Matrix([[Rational(1, 5), Rational(2, 5), Rational(2, 5)], [Rational(1, 10), S.Half, Rational(2, 5)], [Rational(3, 5), Rational(3, 10), Rational(1, 10)]]) Y4 = DiscreteMarkovChain('Y', trans_probs=TO4) w = ImmutableMatrix([[Rational(11, 39), Rational(16, 39), Rational(4, 13)]]) assert Y4.limiting_distribution == w assert Y4.is_regular() == True assert Y4.is_ergodic() == True TS1 = MatrixSymbol('T', 3, 3) Y5 = DiscreteMarkovChain('Y', trans_probs=TS1) assert Y5.limiting_distribution(w, TO4).doit() == True assert Y5.stationary_distribution(condition_set=True).subs(TS1, TO4).contains(w).doit() == S.true TO6 = Matrix([[S.One, 0, 0, 0, 0],[S.Half, 0, S.Half, 0, 0],[0, S.Half, 0, S.Half, 0], [0, 0, S.Half, 0, S.Half], [0, 0, 0, 0, 1]]) Y6 = DiscreteMarkovChain('Y', trans_probs=TO6) assert Y6.fundamental_matrix() == ImmutableMatrix([[Rational(3, 2), S.One, S.Half], [S.One, S(2), S.One], [S.Half, S.One, Rational(3, 2)]]) assert Y6.absorbing_probabilities() == ImmutableMatrix([[Rational(3, 4), Rational(1, 4)], [S.Half, S.Half], [Rational(1, 4), Rational(3, 4)]]) TO7 = Matrix([[Rational(1, 2), Rational(1, 4), Rational(1, 4)], [Rational(1, 2), 0, Rational(1, 2)], [Rational(1, 4), Rational(1, 4), Rational(1, 2)]]) Y7 = DiscreteMarkovChain('Y', trans_probs=TO7) assert Y7.is_absorbing_chain() == False assert Y7.fundamental_matrix() == ImmutableMatrix([[Rational(86, 75), Rational(1, 25), Rational(-14, 75)], [Rational(2, 25), Rational(21, 25), Rational(2, 25)], [Rational(-14, 75), Rational(1, 25), Rational(86, 75)]]) # test for zero-sized matrix functionality X = DiscreteMarkovChain('X', trans_probs=Matrix([[]])) assert X.number_of_states == 0 assert X.stationary_distribution() == Matrix([[]]) assert X.communication_classes() == [] assert X.canonical_form() == ([], Matrix([[]])) assert X.decompose() == ([], Matrix([[]]), Matrix([[]]), Matrix([[]])) assert X.is_regular() == False assert X.is_ergodic() == False # test communication_class # see https://drive.google.com/drive/folders/1HbxLlwwn2b3U8Lj7eb_ASIUb5vYaNIjg?usp=sharing # tutorial 2.pdf TO7 = Matrix([[0, 5, 5, 0, 0], [0, 0, 0, 10, 0], [5, 0, 5, 0, 0], [0, 10, 0, 0, 0], [0, 3, 0, 3, 4]])/10 Y7 = DiscreteMarkovChain('Y', trans_probs=TO7) tuples = Y7.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([1, 3], [0, 2], [4]) assert recurrence == (True, False, False) assert periods == (2, 1, 1) TO8 = Matrix([[0, 0, 0, 10, 0, 0], [5, 0, 5, 0, 0, 0], [0, 4, 0, 0, 0, 6], [10, 0, 0, 0, 0, 0], [0, 10, 0, 0, 0, 0], [0, 0, 0, 5, 5, 0]])/10 Y8 = DiscreteMarkovChain('Y', trans_probs=TO8) tuples = Y8.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([0, 3], [1, 2, 5, 4]) assert recurrence == (True, False) assert periods == (2, 2) TO9 = Matrix([[2, 0, 0, 3, 0, 0, 3, 2, 0, 0], [0, 10, 0, 0, 0, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 0, 0, 0, 3, 3], [0, 0, 0, 3, 0, 0, 6, 1, 0, 0], [0, 0, 0, 0, 5, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 10, 0, 0, 0, 0], [4, 0, 0, 5, 0, 0, 1, 0, 0, 0], [2, 0, 0, 4, 0, 0, 2, 2, 0, 0], [3, 0, 1, 0, 0, 0, 0, 0, 4, 2], [0, 0, 4, 0, 0, 0, 0, 0, 3, 3]])/10 Y9 = DiscreteMarkovChain('Y', trans_probs=TO9) tuples = Y9.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([0, 3, 6, 7], [1], [2, 8, 9], [5], [4]) assert recurrence == (True, True, False, True, False) assert periods == (1, 1, 1, 1, 1) # test canonical form # see https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf # example 11.13 T = Matrix([[1, 0, 0, 0, 0], [S(1) / 2, 0, S(1) / 2, 0, 0], [0, S(1) / 2, 0, S(1) / 2, 0], [0, 0, S(1) / 2, 0, S(1) / 2], [0, 0, 0, 0, S(1)]]) DW = DiscreteMarkovChain('DW', [0, 1, 2, 3, 4], T) states, A, B, C = DW.decompose() assert states == [0, 4, 1, 2, 3] assert A == Matrix([[1, 0], [0, 1]]) assert B == Matrix([[S(1)/2, 0], [0, 0], [0, S(1)/2]]) assert C == Matrix([[0, S(1)/2, 0], [S(1)/2, 0, S(1)/2], [0, S(1)/2, 0]]) states, new_matrix = DW.canonical_form() assert states == [0, 4, 1, 2, 3] assert new_matrix == Matrix([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [S(1)/2, 0, 0, S(1)/2, 0], [0, 0, S(1)/2, 0, S(1)/2], [0, S(1)/2, 0, S(1)/2, 0]]) # test regular and ergodic # https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/Chapter11.pdf T = Matrix([[0, 4, 0, 0, 0], [1, 0, 3, 0, 0], [0, 2, 0, 2, 0], [0, 0, 3, 0, 1], [0, 0, 0, 4, 0]])/4 X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_regular() assert X.is_ergodic() T = Matrix([[0, 1], [1, 0]]) X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_regular() assert X.is_ergodic() # http://www.math.wisc.edu/~valko/courses/331/MC2.pdf T = Matrix([[2, 1, 1], [2, 0, 2], [1, 1, 2]])/4 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_regular() assert X.is_ergodic() # https://docs.ufpr.br/~lucambio/CE222/1S2014/Kemeny-Snell1976.pdf T = Matrix([[1, 1], [1, 1]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_regular() assert X.is_ergodic() # test is_absorbing_chain T = Matrix([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) X = DiscreteMarkovChain('X', trans_probs=T) assert not X.is_absorbing_chain() # https://en.wikipedia.org/wiki/Absorbing_Markov_chain T = Matrix([[1, 1, 0, 0], [0, 1, 1, 0], [1, 0, 0, 1], [0, 0, 0, 2]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_absorbing_chain() T = Matrix([[2, 0, 0, 0, 0], [1, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 0, 1, 0, 1], [0, 0, 0, 0, 2]])/2 X = DiscreteMarkovChain('X', trans_probs=T) assert X.is_absorbing_chain() # test custom state space Y10 = DiscreteMarkovChain('Y', [1, 2, 3], TO2) tuples = Y10.communication_classes() classes, recurrence, periods = list(zip(*tuples)) assert classes == ([1], [2, 3]) assert recurrence == (True, False) assert periods == (1, 1) assert Y10.canonical_form() == ([1, 2, 3], TO2) assert Y10.decompose() == ([1, 2, 3], TO2[0:1, 0:1], TO2[1:3, 0:1], TO2[1:3, 1:3]) # testing miscellaneous queries T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)], [Rational(1, 3), 0, Rational(2, 3)], [S.Half, S.Half, 0]]) X = DiscreteMarkovChain('X', [0, 1, 2], T) assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0), Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12) assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3) assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3) assert E(X[1]**2, Eq(X[0], 1)) == Rational(8, 3) assert variance(X[1], Eq(X[0], 1)) == Rational(8, 9) raises(ValueError, lambda: E(X[1], Eq(X[2], 1))) raises(ValueError, lambda: DiscreteMarkovChain('X', [0, 1], T)) # testing miscellaneous queries with different state space X = DiscreteMarkovChain('X', ['A', 'B', 'C'], T) assert P(Eq(X[1], 2) & Eq(X[2], 1) & Eq(X[3], 0), Eq(P(Eq(X[1], 0)), Rational(1, 4)) & Eq(P(Eq(X[1], 1)), Rational(1, 4))) == Rational(1, 12) assert P(Eq(X[2], 1) | Eq(X[2], 2), Eq(X[1], 1)) == Rational(2, 3) assert P(Eq(X[2], 1) & Eq(X[2], 2), Eq(X[1], 1)) is S.Zero assert P(Ne(X[2], 2), Eq(X[1], 1)) == Rational(1, 3) a = X.state_space.args[0] c = X.state_space.args[2] assert (E(X[1] ** 2, Eq(X[0], 1)) - (a**2/3 + 2*c**2/3)).simplify() == 0 assert (variance(X[1], Eq(X[0], 1)) - (2*(-a/3 + c/3)**2/3 + (2*a/3 - 2*c/3)**2/3)).simplify() == 0 raises(ValueError, lambda: E(X[1], Eq(X[2], 1))) #testing queries with multiple RandomIndexedSymbols T = Matrix([[Rational(5, 10), Rational(3, 10), Rational(2, 10)], [Rational(2, 10), Rational(7, 10), Rational(1, 10)], [Rational(3, 10), Rational(3, 10), Rational(4, 10)]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) assert P(Eq(Y[7], Y[5]), Eq(Y[2], 0)).round(5) == Float(0.44428, 5) assert P(Gt(Y[3], Y[1]), Eq(Y[0], 0)).round(2) == Float(0.36, 2) assert P(Le(Y[5], Y[10]), Eq(Y[4], 2)).round(6) == Float(0.583120, 6) assert Float(P(Eq(Y[10], Y[5]), Eq(Y[4], 1)), 14) == Float(1 - P(Ne(Y[10], Y[5]), Eq(Y[4], 1)), 14) assert Float(P(Gt(Y[8], Y[9]), Eq(Y[3], 2)), 14) == Float(1 - P(Le(Y[8], Y[9]), Eq(Y[3], 2)), 14) assert Float(P(Lt(Y[1], Y[4]), Eq(Y[0], 0)), 14) == Float(1 - P(Ge(Y[1], Y[4]), Eq(Y[0], 0)), 14) assert P(Eq(Y[5], Y[10]), Eq(Y[2], 1)) == P(Eq(Y[10], Y[5]), Eq(Y[2], 1)) assert P(Gt(Y[1], Y[2]), Eq(Y[0], 1)) == P(Lt(Y[2], Y[1]), Eq(Y[0], 1)) assert P(Ge(Y[7], Y[6]), Eq(Y[4], 1)) == P(Le(Y[6], Y[7]), Eq(Y[4], 1)) #test symbolic queries a, b, c, d = symbols('a b c d') T = Matrix([[Rational(1, 10), Rational(4, 10), Rational(5, 10)], [Rational(3, 10), Rational(4, 10), Rational(3, 10)], [Rational(7, 10), Rational(2, 10), Rational(1, 10)]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) query = P(Eq(Y[a], b), Eq(Y[c], d)) assert query.subs({a:10, b:2, c:5, d:1}).evalf().round(4) == P(Eq(Y[10], 2), Eq(Y[5], 1)).round(4) assert query.subs({a:15, b:0, c:10, d:1}).evalf().round(4) == P(Eq(Y[15], 0), Eq(Y[10], 1)).round(4) query_gt = P(Gt(Y[a], b), Eq(Y[c], d)) query_le = P(Le(Y[a], b), Eq(Y[c], d)) assert query_gt.subs({a:5, b:2, c:1, d:0}).evalf() + query_le.subs({a:5, b:2, c:1, d:0}).evalf() == 1 query_ge = P(Ge(Y[a], b), Eq(Y[c], d)) query_lt = P(Lt(Y[a], b), Eq(Y[c], d)) assert query_ge.subs({a:4, b:1, c:0, d:2}).evalf() + query_lt.subs({a:4, b:1, c:0, d:2}).evalf() == 1 #test issue 20078 assert (2*Y[1] + 3*Y[1]).simplify() == 5*Y[1] assert (2*Y[1] - 3*Y[1]).simplify() == -Y[1] assert (2*(0.25*Y[1])).simplify() == 0.5*Y[1] assert ((2*Y[1]) * (0.25*Y[1])).simplify() == 0.5*Y[1]**2 assert (Y[1]**2 + Y[1]**3).simplify() == (Y[1] + 1)*Y[1]**2 def test_sample_stochastic_process(): if not import_module('scipy'): skip('SciPy Not installed. Skip sampling tests') import random random.seed(0) numpy = import_module('numpy') if numpy: numpy.random.seed(0) # scipy uses numpy to sample so to set its seed T = Matrix([[0.5, 0.2, 0.3],[0.2, 0.5, 0.3],[0.2, 0.3, 0.5]]) Y = DiscreteMarkovChain("Y", [0, 1, 2], T) for samps in range(10): assert next(sample_stochastic_process(Y)) in Y.state_space Z = DiscreteMarkovChain("Z", ['1', 1, 0], T) for samps in range(10): assert next(sample_stochastic_process(Z)) in Z.state_space T = Matrix([[S.Half, Rational(1, 4), Rational(1, 4)], [Rational(1, 3), 0, Rational(2, 3)], [S.Half, S.Half, 0]]) X = DiscreteMarkovChain('X', [0, 1, 2], T) for samps in range(10): assert next(sample_stochastic_process(X)) in X.state_space W = DiscreteMarkovChain('W', [1, pi, oo], T) for samps in range(10): assert next(sample_stochastic_process(W)) in W.state_space def test_ContinuousMarkovChain(): T1 = Matrix([[S(-2), S(2), S.Zero], [S.Zero, S.NegativeOne, S.One], [Rational(3, 2), Rational(3, 2), S(-3)]]) C1 = ContinuousMarkovChain('C', [0, 1, 2], T1) assert C1.limiting_distribution() == ImmutableMatrix([[Rational(3, 19), Rational(12, 19), Rational(4, 19)]]) T2 = Matrix([[-S.One, S.One, S.Zero], [S.One, -S.One, S.Zero], [S.Zero, S.One, -S.One]]) C2 = ContinuousMarkovChain('C', [0, 1, 2], T2) A, t = C2.generator_matrix, symbols('t', positive=True) assert C2.transition_probabilities(A)(t) == Matrix([[S.Half + exp(-2*t)/2, S.Half - exp(-2*t)/2, 0], [S.Half - exp(-2*t)/2, S.Half + exp(-2*t)/2, 0], [S.Half - exp(-t) + exp(-2*t)/2, S.Half - exp(-2*t)/2, exp(-t)]]) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(Eq(C2(1), 1), Eq(C2(0), 1), evaluate=False) == Probability(Eq(C2(1), 1), Eq(C2(0), 1)) assert P(Eq(C2(1), 1), Eq(C2(0), 1)) == exp(-2)/2 + S.Half assert P(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 1), Eq(P(Eq(C2(1), 0)), S.Half)) == (Rational(1, 4) - exp(-2)/4)*(exp(-2)/2 + S.Half) assert P(Not(Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)) | (Eq(C2(1), 0) & Eq(C2(2), 1) & Eq(C2(3), 2)), Eq(P(Eq(C2(1), 0)), Rational(1, 4)) & Eq(P(Eq(C2(1), 1)), Rational(1, 4))) is S.One assert E(C2(Rational(3, 2)), Eq(C2(0), 2)) == -exp(-3)/2 + 2*exp(Rational(-3, 2)) + S.Half assert variance(C2(Rational(3, 2)), Eq(C2(0), 1)) == ((S.Half - exp(-3)/2)**2*(exp(-3)/2 + S.Half) + (Rational(-1, 2) - exp(-3)/2)**2*(S.Half - exp(-3)/2)) raises(KeyError, lambda: P(Eq(C2(1), 0), Eq(P(Eq(C2(1), 1)), S.Half))) assert P(Eq(C2(1), 0), Eq(P(Eq(C2(5), 1)), S.Half)) == Probability(Eq(C2(1), 0)) TS1 = MatrixSymbol('G', 3, 3) CS1 = ContinuousMarkovChain('C', [0, 1, 2], TS1) A = CS1.generator_matrix assert CS1.transition_probabilities(A)(t) == exp(t*A) C3 = ContinuousMarkovChain('C', [Symbol('0'), Symbol('1'), Symbol('2')], T2) assert P(Eq(C3(1), 1), Eq(C3(0), 1)) == exp(-2)/2 + S.Half assert P(Eq(C3(1), Symbol('1')), Eq(C3(0), Symbol('1'))) == exp(-2)/2 + S.Half #test probability queries G = Matrix([[-S(1), Rational(1, 10), Rational(9, 10)], [Rational(2, 5), -S(1), Rational(3, 5)], [Rational(1, 2), Rational(1, 2), -S(1)]]) C = ContinuousMarkovChain('C', state_space=[0, 1, 2], gen_mat=G) assert P(Eq(C(7.385), C(3.19)), Eq(C(0.862), 0)).round(5) == Float(0.35469, 5) assert P(Gt(C(98.715), C(19.807)), Eq(C(11.314), 2)).round(5) == Float(0.32452, 5) assert P(Le(C(5.9), C(10.112)), Eq(C(4), 1)).round(6) == Float(0.675214, 6) assert Float(P(Eq(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) == Float(1 - P(Ne(C(7.32), C(2.91)), Eq(C(2.63), 1)), 14) assert Float(P(Gt(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) == Float(1 - P(Le(C(3.36), C(1.101)), Eq(C(0.8), 2)), 14) assert Float(P(Lt(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) == Float(1 - P(Ge(C(4.9), C(2.79)), Eq(C(1.61), 0)), 14) assert P(Eq(C(5.243), C(10.912)), Eq(C(2.174), 1)) == P(Eq(C(10.912), C(5.243)), Eq(C(2.174), 1)) assert P(Gt(C(2.344), C(9.9)), Eq(C(1.102), 1)) == P(Lt(C(9.9), C(2.344)), Eq(C(1.102), 1)) assert P(Ge(C(7.87), C(1.008)), Eq(C(0.153), 1)) == P(Le(C(1.008), C(7.87)), Eq(C(0.153), 1)) #test symbolic queries a, b, c, d = symbols('a b c d') query = P(Eq(C(a), b), Eq(C(c), d)) assert query.subs({a:3.65, b:2, c:1.78, d:1}).evalf().round(10) == P(Eq(C(3.65), 2), Eq(C(1.78), 1)).round(10) query_gt = P(Gt(C(a), b), Eq(C(c), d)) query_le = P(Le(C(a), b), Eq(C(c), d)) assert query_gt.subs({a:13.2, b:0, c:3.29, d:2}).evalf() + query_le.subs({a:13.2, b:0, c:3.29, d:2}).evalf() == 1 query_ge = P(Ge(C(a), b), Eq(C(c), d)) query_lt = P(Lt(C(a), b), Eq(C(c), d)) assert query_ge.subs({a:7.43, b:1, c:1.45, d:0}).evalf() + query_lt.subs({a:7.43, b:1, c:1.45, d:0}).evalf() == 1 #test issue 20078 assert (2*C(1) + 3*C(1)).simplify() == 5*C(1) assert (2*C(1) - 3*C(1)).simplify() == -C(1) assert (2*(0.25*C(1))).simplify() == 0.5*C(1) assert (2*C(1) * 0.25*C(1)).simplify() == 0.5*C(1)**2 assert (C(1)**2 + C(1)**3).simplify() == (C(1) + 1)*C(1)**2 def test_BernoulliProcess(): B = BernoulliProcess("B", p=0.6, success=1, failure=0) assert B.state_space == FiniteSet(0, 1) assert B.index_set == S.Naturals0 assert B.success == 1 assert B.failure == 0 X = BernoulliProcess("X", p=Rational(1,3), success='H', failure='T') assert X.state_space == FiniteSet('H', 'T') H, T = symbols("H,T") assert E(X[1]+X[2]*X[3]) == H**2/9 + 4*H*T/9 + H/3 + 4*T**2/9 + 2*T/3 t, x = symbols('t, x', positive=True, integer=True) assert isinstance(B[t], RandomIndexedSymbol) raises(ValueError, lambda: BernoulliProcess("X", p=1.1, success=1, failure=0)) raises(NotImplementedError, lambda: B(t)) raises(IndexError, lambda: B[-3]) assert B.joint_distribution(B[3], B[9]) == JointDistributionHandmade(Lambda((B[3], B[9]), Piecewise((0.6, Eq(B[3], 1)), (0.4, Eq(B[3], 0)), (0, True)) *Piecewise((0.6, Eq(B[9], 1)), (0.4, Eq(B[9], 0)), (0, True)))) assert B.joint_distribution(2, B[4]) == JointDistributionHandmade(Lambda((B[2], B[4]), Piecewise((0.6, Eq(B[2], 1)), (0.4, Eq(B[2], 0)), (0, True)) *Piecewise((0.6, Eq(B[4], 1)), (0.4, Eq(B[4], 0)), (0, True)))) # Test for the sum distribution of Bernoulli Process RVs Y = B[1] + B[2] + B[3] assert P(Eq(Y, 0)).round(2) == Float(0.06, 1) assert P(Eq(Y, 2)).round(2) == Float(0.43, 2) assert P(Eq(Y, 4)).round(2) == 0 assert P(Gt(Y, 1)).round(2) == Float(0.65, 2) # Test for independency of each Random Indexed variable assert P(Eq(B[1], 0) & Eq(B[2], 1) & Eq(B[3], 0) & Eq(B[4], 1)).round(2) == Float(0.06, 1) assert E(2 * B[1] + B[2]).round(2) == Float(1.80, 3) assert E(2 * B[1] + B[2] + 5).round(2) == Float(6.80, 3) assert E(B[2] * B[4] + B[10]).round(2) == Float(0.96, 2) assert E(B[2] > 0, Eq(B[1],1) & Eq(B[2],1)).round(2) == Float(0.60,2) assert E(B[1]) == 0.6 assert P(B[1] > 0).round(2) == Float(0.60, 2) assert P(B[1] < 1).round(2) == Float(0.40, 2) assert P(B[1] > 0, B[2] <= 1).round(2) == Float(0.60, 2) assert P(B[12] * B[5] > 0).round(2) == Float(0.36, 2) assert P(B[12] * B[5] > 0, B[4] < 1).round(2) == Float(0.36, 2) assert P(Eq(B[2], 1), B[2] > 0) == 1 assert P(Eq(B[5], 3)) == 0 assert P(Eq(B[1], 1), B[1] < 0) == 0 assert P(B[2] > 0, Eq(B[2], 1)) == 1 assert P(B[2] < 0, Eq(B[2], 1)) == 0 assert P(B[2] > 0, B[2]==7) == 0 assert P(B[5] > 0, B[5]) == BernoulliDistribution(0.6, 0, 1) raises(ValueError, lambda: P(3)) raises(ValueError, lambda: P(B[3] > 0, 3)) # test issue 19456 expr = Sum(B[t], (t, 0, 4)) expr2 = Sum(B[t], (t, 1, 3)) expr3 = Sum(B[t]**2, (t, 1, 3)) assert expr.doit() == B[0] + B[1] + B[2] + B[3] + B[4] assert expr2.doit() == Y assert expr3.doit() == B[1]**2 + B[2]**2 + B[3]**2 assert B[2*t].free_symbols == {B[2*t], t} assert B[4].free_symbols == {B[4]} assert B[x*t].free_symbols == {B[x*t], x, t} #test issue 20078 assert (2*B[t] + 3*B[t]).simplify() == 5*B[t] assert (2*B[t] - 3*B[t]).simplify() == -B[t] assert (2*(0.25*B[t])).simplify() == 0.5*B[t] assert (2*B[t] * 0.25*B[t]).simplify() == 0.5*B[t]**2 assert (B[t]**2 + B[t]**3).simplify() == (B[t] + 1)*B[t]**2 def test_PoissonProcess(): X = PoissonProcess("X", 3) assert X.state_space == S.Naturals0 assert X.index_set == Interval(0, oo) assert X.lamda == 3 t, d, x, y = symbols('t d x y', positive=True) assert isinstance(X(t), RandomIndexedSymbol) assert X.distribution(t) == PoissonDistribution(3*t) raises(ValueError, lambda: PoissonProcess("X", -1)) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-5)) assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade(Lambda((X(2), X(3)), 6**X(2)*9**X(3)*exp(-15)/(factorial(X(2))*factorial(X(3))))) assert X.joint_distribution(4, 6) == JointDistributionHandmade(Lambda((X(4), X(6)), 12**X(4)*18**X(6)*exp(-30)/(factorial(X(4))*factorial(X(6))))) assert P(X(t) < 1) == exp(-3*t) assert P(Eq(X(t), 0), Contains(t, Interval.Lopen(3, 5))) == exp(-6) # exp(-2*lamda) res = P(Eq(X(t), 1), Contains(t, Interval.Lopen(3, 4))) assert res == 3*exp(-3) # Equivalent to P(Eq(X(t), 1))**4 because of non-overlapping intervals assert P(Eq(X(t), 1) & Eq(X(d), 1) & Eq(X(x), 1) & Eq(X(y), 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))) == res**4 # Return Probability because of overlapping intervals assert P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) == \ Probability(Eq(X(d), 3) & Eq(X(t), 2), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) raises(ValueError, lambda: P(Eq(X(t), 2) & Eq(X(d), 3), Contains(t, Interval.Lopen(0, 4)) & Contains(d, Interval.Lopen(3, oo)))) # no bound on d assert P(Eq(X(3), 2)) == 81*exp(-9)/2 assert P(Eq(X(t), 2), Contains(t, Interval.Lopen(0, 5))) == 225*exp(-15)/2 # Check that probability works correctly by adding it to 1 res1 = P(X(t) <= 3, Contains(t, Interval.Lopen(0, 5))) res2 = P(X(t) > 3, Contains(t, Interval.Lopen(0, 5))) assert res1 == 691*exp(-15) assert (res1 + res2).simplify() == 1 # Check Not and Or assert P(Not(Eq(X(t), 2) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & \ Contains(d, Interval.Lopen(7, 8))).simplify() == -18*exp(-6) + 234*exp(-9) + 1 assert P(Eq(X(t), 2) | Ne(X(t), 4), Contains(t, Interval.Ropen(2, 4))) == 1 - 36*exp(-6) raises(ValueError, lambda: P(X(t) > 2, X(t) + X(d))) assert E(X(t)) == 3*t # property of the distribution at a given timestamp assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == 75 assert E(X(t)**2, Contains(t, Interval.Lopen(0, 1))) == 12 assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) == \ Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) # Value Error because of infinite time bound raises(ValueError, lambda: E(X(t)**3, Contains(t, Interval.Lopen(1, oo)))) # Equivalent to E(X(t)**2) - E(X(d)**2) == E(X(1)**2) - E(X(1)**2) == 0 assert E((X(t) + X(d))*(X(t) - X(d)), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2))) == 0 assert E(X(2) + x*E(X(5))) == 15*x + 6 assert E(x*X(1) + y) == 3*x + y assert P(Eq(X(1), 2) & Eq(X(t), 3), Contains(t, Interval.Lopen(1, 2))) == 81*exp(-6)/4 Y = PoissonProcess("Y", 6) Z = X + Y assert Z.lamda == X.lamda + Y.lamda == 9 raises(ValueError, lambda: X + 5) # should be added be only PoissonProcess instance N, M = Z.split(4, 5) assert N.lamda == 4 assert M.lamda == 5 raises(ValueError, lambda: Z.split(3, 2)) # 2+3 != 9 raises(ValueError, lambda :P(Eq(X(t), 0), Contains(t, Interval.Lopen(1, 3)) & Eq(X(1), 0))) # check if it handles queries with two random variables in one args res1 = P(Eq(N(3), N(5))) assert res1 == P(Eq(N(t), 0), Contains(t, Interval(3, 5))) res2 = P(N(3) > N(1)) assert res2 == P((N(t) > 0), Contains(t, Interval(1, 3))) assert P(N(3) < N(1)) == 0 # condition is not possible res3 = P(N(3) <= N(1)) # holds only for Eq(N(3), N(1)) assert res3 == P(Eq(N(t), 0), Contains(t, Interval(1, 3))) # tests from https://www.probabilitycourse.com/chapter11/11_1_2_basic_concepts_of_the_poisson_process.php X = PoissonProcess('X', 10) # 11.1 assert P(Eq(X(S(1)/3), 3) & Eq(X(1), 10)) == exp(-10)*Rational(8000000000, 11160261) assert P(Eq(X(1), 1), Eq(X(S(1)/3), 3)) == 0 assert P(Eq(X(1), 10), Eq(X(S(1)/3), 3)) == P(Eq(X(S(2)/3), 7)) X = PoissonProcess('X', 2) # 11.2 assert P(X(S(1)/2) < 1) == exp(-1) assert P(X(3) < 1, Eq(X(1), 0)) == exp(-4) assert P(Eq(X(4), 3), Eq(X(2), 3)) == exp(-4) X = PoissonProcess('X', 3) assert P(Eq(X(2), 5) & Eq(X(1), 2)) == Rational(81, 4)*exp(-6) # check few properties assert P(X(2) <= 3, X(1)>=1) == 3*P(Eq(X(1), 0)) + 2*P(Eq(X(1), 1)) + P(Eq(X(1), 2)) assert P(X(2) <= 3, X(1) > 1) == 2*P(Eq(X(1), 0)) + 1*P(Eq(X(1), 1)) assert P(Eq(X(2), 5) & Eq(X(1), 2)) == P(Eq(X(1), 3))*P(Eq(X(1), 2)) assert P(Eq(X(3), 4), Eq(X(1), 3)) == P(Eq(X(2), 1)) #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_WienerProcess(): X = WienerProcess("X") assert X.state_space == S.Reals assert X.index_set == Interval(0, oo) t, d, x, y = symbols('t d x y', positive=True) assert isinstance(X(t), RandomIndexedSymbol) assert X.distribution(t) == NormalDistribution(0, sqrt(t)) raises(ValueError, lambda: PoissonProcess("X", -1)) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-2)) assert X.joint_distribution(X(2), X(3)) == JointDistributionHandmade( Lambda((X(2), X(3)), sqrt(6)*exp(-X(2)**2/4)*exp(-X(3)**2/6)/(12*pi))) assert X.joint_distribution(4, 6) == JointDistributionHandmade( Lambda((X(4), X(6)), sqrt(6)*exp(-X(4)**2/8)*exp(-X(6)**2/12)/(24*pi))) assert P(X(t) < 3).simplify() == erf(3*sqrt(2)/(2*sqrt(t)))/2 + S(1)/2 assert P(X(t) > 2, Contains(t, Interval.Lopen(3, 7))).simplify() == S(1)/2 -\ erf(sqrt(2)/2)/2 # Equivalent to P(X(1)>1)**4 assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() ==\ (1 - erf(sqrt(2)/2))*(1 - erf(sqrt(2)))*(1 - erf(3*sqrt(2)/2))*(1 - erf(2*sqrt(2)))/16 # Contains an overlapping interval so, return Probability assert P((X(t)< 2) & (X(d)> 3), Contains(t, Interval.Lopen(0, 2)) & Contains(d, Interval.Ropen(2, 4))) == Probability((X(d) > 3) & (X(t) < 2), Contains(d, Interval.Ropen(2, 4)) & Contains(t, Interval.Lopen(0, 2))) assert str(P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & Contains(d, Interval.Lopen(7, 8))).simplify()) == \ '-(1 - erf(3*sqrt(2)/2))*(2 - erfc(5/2))/4 + 1' # Distribution has mean 0 at each timestamp assert E(X(t)) == 0 assert E(x*(X(t) + X(d))*(X(t)**2+X(d)**2), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Ropen(1, 2))) == Expectation(x*(X(d) + X(t))*(X(d)**2 + X(t)**2), Contains(d, Interval.Ropen(1, 2)) & Contains(t, Interval.Lopen(0, 1))) assert E(X(t) + x*E(X(3))) == 0 #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_GammaProcess_symbolic(): t, d, x, y, g, l = symbols('t d x y g l', positive=True) X = GammaProcess("X", l, g) raises(NotImplementedError, lambda: X[t]) raises(IndexError, lambda: X(-1)) assert isinstance(X(t), RandomIndexedSymbol) assert X.state_space == Interval(0, oo) assert X.distribution(t) == GammaDistribution(g*t, 1/l) assert X.joint_distribution(5, X(3)) == JointDistributionHandmade(Lambda( (X(5), X(3)), l**(8*g)*exp(-l*X(3))*exp(-l*X(5))*X(3)**(3*g - 1)*X(5)**(5*g - 1)/(gamma(3*g)*gamma(5*g)))) # property of the gamma process at any given timestamp assert E(X(t)) == g*t/l assert variance(X(t)).simplify() == g*t/l**2 # Equivalent to E(2*X(1)) + E(X(1)**2) + E(X(1)**3), where E(X(1)) == g/l assert E(X(t)**2 + X(d)*2 + X(y)**3, Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(y, Interval.Ropen(3, 4))) == \ 2*g/l + (g**2 + g)/l**2 + (g**3 + 3*g**2 + 2*g)/l**3 assert P(X(t) > 3, Contains(t, Interval.Lopen(3, 4))).simplify() == \ 1 - lowergamma(g, 3*l)/gamma(g) # equivalent to P(X(1)>3) #test issue 20078 assert (2*X(t) + 3*X(t)).simplify() == 5*X(t) assert (2*X(t) - 3*X(t)).simplify() == -X(t) assert (2*(0.25*X(t))).simplify() == 0.5*X(t) assert (2*X(t) * 0.25*X(t)).simplify() == 0.5*X(t)**2 assert (X(t)**2 + X(t)**3).simplify() == (X(t) + 1)*X(t)**2 def test_GammaProcess_numeric(): t, d, x, y = symbols('t d x y', positive=True) X = GammaProcess("X", 1, 2) assert X.state_space == Interval(0, oo) assert X.index_set == Interval(0, oo) assert X.lamda == 1 assert X.gamma == 2 raises(ValueError, lambda: GammaProcess("X", -1, 2)) raises(ValueError, lambda: GammaProcess("X", 0, -2)) raises(ValueError, lambda: GammaProcess("X", -1, -2)) # all are independent because of non-overlapping intervals assert P((X(t) > 4) & (X(d) > 3) & (X(x) > 2) & (X(y) > 1), Contains(t, Interval.Lopen(0, 1)) & Contains(d, Interval.Lopen(1, 2)) & Contains(x, Interval.Lopen(2, 3)) & Contains(y, Interval.Lopen(3, 4))).simplify() == \ 120*exp(-10) # Check working with Not and Or assert P(Not((X(t) < 5) & (X(d) > 3)), Contains(t, Interval.Ropen(2, 4)) & Contains(d, Interval.Lopen(7, 8))).simplify() == -4*exp(-3) + 472*exp(-8)/3 + 1 assert P((X(t) > 2) | (X(t) < 4), Contains(t, Interval.Ropen(1, 4))).simplify() == \ -643*exp(-4)/15 + 109*exp(-2)/15 + 1 assert E(X(t)) == 2*t # E(X(t)) == gamma*t/l assert E(X(2) + x*E(X(5))) == 10*x + 4
302875d91aa3bbde01234dad28c8350a8e62eef01e8db2f99e5f227183c1e13b
from sympy.concrete.summations import Sum from sympy.core.numbers import (I, Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol) from sympy.functions.elementary.complexes import (im, re) from sympy.functions.elementary.exponential import log from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.special.bessel import besseli from sympy.functions.special.beta_functions import beta from sympy.functions.special.zeta_functions import zeta from sympy.sets.sets import FiniteSet from sympy.simplify.simplify import simplify from sympy.utilities.lambdify import lambdify from sympy.core.relational import Eq, Ne from sympy.functions.elementary.exponential import exp from sympy.logic.boolalg import Or from sympy.sets.fancysets import Range from sympy.stats import (P, E, variance, density, characteristic_function, where, moment_generating_function, skewness, cdf, kurtosis, coskewness) from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution, FlorySchulz, Poisson, Geometric, Hermite, Logarithmic, NegativeBinomial, Skellam, YuleSimon, Zeta, DiscreteRV) from sympy.testing.pytest import slow, nocache_fail, raises, ignore_warnings from sympy.stats.symbolic_probability import Expectation x = Symbol('x') def test_PoissonDistribution(): l = 3 p = PoissonDistribution(l) assert abs(p.cdf(10).evalf() - 1) < .001 assert abs(p.cdf(10.4).evalf() - 1) < .001 assert p.expectation(x, x) == l assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l def test_Poisson(): l = 3 x = Poisson('x', l) assert E(x) == l assert variance(x) == l assert density(x) == PoissonDistribution(l) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) assert isinstance(E(2*x, evaluate=False), Expectation) # issue 8248 assert x.pspace.compute_expectation(1) == 1 def test_FlorySchulz(): a = Symbol("a") z = Symbol("z") x = FlorySchulz('x', a) assert E(x) == (2 - a)/a assert (variance(x) - 2*(1 - a)/a**2).simplify() == S(0) assert density(x)(z) == a**2*z*(1 - a)**(z - 1) @slow def test_GeometricDistribution(): p = S.One / 5 d = GeometricDistribution(p) assert d.expectation(x, x) == 1/p assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2 assert abs(d.cdf(20000).evalf() - 1) < .001 assert abs(d.cdf(20000.8).evalf() - 1) < .001 G = Geometric('G', p=S(1)/4) assert cdf(G)(S(7)/2) == P(G <= S(7)/2) X = Geometric('X', Rational(1, 5)) Y = Geometric('Y', Rational(3, 10)) assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150) def test_Hermite(): a1 = Symbol("a1", positive=True) a2 = Symbol("a2", negative=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", negative=True) a2 = Symbol("a2", positive=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", positive=True) x = Symbol("x") H = Hermite("H", a1, a2) assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1) + a2*(exp(2*x) - 1)) assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1) + a2*(exp(2*I*x) - 1)) assert E(H) == a1 + 2*a2 H = Hermite("H", a1=5, a2=4) assert density(H)(2) == 33*exp(-9)/2 assert E(H) == 13 assert variance(H) == 21 assert kurtosis(H) == Rational(464,147) assert skewness(H) == 37*sqrt(21)/441 def test_Logarithmic(): p = S.Half x = Logarithmic('x', p) assert E(x) == -p / ((1 - p) * log(1 - p)) assert variance(x) == -1/log(2)**2 + 2/log(2) assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) @nocache_fail def test_negative_binomial(): r = 5 p = S.One / 3 x = NegativeBinomial('x', r, p) assert E(x) == p*r / (1-p) # This hangs when run with the cache disabled: assert variance(x) == p*r / (1-p)**2 assert E(x**5 + 2*x + 3) == Rational(9207, 4) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) def test_skellam(): mu1 = Symbol('mu1') mu2 = Symbol('mu2') z = Symbol('z') X = Skellam('x', mu1, mu2) assert density(X)(z) == (mu1/mu2)**(z/2) * \ exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2)) assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 * sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2)) assert variance(X).expand() == mu1 + mu2 assert E(X) == mu1 - mu2 assert characteristic_function(X)(z) == exp( mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z)) assert moment_generating_function(X)(z) == exp( mu1*exp(z) - mu1 - mu2 + mu2*exp(-z)) def test_yule_simon(): from sympy.core.singleton import S rho = S(3) x = YuleSimon('x', rho) assert simplify(E(x)) == rho / (rho - 1) assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) # To test the cdf function assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True)) def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s-1) / zeta(s) assert simplify(variance(x)) == ( zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2 def test_discrete_probability(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) G = Geometric('e', x) assert P(Eq(X, 3)) == Rational(16, 125) assert P(X < 3) == Rational(9, 25) assert P(X > 3) == Rational(64, 125) assert P(X >= 3) == Rational(16, 25) assert P(X <= 3) == Rational(61, 125) assert P(Ne(X, 3)) == Rational(109, 125) assert P(Eq(Y, 3)) == 32*exp(-4)/3 assert P(Y < 3) == 13*exp(-4) assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y <= 3) == 71*exp(-4)/3 assert P(Ne(Y, 3)).equals( 13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(X < S.Infinity) is S.One assert P(X > S.Infinity) is S.Zero assert P(G < 3) == x*(2-x) assert P(Eq(G, 3)) == x*(-x + 1)**2 def test_DiscreteRV(): p = S(1)/2 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution D = DiscreteRV(x, pdf, set=S.Naturals, check=True) assert E(D) == E(Geometric('G', S(1)/2)) == 2 assert P(D > 3) == S(1)/8 assert D.pspace.domain.set == S.Naturals raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = DiscreteRV(x, 1/x, S.Naturals) assert P(X < 2) == 1 assert E(X) == oo def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = S('t') x = S('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [ support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf) test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf) test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf) test_cf(Poisson('p', 5), 0, mpmath.inf) test_cf(YuleSimon('y', 5), 1, mpmath.inf) test_cf(Zeta('z', 5), 1, mpmath.inf) def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function( NegativeBinomial('n', 5, Rational(1, 3)))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2) poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t) assert skellam_mgf.diff(t).subs( t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2)) yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2) zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5)) def test_Or(): X = Geometric('X', S.Half) assert P(Or(X < 3, X > 4)) == Rational(13, 16) assert P(Or(X > 2, X > 1)) == P(X > 1) assert P(Or(X >= 3, X < 3)) == 1 def test_where(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) assert where(X**2 > 4).set == Range(3, S.Infinity, 1) assert where(X**2 >= 4).set == Range(2, S.Infinity, 1) assert where(Y**2 < 9).set == Range(0, 3, 1) assert where(Y**2 <= 9).set == Range(0, 4, 1) def test_conditional(): X = Geometric('X', Rational(2, 3)) Y = Poisson('Y', 3) assert P(X > 2, X > 3) == 1 assert P(X > 3, X > 2) == Rational(1, 3) assert P(Y > 2, Y < 2) == 0 assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2 assert P(Eq(Y, 3), Eq(Y, 2)) == 0 assert P(X < 2, Eq(X, 2)) == 0 assert P(X > 2, Eq(X, 3)) == 1 def test_product_spaces(): X1 = Geometric('X1', S.Half) X2 = Geometric('X2', Rational(1, 3)) #assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\ # + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))""" n = Dummy('n') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4, n + 2 >= 1), (0, True)), (n, -oo, -1))/3) #assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\ # """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))""" assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6, -X2 + n + 3 >= 1), (0, True)), (X2, 1, oo), (n, 1, oo))) # assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\ # """X2 <= 2), (0, True)), (X2, 1, oo))""" assert P(Eq(X1 + X2, 3)) == Rational(1, 12)
0a20f5855db93061f04df1c66a869e8460f7889e25a8d622f998b045e3ba0959
from sympy.concrete.products import Product from sympy.core.function import Lambda from sympy.core.numbers import (I, Rational, pi) from sympy.core.singleton import S from sympy.core.symbol import Dummy from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.miscellaneous import sqrt from sympy.integrals.integrals import Integral from sympy.matrices.dense import Matrix from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.trace import Trace from sympy.tensor.indexed import IndexedBase from sympy.stats import (GaussianUnitaryEnsemble as GUE, density, GaussianOrthogonalEnsemble as GOE, GaussianSymplecticEnsemble as GSE, joint_eigen_distribution, CircularUnitaryEnsemble as CUE, CircularOrthogonalEnsemble as COE, CircularSymplecticEnsemble as CSE, JointEigenDistribution, level_spacing_distribution, Normal, Beta) from sympy.stats.joint_rv_types import JointDistributionHandmade from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix_models import GaussianEnsemble, RandomMatrixPSpace from sympy.testing.pytest import raises def test_GaussianEnsemble(): G = GaussianEnsemble('G', 3) assert density(G) == G.pspace.model raises(ValueError, lambda: GaussianEnsemble('G', 3.5)) def test_GaussianUnitaryEnsemble(): H = RandomMatrixSymbol('H', 3, 3) G = GUE('U', 3) assert density(G)(H) == sqrt(2)*exp(-3*Trace(H**2)/2)/(4*pi**Rational(9, 2)) i, j = (Dummy('i', integer=True, positive=True), Dummy('j', integer=True, positive=True)) l = IndexedBase('l') assert joint_eigen_distribution(G).dummy_eq( Lambda((l[1], l[2], l[3]), 27*sqrt(6)*exp(-3*(l[1]**2)/2 - 3*(l[2]**2)/2 - 3*(l[3]**2)/2)* Product(Abs(l[i] - l[j])**2, (j, i + 1, 3), (i, 1, 2))/(16*pi**Rational(3, 2)))) s = Dummy('s') assert level_spacing_distribution(G).dummy_eq(Lambda(s, 32*s**2*exp(-4*s**2/pi)/pi**2)) def test_GaussianOrthogonalEnsemble(): H = RandomMatrixSymbol('H', 3, 3) _H = MatrixSymbol('_H', 3, 3) G = GOE('O', 3) assert density(G)(H) == exp(-3*Trace(H**2)/4)/Integral(exp(-3*Trace(_H**2)/4), _H) i, j = (Dummy('i', integer=True, positive=True), Dummy('j', integer=True, positive=True)) l = IndexedBase('l') assert joint_eigen_distribution(G).dummy_eq( Lambda((l[1], l[2], l[3]), 9*sqrt(2)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)* Product(Abs(l[i] - l[j]), (j, i + 1, 3), (i, 1, 2))/(32*pi))) s = Dummy('s') assert level_spacing_distribution(G).dummy_eq(Lambda(s, s*pi*exp(-s**2*pi/4)/2)) def test_GaussianSymplecticEnsemble(): H = RandomMatrixSymbol('H', 3, 3) _H = MatrixSymbol('_H', 3, 3) G = GSE('O', 3) assert density(G)(H) == exp(-3*Trace(H**2))/Integral(exp(-3*Trace(_H**2)), _H) i, j = (Dummy('i', integer=True, positive=True), Dummy('j', integer=True, positive=True)) l = IndexedBase('l') assert joint_eigen_distribution(G).dummy_eq( Lambda((l[1], l[2], l[3]), 162*sqrt(3)*exp(-3*l[1]**2/2 - 3*l[2]**2/2 - 3*l[3]**2/2)* Product(Abs(l[i] - l[j])**4, (j, i + 1, 3), (i, 1, 2))/(5*pi**Rational(3, 2)))) s = Dummy('s') assert level_spacing_distribution(G).dummy_eq(Lambda(s, S(262144)*s**4*exp(-64*s**2/(9*pi))/(729*pi**3))) def test_CircularUnitaryEnsemble(): CU = CUE('U', 3) j, k = (Dummy('j', integer=True, positive=True), Dummy('k', integer=True, positive=True)) t = IndexedBase('t') assert joint_eigen_distribution(CU).dummy_eq( Lambda((t[1], t[2], t[3]), Product(Abs(exp(I*t[j]) - exp(I*t[k]))**2, (j, k + 1, 3), (k, 1, 2))/(48*pi**3)) ) def test_CircularOrthogonalEnsemble(): CO = COE('U', 3) j, k = (Dummy('j', integer=True, positive=True), Dummy('k', integer=True, positive=True)) t = IndexedBase('t') assert joint_eigen_distribution(CO).dummy_eq( Lambda((t[1], t[2], t[3]), Product(Abs(exp(I*t[j]) - exp(I*t[k])), (j, k + 1, 3), (k, 1, 2))/(48*pi**2)) ) def test_CircularSymplecticEnsemble(): CS = CSE('U', 3) j, k = (Dummy('j', integer=True, positive=True), Dummy('k', integer=True, positive=True)) t = IndexedBase('t') assert joint_eigen_distribution(CS).dummy_eq( Lambda((t[1], t[2], t[3]), Product(Abs(exp(I*t[j]) - exp(I*t[k]))**4, (j, k + 1, 3), (k, 1, 2))/(720*pi**3)) ) def test_JointEigenDistribution(): A = Matrix([[Normal('A00', 0, 1), Normal('A01', 1, 1)], [Beta('A10', 1, 1), Beta('A11', 1, 1)]]) assert JointEigenDistribution(A) == \ JointDistributionHandmade(-sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 + A[0, 0]/2 + A[1, 1]/2, sqrt(A[0, 0]**2 - 2*A[0, 0]*A[1, 1] + 4*A[0, 1]*A[1, 0] + A[1, 1]**2)/2 + A[0, 0]/2 + A[1, 1]/2) raises(ValueError, lambda: JointEigenDistribution(Matrix([[1, 0], [2, 1]]))) def test_issue_19841(): G1 = GUE('U', 2) G2 = G1.xreplace({2: 2}) assert G1.args == G2.args X = MatrixSymbol('X', 2, 2) G = GSE('U', 2) h_pspace = RandomMatrixPSpace('P', model=density(G)) H = RandomMatrixSymbol('H', 2, 2, pspace=h_pspace) H2 = RandomMatrixSymbol('H', 2, 2, pspace=None) assert H.doit() == H assert (2*H).xreplace({H: X}) == 2*X assert (2*H).xreplace({H2: X}) == 2*H assert (2*H2).xreplace({H: X}) == 2*H2 assert (2*H2).xreplace({H2: X}) == 2*X
cedc60dccb3f42fb60c73215cf669e5cd19604f1c940943debf77cdac7f1acc7
from sympy.concrete.summations import Sum from sympy.core.function import (Lambda, diff, expand_func) from sympy.core.mul import Mul from sympy.core import EulerGamma from sympy.core.numbers import (E as e, I, Rational, pi) from sympy.core.relational import (Eq, Ne) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.combinatorial.factorials import (binomial, factorial) from sympy.functions.elementary.complexes import (Abs, im, re, sign) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.hyperbolic import (cosh, sinh) from sympy.functions.elementary.integers import floor from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (asin, atan, cos, sin, tan) from sympy.functions.special.bessel import (besseli, besselj, besselk) from sympy.functions.special.beta_functions import beta from sympy.functions.special.error_functions import (erf, erfc, erfi, expint) from sympy.functions.special.gamma_functions import (gamma, lowergamma, uppergamma) from sympy.functions.special.hyper import hyper from sympy.integrals.integrals import Integral from sympy.logic.boolalg import (And, Or) from sympy.sets.sets import Interval from sympy.simplify.simplify import simplify from sympy.utilities.lambdify import lambdify from sympy.functions.special.error_functions import erfinv from sympy.functions.special.hyper import meijerg from sympy.sets.sets import FiniteSet, Complement, Intersection from sympy.stats import (P, E, where, density, variance, covariance, skewness, kurtosis, median, given, pspace, cdf, characteristic_function, moment_generating_function, ContinuousRV, Arcsin, Benini, Beta, BetaNoncentral, BetaPrime, Cauchy, Chi, ChiSquared, ChiNoncentral, Dagum, Erlang, ExGaussian, Exponential, ExponentialPower, FDistribution, FisherZ, Frechet, Gamma, GammaInverse, Gompertz, Gumbel, Kumaraswamy, Laplace, Levy, Logistic, LogCauchy, LogLogistic, LogitNormal, LogNormal, Maxwell, Moyal, Nakagami, Normal, GaussianInverse, Pareto, PowerFunction, QuadraticU, RaisedCosine, Rayleigh, Reciprocal, ShiftedGompertz, StudentT, Trapezoidal, Triangular, Uniform, UniformSum, VonMises, Weibull, coskewness, WignerSemicircle, Wald, correlation, moment, cmoment, smoment, quantile, Lomax, BoundedPareto) from sympy.stats.crv_types import NormalDistribution, ExponentialDistribution, ContinuousDistributionHandmade from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution, MultivariateNormalDistribution from sympy.stats.crv import SingleContinuousPSpace, SingleContinuousDomain from sympy.stats.compound_rv import CompoundPSpace from sympy.stats.symbolic_probability import Probability from sympy.testing.pytest import raises, XFAIL, slow, ignore_warnings from sympy.core.random import verify_numerically as tn oo = S.Infinity x, y, z = map(Symbol, 'xyz') def test_single_normal(): mu = Symbol('mu', real=True) sigma = Symbol('sigma', positive=True) X = Normal('x', 0, 1) Y = X*sigma + mu assert E(Y) == mu assert variance(Y) == sigma**2 pdf = density(Y) x = Symbol('x', real=True) assert (pdf(x) == 2**S.Half*exp(-(x - mu)**2/(2*sigma**2))/(2*pi**S.Half*sigma)) assert P(X**2 < 1) == erf(2**S.Half/2) ans = quantile(Y)(x) assert ans == Complement(Intersection(FiniteSet( sqrt(2)*sigma*(sqrt(2)*mu/(2*sigma)+ erfinv(2*x - 1))), Interval(-oo, oo)), FiniteSet(mu)) assert E(X, Eq(X, mu)) == mu assert median(X) == FiniteSet(0) # issue 8248 assert X.pspace.compute_expectation(1).doit() == 1 def test_conditional_1d(): X = Normal('x', 0, 1) Y = given(X, X >= 0) z = Symbol('z') assert density(Y)(z) == 2 * density(X)(z) assert Y.pspace.domain.set == Interval(0, oo) assert E(Y) == sqrt(2) / sqrt(pi) assert E(X**2) == E(Y**2) def test_ContinuousDomain(): X = Normal('x', 0, 1) assert where(X**2 <= 1).set == Interval(-1, 1) assert where(X**2 <= 1).symbol == X.symbol assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1) raises(ValueError, lambda: where(sin(X) > 1)) Y = given(X, X >= 0) assert Y.pspace.domain.set == Interval(0, oo) @slow def test_multiple_normal(): X, Y = Normal('x', 0, 1), Normal('y', 0, 1) p = Symbol("p", positive=True) assert E(X + Y) == 0 assert variance(X + Y) == 2 assert variance(X + X) == 4 assert covariance(X, Y) == 0 assert covariance(2*X + Y, -X) == -2*variance(X) assert skewness(X) == 0 assert skewness(X + Y) == 0 assert kurtosis(X) == 3 assert kurtosis(X+Y) == 3 assert correlation(X, Y) == 0 assert correlation(X, X + Y) == correlation(X, X - Y) assert moment(X, 2) == 1 assert cmoment(X, 3) == 0 assert moment(X + Y, 4) == 12 assert cmoment(X, 2) == variance(X) assert smoment(X*X, 2) == 1 assert smoment(X + Y, 3) == skewness(X + Y) assert smoment(X + Y, 4) == kurtosis(X + Y) assert E(X, Eq(X + Y, 0)) == 0 assert variance(X, Eq(X + Y, 0)) == S.Half assert quantile(X)(p) == sqrt(2)*erfinv(2*p - S.One) def test_symbolic(): mu1, mu2 = symbols('mu1 mu2', real=True) s1, s2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) X = Normal('x', mu1, s1) Y = Normal('y', mu2, s2) Z = Exponential('z', rate) a, b, c = symbols('a b c', real=True) assert E(X) == mu1 assert E(X + Y) == mu1 + mu2 assert E(a*X + b) == a*E(X) + b assert variance(X) == s1**2 assert variance(X + a*Y + b) == variance(X) + a**2*variance(Y) assert E(Z) == 1/rate assert E(a*Z + b) == a*E(Z) + b assert E(X + a*Z + b) == mu1 + a/rate + b assert median(X) == FiniteSet(mu1) def test_cdf(): X = Normal('x', 0, 1) d = cdf(X) assert P(X < 1) == d(1).rewrite(erfc) assert d(0) == S.Half d = cdf(X, X > 0) # given X>0 assert d(0) == 0 Y = Exponential('y', 10) d = cdf(Y) assert d(-5) == 0 assert P(Y > 3) == 1 - d(3) raises(ValueError, lambda: cdf(X + Y)) Z = Exponential('z', 1) f = cdf(Z) assert f(z) == Piecewise((1 - exp(-z), z >= 0), (0, True)) def test_characteristic_function(): X = Uniform('x', 0, 1) cf = characteristic_function(X) assert cf(1) == -I*(-1 + exp(I)) Y = Normal('y', 1, 1) cf = characteristic_function(Y) assert cf(0) == 1 assert cf(1) == exp(I - S.Half) Z = Exponential('z', 5) cf = characteristic_function(Z) assert cf(0) == 1 assert cf(1).expand() == Rational(25, 26) + I*5/26 X = GaussianInverse('x', 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == exp(1 - sqrt(1 - 2*I)) X = ExGaussian('x', 0, 1, 1) cf = characteristic_function(X) assert cf(0) == 1 assert cf(1) == (1 + I)*exp(Rational(-1, 2))/2 L = Levy('x', 0, 1) cf = characteristic_function(L) assert cf(0) == 1 assert cf(1) == exp(-sqrt(2)*sqrt(-I)) def test_moment_generating_function(): t = symbols('t', positive=True) # Symbolic tests a, b, c = symbols('a b c') mgf = moment_generating_function(Beta('x', a, b))(t) assert mgf == hyper((a,), (a + b,), t) mgf = moment_generating_function(Chi('x', a))(t) assert mgf == sqrt(2)*t*gamma(a/2 + S.Half)*\ hyper((a/2 + S.Half,), (Rational(3, 2),), t**2/2)/gamma(a/2) +\ hyper((a/2,), (S.Half,), t**2/2) mgf = moment_generating_function(ChiSquared('x', a))(t) assert mgf == (1 - 2*t)**(-a/2) mgf = moment_generating_function(Erlang('x', a, b))(t) assert mgf == (1 - t/b)**(-a) mgf = moment_generating_function(ExGaussian("x", a, b, c))(t) assert mgf == exp(a*t + b**2*t**2/2)/(1 - t/c) mgf = moment_generating_function(Exponential('x', a))(t) assert mgf == a/(a - t) mgf = moment_generating_function(Gamma('x', a, b))(t) assert mgf == (-b*t + 1)**(-a) mgf = moment_generating_function(Gumbel('x', a, b))(t) assert mgf == exp(b*t)*gamma(-a*t + 1) mgf = moment_generating_function(Gompertz('x', a, b))(t) assert mgf == b*exp(b)*expint(t/a, b) mgf = moment_generating_function(Laplace('x', a, b))(t) assert mgf == exp(a*t)/(-b**2*t**2 + 1) mgf = moment_generating_function(Logistic('x', a, b))(t) assert mgf == exp(a*t)*beta(-b*t + 1, b*t + 1) mgf = moment_generating_function(Normal('x', a, b))(t) assert mgf == exp(a*t + b**2*t**2/2) mgf = moment_generating_function(Pareto('x', a, b))(t) assert mgf == b*(-a*t)**b*uppergamma(-b, -a*t) mgf = moment_generating_function(QuadraticU('x', a, b))(t) assert str(mgf) == ("(3*(t*(-4*b + (a + b)**2) + 4)*exp(b*t) - " "3*(t*(a**2 + 2*a*(b - 2) + b**2) + 4)*exp(a*t))/(t**2*(a - b)**3)") mgf = moment_generating_function(RaisedCosine('x', a, b))(t) assert mgf == pi**2*exp(a*t)*sinh(b*t)/(b*t*(b**2*t**2 + pi**2)) mgf = moment_generating_function(Rayleigh('x', a))(t) assert mgf == sqrt(2)*sqrt(pi)*a*t*(erf(sqrt(2)*a*t/2) + 1)\ *exp(a**2*t**2/2)/2 + 1 mgf = moment_generating_function(Triangular('x', a, b, c))(t) assert str(mgf) == ("(-2*(-a + b)*exp(c*t) + 2*(-a + c)*exp(b*t) + " "2*(b - c)*exp(a*t))/(t**2*(-a + b)*(-a + c)*(b - c))") mgf = moment_generating_function(Uniform('x', a, b))(t) assert mgf == (-exp(a*t) + exp(b*t))/(t*(-a + b)) mgf = moment_generating_function(UniformSum('x', a))(t) assert mgf == ((exp(t) - 1)/t)**a mgf = moment_generating_function(WignerSemicircle('x', a))(t) assert mgf == 2*besseli(1, a*t)/(a*t) # Numeric tests mgf = moment_generating_function(Beta('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == hyper((2,), (3,), 1)/2 mgf = moment_generating_function(Chi('x', 1))(t) assert mgf.diff(t).subs(t, 1) == sqrt(2)*hyper((1,), (Rational(3, 2),), S.Half )/sqrt(pi) + hyper((Rational(3, 2),), (Rational(3, 2),), S.Half) + 2*sqrt(2)*hyper((2,), (Rational(5, 2),), S.Half)/(3*sqrt(pi)) mgf = moment_generating_function(ChiSquared('x', 1))(t) assert mgf.diff(t).subs(t, 1) == I mgf = moment_generating_function(Erlang('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(ExGaussian("x", 0, 1, 1))(t) assert mgf.diff(t).subs(t, 2) == -exp(2) mgf = moment_generating_function(Exponential('x', 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gamma('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Gumbel('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == EulerGamma + 1 mgf = moment_generating_function(Gompertz('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -e*meijerg(((), (1, 1)), ((0, 0, 0), ()), 1) mgf = moment_generating_function(Laplace('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == 1 mgf = moment_generating_function(Logistic('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == beta(1, 1) mgf = moment_generating_function(Normal('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == exp(S.Half) mgf = moment_generating_function(Pareto('x', 1, 1))(t) assert mgf.diff(t).subs(t, 0) == expint(1, 0) mgf = moment_generating_function(QuadraticU('x', 1, 2))(t) assert mgf.diff(t).subs(t, 1) == -12*e - 3*exp(2) mgf = moment_generating_function(RaisedCosine('x', 1, 1))(t) assert mgf.diff(t).subs(t, 1) == -2*e*pi**2*sinh(1)/\ (1 + pi**2)**2 + e*pi**2*cosh(1)/(1 + pi**2) mgf = moment_generating_function(Rayleigh('x', 1))(t) assert mgf.diff(t).subs(t, 0) == sqrt(2)*sqrt(pi)/2 mgf = moment_generating_function(Triangular('x', 1, 3, 2))(t) assert mgf.diff(t).subs(t, 1) == -e + exp(3) mgf = moment_generating_function(Uniform('x', 0, 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(UniformSum('x', 1))(t) assert mgf.diff(t).subs(t, 1) == 1 mgf = moment_generating_function(WignerSemicircle('x', 1))(t) assert mgf.diff(t).subs(t, 1) == -2*besseli(1, 1) + besseli(2, 1) +\ besseli(0, 1) def test_ContinuousRV(): pdf = sqrt(2)*exp(-x**2/2)/(2*sqrt(pi)) # Normal distribution # X and Y should be equivalent X = ContinuousRV(x, pdf, check=True) Y = Normal('y', 0, 1) assert variance(X) == variance(Y) assert P(X > 0) == P(Y > 0) Z = ContinuousRV(z, exp(-z), set=Interval(0, oo)) assert Z.pspace.domain.set == Interval(0, oo) assert E(Z) == 1 assert P(Z > 5) == exp(-5) raises(ValueError, lambda: ContinuousRV(z, exp(-z), set=Interval(0, 10), check=True)) # the correct pdf for Gamma(k, theta) but the integral in `check` # integrates to something equivalent to 1 and not to 1 exactly _x, k, theta = symbols("x k theta", positive=True) pdf = 1/(gamma(k)*theta**k)*_x**(k-1)*exp(-_x/theta) X = ContinuousRV(_x, pdf, set=Interval(0, oo)) Y = Gamma('y', k, theta) assert (E(X) - E(Y)).simplify() == 0 assert (variance(X) - variance(Y)).simplify() == 0 def test_arcsin(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Arcsin('x', a, b) assert density(X)(x) == 1/(pi*sqrt((-x + b)*(x - a))) assert cdf(X)(x) == Piecewise((0, a > x), (2*asin(sqrt((-a + x)/(-a + b)))/pi, b >= x), (1, True)) assert pspace(X).domain.set == Interval(a, b) def test_benini(): alpha = Symbol("alpha", positive=True) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", positive=True) X = Benini('x', alpha, beta, sigma) assert density(X)(x) == ((alpha/x + 2*beta*log(x/sigma)/x) *exp(-alpha*log(x/sigma) - beta*log(x/sigma)**2)) assert pspace(X).domain.set == Interval(sigma, oo) raises(NotImplementedError, lambda: moment_generating_function(X)) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) alpha = Symbol("alpha", positive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) beta = Symbol("beta", positive=True) sigma = Symbol("sigma", nonpositive=True) raises(ValueError, lambda: Benini('x', alpha, beta, sigma)) def test_beta(): a, b = symbols('alpha beta', positive=True) B = Beta('x', a, b) assert pspace(B).domain.set == Interval(0, 1) assert characteristic_function(B)(x) == hyper((a,), (a + b,), I*x) assert density(B)(x) == x**(a - 1)*(1 - x)**(b - 1)/beta(a, b) assert simplify(E(B)) == a / (a + b) assert simplify(variance(B)) == a*b / (a**3 + 3*a**2*b + a**2 + 3*a*b**2 + 2*a*b + b**3 + b**2) # Full symbolic solution is too much, test with numeric version a, b = 1, 2 B = Beta('x', a, b) assert expand_func(E(B)) == a / S(a + b) assert expand_func(variance(B)) == (a*b) / S((a + b)**2 * (a + b + 1)) assert median(B) == FiniteSet(1 - 1/sqrt(2)) def test_beta_noncentral(): a, b = symbols('a b', positive=True) c = Symbol('c', nonnegative=True) _k = Dummy('k') X = BetaNoncentral('x', a, b, c) assert pspace(X).domain.set == Interval(0, 1) dens = density(X) z = Symbol('z') res = Sum( z**(_k + a - 1)*(c/2)**_k*(1 - z)**(b - 1)*exp(-c/2)/ (beta(_k + a, b)*factorial(_k)), (_k, 0, oo)) assert dens(z).dummy_eq(res) # BetaCentral should not raise if the assumptions # on the symbols can not be determined a, b, c = symbols('a b c') assert BetaNoncentral('x', a, b, c) a = Symbol('a', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) a = Symbol('a', positive=True) b = Symbol('b', positive=True) c = Symbol('c', nonnegative=False, real=True) raises(ValueError, lambda: BetaNoncentral('x', a, b, c)) def test_betaprime(): alpha = Symbol("alpha", positive=True) betap = Symbol("beta", positive=True) X = BetaPrime('x', alpha, betap) assert density(X)(x) == x**(alpha - 1)*(x + 1)**(-alpha - betap)/beta(alpha, betap) alpha = Symbol("alpha", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) alpha = Symbol("alpha", positive=True) betap = Symbol("beta", nonpositive=True) raises(ValueError, lambda: BetaPrime('x', alpha, betap)) X = BetaPrime('x', 1, 1) assert median(X) == FiniteSet(1) def test_BoundedPareto(): L, H = symbols('L, H', negative=True) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', real=False) raises(ValueError, lambda: BoundedPareto('X', 1, L, H)) L, H = symbols('L, H', positive=True) raises(ValueError, lambda: BoundedPareto('X', -1, L, H)) X = BoundedPareto('X', 2, L, H) assert X.pspace.domain.set == Interval(L, H) assert density(X)(x) == 2*L**2/(x**3*(1 - L**2/H**2)) assert cdf(X)(x) == Piecewise((-H**2*L**2/(x**2*(H**2 - L**2)) \ + H**2/(H**2 - L**2), L <= x), (0, True)) assert E(X).simplify() == 2*H*L/(H + L) X = BoundedPareto('X', 1, 2, 4) assert E(X).simplify() == log(16) assert median(X) == FiniteSet(Rational(8, 3)) assert variance(X).simplify() == 8 - 16*log(2)**2 def test_cauchy(): x0 = Symbol("x0", real=True) gamma = Symbol("gamma", positive=True) p = Symbol("p", positive=True) X = Cauchy('x', x0, gamma) # Tests the characteristic function assert characteristic_function(X)(x) == exp(-gamma*Abs(x) + I*x*x0) raises(NotImplementedError, lambda: moment_generating_function(X)) assert density(X)(x) == 1/(pi*gamma*(1 + (x - x0)**2/gamma**2)) assert diff(cdf(X)(x), x) == density(X)(x) assert quantile(X)(p) == gamma*tan(pi*(p - S.Half)) + x0 x1 = Symbol("x1", real=False) raises(ValueError, lambda: Cauchy('x', x1, gamma)) gamma = Symbol("gamma", nonpositive=True) raises(ValueError, lambda: Cauchy('x', x0, gamma)) assert median(X) == FiniteSet(x0) def test_chi(): from sympy.core.numbers import I k = Symbol("k", integer=True) X = Chi('x', k) assert density(X)(x) == 2**(-k/2 + 1)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) # Tests the characteristic function assert characteristic_function(X)(x) == sqrt(2)*I*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), -x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), -x**2/2) # Tests the moment generating function assert moment_generating_function(X)(x) == sqrt(2)*x*gamma(k/2 + S(1)/2)*hyper((k/2 + S(1)/2,), (S(3)/2,), x**2/2)/gamma(k/2) + hyper((k/2,), (S(1)/2,), x**2/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: Chi('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: Chi('x', k)) def test_chi_noncentral(): k = Symbol("k", integer=True) l = Symbol("l") X = ChiNoncentral("x", k, l) assert density(X)(x) == (x**k*l*(x*l)**(-k/2)* exp(-x**2/2 - l**2/2)*besseli(k/2 - 1, x*l)) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=True, positive=True) l = Symbol("l", nonpositive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) k = Symbol("k", integer=False) l = Symbol("l", positive=True) raises(ValueError, lambda: ChiNoncentral('x', k, l)) def test_chi_squared(): k = Symbol("k", integer=True) X = ChiSquared('x', k) # Tests the characteristic function assert characteristic_function(X)(x) == ((-2*I*x + 1)**(-k/2)) assert density(X)(x) == 2**(-k/2)*x**(k/2 - 1)*exp(-x/2)/gamma(k/2) assert cdf(X)(x) == Piecewise((lowergamma(k/2, x/2)/gamma(k/2), x >= 0), (0, True)) assert E(X) == k assert variance(X) == 2*k X = ChiSquared('x', 15) assert cdf(X)(3) == -14873*sqrt(6)*exp(Rational(-3, 2))/(5005*sqrt(pi)) + erf(sqrt(6)/2) k = Symbol("k", integer=True, positive=False) raises(ValueError, lambda: ChiSquared('x', k)) k = Symbol("k", integer=False, positive=True) raises(ValueError, lambda: ChiSquared('x', k)) def test_dagum(): p = Symbol("p", positive=True) b = Symbol("b", positive=True) a = Symbol("a", positive=True) X = Dagum('x', p, a, b) assert density(X)(x) == a*p*(x/b)**(a*p)*((x/b)**a + 1)**(-p - 1)/x assert cdf(X)(x) == Piecewise(((1 + (x/b)**(-a))**(-p), x >= 0), (0, True)) p = Symbol("p", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) p = Symbol("p", positive=True) b = Symbol("b", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) b = Symbol("b", positive=True) a = Symbol("a", nonpositive=True) raises(ValueError, lambda: Dagum('x', p, a, b)) X = Dagum('x', 1, 1, 1) assert median(X) == FiniteSet(1) def test_erlang(): k = Symbol("k", integer=True, positive=True) l = Symbol("l", positive=True) X = Erlang("x", k, l) assert density(X)(x) == x**(k - 1)*l**k*exp(-x*l)/gamma(k) assert cdf(X)(x) == Piecewise((lowergamma(k, l*x)/gamma(k), x > 0), (0, True)) def test_exgaussian(): m, z = symbols("m, z") s, l = symbols("s, l", positive=True) X = ExGaussian("x", m, s, l) assert density(X)(z) == l*exp(l*(l*s**2 + 2*m - 2*z)/2) *\ erfc(sqrt(2)*(l*s**2 + m - z)/(2*s))/2 # Note: actual_output simplifies to expected_output. # Ideally cdf(X)(z) would return expected_output # expected_output = (erf(sqrt(2)*(l*s**2 + m - z)/(2*s)) - 1)*exp(l*(l*s**2 + 2*m - 2*z)/2)/2 - erf(sqrt(2)*(m - z)/(2*s))/2 + S.Half u = l*(z - m) v = l*s GaussianCDF1 = cdf(Normal('x', 0, v))(u) GaussianCDF2 = cdf(Normal('x', v**2, v))(u) actual_output = GaussianCDF1 - exp(-u + (v**2/2) + log(GaussianCDF2)) assert cdf(X)(z) == actual_output # assert simplify(actual_output) == expected_output assert variance(X).expand() == s**2 + l**(-2) assert skewness(X).expand() == 2/(l**3*s**2*sqrt(s**2 + l**(-2)) + l * sqrt(s**2 + l**(-2))) def test_exponential(): rate = Symbol('lambda', positive=True) X = Exponential('x', rate) p = Symbol("p", positive=True, real=True) assert E(X) == 1/rate assert variance(X) == 1/rate**2 assert skewness(X) == 2 assert skewness(X) == smoment(X, 3) assert kurtosis(X) == 9 assert kurtosis(X) == smoment(X, 4) assert smoment(2*X, 4) == smoment(X, 4) assert moment(X, 3) == 3*2*1/rate**3 assert P(X > 0) is S.One assert P(X > 1) == exp(-rate) assert P(X > 10) == exp(-10*rate) assert quantile(X)(p) == -log(1-p)/rate assert where(X <= 1).set == Interval(0, 1) Y = Exponential('y', 1) assert median(Y) == FiniteSet(log(2)) #Test issue 9970 z = Dummy('z') assert P(X > z) == exp(-z*rate) assert P(X < z) == 0 #Test issue 10076 (Distribution with interval(0,oo)) x = Symbol('x') _z = Dummy('_z') b = SingleContinuousPSpace(x, ExponentialDistribution(2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed expected1 = Integral(2*exp(-2*_z), (_z, 3, oo)) assert b.probability(x > 3, evaluate=False).rewrite(Integral).dummy_eq(expected1) expected2 = Integral(2*exp(-2*_z), (_z, 0, 4)) assert b.probability(x < 4, evaluate=False).rewrite(Integral).dummy_eq(expected2) Y = Exponential('y', 2*rate) assert coskewness(X, X, X) == skewness(X) assert coskewness(X, Y + rate*X, Y + 2*rate*X) == \ 4/(sqrt(1 + 1/(4*rate**2))*sqrt(4 + 1/(4*rate**2))) assert coskewness(X + 2*Y, Y + X, Y + 2*X, X > 3) == \ sqrt(170)*Rational(9, 85) def test_exponential_power(): mu = Symbol('mu') z = Symbol('z') alpha = Symbol('alpha', positive=True) beta = Symbol('beta', positive=True) X = ExponentialPower('x', mu, alpha, beta) assert density(X)(z) == beta*exp(-(Abs(mu - z)/alpha) ** beta)/(2*alpha*gamma(1/beta)) assert cdf(X)(z) == S.Half + lowergamma(1/beta, (Abs(mu - z)/alpha)**beta)*sign(-mu + z)/\ (2*gamma(1/beta)) def test_f_distribution(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FDistribution("x", d1, d2) assert density(X)(x) == (d2**(d2/2)*sqrt((d1*x)**d1*(d1*x + d2)**(-d1 - d2)) /(x*beta(d1/2, d2/2))) raises(NotImplementedError, lambda: moment_generating_function(X)) d1 = Symbol("d1", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d1)) d1 = Symbol("d1", positive=True) d2 = Symbol("d2", nonpositive=True) raises(ValueError, lambda: FDistribution('x', d1, d2)) d2 = Symbol("d2", positive=True, integer=False) raises(ValueError, lambda: FDistribution('x', d1, d2)) def test_fisher_z(): d1 = Symbol("d1", positive=True) d2 = Symbol("d2", positive=True) X = FisherZ("x", d1, d2) assert density(X)(x) == (2*d1**(d1/2)*d2**(d2/2)*(d1*exp(2*x) + d2) **(-d1/2 - d2/2)*exp(d1*x)/beta(d1/2, d2/2)) def test_frechet(): a = Symbol("a", positive=True) s = Symbol("s", positive=True) m = Symbol("m", real=True) X = Frechet("x", a, s=s, m=m) assert density(X)(x) == a*((x - m)/s)**(-a - 1)*exp(-((x - m)/s)**(-a))/s assert cdf(X)(x) == Piecewise((exp(-((-m + x)/s)**(-a)), m <= x), (0, True)) @slow def test_gamma(): k = Symbol("k", positive=True) theta = Symbol("theta", positive=True) X = Gamma('x', k, theta) # Tests characteristic function assert characteristic_function(X)(x) == ((-I*theta*x + 1)**(-k)) assert density(X)(x) == x**(k - 1)*theta**(-k)*exp(-x/theta)/gamma(k) assert cdf(X, meijerg=True)(z) == Piecewise( (-k*lowergamma(k, 0)/gamma(k + 1) + k*lowergamma(k, z/theta)/gamma(k + 1), z >= 0), (0, True)) # assert simplify(variance(X)) == k*theta**2 # handled numerically below assert E(X) == moment(X, 1) k, theta = symbols('k theta', positive=True) X = Gamma('x', k, theta) assert E(X) == k*theta assert variance(X) == k*theta**2 assert skewness(X).expand() == 2/sqrt(k) assert kurtosis(X).expand() == 3 + 6/k Y = Gamma('y', 2*k, 3*theta) assert coskewness(X, theta*X + Y, k*X + Y).simplify() == \ 2*531441**(-k)*sqrt(k)*theta*(3*3**(12*k) - 2*531441**k) \ /(sqrt(k**2 + 18)*sqrt(theta**2 + 18)) def test_gamma_inverse(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = GammaInverse("x", a, b) assert density(X)(x) == x**(-a - 1)*b**a*exp(-b/x)/gamma(a) assert cdf(X)(x) == Piecewise((uppergamma(a, b/x)/gamma(a), x > 0), (0, True)) assert characteristic_function(X)(x) == 2 * (-I*b*x)**(a/2) \ * besselk(a, 2*sqrt(b)*sqrt(-I*x))/gamma(a) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_gompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = Gompertz("x", b, eta) assert density(X)(x) == b*eta*exp(eta)*exp(b*x)*exp(-eta*exp(b*x)) assert cdf(X)(x) == 1 - exp(eta)*exp(-eta*exp(b*x)) assert diff(cdf(X)(x), x) == density(X)(x) def test_gumbel(): beta = Symbol("beta", positive=True) mu = Symbol("mu") x = Symbol("x") y = Symbol("y") X = Gumbel("x", beta, mu) Y = Gumbel("y", beta, mu, minimum=True) assert density(X)(x).expand() == \ exp(mu/beta)*exp(-x/beta)*exp(-exp(mu/beta)*exp(-x/beta))/beta assert density(Y)(y).expand() == \ exp(-mu/beta)*exp(y/beta)*exp(-exp(-mu/beta)*exp(y/beta))/beta assert cdf(X)(x).expand() == \ exp(-exp(mu/beta)*exp(-x/beta)) assert characteristic_function(X)(x) == exp(I*mu*x)*gamma(-I*beta*x + 1) def test_kumaraswamy(): a = Symbol("a", positive=True) b = Symbol("b", positive=True) X = Kumaraswamy("x", a, b) assert density(X)(x) == x**(a - 1)*a*b*(-x**a + 1)**(b - 1) assert cdf(X)(x) == Piecewise((0, x < 0), (-(-x**a + 1)**b + 1, x <= 1), (1, True)) def test_laplace(): mu = Symbol("mu") b = Symbol("b", positive=True) X = Laplace('x', mu, b) #Tests characteristic_function assert characteristic_function(X)(x) == (exp(I*mu*x)/(b**2*x**2 + 1)) assert density(X)(x) == exp(-Abs(x - mu)/b)/(2*b) assert cdf(X)(x) == Piecewise((exp((-mu + x)/b)/2, mu > x), (-exp((mu - x)/b)/2 + 1, True)) X = Laplace('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateLaplaceDistribution) def test_levy(): mu = Symbol("mu", real=True) c = Symbol("c", positive=True) X = Levy('x', mu, c) assert X.pspace.domain.set == Interval(mu, oo) assert density(X)(x) == sqrt(c/(2*pi))*exp(-c/(2*(x - mu)))/((x - mu)**(S.One + S.Half)) assert cdf(X)(x) == erfc(sqrt(c/(2*(x - mu)))) raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=False) raises(ValueError, lambda: Levy('x',mu,c)) c = Symbol("c", nonpositive=True) raises(ValueError, lambda: Levy('x',mu,c)) mu = Symbol("mu", real=True) raises(ValueError, lambda: Levy('x',mu,c)) def test_logcauchy(): mu = Symbol("mu", positive=True) sigma = Symbol("sigma", positive=True) X = LogCauchy("x", mu, sigma) assert density(X)(x) == sigma/(x*pi*(sigma**2 + (-mu + log(x))**2)) assert cdf(X)(x) == atan((log(x) - mu)/sigma)/pi + S.Half def test_logistic(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) p = Symbol("p", positive=True) X = Logistic('x', mu, s) #Tests characteristics_function assert characteristic_function(X)(x) == \ (Piecewise((pi*s*x*exp(I*mu*x)/sinh(pi*s*x), Ne(x, 0)), (1, True))) assert density(X)(x) == exp((-x + mu)/s)/(s*(exp((-x + mu)/s) + 1)**2) assert cdf(X)(x) == 1/(exp((mu - x)/s) + 1) assert quantile(X)(p) == mu - s*log(-S.One + 1/p) def test_loglogistic(): a, b = symbols('a b') assert LogLogistic('x', a, b) a = Symbol('a', negative=True) b = Symbol('b', positive=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a = Symbol('a', positive=True) b = Symbol('b', negative=True) raises(ValueError, lambda: LogLogistic('x', a, b)) a, b, z, p = symbols('a b z p', positive=True) X = LogLogistic('x', a, b) assert density(X)(z) == b*(z/a)**(b - 1)/(a*((z/a)**b + 1)**2) assert cdf(X)(z) == 1/(1 + (z/a)**(-b)) assert quantile(X)(p) == a*(p/(1 - p))**(1/b) # Expectation assert E(X) == Piecewise((S.NaN, b <= 1), (pi*a/(b*sin(pi/b)), True)) b = symbols('b', prime=True) # b > 1 X = LogLogistic('x', a, b) assert E(X) == pi*a/(b*sin(pi/b)) X = LogLogistic('x', 1, 2) assert median(X) == FiniteSet(1) def test_logitnormal(): mu = Symbol('mu', real=True) s = Symbol('s', positive=True) X = LogitNormal('x', mu, s) x = Symbol('x') assert density(X)(x) == sqrt(2)*exp(-(-mu + log(x/(1 - x)))**2/(2*s**2))/(2*sqrt(pi)*s*x*(1 - x)) assert cdf(X)(x) == erf(sqrt(2)*(-mu + log(x/(1 - x)))/(2*s))/2 + S(1)/2 def test_lognormal(): mean = Symbol('mu', real=True) std = Symbol('sigma', positive=True) X = LogNormal('x', mean, std) # The sympy integrator can't do this too well #assert E(X) == exp(mean+std**2/2) #assert variance(X) == (exp(std**2)-1) * exp(2*mean + std**2) # The sympy integrator can't do this too well #assert E(X) == raises(NotImplementedError, lambda: moment_generating_function(X)) mu = Symbol("mu", real=True) sigma = Symbol("sigma", positive=True) X = LogNormal('x', mu, sigma) assert density(X)(x) == (sqrt(2)*exp(-(-mu + log(x))**2 /(2*sigma**2))/(2*x*sqrt(pi)*sigma)) # Tests cdf assert cdf(X)(x) == Piecewise( (erf(sqrt(2)*(-mu + log(x))/(2*sigma))/2 + S(1)/2, x > 0), (0, True)) X = LogNormal('x', 0, 1) # Mean 0, standard deviation 1 assert density(X)(x) == sqrt(2)*exp(-log(x)**2/2)/(2*x*sqrt(pi)) def test_Lomax(): a, l = symbols('a, l', negative=True) raises(ValueError, lambda: Lomax('X', a, l)) a, l = symbols('a, l', real=False) raises(ValueError, lambda: Lomax('X', a, l)) a, l = symbols('a, l', positive=True) X = Lomax('X', a, l) assert X.pspace.domain.set == Interval(0, oo) assert density(X)(x) == a*(1 + x/l)**(-a - 1)/l assert cdf(X)(x) == Piecewise((1 - (1 + x/l)**(-a), x >= 0), (0, True)) a = 3 X = Lomax('X', a, l) assert E(X) == l/2 assert median(X) == FiniteSet(l*(-1 + 2**Rational(1, 3))) assert variance(X) == 3*l**2/4 def test_maxwell(): a = Symbol("a", positive=True) X = Maxwell('x', a) assert density(X)(x) == (sqrt(2)*x**2*exp(-x**2/(2*a**2))/ (sqrt(pi)*a**3)) assert E(X) == 2*sqrt(2)*a/sqrt(pi) assert variance(X) == -8*a**2/pi + 3*a**2 assert cdf(X)(x) == erf(sqrt(2)*x/(2*a)) - sqrt(2)*x*exp(-x**2/(2*a**2))/(sqrt(pi)*a) assert diff(cdf(X)(x), x) == density(X)(x) def test_Moyal(): mu = Symbol('mu',real=False) sigma = Symbol('sigma', positive=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) mu = Symbol('mu', real=True) sigma = Symbol('sigma', negative=True) raises(ValueError, lambda: Moyal('M',mu, sigma)) sigma = Symbol('sigma', positive=True) M = Moyal('M', mu, sigma) assert density(M)(z) == sqrt(2)*exp(-exp((mu - z)/sigma)/2 - (-mu + z)/(2*sigma))/(2*sqrt(pi)*sigma) assert cdf(M)(z).simplify() == 1 - erf(sqrt(2)*exp((mu - z)/(2*sigma))/2) assert characteristic_function(M)(z) == 2**(-I*sigma*z)*exp(I*mu*z) \ *gamma(-I*sigma*z + Rational(1, 2))/sqrt(pi) assert E(M) == mu + EulerGamma*sigma + sigma*log(2) assert moment_generating_function(M)(z) == 2**(-sigma*z)*exp(mu*z) \ *gamma(-sigma*z + Rational(1, 2))/sqrt(pi) def test_nakagami(): mu = Symbol("mu", positive=True) omega = Symbol("omega", positive=True) X = Nakagami('x', mu, omega) assert density(X)(x) == (2*x**(2*mu - 1)*mu**mu*omega**(-mu) *exp(-x**2*mu/omega)/gamma(mu)) assert simplify(E(X)) == (sqrt(mu)*sqrt(omega) *gamma(mu + S.Half)/gamma(mu + 1)) assert simplify(variance(X)) == ( omega - omega*gamma(mu + S.Half)**2/(gamma(mu)*gamma(mu + 1))) assert cdf(X)(x) == Piecewise( (lowergamma(mu, mu*x**2/omega)/gamma(mu), x > 0), (0, True)) X = Nakagami('x', 1, 1) assert median(X) == FiniteSet(sqrt(log(2))) def test_gaussian_inverse(): # test for symbolic parameters a, b = symbols('a b') assert GaussianInverse('x', a, b) # Inverse Gaussian distribution is also known as Wald distribution # `GaussianInverse` can also be referred by the name `Wald` a, b, z = symbols('a b z') X = Wald('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b/z**3)*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) a, b = symbols('a b', positive=True) z = Symbol('z', positive=True) X = GaussianInverse('x', a, b) assert density(X)(z) == sqrt(2)*sqrt(b)*sqrt(z**(-3))*exp(-b*(-a + z)**2/(2*a**2*z))/(2*sqrt(pi)) assert E(X) == a assert variance(X).expand() == a**3/b assert cdf(X)(z) == (S.Half - erf(sqrt(2)*sqrt(b)*(1 + z/a)/(2*sqrt(z)))/2)*exp(2*b/a) +\ erf(sqrt(2)*sqrt(b)*(-1 + z/a)/(2*sqrt(z)))/2 + S.Half a = symbols('a', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) a = symbols('a', positive=True) b = symbols('b', nonpositive=True) raises(ValueError, lambda: GaussianInverse('x', a, b)) def test_pareto(): xm, beta = symbols('xm beta', positive=True) alpha = beta + 5 X = Pareto('x', xm, alpha) dens = density(X) #Tests cdf function assert cdf(X)(x) == \ Piecewise((-x**(-beta - 5)*xm**(beta + 5) + 1, x >= xm), (0, True)) #Tests characteristic_function assert characteristic_function(X)(x) == \ ((-I*x*xm)**(beta + 5)*(beta + 5)*uppergamma(-beta - 5, -I*x*xm)) assert dens(x) == x**(-(alpha + 1))*xm**(alpha)*(alpha) assert simplify(E(X)) == alpha*xm/(alpha-1) # computation of taylor series for MGF still too slow #assert simplify(variance(X)) == xm**2*alpha / ((alpha-1)**2*(alpha-2)) def test_pareto_numeric(): xm, beta = 3, 2 alpha = beta + 5 X = Pareto('x', xm, alpha) assert E(X) == alpha*xm/S(alpha - 1) assert variance(X) == xm**2*alpha / S((alpha - 1)**2*(alpha - 2)) assert median(X) == FiniteSet(3*2**Rational(1, 7)) # Skewness tests too slow. Try shortcutting function? def test_PowerFunction(): alpha = Symbol("alpha", nonpositive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) a, b = symbols('a, b', real=False) raises (ValueError, lambda: PowerFunction('x', alpha, a, b)) alpha = Symbol("alpha", positive=True) a, b = symbols('a, b', real=True) raises (ValueError, lambda: PowerFunction('x', alpha, 5, 2)) X = PowerFunction('X', 2, a, b) assert density(X)(z) == (-2*a + 2*z)/(-a + b)**2 assert cdf(X)(z) == Piecewise((a**2/(a**2 - 2*a*b + b**2) - 2*a*z/(a**2 - 2*a*b + b**2) + z**2/(a**2 - 2*a*b + b**2), a <= z), (0, True)) X = PowerFunction('X', 2, 0, 1) assert density(X)(z) == 2*z assert cdf(X)(z) == Piecewise((z**2, z >= 0), (0,True)) assert E(X) == Rational(2,3) assert P(X < 0) == 0 assert P(X < 1) == 1 assert median(X) == FiniteSet(1/sqrt(2)) def test_raised_cosine(): mu = Symbol("mu", real=True) s = Symbol("s", positive=True) X = RaisedCosine("x", mu, s) assert pspace(X).domain.set == Interval(mu - s, mu + s) #Tests characteristics_function assert characteristic_function(X)(x) == \ Piecewise((exp(-I*pi*mu/s)/2, Eq(x, -pi/s)), (exp(I*pi*mu/s)/2, Eq(x, pi/s)), (pi**2*exp(I*mu*x)*sin(s*x)/(s*x*(-s**2*x**2 + pi**2)), True)) assert density(X)(x) == (Piecewise(((cos(pi*(x - mu)/s) + 1)/(2*s), And(x <= mu + s, mu - s <= x)), (0, True))) def test_rayleigh(): sigma = Symbol("sigma", positive=True) X = Rayleigh('x', sigma) #Tests characteristic_function assert characteristic_function(X)(x) == (-sqrt(2)*sqrt(pi)*sigma*x*(erfi(sqrt(2)*sigma*x/2) - I)*exp(-sigma**2*x**2/2)/2 + 1) assert density(X)(x) == x*exp(-x**2/(2*sigma**2))/sigma**2 assert E(X) == sqrt(2)*sqrt(pi)*sigma/2 assert variance(X) == -pi*sigma**2/2 + 2*sigma**2 assert cdf(X)(x) == 1 - exp(-x**2/(2*sigma**2)) assert diff(cdf(X)(x), x) == density(X)(x) def test_reciprocal(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = Reciprocal('x', a, b) assert density(X)(x) == 1/(x*(-log(a) + log(b))) assert cdf(X)(x) == Piecewise((log(a)/(log(a) - log(b)) - log(x)/(log(a) - log(b)), a <= x), (0, True)) X = Reciprocal('x', 5, 30) assert E(X) == 25/(log(30) - log(5)) assert P(X < 4) == S.Zero assert P(X < 20) == log(20) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) assert cdf(X)(10) == log(10) / (log(30) - log(5)) - log(5) / (log(30) - log(5)) a = symbols('a', nonpositive=True) raises(ValueError, lambda: Reciprocal('x', a, b)) a = symbols('a', positive=True) b = symbols('b', positive=True) raises(ValueError, lambda: Reciprocal('x', a + b, a)) def test_shiftedgompertz(): b = Symbol("b", positive=True) eta = Symbol("eta", positive=True) X = ShiftedGompertz("x", b, eta) assert density(X)(x) == b*(eta*(1 - exp(-b*x)) + 1)*exp(-b*x)*exp(-eta*exp(-b*x)) def test_studentt(): nu = Symbol("nu", positive=True) X = StudentT('x', nu) assert density(X)(x) == (1 + x**2/nu)**(-nu/2 - S.Half)/(sqrt(nu)*beta(S.Half, nu/2)) assert cdf(X)(x) == S.Half + x*gamma(nu/2 + S.Half)*hyper((S.Half, nu/2 + S.Half), (Rational(3, 2),), -x**2/nu)/(sqrt(pi)*sqrt(nu)*gamma(nu/2)) raises(NotImplementedError, lambda: moment_generating_function(X)) def test_trapezoidal(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", real=True) d = Symbol("d", real=True) X = Trapezoidal('x', a, b, c, d) assert density(X)(x) == Piecewise(((-2*a + 2*x)/((-a + b)*(-a - b + c + d)), (a <= x) & (x < b)), (2/(-a - b + c + d), (b <= x) & (x < c)), ((2*d - 2*x)/((-c + d)*(-a - b + c + d)), (c <= x) & (x <= d)), (0, True)) X = Trapezoidal('x', 0, 1, 2, 3) assert E(X) == Rational(3, 2) assert variance(X) == Rational(5, 12) assert P(X < 2) == Rational(3, 4) assert median(X) == FiniteSet(Rational(3, 2)) def test_triangular(): a = Symbol("a") b = Symbol("b") c = Symbol("c") X = Triangular('x', a, b, c) assert pspace(X).domain.set == Interval(a, b) assert str(density(X)(x)) == ("Piecewise(((-2*a + 2*x)/((-a + b)*(-a + c)), (a <= x) & (c > x)), " "(2/(-a + b), Eq(c, x)), ((2*b - 2*x)/((-a + b)*(b - c)), (b >= x) & (c < x)), (0, True))") #Tests moment_generating_function assert moment_generating_function(X)(x).expand() == \ ((-2*(-a + b)*exp(c*x) + 2*(-a + c)*exp(b*x) + 2*(b - c)*exp(a*x))/(x**2*(-a + b)*(-a + c)*(b - c))).expand() assert str(characteristic_function(X)(x)) == \ '(2*(-a + b)*exp(I*c*x) - 2*(-a + c)*exp(I*b*x) - 2*(b - c)*exp(I*a*x))/(x**2*(-a + b)*(-a + c)*(b - c))' def test_quadratic_u(): a = Symbol("a", real=True) b = Symbol("b", real=True) X = QuadraticU("x", a, b) Y = QuadraticU("x", 1, 2) assert pspace(X).domain.set == Interval(a, b) # Tests _moment_generating_function assert moment_generating_function(Y)(1) == -15*exp(2) + 27*exp(1) assert moment_generating_function(Y)(2) == -9*exp(4)/2 + 21*exp(2)/2 assert characteristic_function(Y)(1) == 3*I*(-1 + 4*I)*exp(I*exp(2*I)) assert density(X)(x) == (Piecewise((12*(x - a/2 - b/2)**2/(-a + b)**3, And(x <= b, a <= x)), (0, True))) def test_uniform(): l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert E(X) == l + w/2 assert variance(X).expand() == w**2/12 # With numbers all is well X = Uniform('x', 3, 5) assert P(X < 3) == 0 and P(X > 5) == 0 assert P(X < 4) == P(X > 4) == S.Half assert median(X) == FiniteSet(4) z = Symbol('z') p = density(X)(z) assert p.subs(z, 3.7) == S.Half assert p.subs(z, -1) == 0 assert p.subs(z, 6) == 0 c = cdf(X) assert c(2) == 0 and c(3) == 0 assert c(Rational(7, 2)) == Rational(1, 4) assert c(5) == 1 and c(6) == 1 @XFAIL def test_uniform_P(): """ This stopped working because SingleContinuousPSpace.compute_density no longer calls integrate on a DiracDelta but rather just solves directly. integrate used to call UniformDistribution.expectation which special-cased subsed out the Min and Max terms that Uniform produces I decided to regress on this class for general cleanliness (and I suspect speed) of the algorithm. """ l = Symbol('l', real=True) w = Symbol('w', positive=True) X = Uniform('x', l, l + w) assert P(X < l) == 0 and P(X > l + w) == 0 def test_uniformsum(): n = Symbol("n", integer=True) _k = Dummy("k") x = Symbol("x") X = UniformSum('x', n) res = Sum((-1)**_k*(-_k + x)**(n - 1)*binomial(n, _k), (_k, 0, floor(x)))/factorial(n - 1) assert density(X)(x).dummy_eq(res) #Tests set functions assert X.pspace.domain.set == Interval(0, n) #Tests the characteristic_function assert characteristic_function(X)(x) == (-I*(exp(I*x) - 1)/x)**n #Tests the moment_generating_function assert moment_generating_function(X)(x) == ((exp(x) - 1)/x)**n def test_von_mises(): mu = Symbol("mu") k = Symbol("k", positive=True) X = VonMises("x", mu, k) assert density(X)(x) == exp(k*cos(x - mu))/(2*pi*besseli(0, k)) def test_weibull(): a, b = symbols('a b', positive=True) # FIXME: simplify(E(X)) seems to hang without extended_positive=True # On a Linux machine this had a rapid memory leak... # a, b = symbols('a b', positive=True) X = Weibull('x', a, b) assert E(X).expand() == a * gamma(1 + 1/b) assert variance(X).expand() == (a**2 * gamma(1 + 2/b) - E(X)**2).expand() assert simplify(skewness(X)) == (2*gamma(1 + 1/b)**3 - 3*gamma(1 + 1/b)*gamma(1 + 2/b) + gamma(1 + 3/b))/(-gamma(1 + 1/b)**2 + gamma(1 + 2/b))**Rational(3, 2) assert simplify(kurtosis(X)) == (-3*gamma(1 + 1/b)**4 +\ 6*gamma(1 + 1/b)**2*gamma(1 + 2/b) - 4*gamma(1 + 1/b)*gamma(1 + 3/b) + gamma(1 + 4/b))/(gamma(1 + 1/b)**2 - gamma(1 + 2/b))**2 def test_weibull_numeric(): # Test for integers and rationals a = 1 bvals = [S.Half, 1, Rational(3, 2), 5] for b in bvals: X = Weibull('x', a, b) assert simplify(E(X)) == expand_func(a * gamma(1 + 1/S(b))) assert simplify(variance(X)) == simplify( a**2 * gamma(1 + 2/S(b)) - E(X)**2) # Not testing Skew... it's slow with int/frac values > 3/2 def test_wignersemicircle(): R = Symbol("R", positive=True) X = WignerSemicircle('x', R) assert pspace(X).domain.set == Interval(-R, R) assert density(X)(x) == 2*sqrt(-x**2 + R**2)/(pi*R**2) assert E(X) == 0 #Tests ChiNoncentralDistribution assert characteristic_function(X)(x) == \ Piecewise((2*besselj(1, R*x)/(R*x), Ne(x, 0)), (1, True)) def test_input_value_assertions(): a, b = symbols('a b') p, q = symbols('p q', positive=True) m, n = symbols('m n', positive=False, real=True) raises(ValueError, lambda: Normal('x', 3, 0)) raises(ValueError, lambda: Normal('x', m, n)) Normal('X', a, p) # No error raised raises(ValueError, lambda: Exponential('x', m)) Exponential('Ex', p) # No error raised for fn in [Pareto, Weibull, Beta, Gamma]: raises(ValueError, lambda: fn('x', m, p)) raises(ValueError, lambda: fn('x', p, n)) fn('x', p, q) # No error raised def test_unevaluated(): X = Normal('x', 0, 1) k = Dummy('k') expr1 = Integral(sqrt(2)*k*exp(-k**2/2)/(2*sqrt(pi)), (k, -oo, oo)) expr2 = Integral(sqrt(2)*exp(-k**2/2)/(2*sqrt(pi)), (k, 0, oo)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert E(X, evaluate=False).rewrite(Integral).dummy_eq(expr1) assert E(X + 1, evaluate=False).rewrite(Integral).dummy_eq(expr1 + 1) assert P(X > 0, evaluate=False).rewrite(Integral).dummy_eq(expr2) assert P(X > 0, X**2 < 1) == S.Half def test_probability_unevaluated(): T = Normal('T', 30, 3) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert type(P(T > 33, evaluate=False)) == Probability def test_density_unevaluated(): X = Normal('X', 0, 1) Y = Normal('Y', 0, 2) assert isinstance(density(X+Y, evaluate=False)(z), Integral) def test_NormalDistribution(): nd = NormalDistribution(0, 1) x = Symbol('x') assert nd.cdf(x) == erf(sqrt(2)*x/2)/2 + S.Half assert nd.expectation(1, x) == 1 assert nd.expectation(x, x) == 0 assert nd.expectation(x**2, x) == 1 #Test issue 10076 a = SingleContinuousPSpace(x, NormalDistribution(2, 4)) _z = Dummy('_z') expected1 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, -oo, 1)) assert a.probability(x < 1, evaluate=False).dummy_eq(expected1) is True expected2 = Integral(sqrt(2)*exp(-(_z - 2)**2/32)/(8*sqrt(pi)),(_z, 1, oo)) assert a.probability(x > 1, evaluate=False).dummy_eq(expected2) is True b = SingleContinuousPSpace(x, NormalDistribution(1, 9)) expected3 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, 6, oo)) assert b.probability(x > 6, evaluate=False).dummy_eq(expected3) is True expected4 = Integral(sqrt(2)*exp(-(_z - 1)**2/162)/(18*sqrt(pi)),(_z, -oo, 6)) assert b.probability(x < 6, evaluate=False).dummy_eq(expected4) is True def test_random_parameters(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert density(meas, evaluate=False)(z) assert isinstance(pspace(meas), CompoundPSpace) X = Normal('x', [1, 2], [[1, 0], [0, 1]]) assert isinstance(pspace(X).distribution, MultivariateNormalDistribution) assert density(meas)(z).simplify() == sqrt(5)*exp(-z**2/20 + z/5 - S(1)/5)/(10*sqrt(pi)) def test_random_parameters_given(): mu = Normal('mu', 2, 3) meas = Normal('T', mu, 1) assert given(meas, Eq(mu, 5)) == Normal('T', 5, 1) def test_conjugate_priors(): mu = Normal('mu', 2, 3) x = Normal('x', mu, 1) assert isinstance(simplify(density(mu, Eq(x, y), evaluate=False)(z)), Mul) def test_difficult_univariate(): """ Since using solve in place of deltaintegrate we're able to perform substantially more complex density computations on single continuous random variables """ x = Normal('x', 0, 1) assert density(x**3) assert density(exp(x**2)) assert density(log(x)) def test_issue_10003(): X = Exponential('x', 3) G = Gamma('g', 1, 2) assert P(X < -1) is S.Zero assert P(G < -1) is S.Zero @slow def test_precomputed_cdf(): x = symbols("x", real=True) mu = symbols("mu", real=True) sigma, xm, alpha = symbols("sigma xm alpha", positive=True) n = symbols("n", integer=True, positive=True) distribs = [ Normal("X", mu, sigma), Pareto("P", xm, alpha), ChiSquared("C", n), Exponential("E", sigma), # LogNormal("L", mu, sigma), ] for X in distribs: compdiff = cdf(X)(x) - simplify(X.pspace.density.compute_cdf()(x)) compdiff = simplify(compdiff.rewrite(erfc)) assert compdiff == 0 @slow def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = Symbol('t') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.quad(lambda x: f(x, t), [support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Beta('b', 1, 2), 0, 1) test_cf(Chi('c', 3), 0, mpmath.inf) test_cf(ChiSquared('c', 2), 0, mpmath.inf) test_cf(Exponential('e', 6), 0, mpmath.inf) test_cf(Logistic('l', 1, 2), -mpmath.inf, mpmath.inf) test_cf(Normal('n', -1, 5), -mpmath.inf, mpmath.inf) test_cf(RaisedCosine('r', 3, 1), 2, 4) test_cf(Rayleigh('r', 0.5), 0, mpmath.inf) test_cf(Uniform('u', -1, 1), -1, 1) test_cf(WignerSemicircle('w', 3), -3, 3) def test_long_precomputed_cdf(): x = symbols("x", real=True) distribs = [ Arcsin("A", -5, 9), Dagum("D", 4, 10, 3), Erlang("E", 14, 5), Frechet("F", 2, 6, -3), Gamma("G", 2, 7), GammaInverse("GI", 3, 5), Kumaraswamy("K", 6, 8), Laplace("LA", -5, 4), Logistic("L", -6, 7), Nakagami("N", 2, 7), StudentT("S", 4) ] for distr in distribs: for _ in range(5): assert tn(diff(cdf(distr)(x), x), density(distr)(x), x, a=0, b=0, c=1, d=0) US = UniformSum("US", 5) pdf01 = density(US)(x).subs(floor(x), 0).doit() # pdf on (0, 1) cdf01 = cdf(US, evaluate=False)(x).subs(floor(x), 0).doit() # cdf on (0, 1) assert tn(diff(cdf01, x), pdf01, x, a=0, b=0, c=1, d=0) def test_issue_13324(): X = Uniform('X', 0, 1) assert E(X, X > S.Half) == Rational(3, 4) assert E(X, X > 0) == S.Half def test_issue_20756(): X = Uniform('X', -1, +1) Y = Uniform('Y', -1, +1) assert E(X * Y) == S.Zero assert E(X * ((Y + 1) - 1)) == S.Zero assert E(Y * (X*(X + 1) - X*X)) == S.Zero def test_FiniteSet_prob(): E = Exponential('E', 3) N = Normal('N', 5, 7) assert P(Eq(E, 1)) is S.Zero assert P(Eq(N, 2)) is S.Zero assert P(Eq(N, x)) is S.Zero def test_prob_neq(): E = Exponential('E', 4) X = ChiSquared('X', 4) assert P(Ne(E, 2)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 4)) == 1 assert P(Ne(X, 5)) == 1 assert P(Ne(E, x)) == 1 def test_union(): N = Normal('N', 3, 2) assert simplify(P(N**2 - N > 2)) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) assert simplify(P(N**2 - 4 > 0)) == \ -erf(5*sqrt(2)/4)/2 - erfc(sqrt(2)/4)/2 + Rational(3, 2) def test_Or(): N = Normal('N', 0, 1) assert simplify(P(Or(N > 2, N < 1))) == \ -erf(sqrt(2))/2 - erfc(sqrt(2)/2)/2 + Rational(3, 2) assert P(Or(N < 0, N < 1)) == P(N < 1) assert P(Or(N > 0, N < 0)) == 1 def test_conditional_eq(): E = Exponential('E', 1) assert P(Eq(E, 1), Eq(E, 1)) == 1 assert P(Eq(E, 1), Eq(E, 2)) == 0 assert P(E > 1, Eq(E, 2)) == 1 assert P(E < 1, Eq(E, 2)) == 0 def test_ContinuousDistributionHandmade(): x = Symbol('x') z = Dummy('z') dens = Lambda(x, Piecewise((S.Half, (0<=x)&(x<1)), (0, (x>=1)&(x<2)), (S.Half, (x>=2)&(x<3)), (0, True))) dens = ContinuousDistributionHandmade(dens, set=Interval(0, 3)) space = SingleContinuousPSpace(z, dens) assert dens.pdf == Lambda(x, Piecewise((1/2, (x >= 0) & (x < 1)), (0, (x >= 1) & (x < 2)), (1/2, (x >= 2) & (x < 3)), (0, True))) assert median(space.value) == Interval(1, 2) assert E(space.value) == Rational(3, 2) assert variance(space.value) == Rational(13, 12) def test_issue_16318(): # test compute_expectation function of the SingleContinuousDomain N = SingleContinuousDomain(x, Interval(0, 1)) raises(ValueError, lambda: SingleContinuousDomain.compute_expectation(N, x+1, {x, y}))
ae9fb027e50cea42bd1cd73d9a4e4feeed3cfbca11fc9d0ae09b7b26593d3c60
from sympy.concrete.summations import summation from sympy.core.containers import Dict from sympy.core.mul import Mul from sympy.core.power import Pow from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial as fac from sympy.core.evalf import bitcount from sympy.core.numbers import Integer, Rational from sympy.ntheory import (totient, factorint, primefactors, divisors, nextprime, primerange, pollard_rho, perfect_power, multiplicity, multiplicity_in_factorial, trailing, divisor_count, primorial, pollard_pm1, divisor_sigma, factorrat, reduced_totient) from sympy.ntheory.factor_ import (smoothness, smoothness_p, proper_divisors, antidivisors, antidivisor_count, core, udivisors, udivisor_sigma, udivisor_count, proper_divisor_count, primenu, primeomega, small_trailing, mersenne_prime_exponent, is_perfect, is_mersenne_prime, is_abundant, is_deficient, is_amicable, dra, drm) from sympy.testing.pytest import raises, slow from sympy.utilities.iterables import capture def fac_multiplicity(n, p): """Return the power of the prime number p in the factorization of n!""" if p > n: return 0 if p > n//2: return 1 q, m = n, 0 while q >= p: q //= p m += q return m def multiproduct(seq=(), start=1): """ Return the product of a sequence of factors with multiplicities, times the value of the parameter ``start``. The input may be a sequence of (factor, exponent) pairs or a dict of such pairs. >>> multiproduct({3:7, 2:5}, 4) # = 3**7 * 2**5 * 4 279936 """ if not seq: return start if isinstance(seq, dict): seq = iter(seq.items()) units = start multi = [] for base, exp in seq: if not exp: continue elif exp == 1: units *= base else: if exp % 2: units *= base multi.append((base, exp//2)) return units * multiproduct(multi)**2 def test_trailing_bitcount(): assert trailing(0) == 0 assert trailing(1) == 0 assert trailing(-1) == 0 assert trailing(2) == 1 assert trailing(7) == 0 assert trailing(-7) == 0 for i in range(100): assert trailing(1 << i) == i assert trailing((1 << i) * 31337) == i assert trailing(1 << 1000001) == 1000001 assert trailing((1 << 273956)*7**37) == 273956 # issue 12709 big = small_trailing[-1]*2 assert trailing(-big) == trailing(big) assert bitcount(-big) == bitcount(big) def test_multiplicity(): for b in range(2, 20): for i in range(100): assert multiplicity(b, b**i) == i assert multiplicity(b, (b**i) * 23) == i assert multiplicity(b, (b**i) * 1000249) == i # Should be fast assert multiplicity(10, 10**10023) == 10023 # Should exit quickly assert multiplicity(10**10, 10**10) == 1 # Should raise errors for bad input raises(ValueError, lambda: multiplicity(1, 1)) raises(ValueError, lambda: multiplicity(1, 2)) raises(ValueError, lambda: multiplicity(1.3, 2)) raises(ValueError, lambda: multiplicity(2, 0)) raises(ValueError, lambda: multiplicity(1.3, 0)) # handles Rationals assert multiplicity(10, Rational(30, 7)) == 1 assert multiplicity(Rational(2, 7), Rational(4, 7)) == 1 assert multiplicity(Rational(1, 7), Rational(3, 49)) == 2 assert multiplicity(Rational(2, 7), Rational(7, 2)) == -1 assert multiplicity(3, Rational(1, 9)) == -2 def test_multiplicity_in_factorial(): n = fac(1000) for i in (2, 4, 6, 12, 30, 36, 48, 60, 72, 96): assert multiplicity(i, n) == multiplicity_in_factorial(i, 1000) def test_perfect_power(): raises(ValueError, lambda: perfect_power(0.1)) assert perfect_power(0) is False assert perfect_power(1) is False assert perfect_power(2) is False assert perfect_power(3) is False assert perfect_power(4) == (2, 2) assert perfect_power(14) is False assert perfect_power(25) == (5, 2) assert perfect_power(22) is False assert perfect_power(22, [2]) is False assert perfect_power(137**(3*5*13)) == (137, 3*5*13) assert perfect_power(137**(3*5*13) + 1) is False assert perfect_power(137**(3*5*13) - 1) is False assert perfect_power(103005006004**7) == (103005006004, 7) assert perfect_power(103005006004**7 + 1) is False assert perfect_power(103005006004**7 - 1) is False assert perfect_power(103005006004**12) == (103005006004, 12) assert perfect_power(103005006004**12 + 1) is False assert perfect_power(103005006004**12 - 1) is False assert perfect_power(2**10007) == (2, 10007) assert perfect_power(2**10007 + 1) is False assert perfect_power(2**10007 - 1) is False assert perfect_power((9**99 + 1)**60) == (9**99 + 1, 60) assert perfect_power((9**99 + 1)**60 + 1) is False assert perfect_power((9**99 + 1)**60 - 1) is False assert perfect_power((10**40000)**2, big=False) == (10**40000, 2) assert perfect_power(10**100000) == (10, 100000) assert perfect_power(10**100001) == (10, 100001) assert perfect_power(13**4, [3, 5]) is False assert perfect_power(3**4, [3, 10], factor=0) is False assert perfect_power(3**3*5**3) == (15, 3) assert perfect_power(2**3*5**5) is False assert perfect_power(2*13**4) is False assert perfect_power(2**5*3**3) is False t = 2**24 for d in divisors(24): m = perfect_power(t*3**d) assert m and m[1] == d or d == 1 m = perfect_power(t*3**d, big=False) assert m and m[1] == 2 or d == 1 or d == 3, (d, m) # negatives and non-integer rationals assert perfect_power(-4) is False assert perfect_power(-8) == (-2, 3) assert perfect_power(Rational(1, 2)**3) == (S.Half, 3) assert perfect_power(Rational(-3, 2)**3) == (-3*S.Half, 3) @slow def test_factorint(): assert primefactors(123456) == [2, 3, 643] assert factorint(0) == {0: 1} assert factorint(1) == {} assert factorint(-1) == {-1: 1} assert factorint(-2) == {-1: 1, 2: 1} assert factorint(-16) == {-1: 1, 2: 4} assert factorint(2) == {2: 1} assert factorint(126) == {2: 1, 3: 2, 7: 1} assert factorint(123456) == {2: 6, 3: 1, 643: 1} assert factorint(5951757) == {3: 1, 7: 1, 29: 2, 337: 1} assert factorint(64015937) == {7993: 1, 8009: 1} assert factorint(2**(2**6) + 1) == {274177: 1, 67280421310721: 1} #issue 19683 assert factorint(10**38 - 1) == {3: 2, 11: 1, 909090909090909091: 1, 1111111111111111111: 1} #issue 17676 assert factorint(28300421052393658575) == {3: 1, 5: 2, 11: 2, 43: 1, 2063: 2, 4127: 1, 4129: 1} assert factorint(2063**2 * 4127**1 * 4129**1) == {2063: 2, 4127: 1, 4129: 1} assert factorint(2347**2 * 7039**1 * 7043**1) == {2347: 2, 7039: 1, 7043: 1} assert factorint(0, multiple=True) == [0] assert factorint(1, multiple=True) == [] assert factorint(-1, multiple=True) == [-1] assert factorint(-2, multiple=True) == [-1, 2] assert factorint(-16, multiple=True) == [-1, 2, 2, 2, 2] assert factorint(2, multiple=True) == [2] assert factorint(24, multiple=True) == [2, 2, 2, 3] assert factorint(126, multiple=True) == [2, 3, 3, 7] assert factorint(123456, multiple=True) == [2, 2, 2, 2, 2, 2, 3, 643] assert factorint(5951757, multiple=True) == [3, 7, 29, 29, 337] assert factorint(64015937, multiple=True) == [7993, 8009] assert factorint(2**(2**6) + 1, multiple=True) == [274177, 67280421310721] assert factorint(fac(1, evaluate=False)) == {} assert factorint(fac(7, evaluate=False)) == {2: 4, 3: 2, 5: 1, 7: 1} assert factorint(fac(15, evaluate=False)) == \ {2: 11, 3: 6, 5: 3, 7: 2, 11: 1, 13: 1} assert factorint(fac(20, evaluate=False)) == \ {2: 18, 3: 8, 5: 4, 7: 2, 11: 1, 13: 1, 17: 1, 19: 1} assert factorint(fac(23, evaluate=False)) == \ {2: 19, 3: 9, 5: 4, 7: 3, 11: 2, 13: 1, 17: 1, 19: 1, 23: 1} assert multiproduct(factorint(fac(200))) == fac(200) assert multiproduct(factorint(fac(200, evaluate=False))) == fac(200) for b, e in factorint(fac(150)).items(): assert e == fac_multiplicity(150, b) for b, e in factorint(fac(150, evaluate=False)).items(): assert e == fac_multiplicity(150, b) assert factorint(103005006059**7) == {103005006059: 7} assert factorint(31337**191) == {31337: 191} assert factorint(2**1000 * 3**500 * 257**127 * 383**60) == \ {2: 1000, 3: 500, 257: 127, 383: 60} assert len(factorint(fac(10000))) == 1229 assert len(factorint(fac(10000, evaluate=False))) == 1229 assert factorint(12932983746293756928584532764589230) == \ {2: 1, 5: 1, 73: 1, 727719592270351: 1, 63564265087747: 1, 383: 1} assert factorint(727719592270351) == {727719592270351: 1} assert factorint(2**64 + 1, use_trial=False) == factorint(2**64 + 1) for n in range(60000): assert multiproduct(factorint(n)) == n assert pollard_rho(2**64 + 1, seed=1) == 274177 assert pollard_rho(19, seed=1) is None assert factorint(3, limit=2) == {3: 1} assert factorint(12345) == {3: 1, 5: 1, 823: 1} assert factorint( 12345, limit=3) == {4115: 1, 3: 1} # the 5 is greater than the limit assert factorint(1, limit=1) == {} assert factorint(0, 3) == {0: 1} assert factorint(12, limit=1) == {12: 1} assert factorint(30, limit=2) == {2: 1, 15: 1} assert factorint(16, limit=2) == {2: 4} assert factorint(124, limit=3) == {2: 2, 31: 1} assert factorint(4*31**2, limit=3) == {2: 2, 31: 2} p1 = nextprime(2**32) p2 = nextprime(2**16) p3 = nextprime(p2) assert factorint(p1*p2*p3) == {p1: 1, p2: 1, p3: 1} assert factorint(13*17*19, limit=15) == {13: 1, 17*19: 1} assert factorint(1951*15013*15053, limit=2000) == {225990689: 1, 1951: 1} assert factorint(primorial(17) + 1, use_pm1=0) == \ {int(19026377261): 1, 3467: 1, 277: 1, 105229: 1} # when prime b is closer than approx sqrt(8*p) to prime p then they are # "close" and have a trivial factorization a = nextprime(2**2**8) # 78 digits b = nextprime(a + 2**2**4) assert 'Fermat' in capture(lambda: factorint(a*b, verbose=1)) raises(ValueError, lambda: pollard_rho(4)) raises(ValueError, lambda: pollard_pm1(3)) raises(ValueError, lambda: pollard_pm1(10, B=2)) # verbose coverage n = nextprime(2**16)*nextprime(2**17)*nextprime(1901) assert 'with primes' in capture(lambda: factorint(n, verbose=1)) capture(lambda: factorint(nextprime(2**16)*1012, verbose=1)) n = nextprime(2**17) capture(lambda: factorint(n**3, verbose=1)) # perfect power termination capture(lambda: factorint(2*n, verbose=1)) # factoring complete msg # exceed 1st n = nextprime(2**17) n *= nextprime(n) assert '1000' in capture(lambda: factorint(n, limit=1000, verbose=1)) n *= nextprime(n) assert len(factorint(n)) == 3 assert len(factorint(n, limit=p1)) == 3 n *= nextprime(2*n) # exceed 2nd assert '2001' in capture(lambda: factorint(n, limit=2000, verbose=1)) assert capture( lambda: factorint(n, limit=4000, verbose=1)).count('Pollard') == 2 # non-prime pm1 result n = nextprime(8069) n *= nextprime(2*n)*nextprime(2*n, 2) capture(lambda: factorint(n, verbose=1)) # non-prime pm1 result # factor fermat composite p1 = nextprime(2**17) p2 = nextprime(2*p1) assert factorint((p1*p2**2)**3) == {p1: 3, p2: 6} # Test for non integer input raises(ValueError, lambda: factorint(4.5)) # test dict/Dict input sans = '2**10*3**3' n = {4: 2, 12: 3} assert str(factorint(n)) == sans assert str(factorint(Dict(n))) == sans def test_divisors_and_divisor_count(): assert divisors(-1) == [1] assert divisors(0) == [] assert divisors(1) == [1] assert divisors(2) == [1, 2] assert divisors(3) == [1, 3] assert divisors(17) == [1, 17] assert divisors(10) == [1, 2, 5, 10] assert divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50, 100] assert divisors(101) == [1, 101] assert divisor_count(0) == 0 assert divisor_count(-1) == 1 assert divisor_count(1) == 1 assert divisor_count(6) == 4 assert divisor_count(12) == 6 assert divisor_count(180, 3) == divisor_count(180//3) assert divisor_count(2*3*5, 7) == 0 def test_proper_divisors_and_proper_divisor_count(): assert proper_divisors(-1) == [] assert proper_divisors(0) == [] assert proper_divisors(1) == [] assert proper_divisors(2) == [1] assert proper_divisors(3) == [1] assert proper_divisors(17) == [1] assert proper_divisors(10) == [1, 2, 5] assert proper_divisors(100) == [1, 2, 4, 5, 10, 20, 25, 50] assert proper_divisors(1000000007) == [1] assert proper_divisor_count(0) == 0 assert proper_divisor_count(-1) == 0 assert proper_divisor_count(1) == 0 assert proper_divisor_count(36) == 8 assert proper_divisor_count(2*3*5) == 7 def test_udivisors_and_udivisor_count(): assert udivisors(-1) == [1] assert udivisors(0) == [] assert udivisors(1) == [1] assert udivisors(2) == [1, 2] assert udivisors(3) == [1, 3] assert udivisors(17) == [1, 17] assert udivisors(10) == [1, 2, 5, 10] assert udivisors(100) == [1, 4, 25, 100] assert udivisors(101) == [1, 101] assert udivisors(1000) == [1, 8, 125, 1000] assert udivisor_count(0) == 0 assert udivisor_count(-1) == 1 assert udivisor_count(1) == 1 assert udivisor_count(6) == 4 assert udivisor_count(12) == 4 assert udivisor_count(180) == 8 assert udivisor_count(2*3*5*7) == 16 def test_issue_6981(): S = set(divisors(4)).union(set(divisors(Integer(2)))) assert S == {1,2,4} def test_totient(): assert [totient(k) for k in range(1, 12)] == \ [1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10] assert totient(5005) == 2880 assert totient(5006) == 2502 assert totient(5009) == 5008 assert totient(2**100) == 2**99 raises(ValueError, lambda: totient(30.1)) raises(ValueError, lambda: totient(20.001)) m = Symbol("m", integer=True) assert totient(m) assert totient(m).subs(m, 3**10) == 3**10 - 3**9 assert summation(totient(m), (m, 1, 11)) == 42 n = Symbol("n", integer=True, positive=True) assert totient(n).is_integer x=Symbol("x", integer=False) raises(ValueError, lambda: totient(x)) y=Symbol("y", positive=False) raises(ValueError, lambda: totient(y)) z=Symbol("z", positive=True, integer=True) raises(ValueError, lambda: totient(2**(-z))) def test_reduced_totient(): assert [reduced_totient(k) for k in range(1, 16)] == \ [1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4] assert reduced_totient(5005) == 60 assert reduced_totient(5006) == 2502 assert reduced_totient(5009) == 5008 assert reduced_totient(2**100) == 2**98 m = Symbol("m", integer=True) assert reduced_totient(m) assert reduced_totient(m).subs(m, 2**3*3**10) == 3**10 - 3**9 assert summation(reduced_totient(m), (m, 1, 16)) == 68 n = Symbol("n", integer=True, positive=True) assert reduced_totient(n).is_integer def test_divisor_sigma(): assert [divisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12] assert [divisor_sigma(k, 2) for k in range(1, 12)] == \ [1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122] assert divisor_sigma(23450) == 50592 assert divisor_sigma(23450, 0) == 24 assert divisor_sigma(23450, 1) == 50592 assert divisor_sigma(23450, 2) == 730747500 assert divisor_sigma(23450, 3) == 14666785333344 a = Symbol("a", prime=True) b = Symbol("b", prime=True) j = Symbol("j", integer=True, positive=True) k = Symbol("k", integer=True, positive=True) assert divisor_sigma(a**j*b**k) == (a**(j + 1) - 1)*(b**(k + 1) - 1)/((a - 1)*(b - 1)) assert divisor_sigma(a**j*b**k, 2) == (a**(2*j + 2) - 1)*(b**(2*k + 2) - 1)/((a**2 - 1)*(b**2 - 1)) assert divisor_sigma(a**j*b**k, 0) == (j + 1)*(k + 1) m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert divisor_sigma(m) assert divisor_sigma(m, k) assert divisor_sigma(m).subs(m, 3**10) == 88573 assert divisor_sigma(m, k).subs([(m, 3**10), (k, 3)]) == 213810021790597 assert summation(divisor_sigma(m), (m, 1, 11)) == 99 def test_udivisor_sigma(): assert [udivisor_sigma(k) for k in range(1, 12)] == \ [1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12] assert [udivisor_sigma(k, 3) for k in range(1, 12)] == \ [1, 9, 28, 65, 126, 252, 344, 513, 730, 1134, 1332] assert udivisor_sigma(23450) == 42432 assert udivisor_sigma(23450, 0) == 16 assert udivisor_sigma(23450, 1) == 42432 assert udivisor_sigma(23450, 2) == 702685000 assert udivisor_sigma(23450, 4) == 321426961814978248 m = Symbol("m", integer=True) k = Symbol("k", integer=True) assert udivisor_sigma(m) assert udivisor_sigma(m, k) assert udivisor_sigma(m).subs(m, 4**9) == 262145 assert udivisor_sigma(m, k).subs([(m, 4**9), (k, 2)]) == 68719476737 assert summation(udivisor_sigma(m), (m, 2, 15)) == 169 def test_issue_4356(): assert factorint(1030903) == {53: 2, 367: 1} def test_divisors(): assert divisors(28) == [1, 2, 4, 7, 14, 28] assert [x for x in divisors(3*5*7, 1)] == [1, 3, 5, 15, 7, 21, 35, 105] assert divisors(0) == [] def test_divisor_count(): assert divisor_count(0) == 0 assert divisor_count(6) == 4 def test_proper_divisors(): assert proper_divisors(-1) == [] assert proper_divisors(28) == [1, 2, 4, 7, 14] assert [x for x in proper_divisors(3*5*7, True)] == [1, 3, 5, 15, 7, 21, 35] def test_proper_divisor_count(): assert proper_divisor_count(6) == 3 assert proper_divisor_count(108) == 11 def test_antidivisors(): assert antidivisors(-1) == [] assert antidivisors(-3) == [2] assert antidivisors(14) == [3, 4, 9] assert antidivisors(237) == [2, 5, 6, 11, 19, 25, 43, 95, 158] assert antidivisors(12345) == [2, 6, 7, 10, 30, 1646, 3527, 4938, 8230] assert antidivisors(393216) == [262144] assert sorted(x for x in antidivisors(3*5*7, 1)) == \ [2, 6, 10, 11, 14, 19, 30, 42, 70] assert antidivisors(1) == [] def test_antidivisor_count(): assert antidivisor_count(0) == 0 assert antidivisor_count(-1) == 0 assert antidivisor_count(-4) == 1 assert antidivisor_count(20) == 3 assert antidivisor_count(25) == 5 assert antidivisor_count(38) == 7 assert antidivisor_count(180) == 6 assert antidivisor_count(2*3*5) == 3 def test_smoothness_and_smoothness_p(): assert smoothness(1) == (1, 1) assert smoothness(2**4*3**2) == (3, 16) assert smoothness_p(10431, m=1) == \ (1, [(3, (2, 2, 4)), (19, (1, 5, 5)), (61, (1, 31, 31))]) assert smoothness_p(10431) == \ (-1, [(3, (2, 2, 2)), (19, (1, 3, 9)), (61, (1, 5, 5))]) assert smoothness_p(10431, power=1) == \ (-1, [(3, (2, 2, 2)), (61, (1, 5, 5)), (19, (1, 3, 9))]) assert smoothness_p(21477639576571, visual=1) == \ 'p**i=4410317**1 has p-1 B=1787, B-pow=1787\n' + \ 'p**i=4869863**1 has p-1 B=2434931, B-pow=2434931' def test_visual_factorint(): assert factorint(1, visual=1) == 1 forty2 = factorint(42, visual=True) assert type(forty2) == Mul assert str(forty2) == '2**1*3**1*7**1' assert factorint(1, visual=True) is S.One no = dict(evaluate=False) assert factorint(42**2, visual=True) == Mul(Pow(2, 2, **no), Pow(3, 2, **no), Pow(7, 2, **no), **no) assert -1 in factorint(-42, visual=True).args def test_factorrat(): assert str(factorrat(S(12)/1, visual=True)) == '2**2*3**1' assert str(factorrat(Rational(1, 1), visual=True)) == '1' assert str(factorrat(S(25)/14, visual=True)) == '5**2/(2*7)' assert str(factorrat(Rational(25, 14), visual=True)) == '5**2/(2*7)' assert str(factorrat(S(-25)/14/9, visual=True)) == '-1*5**2/(2*3**2*7)' assert factorrat(S(12)/1, multiple=True) == [2, 2, 3] assert factorrat(Rational(1, 1), multiple=True) == [] assert factorrat(S(25)/14, multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(25, 14), multiple=True) == [Rational(1, 7), S.Half, 5, 5] assert factorrat(Rational(12, 1), multiple=True) == [2, 2, 3] assert factorrat(S(-25)/14/9, multiple=True) == \ [-1, Rational(1, 7), Rational(1, 3), Rational(1, 3), S.Half, 5, 5] def test_visual_io(): sm = smoothness_p fi = factorint # with smoothness_p n = 124 d = fi(n) m = fi(d, visual=True) t = sm(n) s = sm(t) for th in [d, s, t, n, m]: assert sm(th, visual=True) == s assert sm(th, visual=1) == s for th in [d, s, t, n, m]: assert sm(th, visual=False) == t assert [sm(th, visual=None) for th in [d, s, t, n, m]] == [s, d, s, t, t] assert [sm(th, visual=2) for th in [d, s, t, n, m]] == [s, d, s, t, t] # with factorint for th in [d, m, n]: assert fi(th, visual=True) == m assert fi(th, visual=1) == m for th in [d, m, n]: assert fi(th, visual=False) == d assert [fi(th, visual=None) for th in [d, m, n]] == [m, d, d] assert [fi(th, visual=0) for th in [d, m, n]] == [m, d, d] # test reevaluation no = dict(evaluate=False) assert sm({4: 2}, visual=False) == sm(16) assert sm(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == sm(2**10) assert fi({4: 2}, visual=False) == fi(16) assert fi(Mul(*[Pow(k, v, **no) for k, v in {4: 2, 2: 6}.items()], **no), visual=False) == fi(2**10) def test_core(): assert core(35**13, 10) == 42875 assert core(210**2) == 1 assert core(7776, 3) == 36 assert core(10**27, 22) == 10**5 assert core(537824) == 14 assert core(1, 6) == 1 def test_primenu(): assert primenu(2) == 1 assert primenu(2 * 3) == 2 assert primenu(2 * 3 * 5) == 3 assert primenu(3 * 25) == primenu(3) + primenu(25) assert [primenu(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primenu(fac(50)) == 15 assert primenu(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primenu(n) assert primenu(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primenu(n), (n, 2, 30)) == 43 def test_primeomega(): assert primeomega(2) == 1 assert primeomega(2 * 2) == 2 assert primeomega(2 * 2 * 3) == 3 assert primeomega(3 * 25) == primeomega(3) + primeomega(25) assert [primeomega(p) for p in primerange(1, 10)] == [1, 1, 1, 1] assert primeomega(fac(50)) == 108 assert primeomega(2 ** 9941 - 1) == 1 n = Symbol('n', integer=True) assert primeomega(n) assert primeomega(n).subs(n, 2 ** 31 - 1) == 1 assert summation(primeomega(n), (n, 2, 30)) == 59 def test_mersenne_prime_exponent(): assert mersenne_prime_exponent(1) == 2 assert mersenne_prime_exponent(4) == 7 assert mersenne_prime_exponent(10) == 89 assert mersenne_prime_exponent(25) == 21701 raises(ValueError, lambda: mersenne_prime_exponent(52)) raises(ValueError, lambda: mersenne_prime_exponent(0)) def test_is_perfect(): assert is_perfect(6) is True assert is_perfect(15) is False assert is_perfect(28) is True assert is_perfect(400) is False assert is_perfect(496) is True assert is_perfect(8128) is True assert is_perfect(10000) is False def test_is_mersenne_prime(): assert is_mersenne_prime(10) is False assert is_mersenne_prime(127) is True assert is_mersenne_prime(511) is False assert is_mersenne_prime(131071) is True assert is_mersenne_prime(2147483647) is True def test_is_abundant(): assert is_abundant(10) is False assert is_abundant(12) is True assert is_abundant(18) is True assert is_abundant(21) is False assert is_abundant(945) is True def test_is_deficient(): assert is_deficient(10) is True assert is_deficient(22) is True assert is_deficient(56) is False assert is_deficient(20) is False assert is_deficient(36) is False def test_is_amicable(): assert is_amicable(173, 129) is False assert is_amicable(220, 284) is True assert is_amicable(8756, 8756) is False def test_dra(): assert dra(19, 12) == 8 assert dra(2718, 10) == 9 assert dra(0, 22) == 0 assert dra(23456789, 10) == 8 raises(ValueError, lambda: dra(24, -2)) raises(ValueError, lambda: dra(24.2, 5)) def test_drm(): assert drm(19, 12) == 7 assert drm(2718, 10) == 2 assert drm(0, 15) == 0 assert drm(234161, 10) == 6 raises(ValueError, lambda: drm(24, -2)) raises(ValueError, lambda: drm(11.6, 9))
f915d792a3147d509878ef47a2795d38e2120ca0da5180827b909480ad7c2f7a
from sympy.core.random import randint from sympy.ntheory.bbp_pi import pi_hex_digits from sympy.testing.pytest import raises # http://www.herongyang.com/Cryptography/Blowfish-First-8366-Hex-Digits-of-PI.html # There are actually 8336 listed there; with the prepended 3 there are 8337 # below dig=''.join(''' 3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89452821e638d013 77be5466cf34e90c6cc0ac29b7c97c50dd3f84d5b5b54709179216d5d98979fb1bd1310ba698dfb5 ac2ffd72dbd01adfb7b8e1afed6a267e96ba7c9045f12c7f9924a19947b3916cf70801f2e2858efc 16636920d871574e69a458fea3f4933d7e0d95748f728eb658718bcd5882154aee7b54a41dc25a59 b59c30d5392af26013c5d1b023286085f0ca417918b8db38ef8e79dcb0603a180e6c9e0e8bb01e8a 3ed71577c1bd314b2778af2fda55605c60e65525f3aa55ab945748986263e8144055ca396a2aab10 b6b4cc5c341141e8cea15486af7c72e993b3ee1411636fbc2a2ba9c55d741831f6ce5c3e169b8793 1eafd6ba336c24cf5c7a325381289586773b8f48986b4bb9afc4bfe81b6628219361d809ccfb21a9 91487cac605dec8032ef845d5de98575b1dc262302eb651b8823893e81d396acc50f6d6ff383f442 392e0b4482a484200469c8f04a9e1f9b5e21c66842f6e96c9a670c9c61abd388f06a51a0d2d8542f 68960fa728ab5133a36eef0b6c137a3be4ba3bf0507efb2a98a1f1651d39af017666ca593e82430e 888cee8619456f9fb47d84a5c33b8b5ebee06f75d885c12073401a449f56c16aa64ed3aa62363f77 061bfedf72429b023d37d0d724d00a1248db0fead349f1c09b075372c980991b7b25d479d8f6e8de f7e3fe501ab6794c3b976ce0bd04c006bac1a94fb6409f60c45e5c9ec2196a246368fb6faf3e6c53 b51339b2eb3b52ec6f6dfc511f9b30952ccc814544af5ebd09bee3d004de334afd660f2807192e4b b3c0cba85745c8740fd20b5f39b9d3fbdb5579c0bd1a60320ad6a100c6402c7279679f25fefb1fa3 cc8ea5e9f8db3222f83c7516dffd616b152f501ec8ad0552ab323db5fafd23876053317b483e00df 829e5c57bbca6f8ca01a87562edf1769dbd542a8f6287effc3ac6732c68c4f5573695b27b0bbca58 c8e1ffa35db8f011a010fa3d98fd2183b84afcb56c2dd1d35b9a53e479b6f84565d28e49bc4bfb97 90e1ddf2daa4cb7e3362fb1341cee4c6e8ef20cada36774c01d07e9efe2bf11fb495dbda4dae9091 98eaad8e716b93d5a0d08ed1d0afc725e08e3c5b2f8e7594b78ff6e2fbf2122b648888b812900df0 1c4fad5ea0688fc31cd1cff191b3a8c1ad2f2f2218be0e1777ea752dfe8b021fa1e5a0cc0fb56f74 e818acf3d6ce89e299b4a84fe0fd13e0b77cc43b81d2ada8d9165fa2668095770593cc7314211a14 77e6ad206577b5fa86c75442f5fb9d35cfebcdaf0c7b3e89a0d6411bd3ae1e7e4900250e2d2071b3 5e226800bb57b8e0af2464369bf009b91e5563911d59dfa6aa78c14389d95a537f207d5ba202e5b9 c5832603766295cfa911c819684e734a41b3472dca7b14a94a1b5100529a532915d60f573fbc9bc6 e42b60a47681e6740008ba6fb5571be91ff296ec6b2a0dd915b6636521e7b9f9b6ff34052ec58556 6453b02d5da99f8fa108ba47996e85076a4b7a70e9b5b32944db75092ec4192623ad6ea6b049a7df 7d9cee60b88fedb266ecaa8c71699a17ff5664526cc2b19ee1193602a575094c29a0591340e4183a 3e3f54989a5b429d656b8fe4d699f73fd6a1d29c07efe830f54d2d38e6f0255dc14cdd20868470eb 266382e9c6021ecc5e09686b3f3ebaefc93c9718146b6a70a1687f358452a0e286b79c5305aa5007 373e07841c7fdeae5c8e7d44ec5716f2b8b03ada37f0500c0df01c1f040200b3ffae0cf51a3cb574 b225837a58dc0921bdd19113f97ca92ff69432477322f547013ae5e58137c2dadcc8b576349af3dd a7a94461460fd0030eecc8c73ea4751e41e238cd993bea0e2f3280bba1183eb3314e548b384f6db9 086f420d03f60a04bf2cb8129024977c795679b072bcaf89afde9a771fd9930810b38bae12dccf3f 2e5512721f2e6b7124501adde69f84cd877a5847187408da17bc9f9abce94b7d8cec7aec3adb851d fa63094366c464c3d2ef1c18473215d908dd433b3724c2ba1612a14d432a65c45150940002133ae4 dd71dff89e10314e5581ac77d65f11199b043556f1d7a3c76b3c11183b5924a509f28fe6ed97f1fb fa9ebabf2c1e153c6e86e34570eae96fb1860e5e0a5a3e2ab3771fe71c4e3d06fa2965dcb999e71d 0f803e89d65266c8252e4cc9789c10b36ac6150eba94e2ea78a5fc3c531e0a2df4f2f74ea7361d2b 3d1939260f19c279605223a708f71312b6ebadfe6eeac31f66e3bc4595a67bc883b17f37d1018cff 28c332ddefbe6c5aa56558218568ab9802eecea50fdb2f953b2aef7dad5b6e2f841521b628290761 70ecdd4775619f151013cca830eb61bd960334fe1eaa0363cfb5735c904c70a239d59e9e0bcbaade 14eecc86bc60622ca79cab5cabb2f3846e648b1eaf19bdf0caa02369b9655abb5040685a323c2ab4 b3319ee9d5c021b8f79b540b19875fa09995f7997e623d7da8f837889a97e32d7711ed935f166812 810e358829c7e61fd696dedfa17858ba9957f584a51b2272639b83c3ff1ac24696cdb30aeb532e30 548fd948e46dbc312858ebf2ef34c6ffeafe28ed61ee7c3c735d4a14d9e864b7e342105d14203e13 e045eee2b6a3aaabeadb6c4f15facb4fd0c742f442ef6abbb5654f3b1d41cd2105d81e799e86854d c7e44b476a3d816250cf62a1f25b8d2646fc8883a0c1c7b6a37f1524c369cb749247848a0b5692b2 85095bbf00ad19489d1462b17423820e0058428d2a0c55f5ea1dadf43e233f70613372f0928d937e 41d65fecf16c223bdb7cde3759cbee74604085f2a7ce77326ea607808419f8509ee8efd85561d997 35a969a7aac50c06c25a04abfc800bcadc9e447a2ec3453484fdd567050e1e9ec9db73dbd3105588 cd675fda79e3674340c5c43465713e38d83d28f89ef16dff20153e21e78fb03d4ae6e39f2bdb83ad f7e93d5a68948140f7f64c261c94692934411520f77602d4f7bcf46b2ed4a20068d40824713320f4 6a43b7d4b7500061af1e39f62e9724454614214f74bf8b88404d95fc1d96b591af70f4ddd366a02f 45bfbc09ec03bd97857fac6dd031cb850496eb27b355fd3941da2547e6abca0a9a28507825530429 f40a2c86dae9b66dfb68dc1462d7486900680ec0a427a18dee4f3ffea2e887ad8cb58ce0067af4d6 b6aace1e7cd3375fecce78a399406b2a4220fe9e35d9f385b9ee39d7ab3b124e8b1dc9faf74b6d18 5626a36631eae397b23a6efa74dd5b43326841e7f7ca7820fbfb0af54ed8feb397454056acba4895 2755533a3a20838d87fe6ba9b7d096954b55a867bca1159a58cca9296399e1db33a62a4a563f3125 f95ef47e1c9029317cfdf8e80204272f7080bb155c05282ce395c11548e4c66d2248c1133fc70f86 dc07f9c9ee41041f0f404779a45d886e17325f51ebd59bc0d1f2bcc18f41113564257b7834602a9c 60dff8e8a31f636c1b0e12b4c202e1329eaf664fd1cad181156b2395e0333e92e13b240b62eebeb9 2285b2a20ee6ba0d99de720c8c2da2f728d012784595b794fd647d0862e7ccf5f05449a36f877d48 fac39dfd27f33e8d1e0a476341992eff743a6f6eabf4f8fd37a812dc60a1ebddf8991be14cdb6e6b 0dc67b55106d672c372765d43bdcd0e804f1290dc7cc00ffa3b5390f92690fed0b667b9ffbcedb7d 9ca091cf0bd9155ea3bb132f88515bad247b9479bf763bd6eb37392eb3cc1159798026e297f42e31 2d6842ada7c66a2b3b12754ccc782ef11c6a124237b79251e706a1bbe64bfb63501a6b101811caed fa3d25bdd8e2e1c3c9444216590a121386d90cec6ed5abea2a64af674eda86a85fbebfe98864e4c3 fe9dbc8057f0f7c08660787bf86003604dd1fd8346f6381fb07745ae04d736fccc83426b33f01eab 71b08041873c005e5f77a057bebde8ae2455464299bf582e614e58f48ff2ddfda2f474ef388789bd c25366f9c3c8b38e74b475f25546fcd9b97aeb26618b1ddf84846a0e79915f95e2466e598e20b457 708cd55591c902de4cb90bace1bb8205d011a862487574a99eb77f19b6e0a9dc09662d09a1c43246 33e85a1f0209f0be8c4a99a0251d6efe101ab93d1d0ba5a4dfa186f20f2868f169dcb7da83573906 fea1e2ce9b4fcd7f5250115e01a70683faa002b5c40de6d0279af88c27773f8641c3604c0661a806 b5f0177a28c0f586e0006058aa30dc7d6211e69ed72338ea6353c2dd94c2c21634bbcbee5690bcb6 deebfc7da1ce591d766f05e4094b7c018839720a3d7c927c2486e3725f724d9db91ac15bb4d39eb8 fced54557808fca5b5d83d7cd34dad0fc41e50ef5eb161e6f8a28514d96c51133c6fd5c7e756e14e c4362abfceddc6c837d79a323492638212670efa8e406000e03a39ce37d3faf5cfabc277375ac52d 1b5cb0679e4fa33742d382274099bc9bbed5118e9dbf0f7315d62d1c7ec700c47bb78c1b6b21a190 45b26eb1be6a366eb45748ab2fbc946e79c6a376d26549c2c8530ff8ee468dde7dd5730a1d4cd04d c62939bbdba9ba4650ac9526e8be5ee304a1fad5f06a2d519a63ef8ce29a86ee22c089c2b843242e f6a51e03aa9cf2d0a483c061ba9be96a4d8fe51550ba645bd62826a2f9a73a3ae14ba99586ef5562 e9c72fefd3f752f7da3f046f6977fa0a5980e4a91587b086019b09e6ad3b3ee593e990fd5a9e34d7 972cf0b7d9022b8b5196d5ac3a017da67dd1cf3ed67c7d2d281f9f25cfadf2b89b5ad6b4725a88f5 4ce029ac71e019a5e647b0acfded93fa9be8d3c48d283b57ccf8d5662979132e28785f0191ed7560 55f7960e44e3d35e8c15056dd488f46dba03a161250564f0bdc3eb9e153c9057a297271aeca93a07 2a1b3f6d9b1e6321f5f59c66fb26dcf3197533d928b155fdf5035634828aba3cbb28517711c20ad9 f8abcc5167ccad925f4de817513830dc8e379d58629320f991ea7a90c2fb3e7bce5121ce64774fbe 32a8b6e37ec3293d4648de53696413e680a2ae0810dd6db22469852dfd09072166b39a460a6445c0 dd586cdecf1c20c8ae5bbef7dd1b588d40ccd2017f6bb4e3bbdda26a7e3a59ff453e350a44bcb4cd d572eacea8fa6484bb8d6612aebf3c6f47d29be463542f5d9eaec2771bf64e6370740e0d8de75b13 57f8721671af537d5d4040cb084eb4e2cc34d2466a0115af84e1b0042895983a1d06b89fb4ce6ea0 486f3f3b823520ab82011a1d4b277227f8611560b1e7933fdcbb3a792b344525bda08839e151ce79 4b2f32c9b7a01fbac9e01cc87ebcc7d1f6cf0111c3a1e8aac71a908749d44fbd9ad0dadecbd50ada 380339c32ac69136678df9317ce0b12b4ff79e59b743f5bb3af2d519ff27d9459cbf97222c15e6fc 2a0f91fc719b941525fae59361ceb69cebc2a8645912baa8d1b6c1075ee3056a0c10d25065cb03a4 42e0ec6e0e1698db3b4c98a0be3278e9649f1f9532e0d392dfd3a0342b8971f21e1b0a74414ba334 8cc5be7120c37632d8df359f8d9b992f2ee60b6f470fe3f11de54cda541edad891ce6279cfcd3e7e 6f1618b166fd2c1d05848fd2c5f6fb2299f523f357a632762393a8353156cccd02acf081625a75eb b56e16369788d273ccde96629281b949d04c50901b71c65614e6c6c7bd327a140a45e1d006c3f27b 9ac9aa53fd62a80f00bb25bfe235bdd2f671126905b2040222b6cbcf7ccd769c2b53113ec01640e3 d338abbd602547adf0ba38209cf746ce7677afa1c52075606085cbfe4e8ae88dd87aaaf9b04cf9aa 7e1948c25c02fb8a8c01c36ae4d6ebe1f990d4f869a65cdea03f09252dc208e69fb74e6132ce77e2 5b578fdfe33ac372e6'''.split()) def test_hex_pi_nth_digits(): assert pi_hex_digits(0) == '3243f6a8885a30' assert pi_hex_digits(1) == '243f6a8885a308' assert pi_hex_digits(10000) == '68ac8fcfb8016c' assert pi_hex_digits(13) == '08d313198a2e03' assert pi_hex_digits(0, 3) == '324' assert pi_hex_digits(0, 0) == '' raises(ValueError, lambda: pi_hex_digits(-1)) raises(ValueError, lambda: pi_hex_digits(3.14)) # this will pick a random segment to compute every time # it is run. If it ever fails, there is an error in the # computation. n = randint(0, len(dig)) prec = randint(0, len(dig) - n) assert pi_hex_digits(n, prec) == dig[n: n + prec]
b691dcc2d7aeb9001a85c3eabe0066e0cc2af9e7f37073a7f2695d8a3ca78e51
from sympy.core.numbers import Rational from sympy.ntheory.egyptian_fraction import egyptian_fraction from sympy.core.add import Add from sympy.testing.pytest import raises from sympy.core.random import random_complex_number def test_egyptian_fraction(): def test_equality(r, alg="Greedy"): return r == Add(*[Rational(1, i) for i in egyptian_fraction(r, alg)]) r = random_complex_number(a=0, c=1, b=0, d=0, rational=True) assert test_equality(r) assert egyptian_fraction(Rational(4, 17)) == [5, 29, 1233, 3039345] assert egyptian_fraction(Rational(7, 13), "Greedy") == [2, 26] assert egyptian_fraction(Rational(23, 101), "Greedy") == \ [5, 37, 1438, 2985448, 40108045937720] assert egyptian_fraction(Rational(18, 23), "Takenouchi") == \ [2, 6, 12, 35, 276, 2415] assert egyptian_fraction(Rational(5, 6), "Graham Jewett") == \ [6, 7, 8, 9, 10, 42, 43, 44, 45, 56, 57, 58, 72, 73, 90, 1806, 1807, 1808, 1892, 1893, 1980, 3192, 3193, 3306, 5256, 3263442, 3263443, 3267056, 3581556, 10192056, 10650056950806] assert egyptian_fraction(Rational(5, 6), "Golomb") == [2, 6, 12, 20, 30] assert egyptian_fraction(Rational(5, 121), "Golomb") == [25, 1225, 3577, 7081, 11737] raises(ValueError, lambda: egyptian_fraction(Rational(-4, 9))) assert egyptian_fraction(Rational(8, 3), "Golomb") == [1, 2, 3, 4, 5, 6, 7, 14, 574, 2788, 6460, 11590, 33062, 113820] assert egyptian_fraction(Rational(355, 113)) == [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 744, 893588, 1251493536607, 20361068938197002344405230] def test_input(): r = (2,3), Rational(2, 3), (Rational(2), Rational(3)) for m in ["Greedy", "Graham Jewett", "Takenouchi", "Golomb"]: for i in r: d = egyptian_fraction(i, m) assert all(i.is_Integer for i in d) if m == "Graham Jewett": assert d == [3, 4, 12] else: assert d == [2, 6] # check prefix d = egyptian_fraction(Rational(5, 3)) assert d == [1, 2, 6] and all(i.is_Integer for i in d)
1d0a02a2d33f83e70577242e427cee7eac03e2e3e552523550aad62670e6172a
from sympy.core.containers import Tuple from sympy.combinatorics.generators import rubik_cube_generators from sympy.combinatorics.homomorphisms import is_isomorphic from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\ DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup from sympy.combinatorics.perm_groups import (PermutationGroup, _orbit_transversal, Coset, SymmetricPermutationGroup) from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\ _verify_normal_closure from sympy.testing.pytest import skip, XFAIL, slow rmul = Permutation.rmul def test_has(): a = Permutation([1, 0]) G = PermutationGroup([a]) assert G.is_abelian a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) G = PermutationGroup([a, b]) assert not G.is_abelian G = PermutationGroup([a]) assert G.has(a) assert not G.has(b) a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([0, 2, 1, 3, 4]) assert PermutationGroup(a, b).degree == \ PermutationGroup(a, b).degree == 6 g = PermutationGroup(Permutation(0, 2, 1)) assert Tuple(1, g).has(g) def test_generate(): a = Permutation([1, 0]) g = list(PermutationGroup([a]).generate()) assert g == [Permutation([0, 1]), Permutation([1, 0])] assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1 g = PermutationGroup([a]).generate(method='dimino') assert list(g) == [Permutation([0, 1]), Permutation([1, 0])] a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) G = PermutationGroup([a, b]) g = G.generate() v1 = [p.array_form for p in list(g)] v1.sort() assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1], [2, 1, 0]] v2 = list(G.generate(method='dimino', af=True)) assert v1 == sorted(v2) a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) g = PermutationGroup([a, b]).generate(af=True) assert len(list(g)) == 360 def test_order(): a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9]) b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0]) g = PermutationGroup([a, b]) assert g.order() == 1814400 assert PermutationGroup().order() == 1 def test_equality(): p_1 = Permutation(0, 1, 3) p_2 = Permutation(0, 2, 3) p_3 = Permutation(0, 1, 2) p_4 = Permutation(0, 1, 3) g_1 = PermutationGroup(p_1, p_2) g_2 = PermutationGroup(p_3, p_4) g_3 = PermutationGroup(p_2, p_1) g_4 = PermutationGroup(p_1, p_2) assert g_1 != g_2 assert g_1.generators != g_2.generators assert g_1.equals(g_2) assert g_1 != g_3 assert g_1.equals(g_3) assert g_1 == g_4 def test_stabilizer(): S = SymmetricGroup(2) H = S.stabilizer(0) assert H.generators == [Permutation(1)] a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) G = PermutationGroup([a, b]) G0 = G.stabilizer(0) assert G0.order() == 60 gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) G2 = G.stabilizer(2) assert G2.order() == 6 G2_1 = G2.stabilizer(1) v = list(G2_1.generate(af=True)) assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]] gens = ( (1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), (0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 7, 17, 18), (0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19)) gens = [Permutation(p) for p in gens] G = PermutationGroup(gens) G2 = G.stabilizer(2) assert G2.order() == 181440 S = SymmetricGroup(3) assert [G.order() for G in S.basic_stabilizers] == [6, 2] def test_center(): # the center of the dihedral group D_n is of order 2 for even n for i in (4, 6, 10): D = DihedralGroup(i) assert (D.center()).order() == 2 # the center of the dihedral group D_n is of order 1 for odd n>2 for i in (3, 5, 7): D = DihedralGroup(i) assert (D.center()).order() == 1 # the center of an abelian group is the group itself for i in (2, 3, 5): for j in (1, 5, 7): for k in (1, 1, 11): G = AbelianGroup(i, j, k) assert G.center().is_subgroup(G) # the center of a nonabelian simple group is trivial for i in(1, 5, 9): A = AlternatingGroup(i) assert (A.center()).order() == 1 # brute-force verifications D = DihedralGroup(5) A = AlternatingGroup(3) C = CyclicGroup(4) G.is_subgroup(D*A*C) assert _verify_centralizer(G, G) def test_centralizer(): # the centralizer of the trivial group is the entire group S = SymmetricGroup(2) assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S) A = AlternatingGroup(5) assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A) # a centralizer in the trivial group is the trivial group itself triv = PermutationGroup([Permutation([0, 1, 2, 3])]) D = DihedralGroup(4) assert triv.centralizer(D).is_subgroup(triv) # brute-force verifications for centralizers of groups for i in (4, 5, 6): S = SymmetricGroup(i) A = AlternatingGroup(i) C = CyclicGroup(i) D = DihedralGroup(i) for gp in (S, A, C, D): for gp2 in (S, A, C, D): if not gp2.is_subgroup(gp): assert _verify_centralizer(gp, gp2) # verify the centralizer for all elements of several groups S = SymmetricGroup(5) elements = list(S.generate_dimino()) for element in elements: assert _verify_centralizer(S, element) A = AlternatingGroup(5) elements = list(A.generate_dimino()) for element in elements: assert _verify_centralizer(A, element) D = DihedralGroup(7) elements = list(D.generate_dimino()) for element in elements: assert _verify_centralizer(D, element) # verify centralizers of small groups within small groups small = [] for i in (1, 2, 3): small.append(SymmetricGroup(i)) small.append(AlternatingGroup(i)) small.append(DihedralGroup(i)) small.append(CyclicGroup(i)) for gp in small: for gp2 in small: if gp.degree == gp2.degree: assert _verify_centralizer(gp, gp2) def test_coset_rank(): gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) i = 0 for h in G.generate(af=True): rk = G.coset_rank(h) assert rk == i h1 = G.coset_unrank(rk, af=True) assert h == h1 i += 1 assert G.coset_unrank(48) == None assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0] def test_coset_factor(): a = Permutation([0, 2, 1]) G = PermutationGroup([a]) c = Permutation([2, 1, 0]) assert not G.coset_factor(c) assert G.coset_rank(c) is None a = Permutation([2, 0, 1, 3, 4, 5]) b = Permutation([2, 1, 3, 4, 5, 0]) g = PermutationGroup([a, b]) assert g.order() == 360 d = Permutation([1, 0, 2, 3, 4, 5]) assert not g.coset_factor(d.array_form) assert not g.contains(d) assert Permutation(2) in G c = Permutation([1, 0, 2, 3, 5, 4]) v = g.coset_factor(c, True) tr = g.basic_transversals p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))]) assert p == c v = g.coset_factor(c) p = Permutation.rmul(*v) assert p == c assert g.contains(c) G = PermutationGroup([Permutation([2, 1, 0])]) p = Permutation([1, 0, 2]) assert G.coset_factor(p) == [] def test_orbits(): a = Permutation([2, 0, 1]) b = Permutation([2, 1, 0]) g = PermutationGroup([a, b]) assert g.orbit(0) == {0, 1, 2} assert g.orbits() == [{0, 1, 2}] assert g.is_transitive() and g.is_transitive(strict=False) assert g.orbit_transversal(0) == \ [Permutation( [0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])] assert g.orbit_transversal(0, True) == \ [(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])), (1, Permutation([1, 2, 0]))] G = DihedralGroup(6) transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True) for i, t in transversal: slp = slps[i] w = G.identity for s in slp: w = G.generators[s]*w assert w == t a = Permutation(list(range(1, 100)) + [0]) G = PermutationGroup([a]) assert [min(o) for o in G.orbits()] == [0] G = PermutationGroup(rubik_cube_generators()) assert [min(o) for o in G.orbits()] == [0, 1] assert not G.is_transitive() and not G.is_transitive(strict=False) G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)]) assert not G.is_transitive() and G.is_transitive(strict=False) assert PermutationGroup( Permutation(3)).is_transitive(strict=False) is False def test_is_normal(): gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]] G1 = PermutationGroup(gens_s5) assert G1.order() == 120 gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]] G2 = PermutationGroup(gens_a5) assert G2.order() == 60 assert G2.is_normal(G1) gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]] G3 = PermutationGroup(gens3) assert not G3.is_normal(G1) assert G3.order() == 12 G4 = G1.normal_closure(G3.generators) assert G4.order() == 60 gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]] G5 = PermutationGroup(gens5) assert G5.order() == 24 G6 = G1.normal_closure(G5.generators) assert G6.order() == 120 assert G1.is_subgroup(G6) assert not G1.is_subgroup(G4) assert G2.is_subgroup(G4) I5 = PermutationGroup(Permutation(4)) assert I5.is_normal(G5) assert I5.is_normal(G6, strict=False) p1 = Permutation([1, 0, 2, 3, 4]) p2 = Permutation([0, 1, 2, 4, 3]) p3 = Permutation([3, 4, 2, 1, 0]) id_ = Permutation([0, 1, 2, 3, 4]) H = PermutationGroup([p1, p3]) H_n1 = PermutationGroup([p1, p2]) H_n2_1 = PermutationGroup(p1) H_n2_2 = PermutationGroup(p2) H_id = PermutationGroup(id_) assert H_n1.is_normal(H) assert H_n2_1.is_normal(H_n1) assert H_n2_2.is_normal(H_n1) assert H_id.is_normal(H_n2_1) assert H_id.is_normal(H_n1) assert H_id.is_normal(H) assert not H_n2_1.is_normal(H) assert not H_n2_2.is_normal(H) def test_eq(): a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [ 1, 2, 0, 3, 4, 5]] a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]] g = Permutation([1, 2, 3, 4, 5, 0]) G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]] assert G1.order() == G2.order() == G3.order() == 6 assert G1.is_subgroup(G2) assert not G1.is_subgroup(G3) G4 = PermutationGroup([Permutation([0, 1])]) assert not G1.is_subgroup(G4) assert G4.is_subgroup(G1, 0) assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g)) assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0) assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0) def test_derived_subgroup(): a = Permutation([1, 0, 2, 4, 3]) b = Permutation([0, 1, 3, 2, 4]) G = PermutationGroup([a, b]) C = G.derived_subgroup() assert C.order() == 3 assert C.is_normal(G) assert C.is_subgroup(G, 0) assert not G.is_subgroup(C, 0) gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]] gens = [Permutation(p) for p in gens_cube] G = PermutationGroup(gens) C = G.derived_subgroup() assert C.order() == 12 def test_is_solvable(): a = Permutation([1, 2, 0]) b = Permutation([1, 0, 2]) G = PermutationGroup([a, b]) assert G.is_solvable G = PermutationGroup([a]) assert G.is_solvable a = Permutation([1, 2, 3, 4, 0]) b = Permutation([1, 0, 2, 3, 4]) G = PermutationGroup([a, b]) assert not G.is_solvable P = SymmetricGroup(10) S = P.sylow_subgroup(3) assert S.is_solvable def test_rubik1(): gens = rubik_cube_generators() gens1 = [gens[-1]] + [p**2 for p in gens[1:]] G1 = PermutationGroup(gens1) assert G1.order() == 19508428800 gens2 = [p**2 for p in gens] G2 = PermutationGroup(gens2) assert G2.order() == 663552 assert G2.is_subgroup(G1, 0) C1 = G1.derived_subgroup() assert C1.order() == 4877107200 assert C1.is_subgroup(G1, 0) assert not G2.is_subgroup(C1, 0) G = RubikGroup(2) assert G.order() == 3674160 @XFAIL def test_rubik(): skip('takes too much time') G = PermutationGroup(rubik_cube_generators()) assert G.order() == 43252003274489856000 G1 = PermutationGroup(G[:3]) assert G1.order() == 170659735142400 assert not G1.is_normal(G) G2 = G.normal_closure(G1.generators) assert G2.is_subgroup(G) def test_direct_product(): C = CyclicGroup(4) D = DihedralGroup(4) G = C*C*C assert G.order() == 64 assert G.degree == 12 assert len(G.orbits()) == 3 assert G.is_abelian is True H = D*C assert H.order() == 32 assert H.is_abelian is False def test_orbit_rep(): G = DihedralGroup(6) assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]), Permutation([4, 3, 2, 1, 0, 5])] H = CyclicGroup(4)*G assert H.orbit_rep(1, 5) is False def test_schreier_vector(): G = CyclicGroup(50) v = [0]*50 v[23] = -1 assert G.schreier_vector(23) == v H = DihedralGroup(8) assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0] L = SymmetricGroup(4) assert L.schreier_vector(1) == [1, -1, 0, 0] def test_random_pr(): D = DihedralGroup(6) r = 11 n = 3 _random_prec_n = {} _random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1} _random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1} _random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1} D._random_pr_init(r, n, _random_prec_n=_random_prec_n) assert D._random_gens[11] == [0, 1, 2, 3, 4, 5] _random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1} assert D.random_pr(_random_prec=_random_prec) == \ Permutation([0, 5, 4, 3, 2, 1]) def test_is_alt_sym(): G = DihedralGroup(10) assert G.is_alt_sym() is False assert G._eval_is_alt_sym_naive() is False assert G._eval_is_alt_sym_naive(only_alt=True) is False assert G._eval_is_alt_sym_naive(only_sym=True) is False S = SymmetricGroup(10) assert S._eval_is_alt_sym_naive() is True assert S._eval_is_alt_sym_naive(only_alt=True) is False assert S._eval_is_alt_sym_naive(only_sym=True) is True N_eps = 10 _random_prec = {'N_eps': N_eps, 0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]), 1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]), 2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]), 3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]), 4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]), 5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]), 6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]), 7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]), 8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]), 9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])} assert S.is_alt_sym(_random_prec=_random_prec) is True A = AlternatingGroup(10) assert A._eval_is_alt_sym_naive() is True assert A._eval_is_alt_sym_naive(only_alt=True) is True assert A._eval_is_alt_sym_naive(only_sym=True) is False _random_prec = {'N_eps': N_eps, 0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]), 1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]), 2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]), 3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]), 4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]), 5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]), 6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]), 7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]), 8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]), 9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])} assert A.is_alt_sym(_random_prec=_random_prec) is False G = PermutationGroup( Permutation(1, 3, size=8)(0, 2, 4, 6), Permutation(5, 7, size=8)(0, 2, 4, 6)) assert G.is_alt_sym() is False # Tests for monte-carlo c_n parameter setting, and which guarantees # to give False. G = DihedralGroup(10) assert G._eval_is_alt_sym_monte_carlo() is False G = DihedralGroup(20) assert G._eval_is_alt_sym_monte_carlo() is False # A dry-running test to check if it looks up for the updated cache. G = DihedralGroup(6) G.is_alt_sym() assert G.is_alt_sym() == False def test_minimal_block(): D = DihedralGroup(6) block_system = D.minimal_block([0, 3]) for i in range(3): assert block_system[i] == block_system[i + 3] S = SymmetricGroup(6) assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0] assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0] P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4)) assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1] assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1] def test_minimal_blocks(): P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]] P = SymmetricGroup(5) assert P.minimal_blocks() == [[0]*5] P = PermutationGroup(Permutation(0, 3)) assert P.minimal_blocks() == False def test_max_div(): S = SymmetricGroup(10) assert S.max_div == 5 def test_is_primitive(): S = SymmetricGroup(5) assert S.is_primitive() is True C = CyclicGroup(7) assert C.is_primitive() is True a = Permutation(0, 1, 2, size=6) b = Permutation(3, 4, 5, size=6) G = PermutationGroup(a, b) assert G.is_primitive() is False def test_random_stab(): S = SymmetricGroup(5) _random_el = Permutation([1, 3, 2, 0, 4]) _random_prec = {'rand': _random_el} g = S.random_stab(2, _random_prec=_random_prec) assert g == Permutation([1, 3, 2, 0, 4]) h = S.random_stab(1) assert h(1) == 1 def test_transitivity_degree(): perm = Permutation([1, 2, 0]) C = PermutationGroup([perm]) assert C.transitivity_degree == 1 gen1 = Permutation([1, 2, 0, 3, 4]) gen2 = Permutation([1, 2, 3, 4, 0]) # alternating group of degree 5 Alt = PermutationGroup([gen1, gen2]) assert Alt.transitivity_degree == 3 def test_schreier_sims_random(): assert sorted(Tetra.pgroup.base) == [0, 1] S = SymmetricGroup(3) base = [0, 1] strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]), Permutation([0, 2, 1])] assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens) D = DihedralGroup(3) _random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]), Permutation([1, 0, 2])]} base = [0, 1] strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]), Permutation([0, 2, 1])] assert D.schreier_sims_random([], D.generators, 2, _random_prec=_random_prec) == (base, strong_gens) def test_baseswap(): S = SymmetricGroup(4) S.schreier_sims() base = S.base strong_gens = S.strong_gens assert base == [0, 1, 2] deterministic = S.baseswap(base, strong_gens, 1, randomized=False) randomized = S.baseswap(base, strong_gens, 1) assert deterministic[0] == [0, 2, 1] assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True assert randomized[0] == [0, 2, 1] assert _verify_bsgs(S, randomized[0], randomized[1]) is True def test_schreier_sims_incremental(): identity = Permutation([0, 1, 2, 3, 4]) TrivialGroup = PermutationGroup([identity]) base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2]) assert _verify_bsgs(TrivialGroup, base, strong_gens) is True S = SymmetricGroup(5) base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2]) assert _verify_bsgs(S, base, strong_gens) is True D = DihedralGroup(2) base, strong_gens = D.schreier_sims_incremental(base=[1]) assert _verify_bsgs(D, base, strong_gens) is True A = AlternatingGroup(7) gens = A.generators[:] gen0 = gens[0] gen1 = gens[1] gen1 = rmul(gen1, ~gen0) gen0 = rmul(gen0, gen1) gen1 = rmul(gen0, gen1) base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens) assert _verify_bsgs(A, base, strong_gens) is True C = CyclicGroup(11) gen = C.generators[0] base, strong_gens = C.schreier_sims_incremental(gens=[gen**3]) assert _verify_bsgs(C, base, strong_gens) is True def _subgroup_search(i, j, k): prop_true = lambda x: True prop_fix_points = lambda x: [x(point) for point in points] == points prop_comm_g = lambda x: rmul(x, g) == rmul(g, x) prop_even = lambda x: x.is_even for i in range(i, j, k): S = SymmetricGroup(i) A = AlternatingGroup(i) C = CyclicGroup(i) Sym = S.subgroup_search(prop_true) assert Sym.is_subgroup(S) Alt = S.subgroup_search(prop_even) assert Alt.is_subgroup(A) Sym = S.subgroup_search(prop_true, init_subgroup=C) assert Sym.is_subgroup(S) points = [7] assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points)) points = [3, 4] assert S.stabilizer(3).stabilizer(4).is_subgroup( S.subgroup_search(prop_fix_points)) points = [3, 5] fix35 = A.subgroup_search(prop_fix_points) points = [5] fix5 = A.subgroup_search(prop_fix_points) assert A.subgroup_search(prop_fix_points, init_subgroup=fix35 ).is_subgroup(fix5) base, strong_gens = A.schreier_sims_incremental() g = A.generators[0] comm_g = \ A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens) assert _verify_bsgs(comm_g, base, comm_g.generators) is True assert [prop_comm_g(gen) is True for gen in comm_g.generators] def test_subgroup_search(): _subgroup_search(10, 15, 2) @XFAIL def test_subgroup_search2(): skip('takes too much time') _subgroup_search(16, 17, 1) def test_normal_closure(): # the normal closure of the trivial group is trivial S = SymmetricGroup(3) identity = Permutation([0, 1, 2]) closure = S.normal_closure(identity) assert closure.is_trivial # the normal closure of the entire group is the entire group A = AlternatingGroup(4) assert A.normal_closure(A).is_subgroup(A) # brute-force verifications for subgroups for i in (3, 4, 5): S = SymmetricGroup(i) A = AlternatingGroup(i) D = DihedralGroup(i) C = CyclicGroup(i) for gp in (A, D, C): assert _verify_normal_closure(S, gp) # brute-force verifications for all elements of a group S = SymmetricGroup(5) elements = list(S.generate_dimino()) for element in elements: assert _verify_normal_closure(S, element) # small groups small = [] for i in (1, 2, 3): small.append(SymmetricGroup(i)) small.append(AlternatingGroup(i)) small.append(DihedralGroup(i)) small.append(CyclicGroup(i)) for gp in small: for gp2 in small: if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree: assert _verify_normal_closure(gp, gp2) def test_derived_series(): # the derived series of the trivial group consists only of the trivial group triv = PermutationGroup([Permutation([0, 1, 2])]) assert triv.derived_series()[0].is_subgroup(triv) # the derived series for a simple group consists only of the group itself for i in (5, 6, 7): A = AlternatingGroup(i) assert A.derived_series()[0].is_subgroup(A) # the derived series for S_4 is S_4 > A_4 > K_4 > triv S = SymmetricGroup(4) series = S.derived_series() assert series[1].is_subgroup(AlternatingGroup(4)) assert series[2].is_subgroup(DihedralGroup(2)) assert series[3].is_trivial def test_lower_central_series(): # the lower central series of the trivial group consists of the trivial # group triv = PermutationGroup([Permutation([0, 1, 2])]) assert triv.lower_central_series()[0].is_subgroup(triv) # the lower central series of a simple group consists of the group itself for i in (5, 6, 7): A = AlternatingGroup(i) assert A.lower_central_series()[0].is_subgroup(A) # GAP-verified example S = SymmetricGroup(6) series = S.lower_central_series() assert len(series) == 2 assert series[1].is_subgroup(AlternatingGroup(6)) def test_commutator(): # the commutator of the trivial group and the trivial group is trivial S = SymmetricGroup(3) triv = PermutationGroup([Permutation([0, 1, 2])]) assert S.commutator(triv, triv).is_subgroup(triv) # the commutator of the trivial group and any other group is again trivial A = AlternatingGroup(3) assert S.commutator(triv, A).is_subgroup(triv) # the commutator is commutative for i in (3, 4, 5): S = SymmetricGroup(i) A = AlternatingGroup(i) D = DihedralGroup(i) assert S.commutator(A, D).is_subgroup(S.commutator(D, A)) # the commutator of an abelian group is trivial S = SymmetricGroup(7) A1 = AbelianGroup(2, 5) A2 = AbelianGroup(3, 4) triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])]) assert S.commutator(A1, A1).is_subgroup(triv) assert S.commutator(A2, A2).is_subgroup(triv) # examples calculated by hand S = SymmetricGroup(3) A = AlternatingGroup(3) assert S.commutator(A, S).is_subgroup(A) def test_is_nilpotent(): # every abelian group is nilpotent for i in (1, 2, 3): C = CyclicGroup(i) Ab = AbelianGroup(i, i + 2) assert C.is_nilpotent assert Ab.is_nilpotent Ab = AbelianGroup(5, 7, 10) assert Ab.is_nilpotent # A_5 is not solvable and thus not nilpotent assert AlternatingGroup(5).is_nilpotent is False def test_is_trivial(): for i in range(5): triv = PermutationGroup([Permutation(list(range(i)))]) assert triv.is_trivial def test_pointwise_stabilizer(): S = SymmetricGroup(2) stab = S.pointwise_stabilizer([0]) assert stab.generators == [Permutation(1)] S = SymmetricGroup(5) points = [] stab = S for point in (2, 0, 3, 4, 1): stab = stab.stabilizer(point) points.append(point) assert S.pointwise_stabilizer(points).is_subgroup(stab) def test_make_perm(): assert cube.pgroup.make_perm(5, seed=list(range(5))) == \ Permutation([4, 7, 6, 5, 0, 3, 2, 1]) assert cube.pgroup.make_perm(7, seed=list(range(7))) == \ Permutation([6, 7, 3, 2, 5, 4, 0, 1]) def test_elements(): from sympy.sets.sets import FiniteSet p = Permutation(2, 3) assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)} assert FiniteSet(*PermutationGroup(p).elements) \ == FiniteSet(Permutation(2, 3), Permutation(3)) def test_is_group(): assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True assert SymmetricGroup(4).is_group == True def test_PermutationGroup(): assert PermutationGroup() == PermutationGroup(Permutation()) assert (PermutationGroup() == 0) is False def test_coset_transvesal(): G = AlternatingGroup(5) H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4)) assert G.coset_transversal(H) == \ [Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3), Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4), Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3), Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)] def test_coset_table(): G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2), Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7)); H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7)) assert G.coset_table(H) == \ [[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1], [5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3], [2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5], [6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7], [10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9], [7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]] def test_subgroup(): G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3)) H = G.subgroup([Permutation(0,1,3)]) assert H.is_subgroup(G) def test_generator_product(): G = SymmetricGroup(5) p = Permutation(0, 2, 3)(1, 4) gens = G.generator_product(p) assert all(g in G.strong_gens for g in gens) w = G.identity for g in gens: w = g*w assert w == p def test_sylow_subgroup(): P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5)) S = P.sylow_subgroup(2) assert S.order() == 4 P = DihedralGroup(12) S = P.sylow_subgroup(3) assert S.order() == 3 P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2)) S = P.sylow_subgroup(3) assert S.order() == 9 S = P.sylow_subgroup(2) assert S.order() == 8 P = SymmetricGroup(10) S = P.sylow_subgroup(2) assert S.order() == 256 S = P.sylow_subgroup(3) assert S.order() == 81 S = P.sylow_subgroup(5) assert S.order() == 25 # the length of the lower central series # of a p-Sylow subgroup of Sym(n) grows with # the highest exponent exp of p such # that n >= p**exp exp = 1 length = 0 for i in range(2, 9): P = SymmetricGroup(i) S = P.sylow_subgroup(2) ls = S.lower_central_series() if i // 2**exp > 0: # length increases with exponent assert len(ls) > length length = len(ls) exp += 1 else: assert len(ls) == length G = SymmetricGroup(100) S = G.sylow_subgroup(3) assert G.order() % S.order() == 0 assert G.order()/S.order() % 3 > 0 G = AlternatingGroup(100) S = G.sylow_subgroup(2) assert G.order() % S.order() == 0 assert G.order()/S.order() % 2 > 0 G = DihedralGroup(18) S = G.sylow_subgroup(p=2) assert S.order() == 4 G = DihedralGroup(50) S = G.sylow_subgroup(p=2) assert S.order() == 4 @slow def test_presentation(): def _test(P): G = P.presentation() return G.order() == P.order() def _strong_test(P): G = P.strong_presentation() chk = len(G.generators) == len(P.strong_gens) return chk and G.order() == P.order() P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7)) assert _test(P) P = AlternatingGroup(5) assert _test(P) P = SymmetricGroup(5) assert _test(P) P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)]) assert _strong_test(P) P = DihedralGroup(6) assert _strong_test(P) a = Permutation(0,1)(2,3) b = Permutation(0,2)(3,1) c = Permutation(4,5) P = PermutationGroup(c, a, b) assert _strong_test(P) def test_polycyclic(): a = Permutation([0, 1, 2]) b = Permutation([2, 1, 0]) G = PermutationGroup([a, b]) assert G.is_polycyclic == True a = Permutation([1, 2, 3, 4, 0]) b = Permutation([1, 0, 2, 3, 4]) G = PermutationGroup([a, b]) assert G.is_polycyclic == False def test_elementary(): a = Permutation([1, 5, 2, 0, 3, 6, 4]) G = PermutationGroup([a]) assert G.is_elementary(7) == False a = Permutation(0, 1)(2, 3) b = Permutation(0, 2)(3, 1) G = PermutationGroup([a, b]) assert G.is_elementary(2) == True c = Permutation(4, 5, 6) G = PermutationGroup([a, b, c]) assert G.is_elementary(2) == False G = SymmetricGroup(4).sylow_subgroup(2) assert G.is_elementary(2) == False H = AlternatingGroup(4).sylow_subgroup(2) assert H.is_elementary(2) == True def test_perfect(): G = AlternatingGroup(3) assert G.is_perfect == False G = AlternatingGroup(5) assert G.is_perfect == True def test_index(): G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3)) H = G.subgroup([Permutation(0,1,3)]) assert G.index(H) == 4 def test_cyclic(): G = SymmetricGroup(2) assert G.is_cyclic G = AbelianGroup(3, 7) assert G.is_cyclic G = AbelianGroup(7, 7) assert not G.is_cyclic G = AlternatingGroup(3) assert G.is_cyclic G = AlternatingGroup(4) assert not G.is_cyclic # Order less than 6 G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1)) assert G.is_cyclic G = PermutationGroup( Permutation(0, 1, 2, 3), Permutation(0, 2)(1, 3) ) assert G.is_cyclic G = PermutationGroup( Permutation(3), Permutation(0, 1)(2, 3), Permutation(0, 2)(1, 3), Permutation(0, 3)(1, 2) ) assert G.is_cyclic is False # Order 15 G = PermutationGroup( Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13) ) assert G.is_cyclic # Distinct prime orders assert PermutationGroup._distinct_primes_lemma([3, 5]) is True assert PermutationGroup._distinct_primes_lemma([5, 7]) is True assert PermutationGroup._distinct_primes_lemma([2, 3]) is None assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True G = PermutationGroup( Permutation(0, 1, 2, 3), Permutation(0, 2)(1, 3)) assert G.is_cyclic assert G._is_abelian def test_abelian_invariants(): G = AbelianGroup(2, 3, 4) assert G.abelian_invariants() == [2, 3, 4] G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)]) assert G.abelian_invariants() == [2, 2] G = AlternatingGroup(7) assert G.abelian_invariants() == [] G = AlternatingGroup(4) assert G.abelian_invariants() == [3] G = DihedralGroup(4) assert G.abelian_invariants() == [2, 2] G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)]) assert G.abelian_invariants() == [7] G = DihedralGroup(12) S = G.sylow_subgroup(3) assert S.abelian_invariants() == [3] G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3)) assert G.abelian_invariants() == [3] G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)]) assert G.abelian_invariants() == [2, 4] G = SymmetricGroup(30) S = G.sylow_subgroup(2) assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2] S = G.sylow_subgroup(3) assert S.abelian_invariants() == [3, 3, 3, 3] S = G.sylow_subgroup(5) assert S.abelian_invariants() == [5, 5, 5] def test_composition_series(): a = Permutation(1, 2, 3) b = Permutation(1, 2) G = PermutationGroup([a, b]) comp_series = G.composition_series() assert comp_series == G.derived_series() # The first group in the composition series is always the group itself and # the last group in the series is the trivial group. S = SymmetricGroup(4) assert S.composition_series()[0] == S assert len(S.composition_series()) == 5 A = AlternatingGroup(4) assert A.composition_series()[0] == A assert len(A.composition_series()) == 4 # the composition series for C_8 is C_8 > C_4 > C_2 > triv G = CyclicGroup(8) series = G.composition_series() assert is_isomorphic(series[1], CyclicGroup(4)) assert is_isomorphic(series[2], CyclicGroup(2)) assert series[3].is_trivial def test_is_symmetric(): a = Permutation(0, 1, 2) b = Permutation(0, 1, size=3) assert PermutationGroup(a, b).is_symmetric == True a = Permutation(0, 2, 1) b = Permutation(1, 2, size=3) assert PermutationGroup(a, b).is_symmetric == True a = Permutation(0, 1, 2, 3) b = Permutation(0, 3)(1, 2) assert PermutationGroup(a, b).is_symmetric == False def test_conjugacy_class(): S = SymmetricGroup(4) x = Permutation(1, 2, 3) C = {Permutation(0, 1, 2, size = 4), Permutation(0, 1, 3), Permutation(0, 2, 1, size = 4), Permutation(0, 2, 3), Permutation(0, 3, 1), Permutation(0, 3, 2), Permutation(1, 2, 3), Permutation(1, 3, 2)} assert S.conjugacy_class(x) == C def test_conjugacy_classes(): S = SymmetricGroup(3) expected = [{Permutation(size = 3)}, {Permutation(0, 1, size = 3), Permutation(0, 2), Permutation(1, 2)}, {Permutation(0, 1, 2), Permutation(0, 2, 1)}] computed = S.conjugacy_classes() assert len(expected) == len(computed) assert all(e in computed for e in expected) def test_coset_class(): a = Permutation(1, 2) b = Permutation(0, 1) G = PermutationGroup([a, b]) #Creating right coset rht_coset = G*a #Checking whether it is left coset or right coset assert rht_coset.is_right_coset assert not rht_coset.is_left_coset #Creating list representation of coset list_repr = rht_coset.as_list() expected = [Permutation(0, 2), Permutation(0, 2, 1), Permutation(1, 2), Permutation(2), Permutation(2)(0, 1), Permutation(0, 1, 2)] for ele in list_repr: assert ele in expected #Creating left coset left_coset = a*G #Checking whether it is left coset or right coset assert not left_coset.is_right_coset assert left_coset.is_left_coset #Creating list representation of Coset list_repr = left_coset.as_list() expected = [Permutation(2)(0, 1), Permutation(0, 1, 2), Permutation(1, 2), Permutation(2), Permutation(0, 2), Permutation(0, 2, 1)] for ele in list_repr: assert ele in expected G = PermutationGroup(Permutation(1, 2, 3, 4), Permutation(2, 3, 4)) H = PermutationGroup(Permutation(1, 2, 3, 4)) g = Permutation(1, 3)(2, 4) rht_coset = Coset(g, H, G, dir='+') assert rht_coset.is_right_coset list_repr = rht_coset.as_list() expected = [Permutation(1, 2, 3, 4), Permutation(4), Permutation(1, 3)(2, 4), Permutation(1, 4, 3, 2)] for ele in list_repr: assert ele in expected def test_symmetricpermutationgroup(): a = SymmetricPermutationGroup(5) assert a.degree == 5 assert a.order() == 120 assert a.identity() == Permutation(4)
b8994ed3d5e00feb489825aed6a91a8e20b4eeb2b71a837dd6fdff3aa4f9faaa
from sympy.combinatorics.named_groups import SymmetricGroup, AlternatingGroup,\ CyclicGroup from sympy.combinatorics.testutil import _verify_bsgs, _cmp_perm_lists,\ _naive_list_centralizer, _verify_centralizer,\ _verify_normal_closure from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup from sympy.core.random import shuffle def test_cmp_perm_lists(): S = SymmetricGroup(4) els = list(S.generate_dimino()) other = els[:] shuffle(other) assert _cmp_perm_lists(els, other) is True def test_naive_list_centralizer(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) assert _naive_list_centralizer(S, S) == [Permutation([0, 1, 2])] assert PermutationGroup(_naive_list_centralizer(S, A)).is_subgroup(A) def test_verify_bsgs(): S = SymmetricGroup(5) S.schreier_sims() base = S.base strong_gens = S.strong_gens assert _verify_bsgs(S, base, strong_gens) is True assert _verify_bsgs(S, base[:-1], strong_gens) is False assert _verify_bsgs(S, base, S.generators) is False def test_verify_centralizer(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) triv = PermutationGroup([Permutation([0, 1, 2])]) assert _verify_centralizer(S, S, centr=triv) assert _verify_centralizer(S, A, centr=A) def test_verify_normal_closure(): # verified by GAP S = SymmetricGroup(3) A = AlternatingGroup(3) assert _verify_normal_closure(S, A, closure=A) S = SymmetricGroup(5) A = AlternatingGroup(5) C = CyclicGroup(5) assert _verify_normal_closure(S, A, closure=A) assert _verify_normal_closure(S, C, closure=A)
c2e4aab683270ac2e3db3bdc27bd7a3dc51c40cdfc2c4d4bd662fbce6ef3139c
from sympy.core import S, Rational from sympy.combinatorics.schur_number import schur_partition, SchurNumber from sympy.core.random import _randint from sympy.testing.pytest import raises from sympy.core.symbol import symbols def _sum_free_test(subset): """ Checks if subset is sum-free(There are no x,y,z in the subset such that x + y = z) """ for i in subset: for j in subset: assert (i + j in subset) is False def test_schur_partition(): raises(ValueError, lambda: schur_partition(S.Infinity)) raises(ValueError, lambda: schur_partition(-1)) raises(ValueError, lambda: schur_partition(0)) assert schur_partition(2) == [[1, 2]] random_number_generator = _randint(1000) for _ in range(5): n = random_number_generator(1, 1000) result = schur_partition(n) t = 0 numbers = [] for item in result: _sum_free_test(item) """ Checks if the occurance of all numbers is exactly one """ t += len(item) for l in item: assert (l in numbers) is False numbers.append(l) assert n == t x = symbols("x") raises(ValueError, lambda: schur_partition(x)) def test_schur_number(): first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160} for k in first_known_schur_numbers: assert SchurNumber(k) == first_known_schur_numbers[k] assert SchurNumber(S.Infinity) == S.Infinity assert SchurNumber(0) == 0 raises(ValueError, lambda: SchurNumber(0.5)) n = symbols("n") assert SchurNumber(n).lower_bound() == 3**n/2 - Rational(1, 2) assert SchurNumber(8).lower_bound() == 5039
704505d0e1fa48d84dfe4874ebdc0cb2aea1e1e495a9b0cb821ae0dabf47b78f
from sympy.combinatorics.fp_groups import FpGroup from sympy.combinatorics.coset_table import (CosetTable, coset_enumeration_r, coset_enumeration_c) from sympy.combinatorics.coset_table import modified_coset_enumeration_r from sympy.combinatorics.free_groups import free_group from sympy.testing.pytest import slow """ References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" [2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490. "Implementation and Analysis of the Todd-Coxeter Algorithm" """ def test_scan_1(): # Example 5.1 from [1] F, x, y = free_group("x, y") f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) c = CosetTable(f, [x]) c.scan_and_fill(0, x) assert c.table == [[0, 0, None, None]] assert c.p == [0] assert c.n == 1 assert c.omega == [0] c.scan_and_fill(0, x**3) assert c.table == [[0, 0, None, None]] assert c.p == [0] assert c.n == 1 assert c.omega == [0] c.scan_and_fill(0, y**3) assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [None, None, 0, 1]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(0, x**-1*y**-1*x*y) assert c.table == [[0, 0, 1, 2], [None, None, 2, 0], [2, 2, 0, 1]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(1, x**3) assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \ [4, 1, None, None], [1, 3, None, None]] assert c.p == [0, 1, 2, 3, 4] assert c.n == 5 assert c.omega == [0, 1, 2, 3, 4] c.scan_and_fill(1, y**3) assert c.table == [[0, 0, 1, 2], [3, 4, 2, 0], [2, 2, 0, 1], \ [4, 1, None, None], [1, 3, None, None]] assert c.p == [0, 1, 2, 3, 4] assert c.n == 5 assert c.omega == [0, 1, 2, 3, 4] c.scan_and_fill(1, x**-1*y**-1*x*y) assert c.table == [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1], \ [None, 1, None, None], [1, 3, None, None]] assert c.p == [0, 1, 2, 1, 1] assert c.n == 3 assert c.omega == [0, 1, 2] # Example 5.2 from [1] f = FpGroup(F, [x**2, y**3, (x*y)**3]) c = CosetTable(f, [x*y]) c.scan_and_fill(0, x*y) assert c.table == [[1, None, None, 1], [None, 0, 0, None]] assert c.p == [0, 1] assert c.n == 2 assert c.omega == [0, 1] c.scan_and_fill(0, x**2) assert c.table == [[1, 1, None, 1], [0, 0, 0, None]] assert c.p == [0, 1] assert c.n == 2 assert c.omega == [0, 1] c.scan_and_fill(0, y**3) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(0, (x*y)**3) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(1, x**2) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(1, y**3) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [None, None, 1, 0]] assert c.p == [0, 1, 2] assert c.n == 3 assert c.omega == [0, 1, 2] c.scan_and_fill(1, (x*y)**3) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 4, 1, 0], [None, 2, 4, None], [2, None, None, 3]] assert c.p == [0, 1, 2, 3, 4] assert c.n == 5 assert c.omega == [0, 1, 2, 3, 4] c.scan_and_fill(2, x**2) assert c.table == [[1, 1, 2, 1], [0, 0, 0, 2], [3, 3, 1, 0], [2, 2, 3, 3], [2, None, None, 3]] assert c.p == [0, 1, 2, 3, 3] assert c.n == 4 assert c.omega == [0, 1, 2, 3] @slow def test_coset_enumeration(): # this test function contains the combined tests for the two strategies # i.e. HLT and Felsch strategies. # Example 5.1 from [1] F, x, y = free_group("x, y") f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) C_r = coset_enumeration_r(f, [x]) C_r.compress(); C_r.standardize() C_c = coset_enumeration_c(f, [x]) C_c.compress(); C_c.standardize() table1 = [[0, 0, 1, 2], [1, 1, 2, 0], [2, 2, 0, 1]] assert C_r.table == table1 assert C_c.table == table1 # E1 from [2] Pg. 474 F, r, s, t = free_group("r, s, t") E1 = FpGroup(F, [t**-1*r*t*r**-2, r**-1*s*r*s**-2, s**-1*t*s*t**-2]) C_r = coset_enumeration_r(E1, []) C_r.compress() C_c = coset_enumeration_c(E1, []) C_c.compress() table2 = [[0, 0, 0, 0, 0, 0]] assert C_r.table == table2 # test for issue #11449 assert C_c.table == table2 # Cox group from [2] Pg. 474 F, a, b = free_group("a, b") Cox = FpGroup(F, [a**6, b**6, (a*b)**2, (a**2*b**2)**2, (a**3*b**3)**5]) C_r = coset_enumeration_r(Cox, [a]) C_r.compress(); C_r.standardize() C_c = coset_enumeration_c(Cox, [a]) C_c.compress(); C_c.standardize() table3 = [[0, 0, 1, 2], [2, 3, 4, 0], [5, 1, 0, 6], [1, 7, 8, 9], [9, 10, 11, 1], [12, 2, 9, 13], [14, 9, 2, 11], [3, 12, 15, 16], [16, 17, 18, 3], [6, 4, 3, 5], [4, 19, 20, 21], [21, 22, 6, 4], [7, 5, 23, 24], [25, 23, 5, 18], [19, 6, 22, 26], [24, 27, 28, 7], [29, 8, 7, 30], [8, 31, 32, 33], [33, 34, 13, 8], [10, 14, 35, 35], [35, 36, 37, 10], [30, 11, 10, 29], [11, 38, 39, 14], [13, 39, 38, 12], [40, 15, 12, 41], [42, 13, 34, 43], [44, 35, 14, 45], [15, 46, 47, 34], [34, 48, 49, 15], [50, 16, 21, 51], [52, 21, 16, 49], [17, 50, 53, 54], [54, 55, 56, 17], [41, 18, 17, 40], [18, 28, 27, 25], [26, 20, 19, 19], [20, 57, 58, 59], [59, 60, 51, 20], [22, 52, 61, 23], [23, 62, 63, 22], [64, 24, 33, 65], [48, 33, 24, 61], [62, 25, 54, 66], [67, 54, 25, 68], [57, 26, 59, 69], [70, 59, 26, 63], [27, 64, 71, 72], [72, 73, 68, 27], [28, 41, 74, 75], [75, 76, 30, 28], [31, 29, 77, 78], [79, 77, 29, 37], [38, 30, 76, 80], [78, 81, 82, 31], [43, 32, 31, 42], [32, 83, 84, 85], [85, 86, 65, 32], [36, 44, 87, 88], [88, 89, 90, 36], [45, 37, 36, 44], [37, 82, 81, 79], [80, 74, 41, 38], [39, 42, 91, 92], [92, 93, 45, 39], [46, 40, 94, 95], [96, 94, 40, 56], [97, 91, 42, 82], [83, 43, 98, 99], [100, 98, 43, 47], [101, 87, 44, 90], [82, 45, 93, 97], [95, 102, 103, 46], [104, 47, 46, 105], [47, 106, 107, 100], [61, 108, 109, 48], [105, 49, 48, 104], [49, 110, 111, 52], [51, 111, 110, 50], [112, 53, 50, 113], [114, 51, 60, 115], [116, 61, 52, 117], [53, 118, 119, 60], [60, 70, 66, 53], [55, 67, 120, 121], [121, 122, 123, 55], [113, 56, 55, 112], [56, 103, 102, 96], [69, 124, 125, 57], [115, 58, 57, 114], [58, 126, 127, 128], [128, 128, 69, 58], [66, 129, 130, 62], [117, 63, 62, 116], [63, 125, 124, 70], [65, 109, 108, 64], [131, 71, 64, 132], [133, 65, 86, 134], [135, 66, 70, 136], [68, 130, 129, 67], [137, 120, 67, 138], [132, 68, 73, 131], [139, 69, 128, 140], [71, 141, 142, 86], [86, 143, 144, 71], [145, 72, 75, 146], [147, 75, 72, 144], [73, 145, 148, 120], [120, 149, 150, 73], [74, 151, 152, 94], [94, 153, 146, 74], [76, 147, 154, 77], [77, 155, 156, 76], [157, 78, 85, 158], [143, 85, 78, 154], [155, 79, 88, 159], [160, 88, 79, 161], [151, 80, 92, 162], [163, 92, 80, 156], [81, 157, 164, 165], [165, 166, 161, 81], [99, 107, 106, 83], [134, 84, 83, 133], [84, 167, 168, 169], [169, 170, 158, 84], [87, 171, 172, 93], [93, 163, 159, 87], [89, 160, 173, 174], [174, 175, 176, 89], [90, 90, 89, 101], [91, 177, 178, 98], [98, 179, 162, 91], [180, 95, 100, 181], [179, 100, 95, 152], [153, 96, 121, 148], [182, 121, 96, 183], [177, 97, 165, 184], [185, 165, 97, 172], [186, 99, 169, 187], [188, 169, 99, 178], [171, 101, 174, 189], [190, 174, 101, 176], [102, 180, 191, 192], [192, 193, 183, 102], [103, 113, 194, 195], [195, 196, 105, 103], [106, 104, 197, 198], [199, 197, 104, 109], [110, 105, 196, 200], [198, 201, 133, 106], [107, 186, 202, 203], [203, 204, 181, 107], [108, 116, 205, 206], [206, 207, 132, 108], [109, 133, 201, 199], [200, 194, 113, 110], [111, 114, 208, 209], [209, 210, 117, 111], [118, 112, 211, 212], [213, 211, 112, 123], [214, 208, 114, 125], [126, 115, 215, 216], [217, 215, 115, 119], [218, 205, 116, 130], [125, 117, 210, 214], [212, 219, 220, 118], [136, 119, 118, 135], [119, 221, 222, 217], [122, 182, 223, 224], [224, 225, 226, 122], [138, 123, 122, 137], [123, 220, 219, 213], [124, 139, 227, 228], [228, 229, 136, 124], [216, 222, 221, 126], [140, 127, 126, 139], [127, 230, 231, 232], [232, 233, 140, 127], [129, 135, 234, 235], [235, 236, 138, 129], [130, 132, 207, 218], [141, 131, 237, 238], [239, 237, 131, 150], [167, 134, 240, 241], [242, 240, 134, 142], [243, 234, 135, 220], [221, 136, 229, 244], [149, 137, 245, 246], [247, 245, 137, 226], [220, 138, 236, 243], [244, 227, 139, 221], [230, 140, 233, 248], [238, 249, 250, 141], [251, 142, 141, 252], [142, 253, 254, 242], [154, 255, 256, 143], [252, 144, 143, 251], [144, 257, 258, 147], [146, 258, 257, 145], [259, 148, 145, 260], [261, 146, 153, 262], [263, 154, 147, 264], [148, 265, 266, 153], [246, 267, 268, 149], [260, 150, 149, 259], [150, 250, 249, 239], [162, 269, 270, 151], [262, 152, 151, 261], [152, 271, 272, 179], [159, 273, 274, 155], [264, 156, 155, 263], [156, 270, 269, 163], [158, 256, 255, 157], [275, 164, 157, 276], [277, 158, 170, 278], [279, 159, 163, 280], [161, 274, 273, 160], [281, 173, 160, 282], [276, 161, 166, 275], [283, 162, 179, 284], [164, 285, 286, 170], [170, 188, 184, 164], [166, 185, 189, 173], [173, 287, 288, 166], [241, 254, 253, 167], [278, 168, 167, 277], [168, 289, 290, 291], [291, 292, 187, 168], [189, 293, 294, 171], [280, 172, 171, 279], [172, 295, 296, 185], [175, 190, 297, 297], [297, 298, 299, 175], [282, 176, 175, 281], [176, 294, 293, 190], [184, 296, 295, 177], [284, 178, 177, 283], [178, 300, 301, 188], [181, 272, 271, 180], [302, 191, 180, 303], [304, 181, 204, 305], [183, 266, 265, 182], [306, 223, 182, 307], [303, 183, 193, 302], [308, 184, 188, 309], [310, 189, 185, 311], [187, 301, 300, 186], [305, 202, 186, 304], [312, 187, 292, 313], [314, 297, 190, 315], [191, 316, 317, 204], [204, 318, 319, 191], [320, 192, 195, 321], [322, 195, 192, 319], [193, 320, 323, 223], [223, 324, 325, 193], [194, 326, 327, 211], [211, 328, 321, 194], [196, 322, 329, 197], [197, 330, 331, 196], [332, 198, 203, 333], [318, 203, 198, 329], [330, 199, 206, 334], [335, 206, 199, 336], [326, 200, 209, 337], [338, 209, 200, 331], [201, 332, 339, 240], [240, 340, 336, 201], [202, 341, 342, 292], [292, 343, 333, 202], [205, 344, 345, 210], [210, 338, 334, 205], [207, 335, 346, 237], [237, 347, 348, 207], [208, 349, 350, 215], [215, 351, 337, 208], [352, 212, 217, 353], [351, 217, 212, 327], [328, 213, 224, 323], [354, 224, 213, 355], [349, 214, 228, 356], [357, 228, 214, 345], [358, 216, 232, 359], [360, 232, 216, 350], [344, 218, 235, 361], [362, 235, 218, 348], [219, 352, 363, 364], [364, 365, 355, 219], [222, 358, 366, 367], [367, 368, 353, 222], [225, 354, 369, 370], [370, 371, 372, 225], [307, 226, 225, 306], [226, 268, 267, 247], [227, 373, 374, 233], [233, 360, 356, 227], [229, 357, 361, 234], [234, 375, 376, 229], [248, 231, 230, 230], [231, 377, 378, 379], [379, 380, 359, 231], [236, 362, 381, 245], [245, 382, 383, 236], [384, 238, 242, 385], [340, 242, 238, 346], [347, 239, 246, 381], [386, 246, 239, 387], [388, 241, 291, 389], [343, 291, 241, 339], [375, 243, 364, 390], [391, 364, 243, 383], [373, 244, 367, 392], [393, 367, 244, 376], [382, 247, 370, 394], [395, 370, 247, 396], [377, 248, 379, 397], [398, 379, 248, 374], [249, 384, 399, 400], [400, 401, 387, 249], [250, 260, 402, 403], [403, 404, 252, 250], [253, 251, 405, 406], [407, 405, 251, 256], [257, 252, 404, 408], [406, 409, 277, 253], [254, 388, 410, 411], [411, 412, 385, 254], [255, 263, 413, 414], [414, 415, 276, 255], [256, 277, 409, 407], [408, 402, 260, 257], [258, 261, 416, 417], [417, 418, 264, 258], [265, 259, 419, 420], [421, 419, 259, 268], [422, 416, 261, 270], [271, 262, 423, 424], [425, 423, 262, 266], [426, 413, 263, 274], [270, 264, 418, 422], [420, 427, 307, 265], [266, 303, 428, 425], [267, 386, 429, 430], [430, 431, 396, 267], [268, 307, 427, 421], [269, 283, 432, 433], [433, 434, 280, 269], [424, 428, 303, 271], [272, 304, 435, 436], [436, 437, 284, 272], [273, 279, 438, 439], [439, 440, 282, 273], [274, 276, 415, 426], [285, 275, 441, 442], [443, 441, 275, 288], [289, 278, 444, 445], [446, 444, 278, 286], [447, 438, 279, 294], [295, 280, 434, 448], [287, 281, 449, 450], [451, 449, 281, 299], [294, 282, 440, 447], [448, 432, 283, 295], [300, 284, 437, 452], [442, 453, 454, 285], [309, 286, 285, 308], [286, 455, 456, 446], [450, 457, 458, 287], [311, 288, 287, 310], [288, 454, 453, 443], [445, 456, 455, 289], [313, 290, 289, 312], [290, 459, 460, 461], [461, 462, 389, 290], [293, 310, 463, 464], [464, 465, 315, 293], [296, 308, 466, 467], [467, 468, 311, 296], [298, 314, 469, 470], [470, 471, 472, 298], [315, 299, 298, 314], [299, 458, 457, 451], [452, 435, 304, 300], [301, 312, 473, 474], [474, 475, 309, 301], [316, 302, 476, 477], [478, 476, 302, 325], [341, 305, 479, 480], [481, 479, 305, 317], [324, 306, 482, 483], [484, 482, 306, 372], [485, 466, 308, 454], [455, 309, 475, 486], [487, 463, 310, 458], [454, 311, 468, 485], [486, 473, 312, 455], [459, 313, 488, 489], [490, 488, 313, 342], [491, 469, 314, 472], [458, 315, 465, 487], [477, 492, 485, 316], [463, 317, 316, 468], [317, 487, 493, 481], [329, 447, 464, 318], [468, 319, 318, 463], [319, 467, 448, 322], [321, 448, 467, 320], [475, 323, 320, 466], [432, 321, 328, 437], [438, 329, 322, 434], [323, 474, 452, 328], [483, 494, 486, 324], [466, 325, 324, 475], [325, 485, 492, 478], [337, 422, 433, 326], [437, 327, 326, 432], [327, 436, 424, 351], [334, 426, 439, 330], [434, 331, 330, 438], [331, 433, 422, 338], [333, 464, 447, 332], [449, 339, 332, 440], [465, 333, 343, 469], [413, 334, 338, 418], [336, 439, 426, 335], [441, 346, 335, 415], [440, 336, 340, 449], [416, 337, 351, 423], [339, 451, 470, 343], [346, 443, 450, 340], [480, 493, 487, 341], [469, 342, 341, 465], [342, 491, 495, 490], [361, 407, 414, 344], [418, 345, 344, 413], [345, 417, 408, 357], [381, 446, 442, 347], [415, 348, 347, 441], [348, 414, 407, 362], [356, 408, 417, 349], [423, 350, 349, 416], [350, 425, 420, 360], [353, 424, 436, 352], [479, 363, 352, 435], [428, 353, 368, 476], [355, 452, 474, 354], [488, 369, 354, 473], [435, 355, 365, 479], [402, 356, 360, 419], [405, 361, 357, 404], [359, 420, 425, 358], [476, 366, 358, 428], [427, 359, 380, 482], [444, 381, 362, 409], [363, 481, 477, 368], [368, 393, 390, 363], [365, 391, 394, 369], [369, 490, 480, 365], [366, 478, 483, 380], [380, 398, 392, 366], [371, 395, 496, 497], [497, 498, 489, 371], [473, 372, 371, 488], [372, 486, 494, 484], [392, 400, 403, 373], [419, 374, 373, 402], [374, 421, 430, 398], [390, 411, 406, 375], [404, 376, 375, 405], [376, 403, 400, 393], [397, 430, 421, 377], [482, 378, 377, 427], [378, 484, 497, 499], [499, 499, 397, 378], [394, 461, 445, 382], [409, 383, 382, 444], [383, 406, 411, 391], [385, 450, 443, 384], [492, 399, 384, 453], [457, 385, 412, 493], [387, 442, 446, 386], [494, 429, 386, 456], [453, 387, 401, 492], [389, 470, 451, 388], [493, 410, 388, 457], [471, 389, 462, 495], [412, 390, 393, 399], [462, 394, 391, 410], [401, 392, 398, 429], [396, 445, 461, 395], [498, 496, 395, 460], [456, 396, 431, 494], [431, 397, 499, 496], [399, 477, 481, 412], [429, 483, 478, 401], [410, 480, 490, 462], [496, 497, 484, 431], [489, 495, 491, 459], [495, 460, 459, 471], [460, 489, 498, 498], [472, 472, 471, 491]] assert C_r.table == table3 assert C_c.table == table3 # Group denoted by B2,4 from [2] Pg. 474 F, a, b = free_group("a, b") B_2_4 = FpGroup(F, [a**4, b**4, (a*b)**4, (a**-1*b)**4, (a**2*b)**4, \ (a*b**2)**4, (a**2*b**2)**4, (a**-1*b*a*b)**4, (a*b**-1*a*b)**4]) C_r = coset_enumeration_r(B_2_4, [a]) C_c = coset_enumeration_c(B_2_4, [a]) index_r = 0 for i in range(len(C_r.p)): if C_r.p[i] == i: index_r += 1 assert index_r == 1024 index_c = 0 for i in range(len(C_c.p)): if C_c.p[i] == i: index_c += 1 assert index_c == 1024 # trivial Macdonald group G(2,2) from [2] Pg. 480 M = FpGroup(F, [b**-1*a**-1*b*a*b**-1*a*b*a**-2, a**-1*b**-1*a*b*a**-1*b*a*b**-2]) C_r = coset_enumeration_r(M, [a]) C_r.compress(); C_r.standardize() C_c = coset_enumeration_c(M, [a]) C_c.compress(); C_c.standardize() table4 = [[0, 0, 0, 0]] assert C_r.table == table4 assert C_c.table == table4 def test_look_ahead(): # Section 3.2 [Test Example] Example (d) from [2] F, a, b, c = free_group("a, b, c") f = FpGroup(F, [a**11, b**5, c**4, (a*c)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b]) H = [c, b, c**2] table0 = [[1, 2, 0, 0, 0, 0], [3, 0, 4, 5, 6, 7], [0, 8, 9, 10, 11, 12], [5, 1, 10, 13, 14, 15], [16, 5, 16, 1, 17, 18], [4, 3, 1, 8, 19, 20], [12, 21, 22, 23, 24, 1], [25, 26, 27, 28, 1, 24], [2, 10, 5, 16, 22, 28], [10, 13, 13, 2, 29, 30]] CosetTable.max_stack_size = 10 C_c = coset_enumeration_c(f, H) C_c.compress(); C_c.standardize() assert C_c.table[: 10] == table0 def test_modified_methods(): ''' Tests for modified coset table methods. Example 5.7 from [1] Holt, D., Eick, B., O'Brien "Handbook of Computational Group Theory". ''' F, x, y = free_group("x, y") f = FpGroup(F, [x**3, y**5, (x*y)**2]) H = [x*y, x**-1*y**-1*x*y*x] C = CosetTable(f, H) C.modified_define(0, x) identity = C._grp.identity a_0 = C._grp.generators[0] a_1 = C._grp.generators[1] assert C.P == [[identity, None, None, None], [None, identity, None, None]] assert C.table == [[1, None, None, None], [None, 0, None, None]] C.modified_define(1, x) assert C.table == [[1, None, None, None], [2, 0, None, None], [None, 1, None, None]] assert C.P == [[identity, None, None, None], [identity, identity, None, None], [None, identity, None, None]] C.modified_scan(0, x**3, C._grp.identity, fill=False) assert C.P == [[identity, identity, None, None], [identity, identity, None, None], [identity, identity, None, None]] assert C.table == [[1, 2, None, None], [2, 0, None, None], [0, 1, None, None]] C.modified_scan(0, x*y, C._grp.generators[0], fill=False) assert C.P == [[identity, identity, None, a_0**-1], [identity, identity, a_0, None], [identity, identity, None, None]] assert C.table == [[1, 2, None, 1], [2, 0, 0, None], [0, 1, None, None]] C.modified_define(2, y**-1) assert C.table == [[1, 2, None, 1], [2, 0, 0, None], [0, 1, None, 3], [None, None, 2, None]] assert C.P == [[identity, identity, None, a_0**-1], [identity, identity, a_0, None], [identity, identity, None, identity], [None, None, identity, None]] C.modified_scan(0, x**-1*y**-1*x*y*x, C._grp.generators[1]) assert C.table == [[1, 2, None, 1], [2, 0, 0, None], [0, 1, None, 3], [3, 3, 2, None]] assert C.P == [[identity, identity, None, a_0**-1], [identity, identity, a_0, None], [identity, identity, None, identity], [a_1, a_1**-1, identity, None]] C.modified_scan(2, (x*y)**2, C._grp.identity) assert C.table == [[1, 2, 3, 1], [2, 0, 0, None], [0, 1, None, 3], [3, 3, 2, 0]] assert C.P == [[identity, identity, a_1**-1, a_0**-1], [identity, identity, a_0, None], [identity, identity, None, identity], [a_1, a_1**-1, identity, a_1]] C.modified_define(2, y) assert C.table == [[1, 2, 3, 1], [2, 0, 0, None], [0, 1, 4, 3], [3, 3, 2, 0], [None, None, None, 2]] assert C.P == [[identity, identity, a_1**-1, a_0**-1], [identity, identity, a_0, None], [identity, identity, identity, identity], [a_1, a_1**-1, identity, a_1], [None, None, None, identity]] C.modified_scan(0, y**5, C._grp.identity) assert C.table == [[1, 2, 3, 1], [2, 0, 0, 4], [0, 1, 4, 3], [3, 3, 2, 0], [None, None, 1, 2]] assert C.P == [[identity, identity, a_1**-1, a_0**-1], [identity, identity, a_0, a_0*a_1**-1], [identity, identity, identity, identity], [a_1, a_1**-1, identity, a_1], [None, None, a_1*a_0**-1, identity]] C.modified_scan(1, (x*y)**2, C._grp.identity) assert C.table == [[1, 2, 3, 1], [2, 0, 0, 4], [0, 1, 4, 3], [3, 3, 2, 0], [4, 4, 1, 2]] assert C.P == [[identity, identity, a_1**-1, a_0**-1], [identity, identity, a_0, a_0*a_1**-1], [identity, identity, identity, identity], [a_1, a_1**-1, identity, a_1], [a_0*a_1**-1, a_1*a_0**-1, a_1*a_0**-1, identity]] # Modified coset enumeration test f = FpGroup(F, [x**3, y**3, x**-1*y**-1*x*y]) C = coset_enumeration_r(f, [x]) C_m = modified_coset_enumeration_r(f, [x]) assert C_m.table == C.table
56ea69a43020f4e0da1820d4f99d1d336b3286c5108e55c57c92e2eaa5296cb8
from sympy.combinatorics import Permutation from sympy.combinatorics.perm_groups import PermutationGroup from sympy.combinatorics.homomorphisms import homomorphism, group_isomorphism, is_isomorphic from sympy.combinatorics.free_groups import free_group from sympy.combinatorics.fp_groups import FpGroup from sympy.combinatorics.named_groups import AlternatingGroup, DihedralGroup, CyclicGroup from sympy.testing.pytest import raises def test_homomorphism(): # FpGroup -> PermutationGroup F, a, b = free_group("a, b") G = FpGroup(F, [a**3, b**3, (a*b)**2]) c = Permutation(3)(0, 1, 2) d = Permutation(3)(1, 2, 3) A = AlternatingGroup(4) T = homomorphism(G, A, [a, b], [c, d]) assert T(a*b**2*a**-1) == c*d**2*c**-1 assert T.is_isomorphism() assert T(T.invert(Permutation(3)(0, 2, 3))) == Permutation(3)(0, 2, 3) T = homomorphism(G, AlternatingGroup(4), G.generators) assert T.is_trivial() assert T.kernel().order() == G.order() E, e = free_group("e") G = FpGroup(E, [e**8]) P = PermutationGroup([Permutation(0, 1, 2, 3), Permutation(0, 2)]) T = homomorphism(G, P, [e], [Permutation(0, 1, 2, 3)]) assert T.image().order() == 4 assert T(T.invert(Permutation(0, 2)(1, 3))) == Permutation(0, 2)(1, 3) T = homomorphism(E, AlternatingGroup(4), E.generators, [c]) assert T.invert(c**2) == e**-1 #order(c) == 3 so c**2 == c**-1 # FreeGroup -> FreeGroup T = homomorphism(F, E, [a], [e]) assert T(a**-2*b**4*a**2).is_identity # FreeGroup -> FpGroup G = FpGroup(F, [a*b*a**-1*b**-1]) T = homomorphism(F, G, F.generators, G.generators) assert T.invert(a**-1*b**-1*a**2) == a*b**-1 # PermutationGroup -> PermutationGroup D = DihedralGroup(8) p = Permutation(0, 1, 2, 3, 4, 5, 6, 7) P = PermutationGroup(p) T = homomorphism(P, D, [p], [p]) assert T.is_injective() assert not T.is_isomorphism() assert T.invert(p**3) == p**3 T2 = homomorphism(F, P, [F.generators[0]], P.generators) T = T.compose(T2) assert T.domain == F assert T.codomain == D assert T(a*b) == p def test_isomorphisms(): F, a, b = free_group("a, b") E, c, d = free_group("c, d") # Infinite groups with differently ordered relators. G = FpGroup(F, [a**2, b**3]) H = FpGroup(F, [b**3, a**2]) assert is_isomorphic(G, H) # Trivial Case # FpGroup -> FpGroup H = FpGroup(F, [a**3, b**3, (a*b)**2]) F, c, d = free_group("c, d") G = FpGroup(F, [c**3, d**3, (c*d)**2]) check, T = group_isomorphism(G, H) assert check assert T(c**3*d**2) == a**3*b**2 # FpGroup -> PermutationGroup # FpGroup is converted to the equivalent isomorphic group. F, a, b = free_group("a, b") G = FpGroup(F, [a**3, b**3, (a*b)**2]) H = AlternatingGroup(4) check, T = group_isomorphism(G, H) assert check assert T(b*a*b**-1*a**-1*b**-1) == Permutation(0, 2, 3) assert T(b*a*b*a**-1*b**-1) == Permutation(0, 3, 2) # PermutationGroup -> PermutationGroup D = DihedralGroup(8) p = Permutation(0, 1, 2, 3, 4, 5, 6, 7) P = PermutationGroup(p) assert not is_isomorphic(D, P) A = CyclicGroup(5) B = CyclicGroup(7) assert not is_isomorphic(A, B) # Two groups of the same prime order are isomorphic to each other. G = FpGroup(F, [a, b**5]) H = CyclicGroup(5) assert G.order() == H.order() assert is_isomorphic(G, H) def test_check_homomorphism(): a = Permutation(1,2,3,4) b = Permutation(1,3) G = PermutationGroup([a, b]) raises(ValueError, lambda: homomorphism(G, G, [a], [a]))
91519ce21e5b9bf110683fce03632fba0456880853fc86e0b72dd31f7c74b3b9
from sympy.concrete.products import (Product, product) from sympy.concrete.summations import Sum from sympy.core.function import (Derivative, Function, diff) from sympy.core.numbers import (Rational, oo, pi) from sympy.core.singleton import S from sympy.core.symbol import (Dummy, Symbol, symbols) from sympy.functions.combinatorial.factorials import (rf, factorial) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.trigonometric import (cos, sin) from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.simplify.combsimp import combsimp from sympy.simplify.simplify import simplify from sympy.testing.pytest import raises a, k, n, m, x = symbols('a,k,n,m,x', integer=True) f = Function('f') def test_karr_convention(): # Test the Karr product convention that we want to hold. # See his paper "Summation in Finite Terms" for a detailed # reasoning why we really want exactly this definition. # The convention is described for sums on page 309 and # essentially in section 1.4, definition 3. For products # we can find in analogy: # # \prod_{m <= i < n} f(i) 'has the obvious meaning' for m < n # \prod_{m <= i < n} f(i) = 0 for m = n # \prod_{m <= i < n} f(i) = 1 / \prod_{n <= i < m} f(i) for m > n # # It is important to note that he defines all products with # the upper limit being *exclusive*. # In contrast, SymPy and the usual mathematical notation has: # # prod_{i = a}^b f(i) = f(a) * f(a+1) * ... * f(b-1) * f(b) # # with the upper limit *inclusive*. So translating between # the two we find that: # # \prod_{m <= i < n} f(i) = \prod_{i = m}^{n-1} f(i) # # where we intentionally used two different ways to typeset the # products and its limits. i = Symbol("i", integer=True) k = Symbol("k", integer=True) j = Symbol("j", integer=True, positive=True) # A simple example with a concrete factors and symbolic limits. # The normal product: m = k and n = k + j and therefore m < n: m = k n = k + j a = m b = n - 1 S1 = Product(i**2, (i, a, b)).doit() # The reversed product: m = k + j and n = k and therefore m > n: m = k + j n = k a = m b = n - 1 S2 = Product(i**2, (i, a, b)).doit() assert S1 * S2 == 1 # Test the empty product: m = k and n = k and therefore m = n: m = k n = k a = m b = n - 1 Sz = Product(i**2, (i, a, b)).doit() assert Sz == 1 # Another example this time with an unspecified factor and # numeric limits. (We can not do both tests in the same example.) f = Function("f") # The normal product with m < n: m = 2 n = 11 a = m b = n - 1 S1 = Product(f(i), (i, a, b)).doit() # The reversed product with m > n: m = 11 n = 2 a = m b = n - 1 S2 = Product(f(i), (i, a, b)).doit() assert simplify(S1 * S2) == 1 # Test the empty product with m = n: m = 5 n = 5 a = m b = n - 1 Sz = Product(f(i), (i, a, b)).doit() assert Sz == 1 def test_karr_proposition_2a(): # Test Karr, page 309, proposition 2, part a i, u, v = symbols('i u v', integer=True) def test_the_product(m, n): # g g = i**3 + 2*i**2 - 3*i # f = Delta g f = simplify(g.subs(i, i+1) / g) # The product a = m b = n - 1 P = Product(f, (i, a, b)).doit() # Test if Product_{m <= i < n} f(i) = g(n) / g(m) assert combsimp(P / (g.subs(i, n) / g.subs(i, m))) == 1 # m < n test_the_product(u, u + v) # m = n test_the_product(u, u) # m > n test_the_product(u + v, u) def test_karr_proposition_2b(): # Test Karr, page 309, proposition 2, part b i, u, v, w = symbols('i u v w', integer=True) def test_the_product(l, n, m): # Productmand s = i**3 # First product a = l b = n - 1 S1 = Product(s, (i, a, b)).doit() # Second product a = l b = m - 1 S2 = Product(s, (i, a, b)).doit() # Third product a = m b = n - 1 S3 = Product(s, (i, a, b)).doit() # Test if S1 = S2 * S3 as required assert combsimp(S1 / (S2 * S3)) == 1 # l < m < n test_the_product(u, u + v, u + v + w) # l < m = n test_the_product(u, u + v, u + v) # l < m > n test_the_product(u, u + v + w, v) # l = m < n test_the_product(u, u, u + v) # l = m = n test_the_product(u, u, u) # l = m > n test_the_product(u + v, u + v, u) # l > m < n test_the_product(u + v, u, u + w) # l > m = n test_the_product(u + v, u, u) # l > m > n test_the_product(u + v + w, u + v, u) def test_simple_products(): assert product(2, (k, a, n)) == 2**(n - a + 1) assert product(k, (k, 1, n)) == factorial(n) assert product(k**3, (k, 1, n)) == factorial(n)**3 assert product(k + 1, (k, 0, n - 1)) == factorial(n) assert product(k + 1, (k, a, n - 1)) == rf(1 + a, n - a) assert product(cos(k), (k, 0, 5)) == cos(1)*cos(2)*cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 3, 5)) == cos(3)*cos(4)*cos(5) assert product(cos(k), (k, 1, Rational(5, 2))) != cos(1)*cos(2) assert isinstance(product(k**k, (k, 1, n)), Product) assert Product(x**k, (k, 1, n)).variables == [k] raises(ValueError, lambda: Product(n)) raises(ValueError, lambda: Product(n, k)) raises(ValueError, lambda: Product(n, k, 1)) raises(ValueError, lambda: Product(n, k, 1, 10)) raises(ValueError, lambda: Product(n, (k, 1))) assert product(1, (n, 1, oo)) == 1 # issue 8301 assert product(2, (n, 1, oo)) is oo assert product(-1, (n, 1, oo)).func is Product def test_multiple_products(): assert product(x, (n, 1, k), (k, 1, m)) == x**(m**2/2 + m/2) assert product(f(n), ( n, 1, m), (m, 1, k)) == Product(f(n), (n, 1, m), (m, 1, k)).doit() assert Product(f(n), (m, 1, k), (n, 1, k)).doit() == \ Product(Product(f(n), (m, 1, k)), (n, 1, k)).doit() == \ product(f(n), (m, 1, k), (n, 1, k)) == \ product(product(f(n), (m, 1, k)), (n, 1, k)) == \ Product(f(n)**k, (n, 1, k)) assert Product( x, (x, 1, k), (k, 1, n)).doit() == Product(factorial(k), (k, 1, n)) assert Product(x**k, (n, 1, k), (k, 1, m)).variables == [n, k] def test_rational_products(): assert product(1 + 1/k, (k, 1, n)) == rf(2, n)/factorial(n) def test_special_products(): # Wallis product assert product((4*k)**2 / (4*k**2 - 1), (k, 1, n)) == \ 4**n*factorial(n)**2/rf(S.Half, n)/rf(Rational(3, 2), n) # Euler's product formula for sin assert product(1 + a/k**2, (k, 1, n)) == \ rf(1 - sqrt(-a), n)*rf(1 + sqrt(-a), n)/factorial(n)**2 def test__eval_product(): from sympy.abc import i, n # issue 4809 a = Function('a') assert product(2*a(i), (i, 1, n)) == 2**n * Product(a(i), (i, 1, n)) # issue 4810 assert product(2**i, (i, 1, n)) == 2**(n*(n + 1)/2) k, m = symbols('k m', integer=True) assert product(2**i, (i, k, m)) == 2**(-k**2/2 + k/2 + m**2/2 + m/2) n = Symbol('n', negative=True, integer=True) p = Symbol('p', positive=True, integer=True) assert product(2**i, (i, n, p)) == 2**(-n**2/2 + n/2 + p**2/2 + p/2) assert product(2**i, (i, p, n)) == 2**(n**2/2 + n/2 - p**2/2 + p/2) def test_product_pow(): # issue 4817 assert product(2**f(k), (k, 1, n)) == 2**Sum(f(k), (k, 1, n)) assert product(2**(2*f(k)), (k, 1, n)) == 2**Sum(2*f(k), (k, 1, n)) def test_infinite_product(): # issue 5737 assert isinstance(Product(2**(1/factorial(n)), (n, 0, oo)), Product) def test_conjugate_transpose(): p = Product(x**k, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() A, B = symbols("A B", commutative=False) p = Product(A*B**k, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() p = Product(B**k*A, (k, 1, 3)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_simplify_prod(): y, t, b, c = symbols('y, t, b, c', integer = True) _simplify = lambda e: simplify(e, doit=False) assert _simplify(Product(x*y, (x, n, m), (y, a, k)) * \ Product(y, (x, n, m), (y, a, k))) == \ Product(x*y**2, (x, n, m), (y, a, k)) assert _simplify(3 * y* Product(x, (x, n, m)) * Product(x, (x, m + 1, a))) \ == 3 * y * Product(x, (x, n, a)) assert _simplify(Product(x, (x, k + 1, a)) * Product(x, (x, n, k))) == \ Product(x, (x, n, a)) assert _simplify(Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k))) == \ Product(x, (x, k + 1, a)) * Product(x + 1, (x, n, k)) assert _simplify(Product(x, (t, a, b)) * Product(y, (t, a, b)) * \ Product(x, (t, b+1, c))) == Product(x*y, (t, a, b)) * \ Product(x, (t, b+1, c)) assert _simplify(Product(x, (t, a, b)) * Product(x, (t, b+1, c)) * \ Product(y, (t, a, b))) == Product(x*y, (t, a, b)) * \ Product(x, (t, b+1, c)) def test_change_index(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Product(x, (x, a, b)).change_index(x, x + 1, y) == \ Product(y - 1, (y, a + 1, b + 1)) assert Product(x**2, (x, a, b)).change_index(x, x - 1) == \ Product((x + 1)**2, (x, a - 1, b - 1)) assert Product(x**2, (x, a, b)).change_index(x, -x, y) == \ Product((-y)**2, (y, -b, -a)) assert Product(x, (x, a, b)).change_index(x, -x - 1) == \ Product(-x - 1, (x, - b - 1, -a - 1)) assert Product(x*y, (x, a, b), (y, c, d)).change_index(x, x - 1, z) == \ Product((z + 1)*y, (z, a - 1, b - 1), (y, c, d)) def test_reorder(): b, y, c, d, z = symbols('b, y, c, d, z', integer = True) assert Product(x*y, (x, a, b), (y, c, d)).reorder((0, 1)) == \ Product(x*y, (y, c, d), (x, a, b)) assert Product(x, (x, a, b), (x, c, d)).reorder((0, 1)) == \ Product(x, (x, c, d), (x, a, b)) assert Product(x*y + z, (x, a, b), (z, m, n), (y, c, d)).reorder(\ (2, 0), (0, 1)) == Product(x*y + z, (z, m, n), (y, c, d), (x, a, b)) assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (0, 1), (1, 2), (0, 2)) == \ Product(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Product(x*y*z, (x, a, b), (y, c, d), (z, m, n)).reorder(\ (x, y), (y, z), (x, z)) == \ Product(x*y*z, (x, a, b), (z, m, n), (y, c, d)) assert Product(x*y, (x, a, b), (y, c, d)).reorder((x, 1)) == \ Product(x*y, (y, c, d), (x, a, b)) assert Product(x*y, (x, a, b), (y, c, d)).reorder((y, x)) == \ Product(x*y, (y, c, d), (x, a, b)) def test_Product_is_convergent(): assert Product(1/n**2, (n, 1, oo)).is_convergent() is S.false assert Product(exp(1/n**2), (n, 1, oo)).is_convergent() is S.true assert Product(1/n, (n, 1, oo)).is_convergent() is S.false assert Product(1 + 1/n, (n, 1, oo)).is_convergent() is S.false assert Product(1 + 1/n**2, (n, 1, oo)).is_convergent() is S.true def test_reverse_order(): x, y, a, b, c, d= symbols('x, y, a, b, c, d', integer = True) assert Product(x, (x, 0, 3)).reverse_order(0) == Product(1/x, (x, 4, -1)) assert Product(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(0, 1) == \ Product(x*y, (x, 6, 0), (y, 7, -1)) assert Product(x, (x, 1, 2)).reverse_order(0) == Product(1/x, (x, 3, 0)) assert Product(x, (x, 1, 3)).reverse_order(0) == Product(1/x, (x, 4, 0)) assert Product(x, (x, 1, a)).reverse_order(0) == Product(1/x, (x, a + 1, 0)) assert Product(x, (x, a, 5)).reverse_order(0) == Product(1/x, (x, 6, a - 1)) assert Product(x, (x, a + 1, a + 5)).reverse_order(0) == \ Product(1/x, (x, a + 6, a)) assert Product(x, (x, a + 1, a + 2)).reverse_order(0) == \ Product(1/x, (x, a + 3, a)) assert Product(x, (x, a + 1, a + 1)).reverse_order(0) == \ Product(1/x, (x, a + 2, a)) assert Product(x, (x, a, b)).reverse_order(0) == Product(1/x, (x, b + 1, a - 1)) assert Product(x, (x, a, b)).reverse_order(x) == Product(1/x, (x, b + 1, a - 1)) assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1) == \ Product(x*y, (x, b + 1, a - 1), (y, 6, 1)) assert Product(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x) == \ Product(x*y, (x, b + 1, a - 1), (y, 6, 1)) def test_issue_9983(): n = Symbol('n', integer=True, positive=True) p = Product(1 + 1/n**Rational(2, 3), (n, 1, oo)) assert p.is_convergent() is S.false assert product(1 + 1/n**Rational(2, 3), (n, 1, oo)) == p.doit() def test_issue_13546(): n = Symbol('n') k = Symbol('k') p = Product(n + 1 / 2**k, (k, 0, n-1)).doit() assert p.subs(n, 2).doit() == Rational(15, 2) def test_issue_14036(): a, n = symbols('a n') assert product(1 - a**2 / (n*pi)**2, [n, 1, oo]) != 0 def test_rewrite_Sum(): assert Product(1 - S.Half**2/k**2, (k, 1, oo)).rewrite(Sum) == \ exp(Sum(log(1 - 1/(4*k**2)), (k, 1, oo))) def test_KroneckerDelta_Product(): y = Symbol('y') assert Product(x*KroneckerDelta(x, y), (x, 0, 1)).doit() == 0 def test_issue_20848(): _i = Dummy('i') t, y, z = symbols('t y z') assert diff(Product(x, (y, 1, z)), x).as_dummy() == Sum(Product(x, (y, 1, _i - 1))*Product(x, (y, _i + 1, z)), (_i, 1, z)).as_dummy() assert diff(Product(x, (y, 1, z)), x).doit() == x**z*z/x assert diff(Product(x, (y, x, z)), x) == Derivative(Product(x, (y, x, z)), x) assert diff(Product(t, (x, 1, z)), x) == S(0) assert Product(sin(n*x), (n, -1, 1)).diff(x).doit() == S(0)
4cf5ba1f2d753e8e952d91bf771f79c77b0c05897991c407f308c9e933adbbe9
from sympy.concrete.guess import ( find_simple_recurrence_vector, find_simple_recurrence, rationalize, guess_generating_function_rational, guess_generating_function, guess ) from sympy.concrete.products import Product from sympy.core.function import Function from sympy.core.numbers import Rational from sympy.core.singleton import S from sympy.core.symbol import (Symbol, symbols) from sympy.core.sympify import sympify from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) from sympy.functions.combinatorial.numbers import fibonacci from sympy.functions.elementary.exponential import exp def test_find_simple_recurrence_vector(): assert find_simple_recurrence_vector( [fibonacci(k) for k in range(12)]) == [1, -1, -1] def test_find_simple_recurrence(): a = Function('a') n = Symbol('n') assert find_simple_recurrence([fibonacci(k) for k in range(12)]) == ( -a(n) - a(n + 1) + a(n + 2)) f = Function('a') i = Symbol('n') a = [1, 1, 1] for k in range(15): a.append(5*a[-1]-3*a[-2]+8*a[-3]) assert find_simple_recurrence(a, A=f, N=i) == ( -8*f(i) + 3*f(i + 1) - 5*f(i + 2) + f(i + 3)) assert find_simple_recurrence([0, 2, 15, 74, 12, 3, 0, 1, 2, 85, 4, 5, 63]) == 0 def test_rationalize(): from mpmath import cos, pi, mpf assert rationalize(cos(pi/3)) == S.Half assert rationalize(mpf("0.333333333333333")) == Rational(1, 3) assert rationalize(mpf("-0.333333333333333")) == Rational(-1, 3) assert rationalize(pi, maxcoeff = 250) == Rational(355, 113) def test_guess_generating_function_rational(): x = Symbol('x') assert guess_generating_function_rational([fibonacci(k) for k in range(5, 15)]) == ((3*x + 5)/(-x**2 - x + 1)) def test_guess_generating_function(): x = Symbol('x') assert guess_generating_function([fibonacci(k) for k in range(5, 15)])['ogf'] == ((3*x + 5)/(-x**2 - x + 1)) assert guess_generating_function( [1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, 38919])['ogf'] == ( (1/(x**4 + 2*x**2 - 4*x + 1))**S.Half) assert guess_generating_function(sympify( "[3/2, 11/2, 0, -121/2, -363/2, 121, 4719/2, 11495/2, -8712, -178717/2]") )['ogf'] == (x + Rational(3, 2))/(11*x**2 - 3*x + 1) assert guess_generating_function([factorial(k) for k in range(12)], types=['egf'])['egf'] == 1/(-x + 1) assert guess_generating_function([k+1 for k in range(12)], types=['egf']) == {'egf': (x + 1)*exp(x), 'lgdegf': (x + 2)/(x + 1)} def test_guess(): i0, i1 = symbols('i0 i1') assert guess([1, 2, 6, 24, 120], evaluate=False) == [Product(i1 + 1, (i1, 1, i0 - 1))] assert guess([1, 2, 6, 24, 120]) == [RisingFactorial(2, i0 - 1)] assert guess([1, 2, 7, 42, 429, 7436, 218348, 10850216], niter=4) == [ 2**(i0 - 1)*(Rational(27, 16))**(i0**2/2 - 3*i0/2 + 1)*Product(RisingFactorial(Rational(5, 3), i1 - 1)*RisingFactorial(Rational(7, 3), i1 - 1)/(RisingFactorial(Rational(3, 2), i1 - 1)*RisingFactorial(Rational(5, 2), i1 - 1)), (i1, 1, i0 - 1))] assert guess([1, 0, 2]) == [] x, y = symbols('x y') assert guess([1, 2, 6, 24, 120], variables=[x, y]) == [RisingFactorial(2, x - 1)]